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Abstract

Recognizing Textual Entailment using Description Logic and

Semantic Relatedness

Reda Siblini, Ph.D.

Concordia University, 2014

Textual entailment (TE) is a relation that holds between two pieces of text where one read-

ing the first piece can conclude that the second is most likely true. Accurate approaches

for textual entailment can be beneficial to various natural language processing (NLP) ap-

plications such as: question answering, information extraction, summarization, and even

machine translation. For this reason, research on textual entailment has attracted a signif-

icant amount of attention in recent years. A robust logical-based meaning representation

of text is very hard to build, therefore the majority of textual entailment approaches rely

on syntactic methods or shallow semantic alternatives. In addition, approaches that do

use a logical-based meaning representation, require a large knowledge base of axioms and

inference rules that are rarely available. The goal of this thesis is to design an efficient

description logic based approach for recognizing textual entailment that uses semantic re-

latedness information as an alternative to large knowledge base of axioms and inference

rules.

In this thesis, we propose a description logic and semantic relatedness approach to textual

entailment, where the type of semantic relatedness axioms employed in aligning the descrip-

tion logic representations are used as indicators of textual entailment. In our approach, the

text and the hypothesis are first represented in description logic. The representations are

enriched with additional semantic knowledge acquired by using the web as a corpus. The
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hypothesis is then merged into the text representation by learning semantic relatedness

axioms on demand and a reasoner is then used to reason over the aligned representation.

Finally, the types of axioms employed by the reasoner are used to learn if the text entails the

hypothesis or not. To validate our approach we have implemented an RTE system named

AORTE, and evaluated its performance on recognizing textual entailment using the fourth

recognizing textual entailment challenge. Our approach achieved an accuracy of 68.8% on

the two way task and 61.6% on the three way task which ranked the approach as 2nd when

compared to the other participating runs in the same challenge. These results show that our

description logical based approach can effectively be used to recognize textual entailment.
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Chapter 1

Introduction

Textual entailment (TE) is a relation that holds between two pieces of text where one

reading the first piece can conclude that the second is most likely true. Accurate ap-

proaches for textual entailment can be beneficial to various natural language process-

ing (NLP) applications such as question answering, information extraction, summa-

rization, and even machine translation. For this reason, research on textual entailment

has attracted a significant amount of attention in recent years. This can be clearly

observed by the large number of workshops and challenges on textual entailment, and

also by the high number of participants in such challenges ([Dagan, Glickman, and

Magnini, 2005, Bar Haim, Dagan, Dolan, Ferro, Giampiccolo, Magnini, and Szpektor,

2006, Giampiccolo, Magnini, Dagan, and Dolan, 2007, Giampiccolo, Dang, Magnini,

Dagan, and Dolan, 2008, Bentivogli, Dagan, Dang, Giampiccolo, and Magnini, 2009,

Bentivogli, Clark, Dagan, Dang, and Giampiccolo, 2010, 2011, Dzikovska, Nielsen,

Brew, Leacock, Giampiccolo, Bentivogli, Clark, Dagan, and Dang, 2013]).

In this chapter we introduce the concept of textual entailment and more specifically

the problem of automatically recognizing textual entailment. Then, we present the

motivation of such a task and its usefulness in various natural language processing

applications. We follow this discussion with an overview of the thesis and its intended

1



contributions, and we conclude with the thesis organization.

1.1 Problem Statement

Textual entailment is defined as “a relationship between a coherent text T and a lan-

guage expression, which is considered as a hypothesis, H. We say that T entails H (H

is a consequent of T), if the meaning of H, as interpreted in the context of T, can be

inferred by a human from the meaning of T” [Dagan and Glickman, 2004].

A simple example of textual entailment is:

(T1): Jurassic Park is a novel written by Michael Crichton and published in

1990.

T1 entails the following hypothesis (among others):

(H1): Michael Crichton is an author.

(H2): Michael Crichton is a writer.

(H3): Michael Crichton is a human being.

(H4): Jurassic Park is a book.

(H5): Jurassic Park is a fiction.

(H6): Jurassic Park is a literary work.

(H7): Michael Crichton is a creative writer.

(H8): Michael Crichton created the Jurassic Park novel.

(H9): Mr. Crichton is the writer of the book Jurassic Park.

(H10): Michael Crichton is the author of Jurassic Park, which is a fictional and

creative writing.

Natural language is a complex and expressive communication system. Various prop-

erties of natural language attribute to its expressiveness, and make it difficult for

computers to recognize textual entailment relations. Each language expression can

invoke various linguistic phenomena to create many entailed expressions. The above

hypotheses for example, include syntactic phenomena such as passive to active voice
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construction (written by Crichton = Crichton wrote). They also show examples of

semantic phenomena, such as hypernym relations (writer → human being, novel →

fiction, writer → creator), synonymy relations (writer=author), or named entity re-

lations (Mr. Crichton = Michael Crichton). In addition, they include discourse phe-

nomena, as in the coreference (which = Jurassic Park), and domain specific knowledge

(writer of literary work = creative writer). All these make the recognition of textual

entailment a difficult task.

In addition, given very similar hypotheses, it may be possible to conclude entailment

for some, but not possible for others as in the following examples:

(U1): Michael Crichton is the writer of the book and movie Jurassic Park.

(U2): Michael Crichton wrote Jurassic Park in the United States.

(U3): The Jurassic Park novel which was written by Michael Crichton was pub-

lished in November 1990.

We can also have contradictory or incorrect hypothesis, as in the following examples:

(C1): Michael Crichton did not write Jurassic Park.

(C2): Michael Crichton never wrote Jurassic Park.

(C3): Michael Crichton wrote the non-fiction book Jurassic Park.

This further complicates the problem, as even the ability to detect high similarity

between a text and a hypothesis does not guarantee that the text entails the hypoth-

esis.

Many researchers have worked on the problem of textual entailment, most focused on

recognizing textual entailment, some on generating textual entailment, and others on

extracting pairs of textual entailment.

Recognizing textual entailment (RTE) is the task concerned with deciding whether

a text entails a hypothesis or not. An example input would be the text (T1) and

hypothesis (H1), and the output would be a judgment. For the T1-H1 pair the judg-

ment would be true for entailment. As of today, the bulk of research on TE has
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focused on the task of recognizing textual entailment. It is usually considered as a

classification problem, with the majority of work concerned with a two way classifica-

tion (entailment or not) [Dagan, Glickman, and Magnini, 2005], [Bar Haim, Dagan,

Dolan, Ferro, Giampiccolo, Magnini, and Szpektor, 2006], [Giampiccolo, Magnini,

Dagan, and Dolan, 2007]. Other challenges are concerned with a three way classi-

fication (entailment, contradiction, unknown) [Giampiccolo, Dang, Magnini, Dagan,

and Dolan, 2008], [Bentivogli, Dagan, Dang, Giampiccolo, and Magnini, 2009], [Ben-

tivogli, Clark, Dagan, Dang, and Giampiccolo, 2010], or [Bentivogli, Clark, Dagan,

Dang, and Giampiccolo, 2011]. And more recently, there has been an attempt at a

five way classification task (bidirectional, entailment, contradiction, irrelevant, not

in the domain)[Dzikovska, Nielsen, Brew, Leacock, Giampiccolo, Bentivogli, Clark,

Dagan, and Dang, 2013]. A detailed survey of the various approaches on recognizing

textual entailment will be given in Section 2.1.

On the other hand, generating textual entailment is creating possible hypotheses given

a text. For example, given the text (T1) above, the task would be to generate possible

hypotheses as in (H1-H10). Recent work on generating textual entailment include the

work of [Sonntag and Sacaleanu, 2010] that uses an association based word alignment

to generate possible questions hypothesis for a question answering system.

Finally, extracting textual entailment consists of extracting pairs of text and hypoth-

esis given a corpus. Recent work on extracting textual entailment include the work

of [Lin and Pantel, 2001] that proposed an unsupervised method to discover binary

inferences from text (such as if “X is author of Y” that entails “X wrote Y”) using

similarity of dependency trees paths from a parsed corpus. And the work of [Szpek-

tor, Tanev, Dagan, Coppola, et al., 2005] that proposed a an unsupervised method

to extract entailment relations from the web by searching the web for related syn-

tactic entailment templates for a list of verbs, for example the extracted entailment
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templates for “X Prevent Y” includes “X provides protection against Y”, “X reduces

Y”...

Others have focused on bidirectional textual entailment or paraphrasing, which can

be seen as a special case of textual entailment where the text entails the hypothesis

and the hypothesis entails the text. Much work has been done on this topic, such

as the work of the participants in the International Workshop on Paraphrasing [Inui

and Hermjakob, 2003].

Some have worked on cross-lingual textual entailment, where the text and the hy-

pothesis are in different languages. Recent challenges that have focused on this task

include: Recognizing Inference in TExt challenge [Shima, Kanayama, Lee, Lin, Mi-

tamura, Miyao, Shi, and Takeda, 2011] and the Cross-lingual Textual Entailment

challenge [Negri, Marchetti, Mehdad, Bentivogli, and Giampiccolo, 2012].

The scope of this thesis is limited to the problem of recognizing textual entailment

and more precisely recognizing monolingual textual entailment.

1.2 Motivation

The ability to recognize textual entailment is a fundamental task to many NLP ap-

plications such as question answering, information extraction, information retrieval,

machine translation, and summarization.

Question Answering (QA): QA is concerned with answering questions asked in natural

language from text. Recognizing textual entailment can be used as part of validating

candidate answers of a QA approach. For example: if the question is “Who painted

the Scream?” and a candidate text includes: “Norway’s most famous painting, The

Scream by Edvard Munch” then RTE can be used to test whether the question (in

affirmative form) “Edvard Munch painted the Scream” is a consequent of the text or
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not. Researchers who have applied RTE in QA, include [Harabagiu and Hickl, 2006]

and [Kouylekov, Negri, Magnini, and Coppola, 2007].

Information extraction (IE): The main goal of IE is to extract specific structured

information from a collection of documents. Various subtasks of IE focus on entity

property extractions, relations extractions, or even scenario production. An exam-

ple of a specific relation extraction task is “gathering the profits of companies from

company reports”. The classical approach to such a task is usually trying to fill a

set of templates representing the relation that we are interested in. In our example

those templates could be: X reported Y in profit, X profits hit Y, X record profits of

Y... Recognizing textual entailment can be used in IE by reformulating the needed

information as a hypothesis and testing this hypothesis on relevant extracted texts.

One researcher who has used this approach successfully for IE is [Kouylekov, 2006].

Information Retrieval (IR): Information retrieval is concerned with retrieving rele-

vant information from a collection of documents. A query must be matched against a

large number of documents. Recognizing textual entailment can be applied to infor-

mation retrieval by evaluating if the document retrieved does entail the information

we are looking for. One attempt to use RTE for IR is the work of [Clinchant, Goutte,

and Gaussier, 2006].

Machine translation (MT): Machine translation from one natural language to another

can also use RTE by either validating an automated translation to a manually cre-

ated one, or by finding corresponding terms missing from the translation database.

Researchers who have used RTE in machine translation, include [Mirkin, Specia,

Cancedda, Dagan, Dymetman, and Szpektor, 2009] and [Padó, Galley, Jurafsky, and

Manning, 2009].

Summarization: The main goal of automated summarization is to reduce the length
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of a document by retaining its most important points while avoiding redundancy. Re-

dundancy can be avoided by recognizing textual entailment. Many researchers such as

those who participated in the textual entailment search pilot task [Bentivogli, Dagan,

Dang, Giampiccolo, and Magnini, 2009] have used RTE for the task of summarization.

The main goal of recognizing textual entailment is to provide a common generic

framework targeting semantic inference that can be used by various NLP tasks. In

the next section, we will present a brief of overview of the thesis including our main

approach to RTE, the methodology we used, and its evaluation.

1.3 Overview of the Thesis

A robust logical-based meaning representation of text is very hard to build, therefore

the majority of textual entailment approaches rely on syntactic methods or shallow

semantic alternatives. Approaches that do use a logical-based meaning representa-

tion (e.g. [Tatu, Iles, Slavick, Novischi, and Moldovan, 2006], [de Salvo Braz, Girju,

Punyakanok, Roth, and Sammons, 2006], [Clark and Harrison, 2008]), require a large

knowledge base of axioms and inference rules that are rarely available. Our goal in

this thesis is to design an efficient description logic based approach for recognizing

textual entailment that uses semantic relatedness information as an alternative to

the needed large knowledge base of axioms and inference rules, and then evaluate

it experimentally using current benchmarks. As a full logical based meaning repre-

sentation is still a very difficult and challenging problem, we started first with an

investigation of the use of description logic as a surface meaning representation of

text, knowledge querying in natural language, and semantic relatedness to recognize

textual entailment (detailed in Chapter 3). An analysis of the description logic base-

line approach helped us identify the main problems of the shallow logical approaches
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with semantic relatedness to recognizing textual entailment, and led us to investigate

the following:

1. How the web can be used as a corpus for enriching a meaning representation of

a text.

2. How the semantic relatedness between concepts can be used to learn axioms

on demand, as an alternative to using a predefined set of axioms, to recognize

textual entailment.

3. If the type of logical statements used to align textual representations can be

used as an indicator to textual entailment.

In this thesis, we propose a description logic and semantic relatedness approach to

textual entailment, where the type of semantic relatedness axioms employed in align-

ing the description logic representations are used as indicators of textual entailment.

In our approach, the text and the hypothesis are first represented in description logic.

The representations are enriched with additional semantic knowledge by using the web

as a corpus. The hypothesis is then merged into the text representation by learning

semantic relatedness axioms on demand and a reasoner is then used to reason over

the aligned representation. Finally, the types of axioms employed by the reasoner are

used to learn if the text entails the hypothesis or not.

To validate our approach we have implemented an RTE system named AORTE (de-

scribed in Chapter 4), and evaluated its performance on recognizing textual entail-

ment using the fourth recognizing textual entailment challenge [Giampiccolo, Dang,

Magnini, Dagan, and Dolan, 2008] (described in Section 2.2). The system classified

1000 T-H pairs into the three way task (Entailment, Contradiction, or Unknown).

The evaluation was done automatically, where the classifications returned by the sys-

tem were compared to the human annotated gold standard and the returned score
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is the accuracy or the percentage of matching judgments. Our approach achieved

an accuracy of 68.8% on the two way task and 61.6% on the three way task which

ranked the approach as 2nd when compared to the other participating runs in the

same challenge.

The alignment of meaning representation relies heavily on the semantic relatedness

between concepts. Consequently, the accuracy of the alignment is directly related to

the precision of the semantic relatedness measurement. To improve that accuracy,

we have then investigated a new approach to measure semantic relatedness. This ap-

proach (described in Chapter 5) is based on the assumption that the type of semantic

relations in a lexicon can be a good indicator of semantic relatedness. We evaluated

our lexicon semantic relatedness approach intrinsically using correlation with human

ranking of semantic relatedness, and synonymy tests. The results show a Pearson’s

correlation of 0.93 with human ranking of semantic relatedness and an accuracy of

91.25% on the TOEFL synonym set. This result significantly improves the state of

the art of lexicon-based approaches (described in details in Section 5.2). We have

also applied our semantic relatedness measure extrinsically to RTE, and achieved an

accuracy of 56% on the three way task of the fourth recognizing textual entailment

challenge (shown in Section 5.3). Although this approach resulted in a lower accu-

racy than using the web, we foresee that combining different sources of measurements

could lead to much better accuracy (discussed in Section 6.2).

1.4 Intended Contributions

In this thesis, we show that the type of semantic relatedness axioms used to align

meaning representations can be successfully used as indicators of textual entailment.

The proposed development in this thesis contributes to research in Natural Language

Processing in the following ways:
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Development of a Recognizing Textual Entailment Approach

Our main contribution is the development of a novel approach to recognizing textual

entailment based on description logic and semantic relatedness, which improves the

current state of the art. We have developed a method for representing text in de-

scription logic, that was published in [Siblini and Kosseim, 2008a] and is described in

Chapter 3.

We have also used the types of logical statements used to align textual representations

as features in a machine learning algorithm to recognize textual entailment. This was

published in [Siblini and Kosseim, 2009] and is described in Chapter 4. To show how

our approach can be used in RTE, we have built a prototype (called AORTE) and

evaluated it on the available benchmarks.

This approach has led to other contributions that are described below.

Development of a Method to Natural Language Querying

We have designed a novel approach to query a knowledge base in natural language.

This approach (described in Section 3.3) is based on predicate selectional preferences

to answer queries in natural language, and was published in [Kosseim, Siblini, Baker,

and Bergler, 2006]. To test the proposed approach and its usefulness, we have devel-

oped a natural language querying prototype (called ONLI) and evaluated it on the

Fungal Web Ontology.

Development of a Web Based Named Entities Recognition Approach

We have developed an approach to extract classes of named entities by exploring the

web linguistically as a corpus. This approach (described in Section 4.2) is based on
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lexical preferences of grammatical relations in addition to a set of grammatical pat-

terns. This has led to the publication [Siblini and Kosseim, 2008b].

Development of a Semantic Relatedness Approach

Finally, we have developed a lexicon based method to measure semantic relatedness.

This approach is based on the types of semantic relations between concepts as an

indicator of relatedness, and has improved the current state of the art of lexicon

based semantic relatedness measures. This was published in [Siblini and Kosseim,

2013b] and is described in details in Section 5.1. An extension of this method, which

was devised to detect phrasal similarity, has been published in [Siblini and Kosseim,

2013a] and is described in details in Section 5.2.3.

1.5 Thesis Organization

The thesis is organized as follows: Chapter 2 introduces the state of the art in recog-

nizing textual entailment. Section 2.1 reviews the different approaches for recognizing

textual entailment categorized by the method of representation. Section 2.2 presents

the available benchmarking data in the field, followed by an overview of the resources

used and their impact on recognizing textual entailment.

Chapter 3 introduces our baseline approach for recognizing textual entailment that is

based on description logic and knowledge querying. The goal of this chapter is to in-

troduce a baseline method, and show how far we can go using a shallow logical based

method and without a huge set of axioms and inference rules. This chapter starts

with an overview of the approach, and describes our method for automatically repre-

senting text in description logic. Section 3.3 of this chapter explains our approach for

querying a knowledge representation in natural language (ONLI) and its evaluation

on a large knowledge base. Section 3.4 demonstrates how knowledge representation
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querying can be used for recognizing textual entailment, followed by its evaluation

and result analysis.

Based on what we have learned from Chapter 3, we describe our second approach

and main contribution to recognizing textual entailment in Chapter 4. The chapter

introduces our method of using the Web as a corpus for extracting semantic type

of named entities (Section 4.2). The chapter also shows our approach for aligning

knowledge representations (Section 4.3), and demonstrates how the type of semantic

relations used in aligning the representations can be a good indicator of textual en-

tailment (Section 4.4). This chapter ends with the evaluation of this approach on the

available benchmarks (Section 4.5) and an analysis of the results.

In Chapter 5, we revisit the RTE approach described in Chapter 4 and more specif-

ically the alignment of knowledge representation. We try to investigate a novel

approach for measuring lexical semantic relatedness based on a weighted semantic

network (Section 5.1) and evaluate it with the available benchmarks (Section 5.2).

Section 5.3 presents the evaluation of the RTE approach with the novel semantic

relatedness method, followed by an analysis of the results (Section 5.4).

The last chapter provides a discussion and analysis of the dissertation, and concludes

with our major contributions, and possible further work.
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Chapter 2

State of the Art

In recent years, there has been much interest in recognizing textual entailment. This

can be observed in particular in the popularity of the Recognizing Textual Entailment

(RTE) challenges. In the following chapter we will examine the different approaches

for recognizing textual entailment as described in the literature, we will look at the

benchmarks available for evaluating the different methods, and review the resources

used by those approaches.
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2.1 Approaches to Recognizing Textual Entailment

Recognizing textual entailment is the task concerned with deciding whether a text

entails a hypothesis or not. A typical approach for recognizing textual entailment is

usually made up of three main components: a representation component, a compar-

ison component, and a decision component. The representation component involves

the representation of the text and the hypothesis in a way to facilitate the compari-

son between the two. A text can be represented as a tree ([Iftene, 2008, de Marneffe,

MacCartney, Grenager, Cer, Rafferty, and Manning, 2006, Marsi, Krahmer, Bosma,

and Theune, 2006, Bar-Haim, Berant, and Dagan, 2009]), a set of predicate argu-

ment structures ([Sammons, Vydiswaran, Vieira, Johri, Chang, Goldwasser, Sriku-

mar, Kundu, Tu, Small, et al., 2009, Krestel, Witte, and Bergler, 2009]), a logical

form ([Tatu, Iles, Slavick, Novischi, and Moldovan, 2006, Clark and Harrison, 2008,

de Salvo Braz, Girju, Punyakanok, Roth, and Sammons, 2006]), or with other repre-

sentations (e.g. [Wang and Neumann, 2008, Bos and Markert, 2006]). The compar-

ison methods will then vary depending on the selected representation. The decision

component decides if the hypothesis is entailed from the text or not based on the

comparison results. This component is usually either a set of predefined thresholds

or rules over the comparison method or more commonly based on a machine learning

technique.

In the following subsections we categorize recognizing textual entailment approaches

in terms of their levels of representation. In addition, we mention the evaluation

of those approaches on the Recognizing Textual Entailment task, which is the main

benchmark task for recognizing textual entailment (described in Section 2.2).
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2.1.1 Lexical Based Methods

Numerous approaches to recognizing textual entailment rely directly on the text and

the hypothesis surface strings, without creating any kind of further representation.

Such approaches operate solely on a string comparison between the text and the hy-

pothesis. The comparison component of such methods can be a simple counting of

word overlap, the computation of the Levenshtein edit distance [Levenshtein, 1966]

such as the work of [Adams, 2006] and [Castillo and Alemany, 2008], or other lexical

similarity measures as in the approaches of [Settembre, 2007, Perini, 2009, Pakray,

Bandyopadhyay, and Gelbukh, 2009]. The decision component in this case is either a

simple set of rules on the resulted computation, or machine learning algorithm trained

on similar data.

An approach worth describing that uses a lexical method is [Adams, 2006]’s approach.

The comparison component of this method operates on a combination of word simi-

larity measures, a web based word similarity method, and the lexical edit distance for

comparing T and a H. The word similarity method used is the [Hirst and St-Onge,

1998] method that uses a lexical database relations as a similarity measurement. The

web based method is based on [Glickman, Dagan, and Koppel, 2006] that uses web

frequencies to count similarities. The lexical edit distance simply counts the number

of words that were not identical from H to T relative to the length of H, which is seen

as insertion from an editing perspective. Then the computed comparison measure-

ments are used as an input to a J48 decision tree classifier that was trained on the

development set. The classifier decides whether H is entailed on H or not. The ap-

proach achieved a relatively high accuracy of 0.63 on the RTE2 challenge (described

in Section 2.2).

[Settembre, 2007]’s comparison approach uses a lexical similarity metric ratio, and

synonym and antonym replacement. The first metric counts word overlap normalized
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by the total number of words in the hypothesis. The second metric seeks for syn-

onyms and antonyms when a word in the hypothesis is not matched. For the decision

making a probabilistic model is used which essentially calculates the probability that

a feature will appear in a dataset. This approach achieved an accuracy of 0.62 on the

RTE3 challenge. [Perini, 2009]’s comparison approach is based on the word related-

ness score of [Corley and Mihalcea, 2005] between the text and the hypothesis, and a

gene expression decision component to decide whether the T-H pair is an entailment

or not. The approach achieved an accuracy of 0.615 on the RTE5 challenge.

[Breck, 2009]’s comparison approach is based on the observation that for a text to

entail a hypothesis, the text must mention all the information in the hypothesis. The

comparison is done through string matching, string edit distance that considers that

two words match if they have 80% of the letters in one or more adjacent text words,

and finally lexicon based similarity. The approach achieved an accuracy of 0.61 on

the RTE5 challenge1. [Bayer, Burger, Ferro, Henderson, and Yeh, 2005]’s MITRE

system approach is based on string alignment using a statistical machine translation

model trained on news corpus headlines. The module is designed to find correspon-

dence between pairs of sentences for machine translation purposes, and was used in

comparing a text and hypothesis. For decision making, a k-nearest neighborhood was

used to classify T-H pairs. The approach achieved an accuracy of 0.58 on the RTE1

challenge.

[Pakray, Bandyopadhyay, and Gelbukh, 2009]’s approach used a combination of un-

igram matching, bigram matching, and longest common sub-sequence, and named

entity matching for comparing T and H. Then, they used simple rules of ranking the

most matched pair as entailment in a set. The approach achieved an accuracy of 0.58

on the RTE5 challenge.

1It should be noted that results across challenges cannot be compared as the tasks and difficulty
may vary across years.

16



[Castillo and Alemany, 2008]’s approach is based on four metrics: edit distance, Word-

Net similarity measurements, and longest common substring for comparing T and H.

Then it uses a support vector machine to make a decision about the T-H pairs. The

approach achieved an accuracy of 0.57 on the RTE4 challenge.

[Perez and Alfonseca, 2005]’s comparison approach is based on the BiLingual Evalu-

ation Understudy (BLEU) algorithm [Papineni, Roukos, Ward, and Zhu, 2002] that

is usually used to automatically evaluate machine translation. The BLEU algorithm

calculates the percentage of overlapping n-grams between T and H, and using differ-

ent n values (unigram, bigram). The approach achieved an accuracy of 0.49 on the

RTE1 challenge, which is less than the baseline (see Section 2.2).

In general, lexical based methods perform poorly on the task of recognizing textual

entailment. The main reason of this poor performance is that textual entailment is

a directional relation, where the text contains more information than the hypothesis.

In addition supervised machine learning based methods of alignment require large

training corpora, which is usually not available. Another reason for the poor perfor-

mance is that entailment knowledge does not always appear at the surface level, and

additional knowledge is needed to infer textual entailment. For example, the text If

you help the needy, God will reward you entails the hypothesis Giving money to a poor

man has good consequences. A pure lexical based match for this example, may not

yield a positive result, without the knowledge that giving money is helping, the poor

are the needy, and that a reward is a good consequence. Our approach for recognizing

textual entailment uses a deeper approach based on description logic representations

and logical reasoning for comparison, and machine learning for decision making.
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2.1.2 Syntax Based Methods

The most popular types of approaches for recognizing textual entailment are syntax

based, and specifically the use of tree based representation. Syntactic information

is usually represented as a tree or a graph and then the comparison becomes a tree

searching, tree alignment, or other graphical based method of comparison.

[Iftene, 2008]’s approach starts by parsing the text and the hypothesis into depen-

dency trees using the Minipar parser [Lin, 2003]. Then the comparison tries to map

every node in the hypothesis tree to one in the text tree. The mapping can be done

either directly when the entities are available between the two, or indirectly by using

rules extracted from external resources such as the 12 million rules extracted from

DIRT (described in Section 2.3.9). A score is kept for the type and availability of a

mapping between the two and is used to decide whether the text entails the hypoth-

esis or not. This approach has achieved an accuracy of 0.72 on the RTE4 challenge.

Another method that used parse trees for representation but a graphical similarity

method for comparison is [Zanzotto, Moschitti, Pennacchiotti, and Pazienza, 2006]’s

method. To measure the similarity between the two trees, they capture the num-

ber of common sub-trees that share the same anchoring scheme. Anchors are links

between words that are equal or similar based on a similarity function. A support

vector machine is trained using positive examples from the development set that de-

cided whether the text entails the hypothesis or not. This approach has achieved an

accuracy of 0.63 on the RTE2.

[de Marneffe, MacCartney, Grenager, Cer, Rafferty, and Manning, 2006]’s approach

represents the text and the hypothesis as a typed dependency graphs. These graphs

contain a node for each word, and labeled edges representing grammatical relations

between words. To compare the graphs, an alignment heuristic is used and searches
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the graph for the most similar sub-graphs. The semantic comparison uses external re-

sources including WordNet [Fellbaum, 1998] and special purpose gazetteers. To make

a decision about entailment, they use a logistic regression classifier that is trained on

a development set to make the decision. This approach has achieved an accuracy of

0.60 on the RTE2.

[Marsi, Krahmer, Bosma, and Theune, 2006]’s approach represents the text and the

hypothesis as dependency trees, and compared the two by first aligning them using

an algorithm that matches nodes in a dependency trees. The similarity score of each

pair of nodes depends on their own similarity and the similarity of the best matching

pairs of their descendants. To decide on the entailment, the authors look at whether

the top node of the hypothesis dependency tree is aligned, and whether the alignment

strength exceeds a certain threshold value. This approach has achieved an accuracy

of 0.60 on the RTE2.

[Bar-Haim, Berant, and Dagan, 2009]’s approach represents the text and the hypothe-

sis as compact forests that are basically a set of dependency trees. The matching part

is based on rules and tree kernels computed over compact forests. The entailment

decision is made by a support vector machine generated from the training set over

feature extracted from the matching phase. This approach has achieved an accuracy

of 0.60 on the RTE4.

The advantage of comparing representations at a syntactic level is that it may re-

veal similarities that might not be evident at the linear surface level. The created

trees or graphs can relate distant words, and can make the discovery of similar mean-

ing easier even if the sentences have different word order. However, those advantages

can be offset by the inaccuracies of the parsers.

19



2.1.3 Semantic Based Methods

Semantic representations are able to reveal similarities which cannot be detected

by a surface or syntactic level. For example, a semantic representation can offset

grammatical variabilities of the same textual meaning as in the case of one seman-

tic representation that denotes both the active and passive voice of the same text.

Semantic representation may also capture implicit information such as information

about the roles an argument plays in relation to its predicate. On the other hand, the

semantic analysis process might introduce inaccuracies in the representation, which

might offset the advantage of revealing semantic similarities that are hard to be re-

vealed with a syntactic based representation or a surface level one. Semantic based

methods, those that use some sort of semantic representation of the text and the

hypothesis, are usually based on a predicate argument structure.

[Hickl, Williams, Bensley, Roberts, Rink, and Shi, 2006]’s Groundhog system creates

a semantic representation of the text and the hypothesis by following several steps.

The system performs a lexical analysis, syntactic parsing, coreference resolution, and

semantic parsing. Then semantic role labeling are added using a system trained on

the predicate-argument annotations found in PropBank (described in Section 2.3.6).

The comparison phase first performs a lexical alignment of the semantic represen-

tation, and then the generation of possible paraphrases using the web as a corpus.

The decision phase is made by the extraction of dependency features, paraphrase

features, and semantic features from the representation and feed it to a decision tree

based machine learning classifier (an implementation of C5.0), which classifies the

representations as either entailment or not. This approach has achieved a high accu-

racy of 0.75 on the RTE2 challenge.

[Sammons, Vydiswaran, Vieira, Johri, Chang, Goldwasser, Srikumar, Kundu, Tu,

Small, et al., 2009] also create predicate argument representations of the text and
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the hypothesis. They integrate multiple resources to create the representation with

multiple levels of annotations. For the comparison phase, a set of entailment metrics

have been devised that score the similarity of two semantic constituents. Those met-

rics differ from the type of annotation they are comparing. For the decision phase,

the entailment metrics are used as features to a support vector machine that decides

whether the text entails the hypothesis or not. This approach has achieved an accu-

racy of 0.64 on the RTE5 challenge.

[Krestel, Witte, and Bergler, 2009]’s approach represents the text and the hypothesis

as a predicate argument structure. For comparison, a set of rules are used to com-

pare the created representations. The decision of entailment is made if the resulted

similarity score is higher than a threshold. This approach has achieved an accuracy

of 0.54 on the RTE4 challenge.

2.1.4 Logical Form Based Methods

A logical meaning representation is able to expose similarities that are not seen in

lower representation levels. Such a representation is a meaning representation that is

backed with a sound and understandable formal semantics and can take advantage

of formal reasoning algorithms to derive information. The disadvantage of a logical

based approach is the required knowledge resources in the creation of such a represen-

tation, and more specifically the need for large number of axioms and inference rules

that are not generally available. Most of the approaches rely on a manually created

set of rules to do so. In addition to the resources needed, the computational process-

ing power required is much more important than the lexical, syntactic, or semantic

based approaches. The higher the representation level, the additional processing and
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knowledge needed to create them and the higher the possibilities of inaccuracies. In

addition, the efficiency of reasoning over a representation is directly related to the

expressiveness of the representation, as such, a balance should be struck between the

representation power and the reasoning capabilities. Logical form based methods are

one of the most knowledge intensive set of approaches and that relies on a logical

meaning representation. The comparison phase of such approaches relies on logical

entailment usually using a theorem prover and the decision is then based on the

prover’s results. The main difficulty of this type of approach is the creation of the

meaning representation. Below are some of the approaches that have used a logical

representation in recognizing textual entailment.

[Tatu, Iles, Slavick, Novischi, and Moldovan, 2006]’s approach shows a high accuracy

using a logical representation and logical proving system. The logic representation

is derived from a full syntactic parse, semantic parse, and a temporal representa-

tion. They then use the COGEX [Moldovan, Clark, Harabagiu, and Maiorano, 2003]

natural language prover originating from OTTER [McCune, 1994] to proove the hy-

pothesis from the represented text. A large number of axioms have been created from

various external knowledge bases and used by the prover. The entailment decision is

then based on the proof’s computed score, which is a measurement of the kinds of

axioms used in the proof and the significance of the dropped arguments and predi-

cates. This approach has achieved a high accuracy of 0.73 on the RTE2 challenge.

[de Salvo Braz, Girju, Punyakanok, Roth, and Sammons, 2006] presents an inter-

esting approach that involves the induction of the representation of T and H into a

hierarchical knowledge representation. The representation used is the Extended Fea-

ture Description Logic (EFDL) language. The representation is induced by machine

learning based resources, including a tockenizer, lemmatizer, part of speech tagger,

syntactic parser, semantic parser, named entity recognizer, and a name coreference
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system. In additional, a set of rewrite paraphrasing rules were used to create 300 in-

ference rules. An inference procedure is recursively applied to match the nodes in the

representation. The matching information is then used to reformulate the recogniz-

ing of textual entailment problem in an equivalent Integer Linear Programming (ILP)

problem. This approach has achieved an accuracy of 0.56 on the RTE4 challenge.

[Clark and Harrison, 2008]’s BLUE (Boeing Language Understanding Engine) system

creates a logic based representation of the text and the hypothesis. The system uses

a syntactic parser and a logical form generator to generate a semi-formal structure

between a parse and full logic. The structure is a normalized tree structure with

logic type elements generated by grammar rules. The semi-formal structure is then

used to generate ground logical assertions by applying a set of syntactic rewrite rules

recursively to the structure. The entailment task is then reduced to inferring if the

hypothesis subsumes the text. The system tries to do the inference on the created

representation based on inference rules that are generated from the word’s logical

definitions and a paraphrasing database. This approach has achieved an accuracy of

0.56 on the RTE4 challenge.

2.1.5 Hybrid Methods

Hybrid methods cover approaches that use a combination of methods to recognize

textual entailment. Hybrid approaches are usually based on only two methods with

one acting as a primary strategy and the other as a backup. However, some are based

on multiple methods with a voting mechanism to select the best result. Below is a

description of some of the methods that follow a hybrid approach.

[Wang and Neumann, 2008] creates multiple modules that each work on a specific

RTE problem, and then combine the results using a voting mechanism. The modules
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created include: a time anchoring module that detects entailment relationships be-

tween temporal expressions, a named entity oriented module that detects entailment

relationships between named entities, and a tree skeleton module that uses a kernel

based machine learning method to make the entailment prediction on dependency

trees. Different confidence values assigned to each module are used by the voting

mechanism to decide on the result. If all modules fail to return a result, a backup

module that is based on a simple bag of word approach is then used. This approach

achieved a high accuracy of 0.70 on the RTE4 challenge.

[Bos and Markert, 2006]’s approach combines two modules, one based on a bag of

words and the other based on logical representation and inference. For the first

method word overlap and word weight that are calculated as the inverse document

frequency from the web are used to compute relatedness. On the other hand, the

second module uses a first order fragment of the DRS language used in Discourse

Representation [Kamp and Reyle, 1993] and the Vampire 7 [Riazanov and Voronkov,

2002] theorem prover. A decision tree model is then created to decide which result of

the two different modules to use. This approach has achieved a precision of 0.61 on

the RTE2 challenge.

This category of approach has the capabilities of aggregating several methods and

choosing the best of their results. Consequently, it should have an advantage over

individual methods, yet the decision of which method result to choose from is not an

easy problem to solve and require a great deal of training to be able to do so.

2.1.6 Analysis

As seen in the previous section, the most accurate approaches used in RTE seem to

be based on a either on a semantic representation (Section 2.1.5), or a logical form
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(Section 2.1.6). [Hickl, Williams, Bensley, Roberts, Rink, and Shi, 2006]’s approach,

based on semantics, attained the highest accuracy of 0.75 at the RTE2 challenge. At

the same challenge, the next highest accuracy belongs to [Tatu, Iles, Slavick, Novischi,

and Moldovan, 2006]’s approach, from the logical form based category, with an accu-

racy of 0.73. Considering that the logical form of a sentence is a formal representation

which also offers proper formal semantics and reasoning, we believe that they provide

a significant advantage over semantic forms which lack the ability of having proper in-

ferences. Therefore, we have chosen to concentrate our efforts on a logical form based

method. In spite of all the advantages of logical form based methods, they suffer from

one common shortcoming: the demand for a large number of axioms and word knowl-

edge. For example, [de Salvo Braz, Girju, Punyakanok, Roth, and Sammons, 2006]

logical based approach relies on 12 million paraphrase rules in the DIRT database

(described in Section 2.3.9) that are transformed into logical axioms, in addition to

300 manually generated inference rules. [Clark and Harrison, 2008]’s approach relies

on 100,000 inference rules created from WordNet glosses (described in Section 2.3.9)

in addition to the 12 million paraphrase extracted from DIRT and all transformed

into logical form. Similarly, [Tatu, Iles, Slavick, Novischi, and Moldovan, 2006]’s ap-

proach relies on an undisclosed large number of axioms divided into the following

categories: lexical chains axioms, ontological axioms, linguistic axioms, semantic cal-

culus axioms, and temporal axioms. Most of these axioms were either extracted from

various external hand crafted knowledge bases or have been manually created by the

authors. This lead us to our research question: how far can we go with a surface

logical representation and semantic relatedness to recognize textual entailment? We

want to examine the possibility of using a logical form based methods but without the

prerequisite large knowledge base. Instead, we believe that the semantic relatedness

of concepts would be enough for the specific task of recognizing textual entailment.
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Consequently the different approaches that we will present in this dissertation all rely

on a decidable formal logical representation and semantic relatedness to recognize

textual entailment.

2.2 Recognizing Textual Entailment Benchmarks

The main benchmark task for recognizing textual entailment is the Recognizing Tex-

tual Entailment task dedicated for this problem. Since 2005, there have been seven

challenges for recognizing textual entailment. Those challenges have made it easier

for researchers to compare their work and learn as a community. These challenges

provide common test collections, a common evaluation procedure, and a medium to

share and discuss researchers’ work.

The RTE challenges were originally organized by PASCAL2, the Pattern Analysis,

Statistical Modelling and Computational Learning Network of Excellence funded by

the European Union. Afterwards, they became part of the National Institute of

Standards and Technology3 (NIST)’s Text Analysis Conference4 (TAC). In the fol-

lowing sections, we will give an overview of each of the challenges, a description of

the methods used in recognizing textual entailment, and the various resources used

by researchers in the field.

2.2.1 The First Recognizing Textual Entailment Challenge

(RTE1)

The first recognizing textual entailment challenge5 was held in 2005 as an attempt to

promote an abstract generic task that captures major semantic inference needs across

2http://www.pascal-network.org/
3http://www.nist.gov
4http://www.nist.gov/tac/
5http://pascallin.ecs.soton.ac.uk/Challenges/RTE
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applications [Dagan, Glickman, and Magnini, 2005]. This first attempt was prompted

after suggestions by the scientific community to have a separate empirically evalu-

ated task for textual entailment recognition ([Monz and de Rijke, 2001, Condoravdi,

Crouch, De Paiva, Stolle, and Bobrow, 2003, Dagan and Glickman, 2004]). This first

challenge dataset consisted of small text snippets from the general news domain of

Text-Hypothesis pairs. Each pair was labeled by human annotators as either the

“text (T) entails the hypothesis (H)” or not. The dataset was balanced in terms of

entailment and not entailment. The dataset consisted of 567 text-hypothesis pairs as

the development set and 800 as the test set. All pairs are categorised into one of the

following seven subsets corresponding to settings in different applications:

Information Retrieval Subset (IR):

The annotators created web queries as hypothesis based on prominent sentences

in news stories, and selected candidate texts from search engines retrieved doc-

uments that either entail or not the created query. The following is a text-

hypothesis pair example from the RTE1 development data set:

<pair task=“IR” value=“TRUE” id=“20”>

<t>Eating lots of foods that are a good source of fiber may keep your blood

glucose from rising too fast after you eat.</t>

<h>Fiber improves blood sugar control.</h>

</pair>

The data set is represented in the eXtensible Markup Language (XML). The

main tag <pair>has a “task” attribute that shows the subset that the pair

belongs to. In this example, “IR” indicates the Information Retrieval task. The

<pair> tag also includes the “value” attribute which is either true or false, for

entailment or not. In this example, the vale true indicates that the hypothesis

is entailed from the text. The <t> tag contains the text string, and the <h>

tag contains the hypothesis string.
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Comparable Document Subset (CD):

The annotators examined news articles on common stories with common lexical

overlap to extract text-hypothesis pairs. For example:

<pair task=“CD” value=“TRUE” id=“778”>

<t>Voting for a new European Parliament has been clouded by apathy.</t>

<h>Apathy clouds EU voting.</h>

</pair>

Reading Comprehension Subset (RC):

For the RC data set, the annotators created text-hypothesis pairs as if they were

creating a reading comprehension test for high school students. For example:

<pair task=“RC” value=“TRUE” id=“153”>

<t>The Mona Lisa, painted by Leonardo da Vinci from 1503-1506, hangs in

Paris’ Louvre Museum.</t>

<h>The Mona Lisa is in France.</h>

</pair>

Question Answering Subset (QA):

The annotators used the Cross Language Evaluation Forum (CLEF)6 QA clus-

ters of questions as a resource for questions. The question is run on the TextMap

Web Based Question Answering system [Echihabi, Hermjakob, Hovy, Marcu,

Melz, and Ravichandran, 2003], which provides relevant text snippets as poten-

tial answers to the question. Those potential answers along with the question

itself are used to create the text and the hypothesis. For example, the CLEF-

QA question “Who painted the Scream?”, returned the text snippet “Norway’s

most famous painting, ‘The Scream’ by Edvard Munch”, which is used as the

text. Then the question is transformed to an affirmative form as the hypothesis.

The resulting pair is:

6http://clef.isti.cnr.it/
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<pair task=“QA” value=“TRUE” id=“568”>

<t>Norway’s most famous painting, “The Scream” by Edvard Munch, was

recovered Saturday, almost three months after it was stolen from an Oslo

museum.</t>

<h>Edvard Munch painted “The Scream”.</h>

</pair>

Information Extraction Subset (IE):

The annotators used the UIUC7 information extraction relations as hypotheses,

and the potential sentences from new stories answering the IE relation as the

texts. For example, given the information extraction task of identifying the

acquirer of an acquisition relation we get the following example pair:

<pair task=“IE” value=“TRUE” id=“955”>

<t>C&D Technologies announced that it has closed the acquisition of Datel,

Inc.</t>

<h>C&D Technologies acquired Datel Inc.</h>

</pair>

Machine Translation Subset (MT):

The annotators used the Document Understanding Conferences (DUC)8 2004

evaluation data, from the National Institute of Standards and Technology (NIST)9,

automatic and human translations as either the text or hypothesis. The correct-

ness of the translation determines whether the text entails or not the hypothesis.

For example:

<pair task=“MT” value=“FALSE” id=“363”>

<t>Baghdad had announced that it will stop cooperating with UNSCOM com-

pletely but indicated that it will not ask for their departure.</t>

7http://cogcomp.cs.illinois.edu/Data/ER/
8http://www-nlpir.nist.gov/projects/duc/
9http://duc.nist.gov/duc2004/
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<h>Baghdad announced the complete halt in their cooperation with UNSCOM,

and said also, that it will ask them to leave.</h>

</pair>

Paraphrase Acquisition Subset (PP):

The annotators used multiple paraphrase acquisition systems, such as the Cor-

pus of Sentence Alignment in monolingual comparable corpora10 to acquire

text-hypothesis pairs. For example:

<pair task=“PP” value=“TRUE” id=“521”>

<t>California voters recall Gray Davis and elect Arnold Schwarzenegger as their

governor.</t>

<h>California voters dumped Gov. Gray Davis and replaced him with Arnold

Schwarzenegger.</h>

</pair>

Each text-hypothesis pair was annotated by at least two annotators with an average

of 80% between each pair of annotators, and an average Kappa11 level of 0.6. Sixteen

teams submitted their systems’ results to the challenge. The systems’ results were

compared to the gold standard, and the percentage of matching judgments was used

as the accuracy of the system. Accuracy in this case is simply the total number of

correctly classified pairs over the total number of all pairs.

The overall accuracies of all systems were between 50 and 60 percent, a relatively

low accuracy (considering that the baseline is about 50%), which goes to show the

challenges of such task.

10http://www.cs.columbia.edu/~noemie/alignment/
11Kappa coefficient is a statistical measure of agreement between annotators [Carletta, 1996]
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2.2.2 The Second Recognizing Textual Entailment Challenge

(RTE2)

In 2006, the second RTE challenge12 was focused on providing a more realistic and

larger data set. The data set consisted of 800 text-hypothesis pairs for development

and 800 for testing. However, the categories of the examples for this challenge were

only four: Information Retrieval (IR), Information Extraction (IE), Question An-

swering (QA), and multi-document summarization (SUM) [Bar Haim, Dagan, Dolan,

Ferro, Giampiccolo, Magnini, and Szpektor, 2006].

The information retrieval, information extraction, and question answering data were

comparable to those in RTE1, and the multi-document summarization subset is what

used to be the comparable document subset (CD).

These are some examples from the RTE2 dataset:

<pair task=“IR” entailment=“YES” id=“5”>

<t>Scientists have discovered that drinking tea protects against heart disease by

improving the function of the artery walls.</t>

<h>Tea protects from some diseases.</h>

</pair>

<pair task=“IE” entailment=“NO” id=“8”>

<t>Mangla was summoned after Madhumita’s sister Nidhi Shukla, who was the first

witness in the case.</t>

<h>Shukla is related to Mangla.</h>

</pair>

<pair task=“QA” entailment=“YES” id=“4”>

<t>A Chilean expert points out that the 1987 Montreal Protocol has not been

effective in arresting the destruction of the ozone layer in the earth’s atmosphere,

resulting in the unprecedented size of the ozone hole this year, and causing 120,000

people in Chile to be on yellow alert for ultraviolet radiation (meaning a fair-skinned

person would get burnt within 10 minutes of being exposed to the sun).</t>

<h>The ozone layer is in the earth’s atmosphere.</h>

</pair>

<pair task=“SUM” entailment=“YES” id=“1”>

12http://pascallin.ecs.soton.ac.uk/Challenges/RTE2
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<t>The news comes as doctors in Hong Kong warned that people who survive Sars

may suffer permanent lung damage and may suffer a relapse.</t>

<h>Those who recovered from Sars might have permanent lung damage.</h>

</pair>

Another difference in this challenge to the previous one is the additional filtering

on the data set for pairs with annotators’ disagreement. RTE2 only provided data

with an average agreement of 89.2% between each pair of annotators, and an average

Kappa level of 0.78 on the test set.

In addition, a secondary task was added to rank H-T pairs according to the system’s

confidence. This was evaluated using the average precision measure [Voorhees, 2001].

Twenty three teams submitted their system’s results to the challenge. The overall

accuracies of all systems were between 53% and 75%.

2.2.3 The Third Recognizing Textual Entailment Challenge

(RTE3)

The third RTE challenge13 in 2007 basically followed the same structure as the previ-

ous one, with the main difference of the introduction of longer texts, up to a paragraph

long for some of the texts, compared to a one sentence from the previous years. The

data set consisted of 800 text-hypothesis pairs for development, and 800 for testing.

17% of the tests had a longer text and were marked by a “long” length attribute. For

example:

<length=”long” task=”IE” entailment=”YES” id=”82”> <t>Jerry Reinsdorf (born

February 25 1936 in Brooklyn, New York) is the owner of Chicago White Sox and

the Chicago Bulls. Recently, he helped the White Sox win the 2005 World Series

and, in the process, collected his seventh championship ring overall (the first six

were all with the Bulls in the 1990s), becoming the third owner in the history of

North American sports to win a championship in two different sports.</t>

<h>Jerry Reinsdorf has won 7 championships.</h>

13http://pascallin.ecs.soton.ac.uk/Challenges/RTE3
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</pair>

Twenty six teams submitted their system’s results to the challenge [Giampiccolo,

Magnini, Dagan, and Dolan, 2007]. The overall accuracies of all systems were between

49% and 80%. In addition to the main task, an optional pilot task was also introduced.

This pilot task, called “Extending the Evaluation of Inferences from Texts”, was set to

differentiate between unknown entailment and contradiction. This task allows for each

textual entailment three possible answers: ”YES” (entails), ”NO” (contradicts), and

”UNKNOWN”, with the goal to drive for more precise informational distinctions. The

pilot data set consisted of 1600 text-hypothesis. Eight teams participated in the pilot

task and the overall accuracies of all systems were between 35% and 73%. Our baseline

knowledge querying system was tested on the RTE3 challenge and performed below

the average with a result of 49% on the two-way task (entailment, no entailment).

2.2.4 The Fourth Recognizing Textual Entailment Challenge

(RTE4)

The fourth RTE challenge14 became part of the Text Analysis conference (TAC) under

the auspice of the National Institute of Standards and Technology (NIST). In terms

of dataset, RTE4 was similar to the previous one with one major difference: the

addition of a three way classification of entailment (which was a suggested pilot task

in RTE3). The three way classification added an “unknown” value for entailment,

where the truth of the hypothesis cannot be determined by the text. So the entailment

attribute value contains “Entailment”, “Contradiction”, and “Unknown”. Another

difference is related to the text length, where most texts were as long as a paragraph.

For example:

<task=“IR” entailment=“UNKNOWN” id=“56”>

<t>In a bad-tempered outburst last week, Steven Crawshaw, chief executive of

Bradford & Bingley, accused analysts of looking for “communists under every bed”

14http://www.nist.gov/tac/publications/2008/papers.html
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when questioned about the bank’s £300m rights issue. The normally breezy boss

added that, after years of criticism for not being enough like its fast-growing rival

from the North East, Northern Rock, now it was being blamed “for the sins of

being too much like Northern Rock”.</t>

<h>Bradford & Bingley falls into the red.</h>

</pair>

The testing data set of this challenge was also larger than the previous year, having

1000 pairs compared to 800 from the previous years, with more pairs in the QA and

SUM categories than in the IE and IR categories as the former proved to be more

difficult. The distribution of the 3 way task on the test set was 50% entailment, 35%

unknown, and 15% contradiction. The three way systems submission values were also

automatically converted to two way values, where contradiction and unknown were

conflated as no entailment, hence the systems that submitted for the three way task

were automatically also submitting to the two way task.

Twenty six teams submitted their system’s results to the challenge [Giampiccolo,

Dang, Magnini, Dagan, and Dolan, 2008]. The overall accuracies of all systems that

participated in the two-way task were between 49.7% and 74.6% with an average

accuracy of 58%. As for the three way task, the accuracy was between 30.7% and

68.5% with an average accuracy much lower than the two way task of 51%. Our

knowledge alignment system was tested on the RTE4 three-way task and resulted in

an accuracy of 61.6%, which was ranked 2nd when compared to other system that

participated in the same task. The RTE challenge automatically converts the three

way submitted runs into two way runs by automatically conflating “Contradiction”

and “Unknown” to “No Entailment”. Our results on the two way run scored 68.8%,

which ranked 3nd when compared to all the system that participated in the 2-way

challenge and the 3-way challenge conflating to two way results.
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2.2.5 The Fifth Recognizing Textual Entailment Challenge

(RTE5)

In 2009, the fifth RTE challenge15 was similar to the previous one with the addition

of a search task. The search task consisted of searching for all sentences in a corpus

that entail a given hypothesis. In addition, ablation testing of all knowledge resources

used by participating systems was a mandatory requirement for all participants. The

ablation test was aimed at examining the importance of each resources used in rec-

ognizing textual entailment.

As for the testing dataset, the text became even longer (up to 100 words) and con-

sisted of 1200 text-hypothesis pairs, compared to 1000 from the previous year.

Twenty teams submitted their system’s results to the challenge’s main task [Ben-

tivogli, Dagan, Dang, Giampiccolo, and Magnini, 2009]. The overall accuracies of the

systems were between 50% and 73% on the two way task, and between 43% and 68%

on the three way task.

After RTE5, both the sixth RTE challenge16 [Bentivogli, Clark, Dagan, Dang, and

Giampiccolo, 2010] and the seventh RTE challenge17 [Bentivogli, Clark, Dagan, Dang,

and Giampiccolo, 2011] focused mainly on the search task. The challenge changed at

this stage from recognizing textual entailment to the search and extraction of textual

entailment task situated mainly in the summarization application setting. This com-

pletely changed the task from a classification one, to a retrieval one. With a retrieval

task, the context of the topic is important for the text to be interpreted as the text

may rely on implicit references to other information in the corpus. This made the

task a lot more challenging, as evidenced from the drop in accuracy in the average

result of the RTE6-7 participants.

15http://www.nist.gov/tac/publications/2009/papers.html
16http://www.nist.gov/tac/publications/2010/papers.html
17http://www.nist.gov/tac/publications/2011/papers.html
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2.2.6 The Student Response Analysis and The Eighth Rec-

ognizing Textual Entailment Challenge (SRA-RTE8)

In 2013, the Join Student Response Analysis and Eight Recognizing Textual Entail-

ment Challenge18 was part of the International Workshop on Semantic Evaluation

(SemEval 2013) [Dzikovska, Nielsen, Brew, Leacock, Giampiccolo, Bentivogli, Clark,

Dagan, and Dang, 2013]. This challenge’s main task was to assess student answers to

exercise questions that can be useful in a tutorial or e-learning setting. The accuracy

of student’s answers is assessed as a textual entailment to a known correct reference

answers. The following is an example entry from the training dataset:

Question: Why does measuring voltage help you locate a burned out bulb?

Reference Answer: Measuring voltage indicates the place where the electrical state

changes due to a gap.

Student Answer: because if there is a difference in electrical states then there is a gap.

That will located the burned out bulb.

The assessment is performed on different levels of granularity: as a 2-way task

(correct, incorrect), a 3-way task (correct, contradictory, or incorrect), or as a 5-way

task, where the approaches are required to classify the student answer according to

one of the following:

Correct: if we have a bi-directional textual entailment, where the reference answer

entails the student answer and the student answer entails the reference answer (as

shown in the example above).

Partially correct or incomplete: if the reference answer entails the student answer,

but the student answer does not entail the reference. This means that the student

answer contains some but not all the information from the reference answer. An

example of a partially correct student answer for the example question above is:

“electrical states will determine whether there is a gap or connection in the circuit.”

Contradictory: if the student answer explicitly contradicts the reference answer. An

example of a contradictory student answer for the example question above is: “a

bulb causes a difference in electrical state.”

Irrelevant: if the students answer is talking about domain content but not providing the

necessary information. An example of an irrelevant student answer for the example

18http://www.cs.york.ac.uk/semeval-2013/task7/index.php?id=data
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question above is: “a battery uses a chemical reaction to maintain different electrical

states between two terminals.”

Non domain: if the student answer is not talking about domain content but expressing

a request for help, frustration, or lack of domain knowledge. An example of non-

domain student answer for the example question above is: “i do not know.”

The provided data consists of two distinct subsets, one that contains 56 questions

in the electronics domain requiring 1 or 2 sentence answers and 3000 student answers,

and the other consisting of 197 assessment questions in 15 different science domains

with 10000 student answers.

Nine teams submitted their system’s results to this challenge. The overall accuracy

of all systems in the 5-way task ranged from 12% up to 71%.

2.2.7 Analysis of Benchmarking

Because textual entailment covers various linguistic phenomena and different sets of

inference tasks, it is very difficult to create a benchmark which addresses all these

phenomena. This was obvious from the evolution of the RTE challenges, and their

expansion each year to take into consideration additional phenomena. For example,

the transition from RTE2 to RTE3 introduced longer texts which required anaphora

resolution. In addition, the entailment started from a two classes of entailment and

progressed to a five classes of entailment. One suggestion that might be better for

benchmarking is [Sammons, Vydiswaran, and Roth, 2010]’s who suggest an explana-

tion based analysis of RTE data. [Sammons, Vydiswaran, and Roth, 2010] proposed

the annotation of RTE with inference steps to reach a decision, and hence give the

ability to address more focused inference tasks. Perhaps even dividing the task into

simpler subtasks, each involving a specific inference task, would be a better way to

evaluate recognizing textual entailment.

Another difficulty with the current benchmarks, which is true in all NLP bake-offs
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in general, is related to the difficulty of evaluating the contribution of individual

components or resources of an RTE approach. In RTE5, the ablation testing of all

knowledge resources used by participants was mandatory. This was aimed at examin-

ing the importance of each resources used in RTE separately. Many NLP challenges

have recognized the importance of such testing and today require such ablation. In-

formation about the different resources used in RTE and the ablation tests will be

described in more details in the next section.

2.3 Resources used in Recognizing Textual Entail-

ment

In this section, we will survey the available resources typically used in recognizing

textual entailment. We have limited the survey to resources that are either available

for public use or accessible for research, and that have already been used by researchers

to recognize textual entailment. Some of the resources include information about

ablation performance as part of various RTE approaches. As described in Section 2.2,

the ablation tests were aimed at examining the importance of each resources used in

recognizing textual entailment. Ablation tests consist of removing one component or

resource at a time from a system and re-running it on the same test set with the rest

of the component and resources unchanged. Usually most of the resources used in

RTE4 have a positive impact, but the reported impact of most of the resources is not

statistically significant (between 0.10 and 6% accuracy) and some resources even have

a negative impact. Consequently, determining the actual impact of a resource is not a

straightforward task. It must be noted that a low impact may be due to many factors,

for example, the coverage and precision of the resource itself, the manner in which

it is used or even the accuracy of the base system in which it is used. Furthermore,
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many of the resources were not tested separately usually because the resource is an

integral part of one’s approach and testing without it would not be possible.

2.3.1 Acronym Lists

Acronym lists contain abbreviations that reference an actual phrase or sometimes just

a word. The availability of such lists is important in textual entailment in order to be

able to compare an acronym to its actual reference, or further expand the acronym

with additional semantic information. The following presents some of the lists that

were often used by researchers in recognizing textual entailment:

• The Acronym Guide19: is a set of acronym and abbreviation lists for English.

The set contains 21 lists, and over a thousand acronyms and abbreviations in

total. An example entry in the business acronym set: CEO = Chief Executive

Officer. This list has been used by [Iftene and Balahur-Dobrescu, 2007] and

[Varma, Bysani, Kranthi Reddy, Santosh GSK, Kovelamudi, Kiran Kumar, and

Maganti, 2009] for recognizing textual entailment. An ablation test by removing

the acronym module from the RTE system has been done for the RTE5 challenge

and yielded a low positive impact of 0.17% on precision for the two way task for

[Iftene and Balahur-Dobrescu, 2007]’s system but no impact on [Varma, Bysani,

Kranthi Reddy, Santosh GSK, Kovelamudi, Kiran Kumar, and Maganti, 2009]’s

system.

• BADC Acronym and Abbreviation List20: is a list of acronyms and abbrevia-

tions by the British Atmospheric Data Centre (BADC). An example entry in

the BADC list is KBPS= kilobits per second. This list has been used by [Castillo

and Alemany, 2008] for recognizing textual entailment, but its impact was not

19http://www.acronym-guide.com/
20http://badc.nerc.ac.uk/help/abbrevs.html
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reported.

2.3.2 Nominalization Databases

Nominalization databases contain a collection of uninflected words and their related

variants from different parts of speech. The importance of such databases in recog-

nizing textual entailment is in relating different lexemes to the same concept. For

example, “writer”, “writers”, and “writing” all relate to the concept “writing”. The

following list contains some of the nominalization databases that were used often by

researchers in recognizing textual entailment:

• NOMLEX (NOMinalization Lexicon)21: is a database of English nominaliza-

tions that describe the allowed complements for a nominalization in addition to

their relation to the arguments of the corresponding verb [Macleod, Grishman,

Meyers, Barrett, and Reeves, 1998]. The database contains 1025 entries selected

from lists of frequently appearing nominalizations [Macleod, Grishman, Meyers,

Barrett, and Reeves, 1998]. The following is a sample entry from the NOMLEX

database:

(NOM ORTHOGRAPHY “writer”

PLURAL “writers”

VERB “write”

NOM-TYPE ((SUBJECT))

VERB-SUBCAT ((NOM-NP OBJECT ((N-N-MOD)

(PP PVAL (“of”)))

REQUIRED ((OBJECT)))

(NOM-INTRANS)))

This entry for the noun ”writer”, is a nominalization of the verb “write”, that

can have the plural form “writers”. The type of nominalization is (or NOM-

Type) is a subject of a verb. The VERB-SUBCAT feature list the complements

21http://nlp.cs.nyu.edu/nomlex/
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of the corresponding verb and provide information about how the verbal com-

plement is realized as a nominal complement, in this example “writer” has one

verbal complement NP as an object, that can appear as a noun modifier (N-

N-MOD) or a post noun to the preposition “of” (PP). NOMLEX-plus from

[Meyers, Reeves, Macleod, Szekeley, Zielinska, Young, and Grishman, 2004a]

is a 7050 entry extension of NOMLEX that includes in addition to the orig-

inal NOMLEX entries, 4900 entries for nominalizations of verbs, 550 entries

for nominalizations of adjectives and 1600 entries that fall into 16 classes for

argument taking nouns (such as PARTITIVE nouns, RELATIONAL nouns,

ATTRIBUTE nouns, among others). NOMLEX-plus has been used by [Bar-

Haim, Berant, and Dagan, 2009] as part of their lexical syntactic resource for

recognizing textual entailment, but its impact has not been reported.

• CATVAR (Categorical Variation)22: is a database of uninflected words and their

categorical variants [Habash and Dorr, 2003]. The database contains 63,146

clusters and 109,807 words and was created by combination of resources and al-

gorithms. The following is an example cluster entry from the CATVAR database

for the word “writer”:

(Variants - Part Of Speech

“write” - Verb

“writer” - Noun

“writing” - Noun

“writings”- Noun

“written” - Adjective)

CATVAR has been used by [Shnarch, 2008] for recognizing textual entailment,

but its impact has not been reported.

22http://clipdemos.umiacs.umd.edu/catvar/
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2.3.3 Gazetteers

A gazetteer is a list that includes geographical information. It is useful in recognizing

textual entailment, as it relates geographic features to their relevant information, such

as the feature type, location, elevation, population. The following list contains some

of the gazetteers used by researchers for recognizing textual entailment:

• GNIS - Geographic Names Information System23: is a database of 2 million

records of geographic features in the United States that was created by the U.S.

Geological Survey. The following is an example entry from the database:

Feature Name Class County State Latitude Longitude Elevation

Amherst Museum Building Erie NY 430502N 0784342W 581 ft

This database has been used by [Ageno, Farwell, Ferres, Cruz, and Rodŕıguez,

2008] for recognizing textual entailment, however its impact has not been re-

ported.

• Geonames24: is a geographic database containing over 10 million geographical

names. It includes integrating geographical information such as names of places

in various languages, elevation, and population. The following is an example

entry from the database:

Names Country Population Latitude Longitude

Montreal,Montréal. . . Canada- QC 3,268,513 N 45 30 31 W 73 35 16

Geonames has been used by [Ageno, Farwell, Ferres, Cruz, and Rodŕıguez, 2008]

for recognizing textual entailment, however its impact has not been reported.

2.3.4 N-gram Models

N-gram models are probabilistic language models that have been widely used in vari-

ous natural language processing applications, from language identification to machine

23http://nhd.usgs.gov/gnis.html
24http://www.geonames.org/
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translation [Manning and Schütze, 1999]. They have also been used in recognizing

textual entailment, mainly in assessing the similarity of terms based on the proba-

bilistic information of the language model.

To date, the largest n-gram model is the Web 1T 5-grams from Google25. It con-

tains English word n-grams and their observed frequencies. The n-gram counts were

generated from approximately 1 trillion word tokens of text from publicly accessible

Web pages [Brants and Franz, 2006]. The corpus contains in total about 13.5 million

unique words, 314.8 million bigrams, 977 million trigrams, 1.3 billion four grams, and

1.1 billion five grams after discarding sequences appearing less than 40 times. The

following is an example entry from the 4-gram dataset:

4 gram Count

serve as the indication 72

serve as the indicator 120

serve as the indicators 45

The Web 1T 5-grams model has been used by [Yatbaz, 2008] for measuring the

relevance of word pairs as part of a recognizing textual entailment system, however

its impact has not been reported.

2.3.5 Semantic Networks

A semantic network is a network of concepts that are related to one another by

semantic relations. Semantic networks between concepts are usually used in recog-

nizing textual entailment to compute the similarity between two concepts available

in the text and the hypothesis. Another use for semantic networks is to augment the

knowledge representation of the text or hypothesis to further infer possible entailment

between the two. The following list contains some of the semantic networks used by

researchers for recognizing textual entailment. In our approaches for RTE, we have

25http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13
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used the WordNet and VerbOcean semantic networks as the main resources from this

list.

• WordNet26: is a network of semantic relations between English words grouped

into sets of synonyms (called synsets) [Fellbaum, 1998]. The semantic relations

include hypernyms, hyponyms, holonyms, meronym, verb entailment, similar

adjective, and other lexical relations. Each synonym includes a dictionary def-

inition (or gloss), and an example sentence. In addition, nouns and verbs are

organized into hierarchies using the hypernym relations. The following is an

example entry from WordNet:

Word Synonyms Gloss

Writer (Writer, author) writes books or stories professionally. . .

->Hypernym (Communicator)

->Hypernym (Person, individual. . . )

->Hypernym (Organism)

WordNet is probably one of the most used resources in recognizing textual en-

tailment (and many other NLP applications). It is used either to recognize

semantic relations or to compute the similarity between words. Out of 20 par-

ticipants in RTE5’s main task, 17 have used WordNet in their approach. The

WordNet impact ranged from a negative to a positive one depending on the

resource use, with the highest positive impact reported by [Clark and Harrison,

2008] and [Breck, 2009]. [Clark and Harrison, 2008] used WordNet’s semantic

relations to recognize equivalence between the text and the hypothesis, and re-

ported a positive impact of the resource of 4.00% on the two way task and 5.67%

on the three way task of RTE5. [Breck, 2009] used WordNet for lexicon based

matching based on path distance between two words, and reported a positive

impact of 4.00% on the three way task of RTE5.

26http://wordnet.princeton.edu/
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• Augmented WordNet27: is the result of the application of a learning algorithm

for inducing semantic taxonomies from parsed texts [Snow, Jurafsky, and Ng,

2004]. The algorithm automatically acquires items of world knowledge, and

uses these to produce significantly enhanced versions of WordNet, adding up to

40,000 more synsets. For example, the algorithm learns that “deuterium” is a

type of atom after reading the phrase “heavy water rich in the doubly heavy

hydrogen atom called deuterium”. Augmented WordNet has been used by [Bar-

Haim, Berant, and Dagan, 2009] as a source of entailment rules in the task of

recognizing textual entailment, however its impact has not been reported.

• Extended WordNet28: is another extension of WordNet which contains a logical

representation of WordNet glosses [Harabagiu, Miller, and Moldovan, 1999].

For example, the gloss or definition of the word “excellent” is “of the highest

quality”, which results in the following logical form entry:

Left hand side Right hand side

Excellent: JJ(x1) ->of:In(x1,x2) highest:JJ(x1) quality:NN(x1)

Here, the argument ‘x1’ refers to the adjective “Excellent” from the left hand

side, and to the adjective “highest” and noun “quality” from the right hand side.

Extended WordNet has been used by [Bar-Haim, Berant, and Dagan, 2009] as a

source of entailment rules, and by [Iftene, 2008] who reported a positive impact

with Extended WordNet of 1.33% on the three way task of recognizing textual

entailment.

• VerbOcean29: is a broad coverage semantic network between verbs [Chklovski

and Pantel, 2004]. The semantic relations covered include: similarity, opposite-

of, stronger-than, can-result-in, and happens-before relations. The network

27http://ai.stanford.edu/~rion/swn/
28http://xwn.hlt.utdallas.edu/
29http://demo.patrickpantel.com/demos/verbocean/
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contains a total of 29,165 strongly associated verb pairs, and has been created

using a set of 35 manually created lexico-syntactic patterns. The following is

an example entry from VerbOcean:

Word1 Semantic Relation Word2 Score

Own [happens-before] sell 10.788965

Produce [similar] create 11.312437

VerbOcean has been used by many researchers in recognizing textual entailment

with various results. [Wang, Zhang, and Neumann, 2009] reported a positive

impact between 0.17% and 0.33% on the two-way task and 0.17% and 0.5%

on the three-way task in RTE5. On the other hand, [Mehdad, Matteo, Elena,

Milen, and Magnini, 2009] reported a negative impact of the resource of 0.16%

on the two way task ablation test on RTE5.

2.3.6 Frames

Frames are knowledge representation schemes derived from semantic networks that

are used to represent a typical situation [Minsky, 1995]. Several types of frames have

been used by researchers for recognizing textual entailment. The most common ones

include:

• FrameNet30: is based on the idea that the meanings of most words can be

understood on the basis of a semantic frame: a description of a type of event,

relation, or entity and the participants in it [Baker, Fillmore, and Lowe, 1998].

The following is an example entry from FrameNet:

Frame: Reading

Frame Element Explanation

Reader (Core element) The one who examines a Text to understand it.

30https://framenet.icsi.berkeley.edu/
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Text (Core element) The entity that contains linguistic symbols.

Degree Degree to which event occurs.

Manner Manner of performing an action.

Place Where the reading event takes place.

Purpose The reason for which the Reader reads the Text.

Time When the reading event takes place.

. . .

FrameNet has been used by [Mirkin, Dagan, and Padó, 2010] to perform frame

to frame similarity measurements in recognizing textual entailment. Its use had

a positive impact on the two way task of 1.16% at RTE5. FrameNet has also

been used by [Ofoghi and Yearwood, 2011] to judge if two concepts are equal

if they belong to the same frame. For example, the two concepts “fly” and

“pace” belong to the same frame (Self motion), and therefore are considered

semantically similar. However, its impact has not been reported by [Ofoghi and

Yearwood, 2011] with this particular usage.

• PropBank31: is a corpus containing verb frames from the Penn Treebank anno-

tated with argument role labels [Kingsbury and Palmer, 2002]. The following

is an example verb frame from PropBank:

Roleset id Argument Description

Read.01

Arg0 reader

Arg1 thing read

Arg2 benefactive or direction

Although the PropBank frames are similar to FrameNet’s, they are more cen-

tered around verbs whereas a FrameNet frame may include several verbs. For ex-

ample, the verbs: “write”, “draft”, and “compose” belong to the same FrameNet

frame “Text Creation”. Another difference is that PropBank arguments are

31http://verbs.colorado.edu/~mpalmer/projects/ace.html
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closer to the syntactic level, whereas FrameNet frame elements are closer to the

semantic level. PropBank has been used by [Ren, Ji, and Wan, 2009] as part of

the syntactic parse, with a positive impact on the two way task of 2.00% and

3.17% for the three way task.

• NomBank32: is a corpus of noun frames [Meyers, Reeves, Macleod, Szekely,

Zielinska, Young, and Grishman, 2004b]. Similarly to the verb frames from

PropBank, NomBank provides argument structures for nouns from the Penn

Treebank corpus. The following is an example noun frame from NomBank:

Noun Argument Description

Writer

Arg1 thing written

Arg2 beneficiary

(Example) (an editorial writer for the Rocky Mountain News)

(Arg1) (editorial)

(Arg2) (for the Rocky Mountain News)

NomBank has been used by [Bar-Haim, Berant, and Dagan, 2009] as part of

their lexical syntactic resources. [Bar-Haim, Berant, and Dagan, 2009] did

not perform a separate ablation test for NomBank, but as part of the lexical

syntactic resource, it had a positive impact of 0.70% on the RTE4 challenge.

• VerbNet33: is a corpus of verbs organized into classes, where each class is de-

scribed by thematic roles, selectional restrictions on arguments, and frames

[Kipper, Korhonen, Ryant, and Palmer, 2006]. The following is an example

verb class from VerbNet:

Class Roles Restrictions

Create-26.4

Agent animate or machine

Result

32http://nlp.cs.nyu.edu/meyers/NomBank.html
33http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
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Material

Beneficiary animate

Attribute

Frames

NP V NP

example “David constructed a house.”

syntax Agent V Result

. . .

In this example, the class “Create”, can take the roles: “Agent” (in addition to

the other shown above) with a restriction of “animate” or “machine” type of

agents. One possible frame (or usage) of this class is the noun phrase/verb/noun

phrase (NP V NP), as in the example sentence “David constructed a house.”,

where the first NP has the role of an “agent” and the second NP has the role

of a “result”. Similarly to FrameNet, a class may include several verbs. For

example, the class “Create” in the example above includes 27 verbs, such as:

“construct”, “create”, and “write”. VerbNet has been used by [Mirkin, Dagan,

and Padó, 2010] to find correspondences between verbs, but they did not report

its impact. [Roth and Sammons, 2007] also have used VerbNet but to pair verb

argument patterns and they too have not reported its impact.

2.3.7 Thesauri and Encyclopaedias

Thesauri and encyclopaedias have been used as a resource for recognizing textual

entailment, either as part of semantic similarity matching or for creating lexical en-

tailment rules. The following list contains some of the thesauri and encyclopaedias

used by researchers for recognizing textual entailment:

• Roget’s Thesaurus34: is an English thesaurus composed of six primary classes,

each class composed of multiple divisions and sections [Roget, 1911]. Those

34http://www.gutenberg.org/ebooks/10681
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classes contain semantically linked words (i.e. words or phrases of similar mean-

ing). Although these classes can be seen as representin a hypernym relation,

there are no explicitly defined semantic relations in this thesaurus. The follow-

ing is an example entry from the Roget’s Thesaurus:

Class Title

Class IV Words relating to the intellectual faculties

Division II Communication of ideas

Section III Means of communicating ideas

#3 Written Language

#590 Writing

Vb. push the pen, push the pencil, write, pen. . .

N. chirography, stelography, cerography. . .

. . .

In this example, the set of words and phrases with similar meaning (push the

pen, write, pen), belong to class #590 titled “writing”, which is a subclass of

class #3 titled “Written language” . . . This thesaurus has been used by [Del-

monte, Tonelli, and Tripodi, 2009] in recognizing textual entailment, and specif-

ically for semantic similarity matching. It had a positive impact of 2.83% on

the RTE5 two-way task.

• Dekang Lin’s Theasurus35: is an automatically constructed thesaurus from a

parsed corpus based on the distributional similarity score [Lin, 1998b]. The

following is an example entry from Lin’s thesaurus:

Word1 Word2 Similarity

brief (noun) affidavit 0.13

petition 0.05

memorandum 0.05

motion 0.05

lawsuit 0.05

. . .

35http://webdocs.cs.ualberta.ca/~lindek/downloads.htm
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In this example, the noun “brief” is similar to the word “affidavit” with a simi-

larity score of 0.13. This thesaurus has been used by [Breck, 2009] in recognizing

textual entailment, but they did not report its impact.

• Wikipedia36: is a free encyclopedia that has been used in recognizing textual

entailment by various researchers and in different ways. For example, [Iftene

and Moruz, 2009] have used it to identify the distance between named entities

and they reported a low positive impact of 0.17% on the RTE5 two-way task.

[Cabrio and Magnini, 2010] have used Wikipedia to extract rules using latent

semantic analysis, and reported a positive impact of 1.00% on the RTE5 two

way task.

2.3.8 Ontologies

An ontology is a formal and explicit specification of a shared conceptualisation [Gru-

ber et al., 1993]. It formally represents knowledge as a set of concepts and rela-

tionships between those concepts and can be used to support reasoning over those

concepts. The following list contains some of the ontologies used by researchers for

recognizing textual entailment. In our baseline approach for RTE, we have used the

Freebase ontology from this list.

• DBPedia37: is an open community ontology describing millions of concepts ex-

tracted from Wikipedia infoboxes [Auer, Bizer, Kobilarov, Lehmann, Cyganiak,

and Ives, 2007]. The English version of DBPedia describes 2.35 million instances

that are classified in an ontology. Those instances include 764,000 instances of

persons, 573,000 instances of places, 333,000 instances of creative works, and

192,000 instances of organizations (as per the latest release of DBPedia #3.7).

36http://www.wikipedia.org/
37http://dbpedia.org
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The ontology covers 359 classes which form a subsumption hierarchy, where

each class may have one or more super classes. It uses the Resource Description

Framework (RDF) to represent the information, and can also be queried via the

DBPedia SPARQL Protocol and RDF Query Language (SPARQL) endpoint.

This allows for the querying of complex queries such as “Give me all cities in

New Jersey with more than 10,000 inhabitants” or “Give me all German musi-

cian who were born in Berlin”. For the later query DBPedia returns the follow-

ing among others: “Alexander Marcus”, “Andy Malecek”, “Drafi Deutscher”,

. . .

DBPedia was used by [Delmonte, Tonelli, and Tripodi, 2009] in RTE5 in combi-

nation with other ontologies to confirm anaphoric links in bridging coreference,

but no ablation test was performed to show its impact.

• YAGO38 (Yet Another Great Ontology): is an ontology having more than

10 million entities and more than 120 million facts [Suchanek, Kasneci, and

Weikum, 2007]. The information of YAGO was extracted from Wikipedia,

WordNet, and GeoNames39. YAGO attaches temporal and spatial dimensions

to many of its facts and entities. Similarly to DBPedia, YAGO is also repre-

sented in RDF and can be queried using a SPARQL end point. The following

is an example query that can be asked on YAGO: “Politicians who are also sci-

entists, born nearby Hamburg, after the year 1900”, which resulted in “Helmut

Schmidt”, “Robert Heilbroner”, “Angel Merkel”, . . .

YAGO was used by [Delmonte, Tonelli, and Tripodi, 2009] in RTE5 in combina-

tion with other ontologies also to confirm anaphoric links in bridging coreference,

but no ablation test was performed to show its impact.

38http://www.mpi-inf.mpg.de/yago-naga/yago/
39http://www.geonames.org/
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• Freebase40: is a large collaborative ontology containing data harvested from on-

line resources as well as individually contributed data from its users. Freebase

data structure consists of set of nodes and a set of links that establish relation-

ships between them, and holding over 125 million tuples, and more than 4000

types, and more than 7000 properties [Bollacker, Evans, Paritosh, Sturge, and

Taylor, 2008]. We have used Freebase in our baseline approach described in

Chapter 3.

• Umbel41: is a vocabulary and reference concept ontology, short for Upper Map-

ping and Binding Exchange Layer. It is an extracted subset of the OpenCyc

project, providing data in an RDF ontology based on OWL2. It provides a

reference structure of 25,000 concepts and 60,000 relationships among those

concepts. Umbel was used by [Delmonte, Tonelli, and Tripodi, 2009] in RTE5

in combination with other ontologies to confirm anaphoric links in bridging

coreference, but no ablation test was performed to show its impact.

2.3.9 Inference Rules

Inference rules are generalizations that are considered to be true if their premises

are true. Inference rules have been used by many researchers in recognizing textual

entailment. The following describe some publicly available resources of inference rules:

• DIRT42: is a method for collecting inference rules from text, and a knowledge

collection of paraphrase expressions [Lin and Pantel, 2001]. The algorithm

learns rules based on the distributional hypothesis over paths of dependency

trees. DIRT collects rules of equivalent paths when they tend to link to the

same set of words. The DIRT algorithm extracted 7 million paths from 231

40http://www.freebase.com/
41http://www.umbel.org/
42http://demo.patrickpantel.com/demos/lexsem/paraphrase.htm
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000 parse tree of a 1GB newspaper text and resulted in 12 million rules. The

following is an example of the top paraphrases formed using DIRT:

X solves Y ->

X solution to Y

Y is resolved in X

Y is solved through X

. . .

DIRT has been used by many researchers in recognizing textual entailment,

such as [Iftene, 2008] in RTE4 to map relations between words with a positive

performance of 0.70% on the two way task, and [Bar-Haim, Berant, and Dagan,

2009] in RTE5 with a positive impact of 1.33% on the two way task.

• WikiRules43: is a database of 8 million lexical reference rules extracted from

Wikipedia [Shnarch, Barak, and Dagan, 2009]. A lexical reference rule is a

directional relation that is more general than a regular lexical relation (such as

hypernym or synonym). The following is an example rule from WikiRules:

Left hand side Right hand side

Bentley ->luxury car

Abbey Road ->The Beatles

In the first example rule above, the left hand side of the rule “Bentley” is

equivalent to the right hand side of the rule “luxury car”. WikiRules have been

used by [Bar-Haim, Berant, and Dagan, 2009] with mixed impacts. In RTE4,

it gave a low positive impact of 1.00%, but in RTE5 a low negative impact of

1.00% on the accuracy of the two way task.

43http://u.cs.biu.ac.il/~nlp/downloads/WikiRules.html
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2.4 Conclusion

In this chapter, we have surveyed the different approaches for recognizing textual

entailment which have been used in past work. Our approaches to RTE (Chapter 3,

4, and 5) belong to the category of logical form based methods (described in Section

2.1.6), our main differentiator with the rest of the approaches of that category is that

we use semantic relatedness information as an alternative to a large knowledge base

of axioms and inference rules. This will be described in details in Section 4.3

We have also looked at the available benchmarks for evaluating the different RTE

approaches. In our RTE approaches, we have used the RTE1 and RTE2 data sets

(described in Sections 2.2.1 and 2.2.2) for development, and have used the RTE3 and

RTE4 data sets (described in Sections 2.2.3 and 2.2.4) for evaluating and benchmark-

ing our approaches. We have chosen the data sets of the first 4 RTE challenges as

they fit the scope of our thesis, of recognizing textual entailment, whereas the subse-

quent challenges have evolved from recognizing textual entailment to the search and

extraction of textual entailment situated mainly in the summarization application

setting.

Finally, this chapter described the different resources used by most RTE approaches.

As we will see in Chapters 3 and 4, our approaches use the WordNet and VerbOcean

semantic networks (described in Section 2.3.5) and the Freebase ontology (described

in Section 2.3.8). In the next chapter, we will present our first approach for recogniz-

ing textual entailment.
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Chapter 3

Baseline Knowledge Querying

Approach

In this chapter we present our first approach to recognize textual entailment. This

approach is based on a logical representation, knowledge querying, and semantic

relatedness. As we mentioned in Chapter 2, the main disadvantage of logical based

approaches is that they typically require a large knowledge base of axioms to be able

to show that a hypothesis is a consequent of a certain text. The goal of this chapter

is to introduce a baseline method, and show how far we can go using a shallow logical

method in the task of recognizing textual entailment, without the prerequisite of

a large knowledge base to recognize textual entailment. We propose an approach

for recognizing textual entailment that is based on a logical form for representation,

knowledge querying for comparison, and a set of rules for decision making. The next

section will present an overview of this approach, followed by a detailed description

of its prototype implementation, and an evaluation of the implementation.
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3.1 Overview of the Baseline Knowledge Querying

Approach

Similarly to most textual entailment approaches, our knowledge querying approach

can be divided into three main components: a representation component, a com-

parison component, and a decision component. First, the representation component

represents the text in description logic. Then, the comparison component compares

the created representations with the purpose of creating a knowledge base query. Fi-

nally, the decision component classifies the knowledge querying results into entailment

results. Figure 1 shows an illustration of our approach. The different components are

shown in dashed boxes, the inputs and outputs in ovals, and the sub-components in

rectangles. The representation component involves the representation of the text in

description logic to facilitate the comparison and decision making (described in Sec-

tion 3.2). This component comprises a logical form creator that transforms a text into

logical form. The creator follows a three step procedure: syntactic analysis, semantic

analysis, and ontological analysis. The syntactic analysis step creates a syntactic rep-

resentation of the text using a dependency parser and a set of transformation rules.

This is followed by the semantic analysis step, which creates a semantic representa-

tion of the text using a named entity recognizer, a noun compound interpreter, and

a set of rules. Finally, an ontological analysis step creates a description logic based

representation (DL) of the text, using a set of transformation rules and the WordNet

semantic network.

As shown in Figure 1, the comparison component will then compare the description

logic representation of the text with the hypothesis, and collect comparison informa-

tion to formulate a knowledge base query (described in Section 3.3). This component

is made of a query formulator that compares the hypothesis to the created description
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logic representation in order to create a knowledge base specific query. The compar-

ison relies on a reasoner and a semantic relatedness calculator as a substitute for

additional knowledge to compare the text representation with the hypothesis. The

purpose of this comparison is to create a query from the hypothesis, using the concept

and properties of the created description logic representation.

Finally, the decision component will use the top query result to decide whether the

text entails the hypothesis or not (described in Section 3.4). The answers of that

query on the created knowledge representation will be classified with a set of decision

rules to decide on a textual entailment result.

In order to evaluate this approach we have created a prototype system. Figure 2

provides an overview of the system architecture, specifically showing the use of spe-

cific resources in the implementation. The main components are shown in dashed

boxes, the inputs and outputs are shown in ovals, the sub-components are shown in

rectangles, and the sub-component’s resources in cylinders. In our implementation,

we have chosen Minipar [Lin, 1998c] as a dependency parser, Freebase [Bollacker,

Cook, and Tufts, 2007] as the source of named entity types, Nakov’s approach [Nakov

and Hearst, 2006] for extracting noun compound types, and the WordNet [Fellbaum,

1998] semantic network with a set of manually created transformation rules for the

logical form creator part. In addition, we have used the racer reasoner [Haarslev

and Möller, 2003] and WordNet based similarity measures in formulating the query

and comparing it with the text. Finally, a set of manually created rules is used in the

decision making. In the following sections, we will describe each component in detail,

starting with the knowledge representation component.
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Figure 1: Baseline Knowledge Querying Approach
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Figure 2: Prototype of the Baseline Knowledge Querying Approach
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3.2 Representation

In order to recognize textual entailment, we need a representation that bridges the

gap from linguistic inputs to knowledge of the world. As we have seen from Chapter

2, that logical based approaches have one of the best performance in RTE. The rep-

resentation that we are focusing on, is a formal logical based representation which is

expressive enough yet decidable (i.e. has an effective method to determine the truth-

fulness of a statement). One type of representation that adheres to our requirements

is Description logic (DL) [Baader, 2003].

DL is a logical based knowledge representation formalism descendant of semantic

networks, that can describe a domain in terms of concepts (sets of objects), roles

(a binary relation between individuals), individuals (or instances of a concept), and

their relations. The fundamental modeling concept of description logic, are logical

statements that relate concepts or roles (axioms), which allow the building of complex

concepts and roles from simple or atomic ones. A DL knowledge base consists of a

TBox (terminological box) describing concepts and their relations, and an ABox (as-

sertional box) describing ground sentences between individuals. DL is distinguished

by a formal semantics (typically model theoretic), with a decidable fragment of First

Order Logic (FOL), having a sound and complete decision procedure and highly op-

timised implemented inference systems.

The Semantic Web is a collaborative effort led by the World Wide Web Consortium

(W3C) that provides a framework for making the World Wide Web content process-

able by machines [Berners-Lee, 1998]. W3C endorsed the web ontology language

(OWL) [McGuinness, Van Harmelen, et al., 2004] as the language for the Semantic

Web [Dean, Schreiber, et al., 2004]. OWL is a semantic markup language for defining

and instantiating web ontologies, and is based on description logic. It is a vocabu-

lary extension of RDF (the Resource Description Framework) [Brickley and Guha,
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2004], derived from the DAML+OIL (DARPA Agent Markup Language and Ontol-

ogy Interchange Language) [Horrocks et al., 2002], and based on XML (Extensible

Markup Language) [Bray, Paoli, Sperberg-McQueen, Maler, and Yergeau, 1997]. As

described in Section 2.3.8, an ontology is an “explicit specification of a conceptual-

ization” [Gruber, 1995]. A conceptualization is a simplified view of the world that we

wish to represent, and is explicitly specified by a set of vocabulary (concepts, roles,

individuals, and other entities) to describe the domain of interest. An OWL ontology

includes descriptions of classes (or concepts) that represent a collection of objects,

e.g. person, properties (or role) that represents a binary directed relation between

instances of a domain and range class, e.g. has-father, individuals that represents

objects in the world belonging to a class, e.g. Tom type Person, and a set of axioms.

OWL can be viewed as expressive description logic with an ontology being equivalent

to DL knowledge base. We have selected OWL-DL1, as an alternate decidable nota-

tion of DL language SHOIN(D) [Horrocks and Patel-Schneider, 2003], as the structure

for representing the text knowledge. A main feature of DL is that it is a formal lan-

guage with well-defined semantics. The standard way for specifying the semantic of

DL is using a model theoretic semantics that can explain the relation between the

DL syntax and the intended model of a domain. A model consists of domain 1 (set

of objects) and an interpretation function I (a mapping from individual, class, and

property names to elements of the domain). This interpretation function provides the

necessary bridge between the representation and the domain being considered. Fig-

ure 3 (taken from [Horrocks and Patel-Schneider, 2004]) shows the construct names,

syntax, and model semantics of the SHOINQ description logic, where A is a concept

name, C and D are concepts, R and S are roles, RC is the set of transitive roles, o is

an individual name, P is a simple role, and n is a non-negative integer. So for every

1urlhttp://www.w3.org/TR/owl-guide/
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Figure 3: Syntax and Semantics of SHOINQ Description Logic from [Horrocks and
Patel-Schneider, 2004]

concept A, an interpretation function assigns a set AI ⊆ to 1I . In addition for every

atomic role R, an interpretation function assigns a binary relation RI ⊆ to 1I X 1I .

The interpretation is then extended by inductive definitions which is summarized in

the figure.

The main reason for selecting OWL-DL for our representation is that in addition to

being based on a formal decidable logic, it also provides a well-studied set of reasoners

that can be used to reason over the created knowledge base schema and instances,

the accessibility of well-studied powerful query formalism, the possibility of applying

rules to the created knowledge base using backward or forward chaining, and the
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ability to integrate multiple knowledge bases. These features are very useful for the

task of RTE that, to our knowledge, most other approaches have not used in the past.

In addition, the OWL language was used because of its design that was motivated by

practical considerations, which emphasises on readability and general ease of use for

the ontology language, making it very easy to read and understand when compared

with other logical-based languages.

The logical form creator is our process for automatically creating an OWL-DL rep-

resentation from text, and for the specific purpose of recognizing textual entailment.

The basis of an OWL data model is based upon the idea of making statements about

resources in the form of property(Domain class, Range class) expressions (or triples

in RDF terminology). The property expresses a relationship between the domain

class and the range class. The logical form creator follows a syntax-driven pipeline

architecture, which is augmented by knowledge on demand, to transform a text to

OWL. A text is first passed through a syntactic analysis process to derive its depen-

dency parse. This dependency parse is then passed as input to a semantic analyser

to produce a literal meaning representation. Finally, this meaning representation is

passed as input to an ontological analyser that produces a formal logical-based mean-

ing representation in OWL-DL. The transformation of the structure at each stage in

the pipeline is shown below:

1. Syntax analysis: transform a sentence into a set of dependency relations:

dependency-relation(Governing content word, Modifying content word)

2. Semantic analysis: transform the set of dependency relations into a set of se-

mantic roles relations: semantic-role(Predicate, Argument).

3. Ontological analysis: transform a set of semantic role relations into a set of

OWL properties: property(Domain class, Range class).
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The driving idea of creating the final representation (and the intermediate ones)

was to focus on precision as opposed to recall. In other words, in our view, it is

more important to create a correct but incomplete representation as opposed to a

more complete representation that may contain errors. Hence the driving force of all

our transformation rules is to keep and represent only information in which we are

confident.

The following sections will explain in more details how each step performs its transfor-

mation, starting from the syntactic analysis step. In order to present and demonstrate

the prototype’s steps in details, we will use the following text as a running example

throughout the following sections:

Example 1:Jurassic Park is a novel written by Michael Crichton and Published in

1990.

For this example, our main goal is to create an OWL-DL representation as shown

graphically in Figure 4. The figure shows a graphical illustration of part of the result-

ing OWL representation for example 1 with the added WordNet axioms. In this figure

the classes are shown in ovals, the properties as arrows, the individuals in rectangle,

and equal for equivalent axioms. A complete version of the resulting representation

of example 1 is given in Appendix A.

3.2.1 Syntactic Analysis

The first step in our pipeline is the syntactic analysis phase, with the main purpose

of transforming each sentence into a set of dependency relations. As the meaning of

a sentence is not only based on the meaning of its words but also on the relations

between those words in the sentence, a syntactic analysis is required to make explicit

those relations. Various syntactic parsers that produce a grammatical representation
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Figure 4: A Graphical Illustration of Part of the Representation Created for the Text
“Jurassic Park is a novel written by Michael Crichton and Published in 1990.” with
WordNet axioms.
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Dependency relationship Governor Modifier Stem POS
lexical modifier Jurassic Park Jurassic - undefined
subject be Park Jurassic Park noun
independent clause - is be Verb to be
subject novel - Jurassic Park noun
determiner novel a - determiner
predicate be novel - noun
rel novel written write verb
object write - novel noun
by-subject write by - preposition
lexical modifier Michael Crichton Michael - undefined
preposition complement by Crichton Michael Crichton Noun
punctuation write and - undefined
conjunction write published publish verb
subject publish - novel noun
modifier publish in - preposition
preposition complement in 1990 - noun

Table 1: Dependency Parse of “Jurassic Park is a novel written by Michael Crichton
and Published in 1990.”

from a sentence are available. Although most of the syntactic parsers use a context-

free grammar, we are more interested with dependency based parsers as their resulting

structure is described only in terms of words and binary relations between them.

Most relations represent grammatical relations, but others also represent semantic

relations. [Hays, 1964] define a dependency relationship as a binary relationship

between a word called the “head” and another called the “modifier”. A dependency

based representation limited to a binary relations between words is more appropriate

to our problem as constituents and phrase structures do not play any role in our

representation. One of the dependency parser that parses a sentence into a set of

dependency relations is the Minipar parser [Lin, 1998c]. Minipar is a very efficient

dependency parser for the English language that was able to achieve about 88%

precision and 80% recall with respect to dependency relationships on the SUSANNE

corpus [Sampson, 2002].

Table 1 shows the Minipar parse of example 1. The table shows the dependency
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parse as a set of dependency relationships between a governor (or head) and a mod-

ifier, in addition to the stem of the modifier (Stem) and Part Of Speech (POS). A

dependency relation is a relation between a word (a governor) and its dependents

(a modifier), and the Stem refers to the part of the word that is common to all it

inflected variants, and the POS refers to the linguistic category (noun, adjective,

verb...) of the modifier. A record from the table shows that an “Object” depen-

dency relation exist between the governing word “Write” and the modifier having the

stem “novel”, which is a “noun”. The result is a set of dependency relations of the

following form dependency-relation (Governing Word, Modifying Word). In this rep-

resentation, the governing and modifying words can be either a content word (verbs,

nouns, adjectives, and adverbs), or non-content words. Non-content words (or func-

tion words such as prepositions, conjunctions, auxiliary verbs, articles . . . ) are words

that mainly serve to express grammatical relationships between content words in the

sentence and have little meaning attached to them. Consequently, a transformation

of the dependency relation set is required to further restrict the variability of the

presentation and to represent the underlying meaning as precisely as possible yet be

general enough to allow for reasoning. The underlying meaning will be represented

as classes in an OWL representation and the relationships between them, as such the

following transformations are performed:

• Transformation 1: We further restrict the governing and modifying words to

the content words and discard any other word except for prepositions and con-

junctions.

• Transformation 2: Prepositions are rewritten into dependency relations as they

are a grammatical class that represent relations between content words. In ex-

ample 1, the preposition “In” is related to the word “1990”, and to the governor

“Publish”. Those two dependency relations, will be merged into one relating
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Relation Governor Modifier
lexical modifier Jurassic Park Jurassic
subject-is Jurassic Park novel
object write novel
lexical modifier Michael Crichton Michael
subject write Michael Crichton
subject publish Michael Crichton
object publish novel
in publish 1990

Table 2: Result of the Syntactic Analysis for “Jurassic Park is a novel written by
Michael Crichton and Published in 1990.

the governor “Publish” to “1990” by the relation “In”.

• Transformation 3: Conjunctions are re-written into a set of dependency rela-

tions as conjunctions may connect two larger syntactic structures to each other,

and not only two words. In order to capture the semantics of the sentence we du-

plicate the dependency relations that exist between a word and its conjunction.

In example 1, the conjunction “and” relates the word “Write” and “Publish”, in

this case, “Michael Crichton” the “Subject” of “Write” is propagated to become

the subject of “Publish” as well.

The result of these transformations is similar to collapsed dependencies as we are

collapsing conjunctions and prepositions into a single relation. The main difference

with collapsed dependencies is that the first transformation restricts the governing

and modifying words to content words, so dependency relations such as determiner

or punctuation, for example, are discarded in our syntactic representation. Table 2

shows the set of relations that result after performing the above transformations. The

table shows a set of dependency-relation (Governing Word, Modifying Word) for the

text, where all governing and modifying words are content words.
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3.2.2 Semantic Analysis

The main purpose of the semantic analysis process is to further transform the set of

related dependency relations into a set of semantic role relations; more specifically,

transform the set of dependency relations from the previous step:

dependency-relation(Governing content word, Modifying content word)

into a set of semantic roles relations:

semantic-role(Predicate, Argument).

This is an important step toward building a deeper text meaning, by abstracting from

the syntactic structure and into related predicate argument structure, and where each

argument plays a specific semantic role. The importance of this step is that it further

explains the semantic role an argument plays with respect to the action described by

a predicate.

Human languages can be represented by predicate-argument structures at the core of

their semantic structure [Jurafsky, Martin, Kehler, Vander Linden, and Ward, 2000].

Verbs in particular, can be thought of as logical predicates and their lexical relations

as the predicate logical arguments. In addition, as verbs have sub-categorization re-

quirements, we can link the lexical relation with a semantic role and further restrict

those roles to certain conditions. For our example, we can define the semantic predi-

cate for the verb Publish with 3 arguments:

Subject(Michael Crichton), Object(Novel), and In(1990).

We can then link a verb dependency relation with a semantic role that an argument

plays in the representation. For example, the subject can be linked to the role of a

publisher or author. The resulting predicate-argument structure can become the ba-

sis of the semantic representation. However, in OWL a property is a binary relation

that links two individuals to each other, but as we have seen in natural language,

a predicate can relate to more than just two arguments. To be able to represent a
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text in a natural way, but still use OWL, we decided to use an n-ary relation pattern

where each property is a relation between a predicate and its argument, or more pre-

cisely an OWL property can represent the semantic role that an argument plays with

respect to a predicate in a sentence. Consequently, a sentence is transformed into a

set of semantic roles ( predicate, Argument) triplets, which can create the basis of

the ontological representation of that text. This transformation further restricts the

dependency relations, from the previous step, by limiting the governing word to a

predicate (except for named entities), and transforming the “dependency -relation”

into a “semantic-role”; i.e.:

from dependency-relation(Governing content word, Modifying content word)

to

semantic-role(Predicate, Argument).

To do so, a set of transformation rules have been created to deal with the following

cases: a named entity modifying a verb, a noun or adjective modifying a noun, and

transforming a dependency relation to a semantic role.

Named Entities: Named entities are terms which designate an instance of a concept

(as in the name of a person). They basically will represent an individual of an OWL

class in an OWL representation. Finding the classes that individuals belong to will

help in adding implicit information into our representation. In some cases, named

entity types information is available in the actual text, such when there are predicates

or appositives that describe a named entity. This could be seen in our example, where

“Jurassic Park is novel (“subject-is(Jurassic Park, novel)”), define the semantic type

or class of “Jurassic Park” to be a “novel”. If the class of a named entity is not present

in the text, we use a shared online ontology of structured knowledge called FreeBase

to search for it. FreeBase (described in Section 2.3.8) contains named entities with

their general and specific types. We have chosen the Freebase ontology because it
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is the largest ontology with over 125 million instances at the time. For example,

according to FreeBase, the named entity: “Michael Crichton” belongs to the types

“author, director, producer . . . ”. The first type from the FreeBase result is selected

as the semantic type of the named entity; in this example, “author” is selected. Once

we know the semantic type of a named entity, we replace every occurrence of that

named entity in the set of dependency relations to the named entity type. This as-

sumes that in a single text, all occurrences of the same named entity will refer to the

same extra linguistic entity. For example, subject(write, Michael Crichton) becomes

subject(write, author(Michael Crichton)). In this case, a “subject” relation exist be-

tween the predicate “write” and the argument “Michael Crichton” of type “author”.

Noun Relations: As we have restricted the governing word to the verb class, in an

effort to limit syntactic variations and give more meaning to the structure, we need to

find the relation (predicate) that is usually available between the noun (or adjectives)

modifying other nouns. A predicate will preserve the structure that we are looking

for, and will make explicit the implicit common-sense knowledge available between

the compounds. In some cases, a simple transformation of a nominalized verb into a

verb, or a genitive relationship to verb is sufficient. However, in most cases, we need

to extract the verb through other methods. To do this, we used the unsupervised

method described by [Nakov and Hearst, 2006]. This method allows for the extrac-

tion of predicates from the Web that explain a noun relations. More specifically, this

method relies on the use of relative clause based patterns of the form “noun2 THAT

* noun1”2 as web queries. For example, for the noun-noun relation “fruit tree”, a set

of Web queries will be created following the relative clause pattern such as “tree that

* fruit”. The result’s most frequent verb characterizing “fruit tree” is “bear”, which

could be further explained as “a fruit tree is a tree that bear fruit”.

2The * is a search engine wildcard that could be filled by one or more words.
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Semantic Role: To transform dependency relations to semantic roles, we have cre-

ated a set of transformation rules that aim to add more knowledge to the relation that

exists between a predicate and its arguments. The semantic role in our case is meant

to take into consideration the syntactic information of the dependency relation, the

semantic information of the argument type from the previous step, and WordNet cross

part of speech relations. WordNet’s cross part of speech relations include the links

that hold among semantically similar words sharing a stem with the same meaning.

Following the same decision made for named entities and noun relations, we do not

limit the semantic role to a specific set. The following is the set of transformation

rules:

1. For a subject/object relation, we use the WordNet cross part of speech relations

that is most related to the argument type. For example, write (verb) and writer

(noun). We then use the argument type to select the cross part of speech relation

that is mostly related to the argument we are labeling. In our example, the

dependency relation: subject(write, author(Michael Crichton)) becomes has-

writer3(write, author(Michael Crichton)) as writer is the most semantically

related concept to author from the list of cross part of speech relations to write

in WordNet.

2. If the relation is a preposition, then the semantic role becomes the preposi-

tion followed by the argument type. In our example, the dependency relation:

in(publish, year(1990) becomes in-year(publish, year(1990)).

3. Otherwise, the semantic role is simply the actual argument type. In our exam-

ple, the dependency relation object(write, novel), the argument is of type novel

so the relation becomes has-novel(write, novel).

3We add the verb HAVE for readability purposes.
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semantic-role Predicate Argument(Type)
has-novel write novel(Jurassic Park)
has-writer write author(Michael Crichton)
has-publisher publish author(Michael Crichton)
has-publication publish novel(Jurassic Park)
in-year publish year(1990)

Table 3: Result of the Semantic Analysis for the “Jurassic Park is a novel written
by Michael Crichton and Published in 1990.

Table 3 shows the resulting set of semantic-role relations for the example text.

3.2.3 Ontological Analysis

The main purpose of the ontological analysis is to transform the semantic repre-

sentation of the semantic analysis into a formal logical representation with formal

semantics in OWL. More specifically, the purpose is to create an OWL DL represen-

tation from the semantic representation of the previous step (a set of semantic-role

(Predicate, Argument))), into a set of OWL properties of the form property (Domain

class, Range Class). Although the OWL language is easy to read, it is rather verbose

in nature. Throughout this section we will use the OWL functional-style linear syn-

tax. The functional-style syntax is suggested by the World Wide Web Consortium

(W3C) as an easier to read syntax for humans that abstracts from exchange syntax

and facilitates access to the language4. The following is a summary of the syntax that

is relevant to this section:

• The OWL main entities are presented as follows: datatype, owlClass, ob-

jectProperty, dataProperty, and individual.

4urlhttp://www.w3.org/TR/owl11-syntax/
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• OWL descriptions:

The description construct objectUnionOf forms a disjunction of a set of de-

scriptions, objectIntersectionOf is a conjunction of a set of descriptions,

objectComplementOf is a negation of a description, and objectOneOf is

a description that contains exactly the objects denoted by the set of specified

individuals.

• OWL object properties restrictions:

The construct objectAllValuesFrom denotes the set of objects that are con-

nected via the given object property only to instances of the given description,

objectSomeValuesFrom denotes the set of objects that are connected via

the given object property to at least one instance of the given description, and

objectHasValue denotes the set of objects that are connected via the given

object property to the object denoted by the given individual.

• OWL class axioms:

The subClassOf axiom states that one description is a subclass of another

description. The equivalentClasses axiom states that a set of descriptions

are all equivalent. The disjointClasses axiom states that a set of descriptions

are pair-wise disjoint. Finally, the disjointUnion axiom defines a class as a

union of descriptions, all of which are pair-wise disjoint.

• OWL property axioms:

The subObjectPropertyOf axiom states that one description is a subprop-

erty of another description.The equivalentObjectProperties axiom states

that a set of object properties are all equivalent, and the disjointObject-

Properties axiom states that a set of object properties are pair-wise disjoint.

Furthermore, objectPropertyDomain and objectPropertyRange specify
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the domain and the range description, respectively, of an object property. Fi-

nally, inverseObjectProperties axiomatizes two properties to be inverse of

each other.

• OWL facts axioms:

The sameIndividual axiom states that each of the individuals from a given

set denotes the same object, whereas the differentIndividuals axiom states

that each of the individuals from a given set denotes a different object. The

classAssertion axiom states that the object denoted by the given individual

is an instance of the given description.

The formal meaning in model-theoretic semantics and their equivalence in descrip-

tion logic of the OWL constructions above is given in Figures 5 and 6 (taken from

[Horrocks, Patel-Schneider, and Van Harmelen, 2003]). Full details on this model

theory can be found in the OWL Semantics and Abstract Syntax [Patel-Schneider,

Hayes, Horrocks, et al., 2004]. The main purpose of the ontological analysis is to

create an OWL DL representation from the semantic-role relations of the previous

step, to an OWL properties property (Domain class, Range Class). This is performed

through a set of transformation rules that first convert the semantic role into an Ob-

jectProperty, the predicate and argument into an owlClass, and named entities into

individuals. The following is a detailed description of the transformation rules:
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Figure 5: Syntax and Semantics of OWL DL Entities [Horrocks, Patel-Schneider, and
Van Harmelen, 2003]
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Figure 6: Syntax and Semantics of OWL DL Axioms and Facts [Horrocks, Patel-
Schneider, and Van Harmelen, 2003]
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• Classes:

Every predicate and argument in the set of semantic-role relations is trans-

formed into an owlClass. For our example, we will therefore create five owl-

Classes: owlClass(write), owlClass(novel), owlClass(author), owlClass(publish),

and owlClass(year).

• Properties:

Every semantic role is transformed into an objectProperty, with the predicate as

a restriction of the objectPropertyDomain and the argument as a restriction of

the objectPropertyRange.

For example, the relation has-novel(write, novel) will be transformed into:

ObjectProperty(has-novel)

ObjectPropertyDomain(has-novel Write)

ObjectPropertyRange(has-novel Novel)

In addition, an InverseObjectProperties is created for each objectProperty of the

form is-objectProperty-for (“is” replaces “has”).

Therefore in our example; for ObjectProperty (has-novel) we will also create:

InverseObjectProperties (is-novel-for has-novel).

• Individuals:

Individuals are created indirectly as an assertion of classes and properties. So

every predicate is transformed into an instance by simply adding an index to

the argument value being of type owlClass(argument). For example, ClassAs-

sertion(Write Write-1). Each semantic-role relation is transformed into an in-

stance of an object, having the predicate individual as its domain and either an

individual of the argument (a classAssertion to the argument similarly to the

predicate) or a named entity if it exists. So in our example, has-novel(write,

novel) will be transformed into:
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Figure 7: A Graphical Illustration of Part of the Representation Created for the Text
“Jurassic Park is a novel written by Michael Crichton and published in 1990.”

ObjectPropertyAssertion(has-novel Write-1 Jurassic-Park).

Figure 7 shows a graphical illustration of the representation from our example. The

figure shows the classes in ovals, the properties as arrows, and the individuals in rect-

angles. From the semantic analysis, the classes novel, author, and year are extracted

from the argument type, the classes write and publish from the created predicates,

while the classes writer, publisher, publication, and the roles has-novel, has-writer,

has-publisher, and in-year are extracted from the semantic role relations.

Word knowledge is then added to the representation by extracting hypernym, syn-

onym, and anotonym relations from the WordNet semantic network [Fellbaum, 1998]

of the most frequent synset and transforming them into OWL axioms as follows:

• Hypernyms:

For each class created in the representation, the hypernyms are retrieved from
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the WordNet semantic network, and transformed into a subClassOf axioms.

Only 2 levels up are considered in order not to include too general information,

For our example, the “Novel” class has the hypernym “Fiction” which itself has

the hypernym “Literary-Work”. This result in the following:

SubClassOf(Novel Fiction)

SubClassOf(Fiction Literary-Work)

A similar transformation is performed on the properties. For our example, the

property has-novel will have:

SubObjectPropertyOf(has-novel has-fiction)

SubObjectPropertyOf(has-fiction has-literary-work)

• Synonyms:

For each class created in the representation, the synonym relations are retrieved

from the WordNet semantic network, and transformed into a equivalentClasses

axioms. For example, the word “Write” has the word “Compose” as a synonym,

this relation will be transformed into EquivalentClasses(Write Compose). Sim-

ilarly, the synonym relations are retrieved for the properties, and transformed

into a equivalentObjectProperties axioms.

• Complex Classes Definition:

Complex classes can be defined in OWL using set operations, such union, inter-

section, and complement. For example, a complex class “Write” can be defined

as the intersection of the class “Make” and the property “has-novel”. So that

if one is “making a novel” it is equivalent to “writing a novel”. To create com-

plex classes, we take advantage of properties of classes created from the text.

The property of a class created from the text is similar to a differentiae of

a definition of that class, where the genus of that class is its hypernym; For

example, the concept “Write” is a subclass of “Make” and has the property
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“has-novel” which can be seen as what differentiate “Write” from “Make”. A

complex class axiom can then be created to define a class that is equivalent to

its parent if that subclass is an intersection between the parent and having a

property of that class. So for our example, if the class Make is related with

a has-novel property to the class Novel, then this class is equivalent to the

class Write. In OWL the following axiom is created: EquivalentClasses(Write

ObjectIntersectionOf(ObjectSomeValuesFrom(has-novel Novel) Make)).

The result is an OWL representation that can be illustrated graphically as in Figure 4

(shown at the beginning of the chapter). This figure shows a graphical illustration of

part of the resulting OWL representation for our example with the added WordNet

axioms. Classes are shown in ovals, properties as arrows, individuals in rectangle,

and equal for equivalent axioms. A complete version of this example representation

is shown in Appendix A.

This small representation, that was automatically generated from the sentence Juras-

sic Park is a novel written by Michael Crichton and published in 1990, allows us to

infer knowledge that was not specifically mentioned in that text, and to draw several

conclusions based on that representation. The following are some of the conclusions

that can be inferred from the created representation using a reasoner (see Section

3.3):

The result of all classes that the individual “Michael Crichton” belongs to using a

reasoner is:

Michael Crichton is an author.

Michael Crichton is a writer.

Michael Crichton is a communicator.

Michael Crichton is a person.

Michael Crichton is an individual.
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....

The result of all classes that the individual “Jurassic Park” belongs to using a reasoner

is:

Jurassic Park is a novel.

Jurassic Park is a fiction.

Jurassic Park is a literary work.

....

The result of all range classes filling the role “has-novel” having the domain class

“write” related to the writer “Michael Crichton” using a reasoner is:

Michael Crichton (has-writer) wrote (has-novel) Jurassic Park.

Michael Crichton (has-writer) wrote (has-novel) a novel.

Michael Crichton (has-writer) wrote (has-novel) a fiction.

Michael Crichton (has-writer) wrote (has-novel) a literary work.

....

“Write” and “Publish” role fillers (roles omitted for readability):

Michael Crichton published Jurassic Park.

Michael Crichton pen Jurassic Park.

Michael Crichton composed Jurassic Park.

Michael Crichton made Jurassic Park.

Michael Crichton created verbally Jurassic Park.

....
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Notice how some inferences (already mentioned as possible hypothesis of this text

in Chapter 1), were not mentioned explicitly in the original text, but they were in-

ferred by the reasoner. Of course not all created inferences are necessary entailments

from the text, for example, “Jurassic park was published in twelve months is one of

the created inferences as “twelve months” is an equivalent class to a “year”.

3.3 Comparison

In order to be able to infer that a hypothesis is entailed from a text, we need to

formulate the hypothesis as a query over the created knowledge representation. The

query of knowledge representation formalisms such as ontologies is a central require-

ment of the Semantic Web. Existing tools that allow users to query and reason

over ontologies (e.g. [Haarslev and Möller, 2001, Pellet, FaCT]) use custom designed

query languages [Wessel and Molle, 2005] with complex syntax which are reportedly

difficult for domain experts to master [Smith, Ceusters, Klagges, Kohler, Kumar, Lo-

max, Mungall, Neuhaus, Rector, and Rosse, 2005]. The reasoner that we are using is

racer [Haarslev and Möller, 2003]. The racer system (an acronym for Renamed

ABox and Concept Expression Reasoner) is a reasoner that implements tableau calcu-

lus for description logic (DL) and supports the web ontology languages DAML+OIL,

RDF, and OWL. In this section, we present our approach to querying an ontology

in a natural language that uses the semantic restrictions imposed by the ontology

design to map terms in the question to the content of the ontology. The hypothesis,

formulated in unrestricted natural language, is mapped into the new racer query

language syntax and presented to the description logic automated reasoner racer

which returns the query results. A description of the ideas presented below appears

in [Kosseim, Siblini, Baker, and Bergler, 2006].
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Semantic-role Predicate Argument (Type)
has-book craft book(Jurassic Park)
has-crafter craft author(Michael Crichton)
in-year craft year(1990)

Table 4: Result of the Semantic Analysis for “Michael Crichton crafted Jurassic
Park in 1990.”

Our approach for knowledge querying consists of creating a query from the hypoth-

esis by mapping the content of the hypothesis into classes and roles of the ontology

using the selectional restrictions imposed by the ontology. The highest scoring query

is processed using a reasoner over the ontology. Our approach was evaluated on a set

of human created question over an OWL ontology, achieving a mean-reciprocal rank

(MRR5) score of 72%. In order to present and demonstrate the comparison’s steps

in details, we will use the following hypothesis as a running example throughout the

following sections:

Michael Crichton crafted Jurassic Park in 1990.

3.3.1 Query Creation

To transform the hypothesis into a query, we first perform the same semantic analysis

step described in Section 3.2. Therefore, the input to query creation is the hypothesis

transformed into a set of semantic-role(Predicate, Argument) relations. Table 4 shows

the resulting set of semantic-role relations for our running example text. Next, we

attempt to match each constituent of the structure to variables, classes, individuals

or properties in the representation (built from the text - see Section 3.2). This can be

seen as a classical categorization problem, in particular, word sense disambiguation.

The task here is to find a function to map the linguistic expressions to particular

5Mean Reciprocal Rank (MRR) is measured as the average of the multiplicative inverse of the
rank for the first correct answer of a query.

85



senses (classes, individuals or properties in the representation).

To select the correct mapping we were inspired by the selectional restriction-based

disambiguation approach used in word-sense disambiguation [Resnik and Yarowsky,

1997]. Indeed, in a text, a semantic role represents the restrictions imposed by a

predicate on its arguments which allow one to disambiguate its sense, and in turn,

the sense of its arguments. For example, in its transitive form, the verb drink imposes

that its direct object be a liquid. The correct sense of an ambiguous direct object can

therefore be identified through this semantic constraint. With an ontology, this same

strategy can be used as the roles in the ontology impose constraints on the domain

and range of the concepts they can relate. In turn, correctly identifying the concepts

or instances involved in the question can help us identify an ambiguous role. To map a

semantic role of the hypothesis to a property in the ontology, we compute the semantic

distance between a semantic role and a candidate property, using a semantic relat-

edness measurement. In our implementation we used the WordNet Similarity path

length method [Pedersen, Patwardhan, and Michelizzi, 2004a, Patwardhan, Banerjee,

and Pedersen, 2003]. The result of this step is that each property is mapped to each

semantic role, with a different confidence score based on the semantic relatedness

measurement. Once the semantic role is matched to a set of possible properties, we

try to match its arguments to a variable, a class, or an individual in the domain and

range of this property. This is where semantic restrictions come into play.

If the argument is empty, then a new variable is created as a placeholder, but the

domain and range of the property already mapped are kept as constraints on the

variable. The Cartesian product of all possible mappings for the semantic role and

all possible mappings for the arguments is then computed. The overall confidence

score of the final mapping is computed as the product of the individual mappings.

For each predicate structure, the result of the semantic analysis is a list of possible
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predicate structure mapping score
semantic-role: has-crafter property: has-person 0.33
Predicate: Craft Domain: Make × 0.33
Argument: Author Range: Author × 1

0.108
semantic-role: has-crafter property: has-author 0.25
Predicate: Craft Domain: Make × 0.33
Argument: Author Range: Author × 1

0.082
semantic-role: has-crafter property: has-person 0.33
Predicate: Craft Domain: Create × 0.20
Argument: Author Range: Author × 1

0.066

Table 5: Examples of semantic mapping for the predicate structure has-crafter (Craft,
Author)

properties, classes, and individual in the representation along with a confidence score.

Table 5 shows an example, where the predicate structure has-crafter(Craft, Author)

is mapped to three different ontological structures with different mapping scores. In

this table, we can see that the mapping with the highest confidence score of 0.108

for has-crafter(craft, Author) is has-person(Make, Author). The confidence score of

0.108 is the product of the WordNet Similarity path length (Sim) measurement as

follows: (Sim(has-crafter and has-person)= 0.33) x (Sim(craft and make)= 0.33) x

(Sim(author and author)= 1). Once a set of possible mappings is built for each pred-

icate structure of the hypothesis, we need to make sure that variables that should

refer to the same entities actually do. This, in effect, allows us to process the pred-

icate structures of a hypothesis as a single semantic unit, rather than a conjunction

of unrelated predicate structures. To identify which variables should co-refer to the

same entities, we use the semantic constraints we set when we used the semantic

relations to bind our variables. If the constraints of two variables can be unified, then

we consider the variables to co-refer. For each candidate semantic role relation, the

list of the possible mappings is finally ranked according to the overall confidence score

87



and the best mappings are sent to be translated to an ontology querying language.

3.3.2 Querying with a Reasoner

The last step of the ontology querying is responsible for creating the nRQL queries

and sending them to the racer reasoner. Since the establishment of the Ontol-

ogy Web Language (OWL), design specifications for Description Logic (DL) based

query languages have been proposed and existing languages contrasted, highlighting

their advantages and limitations [Glimm and Horrocks, 2004]. nRQL emerges as a

prominent and highly expressive DL-query language and extends the existing capa-

bilities of racer with a series of query atoms. nRQL uses a Lisp based syntax; the

general structure of a query is composed of a query head e.g. retrieve(?x) upon

which variables used in the body are projected e.g. (?x Author), where (retrieve

(?x)(?x Author)) queries for instances of the concept Author. In our approach, we

employ conjunctive queries where the atoms are simple class or property assertions

and where the variables in the body of the query match the corresponding individuals

in the ontology that satisfy all query conditions. A detailed description of nRQL is

given in [Haarslev, Moeller, and Wessel, 2004]. The two main types of nRQL queries

that have been considered are: unary class queries and binary property queries. A

unary class query tries to find instances of a particular class (e.g. Find all Authors

⇒ (retrieve (?x) (?x Author))) or to determine if an entity is an individual of

a class (e.g. Is Michael Crichton an Author? ⇒ (retrieve () (Michael Crichton

Author))). A unary class query can therefore have one of the two forms:

1. (retrieve (?x) (?x <class>))

2. (retrieve () (<individual> <class>))

A binary property query searches for the binding between 2 classes or individuals
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Predicate Structure Pattern nRQL query
semantic-role(Predicate, Argu-
ment)

(?x <Predicate>) (?y <Argument>)
(?x ?y <semantic-role>)

semantic-role(Predicate, Argu-
ment (named-entity))

(?x <Predicate>) (?x named-entity

<semantic-role>)
semantic-role(Predicate, �) (?x <Predicate>) (?x ?y

<semantic-role>)
... ...

Table 6: Examples of Predicate Structure Patterns and Corresponding nRQL Queries

(e.g. What has-author what? ⇒ (retrieve (?y ?x) (?y ?x has-author))). A

binary role can specify particular classes or individuals instead of specifying a vari-

able. For example, What happened in-year 1990? ⇒ (retrieve (?x) (?x <1990>

in-year)). A binary property query can therefore take the 4 following forms:

3. (retrieve (?y ?x)(?y ?x <property>))

4. (retrieve (?x)(?x <individual> <property>))

5. (retrieve (?x)(<individual> ?x <property>))

6. (retrieve ()(<individual> <individual> <property>))

In order to create the nRQL queries from the mappings we found in the query

creation step (see Section 3.3.1), we created a set of rules to map the semantic role

relations into nRQL queries. Table 6 shows a sample of these patterns and the

corresponding nRQL expression.

For our example hypothesis Michael Crichton crafted Jurassic Park, the following

predicate structures were created by the query creation step (see Section 3.3.1):

has-book(craft, book(Jurassic Park))

has-crafter(craft, author(Michael Crichton))
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The corresponding highest ranking ontological matches are:

property:has-novel(class:Make,class:Novel(Jurassic-Park))

property:has-person(class:Make,class:Author(Michael-Crichton))

The above two triplets correspond to the case of [semantic-role(Predicate,

Argument (named-entity))] shown in Table 6 which create the following nRQL

statements:

1. (?x <Make>))

2. (?x Jurassic-Park <has-novel>)

3. (?x Michael-Crichton <has-person>)

Notice how they are related using the variable x, which co-refer to the same

concept Make. Individual nRQL expressions are then connected with an and op-

erator to create the final nRQL query: (retrieve (?x) (and (?x <Make>) (?x

Jurassic-Park <has-novel>) (?x Michael-Crichton <has-person>)))

3.4 Decision

Once the text is represented in OWL as explained in Section 3.2, then the hypothesis

is transformed into an nRQL query as explained in Section 3.3, and we can then decide

whether the text entails the hypothesis or not. The purpose of creating the queries

from the hypothesis is interpreting it as a yes/no question, and a returned result for

those questions is considered as a hypothesis entailment from the text representation.

So the decision making process is rather straight forward: the created OWL text rep-

resentation is loaded into the reasoner to answer the top generated nRQL hypothesis
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query. If the reasoner answers the query, then we conclude that the hypothesis is

entailed by the text, otherwise it is not entailed. We could have well chosen to test

more than only the top nRQL queries, but because we had to limit the overall time

of the execution, our current implementation is restricted to the single top most gen-

erated nRQL. In our example above, the top generated nRQL query for the hypothe-

sis Michael Crichton crafted Jurassic Park is: (retrieve (?x) (and (?x <Make>)

(?x Jurassic-Park <has-novel>) (?x Michael-Crichton <has-person>))).

When run through the racer reasoner, it returns the individual “Write-1”, which is

an individual of the class Make, correctly answering the query, and thus this hypoth-

esis is entailed from the created text representation.

3.5 Evaluation and Analysis

We first evaluated the knowledge querying prototype intrinsically on a separate do-

main (see Section 3.5.1), then evaluated it extrinsically on the task of recognizing

textual entailment (see Section 3.5.2). We then performed an analysis of the ma-

jor issues encountered with this approach (see Section 3.5.3). The evaluations and

analysis are described next in details.

3.5.1 Evaluation of the Knowledge Querying Approach

The prototype natural language interface was intrinsically tested on a separate do-

main: the FungalWeb Ontology [Shaban-Nejad, Baker, Butler, and Haarslev, 2004].

The FungalWeb Ontology is a prototype bio-ontology, scripted in the OWL formalism.

It is an integrated conceptualization of multiple scientific domains. These overlapping

domains include taxonomies of fungi and enzyme reaction mechanisms as well as en-

zyme substrates and industrial specifications describing the applications and benefits
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of enzymes. The FungalWeb Ontology contains 3616 concepts and 11,163 instances

related by 142 roles. The conceptualization was designed so that fungal species, en-

zyme names, enzyme product names, enzyme vendor names and chemical names are

modeled as instances. Free text segments describing enzyme applications, industrial

benefits of enzymes were also modeled as instances. The scope of the ontology has

been further illustrated in a series of application scenarios [Shaban-Nejad, Baker,

Haarslev, and Butler, 2005, Baker, Shaban-Nejad, Xu, Haarslev, and Butler, 2006]

demonstrating the range of query capabilities afforded by the conceptualization.

To test the knowledge querying prototype, we used a corpus of 180 pairs of hy-

pothesis and their associated nRQL queries. The material was created by 4 different

casual users in order not to be influenced by the writing style of one particular person.

The users were all knowledgeable in the domain and the content of the ontology, but

did not necessarily know its structure and property names. We used 80% randomly

selected pairs for developing the query generation and the remaining 20% were used

for the evaluation. We compared the prototype-generated results with the human

composed queries as gold-standard. The comparison was based on query equivalence.

If the generated query was not exactly the same as the one in the gold-standard,

it was considered wrong. For each hypothesis, we generate a set of possible queries

ranked in order of confidence. For each hypothesis h, we therefore computed the final

score as the reciprocal rank of their first correct answer. If none of the generated

queries was equivalent to the gold-standard, a score of 0 was given. Otherwise, the

score is equal to the reciprocal of its rank. For example, if a hypothesis generated

4 ranked queries, and the 3rd one is correct, the question received a score of 1
3
. The

overall score is the average RR(q) for all questions q. This methodology is called the

mean-reciprocal rank (MRR) score as used in question-answering [Voorhees, 2001],

92



and the resulting MRR on the test set is 0.72, which is in line with the current ac-

curacy of other ontology based question answering approaches [Lopez, Motta, Uren,

and Sabou, 2007]. Details of this work are described in [Kosseim, Siblini, Baker,

and Bergler, 2006]. An extrinsic evaluation will be described next on the task of

recognizing textual entailment.

3.5.2 Evaluation of the Recognizing Textual Entailment Ap-

proach

For the development of the recognizing textual entailment prototype, we have used

the dataset of the RTE-1 and RTE-2 Recognizing Textual Entailment competitions.

Recall from Section 2.3 that the dataset of Text-Hypothesis (T-H) pairs for the first

challenge (RTE-1) [Dagan, Glickman, and Magnini, 2005] consists of 1367 T-H pairs,

the second challenge (RTE-2) consists of 1600 pairs [Bar Haim, Dagan, Dolan, Ferro,

Giampiccolo, Magnini, and Szpektor, 2006] totalling 2967 T-H pairs. To evaluate the

performance of the system we performed the test on the RTE-3 Recognizing Textual

Entailment third challenge (RTE-3) test data. As described in Chapter 2, the corpus

consists of 800 Text-Hypothesis (T-H) pairs of text snippets and manually labeled

for entailment by human annotators. Twenty six groups participated in the RTE-3

challenge. Overall, the systems achieved an average accuracy of 61%, and the best

accuracy of 80%. Our baseline system performed below the average with an accuracy

of 49% on the two-way task (entailment, no entailment). As specified in the beginning

of this chapter, this approach constitutes our baseline system for a description logic

approach to recognize textual entailment, which will be improved in Chapters 4 and 5.
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3.5.3 Analysis

When analysing the performance of our approach we realized that two major issues

could be improved:

• The first major issue is related to the comparison component and the deci-

sion component. 60% of all the created nRQL were incorrectly mapped, which

lead to an incorrect result from the reasoner. The reasons range from missing

information, to the optimistic setting in our use of the semantic relatedness

measure which always resulted in a mapping. This feature is quite acceptable

in a question answering setting as any result is better than no result, but not

at all acceptable in recognizing textual entailment as a result means an entail-

ment, which is not always the case. To illustrate this, our approach incorrectly

entailed the hypothesis Michael Crichton copied the fiction Jurassic Park, be-

cause the path length semantic relatedness distance between the pair “Copy”

and “Write” is similar to the semantic relatedness distance between “Create”

and “Write”. So the incorrectly created nRQL from this hypothesis is :

1. (?x <Write>))

2. (?x Jurassic-Park <has-novel>)

3. (?x Michael-Crichton <has-person>)

Our intuition at this stage is to transform the semantic relatedness information

into axioms which is needed to facilitate the comparison and give those axioms

to a machine learning algorithm to decide on the inferred information if the

texts entail the hypothesis or not. This will be described in Chapter 4.

• The second issue is related to the named entities information. Over 30% of

the named entities were not found in the Freebase database; an alternative is
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needed. One possibility is to explore the web for additional knowledge related

to named entities. The intuition is that the Web could be considered as the

largest corpus, and will contain information that may otherwise not be available

in handmade lexicons. This will be discussed in details in Chapter 4.

In the next chapter, we will describe how the lessons learned from our first experience

at the RTE challenge where used to develop a better performing approach.

3.6 Conclusion

In this chapter, we have presented our first approach at recognizing textual entail-

ment. This approach has investigated the use of description logic as a surface meaning

representation of text, knowledge querying in natural language, and semantic relat-

edness to recognize textual entailment. The implementation of this approach has

resulted in a low accuracy of 49% in the RTE3 challenge. An analysis of the results

helped us identify the problems of this shallow logical approach in recognizing tex-

tual entailment. The major issues encountered are either related to missing implicit

information, or a weakness in the semantic relatedness comparison scheme.

In the following chapter we will present our knowledge alignment approach for recog-

nizing textual entailment. This approach takes into consideration the limitations and

issues discussed in Section 3.5 and improves upon them. It specifically investigates

the use of the Web as a corpus for enriching a meaning representation of a text, and

the use of semantic relatedness between concepts to learn axioms on demand for the

purpose of aligning textual representations and as an indicator of textual entailment.
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Chapter 4

Knowledge Alignment Approach

In Chapter 3 we have introduced a query based logical inference approach for recog-

nizing textual entailment. An analysis of its evaluation helped us identify some of

the main problems faced by a shallow logical approach. These are either related to

missing implicit information, or a weakness in the semantic relatedness comparison

scheme. In this chapter we will address both of these issues by first investigating the

use of the Web as a corpus for enriching a meaning representation (Section 4.2), and

the use of semantic relatedness between concepts to learn axioms on demand (Section

4.3), as an alternative to a predefined set of axioms, and as an indicator to textual

entailment (Section 4.4).

In this chapter, we propose a description logic and semantic relatedness approach

to textual entailment, where the type of semantic relatedness axioms employed in

aligning the description logic representations are used as indicators of textual en-

tailment. This approach is based on the automatic acquisition of a representation

from the text T, another representation from the hypothesis H, and the alignment of

the acquired representations. The automatic acquisition of representations includes

a new component that uses the Web as a corpus and machine learning. The textual

entailment problem is therefore reduced to a classification one based on the resulting
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aligned representation. Transforming the problem into classification one should make

the approach more flexible than a hard logical inference one.

In the next section we will first introduce the architecture of our approach and

the representation acquisition module of the system. We will then describe the main

differences of this module compared to our previous approach presented in Chapter 3.

The rest of the sections will introduce the representation alignment in more details as

it is the major difference with our previous approach, and an evaluation of the overall

approach. A description of this approach has appeared in [Siblini and Kosseim, 2008a]

and [Siblini and Kosseim, 2009].

4.1 Overview of the Knowledge Alignment Approach

As with our baseline approach (Chapter 3), our knowledge alignment approach can

be divided into three main components: a representation component, a comparison

component, and a decision component. The representation component follows the

same method as the previous approach (see Section 3.2) but this time we represent

both the text and the hypothesis in description logic. In addition, instead of using

a database to find named entities types, a new approach is used that uses the Web

as a corpus to do so. Then, the comparison component compares and aligns the two

created representations. Finally, the decision component classifies the information

collected in the representation alignment into an entailment result. Figure 8 shows

an overview of this approach. The different components are shown in dashed boxes,

the inputs and outputs in ovals, and the sub-components in rectangles. The differ-

ences between this approach and the baseline one from Chapter 3 are highlighted in

bold and with a light grey background. Note that Figure 8 differs from Figure 1 in
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Figure 8: Knowledge Alignment Approach

the noun compound extractor component, the semantic relatedness calculator com-

ponent, and the machine learning classifier.

The representation component involves the representation of the text in description

logic to facilitate the comparison and decision making (described in Section 4.2).

This component comprises a logical form creator that transforms both a text and a

hypothesis into their own logical forms. In this component we will be introducing a

new approach for using the Web as a corpus to extract types of named entities. This

novelty has been introduced to deal with the high number of unrecognized named

entities of our baseline approach (see Section 3.5).
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Figure 9: Prototype of the Knowledge Alignment Approach

The comparison component will then compare and align the representation of the text

with the representation of the hypothesis, and collect alignment information that will

be used in the decision making (described in Section 4.3). This is the major difference

with our previous approach. It has been introduced to deal with the first major issue

of that approach of incorrectly mapping an nRQL query from the hypothesis (see

Section 3.5). The comparison relies on a reasoner and a semantic relatedness calcula-

tor as a substitute for additional knowledge to compare the representation with the
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hypothesis. The alignment process learns new axioms on demand, based on the se-

mantic relatedness calculator. The purpose of this comparison is to collect alignment

information that will be used in the decision making.

Finally, the decision component will use the alignment data to decide whether the

text entails the hypothesis or not (described in Section 4.4). The approach relies

on machine learning that uses the alignment data as features to decide on a textual

entailment result.

In order to evaluate this approach, we have created a prototype system. Figure 9

provides an overview of the system architecture, specifically showing the use of spe-

cific resources in the implementation decisions. As in the previous figures, the main

components are shown in dashed boxes, the inputs and outputs are shown in ovals,

the sub-components are shown in rectangles, and the sub-component’s resources in

cylinders. As shown in Figure 9, for our implementation, we have chosen the Minipar

parser [Lin, 1998c] as a dependency parser, the RODEO system which is our own

implementation of a tool that uses the Web as a corpus [Siblini and Kosseim, 2008b]

as the source of named entity types (see Section 4.2.2), Nakov’s approach [Nakov and

Hearst, 2006] for extracting noun compound types, and the WordNet [Fellbaum, 1998]

semantic network with a set of manually created transformation rules for the logical

form creator module. In addition, we have used the RACER reasoner [Haarslev and

Möller, 2003] and VerbOcean lexical patterns [Chklovski and Pantel, 2004] in addi-

tion to WordNet [Fellbaum, 1998] to perform the semantic alignment of classes and

properties. Finally, the alignment data produced in the comparison component are

used as features in several machine learning algorithms using the WEKA tool [Dimov,

Feld, Kipp, Ndiaye, and Heckmann, 2007] for the decision making. In the following

sections, we will go over each component in details, starting with the knowledge

representation component.
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4.2 Representation

The representation procedure follows the same approach described in Section 3.2. The

logical form creator is the process of automatically creating an OWL-DL representa-

tion. The process follows a syntax-driven pipeline architecture, which is augmented

by knowledge on demand. A text is first passed through a syntactic analysis to

derive its dependency parse. This dependency parse is then passed as input to a

semantic analyser to produce a literal meaning representation. Finally, this meaning

representation is passed as input to an ontological analyser that produces a formal

logical-based meaning representation in OWL-DL.

The only differences with our baseline approach are the following:

1. The representation is created for both the text and the hypothesis. This is one

of the differences with our baseline approach, and it has been introduced to

deal with the first major issue of incorrectly mapping an nRQL query from the

hypothesis (see Section 3.5).

2. The use of the Web as a corpus to recognize the semantic types of named entities.

This method has been used in the logical form creator semantic analysis step

to replace the use of the Freebase database for named entity recognition. This

is needed to deal with the large number of named entities that were not found

in the Freebase database.

Let us describe our new approach for named entity recognition using the web.

4.2.1 Named Entity Recognition Using the Web

Named Entity Recognition (NER), as described by the Message Understanding Con-

ferences (MUC)-7 [Chinchor, 1998], is the task of identifying and classifying entities
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that are considered to belong to one of the following semantic classes: person, lo-

cation, organization, temporal entities and numeric quantities. Different approaches

have been introduced to deal with NER, however two approaches are mainly adopted.

The first uses resources, such as gazetteers, and hand crafted rules to match expres-

sions to the resources, and the other uses supervised machine learning techniques

on annotated corpora in order to learn a set of patterns or to discriminate features

such as the work of [Bikel, Schwartz, and Weischedel, 1999]. One of the major issues

encountered when we analysed our RTE baseline approach (see Section 3.5) is related

to the named entities information. Over 30% of the named entities were not found

in the Freebase lexicon; and an alternative is needed.

In this section, we explore using the web for additional knowledge related to named

entities. Our aim is to automatically extract more fine-grained class(es) of named

entities compared to the general classes described in MUC conferences. For example,

we need the ability to extract the classes that “Paul Krugman” belongs to; in this

case a general class would be a “person”, but a more specific one would be a “colum-

nist”. To accommodate a larger coverage in selecting fine-grained classes of named

entities, many researchers have used the Web. Most of the techniques used rely on a

set of patterns, and the main difference between one technique and the other is usu-

ally the type of patterns used. Some use text patterns such as the work of [Etzioni,

Cafarella, Downey, Popescu, Shaked, Soderland, Weld, and Yates, 2005], while others

uses wrappers or HTML patterns such as the work of [Nadeau, Turney, and Matwin,

2006]. On the other hand, [Etzioni, Cafarella, Downey, Popescu, Shaked, Soderland,

Weld, and Yates, 2005]’s KNOWITALL system aims to automate the extraction of

instances of classes such as the names of scientist from the Web by using a set of text

patterns. We have built upon [Etzioni, Cafarella, Downey, Popescu, Shaked, Soder-

land, Weld, and Yates, 2005]’s work; however, instead of using a set of text patterns
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over the Web, we have used grammatical patterns, and instead of extracting named

entities that belong to a class (for example, an example named entity that belongs to

the columnist class is Paul Krugman), we extract classes of a named entity (for exam-

ple, the Paul Krugman belong to the classes economist, columnist... ). It is necessary

in our work to be able to categorize the types of each named entity mentioned in a text.

Crawling the entire World Wide Web and annotating it with grammatical infor-

mation would be an ideal solution for our needs. However, as this is not feasible,

we needed to find an alternative. Web search engines provide an unstructured query

language to search the Web, but using the content words of a grammatical query

may return millions of documents, and not all the returned documents will satisfy

the grammatical query we are looking for. Therefore, the main challenge is to be able

to narrow down the returned results to a manageable and relevant subset. To narrow

down the returned results, our approach is to create specific search engine queries

that relies on the non-content words selections preferences of the grammatical query.

To test this approach, a tool called RoDEO has been implemented and included in

our Knowledge Alignment RTE approach to extract named entities from the web.

The following are details of the RoDEO approach (more information can be found in

[Siblini and Kosseim, 2008b]).:

Grammatical Query to Web Queries: The first part of this approach is to trans-

form a grammatical query to a set of specific Web queries. In order to do so, we

have developed the following method to generate sentences from a grammatical

query. We have used the open American English Corpus [Ide and Macleod,

2001] and parsed with the Minipar dependency parser [Lin, 1998c], in order to

collect a large set of parsed sentences. This allowed us to create a corpus of

the most frequent non-content word preferences for each type of dependency
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grammatical relation. The corpus is used to translate grammatical queries into

web queries which are made of specific search phrases. A search phrase is a

sequence of words that must co-occur. For example, a subject relation’s most

frequent non-content word preferences includes the following search phrases:

a NOUN(Subject) can VERB a

the NOUN(Subject) that VERB the

a NOUN(Subject) who VERB a

a NOUN(Subject) to VERB

VERB by the NOUN(Subject)

So if we are searching for the possible subjects of verb drive, one possible search

phrase will be “a *1 can drive”. In this example, the subject has a preference

to be preceded with a non-content word “a” and followed with “can”, which is

followed by a verb.

Web Query Results to Grammatical Query Results: Each Web query gener-

ated is then run through a web search engine, and the relevant sentence snippets

are then grammatically parsed. The parse that match the original grammatical

query is then returned. For our example of finding the possible subjects of the

verb drive, the created search phrase “a * can drive a” returns the following

relevant sentences, among others:

at 16 years old a person can drive a 3-wheeler...

a person can drive a bus with a seating...

a driver can drive a minibus...

a woman can drive a car...

a man can drive a motorboat...

Parsing those sentences and finding the subjects of drive returns the following:

1The star is a placeholder for one or more unknown terms.
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person, driver, woman, man...

For the task of extracting classes of named entities from the web, we created a

set of specific grammatical patterns2 and used RoDEO to query the web for those

patterns.

One of the grammatical patterns that we will introduce here is the predicative

nominative pattern: Named-Entity (subj) V-BE (predicate) Noun. Grammatically,

the predicate nominative is the noun that follows a form of the verb to be, like in the

sentence: “Margaret Thatcher was the Prime Minister”. In this example “Margaret

Thatcher” is the subject of verb to be and “Prime Minister” is its predicate noun.

As a result, it would be an appropriate pattern to extract classes of named entities.

Another pattern is the appositive pattern: Named-Entity (appositive) Noun. Ap-

positive is noun or noun phrase that describes another noun phrase that is placed

besides it, as in the following example:

“Robert Fisk, a journalist, said ...”. The noun “Journalist” is an appositive to “Robert

Fisk”.

We also have derived other grammatical patterns based on lexico-syntactic patterns

available in the literature (e.g. [Hearst, 1992, Pearson, 1998, Saggion, 2004], such as:

1. NP3 such as NP, (or/and) NP.

Example: Columnist, such as Paul Krugman.

2. Such NP as NP, (or/and) NP.

Example: Work by such columnist as Paul Krugman, and Paul Romer.

3. NP, or other NP.

Example: Paul Krugman, or any other columnist in the N.Y. Times.

2The grammatical patterns are expressed as a set of dependency relations.
3NP stands for noun phrase.
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4. NP, and other NP.

Example: Read Paul Krugman and other economists and healthcare experts....

The first pattern, for example, is translated to the following grammatical query: Noun

(modified) such-as (Pcomp-n) Named-Entity, where Pcomp-n stands for a nominal com-

plement of a preposition, in this case a named entity complement of the preposition

such-as that is modifying a noun.

Using RoDEO, a grammatical pattern will return a list of nouns that conforms to

the selected grammatical relations from the Web for a selected named entity. For

each pattern, a set of web queries are created. For example, the following queries are

automatically generated by RoDEO for pattern 1:

“ a * such as the * or the *”

“ when * such as * and *”

“ the * such as * and *”

“ and * such as * and *”

“ from * such as * and *”

“ from a * such as * who”

“ from a * such as * of”

“ * such as * he would”

“ * such as * here at”

“ * such as * not an”

“ * such as * in the”

“ * such as * should”

“ a * such as * and *”

“ a * such as * or *”

“ a * such as the *”

“ * such as * can”

...
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For each pattern, we replace the named entity with the one that we are looking to

classify, and run the result through RoDEO, which will return a set of nouns corre-

sponding to possible classes that a named entity can belong to.

This mechanism of extracting named entity types is used as part of the semantic

analysis phase in representing the text and the hypothesis in our RTE approach. It

is used as an alternative to the Freebase database, which was causing a major issue

in recognizing textual entailment (as mentioned in Section 3.6) and the rest of the

representation component was kept as the baseline approach introduced in Section 3.2.

4.2.2 Evaluation of the Named Entity Recognizer

To evaluate the approach described in the previous section, we used a set of 1019

named entities extracted from the shared online FreeBase database [Bollacker, Cook,

and Tufts, 2007]. FreeBase contains named entities with their general and specific

types. For example, according to FreeBase, the named entity: “Al Franken” be-

longs to the following types “Person, author, writer, and actor”. The evaluation

scoring has been done by comparing our extracted types to the FreeBase types. As

RoDEO returns classes that not exactly match the FreeBase types, we used the Word-

Net::Similarity [Pedersen, Patwardhan, and Michelizzi, 2004b] Path Length method

to compare the types. The path length method is a simple node-counting scheme,

which returns a relatedness score between two concepts. The score is inversely pro-

portional to the number of nodes along the shortest path between the synsets in

WordNet. The shortest possible path occurs when the two synsets are the same, in

which case the length is 1. If the compared types had a relatedness score that was

over a threshold t, (t=0.21 in our setting), we considered it as correct. The threshold
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has been selected after manually comparing a set of 50 classes. For example, if the

returned class is an “Actor” for a named entity, and its FreeBase corresponding type

is an “Artist”, the WordNet::Similarity Path Length method returns a relatedness

of 0.25 for the two concepts. As such we assume that the returned class is correct.

We have evaluated a total of 1019 named entities chosen at random from FreeBase.

The total number of different FreeBase types that these entities belong to is 69 types.

The total number of classes returned by our approach for the 1019 named entity is

678 types. That shows that our approach is returning far more fine grained results

than the FreeBase types, which only returned 69 types. For example, the “Athlete”

FreeBase type has been matched to “Blocker, bowler, boxer, cornerback, cricketer,

footballer, keeper, receiver, scorer, skater, swimmer, tackle...”. We want fine grained

types for the task of recognizing textual entailment.

To compute the accuracy of the extracted classes of a single named entity we use the

following metric:

Accuracy =
Number of correct types

Total number of types

The accuracy of RoDEO is computed as the average of the accuracy for all the

evaluated named entities.

Overall, RoDEO achieved an accuracy of 0.7. Table 7 shows some of the accuracy

results grouped by types and sub-types. For example, for the high level “Person”

type, the accuracy achieved is up to 0.87, whereas the type “Company” achieved

an accuracy of 0.62. The person type can be subdivided into several subtypes, for

example the “Actor” type which achieved an accuracy of 0.78.

There are many related work throughout the named entity recognition and classi-

fication field; however most of the available work falls under the initial task set at the

MUC conference for identifying and classifying named entities into five very broad

classes, which is much easier than classifying named entities into more fine grained
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Types Accuracy Subtypes Accuracy

Person 0.87 ... ...
Actor 0.78
Athlete 0.76
Author 0.75
... ...
Publisher 0.14
... ...

Company 0.62 ... ...
Airline 0.66
Employer 0.34
Owner 0.31
... ...
Chain 0.16
... ...

Table 7: Sample of the Evaluation Results

classes. Most methods that classify named entities into five classes achieve an accu-

racy well above 90%. However, this has not been the case when classifying named

entities into more fine grained classes. As such, we will focus our comparison to some

of the approaches that classify named entities into more than five classes. Table 8

shows a comparison of some of these approaches ordered by the number of classes

they consider. [Cimiano and Staab, 2004]’s PANKOW system is a lexico-syntactic

pattern based system that uses the web frequency to select the appropriate class from

a set of 59 classes. The PANKOW system achieved an accuracy of 24.9%. [Nadeau,

2007]’s BaLIE system uses semi-supervised machine learning and the web to classify

named entities into 100 classes. It achieved an accuracy of 57.4%. BaLIE creates

large gazetteers of named entities, using a hand crafted HTML markup in web pages

and a seed of named entities, and then uses a simple heuristic to identify and classify

named entities. [Sekine, 2004]’s system achieved 72% by classifying named entities

into 200 classes, however they used about 1,400 handcrafted rules and a dictionary of
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130,000 instances that are classified into the 200 classes. Another interesting system is

[Alfonseca and Manandhar, 2002]’s system that adopted a vector space model having

syntactic dependencies as vector features, and compared the named entity vector into

the most similar vector. They considered 1200 classes and achieved an accuracy of

17.39% using the verb/object dependencies as a feature. Although we are extracting

Systems Types Accuracy

PANKOW 59 24%
BaLIE 100 57%
Sekine’s tagger 200 72%
RoDEO 678 70%
Alfonseca’s system 1200 17%

Table 8: Comparison of Various NE Recognition systems

a large number of fine grained classes, we are not classifying the named entities into

these sets of classes, but rather extracting the most frequent classes associated with

each named entity. As Table 8 shows, RoDEO’s accuracy is comparable to the sys-

tems using hand crafted rules, even though we are extracting a much larger number

of classes.

4.2.3 Named Entity Recognizer and RTE

Let us now return to the question of RTE and see how RoDEO, our new approach

to NER, can improve our baseline RTE system. Recall that in the representation

component of our baseline approach (see Section 3.2), and more specifically in the

semantic analysis phase, we try to find the classes that individuals belong in order to

help in adding implicit information into our representation. If the class of a named

entity is not present in the text, we use the FreeBase to search for it. However, in our

new approach we used the Web as a corpus to recognize the semantic types of named
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entities, and specifically the set of grammatical patterns using RoDEO as described

in the previous section. This is needed to deal with the problem of the large number

of named entities that were not found in the Freebase database in the evaluation of

our baseline RTE approach (as described in Section 3.5). In addition to the NER

changes in the representation component of the RTE approach the next section will

go over the changes of the comparison component.

4.3 Comparison

Once the representation component of our RTE approach creates a representation for

the text (representation-T) and a representation for the hypothesis (representation-H),

the comparison component then aligns the two representations into a single repre-

sentation (representation-A), that will be the basis of an entailment decision. The

importance of this component is in its ability to learn semantic relatedness knowl-

edge specifically related to the represented content and transforming this additional

knowledge into axioms, as an alternative to a large predefined set of axioms. Those

learned axioms, in addition to the aligned representation-A, will be the basis for the

decision component to make an entailment decision.

The following highlights the main steps followed to compare the two representations

and to learn content related axioms:

1. The first step is to find semantic relations between concepts. This step is per-

formed using our own implementation of the S-Match algorithm [Giunchiglia,

Shvaiko, and Yatskevich, 2004]. The S-match algorithm produces a semantic

mapping between two graph-like structures using the WordNet semantic net-

work. The algorithm produces mappings among the nodes that correspond se-

mantically to each other, through an equivalence (using WordNet Synonyms), a
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generality (using WordNet Hypernyms), or disjoint (using WordNet Antonyms)

relations. A matrix is produced of all concepts of the two representations, and

the strongest relations holding between concepts of nodes is selected. In case

we are not able to match concepts or properties using WordNet, we use the

VerbOcean web lexical patterns [Chklovski and Pantel, 2004] to add semantic

relations on demand. Whereas WordNet semantic relations were created by

hand, VerbOcean detect fine-grained semantic relations using lexico-syntactic

patterns over the web, with an average accuracy of 65.5%. For this reason we

give the VerbOcean detected relations a lower confidence.

2. If a relation is found, we translate it into one or more axiom as follows:

Equivalent : WordNet based similarities are translated to an equivalentClasses(X

Y) or equivalentObjectProperties(X Y) axiom in the representation (de-

pending if they are classes matching other classes or properties matching

other properties).

Possibly Equivalent : Similarly, VerbOcean based similarity are translated

to an equivalentClasses(X Y) or equivalentObjectProperties(X Y) axiom

in the representation, but those axioms will be annotated with a ”Possibly

Equivalent” label to differentiate them with the WordNet related ones and

will be used later in the decision phase.

Opposite : Semantically related relations that are found through an antonym

WordNet relation or a VerbOcean antonym pattern are also translated to

an equivalentClasses(X Y) or equivalentObjectProperties(X Y) axiom, but

are annotated with an ”Opposite” label (which will be used later in the

decision phase).

This step is what we refer to as learning axioms on demand. We do not have
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to rely on a predefined set of hand-coded axioms, instead we use the semantic

relation information from a lexicon or using the Web for specific concepts or

properties and we translate them into axioms.

Our hypothesis is that the created axioms through this comparison phase will be good

indicators of textual entailment between the two representations.

In order to illustrate the 2 steps above, let us take the following example:

(T): Jurassic Park is a novel written by Michael Crichton.

(H): Michael Crichton crafted the book Jurassic Park.

Figure 10 shows a graphical illustration of the resulting OWL representation from

the example text. The figure shows the classes in ovals, the properties in arrows,

and the individuals in rectangles. Similarly, Figure 11 shows a graphical illustration

of the resulting OWL representation for the example hypothesis. Recall that these

representations have been created using the approach described in Section 4.2. In this

example, we can notice from the two graphs that these representations share several

common concepts and properties. Only the three classes: Book, Craft, and Crafter

which are available in representation-H, are missing from representation-T. We first

try to semantically match those concepts with all the concepts in representation-T,

by calculating their semantic relatedness using WordNet, or if no relation exist with

WordNet then we try the VerbOcean method. Book for example has the strongest

semantic match with Novel through a VerbOcean semantic match. Crafter has a

hypernym relation with Person, and Craft has a strongest match as a WordNet

hypernym with Make.
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Figure 10: A Graphical Illustration of representation-T Created for the Hypothesis
“Jurassic Park is a novel written by Michael Crichton”
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Figure 11: A Graphical Illustration of representation-H Created for the Hypothesis
“Michael Crichton crafted the book Jurassic Park”

Figure 12 shows a graphical representation of the aligned representation example,

where the equality sign represents semantic equivalence (retrieved through the Word-

Net method), the approximate sign represent a possible semantic relatedness relation

(retrieved using the VerbOcean method), and the inequality sign represent comple-

ment classes (through an antonym path or pattern). Note that in this specific exam-

ple, all the classes and properties have been aligned in the resulted representation, but

this may not always be the case. The type of axioms created in this alignment step

is the basis of our hypothesis for recognizing textual entailment, where we take the

resulted alignment axioms as features for classifying textual entailment. In this case

the class Author is already available in representation-T and is equivalent to the class

Writer, Book is possibly equivalent to the Novel class, Crafter is possibly equivalent

to the Person class, and Craft is possibly equivalent to the Make class. Properties

are also matched in a similar fashion (not displayed in the graph due to lack of space),
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Figure 12: A Graphical Illustration of an Alignment representation-A

has-crafter has a possible equivalent relation to has-person, and has-novel has a pos-

sible equivalent to has-book. Reasoning over the aligned representation-A, taking into

consideration the type of axioms used in the alignment of this step, will enable the

decision component to decide whether the text entails the hypothesis or not.

4.4 Decision

Our hypothesis for recognizing textual entailment is that the type of logical statements

used to align textual representations can be used as an indicator of textual entailment.

In particular, if a high proportion of classes and properties between the two created

representations are shared then most probably we have an entailment. To test this

hypothesis, we turned to supervised machine learning. We created a set of features
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based on this hypothesis to train a machine learning algorithm to classify textual

entailment when trained on an RTE training set. If those features can be used

successfully in a machine learning algorithm to predict textual entailment, then we

can conclude that the type of logical statements used to align textual representations

can be used as an indicator of textual entailment.

The features that we used include:

F1: Available Classes This feature represents the percentage of the classes in rep

resentation-H that are also present in representation-T. For example, the class

Author is already available in both representations.

F2: Available Properties This feature represents the percentage of the properties

in representation-H that are also present in representation-T. For example, the

property has-novel is already available in both representations.

F3: Available Sub-Classes The percentage of subclass relationships between classes

in representation-H that are present in representation-A. For example, the class

Novel is a subclass of the class Fiction.

F4: Equivalent Classes The percentage of equivalent classes present in represe

ntation-A and representation-H; where an equivalent class is one having an

equivalentClasses axiom in the representation. For example, the class Author

is equivalent to the class Writer.

F5: Possible Equivalent Classes The percentage of possibly equivalent classes

present in representation-A and representation-H; where a possibly equivalent

class is one having an equivalentClasses axiom in the representation but has

been annotated with a Possibly Equivalent annotation by the comparison phase

(Section 4.3). For example, the class Craft which is possibly equivalent to the

class Create.
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F6: Equivalent Properties The percentage of equivalent properties present in rep

resentation-A and representation-H; where an equivalent property is one having

an equivalentProperties axioms in the representation. For example, the property

has-writer is equivalent to the property has-author.

F7: Possible Equivalent Properties The percentage of possible equivalent prop-

erties present in representation-A and representation-H; where a possibly equiv-

alent property is one having an equivalentProperties axiom in the representation

but has been annotated with a Possibly Equivalent annotation by the com-

parison phase (Section 4.3). For example, the property has-novel is possibly

equivalent to the property has-book.

F8: Disjoint Classes The percentage of disjoint classes present in representation-A

and representation-H. The term disjoint classes in OWL refers to two classes

that do not have members in common; However, in our work we use the term

to refer to two classes that represent content words that are antonyms, these

disjoint classes are the ones that have an equivalentClasses axiom but have been

annotated with an Opposite annotation by the comparison phase (Section 4.3).

F9: Possible Disjoint Classes The percentage of possible disjoint classes present

in representation-A and representation-H; where those classes are have an equiv-

alentClasses axiom but have been annotated with a Possibly Equivalent and an

Opposite annotation by the comparison phase (Section 4.3).

F10: Disjoint Properties The percentage of disjoint properties present in represen

tation-A and representation-H. This notion is similar to disjoint classes, but for

properties. The disjoint properties are the ones that has an equivalentProperties

axiom but has been annotated with an Opposite annotation by the comparison

phase (Section 4.3).
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Figure 13: Part of the Resulting Decision Tree

Using these ten features, we then used the B40 decision tree classifier based on ID3

(implemented in the WEKA tool [Dimov, Feld, Kipp, Ndiaye, and Heckmann, 2007])

and trained it over the 800 text-hypothesis pairs of the RTE3 pilot task dataset [Gi-

ampiccolo, Magnini, Dagan, and Dolan, 2007]. The main reasoning for using decision

tree is that they are simple to interpret, which allowed us to learn which features are

more discriminatory and which one are the least. As presented in Section 2.2.3, the

RTE3 pilot task focused on recognizing textual entailment; where the dataset is anno-

tated into three decisions: yes for entailment, no for no entailment, and unknown. We

ran the our representation acquisition and alignment prototype over the data set and

created representation-T, representation-H, and representation-A for all 800 pairs.

For each pair of hypothesis and text, we extracted the 10 features described above

for the created representations, and used them to feed the decision tree classifier.

An analysis of the resulting decision tree, part of which is shown in Figure 13, indicates

that the most discriminating features are the following:

1. F9: Possible disjoint classes (root of the tree).

2. F5, F2, and F3: Possible equivalent classes, available properties, and available

sub-classes.
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3. F1, F4 and F8: Available classes, equivalent classes and disjoint classes.

4. F6 and F7: Equivalent properties and possible equivalent properties.

5. F10: Disjoint properties.

This tree shows that the feature “disjoint classes” is a more discriminating feature

than “equivalent classes”, which is more discriminating than “equivalent properties”.

In addition, it shows that the axioms learned through VerbOcean were as important

as the ones learned from WordNet.

Traversing the relevant part of the learned decision tree shows that the example

feature from the representation of the example (T): Jurassic Park is a novel written

by Michael Crichton. and hypothesis (H): Michael Crichton crafted the book Jurassic

Park. is classified as entailment according to the created decision tree.

4.5 Evaluation and Analysis

To evaluate our approach, we participated in the TAC-RTE4 challenge (described in

Chapter 2), and more specifically the three way task of recognizing textual entailment.

The test set includes 1000 T-H pair to be classified into (Entailment, Contradiction, or

Unknown). The evaluation is done automatically, where the classifications returned

by a system are compared to human annotated golden standard, and the returned

score is the accuracy or the percentage of matching judgments. As the RTE4 task

did not provide a development set, we used the RTE3 pilot dataset introduced in the

previous section for training. Twenty six teams submitted their system’s results to

the challenge [Giampiccolo, Dang, Magnini, Dagan, and Dolan, 2008]. The overall

accuracies of all systems that participated in the two-way task were between 49.7%

and 74.6% with an average accuracy of 58%. As for the three way task, the accuracy
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Group Accuracy
UAIC [Iftene, 2008] 0.685
OAQA (our approach) 0.616
DFKI [Wang and Neumann, 2008] 0.614
. . .
CERES1 [Glinos, 2008] 0.405
boeing1 [Clark and Harrison, 2008] 0.377
IIITSum082 [Varma, Pingali, Katragadda, and Krisha, 2008] 0.307

Table 9: Results of the RTE4 3-way Task Participants

Group Accuracy
LCC [Bensley and Hickl, 2008] 0.746
UAIC [Iftene, 2008] 0.720
OAQA (our approach) 0.688
. . .
Emory3 [Agichtein, Askew, and Liu, 2008] 0.510
cambridge1 [Bergmair, 2008] 0.510
KUNLP3 [Yatbaz, 2008] 0.497

Table 10: Results of the RTE4 2-way Task Participants

was between 30.7% and 68.5% with an average accuracy much lower than the two way

task of 51%. Our system achieved an accuracy of 61.6% using the B40 decision tree

classifier and was ranked 2nd when compared to the other systems that participated in

the same challenge. Table 9 shows the results of the top 3 and bottom 3 systems in the

RTE4 3-way task. The RTE challenge automatically converts the three way submitted

runs of each system into two way runs by automatically conflating “Contradiction”

and “Unknown” to “No Entailment”. The B40 decision tree classifier on the two

way run achieved an accuracy of 68.8%, which ranked 3nd when compared to all the

systems that participated in the 2-way challenge and the 3-way challenge conflating

to two way results. Table 10 shows the results of the top 3 and bottom 3 systems in

the RTE4 2-way task.
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The main weakness of this approach, as with any supervised machine learning

approach, is its need for annotated corpora to train the system. The main strength

of this approach compared to our baseline approach is its use of machine learning to

decide on textual entailment result. This feature gave our approach the flexibility

needed to deal with cases that were never encountered in the training set. Another

strength of the approach is its use of the Web as a corpus to learn on demand addi-

tional information (with RoDEO and the types of named entities in the representation

phase), and to learn axioms (using the measure of semantic relatedness in the com-

parison phase). In order to further investigate the impact of those two features, we

tested two different settings with the current approach.

First, we tested the impact of using the Web to recognize named entities. We re-tested

the same approach, with the same settings, but with one exception of using the Free-

base database (as with our previous approach, see Section 3.2) instead of the RoDEO

generated named entities. This ablation test resulted in a decrease of accuracy by

4%. This seems to show that using the Web as a corpus to enrich the knowledge base

does result in a significant improvement. Second, we tested the impact of using the

Web to learn axioms on demand that is based on semantic relatedness (introduced in

the comparison phase). We re-tested the same approach, with the same settings but

with one exception of using the WordNet path length semantic similarity method (as

with our previous approach, see Section 3.3) instead of the combination of WordNet

semantic match and VerbOcean Web patterns. This setting resulted in a statistically

significant increase of accuracy of 9%. Again, this shows that the accuracy of this

approach is directly affected by the coverage of the semantic relatedness calculator.

One possible improvement of the current approach is to further improve the accuracy

of the semantic similarity calculator, an improvement that we further experiment

with in the next chapter.
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4.6 Conclusion

In this chapter we investigated the use of the Web as a corpus for enriching a meaning

representation (Section 4.2). We also investigated the use of semantic relatedness

between concepts to learn axioms on demand (Section 4.3), as an alternative to a

predefined set of axioms, and as an indicator to textual entailment (Section 4.4).

Our proposed textual entailment approach, based on description logic and semantic

relatedness showed that the type of semantic relatedness axioms employed in aligning

the description logic representations are good indicators of textual entailment. Using a

decision tree, this approach classifies textual entailment based on alignment semantic

relatedness features. The implementation performance of the approach was evaluated

using the Recognizing Textual Entailment (RTE-4) challenge, resulting in an accuracy

of 68% on the two-way task, and 61% on the three way task, which ranked 2nd when

compared to the other systems that participated in the challenge. This approach and

the other enhancements discussed earlier show a significant improvement over our

previous approach (discussed in Chapter 3). We also have shown that the accuracy

of this approach is very much affected by the accuracy of the semantic relatedness

calculator. In the next chapter we will further discuss this issue and propose a new

approach to calculate semantic relatedness, which we believe can improve the accuracy

of recognizing textual entailment.
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Chapter 5

Recognizing Textual Entailment

and Lexical Semantic Relatedness

In Chapter 4 we have introduced a knowledge alignment based approach for recogniz-

ing textual entailment. An analysis of its evaluation showed that the accuracy of this

approach is directly affected by the accuracy of the semantic relatedness calculator.

Recall that to compute semantic relatedness, we used the WordNet Similarity path

length method [Pedersen, Patwardhan, and Michelizzi, 2004a, Patwardhan, Banerjee,

and Pedersen, 2003]. In this chapter we will investigate a new method for measuring

lexical semantic relatedness (Section 5.1), to be used in the decision component of

the RTE approach (Section 5.3).

In this chapter, we will introduce the problem of semantic relatedness (Section

5.1), our proposed approach to this problem (Section 5.1.2), and an intrinsic eval-

uation of our approach (Section 5.2). We follow this section, with an integration

of our semantic relatedness method to our previous approach of recognizing textual

entailment (Section 5.3), and an evaluation of this integration on the RTE4 dataset

(Section 5.4).
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A version of this approach has appeared in [Siblini and Kosseim, 2013b] and in [Siblini

and Kosseim, 2013a].

5.1 Lexical Semantic Relatedness

Lexical semantic relatedness try to measure how two words are related in meaning.

Many natural language processing applications such as textual entailment, question

answering, or information retrieval require a robust measurement of lexical semantic

relatedness. Current approaches to address this problem can be categorized into three

main categories: those that rely on a lexicon and its structure, those that use the

distributional hypothesis on a large corpus, and hybrid approaches.

Lexicon-based methods use the features of a lexicon to measure semantic relatedness.

The most frequently used lexicon is Princeton’s WordNet [Fellbaum, 1998] which

groups words into synonyms sets (called synsets) and includes various semantic re-

lations between those synsets, in addition to their definitions (or glosses). WordNet

contains 26 semantic relations that include: hypernymy, hyponymy, meronymy, and

entailment.

To measure relatedness, most of the lexicon-based approaches rely on the structure

of the lexicon, such as the semantic link path [Patwardhan, Banerjee, and Pedersen,

2003] (which we used in Chapter 4), depth [Leacock and Chodorow, 1998, Wu and

Palmer, 1994], direction [Hirst and St-Onge, 1998], or type [Tsatsaronis, Varlamis,

and Vazirgiannis, 2010]. Most of these approaches exploit the hypernym/hyponym

relations, but a few approaches have also included the use of other semantic relations.

[Leacock and Chodorow, 1998] for example, computed semantic relatedness as the

length of the shortest path between synsets over the depth of the taxonomy. [Wu

and Palmer, 1994] also used the hyponym tree to calculate relatedness by using the
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depth of the words in the taxonomy and the depth of the least common supercon-

cept between the two words. [Hirst and St-Onge, 1998], on the other hand, used the

lexical chains between words based on their synsets and the semantic edges that con-

nect them. In addition to using the hypernym relations, they classified the relations

into classes: “extra strong” for identical words, “strong” for synonyms, “medium

strong” for when there is a path between the two, and “not related” for no paths at

all. The semantic measurement is then based on the path length and the path di-

rection changes. [Tsatsaronis, Varlamis, and Vazirgiannis, 2010] used a combination

of semantic path length, node depth in the hierarchy, and the types of the semantic

edges that compose the path. The lexical semantic relatedness approach we used in

the previous chapters was semantic link path [Patwardhan, Banerjee, and Pedersen,

2003] using the WordNet taxonomy.

On the other hand, corpus-based approaches rely mainly on distributional properties

of words learned from a large corpus to compute semantic relatedness. Such as the

work of [Finkelstein, Gabrilovich, and Matias, 2001] that used Latent Semantic Anal-

ysis, and the work of [Strube and Ponzetto, 2006] and [Gabrilovich and Markovitch,

2007], which both used the distributional hypothesis on Wikipedia.

Finally, hybrid approaches use a combination of corpus-based and lexicon-based meth-

ods. For example, the approach proposed by [Hughes and Ramage, 2007] used a ran-

dom walk method over a lexicon-based semantic graph supplemented with corpus-

based probabilities. Another example is the work of [Agirre, Alfonseca, Hall, Kraval-

ova, Pasca, and Soroa, 2009] that used a supervised machine learning approach to

combine three methods: WordNet-based similarity, a bag of word based similarity,

and a context window based similarity.

The approach presented in this chapter belongs to the lexicon-based category. How-

ever, as opposed to the typical lexicon-based approaches described above and the
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Category Weight Semantic Relations in WordNet
Similar α antonym, cause, entailment, participle of verb, pertainym,

similar to, verb group
Hypernym 2× α derivationally related, instance hypernym, hypernym
Sense 4× α + β lemma-synset
Gloss 6× α lemma-gloss content words
Part 8× α holonym (part, member, substance), inverse gloss, meronym

(part, member, substance)
Instance 10× α instance hyponym, hyponym
Other 12× α also see, attribute, domain of synset (topic, region, usage),

member of this domain (topic, region, usage)

Table 11: Relations Categories and Corresponding Weights.

ones used in the previous chapters, the novelty of our approach is that we use all

26 semantic relations found in WordNet in addition to information found in glosses.

These relations are used to create an explicit semantic network, where the edges of

the network representing the semantic relations are weighted according to the type of

the semantic relation. The semantic relatedness is computed as the lowest cost path

between a pair of words in the network.

5.1.1 Our Approach to Semantic Relatedness

Our method to measure semantic relatedness is based on the idea that the types of

relations that relate two concepts are a suitable indicator of the semantic relatedness

between the two. The type of relations considered includes not only the hyponym/hy-

pernym relations but also all other available semantic relations found in WordNet in

addition to word definitions.
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Figure 14: Example of the Semantic Network Around the Word car.

5.1.1.1 WordNet’s Semantic Network

To implement our idea, we created a weighted and directed semantic network based

on the content of WordNet. To build the semantic network, we used WordNet 3.1’s

words and synsets as the nodes of the network. Each word is connected by an edge to

its synsets, and each synset is in turn connected to other synsets based on the semantic

relations included in WordNet. In addition each synset is connected to the content

words contained in its gloss. For example, Figure 14 shows part of the semantic

network created around the word car. In this graph, single-line ovals represent words,

while double-line ovals represent synsets.

By mining WordNet entirely, we created a network of 265,269 nodes connected

through a total of 1,919,329 edges. The nodes include all words and synsets, and the

edges correspond to all 26 semantic relations in WordNet in addition to the relation

between a synset and every content word of a synset definition.

5.1.1.2 Semantic Classes of Relations

To compute the semantic relatedness between nodes in the semantic network, it is

necessary to take into consideration the semantic relation involved between two nodes.
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Indeed, WordNet’s 26 semantic relations do not contribute equally to the semantic

relatedness between words. The hypernym relation (relation #2), for example, is a

good indicator of semantic relatedness; while the relation of member of this domain

- topic (relation #15) is less significant. This can be seen in Figure 14, for example,

where the word car should be more closely related to Motor vehicle than to Renting.

In order to determine the contribution of each relation, we compared a manually

created set of 210 semantic relations for their degree of relatedness. For example, for

the concept car, we have compared the sense of automobile with the hypernym motor

vehicle, the gloss word wheel, the part meronym air bag, the member of this topic

renting, and another sense of car such as a cable car. From the annotated data of

direct semantic relations we learned that Synonymy is on average more related than

hypernymy, which is more semantically related to meronymy. This has lead us to

classify the relations into seven categories, and rank these categories from the most

related category to the least related ones. By classifying WordNet’s relations into

these classes, we are able to weight the contribution of a relation based on the class

it belongs to, as opposed to assigning a contributory weight to each relations. For

example, all relations of type Similar will contribute equally to the semantic relat-

edness of words, and will contribute more than any relations of the class Hypernym.

Table 11 shows the seven semantic categories that we defined, their corresponding

weight, and the WordNet relations they include. The weights1 were simply assigned

as a multiple of a small value α, representing the lowest weight, and an addition of

2 for each multiplier in the list in order to represent a higher cost of the less related

categories. Let us describe each category in detail.

The category Similar includes WordNet’s relations of antonym, cause, entailment,

1The weight can be seen as the cost of traversing an edge; hence a lower weight is assigned to a
highly contributory relation.
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similar to, participle of verb, pertainym and verb group. This class of relations in-

cludes relations that are the most useful to compute semantic relatedness as per our

manual corpus analysis and are the rarest available relations in the semantic network

and hence was assigned the lowest weight of all categories of relations: α.

The second category of semantic relations is the Hypernym which includes WordNet’s

relations of hypernym, instance hypernym and derivationally related. Being less im-

portant than the similar relations to compute relatedness, as shown in Table 11, the

Hypernym category was assigned a weight of (2× α).

The Sense category represents the relationship between a word and its synset. Be-

cause a word can belong to several synsets, in order to favor the most frequent senses

as opposed to the infrequent ones, the weight of this category is modulated by a factor

β. Specifically, we use (4×α+ β), where β is computed as the ratio of the frequency

of the sense number in WordNet over the maximum number of senses for that word.

The fourth category of semantic relations is the Gloss that covers the relation between

synsets and their glosses. A synset gloss contains a brief definition of the synset, which

usually consists of a genus (or type) and one or more differentia (or what distinguishes

the term from the genus). The genus relations is explicitly defined in WordNet as

a hypernym relation, however the differentia is most of the time not defined. The

differentia includes essential attributes of the synset being defined. For this reason,

we explicitly included those relations in the semantic network. For example, the gloss

of the synset #102961779 car, auto, automobile . . . is a motor vehicle with four

wheels, the hypernym of this synset is motor vehicle, and the differentia is four wheel.

There is no semantic relation explicitly defined in WordNet between car and four

wheel, nor is there a relation with wheel. Even if a meronymy relation between car

and wheel existed in WordNet, it also should be more related to it than the rest of

the meronymy relations as it is a defining attribute. To include such relations to the
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semantic network, we create an edge between every content word in the gloss and

the synset, but only consider words that have an entry in the lexicon. As this is a

simplistic approach of adding the gloss relations, we gave it a high weight of (6× α),

but less than the next category covering meronymy relations. The inverse of this edge

(from a gloss word to a synset) is also included, but is considered to be less related

and thus included in the next category.

The fifth category is the Part category that includes holonymy, meronymy, and in-

verse gloss relations which are all weighted as (8× α).

The sixth category, the Instance category, only includes the hyponymy and instance

of hyponymy relations that are weighted as (10× α).

Finally, all others relations available in WordNet are grouped under the last category

Other and given the maximum weight of (12× α).

5.1.1.3 Calculation of Semantic Relatedness

Given the weighted semantic network extracted from WordNet, the semantic related-

ness, S(w1, w2), between two words w1 and w2 is computed essentially as the weight

of the lowest cost path2 between the two words. However, because the network is

directed, the lowest cost from w1 to w2, Pmin(w1, w2), may be different than from w2

to w1, Pmin(w2, w1). To account for this, we therefore consider the semantic related-

ness S(w1, w2) to be equal to the highest relatedness score in either direction. More

formally, the semantic relatedness between w1 and w2 is defined as:

S(w1, w2) = max

(
M − (Pmin(w1, w2)−K)

M
,

M − (Pmin(w2, w1)−K)

M

)
2The lowest cost path is based on an implementation of Dijkstras graph search algorithm [Dijkstra,

1959]
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Figure 15: Lowest Cost Path Between the Words Monk and Oracle.

Where, M is a constant representing the weight after which two words are con-

sidered unrelated, and K is constant representing the weight of true synonyms. In

our implementation, we have set M = 2 × (12 × α) corresponding to the maximum

of traveling twice the relation with the highest weight, and K = 2 × (4 × α) corre-

sponding to the minimum of traveling from a word to its sense and back to the word

itself.

5.1.1.4 An Example

Figure 15 shows an extract of the network involving the words Monk and Oracle.

The lowest cost path from Monk to Oracle in highlighted in bold. As the figure

shows, the word Monk is connected with a Sense relation to the synset #110131898

[Monk, Monastic]. As indicated in Table 1, the weight of this relation is computed

as (4 × α + β). Because this synset is the first sense (the most frequent sense given

by WordNet) for the word Monk, then (β = 1/75 = 0.01, where 75 is the maximum

number of senses for a word in WordNet. If α is set to 0.25, then, as shown in Fig-

ure 15, the weight of this edge is computed (4× 0.25 + 0.01 = 1.01).
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The synset #11013898 [Monk, Monastic] is connected to the word Religious through

a Gloss relation type. In WordNet, the gloss of this synset is: a male religious liv-

ing in a cloister and devoting himself to contemplation and prayer and work. The

content words are: male, religious, live, cloister, devote, contemplation, prayer, and

work, which are each related to this synset with the weight set to (6× α = 1.5).

Overall, the weight of the lowest cost path Pmin(Monk,Oracle) is hence equal to the

sum of the edges shown in Figure 1 (1.01+1.50+2.00+0.50+1.01 = 6.02). As the fig-

ure shows, in this example, Pmin(Monk,Oracle) is identical to Pmin(Oracle,Monk).

With the constants M set to 6 and K to 2, S(Monk,Oracle) will therefore be (6-

(6.02-2))/6 = 0.33.

5.2 Intrinsic Evaluation of Semantic Relatedness

To evaluate our approach to semantic relatedness intrinsically, we used two types of

benchmarks: using human ratings and using synonym tests.

5.2.1 Evaluation using Human Ratings

In their study on semantic similarity, [Miller and Charles, 1991] (M&C) gave 38

undergraduate students 30 pairs of nouns to be rated from 0, for no similarity, to 4,

for perfect synonymy. The noun pairs were chosen to cover high, intermediate, and low

level of similarity and are part of an earlier study [Rubenstein and Goodenough, 1965]

(R&G) which contained 65 pairs of nouns. The M&C test gained popularity among

the research community for the evaluation of semantic relatedness. The evaluation

is accomplished by calculating the correlation between the average student’s ratings

and one’s approach. The commonly used correlation measurement for this test is

the Pearson correlation measurement [Pearson, 1900], but some have also used the
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Spearman ranking coefficient [Spearman, 1904] as an evaluation measurement. Our

approach achieved a Pearson correlation of 0.93 and a Spearman correlation of 0.87

with the M&C data set. In addition, it achieved a 0.91 Pearson correlation and a

0.92 Spearman correlation on the R&G data set.

For comparative purposes, Table 12 shows the Pearson correlation of several pre-

vious approaches to semantic relatedness measures against the same data set, as

reported in their respective papers. For information, the table indicates the type of

approach used: lexicon-based method, corpus-based method, or hybrid. As Table 12

shows, most other approaches achieve a correlation around 85%, while a few achieve

a correlation above 90%. These results do not seem to be influenced by the type

approach. Our approach compares favorably to the state of the art in the field on

the Miller and Charles data set, with a high correlation of 93%. Our result is higher

than any other lexicon based approach, however it must be noted that the Miller and

Charles Data Set is quite small for empirical analysis.

WordSimilarity-353 is another set of human ratings that was introduced by [Finkel-

stein, Gabrilovich, and Matias, 2001]. The data set is much larger than the Miller

and Charles Data Set and includes 353 pairs of words, each rated by 13 to 16 subjects

who were asked to estimate the relatedness of the words on a scale of 0 for “totally

unrelated words” to 10 for “very much related or identical words”. The common

practice with this data set is to the use the Spearman coefficient.

Table 13 shows various approaches and their corresponding Spearman correlation as

described in the literature. On this data set, our approach achieved a correlation

of 0.50, which is quite lower than the current state of the art. After analysing our

results, we identified several reasons why our approach did not perform as expected.

First, all lexicon based methods seem to perform poorly on this data set because
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Approach Category Pearson

[Gabrilovich and Markovitch, 2007] Corpus 0.72
[Hirst and St-Onge, 1998] Lexicon 0.74
[Wu and Palmer, 1994] Lexicon 0.78
[Resnik, 1995] Hybrid 0.80
[Leacock and Chodorow, 1998] Lexicon 0.82
[Lin, 1998a] Hybrid 0.83
[Bollegala, Matsuo, and Ishizuka, 2007] Corpus 0.83
[Jiang and Conrath, 1997] Hybrid 0.85
[Tsatsaronis, Varlamis, and Vazirgiannis, 2010] Lexicon 0.86
[Jarmasz and Szpakowicz, 2003] Lexicon 0.87
[Hughes and Ramage, 2007] Lexicon 0.90
[Alvarez and Lim, 2007] Lexicon 0.91
[Yang and Powers, 2005] Lexicon 0.92
[Agirre, Alfonseca, Hall, Kravalova, Pasca, and Soroa, 2009] Hybrid 0.93

Our approach Lexicon 0.93

Table 12: Pearson Correlation of Various Approaches on the Miller and Charles Data
Set.

it includes a number of named entities that are typically not available in a lexicon.

For example, in the word pair: (Maradona – football), the word Maradona does not

appear in WordNet, hence favoring corpus-based and hybrid approaches. Another

difficulty is the high variance of human ratings for some word pairs, which could be

due to the subjectivity required for this task, or the fact that the subjects who rated

the data set were not native English speakers. That being said, perhaps the most

important factor for the poor performance of lexicon based methods (including ours)

is that most of the pairs in that data set require general world knowledge that is not

usually available in a lexicon. Nevertheless, other approaches were able to achieve a

high correlation with this data set such as the machine learning approach of [Agirre,

Alfonseca, Hall, Kravalova, Pasca, and Soroa, 2009] that achieved a high correlation

of 0.78.
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Approach Category Spearman

[Strube and Ponzetto, 2006] Corpus 0.48
[Jarmasz and Szpakowicz, 2003] Lexicon 0.55
[Hughes and Ramage, 2007] Lexicon 0.55
[Finkelstein, Gabrilovich, and Matias, 2001] Hybrid 0.56
[Gabrilovich and Markovitch, 2007] Corpus 0.75
[Agirre, Alfonseca, Hall, Kravalova, Pasca, and Soroa, 2009] Hybrid 0.78

Our approach Lexicon 0.50

Table 13: Spearman Correlation of Various Approaches on WordSimilarity-353 Data
Set.

5.2.2 Evaluation using Synonym Tests

To test the approach further, we also evaluated it on synonym identification tests.

This type of test includes an initial word and a set of options from which the most

synonymous word must be selected.

The first synonym test that we experimented with is the English as a Second Lan-

guage (ESL) test. The test set was first used by [Turney, 2001] as an evaluation of

algorithms measuring the degree of similarity between words. The ESL test includes

50 synonym questions and each having four choices. The following is an example

question taken from ESL data set:

Text: A rusty nail is not as strong as a clean, new one.

Stem: rusty

Choices:

(a) corroded

(b) black

(c) dirty

(d) painted

Solution: (a) corroded
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Approach Category Accuracy

[Resnik, 1995] Hybrid 32.66%
[Leacock and Chodorow, 1998] Lexicon 36.00%
[Lin, 1998a] Hybrid 36.00%
[Jiang and Conrath, 1997] Hybrid 36.00%
[Hirst and St-Onge, 1998] Lexicon 62.00%
[Turney, 2001] Corpus 74.00%
[Terra and Clarke, 2003] Corpus 80.00%
[Jarmasz and Szpakowicz, 2003] Lexicon 82.00%
[Tsatsaronis, Varlamis, and Vazirgiannis, 2010] Lexicon 82.00%

Our Approach Lexicon 84.00%

Table 14: Results with the ESL Data Set.

The results of our approach, along with other standard approaches, on the 50 ESL

questions are shown in Table 14. The results are measured in terms of accuracy -

the percentage of correct responses by each approach. Our approach has achieved

an accuracy of 84% on the ESL test, which is slightly better than the reported ap-

proaches in the literature. It should be noted that sometimes the difference between

two approaches belonging to the same category are merely a difference in the data set

used (Corpus or Lexicon) rather than a difference in the algorithms. Also, the ESL

question set includes a sentence to give a context for the word, which some approaches

(e.g. [Turney, 2001]) have used as an additional information source; we on the other

hand, did not make use of the context information in our approach.

The second synonym test that we used is the Test of English as a Foreign Lan-

guage (TOEFL) test. The test was first used by [Landauer and Dumais, 1997] as an

evaluation for the algorithm measuring the degree of similarity between words. The

TOEFL test includes 80 synonym questions each having four choices. The following

is an example taken from the TOEFL data set:
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Stem: levied

Choices:

(a) imposed

(b) believed

(c) requested

(d) correlated

Solution: (a) imposed

The results on the 80 TOEFL questions are shown in Table 15, which also includes

the results of other approaches for comparative purposes. Here again, the results are

reported in terms of accuracy. As with the previous experiments, the category of

the approach does not seem to have an impact on the results. It should be noted,

however, that some of the approaches have been tuned specifically for the TOEFL

questions. Table 15 also includes an entry for the “Average non-English US college

applicant” of 64.5%. The score that was originally reported in [Landauer and Dumais,

1997] is 52.5% for college applicants, however this figure penalizes random guessing

by subtracting a penalty of 1/3. To provide a more fair comparison, this penalty has

been removed leading to a score of 64.5%. Our approach has achieved an accuracy of

91.25% on the TOEFL test, which is better than any of the reported lexicon based

approaches.

5.2.3 Evaluation on a Word-Phrase Semantic Relatedness

We also evaluated our approach for word-phrase semantic relatedness on the recent

SemEval-2013 Task 5: Evaluating phrasal semantics [Korkontzelos, Zesch, Zanzotto,
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Approach Category Accuracy

[Resnik, 1995] Corpus 20.31%
[Leacock and Chodorow, 1998] Lexicon 21.88%
[Lin, 1998a] Hybrid 24.06%
[Jiang and Conrath, 1997] Hybrid 25.00%
[Landauer and Dumais, 1997] Corpus 64.38%
Average non-English US college applicant Human 64.50%
[Padó and Lapata, 2007] Corpus 73.00%
[Hirst and St-Onge, 1998] Lexicon 77.91%
[Jarmasz and Szpakowicz, 2003] Lexicon 78.75%
[Terra and Clarke, 2003] Corpus 81.25%
[Ruiz-Casado, Alfonseca, and Castells, 2005] Corpus 82.55%
[Irina MaTveeva and Royer, 2005] Corpus 86.25%
[Tsatsaronis, Varlamis, and Vazirgiannis, 2010] Lexicon 87.50%
[Rapp, 2003] Corpus 92.50%
[Turney, Littman, Bigham, and Shnayder, 2003] Hybrid 97.50%
[Bullinaria and Levy, 2012] Corpus 100.00%

Our Approach Lexicon 91.25%

Table 15: Results with the TOEFL Data Set.

and Biemann, 2013], and more specifically on the sub-task of evaluating the seman-

tic similarity between words and phrases. The task provided an English dataset of

15,628 word-phrases, 60% annotated for training and 40% for testing, with the goal

of classifying each word-phrase as either positive or negative. For example, a positive

example from the dataset includes the word “valuation” and the phrase “price as-

sessment”. To compute of semantic relatedness between a word and a compositional

phrase, we combined the weights of the lowest cost path in the weighted semantic

network between that word and every word in that phrase, normalized by the maxi-

mum path cost.

To transform the semantic relatedness measure to a semantic similarity classification

one, we used JRip, WEKA’s [Dimov, Feld, Kipp, Ndiaye, and Heckmann, 2007] im-

plementation of Cohen’s RIPPER rule learning algorithm [Cohen and Singer, 1999],

in order to learn a set of rules that can differentiate between a positive semantic
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Approach Recall Precision F-Measure

[Waterna, 2013] 75.2% 83.7% 79.2%
[Van de Cruys, Afantenos, and Muller, 2013] 61.4% 83.8% 70.9%
[Dávila, Orqúın, Chávez, and Gutiérrez, 2013] 61.3% 78.7% 68.9%
Harbin Institute of Technology 50.1% 84.0% 62.8%

Our Approach 70.6% 85.5% 77.4%

Table 16: Results with the Word-Phrase Data Set.

similarity and a negative one. The classifier resulted in rules for the semantic net-

work model based relatedness that could be summarized as follows: If the semantic

relatedness of the word-phrase is over 61% then the similarity is positive, otherwise

it is negative. For the example Interview - Formal meeting, which resulted in a se-

mantic relatedness of 66.7% with our semantic network approach, would be classified

positively by the generated rule. This method was our first submitted test run to

this task and resulted in a recall of 70.6%, a precision of 85.5%, and an F-measure

of 77.4% on the testing set. The results on this tasks are shown in Table 16, which

also includes the results of other approaches for comparative purposes. Five research

teams participated in the task, and our approach was ranked 2nd when compared to

the others [Korkontzelos, Zesch, Zanzotto, and Biemann, 2013].

5.3 Knowledge Alignment Approach to RTE Re-

visited

Recall that the purpose of developing a new approach for semantic relatedness was

to improve our RTE approach of Chapter 4. Hence, after the intrinsic evaluations

of our semantic relatedness approach (see Section 5.2), we used our new approach to

replace the methods used in our RTE system. As with our previous RTE approach,

our final knowledge alignment approach can be divided into three main components:
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a representation, a comparison component, and a decision component. The repre-

sentation component follows the same method as the previous approach (see Section

4.2). Then, the comparison component compares and aligns the two created represen-

tation similarly to the previous approach (see Section 4.3), but this time the semantic

relatedness calculator used is based on our new approach for measuring semantic re-

latedness. Finally, the decision component is also similar to the previous approach

(see Section 4.4). Basically the only change from the previous approach is the method

used to calculate semantic relatedness and the method used to transform this infor-

mation into axioms accordingly. Figure 16 shows an illustration of our final RTE

approach discussed in this chapter. The different components are shown in dashed

boxes, the inputs and outputs in ovals, and the sub-components in rectangles. The

differences between this approach and the one from Chapter 4 are highlighted grey.

Note that the Figure 16 differs from Figure 8 (in Chapter 4) only in the semantic

relatedness component.

First, similarly to the approach of Chapter 4, the representation component of

this approach creates two representations, one for the text and one for the hypothesis

(as described in Section 4.2).

Then the comparison and the alignment of the created representations will result

in one single aligned representation, namely representation-A. The alignment phase

aligns the classes and properties of the two created representations. The alignment

takes as its base the representation created from T and adds to it the classes and prop-

erties that align from the hypothesis representation. At this stage the weighted graph

semantic relatedness measure described in Section 5.2 is used to perform the semantic
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Figure 16: Knowledge Alignment Approach Augmented with New Semantic Related-
ness Calculator
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comparison and alignment of classes and properties. The algorithm takes the two rep-

resentations and produces mapping among the classes and properties that correspond

semantically to each other. For any pair of classes from the two representations, it

computes the strongest semantic relation holding between each concept, which in our

case is simply the highest semantic relatedness measure that exists between the two.

Once the strongest relation is selected, we transform it into an axiom as follows: A

semantic relatedness score of over 75% will translate to an equivalentClasses(X Y)

or equivalentObjectProperties(X Y) axiom in the representation (depending on the

matching type in the representation T). Otherwise, a semantic relatedness score of

over 50% translate to equivalentClasses(X Y) or equivalentObjectProperties(X Y),

but those axioms will be also annotated with a ”Possibly Equivalent” label that will

be used later in the decision phase.

Finally, the decision component is similar to Section 4.4, which decides on alignment

from a set of features based on the above axioms.

5.4 Evaluation and Analysis

We evaluated this approach using the same methodology as in Chapter 4, with the

RTE4 three way task of recognizing textual entailment. The test set includes 1000 T-H

pair to be classified into (Entailment, Contradiction, or Unknown). our new approach

resulted in an accuracy of 56% using the B40 decision tree classifier. Compared to

the accuracy achieved by the previous system of 61.6%, our new approach suffered

a significant decrease. This result was very surprising, because the only difference

with the two approaches is the semantic relatedness measure used, which had very

competitive accuracies with the intrinsic evaluations using several benchmark (see

Section 5.2). However, the new approach did not perform as well extrinsically in the

task of recognizing textual entailment, resulting in accuracy above the overall average
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of the other systems that participated in the challenge, but lower than our previous

approach accuracy. A further analysis of our results shows that although VerbOcean

created some noise (for example, according to VerbOcean, buy is similar to produce

and distribute), it was able to provide further coverage. To give you an example,

the following VerbOcean similar words: “lock-barricade, loot-vandalize, heckle-boo...”

have very low similarity as measured by our lexical similarity approach. For example,

the shortest path between “heckle and boo” is a path of length 9, leading to a low

relatedness of 8%. One possible improvement of this approach is a hybrid between

the two measurements, taking into consideration the web based method for added

recall, and the WordNet semantic relatedness for added accuracy, maybe as separate

features into the machine learning algorithm.

5.5 Conclusion

In this chapter, we have investigated the development of a new lexicon based method

to measure semantic relatedness. This approach is based on the types of semantic

relations between concepts as an indicator of relatedness, and has improved the cur-

rent state of the art for lexicon based semantic relatedness measures. Our results

show that this approach outperforms many lexicon-based methods to semantic re-

latedness, especially on the TOEFL synonym test, achieving an accuracy of 91.25%.

We also learned from the human annotated data that different types of semantic

relations have on average different degree of relatedness. We learned for example,

that words connected with a Synonymy relations are on average more semantically

related than words connected with a hypernymy, which are more semantically related

to meronymy. We also investigated the use of this semantic relatedness measure in

the alignment of representations and for the task of recognizing textual entailment,
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as the basis of the comparison component (Section 5.3). The prototype implementa-

tion performance was evaluated using the Recognizing Textual Entailment (RTE-4)

challenge, resulting in an accuracy of 56% on the three-way task, above the overall

average of the other systems that participated in the challenge, but lower than our

previous approach accuracy of 61.6%. We believe that the high precision of our new

approach was offset by its lower recall and VerbOcean’s web search (used in Chapter

4) resulted in a much higher recall which ultimately resulted in a higher accuracy in

the RTE task. A hybrid approach between the two semantic relatedness measures is

likely to be a fruitfull research avenue.
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Chapter 6

Conclusion and Future Work

As a full logical-based meaning representation of text is still a challenging problem

that requires a large knowledge base of inference rules, we investigated an alternative

approach of using a description logical-based meaning representation, that learns ax-

ioms on demand, and applied it to the task of recognizing textual entailment. We

started our work with an initial investigation of the use of description logic to rec-

ognizing textual entailment (detailed in Chapter 3). The analysis of this baseline

approach highlighted the need to 1) acquire missing information, 2) acquire miss-

ing axioms, and 3) improve the computation of semantic relatedness. For the first

purpose, we showed how the Web can be used as a corpus for enriching a meaning

representation of a text, and specifically for adding semantic types of named entities.

This subsystem, called RoDEO, was evaluated intrinsically and as part of our RTE

systems and showed competitive results in both cases.

For the second purpose, we learned axioms on demand by translating semantic

relations from WordNet and from the Web to equivalence axioms with the purpose

of aligning two representations to recognize textual entailment. The types of axioms

employed by the reasoner are then used as features in a machine learning algorithm
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that learned to infer if a text entails a hypothesis or not. To validate our approach

we have implemented an RTE system named AORTE (described in Chapter 4), and

evaluated its performance on recognizing textual entailment using the fourth recog-

nizing textual entailment challenge [Giampiccolo, Dang, Magnini, Dagan, and Dolan,

2008]. The system classified 1000 T-H pair into the three way task (Entailment, Con-

tradiction, or Unknown). When compared to the human annotated golden standard,

the system resulted accuracy of 61.6% and ranked as 2nd when compared to the other

26 participating runs in the same challenge.

Finally, for the purpose of improving the computation of lexical semantic relat-

edness, we showed how we can use the types of semantic relations between concepts

as an indicator of relatedness. Our approach clearly improved the current state of

the art in lexicon based semantic relatedness measurement (detailed in Chapter 5)

when an intrinsic evaluation was performed. However, investigating its use for the

task of recognizing textual entailment resulted in a lower accuracy of 56% on the

RTE-4 challenge. We suspect its lower recall as compared to VerbOcean’s Web based

semantic relations to be the cause of this reduced accuracy.

6.1 Main Findings and Contributions of the Thesis

In this thesis, we showed that the type of semantic relatedness axioms used to align

meaning representations can be a good indicator of textual entailment. A machine

learning algorithm was used to learn textual entailment from a set of features that are

based on the type of axioms used to align meaning representations and showed very

competitive results at RTE-4 challenge. The developments in this thesis contribute

to research in Natural Language Processing in the following ways:
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Development of a Recognizing Textual Entailment Approach

Our main contribution is the development of a novel approach to recognizing textual

entailment based on description logic and semantic relatedness, which achieved very

competitive results at RTE-4. We have developed a method for representing texts

automatically in description logic, that was published in [Siblini and Kosseim, 2008a]

and is described in Chapter 3.

We have also identified a set of features based on the type of logical statements used to

align textual representations in a machine learning algorithm to recognize textual en-

tailment. This tree shows that the feature “disjoint classes” is a more discriminating

feature than “equivalent classes”, which is more discriminating than “equivalent prop-

erties”. This was published in [Siblini and Kosseim, 2009] and is described in Chapter

4. To show how our approach can be used in RTE, we have built a prototype (called

AORTE) and evaluated it using the fourth recognizing textual entailment challenge

[Giampiccolo, Dang, Magnini, Dagan, and Dolan, 2008]. The prototype classified

1000 T-H pair into the three way task and achieved an accuracy of 61.6% on which

ranked the approach as 2nd when compared to the other participating runs in the

same challenge.

This approach has led to other contributions that are described below.

Development of a Method to Natural Language Querying

We have designed a novel approach to query a knowledge base in natural language.

This approach is based on predicate selectional preferences to answer queries in nat-

ural language. To test the proposed approach and its usefulness, we have developed

a natural language querying prototype (called ONLI). The prototype was evaluated

using the Fungal Web Ontology and achieved a mean-reciprocal rank (MRR) of 0.72,
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this led to the publication in [Kosseim, Siblini, Baker, and Bergler, 2006].

Development of a Web Based Named Entity Recognition Approach

We have developed an approach to extract fine-grained classes of named entities by

exploring the web linguistically as a corpus. This approach is based on lexical prefer-

ences of grammatical relations in addition to a set of grammatical patterns. We have

evaluated the approach with 1019 named entities chosen at random and achieved an

accuracy of 70% when compared with the FreeBase knowledge base. This has led to

the publication in [Siblini and Kosseim, 2008b].

Development of a Semantic Relatedness Approach

The alignment of meaning representation relies heavily on the semantic relatedness

between concepts. Consequently, the accuracy of the alignment is directly related to

the accuracy of the semantic relatedness measurement. To improve that accuracy,

we have also investigated a new approach to measure semantic relatedness. This ap-

proach is based on the assumption that the type of semantic relations in a lexicon can

be a good indicator of semantic relatedness. We evaluated our lexicon semantic relat-

edness approach using correlation with human ranking of semantic relatedness, and

standard synonymy tests. Our approach shows a Pearson’s correlation of 93% with

human ranking of semantic relatedness with the [Miller and Charles, 1991] (M&C)

dataset and an accuracy of 91.25% on the TOEFL synonym set. This result signifi-

cantly improves the state of the art of lexicon-based approaches. We also learned that

different types of semantic relations have on average different degree of relatedness.

For example, words connected with a synonymy relations are on average more seman-

tically related than words connected with a hypernymy, which are themselves more

semantically related to meronymy. This work (described in details in Section 5.1)
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was published in [Siblini and Kosseim, 2013b]. An extension of this method, which

was devised to detect phrasal similarity has been published in [Siblini and Kosseim,

2013a]. We have also applied our semantic relatedness measure to RTE, and achieved

an accuracy of 56% on the three way task of the fourth recognizing textual entailment

challenge.

6.2 Directions for Future Research

Future work can be directed to improve the current limitations of our approach. The

first limitation is that the performance of the RTE approach is directly related to the

accuracy of the lexical semantic relatedness (as shown in the ablation test of Section

5.4). Although we have tried to improve that performance with our lexicon based

approach described in Chapter 5, we foresee that a hybrid approach that relies both

on a lexicon (for high precision) and a corpus based (for high recall) might be a better

strategy.

Validating our approach was performed by evaluating it with the standard chal-

lenges of recognizing textual entailment, and comparing it to other runs on the same

challenges. That being said, the current trend in the field has been more focused

toward application-oriented tasks. This trend was initiated in the 5th RTE challenge

with the introduction of a RTE search task, and became the main focus of the next

challenges. This trend was also confirmed by the latest RTE challenge (2013), whose

main task is to assess the accuracy of student answers with respect to known correct

reference answers. Our interest was, and still is, directed toward decreasing the scale

of the problem in order to be able to better understand and improve the issues that

we still face when simply trying to classify a two-way entailment.
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Finally, one interesting line of work is the formal semantic annotation of inference

phenomena in RTE examples. The current RTE challenges datasets only contain

annotation of entailment classes (i.e. entailment, no-entailment, unknown ...), but

they do not contain information about the underlying phenomena that are involved

in the entailment process, such as the annotation suggested by [Toledo, Katrenko,

Alexandropoulou, Klockmann, Stern, Dagan, and Winter, 2013]. The availability of

such annotation would allow us to evaluate an RTE solution on a specific entailment

phenomenon, instead of focusing on the application level as is the trend of the recent

RTE challenges.
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Appendix A

Sample OWL Generated

Representation

The following is a sample text representation that was generated automatically by the

approach explained in Chapter 3. The ontology is generated from the text: Jurassic

Park is a novel written by Michael Crichton and Published in 1990..

<?xml version="1.0"?>

<!DOCTYPE Ontology [

<!ENTITY xsd "http://www.w3.org /2001/ XMLSchema#" >

<!ENTITY xml "http://www.w3.org/XML /1998/ namespace" >

<!ENTITY rdfs "http://www.w3.org /2000/01/rdf -schema#" >

<!ENTITY rdf "http://www.w3.org /1999/02/22 -rdf -syntax -ns#" >

]>

<Ontology xmlns="http://www.w3.org /2002/07/ owl#"

xml:base="file:/C:/Users/Reed/Desktop/Research/RacerPro -20-

Preview/examples/owl/ontology6.rdf"

xmlns:rdfs="http: //www.w3.org /2000/01/ rdf -schema#"

xmlns:xsd="http: //www.w3.org /2001/ XMLSchema#"

xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -ns#"

xmlns:xml="http: //www.w3.org/XML /1998/ namespace"
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ontologyIRI="file:/C:/Users/Reed/Desktop/Research/RacerPro -20-

Preview/examples/owl/ontology6.rdf">

<Prefix name="ns0" IRI="http://text.semanticweb.org/text#"/>

<Prefix name="owl" IRI="http://www.w3.org /2002/07/ owl#"/>

<Prefix name="rdf" IRI="http://www.w3.org /1999/02/22 -rdf -syntax -

ns#"/>

<Prefix name="xml" IRI="http://www.w3.org/XML /1998/ namespace"/>

<Prefix name="xsd" IRI="http://www.w3.org /2001/ XMLSchema#"/>

<Prefix name="rdfs" IRI="http://www.w3.org /2000/01/rdf -schema#"/

>

<Declaration >

<Class abbreviatedIRI="ns0:Author"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Communicator"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Compose"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Create"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Create -Verbally"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Fiction"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Fundamental -Measure"/>

</Declaration >

<Declaration >
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<Class abbreviatedIRI="ns0:Fundamental -Quantity"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Indite"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Individual"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Literary -Composition"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Literary -Work"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Make"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Novel"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Pen"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Period"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Person"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Print"/>

</Declaration >
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<Declaration >

<Class abbreviatedIRI="ns0:Produce"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Publish"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Publication"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Publisher"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Time -Period"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:TwelveMonth"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Write"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Writer"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Year"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:Yr"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:mortal"/>
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</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:somebody"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:someone"/>

</Declaration >

<Declaration >

<Class abbreviatedIRI="ns0:soul"/>

</Declaration >

<Declaration >

<ObjectProperty abbreviatedIRI="ns0:has -author"/>

</Declaration >

<Declaration >

<ObjectProperty abbreviatedIRI="ns0:has -communicator"/>

</Declaration >

<Declaration >

<ObjectProperty abbreviatedIRI="ns0:has -fiction"/>

</Declaration >

<Declaration >

<ObjectProperty abbreviatedIRI="ns0:has -literary -work"/>

</Declaration >

<Declaration >

<ObjectProperty abbreviatedIRI="ns0:has -novel"/>

</Declaration >

<Declaration >

<ObjectProperty abbreviatedIRI="ns0:has -person"/>

</Declaration >

<Declaration >

<ObjectProperty abbreviatedIRI="ns0:has -publication"/>

</Declaration >

<Declaration >
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<ObjectProperty abbreviatedIRI="ns0:has -publisher"/>

</Declaration >

<Declaration >

<ObjectProperty abbreviatedIRI="ns0:has -writer"/>

</Declaration >

<Declaration >

<ObjectProperty abbreviatedIRI="ns0:in -time -period"/>

</Declaration >

<Declaration >

<ObjectProperty abbreviatedIRI="ns0:in -twelvemonth"/>

</Declaration >

<Declaration >

<ObjectProperty abbreviatedIRI="ns0:in -year"/>

</Declaration >

<Declaration >

<ObjectProperty abbreviatedIRI="ns0:in -year -for"/>

</Declaration >

<Declaration >

<ObjectProperty abbreviatedIRI="ns0:is -communicator -for"/>

</Declaration >

<Declaration >

<ObjectProperty abbreviatedIRI="ns0:is -fiction -for"/>

</Declaration >

<Declaration >

<ObjectProperty abbreviatedIRI="ns0:is -literary -work -for"/>

</Declaration >

<Declaration >

<ObjectProperty abbreviatedIRI="ns0:is -novel -for"/>

</Declaration >

<Declaration >

<ObjectProperty abbreviatedIRI="ns0:is -person -for"/>

</Declaration >
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<Declaration >

<ObjectProperty abbreviatedIRI="ns0:is -publication -for"/>

</Declaration >

<Declaration >

<ObjectProperty abbreviatedIRI="ns0:is -publisher -for"/>

</Declaration >

<Declaration >

<ObjectProperty abbreviatedIRI="ns0:is -writer -for"/>

</Declaration >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Author"/>

<Class abbreviatedIRI="ns0:Writer"/>

</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Compose"/>

<Class abbreviatedIRI="ns0:Write"/>

</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Create"/>

<Class abbreviatedIRI="ns0:Make"/>

</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Fundamental -Measure"/>

<Class abbreviatedIRI="ns0:Fundamental -Quantity"/>

</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Indite"/>

<Class abbreviatedIRI="ns0:Write"/>

</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Individual"/>

<Class abbreviatedIRI="ns0:Person"/>
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</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Literary -Composition"/>

<Class abbreviatedIRI="ns0:Literary -Work"/>

</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Make"/>

<Class abbreviatedIRI="ns0:Produce"/>

</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Novel"/>

<ObjectIntersectionOf >

<Class abbreviatedIRI="ns0:Literary -Work"/>

<ObjectSomeValuesFrom >

<ObjectProperty abbreviatedIRI="ns0:is -novel -for"/>

<Class abbreviatedIRI="ns0:Write"/>

</ObjectSomeValuesFrom >

</ObjectIntersectionOf >

</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Pen"/>

<Class abbreviatedIRI="ns0:Write"/>

</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Period"/>

<Class abbreviatedIRI="ns0:Time -Period"/>

</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Person"/>

<Class abbreviatedIRI="ns0:mortal"/>

</EquivalentClasses >

<EquivalentClasses >
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<Class abbreviatedIRI="ns0:Person"/>

<Class abbreviatedIRI="ns0:somebody"/>

</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Person"/>

<Class abbreviatedIRI="ns0:someone"/>

</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Person"/>

<Class abbreviatedIRI="ns0:soul"/>

</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Print"/>

<Class abbreviatedIRI="ns0:Publish"/>

</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Publish"/>

<ObjectIntersectionOf >

<Class abbreviatedIRI="ns0:Make"/>

<ObjectSomeValuesFrom >

<ObjectProperty abbreviatedIRI="ns0:has -publication"

/>

<Class abbreviatedIRI="ns0:Publication"/>

</ObjectSomeValuesFrom >

</ObjectIntersectionOf >

</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:TwelveMonth"/>

<Class abbreviatedIRI="ns0:Year"/>

</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Write"/>
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<ObjectIntersectionOf >

<Class abbreviatedIRI="ns0:Make"/>

<ObjectSomeValuesFrom >

<ObjectProperty abbreviatedIRI="ns0:has -novel"/>

<Class abbreviatedIRI="ns0:Novel"/>

</ObjectSomeValuesFrom >

</ObjectIntersectionOf >

</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Writer"/>

<ObjectIntersectionOf >

<Class abbreviatedIRI="ns0:Person"/>

<ObjectSomeValuesFrom >

<ObjectProperty abbreviatedIRI="ns0:is -writer -for"/>

<Class abbreviatedIRI="ns0:Write"/>

</ObjectSomeValuesFrom >

</ObjectIntersectionOf >

</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Year"/>

<Class abbreviatedIRI="ns0:Yr"/>

</EquivalentClasses >

<EquivalentClasses >

<Class abbreviatedIRI="ns0:Year"/>

<ObjectIntersectionOf >

<Class abbreviatedIRI="ns0:Fundamental -Measure"/>

<ObjectSomeValuesFrom >

<ObjectProperty abbreviatedIRI="ns0:is -year -for"/>

<Class abbreviatedIRI="ns0:Publish"/>

</ObjectSomeValuesFrom >

</ObjectIntersectionOf >

</EquivalentClasses >
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<SubClassOf >

<Class abbreviatedIRI="ns0:Communicator"/>

<Class abbreviatedIRI="ns0:Person"/>

</SubClassOf >

<SubClassOf >

<Class abbreviatedIRI="ns0:Create -Verbally"/>

<Class abbreviatedIRI="ns0:Make"/>

</SubClassOf >

<SubClassOf >

<Class abbreviatedIRI="ns0:Fiction"/>

<Class abbreviatedIRI="ns0:Literary -Work"/>

</SubClassOf >

<SubClassOf >

<Class abbreviatedIRI="ns0:Novel"/>

<Class abbreviatedIRI="ns0:Fiction"/>

</SubClassOf >

<SubClassOf >

<Class abbreviatedIRI="ns0:Publish"/>

<Class abbreviatedIRI="ns0:Make"/>

</SubClassOf >

<SubClassOf >

<Class abbreviatedIRI="ns0:Time -Period"/>

<Class abbreviatedIRI="ns0:Fundamental -Quantity"/>

</SubClassOf >

<SubClassOf >

<Class abbreviatedIRI="ns0:Write"/>

<Class abbreviatedIRI="ns0:Create -Verbally"/>

</SubClassOf >

<SubClassOf >

<Class abbreviatedIRI="ns0:Writer"/>

<Class abbreviatedIRI="ns0:Communicator"/>

</SubClassOf >
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<SubClassOf >

<Class abbreviatedIRI="ns0:Year"/>

<Class abbreviatedIRI="ns0:Time -Period"/>

</SubClassOf >

<ClassAssertion >

<Class abbreviatedIRI="ns0:Jurassic -Park"/>

<NamedIndividual abbreviatedIRI="ns0:Jurassic -Park -1"/>

</ClassAssertion >

<ClassAssertion >

<Class abbreviatedIRI="ns0:Michael -Crichton"/>

<NamedIndividual abbreviatedIRI="ns0:Michael -Crichton -1"/>

</ClassAssertion >

<ClassAssertion >

<Class abbreviatedIRI="ns0:Publish"/>

<NamedIndividual abbreviatedIRI="ns0:Publish -1"/>

</ClassAssertion >

<ClassAssertion >

<Class abbreviatedIRI="ns0:Write"/>

<NamedIndividual abbreviatedIRI="ns0:Write -1"/>

</ClassAssertion >

<ObjectPropertyAssertion >

<ObjectProperty abbreviatedIRI="ns0:has -publication"/>

<NamedIndividual abbreviatedIRI="ns0:Publish -1"/>

<NamedIndividual abbreviatedIRI="ns0:Jurassic -Park -1"/>

</ObjectPropertyAssertion >

<ObjectPropertyAssertion >

<ObjectProperty abbreviatedIRI="ns0:has -publisher"/>

<NamedIndividual abbreviatedIRI="ns0:Publish -1"/>

<NamedIndividual abbreviatedIRI="ns0:Michael -Crichton -1"/>

</ObjectPropertyAssertion >

<ObjectPropertyAssertion >

<ObjectProperty abbreviatedIRI="ns0:in -year"/>
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<NamedIndividual abbreviatedIRI="ns0:Publish -1"/>

<NamedIndividual abbreviatedIRI="ns0:1990"/>

</ObjectPropertyAssertion >

<ObjectPropertyAssertion >

<ObjectProperty abbreviatedIRI="ns0:has -novel"/>

<NamedIndividual abbreviatedIRI="ns0:Write -1"/>

<NamedIndividual abbreviatedIRI="ns0:Jurassic -Park -1"/>

</ObjectPropertyAssertion >

<ObjectPropertyAssertion >

<ObjectProperty abbreviatedIRI="ns0:has -writer"/>

<NamedIndividual abbreviatedIRI="ns0:Write -1"/>

<NamedIndividual abbreviatedIRI="ns0:Michael -Crichton -1"/>

</ObjectPropertyAssertion >

<EquivalentObjectProperties >

<ObjectProperty abbreviatedIRI="ns0:has -author"/>

<ObjectProperty abbreviatedIRI="ns0:has -novel"/>

</EquivalentObjectProperties >

<EquivalentObjectProperties >

<ObjectProperty abbreviatedIRI="ns0:in -twelvemonth"/>

<ObjectProperty abbreviatedIRI="ns0:in -year"/>

</EquivalentObjectProperties >

<SubObjectPropertyOf >

<ObjectProperty abbreviatedIRI="ns0:has -communicator"/>

<ObjectProperty abbreviatedIRI="ns0:has -person"/>

</SubObjectPropertyOf >

<SubObjectPropertyOf >

<ObjectProperty abbreviatedIRI="ns0:has -fiction"/>

<ObjectProperty abbreviatedIRI="ns0:has -literary -work"/>

</SubObjectPropertyOf >

<SubObjectPropertyOf >

<ObjectProperty abbreviatedIRI="ns0:has -novel"/>

<ObjectProperty abbreviatedIRI="ns0:has -fiction"/>
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</SubObjectPropertyOf >

<SubObjectPropertyOf >

<ObjectProperty abbreviatedIRI="ns0:has -writer"/>

<ObjectProperty abbreviatedIRI="ns0:has -communicator"/>

</SubObjectPropertyOf >

<SubObjectPropertyOf >

<ObjectProperty abbreviatedIRI="ns0:in -time -period"/>

<ObjectProperty abbreviatedIRI="ns0:in -fundamental -measure"/

>

</SubObjectPropertyOf >

<SubObjectPropertyOf >

<ObjectProperty abbreviatedIRI="ns0:in -year"/>

<ObjectProperty abbreviatedIRI="ns0:in -time -period"/>

</SubObjectPropertyOf >

<SubObjectPropertyOf >

<ObjectProperty abbreviatedIRI="ns0:is -communicator -for"/>

<ObjectProperty abbreviatedIRI="ns0:is -person -for"/>

</SubObjectPropertyOf >

<SubObjectPropertyOf >

<ObjectProperty abbreviatedIRI="ns0:is -fiction -for"/>

<ObjectProperty abbreviatedIRI="ns0:is -literary -work -for"/>

</SubObjectPropertyOf >

<SubObjectPropertyOf >

<ObjectProperty abbreviatedIRI="ns0:is -novel -for"/>

<ObjectProperty abbreviatedIRI="ns0:is -fiction -for"/>

</SubObjectPropertyOf >

<SubObjectPropertyOf >

<ObjectProperty abbreviatedIRI="ns0:is -writer -for"/>

<ObjectProperty abbreviatedIRI="ns0:is -communicator -for"/>

</SubObjectPropertyOf >

<InverseObjectProperties >

<ObjectProperty abbreviatedIRI="ns0:is -novel -for"/>
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<ObjectProperty abbreviatedIRI="ns0:has -novel"/>

</InverseObjectProperties >

<InverseObjectProperties >

<ObjectProperty abbreviatedIRI="ns0:is -publication -for"/>

<ObjectProperty abbreviatedIRI="ns0:has -publication"/>

</InverseObjectProperties >

<InverseObjectProperties >

<ObjectProperty abbreviatedIRI="ns0:is -publisher -for"/>

<ObjectProperty abbreviatedIRI="ns0:has -publisher"/>

</InverseObjectProperties >

<InverseObjectProperties >

<ObjectProperty abbreviatedIRI="ns0:is -writer -for"/>

<ObjectProperty abbreviatedIRI="ns0:has -writer"/>

</InverseObjectProperties >

<InverseObjectProperties >

<ObjectProperty abbreviatedIRI="ns0:in -year -for"/>

<ObjectProperty abbreviatedIRI="ns0:in -year"/>

</InverseObjectProperties >

<ObjectPropertyDomain >

<ObjectProperty abbreviatedIRI="ns0:has -novel"/>

<Class abbreviatedIRI="ns0:Write"/>

</ObjectPropertyDomain >

<ObjectPropertyDomain >

<ObjectProperty abbreviatedIRI="ns0:has -publication"/>

<Class abbreviatedIRI="ns0:Publish"/>

</ObjectPropertyDomain >

<ObjectPropertyDomain >

<ObjectProperty abbreviatedIRI="ns0:has -publisher"/>

<Class abbreviatedIRI="ns0:Publish"/>

</ObjectPropertyDomain >

<ObjectPropertyDomain >

<ObjectProperty abbreviatedIRI="ns0:has -writer"/>
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<Class abbreviatedIRI="ns0:Write"/>

</ObjectPropertyDomain >

<ObjectPropertyDomain >

<ObjectProperty abbreviatedIRI="ns0:in -year"/>

<Class abbreviatedIRI="ns0:Publish"/>

</ObjectPropertyDomain >

<ObjectPropertyRange >

<ObjectProperty abbreviatedIRI="ns0:has -novel"/>

<Class abbreviatedIRI="ns0:Novel"/>

</ObjectPropertyRange >

<ObjectPropertyRange >

<ObjectProperty abbreviatedIRI="ns0:has -publication"/>

<Class abbreviatedIRI="ns0:Publication"/>

</ObjectPropertyRange >

<ObjectPropertyRange >

<ObjectProperty abbreviatedIRI="ns0:has -publisher"/>

<Class abbreviatedIRI="ns0:Publisher"/>

</ObjectPropertyRange >

<ObjectPropertyRange >

<ObjectProperty abbreviatedIRI="ns0:has -writer"/>

<Class abbreviatedIRI="ns0:Writer"/>

</ObjectPropertyRange >

<ObjectPropertyRange >

<ObjectProperty abbreviatedIRI="ns0:in -year"/>

<Class abbreviatedIRI="ns0:Year"/>

</ObjectPropertyRange >

</Ontology >
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