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Abstract 

The design of strategies to devise teamwork and cooperation among agents is a central 

research issue in the field of multi-agent systems (MAS). The complexity of the 

cooperative strategy design can rise rapidly with increasing number of agents and their 

behavioral sophistication. The field of cooperative multi-agent learning promises 

solutions to such problems by attempting to discover agent behaviors as well as 

suggesting new approaches by applying machine learning techniques.   

Due to the difficulty in specifying a priori for an effective algorithm for multiple 

interacting agents, and the inherent adaptability of artificially evolved agents, recently, 

the use of evolutionary computation as a machining learning technique and a design 

process has received much attention. In this thesis, we design a methodology using an 

evolutionary computation technique called Genetic Network Programming (GNP) to 

automatically evolve teamwork and cooperation among agents in the pursuit domain.  

Simulation results show that our proposed methodology was effective in evolving 

teamwork and cooperation among agents. Compared with Genetic Programming 

approaches, its performance is significantly superior, its computation cost is less and the 

learning speed is faster. We also provide some analytical results of the proposed 

approach.  
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Chapter 1                                        

Introduction and Motivation 

1.1 Background and Motivation 

An agent is a computational mechanism which exhibits a high degree of autonomy when 

performing actions in its environment based on information (sensors, feedback) received 

from the environment [1]. Figure 1, illustrates the architecture of a typical agent. 

 

Figure 1. Architecture of a typical agent 

Multi-gent systems (MAS) are  systems in which a plural number of agents interact with 

each other and pursue a set of goals. A cooperative multi-agent system (as opposed to 

competitive multi-agent system) is a multi-agent system in which several agents attempt, 

through their interactions, to jointly solve tasks or to maximize utility, as illustrated in 

Figure 2. 

 

 

 

 

 

 

 

Figure 2. Team of soccer robots, an example of cooperative MAS 
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Design and development of cooperation and teamwork among the agents in a cooperative 

multi-agent system is a key research problem. Due to the extensive interactions among 

the agents, and inherent complexity of such systems, making solutions by hand is 

prohibitively difficult.  

Nature has been quite successful at programming complicated multi-agent systems 

ranging from simple agents such as ants and bees to sophisticated cognitive agents- 

ourselves. The mechanism used to create these systems is Darwinian evolution. The 

global behavior of biological systems such as ant colonies is considered to be an 

emergent property of interactions between the different agents that make up system as a 

whole. Hence the agents’ macro-level (group behavior) is called emergent behavior, and 

the cooperation achieved in this manner is called emergent cooperation. 

Evolutionary Computation (EC) is a family of Machine Learning (ML) techniques in 

which abstract Darwinian models of evolution are applied to refine populations of 

candidate solutions (known as “individuals”) to a given problem and evolve solutions 

automatically. Nowadays using EC techniques as a design process for control of agents 

and especially robots have received much attention in both real world as well as 

simulated problem domains. Such attention is due to the difficulty in specifying a priori 

an effective means of controlling multiple interacting agents, and also the inherent 

adaptability of artificially evolved controllers, thereby making them a problem-solving 

methodology that is potentially applicable in a wide range of problem domains. 

Many problems in MAS, which require teamwork and cooperation, are solvable by 

multiple agents each of which uses essentially the same algorithm. Such agents are called 

homogeneous and are common candidates for the study of emergent behavior because 

only one simple set of rules for these agents can give rise to complex patterns of behavior 

during their interactions. 

In this thesis, we design and develop a novel methodology using a relatively new 

evolutionary computation technique called Genetic Network Programming (GNP) [7] to 

evolve teamwork and cooperation among four homogenous agents named predators in 

the pursuit domain. The results are then compared to those of Genetic Programming (GP) 

in terms of performance and computational cost. 
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It is generally said that it is difficult to search for an optimum solution by using GP, since 

the search space of solutions becomes enormous due to its bloat. For this reason, the 

searching efficiency of GP is not such high in most cases. Consequently, GNP has 

recently been proposed to overcome this limitation in GP. 

While GP uses tree structure to represent solutions, GNP uses a graph (network) 

structure. Graph representation in GNP improves solution representation and search 

ability and also prevents bloating, which is a common drawback in most GP-based multi-

agent systems.  

Bloating is the uncontrolled and unbounded growth of individuals (programs), usually 

independent of sufficiently justified improvements in their fitness. Bloat slows down the 

evolutionary search process, consumes memory, and can hamper effective breeding [9]. 

GNP like other EC techniques is a means of evolving solutions to difficult problems, 

where the answer is not obvious. GNP allows problems to be solved without explicitly 

programming the solution. This is done using a fitness function. The fitness function rates 

the quality of a possible solution. Good solutions are combined with other good solutions 

to hopefully create even better solutions. By continuing this process, GNP can evolve 

optimal or near optimal solutions. GNP has been recently tested with success on some 

domains [8, 10, 11].  

1.2 Problem Definition and Challenges 

The Pursuit problem is a well-studied test bed in MAS research (Figure 3). Benda et al 

[42] formulated the original problem definition as consisting of four predators that need 

to capture a single prey. The predators and the prey are situated on a two-dimensional 

world consisting of cells. This world is toroidal and the movements, which take the 

agents from one cell into another, are only possible in orthogonal directions. The goal of 

the predators is to move so as to capture the prey. To capture the prey, the predators must 

occupy all cells immediately adjacent to the prey. The prey moves randomly, and is 

slower than the predators. Only one agent may occupy a cell at a time, therefore conflicts 

occur if one or more agents try to occupy the same cell, thereby a conflict resolution 

mechanism is needed to resolve the conflicts. 
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Our hypothesis is that GNP can be used to automatically program predators in the pursuit 

domain and evolve teamwork and cooperation among them so that they may capture the 

prey. Also given its inherent architecture its performance should be superior to GP. 

To prove our hypothesis we attempt to answer the following questions: 

1) What are the main issues in designing and developing a cooperation strategy for a 

multi-agent system in general and the pursuit domain in particular when using 

GNP?  

2) Is GNP capable of providing a solution to the cooperation problem for the pursuit 

domain? 

3) Are GNP results better than the GP results in terms of computational cost, 

capture rate and bloating? 

4) Is GNP capable of overcoming the bloating problem  highlighted by GP? 

5) Is the proposed methodology robust, in other words, does it behave persistently 

under uncertain conditions in a dynamic domain? 

6) What are the technical problems in scaling GNP to real world multi-agent 

applications? 

Figure 3. The pursuit domain 
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Our key contributions are as follows: 

1) Design, development and implementation of a successful GNP-based 

methodology capable of evolving homogenous cooperated team of agents in a 

difficult-to-solve MAS, named pursuit domain.  

2) Showing that GNP-based system is superior to a GP-based system in terms of 

performance and computational costs. 

3) Mathematically proving that our proposed GNP-based methodology overcomes 

the bloating problem in GP and has a constant complexity in terms of big-O 

notation whereas it is quadratic in a GP-based system. 

1.3 Outline of the Thesis 

The remaining thesis is structured as follows. Chapter 2 introduces cooperative multi-

agent learning and reviews previous studies on how machine learning techniques are used 

to devise cooperation in multi-agent systems. It specifically surveys the literature related 

to applying evolutionary techniques in the pursuit domain. Chapter 3 describes the 

evolutionary algorithms in general and then it specifically introduces, describes and 

compares GP and GNP. Chapter 4 describes the pursuit problem and its parameters in 

detail. It also presents the Pursuit _Package_0.9 [44], which is used for the experimental 

simulations in this thesis. Chapter 5 demonstrates the design of our proposed 

methodology for the pursuit domain. In chapter 6, simulation results are shown and 

critically evaluated. It also compares and discusses the performance of our GNP-based 

methodology with GP. Finally chapter 7 concludes and further research directions 

stemming from our work are proposed. 
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Chapter 2                                       

Literature Review 

Design and development of cooperation strategies and interaction scheme among a set of 

agents using hand-coded, i.e. preprogrammed, approaches is prohibitively difficult and 

complex in multi-agent systems. This complexity is due to the agents’ behavioral 

sophistications and the extensive amount of interactions among the agents. An idea that 

has become more and more interesting and therefore a research goal among many 

computer scientists is the integration of learning and adaptation capabilities in the initial 

design process of agents in order to allow them to evolve the intended behavior 

automatically, and in consequence at much cheaper costs. Hence, machine learning has 

proven to be a popular and flexible approach for solving cooperation problems in multi- 

agent systems recently. Cooperative multi-agent learning is a field of research, which 

studies the ways machine learning techniques can be used to develop teamwork and 

cooperation strategies among multiple agents in a multi-agent system.  

This chapter describes background information and presents literature review related to 

MAS and cooperative multi-agent learning. Emergent cooperation which is a biologically 

inspired bottom-up cooperation problem-solving approach for multi-agent systems is 

described thoroughly in a separate section. Finally, a detailed review of literature which 

has used emergent cooperation in solving cooperation problem in the pursuit domain is 

presented. 

2.1 Multi-Agent Systems 

In recent years there has been increased interest in decentralized approaches for solving 

complex real-world problems. Such approaches fall into the area of distributed systems, 

where a number of entities work together to cooperatively solve problems. The 

combination of distributed systems and artificial intelligence (AI) is collectively known 

as distributed artificial intelligence (DAI). Traditionally, DAI is divided into two areas. 
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The first area, distributed problem solving, is usually concerned with the decomposition 

and distribution of a problem solving process among multiple slave nodes, and the 

collective construction of a solution to the problem using AI methods. The second class 

of approaches, Multi-Agent Systems (MAS), emphasizes the joint behaviors of agents 

with some degree of autonomy and the complexities arising from their interactions [2]. 

Autonomy conventionally refers to the degree to which an agent is able to make its own 

decisions about which actions to take next. 

The term multi-agent is not well-defined in the community and different researchers have 

different definitions; We prefer Panait and Luke [12] definition of this concept which is 

relatively new and admittedly broad: A multi-agent environment is one in which there are 

more than one agent, where they interact with one another, and further, where there are 

constraints on that environment such that agents may not at any given time know 

everything about the world that other agents know (including the internal states of the 

other agents themselves). 

Interaction and constraints are important points to the notion of multi-agent system 

problem definition. If the domain requires no interaction at all, then it may be 

decomposed into separate, fully independent tasks each solvable by a single agent and 

there is no need for a multi-agent system. Additionally if there are no constraints on the 

environment the distributed agents can act in sync with knowing exactly what situation 

the other agents are in and what behavior they will pursue and this “omniscience” permits 

the agents to act as if they were really mere appendages of a single master controller.  

An example of a multi-agent system is an environment with multiple foraging robots. 

Foraging robots are mobile robots capable of searching for objects and when found, 

transporting them to one or more collection points. The problem becomes more complex 

when the robots can suggest good regions for search to each other and also help one 

another to forage. Figure 4, shows a typical cooperative foraging multi-agent system. 
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Figure 4. Multiple foraging robots engaged in stick pulling. An example of MAS 

2.2 Machine Learning Methods 

Machine learning techniques can be divided into three main categories: supervised, 

unsupervised, and reward-based learning. These categories are distinguished by the kind 

of feedback that critic provides to the learner. In unsupervised learning, no feedback is 

provided at all to the learner. In supervised learning, the critic provides the correct output. 

In reward-based learning, the critic provides a qualitative assessment of the learner’s 

output, and is called the reward. 

Supervised learning methods cannot be easily applied to the MAS problems because of 

the inherent complexity in the interactions of multiple agents, which makes it almost 

impossible for the critic to provide the agents with the correct behavior for a given 

situation and it is often infeasible to obtain examples of desired behavior that are both 

correct and representative of all the situations in which the agent has to act. 

The reward-based learning literature can be divided into two main subsets: reinforcement 

learning (RL) methods, which estimate value functions and evolutionary computation 

(EC) methods, which directly learn behaviors without using value functions. RL methods 

are inspired by dynamic programming concepts and EC methods are inspired by 

Darwinian model of evolution.  

The next subsections describe RL and EC techniques. A review of the literature related to 

applying these ML methods in solving MAS cooperation problems is presented in the 

section 2.3. 
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2.2.1 Reinforcement Learning  

Reinforcement Learning is learning what to do, i.e. how to map situations to actions, so 

as to maximize a numerical reward signal. The learner is not told which actions to take, 

as in most forms of machine learning methods, but instead must discover which actions 

yield the most reward by trying them. In the most interesting and challenging cases, 

actions may affect not only the immediate reward but also the next situation and, through 

that, all subsequent reward. These two characteristics, which are trial-and-error search 

and delayed reward, are the two most important distinguishing features of reinforcement 

learning. RL methods are particularly useful in domains where reinforcement information 

can be provided after a sequence of actions performed in the environment. Reinforcement 

is provided to the learner as a positive or negative numerical value to express a reward or 

a penalty. 

The two common RL methods are Q-Learning and Temporal-Difference (TD(λ)) 

Learning; the former learns the utility of performing actions in states, while the latter 

usually learns the utility of being in the states themselves. 

Reinforcement learning methods are inspired by dynamic programming concepts and 

define formulas for updating the expected utilities and for using them to explore the state 

space. The update is often a weighted sum of the three elements: current value, the 

reinforcement obtained when performing an action, and the expected utility of the next 

state reached after the action is performed. 

RL methods have theoretical proofs of convergence; unfortunately, such convergence 

assumptions do not hold for some real-world applications, including many multi-agent 

systems problems. So they are not applicable for a wide variety of real-world problems. 

For more information on reinforcement learning techniques, [20, 21, 22] are good starting 

points. 

2.2.2 Evolutionary Computation 

Evolutionary Computation (EC) (or Evolutionary Algorithms (EAs)) is a family of 

techniques in which abstract Darwinian model of evolution, i.e. “survival of the fittest”, is 

applied to refine populations of candidate solutions known as “individuals” to a given 
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problem. An evolutionary algorithm begins with an initial population of randomly 

generated individuals. Then each member of this population is evaluated and a “fitness” 

is assigned to it. Fitness is a qualitative assessment of an individual and in the other 

words it shows how good an individual (candidate solution) is. EC then uses a fitness-

oriented algorithm in order to “select”, “reproduce” and “vary” the fittest individuals to 

produce children, which will be added to the population, replacing older individuals. One 

evaluation, selection, and breeding cycle is known as a “generation”. By repeatedly 

generating subsequent solutions in the same manner better solutions can theoretically be 

generated progressively. By repeating this process, successive generations continue to 

refine the population until time is exhausted or a sufficiently fit individual is discovered. 

Evolutionary computation methods include Genetic Algorithms (GA) and Evolution 

Strategies (ES), and Genetic Programming (GP), and Genetic Network Programming 

(GNP). There are many sources of additional information on EC; Good choices to start 

include [7, 8, 9]. 

2.3 Multi-Agent Learning  

The application of machine learning techniques to solve problems involving multiple 

agents is called Multi-agent learning. Thus the field of multi-agent learning studies the 

ways machine learning techniques can be used to solve MAS problems. 

Multi-agent learning has two specific features, which make it a field separate from 

ordinary machine learning and merit its study. First, because multi-agent learning deals 

with problem domains involving multiple agents, the search space involved can be 

unusually enormous; and due to the interaction of those agents, small changes in learned 

behaviors can often result in unpredictable changes in the resulting macro-level 

(“emergent”) properties of the multi-agent group as a whole. Second, multi-agent 

learning may involve multiple learners, each learning and adapting in the context of 

others; and this may introduces game-theoretic issues to the learning process. 

The topic of multi-agent learning can be divided into two broad categories: Cooperative 

multi-agent learning and competitive multi-agent learning. As Panait and Luke [12] 

suggest, we have a cooperative multi-agent learning system if the design of the problem 
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and the learning system is constructed so as to (hopefully) encourage cooperation among 

the agents. Hence just existence of a cooperation encouragement mechanism in design of 

MAS is sufficient for it to be cooperative MAS, even if agents fail to do so finally. And 

we have a competitive multi-agent learning setting if agents have non-aligned goals, and 

individual agents seek only to maximize their own gains. 

The rest of this section specifically focuses on the cooperative multi-agent learning 

approaches, which can be divided into two major categories. The first one, which is 

termed team learning, applies a single learner to search for behaviors for the entire team 

of agents while the second category, which is called concurrent learning, uses multiple 

concurrent learning processes. 

In team learning approaches since there is only one learner involved for the entire team, 

they are more similar to the traditional ML approaches, but they may have scalability 

problems as the number of agents is increased in the environment.  

Concurrent learning approaches typically employ a learner for each team member, so 

there would be N different learners in a team of N agents. Thus the joint search space is 

reduced by projecting it into N separate search spaces. However, the presence of multiple 

concurrent learners makes the environment non-stationary, which means the dynamics of 

the environment might change due to some unknown or not directly perceivable causes 

and it is a noticeable violation of the assumptions behind most traditional machine 

learning techniques. For this reason game-theoretic issues are introduced to concurrent 

learning processes and they require new or significantly modified versions of ML 

methods. 

2.3.1 Team Learning  

Team learning is a cooperative multi-agent learning approach in which there is a single 

learner involved and this learner discovers the set of behaviors for the entire team of 

agents, rather than a single agent. This lacks the game-theoretic aspect of multiple 

learners, but still poses challenges because as agents interact with one another, the joint 
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behavior can be unexpected. This complexity arising from agents’ interaction and their 

joint behavior is often called the emergent complexity of the multi-agent system.  

Team learning is relatively easy approach to multi-agent learning because there is only 

one learner and it can use standard single-agent machine learning techniques and it 

sidesteps the difficulties arising from the co-adaptation of several learners in concurrent 

learning approaches. Another advantage of a single learner is that it is concerned with the 

performance of the entire team, and not with that of individual agents.  

A major problem with team learning is the large state space for the learning process. For 

example, if agent A can be in any of 100 states and agent B can be in any of another 100 

states, the team formed from the two agents can be in as many as 10000 states. This 

explosion in the state space size can be overwhelming for learning methods that explore 

the space of state utilities (such as reinforcement learning), but it may not so drastically 

affect techniques that explore the space of behaviors (such as evolutionary computation). 

For such reasons, evolutionary computation seems easier to scale up, and it is by far the 

most widely used team learning technique [12, 13]. A second disadvantage is the 

centralization of the learning algorithm since all resources need to be available in a single 

place where all computation is performed. This can be burdensome in domains where 

data is inherently distributed. 

Team learning may be divided into three categories: homogeneous and heterogeneous 

and hybrid team learning. Homogeneous learners develop a single agent behavior, which 

is used by every agent on the team. Heterogeneous team learners can develop a unique 

special behavior for each agent, so it encourages agent specialization. Heterogeneous 

learners must cope with a larger search space, but has the possibility of better solutions 

through agent specialization. Hybrid team learning methods lay in the middle-ground 

between these two categories. Hybrid team learning divides the team into squads, with 

squadmates having the same behavior and different from the other squads. 

Choosing among these approaches depends on whether specialists are needed in the team 

or not. Experiments conducted by Balch [46], Bongard [47] and Potter et al. [48] address 

exactly this issue.  
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Balch [46] suggests that domains where single agents can perform well, such as foraging, 

are particularly suited for homogeneous learning, while domains that require task 

specialization such as robotic soccer are more suitable for heterogeneous approaches. 

Homogenous Team Learning 

In homogeneous team learning, all agents are assigned identical behaviors, even though 

the agents may not be identical (for example, different agents have different 

computational capability and may take a different amount of time to complete the same 

task). Because all agents have the same behavior, the search space for the learning 

process is drastically reduced. The appropriateness of homogeneous learning depends on 

the problem. It is suitable for problems, which do not require agent specialization to 

achieve good performance. They are also suitable for problem domains, which have a too 

large search space. In these problem domains, particularly ones with very large numbers 

of agents (“swarms”), even though heterogeneity and specialization would ultimately 

yield the best results, the search space is simply too large to use heterogeneous learning.  

In a straightforward example of successful homogeneous team learning, Haynes et al. 

[49], Haynes and Sen [50], Haynes et al. [45, 51] evolved behaviors for a predator-prey 

pursuit domain using genetic programming. When using fixed algorithms the prey 

behavior, the authors report results competitive with the best human-coded predator 

algorithms. In another well-known example, Quinn et al. [52] investigate the use of 

evolutionary computation techniques for a team formation problem. 

Heterogeneous Team Learning 

In heterogeneous team learning, the team is composed of agents with different behaviors, 

with a single learner trying to improve the team as a whole. This approach allows for 

more diversity in the behaviors of the agents in a team at the cost of increasing the search 

space [53]. The bulk of research in heterogeneous team learning has concerned itself with 

the requirement for the emergence of specialists. In a well-known example Andre and 

Teller [54] apply genetic programming to develop a team of soccer playing agents for the 

RoboCup simulator. The individuals encode eleven different behaviors (one for each 

player). In another renowned example Haynes and Sen [49, 50, 51] investigate the 

evolution of homogeneous and heterogeneous teams for the pursuit domain. 
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The authors present several crossover operators that may encourage the appearance of 

specialists within the teams. The results indicate that team heterogeneity can significantly 

help despite apparent homogeneity among the predators in the pursuit domain. 

Hybrid team learning 

In hybrid team learning, the set of agents is split into several squads, with each agent 

belonging to only one squad. All agents in a squad have the same behavior. One extreme, 

in which we have only one squad, is equivalent to homogeneous team learning, while the 

other extreme in which there is just one agent per squad is equivalent to heterogeneous 

team learning. Thus hybrid team learning permits the experimenter to achieve some of 

the advantages of each method. Luke [55],Luke et al. [56] focus on evolving soccer 

teams for the RoboCup competition. They compare the fully homogeneous results with a 

hybrid approach that divides the team into six squads of one or two agents each, and then 

evolves six behaviors, one per squad. The authors report that homogeneous teams 

performed better than the hybrid approach, but mention that the latter exhibited initial 

offensive defensive squad specialization and suggest that hybrid teams outperform the 

homogeneous ones. Figure 5, shows Luke [55] results for RoboCup competition, in 

which after a number of generations the initial population of randomly moving soccer 

agents began to develop elementary defensive ability. 

 

 

 

 

 

 

 

 

 

 

Figure 5. RoboCup Soccer. After a number of generations some of the initially random 

moving players, learned to hang back and protect the goal, while others chase the ball 

[ref] 
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2.3.2 Concurrent Learning 

Concurrent learning, in which there exists multiple learning processes instead of a single 

learner and each one attempts to improve a part of the team is considered the most 

common alternative to team learning in cooperative multi-agent systems. Typically each 

agent has its own exclusive learning process to modify its behavior. But of course there 

could be degrees of granularity in concurrent learning approach. For example the team 

may be divided into squads, each with its own learner. 

Concurrent learning and team learning each have their defenders and critics. Bull and 

Fogarty [57] and Iba [17] present experiments where concurrent learning preforms better 

than both homogeneous and heterogeneous team learning, while Miconi [58] reports that 

team learning is superior in certain applications. Now the important question is then when 

each method would be preferred over the other? Jansen and Wiegand [59] argue when 

some decomposition is possible and helpful, concurrent learning may be preferable, and 

also in those domains for which it is convenient and beneficial to focus on each sub-

problem to some degree independently of the others. The reason for this is that 

concurrent learning maps the large joint team search space onto separate, smaller 

individual search spaces. If the problem can be decomposed such that individual agent 

behaviors are relatively disjoint, then this can result in a significant reduction in search 

space and therefore in computational complexity. A second, related advantage is that 

when the learning process is broken into smaller processes, it allows more flexibility in 

the use of computational resources for learning because the smaller learning processes 

may, at least to some extent, be learned independently of one another.   

The main challenge for concurrent learning is that standard machine learning techniques 

may not be applicable since each learner is adapting its behaviors in the context of other 

co-adapting learners over which it has no control. In single-agent scenarios where 

standard machine learning techniques can be used, a learner explores its environment, 

and while doing so, improves its own behavior. While when there are multiple learners, 

as the agents learn, things in the environment may change and agents need to modify 

their behaviors, which in turn can make obsolete the assumptions on which other agents 

use during their learning process and damage their learned behaviors [58, 59]. 
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Concurrent learning literature breaks down along more different lines than team learning 

literature. Since each agent is free to learn separately, heterogeneity versus homogeneity 

has been considered an emergent aspect rather than a design decision in concurrent 

learning. 

2.4 Evolutionary Methodologies in Multi-Agent Systems 

This section aims to provide an overview of important research contributions that 

investigate utilization of concepts such as emergence, evolution and self-organization as a 

means of attaining cooperation in complex systems followed by a survey of emergent 

cooperation using evolutionary methodologies especially in the pursuit domain. 

In nature there are lots of examples of systems whose complex stable behaviors emerge 

from simple local interactions during their evolution. For example the global complex 

behavior of biological systems such as ant colonies, bird flocking, fish shoaling and herd 

behavior of land animals are considered to be an emergent property of the simple 

interactions between the different individuals that make up the whole system. 

 

In anthropology, researches are based on the belief that individual intelligent behaviors of 

people must be observed and analyzed within their social and therefore cultural 

environment and cannot be understood in isolation. Societies of individuals vary in size 

and complexity but have a common property. They provide and maintain a shared 

culture. Wikipedia defines culture as: “The distinct ways that people who live differently, 

classified and represented their experiences and acted creatively”. The complexity of a 

culture results from the local interactions among the individuals. 

n contrast to traditional AI, which addresses intelligence as an isolated phenomenon, 

recently there has been an increased research interest on intelligence as a social 

phenomenon. The concept of emergent behavior in MAS is inspired by the biological 

systems in nature and culture concept in anthropology. Emergent behaviors are defined as 

purposive group (macro-level) behaviors, which are results of simple local (micro-level) 

interactions among individuals. In other word emergent behavior is the desirable or not 

desirable behavior of a system that is not explicitly described by the behavior of the 
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components of the system, and is therefore unexpected to a designer. Emergent behaviors 

are characterized by following properties: 1) it is manifested by global patterns in 

behaviors which are not explicitly programmed but result from local interaction among a 

system’s components. 2) It is considered interesting based on some observer-established 

metric. 

Early research in decentralized systems suggested [59] that complexity at a group level 

might be attainable with very simple individual agents, with no need for central control. 

For instance, Grey Walter and his colleagues [60] studied simple robots equipped with 

light and touch sensors and very simple behaviors. When placed together, these robots 

exhibited complex social behavior in response to each other’s movements. 

2.4.1 Emergence of Cooperation in Multi-Agent Systems  

Artificial Life studies the logic of living systems in artificial environments in order to 

gain a deeper understanding of the complex information processing that defines such 

systems [60]. Specifically agent-based systems, which are used to study the emergent 

properties of societies of agents, are also included in the umbrella term of artificial life. 

Despite traditional AI, which relies on top-down modularity, artificial life typically 

adopts a bottom-up approach to model emergent social phenomena and various forms of 

collective behavior observed in biological systems. 

Emergent cooperation is a key topic in artificial life research. Therefore emergent 

cooperation is considered a bottom-up problem-solving methodology, which is 

potentially applicable to a wide range of problem domains. It is very interesting for 

researchers in this field because it appears to provide something from nothing [60]. 

Cooperation among the agents in a multi-agent system can be recognized as a desirable 

emergent behavior. Desirable emergent behavior has been observed in many biological 

systems, though reproducing the conditions leading to the emergence of such behaviors 

in artificial systems has proved to be difficult as there is potential for the emergence of 

undesirable behaviors. It is therefore essential to be able to understand the mechanisms 

that motivate emergent cooperative behavior in these systems.  
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To date, research, which qualitatively measures and evaluates mechanisms underlying 

and motivating emergent cooperative behavior in real world and artificial systems 

remains largely in stage of research infancy.  

A derivative of emergent cooperation includes the artificial systems typically designed 

using an evolutionary computation (EC) methodology such that a global organized 

behavior emerges from interaction of the systems components [60, 61, 62]. It has been 

argued by many researchers [61, 62, 63] that the use of biologically inspired principles 

such as evolution and emergence in the purposeful design of complex artificial systems is 

needed in order to replace ineffective preprogrammed and centralized design 

methodologies. 

2.4.2 Evolutionary Methodologies in the Pursuit Domain 

The use of biologically inspired design principles for investigating emergent cooperative 

behavior remains a relatively unexplored area of research in the pursuit domain. The 

original version of the pursuit-evasion problem introduced by Benda et al [42] and the 

goal of this research was to illustrate emergent cooperative behavior from the interactions 

of predators following simple pursuit strategies. 

Since then, different approaches [43, 50, 51] have been used to study cooperative pursuit 

strategies in the pursuit domain. Research investigating cooperative pursuit strategies, 

typically studies cooperative behavior in the context of a game theory model [64, 65, 66] 

in which a gird world pursuit domain is casted in game-theoretic terms; essentially as a 

strategy game consisting of matrices of payoffs for each predator versus a single prey 

agent based on their joint actions. But, a few researchers [50, 51, 67], have investigated 

emergent behavior in the form of cooperative behavior that emerges within a group of 

predators as a need to collectively capture a prey. 

For instance, throughout a series of papers, Haynes and Sen [49, 50, 51] compared 

different genetic programming approaches for the evolution of cooperative pursuit 

strategies. They also proposed [50] a new approach for the development of cooperative 

strategies, which was derived from genetic programming and tested it within a pursuit-

evasion game scenario. The authors argued that the approach differed from existing 
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approaches because in that research, pursuit strategies were incrementally constructed via 

repeatedly evolving and testing them for increasingly difficult pursuit tasks. Additionally 

the authors claimed an important feature for their GP-based approach that is their 

approach does not rely on domain specific knowledge and only relied upon the 

performance of emergent solutions and therefore it can be used in other domain easily. 

In their experimental setup they used a grid world where initially the prey was placed in 

the center and four predators in random positions. A predator could see the prey, though 

not other predators, and there was no explicit form of communication between the 

predators. For all experiments, a genetic programming approach called Strongly Typed 

Genetic Programming (STGP) devised by Montana [68] was applied to the task of 

evolving a program that represented a behavior that is a pursuit strategy.  The pursuit 

behavior (strategy) was shared by all the predators in the case of homogenous teams, and 

was unique to each predator in the case of heterogeneous teams. In order to generate 

generalized solutions that were not dependent upon initial agent positions, each pursuit 

strategy in the population of strategies was evaluated by testing it in k randomly 

generated pursuit-evasion scenarios. The program with the highest percentage of capture 

was taken as the fittest. The STGP technique first randomly generated a population of N 

programs, and then assigned fitness to each after executing and evaluating them in a 

pursuit-evasion scenario. A subset of the N programs was then selected for generating a 

new population of programs by combining the selected programs and swapping random 

sub-parts of the programs. One hypothesis of this research was that evolution of these 

structures, incrementally evaluated and updated, would produce effective cooperative 

pursuit strategies for heterogeneous as well as homogenous team of predators. 

Homogenous teams consisted of k predators that all shared the same behavioral pursuit 

strategy (programs), and the evolutionary process would maintain a population of these 

behavioral strategies.  

Heterogeneous teams also consisted of k predators, though each predator utilized a 

different behavioral strategy. The evolutionary process maintained a population of team-

level strategies, where each team-level strategy consisted of some combination of the k 

behavioral strategies that represented all predators in the team. 
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Haynes and Sen [50, 51] introduced a cooperative co-evolutionary process into their 

experiments, which was designed to facilitate the development of more complex forms of 

cooperative pursuit strategies in teams of heterogeneous predators.  

Coevolution in evolutionary algorithms refers to maintaining and evolving individuals for 

different roles in a common task, either in a single population or in multiple populations. 

It is divided into two categories cooperative coevolution and competitive coevolution. In 

competitive coevolution these roles are adversarial in that one agent’s loss is another 

one’s gain. However in cooperative coevolution, the agents share the rewards and 

penalties of successes and failures. The kinds of problems that can best utilize 

cooperative coevolution are those in which the solution can be naturally modularized into 

subcomponents that interact or cooperate to solve the problem. Each subcomponent can 

then be evolved in its own population, and each population contributes its best individual 

to the solution.  

Haynes and Sen [50] hypothesis was that k different behavioral strategies for controlling 

the actions of k different predators could be combined, through a cooperative coevolution 

process, to form a cooperative strategy to achieve some predefined global goal. The 

authors’ supposition was that a cooperative coevolution, as opposed to competitive 

coevolution approach [51] would be more effective in the derivation of complex 

cooperative pursuit strategies. They utilized the STGP methodology in order to evolve 

behavioral strategies, which enabled a heterogonous team of predators to cooperatively 

achieve a common goal. Each predator team consisted of k programs, where each 

program explicitly represented an individual predator, or more precisely, a behavioral 

aspect of the cooperative team strategy that emerged when the predators interacted. Thus 

entire teams of predators were evolved, as opposed to individual predators, so that a 

particular combination of the k programs comprising the team would determine the 

behavioral strategy of a particular team. Each predator always participated in the same 

team and fitness was assigned to the team as a whole.  

Haynes and Sen [50] also implemented a series of experiments that evaluated a set of 

new genetic programming crossover mechanisms for evolving cooperative strategies 

amongst a heterogeneous team of predators. Results indicated that only one of the new 



 

21 

 

crossover mechanisms, named team-uniform by the authors, evolved a team faster than 

the traditional crossover mechanisms. The team uniform crossover mechanism was found 

to accelerate the evolutionary process, and also facilitate emergent cooperative pursuit 

strategies with a higher average fitness within heterogeneous teams of predators. In 

several additional experiments, the role of communication between the predators was also 

studied and found to be unnecessary and even damaging. Specifically, in the experiments 

that did not use communication each non-communicating subpopulation converged 

towards the optimization of a specific function in the team. This resulted in the derivation 

of cooperative pursuit strategies facilitated by the emergence of predators with 

specialized and complementary pursuit behaviors. Specifically, certain predators, termed 

chasers by the authors, only chased the prey, while other predators, termed blockers by 

the authors, only attempted to block the path of the prey. 

The authors compared the evolution of cooperative strategies using homogenous and 

heterogeneous teams in experiments testing two types of prey agents, those that moved 

randomly and those that attempted to maintain a maximum distance from the predators. 

Results illustrated that emergent cooperative pursuit strategies outperformed all but one 

of four preprogrammed heuristic pursuit strategies, which used a greedy search algorithm 

[51], and that the emergent cooperative strategies of heterogonous teams outperformed 

homogenous teams. The authors concluded that their genetic programming approach was 

an effective way for deriving cooperative behavior, given that it required no explicit 

communication and minimal domain knowledge. 

The key criticism of these series of research is the open questions concerning emergent 

specialized behavior and how cooperative behavior emerged. For example, it remains 

unclear which part of the genetic programming tree structure describes a predators 

cooperative pursuit behavior in the case of a heterogeneous approach, or a team’s 

behavior in the case of a homogenous approach. 

Although, emergent team-level cooperation in homogenous teams, and then emergent 

specialization in the formation of cooperative pursuit strategies with heterogeneous teams 

were interesting results, the emergence of such behaviors can largely be attributed to the 

genetic programming implementation and the simple grid world environment utilized. 
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Also, the application of the genetic programming methodology to other problem domains 

was not reported, so it remains uncertain if the cooperative behaviors would emerge 

beyond the grid world implementation. 

Yong and Miikkulainen [67] conducted a research similar to the Haynes and Sen [50] 

research, investigated the role of behavioral specialization in the evolution of cooperative 

pursuit strategies in a pursuit-evasion scenario. This research compared two artificial 

evolution approaches for the incremental evolution of a neural network architecture, 

where this architecture controlled the behavior of predators. The first approach was a 

centralized controller, where a single neural network controlled all predators, and the 

second method was a distributed approach where a separate neural network controlled 

each predator in the team. For both of these approaches, an incremental approach to 

artificial evolution was used, such that evolved neural networks were first tested upon a 

relatively simple pursuit-evasion task and then upon increasingly complex tasks. The 

incremental evolutionary process proceeded through five stages, where in the simplest 

stage the prey was stationary, and in each subsequent stage the prey moved progressively 

faster, until in the final stage it moved equally as fast as the predators. The authors argued 

that the advantage of this incremental evolutionary approach was that it prevented the 

artificial evolution algorithm from converging to a solution in a sub-optimal region of the 

solution space. These approaches for artificial evolution were based on an architecture 

termed Enforced Sub-Populations (ESP) [69] and it is illustrated in Figure 6. 

The enforced sub-populations approach used multiple populations of neurons and at the 

turn of every generation a single individual, in this case a neuron, was selected from each 

population of neurons in order to construct the neural network for controlling an 

individual predator or a predator team. The enforced subpopulations approach to artificial 

evolution was used to encourage the emergence of specialized behavioral roles in 

cooperative pursuit behaviors, such as the chaser and blocker behaviors evident in the 

experiments of Haynes and Sen [50]. 
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Yong and Miikkulainen [67] experimental setup was similar to that of Haynes and Sen 

[50], in that it used a grid-world with obstacles, three predators, and a single prey, where 

each agent was able to occupy a single grid space and was able to move in one of four 

directions at each simulation time step. The goal of any given pursuit-evasion scenario 

was for two or more predators to occupy the grid squares immediately surrounding the 

prey’s position. The fitness of a predator team was calculated according to how close 

they were to the prey at the end of a given pursuit-evasion scenario. The authors’ 

justification for using this fitness function was that the starting positions of the predators 

should not influence the team’s fitness, and hence the time taken for predators to capture 

the prey was not taken into account. Certain experiments also incorporated 

communication into the behaviors of individual predators, where communication was 

defined as the capability of predators to see each other. Thus, neural networks controlling 

Figure 6. Multi-agent ESP architecture. Each predator is controlled by its own 

neural network, formed from its own subpopulations of neurons. The three 

neural networks are formed and evaluated in the domain at the same time as a 

team and the fitness for the team is passed back to all participating neurons 



 

24 

 

either individual predators, or a whole predator team, took into account the coordinates of 

all predators in the team, in the derivation of cooperative pursuit strategies. 

Comparative sets of experiment were executed, that is, those using both the centralized 

and decentralized approaches to neural network control, and for each of these 

experiments testing predator teams with and without communication were tested. Results 

clarified that the decentralized approach to evolution without communication derived 

predator controllers with specific functional roles, such as chasers and blockers, where 

each role contributed to the formation of a cooperative pursuit strategy. Thus, given that 

each predator performed its specific behavioral role, the team was able to effectively 

capture the prey even though there was no explicit form of communication to enable this 

cooperative behavior. Experiments using the decentralized approach for evolution of 

controllers with communication capability, produced teams with more flexible behaviors, 

although several different team-level behaviors emerged, where each lacked the 

composite forms of behavioral specialization evident in previous experiments, and as a 

result these team level behaviors performed worse as pursuit strategies. Specifically, 

evolution without communication placed strong evolutionary pressure on each predator to 

perform a particular role, though evolution with communication utilized variations and 

combinations of two or more emergent pursuit strategies, so it was not necessary for 

predators to adopt specific roles in order for a pursuit strategy to be successful. 

Experiments which test the centralized approaches, with and without communication 

capability, also resulted in the emergence of cooperative pursuit strategies, though these 

strategies performed poorly in comparison with the decentralized approaches. 

The conclusion was that the distributed approach to the enforced subpopulations 

methodology for the incremental evolution of neural controllers, proved superior in terms 

of the time taken to evolve good pursuit strategies. Also, the distributed approach, 

without communication, allowed for the emergence of specialized behavioral roles, such 

that each sub-population was optimized for a specific function by the evolutionary 

process. The authors stated that adaptive niching in the evolutionary process facilitated 

the emergence of specialized behavioral roles. That is, as one sub-population started to 

converge to a particular behavior, other sub-populations that behaved in a complementary 

manner were rewarded and started to converge to other behavioral roles. In terms of the 
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domain implementation, having all predators develop behaviors that converged to 

complementary behavioral functions, contributed to the formation of effective 

cooperative pursuit strategies, and yielded a higher fitness for the predator team as a 

whole. The authors argued that the distributed enforced subpopulations approach was 

applicable to any problem domain that can be decomposed into a sequence of tasks of 

increasing complexity. Unfortunately this approach was not tested beyond the pursuit 

grid world environment using different configurations of predator starting positions, and 

obstacles in the environment. 

The research of Denzinger and Fuchs [71] investigated the learning of cooperative pursuit 

behavior, which was achieved via the evolution of a set of appropriate prototypical 

situation-action pairs. The simulation environment made use of pursuit-evasion scenarios 

similar to those described by Haynes and Sen et al. [50] and Yong and Miikkulainen [67]. 

The environment was a grid-world containing three predators and one prey where the 

task of any given pursuit-evasion scenario was for at least two predators to position 

themselves in grids squares adjacent to the prey. Predator agent architecture was 

specified based on the classification of situations with the nearest neighbor rule and a 

learning mechanism that attempted to generate a set of prototypical situation action pairs. 

Predator behavior was derived from this of situation-action pairs in that, when a predator 

was confronted with a new situation it determined the situation-action pair that was most 

similar to the given situation in accordance with the nearest neighbor rule. 

The predator then applied the action associated with the selected pair. The authors argued 

that this predator agent architecture provided a suitable basis for learning cooperative 

behavior given its flexibility. That is, a predator behavior could be readily changed via 

modifying, adding, or removing situation-action pairs. The learning of cooperative 

behavior was defined as searching for an appropriate set of situation-action pairs using a 

genetic algorithm. The genetic algorithm started with an unfit set of pairs, that is, those 

defining a set of poor pursuit behaviors (strategies) for a given set situations. 

The fitness function defined a comparison procedure for sets of situation-action pairs so 

that the fitter set could be determined. The authors used several variants of the pursuit 

domain where each variant required differing degrees of cooperative behavior amongst 
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predators. The variants upon the game include changing the number of predators, the 

boundaries of the grid world, as well as the communication and observation capabilities 

of the predators. The goal of the experiments was to demonstrate the approach to be 

considerably versatile in that it allowed a designer of multi-agent systems to specify 

requirements in terms of representation of situations and possible actions, and then for a 

satisfactory solution to be evolved automatically. 

The agent architecture was able to evolve effective cooperative pursuit strategies for 

many variants of the pursuit-evasion game, although for problems requiring more 

complex representations of situations, agent architecture able to operate in environments 

other than grid-worlds would be required. The use of a grid world allowed for the 

selection of distinct sets of situation-action values where a finite set of actions and 

resultant outcomes could be defined.  

Nishimura and Takashi [71], in a variation on the pursuit domain, studied the emergence 

of cooperative behavior in the form of different types of flocking strategies using a more 

traditional style predator-prey system that contained large numbers of predators and prey. 

In this predator-prey system both predators and prey inhabited a simulated two-

dimensional grid-world environment, and interacted through a series of pursuit-evasion 

game scenarios. The game scenarios used a score based system, and were implemented in 

the context of an artificial evolution algorithm. The rules of this particular pursuit-

evasion game were such that when a predator moved to an adjacent grid-square behind a 

prey, the predator was awarded p points, whereas the prey lost p points, and when a 

predator moved to a grid square adjacent to a prey, and both were facing each other, both 

species lost p points. After receiving a score, individual predators and prey were 

categorized as either winners or losers. At the end of each generation the species with the 

higher score was able to reproduce more, and the species with the lower score reproduced 

less and was consequently diminished. Individual predators and prey in the system were 

characterized by a set of parameters that controlled their social interaction dynamics and 

behavior over the course of the evolutionary process. That is, behavioral interaction 

between predators and prey were formalized as a set of dynamical equations, where 

adjusting parameters of these equations helped to yield different individual and collective 

behaviors over the course of many generations. Since it was difficult for the authors to 
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know which parameter values were relevant to the formation of which types of 

cooperative behaviors, changes in dynamical equation parameters and state variables 

were taken into account by the evolutionary process. The offspring of “winner” 

individuals inherited the behavior of their parents in form of slightly modified algorithms 

or parameters. Mutation in the evolutionary process was simulated via the addition of a 

small level of Gaussian noise to random sets of parameters. 

The authors executed several sets of experiments testing various pursuit evasion game 

scenarios and different parameter settings. For example, experiments were executed 

testing predators with adaptive behavior versus prey with fixed behavior, as well as 

predators with fixed behavior versus prey with adaptive behavior. From the first set of 

experiments, the authors observed that both predators and prey tended to group in loose 

probabilistic formations, and that there were certain random swarming dynamics that 

allowed both predators and prey to maximize their life expectancies. In the second set of 

experiments, where only the prey were adaptive, cooperative behaviors such as spatially 

disordered groupings, such as one-way marching, random swarming, lattice formation, or 

rotating clusters emerged. In the third set of experiments that introduced adaptive 

behaviors for predators and prey, similar though more complex forms of these collective 

behaviors emerged. From their experiments, the authors learned that the predators and 

prey were able to co-exist for the longest period of time when individuals of both species 

inherited a parameter responsible for the derivation of a cooperative behavior known as 

random swarming. In particular the random swarming formation in groups of predators, 

prevented predators from being able to synchronize their headings with groups of prey, 

and thus follow the same prey for extended periods of time. That is, over the course of 

the evolutionary process, the emergent random swarming formations decreased the 

chance of predators capturing prey, thereby minimizing the chance of extinction of both 

predators and prey. Given that the prey then had a lower probability of becoming extinct, 

they were more readily available to predators as a food source. Thus the predators also 

benefited from a reduced probability of extinction. 

In conclusion to their research, the authors related their results to natural predator-prey 

systems, by stating that similar results have been found in theoretical biological studies 

conducted on shoaling fish [70, 71]. These studies also reported cooperative group 
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behaviors that were loose probabilistic formations. Though, even in such biological 

studies the relevance of, and mechanisms leading to, emergent cooperative group 

behaviors, has yet to be established. In terms of linking their own experimental results to 

results of studies in biological predator-prey systems, the authors suggested that 

uncertainty in predator-prey dynamics observed in their own experiments could 

encourage mutually beneficial coexistence via phenomena such as “symbiosis”, as 

evident in certain biological predator-prey systems. That is, in natural systems spatially 

induced dynamic randomness is important for symbiosis, and in their own experiments 

the authors demonstrated emergent cooperative behaviors as an unstable dynamic without 

any explicit organization or structure. Although, interesting cooperative behaviors and a 

stable state in the system were attained by use of a finite set of equations running within 

an artificial evolution process, the key criticism of this research is that the evolved 

behaviors were limited by the grid-world environment and were somewhat devised by 

adjusting equation parameters prior to the execution of each evolutionary process. 

2.5 Summary 

In conclusion, this chapter describes background information and literature review related 

to cooperative multi-agent learning and emergent cooperation. The most relevant 

research examples were selected and reviewed. These examples use biologically inspired 

design principles as a means of motivating multiple agents to collectively solve a pre-

defined problem that could not otherwise be solved by an individual agent. The related 

research examples in pursuit domain were identified and selected based on results where 

emergent cooperative behavior had been achieved using biologically inspired design 

methodologies which made use of concepts such as self-organization, learning, and 

evolution.  

It is evident from the literature that the use of various forms of simulated artificial 

systems is considered by many researchers to be an effective approach in investigating 

emergent cooperation. Such simulations provide a means for studying conditions under 

which cooperation emerges, and the effects of parametric changes can be seen in a 

relatively short amount of time. 
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Chapter 3                                                

Evolutionary Computation 

Some of the most sophisticated existing programs are not human coded, they evolved 

naturally. They can be found inside the cells of living creatures in the form of DNA. 

These programs were coded by the process of natural selection as described by Charles 

Darwin and are responsible for the highly optimized systems that we see around us. It is 

not surprising therefore that the AI community has been active in trying to make use of 

the power of natural evolution to build both hardware and software. Evolutionary 

Computation (EC) is emerging as a new engineering computational paradigm. It is a 

search technique, which uses concepts and mechanisms of Darwinian evolution and 

natural selection to solve problems in many fields of engineering and science. The 

purpose of this chapter is to introduce EC in general and genetic network programming 

(GNP) in particular. 

3.1 Evolutionary Algorithms 

Evolutionary algorithms are a family of population based search algorithms that simulate 

the evolution of individual structures by interrelated processes of selection, reproduction, 

and variation. There is a variety of EAs that have been proposed and studied. They all 

share a common set of underlying assumptions but differ in the breeding strategy and 

representation on which EAs operate. 

Strong resemblance to biological processes as well as their initial applications for 

modeling complex adaptive systems influenced the terminology used by EA researchers. 

It borrows a lot from genetics, evolutionary theory and cellular biology. Thus, a candidate 

solution to a problem is called an individual while an entire set of current solutions is 

called a population. The actual representation (encoding) of an individual is called its 

genome or chromosome. Each genome consists of a sequence of genes, i.e. attributes that 

describe an individual. When individual solutions are modified to produce new candidate 
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solutions they are said to be breeding and the new candidate solution is called an 

offspring or a child. During the evaluation of a candidate solution, it receives a grade 

(value) called fitness, which indicates the quality of the solution in the context of a given 

problem. When the current population is replaced by offspring, the new population is 

called a new generation. Finally, the entire process of searching for an optimal solution is 

called evolution. 

Historically, four major EAs have been developed: evolution strategies (ES), 

evolutionary programming (EP), genetic algorithms (GAs), and genetic programming 

(GP). These algorithms have been mostly used to evolve solutions to parameterized 

problem domains. GA has the genome of string structure, while the genome in GP is the 

tree structure. Therefore GP can be applied successfully to many real problems where 

complicated programs are to be constructed to solve the problem. On the other hand, the 

fourth major EA developed recently, genetic network programming (GNP) [7], has been 

used to evolve computer programs to solve  computational tasks and has the genome of 

graph (network) structure. 

From the engineering point of view, EC can be understood as a search and optimization 

process in which a population of solutions undergoes a process of gradual changes. This 

process depends on the fitness (a formal measure of perceived performance) of the 

individual solutions as defined by the environment (objective function). 

A typical evolutionary algorithm consists of the following steps: 

1. Initialize the population 

2. Evaluate all members of the population 

3. While the termination condition is not satisfied 

 { 

    3.1 Select individual(s) in the population to be parent(s) 

    3.2 Create new individuals by applying the variation operators to the parent(s) 

    3.3 Evaluate new individuals 

    3.4 Replace some/all of the individuals in the current population with the new individuals 

 } 
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This Algorithm works as follows. Before an actual evolutionary process begins, an initial 

population of individuals (solutions) is created. Traditionally, the initial population is 

created randomly but several other initialization techniques have also been used (e.g. 

starting from a set of previously known or arbitrarily assumed solutions). Next, each 

individual in the initial population is evaluated and assigned a fitness value. Using the 

fitness values, the selection mechanism chooses a subset of the current population as 

parents to create new individuals. When the selection mechanism uses bias toward 

individuals with better fitness, the created offspring will, more likely, have higher fitness. 

Once the set of parents has been selected, the new individuals are created by copying 

them and applying variation operators.  

There are several commonly used selection strategies within EC community. Fitness 

proportionate selection (roulette wheel selection) normalizes the fitness values of all 

individuals in the population and assigns these normalized values as probabilities that 

their respective individuals will be selected. Ranked selection works by first ranking all 

individuals in the population by their fitness, and use these ranks, rather than actual 

fitness values, to determine selection probabilities of the individuals. The most popular 

selection strategy is the tournament selection which is used in this thesis. In this strategy, 

a pool of k individuals is picked at random from the population. Each of the individuals 

in the pool is selected independently and it might be the case that the same individual will 

be selected multiple times. Next, an individual from the pool with highest fitness value is 

selected to form the new population. This procedure is repeated as many times as 

necessary to create either an entirely new population or a subset of it. Selection pressure 

is easily adjusted by changing the tournament size. If the tournament size (k) is larger, 

weak individuals have a smaller chance to be selected.  

The two most popular variation operators are mutation and crossover. Mutation acts on a 

single individual and works by applying some variation to one or more genes in the 

individual chromosome. Crossover, on the other hand, operates on multiple individuals 

(usually two) and combines parts of these individuals to create new ones. The newly 

created individuals are evaluated and assigned fitness values. After variation process, 

either all or only a subset of the current population is replaced by these new individuals.  
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The steps 3.1 through 3.4 of the EA are repeated until an assumed stopping criterion is 

met. This criterion is usually defined as reaching a predefined number of generations or 

obtaining an individual with satisfactory fitness. This model of GA is called generational 

(standard) genetic algorithm. 

3.2 Genetic Programming (GP) 

Genetic Programming is technique for automatically programming computers. It searches 

the space of possible computer programs to find suitable programs to solve the desired 

problem. Koza [5] suggested that a tree structure should be used as the program 

representation in a genome to overcome the problems of GA. Koza [5], however, was the 

first to recognize the importance of the method and demonstrate its feasibility for 

automatic programming in general. In his 1989 paper, he provided evidence in the form 

of several problems from five different areas. 

The tree type genome of typical GP is shown in Figure 7. GP consists of one root node 

and a number of non-terminal nodes and terminal nodes, where non-terminal nodes are 

used as functions such as arithmetic function, Boolean function, and conditional 

statements and so on. Terminal nodes contain the inputs to the GP program which are 

used for a particular processing which depends on the problems concerned. GP can be 

used to generate the behavior sequences of dynamic agents in which agent action 

sequences can be obtained by processing the nodes of the tree starting from the root node.  

 

 

 

 

 

 

 Figure 7. Typical tree structure of a GP program. 
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There two genetic operators, which are used in GP. These operators are crossover and 

mutation. Figure 8, shows GP mutation which is to select a point in the tree randomly and 

replacing the existing sub-tree at that point with a new randomly generated sub-tree.  

 

 

 

 

 

 

 

 

Figure 9, shows GP crossover which is to swap the selected subtrees between the two 

parents. GP evolves a population of programs in parallel. The driving force of this 

simulated evolution is some form of fitness-based selection. Fitness-based selection 

determines which programs are selected for further improvements 

 

 

 

 

 

 

 

 

 

 

Figure 8. GP mutation 

Figure 9. GP crossover 
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3.3 Genetic Network Programming (GNP) 

In this section, Genetic Network Programming (GNP) is explained briefly. GNP is an 

extension of GP in terms of gene structures. The original idea is based on the more 

general representation ability of directed graphs than that of trees. Compared to GP, GNP 

can find solutions for problems without bloat because of fixed number of nodes in GNP. 

Bloat is a problem, which is highlighted by GP, and it is the uncontrolled growth of the 

average size of an individual in the population, and it will be explained in detail in 

section 3.5. In addition, GNP has built-in memory functions which implicitly and 

preserve agent's actions as a chain of events and makes it a better approach to 

automatically program agents. 

3.3.1 Basic Structure of GNP 

The basic structure of GNP is shown in Figure 10. An individual of GNP has a directed 

graph structure which is consisted of three kinds of nodes: "Initial Boot node", "Judgment 

nodes" and "Processing Nodes". In Figure 10, the initial boot node, the judgment node 

and the processing node are denoted by square, diamond and circle respectively. The 

initial boot node is the node which is executed only when GNP starts. Initial boot node is 

an origin for node transitions and has no functionality. The Processing node is the 

smallest unit describing agent's actions to environment whereas the judgment node is the 

smallest unit describing how to judge the environment the agent senses. Each judgment 

node has several judgment results, which corresponds to the number of its outgoing 

branches. Each processing node has only one outgoing branch. Judgment nodes and 

processing nodes have their "Function Label" in a library which is prepared by the system 

designer in advance. If we assume there are P types of processing nodes, their function 

label varies from 1 to P and when there are J types of judgment nodes, their function 

label varies from 1 to J. 
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3.3.2 Chromosome Representation 

As shown in Figure 10, GNP can be illustrated by its "Phenotype" and "Genotype". 

Phenotype shows the directed graph structure and genotype provides the chromosome of 

a GNP individual which is a set of the gene of nodes. In Figure 10, NIDi shows the gene 

of node i in which all variables are integers. NTi describes the node type, NTi = 0 when 

the node i is initial boot node, NTi = 1 when the node i is a judgment node and NTi = 2 

denotes a processing node. NFi describes the function label (Judgment node: {1,2,…,J}, 

Processing node: {1,2,...,P}). Cik indicates the node number to which node i's k-th branch 

is connected. di means the delay time needed for processing and judgment at node i and 

dij means the delay time for moving from node i to j. These delay times have been 

introduced to model GNP like human brain, which needs the time for thinking. When the 

accumulated time delay exceeds the "Time Delay Threshold Value" which is a 

determined in advance, GNP fails in operating in the desired time [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Basic structure of GNP 
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3.3.3 Genetic Operators in GNP 

Selection, mutation and crossover are carried out as genetic operators in GNP. 

1) Selection: Selection is the operation of selecting an individual which serves as parents 

of the next generation, according to the degree of fitness. The fitness shows the quantity 

of how each individual adapt itself to environment. 

In GNP, the commonly used selection operators in evolutionary computations can be 

used and their algorithms are the same as conventional evolutionary computations. In this 

research, "Tournament Selection" and "Elite Preservation” are used. 

2) Mutation: Mutation operates on only one network and new offspring is generated as 

follows. 

• A network is selected using selection method. 

• Some branches are selected randomly for mutation with the probability Pm. 

• The selected branches are changed randomly and new offspring is generated. 

Figure 11, shows an example of mutation in GNP. 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. GNP Mutation 
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3) Crossover: Crossover is executed between two networks called parents and generates 

two offspring as follows. 

• Two parent individuals are selected using selection method. 

• Corresponding nodes with the same node number are selected as crossover 

nodes with probability Pc. 

• Two parents exchange the selected corresponding nodes having the same node 

number and two new offspring are generated. 

This type of crossover is called uniform crossover. Figure 12, shows an example of 

uniform crossover in GNP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.4 Algorithm of GNP 

The algorithm for GNP evolution process is explained in following and it is illustrated in 

Figure 13. 

Figure 12. GNP crossover 
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1) [Initialization]: Initialize the population with Np randomly generated individuals. 

2) [Fitness evaluation]: Calculate the fitness value of each individual and find an 

elitist. 

3) [Genetic operations]: 

    3-1) Selection: Select parents for crossover by the tournament selection. 

    3-2) Crossover: Apply the crossover operator to the selected parents. 

    3-3) Mutation: Apply the mutation operator to the connection gene. 

    3-4) Elite strategy: Preserve the elitist individual found in Step 2 or Step 5. 

4) [Replacement]: Replace the newly generated population with the previous one. 

5) [Fitness evaluation]: Calculate the fitness value of each individual and find an 

elitist individual. 

6) [Termination condition]: Terminate the algorithm if the specified condition is 

satisfied. Otherwise return to step 3. 

 

 

 

 

 

 

 

 

 

 

3.4 Evolutionary Computation and Engineering Design 

Recently many studies have been made on automatic design of the complex systems by 

using EA techniques. Much of the work on engineering applications has taken place 

using EA algorithms for design optimization. 

 

Figure 13. GNP algorithm 
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The three main issues in applying EAs to an engineering design problem are: 

1. Selecting an appropriate representation for engineering designs. 

2. Defining efficient genetic operators. 

3. Providing an adequate evaluation function for estimating the fitness of 

generated solutions (points in the search space). 

An appropriate representation of an engineering system is one of the most crucial 

elements of evolutionary design. The process of creating an efficient and adequate 

representation of an engineering system for evolutionary design is complicated and 

involves elements of both science and art. 

One has to take into account not only important aspects of understanding traditional 

modeling of an engineering system, but also relevant computational issues that include 

search efficiency, scalability, and mapping between a search space (genotypic space) and 

a space of actual designs (phenotypic space). 

Appropriate choice and implementation of genetic operators, i.e. mutation and crossover 

operators, and careful tuning of their rates is an important issue as it can have a big 

impact on the success of EAs and has therefore been a subject of both theoretical [38] as 

well as experimental investigations [33, 34, 35]. Genetic operators are primary sources of 

exploration in EAs. On the other hand, selection mechanisms provide EAs with 

exploitative power. Thus, by properly defining and controlling the variation mechanisms 

(genetic operators), one can achieve a higher level goal of finding ‘‘an effective balance 

between further exploration of unexplored regions of the search space and exploiting the 

regions already explored’’ [42]. 

Another important issue in successful application of EAs is how to choose an adequate 

fitness evaluation function for a problem domain. Evaluation functions provide EAs with 

feedback about the fitness of each individual in the population. EAs use this feedback to 

bias the search process in order to improve the population’s average fitness. Naturally, 

the details of a particular fitness function are problem specific. 
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3.5 Evolving Intelligent Agent using GP and GNP 

A large number of studies have been made on automatic design of behavior sequences for 

agents, such as the design of the behavior sequence to carry out some tasks in the virtual 

world, the experiments of creating artificial life aiming to realize the behaviors of ants or 

fishes, the planning for real mobile robots which have a simple object in the real world, 

and so on [34, 35]. Many models to express such behavior sequences for agents have 

been proposed, and they have used evolutionary optimization techniques such as Genetic 

Algorithm (GA), Evolution Strategy (ES), Evolutionary Programming (EP) and Genetic 

Programming (GP) to acquire their desired structures. As a rule, the planning of behavior 

sequences for agents takes enormous searching time, nevertheless the acquired plan have 

poor ability in terms of adjustability in dynamic environments. But, the real world is in a 

dynamic environment of high dimensions. So, it is highly expected to develop a method 

of planning that can achieve given missions efficiently regardless of their surrounding 

environments. A great deal of efforts has been made on the planning of behavior 

sequences especially by using GP and EP. The characteristics of these methods are trying 

to generate behavior sequences making much of ‘what should the agent do now’ using all 

surrounding circumstances. On the contrary, in GNP, the planning of the behavior is 

regarded as a sequential stream and makes much of ‘how have the agents behaved or 

what have the agents judged up to this time?’ using only some information which seems 

to be needed at the time. Therefore, it seems that the proposed method is likely to more 

resemble the functions of the brain of real creatures than other methods. 

3.6 Comparison between GP and GNP 

GP’s enormous freedom of representation is a mixed blessing. With such a huge search 

space, an algorithm might have to search for a long time. Therefore, it is generally said 

that GP is sometimes difficult to search for an optimal solution, because the searching 

space for solutions become enormous, due to a phenomenon called bloat which is the 

main reason that searching efficiency of GP is not very high in most of cases.  

Bloat is a problem, which is highlighted by GP, and it is the uncontrolled growth of the 

average size of an individual in the population. In other words, after some generations 

(typically below one hundred), the search for better programs halts as the programs 
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(trees) become too large and searching space becomes enormous. The drawbacks of 

bloating are as follows: 

• Bloated trees occupy a large amount of memory. 

• Bloated trees are computationally intensive and slow down the system. 

• Bloated trees are often more difficult to modify in meaningful ways. 

The most common approach on how to deal with bloat in tree-based genetic 

programming individuals is to limit their maximal allowed depth. Also, a common 

alternative to limit the depth is to punish individuals in some way based on excess size. 

On the other hand, genome structure in GNP is a network which enables GNP to 

construct problem-oriented compact genome. Given the network structure in GNP too 

many transition functions need not be installed due to the fact than an appropriate number 

of problem-oriented judgment nodes and processing nodes are set in the network. 

Therefore, the bloat phenomenon is completely eliminated in the GNP approach.  

3.7 Summary 

This chapter introduced evolutionary algorithms and described how they work. First, GP 

was introduced as the most popular example in evolutionary algorithms. Then, GNP was 

presented as a newly developed evolutionary algorithm based on GP and its advantages 

over GP such as  search efficiency  and searching without bloat. It was shown that we can 

see GP and GNP from two different perspectives. From a pure machine learning 

perspective they are general techniques that allow a machine to learn how to solve a 

given task from training examples (the test cases) and from an engineering design 

perspective they can be used for automatic design of behavior sequences for agents in a 

multi-agent environment. 
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Chapter 4                                                  

Pursuit Problem 

The pursuit domain was introduced by Benda et al. [42]. Over the years, researchers have 

studied approaches on several variations of its original formulation. This domain is an 

appropriate environment to illustrate MAS since it has been studied using a wide variety 

of approaches and it has different instantiations that can be used to illustrate different 

multi-agent scenarios. Since it involves agents moving around in a world, it is 

particularly appropriate as an abstraction of robotic MAS. The pursuit domain is not 

presented as a real-world domain, but rather as a toy domain that helps concretize 

complex concepts in real MAS. 

4.1 Introduction 

The pursuit problem (also called the Predator/Prey problem) is a well-studied benchmark 

for Distributed Artificial Intelligence (DAI) research. Benda et al [42] formulated the 

original problem definition as consisting of four predators that need to capture a single 

prey. The predators and the prey are situated on a two dimensional world consisting of 

cells (Figure 14). Movement in this world, is possible in orthogonal directions only, and 

takes the agents from one cell into another (Figure 15a). The goal for the predators is to 

move so as to capture the prey (Figure 15c). To capture the prey, the predators must 

occupy all cells immediately adjacent to the prey (which we call capture positions Figure 

15b). Many variations to the original definition have been devised by changing key 

domain parameters, these parameters are described in below and listed in Table 1.  

Capture condition: In its original setting, a prey is captured when all its adjacent cells 

are occupied by predators. Other possible capture criteria are surrounding the prey with 

two predators or occupying the same cell as a prey. 
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Visible range: This denotes the number of cells from which a predator receives sensory 

information. Preys and predators that are outside this range are not visible. 

Communication: An important variation is whether the predators are allowed to 

communicate with each other and in this way be able to inform other predators of their 

strategies or sensory findings. 

Legal moves: Originally, an agent was only allowed to move to adjacent cells. A possible 

variation is to also include diagonal movements. 

Grid size: The size of the world can be changed to different sizes. Furthermore, the 

world can be made planar (with borders on all edges) or toroidal. In the latter case the 

agents can directly move from one side of the grid to the other side. 

Simultaneous or sequential movement: This variation indicates whether the agents 

move at the same time or one after the other. 

Prey movement: In most variations the prey moves randomly. Other variations would 

allow the prey to be more sophisticated and actively try to escape capturing 

 

 

 

 

 

 

 

 

 

Figure 14. Pursuit domain consists of a two dimensional (usually toroidal) world in 

which four predators must try to capture the prey by surrounding it. 
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Table 1. Pursuit Domain Parameters 

Parameters  Examples 

Grid size finite, infinite 

Grid shape square, hexagonal, continuous, toroidal, edged 

Capture definition prey surrounded, predator on same square as prey 

Legal moves orthogonal only, diagonals permitted 

Movements agents take turns to move, agents move simultaneously 

Sensors what can be sensed, by whom and from how far away 

Predator communication permitted, disallowed, range, implicit, explicit 

Prey movements random, stationary, deterministic 

Predator/Prey number 1/4, 2/6 

 

In the pursuit domain usually the prey moves randomly, and is slower than the predators 

(usually implemented by ensuring the prey is stationary some percentage of the time). In 

most of the implementations, only one agent may occupy a cell at a time, and therefore 

conflicts can occur if one or more agents try to occupy the same cell (in Figure 15d 

agents 0 and 1 are in conflict).  

 

 

 

 

 

 

 

 

 

Figure 15. Pursuit domain rules; a) movement is restricted to orthogonal directions, b) capture 

positions are cells immediately adjacent to the prey, c) the prey is captured when all capture 

positions are occupied by predators, d) conflicts occur when one or more agents try to occupy the 

same cell. 
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The pursuit domain with different grid shapes and capture definitions are illustrated in 

Figure 16. 

 

Figure 16. Pursuit domain with different grid shapes and captures definitions 

 

Several researches have been conducted in the pursuit domain with different 

methodologies. But the one which is related to our research is the one which was 

performed by Haynes et al [50, 51]. They used GP to evolve homogeneous predator 

agents for the pursuit domain. The agents in their version of the pursuit game move 

concurrently. Agents that try to move to the same cell are bumped back to their original 

position. A predator may push another predator out of the cell which it occupies if it 

decides not to move. However this push operator is not available in the function set 

presented to the GP system. This form of conflict resolution therefore is executed by the 

environment rather than the agents. They use a 30 x 30 toroidal, orthogonal game board, 

in which the agents can move orthogonally or stay still, and randomly generated training 

test cases consisting of the prey in the center and the predators placed randomly. The prey 

moves at 90% of the speed of the predators. They used a STGP (Strongly Typed Genetic 

Programming) system to allow functions and terminals of different types to be combined 

in one tree, which they argue reduces the search space. They demonstrated that the latter 

is superior to standard GP applied to this domain through comparison experiments.  

Their trees return the direction to move, which can be any of North, East, South, West or 

Here (random instances of which are generated as constants in the terminal set). Here 

indicates that the agent is to stay put. They provide a function called CellOf which takes 

two parameters, the first being an agent, and the second a compass direction (tack in their 
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terminology), and return the cell that is positioned in the specified tack relative to the cell 

occupied by the specified agent. The terminal set includes a reference to the prey and 

current predator. Other functions that they use include IfThenElse, and MD, where MD 

returns the Manhattan Distance (MD) between the two cells that are provided as 

arguments. The fitness function that they employ awards agents for getting close to the 

prey, with further bonuses for occupying capture positions, and capturing the prey. They 

used 100 time steps in their training. 

4.2 Simulation environment 

In order to carry out the experiments in this thesis, a well-known software package 

named Pursuit_package-0.9 [44] is used which is an open source package and it is 

available online. This package which is developed in 2004 by Jelle Kok [44], simulates 

the pursuit domain and runs under Linux. Figure 17, shows a snapshot of the pursuit 

domain implemented by this package in which the size of the environment is 10*10. 

Traditionally, the predators are blue and the prey is red. 

 

 

 

 

 

 

 

The pursuit package consists of the following components: 

1. Pursuit server: This is the core program of the package. It models the complete 

environment and handles the connections with the client programs. 

2. Monitor: The monitor can be used to display the current world state of the pursuit 

server. After a monitor is started, it creates a connection with the server and then 

Figure 17. Pursuit package environment 
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starts to receive information about the current world state. The monitor visualizes 

this information. 

3. Agents: The agents (both predators and prey) also create a connection with the 

server and then start to receive sensory information. Furthermore, they can sent 

actuator commands to the server, which causes the world to be updated 

accordingly. 

4. Logplayer: If the related option is turned on, the pursuit server logs all the 

subsequent world states to a file. The logplayer can be used to replay the contents 

of this file. A monitor is needed to visualize the current contents of the logplayer. 

 

The agents (either predators or preys) can be started by connecting them to the server 

process. A skeleton implementation is shown for both a predator and prey agent in Table 

2. It takes care of all communication with the server and defines several callbacks 

functions in which the behavior of the agent can be defined. 

Table 2. The client structure showing the response to different server messages 
 

 

{Client structure} 

continue = true 

while continue == true do 

receive message from server 

if message == (quit) then 

continue = false 

else if message starts with (see then 

processVisualInformation() 

if determineCommunicationCommand() is not the empty string then 

send communication message 

end if 

else if message starts with (hear then 

processCommunicationInformation() 

else if message starts with (send action then 

determineMovementCommand() 

send movement command to the server 

end if 

end while 
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In this thesis each agent has its own independent process and there is one identical agent 

per predator. So they have identical capabilities and decision procedures. Agents have 

(the same amount of) limited information about other agents’ internal states. These kinds 

of agents are called homogeneous. The pursuit domain with homogeneous agents is 

illustrated in Figure 18. 

 

 

 

 

 

 

 

 

On the other hand, there is heterogeneous pursuit domain. As in the previous scenario, 

the predators are controlled by separate agents. But they are no longer necessarily 

identical agents: their goals, actions and domain knowledge may differ. The pursuit 

domain with heterogeneous agents is illustrated in Figure 19. 

 

 

 

 

 

 

 

 

Figure 18. The pursuit domain with homogeneous agents  

Figure 19. The pursuit domain with heterogeneous agents  
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4.3 Conflict and Conflict Resolution 

In the pursuit domain conflicts (collision) arise when one or more agents try to occupy 

the same cell. If such conflicts are not resolved, then they can result in deadlock. Just as 

in concurrent and distributed systems, there are two ways of handling deadlocks in the 

pursuit domain; deadlock avoidance, and deadlock detection and resolution. Deadlock 

avoidance is the simplest and most effective approach that we can employ. Here the 

predators will need to coordinate their movement to eliminate or minimize conflicts. 

Deadlock detection and resolution is far more complex. Agents in conflict must first be 

able to detect the conflict and then coordinate their behavior so as to resolve it. We note 

that in much of the research above, conflict resolution has been avoided by providing 

environmental mechanisms for resolving conflicts or avoiding them. Examples include 

the ordered execution of moves used by Stephens [72] and Korf [43], and the implicit 

push operator used by Haynes et al [51].  

In our experiments in this thesis we used the same conflict resolution mechanism as 

Hayens et al [51] used. All agents choose their action simultaneously, the world is 

accordingly updated by using some conflict resolution, and the agents choose their 

actions again based on the updated world state. Conflict resolution means, we do not 

allow to agents to co-occupy a position. If two agents try to move to the same location 

(square) simultaneously, they are bumped back to their prior positions. One predator, 

however, can push another predator (but not the prey) if the latter decided not to move. 

These three conflict conditions are illustrated in Figure 20. 

Figure 20. Conflict conditions: a) Agent 0 tries to move to a cell occupied by agent 1, 

b) Agents 0 and 1 try to exchange positions, c) Agents 0 and 1 try to move to the same 

cell. 
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4.4 Summary 

In this chapter first we described the pursuit (also called predator/prey) problem in detail. 

Then the Pursuit_Package [44], used for simulating the multi-agent experiments in this 

thesis was presented. This software is an implementation of the pursuit domain. It is has a 

client-server architecture and is run under the Linux operating system. Many aspects of 

the package are configurable, making it possible to test different variations of the pursuit 

problem. Finally the concepts of conflict (collision) and conflict resolution in pursuit 

domain are described and illustrated. 
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Chapter 5                                                 

The Proposed Methodology for Pursuit 

Problem 

The pursuit problem described in the previous chapter is a well-known domain in the 

multi-agent systems (MAS) community and the cooperation of predator agents is highly 

required to achieve their goal. Moreover, it is known as an easy-to-describe but difficult-

to-solve problem and since many researches have conducted their experiments in this 

domain, it is an appropriate benchmark to evaluate and compare different solutions.  

In this chapter, we design and develop a methodology using a relatively new evolutionary 

computation technique called Genetic Network Programming (GNP) to automatically 

evolve teamwork and cooperation among predator agents in the pursuit domain in order 

to capture the prey agent as soon as possible. The results of our approach are presented in 

the next chapter and are compared to those of Genetic Programming (GP), the most 

popular evolutionary approach. 

The use of evolutionary computation to exploit emergent cooperation is a relatively 

unexplored area of research in the pursuit domain and GNP has been only tested in a few 

specific domains; its performance and success need to be examined in other various 

domains. Therefore, in this thesis we have tried to apply GNP to evolve cooperation and 

teamwork among agents in order to address this research gap.  

 

 

 

 



 

52 

 

5.1 Design Phases  

This section demonstrates the design of our proposed GNP-based system to solve the 

pursuit problem. It is worth mentioning that there is one leaner involved and it discovers 

the behaviour for all predator agents, thus our approach is categorized as team learning. 

Furthermore all the predators have identical GNP programs (graphs), therefore they are 

homogenous and it concludes that we are designing a homogenous team learning 

methodology. There are four major phases required to design a GNP based methodology 

for a specific domain: 

1) Designing a suitable fitness function, 

2) Assigning appropriate values to the running parameters, 

3)  Choosing a suitable termination condition  

4) Designing appropriate judgment and processing nodes for the GNP agent 

architecture.  

These steps will be presented respectively in the following sub-sections. 

5.1.1 Fitness Function 

The fitness function should be defined in such a way that will separate better individuals 

from worse by assigning suitable fitness values. Thus defining an effective fitness 

function specifically designed for a domain is a crucial part in designing a GNP-based 

methodology. 

Table 3 illustrates the fitness evaluation pseudo code for the pursuit problem as it is used 

in this thesis. After each cycle we measure the Manhattan Distance (MD) between each 

of the agents and the prey - the sum of which is added to the current fitness value. After 

each simulation we provide further rewards for each agent still occupying a capture 

position, and add yet a further bonus if the prey is captured. Therefore, this fitness 

function rewards movement close to the prey, with bonuses for occupying capture 

positions and a further bonus for capturing the prey. Manhattan distance (MD) between 

two agents A1 and A2 is defined as follows: if agent A1 is in the square ( 1x , 1y ) and 
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agent A2 is in square ( 2x , 2y ) then their MD is calculated by the following formula: 

|12||12|)2,1( yyxxAAMD  . 

Table 3. Fitness Evaluation Pseudo code for the Pursuit Problem 

 

5.1.2 Running Parameters 

Running parameters are those which control the way the evolutionary process of the GNP 

system is tuned and should be initialized before the program starts running. They are one 

of the most important stages in designing a GNP-based system, and their value depends 

on the domain and the specific addressed problem. If these values are not well defined the 

evolutionary process will not converge to an optimal or sub-optimal solution. So the GNP 

evolutionary process should be calibrated with appropriate values for these parameters 

and the only way to reach reasonable values is by the trial and error method.  

The values for the parameters used in this thesis are shown in Table 4. It should be 

mentioned that we were successful in obtaining reasonable results with these values yet 

are they optimal and could we get better results with other values? This still remains an 

unanswered question and further research is required.  
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In Table 4, the term elite signifies the fittest individual of a population. GP and GNP 

usually use elite preservation strategy to preserve a number of best individuals created in 

a population and directly transfer them to the next population. In this thesis we merely 

keep one elite individual and transfer it directly to the next generation without, any 

changes to its chromosome. 

 

Table 4. Parameter specification 

Parameter Value 

Population size  200 

Tournament size 5 

Elite size 1 

Number of generations 50 

Crossover probability Pc 0.9 

Mutation probability Pm 0.01 

Number of nodes per kind 1 

di and dij 0 

 

5.1.3 Termination Condition 

The evolutionary process of a GNP system should terminate somewhere. In order to have 

an efficient system, a good termination condition is needed to stop the algorithm. A 

Termination condition can be chosen by one the following criteria depending on the 

environment and design of the GNP system.  

1. The algorithm stops when an individual is found to have a fitness value more than 

the predefined threshold. 

2. The algorithm stops when the number of generations reaches a predefined 

number. 
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In this thesis we have chosen the second criterion based on our environment and other 

researchers’ experiences. For Instance, our evolutionary process stops when the number 

of generations reaches 50 and it stops after 100 generations in experiments where there is 

no conflict resolution mechanism. 

5.1.4 Agent Architecture 

As mentioned earlier, the GNP-based agents have graph architecture. Other than the 

initial boot node (IBN) which is common in all GNP graphs, each GNP graph has its own 

unique set of judgment and processing nodes depending on the problem and the way the 

GNP system is designed to solve that problem. In this subsection we are going to explain 

the judgment and processing nodes and their characteristics used in our GNP graph for 

the pursuit domain experiments. 

 Processing nodes 

The processing nodes are MN, MS, ME, MW and SH. These nodes determine actions 

which predator agents can execute in the environment. When MN (Move North) is 

executed, the agent moves north, when MS (Move South) is executed, it goes south. ME 

(Move East) is for moving east and MW (Move West) is for going west. In addition when 

SH (Stay Here) is carried out, the agent stays still and does nothing. Each processing 

node has only one outgoing branch. Therefore, when the processing nodes are executed, 

the next node is uniquely determined in accordance with their connection. 

 Judgment nodes 

The judgment nodes are CNC, CSC, CEC, CWC and FP. These nodes act as decision 

functions dealing with the specific inputs from the environment. CNC (Check North Cell) 

checks the north cell of the predator agent and has three judgment results (Floor, 

Predator, and Prey). CSC, CEC, CWE are for checking south, east and west cell of the 

predator agent respectively and they have three judgment results as well. FP (Find Prey) 

finds the approximate direction of the prey with respect to the predator and has four 

judgment results (North, South, East, West). Note that in our design, the function label 

numbers for processing and judgment nodes is the order in which they appear in Table 5, 

e.g., the function label of CNC and MN is 1, CSC's and MS's is 2 and so forth. 
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5.2 Summary 

In this chapter, a methodology for evolving cooperation among predator agents in pursuit 

domain is presented. This methodology is based on genetic network programming and  is 

actually the first time that GNP has been applied to evolve cooperation among agents in 

pursuit domain. Our methodology is concerned with analysis and design and of course 

the implementation of a GNP-based system in the pursuit domain which is capable of 

evolving teamwork and cooperation- technically called emergent cooperation.  

There are four major phases required to design a GNP based methodology for a specific 

domain which are presented and described in this chapter. These involve defining the 

following: 

1) Designing a suitable fitness function, 

2) Assigning appropriate values to the running parameters, 

3) Choosing a suitable termination condition  

4) Designing appropriate judgment and processing nodes for the GNP agent 

architecture. 

Table 5. Proposed judgement and processing nodes for the GNP graph  
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Chapter 6                                               

Simulation Results and Discussion 

In this chapter, we evaluate the proposed methodology and show that GNP can be used to 

evolve teamwork and cooperation strategy among multiple agents in a multi-agent 

system. Furthermore the results are compared with the GP approach, illustrating that the 

performance and learning speed of a GNP solution is more than the GP, while its 

computation cost is less. Also, we attempt to explain the superior outcome results for 

GNP. Finally, it is analytically shown why the GNP approach is significantly superior to 

GP in terms of computational cost and bloating. 

6.1 Introduction 

In this thesis several experiments are conducted on the pursuit domain and the main goals 

are as follows: 

1. Gaining the knowledge of how to use GNP as a new methodology to evolve 

cooperation strategy among multiple agents. 

2. Design and development of a GNP-based system for pursuit domain. 

3. Showing how our proposed methodology is successful and effective. 

4. Implementing the best GP tree evolved in Haynes experiments for the pursuit 

domain and comparing its performance with the best GNP graph, evolved in our 

experiments. 

5. Examine the ability of proposed methodology in devising a conflict resolution 

mechanism for the predator agents. 

6. Mathematically proving the superiority of GNP to GP in terms of computation 

costs. 
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6.2 Simulation Environment Settings 

As mentioned in Table 1, the pursuit domain can be customized by a couple of 

parameters and the values for such parameters in our experiments are listed in Table 6.  

Table 6. Environment parameters and their values  

Parameters  Values 

Grid size finite 

Grid shape toroidal 

Capture definition prey surrounded 

Legal moves orthogonal only 

Movements agents move simultaneously 

Sensors the whole environment 

Predator communication disallowed 

Prey movements random 

Predator/Prey number 1/4 

 

6.2.1 Cycle and Episode 

While working with pursuit domain, we encounter the concepts of cycle and episode. 

These concepts as used in Jelle Kok’s pursuit package [49] are as follows: Time is 

divided into cycles. Each cycle consists of different stages in which either the prey or the 

predators are allowed to communicate with the server, and once a cycle is passed the 

predators will make just one move simultaneously after the prey moves. Note that a 

predefined number of consecutive cycles is called episode.  

Table 7 displays all stages that the server uses. At the beginning of a cycle, visual 

messages are communicated to the prey after which the prey has time_step ms to send a 

communication message to the. Once this period has elapsed, the server communicates 

the (send_action episode_nr cycle_nr) message to the prey to indicate that the 

communication period is over and they now can send their movement command to the 

server. When time_step ms once again have elapsed the sending period is over and the 

prey on the field is updated according to the received movement commands. Now it is 

predators’ turn, and the whole procedure repeats itself. The predators thus move 

simultaneously after the prey has moved. 
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Table 7. Description of the different stages of the server during one cycle 

 

6.2.2 The Pursuit Rules  

Our pursuit games were designed to maximize the probability of conflicts, and reduce 

inadvertent resolution of conflicts (those that occur due to the movement of the prey). 

The rules of our pursuit games were as follows: 

Goal: To capture the prey by occupying each of the four orthogonal positions around the 

prey and maintaining these positions throughout the rest of the simulation. 

 A simulation lasts for 100 cycles 

 A new simulation is run for each test case 

 For each simulation cycle, each agent is allowed one move 

 The moves can be any one of North, East, South, West or Here 

 Here is used by an agent to forfeit its move and remain still 

 All of the agents move concurrently so that there is no ordering of moves 

 The randomly moving prey moves 90% of the time. 

 No two agents can occupy the same cell 

 In a case of conflict, agents involved will have their moves cancelled  
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 Collisions occur when: 

1. One or more agents try to move to a cell that is already occupied  

2. Two adjacent agents try to exchange cell positions  

3. Two or more agents try to move to the same cell  
 

6.2.3 Architecture of GP Trees 

In this section we introduce the function and terminal sets used in Haynes [50] GP 

system. This is illustrated in Table 8 and for further information we suggest to study their 

papers [50, 51]. 

 

Table 8. Function and terminal sets used by Haynes  

 

 

6.3 Experiment 1: Implementing and Applying Haynes Best GP Tree 

Haynes et al [50] designed and developed a GP based system to evolve cooperation 

strategy for homogenous predator agents in the pursuit domain. They were successful in 

defining a set of function and terminal nodes and evolving a GP tree for the predator 

agents to capture the prey. Their results were competitive with the hand-coded algorithms 

for the pursuit domain. After their research this GP system became one of the core 

approaches in the community which uses a machine learning technique to evolve a 

cooperation strategy in the pursuit domain. For this reason we used their best evolved tree 

as a benchmark for our GNP network. Figure 21 shows the best evolved tree in Haynes 

GP system. 
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The goals sought in this experiment were as follows: 

1. To become familiar with the pursuit domain and get a hands-on experience with 

the simulation package developed by Jelle Kok [49]. 

2. To investigate how to design and implement homogenous agents. 

3. To implement the conflict resolution mechanism as it was proposed by Haynes. 

4. To see the practical results of a GP technique in coordinating agents in the pursuit 

domain. 

5. To know why Haynes used the set of function and terminal nodes introduced in 

Table 8. 

6. To use the results of this experiment as a benchmark to compare with the one in 

GNP technique. 

This GP tree was tested in the pursuit domains with the 15*15 and 30*30 grid size. The 

results are shown in Table 9 and Table 10 respectively. 

 

Figure 21. The best GP program evolved by Haynes 
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. The fitness and number of captures for the best GP tree in 15*15 grid size 9Table  

Number of Captures (out of 

100 test case) 

Fitness Run # 

72 5224 1 

92 5524 2 

93 5234 3 

90 5544 4 

74 5242 5 

81 5243 6 

77 5634 7 

85 5222 8 

79 5254 9 

84 5233 11 

82,7 4322,2 Average 

 

The fitness and number of captures for the best GP tree in 30*30 grid size . 11Table  

Number of Captures (out of 

100 test case) 

Fitness Run # 

61 8418 1 

49 8187 2 

62 8382 3 

69 8445 4 

53 8081 5 

71 8657 6 

53 8164 7 

74 8559 8 

58 8232 9 

59 8251 11 

60,9 8337,6 Average 
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As illustrated in the tables, the GP tree is executed 10 runs to increase the accuracy and in 

each run there are 1000 episodes (each episode includes 100 cycles). Next, the average 

value is calculated for the fitness and the number of captures. 

When comparing the average results for both environments, we observed that the average 

number of captures in an episode decreased as the grid size increased. 

6.4 Experiment 2: The Proposed GNP Methodology Applied on 15*15 Grid Size 

In this experiment we used the GNP graph made from the judgment and processing nodes 

which were introduced and defined in section 5.3.1. The predator agents use the best 

evolved graph by our proposed GNP methodology to determine their moves. For training 

purposes, we used 30 training test cases. In all of cases, the prey is positioned in the 

middle of the environment. The size of the grid is 15*15. The value for the fitness of an 

individual is determined by getting the average of the fitness for those 30 test cases. The 

agents use the conflict resolution mechanism mentioned in chapter 4.3. All the predator 

agents execute the same code and are identical, hence homogeneous. Predator agents can 

sense the entire world. 

6.4.1 The Evolved Graph 

The genotype of the best evolved graph for the 15*15 environment is shown in Figure 22. 

In this graph all the delays are assumed zero. All of the four predator agents run this 

graph as their program. Evolution of this graph and predators ability to capture the prey 

by using this graph proves that our proposed methodology is successful and effective in 

this environment. 

 

 

 

 

 

 

Figure 22. Genotype of the best evolved graph for the 15*15 environment 
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6.4.2 Results 

Figures 23, 24 and 25 illustrate the fitness graph for the best, average and worst 

individuals during the 50 generations of the experiment. 

As predicted the individuals in the first generation have low fitness since they are 

generated randomly. The desirable graphs start to appear from the 30
th

 generation. Figure 

23, has a step-shape graph since the elite preserve strategy is used. Figure 24, has a 

patterned curve illustrating the learning process. Figure 25, has a couple of spikes which 

show that genetic operators will not invariably improve performance and it is possible 

that they decrease the fitness. 

 

 

Figure 23. Fitness curve of the best individuals in the 15*15 environment 

 

 

Figure 24. Average fitness curve in 15*15 environment 
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Figure 25. Fitness curve of the worst individual in 15*15 environment 

 

6.4.3 Behavioural Analysis of the Result Graph  

The execution of graph starts with the initial boot node (node 0) as the genotype of the 

evolved graph shows in Figure 22. It then goes to node 2, a judgment node, where it 

checks the south square of the predator. Destination node changes depend on the result. If 

there was a predator it goes to node 6, if it was a prey it goes to node 4 and if  there was 

no agent there, then it goes to  node 7. Afterwards, if we examine nodes 4, 6 and 7 and 

follow their connection gene, we reach node 5 which is a judgment node that judges the 

position of the prey. If the prey is to the north of the predator, the execution of the graph 

continues to node 6 which is correspondent to the MN processing node, thereby making 

predator move to the north in that cycle and if the prey is to the south of the predator, it 

continues to judgment node 2. Following the connection gene for node 2, we realize that 

this node eventually reaches node 7, which is a processing node corresponding to moving 

south. If the prey is to the east of the predator, it should go to processing node 8 which is 

correspondent to moving east and if prey is on the west side of the predator it continues 

to processing node 9 which is correspondent to moving west. If we follow the connection 

gene of nodes 6, 2, 8 and 9 we realize that they eventually end up to node 5 and the 

previous steps repeat. 

Considering the above discussion, we can conclude that the strategy implicit in this graph 

for predators is “go towards the prey and never stop”. This result is notable since it is a 

somewhat greedy approach evolved by the GNP system. 
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6.4.4 Generality Test of the Results 

As mentioned, in order to train the predator agents, 30 test cases were used in which the 

predators were randomly positioned in the domain at the beginning of an episode. 

Therefore this question remains, is the evolved graph dependent on the test cases or not? 

To answer this question we executed the best graph evolved in experiment 2 in 100 

randomly generated environments and repeated this experiment 10 times. This test is 

called the generality test. The results are shown in Table 11. 

 

. The results of the generality test for experiment 211Table  

Number of Captions (out of 

100) 

Fitness Run# 

75 3844 1 

82 3896 2 

80 3922 3 

79 3882 4 

91 4116 5 

78 3832 6 

87 4009 7 

66 3756 8 

68 3854 9 

76 3956 11 

78,2 3906,7 Average 

 

6.5 Experiment 3: The Proposed GNP Methodology Applied on 30*30 Grid Size 

This experiment has the same settings as experiment 2, except  the grid size is 30 by 30. 

All the predators are homogenous and execute the same code. The value for the fitness of 

an individual is determined by obtaining the average of the fitness over the 30 test cases. 

The agents use the conflict resolution mechanism mentioned in section 4.3. 
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6.5.1 The Evolved Graph  

The genotype of the best evolved graph for the 30*30 environment is shown in Figure 26. 

In this graph all the delays are assumed to be zero. All of the four predator agents run this 

graph as their program. Evolution of this graph and the predators’ ability to capture the 

prey by using this graph proves that our proposed methodology is successful and 

effective in the 30*30 environment. 

 

 

Figure 26. Genotype of the best evolved graph on experiment 3 

 

6.5.2 Results 

Figures 27, 28 and 29 illustrate the fitness graph for the best, average and worst 

individuals during the 50 generations of the experiment. 

As expected the individuals in the first generation have low fitness since they are 

generated randomly. The desirable graphs appear from the 30
th

 generation. Figure 27, has 

a step shape graph since the elite preserve strategy is used. Figure 28, has a patterned 

curve and it shows the learning process. Figure 29, has a couple of spikes which show 

that genetic operators will not invariably improve performance and it is possible that they 

decrease the fitness. 
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Figure 27. Fitness curve of the best individuals in the 30*30 environment 

 

 

Figure 28. Average fitness curve in 30*30 environment 

 

Figure 29. Fitness curve of the worst individual in 30*30 environment 
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6.5.3 Behavioural Analysis of the Result Graph  

The execution of graph starts with the initial boot node (node 0) as the genotype of the 

evolved graph shows in Figure 26. It then goes to node 2 which is a judgment node and it 

checks the south square of the predator. Depending on the result, if there was a predator it 

goes to the node 6, if it was a prey it goes to the node 4 and if it there was no agent there 

it goes to the node 7. 

Then if we examine nodes 4, 6 and 7 and follow their connection gene, we reach to the 

node 5 which is a judgment node that judges about the position of the prey. Now if the 

prey is in the north of the predator, the execution of the graph continues to node 6 which 

is correspondent to the MN processing node and makes the predator to move to the north 

in that cycle and if the prey is in the south of the predator, it continues to the judgment 

node 2 and with following the connection gene for node 2 we realize that this nodes 

eventually reaches node 7 which is a processing node corresponding moving to the south. 

If the prey is on the east side of the predator the graph goes to the processing node 8 

which is correspondent to ME and if it is on the west side of the predator it goes to node 9 

which is correspondent to MW. 

 Now if we examine the connection gene of the nodes 2, 6, 8 and 9 we realize that they 

end to the node 5 and the whole previous process repeats. Considering the above 

discussion it concludes that the strategy implicit in this graph for the predators is “go 

towards the prey and never stop”. 

If we compare this cooperation strategy in the graph evolved for the 30*30 grid size with 

the results for the 15*15 environment we realize that, although the graphs are different, 

both represent the same strategy.  

This is quite significant given that our proposed GNP methodology is independent of the 

grid size. In other words, we can use the evolved graph for any grid size to capture the 

prey in other environments. 
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6.5.4 Generality Test 

As mentioned, in order to train the predator agents, 30 test cases were used in which the 

predators were positioned in the domain randomly at the beginning of an episode, so the 

question is that if the evolved graph is dependent to the test cases or not?. So we executed 

the best graph evolved in experiment 3 for 100 randomly generated environments and 

repeated this experiment 10 times. This test is called generality test. The results are 

shown in Table 12. 

 

. The results of the generality test for experiment 321Table  

Number of captions (out of 

100) 

Fitness Run# 

42 6356 1 

39 6136 2 

36 6235 3 

43 6311 4 

49 6553 5 

45 6382 6 

38 6105 7 

41 6161 8 

41 6357 9 

32 6246 11 

40,6 3225,2 Average 

 

6.6 Experiment 4- Conflict Resolution Capability of the GNP Proposed Methodology 

As mentioned earlier in our experiments, the conflict resolution mechanism is explicitly 

designed and hand-coded in the environment. In this section, the goal is to investigate if 

our proposed methodology has the ability to resolve conflicts implicitly.  

In this experiment we used the same GNP methodology we used for experiment 2 and 3. 

The only difference is that we removed the hand-coded conflict resolution mechanism in 

the environment, whereby the agents may occupy the same square and they will not be 
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bumped back if they want to take the same square. This experiment is conducted on a 

30*30 grid size. 

As in the first trials of this experiment, the fitness for the graphs was low; we decided to 

continue the evolution process for 100 generations. 

6.6.1 The Evolved Graph 

The evolved graph resulted from experiment 4 is shown in Figure 30. This graph was 

used by all  predators, yet it was inadequate in terms of illustrating a strategy. This will 

be described later in the analysis section. 

 7 0    0  Node 0 

 6 7 2 1    1  Node 1 

 7 8 10 1    2  Node 2 

 10 7 4 1    3  Node 3 

 2 8 9 1    4  Node 4 

9 8 2 6 1    5  Node 5 

 5 2    1  Node 6 

 1 2    2  Node 7 

 7 2    3  Node 8 

 10 2    4  Node 9 

 5 2    5  Node 10 
 

Figure 30. The genotype of the best evolved graph in experiment 4 

 

6.6.2 The Results 

Figures 31, 32 and 33 illustrate the curve for the best, average and worst individual in 

terms of fitness during the evolution process (100 generations) in a 30*30 grid size. 

Similar expectations were observed in this experiment; since the individuals of the first 

generation were generated randomly and had a very low fitness. However, as it can be 

noticed from the average fitness graph, they will improve generation by generation. 

Furthermore, indicating a learning process. Nonetheless after 100 generations, the fitness 

of the individuals was low and nearly all of them in the last generation had a similar 

genotype. This graph was not successful in capturing the prey. 
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We can conclude from these results that the GNP methodology proposed in this thesis, is 

not capable of devising a conflict resolution mechanism for homogenous agents. To solve 

this problem, introducing new judgment and processing nodes maybe favorable and will 

be the subject for our future research. But, to ensure the validity of our conclusion  for all 

grid sizes we also conducted the generality test in section 5.7.3. 

 

 

Figure 31. Fitness curve of the best individuals evolved in experiment 4 

 

 

Figure 32. Average fitness curve of the individuals in experiment 4 
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Figure 33. Fitness curve of the worst individuals in experiment 4 

 

6.6.3 Generality Test 

Table 13 shows the results for the generality test for experiment 4. As it can be seen, the 

graph was unsuccessful in capturing the prey except in run 3, in which there was only one 

capture which is also negligible. In short, we can conclude that the proposed 

methodology was unable to devise a conflict resolution mechanism. 

. The results of generality test for experiment 413 Table  

Number of captures (out of 

100) 

Fitness Run 

4 2445 1 

4 2544 2 

6 2424 3 

4 2524 4 

4 2464 5 

4 2553 6 

4 2544 7 

4 2524 8 

4 2465 9 

4 2542 11 

0.1 2482,9 Average 
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6.7 Comparison between GNP and GP Systems 

In this section we are going to compare the results of the two evolutionary approaches 

used in this thesis. The GP approach on 30*30 grid size which was presented in 

subsection 5.4 as the first experiment and the GNP approach on the same grid size as 

presented in subsection 5.6. 

6.7.1 Capture Rate Comparison 

Table 14, illustrates the results of the comparison based on the number of prey captures in 

100 test cases. As it can be seen from the Table 14, the GNP technique is superior to the 

GP approach and it proves yet again that GNP is not only a more flexible way to evolve 

predator agents but it is also more effective. 

. Comparison of capture rate between the GP and GNP 14 Table  

Average number of prey capture (out of 100) Algorithm 

60,9 GP 

78,2 GNP 

 

6.7.2 Computational Costs Comparison 

For training purposes, we used 30 randomly generated test cases, with the prey in the 

center and the predators in random positions. For each test case, we deployed randomly 

moving prey. The computational costs of evaluation made it infeasible to run every test 

case for each individual of each generation. There were four agents whose codes needed 

to be evaluated 50 times for each test case for each individual in every single generation. 

For just one generation the computational costs are 4 * 100 * 30 * M, where M is the 

population size. And the number of code evaluation for the entire G generations is 4 * 

100 * 30 * M * G. 

In GNP experiments M equals 200 and G equals 50, whereas in GP experiments M 

equals 3000 and G equals 500. This means the computational cost of GNP solution is 150 

times less than GP solution. Because in EC most of the CPU time is used for fitness 

evaluation, our method is also significantly superior in saving CPU time. 
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We could have reduced the computational cost by reducing the population size. However, 

this parameter is known to be one of the most important for the successful application of 

GP. We therefore used a sampling technique, whereby for each generation we selected 10 

test cases at random (without reselection) from the 30 test cases and used them to 

evaluate each individual. This allows us to fairly compare the fitness of individuals of the 

same generation whilst minimizing the cost of evaluation.  

The cost of evaluating a generation is now reduced to 1/3th. However, a drawback with 

this technique is that we need to run the evolutionary process for a longer number of 

generations to allow the opportunity for each test case to be evaluated many times. Hence 

we doubled the number of generations that we would normally use, thereby bringing 

about a reduction in computation. 

6.7.3 Bloat Comparison 

In this subsection we are going to mathematically prove the superiority of GNP results in 

our experiments over GP in terms of bloating. Bloating presents a serious problem in 

scaling GP to real lager and more difficult problems particularly in dynamic 

environments such as pursuit domain. There is no bloating in GNP, but in genetic 

programming, after some generations (typically below one hundred), the search for better 

programs halts as the programs (trees) become too large and searching space becomes 

enormous. 

• Bloated trees occupy a large amount of memory. 

• Bloated trees are computationally intensive and slow down the system. 

• Bloated trees are often more difficult to modify in meaningful ways. 
 

In GP, it has been justified [73]: “Sub-tree crossover would tend to cause programs to 

increase in size on average at cost less than O(t
2
), but it will approach a square power 

law, O(t
2
), as the programs get bigger”, where t is the passed time. Now let us consider a 

generation to be equivalent to a time step. We can say O(t
2
) is equivalent to O(g

2
). (in 

terms of big-Oh). Bloat can only occur when variation operators exist in the system 

(crossover, mutation) and the more variations that are introduced into the system the 

more bloating there will be. We can say that bloat approaches O(i
2
). (i is the number of 
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new individuals created per generation). The number of individuals created is 

proportional to the number of individuals in the population (n). So we can say O(i
2
) is 

equivalent to O(n
2
). Thus in GP, for a population size of n we have the following 

equality: 

Bloat (n) = O(t
2
) = O(g

2
) = O(i

2
) = O(n

2
) 

On the other hand, in GNP, since the programs are graphs and the variation operators 

simply change the way nodes connect to each other, there will not be any bloat. 

Therefore, in GNP, for a population size of n we have no bloating. 

6.8 Summary 

In the previous chapter we proposed a methodology based on GNP to evolve teamwork 

and cooperation among predator agents in the pursuit domain. In this chapter, the results 

of running such a system in pursuit domain were presented and compared to those of GP.  

The results show that our proposed approach is successful and its capture rate is more 

than GP while its computational cost is less. Furthermore it shows a faster learning speed 

than GP. We also provided some analytical results of the proposed approach in terms of 

bloating. 

In fact, the results of four different experiments were presented in this chapter. In the first 

experiment we implemented the best GP tree reported by Haynes [50], applied it to our 

platform and reported its performance. In the second experiment, we ran the proposed 

GNP system on the pursuit domain with a 15*15 grid size and reported the results. For 

the third experiment, we ran it on a 30*30 grid size to investigate if the grid size is 

important in evolving different strategies. However, the results showed the grid size does 

not affect the evolved strategy. Finally, in the fourth experiment we tried to investigate if 

our proposed methodology is successful in evolving cooperation strategies that has the 

capability to implicitly resolve conflicts since in all the first three experiments the 

conflict resolution mechanism is explicitly designed in the environment, The results 

indicated that our system was not capable of evolving an implicit conflict resolution 

strategy automatically but some suggestions were made and verifying them remains to be 

seen in our future research topics. 
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Chapter 7                                        

Summary and Conclusions 

This chapter summarizes the main contributions of this work, highlights our conclusions, 

and proposes some future research directions stemming from our work. 

7.1  Review of the work 

The identification, design and implementation of strategies to devise teamwork and 

cooperation are central research issues in the field of Multi-agent Systems (MAS). It is 

nearly impossible to identify or even prove the existence of the best cooperation strategy. 

In most cases a cooperation strategy is chosen if it is reasonably good.  

In this thesis, we designed and developed a methodology using a relatively new 

evolutionary computation technique called Genetic Network Programming (GNP) to 

automatically evolve cooperation, technically called emergent cooperation, in the pursuit 

domain and finally the results were compared to those of GP. 

The simulation results showed that our proposed methodology is capable of evolving 

cooperation among agents in the pursuit domain. Its performance is significantly superior 

to the GP solution. Moreover, its computation cost is less and the learning speed is faster. 

Finally, it is mathematically proven that why GNP is significantly superior to GP in terms 

of computational cost and bloating. 

In Chapter 2 cooperative multi-agent learning and reviews on previous studies of how 

machine learning techniques are used to devise cooperation in multi-agent systems were 

introduced. It specifically surveyed the literature related to applying evolutionary 

techniques in the pursuit domain. Chapter 3 provided a general overview of the 

evolutionary algorithms and described and compared genetic programming and genetic 

network programming. In Chapter 4 the pursuit problem and its environment parameters 

were described in detail as well as the pursuit package which is used for the experimental 

simulations in this thesis.  
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In Chapter 5, we implemented the best GP tree evolved by Haynes, and evaluated its 

performance in the pursuit domain running under our platform for gird sizes of 15*15 and 

30*30. We then demonstrated the design of our proposed GNP-based methodology for 

pursuit domain and simulation results were shown and critically evaluated on 15*15 and 

30*30 grid sizes. Moreover, we compared the performance of GNP with GP. Finally, the 

ability of the proposed GNP methodology in devising conflict resolution mechanism was 

tested and shown to be incapable of evolving a conflict resolution mechanism. 

It is worth mentioning that the experiments in this thesis were conducted with the help of 

a software package for pursuit domain called Pursuit_Package_0.9 [49] and the platform 

was SUSE 10.0 as the operating system and a PC with Intel Pentium M, 1.73 GHz with 

512 MB of RAM as the hardware. On average, it took approximately 100 hours to carry 

out each experiment. 

7.2 Directions for Future Researches  

The experiments in this thesis provide a foundation and context for more extensive 

research. The following lists further research directions stemming from our work: 

 Evolving predator agents which have limited visibility range. 

 Evolving heterogeneous predators using GNP.  

 Modifying crossover and mutation rate and studying the effects. 

 Changing the number of judgment and processing nodes to more than just one for 

each.  

 Changing the algorithm controlling the prey agent movements and study its effect 

on the evolution process. 

 Improving the methodology in order resolve conflicts among agents. 

 Changing the fitness function and studying its effect on learning speed. 

 Investigating evolving agents via GNP for real world/large scale MAS 

applications 
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