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ABSTRACT 

Carbon Nanotube Quality Impact on 

Epoxy Composites Thermal Conductivity 

Aleksandar Grujicic 

Composite materials thermal conductivity is a challenging area. This is particularly 

applicable in the through thickness direction. Obstacles on the path of improvement are 

numerous. To overcome issue of carbon nanotube distribution within composite a new 

approach was adopted. Carbon nanotubes were added to thin carbon fibre fabric, creating 

a new material to be impregnated by matrix. This was achieved with employment of 

ultrasound to obtain a basic building block for the layer-by-layer method. Laminate was 

prepared from prepreg layers utilising ancillary materials stack-up sequence optimised for 

thermal conductivity improvement through nanomaterials. Autoclave cured materials 

were examined for thermal conductivity. The highest value was achieved at 125 oC. The 

highest improvement over reference carbon fibre / epoxy composite material was 

obtained at 25 oC. Three different carbon nanotube materials were used in the research. 

Least damaged carbon nanotubes yielded the best results. Simple calculations completed 

on carbon nanotube / epoxy composites confirmed the least damaged carbon nanotubes – 

the carbon nanotubes of the highest quality - as the best heat transport medium. 
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Chapter  1  

1.  Motives for the Present Study 

1.1. Introduction 

Composite materials are replacing traditional materials like metals in nearly every 

imaginable domain. The reason for it resides in the fact that composite materials can have 

similar mechanical properties to metals while their weight is significantly lower. This 

property is important for many applications, notably automotive and aerospace industries. 

However, the application of composite materials in certain areas remains challenging. 

One of these areas is elevated temperature operating conditions. Parts operating in the 

elevated temperature environment are required to dissipate heat well. The physical 

property that determines part heat dissipation quality is part material thermal 

conductivity.  

 Materials used to produce composite materials parts are different fibres, one being 

carbon fibre, and a large variety of plastics, either thermoset or thermoplastic. Carbon 

fibres can be made from pitch or polyacryilonitrile precursors.  Pitch based carbon fibres 

possess excellent thermal conductivity, however, their mechanical properties limit their 

application. On the other hand, widely used polyacrylonitrile (PAN) based carbon fibres 

are excellent heat conductors along the fibre, however fibre thermal conductivity 

perpendicular to the fibre is far smaller. The plastics used to give form to parts made 

from carbon fibres are in general terms thermal insulators. Combined together, carbon 

fibres and plastics have better thermal conductivity than the plastics, nonetheless 



2 
 

insufficient for engineering applications where heat dissipation is the determining factor 

in material choice. 

At the end of the twentieth century, carbon nanotubes attracted significant attention of the 

scientific community. A method was discovered to produce them in quantities sufficient 

for characterization and application related research. Carbon nanotubes were found to be 

a material with exceptional mechanical, thermal and electrical properties. Such properties 

made them prime candidate to add to existing composite materials in order to obtain truly 

multifunctional composite materials with high electrical and thermal conductivity in all 

directions as well as improved mechanical properties.  

Large amount of effort was put into improving composite materials thermal conductivity 

in order to obtain multifunctional composites with the addition of carbon nanotubes. 

However, carbon nanotubes high thermal conductivity did not result in very high thermal 

conductivity of composite materials. This was particularly applicable in the through 

thickness direction while certain methods were giving good results for in plane thermal 

conductivity. Many obstacles were identified on the road to the envisioned goal. 

Interface, both carbon nanotube – matrix and carbon nanotube – carbon nanotube, non-

perfect crystal lattice of a carbon nanotube, high anisotropy of carbon nanotubes, 

dispersion quality are some of the issues encountered when improved thermal 

conductivity was sought. 

1.2. Motivation 

Carbon nanotubes have very high thermal conductivity, ~104 W/mK, higher than any 

other material found to date. Thermal conductivity is higher in individual carbon 

nanotubes than in assembled forms of bundles (< 103 W/mK), yarns, arrays, mats etc. 
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Nonetheless, even in these assembled forms, thermal conductivity is still very high, 

promising improvement of material to which either individual or assembled carbon 

nanotubes are added. At the same time, mechanical and electrical properties are expected 

to be improved as well, giving multifunctional composite material. To improve polymer 

thermal conductivity, carbon nanotubes were added to matrix. Compatibility between 

carbon nanotubes and matrix has to exist to achieve significant improvement. Good 

dispersion is a requirement as well. Damaged carbon nanotubes would yield smaller 

improvement. Impregnating carbon fibres with polymer matrix enriched with carbon 

nanotubes did not give expected result. One reason was carbon nanotube filtration, even 

from the matrix with well dispersed carbon nanotubes.  

 
Fig. 1.1: Schematic presentation of most common methods to produce nanocomposites and proposed new 

method involving ultrasound.  
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To resolve the dispersion in polymer issue, proposed was layer-by-layer method, where 

very thin layers of carbon nanotubes were assembled with very thin polymer layers, one 

by one. Another, most recent approach was to grow carbon nanotubes on carbon fibres, 

thus improving thermal conductivity.  

Therefore, the expectations with respect to thermal conductivity improvement could be 

met with the selection of appropriate approach to the carbon nanotube selection and 

material fabrication. To support the relevance of carbon nanotube quality and quantity to 

thermal conductivity improvement, numerous experiments were completed using single 

wall carbon nanotubes as the filler of choice. Carbon fibre reinforced epoxy thermal 

conductivity in through thickness direction was improved 140.4% at 25 oC with 3 wt% 

loading, significantly better than the best result reported to date, ~44% at room 

temperature with 11.68 wt% loading [51]. Schematic presentation of most common 

methods to produce nanocomposites and proposed new method involving ultrasound is 

given in Fig. 1.1. 

1.3.  Thesis Layout 

The first chapter provides summary of broad background leading to research of thermal 

conductivity in composites. Reasons for incorporating carbon nanotubes are provided as 

well as issues met in the course of such attempts. 

Current state of the art was reviewed in chapter number two. Short scientific background 

of thermal transport in graphite was given, followed by focusing on carbon nanotubes. 

The topic was then expanded to provide values of thermal conductivity in carbon 
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nanotubes and their assembled forms, followed by description of scientific effort to apply 

intrinsic properties in the real life applications. 

At the beginning of the following chapter, numbered three, employed material 

description and properties are provided. Selected path to manufacture new material with 

improved thermal conductivity was described afterwards. Details are provided with 

respect to sample schedule, manufacturing and preparation for testing along with sample 

quality examination results. 

The fourth chapter is giving an overview of tests performed to evaluate manufactured 

material properties. 

Testing results were reviewed in chapter number five. Discussion of results and 

conclusions drawn were presented in this chapter as well. Important achievements are 

emphasised and supported with scientific evidence. 

Work completed and results obtained in the course of the thesis are summarised in the 

last, chapter number six. Contributions to the body of knowledge are pointed out, 

followed by recommendations for future work. 
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Chapter  2  

2.  Literature Review 

2.1. Carbon Nanotubes 

2.1.1. Discovery 

Carbon Nanotubes (CNTs) were discovered in 1952 by Russian scientists Radushkevich 

and Lukyanovich [1,2]. The discovered nanotubes [Fig. 1] were Multiwall Carbon 

Nanotubes (MWNT), 50 nm in diameter [2]. 

 
Fig. 2.1: First nanotubes observed [1]. 

Single Wall Carbon Nanotubes (SWNT) were first observed by two independent teams 

[2]: a Japan team S. Iijima and T. Ichihashi [3] and a US team Bethune et al. [4]. Both 

teams reported tubular structures with the diameter in the 1 nm range and the walls being 

of a single atom dimension thickness [4]. The Japanese team confirmed the carbon 

hexagon helical arrangement via electron diffraction from a single tube [3].  

Tubule structure can be described uniquely following Hamada notation [5]. 
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2.1.2. Definition 

Carbon nanotubes are an allotrope of carbon [5]. sp2 bonded carbon atoms are forming a 

graphene sheet [6]. CNTs can be represented as a sheet of graphite rolled in a cylinder 

[5]. In some cases, tubule diameters are small enough to exhibit the effects of one-

dimensional (1D) periodicity [6].  If the structure consists of a single cylinder, the CNT is 

a Single Wall Carbon Nanotube (SWNT). Where multiple cylinders are present, 

concentric about the tube axis, the CNT is a Multiwall Carbon Nanotube (MWNT). If 

only two concentric tubules are present, it is a Double Wall Carbon Nanotube (DWNT). 

Hexagons consisting of carbon-atoms are arranged about the tube axis helically [5]. The 

realization that the ends of carbon nanotubes must be fullerene-like (C30) "caps" 

explained the fact that the diameter of a carbon nanotube could only be as small as a 

fullerene molecule [8]. 

Taking one atom thick sheet of graphite [Fig. 2.2] as a material to begin with, it is 

possible to construct an infinite number of CNTs by superposing a randomly chosen 

lattice point on a chosen origin. Each of these microtubules would be uniquely defined by 

a lattice point superposed on a chosen origin. Hence, a lattice point of a graphite sheet 

can be used as an index of the atomic structure of the graphitic microtubule. The index is 

denoted as A(n1, n2), where (n1, n2) represents the lattice point [5]. 

 
Fig. 2.2: A single atom thick sheet of graphite. Vectors a and b are unit vectors of the two-dimensional 

lattice. The figure defines the lattice points coordinates [5]. 
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2.1.3. Physical Properties 

Thermal conductivities of earlier discovered allotropes of carbon, type IIA diamond 

(2320 W/mK at 300K [9]) and graphite sheets – pyrolytic graphite (1950 W/mK in 

parallel and 5.70 W/mK in perpendicular direction at 300K [9]) are the highest measured 

at moderate temperatures [10]. The highest values measured for these two allotropes were 

at very low temperatures. For type IIA diamond it was 11900 W/mK at 70K while for 

pyrolytic graphite the highest value of 4970 W/mK in parallel direction was measured at 

100K and in perpendicular direction it was 18.1 W/mK at 80K [9]. As carbon nanotubes 

are in essence a graphite sheet rolled into a cylinder, they could be expected to possess 

thermal conductivity similar to those of graphite sheet and diamond [10]. 

Graphitic tubules may possess as well unusual mechanical, electronic and optical 

properties with a wide range of technological applications (e.g. nanoscale devices, light-

weight and high strength composite materials etc.) because of their crystalline perfection, 

various possible helical structures, the dimensionality and the high efficiency of 

production [7]. 

Another possible application is heat dissipation on micro and macro scale. Thermal 

conductivity is the determining factor when choosing material for thermal management. 

For this reason, among physical properties, this thesis shall put an emphasis on thermal 

conductivity. 



9 
 

2.2. Thermal Conductivity 

2.2.1. Heat Transfer by Phonons [11] 

A crystal lattice is an array of points in three-dimensional space where individual atoms 

lie. Imperfections in the crystal lattice structure are inevitable. These could be vacant 

points, inserted or substituted atoms. 

In the crystal lattice structure, heat is carried under the gradient of temperature. This is 

achieved through vibrations of the lattice. Thermal energy of the solid is distributed 

amongst the vibration modes of the crystal. Each mode can be represented as a standing 

wave and analysed into traveling waves in opposite directions. Such waves are called 

sound waves if longitudinally polarised. Thus, energy can be carried through the lattice 

with velocity of the order of velocity of sound. The quanta of the lattice vibrational field 

are named phonons.  

Phonons can be divided into acoustic and optical, based on their frequencies or 

wavelengths. Acoustic phonon wavelengths correspond to the ordinary elastic waves of 

the continuum while optical phonon frequencies correspond to electromagnetic radiation 

frequencies in infra-red. Optical phonon frequencies are significantly higher than the 

acoustic phonon frequencies. These frequencies are nearly that of a free molecule, and 

the effect on the surrounding lattice would be very small. Hence, optical modes do not 

play a significant role in the transport of energy through the lattice.  

The resistance to the heat transport is coming from phonon-phonon interactions and 

scattering from imperfections in the lattice. 
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2 .2 .1 .1 .  Phonon  –  phonon in terac t ion  

In phonon-phonon interaction, two phonons interact and get destroyed and the third one 

is created. 

To understand the process, let a phonon move through the lattice. With the vibration of 

the lattice, some atoms move apart, other get closer than when in equilibrium. If another 

phonon is moving through the lattice while the vibration from the previous one is still 

affecting atoms to be out of their equilibrium state, it would be met with the different 

spacing between the atoms that would reflect it. The reflected phonon wave vector would 

equal the sum of the first two wave vectors. 

2 .2 .1 .2 .  Scatter ing  by  la t t i ce  imperfec t ions  

Certain types of imperfections can be treated as independent characteristic modes of error 

in the construction of the ideal lattice. 

The imperfections can be isolated point imperfections like vacancies, inserted atoms and 

impurities. An atom can be inserted into, removed from or substituted for another in the 

crystal lattice. 

Where imperfection exists crystal lattice properties are different from the ideal lattice 

properties. This difference in lattice properties is a cause of scattering of phonons. 

2 .2 .1 .3 .  Boundary  sca t ter ing  

At the crystal lattice boundary a phonon may be unable to continue in the same direction 

with the same velocity and energy if the structure on the other side of the boundary does 

not possess the same elastic properties. The amount of scattering would depend on the 

mismatch in properties. 
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2.2.2. Graphite [12] 

Mentioned is possibility that CNT physical properties are similar to the physical 

properties of graphite. 

The physical properties of graphite were extensively researched. Kelly [12] provided a 

summary. 

The thermal conductivity of CNT is of particular interest. In order to better understand 

the thermal conductivity of CNT, first we will take a closer look at the thermal 

conductivity of graphite. 

2 .2 .2 .1 .  The  Struc ture  of  Graphi te  

The graphite normal structure is the hexagonal one with symmetry. It consists of a stack 

of parallel hexagonal net planes. The unit cell contains four atoms in a planar stacking 

sequence. The natural valency of carbon is four, as in diamond, but this is not inflexible - 

in graphite coplanar trigonal bonds are formed with neighbouring carbon atoms in the 

hexagonal net sheet structure. The individual hexagonal nets are tightly bonded, but the 

nets are only weakly bonded together. The graphite crystal is highly anisotropic. 

2 .2 .2 .2 .  The  Thermal  Pr oper t i es  of  Graphite  

The thermal properties of a solid reflect the crystal lattice vibration spectrum and hence 

the interatomic forces. In general the properties involve an average over a wide range of 

wavelengths in the spectrum and tend therefore to be rather insensitive to the spectrum. 

At low temperatures it is necessary to consider the electronic contribution to the property. 
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2.2.2.2.1.  The Lattice Vibration Spectrum 

The vibrational modes propagating along the hexagonal crystal axis are the longitudinal 

and transverse acoustic modes. The maximum frequency in the longitudinal mode was 

found to be 3.84x1012 Hz for a pyrolitic graphite. Sample imperfection with mosaic 

spread mixes into the transverse acoustic mode observations a proportion of the in-plane 

lattice vibrations. 

The simplest treatments of the lattice spectrum theories, akin to the Einstein and Debye 

models, the high degree of anisotropy of graphite lattice suggested that the atomic 

vibrations are of two kinds only, those in which atomic movements are parallel to the 

hexagonal axis (out-of-plane) and those in which they are perpendicular to it (in-plane 

vibrations). 

The symmetry of the graphite lattice requires that only two principal thermal 

conductivities are necessary to describe the crystallite, measured parallel (Kc) and 

perpendicular (Ka) to the hexagonal axis. At an angle  to the hexagonal axis 

K()=Kccos2
+Kasin2

 and as usual the same symmetry applies to the extruded or 

moulded polycrystalline body, i.e. equation K()=Kccos2
+Kasin2

 applies with Kװ 

replacing Kc and K replacing Ka. 

A formulation assumes that an atom in the graphite lattice is subject to four kinds of 

restoring force when displaced: 

a) A force due to change  in the angle enclosed by two covalent bonds in the basal 

planes.  

b) A force due to a change l1 in the nearest neighbour bond length. 
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c) A force due to the change l2 in the separation of nearest neighbours in adjacent 

layers.  

d) A force due to the displacement h of an atom out of its plane defined by the 

three nearest neighbours. 

2.2.2.2.2.  Thermal Conductivity Levels  

2.2.2.2.2.1. In plane 

A number of forms of carbon and graphite exist. The materials are natural graphite, 

pyrolitic carbon and graphite, polycrystalline nuclear and electrode graphites, and non-

graphitising carbons. The review of the experimentally established thermal conductivities 

of different forms of carbon and graphite follows. 

Lattice conduction forms the dominant mechanism in many carbons.  

A study of a number of Canadian natural graphite samples (the closest approach to single 

crystal graphite) found maximum thermal conductivity of 2800 W/mK at ~80K parallel 

to the basal planes over the range of 5K to 300K. 

The thermal conductivity parallel to the axis of a carbon filament produced by deposition 

from methane on to a hot carbon wire showed a maximum value of between 2000 and 

3000 W/mK at ~150K. 

2.2.2.2.2.2. Perpendicular to the deposition planes 

Kelly [12] provided as well a summary of the thermal conductivity measurements 

perpendicular to the samples deposition planes, published by several authors. The first 

group of results extends from 10K to 300K with a peak of ~ 20 W/mK at 75K. 
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Comparison with the same author results parallel to the deposition plane shows that the 

anisotropy ratio increases from ~50 at 10K to a constant value of ~325 above ~150K. 

2.2.2.2.2.3. The imperfections 

The imperfections affect the low temperature conductivity, however are of much less 

effect at high temperatures. Data have been reported in the form of diffusivity data.  

The data show a diffusivity parallel to the deposition plane falling from 30 mm2/s at 1300 

oC to 16 mm2/s at 2000 oC. In the same temperature range the diffusivity of each of three 

samples measured perpendicular to the deposition planes was independent of temperature 

with values between 0.2 mm2/s and 0.35 mm2/s. The specific heat at these temperatures 

varies from 23.4 J/molK at 1300 oC to ~25.9 J/molK at 2000 oC, so that the conductivity 

parallel to the deposition planes falls from ~1590 W/mK to ~ 940 W/mK. The 

conductivity perpendicular to the basal plane varies from ~10 W/mK to ~18 W/mK, 

almost independent of temperature. 

Measurements for materials based upon natural graphite of high perfection but with only 

partial orientation showed that the magnitude of conductivity varied with the direction of 

measurement relative to the symmetry direction. Each direction showed a peak between 

100K and 200K of magnitude 50 to 300 W/mK.  

The low temperature studies reveal an electronic component. Over the major part of the 

temperature range the lattice contribution is dominant. 

Consider first the lattice contribution parallel to the basal planes. Generally accepted 

explanation of the peak in the conductivity curve in lattice conductors is that below peak 

conductivity is limited by crystallite boundary scattering and above the peak by phonon-
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phonon scattering. The resistance due to the latter is essentially independent of the defect 

structure for not too large defect concentrations, while the conductivity in the former is 

generally supposed to be proportional to the crystallite size and the specific heat. 

For temperatures 300-1000K, the main contribution is found to be due to the longitudinal 

acoustic mode, the optical modes making little contribution directly but being important 

in scattering. 

2.2.3. CNT 

Thermal  transport  

The overall phonon spectra of graphitic tubules resemble that of a graphite sheet, 

especially when the tubule diameter is large. The low frequency modes, which are the 

signature of the tubule structure, are sensitive to the diameter. The normal modes of a 

graphitic tubule can be approximately classified into radial modes and tangential modes 

[7].  

Radial modes would correspond to the modes parallel to the hexagon axis and the 

tangential modes would be perpendicular to the hexagon axis. 

The higher frequency tangential modes in the graphitic tubules with a general helicity 

cannot be classified into pure z modes (modes with eigenvectors along the tubule axis) 

and  modes (modes with eigenvectors along the circumference of the tubule) according 

to their vibrational eigenvectors. Employing tight-binding molecular dynamics, it was 

determined that phonon modes in tubules are softened by the curvature when compared 

to graphite [7]. 
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In a highly anisotropic material like CNTs, thermal conductivity is most sensitive to the 

high velocity and high-scattering-length phonons. Hence, it is likely that even in 

nanotube bundles, the thermal conductivity should directly probe on-tube phonons and be 

insensitive to inter-tube mechanical coupling [13]. 

2 .2 .3 .1 .  Thermal  conduct iv i ty  
Following conclusions that CNTs thermal conductivity can be similar to those of graphite 

and diamond [6, 7] significant effort was put in attempt to determine the thermal 

conductivity of CNTs. Experimental and numerical methods were employed.  

2.2.3.1.1.  Experimental  

Both SWNT and MWNT thermal conductivities were measured. Experimental 

determination of thermal conductivities of various forms gave better insight in 

differences between individual CNTs, aligned and non aligned bundles, mats and forests. 

2.2.3.1.1.1. Individual CNTs 

Individual MWNT thermal conductivity value experimentally established in 2001 by Kim 

et al. [14] was measured using a microfabricated suspended device. Observed thermal 

conductivity was more than 3000 W/mK at room temperature. 

With respect to individual SWNT thermal conductivity, experimental results yielded high 

values as well.   

Pop et al. [15] probed the thermal conductivity of individual SWNTs for the first time by 

exploiting electron transport characteristics under strong self-heating and obtained 

~3600 W/mK at T=300 K. 
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Another team [16] found individual SWNT thermal conductivity in 2005. Thermal 

conductance of a 2.76 m long individual suspended single-wall carbon nanotube was 

very close to the calculated ballistic thermal conductance of a 1 nm diameter SWNT. 

Thermal conductivity was calculated from the thermal conductance and obtained values 

were summarised in Fig. 2.3. 

 

Fig. 2.3: Thermal Conductivity of the SWNT with d=1nm. 

The highest obtained value for thermal conductivity was 10000 W/mK, deducted from 

Fig. 2.3. 

Further measurements were made with mixed results, compared with the established 

values.  

An attempt [17] was made to establish the structure–thermal property relationship by 

conducting thermal conductance and TEM measurements on the same individual SWNT, 

double-walled (DWNT), and MWNT directly grown between two suspended 

microthermometers by thermal chemical vapor deposition (CVD). For one SWNT 

thermal conductance, diameter, and chirality were all characterized, and thermal 

conductance of a DWNT is measured. Intrinsic thermal conductivity values determined 
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for the three MWNT samples correlate well with the different structural defect 

concentrations observed by TEM. 

A total of seven CNT samples are reported in the quoted work. These samples are 

denoted as S1 and S2 for the two SWNT samples, D1 for the DWNT sample, and M1, 

M2, M3, and M4 for the four MWNT samples. 

Thermal conductance (Gs) of the as-grown CNTs was measured using the suspended 

microthermometer device.  

Effective thermal conductivity  is obtained as =Gs L/A where A and L are the cross-

sectional area and suspended length of the as-grown CNT sample, respectively. 

Obtained effective thermal conductivity results for the two SWNT, one DWNT, and four 

MWNT samples are shown in Figure 2.4. 

 

Fig. 2.4: As-measured effective thermal conductivity () versus temperature (T) for the two SWNT, one 
DWNT, and four MWNT samples in this work. Filled symbols and unfilled symbols are results measured 

before and after Pt–C deposited at the contacts, respectively [17]. 

It could be seen that  could be as high as 1000 W/mK for DWNT, however, the average 

level for SWNTs is closer to 650 W/mK. MWNT thermal conductivity varies between 

~40 and ~300 W/mK. 
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These values are lower than MWNT thermal conductivity measured in [14] and SWNT 

thermal conductivities measured in [15,16]. 

Further measurements of CNT thermal conductivity ensued. 

Individual MWNT obtained by CVD thermal conductivity was measured. The obtained 

value is 600±100 W/mK. Low structural quality of CVD grown MWNT can explain the 

obtained thermal conductivity, low when compared with earlier measurement results 

[18]. 

2.2.3.1.1.2. Bundles 

Following thermal conductivity determination for individual CNTs, thermal diffusivity 

and conductivity of CNT bundles were determined. Higher thermal diffusivity means 

higher thermal conductivity. 

Transient electrothermal technique (TET) was employed by Guo et al. [19] to measure 

thermal diffusivity of SWNT bundles. Obtained diffusivity of a bundle measured to be 

around 65 m thick is 27.3 mm2/s. 

Another measurement of SWNTs bundle thermal diffusivity was completed utilizing a 

transient photon-electro-thermal (TPET) technique based on step laser heating and 

electrical thermal sensing. Measured thermal diffusivity for the SWNT bundle is 25.3 

mm2/s, much less than thermal diffusivity of graphite in the layer direction [20]. 

Pulsed laser-assisted thermal relaxation technique was used to measure thermal 

diffusivity of multiwall carbon nanotube bundles [21]. Measured thermal diffusivity 

ranges from 10.5-15.0 mm2/s. Measured thermal diffusivity is low in significant part due 

to the random alignment of the CNTs in the bundle. First order estimation was conducted 
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by the authors to evaluate the real thermal diffusivity of single MWNT based on the 

alignment shown in Fig. 2.5. Two typical MWNT are picked and analyzed. One is 

between points A and B and the other is between points C and D. The shortest distance – 

in axial direction - between A and B is 1.125 m. However, the length of the black curve 

in the figure from A to B is 3.542 m which is the MWNT real length. Keeping in mind 

that thermal diffusivity  is proportional to the square of length in data processing, 

thermal diffusivity of the single MWNT (A-B) is estimated to be 145 mm2/s, which is 

about order of magnitude higher than thermal diffusivity of the MWNT bundle measured 

to be 14.6 mm2/s. Similarly, taking the MWNT between C and D for analysis, the 

MWNT length between C and D is 6.389 m, while the C-D straight line length is 2.583 

m. Thermal diffusivity of this single MWNT is estimated to be 89.3 mm2/s. For more 

curved CNTs, and many are visible in Fig. 2.5, their thermal diffusivities will be much 

larger than 89.3 mm2/s. Based on the above estimations, authors concluded that the real 

thermal diffusivity of MWNTs should be about ten times the value measured for a 

bundle. If the effect of the thermal contact resistance between CNTs is taken into 

consideration, the real thermal diffusivity of single MWNTs can be even higher. 

 

Fig. 2.5 – The individual MWNT length versus bundle length - SEM image [21] 
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Following measurement of individual MWNT, thermal conductivity (TC) measurement 

was completed for bundles. MWNT bundles were separated from highly oriented yarns 

drawn from the sidewall of a 300–350 μm tall MWNT forest, which was synthesized by a 

catalytic chemical vapor deposition method (CVD). Thermal conductivity measurements 

yield the value of 150±15 W/mK. This value is four times lower than individual MWNT 

 measured. The reason for it is coupling in nanotube bundles [18].  

2.2.3.1.1.3. Yarns 

Another form of CNT based material is yarn.  

Thermal conductivity of array-spun multi-walled carbon nanotube yarns (CNT fibres) 

was measured to obtain the value of 60±20 W/mK. 10 m yarn was measured using 

parallel thermal conductance technique. Thermal conductivity was observed to decrease 

with increasing yarn diameter. Authors consider structural differences to be the drivers of 

the conductivity reduction process [22]. 

2.2.3.1.1.4. Mats 

Hone et al. measured thermal conductivity of thick films of aligned single wall carbon 

nanotubes and nanotube ropes. These samples were produced via filtration/deposition 

from suspension in strong magnetic fields with a mosaic spread that ranged from 28° to 

35°, pending the sample thickness. Obtained thermal conductivity of nanotubes is large, 

even in bulk samples: aligned bundles of SWNTs show a thermal conductivity of > 200 

W/mK at room temperature in parallel direction [23]. 

On the other hand, highly oriented transparent nanotube sheets were drawn from the 

sidewall of a 300–350 m tall MWNT forest, to continue evaluation of different, ever 
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more macroscopic CNT forms. Thermal conductivity was measured and yielded the value 

of 50±5 W/mK. This value represents further decrease from the one obtained for the 

bundles of MWNTs, which on their part had four times lower TC values compared to 

single MWNT. Thermal conductivity reduction comes from tube–tube interconnections 

and sheet imperfections like dangling fiber ends, loops and misalignment of nanotubes 

[18]. 

2.2.3.1.1.5. Forests 

Diverse carbon nanotube forests with tailored structures were synthesized by water-

assisted chemical vapor deposition growth (supergrowth) from engineered catalysts. 

Carbon nanotube forests composed from nanotubes with different size and wall number 

were synthesized as a function of varying production conditions. Superior thermal 

diffusivity was obtained from predominantly SWNT forests. It was found that thermal 

diffusivity values decreased with increasing wall number. From Fig. 2.6 can be seen that 

thermal diffusivity of CNT forests vary from ~20 to near 40 mm2/s, pending the CNT 

type dominating the forest composition. 

 

Fig. 2.6: CNT forests measured thermal diffusivity [24]. 
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In general, phonon transport is more sensitive to defects than electron transport. The 

authors concluded the differences in thermal diffusivity levels are due to this property 

[24]. 

Chemical vapour deposition was employed to produce supergrowth SWNT forests with 

thickness of 1 mm. Thermal diffusivity measurement of the as-grown samples completed 

in thickness direction gave values from 47-77 mm2/s. Obtained thermal diffusivity is on 

the same order as isotropic graphite [25]. 

The value measured in [25] is slightly higher than the value obtained in [24]. However, 

some authors reported lower values for CNT forests, as follows. 

MWNT arrays were grown by CVD and characterised for thermal conductivity 

properties. Obtained values for  at room temperature along the growth direction of the 

MWNTs are in the range of 0.5–1.2 W/mK, with the shortest array having the highest 

thermal conductivity. 

When compared to shorter arrays, due to the longer growth times, taller arrays have more 

defects and amorphous carbon. This increase in defects is most likely the cause of 

thermal conductivity reduction with the array height increase. 

In the direction perpendicular to the MWNT cylinder, the thermal conductivity was ten 

times lower. This datum is evidence of MWNT imperfection providing for contact 

between MWNTs. However, the imperfection is not limited to straightness.  

When the fact that the array is not densely packed is employed to scale up thermal 

conductivity along the alignment direction by 35, a factor of typical literature value, a 

value for comparison with the individual MWNT is obtained. This value is 18-42 W/mK, 

at the low end of literature reported values [26]. 
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2.2.3.1.2.  Numerical Methods 

In parallel with experimental effort to determine the thermal conductivity of an individual 

CNT and CNT forms, numerical approach was attempted with mixed result. 

2.2.3.1.2.1. Individual CNTs 
Molecular dynamic simulations provided results for predicted single wall carbon 

nanotubes thermal conductivity in the range 37000 W/mK at 100 K to 6600 W/mK at 

room temperature. Results were compared to the results obtained for a graphene 

monolayer showing very similar behavior for both carbon allotropes. Results for graphite 

depict interlayer interactions effect reducing graphite thermal conductivity by an order of 

magnitude compared with the previous two.  

Strong tube–tube coupling decreases high-temperature thermal conductivity of SWNT 

bundles by an order of magnitude relative to isolated tubes; weak coupling may imply no 

significant reduction in thermal conductivity when tubes are bundled into ropes [27]. 

Single wall carbon nanotubes thermal conductivities were determined using non-

equilibrium molecular dynamic simulations [28]. Thermal conductivities length 

dependence of single wall carbon nanotubes were studied in a vacuum. Analysis was 

completed on single wall carbon nanotubes with 12.3 nm, 24.6 nm, and 36.9 nm lengths 

with varying fixed end temperatures. Apparent thermal conductivity values increase with 

the increase of lengths of the temperature-controlled sections, and they converge to 

constant values – Fig. 2.7.  
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Fig. 2.7: Effect of temperature-controlled lengths on the thermal conductivity of SWNTs [28]. 

From Fig. 2.7 is possible to estimate values of plateau thermal conductivities. For 

respective tubules, these are 185, 207 and 240 W/mK. 

The thermal conductivity of SWNTs and MWNTs was calculated using a kinetics model. 

Results show the SWNT thermal conductivity being a function of tube chirality with the 

(5,5) tube having maximum thermal conductivity an order of magnitude larger than the 

(20,20) SWNT along the tube axis. The maximum values for the respective tubes are 

approximately 35000 and 3500 W/mK. Chirality dependence is even more emphasised at 

300 K, slightly above room temperature where thermal conductivity for the former is 

measured to be ~30000 W/mK and for the latter ~1750 W/mK, as shown in the Fig. 2.8. 

 

Fig. 2.8: Thermal conductivity for a) (5,5) and b) (20,20) SWNT. 

When discussing thermal conductivity of an individual multiwall carbon nanotube, 

because of the weak intertube interaction, it is possible to use the constituent wall 
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properties to calculate  of a MWNT. On the other hand, phonon scattering processes in a 

MWNT are different from those in an individual SWNT. In a defect-free MWNT 

phonons remain in a single shell - the intertube interactions in a perfect MWNT would be 

very low. This is called weak intertube coupling. In a tube with defects in interstitial 

space between the walls, phonons travel from one wall to another and strong intertube 

coupling exists. 

Calculations were compared with experimental results for an individual 14 nm diameter 

MWNT. If the strong intertube coupling is intrinsic, measured thermal conductivity 

would be comparable to that of the outmost wall. If the outmost tube is a (100, 100) 

SWNT (~13.5 nm in diameter), its thermal conductivity would not be larger than 100 

W/mK, which is far smaller than a measured value of 3000 W/mK. If, however, the 

intertube coupling is weak, thermal conductivity is nearly a sum of i of the constituent 

walls. If the number of walls can be counted by transmission electron microscope it 

would be possible to verify the consistency between calculated and measured . As it was 

not the case, the only conclusion drawn is that the intertube coupling in this MWNT is 

weak [29]. 

2.2.3.1.2.2. Bundles 

Study of SWNT bundles shows  along the axis is two orders of magnitude larger than 

that perpendicular to the axis. Thus, phonon propagation would remain remarkably one 

dimensional in such an ideal bundle with weak intertube interaction [29]. 



27 
 

2.2.4. Functional Composites 

Following theoretical estimations, experimental results and numerical simulations, all 

giving very high values of CNTs and their macroscopic forms thermal conductivity, 

scientific effort was directed towards obtaining functional polymer based nanocomposites 

incorporating CNTs. The reason behind this effort was thermal management on micro 

and large scale.  

The effort was again going in two directions: experimental work and numerical 

simulations. Here is to be presented work that yielded either the highest values of thermal 

conductivity or provided valuable contribution to the research field.  

2 .2 .4 .1 .  Poly mer +  CNT  

This portion of review will begin with composites containing CNTs and polymers. First, 

let’s take a look into experimental work. 

2.2.4.1.1.  Experimental  

In the early stages substantial effort was made to exploit CNTs high thermal conductivity 

to convert essentially insulating polymers into conductors. Many difficulties were met on 

the way to achieve this goal. For that reason the improvement was insignificant and far 

below the expected one based on the law of the mixture.  

One of the early successful trials was when industrial epoxy samples loaded with 1% 

unpurified HiPCO SWNTs material showed a 70% increase in thermal conductivity at 

40K, rising to 125% at room temperature. The loading values were not reduced to 
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account for Fe impurities but were based on the mass of as-grown SWNT material. 

Samples were prepared via mixing and sonication [30]. 

Notifying difficulties in dispersion of CNTs in resins, in particular at high loadings, 

Kotov et al. [31] proposed sequential layering of CNTs and polyelectrolytes. This process 

greatly diminished phase segregation and rendered SWNT composite highly 

homogeneous. This layer-by-layer (LBL) technique rendered composites with SWNT 

content of 50±5 wt% as opposed to earlier attempts that were below 10 wt%. 

Another approach was taken to address the CNTs dispersion in the polymer matrix. 

Actually, in lieu of attempting homogeneous dispersion, team Du et al. [32] created 

highly heterogeneous sample. Freestanding SWNT framework was prepared to reduce 

CNT/CNT interfacial resistance, earlier identified as a primary cause for only modest 

increases in thermal conductivity relative to the polymer matrix. The resulting composite 

showed the thermal conductivity improved 220 % compared to pure PMMA for 7 wt% 

loading to ~0.4 W/mK. The substantial improvement was attributed to more effective 

heat transfer within the nanotube-rich phase. 

Nanocomposites were prepared from MWNT and epoxy resin. Thermal conductivity 

testing showed an essentially linear increase with the MWNT content, independent of the 

degree of dispersion and the MWNT type, functionalised or as received. Thermal 

conductivity could be increased by about a factor of 5 using 10 wt% MWNT, compared 

to the pure resin matrix [33]. 

Different results can be achieved by employing different materials. PMMA resin appears 

to be more susceptible to thermal conductivity enhancement.  
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CVD produced SWNTs and MWNTs were purified in acid and ultrasonicated to disperse 

them. Coagulation method was used to prepare composites with PMMA. Thermal 

conductivity testing gave =2.43 W/mK for 1 wt% SWNTs and =3.44 W/mK for 4 wt% 

MWNTs composites. This represents ten and fifteen fold improvement over neat resin, 

respectively [34]. 

2.2.4.1.1.1. Functionalization 

Experimental 

H2SO4/HNO3 treated and triethylenetetramine (TETA) grafted MWNTs were used as a 

filler to synthesise nanocomposites with DGEBA epoxy resin. Thermal conductivity 

improvement with respect to composites made with as-received MWNTs is attributed to 

improved interfacial heat transport due to TETA functionalization, as well as to improved 

dispersion. The results are presented in Fig. 2.9. 

 

Fig. 2.9: Thermal conductivity of MWNT/DGEBA epoxy composites 

The values in the figure show =~0.36 W/mK for DGEBA and the maximum value of 

~1.3 W/mK for TETA grafted MWNT composite with 10 wt% loading. This represents 

substantial increase in thermal conductivity [35].  
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Factors that play a role in this enhancement could be the high initial thermal conductivity 

of epoxy and compatibility between the epoxy and functional groups grafted onto 

MWNTs, apart of improved dispersion and interfacial heat transport. 

From TEM images in Fig. 2.10 is possible to see functionalization impact on a CNT. 

Acid oxidised CNT has etched surface while microtome cut SWNT has smooth surface. 

 

Fig. 2.10: TEM images of a) acid oxidised and b) microtome cut SWNT [36]. 

It means that functionalization in general damages CNTs. 

In order to alleviate CNTs surface damaging, the functionalization approach was 

modified.  

MWNTs were functionalised without damaging MWNTs surface via Friedel–Crafts 

modification [37]. Functionalised MWNTs were dispersed in epoxy via mixing with 

solvent. Benzenetricarboxylic acid grafted multi-walled carbon nanotubes (BTC-

MWNTs) and epoxy matrix were employed to form a fully heat flow network.  

The experimental results presented in Fig. 2.11 show increase in thermal conductivity for 

undamaged surface MWNTs composites compared to pristine MWNTs composites. This 

increase is ~ 3 times in composites with 1 vol% and ~ 2 times for composites with 3 and 

5 vol%. This increase is due to: a) rigid linkage between MWNTs and epoxy matrix, b) 

good dispersion of MWNTs in matrix. 



31 
 

 

Fig. 2.11: Thermal conductivity with pristine and functionalised MWNTs [37]. 

It is important to note the decrease of the thermal conductivity for samples prepared with 

acid treated MWNTs. This is likely due to damage to the MWNT surface. 

Adding CNTs to polymer matrix in high loadings could represent a formidable task. 

Carbon nanotubes are not an inexpensive material either. Hence, improving thermal 

conductivity with low loading of CNTs is another approach towards comercialisation of 

nanocomposites. 

A successful attempt to increase thermal conductivity with low loading of CNTs was 

achieved with UV/O3 functionalised MWNTs. The next step was deposition of aniline. 

After the aniline was deposited, Ag was added to MWNTs. Nanocomposites were 

synthesised with PMMA and nanomaterial obtained after described functionalization. 

Thermal conductivity was measured to obtain 0.48 W/mK for 0.25 wt% loading, thus 

improving 0.18 W/mK polymer thermal conductivity ~ 2.7 times [38]. 
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Numerical 

Numerical simulation was employed to predict functionalised CNTs nanocomposites 

thermal conductivity. Molecular dynamic simulations were predominant direction of this 

effort. 

Using molecular dynamic simulations thermal conductivity of SWNT on which biphenyl 

rings have been chemically attached was calculated. Simulation was completed for 

pristine and CNTs with various percentage of CNT atoms with a bonded biphenyl group. 

The functionalization of nanotubes reduces their thermal conductivity, and at densities as 

low as 10.0 % thermal conductivity is reduced dramatically [39]. 

Using a classical molecular dynamics method the deposition process of metal species 

onto a SWNT was simulated to estimate its resulting physical strength and thermal 

diffusivity. The physical strength of the metal-coated SWNT was found to be similar to 

that of an uncoated SWNT. The thermal diffusivity decreased by 90% [40]. 

The above is confirmation that modified CNTs can be employed successfully for 

improvement of polymer properties, however, the attention shall be given to 

compatibility of constituent materials. 

2.2.4.1.1.2. Magnetic alignment 

Randomly dispersed CNTs were giving mixed results, pending many factors. Therefore, 

CNTs alignment was employed to exploit CNTs intrinsic properties. 

Purified SWNTs were mixed with epoxy resin Thixotropic/PR2032. Dispersion was 

achieved via ultrasonication and mechanical mixing. Magnetic alignment was then 

applied in the 25 T magnetic field. Thermal conductivity measurement results are 
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presented in Fig. 2.12. CE-25Tll is the composite processed in magnetic field, CE-0T is 

composite not processed in magnetic field, and E-25T is pristine matrix processed in 

magnetic field. Magnetically aligned composite sample reached =~6.5 W/mK in the 

direction of magnetic field alignment at room temperature, an enhancement of ~3 times, 

compared to neat aligned epoxy. 

 

Fig. 2.12: Thermal conductivity of CNT-epoxy composites processed at 0 and 25 T, compared with pristine 
epoxy sample processed at 25 T. The measurement was in the magnetic field alignment direction [41]. 

2.2.4.1.1.3. CNT Fibres 

CNTs/epoxy composites were produced. First, CNTs were assembled parallel to each 

other into fibres during CVD production process. High volume fraction composites were 

then made via direct polymer infiltration. Thermal conductivity was tested. The results 

are presented in the Fig. 2.13. 
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Fig. 2.13: Axial thermal conductivity as a function of CNT mass fraction for CNT fibre / epoxy and T300 
CF / epoxy composites. Included are TCs for as spun CNT fibre and T300 fibre as well as for pure epoxy 

[42]. 

The highest thermal conductivity values are 23 W/mK for 10 wt% CNT fibre and 5.3 

W/mK for 30 wt% CF.  

2.2.4.1.1.4. Electrospun fibres 

Following good results achieved with CNT fibres, attempts were made to further improve 

properties while the production process would be simplified. Polymer electrospinning is 

well documented and not really involved process. Some teams adopted this approach. 

CNT-loaded polymer fibres were electrospun from the dimethyl acetamide solution. 

Through the applied electric field, alignment of the CNTs in the fibres was achieved. The 

liquid crystal properties of cellulose acetate (CA) also enhanced the alignment of carbon 

nanotubes in a fibre. Combining CNTs (2 wt%) with graphite particles (10 wt%) as 

nanosized fillers improves the network of thermally conductive nanoparticles. Thermal 

conductivity of 6 W/mK was reached. It represents nearly 16 times increase compared 

with pure CA thermal conductivity of 0.38 W/mK. The enhancement was attributed to 

alignment of CNTs in polymer fibres [43]. 
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MWNT- polybenzimidazole polymer nanofibre composites were produced by core–shell 

electrospinning. Thermal conductivity testing was performed to characterise the material. 

Results are presented in Fig. 2.14. 

 

Fig. 2.14: In-plane (circles) and through-plane (diamonds) thermal conductivities of the MWCNT-PBI fibre 
mats as a function of MWCNT content [44]. 

Maximum in plane thermal conductivity of 18 W/mK for 1.94 wt% CNT loading, and 

approximately 0 W/mK through thickness thermal conductivity, independent of CNT 

loading, were deducted from the Fig. 2.14. 

2 .2 .4 .2 .  Poly mer  +  CNT +  CF 

As CNT loaded polymer composites were not fulfilling expectations with respect to 

conductivity properties, the same was the case with mechanical properties. Hence, 

attention was turned towards improvement of carbon fibre reinforced plastics (CFRP) 

with the addition of CNTs. 

Carbon fibre (CF) / phenolic matrix composite thermal conductivity was increased from 

250 to 393 W/mK by adding 7 wt% of crystalline MWNT, average diameter of 80 nm, 

length 10-20 nm (Fig. 2.15). MWNTs were produced on an industrial scale by chemical 

vapor deposition method and subsequent thermal treatment. 
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MWNTs were dispersed in the resin with the aid of ultrasound. Thus created solution was 

used to impregnate pitch based carbon fibres. CF/phenolic resin ratio was kept at 1 wt%, 

and MWNT content was varied: 5, 7 and 10 wt%. 

As-produced MWNTs (not heat treated) resulted in reduced thermal conductivity values 

for the composites, thus indicating that catalytically grown MWNTs, possessing intrinsic 

structural defects are not adequate for the fabrication of highly thermal conducting 

composites. To become filler that enhances composite thermal conductivity, MWNTs 

require thermal treatment to improve their structural integrity because the presence of 

defects on the sidewalls of carbon nanotubes obstructing the propagation of phonons is 

annealed out during the thermal treatment. 

 

Fig. 2.15: Thermal conductivity of composites with raw MWNTs and thermally treated MWNTs [45]. 

The above studied thermal conductivity is specified schematically to be in the carbon 

fibre alignment direction. 

Amine groups (NH2) functionalised MWNTs were deposited using electrophoretic 

deposition process on the CFs from which the sizing was removed. The MWNT content 

was determined relatively to the solvent used, in which 0.005 and 0.01 wt% of CNTs was 

ultrasonically dispersed. CFs were PAN based fibres 5 satin weave harness. Composites 
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were cured with epoxy resin. The volume fraction of the matrix was 88% and of the 

fibres 12%. Raman spectroscopy revealed possible covalent bonding between CFs and 

MWNTs. Thermal conductivity was measured using thermal flash unit with CFs all 

oriented in the direction of the light pulse. Matrix-CF composites had =1.87 W/mK. For 

composites prepared with solution containing 0.005 wt% of CNTs, the increase was to 

2.24 W/mK (20%) and for 0.01 wt% of CNT solution composite =3.41 W/mK, the 

increase of 83% [46]. 

Some attempts were not as successful as others. These are important in order to 

understand the available paths that could lead to desired results. 

Carbon fibre prepreg surface was sprayed with carboxylic acid groups functionalised 

SWNTs. Thus modified prepregs were stacked up and cured to form a composite 

material. SWNTs remained between layers, causing no improvement in thermal 

conductivity [47].  

PAN based CFs/epoxy prepreg was selected as the reference material to evaluate through 

thickness thermal conductivity improvement with addition of SWNTs, chopped 

mesophase pitch base CF K-1100, and carbon black (CB).  

The reference material was fabricated as a crossply composite.  

The fillers were added by wet application on both surfaces of a prepreg sheet via 

immersion. The filler quantity was determined based on the spreadability of the solution 

applied. Following curing under the same conditions as for the reference material, the 

thermal conductivity was measured. The maximum thermal conductivity was obtained 
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for SWNTs, 1.453 W/mK, slightly more than for the K-1100, 1.444 W/mK. Addition of 

CB yielded TC increase to 1.212 W/mK from 1.091 W/mK for reference material [48]. 

Long MWNTs (LMWNT - over 1 mm in length) and their longer extended networks 

were used to improve thermal conductivity of CF/epoxy composites. LMWNTs were 

mixed with Epon 862 epoxy using three roll mill at 0.5, 1.0, 5.0 and 10.0 wt%. The 

mixture was then incorporated into the carbon fibre fabric. Thermal conductivity testing 

results are presented in Fig. 2.16. It can be seen that only samples with 10 wt% of 

LMWNT make the difference in TC. The maximum =1.4 W/mK. However, the 

maximum =1.5 W/mK for short MWNTs at 0.5 wt% CNT loading (Fig. 2.16). This is 

due to induced loading. 

 
 

                      
a)                                                                                                     b) 

Fig. 2.16: Thermal conductivity of composites with a) LMWNTs b) SMWNTs [49]. 

2 .2 .4 .3 .  CF +  CNT 

Successful attempts to improve CFRP thermal conductivities with the addition of CNTs 

were scarce. Many attempts did not achieve their objectives due to filtration effect.  
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The focus shifted towards the modification of CFs and CF preforms with the addition of 

CNTs. 

The first logical step was to grow CNTs directly on fibres. 

CNTs were grown on PAN (T1000GB) and pitch (K13D) based carbon fibres using CVD 

method. Thermal diffusivity of obtained hybrid materials was measured. From thermal 

diffusivity measurements, thermal conductivities were calculated to be 18.6±1.7 and 

956.6±30 W/mK, respectively, an increase from original thermal conductivities of 

12.6±1.9 and 745.5±16.0 W/mK [50]. 

2 .2 .4 .4 .  CF +  CNT + Polymer  

Following CNT growth on CFs, in order to form CFRP, polymer was added to the 

modified preform to improve its properties. 

Chemical vapour deposition was employed to grow MWNTs on CF plain weave cloth 

substrates, woven from PAN based T-300 tows. Four batches of preforms with 1.98, 

4.44, 4.96 and 11.68 CNT wt% were prepared. From these preforms and neat cloth 

composite laminates were made with epoxy matrix LY-556/HT972. CF and MWNT-CF 

preform volume fraction was kept at 30%. Both in-plane and through thickness thermal 

conductivities were improved for the CNT modified preforms. The highest conductivities 

were measured on preforms with 11.68 wt% of CNTs. The in-plane TC was enhanced 

from 17.68 W/mK to 29.05 W/mK, an increase of ~64%. The through thickness TC was 

increased from 1.82 W/mK to 2.61 W/mK, the improvement of ~44% [51]. 

It is worth noting that in-plane TC had visible increase for 4.96 wt% and significant 

increase for 11.68 wt%, whereas the transversal TC began showing visible increase with 
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1.98 wt% MWNT loading, with the next three samples having similar TC, per diagram 

depicting TC measurement results. 

2.2.5. Graphene 

2 .2 .5 .1 .  Graphene  thermal  conduct iv i ty  

New nano-sized carbon material – graphene - was produced, isolated, identified and 

characterised recently by Novoselov and Geim [52]. The graphene is a 2D material and 

has excellent thermal conductivity properties. Measured thermal conductivity for a single 

layer graphene is in the range ∼ (4.84 ± 0.44) × 103 to (5.30 ± 0.48) × 103 W/mK [53]. 

This datum was encouraging and resulted in efforts to improve thermal conductivity of 

composites through graphene as filler, alone or in combination with CNTs. Significant 

enhancement in thermal conductivity of nanocomposites made with this material was 

reported. 

Graphite nano platelets (GNP) were combined with SWNTs yielding higher thermal 

conductivity improvement (3.35 W/mK) than either GNP or SWNTs loaded composite 

up to 20 wt% filler loading. Above 25 wt% loading, GNP loaded composites exhibited 

higher thermal conductivity than hybrid filler composite reaching value higher than 6.5 

W/mK for 40 wt% GNP loading, being improvement of ~30 times compared to pristine 

epoxy [54]. 

Standard thermal conductivity of ~1–5 W/mK achieved with conventional thermal 

interface materials (TIMs) requires high volume fractions of the filler (~70%). Multi 

layer graphene and liquid phase exfoliated graphene were used as filler materials in 

TIMs. Thermal conductivity measurement result indicated more than 23 times 

improvement with 10% graphene volume fraction [55]. 
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Advantage of flat over wrinkled GNP as a filler for thermal conductivity improvement 

was observed. 10 vol% flat GNP loaded into epoxy composite increased pristine epoxy 

thermal conductivity (0.19 W/mK) five fold [56]. 

Another very high value of thermal conductivity was obtained with combined GNP and 

CNT filler. In this case, the authors were using equal amounts of both fillers to load 

epoxy with up to 50 vol% nanomaterial. The result is thermal conductivity at room 

temperature of 7.30 W/mK. The large enhancement was, as in previous cases attributed to 

synergetic effects of the two fillers [57]. 

Another approach to exploit the combined properties of GNP and CNTs was to grow 

CNTs on GNP. A composite made with thus obtained filler gave better thermal 

conductivity than with either GNP or CNTs employed on its own. 20 wt% loading of 

hybrid material improved thermal conductivity 300% compared with the CNTs loading 

and 50 % compared with GNP loading. Through thickness thermal conductivity of 2.41 

W/mK was achieved [58]. 

Functionalisation was another approach that was attempted to enhance epoxy thermal 

conductivity. One manner is non covalent functionalisation which does not induce a great 

damage to graphene flakes and renders them highly soluble. Authors designated the 

obtained product f-GFs. Adding 10 wt% of f -GFs into epoxy resin yielded thermal 

conductivity of 1.53 W/mK [59]. 

Thermal conductivity of functionalised graphite/epoxy composite with 20 wt% filler 

loading increased to 5.8 from 0.2 W/mK of pristine epoxy – 28 fold improvement. 
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However, the electrical property of epoxy composite prepared with chemically 

functionalised graphite declined [60]. 

Other studies determined that graphene improves epoxy electrical properties, however to 

lesser extent than CNTs.  

Percolation network of MWNT and thermally reduced functionalised graphene sheets 

achieved in epoxy resin were investigated. Both rheological response of uncured and 

electrical response of cured material were evaluated. MWNT were forming percolation 

network at lower loading levels than graphene sheets, designating CNTs as better filler 

for electrical properties improvement [61]. 

How CNTs and graphene nanosheets affect electrical properties was investigated. It was 

found that pristine MWNT added to epoxy yielded the highest improvement in electrical 

conductivity, about two orders of magnitude higher than comparative composite with 

graphene nanosheets. Setting an arbitrary level as the electrical conductivity threshold, 

percolation network was achieved with 50 % more of graphene nanosheets than with 

MWNT: 0.3 wt% compared to 0.2 wt% respectively. This is clear indication of better 

suitability of CNTs as a filler to improve electrical conductivity compared to graphene 

[62]. 

As presented above, graphene is a promising material for thermal conductivity 

improvement. However, through thickness thermal conductivity of hybrid material 

comprising carbon fibres, graphene and polymer matrix was not reported. In the same 

time, CNTs appear to be the material of choice for electrical conductivity improvement. 

Hence, CNTs appear to be better suited to develop multifunctional composite material. 
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2.3. Summary 

Following their discovery in 1952, CNTs did not attract much attention until 1991 when 

more details were published in the well known journal. CNTs are essentially cylinders 

formed of graphene sheets capped at their ends with halves of fullerene spheres. Those 

containing single cylinder are SWNTs and those with more cylinders are DWNTs or 

MWNTs.  

After methodology was developed to produce CNTs in sufficient quantities for 

investigation, significant amount of work was invested in determining their properties. 

CNT properties were found to be similar to those of graphite, with thermal conductivity 

exceeding the highest known to date, the conductivities of pyrolitic graphite and 

diamond. Other physical properties were extremely high as well, promising new polymer 

reinforcement, possibly replacement for CFs. Predominantly molecular dynamic 

simulations were used to predict thermal properties of composites containing new filler. 

However, when experimental work took place, many obstacles were found to hinder 

efforts and obtained properties of CNT modified polymers were only moderately 

improved, negligible when compared with theoretical predictions via established rules 

and equations, like the rule of mixture.  

Obstacles en route to better polymer composites were identified. The first group could be 

defined as manufacturing difficulties. Among those is poor dispersion of CNTs both in a 

solvent and in a polymer matrix due to high tube-tube attraction forces. Another one is 

high viscosity of CNT-polymer mixture. Handling difficulties presented additional issue. 

Poor quality of CNT/polymer interface, high interface resistance, both tube-tube and 

tube-polymer, were all cited as physics phenomena behind results not meeting 
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expectations. Nonetheless, the effort continued to provide for solutions for incremental 

improvements in sample manufacturing and thereafter properties measurements results. 

Such solutions were employment of ultrasound for CNT dispersion, magnetic alignment 

to address tube-tube interaction, LBL composite preparation to increase CNT loading 

while preserving homogeneous CNT dispersion, employment of non-damaged CNTs to 

reduce phonon scattering, creating CNT forests to improve alignment and reduce CNT-

CNT contact and lately growing CNTs on CFs and CF preforms to address CNT filtering 

observed when CNTs were applied on prepregs or when CNT modified matrix was 

applied on CF preforms. Step by step, thermal conductivity was improved on 

macroscopic scale with testing results approaching functional materials thermal 

conductivity values. However, better results were obtained for the thermal conductivity in 

the direction of CNTs and CNT modified CFs than in the through thickness direction 

which remains challenging area with considerable space for improvement. Therefore, 

incorporation of CNTs in CFRP has a substantial potential for applications where heat 

dissipation is a concern. 

2.4. Problem definition 

From available reports can be concluded that parameters with the highest impact on CNT 

modified CFRP through thickness thermal conductivity are CNTs purity, quality and 

distribution. 

Presence of impurities in CNT material adversely affects determination of CNTs physical 

properties from both technical and fundamental points of view [63]. 
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To define CNT quality, let’s begin with ideal CNT. The ideal CNT would be the one with 

perfect crystal lattice where hexagons are consisted of carbon atoms only, without any 

vacancies, inclusions or substitutions. Such carbon atom hexagons would be repeated 

always in the same manner with respect to the tubule axis while the same helicity would 

be maintained. Thus defined ideal CNT would be the perfect CNT with respect to heat 

transfer, i.e. the CNT with the highest quality as there would be no phonon scattering 

sites. Any CNT with a structure different from the ideal CNT structure would be the CNT 

with lower quality with respect to heat transfer. CNT quality with respect to heat transfer 

would degrade with increased number of imperfections in crystal lattice, CNT with the 

highest number of defects being the CNT with the lowest quality with respect to heat 

transfer due to the high number of phonon scattering sites. 

Therefore, in order to increase CNT modified CFRP thermal conductivity, in particular in 

the through thickness direction, it is important to employ good quality CNTs. Such CNTs 

would have lower number of phonon scattering sites. At the same time, in the case of 

tube-tube contact, CNT coupling intensity would be lower, thus further facilitating heat 

transfer as phonons would remain on the tube, as opposed to jumping from one tube to 

another and back in which process energy carried by phonons would be dissipated 

partially or even completely. 

Within the body of CNT structures available, some are better suited for heat transfer than 

another. Better heat transfer network would be formed from these CNTs than from 

others. 

Another important parameter is the uniformity of CNTs structure. CNTs with the same 

structure would form better heat transfer network than CNTs that would differ in 
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structure one from another, i.e. if all CNTs would be e.g. (5,5) or (0,0) CNTs, there 

would be no mismatch in individual CNTs crystal lattice properties. Hence, the phonon 

boundary scattering would be minimised in case of phonon propagation from one tube to 

another. In the case of CNT structure different from one tube to another, phonon 

boundary scattering due to mismatch in crystal lattice properties would contribute to 

lower thermal conductivity improvement. 

Based on above two paragraphs, CNTs most suitable for thermal conductivity 

improvement would be CNTs with uniform structure well suited for heat transfer. 

The highest thermal conductivity was obtained, both numerically and experimentally, for 

a single SWNT. Any higher form of CNT assembly gave lower thermal conductivity 

value, decreasing further as the form was becoming more and more complex and 

approached macroscopic ones. If all CNTs were ideal CNTs as defined above, higher 

forms thermal conductivity should have been equal to thermal conductivity of the single 

ideal CNT, as the constituent CNTs would be, SWNT, DWNT or MWNT, disregarding 

the number of CNTs involved or mechanical coupling as all phonons would remain on 

tube. However, degradation in thermal conductivity with increasing number of building 

blocks – CNTs – provides evidence of imperfections presence and intertube coupling 

thereafter. Hence, to emulate thermal conductivity of a single CNT, it is necessary to 

disperse CNTs. 

To disperse CNT higher forms like bundles and separate CNTs one from another, 

sonication was giving the best results. However, another issue appeared in polymer 

composite manufacturing process - agglomeration of dispersed CNTs. The highest CNT 
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weight content in a composite obtained with homogeneous CNT distribution – i.e. no 

agglomerations were observed – was achieved via LBL approach. 

In order to avoid unnecessary intertube coupling, as long as effective heat transfer 

network of individual CNTs is maintained in a CFRP, CNTs need to be well dispersed. 

Reviewed results suggest that sonication and LBL method would be the most effective 

means towards this goal both for polymer composites and CFRP. 

2.5. Thesis Objective 

Reviewed literature provides insight in the potential of CNTs as a filler of choice for 

thermal interface materials and improvement of composite materials employed in areas 

where efficient heat dissipation is a valuable property. Carbon nanotubes are best suited 

to improve both electrical and thermal conductivity even as the former was not 

investigated. However, realization of such potential depends on several factors. Factors 

considered the most important for thermal conductivity improvement are CNT quality 

and CNTs dispersion homogeneity.  

To demonstrate CNT quality importance for epoxy composites thermal conductivity, 

different quality CNTs were selected. 

In order to obtain composite material of intended properties, it is important to select 

appropriate materials and manufacturing process. The most successful approach thus far 

was reported by Mathur et al. [51]. Achieved through thickness thermal conductivity was 

2.61 W/mK, the improvement of ~44% over the reference material thermal conductivity 

of 1.82 W/mK. Bearing the above in mind, this thesis goal is to develop a multifunctional 

high performance hybrid composite material with heat dissipation properties 
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improvement beyond the current state of the art. To this extent carbon fibres, carbon 

nanotubes and epoxy resin are to be utilised. 

In order to resolve filtering effect appearing when CNTs are added to CFRP, 

manufacturing process was suitably tailored. CNTs shall be first dispersed and 

incorporated into CF preforms using ultrasound, followed by impregnation by resin and 

manufacturing of prepreg, followed by laminate curing in autoclave. 

Filtering effect is as well the reason behind the chosen thin, unidirectional carbon fibre 

fabric, made of 3k tows giving low specific weight per m2. This material is used in 

aerospace industry, one of industries targeted with this research. The low specific mass 

and thickness are facilitating homogeneous distribution of CNTs inside the CF preform. 

The thin CF preform would emulate the substrate on which CNTs are to be attached, 

followed by impregnation with resin. Described process would be an emulation of highly 

successful LBL process, employed on CNTs and polymer, taking advantage of benefits 

rendered by it – CNTs well distributed throughout composite via thin layers. 
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Chapter  3  

3.  Materials  and Manufacturing Procedure  

In today's aerospace industry, requirements for ever lighter materials with superior 

properties, mechanical, electrical and thermal, are becoming more stringent faster than 

ever before. This trend could be expected to continue in the future.  

Composite materials are no exception to these requirements. In fact, due to their unique 

properties – lighter, yet stronger than metals, they are becoming more prominent, and 

material of choice by leading aerospace manufacturers. To achieve such success, 

composites are to be produced following careful choice of constituting materials and 

manufacturing processes. This involves fibres, matrix and, as the latest material added for 

further composites improvement, CNTs. 

Pending intended application and possible operational environment, appropriate 

combination of fibres, matrix (and CNTs) and manufacturing process should be selected. 

The selection process should take into consideration individual material properties, 

compatibility of fibres, CNTs and matrix, process utilised to include CNTs in the 

material, and composite part manufacturing procedure. 

In this chapter, described are materials selected for specimen production, their properties, 

process used to incorporate CNTs into the material produced, and samples production 

method. The quality of the produced samples was evaluated and the results are presented 

in the later sections of the chapter. 
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3.1. Selected Materials 

Many applications of composite materials require heat dissipation facilitation. One 

possible application is aircraft industry where certain parts are exposed to constant 

thermal flux. To alleviate the possibility of overheating and consequent damage, those 

parts are required to have good thermal conductivity. Trend is to introduce composite 

materials to as many areas as possible in order to reduce weight, while maintaining 

mechanical properties of the replaced materials. Due to possible exposure to elevated 

temperatures and requirements for good thermal conductivity that facilitates heat 

dissipation, materials compatible with the intended application and environment, as well 

as one with another were chosen to make samples. 

Unidirectional carbon fibre fabric was utilised as the base material. During preliminary 

investigation, fabric produced utilising 12k yarns was used. To complete full scale 

investigation, fabric produced utilising 3k yarns was selected. The principal reason for 

selection of the fabric produced from 3k yarns is an attempt to achieve homogeneous 

distribution of CNTs within the CF fabric and to emulate LBL composite manufacturing 

as described in [31]. 

To improve material properties, CNTs were selected as the most suitable for 

improvement of both electrical and thermal conductivity – a requirement in 

multifunctional composites. 

Thermoset epoxy matrix was employed to give form to material and provide load transfer 

between fibres. 
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3.1.1. Carbon Fibre Fabrics 

a) Carbon fibre fabric GA 090 is a carbon fibre fabric produced by Hexcel from 12k 

yarns. Material nominal weight is 305
g
m2 . 

b) Carbon fibre fabric HexForce® G0947 D 1040 TCT is a carbon fabric produced 

by Hexcel from high strength PAN based carbon fibres. Warp material are 3k 

yarns made utilising HTA 5131 carbon fibres. The fibre density is 1760 kg/m3 

[64]. Weft yarns EC5 5.5 x 2 are made utilising glass fibres. Fabric content is 

97% warp and 3% weft. Material thickness is 0.16 mm. Material nominal weight 

is 160
g
m2 .  

3.1.2. CNTs 

From available CNTs, SWNTs produced utilising HiPCO process were chosen as they 

promised the highest improvement of thermal conductivity [30]. Raw (R), purified (P) 

and super purified (SP) SWNTs were incorporated in the material to evaluate the 

difference and determine the best filler. Ash content was 16.5% for RCNTs [65], 8% for 

PCNTs [66] and 4% for SPCNTs [67]. 

3.1.3. Matrix 

Matrix properties are presented in Table 3.1. 
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Table 3.1: Matrix properties. 

Property Value 

Room temperature viscosity ~ 2.2 Pas [68] 

Density 1174.5 kg/m3 

Working life > 20 h [68] 

Moisture absorption 2-2.5 wt% [68] 

Operating temperature 170 oC [69] 
 
Selected matrix is the system obtained by combination of bisphenol-F epoxy resin Epon 

862 and aromatic amine curing agent Epicure W. This system has very long working life 

at room temperature and high operational temperature when cured. Low room 

temperature viscosity allows better manufacturing process, hand lay-up utilised in 

samples manufacturing was facilitated by this material property. 

3.2. Samples Manufacturing 

Four types of samples were produced. Pristine matrix (type A), control samples (type B), 

reference samples (type C) and properties improvement samples (type D). Control 

samples are consisting of matrix and CNTs only, while reference samples were 

combination of carbon fibres and matrix. Properties improvement samples were made of 

carbon fibre fabric, CNTs and matrix. Samples schedule is shown in Table 3.2. 

Table 3.2: Samples schedule. 

Sample Type Sample Name Sample Content 

Type A Pristine Matrix Matrix 

Type B Control Samples Matrix + CNTs 

Type C Reference Samples Carbon Fibres + Matrix 

Type D Properties Improvement Samples Carbon Fibres + CNTs + Matrix  
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3.2.1. Type A Samples manufacturing 

Type A samples made of pristine matrix were obtained by combination of Epon 862 resin 

and W curing agent. The two were mixed in 100:26.4 weight ratio respectively. The 

mixing method applied was hand mixing. Following hand mixing the samples were 

degased in a vacuum oven for 30 minutes at 60 oC and -84.6 kPa. The samples were 

cured in an oven at 177 oC for 150 min. 

3.2.2. Type B Samples manufacturing  

Type B samples were made of matrix and CNTs. Three roll mill was used to mix CNTs 

with matrix. To obtain good dispersion of CNTs in the smatrix, a procedure was adopted 

based on work described in [70]. The sequence with respect to number of passes at 

selected gap is provided in Table 3.3. 

Table 3.3: Three roll mill sequence. 

Gap [µm] Number of passes 

50 1 

20 1 

10 4 

 
The first two passes at the gap of 10 µm were with resin and CNTs and in the subsequent 

two curing agent was added. 

Obtained mixture was subsequently degased in the vacuum oven for 30 minutes at -84.6 

kPa and 60 oC. Following degassing the type B samples were cured in the oven at 177 oC 

for 150 min. Within type B samples, differentiation of samples is made based on CNTs 

material and wt%. Table 3.4 specifies sample B content and designations in further text. 
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Table 3.4: Type B sample schedule. 

Sample Designation CNT Type wt% 

BR1 RCNT 1 

BR2 RCNT 2 

BR3 RCNT 3 

BP1 PCNT 1 

BP2 PCNT 2 

BP3 PCNT 3 

BSP1 SPCNT 1 

BSP2 SPCNT 2 

BSP3 SPCNT 3 

3.2.3. Type C Samples Manufacturing 

Type C samples were made of carbon fibres and matrix. Hand layup technique was used 

to produce these [02] samples. Carbon fibres fabric was cut in preforms with dimensions 

0.22 x 0.022 m. The preforms would subsequently be impregnated by matrix. Preform 

impregnated with matrix was held in oven for 30 min at 60 oC thus giving prepreg 

material that could be stored in a freezer. 
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Fig. 3.1: DSC determination of prepreg production parameters.  

Preparing a single layer of material to produce prepreg is significantly less involved than 

preparing multiple layers of material immediately laid up to produce laminate. The  

possibility to store material in the freezer allows for preparation of prepreg one day and 

laminates on another. In addition, partially cured prepreg material facilitates manipulation 

during stacking of laminate. 

The prepreg production parameters, time and temperature, were determined with the help 

of differential scanning calorimeter (DSC). The instrument used to this purpose was TA 

DSC Q10. The same instrument was used throughout the experimental work in this 

research. DSC samples were examined during the cycle that emulated manufacturing 

Temperature 

 

Released Energy 
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process in order to determine the process parameters yielding required degree of matrix 

cure (Fig. 3.1). The cure degree value of 15.6% is average value obtained from four 

samples. 

 

Fig. 3.2: Curing cycle for matrix system Epon 862 / Epicure W. 

Thus obtained prepreg layers would be stacked up on the tool plate for autoclave curing. 

During the stacking, breather, bleeder and release film were applied both above and 

under the sample, release film being next to the sample and breather being against both 

the tool plate below and the bagging film above the sample. The bleeder was between 

release film and breather layers. Details are provided in the paragraph 3.2.4.1. 

The sample prepared in such manner was cured in an autoclave at 177 oC for 150 min. 

Pressure (41.4 kPa) and vacuum (84.6 kPa) were applied to help compact the laminate, 

suppress voids and facilitate gasses extraction. The curing cycle is shown in Figure 3.2. 
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3.2.4. Properties Improvement Samples Manufacturing  

Carbon fibre fabric was the base material utilised. Preforms were cut to dimensions 0.22 

x 0.022 m.  

CNTs were dispersed in de-ionized (DI) water. The entire quantity of CNTs to be 

incorporated could be processed at once. However, the best result was achieved with 

incremental addition of CNTs for the content exceeding 1 wt%. Increments could be 

either larger or smaller than 1 wt%. Better results were achieved with increments not 

exceeding 1 wt%.  DI water was chosen over other solvents like acetone and ethanol for 

its higher boiling point. Due to that property, less solvent is used to manufacture samples. 

The solution was obtained by dispersing the CNTs utilising an ultrasonic processing unit 

in ice bath (Fig. 3.3). The ice bath was employed to keep processing parameters constant. 

In such manner solvent evaporation due to increased temperature was prevented as well. 

   
a)                                       b) 

Fig. 3.3: CNTs dispersion: a) CNTs in DI water; b) Sonication in ice bath. 

Thus obtained solution was poured over the carbon fibre preforms and processed in an 

ultrasonic bath in ice bath (Fig. 3.4). Again, ice bath was employed to maintain process 

parameters constant and to prevent solvent evaporation. 
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a)                                           b)                                         c) 

Fig. 3.4: Adding CNTs into carbon fibre preform: a) Carbon fibre preform; b) Carbon fibre preform 
submerged in CNT - DI water solution; c) Arrangement in ultrasonic bath. 

CNT incorporation into CF fabric process is schematically presented in Fig. 3.5. 

 
Fig. 3.5: Schematic presentation of CNT incorporation into CF fabric. 

With the aid of ultrasound, CNTs were incorporated into carbon fibre preforms. To 

eliminate solvent, CF preforms with incorporated CNTs were held in oven at 120 oC for a 

minimum of 24 hours.  
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In case of incremental loading increase, the above described process was repeated until 

entire CNT quantity is processed. When all CNTs intended for incorporation in the 

preform were used, either whole quantity at once or through incremental addition, exact 

mass of incorporated nanomaterial was determined by weighing preform material. If the 

mass of incorporated CNTs did not satisfy the initial requirement, (e.g. 2 wt%) process 

was repeated from the beginning. When the process was repeated, the mass of CNTs 

processed was the difference between the required one and the one incorporated in the 

preform as determined via weighting. Once the mass of incorporated CNTs satisfies 

initial requirement, the process was stopped and new material (Fig. 3.6) stored. 

 

a) 



60 
 

  
b) 

Fig. 3.6: New material - Carbon fibres with CNTs added with the aid of ultrasound: a) CNTs attached to 
carbon fibres; b) Increased stiffness of modified carbon fibres. 

The mechanism of incorporation of CNTs into the CF preform is as follows. First, CNTs 

get attached to CFs, as shown in Fig. 3.6 a). Once CNTs are attached to CFs, other CNTs 

get loosely attached to CNTs attached to CFs, bridging CFs and CNTs attached to CFs, 

thus forming the heat transfer network. Schematically, the new material formed from CF 

preforms and CNTs is presented in Fig. 3.7. 
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a) 

 

b) 

Fig. 3.7: Schematic presentation of new material created from CFs and CNTs: a) 3D presentation; b) 
Frontal 2D view. 
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It is reasonable to expect that described procedure used to incorporate CNTs into CFs 

fabric can be utilised with other materials. In this case other materials could be either 

different nanomaterial, different fibre like glass fibre, different form of fabric or a 

different solvent. Fibres could be in the form of any fabric weave, tow or individual 

fibres. Different nanomaterials that could be used are different CNTs, graphene, nanoclay 

and even microcapsules. CNTs could be SW, DW or MWNTs, as produced, treated 

(acidic, centrifuge or heat treatment), functionalised or any their combination. Graphene 

could be in the form of graphene nanoplatelets, graphene oxide, graphene flakes or any 

other one like graphene with CNTs grown on them, as produced, treated (acidic, 

centrifuge or heat treatment), functionalised or any their combination. Mentioned 

nanomaterials could be combined one with another in any manner, for example any (or 

all) variety of graphene mentioned with any variety (or all) of CNT mentioned or 

anything in between. Any nanomaterial or combination mentioned could be incorporated 

in any carbon fibre or glass fibre form. To this purpose, different solvents could be used 

in addition to DI water, like acetone, ethanol, N-methylpyrrolidone (NMP), 

dimethylformamide (DMF) or others. 

 
Fig. 3.8: Prepreg preparation from new material and matrix. 
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The next step was to impregnate the new material with the matrix utilising hand layup 

technique. The prepreg manufacturing procedure described above was again employed. 

Following partial cure in the oven for 30 min at 60 oC (degree of cure 15.6%), new 

prepreg material was created. The process is schematically presented in Fig. 3.8. 

Thus prepared prepreg was stored in the freezer at -18 oC until the curing.  

Thus obtained prepreg layers would be stacked up on the tool plate for autoclave curing.  

Samples were stacked up and cured in the autoclave (Fig. 3.9) following the same 

stacking sequence and procedure as for the type C samples.  

     
Fig. 3.9: CONCOM autoclave. 

Fig. 3.10 depicts a sample on the tool plate in vacuum bag after the curing in the 

autoclave. 

 
Fig. 3.10: Sample after curing in autoclave. 

In Fig. 3.11 resultant material could be seen in SEM picture with 50k magnification. 

CNTs forming the heat transfer network can be seen as bright pixels. In the same time 
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fracture surface exhibits features of a tough material fracture surface. This is an 

improvement over standard brittleness of epoxy matrix. 

 
Fig. 3.11: New material after impregnation with matrix and curing in autoclave - CNTs attached to carbon 

fibres and impregnated in matrix can be seen as bright pixels. 

Table 3.5: Type D sample schedule. 

Sample Designation CNT Type wt% 

DR1 RCNT 1 

DR2 RCNT 2 

DR3 RCNT 3 

DP1 PCNT 1 

DP2 PCNT 2 

DP3 PCNT 3 

DSP1 SPCNT 1 

DSP2 SPCNT 2 

DSP3 SPCNT 3 
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Within type D samples, differentiation of samples is made based on CNT type and wt%. 

Table 3.5 specifies sample content and designations in further text. 

3 .2 .4 .1 .  The  Ef fect  of  Anc i l la ry  Mater ia l s  S tack ing  

Sequence  

During the initial stage of preliminary research, the standard stacking sequence was used. 

Tool plate would be covered by a thin film of a release agent. On such prepared tool 

plate, a sample would be put. Release film would cover the sample, followed by bleeder 

and breather. Bagging film would complete the stacking sequence. 

Both C and D type samples were produced in such manner. However, when type D 

samples were produced and examined under SEM, the stacking sequence was modified. 

During SEM investigation of a type D sample stacked up for autoclave curing in the 

standard manner described above, an accumulation of matrix was observed on the sample 

surface that was against the tool plate during the curing process (Fig. 3.12).  

 
Fig 3.12: SEM image of sample with accumulated matrix against the tool plate. CNTs are bright pixels. 

Accumulated Matrix CF 
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An assumption was that this layer of matrix would act as an insulating layer. To verify 

the assumption, thermal conductivity was measured for the same sample three times. The 

first time was on a coupon made from an as-produced sample (AP). The next step was to 

remove the accumulated matrix layer using sand paper. The second time thermal 

conductivity was measured on the sample with sanded bottom side (SB). Following the 

second measurement, the top side, cured covered with the release film, of the same 

sample was sanded. The third thermal conductivity measurement was completed on the 

coupon with both bottom and top sides sanded (SBT). Results are presented in Table 3.6 

and Fig. 3.13. 

Table 3.6: Thermal conductivity of the samples as produced, then progressively sanded. 

  [w/mK]   
 - Relative Change 

[%] 
t [oC] 25 75 125  25 75 125 

Sample        
AP 0.854±0.070 0.983±0.080 0.957±0.076     

        

SB 1.034±0.125 1.175±0.128 1.104±0.104  21.1 19.5 15.4 

SBT 0.700±0.032 0.824±0.046 0.788±0.046  -18.1 -16.2 -17.7 
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Fig. 3.13: Thermal conductivity change with sanding of bottom, than top side of coupons 

The thermal conductivity change in type C samples was negligible after sanding, 

essentially non-existing. The change of thermal conductivity with sanding was observed 

only in samples with CNTs - type D samples. The change in thermal conductivity with 

sanding confirmed that accumulated matrix on the bottom of the sample was acting as the 

insulating layer. Removal of matrix from the bottom side of coupons increased thermal 

conductivity by approximately 20% at 25 oC and 75 oC. On the other side, the stacking 

sequence above the sample was the optimum configuration to exploit CNT effect on 

thermal conductivity, as even the minimum intervention on the top side was reducing 

thermal conductivity of the coupon. This stacking sequence allowed for CNTs to be on 

the surface of the sample, thus benefiting the through thickness thermal conductivity in 

the best possible manner. Hence, in order to eliminate matrix accumulation against the 

tool plate and formation of insulating layer, the standard stacking sequence was altered to 

apply release film, bleeder and breather both below and above the sample. Release film 

was next to the sample and breather was against both the tool plate below and the 
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bagging film above the sample. The bleeder was between release film and the breather 

layers. (Fig. 3.14 and Fig. 3.15). 

 
Fig. 3.14: Schematic presentation of sample stacked up for curing in autoclave. Detail in circle is shown 

enlarged in Fig. 3.15. 

 
Fig. 3.15: Schematic presentation of improved stacking sequence that eliminates insulating matrix 

accumulation. 

Thermal conductivity was measured on coupons made from thus produced samples (ISS). 

Obtained values (Table 3.7) were compared with the above provided results.  Thermal 

conductivity values are very similar to thermal conductivity measured on coupons with 

sanded bottom side (Fig. 3.16). 
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Table 3.7: Thermal conductivity of samples made using standard stacking sequence and improved stacking 
sequence 

  [w/mK]   
 - Relative Increase 

[%] 
t [oC] 25 75 125  25 75 125 

Sample        
AP 0.854±0.070 0.983±0.080 0.957±0.076     

        

SB 1.034±0.125 1.175±0.128 1.104±0.104  21.1 19.5 15.4 

ISS 1.008±0.153 1.174±0.173 1.209±0.177  18.0 19.5 26.3 

 
Fig. 3.16: Stacking Sequence Effect 

The proximity in the obtained ISS and SB samples thermal conductivity is confirmation 

of the hypothesis that accumulated matrix was acting as the insulating layer and that it 

would be removed with modified stacking sequence. The stacking sequence optimised for 

thermal conductivity improvement using CNTs improved the thermal conductivity 18%-

26.3%. It is reasonable to expect positive effect of thus modified stacking sequence on 

this and other transport properties, improvement of which is attempted via incorporation 

of CNTs, (SW, DW or MWNTs), other nanomaterials like graphene (in the form of 
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graphene nanoplatelets, graphene oxide, graphene flakes or any other one), any 

combination of any of the mentioned forms of CNTs and/or graphene forms, including 

CNTs grown on any of the mentioned forms of graphene. 

This particular part of research was completed utilising GA 090 carbon fibre fabric. 

Hence the differences in thermal conductivity values presented here and in Chapter 5. 

The values presented in Chapter 5 are obtained with carbon fibre fabric HexForce® 

G0947 D 1040 TCT. 

3.3. Sample Quality 

Samples of good quality are the requirement for reliable research results. Samples are 

characterised by several parameters.  

Cured sample dimensions is the first set of parameters evaluated following the sample 

curing. The next one would come when reinforcement (CFs+CNTs) volume fraction is 

determined via thermal gravimetric analysis (TGA). Absence of voids and resin rich 

areas is determined by optical microscopy. To evaluate CNT distribution within the 

sample, scanning electron microscopy (SEM) must be employed due to the nano size of 

the evaluated material constituent. 

1. Sample Dimensions 

Samples dimensions were determined with the aid of digital calliper and micrometer. 

Length and width corresponded to CF preforms’ dimensions. The thickness was 

determined for individual samples. These values were used to calculate average sample 

thickness on two levels. The first level is the group of samples with the same CNT 
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material and wt%, e.g. type C samples or within type D samples, samples with 1 wt% of 

purified CNTs. Results are presented in Table 3.8. 

Table 3.8: Sample groups’ thicknesses 

Sample type Thickness [mm] Sample type Thickness [mm] 

A 0.917±0.002 C 0.347±0.004 

BR1 0.924±0.006 DR1 0.412±0.028 

BR2 0.937±0.009 DR2 0.373±0.009 

BR3 0.964±0.007 DR3 0.335±0.015 

BP1 0.925±0.004 DP1 0.367±0.008 

BP2 0.952±0.007 DP2 0.345±0.017 

BP3 0.926±0.007 DP3 0.400±0.043 

BSP1 0.913±0.008 DSP1 0.388±0.008 

BSP2 0.975±0.009 DSP2 0.407±0.017 

BSP3 0.942±0.009 DSP3 0.372±0.003 

 
The second level is all samples. On the second level, average sample thickness for A and 

B type samples is T=0.934±0.018 mm and for C and D type samples T=0.375±0.033 mm. 

2. Reinforcement Volume Fraction 

Reinforcement volume fraction was determined through TGA ramp cycle from room 

temperature to 1000 oC at constant heating rate of 20 oC/min. Typical TGA plot obtained 

after this test is shown in Fig. 3.17. 
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Fig. 3.17: TGA plot analysis showing reinforcement residue wt%. 

Obtained residue value is 73.94±0.20 wt%. From this value reinforcement volume 

fraction can be calculated. Obtained value is 65.40±0.18 %. 

3. Voids and Resin Rich Areas 

Optical microscopy was utilised to verify samples for voids and resin rich areas. Typical 

images obtained during this stage of samples quality verification are shown in Fig. 3.18. 

 

Fig. 3.18: Optical microscope image of laminate at magnification of 500x. 
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4. CNTs Distribution 

CNTs distribution within composite material was verified via SEM. The following 

pictures (Fig. 3.19) depict CNTs attached to CFs and matrix impregnated. CNTs are 

easily distinguished as brighter pixels well distributed throughout the image a) while in 

the image b) CNTs can be as well seen embedded in matrix as a lighter shade of gray.  

From the pictures is clear that CNTs are homogeneously distributed throughout the 

sample. Surface on both pictures exhibits features of a tough material fracture surface. 

  
a) 
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b) 

Fig. 3.19: SEM images of properties improvement samples at a) 5k magnification and b) 50k 
magnification. 

CNTs 
embedded 
in matrix 

CNTs 
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Chapter  4  

4.  Testing 

Materials used to make parts with good heat dissipation shall possess good thermal 

conductivity. Therefore, thermal conductivity of obtained samples shall be verified. 

4.1 Thermal Conductivity Testing 

Thermal conductivity can be verified by variety of methods. For the purpose of this 

research, the method where thermal conductivity is obtained as a result of equation 4.1 

was chosen. 

Cp (4.1)

Where symbols denote:  

– thermal conductivity

 – thermal diffusivity 

 – density 

Cp – specific heat. 

Each of the above properties is determined independently of one another prior to 

combining them into equation 4.1. The following is the methodology employed to obtain 

these properties. While density is considered to be constant in the measured temperature 

range, thermal diffusivity and specific heat are temperature dependent, thus providing 

temperature dependent thermal conductivity. 
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4.1.1 Thermal Diffusivity 

Samples thermal diffusivity was established with the flash method according to standards 

ASTM E-1461, DIM EN 821 and DIN 30905 [71].  

4 .1 .1 .1 .  Measurement  Pr inc iple  

A coupon placed in a coupon holder is irradiated by xenon flash tube. An infrared 

detector is used to measure temperature rise on the other side of the sample as a function 

of time. Thermal diffusivity is calculated using Cowan model. The calculation results are 

obtained in the form of a list. Schematic presentation of the instrument operating 

principle is shown in Fig. 4.1 [71]. 

 
Fig. 4.1: Thermal diffusivity measurement principle [71]. 

4 .1 .1 .2 .  Coupon  Preparat ion  

Coupons for thermal diffusivity measurement should conform to specifications provided 

by the instrument manufacturer [71].  
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The coupon holder limits coupon lateral dimensions to 12.7 mm. The thickness is 

recommended as a function of expected thermal diffusivity. For materials with low 

thermal diffusivity, coupon thickness should be 1 mm or less with the upper and lower 

surface as flat and parallel as possible. Samples flatness as well as top and bottom 

surfaces parallelism were assured via tooling and stacking sequence. For  A and B type 

samples, machined metal tool plates were assuring sample face flatness while silicone 

moulds of uniform thickness were used to have bottom and top tool plates equally distant 

one from another, thus ensuring required parallelism. C and D type samples were 

prepared in a different manner, as described in Chapter 3. While metal machined tool 

plate was used for sample stack up and curing, layers of other materials were between the 

sample and the tool plate. This required more attention during sample layup and stack up. 

During layup, layers were placed precisely one on top of the other in order to minimize 

the possibility of slip between the layers during the initial stages of curing process. 

During stack up, attention was paid to placement of materials layers in order to avoid 

wrinkles and to provide for equal pressure distribution over samples. Coupons were cut 

from cured samples and measured to conform to the manufacturer’s requirements. Details 

are provided in the section 4.1.2. 

To enhance absorption of laser energy and emission of IR radiation to the detector, 

samples must always be coated with graphite. The purpose of the coating is to increase 

signal-to-noise ratio. The coating shall be uniform, approximately 5 m thick. To 

conform to this requirement, four layers of liquid graphite lubricant resistant to high 

temperatures were sprayed on both sides of each coupon. 
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4 .1 .1 .3 .  Measurement  

Measurement is an automated process as well as thermal diffusivity calculation. When 

the instrument is prepared per manufacturer’s instructions [71], coupons can be placed in 

the coupon holder. Up to four coupons can be placed in the coupon holder, however, it is 

recommended to have a reference material coupon in one of the slots in order to confirm 

reliability of the measurement.  

Measurement is completed via software installed on a PC. Measurement parameters to be 

specified are desired testing temperature and number of shots per testing point. 

Important coupon parameter to be entered before the measurement is the coupon 

thickness. The thickness is used in the calculation of the thermal diffusivity. The 

calculation of the thermal diffusivity is completed in the analysis software provided by 

the manufacturer. The results are obtained in the form of a list per coupon specifying 

thermal diffusivity for each specified temperature. Thermal diffusivity results units are 

mm2/s.  

4.1.2. Density 

Density is a parameter required to calculate thermal conductivity per equation 4.1. 

A coupon density is determined by dividing the measured mass of the coupon by the 

calculated volume of the coupon. 

4 .1 .2 .1 .  Measurement  

The mass of a coupon was measured with analytical balance, with measuring precision of 

0.0001 g. This balance was utilised throughout the research. 
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The volume of the coupon is determined by multiplying the coupon lateral dimensions 

with the coupon thickness. Coupons were cut from cured samples to dimensions W x L = 

12.7 x 12.7 mm. W is the width and L is the length of a coupon. The coupons were cut 

from samples to approximate dimensions using a cutting knife. To obtain required 

dimensions, coupons were hand sanded using fine grain sand paper. Frequent verification 

of coupon dimensions allowed for good result. Upon finalisation of sanding, final coupon 

dimensions were determined with a digital caliper. The caliper had precision of 0.01 mm. 

This caliper was utilised throughout the research. Each dimension was measured at three 

points, both ends and the middle of the span of the respective dimension. Average value 

was calculated for each dimension. Thickness of the coupon was determined using a 

micrometer with precision of 0.001 mm. This micrometer was utilised throughout the 

research. Thickness was measured at five points, four corners and the imagined 

intersection of the coupon diagonals. The average value was calculated from these five 

measurements. 

4.1.3. Specific Heat 

Specific heat is another parameter required to determine thermal conductivity per 

equation 4.1. 

A sample specific heat was determined via measurements completed with a DSC. 

4 .1 .3 .1 .  Cp Determinat ion  Process  

Three measurements are taken into account to determine the specific heat of a sample. 

One is the baseline measurement, the second one is the reference material measurement 

and the third one is the sample measurement.  
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The baseline measurement is the test where there are no sample pans inside the DSC 

chamber. 

The reference material measurement is the test where the reference (empty) pan is in its 

position, and the pan with the reference material is placed in the sample pan position. 

The first two measurements are required to be completed only once. These two 

measurements are then used to determine Cp for each sample. 

The sample measurement is the test where the reference pan is in its position and the 

tested sample is in the pan in the sample pan position.  

The software provided by DSC manufacturer is used to calculate Cp for each sample 

utilizing the above three measurements. Calculated results for Cp are provided in the 

form of a list where Cp is function of temperature with the unit J/goC. 

Typical Cp plot is presented in Fig. 4.2. Top curve is the heat capacity curve, while lower 

curve is total heat curve. 

 
Fig. 4.2: Typical Cp plot. 
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4 .1 .3 .2 .  Measurement  

To complete the measurements as described in the Cp determination principle, samples 

need to be prepared. 

As mentioned, there are no samples for the baseline measurement.  

For the reference measurement empty pan is placed in the reference pan position and the 

pan with the reference material - sapphire – is placed in the sample position. 

For each of the tested samples, material cut from the sample was placed in an Al pan and 

the pan was sealed.  

All samples measurements, baseline measurement and reference measurement were 

completed per following procedure: 

1. Equilibrate at 0 oC. 

2. Isothermal for 10 min. 

3. Ramp 20 oC/min to 140 oC. 

4. Equilibrate at 140 oC. 

5. Isothermal for 10 min. 
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Chapter  5  

5.  Results  and Discussion 

Thermal conductivity determination was carried out on all four types of samples: A, B, C 

and D. Each sample was tested at three different temperatures: 25, 75 and 125 oC. Within 

type B and type D samples, differentiation of samples based on CNTs weight loading 

[wt%] and type is made in the similar manner. The difference is that for type B samples 

wt% is determined with respect to the weights of matrix and CNTs whereas for type D 

samples wt% is determined relative to weights of CF preforms and CNTs.  

Thermal conductivity results were organized per sample schedule. Thermal conductivity 

dependence of the CNTs content, both with respect to wt% loading and purification level 

was evaluated as well as a function of temperature. Results are presented for obtained 

values of CNT loaded samples thermal conductivity as well as with respect to pristine 

matrix (type B samples) and reference samples (type D samples). 

5.1. Type B samples 

Type B samples were manufactured from matrix and CNTs. Samples are differentiated 

with respect to incorporated carbon nanotube purification level and carbon nanotube 

weight loading.  

5.1.1. BR Samples 

Samples BR1, BR2 and BR3 contain 1 wt%, 2 wt% and 3 wt% of raw CNTs 

respectively. 
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Obtained thermal conductivity results for type A and BR samples are presented in Table 

5.1. 

Table 5.1: Thermal conductivity for Type A and BR samples. 

  [w/mK]   
 - Relative Increase 

[%] 
t [oC] 25 75 125  25 75 125 

Sample        
Type A 0.235±0.004 0.245±0.011 0.257±0.016     

        

BR1 0.303±0.008 0.314±0.008 0.314±0.008  29.1 28.4 22.4 

BR2 0.313±0.013 0.324±0.015 0.324±0.012  33.2 32.7 26.4 

BR3 0.326±0.014 0.336±0.011 0.335±0.012   38.7 37.2 30.4 
 
Thermal conductivity varies both with CNTs weight content and temperature.  

5 .1 .1 .1 .  CNTs Loading  Leve l  Impact  

To evaluate impact of CNTs loading level, defined as wt% of total sample weight, 

thermal conductivity was measured for pristine matrix and samples with each of the three 

different weight loadings: 1, 2 and 3 wt%. Obtained values are compared at each of the 

three temperature measurement points. Fig. 5.1 depicts results at 25 oC. 
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Fig. 5.1: Thermal conductivity at 25 oC plot for A and BR samples as a function of CNT loading. 

Fig. 5.1 shows that percolation network is already established with 1 wt% of CNTs. 

Increase in thermal conductivity from type A samples is almost 30%. Further increase of 

CNT content continues to increase thermal conductivity, however at a much slower rate, 

as can be seen from the curve constant slope. Adding more CNTs increases thermal 

conductivity approximately 3.5% for each additional weight% added. The curve has 

constant slope, however, the increase in TC achieved from 1 wt% to 2 wt% and from 2 

wt% to 3 wt% content is within the error margin. Increase in TC achieved from 1 wt% to 

3 wt% is just outside the error margin. 

For measurement point at 75 oC, thermal conductivity curve is presented in Fig. 5.2. 
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Fig. 5.2: Thermal conductivity at 75 oC plot for A and BR samples as a function of CNT loading. 

Fig. 5.2 shows that thermal conductivity exhibits similar behavior at 75 oC with CNT 

content increase as it does at 25 oC. Efficient heat transfer network is established with 1 

wt% of CNTs. The increase with respect to pristine matrix samples is approximately 

30%. Further increase of CNT content continues to increase thermal conductivity, 

however at a much slower rate, as can be seen from the curve constant slope. Adding 

more CNTs increases thermal conductivity approximately 3.5% for each additional 

weight% added. The curve has constant slope, however, the increase in TC achieved from 

1 wt% to 2 wt% and from 2 wt% to 3 wt% content is within the error margin. Increase in 

TC achieved from 1 wt% to 3 wt% is just outside the error margin. 

For measurement point at 125 oC, thermal conductivity curve is presented in Fig. 5.3. 
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Fig. 5.3: Thermal conductivity at 125 oC plot for A and BR samples as a function of CNT loading. 

Fig. 5.3 shows that thermal conductivity exhibits similar behavior at 125 oC with CNT 

content increase as it does at 25 oC and 75 oC. Efficient heat transfer network is 

established with 1 wt% of CNTs, with smaller increase with respect to pristine matrix 

samples of approximately 20%. Further increase of CNT content continues to increase 

thermal conductivity, however at a much slower rate, as can be seen from the curve 

constant slope. Adding more CNTs increases thermal conductivity approximately 3.5% 

for each additional weight% added. The curve has constant slope, however, the increase 

in TC achieved from 1 wt% to 2 wt% and from 2 wt% to 3 wt% content is within the 

error margin. Increase in TC achieved from 1 wt% to 3 wt% is just outside the error 

margin. 

From the above presented, a conclusion can be drawn that RCNTs increase thermal 

conductivity of matrix when added in quantity of 1 wt% or more. Heat transfer network is 

readily established with 1 wt% of RCNTs. With higher loading levels, heat transfer 
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network is improved giving higher thermal conductivity levels. The TC increase is not 

large, however it should be noted that is steady for all loading levels verified at each 

temperature point. Per obtained data, thermal conductivity can be expected to increase 

further with increased RCNT content. With increased CNT quantity, number of heat 

transportation channels would be increased and thermal conductivity would rise, being a 

function of number of heat transportation channels.   

5 .1 .1 .2 .  Temperat ure  Impact  

 
Fig. 5.4: Thermal conductivity of A and BR samples as a function of temperature. 

To evaluate impact of temperature on thermal conductivity, thermal conductivity was 

measured at three different points: 25, 75 and 125 oC for pristine matrix and BR1, BR2 

and BR3 samples. The thermal conductivity plot as a function of temperature in Fig. 5.4 

depicts the results graphically. 
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While CNT loaded samples thermal conductivity exhibits the same behaviour with 

temperature change disregarding the loading level, pristine matrix thermal conductivity 

change with temperature increase is markedly different.  

Pristine matrix thermal conductivity is increased with temperature increase throughout 

the investigated temperature range. Increase between 25 oC and 75 oC is approximately 

4% and increase between 75 oC and 125 oC is somewhat larger, approximately 5%. The 

difference is visible as a change in the curve slope as well. However, the change is within 

the error margin. 

Thermal conductivity increase is almost the same for samples with 1, 2 and 3 wt% of 

CNTs with temperature increase from 25 oC to 75 oC, approximately 3%. Still, this 

increase is within the error margin. However, being the same across the CNT loading 

range, it could be considered real. With further temperature increase to 125 oC, thermal 

conductivity is not increasing, probably due to higher phonon-phonon scattering which is 

always increased with increased temperature. Thus, the curve is flat between 75 oC and 

125 oC. 

As mentioned above, the thermal conductivity change with temperature increase is 

different for type A and type BR samples. Between 25 oC and 75 oC is almost the same, 

with increase of 4% and 3% respectively. However, with further temperature increase to 

125 oC, type A samples thermal conductivity is rising by further 5% while there is no 

change in BR samples thermal conductivity. The difference is due to modified material 

properties with addition of CNTs. 
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5.1.2. BP Samples 
Samples BP1, BP2 and BP3 contain 1 wt%, 2 wt% and 3 wt% of purified CNTs 

respectively. Samples made with PCNTs yielded thermal conductivity values that are 

given in Table 5.2. 

Table 5.2: Thermal conductivity for Type A and BP samples. 

  [w/mK]   
 - Relative Increase 

[%] 
t [oC] 25 75 125  25 75 125 

Sample        
Type A 0.235±0.004 0.245±0.011 0.257±0.016     

        

BP1 0.292±0.008 0.301±0.008 0.302±0.008  24.1 23.0 17.6 

BP2 0.320±0.006 0.341±0.012 0.346±0.014  36.2 39.6 34.8 

BP3 0.356±0.005 0.375±0.009 0.382±0.013   51.3 53.4 48.7 
 
Thermal conductivity varies both with CNTs weight content and temperature.  

5 .1 .2 .1 .  CNTs Loading  Leve l  Impact  

 
Fig. 5.5: Thermal conductivity at 25 oC plot for A and BP samples as a function of CNT loading. 
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To evaluate impact of CNTs loading level, defined as wt% of total sample weight, 

thermal conductivity was measured for pristine matrix and samples with each of the three 

different weight loadings: 1, 2 and 3 wt%. Obtained values are compared at each of the 

three temperature measurement points. Fig. 5.5 depicts results at 25 oC. 

Fig. 5.5 shows that percolation network is already established with 1 wt% of PCNTs. 

Increase in thermal conductivity from type A samples is almost 25%. Further increase of 

CNT content continues to increase thermal conductivity, however at a slower rate, as can 

be seen from the curve almost constant slope. Adding more CNTs increases thermal 

conductivity approximately 10% for each additional weight% added. The increase in TC 

achieved from 1 wt% to 2 wt% and from 2 wt% to 3 wt% content is larger than the error 

margin, confirming the improvement in heat transfer network with addition of CNTs. 

For measurement point at 75 oC, thermal conductivity curve is presented in Fig. 5.6. 

 
Fig. 5.6: Thermal conductivity at 75 oC plot for A and BP samples as a function of CNT loading. 
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Fig. 5.6 shows that percolation network is already established with 1 wt% of PCNTs. 

Increase in thermal conductivity from type A samples is almost 25%. Further increase of 

CNT content continues to increase thermal conductivity, however at a slower rate, as can 

be seen from the curve almost constant slope. Adding more CNTs increases thermal 

conductivity 13.5% and 9.9% for each additional weight% added. The increase in TC 

achieved from 1 wt% to 2 wt% and from 2 wt% to 3 wt% content is larger than the error 

margin, confirming the improvement in heat transfer network with addition of CNTs. 

For measurement point at 125 oC, thermal conductivity curve is presented in Fig. 5.7. 

 
Fig. 5.7: Thermal conductivity at 125 oC plot for A and BP samples as a function of CNT loading. 

Fig. 5.7 shows that percolation network is already established with 1 wt% of PCNTs. 

Increase in thermal conductivity from type A samples is almost 18%. Further increase of 

CNT content by 1 wt% continues to increase thermal conductivity, at just a bit slower 

rate (14.6%), as can be seen from the curve almost constant slope. Adding more CNTs 
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increases thermal conductivity additional 10.4%. The increase in TC achieved from 1 

wt% to 2 wt% and from 2 wt% to 3 wt% content is larger than the error margin, 

confirming the improvement in heat transfer network with addition of CNTs. 

From the above presented, a conclusion can be drawn that PCNTs increase thermal 

conductivity of matrix when added in quantity of 1 wt % or more. Heat transfer network 

is readily established with 1 wt% of PCNTs. With higher loading levels, heat transfer 

network is improved giving higher thermal conductivity levels. The TC increase is not 

large, however it should be noted that exists for all loading levels verified at each 

temperature point. Per obtained data, thermal conductivity can be expected to increase 

further with increased PCNT content. With increased CNT quantity, number of heat 

transportation channels would be increased and thermal conductivity would rise, being a 

function of number of heat transportation channels.   

5 .1 .2 .2 .  Temperature  Impact  

To evaluate impact of temperature on thermal conductivity, thermal conductivity was 

measured at three different points: 25, 75 and 125 oC for pristine matrix and BP1, BP2 

and BP3 samples. Thermal conductivity plot as a function of temperature in Fig. 5.8 

depicts results graphically. 

While CNT loaded samples thermal conductivity exhibits similar behaviour with 

temperature change for each loading level, pristine matrix thermal conductivity change 

with temperature increase is markedly different, as described in 5.1.1.2. 
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Fig. 5.8: Thermal conductivity of A and BP samples as a function of temperature. 

BP1 sample thermal conductivity increases approximately 3% with temperature increase 

from 25 to 75 oC and is essentially constant with further temperature rise to 125 oC.  This 

behaviour is different from the one that can be seen in thermal conductivity of samples 

with 2 and 3 wt%. For these two weight loadings thermal conductivity change with 

temperature is very similar. Thermal conductivity increase with temperature rise to 75 oC 

is somewhat higher than 5%, while further temperature rise to 125 oC leaves thermal 

conductivity nearly unchanged with rise of approximately 1.5%. When thermal 

conductivity change with temperature increase is discussed, it should be noted that only 

increase observed for samples with 2 and 3 CNT wt% with temperature rise from 25 to75 

oC is larger than the error margin. Nonetheless, as it can be observed for samples with 

different loading levels, it could be considered real. At higher temperature of 125 oC, 

phonon-phonon scattering is increased, thus leaving thermal conductivity at the same 

level as at 75 oC. 
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As mentioned above, the thermal conductivity change with temperature increase is 

different for type A and type BP samples. Between 25 oC and 75 oC the nature of the 

change is similar, increase between 3 and 7 %. However, with further temperature 

increase to 125 oC, type A samples thermal conductivity is rising by further 5% while 

there is almost no change in BP samples thermal conductivity. The difference is due to 

modified material properties with addition of CNTs. 

5.1.3. BSP Samples 

Samples BSP1, BSP2 and BSP3 contain 1 wt%, 2 wt% and 3 wt% of super purified 

CNTs respectively. 

Samples made with SPCNTs yielded thermal conductivity values that are given in Table 

5.3. 

Table 5.3: Thermal conductivity for Type A and BSP samples. 

  [w/mK]   
 - Relative Increase 

[%] 
t [oC] 25 75 125  25 75 125 

Sample        
Type A 0.235±0.004 0.245±0.011 0.257±0.016     

        

BSP1 0.298±0.004 0.303±0.001 0.304±0.003  26.6 23.9 18.3 

BSP2 0.258±0.006 0.274±0.002 0.284±0.005  9.8 12.1 10.7 

BSP3 0.303±0.007 0.323±0.002 0.329±0.005   28.9 32.1 28.3 
 
Thermal conductivity varies both with CNTs weight content and temperature.  

5 .1 .3 .1 .  CNTs Loading  Leve l  Impact  

To evaluate impact of CNTs loading level, defined as wt% of total sample weight, 

thermal conductivity was measured for pristine matrix and samples with each of the three 
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different weight loadings: 1, 2 and 3 wt%. Obtained values are compared at each of the 

three temperature measurement points. Fig. 5.9 depicts results at 25 oC. 

 
Fig. 5.9: Thermal conductivity at 25 oC plot for A and BSP samples as a function of CNT loading. 

Fig. 5.9 shows that percolation network is already established with 1 wt% of SPCNTs. 

Increase in thermal conductivity from type A samples is almost 27%. CNT content 

increase to 2 wt% results in decrease in thermal conductivity from the one achieved with 

1 wt%. This is considered an anomaly. Addition of the 3rd wt% of CNTs returns thermal 

conductivity to the expected level, above the one with 1 wt%. The difference is 

approximately 2%, within the error margin.  

For measurement point at 75 oC, thermal conductivity curve is presented in Fig. 5.10.  

Fig. 5.10 shows that percolation network is already established with 1 wt% of SPCNTs. 

Increase in thermal conductivity from type A samples is almost 24%. CNT content 

increase to 2 wt% results in decrease in thermal conductivity from the one achieved with 
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1 wt%. This is considered an anomaly. Addition of the 3rd wt% of CNTs returns thermal 

conductivity to the expected level, above the one with 1 wt%. The difference is 

approximately 7%, larger than the error margin, confirming improvement in heat transfer 

network. 

 
Fig. 5.10: Thermal conductivity at 75 oC plot for A and BSP samples as a function of CNT loading. 

For measurement point at 125 oC, thermal conductivity curve is presented in Fig. 5.11.  

Fig. 5.11 shows that percolation network is already established with 1 wt% of SPCNTs. 

Increase in thermal conductivity from type A samples is approximately 18%. CNT 

content increase to 2 wt% results in decrease in thermal conductivity from the one 

achieved with 1 wt%. This is considered an anomaly. Addition of the 3rd wt% of CNTs 

returns thermal conductivity to the expected level, above the one with 1 wt%. The 

difference is approximately 8.5%, larger than the error margin, confirming improvement 

in heat transfer network.  
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From the above presented, a conclusion can be drawn that SPCNTs increase thermal 

conductivity of matrix when added in quantity of 1 wt % or more. Heat transfer network 

is readily established with 1 wt% of SPCNTs. With higher loading level of 3 wt%, heat 

transfer network is improved giving higher thermal conductivity levels. Results obtained 

with 2 wt% are considered an anomaly. The TC increase is not large, however it should 

be noted at each temperature point. Per obtained data, thermal conductivity can be 

expected to increase further with increased SPCNT content. With increased CNT 

quantity, number of heat transportation channels would be increased and thermal 

conductivity would rise, being a function of number of heat transportation channels. 

 
Fig. 5.11: Thermal conductivity at 125 oC plot for A and BP samples as a function of CNT loading. 

5 .1 .3 .2 .  Temperature  Impact  

To evaluate impact of temperature on thermal conductivity, thermal conductivity was 

measured at three different points: 25, 75 and 125 oC for pristine matrix and BSP1, BSP2 



98 
 

and BSP3 samples. Thermal conductivity plot as a function of temperature in Fig. 5.12 

depicts results graphically.  

While CNT loaded samples thermal conductivity exhibits similar behaviour with 

temperature change for each loading level, pristine matrix thermal conductivity change 

with temperature increase is markedly different, as described in section 5.1.1.2. 

 

 
Fig. 5.12: Thermal conductivity of A and BSP samples as a function of temperature. 

BSP1 sample thermal conductivity increases approximately 2% with temperature 

increase from 25 to 75 oC and is essentially constant with further temperature rise to 125 

oC.  This behaviour is different from the one that can be seen in thermal conductivity of 

samples with 2 and 3 wt%. For these two weight loadings thermal conductivity change 

with temperature rise to 75 oC is very similar. Thermal conductivity increase with 

temperature rise to 75 oC is approximately 6.5%. Further temperature increase to 125 oC 
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increases 2 wt% sample thermal conductivity by additional 3.6%, while the 3 wt% 

sample one is nearly unchanged with rise of approximately 2%.  

When thermal conductivity change with temperature increase is discussed, it should be 

noted that only increase observed for samples with 2 and 3 CNT wt% with temperature 

rise from 25 to75 oC can be considered sufficiently outside the error margin. Nonetheless, 

as it can be observed for samples with different loading levels, it could be considered 

real. At higher temperature of 125 oC, phonon-phonon scattering is increased, thus 

leaving thermal conductivity nearly at the same level as at 75 oC. 

Thermal conductivity change with temperature increase is different for type A and type 

BSP samples. Between 25 oC and 75 oC the nature of the change is similar, increase 

between 2% and 7 %. However, with further temperature increase to 125 oC, type A 

samples thermal conductivity is rising by further 5% while BSP samples thermal 

conductivity changes its behaviour and tends to be constant. The difference is due to 

modified material properties with addition of CNTs. 

5.1.4. CNTs Quality Impact 

In order to discuss CNT quality impact, it is important to define the CNT quality with 

respect to thermal conductivity. 

In graphite crystal lattice heat is transferred by acoustic phonons. Boundary scattering 

and lattice imperfections like carbon atom displacement, either in plane or out of its 

plane, carbon atoms missing, inclusions in the form of either carbon or a different atom 

all lead to a reduction of the phonon mean free path and as a consequence a reduction in 

thermal conductivity [11,12]. Hence, higher number of defect sites means lower thermal 
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conductivity of a CNT. Therefore, a CNT without any imperfections would be the CNT 

with the highest thermal conductivity, i.e. the highest quality CNT. 

The most common method for CNTs purification is acid treatment. In this manner, as 

described in literature, ash content is reduced. A negative side of the acid treatment is 

damaging of CNTs’ side walls [36, 37]. 

It is reasonable to assume that lower levels of ash content would require acid treatment 

that would infer higher number of individual defects to CNTs, thus reducing CNTs 

thermal conductivity. Therefore, for CNTs produced by the same method and with the 

same production parameters, as produced CNTs would have the lowest number of defects 

and hence the highest thermal conductivity, thus being the CNTs of the highest quality 

with respect to thermal conductivity. CNTs purified via acid treatment would have lower 

thermal conductivity, therefore being the CNTs of lower quality. 

In the case of CNTs used in the current study, based on the above, RCNTs would be the 

CNTs with the highest quality of the three. PCNTs would be the CNTs with the second 

highest quality and the SPCNTs would be the CNTs with the lowest quality with respect 

to heat transfer. 

To evaluate CNTs quality impact on thermal conductivity, thermal conductivities of 

samples made with the same weight loading of different quality CNTs were compared 

across investigated temperature range. 

Results for 1 wt% of CNTs are graphically presented in Fig. 5.13.  

From Fig. 5.13 can be seen that thermal conductivities for samples made with 1 wt% of 

CNTs with different ash content are almost the same. BR1 samples exhibit somewhat 
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higher thermal conductivity at each temperature point, approximately 4%. However, the 

differences are within the error margin. 

To explain this, we shall consider CNT purification level. Purification level affects 

thermal conductivity in two ways: CNT structure and ash content. Effect on CNT 

structure was given earlier – more purification affects structure progressively in adverse 

manner. Further analysis shall demonstrate effect on thermal conductivity. With more 

purification, ash content is being reduced. Let’s consider the ash content within each of 

employed CNT materials. Ash content is 16.5%, 8% and 4% in R, P and SP CNTs 

respectively. Ash content affects thermal conductivity in two ways. First, higher ash 

content means less CNTs. Less CNTs means lower nominal heat transport potential 

available. Second, when CNTs are dispersed in polymer, ash is present as well. Ash 

particles are phonon scattering sites, effectively reducing number of available phonon 

paths. Higher ash content translates into higher number of phonon scattering sites. 

 
Fig. 5.13: 1 wt% samples thermal conductivity as a function of temperature. 
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If there would be only CNTs and ash, CNTs with 16.5% ash content would have 83.5% 

of CNTs, with 8% ash 92% CNTs and with 4% ash 96% CNTs. It means that 83.5% 

RCNTs with 16.5% of impurities transported 4% more heat energy than either 92% 

PCNTs with 8% of impurities or 96% SPCNTs with 4 % impurities. 

To break this further down, consideration is to be given only to two CNT materials at the 

time. To begin with PCNTs and SPCNTs looks as a good idea as samples made with 

these two CNT materials have almost the same TC. Comparing CNT percentage, 92% vs. 

96% means 4% less PCNTs than SPCNTs are available to transport heat energy. 

Consideration now has to be given to phonon scattering sites. Impurities content is 4% 

higher in PCNT material than in SPCNT one. It gives 4% more phonon scattering sites 

incorporated into BP than into BSP samples. Adding these two numbers, obtained is that 

8% more heat is transported via individual PCNTs than via individual SPCNTs. If this 

simple calculation is extended to RCNTs, 21% more heat is transported through 

individual RCNTs than through individual PCNTs and 29% through individual RCNTs 

than through individual SPCNTs. 

Results for 2 wt% of CNTs are graphically presented in Fig. 5.14. 

From Fig. 5.14 can be seen that thermal conductivities for BR2 and BP2 samples are 

close one to another. BP2 samples exhibit somewhat higher thermal conductivity, from 

2.2% at 25 oC to 6.6% at 125 oC. However, the difference is within the error margin. 

BSP2 samples thermal conductivity is anomalously low, as mentioned when loading level 

impact on thermal conductivity was considered. Therefore, consideration shall be given 

only to BR2 and BP2 samples. It appears that more heat energy is transported with 2 wt% 

of PCNTs than with 2 wt% of RCNTs. 
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Fig. 5.14: 2 wt% samples thermal conductivity as a function of temperature. 

At 2 wt% loading, 8.5% more PCNTs than RCNTs are transporting 2.2% to 6.6% more 

heat energy. The difference in thermal conductivity is realised with 8.5% difference in 

nominal heat transport potential available. If we take into account 8.5% more phonon 

scattering sites in the form of ash content incorporated in the BR2 samples than in the 

BP2 samples as well, obtained is total of 17% less phonon paths in BR2 samples. As this 

difference is not realised, conclusion can be drawn that individual RCNTs are 

transporting more heat energy than individual PCNTs. At 25 oC it would be 14.8%, at 75 

oC 11.8% and at 125 oC 10.4%. 

Results for 3 wt% of CNTs are graphically presented in Fig. 5.15. 
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Fig. 5.15: 3 wt% samples thermal conductivity as a function of temperature. 

From Fig. 5.15 can be seen that thermal conductivities for BR3 and BSP3 samples are 

close one to another. BR3 samples exhibit somewhat higher thermal conductivity than 

BSP3 samples. The difference is higher at 25 oC, 7.6%, than either at 75 oC, 3.9% or 125 

oC, 1.7%. At all temperature points it hovers in the vicinity of error margin, being just 

above at 25 oC and just within at 125 oC. However, BP3 samples exhibit thermal 

conductivity higher than the one obtained with BR3 samples. The difference ranges from 

9% at 25 oC to 14.1% at 125 oC, larger than the error margin. 

Simple calculation completed for previous two loading levels is carried for 3 wt% 

samples as well. Thermal conductivities being different for samples with R, P and SP 

CNTs, analysis shall be carried for samples with two different CNT materials at the time.  

Consideration shall begin with BR3 and BSP3 samples, made with CNTs containing 

16.5% and 4% ash respectively. 
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At 3 wt% loading, 12.5% less RCNTs than SPCNTs are transporting 7.6% to 1.7% more 

heat energy at selected verification temperatures. If we take into account as well 12.5% 

more phonon scattering sites in the form of ash content incorporated in the BR3 samples 

than in the BSP3 samples, conclusion can be drawn that individual RCNTs are 

transporting more heat energy than individual SPCNTs. At 25 oC 32.6%, at 75 oC 28.9% 

and at 125 oC 26.7% more heat energy is transported through a RCNT than through a 

SPCNT. 

Doing the same for BR3 and BP3 samples, the following is obtained. RCNT material has 

8.5% less CNTs than PCNT material. It has 8.5% more ash content – phonon scattering 

sites - as well, giving 17% total of nominal difference in potential phonon paths available. 

Completing the above simple calculation at each selected verification temperature, 

conclusion is as follows. At 25 oC, 8% more heat energy is transported via individual 

RCNT than via individual PCNT. At 75 oC this is reduced to 5.2% and at 125 oC to 2.9%. 

5.1.5. Conclusion 

Matrix thermal conductivity improvement was evaluated at different temperatures for 

different load levels and different quality of CNTs added. 

Loading level impact on thermal conductivity was evaluated for all three CNT materials 

added to the matrix. At all selected verification temperatures TC is increased with 

addition of CNTs. Exception is increase from 1 to 2 wt% of SPCNTs, however, this is 

considered an anomaly. As expected, more CNTs are creating denser heat transportation 

network resulting in increased thermal conductivity. 
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Change of thermal conductivity with temperature was the next variable investigated. 

Temperature was increased 50 oC twice. Each temperature increase resulted in lower 

thermal conductivity increase compared to the previous one. It could be said that thermal 

conductivity is almost the same at 125 oC as it is at 75 oC. This is attributed to phonon-

phonon scattering that is increased with the temperature rise. 

The following parameter whose impact on thermal conductivity was evaluated was CNT 

quality. At all loading levels and at all selected verification temperatures individual 

RCNTs were transporting more heat energy than either individual PCNTs or individual 

SPCNTs. This is confirmation of hypothesis that CNT quality as defined with respect to 

thermal conductivity has major impact on thermal conductivity.  

5.2. Type D Samples 

Type D samples were manufactured from carbon fibre preforms, CNTs and matrix. 

Samples are differentiated with respect to incorporated carbon nanotube purification level 

and carbon nanotube weight loading.  

5.2.1. DR Samples 

Samples DR1, DR2 and DR3 contain 1 wt%, 2 wt% and 3 wt% of raw CNTs 

respectively. 

Obtained thermal conductivity results for type C and DR samples are presented in Table 

5.4. 



107 
 

Table 5.4: Thermal conductivity for Type C and DR samples. 

  [w/mK]   
 - Relative Increase 

[%] 
T [oC] 25 75 125  25 75 125 

Sample        
Type C 0.711±0.179 0.978±0.000 1.127±0.042     

        

DR1 1.058±0.088 1.179±0.092 1.265±0.120  48.8 20.5 12.2 

DR2 1.534±0.097 1.626±0.091 1.746±0.042  115.6 66.2 55.0 

DR3 1.710±0.009 1.842±0.010 1.943±0.001  140.4 88.3 72.4 
 
Thermal conductivity varies both with CNTs weight content and temperature.  

5 .2 .1 .1 .  CNTs Loading  Leve l  Impact  

To evaluate impact of CNTs loading level, defined as wt% of carbon fibre preform with 

incorporated CNTs weight, thermal conductivity was measured for type C and samples 

with each of the three different weight loadings: 1, 2 and 3 wt%. Obtained values are 

compared at each of the three temperature measurement points. Fig. 5.16 depicts results 

at 25 oC.  

Fig. 5.16 shows that thermal conductivity curve slope is almost constant between type C 

samples and samples with 1wt% of CNTs and samples with 1 wt% and samples with 2 

wt% of CNTs. Relative TC increase for these two loading intervals is nearly the same, 

48.8% and 44.9% respectively. Samples with 3 wt% of CNTs have thermal conductivity 

11.5% higher than samples with 2 wt% loading. Thermal conductivity increase is in all 

cases larger than the error margin, confirming improvement in heat transfer network with 

higher quantity of CNTs.   

 



108 
 

 
Fig. 5.16: Thermal conductivity at 25 oC plot for C and DR samples as a function of CNT loading. 

For measurement point at 75 oC, thermal conductivity curve is presented in Fig. 5.17.  

Fig. 5.17 shows that thermal conductivity increase is significant with addition of 1 wt% 

of CNTs, 20.5%. However, samples with 2wt% of CNTs exhibit 37.9% thermal 

conductivity increase compared to 1 wt% samples. Thermal conductivity of samples with 

3 wt% loading is the highest at 1.842 W/mK with increase of 13.3% compared to 2 wt% 

samples. Each of the thermal conductivity increases is larger than the error margin, 

confirming improvement in heat transfer network with higher quantity of CNTs.   
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Fig. 5.17: Thermal conductivity at 75 oC plot for C and DR samples as a function of CNT loading. 

For measurement point at 125 oC, thermal conductivity curve is presented in Fig. 5.18.  

Fig. 5.18 shows thermal conductivity increase with addition of 1 wt% of CNTs, 12.2%. It 

should be noted that this increase is within the error margin. However, samples with 2 

wt% of CNTs exhibit 38.1% thermal conductivity increase compared to 1 wt% samples. 

Thermal conductivity of samples with 3 wt% loading is the highest at 1.943 W/mK with 

increase of 11.2% compared to 2 wt% samples. Each of the thermal conductivity 

increases with 2 and 3 wt% is higher than the error margin, confirming improvement in 

heat transfer network with higher quantity of CNTs.   

From the above presented, a conclusion can be drawn that RCNTs increase thermal 

conductivity of CFRP when added in quantity of 1 wt% or more. Heat transfer network is 

readily established with 1 wt% of RCNTs. With higher loading levels, heat transfer 

network is improved giving higher thermal conductivity levels. It should be noted that TC 
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rise is substantial for all loading levels verified at each temperature point. The TC 

increase is very significant, reaching 140.4% at 25 oC with 3 wt% of CNTs added. The 

highest thermal conductivity level was obtained with 3 wt% loading at 125 oC, 1.943 

W/mK. Per obtained data, thermal conductivity can be expected to increase further with 

increased RCNT content. With increased CNT quantity, number of heat transportation 

channels would be increased and thermal conductivity would rise, being a function of 

number of heat transportation channels. 

 
Fig. 5.18: Thermal conductivity at 125 oC plot for C and DR samples as a function of CNT loading. 

5 .2 .1 .2 .  Temperature  Impact  
To evaluate impact of temperature on thermal conductivity, thermal conductivity was 

measured at three different points: 25, 75 and 125 oC for type C and DR1, DR2 and DR3 

samples. Thermal conductivity plot as a function of temperature in Fig. 5.19 depicts 

results graphically. 
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Fig. 5.19: Thermal conductivity of C and DR samples as a function of temperature. 

While 1 and 3 wt% samples thermal conductivity exhibits similar behaviour with 

temperature change for each loading level, type C and DR2 samples thermal conductivity 

change with temperature increase is somewhat different. 

Type C samples have more than twice as high TC increase with temperature rise from 25 

to 75 oC than with the rise from 75 to 125 oC, 37.5% and 15.2% respectively. DR1 and 

DR3 samples have similar TC increase trend with temperature rise from 25 to 75 oC and 

from 75 to 125 oC, the former being larger than the latter. In contrast to type C samples, 

this increase is more modest and the difference lower between two consecutive 

temperature points. For these two intervals TC increases are 11.4% and 7.3% and 7.7% 

and 5.5% for DR1 and DR3 samples respectively. DR2 samples thermal conductivity is 

the only one that exhibits higher increase with temperature rise from 75 to 125 oC than 

with temperature rise from 25 to 75 oC, 7.4% and 6.0% respectively. However, the DR2 

TC increase is the only one of the investigated TC for four groups of samples that is 
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within the error margin. Hence, this change in TC increase trend should be taken with 

reserve.  

Thermal conductivity increase with temperature could be observed for all samples, with 

or without CNTs. However, the TC increase in samples without CNTs is higher than in 

samples with CNTs. It could be concluded that CNTs heat transportation network 

adversely affects thermal conductivity with temperature increase. Difference between 

type C and DR samples is due to modified material properties with CNT incorporation. 

Smaller DR samples TC increase with temperature rise is attributed to phonon-phonon 

scattering in CNTs. 

5.2.2. DP Samples 

Samples DP1, DP2 and DP3 contain 1 wt%, 2 wt% and 3 wt% of purified CNTs 

respectively. 

Obtained thermal conductivity results for type C and DR samples are presented in Table 

5.5. 

Table 5.5: Thermal conductivity for Type C and DP samples. 

  [w/mK]   
 - Relative Increase 

[%] 
T [oC] 25 75 125  25 75 125 

Sample        
Type C 0.711±0.179 0.978±0.000 1.127±0.042     

        

DP1 1.335±0.033 1.472±0.050 1.621±0.074  87.6 50.4 43.8 
DP2 1.095±0.225 1.215±0.204 1.361±0.140  54.0 24.2 20.8 
DP3 0.978±0.149 1.134±0.112 1.289±0.111  37.4 15.9 14.3 

 
Thermal conductivity varies both with CNTs weight content and temperature.  
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5 .2 .2 .1 .  CNTs Loading  Leve l  Impact  

To evaluate impact of CNTs loading level, defined as wt% of carbon fibre preform with 

incorporated CNTs weight, thermal conductivity was measured for type C and samples 

with each of the three different weight loadings: 1, 2 and 3 wt%. Obtained values are 

compared at each of the three temperature measurement points. Fig. 5.20 depicts results 

at 25 oC. 

 
Fig. 5.20: Thermal conductivity at 25 oC plot for C and DP samples as a function of CNT loading. 

Fig. 5.20 shows that thermal conductivity increase is 87.6% for samples with 1 wt% of 

PCNTs. This is the highest TC increase achieved with PCNTs. It is larger than the error 

margin and could be considered substantial. 2 wt% samples have 17.9% lower TC than 

DP1 samples, while DP3 samples TC is 10.7% lower than DP2 samples TC. Thermal 

conductivity decrease is in both cases smaller than the error margin. 

For measurement point at 75 oC, thermal conductivity curve is presented in Fig. 5.21. 
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Fig. 5.21: Thermal conductivity at 75 oC plot for C and DP samples as a function of CNT loading. 

Fig. 5.21 shows that thermal conductivity increase is significant with addition of 1 wt% 

of CNTs, 50.4%. Samples with 2 wt% of CNTs exhibited 17.5% thermal conductivity 

decrease compared to 1 wt% samples. Both of these changes are larger than the error 

margin. Thermal conductivity of samples with 3 wt% loading is 6.7% lower than the DP2 

samples TC, decrease smaller than the error margin. 

For measurement point at 125 oC, thermal conductivity curve is presented in Fig. 5.22.  

Fig. 5.22 shows thermal conductivity increase with addition of 1 wt% of CNTs, 43.8%. 

DP1 sample TC at 125 oC is the highest at 1.621 W/mK. Samples with 2 wt% of CNTs 

exhibited 16.0% thermal conductivity decrease compared to 1 wt% samples. Both of 

these two changes are larger than the error margin. Thermal conductivity of samples with 

3 wt% loading is 5.3% lower compared to 2 wt% samples. This change is smaller than 

the error margin.    
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Fig. 5.22: Thermal conductivity at 125 oC plot for C and DP samples as a function of CNT loading. 

From the above presented, a conclusion can be drawn that PCNTs increase thermal 

conductivity of CFRP when added in quantity of 1 wt% or more. Heat transfer network is 

readily established with 1 wt% of PCNTs. At all selected verification temperatures DP1 

samples thermal conductivity is the highest one, reaching the highest value of 1.621 

W/mK at 125 oC. Further loading increase is reducing thermal conductivity, equally 

applicable throughout investigated temperature range. Heat transfer network degradation 

is attributed to strong intertube coupling. 

5 .2 .2 .2 .  Temperature  Impact  

To evaluate impact of temperature on thermal conductivity, thermal conductivity was 

measured at three different points: 25, 75 and 125 oC for type C and DP1, DP2 and DP3 
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samples. Thermal conductivity plot as a function of temperature in Fig. 5.23 depicts 

results graphically. 

 
Fig. 5.23: Thermal conductivity of C and DP samples as a function of temperature. 

While PCNT loaded samples thermal conductivity exhibits similar behaviour with 

temperature change for each loading level, type C samples thermal conductivity change 

with temperature increase is somewhat different, as described in section 5.2.1.2. 

DP samples have similar TC increase with temperature rise from 25 to 75 oC and from 75 

to 125 oC, the difference being no more than 2% between these two intervals TC changes. 

For 1 and 2 wt% samples TC increase with each of the temperature increments is 10%-

12% while it stands at 13.7%-16.0% for DP3 samples.  

DP1 samples TC change with temperature is larger than the error margin. DP2 and DP3 

samples TC change with temperature is lower than the error margin. However, the trend 
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is the same for all three loading levels and hence the TC change with temperature is 

considered real. In addition to that, it follows expectations of increase with temperature. 

Thermal conductivity increase with temperature could be observed for all samples, with 

or without CNTs. However, the TC increase in samples without CNTs is higher than in 

samples with CNTs with the temperature increase from 25 to 75 oC and almost the same 

with temperature increase from 75 to 125 oC. It could be concluded that CNTs heat 

transportation network adversely affects thermal conductivity with temperature increase. 

Difference between type C and DP samples is due to modified material properties with 

CNT incorporation. Smaller DP samples TC increase with temperature rise is attributed 

to phonon-phonon scattering in CNTs. 

5.2.3. DSP Samples 

Samples DSP1, DSP2 and DSP3 contain 1 wt%, 2 wt% and 3 wt% of super purified 

CNTs respectively. 

Obtained thermal conductivity results for type C and DSP samples are presented in table 

5.6. 

Table 5.6: Thermal conductivity for Type C and DSP samples. 

  [w/mK]   
 - Relative Increase 

[%] 
T [oC] 25 75 125  25 75 125 

Sample        
Type C 0.711±0.179 0.978±0.000 1.127±0.042     

        

DSP1 1.148±0.068 1.288±0.091 1.421±0.066  61.4 31.7 26.1 
DSP2 0.980±0.087 1.092±0.071 1.185±0.085  37.7 11.6 5.1 
DSP3 0.890±0.108 1.017±0.103 1.108±0.109  25.0 4.0 -1.7 

 
Thermal conductivity varies both with CNTs weight content and temperature.  
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5 .2 .3 .1 .  CNTs Loading  Leve l  Impact  

To evaluate impact of CNTs loading level, defined as wt% of carbon fibre preform with 

incorporated CNTs weight, thermal conductivity was measured for type C and samples 

with each of the three different weight loadings: 1, 2 and 3 wt%. Obtained values are 

compared at each of the three temperature measurement points. Fig. 5.24 depicts results 

at 25 oC. 

 
Fig. 5.24: Thermal conductivity at 25 oC plot for C and DSP samples as a function of CNT loading. 

Fig. 5.24 shows that thermal conductivity increase is 61.4% for samples with 1 wt% of 

SPCNTs. This is the highest TC increase achieved with SPCNTs. It is larger than the 

error margin and could be considered substantial. 2 wt% samples have 14.7% lower TC 

than DSP1 samples, while DSP3 samples TC is 9.2% lower than DSP2 samples TC. 

Thermal conductivity decrease is larger than the error margin in the former and smaller 

than the error margin in the latter case. 
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For measurement point at 75 oC, thermal conductivity curve is presented in Fig. 5.25.  

Fig. 5.25 shows that thermal conductivity increase is significant with addition of 1 wt% 

of CNTs, 31.7%. Samples with 2 wt% of CNTs exhibited 15.2% thermal conductivity 

decrease compared to 1 wt% samples. Both of these changes are larger than the error 

margin. Thermal conductivity of samples with 3 wt% loading is 6.8% lower than the 

DSP2 samples TC, decrease smaller than the error margin. 

 
Fig. 5.25: Thermal conductivity at 75 oC plot for C and DSP samples as a function of CNT loading. 

For measurement point at 125 oC, thermal conductivity curve is presented in Fig. 5.26.  

Fig. 5.26 shows thermal conductivity increase with addition of 1 wt% of CNTs, 26.1%. 

DSP1 sample TC at 125 oC is the highest at 1.421 W/mK. Samples with 2 wt% of CNTs 

exhibited 16.6% thermal conductivity decrease compared to 1 wt% samples. Both of 

these two changes are larger than the error margin. Thermal conductivity of samples with 
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3 wt% loading is 6.5% lower compared to 2 wt% samples. This change is smaller than 

the error margin.    

 
Fig. 5.26: Thermal conductivity at 125 oC plot for C and DSP samples as a function of CNT loading. 

From the above presented, a conclusion can be drawn that SPCNTs increase thermal 

conductivity of CFRP when added in quantity of 1 wt% or more. Heat transfer network is 

readily established with 1 wt% of SPCNTs. At all selected verification temperatures 

DSP1 samples thermal conductivity is the highest one, reaching the highest value of 

1.421 W/mK at 125 oC. Further loading increase is reducing thermal conductivity, 

equally applicable throughout investigated temperature range. Heat transfer network 

degradation is attributed to strong intertube coupling. 

5 .2 .3 .2 .  Temperature  Impact  

To evaluate impact of temperature on thermal conductivity, thermal conductivity was 

measured at three different points: 25, 75 and 125 oC for type C and DSP1, DSP2 and 
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DSP3 samples. Thermal conductivity plot as a function of temperature in Fig. 5.27 

depicts results graphically. 

 
Fig. 5.27: Thermal conductivity of C and DP samples as a function of temperature. 

While SPCNT loaded samples thermal conductivity exhibits similar behaviour with 

temperature change for each loading level, type C samples thermal conductivity change 

with temperature increase is somewhat different, as described in section 5.2.1.2. 

DSP samples have similar TC increase with temperature rise from 25 to 75 oC and from 

75 to 125 oC, the change being 2% to 5.5% higher for the former than the latter of the two 

temperature intervals. The TC increase is between 8.5% and 14.3%. Each increase is 

within the error margin. However, the trend is the same for all three loading level 

samples and hence the TC change with temperature is considered real. It follows 

expectations of increase with temperature as well. 
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Thermal conductivity increase with temperature could be observed for all samples, with 

or without CNTs. However, the TC increase in samples without CNTs is higher than in 

samples with CNTs. It could be concluded that CNTs heat transportation network 

adversely affects thermal conductivity with temperature increase. Difference between 

type C and DSP samples is due to modified material properties with CNT incorporation. 

Smaller DSP samples TC increase with temperature rise is attributed to phonon-phonon 

scattering in CNTs.  

Lower thermal conductivity in DSP3 samples than in C samples at 125 oC should be 

noted. This is attributed to combination of strong intertube coupling and phonon-phonon 

scattering. 

5.2.4. CNTs Quality Impact 

To evaluate CNTs quality impact on thermal conductivity, thermal conductivities of 

samples made with the same weight loading of different quality CNTs were compared 

across investigated temperature range. 

Results for 1 wt% samples are graphically presented in Fig. 5.28. 
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Fig. 5.28: 1 wt% samples thermal conductivity as a function of temperature. 

From Fig. 5.28 can be seen that thermal conductivity for samples made with 1 wt% of 

PCNTs is higher than the TC for samples made with other two CNT materials. At 25 oC 

DP1 TC is 26.1% and 16.2% higher than DR1 and DSP1 TC respectively. At 75 oC these 

differences are 24.8% and 14.3%. At 125 oC the differences are 28.1% and 14.1% 

respectively. All differences are higher than the error margin.  

With low load level of 1 wt% PCNTs established the most efficient heat transfer network, 

giving the highest thermal conductivity levels at all temperature test points. The highest 

number of the lowest quality SPCNTs established less efficient heat transport network. 

The number of higher quality RCNTs was insufficient to establish network equally 

efficient as the other two CNT materials. It should be noted that difference between DR1 

and DP1 thermal conductivities is lower than the error margin. Thermal conductivity 

behaviour is similar to B type samples with CNTs well distributed throughout the matrix. 
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Results for 2 wt% of CNTs are graphically presented in Fig. 5.29. 

  
Fig. 5.29: 2 wt% samples thermal conductivity as a function of temperature. 

From Fig. 5.29 can be seen that thermal conductivities of samples made with 2 wt% of 

RCNTs are significantly higher than thermal conductivities of samples made with either 

PCNTs or SPCNTs. The difference is more pronounced at 25 oC (40%-56%) than at other 

two testing temperature points. Sufficient quantity of better quality CNTs is making 

substantially more efficient heat transport network. The lowest thermal conductivity was 

achieved with the lowest quality SPCNTs. 

Results for 3 wt% of CNTs are graphically presented in Fig. 5.30. 



125 
 

  
Fig. 5.30: 3 wt% samples thermal conductivity as a function of temperature. 

From Fig. 5.30 can be seen that thermal conductivities of samples made with 3 wt% of 

RCNTs are significantly higher than thermal conductivities of samples made with either 

PCNTs or SPCNTs. The difference is more pronounced at 25 oC (75%-92%) than at other 

two testing temperature points. The difference at 125 oC is 51% and 75% with respect to 

DP3 and DSP3 samples respectively. With increased number of better quality CNTs heat 

transport network is even more efficient than with 2 wt% of RCNTs. The difference can 

be considered very significant. 

Another step to assess CNT quality impact on thermal conductivity is the comparison of 

highest thermal conductivities achieved with addition of different CNT materials to the 

matrix. Maximum thermal conductivity values achieved with different CNT materials are 

graphically presented in Fig. 5.31 as a function of temperature. The highest thermal 

conductivity of all samples is obtained with 3 wt% of RCNTs loading.   
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Fig. 5.31: Comparison of highest thermal conductivities obtained with different CNTs materials. 

At 3 wt%, RCNTs were best suited to create high number of heat transportation channels, 

thus yielding the highest thermal conductivity of tested samples. Improvement over 

thermal conductivity of samples made without CNTs is 140.4% at 25 oC, the highest 

overall relative increase. The highest value of thermal conductivity was obtained at 125 

oC, 1.943 W/mK, a 72.4% increase compared to type C samples. 

Compared to DP1 sample the difference in thermal conductivity achieved with DR3 

sample is ranging from 28.1% at 25 oC to 19.9% at 125 oC. DR3 thermal conductivity is 

48.9% to 36.7% higher than DSP1 TC from 25 oC to 125 oC. 

SEM picture (Fig 5.32) shows good CNTs dispersion in CFRP nanocomposites. Bright 

pixels are carbon nanotubes on the surface and outside of the matrix, carbon nanotubes 

within the matrix are lighter shade of gray. 
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Fig. 5.32: Good distribution of CNTs in the CFRP nanocomposites. Surface is featuring tough material 

characteristics. 

Surface in the Fig. 5.32 is uneven, a feature of a tough material surface. Epoxy matrix is 

known for its brittleness. Hence, it could be concluded that carbon nanotubes increased 

material toughness as well. 

5.2.5. Conclusion 

CFRP thermal conductivity improvement was evaluated at different temperatures for 

different load levels and different quality of CNTs added. 

Loading level impact on thermal conductivity was evaluated for all three CNT materials 

added to the matrix. Thermal conductivity change with increased loading level is 

different for samples made with RCNTs and either PCNTs or SPCNTs. Increasing RCNT 

quantity above 1 wt% is increasing TC while the same loading levels of either PCNTs or 

SPCNTs reduce TC. This is equally applicable at all selected verification temperatures. 

CNT 

Tough 
Material 
Features 
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The observed difference is attributed to difference in intertube coupling which is weak 

between raw CNTs and strong between both purified and super purified CNTs. 

Change of thermal conductivity with temperature was the next variable investigated. 

Temperature was increased 50 oC twice. The general trend is higher TC increase with the 

temperature increase from 25 oC to 75 oC than with temperature increase from 75 oC to 

125 oC. This is attributed to phonon-phonon scattering that is increased with the 

temperature rise. Thermal conductivity increase with temperature could be observed for 

all samples, with or without CNTs. However, the TC increase in samples without CNTs 

is higher than in samples with CNTs with the temperature increase from 25 to 75 oC and 

almost the same with temperature increase from 75 to 125 oC. It could be concluded that 

CNTs heat transportation network adversely affects thermal conductivity with 

temperature increase. The adversity is attributed to phonon-phonon scattering in CNTs. 

With temperature increase, phonon-phonon scattering is more affecting thermal transport. 

Difference between type C and D samples is due to modified material properties with 

CNT incorporation. In type D samples phonon-phonon scattering is taking place at lower 

temperatures due to incorporated CNTs. 

The following parameter whose impact on thermal conductivity was evaluated was CNT 

quality. Adding 3 wt% of RCNTs yielded the highest thermal conductivity improvement 

in this configuration. Improvement over thermal conductivity of samples made without 

CNTs is 140.4% at 25 oC, the highest overall relative increase. The highest value of 

thermal conductivity was obtained at 125 oC, 1.943 W/mK, a 72.4% increase compared 

to type C samples. 
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With low load level of 1 wt%, PCNTs established the most efficient heat transfer network 

giving the highest thermal conductivity levels at all temperature test points. The number 

of higher quality RCNTs was insufficient to establish equally efficient network. 

At higher loading levels, the filler content quality came into effect.  The most efficient 

heat transfer network was established with RCNTs. Due to low number of defect sites on 

CNTs walls, weak intertube coupling facilitated phonon propagation. Thermal 

conductivity of samples with CNTs with higher number of defect sites was reduced by 

strong intertube coupling. This is equally applicable to DP and DSP samples. This is 

another confirmation of hypothesis that CNT quality as defined with respect to thermal 

conductivity has major impact on thermal conductivity. 

5.3. Conclusion 

Thermal conductivity of epoxy composites was tested. Testing was completed at three 

different temperatures: 25 oC, 75 oC and 125 oC. Three different CNT materials were 

added to both epoxy matrix and epoxy based CFRP in 1 wt% increments, from 1 to 3 

wt%. Adding carbon nanotubes to either pristine matrix or CFRP increases composites 

thermal conductivity. 

Pristine matrix thermal conductivity is increased 53.4% at 75 oC, to reach value of 0.375 

W/mK with 3 wt% of purified carbon nanotubes. The highest thermal conductivity in this 

configuration was achieved with BP3 samples at 125 oC, 0.382 W/mK.  

Addition of 3 wt% of raw carbon nanotubes to carbon fibre preform increases composite 

thermal conductivity 140.4% to 1.710 W/mK at 25 oC. The highest thermal conductivity 

value of 1.943 W/mK is achieved at 125 oC for the DR3 sample. Compared to the state of 
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the art [51], obtained thermal conductivity value is lower. However, it should be noted 

that materials used to produce composite material in the course of these two studies were 

different, both carbon fibres and epoxy matrix. Hence the difference in reference material 

thermal conductivity, 0.711 W/mK at 25 oC for the material used in this research vs. 1.82 

W/mK obtained for the material used in [51]. On the other side, thermal conductivity 

relative increase obtained in this study is by far exceeding ~44% obtained in [51]. 

A difference in thermal conductivity behaviour with temperature increase, different 

carbon nanotube weight loading and quality is observed between M+CNT and 

CF+CNT+M composites. Overall filler content is lower in M+CNT composites and 

individual CNTs are equally distributed throughout the liquid matrix, thus creating heat 

transfer network over the larger volume of material. Hence, at low to moderate loading 

level of 1-3 wt%, well distributed CNTs are not creating many intertube coupling sites. 

Phonons are transported through the network of individual carbon nanotubes. Therefore, 

strong intertube coupling that is taking place with lower quality CNTs does not have 

much effect on thermal conductivity. Hence, PCNTs with low ash content and 

moderately damaged side walls exhibited steady increase in thermal conductivity with 

content increase and provided the highest value of samples made with matrix and CNTs. 

Nonetheless, simple calculation employed to evaluate thermal conductivity differences 

with respect to CNT quality confirmed that highest quantity of heat energy is transported 

via the least imperfect – individual raw CNTs. 

However, when CNTs are added to CF preforms, they fill much smaller space between 

solid CFs. Initially, individual CNTs are attached to CFs. The next phase is attachment of 

CNTs one to another thus forming CNT bridges between fibres. The number of bridges 
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being formed is function of CNT loading. At low loading levels it means that determining 

factor for thermal conductivity improvement is the actual number of CNTs available to 

form heat transfer network. Hence, at 1 wt% the highest improvement was achieved with 

moderately damaged PCNTs which were slightly lower in numbers than more damaged 

SPCNTs. Higher quality RCNT were in insufficient numbers to form equally efficient 

heat transfer network. However, with the weight loading increase, CNTs began to attach 

one to another in higher numbers and more bridges were being formed. At the attachment 

points, intertube coupling takes place. With increased number of attachment points 

intertube coupling effect is more pronounced. In the case of higher quality RCNTs, this 

coupling is weak, promoting heat transfer. However, in the case of PCNTs and SPCNTs 

with many defect sites, this coupling is strong, thus reducing thermal conductivity.  

Thermal conductivity obtained with RCNTs, PCNTs and SPCNTs added to pristine 

matrix as well as the carbon fibre preform composites strongly supports hypothesis that 

carbon nanotube quality plays major role in epoxy composites thermal conductivity 

improvement. 

Uneven surface observed in SEM pictures is pointing to improved toughness of the 

material with carbon nanotubes. Usually limp carbon fibres were stiff in photograph 3.6 

b), indicating increased stiffness of new material.  
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Chapter  6  

6.  Conclusion,  Contributions and Future Work  

6.1. Conclusion 

Epoxy composites thermal conductivity behavior with the addition of SWNTs was the 

object of this study. Single wall carbon nanotubes were incorporated in pristine matrix 

and carbon fibre reinforced epoxy. Carbon nanotubes, raw, purified and super purified, 

with different level of ash content were purchased from the same supplier. Up to 3 wt% 

of carbon nanotubes were added to the base material. Three roll mill was used to disperse 

carbon nanotubes in the pristine matrix. Ultrasound was employed to incorporate carbon 

nanotubes into the carbon fibre preform thus creating novel material. The novel material 

exhibits increased stiffness. This novel material was subsequently impregnated by matrix. 

Carbon nanotubes were attached to carbon fibres and henceforth one to another, as 

observed in SEM images. Nanocomposite material fracture surface is uneven, a feature of 

a tough material. 

Thermal conductivity was obtained by multiplying three measured properties: density, 

specific heat capacity and thermal diffusivity. Thermal diffusivity was measured by flash 

method and specific heat capacity was measured using DSC. Density was calculated from 

measured mass and volume of a coupon. Obtained values indicate that more than one 

parameter affects thermal conductivity. Carbon nanotube weight content, testing 

temperature and carbon nanotube quality level of impact were evaluated in this study. An 

effort was made to look into these parameters separately, however, they appear to be 
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coupled, not only one to another but to other parameters as well. One of these parameters 

is ash content and another one is the composite composition.  

Thermal conductivity in nanocomposites made with matrix is affected in a different 

manner than in nanocomposites containing carbon fibre as well when different quantities 

of carbon nanotubes of different quality are added.  

The difference is not very pronounced with testing temperature increase. CNTs added to 

both matrix only and carbon fibre reinforced matrix composites are adversely affecting 

thermal conductivity with temperature increase due to phonon-phonon scattering.  

Matrix thermal conductivity increased with CNT content increase. The greatest increase 

was obtained with material made from matrix and 3 wt% of purified carbon nanotubes. 

The carbon nanotube quality importance for heat transfer was confirmed via simple 

calculation which confirmed that individual RCNTs transport more heat energy at each 

loading level throughout investigated temperature range than either PCNTs or SPCNTs.  

Different composite composition with carbon fibres as a base material provided for 

different mechanism to form heat transfer network. Hence obtained network occupies 

smaller space between carbon fibres and forms greater number of intertube coupling 

sites. Coupling between lower quality carbon nanotubes is strong, adversely affecting 

heat transfer with increased loading of carbon nanotubes. Coupling between higher 

quality raw carbon nanotubes is weak, giving increased thermal conductivity at higher 

loading levels. The highest thermal conductivity value of 1.943 W/mK was obtained with 

3 wt% loading at 125 oC. However, relative to reference material without carbon 

nanotubes, the largest increase of 140.4% was obtained at 25 oC with the same material. 
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Further thermal conductivity increase can be expected with further RCNT loading 

increase. 

Based on the above, carbon nanotubes have substantial impact on thermal conductivity of 

composite materials to which they are added. To improve thermal conductivity of the 

material to which they are added, selected carbon nanotubes quality and quantity should 

be compatible with the material structure and components. Increased carbon fibre 

preform stiffness and uneven carbon fibre nanocomposite fracture surface point to 

improved mechanical properties of the material obtained with the addition of carbon 

nanotubes. 

6.2. Contributions 

Carbon nanotube quality importance for epoxy composites thermal conductivity was 

demonstrated. 

New method to modify carbon fibres with carbon nanotubes was found. Employing 

ultrasonic bath with ice bath, combined with incremental addition of CNTs, gave good 

distribution of carbon nanotubes within the carbon fibre preform. Effective overcome of 

the filtering effect was further facilitated by selecting small thickness carbon fibre fabric 

made of low count tows - emulation of layer by layer method. 

Novel material was created by adding carbon nanotubes to carbon fibre preform utilising 

above described method. This novel material exhibits increased stiffness. 

New prepreg material was created by using the carbon nanotube modified carbon fibre 

preform as epoxy matrix reinforcement, followed by partial cure in oven. 
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To eliminate thermally insulating matrix accumulation against the tool plate, ancillary 

materials stacking sequence was improved to apply breather, bleeder and release film 

below as well as above the sample. 

Fully cured composite material laminate produced from the above new prepreg material 

significantly increases composite material through thickness thermal conductivity. The 

through thickness thermal conductivity was increased to 1.943 W/mK at 125 oC. This 

value is lower than the current state of the art [51], however, the composite constituent 

materials are different. On the other side, obtained is 140.4% thermal conductivity 

relative increase at 25 oC, by far exceeding ~44% obtained in [51]. The composite 

material fracture surface is uneven, pointing to increased material toughness. 

6.3. Future Work 

Further increase in CFRP through thickness thermal conductivity could be obtained. One 

avenue to pursue would be RCNT content increase above 3 wt%. Another one would be 

incorporation of carbon nanotubes of higher quality than the ones employed in this 

research. Investigation could be conducted to determine the best way to obtain carbon 

nanotubes with the quality high enough to obtain engineering level through thickness 

thermal conductivity in carbon fibre reinforced composites. 

Structural parts employed in areas where heat dissipation is of concern are often exposed 

to thermal cycling. Improved through thickness thermal conductivity impact on 

mechanical properties of structural parts exposed to thermal cycling could provide insight 

in applicability of composite materials developed in the course of this work. 
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Increased stiffness of carbon fibre preform and uneven surface observed in SEM pictures, 

a feature of a tough material, point to improved mechanical properties of the material 

developed in the course of this work. Evaluation of improvement of mechanical 

properties achieved in the novel material could be object of a future study. Parameters 

like carbon nanotube quality with respect to mechanical properties and loading could be 

optimized for mechanical properties optimisation. 

Evaluation of new method using ultrasound to modify carbon fibres with carbon 

nanotubes applicability on other material systems can be conducted. These systems could 

be based on either carbon or glass fibres in any form. Nanomaterials added could be any 

of the known materials: carbon nanotubes, graphene, nanoclay, microcapsules or any 

combination of the above. 
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