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1. Abstract 
From respiration and DNA synthesis to superparamagnetic nanoparticles, magnetotactic 

bacteria and old rusty cars, iron is everywhere. Our understanding of iron geochemistry is 

central to the study of carbon and vice versa as it is nearly impossible to find an environment 

where these two elements are not conjoined. Iron has a profound effect on the carbon that 

cycles on geological time scales—in sedimentary rocks, in coal and petroleum deposits, the 

balance between carbon preservation and remineralization is in part modulated by iron. 

Approximately 20% of the organic carbon buried in sediments is protected by reducible iron 

phases, well below the oxic-anoxic limit of the sediment where they are no longer 

thermodynamically stable. Iron represents a globally important sink for sedimentary organic 

matter (OM), contributing to maintaining the delicate balance of O2 and CO2 in the atmosphere.  

Iron also impacts the carbon cycling in active oceanic, atmospheric and lithospheric reservoirs, 

for example by linking continental erosion to carbon deposition in sediments, and iron-rich 

riverine discharge and dust deposition to phytoplankton blooms in the middle of the ocean. The 

association of iron and OM also influences the photoreactivity (Zepp, 2003) and bioavailability 

(Mackay and Zirino, 1994; Raiswell and Canfield, 2012a), of both elements in aquatic systems.  

In spite of its significance to high-turnover and refractory carbon, the exact mechanism of 

interaction between iron and OM is not yet known. We postulate the formation of inner-sphere 

complexes or coagulates at oxic-anoxic interfaces. We observe preferential sheltering of organic 

molecules with low C:N atomic ratios and enriched isotopic signatures (δ13C). A novel method, 

coupling a total organic carbon (TOC) analyzer to an isotope ratio mass spectrometer, was 

developed to determine the δ13C of the dissolved organic matter that is retained by iron and 
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other minerals. We find that iron phases increase the affinity and adhesion of 13C-enriched 

dissolved molecules to particulate phases – which has been reported to slow bacterial 

degradation. Further elucidation of the mechanism of interaction between the 2 elements could 

be achieved through novel instrumental methods, including TEM microscopy and EXAFS 

spectroscopy which are used to determine the macrostructural arrangement of iron and OM 

and the chemical environment surrounding iron atoms in sediments. 
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Our planet’s oxic atmosphere was manufactured from biogeochemical processes in deep ocean 

sediments. These smelly anoxic muds laid out at the bottom of the ocean, kilometers away from 

air, are perhaps not the most obvious birthplace of atmospheric oxygen. It actually takes 

thousands of years for gaseous molecules dissolved in ocean surface waters to be transported 

by currents to the sediment bed and back again (Williams and Druffel, 1987).  

On a molecular basis, atmospheric oxygen is extracted from carbon dioxide. As early as 3.5 

billion years ago, photosynthetic organisms started to fix CO2 into organic matter (OM) and 

generated oxygen gas as a by-product. Photosynthesized organic molecules are however not 

irreversibly formed as they are a source of energy for bacteria and other heterotrophs. The 

heterotrophic consumption of OM is coupled to the utilization of oxygen - whether directly from 

oxygen gas or from other oxidizing molecules such as nitrates and sulfates - reversing 

photosynthesis and negating the possible buildup of atmospheric oxygen gas (Berner, 2003; 

Berner and Canfield, 1989). 

A small fraction of the OM formed every year from photosynthesis is not available to bacteria, 

either because it is structurally indigestible or because it is in some other way, protected from 

bacterial degradation. Marine sediments are the only long-term reservoir for preserved, 

recalcitrant organic molecules, which are never reoxidized to CO2, therefore rendering sediment 

muds into an indirect source of oxygen gas on the planet. Over the billions of years of OM 

accumulation in sediments, the Earth’s redox balance completely changed. Photosynthetic 

oxygen first reacted with rocks on land through oxidative weathering, forming oxidized species 

such as iron oxides and soluble sulfates (Canfield et al., 2000). Oxygen concentrations eventually 

reached the tipping point at which dissolved iron(II) in the world’s oceans was no longer stable, 
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resulting in the precipitation of layers of iron oxides to the sea floor which produced 

sedimentary rocks known as the banded iron formations. Eventually all the mineral oxygen sinks 

on Earth became saturated, atmospheric oxygen concentrations started to build-up and rose to 

the concentrations that we observe today. The quantity of preserved organic material that was 

required for this to occur represents 15,000 × 1018 grams of OC of organic carbon, which 

accumulated in 800,000,000 cubic kilometers of sediments (Hart, 1969) over billions of years 

(Hedges and Keil, 1995).  

Sediment structure 

Sediments are mainly composed of eroded sand, silt and clay particles, carried by currents, 

deposited kilometers away from land and stacked up in layers. Accumulation rates vary from 

≈1cm/yr near river mouths and coastal zones, to a few mm/kyr in the deep ocean basins 

(Henrichs, 1992). The interstitial spaces between sediment particles are saturated with water. 

These porewaters can occupy up to 85% of the sediment volume at the seabed, decreasing 

progressively with sediment depth due to compaction (Berner, 1980). 

We can study different time periods by separating sediment cores into layers deposited at 

different times during Earth’s history. Piston corers can extract sediment cores longer than 20 

meters (Hollister et al., 1973), which can go as far back as the Paleocene, 65 million years ago 

(Silva et al., 1976). Organic carbon is generally a minor component, only making up about 1% of 

sediment dry weight, however, out of all other elements, OM is the most structurally complex 

and therefore could potentially hold stockpiles of information or untapped paleo-proxies that 

could recount the evolution of oceanic temperatures, redox conditions, alkalinity and early living 

organisms (Hedges and Keil, 1995).  
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Organic matter degradability 

OM found in contemporary sediments has already undergone extensive degradation and is likely 

similar to the OM that was originally sequestered into the million year-old deposits that made 

possible the build-up of oxygen in the atmosphere. These molecules, leftover after the near 

complete decomposition of freshly produced OM, are indigestible to bacteria and represent less 

than 1% of the total photosynthetic carbon produced each year. The molecules that makeup this 

small fraction are so unusual that bacteria, throughout their billions of years of history on Earth, 

never evolved the biochemical pathways required to break them down and use their energy 

(Hedges and Keil, 1995). Whether in the search for the perfect formation conditions for fossil 

fuel deposits or simply out of academic interest, organic geochemists have long tried to 

understand where these molecules came from and what depositional conditions or structural 

alterations imparted them with geological longevity. Nevertheless, despite decades of research, 

the mechanisms by which OM is stabilized and sequestered in aquatic sediments are only 

fragmentarily understood, hindering our ability to develop robust theories of carbon burial 

(Eglinton, 2012). 

The OM in marine sediments comes from both land and sea. Decaying vascular plant material on 

continents is temporarily stored in soils, soil litters or peats and carried to the ocean by rivers, 

through surface runoffs, continental erosion and groundwater seeps. Algae growing in the sunlit 

surface waters of the ocean can also sink to the bottom of the water column, but often require 

transportation to the seabed from mineral ballasts or dense zooplankton fecal pellets (Fowler 

and Knauer, 1986). Sinking particles are further degraded during their transit in the oceanic 

water column which may take several weeks (Emerson and Hedges, 1988). Before it even 

reaches the sediments, bacteria (in terrestrial systems or in the oceanic water column) have 
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therefore already had the chance to nibble at the OM, removing the most labile, energy-rich 

pieces and leaving behind the portions that are more recalcitrant.  

Transmission electron microscopy shows that the structure of sinking organic-rich particles 

changes drastically upon arrival at the seafloor, from a collection of discrete organic debris 

(bioclasts, diatom tests and bacteria) loosely associated to inorganic particles, to intricate 

organo-clay assemblages and microaggregates (Ransom et al., 1998b). It was therefore 

suggested that prior to final deposition and burial, loose OM assemblages somehow 

disaggregate and recombine with eroded detrital material near or at the seafloor. The 

size/reactivity model outlined by Burdige (1998) largely explains these observations. Particulate 

OM sinking through the water column to the sediment bed is initially mainly composed of high 

molecular weight, relatively labile biopolymers. Oxidases, hydrolases and reactive oxygen 

species are used to break these down into smaller edible pieces that can be incorporated into 

the bacterial biomass (Arnosti, 2011). During this partial breakdown, less bioavailable polymeric 

low molecular weight (1000-4000 Da) pieces are broken off and released into the interstitial 

waters. These dissolved pieces can remain indefinitely in porewaters, escape the sediment to 

the overlying water column or become attached to particles (Burdige and Gardner, 1998). The 

irreversible binding of dissolved organic matter (DOM) to clays during degradation explains the 

microscopic and spectroscopic changes observed upon OM deposition and burial in sediments. 

The degradation and diagenesis of OM in sediment is depicted in Figure 1-1. 
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Figure 1-1: Degradation of OM in sediments from large biopolymers to smaller more soluble pieces and CO2 
through bacterial hydrolysis and consumption (bacterial are shown in yellow). The final step shows the adsorption 
of organic molecules to the sediment matrix. Modified from (Hedges John et al., 1999). 

Whether structurally recalcitrant or labile, it should be emphasized that OM is not stable in the 

presence of oxygen and given enough exposure time, OM is completely remineralized to CO2. 

This is  illustrated by the very low levels of OM in oxic deep-sea sediments and oxidized 

turbidites (Buckley and Cranston, 1988; Gélinas et al., 2001). Nevertheless, as sediment particles 

accumulate and new particles settle to the sediment surface, porewater oxygen concentration 

decreases with depth because oxygen cannot diffuse into the sediment fast enough to 

compensate for its bacterial utilization (Berner, 1980). In the absence of oxygen, other electron 

acceptors (including nitrates, manganese oxides, iron oxides and sulfates, in order of decreasing 

Gibb’s free energy production) are used to decompose OM (Burdige, 1993; Burdige, 2006). 

Sulfate is normally either the first or the second most important (after oxygen) electron 

acceptor because of its abundance in seawater. Anoxic bacteria are not as efficient as oxic 

bacteria at consuming OM and a consortium of bacterial communities typically works 

symbiotically to breakdown the OM (Bastviken et al., 2004). Sulfate reducers, for example, 

consume the bi-products of fermenters, like propionate or acetate (Berner, 1980). Typically the 

breakdown of complex organic molecules is very slow or non-existent in anoxic deposits, as the 

non-discriminate bond breakage of peroxidases, oxidases and reactive oxygen species does not 

occur in the absence of oxygen.  
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Preservation mechanisms 

OM degradability is arguably related mainly to chemical structure. Molecular size, elemental 

composition and functional groups/linkages are all important. Bacteria not only require 

substrates to be degraded to a size of approximately 600 Da before they can actively transport 

them across porins in their cell walls (Weiss et al., 1991) but also necessitate the biochemical 

pathways to breakdown specific chemical bonds (e. g. to hydrolyze sugars and proteins, bacteria 

require the genetic coding for hydrolase enzymes) (Arnosti, 2011). If a molecule is not 

consumable by bacteria, it is more likely to be preserved. This is the molecular basis for 

persistence in sediments and is termed “selective preservation” (Hedges and Keil, 1995; 

Zonneveld et al., 2010).  

The selective preservation of organic compounds is supported empirically by the elemental and 

structural composition of sedimentary OM which is dramatically different from that of the 

precursor autotrophic organisms. Whereas carbohydrates, proteins and lipids make up 90% of 

the biomass of marine algae, the combination of these 3 major biochemicals accounts for less 

than 10% of the organic carbon in sediments. The remaining 90% falls under an 

“uncharacterizable” fraction, which is a mixture of molecularly complex and refractory 

molecules, fondly referred to as MUC or molecularly uncharacterizable carbon (Hedges et al., 

2000). It is possible for bits and pieces of MUC, such as amino acid sidechains, peptide bonds or 

long hydrophobic carbon chains, to resemble the chemical structure of the parent biomolecules 

but these molecular clues are generally only visible using bulk spectroscopic methods (e.g. by 

infrared spectroscopy or solid-state nuclear magnetic resonance spectroscopy). Molecular-level 

information, predominantly derived from selective extraction methods which work well for 

freshly produced organic substances, only provide a narrow window into a small fraction of the 
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total sediment OM, as the bulk of the OM in sediments cannot be extracted using these 

methods (Hedges et al., 2000).  

Biopolymers such as algaenan or lignin from the cell walls of algae or woody vascular plants as 

well as some aliphatic compounds are some of the only structurally-resistant molecules that are 

directly produced by photosynthesizers (Zonneveld et al., 2010). “Refractorization” by chemical 

modifications of organic substances may also occur during passage through the microbial loop, 

bacterial defunctionalisation and rearrangements, or abiotic inter or intramolecular reactions. 

Condensation reactions to produce melanoidins (or Maillard condensation products) from 

simple sugars and amino acids, are a commonly given example of chemical refractorization. 

Because amine and amide linkages are difficult to form abiotically at low temperatures, it is 

controversial to postulate that their presence in the non-living OM of contemporary sediments 

can be supported or even supplemented by condensation reactions (Hedges et al., 2000). In 

ancient sediments however, temperature and pressure increase with burial and up to 40% of 

the nitrogen can be contained in pyridinic and pyrrolic heterocyclic structures (in contrast to 

living organisms where nitrogen is almost entirely found in proteinaceous and nucleic materials) 

potentially formed from the Maillard-type incorporation of nitrogen from amino acids or 

ammonia into pre-existing molecules via reactions with degradation products of carbohydrates 

or phenolic groups in humic-like substances (Baxby et al., 1994).  

The molecular basis for preservation of OM does not discount the possibility that sedimentary 

OM is also physically protected. In most sediments, over 99% of OM is found to be inseparable 

from inorganic particles (Hedges and Keil, 1995), since the majority of the OM deposited in 

sediments quickly becomes intimately associated to the mineral matrix. The bioavailability of 

organic molecules and their propensity toward biodegradation by microbes is reduced through 
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strong organic-inorganic bonds, possibly because inorganic particles sterically inhibit or hinder 

enzymatic attack (Jones and Edwards, 1998). The preservation of labile molecules such as 

peptides and carbohydrates can only be explained by physical protection, because unsheltered, 

they are quickly consumed by bacteria.  

Encapsulation of OM in the interlayer structure of expandable clays (Kennedy and Wagner, 

2011), in mesopores of clay materials (Ingalls et al., 2003) or in biological inorganic materials 

such as diatom tests can provide a sheltering and preservative effect (Arnarson and Keil, 2007). 

Simple adsorption onto particulate surfaces is the primary physical protection mechanism 

(Mayer, 1994; Mayer, 1995), and only gains in importance after lengthy exposure to oxygen 

since the OM in these structures have the highest longevity (Arnarson and Keil, 2007). Adsorbed 

sediment OM is found as amorphous blobs strongly bound to particles, and covering about 20% 

of the mineral surfaces (Mayer, 1999; Ransom et al., 1997). The location of these blobs was 

proposed to be related to the surface chemistry of sedimentary particles (Ransom et al., 1998a).  

A new mechanism of physical protection was discovered in our laboratory. We showed that 20% 

of the organic compounds in sediments are associated to reducible metal oxides, such as iron 

and manganese oxides (Chapter 2, Lalonde et al., 2012). The preservation potential of organic 

molecules associated to these metals was previously believed to be reserved for oxic 

environments such as soils (Kaiser and Guggenberger, 2000) since metal oxides can be 

reductively dissolved under the anoxic conditions of marine deposits. In natural sediments 

however, iron oxides are metastable over thousands of years, and OM bound these oxides 

seems to exhibit marked stability and prolonged resistance to microbial attack. 
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Iron chemistry and possible mechanisms of interaction with OM in 
sediments 

Accounting for almost one third of the mass of the Earth (Morgan and Anders, 1980), you would 

be hard pressed to find a process or an environment in which iron does not participate. From 

old rusty cars to respiration, DNA synthesis and bird brains, iron is everywhere. It is a 

constituent of rocks and soils, and an essential nutrient for plants and heterotrophs (Navrotsky 

et al., 2008). Our understanding of iron geochemistry is central to our understanding of carbon 

and vice versa as complexation constants as high as 1012 M-1 tightly fasten iron to OM through 

electronegative functional groups (Rue and Bruland, 1995). The chemistry of iron is shaped by 

its interactions with OM, intertwining the elemental cycles of iron to those carbon, nitrogen, 

phosphorous, oxygen and sulfur. Co-variation between iron and OC reflect the natural draw of 

iron to OM and vice-versa. Soils, for example are teeming with both iron oxides and OM, which 

together act as a mortar that cements particle aggregates (Hedges and Oades, 1997; Kaiser and 

Guggenberger, 2000).  The retention and preservation of soil OM is expressly affected by the 

presence of iron oxides. Dissolved iron concentrations in lakes (Ouellet et al., 2012), sediment 

porewaters (Deflandre et al., 2002), rivers and oceanic waters (Johnson et al., 1997) are also 

controlled by organic ligands that increase iron solubility and modulate bioavailability (Mackay 

and Zirino, 1994; Raiswell and Canfield, 2012a).  

As early as the 1970s, organic carbon and iron concentrations have also been shown to co-vary 

in sediments (Berner, 1970) though, until recently, it remained ambiguous whether iron and OM 

where truly chemically bound or whether the co-variations were caused by each element having 

a high affinity for the same particle surfaces. It has now been shown that a large percentage of 

OM is directly bound to reducible iron phases (Lalonde et al., 2012) but the exact mechanism of 

interaction remains ambiguous, in part because iron’s chemistry is complicated by the changing 
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redox conditions near the sediment-water interface (Burdige, 1993). Enough oxygen from the 

water column permeates through the uppermost layers of the sediment to ensure that iron(III) 

which is typically found as nano-crystals of hydrated oxides, such as goethite, lepidocrocite or 

ferrihydrite (Van der Zee et al., 2003), is thermodynamically stable. The small particle size of iron 

oxides in sediments suggests a high level of diagenetic activity, caused by repeated dissolution 

and re-precipitation upon changes in redox conditions (Burdige, 2006). Alternatively, OM 

covering oxide particles may prevent crystal growth beyond a few nanometers by inactivating or 

poisoning surfaces (Schwertmann, 1966). TEM images focused on iron in lake sediments show 

iron oxides nanoparticles (3 to 10 nm across) to be surrounded by a veil of OM (Tipping et al., 

1981). The mechanism by which OM binds to iron oxide particles likely takes place through a 

ligand-exchange mechanism in which electronegative functional groups in OM replace hydroxyl 

groups that line the surface of iron oxide particles (Gu et al., 1995). When sediments become 

anoxic, some iron is reductively dissolved to soluble iron(II) (Figure 1-2, #1) which can 

precipitate as iron sulfides (Figure 1-2, #2) or diffuse upwards towards the oxic zone to be 

reoxidized (Figure 1-2, #3) and precipitated. Fe(III) reduction can occur either abiotically or as a 

result of dissimilatory iron reduction, involving the microbial reduction and utilization of iron 

oxides as electron acceptors (Burdige, 2006). Nevertheless, as much as a third of the iron oxides 

deposited in the uppermost sediment layers are buried in deep, aged sediment deposits due to 

a high level of metastability (Figure 1-2, #4) (Hease et al., 1997). The kinetic stability of iron 

oxides, the fast oxidation of iron(II) and the low solubility of iron(III) in oxic waters ensures that 

iron is trapped in the sediment as long as the water column contains dissolved oxygen (Katsev et 

al., 2007). Lateral migration of small iron oxide particles swept up from surface sediments by 

oceanic currents is however possible (Figure 1-2 # 5).  
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Figure 1-2: Diagenesis of iron in oxic/anoxic sediments and in the water column. Diagenetic processes include 1. 
Oxidation of iron(II) to iron(III) oxides, 2. Reduction of iron(III) oxides to iron(II), 3. Diffusion, 4. FeS formation from 
the reaction of iron(II) with sulfides and 5. Burial of iron(III) oxides. 

The interaction between iron(III) and OM are likely formed in oxic sediments where OM is most 

prone to degradation (Figure 1-3). In-vitro studies have demonstrated that OM bound to iron 

oxides or iron(III) have decreased degradation rates compared to solitary organic compounds 

(Boudot et al., 1989; Jones and Edwards, 1998). The timescale over which iron’s protection 

continues is highly dependent upon the rate of desorption or decomplexation (Henrichs, 1995). 

If iron-OM associations are not quickly dismantled and if binding to iron slows down sufficiently 

the breakdown of OM in sediments, iron-OM complexes may survive long enough to be buried 

into anoxic deposits where OM degradation rates are much lower (Figure 1-3). If iron oxides are 

reduced, the weak bonds between iron(II) and OM imparts no preservative effect, but if bound 
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to other mineral components, OM can remain safe from degradation in anoxic sediments. In this 

case, we view the role of iron as an OM shuttle, from the oxic surficial sediments to anoxic 

deposits, where preservation is possible. After diagenetic recycling and redeposition in oxic 

sediments, iron(III) can repeat the shuttling process with newly bound/coagulated OM.  

The exact mechanism of interactions between iron and OM form in sediments remains 

speculative. What environmental conditions facilitate the interaction? Which molecules and 

what functional groups are most prone to bind iron? Are covalent bonding and ligand-exchange 

truly the most prevalent binding modes? New computer models, experiments and analytical 

techniques and instrumentation, are continuously being developed to tackle these difficult 

geochemical problems.  

 

Figure 1-3: Possible coupling of iron’s redox cycle to organic matter in sediments through the formation of Fe(III)-
OM complexes or through adsorption of DOM onto iron oxide particles. 
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Iron’s influence on fast cycling OM  

The chemistry of iron in the environment has a profound effect on the carbon that cycles on 

geological time scales—in sedimentary rocks, in coal and petroleum deposits, the balance 

between carbon preservation and remineralization is in part modulated by iron. Nevertheless 

iron also influences the carbon that cycles in active surface reservoirs, whether in the ocean, in 

the atmosphere, or on land, linking continental erosion of detrital iron minerals to carbon 

deposition in sediments, and iron-rich dust deposition to phytoplankton blooms in the middle of 

the ocean (Burdige, 2006). 

The fluidized mud beds of the Amazon River that quickly transition between oxic and anoxic 

conditions are an interesting locale to study the link between iron’s redox chemistry to organic 

carbon in fast cycling reservoirs (Aller et al., 1996). Contrary to “normal” depositional settings, 

iron accelerates OM degradation rates in these mud belts. Quick redox cycling causes the 

spontaneous reoxidation of iron(II) which generates peroxide through the decomposition of 

superoxide radicals. Iron(II) may combine with peroxide to form Fenton’s reagent, a powerful 

oxidant that can cleave a wide range of bonds non-specifically within OM structures (Hedges 

and Keil, 1995). A similar mechanism is used to increase oxidation efficiency of DOM in sewage 

treatment facilities which generate free radicals from the combination of iron salts and UV 

radiation (Trovo et al., 2008). Iron also appears to significantly enhance the photooxidation of 

DOM in coastal rivers through direct photoreactions involving ligand to metal charge transfer. As 

terrestrially-derived organic molecules and iron in coastal waters are both mainly drawn from 

the continents, the fast removal of riverine DOM almost immediately after its discharge into 

oceanic waters may in part be explained by iron-accelerated photooxidation (Zepp, 2003).  
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A special combination of conditions also creates particularly interesting interactions between 

iron and OM at oxic-anoxic interfaces, which are ubiquitous in marine and terrestrial settings, 

residing not only in surface sediments, but also in salt marshes, soils, peats, fens and wetlands. 

The transitioning redox conditions of these systems enriches these interfaces with reactive iron 

oxides that precipitate from dissolved iron(II) diffusing from the underlying anoxic zones 

(Burdige, 1993). Precipitation of iron oxides in the oxic surface layer of the sediment removes a 

large fraction of DOM by coagulation. Mass spectrometry has recently shown the preferential 

attachment of aromatic and pyrogenic compounds to iron at redox interfaces of peat bogs while 

carboxyl-rich aliphatic acids remain in solution (Riedel et al., 2012). Iron oxides also alter the 

surface chemistry of clay particles at redox interfaces, increasing the affinity of particles for 

DOM, trace metals and phosphates and limiting the mobility of solutes between the solutions 

and particles (Couture et al., 2008; Sundby et al., 1992). Iron-rich redox interfaces may therefore 

impact the flow of elements and organic matter, both dissolved and particulate, between 

sediments and bottom waters, soils and groundwaters and salt marshes/tidal flats and tidal 

waters.   

Increased understanding of iron-OM interactions has prompted geoengineering remediation 

projects, in which these concepts are implemented to intentionally alter the environment. In an 

endeavour to restore the balance of natural systems, geoengineers have used iron to remediate 

a fraction of the anthropogenic carbon emissions produced annually. Two hundred thousand 

pounds of iron sulfate was dumped into the North Pacific Ocean off the western coast of Canada 

in July 2012. This experiment was conducted by the Haida Salmon Restoration Corporation, 

under the direction of businessman Russ George. The growth of phytoplankton in these waters 

is limited by iron, therefore introducing dissolved iron triggered a massive phytoplankton bloom, 

which absorbed carbon into their biomass and eventually sunk to the deep ocean waters. On 
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the time scale of a few hundred years, the carbon is sequestered, purposefully reversing a small 

quantity of man-made carbon emissions. Though interesting in its applicability to climate 

change, critics note that “the possible side effects of large-scale iron fertilization are not yet 

known; and that sufficient research has not yet been done. Significant, unknown, unforeseen, 

and unforeseeable risks may be involved if iron fertilization is performed on the scale needed to 

truly affect global CO2 levels” (Rickels et al., 2011). 

Many smaller scale geoengineering applications can be evaluated in experimental lakes in 

northern Ontario, which were cordoned off for scientific testing (Schindler, 1974). The use of 

these lakes is crucial since remediation projects, meant to improve environmental conditions, 

can cause important negative repercussions that are difficult to predict in natural systems 

affected by hundreds of chemical and ecological variables. Some lakes experiencing harmful 

algal blooms have been remediated using iron oxides. After their addition to the sunlit surface 

waters of lakes, iron oxides sink to the bottom of lakes, simultaneously binding and taking down 

phosphorus, which fertilizes algal growth in these systems. Phosphorous therefore remains 

trapped under a cap of iron oxides in the lake sediments (Liu et al., 2009). These iron additions 

help restore the natural ecosystem of these lakes whilst phosphorous waste removal 

procedures and the use of phosphorus containing household products such as lawn fertilizers, 

water softeners and laundry detergents are re-evaluated.  

Whether it is a prerequisite for natural environmental processes or a key ingredient in some 

geoengineering project, iron is currently at the forefront of geosciences. Recently developed 

methods and instruments may help tackle complex biogeochemical problems and help unravel 

the mechanism(s) of interaction between iron and OM. Soft X-ray absorption techniques, for 

example, have clearly demonstrated that organic-rich nano-pockets are co-localized to iron with 
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preferential association of oxygen-rich functionalities in soils (Solomon et al., 2012). Though the 

lower concentration of organic carbon in sediments would equate to reduced sensitivity, it is 

possible that X-ray techniques could similarly establish co-localization of iron and OM, and what 

type of binding, whether covalent or electrostatic, exists between the two. Recent 

developments in high-resolution mass spectrometry have also greatly expanded our “analytical 

window” constraining and resolving thousands of individual organic formulas (including N and S 

compounds) based on precise molecular mass determinations for organic components of highly 

complex mixtures. This technique has allowed us to identify the types of molecules that are 

preferentially bound to iron at oxic-anoxic interfaces. It may also be possible to target the 

molecules that are released from the sediment matrix upon reductive dissolution of iron oxides 

in soils and sediments (Riedel, pers. comm.). The realization of iron’s importance in organic 

geochemistry has roused questions that are yet to be answered and has evoked iron as a 

possible culprit in a number of carbon production, degradation and sequestration mechanisms 

on Earth. 

Isotopes and OM 

The richness of information stored in buried OM is accessed by targeted instrumental and 

experimental methods. Bulk characterization of sediment OM using spectroscopic methods 

generates rather imprecise information as sediment OM is a complex mixture of molecules 

occupying a continuum of molecular masses, with subtly different chemical structures and 

elemental compositions, which generate broad, undefined peaks.  

Natural abundance stable carbon isotope analysis is a staple for understanding geochemical OM 

and carbon dynamics. Isotopic analyses using IRMS can detect very small differences in the 

isotopic ratios of carbon 12 and 13 that occur at the third and fourth decimal place of the ratios 
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and are highlighted by the delta notation that relates a ‰ difference of a sample and an isotopic 

reference that is standardized in labs around the world: 
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Small variations in the 13C/12C of photosynthesized OM can indicate the terrestrial or marine 

provenance of OM, since marine plants use dissolved inorganic carbon as their source of carbon 

(δ13C = 0‰) and terrestrial plants use carbon dioxide (δ13C = -7‰), a difference ensues in the 

final isotopic signature of the bulk photosynthesized OM (marine = -20‰ and terrestrial = -

27‰). Alternatively, terrestrial plants using the less common C4 carbon fixation pathway to 

generate OM with signatures around -14‰ (Farquar et al., 1989). Within one photosynthetic 

organism, there are also differences in the signatures of different biochemicals; proteins and 

sugars being more enriched in δ13C (ratio is less negative) than the lipids, lignins and non-acid-

soluble OM for example (Wang et al., 1998).  

The use of stable isotopes in environmental studies therefore allows us to track carbon from 

different sources in marine sediments as well as aquatic systems such as lakes, rivers, estuaries, 

coasts and oceans. For example, going seaward from the mouth of a river, where dissolved OM 

is comprised mainly of continentally-derived material (δ13C  -27‰), isotopic signatures of 

particulate and dissolved organic matter become progressively more enriched, reaching a value 

of  -20‰ as a result of degradation and dilution of terrestrially-derived material and addition of 

marine-derived DOC through primary productivity. Monitoring the change in organic matter 
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concentrations and δ13C as a function of the change in salinity also potentially makes possible 

the identification of OM fractionation processes as the preferential degradation of certain 

biochemicals or coagulation/co-precipitation of specific moieties in dissolved molecules with 

iron or calcium in the water column may alter the δ13C signature of the residual dissolved 

organic matter pool.  

Stable isotope analyses of solid samples and carbonates (DIC) are routine methods carried out 

by coupling an elemental analyzer to an IRMS. Measurements of the isotopic composition of 

dissolved organic matter are uncommon and have a limited environmental coverage likely due 

to the difficulty of the analyses. In order to analyse the stable carbon isotope ratio of DOC, a 

novel method was developed, coupling a total organic carbon (TOC) analyser to an isotope ratio 

mass spectrometer.  

Organization of the thesis 

The bulk of this thesis is based on four manuscripts that have either been published, accepted 

for publication or submitted to refereed journals. Rather than having connecting paragraphs, 

the relationship between chapters is described in this subsection. The publications chosen for 

these chapters cover a diverse set of fields of study whose associations include the Nature 

Publishing Group (Nature), American Society for Limnology and Oceanography (Limnology and 

Oceanography: Methods), Elsevier (Marine Chemistry) and the European geoscience union 

(Biogeosciences) and as such connections between the chapters may not be obvious. All 

chapters are formatted in the same manner with Figures and Tables inserted in the text, and 

numbered according to Chapter (i.e., Figure 2-1 means Figure 1 of Chapter 2). Sections 

published as "Supporting Information" are appendices placed at the end of the document with 
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an "A" preceding the number (i.e., "Appendix A2" corresponds to the appendix of Chapter 2, and 

"Figure A2-1" corresponds to Figure 1 of Appendix 2). 

Chapter 2 ("Preservation of organic matter in sediments promoted by iron” in Nature 483, 198–

200) demonstrates through a relatively simple chemical extraction that there is an intimate 

association between organic matter and reactive iron oxide species in sediments. Specifically, 

more than 20% of the organic carbon in aquatic sediments from a wide range of depositional 

environments — which vary in salinity, proximity to land, water depth, organic carbon content 

and oxygen availability — is associated with reactive iron phases. Detailed methodological 

information is given in Appendix A2. Though the main conclusion of this paper had a fairly wide-

ranging impact on theories of carbon burial in marine sediments, the exact mechanism of 

interaction still remains speculative. Chapter 3 (“The role of iron in the diagenesis of organic 

carbon and nitrogen in sediments: A long-term incubation experiment” accepted for publication 

in Marine Chemistry) attempts to further elucidate the preservative role of iron on OM in 

sediments through an incubation experiment. One necessary analytical technique used in 

Chapter 3 is developed and optimized in Chapter 4 (“Automation of 13C/12C ratio measurement 

for freshwater and seawater DOC using high temperature combustion” to be submitted in 

Limnology and Oceanography: Methods) which describes the development of a novel technique 

to measure the stable carbon isotope ratio of dissolved organic carbon in saltwater and 

freshwater samples. This technique allows us to monitor the isotopic composition of dissolved 

organic matter in sediment porewaters during our incubation experiment and to demonstrate 

increased solid-solution partitioning upon addition of iron oxides to sediment particles. Though 

useful for sediment porewaters, chapter 4 covers method development and validation for 

application to a wide-range of natural samples. Chapter 5 (“Revisiting the disappearance of 

terrestrial dissolved organic matter in the ocean: a δ13C study” submitted to Biogeosciences) 
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also uses the DOC-IRMS technique to monitor the isotopic composition of riverine waters during 

photooxidation with simulated UV light. Though not directly related to the iron axis of this 

thesis, photooxidation of dissolved organic matter was shown to be in part modulated by iron 

chemistry through the generation of free radicals. 
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2. Chapter 2: Iron promotes the preservation of 

organic matter in sediments 
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The biogeochemical cycles of iron and organic carbon are strongly interlinked. In oceanic waters 

organic ligands have been shown to control the concentration of dissolved iron (Johnson et al., 

1997). In soils, solid iron phases provide a sheltering and preservative effect for organic carbon 

(Kaiser and Guggenberger, 2000), but the role of iron in the preservation of organic matter in 

sediments has not been clearly established. Here, we determine the amount of organic carbon, 

associated with reactive iron phases in sediments of various mineralogies collected from a wide 

range of depositional environments, using an iron reduction method previously applied to soils 

(Wagai and Mayer, 2006). Our findings suggest that 21.5 ± 8.6 per cent of the organic carbon in 

sediments is directly bound to reactive iron phases, representing a global mass of 19 to 45 x 1015 

g of organic carbon in surface marine sediments (Hedges and Keil, 1995). We propose that these 

organic carbon-iron associations, formed primarily through co-precipitation and/or direct 

chelation, promote the preservation of organic carbon in sediments. Since reactive iron phases 

are metastable over geological timescales, they serve as an efficient “rusty sink” for OC, a key 

factor in the long-term storage of organic carbon and thus contributing to the global cycles of 

carbon, oxygen and sulphur (Berner, 2003).  
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Evidence of interactions between Fe and OC in marine sediments was reported nearly 40 years 

ago, where concentrations of Fe and OC were found to co-vary (Berner, 1970). Since both Fe 

and OC are commonly associated with clay mineral surfaces, it was simply stated that “where 

there is more deposited fine-grained material with high surface area for adsorption, we find 

more organic matter and more Fe”(Berner, 1970). It is still not clear whether this correlation 

stems from the strong affinity of both species for solid surfaces or if it reflects enhanced OC 

preservation by Fe. Iron’s preservative effect on organic matter was previously demonstrated in 

laboratory studies (Boudot et al., 1989; Jones and Edwards, 1998), which report that the 

presence of iron-rich solid substrates or the formation of organo-ferric complexes hampers 

microbial degradation of simple organic compounds. Iron also imparts a protective effect to OC 

in soil systems (Kaiser and Guggenberger, 2000), but this preservation mechanism has never 

been explored in sediments.  

In modern sediments, reactive Fe phases (operationally defined here as the solid iron phases 

that are reductively dissolved by sodium dithionite) are typically found as nano-spheres of 

goethite of <10 nm in diameter (Poulton and Raiswell, 2005; Van der Zee et al., 2003). These 

phases accumulate or are formed within the oxic sediment layer through oxidation and 

precipitation of dissolved Fe(II) produced during weathering and diagenetic recycling within the 

sediment (Canfield, 1997). Over time, reactive Fe phases become more crystalline, resulting in 

reduced surface reactivity/area and solubility. Crystallization is, however, hindered by the active 

diagenetic recycling of iron (Burdige, 2006), and by organic matter coating of Fe phases 

(Schwertmann, 1966). Accordingly, reactive Fe phases have been shown to survive in sediments 

for hundreds of thousands of years (Hease et al., 1997).  
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We examined sediments collected from a wide range of environments, including freshwaters, 

estuaries, river deltas, continental margins and the deep-sea, encompassing various 

depositional environments and mineralogies. These samples include OC-rich sulphidic Black Sea 

sediments and OC-rich sediments from O2-deficient zones along the Indian and Mexican (Stn. 

306) margins. Also included are sediments from the Arabian Sea, the Saanish Inlet and a boreal 

lake (Lake Brock) which exhibit a productivity-driven seasonal pattern of O2-deficient waters. 

Estuarine, deltaic and margin deposits accumulating below well-oxygenated waters of the Arctic 

margin, the St. Lawrence Estuary and Gulf, the Mexican margin (Stns. 303-305), the Eel River 

Basin and the Washington coast and adjacent Columbia River delta are also examined along with 

pelagic sediments from the Southern Ocean, the Santa Barbara Basin (Stn. M) and Equatorial 

Pacific Ocean. This sample set comprises freshwater, estuarine and marine clastic sediments, 

carbonate and siliceous oozes, as well as pelagic red clay sediments. We focused on determining 

the amount of OC associated with reactive Fe phases by applying the citrate-dithionite iron 

reduction method of Mehra and Jackson (Mehra and Jackson, 1960), which simultaneously 

dissolves all solid reactive Fe phases and the OC associated to these phases (OC-Fe) from the 

sediment matrix. The reduction reaction is conducted at circumneutral pH using sodium 

bicarbonate as a buffer, thus preventing the hydrolysis of organic matter as well as its 

protonation and readsorption onto sediment particles which occur under acidic conditions. 

Whereas the extraction of the same samples with artificial seawater released a negligible 

fraction of the total OC (less than 3%; results not shown), samples treated under the same 

experimental conditions after substituting trisodium citrate (complexing agent) and sodium 

dithionite (reducing agent) for sodium chloride (equivalent ionic strength) released on average 

7.2 ± 5.4% of the total OC (Appendix A2 Table 8-2). Because the OC released in these control 

experiments is not associated with Fe, results of individual control experiments were subtracted 
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from the amount of OC released from the dithionite extractions (see Appendix A2 for results 

and discussion on contamination and specificity for the OC-Fe fraction).  

We determined that for all sediments tested, an average of 20.5 ± 7.8% of the total OC is 

directly associated to Fe, with the highest OC-Fe concentrations in the uppermost sediment 

layers where most of the reactive Fe phases accumulate (Figure 2-1). Considering OC burial 

within different depositional settings - deltaic and continental margin sediments account, 

respectively, for 44% and 45% of global OC burial, while pelagic sediments and high productivity 

zones, including anoxic basins, account for 5% and 6%, respectively17 - we estimate that the 

global pool of OC specifically associated to Fe corresponds to 21.5 ± 8.6% of the total 

sedimentary OC or 19 to 45 × 1015 g of OC. Even in mature sediments (1000 to 1500 yrs old), 23-

27% of the total OC remains bound to reactive Fe oxide phases, suggesting that the strong 

association between Fe and OC may inhibit microbial OC degradation and enhance OC 

preservation.  
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Figure 2-1: Control-corrected percentage of the total sediment organic carbon (OC) bound to reactive iron phases, 
i.e., dislodged from the sediment during the reductive dissolution of reactive iron oxides.  Depth intervals (cm) and 
sample names are indicated below the x-axis. Molar OC:Fe ratios of the uppermost surface sediment layer are also 
shown (black squares). The iron reduction was carried out following the method of Mehra and Jackson (1960) 
without adding agents that promote flocculation of the dissolved organic matter after the reduction step. Error 
bars show s.d. (n = 12-15 for the St. Lawrence samples, and n = 3 for all the others). 

 

In agreement with Wagai and Mayer’s calculations (Wagai and Mayer, 2006), our measurements 

reveal that reactive Fe phases do not provide sufficient surface area (<5% of the total surface 

area of sediments; Appendix A2, Table 8-3) for adsorption of the entire OC-Fe pool onto Fe 

oxides. Alternatively, we propose the existence of largely organic OC-Fe macromolecular 

structures that are dissolved and dislodged from the sediment during iron reduction. 

Transmission electron microscopy studies describe sedimentary organic matter as “discrete, 

discontinuous blebs” that adhere to the surface of sediment clay particles (Ransom et al., 1997). 

These “blebs” are consistent with our proposed structure of OC-Fe, as are the findings of Mayer 

(Mayer, 1999), who reported that sedimentary organic matter is not spread evenly over clay 
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particles but covers only about 15% of particle surfaces. We believe that Fe or Fe oxides are 

critical in providing cohesion to these macromolecular structures, possibly fixing them to clay 

particles through strong covalent bonds.  

Calculations by Wagai and Mayer (Wagai and Mayer, 2006) indicate that simple sorption of OM 

on reactive Fe oxide surfaces results in a maximum molar OC:Fe ratio of 1.0 for the co-extracted 

organic carbon and iron, based on the maximal sorption capacity of reactive iron oxides for 

natural organic matter. On the other hand, co-precipitation and/or chelation of organic 

compounds with Fe generates low density, organic-rich structures with OC:Fe ratios between 6 

and 10 (Wagai and Mayer, 2006). According to the results of our dithionite extractions, typical 

continental margin sediments overlain by oxic bottom waters yield an average OC:Fe ratio of 4.0 

± 2.8 (Appendix 2, Table 8-3),  greatly exceeding the maximum sorption capacity of Fe oxides but 

consistent with the formation of OC-Fe chelates. These chelates are predominantly organic 

structures which likely resemble those depicted by the ‘onion model’ of Mackay and Zirino 

(Mackay and Zirino, 1994), where organic molecules are ‘glued’ together by Fe ions or 

nanophases of Fe oxides. The formation of such chelates from solution is possible when the 

molar porewater OC to Fe ratio is approximately 10 (Baas Becking and Moore, 1959; 

Guggenberger and Kaiser, 2003). This molar ratio is typically observed in anoxic sediment 

porewaters such as in the St. Lawrence Estuary (Lalonde unpubl. data) and in the nearby 

Saguenay Fjord (Deflandre et al., 2002). The diffusion of dissolved Fe(II) from anoxic to surficial 

oxic sediments would trigger the oxidation of Fe(II) to Fe(III) and the formation of very stable 

organic complexes (K ≈ 1014 M-1 for natural dissolved OC to 1052 M-1 for siderophores) (Kraemer, 

2004; Rue and Bruland, 1995).  
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Sediments bathed by oxygen-depleted bottom waters, such as in the Black Sea, the Mexican 

margin (Stn. 306) and the Indian margin, host high OC:Fe ratio structures (7 to 32). These 

organo-metallic structures appear to be particularly stable under anaerobic conditions and 

survive degradation. In contrast, in oxic environments, the organic lining of these structures is 

progressively degraded, reducing the OC:Fe ratio to levels observed in typical continental margin 

sediments Figure 2-1. Long periods of exposure to oxic conditions increase the fraction of the 

total sedimentary OC pool that is tightly adsorbed to particle surfaces (Arnarson and Keil, 2007), 

owing to the  preferential degradation of organic structures that are more loosely attached to 

the clay mineral matrix, such as the OC-Fe chelates. Very long exposure to oxic conditions 

results in the very low OC:Fe observed at the deep-sea Equatorial Pacific site (0.36; Figure 2-1).  

We also analyzed the isotopic (δ13C and δ15N) and elemental composition (C:N molar ratio) of 

the bulk OM and the Fe-associated OC fractions of all sediment samples. In most cases, we find 

that the OC-Fe is enriched in 13C (δ13C increases by 1.7 ± 2.8‰) (Figure 2-2) and nitrogen (C/N 

decreases by 1.7 ± 2.8) relative to the rest of the sedimentary OC pool whereas δ15N displayed 

little or no fractionation (Appendix 2, Figure 8-1, Figure 8-2). 13C-rich natural organic compounds 

include proteins and carbohydrates (Wang et al., 1998), which are rich in nitrogen and/or 

oxygen functionalities that favour the formation of inner-sphere complexes with Fe. The 

preferential binding of such highly labile organic compounds to Fe may explain why reactive 

organic compounds can be preserved in sediments while other, more recalcitrant molecules, are 

degraded (Hedges and Keil, 1995).  
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Figure 2-2: Carbon isotopic signatures (δ
13

C normalized to VPDB) of non iron-bound organic carbon (OC) (black) and 
iron-bound OC (grey) for all sediment samples. The samples were depth-integrated whenever possible; the number 
of depth intervals integrated is indicated in parentheses above the sample name. Error bars show s.d. (n = 12-15 for 
the St. Lawrence samples, and n = 3 for all the others). 

 

Our findings have far-reaching implications on our understanding of organic matter cycling in 

sediments. First, the protection mechanism described above, which preferentially shields 13C- 

and nitrogen-rich organic compounds from microbial degradation, could help explain a 

phenomenon that has puzzled organic geochemists for decades: the replacement, seaward of 

river mouths, of terrigenous organic matter from sediments by compounds bearing a more 

marine isotopic and elemental signature (Hedges et al., 1997). Our data also show that the 

traditional sorptive stabilization mechanism, which hypothesizes that clay particles have a 

preservative effect on organic matter through direct adsorption on their surfaces (Hedges and 

Keil, 1995; Mayer, 1994; Mayer, 1995), does not describe accurately the mode of stabilization 

for all organic compounds in sediments. Although more work is needed to elucidate the exact 
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nature of OC-Fe interactions, our data suggest that direct chelation or co-precipitation of 

macromolecular OC-Fe structures also plays a significant role. Finally and most importantly, our 

results reveal that 21.5 ± 8.6% of the OC buried in surface marine sediments (150 × 1015 g of OC) 

(Hedges and Keil, 1995), or a global mass of 19 to 45 × 1015 g of OC, is preserved as a result of its 

intimate association with reactive Fe phases. Assuming that our estimate also applies to OC 

locked in the sedimentary rock reservoir (15,000 × 1018 g of OC) (Hedges and Keil, 1995), Fe-

associated OC would account for 1900 to 4500 × 1018 g of OC, or roughly 2900 to 6800 times the 

size of the atmospheric carbon pool. Hence, reactive Fe phases serve as an extremely efficient 

“rusty sink” for OC, a key factor in the long-term storage of organic carbon and the global cycles 

of carbon, oxygen and sulphur. 
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organic carbon and nitrogen in sediments - A long-

term incubation experiment 
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Abstract 

The burial and preservation of organic matter (OM) in marine sediments is tightly coupled to the 

diagenetic cycles of iron and manganese. Recently, it has been shown that approximately 20% of 

the sedimentary organic carbon (OC) may be bound to reducible iron oxides (Lalonde et al., 

2012). These strong iron-OC complexes, formed within the oxic layer of the sediment, are 

transferred to the deeper anoxic sediment layers through sedimentation, physical reworking 

and bioturbation and are metastable over geological timescales. Using long-term (250-day) 

incubations under various redox and amendment conditions (Fe(II) and dissolved OM (DOM) 

additions), we examined the effect of iron on the early diagenetic transformations of OM in 

marine sediments. The fate of fresh, algal-derived DOM was monitored by tracking its stable 

carbon isotopic signature (δ13C). We demonstrate the incorporation of the 13C-depleted tracer 

into the sediment through sorption (adsorption and co-precipitation). In the presence of iron 

oxides, we observed increased transfer of the dissolved algal material to the solid phase, 

revealing the role of iron in shuttling DOM from sediment porewaters to sediment particles. 

Furthermore, we show that the presence of iron has a differential effect on OC and organic 

nitrogen (ON), with preferential preservation of OC and accelerated degradation of ON in the 

presence of reactive iron oxide surfaces. Hence, we propose that redox-sensitive metals may 

regulate the global redox balance through increased carbon preservation as well as exerting a 

control on the concentration of fixed nitrogen species in marine sediments. 

Introduction 

The burial and preservation of organic matter (OM) in marine sediments are important factors in 

modulating the concentration of atmospheric oxygen and carbon dioxide over geological time 
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(Berner, 1989). Hence, elucidating factors that favor sedimentary OM preservation over its 

degradation is important. OM can be physically shielded from degradation by adsorption to 

mineral particles. In fact, over 99% of sedimentary organic carbon (OC) is bound to particle 

surfaces - the remainder is found as discrete organic debris (Hedges and Keil, 1995; Keil et al., 

1994; Ransom et al., 1998a). The surface area of sedimentary mineral particles determines the 

abundance of OM binding sites and modulates OC-mineral binding, maintaining surface loadings 

at a near constant and universal value (0.5-1.0 mg OC m-2) on continental shelves and margins 

(Keil et al., 1994; Mayer, 1994; Mayer, 1995). Organic compounds can also be protected from 

microbial degradation through encapsulation within diatom tests (Arnarson and Keil, 2007; 

Ingalls et al., 2003) expandable-clay interlayers (Kennedy and Wagner, 2011), particle 

mesopores (Mucci et al., 2000), and macromolecular hydrophobic OM (Mariotti et al., 1981). 

Over the past 20-30 years, the identification of these processes has shaped our understanding of 

the fate of OM in sedimentary systems, but the exact nature of these preservative interactions 

as well as the conditions under which they form still remain unclear. Recently, metal oxides have 

been identified as key players in the physical protection of OM, accounting for the sequestration 

and preservation of ≈20% of the OC in marine sediments (Lalonde et al., 2012).  

Sedimentary nitrogen is essentially affected by the same preservative associations as OC, but 

the two species display divergent degradation pathways. The production of N2 through 

denitrification and anammox in marine sediments is an important component of the global 

nitrogen cycle, influencing the oceanic inventory of fixed nitrogen (Burdige, 2006). Bacteria 

mediate the bulk of both OC and ON mineralization to CO2 and N2, but unlike OC 

remineralization, the traditionally accepted mechanisms of bacterial N2 production are mainly 

confined to anoxic conditions (Burdige, 2006). A proposed alternative pathway of N2 production 

in sediments (Devol, 2008)  and soils (Yang et al., 2012) involves the direct oxidation of NH4
+ by 
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manganese and iron oxides, a thermodynamically feasible process under both oxic and suboxic 

conditions (Yang et al., 2012). Balanced equations for these processes are shown here: 

FeOOH + 1/3NH4
+ + 5/3H+ → 1/6N2 + Fe2+ + 2H2O 

MnO2 + 2/3NH4
+ + 5/3 H+ → 1/3N2+ Mn2+ + 2H20 

Redox-sensitive metals, such as iron and manganese, strongly impact the turnover of both OC 

and ON in marine sediments, but OM also affects the diagenetic cycling of iron. The growth of 

authigenic amorphous iron oxide phases is, for example, strongly inhibited by OM bound to 

their surfaces (Schwertmann, 1966). The reduction of oxides in sediments may also be 

hampered by organic matter (O'Sullivan et al., 1995). Nanophases of iron oxides are the 

dominant reactive oxides in both marine and lacustrine sediments (Raiswell and Canfield, 

2012b; Van der Zee et al., 2003) and these redox-sensitive phases, when associated to OM, 

somehow resist reduction after thousands of years of burial in anoxic sediments (Hease et al., 

1997).  

Elucidating the role of iron and manganese oxides on the degradation/preservation of OC and 

ON in sediments is impeded by the intrinsic complexity (e.g., spatial and temporal 

heterogeneity) of these systems. Benthic macrofauna, for example, affect elemental transport 

and cycling within the uppermost sediment layers and create microenvironments and lateral 

variability through burrowing and surface feeding (Aller and Aller, 1998; Aller et al., 1996; 

Boudreau, 1986; Katsev et al., 2007; Michaud et al., 2005). Additional difficulty is imparted by 

the poorly characterized nature (chemical structure) and wide-ranging reactivity of sedimentary 

organic matter (LaRowe and Van Cappellen, 2011). Not only are the latter dictated by OM 

sources, but also by the depositional setting as well as the intensity and frequency of physical, 

biological and chemical reworking (Aller et al., 1996). Due to the large range of OM reactivities 
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(half-lives ranging from 10 to 2000 years or longer; Hedges and Keil, 1995), it is difficult to tease 

out the environmental and depositional factors that control OM preservation and degradation 

on the timescales of field observations or laboratory experiments.  

This paper describes a long-term (250 days) incubation, carried out under different redox and 

amendment conditions, that assesses the fate of OM (partitioning, degradation, iron oxide 

association) over a longer timeframe than typical laboratory experiments. We systematically 

controlled the incubation conditions to more readily identify differences between oxic and 

anoxic OM degradation rates as well as the preservative interactions between OM and redox-

sensitive minerals. A pulse of labile dissolved organic matter (DOM) derived from 13C- and 15N-

depleted algae was added to a natural sediment slurry to study its degradation/preservation. 

Since there is little isotopic fractionation of the stable carbon isotopic signature (δ13C) during 

physical and biological processing of sedimentary OC and given that the δ13C  signatures of 

carbon sources are discrete and well constrained, δ13C is a sensitive source indicator in this 

system (Bauer, 2002; Middelburg et al., 2000), allowing us to track the fate of the algal OM pulse 

within the solid and aqueous phases.  

Materials and methods: 

Sampling 

Sediment samples were collected at 325 m depth at station 23 (48°42.419’N, 68°38.387’W) in 

the Lower St. Lawrence Estuary onboard the R/V Coriolis II in May 2011. The first ≈20-25 cm of 

the grab core sample (fine silt/clay, porosity ≈ 0.85) was homogenized, removing visible living 

macrofauna, seashells and detritus. The wet sediment was transferred to glass jars and stored 

on-board and in the laboratory at 4°C for less than 4 months in order to preserve the native 

microbial communities and chemistry of the sediment. The bulk of the sediment remained 
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anoxic during storage as only the surface of the sediment within the jar was in contact with the 

atmosphere. 

Fresh algal dissolved organic matter 

Algal dissolved organic matter (DOM) was liberated from Nannochloropsis algae cells (Reed 

Mariculture) through cell lysis following repeated freezing in liquid nitrogen and thawing. Lysed 

cells were diluted with deep Pacific seawater (DOM concentration < 1 mg L-1), centrifuged for 20 

minutes at 19,000 g and filtered through a 0.7-µm glass fiber filter to generate a highly 

concentrated DOM solution. The algal-derived DOM is 13C- and 15N-depleted (δ13C = -41.34 ± 

0.12‰, δ15N = -5.12 ± 0.26‰) relative to the natural sedimentary material (δ13C = -24.29 ± 

0.10‰, δ15N = +5.67 ± 0.22‰), making it easy to follow its progressive integration into the 

sediment and degradation during the incubation. For example, a 6% addition of carbon and a 9% 

addition of nitrogen through the incorporation of algal DOC and DON, respectively results in a 

1‰ depletion in sediment δ13C and δ15N. 

Slurry incubation setup 

The incubation setup is illustrated in Figure 3-1. The 24 glass amber 250 mL vials (12 duplicate 

experimental conditions) were filled with wet homogenized sediment (14.6 g dry weight) in 175 

mL of seawater giving a total volume of approximately 200 mL. Each vial was sealed with a 

custom designed PTFE cap lined with a Viton O-ring. Three ports were machined into the caps to 

accommodate standard PEEK fittings for gas purging and transfer as well as reagent additions. 

Three parallel sequences of 8 vials (4 amendment conditions done in duplicate) connected in 

series by PTFE tubing were incubated at 4°C under different redox conditions using a flow-

through gas method (≈30 mL/min). The first two series were maintained either oxic or anoxic 
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using air or nitrogen gas, respectively. The redox conditions in the third series of incubations 

alternated monthly between oxic and anoxic conditions for the duration of the experiment.  

After one week of redox equilibration, each set of 8 vials was amended with fresh algal DOM 

(final concentration 36.1 mmol L-1) and/or dissolved ferrous iron (FeCl2·4H2O, final concentration 

4.25 mmol L-1), making 4 duplicate experimental scenarios: A. Addition of iron(II) and OM (Fe-

OM scenario) B. Addition of iron (II) only (Fe scenario) C. Addition of OM only (OM scenario) and 

D. Control vials containing only the original sediment and seawater (Control scenario) (Figure 

3-1). Algal DOM and dissolved iron were injected as anoxic solutions through the septum port of 

each vial. Under oxic conditions, Fe(II) is expected to undergo rapid oxidation and precipitation 

as an iron oxide.  

Aliquots (5 or 10 mL) of the well-mixed sediment-seawater slurries were extracted at various 

time intervals from each vial through the septum port using a syringe (shown in Figure 3-1) and 

immediately transferred to centrifuge tubes. After centrifugation for 10 minutes (1000 g), the 

aqueous phase was isolated, acidified to pH < 2 for sample preservation and dissolved organic 

carbon (DOC) analysis, and stored at 4°C while the solid phase was freeze-dried and stored for 

later analysis. The overlying water pH at the end of the incubations was measured using an 

Accumet AB15 pH electrode calibrated using three NIST-traceable buffer solutions (3.95, 7.05 

and 10.27 at 5°C). 
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Figure 3-1: Illustration of the incubation setup. Incubations were carried out under 3 different redox conditions 
(anoxic, oxic, and mixed redox) by purging the overlying water with nitrogen gas, air, or alternating between the 
two gases. The sediment-seawater incubations were spiked with A) Fe(II) and DOM (Fe-OM scenario), B) Fe(II) only 
(Fe scenario), C) DOM only (OM scenario) and D) no addition (Control scenario). Note that each vial was duplicated 
(in series) in this experiment (8 vials per redox condition, 24 vials in total). 

Analyses 

Solid Phase Measurements 

The OC and TN content as well as the δ13Corg and δ15Ntot signatures of the solid phase were 

measured using a CHN analyzer (EuroVector 3028-HT) coupled to an isotope ratio mass 

spectrometer (IRMS, Isoprime GV Instruments). Prior to the %OC and δ13Corg analyses, the 

samples were decarbonated by fumigation with 12 N HCl for 12 hours followed by a 1-hour 

heating step at 50°C and 6 hours in a desiccator to remove remaining water/acid.  

Elemental and isotopic measurements were calibrated to IAEA-C6 sucrose (δ13C = -10.45 ± 0.03), 

IAEA-N1 ammonium sulfate (δ15N = 0.43 ± 0.07‰), and β-alanine (pre-calibrated in-house; δ13C 

= -25.98 ± 0.23‰; C = 40.45% and δ15N = -2.21 ± 0.24‰; N = 15.72%). The reproducibility of 

replicate measurements was better than 1% for OC and TN (relative error), and better than 0.3 

and 0.5‰ for δ13C and δ15N signatures (absolute), respectively. 



 

40 
 

DOC concentrations and isotope analysis 

DOC concentrations and δ13CDOC were measured simultaneously using a modified high-

temperature catalytic oxidation TOC analyzer (OI Analytical Model 1010, College Station, TX) 

coupled to an isotope ratio mass spectrometer (IRMS, Isoprime GV Instruments) after 

acidification and purging of any dissolved inorganic carbon. The TOC analyzer’s PTFE tubing was 

replaced with PEEK tubing to reduce the atmospheric CO2 background. Repeated blank 

injections at 680°C under ultra-high purity O2 (Praxair) were started 12 hours prior to sample 

analysis in order to desorb atmospheric CO2 from the combustion column.  

The injection volume was adjusted to 750 μL, producing enough CO2 for accurate concentration 

and isotopic measurements, while maintaining efficient combustion. The CO2 gas, generated 

from DOC combustion, was routed to a chemical CO2 trap (Graden Instruments) before being 

cleaned of oxygen and sent to the IRMS using helium as the carrier gas. The concentration and 

δ13C signature of the DOC were determined by calibrating the measured infrared peak area and 

δ13C signature to solutions of IAEA-CH-6 certified sucrose and β-alanine. Duplicate sample 

measurements give a mean error of ±2.15% in DOC concentration (relative) and ±0.15‰ for the 

δ13C signature (absolute). 

Dissolved iron measurements 

Soluble iron was measured spectrophotometrically (Pharmacia Biotech Novaspec II) at 562 nm 

using a modified version of the ferrozine method (Stookey, 1970). Briefly, each sample was 

filtered through a 0.2 μm PTFE filter before adding 25 μL of the hydroxylamine hydrochloride 

reducing agent (1.40 mol L-1), 100 μL of the ferrozine complexing agent (0.01 mol L-1) and 50 µL 

of a pH 5.5 ammonium acetate buffer (1 mol L-1, to maintain pH between 5 and 7). A solution of 

bathophenanthroline in isoamyl alcohol (6 mmol L-1) was used to strip off iron contamination in 
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the hydroxylamine reducing agent and buffer solution using a repeated (3x) solvent-solvent 

extraction. Using iron-extracted reagents, the limit of detection for this ferrous iron 

determination method is 0.3 µmol L-1 (Viollier et al., 2000) and the precision is better than ± 5%. 

Tracking the fate of pulsed algal DOM 

The incorporation and degradation of fresh algal DOC in the sediment and overlying water was 

quantified using a two-component mixing model (Eqn 1).  

 

                   
                    

            Eqn 1. 

where the        refers to the fractional contribution of algal OC to the total OC pool. As we 

have access to both solid phase and aqueous phase OC concentrations and their respective 

isotopic δ13C compositions, we can trace the disappearance of the algal OC through 

decomposition, remineralization and gas phase transfer/escape from the system. This mass 

balance was done by calculating the fractional contribution of algal carbon in both the solution 

and solid phase at each sampling interval as a percentage of the initially added algal OC. Isotopic 

fractionation caused by the mineralization/alteration of components of the algal pool were not 

accounted for in isotopic mass balances as shifts in δ13C are typically minimal (± 1‰; Bauer 

2002), in comparison to δ13C differences between the algal tracer and native sediment OC. 

Algal DOM partitioning coefficients 

Adsorption-desorption isotherms were constructed in order to derive equilibrium partitioning 

coefficients for algal DOC on oxic and anoxic sediments. Initial algal DOC concentrations of 0, 2, 

4, 6, 8 and 10 mg L-1 were allowed to equilibrate with oxic surface sediments (0-0.5 cm) and 

deeper anoxic sediments (10-15 cm) collected from the Lower St. Lawrence Estuary. Final DOC 

concentrations, after an equilibration period of 18 hours at room temperature (≈ 25 ºC) and 
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centrifugation (1000 g) of the slurry for 10 minutes, were measured using a high-temperature 

catalytic oxidation TOC analyzer (Section 2.4.2). Using the slope of the adsorption isotherms, we 

derived equilibrium partitioning coefficients for the algal DOC (K = adsorbed 

concentration/dissolved concentration, in L g-1 dry weight).  

Measurement of nitrogen in solution 

Dissolved nitrogen species were determined only on the final centrifuged sample of the time-

series incubations owing to water volume constraints. Total dissolved nitrogen (TDN) was 

measured as nitrate after alkaline persulfate oxidation (0.075 g K2S2O8 and 0.015 g NaOH per 10-

mL sample) and autoclaving for 90 minutes (Arneel et al., 1993). Nitrate/nitrite and digested TN 

samples were analyzed by the cadmium reduction method using an automated Alpkem analyzer 

(Cattaneo and Prairie, 1995). The concentration of dissolved organic nitrogen was determined 

from the subtraction of the sum of nitrate and nitrite from TDN. Ammonium was not directly 

measured but is included within the dissolved organic nitrogen pool. 

Results 

The incubation lasted 250 days and each vial was sub-sampled at irregular intervals with higher 

frequencies in the starting months. Dark, iron sulfide-rich sediments (pungent sulfidic odor) 

were produced under anoxic conditions in contrast to oxic and mixed redox sediments, which 

remained odorless and reddish-brown. The darkest sediment, and presumably the greatest 

amount of iron sulfide, was precipitated anaerobically when both iron and algal OM were 

added, as there was no shortage of either labile OM for sulfate reducing bacteria or reactive iron 

oxides for iron sulfide production. Dissolved iron concentrations were measured to verify that 

the anoxic redox conditions were properly maintained throughout the incubation and during 

sampling. In the aerobic scenarios, soluble iron(II) concentrations were below detection limit 
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within one week of the start of the incubations (all amendment scenarios). In contrast, under 

the anoxic scenario, there was progressive release of dissolved iron from the unamended, 

natural sediment (Control scenario), to a concentration slightly above 21 μmol L-1 (data not 

shown). Dissolved iron(II) concentrations decreased from 4250 μmol L-1 to about 290 μmol L-1 

upon the addition of iron(II) chloride (Fe and Fe-OM scenarios) to the reactors maintained under 

anoxic conditions, demonstrating the strong affinity of iron(II) for sedimentary mineral surfaces 

(Burdige, 1993), its precipitation as sulfides throughout the incubation, as well as its oxidation to 

iron(III) by electron acceptors other than oxygen, such as manganese oxides and nitrate, at the 

start of the incubation (Magen et al., 2011). Dissolved iron profiles for all redox conditions of the 

control and iron-amended scenarios are available in section 2 of Appendix A3 of this paper. 

The pH remained circumneutral throughout the incubation; between 6.5 and 7.9 in the anoxic 

vials and between 7.3 and 7.9 in the oxic vials, within the range of pH conditions observed in 

natural sediment porewaters (Burdige, 2006). Under all conditions, the solution pH decreased 

progressively during the incubation from its initial seawater value (pH ≈ 8) likely due to OM 

degradation, concomitantly releasing metabolic CO2 and H+ to the solution (Burdige, 2006; Mucci 

et al., 2000). These marginal shifts in pH do not modify the speciation 

(protonation/deprotonation) of OM functional groups, therefore abiotic processes such as 

adsorption, co-precipitation and aggregation are not affected (protonation of negatively 

charged functional groups such as carboxyls (pKa 1.9-4.3) would cause an enhancement in the 

affinity of DOM for particle surfaces whereas protonation of neutral groups such as histidine 

(pKa = 6.0) would reduce affinity).  
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Control and Fe Scenarios 

Based on depositional data, the average accumulation age of the incubated sediments is already 

approximately 20-25 yrs  (Smith and Schafer, 1999), therefore the OC and ON native to these 

sediments was not anticipated to be reactive during the timeframe of this relatively short 

incubation (250 days). The unreactive nature of the native sediment OM, relative to the 

timeframe of this incubation experiment, is demonstrated by the unchanging sediment OC and 

N content in the unamended control scenario (ranging from 1.54 ± 0.01% to 1.58 ± 0.02 % for 

carbon and 0.163 ± 0.002 to 0.161 ± 0.010% for TN). Also reflecting the refractory nature of the 

native sediment OM, was the stability of the δ13Corg and δ15Ntot values in the control scenario 

which remained constant at δ13C = -24.29 ± 0.10‰ and δ15N = 5.67 ± 0.22‰ throughout the 

incubation. 

The %OC and δ13C of organic carbon in the solid phase of sediments supplemented with freshly 

precipitated iron oxides were statistically equivalent to control sediments throughout the 

incubation. However, the addition of Fe to the oxic and mixed redox condition caused a 

significant decrease in the sediment %TN from 0.163 ± 0.002 % initially to 0.142 ± 0.003% under 

oxic conditions and 0.141 ± 0.007% under the mixed redox conditions, corresponding to a 11.65 

± 4.83% decrease in sediment nitrogen content respectively (Figure 3-2).  Removal of the native 

sediment nitrogen only occurred in the Fe amended scenarios under oxic and mixed redox 

conditions, and despite this loss of sediment nitrogen, no significant isotopic fractionation was 

observed (δ15N, p = 0.0443). It is noteworthy that under anoxic conditions and/or upon addition 

of the algal tracer this N removal process was not detected (Figure 3-2).  
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Figure 3-2 Final nitrogen concentration (%TN) of the sediment under different redox conditions for the different 
amendment scenarios. 

 

In order to better understand the decrease in sediment nitrogen content in the iron amended 

(oxic and mixed redox) scenarios, the concentration of products formed during typical sediment 

N removal processes such as nitrite, nitrate and organic nitrogen were measured in the aqueous 

phase at the end of the incubation (Table 3-1). Nitrite was only detectable in the mixed redox 

incubation scenario, with the most abundant concentrations found for the Fe and Fe-OM 

scenarios. The highest nitrate concentration was detected in oxic and mixed redox conditions, 

but interestingly no nitrate was found in iron amended mixed redox incubation vials. Neither 

nitrate nor nitrite was detected in the anoxic redox conditions (Table 3-1). Total organic 

nitrogen, defined here as TDN - (nitrate + nitrite) (total organic nitrogen also includes 

dissolved ammonium, since ammonium was not measured directly), did not show any 

obvious relationship to redox condition or amendment.  
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Table 3-1: Concentrations of dissolved species at the end of the incubations (250 days, asymptotic value) in μmol L
-

1
. Standard deviations are shown in brackets when available. 

 

Oxic 

 

Mixed 

 

Anoxic 

 

DON 

+  

NH4
+ 

NO2
-
 NO3

-
 DOC 

 

DON 

+ 

NH4
+
 

NO2
-
 NO3

-
 DOC 

 

DON 

+ 

NH4
+
 

NO2
-
 NO3

-
 DOC 

Control 122 n.d. 472 829 (200) 

 

12 4 1042 1207 (143) 

 

732 n.d. n.d. 864 (329) 

Fe  81 n.d. 490 557 (200) 

 

107 256 n.d. 471 (143) 

 

674 n.d. n.d. 500 (100) 

OM  388 n.d. 346 2214 (371) 

 

122 11 821 2257 (271) 

 

345 n.d. n.d. 2629 (643) 

Fe-OM  420 n.d. 321 921 (157) 

 

459 201 843 764 (57) 

 

217 n.d. n.d. 2014 (693) 

*n.d. = not detected 

 

We also measured the DOC content of the control and Fe amended scenarios. Although the 

native sediment OM appears unreactive when looking at the solid phase carbon and nitrogen 

content, the composition of the slurry water is more sensitive to diagenetic changes with DOC 

concentrations drifting progressively during the course of the experiment from 233 ± 75 µmol L-1 

up to 1125 ± 475 µmol L-1 across all control scenarios, mirroring the progressive release of OM 

from sediment particles. The Fe scenario follows a similar trend (climbing from 191 ± 75 µmol L-1  

to 594 ± 208 µmol L-1) although DOC concentrations remain lower throughout the experiment, 

possibly showing increased partitioning of DOC onto solid particles.  Final DOC concentrations 

are shown in Table 3-1 and all profiles of DOC concentration and δ13C are shown in section 1 of 

Appendix A3. 
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OM Amended Scenarios  

Despite the addition of fresh organic matter, the final sediment %OC in the OM amended 

incubation scenarios (OM and Fe-OM) are not significantly different from those of unamended 

scenarios (Control and Fe). However, the large differences in isotopic signature between the 

native OM (δ13C = -24.29 ± 0.10‰) and the OM tracer (δ13C = -41.34 ± 0.12‰) allows the 

incorporation and retention of the algal OM to be tracked throughout the incubation using δ13C 

measurements and isotopic mass balance calculations. For example, the incorporation of about 

20% of the added algal tracer would cause an increase in the sediment OC content by 0.09%. 

This difference would not be detected from OC content measurements alone, as the average 

precision over the 4 final timepoints (%OC over these timepoints is stable), was ± 0.06%. An 

equivalent incorporation of the tracer would give rise to a significant drop in the bulk sediment 

δ13C signature (1‰) compared to the average precision of the final timepoints for the bulk solid 

phase δ13C measurements (± 0.17‰).  

From the isotopic mass balance calculations about 50% of the added algal DOC was integrated 

into the solid phase within the first two hours of the amendment (First timepoint, Figure 3-3). 

The initial algal OM incorporation was greater for the oxic Fe-OM scenario compared to all other 

OM amended scenarios and redox conditions (Figure 3-3). The incorporated algal material had a 

C:N molar ratio of 5.13 ± 1.04, this is slightly richer in nitrogen than the bulk algal C/N (7.58 ± 

0.32). The degradation/disappearance of the algal tracer was monitored through the 

progressive recovery of the bulk δ13C over the 250 days following amendment, starting at a fairly 

depleted signature (tracer/native OM mix) to a signature that approaches that of the native 

sediment.  At the end of the incubation the δ13C signature of the solid phase was -25.08 ± 

0.12‰ for all OM amended scenarios (Figure 3-4). This significant depletion in δ13C compared to 
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the native sediment OM corresponds to a retention of 10.91 ± 2.49% of the total added algal OC 

at the end of the incubation (Figure 3-3 and Figure 3-4).  

 

Figure 3-3: Incorporation of the algal tracer in the sediment for OM and Fe-OM scenarios based on carbon isotope 
mass balance calculations. Black squares show the average incorporation of all redox conditions except the oxic Fe-
OM scenario. White diamonds and triangles each represent a duplicate vial of the oxic Fe-OM condition. Error bars 
represent standard deviation. 

 



 

49 
 

 

Figure 3-4: Final stable carbon isotope signature (δ
13

Corg) of the sediment (last 4 time points). Error bars represent 
the standard deviation of the last 4 time points. 

The concentration of the algal tracer in solution decreases throughout the incubation, following 

first order kinetics down to a stable (Figure 3-5, section 1 of Appendix A3), asymptotic value, 

attained within 30 to 150 days of the start of the incubation, depending on redox condition 

(Table 3-2). The half-life of DOC is 2 to 3 times shorter under oxic rather than anaerobic 

conditions. Oscillating redox conditions causes a segmented decrease in DOC concentration with 

an abrupt increase in DOC consumption following the switch from anoxic to oxic conditions. 

Rate constants and half-lives corresponding to the mixed redox condition were therefore not 

included in Table 3-2. The rate of DOC decomposition of the algal tracer is similar to rates 

reported for porewater DOC from seasonally anoxic shallow sediments (Burdige, 2002) but 

much faster than the more recalcitrant porewater DOC collected typical coastal sediments 

(Burdige, 2002; Komada et al., 2013). Despite stable DOC concentrations within the asymptotic 

segment, δ13C drifts from the depleted signature of the tracer (-41.34‰ ± 0.12‰) to a more 

enriched signature (-33.4 ‰ ± 0.53 ‰), demonstrating partial degradation, release and 
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desorption of soluble material from the native sediment organic matter (δ13C = -24.29 ± 0.10‰) 

into solution. 

 

Figure 3-5: Temporal evolution of the DOC concentration and isotopic signature (δ
13

CDOC) in duplicate incubation 
vials (OM scenario, oxic conditions). 

 

 

Table 3-2: Pseudo first-order degradation rate constants and half-lives of DOC in oxic and anoxic incubations. 
Standard deviations are shown in brackets. 

 

Oxic 

 

Anoxic 

 

Fe-OM OM 

 

Fe-OM OM 

Rate constant  (d
-1

) 0.061 (0.0014) 0.068 (0.0014) 

 

0.032 (0.0058) 0.019 (0.0035) 

half-life (d) 11.46 (0.28) 10.25 (0.22) 

 

21.46 (3.88) 37.28 (7.16) 
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Discussion 

Role of iron in OM preservation and DOM shuttling 

Nearly two decades ago, Keil et al. (1994) and Mayer (1994) hypothesized that sorption of OM 

to mineral surfaces stabilizes the sorbed molecules, a mechanism that was proposed to account 

for the enigmatic preservation of intrinsically labile organic compounds in marine sediments, 

such as those in our algal tracer. This hypothesis was founded on the strong association of 

sedimentary OM with the mineral matrix. Mechanistically, the process of adsorption implies 

that the particulate OM reaching the seafloor initially undergoes degradation and is broken into 

smaller, soluble fragments that readily adsorb to mineral phases (Hedges and Keil, 1995) or can 

co-precipitate with metal oxides at anoxic/oxic interfaces (Lalonde et al., 2012). Algal DOM, 

injected into the overlying water of the incubated sediments, was rapidly incorporated into the 

solid phase, leading to a shift in the sediment’s stable carbon isotope signature. Isotopic mass 

balance calculations reveal that approximately 50% of the added DOC was incorporated within 

the first two hours (Figure 3-3). The rapid timeframe for this incorporation is consistent with 

adsorption or co-precipitation (with metal oxides) of the algal DOM into the solid sediment 

phase (Figure 3-6, pathways 1 & 2), in agreement with previous studies (Arnarson and Keil, 

2000; Berner, 1980). Note that the incorporation of the algal tracer was also accompanied by an 

increase in the day to day scatter as well as the variability in solid phase δ13C measurements 

between twin vials (OM and FeOM scenarios: σ = 0.36‰ ; versus control and Fe scenarios: σ = 

0.093‰), which could be attributed to the heterogeneous distribution of algal DOC on sediment 

particles. 
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Figure 3-6: Simplified pathways of DOM incorporation (1. Adsorption/Desorption and 2. Co-precipitation during 
Fe(II) oxidation) 3. Organic carbon remineralization to CO2, 4. Bacterial denitrification/anammox, and 5. Iron 
mediated N2 production) in marine sediments. 

Irreversibly mineral-bound molecules are more likely to resist prolonged degradation (>250 

days) and thus account for the δ13C signature of algal OM preserved in the incubated sediment. 

The final incubation time-series sample (250 days) shows the retention of approximately 10% of 

the total added algal OC (OM and Fe-OM scenarios) (Equation 1 and Figure 3-4). DOM surface 

binding is controlled by the availability of sorption sites which is likely a function of sediment 

particle surface area (Mayer, 1994; Mayer, 1995) as well as mineralogy (Lalonde et al., 2012; 

Ransom et al., 1998b). Hydroxylated iron and manganese oxides are known to strongly adsorb 

and retain soluble organic compounds through ligand-exchange and inner-sphere complexation 

(Gu et al., 1995; Ransom et al., 1998b). These surface interactions favour nitrogen and oxygen-

rich organic molecules which typically carry more functional groups that bind covalently to 
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mineral surfaces (Arnarson and Keil, 2000). This preference of electronegative groups possibly 

explains why the composition of the preserved OM is different from that of the bulk algal DOM 

with C:N molar ratio of the fraction of the algal material incorporated into the sediment at 5.13 

± 1.04, which is slightly richer in nitrogen than the bulk algal C/N (7.58 ± 0.32). 

To further probe the effect of metal oxides on DOM binding in natural sediments, we derived 

equilibrium partitioning coefficients (K = adsorbed concentration/dissolved concentration, in L g-

1 dry weight) for algal DOC adsorbing to iron oxide-rich surficial sediment (0-1 cm depth) and 

underlying anoxic sediments (10-13 cm depth). K values of surficial sediments (0.038 ± 0.0075 L 

g-1) exceed those of the underlying anoxic deposits (0.0052 ± 0.00036 L g-1) approximately 8-fold, 

indicating that authigenically-produced metal oxides greatly increase DOM partitioning onto 

solid surfaces. Reactive iron oxides, produced in our oxic incubated slurries upon amendment 

with Fe(II), also promote the transfer of DOC to particle surfaces, lowering DOC concentrations 

most likely through sorption or co-precipitation of DOM (Table 3-1; the reader should compare 

Fe to Control scenarios as well as Fe-OM to OM scenarios). The efficacy of solution-solid transfer 

by metal oxides possibly affects the turnover of carbon and nitrogen in natural sediments 

through the modification of DOM fluxes through oxide-rich surface sediments and the 

enhancement of OM preservation (Lalonde et al., 2012). Once sorbed to the solid phase, 

molecules become more resistant to microbial decay since only DOC is amenable to bacterial 

uptake (only molecules <600 Da can cross cell membranes through porins) (Arnosti, 2011)and 

degradation (Figure 3-6, pathway 3). Molecules that are only weakly-bound to the sediment are 

shuffled between the particulate and aqueous phase, which over time leads to their degradation 

(Henrichs, 1995) (Figure 3-3and Figure 3-5). 
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The make-up of porewater DOC is likely altered by re-equilibration with the much larger 

mineral-bound OC pool (Hedges and Keil, 1995). The relationship between the dissolved and 

solid OC pools is however seldom obvious and can be further obscured by transport processes 

that lead to the addition or removal of DOC (diffusion, bioirrigation, remineralization) and 

particulate OC (sedimentation, burial, bioturbation) (Berner, 1980). The use a 13C-depleted 

isotopic algal tracer allows us to circumvent some of the intrinsic complexity of the sediment 

and to demonstrate the sorption of dissolved and colloidal (<0.7 μm) organic molecules onto 

sediment particles (Figure 3-6, pathways 1 & 2), as well as to track its decomposition and 

mineralization from both the solid sediment and the aqueous phase.  

The degradation of our algal tracer in the aqueous phase (Figure 3-5 and Figure 3-6, pathway 3) 

follows first-order kinetics down to asymptotic but variable DOC concentrations. These final 

concentrations vary with redox conditions and amendment scenario (Table 3-1) with the lowest 

concentrations found in oxic and mixed redox conditions. The final asymptotic concentrations 

observed in these incubations are analogous to the constant DOC concentrations found at depth 

in sediment cores which result from (i) the production of DOC at these depths being equal to its 

consumption or (ii) the production and consumption of DOC at depth approaches zero, entailing 

that porewater DOC at depth is effectively unreactive and therefore preserved indefinitely 

(Burdige, 2002). In this work, we show a gradual substitution of algal DOC by reversibly-bound 

autochthonous OC through δ13CDOC measurements (increasing δ13CDOC signature, implying the 

release of native OM into sediment porewaters; Figure 3-5). This is the first direct 

demonstration of a surface exchange between porewater DOM and adsorbed OM and supports 

a steady-state condition of production/consumption of porewater DOC. Labile algal molecules 

are more amenable to bacterial decomposition, which allows more recalcitrant native molecules 
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to become a more important fraction of porewater DOC and leads to an overall decrease in the 

reactivity of porewater DOM over the timeframe of the incubation. 

First order degradation kinetics of the algal marker is consistent with most early diagenetic 

models (Berner, 1980). All incubation conditions had a pool of DOM that was essentially 

unreactive during the course of the experiment (corresponding to the final asymptotic DOC 

concentration, Figure 3-5). As consumption equals production during the asymptotic segment 

(the overall rate of DOC disappearance is zero), asymptotic/refractory DOC concentrations can 

be subtracted from rate calculations. We began measuring the kinetics of OM degradation at 

the second timepoint (day four), excluding microbial degradation of the extremely labile DOM 

pool (this DOM pool is typically respired in the water column before reaching the sediment and 

is not representative of typical marine sedimentary OM) as well as adsorption/desorption of 

DOM (reaching equilibrium within 2-3 hours; Arnarson and Keil, 2000) from rate calculations. 

These processes are rapid compared to the degradation of the added OM tracer, making them 

negligible in the degradation rate calculation (Berner, 1976). According to first order kinetic rate 

laws (dC/dt = -kCt), rate constants (k) and half-lives (t1/2 = ln(2)/k) for algal DOC were determined 

for the different redox and amendment conditions (Table 3-2). The half-life of DOC is 2 to 3 

times shorter under oxic rather than anaerobic conditions. This, along with lower asymptotic 

DOC concentrations measured in the oxic and mixed redox conditions (Table 3-1), likely results 

from more effective utilization of the DOC produced during mineralization by oxic bacteria 

(Burdige, 2002). Anaerobic decomposition of DOM is less efficient, requiring a consortium of 

bacteria; with fermenters, for example, supplying DOM substrates to sulfate reducers (Burdige, 

2006).  
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Results of our incubation experiments demonstrate the preservative effect of iron oxides on 

sediment-bound organic matter through increased OM retention and reduced microbial 

degradation likely owing to strong complexation (Lalonde et al., 2012). The highest OM 

incorporation of the algal tracer occurred as a result of DOM-iron co-precipitation upon 

amendment with both iron and algal OM under oxic conditions when compared to all other 

conditions (Figure 3-3, first time points). The incorporation of DOM into the solid phase results 

in slower decomposition as microbial degradation is inhibited by the formation of strong bonds 

to the solid phase. Within natural systems, the preservative effect of iron oxides could allow for 

the transfer of iron-OM complexes to anoxic sediment layers where OM may be sequestered 

over geological timescales. The overall extent of OM degradation (observed from the loss of the 

depleted δ13C signature of the algal tracer) is independent of redox conditions as seen by the 

converging % tracer OC time series (Figure 3-3, final time points), indicating that even OM 

strongly bound to iron oxides or other minerals is sensitive to degradation upon continuous 

exposure to oxygen. Prolonged oxygen exposure is known to lead to the nearly complete 

degradation of OM, regardless of the extent of physical protection, as seen by the low OC 

content of turbidites above the oxidation front (Colley et al., 1984; Cowie et al., 1995; Prahl et 

al., 1997; Thomson et al., 1998).  

Accelerated iron-mediated nitrogen removal 

At the end of the incubation period, total dissolved nitrogen (TDN) concentrations were lower 

than 1.5 mmol L-1 and therefore can be excluded from mass balance calculations (< 4% of the 

total mass balance; Table 3-1). No detectable nitrate or nitrite was measured under anoxic 

conditions demonstrating the absence of nitrification during ON remineralization or the fast 

consumption of nitrate/nitrite in the absence of oxygen. Nitrate was the predominant dissolved 

nitrogen species under oxidizing conditions. In contrast to the other redox conditions, both 
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dissolved nitrate and nitrite were present in the alternating redox system (anoxic at the time of 

the measurement), with the amended Fe and Fe-OM scenarios having the highest NO2
- 

concentrations (Table 3-1). 

Without the addition of reactive iron surfaces, solid ON that is native to the sediment is 

unreactive; no net losses of solid-phase TN were detected in the control incubation under any of 

the redox conditions. Losses of N as N2 (sum of all biotic and abiotic denitrification pathways) 

from the incubation vials can be estimated as the difference between the total initial mass of N 

(control and amendment scenarios) and the final mass of N (residual solid phase N plus 

dissolved N species produced upon mineralization of solid-phase organic N, nitrite, nitrate, 

ammonium and dissolved organic N). The addition of Fe(II) caused the removal of 11.65 ± 4.83% 

of the original sediment nitrogen (Figure 3-2), with the highest losses occurring under oxic and 

mixed-redox conditions, where iron(II) is immediately precipitated as reactive iron oxides. 

Bacteria participating in denitrification/anammox are confined to anoxic environments (under 4 

µmol O2 L
-1 for denitrification and under 10 µmol O2 L

-1 for anammox) (Crowe et al., 2012; Hulth 

et al., 2005) therefore making these biochemical pathways unlikely in oxygenated incubation 

vials. Traditional nitrification/denitrification pathways in fact require both oxic (for nitrification) 

and anoxic conditions (for denitrification) to take place. To account for fixed-N deficit observed 

in our oxic incubations, an alternative biochemical N degradation pathway is required. Luther et 

al. (1997) were the first to propose a direct mechanism for N2 production from NH4
+ oxidation, 

coupled to manganese oxide reduction, “short-circuiting” the traditional N intermediates. 

Though they proposed that this mechanism is also possible using iron oxides as substrates, they 

did not demonstrate that this reaction occurs. The reason for proposing a link between the N 

and Mn elemental cycles likely arose from the similarity in the standard reduction potential of 

NO3
- and MnOx (Froelich et al., 1979), (therefore the proximity of nitrate and MnOx reduction 
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zones in sediments). However, despite the lower free energy yield (Froelich et al., 1979), there is 

a 1-2 order of magnitude greater abundance of reactive Fe compared to Mn in the St. Lawrence 

Estuary and Gulf sediments (Anschutz et al., 2000) and in most other coastal sediments (Mason, 

1966). Since the highest abundance of reactive iron oxides is within the oxygen and NO3
- 

reduction zones in all coastal sediment cores (Burdige, 1993), we propose that the iron oxide-

ammonium redox couple is equally if not more likely to exist than the manganese oxides-

ammonium redox couple. Our N mass balances under oxic conditions and the observed losses of 

native sediment N in the presence of added reactive iron oxides (Figure 3-2 and Figure 3-6, 

pathway 5,) possibly demonstrate in-vitro evidence of Luther’s and Yang’s proposed aerobic 

iron-mediated ammonium oxidation pathway. 

No significant isotopic fractionation of TN was observed upon nitrogen loss in iron-amended 

slurries, in contrast to traditional bacterial denitrification pathways that lead to δ15N enrichment 

of the residual nitrogen pool (Mariotti et al., 1981), possibly supporting the occurrence of an 

alternative N2-production mechanism. Iron oxide-mediated mechanisms of NH4
+ oxidation have 

been documented in wetland soils (Clément et al., 2005) and wastewater treatment plants 

(Sawayama, 2006), but their occurrence in marine sediments have yet to be demonstrated. 

Proposed mechanisms of NH4
+ oxidation by Fe(III) (known as Feammox producing either N2 or 

NO2
-) involve (i) NH4

+ oxidation at reactive iron oxide surfaces, and/or (ii) NH4
+ oxidation by O2 

from iron oxide surfaces (Yang et al., 2012). Notably, both of these mechanisms can be 

mediated by sedimentary iron oxides and can be biotic or abiotically-mediated (Luther III et al., 

1997). The high NO2
- concentrations, observed under our iron amended mixed redox 

incubations are consistent with the iron oxide-induced oxidation of NH4
+ to NO2

- proposed by 

Yang et al. (2012), although they could also result from the decoupling of NO2
- production from 

its consumption in these sediments. More work, involving the monitoring of N2 gas production in 
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sediments spiked with 15N labelled nitrogen substrates alongside dissolved Fe is necessary to 

positively identify Feammox in sediments. 

Along with the algal OC, ON was incorporated into the sedimentary phase. However unlike δ13C, 

δ15N is sensitive to fractionation during biochemical pathways such as denitrification, and could 

not be used as a tracer for algal OM degradation. %TN values do however indicate that, in 

contrast to Fe amendment scenarios, accelerated TN losses were not observed in the Fe-OM 

amendment scenarios (Figure 3-2). We propose that this occurs from the shielding of iron oxide 

surfaces by sorbed fresh OM, which is known to poison iron oxide surfaces in natural conditions 

and inhibit crystal growth (Schwertmann, 1966), therefore blocking the reactive, hydroxylated 

iron oxide surfaces from binding other species or being used as catalysts for reactions such as 

Feammox. The active diagenetic recycling of iron oxides in sediments regenerates reactive iron 

surfaces (Burdige, 2006) that potentially promotes these reactions. This same surface site 

inhibition might also occur in the unamended sediment incubations (Control scenario), where 

nitrogen losses were not detected throughout the 250 day incubation, though it is possible that 

nitrogen removal reactions may be occurring at rates that are too slow to cause detectable 

losses in the solid phase. In natural sediments, such as the ones used in these incubations, much 

of the iron oxide surfaces are also bound to organic molecules. If Feammox and other oxide-

mediated diagenetic pathways such as dissimilatory iron and manganese reduction require 

unpoisoned oxide surfaces, it is possible that these reactions might be confined to the oxic-

anoxic sediment interface, where fresh metal oxides precipitate. 

Conclusions and implications 

Organic matter (OC and ON) degradation and preservation are intimately related to other 

elemental cycles such as those of oxygen, iron and sulfur. Iron plays multiple roles in OM cycling: 
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ferric iron serves as an electron-acceptor in the respiration of OM (Burdige, 1993), but also 

increases the preservation potential of sedimentary OC through adsorption/complexation. Iron’s 

preservative effect is twofold, shuttling OM from the dissolved to the solid phase in the 

sediment and, upon burial, from the oxic sediment surface to the deeper anoxic layers, as well 

as increasing its resistance to microbial decay through strong iron-OM complexation. In 

combination, these two processes can account for the preservation of up to 20% of the OC in 

marine and freshwater sediments, thus contributing significantly to the global redox balance 

(Lalonde et al., 2012).  

Interesting preliminary data demonstrates accelerated removal of fixed nitrogen species in the 

presence of iron oxides in marine sediments though further work must be undertaken to 

elucidate the exact chemical/biochemical nature of this process. With denitrification in marine 

sediments as an important component of the global nitrogen cycle, accounting for about half of 

the oceanic nitrogen removal (Christensen, 1994), it is intriguing to consider that iron may play a 

role in regulating the oceanic production of reactive nitrogen species as well as controlling 

nitrogen removal through generation of N2, all the while slowing the degradation of OC through 

the formation of strong Fe-OM complexes. This effective decoupling of the organic carbon and 

nitrogen elemental cycles is intertwined to the generation of reactive iron oxides, transported to 

sediments through continental erosion (Burdige, 2006). This experiment also shows the 

usefulness of a multi-pronged tracer-based incubation approach to study and model coupled 

elemental cycles with processes occurring over different timescales that involve labile and 

refractory components.  
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4. Chapter 4: Automation of 13C/12C ratio measurement 

for freshwater and seawater DOC using high 

temperature combustion 
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Abstract 

We provide a detailed description of the hyphenation of an Aurora 1030C high temperature 

catalytic conversion DOC analyzer, a GD-100 CO2 trap and a continuous flow IRMS, which has 

made possible the high-throughput, automated measurements of 13C/12C ratios and DOC 

concentrations for a wide range of aquatic samples. Precision of 13C/12C ratios increases 

exponentially with sample concentration, reaching 0.2‰ or better for high concentration 

samples (>5 mg L-1), comparable to that obtained in a conventional elemental analyzer-IRMS 

setup. The system blank contribution is the limiting factor in obtaining maximal performance; 

optimal system blanks values are on the order of 0.2 μg C with an isotopic signature varying 

from -20 to -12 ‰ during the lifetime of the combustion column. With appropriate blank 

correction procedures, accurate analyses (± 0.5‰ or better) can be obtained on concentrations 

as low as 0.5 mg DOC L-1, representing the lower limit typically observed in aquatic systems. 

Sample matrix does not affect reproducibility or accuracy; this method is amenable to both 

freshwater and seawater samples. Although no certified DOC standards exist for δ13C, our two 

laboratories (Concordia University & University of Ottawa) analyzed a consensus reference 

material from a deep-ocean environment (CRM Batch 13 Lot # 05-13, Hansell 2013) and found 

δ13C values of –19.9 ± 0.5‰ (n = 4) and -20.6 ± 0.3‰ (n = 3), which corroborates previously 

reported values for similar samples (Bouillon et al., 2006; Lang et al., 2007; Panetta et al., 2008) 

and is consistent with its marine origin. 

Introduction 

The oceanic dissolved organic carbon (DOC) pool (≈700*1015g) is similar in size to atmospheric 

carbon dioxide (≈750*1015g), which highlights its importance to the global carbon cycle. At this 

scale, the remineralization of only 1% of the DOC in the global ocean would be sufficient to 



 

63 
 

generate a CO2 flux larger than that annually produced by the combustion of fossil fuels 

(Hedges, 2002b). Arriving at a good estimate of the size of the ocean DOC pool has however not 

been straightforward. Falsely large estimates spurred controversy which can be recounted 

through a series of geochemical and analytical papers (Druffel et al., 1992; Sharp et al., 1993; 

Sugimura and Suzuki, 1988; Suzuki, 1993). DOC dynamics and fluxes are also difficult to measure 

and almost impossible to predict accurately, with some DOC sequestered into a millennium old, 

refractory seawater component and some comprised in a very labile component that turns over 

within a few hours or days (Benner, 2002). The structural and chemical complexity of DOC 

surpasses all other substances dissolved in seawater, imparting DOC with the potential to carry 

information that may eventually allow us to understand where that water has been and what 

has happened within it over time (Hedges, 2002b).  

The information that can be drawn from dissolved organic matter in seawater is now and has 

always been limited by the availability of analytical methods and instruments that are designed 

to answer biogeochemical questions. Stable isotopic measurements of DOC (δ13C-DOC) have 

been done since the 1960s and remain a useful tool for carbon source determination as well as 

tracking carbon dynamics in rivers, estuaries, coastal and marine systems through 

physico/chemical transformations, microbial loops and macrofaunal ecosystems. Despite their 

usefulness, δ13C-DOC measurements for whole seawater samples are still rather uncommon and 

are far from being simple or routine measurements. The difficulties associated with δ13C-DOC 

measurements in seawater are largely associated to the sample matrix, which can contain 

70,000 times the weight of DOC in salt, which clogs combustion columns, competes for oxidants, 

minimizes combustion efficiency and causes mass spectrometer ionization/corrosion issues. To 

circumvent matrix problems, many have turned to DOM isolation methods using resins or 
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membranes that, although useful in certain instances, can fractionate the total carbon pool 

(Bauer, 2002). 

The first DOC isotopic measurements of whole seawater were done in the 1960s using up to 

1.8L of water, powerful UV lamps and took over 3 hours per sample (Williams, 1968; Williams 

and Gordon, 1970). Low sample throughput is still problematic for UV oxidation - although 

improved since the 1970s (Beaupré et al., 2007) - but because of its high sample to blank ratio, 

UV oxidation is accountable for the highest number and perhaps the most reliable seawater 

δ13C-DOC measurements in the literature (Bauer, 2002). It took over 20 years for new 

techniques to develop, including sealed-tube oxidation of lyophilised DOC/salt mixture, wet 

chemical oxidation (WO) and high temperature catalytic (HTC) oxidation. Apart from high blank 

values, lyophilisation also suffers from being labour and time intensive (Fry et al., 1993). Wet 

chemical oxidation has more potential for high-throughput analysis (St-Jean, 2003); but salts 

scavenge the free radicals that are the principal oxidation agents, markedly reducing DOC 

oxidation efficiency and prolonging oxidation time significantly (Osburn and St-Jean, 2007). In 

addition, the large quantities of chlorine gas produced as a bi-product of WO in seawater, 

causes the rapid corrosion of some of the reaction vessel components, the fouling of the 

halide/sulfide traps, and the rapid exhaustion of reducing agents. As part of a recent inter-

comparison study, two different labs, using wet chemical oxidation, measured the δ13C-DOC of a 

single seawater sample to be -9.3 and -11.0 ‰ (Van Geldern et al., 2013), an 8 to 10‰ δ13C 

enrichment over values generally reported for seawater DOC (-20.1 to -22.9‰; Bauer, 2002), 

probably caused by a WO method artifact.  

Though high temperature combustion is not as affected as WO by the sample matrix, frequent 

maintenance is required to remove salt caking in combustion columns and flow lines.  Random 
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ghost peaks generated by the oxidation of carbonaceous species caused by the flaking of salts 

off the sides of combustion columns have also been observed (Qian and Mopper, 1996). HTC is 

also infamous for high blanks, which are detrimental to the analysis of very low concentration 

samples, such as typical deep seawater samples. Even so, HTC methods have the highest 

potential for high-throughput analysis of seawater samples. Lang et al. (2007), followed by 

Panetta et al. (2008), developed methods that coupled HTC analyzers to IRMS via cryogenic 

trapping of CO2. Earlier DOC analyzers were however limited to small maximum injection 

volumes (100-150 μL). In the case of Lang et al. (2007), dual inlet IRMS analysis of CO2 (from one 

100-μL injection trapped offline) was necessary to maximize sensitivity. Panetta et al. (2008) 

successfully used an open-split continuous-flow IRMS, but needed as many as six 150-μL 

injections of seawater to generate a large enough (> 1μg) carbon cloud for δ13C-DOC 

measurements.  

Here we show the coupling of an OI Aurora 1030C, a late generation HTC analyzer, to a 

continuous-flow IRMS through a chemical CO2 trap. This method is amenable to both freshwater 

and seawater samples. The maximum injection volume of the Aurora 1030C is more than 10 fold 

that of most other HTC systems (1800 μL) which allows for the IRMS analysis of a single sample 

injection, greatly reducing the analysis time per sample and the blank to sample ratio. 

Hyphenation of the DOC analyzer to an IRMS using a chemical trap rather than a cryogenic trap 

also enables the facile automation of the DOC-IRMS system, increasing sample throughput, 

reducing user error and improving reproducibility. Higher sample throughput also allows for 

more thorough calibration of the instrument as well as a better understanding of system 

capabilities. Sample properties, system blanks and instrument parameters/limitations that might 

influence sample combustion and measurement accuracy and precision are outlined here. 
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Methods  

Algae extracts 

A 2-L unialgal culture of the algae Nannochloropsis purchased from the National Center for 

Marine Algae and Microbiota was grown in filtered deep Pacific seawater (DOM concentration < 

1 mg L-1) to which NaH13CO3 had been added (Sigma Aldrich, final concentration 20 mg L-1). 

Optimal growth was insured by the addition of nutrients, the maintenance of oxic conditions by 

bubbling air and 12 hours of daily UV-light exposure.  

When sufficient algal material was produced, algal cells were harvested by centrifugation and 

DOC was liberated through cell lysis by repeated freezing in liquid nitrogen and thawing. Lysed 

cells were diluted with deep Pacific seawater (DOC concentration < 1 mg L-1), centrifuged for 20 

minutes at 19,000 g and filtered through a 0.7-µm glass fiber filter to generate a concentrated 

DOC solution. The algal-derived DOC is 13C- enriched (δ13C = +11.58 ± 0.13‰).  δ13C-depleted 

(δ13C = -41.34 ± 0.12‰) algal DOC was also extracted in a similar fashion from unaltered 

concentrates of Nannochloropsis (Reed Mariculture Inc.). 

Sample treatment 

IAEA-CH-6 certified sucrose standard (International Atomic Energy Agency, -10.45 ± 0.03‰), 

Suwannee River Fulvic Acid standard (SRFA, International Humic Substances Society, -27.6 ± 

0.12‰), β-alanine (Sigma-Aldrich, -26.18 ± 0.10‰ standardized in-house against several 

certified materials by EA-IRMS), Sucrose (Sigma-Aldrich, -11.77 ± 0.09‰, standardized in-house) 

and Potassium hydrogen phthalate (KHP) (Sigma-Aldrich, -28.16 ± 0.10‰, standardized in-

house) were used as reference δ13C-DOC compounds. β-Alanine was typically used as the 

quantitative DOC standard because of its ease of oxidation since a benchmark compound was 

needed to assess the efficiency of sample combustion. Standard solutions and blanks were 
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prepared with TOC-grade water (Sigma-Aldrich) and acidified with one drop of TraceSELECT 

grade 12N HCl (Sigma-Aldrich). Natural freshwater samples were also acidified with a minimal 

quantity of 12N HCl. Seawater samples require a 1:1000 12N HCl:water volume ratio (Farmer & 

Hansell 2007) to lower the pH to < 2. 

Analysis of one sample on the DOC-IRMS takes approximately 20 minutes and requires the use 

of three separate instruments: 1) a modified OI Aurora 1030C instrument for sample oxidation; 

2) a molecular sieve trap (Graden Instruments Inc., model GD-100) for CO2 trapping; and 3) an 

Isoprime IRMS (Isoprime, Ltd.) and reference gas box injector for isotopic analysis of the CO2. 

δ13C of standard compounds (Table 4-1) and certified deep seawater provided by the Hansell 

CRM Program (http://yyy.rsmas.miami.edu/groups/biogeochem/CRM.html) were measured by 

two laboratories (Concordia University and University of Ottawa), using similar instrumental 

setups except for the IRMS and reference gas box (Finnigan Mat DeltaPlusXP and Conflow IV 

reference box).  The DOC analyzer, CO2 trap and IRMS are operated by separate software but all 

three can communicate for automation through closed contact signals sent from the IRMS 

software to the DOC analyzer and the trap at the start of each run. The electric signal prompts 

each instrument to begin a sequence of predetermined steps so that the CO2 peak generated in 

the DOC analyzer is delivered to, and trapped wholly by the molecular sieve trap, which releases 

the CO2 to the IRMS through the reference gas box injector. The system is shown schematically 
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in Figure 4-1. Each step is described in greater detail below. 

 

Figure 4-1: Schematic of DOC-IRMS, highlighting flow through the GD-100 CO2 trap. Electronic three-way valves (1 
to 4) are shown in standby configuration, allowing gas flow from the common port (labelled C) through the 
“normally open” port (filled in grey). Gas is only allowed to flow through the other port (filled in white) when the 
valves are activated.  

Arrowheads show the direction and the origin of the flow through the heatable molecular sieve trap. During 
trapping mode, valves 1 and 2 are activated allowing O2 from the DOC analyzer to pass through the molecular sieve 
and out of the Valve 4 vent outlet (red arrowhead, time: ≈5 min). After trapping, all valves are deactivated to flush 
the trap with He through the Valve 4 vent outlet (blue arrowhead, time ≈45 sec). The CO2 peak is sent to the IRMS 
by heating the molecular sieve to 250

o
C and activating valves 3 and 4 (yellow arrowhead, time ≈2min). Note that 

there is always an equal flow of helium going to the IRMS, either from the He bypass or the He trap flow line.  

 

Sample oxidation 

All samples were placed in dry-combusted 40-mL EPA vials and placed in the model 1088 rotary 

autosampler of the OI Aurora 1030C. Beyond this point, sample treatment was handled by the 

DOC analyzer. Acidified samples, standards and blanks were sparged with high purity O2 

(>99.995%) in the total inorganic carbon chamber heated to 70 °C for rapid removal of inorganic 

carbon. A volume of sample water (200-1500 μL) was reclaimed and injected onto the head of a 

heated (680 °C) combustion column purged by a continuous flow of high purity oxygen carrier 

gas. The OI Aurora 1030C combustion column is U-shaped, requiring samples to pass twice 

through the hot zone: once upon sample injection and rapid vaporization on a bed of large 

particle quartz chips (OI 323880) and again when the vaporized sample traverses the opposite 
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side of the U-tube containing a 5% platinum oxide catalyst (OI 323882) for quantitative 

conversion to CO2. Water vapor was sequentially eliminated from the carrier gas stream by 

condensation in a drain chamber, by a selectively permeable Nafion membrane and finally by 

drierite indicator chips. The halogen trap (electrolytic copper, OI 265223) was repositioned just 

upstream from the Nafion membrane (instead of downstream), to minimize membrane 

corrosion by halogen/sulfur gases. The dried gas stream was then passed through a non-

dispersive infrared detector that measures the CO2 absorption; the detector signal was 

forwarded to a data gathering system for processing and concentration determination.  

As with other systems that were modified for IRMS analysis, (e.g. Peterson et al. 2003; Panetta 

et al. 2008), we changed the PTFE tubing, which is semi-permeable to atmospheric gases, for 

PEEK tubing. Diffusion of CO2 was most significant in the DOC cooling coil, a 1.5-m long portion 

of tubing positioned right after the combustion column, probably because this tube carries hot 

carrier gas and water vapor that increases PTFE diffusivity. Other components were tested for 

microleaks or CO2 diffusion but were not found to be significant contributors.  

After IR detection, the carrier gas was redirected through a magnesium perchlorate trap to 

remove remaining traces of water, then to the Graden CO2 trap box where a zeolite molecular 

sieve efficiently traps CO2 from the oxygen stream at room temperature. The sieve is encased in 

a stainless steel tube wrapped in a heatable electric coil that quickly reaches 250 °C (< 45 sec) to 

quantitatively release the CO2 gas. The trap flow path and components are illustrated in Figure 

4-1. It is equipped with four three-way valves that allowed for (i) the CO2 from the OI to be sent 

through the molecular sieve for trapping (5 min), (ii) O2 to be rinsed away from the trapped CO2 

with ultrahigh purity helium (45 sec, flow rate between 32-92 mL/min, see discussion), and (iii) 

CO2 to be redirected to the IRMS for detection upon heating of the trap (1.5 min). Valve 
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switching and trap heating are run in a sequence dictated by a ladder-logic software that is 

triggered only once for every sample. At the end of the sequence, the heater is turned off and a 

fan cools the trap. A bypass flow is used so that a flow of helium is continually sent to the IRMS. 

The timing and valve activation of one trap cycle is illustrated in Figure 4-1 and described in 

more detail in the caption.  

Before entering the IRMS interface, the CO2 released from the trap passes through a ¼” quartz 

tube filled with cobalteous silvered oxide (Isomass B1000) and copper chips (Elementar 

Americas Inc., 05 000699) maintained at 680C in order to reduce nitrogen oxides to N2 and 

eliminate residual oxygen as well as noxious halogen/sulfide gasses.  

Data processing; sample concentration and δ13C measurement 

Sample concentrations were determined from straight line calibrations built from either DOC 

area or IRMS peak height versus the DOC concentration of standard solutions. Blank 

areas/heights were determined from the y-intercept of these graphs; blank errors were 

determined from the standard error of the intercept (Skoog et al., 1998). The carbon content of 

the blank and blank components was determined by dividing the area (DOC) or height (IRMS) of 

the peaks by the calibration slope (instrument response factor). 

Total least squares regression analysis to determine the blank δ13C signature from measured 

δ13C and IRMS height (see discussion) was carried out using MATLAB (R2013a Student Version) 

to treat both parameters as dependant/error-prone variables. The δ13C data were corrected for 

TOC background as described in the following section. 13C/12C ratios are expressed as per mil 

deviations from the international standard Vienna Peedee Belemnite (VPDB): δ13Csample = (Rs /Rst 

- 1) × 1000 where Rs is the 13C/12C of the sample and Rst is the ratio of the VPDB standard.  
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Assessment 

Molecular sieve trap and helium flow 

Molecular sieves are selective for specific gas molecules, not only on the basis of pore size but 

also on the basis of molecular polarity and boiling point (Bauer 1992). At atmospheric pressure 

and room temperature, the sieve has a very high affinity for CO2 and efficiently focuses 100% of 

the CO2 into a very narrow, stationary band independently of the DOC analyzer carrier gas flow 

rate while O2 molecules pass freely through the trap. The selectivity of the trapping material for 

the gas of interest is a notable advantage for molecular sieves over cryogenic collection systems 

since, at liquid nitrogen temperature, all DOC carrier gases except helium (or helium/oxygen 

mixtures) condense and clog cryogenic trapping lines (Lang et al., 2007; Panetta et al., 2008). 

The capacity of the trap for CO2 has not been measured but is well above the upper limits of the 

linear dynamic range of the IRMS (22 μg of DOC under the IRMS operation conditions used in 

this work). The performance of the sieve does not seem to deteriorate significantly with use or 

time. We have continuously used a single molecular sieve batch for over 36 months with no 

lessening in trapping efficiency, resulting in significant savings in both cost and maintenance 

over cryogenic trapping. Sieves are also more amenable to automation, thus reducing user 

error, enhancing system stability and lengthening feasible sequence times.  

In comparison to most other sample oxidation methods, high temperature combustion DOC 

analyzers work with small sample volumes. While destroying a smaller quantity of sample is 

normally an advantage over other techniques, it can be detrimental when coupling the DOC 

analyzer to an IRMS, which suffers from poor reproducibility at very low peak intensities. At the 

maximum DOC analyzer injection volume (1800 μL), low concentration samples (e.g. deep 

oceanic samples) generate < 1 μg C, making δ13C-DOC measurements difficult. The height and 
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width of the IRMS peak was optimized by adjusting the helium flow rate flushing the CO2 from 

the trap, into the IRMS. Low flow rates result in longer transit times, but also in lower CO2 peak 

dilution, thus increasing IRMS sensitivity and retention time. Nevertheless, the generated peaks 

were wider and often tailed, making integration more difficult. With 13C-enriched CO2 held more 

tightly to the trap material, the measured δ13C of wide/tailing peaks are prone to isotopic 

fractionation. In contrast, a higher flow of helium reduces sensitivity and increases operation 

costs. The optimal helium flow rate is a compromise between maximization of IRMS sensitivity 

(height of the peak, not the area) and minimization of peak width and tailing. Figure 4-2 shows 

the width at half height and the peak height as a function of helium flow rate. The highest 

intensity peaks were recorded at a flow rate of 52 mL/min. Given that peak width is also 

acceptable (only slightly wider than at 92 mL/min), the helium flow rate was thus set to 52 

mL/min for all analyses. This flow rate is amenable to both mass spectrometers (Isoprime and 

Thermo-Finnigan), used in this work.  

 

Figure 4-2: Flow rate dependency of IRMS peak intensity (nA) (white diamonds) and peak width at half height 
(W1/2) (black squares). 
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Effect of pressure and injection volume on combustion efficiency and δ13C 
measurements 
 

Combustion efficiency as well as δ13C accuracy and precision were evaluated for standard 

compounds (either in-house or certified standards) dissolved in TOC-grade water, with a range 

of propensities toward thermal oxidation: sucrose, β-alanine, potassium hydrogen phthalate 

(KHP) and Suwannee River fulvic acid. IRMS response factors (1.70 ± 0.01 nA μg C-1) were 

statistically identical for all compounds, suggesting complete combustion. Both laboratories 

(Concordia University and University of Ottawa), operating similar HTC-DOC-IRMS systems, 

obtained comparable δ13C-DOC values  for solutions whose concentrations ranged from 5 to 10 

mg C L-1. These values were within error of true δ13C signatures (Table 4-1). The precision of 

δ13C-DOC values was only slightly lower than that of elemental analysis-IRMS (EA-IRMS) at these 

high DOC concentrations. DOC-IRMS and EA-IRMS samples were both run as unknowns; the 

measured δ13C values are shown in Table 4-1.  

Table 4-1: Comparison of isotopic composition (δ
13

C) by EA-IRMS and DOC-IRMS for standards and a sample. When 
available, standard deviations for measurements run in triplicate or quadruplet are shown in brackets. 

Sample 
 

true δ13C 
values 

(‰) 
EA –IRMS δ13C 

(‰) 

DOC –IRMS δ13C 
LAB 1 
(‰) 

DOC –IRMS δ13C 
LAB 2 
(‰) 

 Sucrose (In-house) -11.77 -11.70 (0.03) -12.1 (NA) -11.6 (0.2) 

 KHP* -28.16 -28.55 (0.03) -27.8 (NA) -28.1 (0.2) 

 β-Alanine -26.18 -26.11 (0.06) -25.3 (NA) -26.1 (0.2) 

 Suwanee river fulvic 
acid -27.60 -27.94 (NA) -27.4 (NA) -27.8 (0.2) 
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Qian and Mopper (1996) showed a relationship between the refractory nature of organic 

molecules and the width of the DOC peak. Out of all molecules tested, seawater DOC generated 

the widest peaks indicating that natural samples tend to contain DOC molecules that are more 

thermally resistant (e.g., dissolved black carbon; Jaffé et al., 2013) than the simple sugars/amino 

acids and soluble aromatic compounds (e.g. KHP) that are typically used to calibrate DOC 

instruments. A consensus material should therefore be used regularly, such as deep seawater 

sample provided by the Hansell CRM Program (Sharp et al., 2002) to monitor day-to-day 

variability and optimal instrument performance. Environmental samples are also chemically 

more complex than standard solutions, containing molecules produced from different 

photosynthetic and biochemical pathways, as well as molecules that have potentially undergone 

a number of microbial and chemical alterations. Natural DOC molecules thus have a broad 

distribution of molecular masses, functional groups and reactivities that go alongside varying 

isotopic signatures. In contrast to a solution containing only one chemical compound, non-

quantitative combustion of a natural sample could therefore fractionate the DOC pool and 

generate CO2 with an isotopic signature that is not representative of the bulk sample.  

We used two complex mixtures to monitor possible combustion inefficiencies under different 

DOC analyzer pressures and injection volumes. The two mixtures (Mix 1 and Mix 2) are nearly 

identical in combustibility and composition, having both been made from ≈1:1 carbon 

equivalents of an algae extract and KHP (KHP δ13C = -28.7 ± 0.1‰). The algae extracts were 

derived from two different nannochloropsis stocks: a δ13C-depleted stock (-41.3 ± 0.1‰) was 

used in Mix 1 whereas a δ13C-enriched stock (+11.6 ± 0.2‰, see methods section) was used in 

Mix 2. The two mixtures therefore have different overall δ13C signatures (measured by EA-

IRMS), but more importantly, markedly different δ13C spreads between mixture components 

(KHP and algae extract): Mix 1 has a δ13C of -29.7 ± 0.1‰ and a δ13C spread of 13.2 ± 0.2‰ while 
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Mix 2 has a δ13C of -8.3 ± 0.2‰ and a δ13C spread of 39.7 ± 0.2‰. Incomplete combustion of one 

component of the mixture would therefore cause isotopic fractionation if the δ13C of the 

untrapped/uncombusted carbon (i.e. from peaks tailing beyond trapping period programmed 

for GD-100 trap or incomplete DOC conversion to CO2) is significantly different from that of the 

detected peak. Algae extracts contain a number of biomolecules (proteins, peptides, sugars, 

carbohydrates, lipids, etc.) but the range of δ13C values for different compounds within one 

microorganism does not typically vary more than 5‰ (Wang and Druffel, 2001). Differences in 

the combustion efficiency of the biomolecules that make up the algae extracts would therefore 

not be easily detected from measured δ13C. The 13.2‰ or 39.7‰ δ13C gap between the algae 

extracts and KHP make the observation of inefficient combustion measurable. With a ± 0.2‰ 

δ13C precision, we can detect a 12 and 4 percent difference in the combustion efficiencies of the 

KHP and the algae extract for Mix 1 and Mix 2, respectively. 

The Aurora 1030C DOC analyzer can be operated between pressures of 100 and 240 kPa. We 

tested the combustion efficiency at 140, 175 and 210 kPa. Higher system pressures require 

higher carrier gas flow rates which dilute sample CO2 with oxygen and therefore generate 

smaller peaks on the DOC analyzer (the area of DOC peaks measured at 210 kPa is 

approximately 2/3 of those measured at 140 kPa). System pressure also affects the transit time 

of the sample through the combustion column, possibly influencing combustion efficiency. High 

system pressures condense the volume of gas generated from the explosive evaporation of 

water; a 1500 μL injection generates 3.19 liters of gas at 210 kPa compared to 4.78 liters at 140 

kPa according to ideal gas laws. We tested the possible effect of pressure on combustion 

efficiency using 1500 μL injections of ≈5 mg C L-1 solutions of Mix 2 and IAEA sucrose (Figure 

4-3). The IAEA sucrose solution is used as a benchmark here since its δ13C signature is close to 

that of Mix 2 (δ13C = -10.47 ± 0.03‰) and is not expected to deviate even if sample oxidation is 
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incomplete. Both the sucrose standard and the complex mixture generated stable IRMS peak 

intensities and constant δ13C signatures, indicating that the effect of pressure on combustion 

efficiency is minimal. The instrument can therefore be used at any pressure, but the lower the 

DOC analyzer operation pressure, the longer the retention time and the broader the peaks. 

Wide DOC peaks force the operator to trap for longer time periods, thus increasing the system 

blank contribution (defined and discussed below). More Gaussian-shaped and easily integrated 

peaks are obtained when using higher pressures; therefore we recommend the use of 210 kPa.  

 

Figure 4-3: IRMS peak intensity (nA) and stable carbon isotopic signature (δ
13

C, ‰) as a function of system pressure 
(kPa) for ≈5 mg L

-1
 
13

C-enriched algae/KHP mixture (Mix 2, grey bars) and pure IAEA sucrose (white bars). 

 

Similarly, sample combustion was verified at injection volumes ranging from 500 to 1500 μL.  For 

each injection volume tested, we adjusted solution concentrations so that an equal quantity of 
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carbon was injected (7.5 ± 0.5 μg). At 210 kPa, every 500 μL of water produces about 1 L of gas 

which is quickly pushed out of the combustion column. Every additional volume increment 

reduces the average time spent by the sample at high temperature in contact with the catalyst. 

The oxidation of high volume samples is also potentially hindered by the cooling of the column 

and quenching of combustion upon water vaporisation. Using Mix 2, we noticed a progressive 

depletion in the measured δ13C with increasing injection volumes (Figure 4-4A). A statistically 

significant isotopic difference of 0.89‰ was observed between the 500 μL and 1500 μL injection 

volume. In contrast, the δ13C isotopic signature of the sucrose solution was constant, 

irrespective of the volume injected. This difference suggests differential combustion efficiency 

of KHP and the enriched algae extract at high injection volumes; using isotopic mass balance 

with the two pools of DOC as end-members, we calculate that ≈ 4% of the carbon in the algae 

extract is not combusted (or not trapped) and measured on the IRMS. This difference is readily 

detected using isotopes but is within error of the generated DOC peak areas (± 2%, 

http://www.oico.com) and IRMS peaks heights. Due to the smaller isotopic difference in mixture 

components (12.8‰ versus 39.7‰), no volume-induced isotopic variations are observable 

when Mix 1 is used instead of Mix 2 (Figure 4-4B). Indeed, the same difference in combustion 

efficiency between mixture components would generate a 0.28‰ difference in isotopic 

signature between low (500 μL) and high (1500 μL) injection volumes; a difference that is not 

statistically significant since the δ13C precision at this concentration is about ± 0.15-0.2‰ (Figure 

4-5). In this case, β-alanine was chosen as the isotopic benchmark so that the sample δ13C 

signatures were close to that of the standard. Though it is important to consider that there is a 

limitation in DOC combustion efficiency, natural samples typically do not have large inter-

compound isotopic differences that would lead to erroneous δ13C measurements. The largest 

isotopic differences (>13‰) likely occur from DOC samples originating from mixed 
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photosynthetic sources (e.g. estuarine waters that contain terrestrial (δ13C =≈ -27‰) and marine 

(δ13C = ≈-20‰) DOC) or photosynthetic pathways (e.g. soil porewaters that have seen a change 

between C4 (δ13C ≈-14‰) and C3 vegetation (δ13C ≈-27‰)) or from systems pervaded by 13C-

depleted petrogenic or methanogenic DOC (Ouellet et al., 2012; White et al., 2005). 

Nevertheless, performance limitations of DOC analyzers are important for samples amended 

with an enriched compound because of the unusually large δ13C difference between the spike 

and natural abundance DOC molecules.  

 

Figure 4-4: Stable carbon isotopic signature (δ13C, ‰) as a function of volume injected (μL) for 13C-enriched 

algae/KHP mixture (Mix 2, grey) and pure IAEA sucrose (white) in panel A and for 13C-depleted algae/KHP 

mixture (Mix 1, grey) and β-alanine (white) in panel B. Solution concentrations were adjusted so that a constant 

≈7.5 μg of carbon was injected. 
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Figure 4-5: Increase in reproducibility (‰) of calibration standards (white diamonds) and natural samples (black 
circles) with increased C concentration of samples. Standard deviations are reported for samples having between 3 
and 5 replicates, run consecutively.  These measurements were performed over 8 months of analysis on three DOC 
analyzer combustion columns. 

 

Sample carry-over 

Cross-contamination between samples can influence δ13C-DOC signature and DOC concentration 

especially for vastly different samples run in series (Panetta et al., 2008; Qian and Mopper, 

1996). Sample carry-over or memory effects originate from the “sticking” of CO2 or DOC 

molecules to the sample loops, the combustion column and various other DOC analyzer 

mechanical components. 

We analyzed a sequence of DOC solutions bracketed by blank injections (acidified TOC grade 

water) that flush out residual carbon from the previously injected sample. Carry-over into the 

blanks was determined by comparison to the normalized true blank height (average height of 

the last 3 injections out of a series of 5 blanks). The solution concentrations were prepared to 

cover a range of concentrations between 2 and 8 mg C L-1 but the injection volume was adjusted 

from 200 to 1500 μL to keep the mass of carbon from each injection nearly constant (1.52 ± 0.15 
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μg). Because increased carry-over from higher concentration solutions was observed (Figure 

4-6) even when the same quantity of carbon was injected into the combustion column, cross-

contamination from non-combusted/adsorbed species on column packing materials, or from 

mechanical components downstream from the combustion column can be discounted. Carry-

over therefore likely originates from organic molecules that adhere to the sample loops and 

sparging chamber located between the sample vial and the combustion column. Solutions 

containing natural DOC (algae-extracted DOC) cross-contaminate more than β-alanine solutions; 

this is likely because natural DOC contains more “sticky”, hydrophobic molecules, that adhere to 

PTFE tubing. 

 

Figure 4-6: Carry-over into blank water following the analysis of algal DOC (black squares) and β-alanine (white 
diamonds) solutions at varying concentrations (mg L

-1
).  The total mass of carbon injected was kept constant for 

each DOC solution by adjusting the injection volume. The magnitude of carry-over was normalized to the true blank 
intensity (average intensity of 3 blank injections). 

 

When analyzing samples in sequence, we recommend the use of at least one blank injection 

between each sample to minimize carry-over. Alternatively, it may be advantageous to program 

the DOC analyzer to rinse the sample loop and sparging chamber with blank water more than 
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once between each sample. Many blank injections are required when analyzing δ13C at enriched 

levels. After the injection of a highly enriched (δ13C >100‰) sample, the system needed at least 

two successive injections to recover accurate δ13C values for natural abundance samples or 

standards (data not shown).  

Sample matrix effects  

Combined to low DOC concentrations, salts have historically been at the root of most problems 

associated with DOC-IRMS analysis of seawater samples. Salts from natural seawater, have been 

reported to cause a decrease in combustion efficiency due to the fouling of catalytic sites 

(Benner and Strom, 1993; Skoog et al., 1997), trigger the production of random ghost peaks due 

to the flaking of salt deposits into the column hot zone (Qian and Mopper, 1996), and most 

importantly, cause unavoidable system maintenance issues (Bouillon et al., 2006; Lang et al., 

2007; Panetta et al., 2008). As salts are inherently associated with samples from both aquatic 

and terrestrial ecosystems, their influence on DOC combustion as well as on δ13C measurements 

must be assessed. Using a standard addition method, we tested the response factor of the DOC 

combustion by adding sucrose to a deep Pacific seawater sample (collected in 2006). The 

response factors for sucrose dissolved in freshwater and saltwater were identical, indicating that 

there is no difference in combustion, trapping or detection efficiency.  
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Figure 4-7: Predicted versus calculated δ
13

C value for the standard addition of IAEA sucrose (δ
13

C = -10.47‰) to 
deep pacific water (δ

13
C =-19.75‰, 1.09 mg L

-1
). With an intercept of 0, the slope of the line is 1.005 (R

2
 = 0.985). 

 

Though salts do not seem to affect DOC combustion efficiency, accounting for salt build-up in 

the combustion column is crucial. Salts are deposited within the upper centimeter of the quartz 

pellet bedding and are not displaced by repeated injections of freshwater. The thickness and 

density of the salt build-up depends on the size of the quartz chips, with a more tightly packed 

and flow-restricting salt layer accumulating on smaller chips. After about 100 mL of seawater are 

injected on the column (the equivalent of 3.5g of salt), carrier gas flow starts to be impinged by 

the accumulating salt, retarding and broadening peaks on the DOC analyzer. Further injection of 

salty water can completely clog the DOC column; at this point, the explosive vaporization of 

water upon injection can cause the column to shatter. In order to minimize column breakage, it 

is therefore crucial to clean and repack the combustion column regularly when analyzing high 

volumes of salty samples. 

At high temperatures, salts precipitated on the combustion column also generate volatile 

species that could partake in ion-molecule reactions if allowed to enter the mass spectrometer 
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source. Though not systematically studied, ion source chemistry has been suspected to cause 

most nonlinearity effects as well as instrument drifts in IRMS ( 

http://isogeochem.wikispaces.com/). Most contaminating species were cleaned from sample 

CO2 in the GD-100 trap by rinsing the peak with ultrapure He gas (45 seconds) prior to being 

sent to the IRMS. Residual contaminants may however linger if they have a strong affinity for 

the molecular sieve. We therefore installed a Cu reduction/scrubbing furnace containing Cu 

pellets and cobaltous/ic oxide (silvered) between the molecular sieve and the IRMS to remove 

sulfur/halide and nitrogen oxide (NOx) gases (similarly to Lang et al., 2007 and Panetta et al., 

2008). We obtained much better precision and accuracy on isotopic signatures after the 

installation of the scrubbing furnace, especially for salty samples. Prior to the installation of the 

Cu furnace, raw isotopic signatures for standard compounds were more depleted than their true 

values and not as reproducible (3 to 3.5x higher standard deviation). Residual volatiles from the 

DOC analyzer are not only major contributors to the reduction system precision but may also 

corrode IRMS components and reduce the source filament life.  

Contribution of the blank 

HTC-DOC analyzers generate notoriously high blank values, contributing up to 40% of the DOC in 

a 100 μL injection of a typical deep seawater sample (Peterson et al., 2003). Unstable and/or 

elevated blanks that are not weighted or overlooked have historically generated erroneously 

high DOC values (Sharp et al., 1993; Sugimura and Suzuki, 1988). The major part of the DOC 

blank comes from the column packing (Benner and Strom, 1993; Cauwet, 1994; Sharp et al., 

1993) that needs to be “conditioned” before use through a series of pure water injections. The 

injection of water on the column packing prompts the release of adsorbed CO2 and produces the 

reactive oxygen species that are required for the oxidation of carbonaceous species embedded 

in the catalyst and other column packing materials (Chen et al., 2002). During conditioning, the 
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quantity of CO2 released from the column packing follows a hyperbolic decrease to a low and 

stable value (Peterson et al., 2003). Reagent blanks (from blank water and acid) are also 

important to consider. A cleaning procedure for water was outlined by Benner and Strom in 

1993, reducing DOC contamination to less than 24 μg L-1 (Benner and Strom, 1993). Since then, 

research laboratories have produced certified low carbon water 

(http://yyy.rsmas.miami.edu/groups/biogeochem/CRM.html, < 12 μg L-1); TOC-grade water 

(Sigma, < 1.2 μg L-1) is now also commercially available.  

CO2 released from the injection of blank TOC-grade water is called the “water blank”. We 

calculate the water blank from the DOC analyzer response factor to be between 60 and 110 μg L-

1 of carbon for a 1500-μL injection. Our results are similar to those of Cauwet (1994) (48 – 96 μg 

L-1), Qian and Mopper (1996) (84 μg L-1), Sharp et al. (2002) (48 – 96 μg L-1) and Peterson et al. 

(2003) (36 – 108 μg L-1).  The water blank contributes about 10% of the DOC peak intensity of a 

deep seawater DOC sample (Florida Straight water provided by Hansell CRM program Batch 13 

Lot # 05-13, 490 – 530 μg L-1), which contains the lowest concentration of DOC measured in this 

study. Assuming that TOC-grade water (Sigma < 1.2 μg L-1) contains an insignificant 

concentration of DOC, the water blank corresponds almost entirely to CO2 ejected from the 

catalyst bed. The purity of the water from ultra-purification systems (Milli-Q water, Millipore 

Simplicity 185 equipped with a Simpak1 cartridge) should be verified when it is used to prepare 

calibration standards and blanks, especially when analyzing low DOC samples as 18.2 MΩ·cm 

water was found to contain 0.5 to 63 μg L-1 of adventitious DOC.  

Blank water injections generate CO2 peaks that are measurably large throughout the service life 

of the combustion column. Nevertheless, the formation of blank peaks does not discount the 

possibility that CO2 is continuously released from the combustion column packing without the 
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help of injected water; or that atmospheric CO2 leaks are carried into the system along the 

carrier gas flow path (Peterson et al., 2003). This CO2 bleed is not separable from the analytical 

baseline and is called the “system blank”. The system blank is known to be an even more 

significant source of background CO2 than the water blank (Lang et al., 2007). Omitting major 

CO2 contamination resulting in low signal to noise ratios, this increased baseline does not affect 

routine DOC analyses. Nevertheless problems arise during the subsequent characterization of 

CO2 using stable carbon isotope analysis since sample CO2 is combined to contaminating/blank 

CO2 in the trap upstream from the IRMS.  

Two components therefore make up the IRMS blank: the system blank and the water blank. The 

system blank depends on the amount of time that the GD-100 Graden trap collects CO2 (about 5 

minutes per injection) and can be directly measured by passing the DOC analyzer carrier gas 

without injecting water on the DOC column. The IRMS response factor is then used to deduce 

the carbon content of the system blank from the height of the IRMS peak. Although the system 

blank is highly stable during one series of analysis, it can vary from one combustion column to 

another, likely due to usage and mass differences in column packing materials. As the column 

ages and accumulates salts, the surface characteristics of column packing material may change 

(e.g., devitrification of the quartz beads and column walls, as well as loss of the platinum coating 

from catalyst beads; Peterson et al. 2003). The lowest system blank measured in this study, 

approximately 0.176 μg, was generated from a column containing new, conditioned catalyst and 

gradually increased to > 1.0 μg over one year of catalyst use (≈ 3000 injections). Regular 

evaluation of the system blank is important since high system blanks are not compatible with 

isotopic analysis of low-carbon samples (sample blank corrections are discussed in the following 

section). As the system blank does not vary with injected volume, the relative contribution of 

carbon from the sample can be increased relative to the blank carbon by injecting higher sample 
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volumes. For example, the total blank contribution for a 500-μL injection of Deep Florida 

Straight water (CRM Batch 13 Lot # 05-13, D. Hansell, U. Miami) is about 50% of the total IRMS 

peak area, compared to about 33% for an injection of 1500 μL.  

Unlike the system blank, the water blank is proportional to the volume of water injected (Figure 

4-8; Benner and Strom, 1993; Cauwet, 1994; Lang et al., 2007). The water blank was generally 

less significant than the system blank, accounting for between 14 and 55% of a 1500-μL blank 

injection (consistent with Lang et al. 2007). Like the system blank, the water blank varies during 

the life of one DOC column, however more significant water blanks are observed on new (but 

conditioned) columns (Figure 4-8).  

 

Figure 4-8: Water blank (μg C) for new column packing (white) and old column packing (grey) as a function of the 
DOC injection volume (μL). The system blank is not included (subtracted from total blank signal). 

 

Concentrations can be calculated from either the DOC area or the IRMS peak height (or area), 

however the proper statistical treatment of the blank is especially important when dealing with 

the IRMS peak height, which is affected by both the water blank and the system blank. When 
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comparing low DOC water concentration measurements, such as those for the CRM Deep 

Florida Straight water, comparable concentrations are calculated from either the DOC 

calibration (0.494 ± 0.014 mg L-1) or the IRMS calibration (0.486 ± 0.028 mg L-1) when the 

intercepts from the DOC area or IRMS height vs. concentration standard curves are subtracted. 

Obtained values are within the community accepted concentration range (0.49 – 0.53 mg L-1, 

http://yyy.rsmas.miami.edu/groups/biogeochem/CRM.html). The necessity of blank subtraction 

shows that the combination of the water blank and the system blank is equally present in both 

the samples and standards implying that blanks likely arise mainly from the catalyst and column 

packing and, corroborating the very low/insignificant reagent blank estimated in this work.  

Background δ13C and sample correction 

Like for DOC quantitation, background determination largely controls the feasibility of isotopic 

analysis by DOC-IRMS. Indeed, most problems of accuracy and reproducibility of low-carbon 

δ13C measurements are rooted in the intrinsic variability of the fractional contribution of the 

blank and its 13C/12C ratio. The contribution of blank CO2 to total signal intensity increases 

exponentially with decreasing sample DOC concentration, as does the statistical error associated 

to blank δ13C. For instance, if the blank δ13C precision is ± 2‰, the standard deviation that 

results from blank δ13C variability becomes less than 0.02‰ for high concentration samples such 

as sewage water or DOC concentrates (50 mg L-1, ≈1% blank contribution), about 0.14‰ 

standard deviation for a typical lacustrine samples (3 mg L-1, ≈7% blank contribution) and 0.66‰ 

standard deviation for low-concentration marine samples such as Deep Florida Straight water 

(≈0.5 mg L-1, ≈33% blank contribution). Measured standard deviations of sample and standard 

δ13C-DOC are shown in Figure 4-5 and follow the expected exponential decrease with sample 

concentration. Analytical precision is comparable for samples and standards of similar 

concentration and thus does not seem to depend on sample complexity (Figure 4-5). 
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Instrumental IRMS performance is not expected to be problematic, even for the lowest 

concentration samples since all samples generated peaks above 1 nA, above which IRMS 

precision is adequate (<0.1‰). 

 

Figure 4-9: Measured δ
13

C versus the inverse of the IRMS signal intensity for standard solutions of β-alanine (grey 
squares), potassium hydrogen phthalate (KHP) (black triangles) and IAEA-sucrose (white diamonds). Three 
solutions of each compound were prepared with concentrations of approximately 0.7, 1.7 and 5 mg L

-1
. Linear 

functions were used to determine the blank-corrected δ
13

C of the standards as well as the isotopic composition of 
the blank. 

 

Though ideally less variable, the blank contribution and its δ13C signature are stable enough to 

be measured. The most convenient and most accurate way of determining the blank δ13C is 

through plotting the measured isotopic signature (δm) of 3 or 4 standard solutions at different 

concentrations versus the inverse of peak intensity (1/ηm, nA-1) (Fry et al., 1992; Panetta et al., 

2008). If the blank and standard compounds are the only contributors of CO2 in the IRMS peak, a 

straight line should be generated, such as shown in Figure 4-9. On this graph, the blank-

corrected δ13C (δbc) is the y-intercept; blank δ13C (δb) can be calculated from the slope using the 

intensity of the blank (ηb): 
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δb = (Slope / ηb) + δbc 

To verify the reproducibility of the obtained values, determination of the isotopic signature of 

the blank was performed using three standard compounds dissolved in TOC-grade water (Figure 

4-9). At the time of these analyses, δb was -14.71 ± 1.15‰.  

Although not as accurate owing to the lower precision of the IRMS at low amplitudes (≈0.5 nA), 

the isotopic signature of the blank can also be monitored directly from IRMS peaks generated 

from the injection of TOC-grade water. During the course of one day of analysis, δb can vary 

considerably even when the magnitude of the blank appears to be stable. For example, when 

the O2 carrier gas flow is interrupted, the isotopic signature of the blank typically becomes 5-

10‰ more depleted than δb from a properly conditioned column. About 100 injections of TOC-

grade water are required to stabilize a new combustion column for isotopic analysis (containing 

new catalyst beads) after exposure to air; fewer injections (about 30) are required when old 

catalyst is cleaned and reused. Once stabilized, the blank still fluctuates from one sample to 

another (over sequences lasting 24 to 48 hours), but does not seem to follow any observable 

isotopic drifts or patterns. Nevertheless, throughout the service life of the column, the CO2 

evolving from the blank typically starts from fairly depleted values (-18 to -20‰) and drifts 

towards more enriched values (-15 to -12‰) after extensive use (3-4 months, >1000 injections). 

These blank isotopic signatures are in the ballpark of previously reported values; δb was −19.2‰ 

to −24.3‰ for Lang et al. (2007) and -15.51 to -17.78‰ for Panetta et al. (2008). Changes in the 

isotopic signature of the blank during the life of the column likely arise from changes in the 

column packing; e.g. devitrification of the quartz chips/column as well as loss of platinum 

coating from catalyst beads (Peterson et al. 2003). 
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After determination of the blank isotopic ratio and signal intensity, the following isotope mass 

balance equation is applied to a measured sample (Panetta et al. 2008): 

    
         

     
 

where δs is the stable isotope ratio of the analyte and ηm and ηb are the measured and blank 

intensities, respectively. Other parameters are defined above. 

It should be noted that the more the signature of the sample deviates from that of the blank, 

the larger the discrepancy between the measured and the actual δ13C. For example, a marine 

seawater sample containing 1 mg C L-1 DOC at δ13C = -20‰ generates a peak having a 16.5 to 

83.5 blank CO2 to sample CO2 intensity ratio, and a measured signature of -19.1‰ (δ13C 

difference of 0.9‰). In contrast, a sample enriched in 13C (δ13C = +100‰) having the same 

concentration (and therefore the same blank contribution) is measured at +81.1‰ (δ13C 

difference of 18.9‰). For an enriched sample (δ13C = +100‰), a small error in blank 

contribution therefore translates into a relatively large error on isotopic measurements: 1% 

blank contribution error equates to a 1.2‰ error on the isotopic measurement. 

Discussion 

When the first inter-comparison studies were launched in the 1990s, DOC measurements were 

still of uncertain quality (Sharp et al., 1993). Over the past decades, superior precision/accuracy 

and increased spatial coverage have not only led to better estimations of the overall size of the 

oceanic DOC pool but have also led to the detailed documentation of DOC transport, sources 

and sinks in freshwater and marine systems (Hedges, 2002b). DOC concentration gradients from 

ocean surfaces to bottom-waters suggest production in the surface waters and consumption at 

depth (Bauer, 2002; Druffel et al., 1992). Lateral gradients along the path of bottom-water 
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ocean circulation are more subtle and the DOC influxes and effluxes responsible for these 

gradients are more difficult to identify, but may include inputs from marginal seas and 

continental shelves (Bauer and Druffel, 1998), inputs due to the dissolution of sinking biogenic 

particles, and consumption by microbes (Hansell, 2002). There may also be other unidentified 

DOC production and removal processes.  

Unlike DOC concentrations, δ13C-DOC measurements have limited spatial and temporal 

coverage in saltwater systems, likely due to the difficulty of the analyses. Thus far, δ13C-DOC 

data point to the nearly purely marine origin for dissolved organic matter in the open ocean 

(Bauer, 2002; Bauer et al., 1992) but increased resolution and precision may better constrain 

DOC sources and help identify DOC fractionation processes. δ13C-DOC measurements have also 

been used to track carbon in the mixing water bodies of estuaries and river plumes (Osburn and 

Stedmon, 2011; Raymond and Bauer, 2001a). Renewed interest in freshwater systems, 

especially riverine systems that discharge in the ocean, recently initiated an IAEA funded project 

aiming to expand the knowledge base on riverine systems through the application of a wide 

range of isotopic hydrology methods, including δ13C-DOC (http://isogeochem.wikispaces.com). 

Using our optimized system, we analyzed natural water samples from a broad range of 

environmental settings including rivers and lakes, a freshwater to seawater estuarine transect as 

well as bottom water from the Florida Strait (CRM material). δ13C reproducibility was similar to 

that of standards (Figure 4-5). Out of all natural waters, seawater samples generally have the 

lowest DOC concentrations (0.40 to >1mg L-1, Hansell 2002 and references therein), and are 

therefore typically the most difficult to analyze. The consensus reference material (CRM Batch 

13 Lot # 05-13, Hansell lab 2013) was the lowest concentration sample analyzed in this study 

(0.49-0.53 mg L-1). After thorough calibration of the instrument and careful blank 
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determination/correction, values obtained for this sample were –19.9 ± 0.4‰ (n = 4) and -20.6 ± 

0.3‰ on separate DOC-IRMS systems, corroborating Bouillon (2006), Lang et al. 2007 and 

Panetta et al. (2008) for a similar sample provided by the same laboratory.  

Figure 4-10 shows δ13C values for samples collected in the St. Lawrence Estuary. Going seaward 

from the mouth of the river comprising mainly continentally-derived material (δ13C-DOC = -26.1 

± 0.2‰), isotopic signatures become progressively more enriched, reaching a value of -19.9 ± 

0.3‰ in the Gulf as a result of degradation and dilution of terrestrially-derived material and 

addition of marine-derived DOC through primary productivity. These δ13C-DOC measurements 

are precise and comparable to previously reported values (Hélie and Hillaire-Marcel, 2006; 

Panetta et al., 2008). It is of note that all these samples - as well as calibration standards - were 

run within a single sequence lasting less than 24 hours. Increased throughput, simplicity and 

reliability of δ13C-DOC measurements may bring about the more thorough examination of 

carbon sources and cycling in aquatic systems, especially marine, coastal and estuarine waters. 

To the authors’ knowledge, this δ13C-DOC method has the highest reported throughput and the 

highest tolerance for salts. More importantly, it is also the only automated method for 

determination of δ13C-DOC in saltwater samples. Another noteworthy advantage of this method 

is its amenability to both freshwater and saltwater samples with no special considerations 

needed to measure both types of samples within the same sequence of analyses. Low 

concentration freshwater samples (<1.5 mg L-1) are more reproducible using wet oxidation due 

to lower blanks and to the higher volume tolerances (Bouillon et al., 2006; Osburn and St-Jean, 

2007; St-Jean, 2003). However, since naturally-occurring freshwater samples are typically rich in 

DOC (1.5 mg L-1), HTC-DOC is almost always as reliable as wet oxidation.  
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Figure 4-10: δ13
C-DOC isotopic signatures (‰) of surface water samples collected from the St. Lawrence Estuary 

transect with increasing salinity. (Ocean Data View: Schlitzer, R., Ocean Data View 4, http://odv.awi.de, 2013.) 

 

Comments and recommendations: 

The hyphenation of an Aurora 1030C DOC analyzer, a GD-100 CO2 trap and a continuous flow 

IRMS has made possible the high-throughput, automated measurements of δ13C-DOC in 

freshwater and seawater samples. The analysis time is ≈20 min per sample and series can be run 

overnight. In our experience, fairly rugged δ13C-DOC are easily measured for samples containing 

>1.5 mgC L-1, but, with blank contributions as high as 40% of the total sample intensity, analysis 

of lower concentration solutions (<1.5 mg C L-1) must be met with caution: proper conditioning 

of the combustion column, precise determination of blank contribution and δ13C signature, as 

well as appropriate blank corrections are essential for accurate measurements. δ13C blank 

fluctuations are however innate to high temperature combustion as blanks originate mainly 

from the continuous desorption/ejection of CO2 from the catalyst/column packing. Throughout 
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the service life of the combustion column, random blank variations limit the maximum precision 

of low-concentration isotopic measurements (approximately ± 0.3-0.5‰ for typical deep 

seawater samples, Figure 4-5). Higher reproducibility has not yet been achieved at these low 

concentrations, but might be possible if the catalyst and column packing materials were 

swapped with cleaner materials generating lower and/or more stable blanks (possible materials 

include copper oxide (Panetta et al., 2008; Qian and Mopper, 1996) or platinum-coated quartz 

wool (Cauwet, 1994)). Unlike WO, HTC combustion is not affected by the sample matrix even at 

low DOC concentrations, though the instrument can only tolerate approximately 3.5 g of salt 

accumulation before flow restrictions arise. 

Future avenues of applications for the DOC analyzer and CO2 trap include same sample δ13C 

determination of dissolved inorganic and organic carbon (total dissolved inorganic carbon is 

typically much more concentrated than DOC in seawater samples, therefore a large linear 

dynamic range or a He dilutor would be necessary for these samples). Other possible future 

applications may include CO2 generation and trapping for accelerator mass spectrometry 14C 

dating, since Δ14C and δ13C used in conjunction serve as unique source and age tracers that are 

especially useful in studies of marine carbon cycling through the DOC pool (Bauer, 2002; 

Raymond and Bauer, 2001a). Provided enough starting material and a suitable trap for the 

nitrogen oxides produced upon dissolved organic matter combustion in the HTC analyzer, 

e.g.(Wang et al., 2009), dual isotopic analysis may also extend to δ15N measurements (Huygens 

et al., 2007). 
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5. Chapter 5: Revisiting the disappearance of 

terrestrial dissolved organic matter in the ocean: A 
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Abstract 

Organic carbon (OC) depleted in 13C is a widely used tracer for terrestrial OM in aquatic systems. 

Photochemical reactions can however change δ13C of dissolved organic carbon (DOC) when 

chromophoric, aromatic-rich terrestrial OC is selectively mineralized. We assessed the 

robustness of the δ13C signature of DOC (δ13CDOC) as a tracer for terrestrial OM by estimating its 

change during the photobleaching of chromophoric DOM (CDOM) from ten large rivers. These 

rivers cumulatively account for approximately 1/3 of the world’s freshwater discharge to the 

global ocean. Photobleaching of CDOM by simulated solar radiation was associated with the 

photochemical mineralization of 16 to 43% of the DOC and, by preferentially removing 

compounds depleted in 13C, caused a 1 to 2.9‰ enrichment in δ13C in the residual DOC. Such 

solar radiation-induced photochemical isotopic shift biases the calculations of terrestrial OM 

discharge in coastal oceans towards the marine end-member. Shifts in terrestrial δ13CDOC should 

be taken into account when constraining the terrestrial end-member in global calculation of 

terrestrially derived DOM in the world ocean.   
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Introduction 

The oceanic dissolved organic carbon (DOC) pool is large (662 x 1015 g OC;(Hansell et al., 2009)), 

representing a quantity of carbon that is approximately equal to that of carbon dioxide in the 

atmosphere and terrestrial plant biomass (Hedges, 2002a). The turnover of OC within the 

oceanic reservoir is supported by marine and continental photosynthesis, with vascular plant 

detritus and soil organic matter mainly transported to the ocean by continental erosion and 

riverine discharge. Apportioning these sources is challenging since oceanic DOM has a complex, 

highly altered structure, consisting mainly of relatively small molecules in fairly uniform and very 

dilute concentrations (Benner et al., 1997). Most evidence points to a nearly purely marine 

origin for oceanic DOM, as indicated by 1) its marine-like δ13C signature (Bauer, 2002; Druffel et 

al., 1992); 2) the low abundance or absence of terrestrially-derived molecular biomarkers within 

the DOM pool (Ogawa and Tanoue, 2003; Opsahl and Benner, 1997) and 3) the compositional 

and optical dissimilarities between riverine and seawater DOM (Blough and Del Vecchio, 2002).  

Though oceanic DOM is predominantly marine-like, there is evidence that a small yet non-

negligible component of DOM has a terrestrial origin. Studies using resin and ultrafiltration-

isolated lignin molecules have shown that the terrestrial component varies between 4 and 10% 

of the isolated fractions of DOM (Meyers-Schulte and Hedges, 1986; Opsahl and Benner, 1997). 

These are likely underestimations since solar radiation-induced photochemical reactions break 

apart large aromatic-rich molecules like lignin, tannin and cutin (Dittmar et al., 2007; Hernes and 

Benner, 2003; Vähätalo et al., 1999) into molecular fragments that can be difficult to isolate 

from seawater’s salty matrix (too hydrophilic for hydrophobic resins or too small for 

ultrafiltration) and identify as terrestrial compounds using current analytical methods (Rossel et 

al., 2013). 
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Optical parameters (absorbance and fluorescence) that are specific to riverine DOM are also 

particularly susceptible to photochemical transformation since the light-absorbing, 

chromophoric riverine DOM components are selectively removed upon exposure to UV 

radiation in a process called photobleaching (Blough and Del Vecchio, 2002; Helms et al., 2008). 

Photobleaching of terrestrial DOM is associated with the photochemical mineralization of DOC, 

acting as a partial sink for terrestrial DOC (Moran et al., 2000). The residual non-mineralized 

fraction of photobleached terrestrial DOM has optical properties that are similar to marine 

DOM; its terrestrial origin cannot be fully recognized using the currently available optical 

methods (Helms et al., 2008; Spencer et al., 2009; Vähätalo and Wetzel, 2008). Fichot and 

Benner (2012) recently proposed a spectral tracer for terrestrial DOM in river-influenced ocean 

margins based on the spectrophotometric measurement of the spectral slope coefficient of 

chromophoric DOM (CDOM) between 275 and 295 nm (S275-295). This method, however, is based 

on the assumption that the kinetics of the two main processes driving the degradation of 

terrestrial DOM, namely photodegradation of CDOM and microbial degradation of the non-

chromophoric components, are similar on the timescales of ocean margin dynamics (Fichot and 

Benner, 2012). Although not mentioned in their report, it also assumes that the extent of 

degradation of the chromophoric and non-chromophoric components is similar, therefore the 

complete removal of chromophoric DOM would also suggests the complete removal of 

photochemically and microbially recalcitrant DOC in riverine DOM. These assumptions have not 

been systematically verified.  

Stable isotopes of carbon are typically used to trace terrestrial DOM in coastal, estuarine and 

marine systems since they are thought to incur little to no change in their isotopic signature 

upon partial OC degradation (Druffel et al., 1992; Maher and Eyre, 2011; Raymond and Bauer, 

2001a; Raymond and Bauer, 2001b). Photochemical transformations have however been shown 



 

99 
 

to shift the stable isotope signature of DOC derived from a plant leachate or collected from a 

humic lake and three rivers of different size (Opsahl and Zepp, 2001; Osburn et al., 2001; 

Spencer et al., 2009; Vähätalo and Wetzel, 2008).  

Direct (complete mineralization to CO2) or indirect (increase in the bioavailability of DOC 

followed by rapid biological mineralization to CO2) photochemical transformations are 

important pathways in the mineralization of terrestrial DOM (Miller and Zepp, 1995; Mopper et 

al., 1991; Spencer et al., 2009). Together, these processes can possibly explain the removal of up 

to 80% of riverine DOC (Obernosterer and Benner, 2004). However the remaining, non-

photoreactive and biologically recalcitrant DOC, representing >20% of the global riverine input, 

is still large enough to support more than half the steady-state turnover of oceanic DOC (0.1 x 

1015 g C yr-1) (Williams and Druffel, 1987). Thus it remains puzzling that terrestrial DOM accounts 

for such a small percentage of oceanic DOM. It is possible that riverine DOM remains in oceanic 

waters but is altered beyond recognition through photodegradation and bacterial relabeling 

during passage in the microbial loop, allowing it to escape from the analytical windows of 

traditional measurement methods. 

In the present work, we study the effect of photochemical and microbial transformations on 

isotopic signatures of riverine DOC. We measured the potential isotopic shifts of DOC δ13C 

during 1) abiotic photochemical mineralization of a portion of the DOC pool to CO2 and other 

purgeable organics and inorganics associated with a nearly complete photochemical 

decomposition of riverine chromophoric DOM (CDOM) and 2) the bacterial mineralization of 

biologically labile DOC produced during the photochemical transformation of DOC. The riverine 

DOC was collected from ten major rivers, cumulatively representing 1/3rd of the world’s 

freshwater discharge and 28% of the marine input of continental DOC (Cauwet, 2002) allowing 
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us to appropriately constrain the continental end-member. We calculate the percentage of DOC 

that resists photochemical and microbial degradation and measure the δ13CDOC signature of DOC 

before and after the photochemical treatment and microbial degradation. We show how a 

photochemical shift in δ13CDOC signatures influences the use of 13C isotopes for quantifying 

terrigenous DOC in the oceans.  

Materials and methods 

Riverine samples 

The rivers selected in this study are responsible for nearly one third of both freshwater 

discharge and DOC flux to the ocean, respectively (Table 1). They drain 25% of the continental 

land area in a wide range of ecosystems and climates on five continents (Milliman and 

Farnsworth, 2011). The selected rivers provide a representative end-member of riverine DOC, 

which can be used as a predictive sample set for the behavior of riverine DOC in oceanic waters. 

A water sample was collected from each river during the season of high discharge in 10-L 

polyethylene containers (cleaned with detergent, rinsed with acid and Milli-Q water). All 

samples were collected in one location upstream from the fresh-water – salt-water transition 

zone. The samples were thus representative of the DOC discharged to the coastal ocean at the 

time of sampling. The Amazon River is the only exception: owing to sampling constraints, it was 

collected at two locations upstream of the confluence point of Rio Negro and Rio Solimoes. 

Samples from the two locations were mixed in an appropriate ratio (1:3 Rio Negro to Rio 

Solimoes) to represent the bulk Amazon River discharge. 
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Table 5-1: Concentration and δ
13

C of total and NL-DOC reactivity classes for each riverine sample. Standard deviations are given in parentheses. δ
13

C values are not given when NL-DOC 
concentrations were below 1 mg/L, due to the poor reproducibility of these measurements. The percentage of photodegraded and microbially degraded NL-DOC represents the losses 
of NL-DOC occurring each of these processes and average values are normalized to discharge rates (Cauwet, 2002) and NL-DOC concentrations. 

River name Latitude Longitude Discharge  NL-DOC  Photooxidation Microbial degradation 

   rate  δ13C  δ13C of 
residual 

 δ13C of 
residual 

   (km3 yr-1 or  
1012L yr-1) 

(mg L-1) (‰) (% loss) (‰) (% loss) (‰) 

Amazon 03°08'00''S 59°54'10''W 5780 4.0 -29.0 37.4 -27.4 33.0 -27.4 

    (0.1) (0.2) (0.7) (0.0) (3.0) (0.3) 

Danube 45°13'38''N 28°44'05''E 198 2.3 -28.4 33.5 -27.0 33.1 n.a. 

    (0.0) (0.2) (4.2) (0.2) (0.3)  

Yangtze 31°45'49"N 121°2'22"E 925 1.7 -27.6 34.5 -27.1 28.7 n.a. 

    (0.0) (0.4) n.a. n.a. (0.6)  

Congo 04°18'18''S 15°28'32''E 1300 5.9 -27.1 43.4 -25.4 37.7 -26.2 

    (0.1) (0.2) (0.1) (0.5) n.a. n.a. 

Parana 34°18'07''S 58°32'47''W 470 2.9 -27.0 30.9 -24.0 28.7 -26.5 

    (0.0) (0.0) (2.1) (0.0) n.a. n.a. 

Lena 71°54'14''N 127°15'16''E 505 5.4 -26.9 29.6 -25.4 25.0 -25.5 

    (0.2) (0.1) (1.8) (0.1) (0.0) (0.0) 

Mississippi 29°02'20''N 89°19'20''W 410 3.4 -26.6 25.1 -25.7 31.7 n.a. 

    (0.1) (0.1) (2.1) (0.4) (1.6)  

Ganges-Brahmaputra 23°34'12"N 90°10'54"E 971 0.8 -26.5 34.0 -25.8 21.9 n.a. 

    (0.0) (0.9) (4.4) (0.4) (2.07)  

St. Lawrence 46°54'45''N 70°52'32''W 413 3.6 -26.1 16.0 -25.5 31.9 -25.2 

    (0.1) (0.2) n.a. n.a. (0.8) (0.0) 

Mekong 11°33'28''N 104°56'53''E 666 1.4 -26.0 16.6 -24.5 25.1 n.a. 

    (0.1) (0.2) n.a. n.a. n.a.  

Weighted average    3.6 -28.1 35.9 -26.6 32.6 -26.2 

    (0.1) (0.2) (1.8) (0.2) (2.4) (0.9) 
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The polyethylene containers were cleaned at the University of Helsinki and shipped to the local 

operators at each river. The containers were filled in the center of the stream by direct 

immersion below the surface from a boat, except for the Mississippi and St. Lawrence Rivers 

where near surface water (about 3 m below the surface) was collected with Niskin bottles and 

directly transferred to the polyethylene containers. All samples were immediately placed in a 

box to shield the water from sun and artificial light. They were left unfiltered/unkilled upon 

shipment and storage at the University of Helsinki (the time lag between sampling and 

measurement was between 80-390 days) so that the most labile fraction of the DOC (L-DOC) in 

all samples was decomposed prior to the measurement reported in this study (see below). The 

samples were not refrigerated during transportation (about one week in most cases) but they 

were stored at 4°C in the dark upon arrival in Helsinki. The same water samples used here have 

been also examined for the concentration of dissolved black carbon and the contribution of iron 

to CDOM (Jaffé et al., 2013; Xiao et al., 2013). Additional samples from the St. Lawrence River 

were collected at the same time as the polyethylene container, filtered on-board (pre-

combusted GF/F filters, 0.7 μm nominal pore size), acidified with ultrapure HCl to a pH <2, and 

stored in pre-combusted glass vials. 

 Irradiation experiment followed by a bioassay 

All samples were sterile filtered (0.2 μm, Sartobran 300, Sartorius) and separated into two 

batches of duplicates: one duplicate set of irradiated samples for each river, to be compared to 

a corresponding duplicate set of dark control samples. Irradiated samples were placed in clean 

and combusted (> 2 h, 450°C) UV-transparent 750-mL quartz vials fitted with ground glass 

stoppers. A headspace corresponding to 10% of the vial internal volume was filled with O2 gas, 

and replenished after 4 days of irradiation to support complete oxidation of the UV-sensitive 
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DOM fraction (Vähätalo and Wetzel, 2008). The samples were placed horizontally 1 cm below 

the surface of water on a stainless steel grid in a flow-through pool of tap water regulated to 

24.5 ± 1.0°C. They were exposed for 10 days to simulated solar radiation adjusted to a power 

that mimics the global mean of a half-year UV dose of solar radiation. The simulated solar 

radiation was generated using a metal halide lamp (Thorn OQ 1000, UK) and fluorescent tubes 

(UVA-340, Q-Lab Corp., Canada), and measured with a Macam SR 991 spectroradiometer in air 

2-cm above the quartz flasks. The spectral irradiance of the artificial light source comprised the 

photochemically active part of UV radiation present in natural sunlight but excluded any 

environmentally non-relevant short-wavelength UV radiation absent from solar radiation 

incident to the ocean (Figure 5-1B) (Chu and Liu, 2009). Dark controls were treated in the same 

way (sterile filtered, but kept at 21.6 ± 2.1°C in the dark). We preserved samples with ultrapure 

HCl (pH < 2) for DOC concentration and δ13C measurements at the beginning and end of the 

irradiation.  
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Figure 5-1: (A) Absorption coefficients of chromophoric dissolved organic matter in the initial (Ini), the irradiated 
(L) and the dark control (D) of Amazon River, and (B) the spectral irradiance of solar simulator (simulator) and 
natural solar radiation (ASTM G173-03 std; Lu et al., 2013). Note that the absorption spectra for Ini and D are 
almost perfectly superimposed in (A). 

In order to quantify the microbial mineralization of labile DOC produced during the abiotic 

photochemical transformation of riverine DOM, we introduced a microbial inoculum into the 

irradiated and the dark control samples. Each sample received KH2PO4 to the final concentration 

of 133 P μg L-1 and unfiltered water from its corresponding river (1% vol/vol) as a source of 

phosphorus nutrient and microbial inoculum, respectively. These bioassay flasks contained an 
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air headspace and were incubated in the dark at 22.0 ± 0.5 °C. After 28 days of incubation, the 

samples were filtered and preserved with HCl for the measurement of DOC concentration and 

its δ13C signature as explained above. 

 

Figure 5-2: Absorption coefficient of chromophoric DOM at 350nm in the samples before (initial, grey) and after 
irradiation experiment in the irradiated (white) and the dark controls (black) 

 

Note that the biologically labile organic compounds (L-DOC) present in the original water 

samples were degraded during sample shipment and storage through microbial processes that 

do not affect δ13C signature of DOM to a significant extent (Lu et al., 2013; Obernosterer and 

Benner, 2004; Stutter et al., 2013). The DOC sample that was used at the start of the irradiation 

experiment therefore corresponds almost entirely to non-biologically labile DOC (NL-DOC). NL-

DOC comprises semi-labile and refractory DOC, which have degradation rates on the order of 

years to centuries (Obernosterer and Benner, 2004). Note also that we report changes in the 

concentration and the δ13C signature of NL-DOC (δ13CNL-DOC) during a two-stage process: 1) the 
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photobleaching of NL-DOC under sterile conditions, followed by 2) the biodegradation of the 

residual non-photosensitive organic compounds. Complete photobleaching causes the 

mineralization of the chromophoric DOC pool and/or its transformation to non-chromophoric 

DOC molecules. The DOC that is impervious to photooxidation is measured in the irradiated DOC 

sample (irr-DOC). The DOC that resists both the photobleaching and microbial degradation 

treatments because it is both transparent to UV-radiation and biologically recalcitrant is defined 

as the recalcitrant DOC fraction (R-DOC). R-DOC is therefore the residual DOC, measured directly 

after sequential treatments. 

In natural systems, the degradation of NL-DOC by photooxidative and microbial pathways take 

place simultaneously rather than consecutively. Our experimental design thus probably 

overestimates the relative importance of photochemical degradation since in natural 

environments, there is competition for DOC substrates that are both bioavailable and 

photodegradable during daily light/dark cycles. However, as photobleaching leads to significant 

changes in δ13C signatures while the effect of biodegradation is much smaller and inconsistent 

(Table 1), we focused mostly on δ13C-DOC shifts occurring during photobleaching when 

interpreting the fate NL-DOC in the ocean.  

High- temperature catalytic oxidation DOC-IRMS measurements 

A combustion total organic carbon (TOC) analyzer (OI Analytical Model 1010, College Station, 

TX) was modified to reduce background contamination from atmospheric CO2 by replacing all 

gas-permeable polytetrafluoroethylene (PTFE) tubing with polyether ether ketone (PEEK) tubing. 

Ultra-high purity oxygen carrier gas and platinum-coated silica particles (5% Pt (w/w)) were used 

for combustion of samples. Prior to analysis, the instrument furnace was kept at temperature of 

680⁰C, under clean O2 for several hours, followed by the injection of a total of about 100 blanks, 
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ensuring low background CO2 levels. Trapping the background CO2 without injecting a liquid 

sample on the combustion column produced a peak corresponding to 0.18 μgC. The results 

obtained for the samples were corrected for this low background contribution. 

The TOC analyzer was interfaced to an Isoprime isotope ratio mass spectrometer (IRMS) through 

a Graden instrument chemical CO2 trap (GD-100), which allows quantitative recovery of CO2 

while switching the carrier gas from ultra-high purity oxygen to ultra-high purity helium. Each 

sample injection therefore provided both the DOC concentration (by NDIR on the TOC analyzer 

and by the measured current on the IRMS) and δ13C isotopic composition. The correlation 

coefficient between the NDIR and voltage-derived concentrations was > 0.98. Dry certified 

sucrose standard (δ13C = -10.45 ± 0.03‰) from the International Atomic Energy Agency (IAEA-

CH-6) and β-alanine (Sigma-Aldrich, -26.18 ± 0.33‰ standardized in-house against several 

certified materials by elemental analysis-IRMS) were dissolved in ultrapure water and used as 

calibration and reference compounds.  

The injection volume was adjusted to 750 μL, generating enough CO2 for high precision 

concentration and isotopic measurements without compromising combustion efficiency. Twin 

vials of each sample were run in either duplicate or triplicate, yielding standard deviations of ≤ 

0.15 mg/L and ≤ 0.3 ‰ for concentration and isotopic measurements, respectively. Isotope data 

is reported with standard notation (δ13C) in parts per thousand (‰) relative to the Pee Dee 

Belemnite standard.  
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Results  

Riverine NL-DOC concentrations and δ13CNL-DOC signatures 

The measured NL-DOC concentrations in the rivers examined ranged from 0.8  0.03 mg L-1 

(Ganges-Brahmaputra) to 5.9  0.1 mg L-1 (Congo) with a yearly discharge-weighted average of 

3.6  0.1 mg L-1 (Table 5-1) for all rivers. The δ13CNL-DOC signatures ranged from -29.0  0.2 ‰ 

(Amazon) to -26.0  0.2 ‰ (Mekong) with a yearly discharge-weighted average of -28.1  0.2 ‰ 

(Table 5-1). These weighted average NL-DOC concentrations and δ13CNL-DOC values could be used 

as a first-order estimate for terrestrial riverine DOC discharged in the ocean. Additional studies 

are however needed to improve the accuracy of this estimate by taking into account the 

quantitatively important rivers not sampled in this project, as well as potential seasonal and 

inter-annual variability in NL-DOC concentrations and δ13CNL-DOC signatures. 

The concentrations of NL-DOC and δ13CNL-DOC signatures reported in Table 5-1 do not include the 

biologically labile fraction of DOC (L-DOC).  L-DOC is rapidly consumed by microbes (hourly to 

daily time scales; in this study, L-DOC was biodegraded during the shipping and storage of 

unkilled samples), therefore it is too reactive to contribute to the oceanic reservoir of DOC. L-

DOC was not measured directly in samples other than the St. Lawrence River where the L-DOC 

fraction accounted for 19 ± 1% (n=3) of total DOC (measured on separate aliquots collected on 

the sampling day), consistent with previously reported estimates of 13 and 28% in lacustrine 

and swamp settings (Obernosterer and Benner, 2004) or  22  12% of total DOC in the coastal 

ocean (Lønborg and Álvarez-Salgado, 2012).  

The δ13CDOC signatures measured for St. Lawrence River total DOC (including L-DOC, -26.4 ± 

0.4‰) and NL-DOC (-26.1 ± 0.2‰) suggest that the removal of L-DOC by biodegradation does 
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not alter δ13CDOC signatures, in agreement with several earlier studies (Lu et al., 2013; 

Obernosterer and Benner, 2004; Stutter et al., 2013).  

Effect of irradiation and microbial incubation on NL-DOC concentration and δ13C 

signature 

Irradiation with artificial sunlight destroyed photochemically the chromophores that absorbed in 

the UV and blue regions of the spectrum, nearly completely extinguishing the DOC absorption at 

> 350nm for all samples (Figures 5-1 and 5-2). A fraction of the DOC in samples was converted to 

CO2 (or other small purgeable organic molecules) during the irradiation, as indicated by the 

lower irr-DOC concentration compared to NL-DOC. The loss of NL-DOC by photomineralization 

ranged from 16% (St. Lawrence) to 43% (Congo), with an average of 36% for the all rivers 

examined (Table 5-1), corroborating previously reported literature values (Obernosterer and 

Benner, 2004). No well-stained bacteria were found in the irradiated samples by epifluorescence 

microscopy, indicating that the partial mineralization of NL-DOC (to DIC), as well as any 

structural, spectral and isotopic modifications of the NL-DOC pool were incurred due to a purely 

abiotic photochemical process. In contrast to the irradiated samples, the light absorption by 

CDOM or the concentration of NL-DOC did not change significantly in the dark control samples 

during the ten-day irradiations (Figures 5-2 and 5-3B). 
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Figure 5-3: Concentration of NL-DOC and its δ
13

C value in a representative riverine sample (the Amazon River) 
during the 10 day abiotic photooxidation and the following 28-day microbial degradation initiated by inoculation 
with unfiltered riverine water containing indigenous bacteria. Irradiated samples are shown in white, while the 
dark controls are shown in black) 

In our study, δ13Cirr-DOC was consistently enriched relative to NL-DOC in every irradiated riverine 

samples by 0.5 ‰ (Yangtze) to 2.3 ‰ (Parana) indicating the mineralization of a pool of DOC 

that was depleted relative to NL-DOC. The complete mineralization of photo-sensitive DOC 

therefore shifted the signature of the average riverine DOC by 1.5 ‰ (from -28.1 ‰ to -26.6 ‰, 

Table 5-1 and Figure 5-4). Dark control samples did not change during the course of the 
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irradiation step as they were protected from the radiation and sterile filtered. Consequently, no 

changes in the light absorption by CDOM or the concentration of DOC incurred in the dark 

control samples during the ten day irradiation (Figures 5-2 and 5-3B).   

 

Figure 5-4: Change in NL-DOC isotopic signature (δ
13

C) as a result of photodegradation. Error bars represent 
standard deviation 

UV radiation produced bioavailable, labile DOC that was consumed during the course of 

theincubation. This DOC pool represented between 21.9 % (Ganges-Brahmaputra) and 37.7 % 

(Congo) (average of 32.6 ± 2.4%) of the NL-DOC pool (Figure 5-3B and Table 5-1). The 

corresponding microbial consumption in the dark control samples was negligible (5 ± 7% of NL-

DOC in all ten rivers) as exemplified for the Amazon River in Figure 5-3B, indicating the absence 

of biologically labile compounds within non-irradiated samples. After the completion of the 

irradiation/inoculation experiment, a residual, recalcitrant DOC fraction (R-DOC) remained. The 
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R-DOC fraction ranged between 18.9% (Congo) and 58.3% (Mekong) with a weighted average of 

31.5 ± 1.5% (Figure 5-5, Table 5-1). 

The NL-DOC pool is therefore separable into 3 fractions, each comprising roughly one third of 

the DOC: 1) a fraction that is directly mineralized to DIC (or degraded into small purgeable 

organics) during photobleaching, 2) a fraction of DOC that becomes labile as a result of UV-

induced molecular transformations and 3) a residual, recalcitrant fraction (R-DOC). 

Riverine NL-DOC samples that were most depleted in 13C contained the smallest R-DOC fraction 

(Figure 5-5 A). The Congo River was an exception to the δ13C trend (Figure 5-5 A), experiencing 

the highest NL-DOC losses of all rivers but displaying relatively enriched values. The fraction of 

R-DOC was also related to the amount of CDOM indicated by an absorption coefficient at 350 

nm (aCDOM350) of NL-DOC (Figure 5-5 B). 
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Figure 5-5: (A) Fraction of NL-DOC resistant to photooxidation followed by bacterial incubation (R-DOC) as a 
function of the δ

13
C signature of NL-DOC, and (B) the absorption coefficient at 350 nm for all riverine samples. The 

error bars in (A) represent the propagated uncertainty for the fraction of NL-DOC remaining following the two 
treatments. The R-DOC fraction was calculated using the percentages of NL-DOC degraded during photobleaching 
and microbial degradation in Table 5-1 (100% - %photobleached - %microbially degraded, divided by 100). The 
trendline describes a Model II linear regression model including all data except the Congo River. 

Discussion 

Photochemically induced shift in δ13CNL-DOC signatures and optical parameters 

Our irradiation experiment was designed to simulate the photochemical transformations of 

riverine DOC upon photobleaching of CDOC in the mixed layer of the coastal ocean (Figures 5-1 

and 5-2). Photochemical destruction by simulated solar radiation most effectively targets 

chromophores that absorb in the regions of the spectrum that overlap with the most intense 
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irradiance bands (Figure 5-1A) and results in the virtually complete loss of DOC absorption at 

these wavelengths. We observed the nearly complete disappearance of the terrestrial optical 

signal (loss of DOM absorption at 350 nm (aCDOM350)) for all riverine samples (Figure 5-2), 

which has previously been demonstrated by other irradiation experiments and field studies 

measuring CDOM in-situ or by remote sensing (Fichot and Benner, 2012; Nelson et al., 2010; 

Vähätalo and Wetzel, 2008; Vodacek et al., 1995). It is known that photochemical reactions 

specifically target certain molecular moieties/types, absorbing light in the blue and UV region of 

the spectrum (high aλ<350 nm) (Mopper and Kieber, 2002). The chromophoric DOC component 

constitutes the major portion of the organic carbon in many lakes, rivers, and even some coastal 

waters, and is structurally similar to soil humics, with a characteristic brown color (Blough and 

Del Vecchio, 2002; Hedges and Oades, 1997). It is composed of a mixture of lignocellulose-

derived polyelectrolytes that result mainly from the decay of terrestrial vegetation and aquatic 

detritus (Dittmar et al., 2007; Gonsior et al., 2008). The photobleaching of CDOM was 

concomitant to the photochemical mineralization of a portion of NL-DOC, as illustrated by a loss 

of DOC in the irradiated samples (irr-DOC) (Figure 5-3B and Table 5-1). The photomineralization 

of the NL-DOC pool ranged from 16% (St. Lawrence) to 43% (Congo), with an average of 36% for 

the all rivers examined (Table 5-1).  

A removal process, such as photooxidation, that targets specific types of molecules, ultimately 

causes a change in the chemical composition of DOC in the irradiated samples. This change in 

the molecular makeup of DOC was reflected by an isotopic enrichment from δ13CNL-DOC to δ13Cirr-

DOC following photodegradation (0.5 ‰ (Yangtze) to 2.3 ‰ (Parana); Table 5-1 and Figure 5-4). 

The average riverine δ13CNL-DOC shifted by 1.5 ‰ (from -28.1 ‰ to -26.6 ‰; δ13CNL-DOC and δ13Cirr-

DOC are statistically different at a 99% confidence interval, Table 5-1 and Figure 5-4). Other 

studies have also highlighted similar shifts towards heavier δ13C-DOC values upon 
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photochemical mineralization of DOC. These shifts have averaged 6 ‰ for a plant leachate, 1.2 

‰ for a humic lake, 0.7 ‰ for the Altamaha River, 1.6 ‰ for the Satilla River, and 3.1 ‰ for the 

Congo River (Lu et al., 2013; Opsahl and Zepp, 2001; Osburn et al., 2001; Spencer et al., 2009; 

Vähätalo and Wetzel, 2008). The photochemical isotopic shift measured in this study for the 

Congo River was not as pronounced as reported by Spencer et al. (2009) for the same river (1.7 

‰ vs. 3.1 ‰, respectively). This apparent disagreement may be related to differences in the 

temperature and the source of irradiation, but more likely to different initial δ13C-DOC 

signatures in the two studies (-29.2 ‰ in this study vs. -27.1 ‰ for Spencer et al., 2009); the 

δ13C signature of irr-DOC was similar in both studies (-26.2 ‰ vs. -26.3 ‰). The δ13C signature of 

total DOC can vary by few ‰ at least in headwaters catchments during storm events (Lambert 

et al., 2013) and at the mouth of Arctic rivers between rivers and/or seasons (Neff et al., 2006; 

Raymond et al., 2007), with more depleted signatures corresponding to recently synthesized 

fresh plant materials. 

In our study, δ13Cirr-DOC of irradiated riverine samples was consistently enriched relative to δ13CNL-

DOC (Table 5-1, Figure 5-4). The enriched δ13C of UV-resistant irr-DOC relative to NL-DOC occurs 

due to the mineralization of 13C-depleted NL-DOC components, varying between -25.8‰ and -

33.9‰ and averaging -30.8‰ (calculated by isotopic and mass balances of NL-DOC and irr-DOC 

from the 10 studied rivers). Naturally photosynthesized 13C-depleted components of terrestrial 

plants include, amongst others, macromolecular aromatic compounds such as lignin, tannins 

and cutins, which are depleted by 4-7‰ relative to the bulk plant material (Goñi et al., 2005; 

Hayes, 2001). It is possible that partial photooxidative breakdown can damage these compounds 

sufficiently to produce low molecular weight, oxygenated compounds that bear little or no 

resemblance to their parent molecules, but that match closely the small, molecularly 

uncharacterized molecules that make up the bulk of deep-ocean DOC (Benner et al., 1997). 
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Photobleaching can therefore simultaneously explains the three main changes in DOC that make 

riverine DOC appear deceivingly more marine in nature: 1) the decrease in average molecular 

size (Dittmar et al., 2007; Hernes and Benner, 2003; Opsahl and Benner, 1998); 2) the reduction 

in the abundance of aromatic/unsaturated functionalities that absorb UV light (such as lignin 

(Vähätalo et al., 1999); and 3) the overall enrichment in δ13C.  

Does biodegradation shift the δ13C signature of terrestrial NL-DOC? 

Photochemical enhancement of DOM bioavailability has previously been shown to be an 

important factor in the alteration of estuarine and coastal heterotrophy (Chin-Leo and Benner, 

1992; Vähätalo et al., 2011; Zepp, 2005). We therefore extended the irradiation experiment with 

a bioassay to assess microbial decomposition of irradiated DOC samples (irr-DOC). Microbes 

consumed photo-produced, labile DOC, comprising between 21.9 % (Ganges-Brahmaputra) and 

37.7 % (Congo) (average of 32.6 ± 2.4%) of the initial NL-DOC sample (Figure 5-3B and Table 5-

1), a DOC fraction that was similar in size to the directly photo-mineralized DOC (Table 5-1). 

Microbial consumption in the corresponding dark control samples was negligible (5 ± 7% of NL-

DOC in all ten rivers, data not shown) as exemplified for Amazon in Figure 5-3B. Our results are 

in agreement with earlier studies, which have found labile photoproducts to be quantitatively 

important components of DOC photooxidation (Aarnos et al., 2012; Obernosterer and Benner, 

2004; Pullin et al., 2004; Vähätalo et al., 2003).  

In the samples from Amazon, Lena and St. Lawrence rivers, the isotopic shifts associated to the 

mineralization of labile photoproducts were smaller than the average standard deviation of 

δ13CDOC measurements (≈ 0.3‰) (Table 5-1). These negligible isotopic shifts are in agreement 

with the lack of shifts in the biodegradation L-DOC fraction of the St. Lawrence River sample and 

with data reported in earlier studies (Lu et al., 2013; Obernosterer and Benner, 2004; Stutter et 
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al., 2013). The δ13C signature of other two samples, the Congo and the Parana rivers, decreased 

by 1.2 and 2.5‰, respectively (Table 5-1). Though more work is needed to better understand 

the reason for this 13C depletion, it could be explained by the consumption of microbially labile 

photoproducts that are more enriched in 13C, possibly produced by the C4 carbon fixation 

pathway. Note however that this shift does not affect the main conclusions of this work as the 

δ13C signatures of the R-DOC fraction were still less depleted than the initial NL-DOC signatures. 

Relationship between NL-DOC photochemical susceptibility and δ13CNL-DOC  

The extent of photodegradation of riverine samples was evaluated by the concentration of the 

residual UV and microbially-resistant component (R-DOC). R-DOC was inversely correlated to 

absorption of NL-DOC at 350 nm (aCDOM350) (Figure 5-5B). As aromatic compounds such as 

lignin are the primary components of DOC that absorb light (Hernes and Benner, 2003), it is 

likely that samples with the lowest relative R-DOC contribution contain the freshest terrestrial 

NL-DOC (less photobleached) collected in rivers with low residence time and/or efficient 

shielding from light (DOM self-shielding, high particulate loads and/or forested banks).  

Riverine NL-DOC samples that were most depleted in 13C had increased susceptibility towards 

direct abiotic photodegradation and photo-production/biodegradation of labile DOC 

compounds (Figure 5-5 A). The initial δ13CNL-DOC was most depleted (-29.0‰; Table 5-1, Figure 5-

5 A) in the Amazon River sample, where the fraction of residual DOC (R-DOC) resisting 

photodegradation was low (0.296, Figure 5-5A); abiotic photooxidation and the following 

microbial decomposition accounted for fractions of 0.374 and 0.330, respectively (Table 5-1). 

The fraction of R-DOC was highest (0.583) in the river sample with the highest initial δ13CNL-DOC (-

26.0‰; Mekong, Table 5-1, Figure 5-5 A). Plots of the fraction of R-DOC versus δ13CNL-DOC for all 

rivers (the Congo River was treated as an outlier, see below) yielded a linear plot with a high 
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correlation coefficient (0.925) and a relatively low standard error on the slope (±1.69 ‰) and y-

intercept (±0.73 ‰). The model II linear regression shown in Figure 5-5A (fraction R-DOC = 

δ13CNL-DOC + 32.35)/12.31) could therefore potentially be used as predictive tool for estimating 

the maximum photochemical and bacterial removal of riverine NL-DOC in the ocean using the 

δ13CNL-DOC of riverine samples. 

We draw more information from the Figure 5-5A correlation by operationally separating NL-DOC 

into two distinct DOC pools: mineralizable DOC (either through abiotic photooxidation or 

bacterial decomposition) and recalcitrant DOC (R-DOC). Each riverine sample has a different 

fractional contribution of these 2 DOC pools, depending on light exposure history, residence 

time and organic carbon source. With no contribution from R-DOC, NL-DOC is the most 13C-

depleted (δ13CNL-DOC = -32.35 ± 0.73‰). This signature corresponds to purely 

photodegradable/biodegradable compounds, which explains its closeness to the calculated δ13C 

signature of the DIC lost during abiotic mineralization (average δ13CDIC =-30.8‰). The higher limit 

of δ13CNL-DOC refers to the theoretical signature of purely recalcitrant DOC (-20.04 ± 0.42‰), 

which is interestingly similar to the signature of purely marine DOC (≈ -20‰, see below; (Bauer, 

2002)).  

The Congo River was an outlier to the δ13C trend (dark square in Figure 5-5 A), experiencing the 

highest NL-DOC losses of all rivers but displaying relatively enriched values. This outlier could 

result from a relatively high discharge of C4 vascular plant material compared to the other rivers 

(these plant materials have more enriched δ13C values but have similar, optical properties and 

molecular characteristics to those of C3 vascular plants, imparting them with similar 

propensities toward photodegradation). In one of the main tributaries of the Congo River, the 

δ13C signature of total DOC varies greatly between seasons (-30.6 to -25.8‰) depending on 
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hydrological cycle and multiple sources of DOC with contrasting δ13C signatures, including C4 

plants (Bouillon et al., 2012). The relationship of Figure 5-5A might not apply to rivers carrying a 

high load of C4 plant-derived materials. 

The effect of photochemical δ13C-shift when calculating the contribution of terrestrial 

NL-DOC to the oceanic DOC reservoir 

The results of the present study show that the R-DOC pool is variable, always large and in some 

cases the dominant pool of riverine DOC. There was a 3-fold difference in the contribution of R-

DOC amongst rivers, ranging from 18.9% (Congo) to 58.3% (Mekong) of the NL-DOC pool, with a 

weighted average of 31.5 ± 1.5% (Table 5-1, Figure 5-5). Though terrestrial in nature, R-DOC is 

nearly transparent to UV radiation (Figure 5-2) owing to the removal of chromophoric DOC. Our 

irradiation and incubation experiment therefore predicts that nearly 1/3 of the global riverine 

export of terrestrial DOC is undistinguishable from the genuine marine DOC pool using the 

currently used optical and molecular-level methods, which both target the same aromatic, light 

absorbing moieties derived from lignin-like compounds. As R-DOC is the fraction that is most 

likely to resist degradation in oceanic waters (slower turnover than the total riverine DOC pool), 

relying on these tracers to track terrestrial DOC within coastal systems and in the ocean likely 

greatly underestimated the terrestrial component, especially for waters having an extensive 

exposure to sunlight. 

The highest exposure of DOM to sunlight occurs at the mouth of estuaries and river plumes, 

where fresh riverine waters are spread into a thin surface layer or are mixed into denser, more 

translucent saline waters. The exact half-life of riverine CDOM however depends on the depth of 

the photolytic zone (transparency related to particulate load and DOM shielding), as well as the 

time of exposure and the intensity of sunlight. Previous studies report CDOM half-lives at 
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approximately 1.5 yr in irradiated seawater (Miller and Zepp, 1995) or 1000 to 4200 yrs in the 

mixed world ocean (Mopper et al., 1991). Based on these values, the non-refractory component 

of terrestrial DOC is not expected to be immediately photodegraded after its discharge into 

coastal/estuarine waters, but likely succumbs to UV-light or microbial decay during the course of 

the turnover of the oceanic DOC pool; this is consistent with the nearly complete absence of 

terrestrial chromophoric/lignin-containing molecules in the mid-ocean and deep bottom waters 

(Benner et al., 1997; Blough and Del Vecchio, 2002).  

We extrapolate the mass of the recalcitrant R-DOC discharged into the global ocean using the 

size of R-DOC (as a fraction of NL-DOC) measured in our ten large rivers. Firstly, the global 

riverine NL-DOC export ranges from 0.18 to 0.22 x 1015 gC yr-1, assuming that NL-DOC is 72% to 

87% (Obernosterer and Benner, 2004) of the total global riverine DOC export of 0.25 x 1015 gC yr-

1 (Cauwet, 2002). The theoretical maximal degradation of NL-DOC resulting from the 

combination of photobleaching and microbial degradation leaves behind the residual R-DOC 

fraction of 19 to 58% of NL-DOC, therefore we predict that the riverine R-DOC export ranges 

between 0.034 and 0.128 x 1015 gC yr-1. Though it represents only a fraction of the total riverine 

DOC export, this yearly contribution of UV-resistant material equates to more than half the 

estimated turnover of DOC in the ocean (0.1 x 1015 gC yr-1) (Williams and Druffel, 1987).  

Photochemical degradation shifts δ13CDOC signatures toward marine values, thus leading to 

underestimations of the terrestrial component and complicating the use of δ13C-DOC for 

tracking terrigenous DOC in the ocean. The problem is exacerbated by the fact that the δ13C 

signatures of both the marine and terrestrial DOC components of oceanic waters are not well 

constrained (Bauer, 2002). These factors combined preclude the use of a two end-member 
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isotopic mixing model, as shown in Eq. 1, to directly calculate the fraction (f) of terrestrial DOC 

in mid-ocean and deep ocean water samples. 

                     
                    

                Eq.1 

The marine DOC end-member is difficult to measure directly, but can be inferred from the 

predominant C3 fixation pathway in phytoplankton having a theoretical 19‰ fractionation from 

dissolved DIC in the ocean at temperatures of about 20°C (Bauer, 2002; Yu et al., 2008). A 

representative signature of -20‰ has been used to track organic matter sources in coastal 

systems (Bauer, 2002), however the application of a δ13C signature that is representative of the 

global marine DOC pool is confounded by factors such as local ocean temperatures and 

phytoplankton species that influence this value (δ13Cmarine ranges from -17.5 to 25‰; most 

values are between -18 and -22‰) (Fontugne and Duplessy, 1981). Constraining the stable 

isotopic signature of the riverine end-member is also difficult and requires that natural 

variability (Bouillon et al., 2012; Neff et al., 2006; Raymond et al., 2007) and processes that 

potentially shift the δ13C values be adequately considered.  

The importance of photobleaching (both direct photobleaching and bacterial mineralization 

caused by a photochemically induced increase in bioavailability) as a sink for terrestrial DOC in 

the ocean is being increasingly recognized. Appropriately constraining the δ13C signature of the 

terrestrial DOC component that mixes with oceanic DOC is therefore requires us to account for 

the isotopic shifts occurring during the photochemical/microbial removal of a large fraction of 

the riverine DOC pool. Instead of using well-constrained δ13C values for the marine and 

terrestrial end-members (δ13Cmarine and δ13Criverine, respectively), we used a range of realistic 

δ13Cmarine values to assess the effect of photobleaching of riverine DOC on the calculated 

proportion of terrigenous DOC on a range of measured δ13C (δ13Cmeasured) values. Figure 5-6 



 

122 
 

shows the percent difference in the proportion of terrestrial DOC in the a measured DOC sample 

calculated using the δ13C of two possible riverine end-members: 1) the average unaltered 

riverine water (weighted using NL-DOC concentrations and riverine discharge rates, δ13CNL-DOC = -

28.1‰), and 2) the average photobleached riverine DOC (irr-DOC), on average 1.5‰ more 

enriched than the unaltered riverine NL-DOM (δ13Cirr-DOC = -26.6‰). We plot the percent 

difference in the calculated proportion of the terrestrial component using our two possible 

riverine end-members. With theoretical δ13Cmeasured values that vary between -20 and -26‰ and 

three possible δ13Cmarine values (-18, -20 and -22‰), we obtain relative increases in contributions 

ranging between 0 and 22% using the new, photobleached riverine δ13Cirr-DOC value compared to 

the δ13C signature of unaltered riverine water (δ13CNL-DOC). Increases in the % terrigenous 

contribution were most significant when the signatures of the marine and terrestrial end-

members were most alike. It is of note however that these calculations represent maximum 

values as they are based on the complete photobleaching of the CDOM fraction. 
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Figure 5-6: Change in the contribution of terrestrial DOC to total (measured) NL-DOC using a simple two end-
member mixing model over a range of measured δ

13
C signatures for total NL-DOC and three theoretical δ

13
C values 

for the marine DOC end-member. The percentages represent the difference in the calculation of the terrestrial 
contribution (100 x fraction terrestrial from Eq. 1) when using the weighted average riverine end-member δ

13
C 

signature for unaltered riverine water (-28.1 ‰) or photooxidized and microbially degraded riverine water (-26.2 
‰). The range of δ

13
Cmarine end-member values (-18, -20 and -22 ‰) cover the vast majority of possible signatures 

for phytoplankton-derived DOC in the world ocean (Bauer, 2002; Yu et al., 2008) 

Conclusion 

Only about 15% of each river’s NL-DOC discharge would have to be incorporated into the 

oceanic DOC pool to account for a 30% terrestrial contribution (assuming that the turnover time 

of the terrestrial oceanic component of oceanic DOC is similar to that of total oceanic DOC). This 

riverine DOC would most likely be composed of the residual, most recalcitrant fraction of the 

global riverine DOC. This low value is consistent with the exhaustiveness of the photobleaching 

and other removal processes for terrestrial DOM, such as microbial degradation and salt-

induced coagulation/precipitation.  
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The scarceness of lignin and the δ13C range measured for marine DOM have however previously 

precluded a terrestrial DOC component of any significance in the open-ocean (Williams and 

Druffel, 1987) though it is possible that the breadth and extent of chemical reactions that alter 

riverine DOC also affect our ability to molecularly and optically characterize the overall 

composition of DOM and to identify specific terrestrial proxies in photobleached DOM. We 

predict the ultimate removal of approximately 2/3 of the original NL-DOC pool in the sunlit 

waters of ocean margins and mid-ocean regions, which suggests that 1/3 of the riverine pool is 

either undetected in oceanic waters or is in some other way degraded during its travel in 

oceanic waters. This work is instrumental in constraining photochemically-induced shifts in 

δ13CNL-DOC signatures, providing geochemists with critical information for determining the source 

and reactivity of different components of oceanic DOM. Accounting for δ13C shifts also allows 

tracking more efficiently the transfer of organic matter from land to sea, which is a key link in 

the global carbon cycle, providing the most important pathway for ultimate preservation of 

terrigenous production (Hedges, 1992).  

The natural variability in the δ13C signatures of the terrestrial and marine end-members 

precludes the application of simple two end-members isotopic mixing model to calculate the 

proportion of terrestrial DOC in the world ocean. However, such model could be exploited on 

regional scales, in areas where the δ13C signatures of the end-members are well constrained in 

time and space. Along with new proxies (Hopmans et al., 2004), methods (Minor et al., 2012) 

and computer simulations (Belicka and Harvey, 2009) designed to track terrestrial DOM in the 

oceans, our results contribute to the on-going effort to further elucidate the addition and 

removal processes of DOM during the turnover of oceanic waters. More specifically, new 

approaches are needed to detect and quantify the photobleached terrestrial compounds that 

fall outside of the analytical window of optical and molecular-level methods, which account for 
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a large and variable proportion of terrestrial DOC (18 to 58% of the NL-DOC fraction for the 10 

major rivers studied in this work). 
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6. Chapter 6: General conclusions 
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The objective of this project was to demonstrate that strong interactions exist between OM and 

iron in sediments which “refractorizes” a large portion of sedimentary OM and allows its 

preservation. The main focus of our research was to understand the interactions between iron 

and OM, not only in terms of the mechanism of formations (through adsorption of OM onto iron 

oxides or through co-precipitation or coagulation of OM and iron(III) at redox interfaces) but 

also in terms of the nature of the bonds (whether inner-sphere, outer-sphere or electrostatic) 

and the chemical conditions that favor their formation.  

Using a well-established iron reduction method that we have modified to measure concomitant 

losses of iron (ICP-MS) and OM (Elemental Analysis (EA)) from a series of stabilized sediment 

samples from a variety of depositional settings, we established that the association of OM with 

iron was universal and sequesters a quantitatively significant portion of the OM in sediments. 

The operationally-defined iron-associated OM in extracted sediments was 13C-rich and exhibited 

a low atomic C to N ratio, possibly indicating the preferential association of carbohydrate and 

protein-like biomolecules to iron. The large quantity of OC co-extracted with iron, suggests that 

these interactions form through the coagulation or co-precipitation of both elements rather 

than through the simple adsorption of OM onto iron oxides. 

The main criticism from reviewers of this first paper was that, though we could demonstrate a 

quantitatively significant association between OM and iron oxides, we could not ascertain the 

sheltering and preservative effect of these associations for OC, nor could we unambiguously 

prove inner-sphere complexation. In answer to this critique, we designed an incubation 

experiment demonstrating that, over a 250 day period, iron-OM interactions increased the 

longevity and preservation potential of OM in sediment slurries. Like many scientific 

experiments however, this incubation was more successful at demonstrating a number of 
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phenomenon that are peripheral to iron’s preservative effect. For instance, we showed that an 

enrichment in reactive iron oxides enhances the solid-solution partitioning of DOM, causing 

DOM to become immobilized to particle surfaces.  Increased DOM retention decreases its 

mobility and consequently DOM becomes less bioavailable, which possibly enhances carbon 

sequestration in iron-rich sediments. An additional unexpected effect of iron enrichment in our 

sediment slurries was the increase in the mineralization rate of organic nitrogen. This effect was 

contrary to the expected increase in organic nitrogen stability, experienced by organic carbon in 

the same sediments. Accelerated nitrogen losses were explained by Feammox, an alternative 

pathway of nitrogen mineralization in sediments that catalyzes the oxidation of ammonium to 

either nitrate, nitrite or dinitrogen. This process has not yet been demonstrated in unaltered 

marine sediments. 

δ13C-DOC measurements also allowed us to demonstrate an exchange between mineral-bound 

OM and DOM in sediment porewaters. The direct relationship between porewater DOM and 

mineral-bound OM, was postulated almost two decades ago by Hedges and Keil (1995), who 

hypothesized that the large pool of mineral-bound OC exerts a strong control over the 

concentration and composition of the much smaller pool of porewater DOC. The relationship 

between these two pools is however often obscured by complex overriding transport processes 

that lead to the addition or removal of DOC (diffusion, bioirrigation, remineralization) and 

particulate OC (sedimentation, burial, bioturbation, anabolic uptake). In using an algal tracer 

having a depleted carbon isotopic signature relative to the native, mineral-bound OM, we could 

monitor the isotopic composition of DOC in solution. The signature changed from the depleted 

signature of the tracer to a more enriched signature, as a result of the desorption of native DOM 

from the sediment. We were also able to show the preferential immobilization of 13C-enriched 
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DOM through coagulation with iron oxides, corroborating the enriched δ13C of iron-bound OC 

shown in Chapter 2. 

The need for the δ13C-DOC measurements described in our incubation experiment pushed us to 

develop a method of analyzing simply and routinely δ13C-DOC in salty solutions. We hyphenated 

a DOC analyzer to an open-split IRMS using a chemical trap. Using this system, we measured 

δ13C in a wide-range of freshwater and saltwater samples. The use of a chemical trap, rather 

than a cryogenic trap, enabled the facile automation of the DOC-IRMS system, increasing sample 

throughput, reducing user error and improving reproducibility. Higher sample throughput also 

allowed for more thorough calibration of the instrument as well as a better understanding of 

system capabilities.  

In contrast to previously described DOC-IRMS methods, which aimed predominantly at proving 

the feasibility of these measurements, our system is capable of sustaining a large number of 

sample determinations (weekly, about 150 injections of low concentration salty samples, or > 

300 freshwater samples). Until now however, due to the difficulty of δ13C-DOC measurements, 

there have been only limited measurements of δ13C-DOC in saltwater systems. The small 

number of δ13C-DOC measurements done since the 1970s, along with lignin biomarker work, 

point to a nearly purely marine origin for DOM in the open ocean (Bauer, 2002; Druffel et al., 

1992) but increased resolution and precision may better constrain the signature of DOC sources 

and help identify DOC fractionation processes. δ13C-DOC measurements is also a useful 

technique to track carbon in the mixing water bodies of estuaries and river plumes. 

After developing and optimizing the DOC-IRMS system, we were presented with a unique 

opportunity to participate in an international sampling effort (The Big River Project, launched by 

Anssi Vähätalo) to study river systems around the world. We used the DOC-IRMS technique to 
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monitor the isotopic composition of riverine waters during photooxidation with simulated UV 

light. With our system, we were able to show the 13C-enrichment of DOC of continentally-

derived DOC upon photooxidation, which affects the estimation of continentally-derived DOC in 

the ocean using 13C as a tracer.  

Future directions 

Offshoots of the main axis of the project have started to take shape in response to a number of 

unanswered questions. These pertain mainly to the mechanism, formation conditions and 

persistence of iron-OM interactions as well as their influence on carbon cycling in the 

environment. Some areas of interest are highlighted here: 

1. Redox conditions in various depositional environments alter the chemistry of redox-sensitive 

elements such as iron, and their possible associations to OM and other elements. “Extreme” 

depositional settings such as the fluidized mud belts of river deltas as well as sediments 

underlying anoxic bottom waters contain unusually low and unusually high OM contents 

respectively. Deltaic muds can quickly alternate between oxic and anoxic conditions, creating an 

ideal environment for the use of iron oxides as an important electron acceptor. The accelerated 

breakdown of iron-associated OM in these muds may be a by-product of the utilization of iron 

oxides as an OM oxidant, which might in part explain the lower OM content of these sediments.  

In contrast, in oxygen minimum zones, where anoxic bottom waters begin to impinge on the 

sediment bed (such as off the western coast of Mexico), we expect iron to play a more limited 

role in the burial and sequestration of OM. The diagenetic recycling of iron may no longer take 

place in these sediments but in the overlying water column where iron(II) can diffuse to meet 

higher oxygen concentrations. We are interested in the effect that these differences may have 

on the structure of iron(III)-OM complexes. 
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In chapter 2, we also noted that a significant fraction of the OC of a lake sediment was attached 

to iron phases, perhaps demonstrating a difference in the mechanism of interaction between 

iron and OM in lacustrine settings which possibly also reverberates to the greater carbon cycle 

within these systems. 

2. We are also interested in determining the effect of the iron oxide-rich surficial layer of the 

sediment on fluxes of DOC to oceanic bottom waters. Iron and manganese phases display 

distinctly higher affinities for DOC than the phyllosilicate minerals that make up the bulk of the 

mineral matrix of typical sediments. As explained previously, reactive iron and manganese 

oxides are dissolved reductively in anoxic environments and, upon the diffusion of Fe(II) and 

Mn(II) to the oxic layer, are re-precipitated as authigenic phases. The redox cycles of iron and 

manganese have long been recognized to regulate the geochemical behaviour and fluxes of 

phosphate and various trace metals in sediments. We postulate that the oxide-rich surface 

sediment layer plays a similarly important role in buffering the fluxes of DOC from sediments to 

the water column. DOC comprises a complex mixture of fresh and aged/altered organic 

compounds that exhibit a wide diversity in chemical composition and structure, likely reflected 

by an equally wide range of adsorption affinities. The preferential binding of specific DOC 

compound classes to particle surfaces likely leads to molecular and isotopic fractionation of 

DOC. We hope to design a laboratory experiment to demonstrate the fractionation of the 

porewater DOC pool passing through iron and manganese-rich sediments (or co-precipitating 

with iron and manganese oxides) by monitoring the solution composition using a wide-range of 

methods such as high-resolution mass spectrometry, NMR and δ13C-DOC measurements. As 

global estimates of sedimentary DOC fluxes are on the same scale as the total oceanic input of 

riverine DOC, the current paradigm recognizes sediments as an important source of aged, re-

worked and recalcitrant DOC for marine waters. Iron and manganese oxide-rich sediments may 
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modulate sedimentary DOC fluxes, therefore altering a source of DOC that possibly supports a 

large fraction of the oceanic DOC turnover. Similar work conducted by Riedel (2013) 

demonstrated the specific binding of aromatic and pyrogenic DOC compounds at redox 

interfaces of peats and fens. Riedel et al. (2013) explain that a similar effect in surficial 

sediments, would indeed render the oxic-anoxic interface of marine sediment into “a selective 

yet intermediate barriers that limit the flux of DOM to oceanic waters.” 

3. We also hope to probe the macrostructure of OM in a wide range of depositional 

environments using microscopic methods, such as TEM and X-Ray absorption spectroscopic 

techniques. As explained, we expect that the changing redox chemistry of different depositional 

settings like river deltas and sediment underlying high productivity and/or anoxic waters will 

also impart differences in the role that iron plays in the preservation of OM. These differences 

may be reflected by either a change in the quantity of OM that binds to iron phases, or even a 

change in the macrostructure of the Fe-OM phases which may be visible using TEM microscopy 

using the same method described by Ransom et al. (1997). Through X-ray absorption 

spectroscopy (Fe-EXAFS, Fe-XANES), it would be interesting to determine the chemical 

environment of iron atoms (its valence number, type of its neighbours and inter-atomic 

distances) interacting with OM in different environments. This technique may allow us to 

confirm that inner-sphere complexation occurs between iron and OM. Alternatively, a multi-

element approach using soft X-ray techniques (NEXAFS spectra/scanning transmission x-ray 

microscopy) would allow us to determine the speciation of carbon and nitrogen (transitions 

between the molecular orbitals that correspond to different functional groups) co-localized to 

iron at a nanometer resolution. 
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This Appendix presents the details of the method used to measure organic carbon (OC) 

associated with iron (Fe), and the control experiments.  Results from this extraction method are 

shown in Chapter 2 of this thesis. Also listed in two tables are the results for the control 

experiments and the extractions, the detailed calculations used to obtain our estimate of 21.5 ± 

8.6% of global sedimentary OC associated with Fe and finally two graphs showing the 

relationships between δ13C and δ15N, as well as between δ13C and the C/N molar ratio for the Fe-

OM and the non-Fe-OM fractions. 

 

Extraction method and control experiment 
 

The method used in this work was adapted from the work of Mehra and Jackson (1960).  This 

method, hereafter called the CBD method, has been shown to extract all reactive iron oxides 

while being gentle on clay minerals (Poulton and Raiswell, 2005). Briefly, freeze-dried sediment 

samples were added to a solution containing a buffer (sodium bicarbonate, pH 7.3) and a metal 

ion complexing agent (trisodium citrate) in capped 40-mL Teflon tubes and heated to 80 ºC in a 

water bath.  A reducing agent (sodium dithionite) was added to the mixture and maintained at 

80 ºC for 15 min. To determine how much organic carbon (OC) is readily desorbed from the 

sediment, control experiments were carried out in which the samples were extracted under the 

same conditions (solid:solution ratio, temperature, time) as  the reduction treatment, but 

replacing trisodium citrate and sodium dithionite by sodium chloride  at an equivalent ionic 

strength. The reduction treatment and control experiment were carried out on all samples. 

Following both treatments, the supernatant was separated from the solid fraction by 

centrifugation at 3000 g for 10 minutes. The solid fraction was then rinsed three times with 

artificial seawater, and the rinse water and supernatant were combined. The supernatant and 
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rinse water were then acidified and filtered on pre-combusted and acid-rinsed GFF filters 

(nominal pore size of 0.7 μm). Dissolved iron in the supernatant/rinse water solution was 

analyzed by ICP-MS (Agilent), whereas  OC and TN losses (plus changes in stable δ13C and δ15N) 

upon treatment were evaluated by elemental analysis (Eurovector) coupled to a GV Instrument 

Isoprime isotope ratio mass spectrometer by analyzing the freeze-dried solid sample before and 

after treatment while accounting for mass losses during treatment. The following table presents 

the different steps for the reduction method and control experiment used in this work. 

Table 8-1: Conditions used in the reduction method and control experiment 

Reduction method Control experiment 

0.25 g of dry sediment 0.25 g of dry sediment 

+ 15 mL of a 0.27 M trisodium citrate 

(Na3C6H5O7·2H2O; ionic strength = 1.6 M) 

and 0.11 M sodium bicarbonate (NaHCO3) 

+ 15 mL of a 1.6 M sodium chloride 

(NaCl; ionic strength = 1.6 M) and 0.11 M 

sodium bicarbonate (NaHCO3) 

Heat to 80ºC in a water bath Heat to 80ºC in a water bath 

+ 0.25 g sodium dithionite (0.1 M solution 

of Na2S2O4; ionic strength increases by 0.25 

M) 

+ 0.22 g of sodium chloride (0.25 M 

solution of NaCl; ionic strength increases 

by 0.25 M) 

Keep at 80ºC for 15 min Keep at 80ºC for 15 min 

Centrifuge (3000 g, 10 min) and remove 

supernatant 

Centrifuge (3000 g, 10 min) and remove 

supernatant 

Rinse 3 times with artificial seawater and 

remove supernatant by centrifugation 

Rinse 3 times with artificial seawater and 

remove supernatant by centrifugation 

Combine rinse water and supernatant, 

acidify to pH<2 with HCl, and filter on pre-

combusted and acid-rinsed GFF filter 

Combine rinse water and supernatant, 

acidify to pH<2 with HCl, and filter on 

pre-combusted and acid-rinsed GFF filter 
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On average, 7.2 ± 5.4% of the total OC was released from the samples in the control experiment 

(compared to <3% of total OC when extracting the samples with OC-free seawater at room 

temperature). The amount of OC released in the control experiment is significant with respect to 

our estimates of the OC that is intimately associated with Fe (buffered dithionite extraction). 

Consequently, results of the individual control experiments were subtracted from the amount of 

OC released from the dithionite extraction to obtain our Fe-associated OC estimate for each 

sample.  In other words, all the results presented and discussed in the paper are control-

corrected values. The entire data set is now presented below, in Tables 2 (control experiment) 

and 3 (reduction treatment).  

To ensure that trisodium citrate and sodium bicarbonate do not contaminate our samples with 

adventitious OC, which would lead to underestimations of the pool of Fe-associated OC, the 

reacted solid phase was rinsed three times with artificial seawater following the dithionite 

extraction. Bicarbonate contamination is unlikely since all our samples were decarbonated with 

HCl (vapour phase) prior to elemental analysis.  We estimated the contamination from citrate 

using two natural low OC samples (oxidized Madeira turbidite sample containing 0.11%OC [with 

about 50% biogenic calcite and lesser amounts of quartz and clay], and deep-core sediment 

from the St-Lawrence Estuary (Stn 16) containing 0.14%OC [glacial marine clays]), as well as five 

sediments pretreated with hydrogen peroxide (5 successive 24-hour treatments with 30% H2O2 

at 50⁰C, which typically remove >95% of native OC) and covering a broad range of mineralogies 

and native OC concentrations (Equatorial Pacific 9⁰N [OC-poor red ooze enriched in clays and 

iron oxides]; Mexican Margin 303 and 306 [clayey sample enriched in marine OM]; St. Lawrence 

Estuary 23 [iron oxide-rich sample overlain by hypoxic bottom waters and containing a mix of 

terrestrial and marine OC]; Mackenzie River Delta [silt and clay-size marine mud]). Based on the 

measured %OC gains and an assumed 25% loss of native iron-associated OC (removed during 
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the dithionite extraction) for the first two samples, we expect that contamination does not 

exceed more than 0.05-0.08% of the dry sediment weight, which is insignificant for the samples 

in our data set. Furthermore, the isotopic signature of citrate used in this work is -22.0‰. Since 

most of our bulk samples’ OC δ13C compositions are more negative than citrate and become 

more negative after the iron extraction, it is not likely that citrate contributes significantly to the 

post-extraction samples. 

We also assessed the specificity of our method for the fraction of total OC associated with iron 

by running the following experiment. We used a planktonic biomass sample (cultured 

Nannochloropsis cells (44 wt% OC), purchased from Reed Mariculture, CA, USA), and soil litter 

from the boreal forest (42 wt% OC, sampled in the summer of 2008 in the Abitibi area, QC, 

Canada), as representative samples from marine and terrestrial environments, respectively. The 

plankton sample was quickly frozen in liquid nitrogen and thawed three times to break the cells 

open. An aliquot of the sample was filtered through a 0.45-µm GF/F filter to separate the 

soluble material from the solid organic mass which accumulated on the filter. The dry litter 

sample was ground to <1 mm in a mortar, suspended in Milli-Q water, and filtered as above. 

Both solid samples were then extracted with salty and warm water buffered with bicarbonate, 

under the same conditions as in the control experiment (Table 8-1), and then extracted with the 

CBD solution, under the same conditions as the sediment samples. Losses of OC were negligible 

in both cases, accounting for <2% of the initial OC mass. To further address the issue of method 

specificity, we repeated a second time the CDB extraction on three St. Lawrence Estuary 

samples (Stations 25 [more terrestrial], 23 [intermediate] and 20 [more marine]) that had 

already been treated for iron oxide removal. A very minute fraction of additional OC 

(approximately 2% of the sedimentary OC) was lost when extracting iron oxides a second time, 

confirming that the CBD extraction only removes iron-associated OC. 
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Caption for Tables 2 and 3: Tables 2 and 3 (on following pages) show all measured parameters for the 
studied set of sediments. These parameters are meant to highlight isotopic and chemical differences 
between the original sediment samples and the same samples after the control experiment (Table 2), 
and between the original sediment samples and the same samples after the iron extraction (Table 3). 
The initial and final organic carbon (%OC initial, %OC after ext.) and total nitrogen contents (%TN initial, 
%TN after ext.) as well as the carbon (δ

13
C initial, δ

13
C after ext.) and nitrogen (δ

15
N initial, δ

15
N after 

ext.) isotopic compositions of the sediments were measured using an elemental analyzer coupled to an 
isotope ratio mass spectrometer. The %OC and %TN associated with extractable iron (OC-Fe and TN-Fe) 
was calculated from the loss of OC and TN following the extraction. The iron removed during the 
extraction was measured using inductively-coupled plasma mass spectrometry and is expressed in µg of 
iron per gram of dry sediment. Surface area measurements were performed on sediments from which 
organic matter was removed using concentrated hydrogen peroxide as described above. Sulfidic 
sediments are highlighted in red, anoxic and seasonally anoxic in orange, typical continental margin 
sediments bathed by oxic waters in yellow, deltaic and estuarine samples in green and deep-sea 
sediments in blue.
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Table 8-2 

 

Sample depth % OC % OC-H20 δ13C δ13C δ13C % TN % TN-Fe δ15N δ15N δ15N C/N C/N C/N

(cm) before initial after ext. OC-H20 initial initial after ext. TN-H20 initial after ext. OC-H20

Black Sea 0 to 0.5 4.61 2.91 -26.60 -26.18 -40.63 0.34 0.00 1.73 2.53 15.69 15.24

9 to 11 4.21 12.12 -25.58 -25.59 -25.51 0.30 0.00 0.91 1.16 16.16 14.20

Mexican margin 306 0 to 0.5 6.66 1.83 -22.06 -22.12 -18.84 0.84 0.00 9.77 10.41 9.27 9.10

3 to 4 6.98 7.05 -22.03 -22.04 -21.90 0.96 3.33 10.29 10.53 9.01 8.49 8.17 17.97

16 to 19 6.65 9.23 -21.17 -21.25 -20.38 0.91 0.00 10.62 10.37 8.51 7.73

Indian Margin 0 to 3 5.18 4.64 -23.09 -23.11 -22.67 0.76 5.82 8.29 7.16 26.55 7.99 8.08 6.38

Lake Brock 0 to 1 1.18 27.53 -27.96 -27.92 -28.06 0.12 33.62 4.96 4.94 4.99 11.14 12.17 9.13

9 to 11 2.00 19.22 -27.24 -27.32 -26.90 0.22 20.84 5.46 5.78 4.25 10.41 10.62 9.60

Saanish intlet 0 to 20 2.21 7.87 -22.45 -22.52 -20.51 0.34 7.39 9.31 9.24 10.22 7.51 7.47 8.00

Madeira turbidite 7-8-9 0.95 4.45 -21.93 -22.11 -18.07 0.07 0.00 6.25 6.50 15.04 14.38

Mexican margin 305 0 to 0.5 2.82 10.34 -21.50 -21.55 -21.06 0.37 10.21 9.94 11.06 0.10 9.00 8.99 9.11

4 to 5 2.75 10.40 -21.40 -21.60 -19.68 0.41 9.30 10.76 10.90 9.43 7.78 7.69 8.71

22 to 27 2.66 4.24 -21.34 -21.51 -17.51 0.33 0.00 10.17 10.32 9.46 9.06

Mexican margin 304 0 to 0.5 2.36 10.30 -22.27 -22.29 -22.09 0.27 15.28 12.28 12.80 9.42 10.32 10.92 6.95

5 to 6 2.25 8.45 -22.21 -22.41 -20.04 0.30 7.85 12.30 12.55 9.42 8.64 8.59 9.30

19 to 22 2.27 4.09 -22.66 -22.92 -16.57 0.27 0.00 12.26 12.31 9.89 9.49

Arabian Sea 0 to 0.5 1.11 7.39 -21.65 -22.00 -17.26 0.16 0.00 11.40 11.06 8.04 7.44

10 to 12 1.03 1.06 -22.35 -22.41 -16.75 0.13 0.00 9.85 11.28 9.37 9.27

Mexican margin 303 0 to 0.5 1.42 12.47 -21.66 -21.81 -20.61 0.19 12.20 11.53 11.86 9.15 8.84 8.81 9.04

14 to 16 1.44 14.15 -22.16 -22.18 -22.04 0.17 13.07 12.19 12.29 11.52 9.69 9.57 10.50

22 to 27 1.51 8.35 -22.30 -22.77 -17.14 0.17 12.18 11.91 12.19 9.89 10.46 10.92 7.17

Wash Coast 205 11 to 12 2.24 7.14 -22.32 -22.55 -19.44 0.21 10.60 8.61 8.20 12.12 12.20 12.67 8.22

Wash. Coast 215 11 to 12 3.00 0.00 -22.91 -22.68 0.27 0.00 10.12 9.83 12.75 12.75

Wash. Coast 213 11 to 12 2.10 0.00 -23.69 -23.52 0.28 0.00 9.32 9.17 8.72 8.72

St-Lawrence 20 0 to 35 1.36 9.10 -22.55 -22.75 -20.55 0.14 9.05 6.27 6.62 2.75 11.24 11.24 11.30

St-Lawrence Gulf 1.5 to 5 2.13 4.50 -22.40 -22.56 -19.00 0.36 1.12 9.81 9.80 9.98 6.86 6.63 27.66

470 to 500 0.91 8.97 -23.11 -23.05 -23.71 0.11 12.36 9.89 10.14 8.07 9.91 10.30 7.19

Wash. Coast 202 11 to 12 1.33 5.08 -22.02 -21.97 -23.07 0.11 8.12 11.26 11.54 8.01 13.65 14.10 8.54

Wash Coast 204 11 to 12 1.40 0.00 -24.00 -24.13 0.10 3.28 8.29 7.88 20.49 15.76 16.30 0.00

St-Lawrence 23 0 to 35 1.43 6.96 -24.34 -24.60 -20.87 0.13 13.02 4.84 5.34 1.50 12.83 13.72 6.86

Wash Coast 206 11 to 12 1.67 10.29 -21.85 -22.63 -15.04 0.16 8.89 9.49 9.49 9.51 11.99 11.80 13.88

Wash. Coast 203 11 to 12 2.15 9.10 -23.46 -23.62 -21.86 0.28 5.98 8.19 8.75 -0.61 8.96 8.66 13.61

St-Lawrence 25 0 to 35 1.12 7.92 -24.57 -24.62 -23.99 0.09 11.09 4.98 5.48 0.97 13.80 14.29 9.86

Wash. Coast 201 11 to 12 1.14 9.31 -22.87 -22.90 -22.58 0.15 9.47 10.04 11.62 -5.06 8.70 8.71 8.55

Eel iver basin 0 to 1 1.11 8.24 -25.25 -25.42 -23.36 0.10 13.80 6.00 5.12 11.52 12.49 13.30 7.46

15 to 20 0.99 1.42 -25.51 -25.45 -29.68 0.09 1.31 5.75 5.48 26.13 12.92 12.90 14.04

MaKenzie river delta 0 to 1 1.18 5.64 -26.17 -26.70 -17.31 0.19 5.89 2.22 2.92 -8.96 7.35 7.37 7.04

Southern Ocean 8 to 12 0.45 0.00 -23.59 -23.84

Station M 0 to 1 1.39 4.60 -23.50 -23.70 -19.36 0.23 1.68 10.23 10.36 2.94 7.19 6.98 19.64

15 to 20 1.21 7.65 -23.62 -23.92 -20.00 0.18 11.37 10.64 10.94 8.31 7.88 8.21 5.30

Equatorial Pacific 0oN 0 to 0.5 0.27 0.00 -21.56 -22.60

Equatorial Pacific 9oN 10 to 12 0.30 0.00 -22.45 -22.80
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Table 8-3 

Sample depth % OC %OC-Fe δ13C δ13C δ13C % TN % TN-Fe δ15N δ15N δ15N C/N C/N C/N Fe SA OC:Fe

(cm) before initial after ext. Fe-OC initial initial after ext. Fe-TN initial after ext. Fe-OC initial after ext.

μg/g m2/g

Black Sea 0 to 0.5 4.48 24.98 -26.18 -26.48 -25.28 0.34 29.55 2.53 2.77 1.95 15.24 16.23 12.89 1695 30.79

9 to 11 3.70 6.84 -25.59 -26.02 -19.76 0.30 22.04 1.16 1.22 0.95 14.20 16.97 4.40 1000 20.21 36.20 11.80

Mexican margin 306 0 to 0.5 6.54 22.31 -22.12 -22.24 -21.68 0.84 24.84 10.41 10.19 11.09 9.10 9.40 8.17 4018 16.95

3 to 4 6.49 22.83 -22.04 -22.58 -20.20 0.93 31.53 10.53 10.69 10.19 8.17 9.20 5.91 2603 43.17 50.78 26.56

16 to 19 6.04 18.41 -21.25 -21.62 -19.61 0.91 27.43 10.37 10.63 9.66 7.73 8.69 5.19 1642 31.59

Indian Margin 0 to 3 4.94 26.59 -23.11 -23.01 -23.93 0.71 18.52 7.16 8.05 3.26 8.08 8.85 4.72 3519 25.52 32.78 7.08

Lake Brock 0 to 1 0.85 26.41 -27.92 -27.73 -28.45 0.08 18.99 4.94 4.94 4.94 12.17 11.03 17.03 1963 4.23 2.71 5.39

9 to 11 1.61 10.81 -27.32 -26.73 -28.97 0.18 32.53 5.78 5.77 5.80 10.62 11.58 8.62 2500 7.96

Saanish intlet 0 to 20 2.03 28.09 -22.52 -22.72 -22.00 0.32 30.78 9.24 8.75 10.34 7.47 7.76 6.82 5610 4.75

Madeira turbidite 7-8-9 0.90 29.76 -22.11 -22.62 -20.92 0.07 15.81 6.50 6.90 4.39 14.38 11.99 27.06 1314 9.56

Mexican margin 305 0 to 0.5 2.53 12.70 -21.55 -21.81 -19.74 0.33 10.71 11.06 10.46 16.00 8.99 8.79 10.66 4679 3.20

4 to 5 2.46 9.10 -21.60 -22.00 -17.65 0.37 20.82 10.90 10.76 11.43 7.69 8.82 3.36 3781 2.76

22 to 27 2.55 13.00 -21.51 -21.75 -19.91 0.33 27.07 10.32 10.64 9.44 9.06 10.80 4.35 1069 14.48

Mexican margin 304 0 to 0.5 2.12 30.03 -22.29 -22.35 -22.15 0.23 11.25 12.80 12.35 16.37 10.92 8.61 29.17 5800 5.12

5 to 6 2.06 22.31 -22.41 -23.02 -20.29 0.28 34.42 12.55 11.88 13.81 8.59 10.17 5.57 6021 54.44 61.14 3.55

19 to 22 2.18 19.65 -22.92 -23.19 -21.85 0.27 30.89 12.31 12.12 12.75 9.49 11.03 6.03 2513 7.94

Arabian Sea 0 to 0.5 1.02 26.89 -22.00 -22.36 -21.01 0.16 47.78 11.06 10.29 11.90 7.44 10.42 4.19 2799 35.00 33.87 4.59

10 to 12 1.02 18.78 -22.41 -22.89 -20.32 0.13 26.81 11.28 10.40 13.70 9.27 10.29 6.49 1574 28.02 42.82 5.69

Mexican margin 303 0 to 0.5 1.24 18.71 -21.81 -22.89 -17.15 0.16 27.40 11.86 11.63 12.45 8.81 9.87 6.02 9215 1.18

14 to 16 1.23 7.79 -22.18 -22.86 -14.18 0.15 18.18 12.29 11.55 15.58 9.57 10.78 4.10 5229 78.96 74.94 0.86

22 to 27 1.39 12.20 -22.77 -23.42 -18.04 0.15 19.04 12.19 11.83 13.70 10.92 11.84 6.99 2184 3.62

Wash Coast 205 11 to 12 2.08 24.78 -22.55 -24.59 -16.35 0.19 21.65 8.20 7.55 10.53 12.67 12.16 14.50 5090 4.72

Wash. Coast 215 11 to 12 3.00 41.69 -22.68 -24.06 -20.75 0.27 39.11 9.83 10.22 9.21 12.75 12.20 13.59 15400 3.79

Wash. Coast 213 11 to 12 2.10 17.22 -23.52 -24.10 -20.75 0.28 29.04 9.17 8.40 11.06 8.72 10.18 5.17 4509 3.75

St-Lawrence 20 0 to 35 1.24 20.43 -22.75 -22.89 -22.23 0.13 22.17 6.62 6.47 7.15 11.24 11.49 10.36 4059 2.91

St-Lawrence Gulf 1.5 to 5 2.04 18.72 -22.56 -22.57 -22.52 0.36 14.93 9.80 10.37 6.60 6.63 6.33 8.31 5742 3.10

470 to 500 0.83 27.25 -23.05 -23.72 -21.24 0.09 7.78 10.14 9.28 20.37 10.30 8.12 36.06 3605 2.92

Wash. Coast 202 11 to 12 1.27 28.05 -21.97 -22.09 -21.65 0.10 27.23 11.54 11.01 12.96 14.10 13.94 14.53 6230 2.66

Wash Coast 204 11 to 12 1.40 24.15 -24.13 -24.41 -23.27 0.10 23.56 7.88 8.45 6.05 16.30 16.17 16.71 6933 2.28

St-Lawrence 23 0 to 35 1.33 23.63 -24.60 -24.31 -25.54 0.11 19.56 5.34 4.87 7.30 13.72 13.02 16.58 7279 47.21 43.90 2.01

Wash Coast 206 11 to 12 1.50 24.97 -22.63 -23.29 -20.67 0.15 29.21 9.49 9.24 10.09 11.80 12.51 10.09 9178 1.91

Wash. Coast 203 11 to 12 1.96 14.03 -23.62 -23.90 -21.91 0.26 21.33 8.75 8.34 10.28 8.66 9.46 5.70 7091 1.81

St-Lawrence 25 0 to 35 1.03 25.13 -24.62 -24.64 -24.57 0.08 21.72 5.48 5.03 7.09 14.29 13.66 16.53 7053 1.71

Wash. Coast 201 11 to 12 1.03 19.94 -22.90 -23.99 -18.53 0.14 23.01 11.62 9.22 19.67 8.71 9.06 7.55 6235 1.54

Eel iver basin 0 to 1 1.02 12.90 -25.42 -26.03 -21.31 0.09 11.30 5.12 5.83 -0.52 13.30 13.06 15.18 5974 1.03

15 to 20 0.98 16.05 -25.45 -26.23 -21.38 0.09 24.54 5.48 5.41 5.67 12.90 14.35 8.44 4655 1.58

MaKenzie river delta 0 to 1 1.11 7.64 -26.70 -25.91 -36.31 0.18 8.95 2.92 1.54 16.97 7.37 7.47 6.29 20259 0.20

Southern Ocean 8 to 12 0.45 29.00 -23.84 -23.80 -23.95 1380 20.94 18.76 4.40

Station M 0 to 1 1.33 17.13 -23.70 -24.33 -20.69 0.22 24.00 10.36 10.22 10.79 6.98 7.61 4.98 3669 2.89

15 to 20 1.11 11.39 -23.92 -24.20 -21.77 0.16 12.47 10.94 10.76 12.26 8.21 8.31 7.50 2172 2.73

Equatorial Pacific 0oN 0 to 0.5 0.27 34.79 -22.60 -22.60 -22.60 1759 2.49

Equatorial Pacific 9oN 10 to 12 0.30 12.16 -22.80 -23.85 -15.15 4643 90.66 112.20 0.36
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Figure 8-1: Stable C and N isotope compositions of the Fe-associated OC fraction (red diamonds) and the OM 
fraction not associated to iron (blue diamonds), showing a general enrichment in δ

13
C for the Fe-OM fraction in 

most of the sediments. 

 

Figure 8-2: Stable carbon isotope signatures and atomic C/N ratios of the Fe-associated OM fraction (red diamonds) 
and the OM fraction not associated to iron (blue diamonds), showing a general enrichment in δ

13
C and N (relative 

to C) for the Fe-OM fraction. 
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9. Appendix A3 
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This Appendix presents details and data that, due to space constraints, could not be included in 

the original manuscript (Chapter 3). It is separated into three sections: the first section shows 

δ13C DOC time series for replicate vials of each redox and amendment condition, the second 

shows dissolved iron concentration in control vials for each redox condition and the third deals 

with thermodynamic calculations of feammox feasibility in marine sediments. 

1. Time series of δ13C of DOC 

The concentration of the algal tracer in solution decreases throughout the incubation, following 

first order kinetics down to a relatively stable asymptotic value, attained within 30 to 150 days 

of the start of the incubation, depending on redox condition. Final DOC concentrations are given 

in Table 3-1 of the manuscript. Table 3-2 of the manuscript also shows the degradation rate and 

half-life of the DOC, the latter being 2 to 3 times shorter under oxic rather than anaerobic 

conditions. These rate constants are calculated from the decrease in DOC concentrations 

between sampling days, as discussed in the manuscript. 

This section of the supplementary information shows time series of DOC concentrations, 

concomitantly to its δ13C signature. Profiles of replicate vials are arranged firstly by amendment 

condition and secondly by redox condition. Timepoint values for each of the duplicate vials are 

shown as either triangles for the first vials (V1) or squares for the second vials (V2) of each 

condition. For the iron-amended condition, only one vial was measured for each of the three 

redox conditions. All concentrations (in μg mL-1) are represented by white symbols whereas δ13C 

(in ‰) values are shown in black. Background plot colors were modified to indicate the redox 

condition during sampling, either oxic or anoxic, and to highlight trends observed in DOC 

concentration or δ13C upon changes in redox condition. A white background was used for 
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samples taken under oxic conditions, whereas a grey background was used for samples taken 

under anoxic conditions. We outline important trends observed for each amendment condition 

within the corresponding sub-section below. Note that errors on δ13C measurements are slightly 

higher for amendment conditions in which the organic tracer was not added, due to lower DOC 

concentrations. 

OM amended vials 

For all redox conditions of this amendment scenario, δ13C drifts from the depleted signature of 

the tracer (-41.34‰ ± 0.12‰) to a more enriched signature (between -30 and -36‰), 

demonstrating partial degradation, release and desorption of soluble material from the native 

sediment organic matter (δ13C = -24.29 ± 0.10‰) into solution.  

Because of higher DOC degradation rates under oxic conditions, we see a steeper decrease in 

DOC concentrations in oxic vials relative to anoxic vials. Under mixed redox conditions, the 

decomposition of DOC follows a segmented decrease, with slower DOC losses during the initial 

anoxic segment, followed by a sharper drop during oxic subsampling. We do not observe any 

clear trend in DOC concentrations during subsequent shifts in redox condition.  
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Oxic condition 

 

Figure 9-1: The temporal evolution of the DOC concentration (white) and δ
13

C signature (black) for the oxic, OM 
amended scenario. V1 and V2 each represent duplicate vials. 

 

Mixed redox condition 

 

Figure 9-2: The temporal evolution of the DOC concentration (white) and δ
13

C signature (black) for the mixed 
redox, OM amended scenario. Periods appearing with a grey background were anoxic at the time of subsampling 
while those appearing on a white background were subsampled while the vials were maintained under oxic 
conditions. V1 and V2 each represent duplicate vials. 
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Anoxic condition 

 

Figure 9-3: The temporal evolution of the DOC concentration (white) and δ
13

C signature (black) for the anoxic, OM 
amended scenario. V1 and V2 each represent duplicate vials. 

Fe and OM amendment scenario 

DOC concentrations and δ13C profiles are similar for vials that were both iron- & OM-amended 

and those amended only with OM. We see similar degradation profiles, with accentuated 

decomposition upon exposure to oxygen. As discussed in the manuscript, the precipitation of 

iron oxides in the oxic and mixed redox vials of this amendment condition, increases the 

partitioning of DOC from solution onto solid particles, therefore reducing the DOC 

concentrations compared to vials amended with OM only (see Table 3-1 of manuscript). Note 

that there is an initial DOC concentration discrepancy between duplicate vials of the anoxic 

condition of Fe and OM amendment scenario, which is carried over to the following time points. 

The slope of the DOC concentration decrease is however not affected, therefore both plots were 

used to calculate the rate of DOC decomposition (Table 3-2 of manuscript).  

A noteworthy feature of these δ13C-DOC plots is the initial drop in δ13C observed in oxic vials. 

This feature is not observed in vials amended with OM only. We postulate that the decrease in 
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δ13C reflects the preferential absorption and/or coagulation of δ13C-enriched DOC with iron 

oxides, leaving in solution δ13C-depleted DOC. This is consistent with the comparison of solid-

state δ13C signatures of iron-associated versus non-iron-associated OC in marine sediments, 

reported previously (Lalonde et al., 2012). A similar δ13C drop (though not as important) is 

observed upon transitioning between anoxic and oxic conditions in the mixed redox scenario, 

also likely caused by the adsorption and/or coagulation of δ13C-enriched molecules upon 

precipitation of iron oxides. 

Oxic condition 

 

Figure 9-4: The temporal evolution of the DOC concentration (white) and δ
13

C signature (black) for the oxic, Fe and 
OM amended scenario. V1 and V2 each represent duplicate vials. 

 

-45

-40

-35

-30

-25

-20

0

50

100

150

200

250

0 50 100 150 200 250

δ
1

3C
 

[D
O

C
] 

(μ
g/

m
L)

 

Sampling day 

V1 DOC

V2 DOC

V1 δ13C 

V2 δ13C 



 

164 
 

Mixed redox condition 

 

Figure 9-5: The temporal evolution of the DOC concentration (white) and δ
13

C signature (black) for the mixed 
redox, Fe and OM amended scenario. Periods appearing with a grey background were anoxic at the time of 
subsampling while those appearing on a white background were subsampled while the vials were maintained 
under oxic conditions. V1 and V2 each represent duplicate vials. 

 

Anoxic condition 

 

Figure 9-6: The temporal evolution of the DOC concentration (white) and δ
13

C signature (black) for the anoxic, Fe 
and OM amended scenario. V1 and V2 each represent duplicate vials. 
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Control scenario 

DOC concentrations measured in the control scenario are much lower than for the OM-

amended scenarios. Concentrations start at 2 to 4 μg mL-1, increasing progressively during the 

course of the experiment. δ13C values do not seem to follow any obvious pattern in mixed redox 

and anoxic incubations, but become progressively more depleted in oxic vials.  

Oxic condition 

 

Figure 9-7: The temporal evolution of the DOC concentration (white) and δ
13

C signature (black) for the oxic, control 
scenario. V1 and V2 each represent duplicate vials. 
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Mixed Redox condition 

 

Figure 9-8: The temporal evolution of the DOC concentration (white) and δ
13

C signature (black) for the mixed 
redox, control scenario. Periods appearing with a grey background were anoxic at the time of subsampling while 
those appearing on a white background were subsampled while the vials were maintained under oxic conditions. 
V1 and V2 each represent duplicate vials. 

 

Anoxic Condition 

 

Figure 9-9: The temporal evolution of the DOC concentration (white) and δ
13

C signature (black) for the anoxic, 
control scenario. V1 and V2 each represent duplicate vials. 
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Fe amended scenario 

DOC concentration and δ13C profiles are similar for control and iron-amended scenarios. 

Increased partitioning of DOC onto solid particles decreases DOC concentrations, as shown in 

Table 3-1 of the manuscript. 

Oxic condition 

 

Figure 9-10: The temporal evolution of the DOC concentration (white) and δ
13

C signature (black) for the oxic, Fe 
amended scenario. V1 and V2 each represent duplicate vials. 
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Mixed redox condition 

 

Figure 9-11: The temporal evolution of the DOC concentration (white) and δ
13

C signature (black) for the mixed 
redox, Fe amended scenario. Periods appearing with a grey background were anoxic at the time of subsampling 
while those appearing on a white background were subsampled while the vials were maintained under oxic 
conditions. V1 and V2 each represent duplicate vials. 

 

Anoxic Condition 

 

Figure 9-12: The temporal evolution of the DOC concentration (white) and δ
13

C signature (black) for the anoxic, Fe 
scenario. V1 and V2 each represent duplicate vials. 
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2. Iron concentration profiles 

Dissolved iron concentrations were measured in the anoxic control scenarios, in part to verify 

that the anoxic redox conditions were properly maintained throughout the incubation and 

during sampling. Control incubations were connected downstream of all other vials (Figure 1 of 

manuscript). Given the experimental design, these vials would be the first to become oxic due to 

a break in the flow of nitrogen gas used to maintain anoxic conditions. In the aerobic scenarios, 

soluble iron(II) concentrations were below detection limit within one week of the start of the 

incubations (except for one point in the mixed redox condition, which we believe to be a 

method or sampling artifact). In contrast, under the anoxic scenario, there was progressive 

release of dissolved iron from the unamended, natural sediment, to a concentration slightly 

above 1 μg mL-1. Time series of dissolved iron concentrations in the control vials are shown 

below (only the most downstream of the duplicate vials was sampled for this analysis). 

 

Figure 9-13: Soluble Fe
2+

 concentration with time for the unamended control vials in the anoxic, oxic and mixed 
redox scenarios. 
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Dissolved iron(II) concentrations in vials amended with iron(II) chloride were below detection 

within one week following its addition. In reactors maintained under anoxic conditions, iron(II) 

concentrations decreased from 250 μg mL-1 to about 20 μg mL-1 upon the addition of iron(II) 

chloride (Fe and Fe-OM scenarios), most likely in response to the strong affinity of iron(II) for 

sedimentary mineral surfaces (Burdige, 1993), its precipitation as sulfides throughout the 

incubation, as well as its oxidation to iron(III) by electron acceptors other than oxygen, such as 

manganese oxides and nitrate, at the start of the incubation (Magen et al., 2011). Iron(II) 

profiles of iron amended scenarios are shown here: 

 

Figure 9-14: Soluble Fe
2+

 concentration with time for the Fe(II) amended vials in the anoxic, oxic and mixed redox 
scenarios. 

 

It should be noted that dissolved iron was not measured in the OM-amended incubations as 

high DOM concentrations interfere with the complexation iron(II) to ferrozine and the 

generation of the chromophoric product. 
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3. Calculations for thermodynamic feasibility of feammox in marine 

sediments 

Luther III et al. (1997) were first to propose the possible coupling of ammonium oxidation to N2 

through iron oxide reduction, though they state that Fe3+
 catalysis of N2 formation can only 

occur at pH < 6.8 based on pE-pH calculations. Above this pH, (Luther III et al., 1997) state that 

“the reaction between Fe3+ species and NH4
+ to form N2 is thermodynamically unfavorable”. In 

contrast, Yang et al. (2012) note that “… Feammox to N2 using ferrihydrite, a poorly crystalline 

Fe oxide … remains energetically favorable   over a wide pH range”.  The thermodynamic 

feasibility of this reaction in soil systems is outlined in the supplementary information of Yang et 

al. (2012).  

In the following section, we repeat these calculations, using reaction conditions typically found 

in marine sediments. 

Firstly, we reproduced the electrochemical half-reactions D and G featured in Luther (1997) and 

associated log(K) and ΔGo values. We also show the reduction of nitrite to ammonium using 

log(K) values from Stumm and Morgan (1970) (labelled below as equation H): 

Table 9-1: Log(K) and ΔG
o
 values for selected electrochemical half-reactions 

Half reactions: Log (K) ΔGo 
(kJ/mol) 

D) 1/6N2 + 4/3H+ +e- → 1/3NH4
+ + 4.65 -91.12 

G) FeOOH + 3H+ +e- → Fe2+ + 2H20 + 15.99 -20.50 

H) 1/6 NO2
- + 4/3 H+ +e- → 1/6 NH4

+ + 1/3 H2O + 15.14 -86.27 

 

The reduction reaction of iron oxide (equation G) can be coupled to the oxidation of ammonium 

(reverse of equation D and H) by reversing equations D and H and adding them to equation G to 
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yield electrochemical reactions A and B (table below). Log(K) values for the complete 

electrochemical reactions can then be calculated by subtracting Log(K) of D or H from the Log(K) 

of G (as carried out in Luther 1997): 

Table 9-2: Log(K) and ΔG
o
 values for selected electrochemical reactions 

Reactions: Log (K) ΔGo 
(kJ/mol) 

A) FeOOH + 1/3NH4
+ + 5/3H+ → 1/6N2 + Fe2+ + 2H2O + 11.34 -64.62 

B ) FeOOH + 1/6NH4
+ + 5/3H+ → 1/6NO2

- + Fe2+ + 5/3H2O + 0.85 -4.84 

 

Positive Log(K) and negative ΔGo indicate that these reactions are thermodynamically feasible 

when the system is under standard conditions, i.e. at a temperature of  298 K, total pressure of 

1 atmosphere when all solutes are assigned a unit activity. We can calculate ΔG values for the 

reactions under conditions that are more typical of marine sediments using the following 

equation for process A. 

            
[  ]

   [    ] [   ] 

[     ] [   
 ]   [  ]   

 

where R is the gas constant (0.008314 kJ/mol*K) and T is the temperature in K (277 K). An 

activity of 1 is assigned to the solid-phase iron oxide minerals (FeOOH) and water as activities of 

pure solids and liquids are assumed to be equal to unity (Laidler and Meiser, 1999). The 

concentration of N2 was at 0.001 mol/L (as used by Yang et al. 2012), based its aqueous 

solubility. Fe2+ concentrations in oxic sediment porewaters are extremely low since Fe2+ is 

quickly oxidized to Fe3+ and precipitated as iron oxides. We used 0.06nM, the solubility of freshly 

precipitated ferrihydrite in oxic seawater (Raiswell and Canfield, 2012a), for our Fe2+ 

concentration. The equation therefore becomes: 
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[     ]   [        ] [ ] 

[ ] [   
 ]   [  ]   

 

We can isolate the NH4
+ and H+ concentrations from the equation to determine the pH and 

ammonium concentration dependency of the Gibb’s free energy for the oxidation of ammonium 

and iron oxide reduction: 

                        (              
 

 
     

     
 

 
   [  ]) 

                        (              
 

 
     

        ) 

We chose to determine ΔG as a function of both NH4
+ (from 5μM to 300μM) and pH (0 to 14) for 

equation A. Values are displayed in the matrix below: 

Table 9-3: ΔG values as a function of both NH4
+
 concentration and pH for equation A 

 pH NH4
+ 5E-6 10E-6 20E-6 30E-6 50E-6 150E-6 200E-06 300E-06 

↓ (μM) →        

0 -106.8 -107.3 -107.9 -108.2 -108.6 -109.4 -109.6 -109.9 

1 -98.0 -98.5 -99.0 -99.3 -99.7 -100.6 -100.8 -101.1 

2 -89.1 -89.7 -90.2 -90.5 -90.9 -91.7 -92.0 -92.3 

3 -80.3 -80.8 -81.4 -81.7 -82.1 -82.9 -83.1 -83.4 

4 -71.5 -72.0 -72.5 -72.8 -73.2 -74.1 -74.3 -74.6 

5 -62.6 -63.1 -63.7 -64.0 -64.4 -65.2 -65.4 -65.8 

6 -53.8 -54.3 -54.8 -55.2 -55.5 -56.4 -56.6 -56.9 

7 -44.9 -45.5 -46.0 -46.3 -46.7 -47.5 -47.8 -48.1 

8 -36.1 -36.6 -37.2 -37.5 -37.9 -38.7 -38.9 -39.2 

9 -27.3 -27.8 -28.3 -28.6 -29.0 -29.9 -30.1 -30.4 

10 -18.4 -19.0 -19.5 -19.8 -20.2 -21.0 -21.3 -21.6 

11 -9.6 -10.1 -10.6 -11.0 -11.4 -12.2 -12.4 -12.7 

12 -0.7 -1.3 -1.8 -2.1 -2.5 -3.4 -3.6 -3.9 

13 8.1 7.6 7.0 6.7 6.3 5.5 5.3 4.9 

14 16.9 16.4 15.9 15.6 15.2 14.3 14.1 13.8 
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ΔG values highlighted in yellow are not thermodynamically feasible (positive) under conditions 

typically found in sediments. Feammox can theoretically occur under conditions typically 

observed in marine sediment porewaters as the upper pH limit for feammox to N2 using 

ferrihydrite is 13, a value that is well above that of seawater (pH ≈ 8).  

Likewise, we can calculate ΔG for equation B (feammox to NO2
-). Values are displayed in the 

matrix below: 

Table 9-4: ΔG values as a function of both NH4
+
 concentration and pH for equation B 

 pH NH4
+ 5E-6 10E-6 20E-6 30E-6 50E-6 150E-6 200E-06 300E-06 

↓ (μM) →        

0 -52.3 -52.6 -52.9 -53.0 -53.2 -53.6 -53.7 -53.9 

1 -43.5 -43.8 -44.0 -44.2 -44.4 -44.8 -44.9 -45.1 

2 -34.6 -34.9 -35.2 -35.3 -35.5 -36.0 -36.1 -36.2 

3 -25.8 -26.1 -26.3 -26.5 -26.7 -27.1 -27.2 -27.4 

4 -17.0 -17.2 -17.5 -17.7 -17.9 -18.3 -18.4 -18.5 

5 -8.1 -8.4 -8.7 -8.8 -9.0 -9.4 -9.6 -9.7 

6 0.7 0.4 0.2 0.0 -0.2 -0.6 -0.7 -0.9 

7 9.5 9.3 9.0 8.9 8.7 8.2 8.1 8.0 

8 18.4 18.1 17.8 17.7 17.5 17.1 17.0 16.8 

9 27.2 27.0 26.7 26.5 26.3 25.9 25.8 25.6 

10 36.1 35.8 35.5 35.4 35.2 34.7 34.6 34.5 

11 44.9 44.6 44.4 44.2 44.0 43.6 43.5 43.3 

12 53.7 53.5 53.2 53.0 52.8 52.4 52.3 52.2 

13 62.6 62.3 62.0 61.9 61.7 61.3 61.2 61.0 

14 71.4 71.1 70.9 70.7 70.5 70.1 70.0 69.8 

 

This process is not thermodynamically favorable at seawater pH (pH ≈ 8) when ferrihydrite is 

used as a substrate. Nevertheless, it is interesting to consider how the ΔGo of feammox to either 

N2 or NO2
- are affected by the choice of iron oxide substrate. ΔGo for a chemical reaction can be 

calculated from the Gibb’s free energy of formation (ΔGo
f) of all the species involved. For 

example, ΔGo for feammox to N2 (process A) can be calculated from: 
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ΔGo for feammox to NO2
- (process B) can be calculated from: 

    
 

 
        

              
 

 
                      

 

 
    (   
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The ΔGo
f of the iron oxide substrate used by Luther (1997) was -699 kJ/mol; a value that is 

associated to ferrihydrite formation (Stumm and Morgan, 1970). Oxyhydroxides (nominally 

FeOOH), such as ferrihydrite, are generally thought to precipitate first from sediment 

porewaters, and are likely ammonium substrates in feammox. On the other hand, 

oxyhydroxides come in a variety of polymorphs (e.g. ferrihydrite, goethite, lepidocrocite), each 

having different morphologies, particle sizes as well as surface properties (e.g. level of 

hydration, isoelectric point, charge, reactivity.. etc.) (Navrotsky et al., 2008). Each of these 

factors greatly affects the oxyhydroxide’s ΔGo
f which, in turn, influences the thermodynamic 

feasibility of the reaction of interest. For example, the ΔGo
f
 of goethite and lepidocrocite (-490.6 

and -482.7 kJ/mol respectively; Navrotsky et al., 2008) are significantly different from the ΔGo
f of 

ferrihydrite (-699 kJ/mol). Using the ΔGo
f of goethite instead of ferrihydrite changes the ΔGo of 

equation A from -64.62 kJ/mol to -273.02 kJ/mol and ΔGo of equation B from -4.84 kJ/mol to -

213.24 kJ/mol, which makes both reactions thermodynamically feasible at all pH conditions and 

ammonium concentrations encountered in marine sediments. Since nanophases of goethite 

have been identified as the dominant oxyhydroxide phase in lake and marine sediments (Van 

der Zee et al., 2003), it is not unreasonable to use these newly calculated ΔGo values to assess 

the thermodynamic feasibility of feammox in marine sediments. We therefore feel justified in 

stating that it is possible that feammox takes place during our incubation experiments.  

 


