
Automatic Generation of Real-Time Aircraft Simulation

System Configurations

EFRAIM JOSUE LOPEZ SANCHEZ

A Thesis

In The Department Of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements For the

Degree of Master of Applied Science (Electrical and Computer Engineering)

at

Concordia University

Montréal, Québec, Canada

May 2014

© Efraim Josue Lopez Sanchez, 2014

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Efraim Josue Lopez Sanchez

Entitled: “Automatic Generation of Real-Time Aircraft Simulation System

 Configurations”

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

Complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

 __ Chair

 Dr. M. O. Ahmad

 __ Examiner, External

Dr. A. Awasthi (CIISE) To the Program

 __ Examiner

 Dr. S. Abdi

 __ Supervisor

 Dr. A. Hamou-Lhadj

Approved by: ___

 Dr. W. E. Lynch, Chair

 Department of Electrical and Computer Engineering

____________20_____ ___________________________________

 Dr. C. W. Trueman

Interim Dean, Faculty of Engineering

and Computer Science

 iii

ABSTRACT

Building configurations for real-time aircraft simulation systems is a challenging task. It

involves the distribution of the applications among different scheduling processes, bound

to different CPU's, in such a way that the applications' priority and expected execution

order are taken into account.

In this thesis, we report on a study conducted at CAE Inc., a world leading manufacturer

of flight simulation products, in which we have developed an approach to automatically

build configurations. Our approach is based on a greedy algorithm that uses heuristics to

distribute many applications into different partitions in such a way that inter-partition

communication is minimized, the load across partitions is balanced, and each partition is

denoted as a binary tree (the data structure used by the scheduler to run the applications).

The configuration is also constrained by the priority and execution time of the

applications.

When applied to CAE, our approach produces configurations that in most cases

outperform or are similar to those generated by a domain expert.

 iv

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor, Dr.

Abdelwahab Hamou-Lhadj, for his guidance, comprehension and sincere support to

define and develop my own research. He gave me meaningful insights and helped me see

my research from different angles when I needed it the most. He complimented me on

jobs well done and constantly motivated me to pursue excellence. More than anyone else,

his influence has contributed to my research.

Much of this research was conducted at CAE Inc. I would like to thank Patrick

Desrosiers, Martin Tapp, Patricia Gilbert, and many other CAE engineers for their help

and knowledge. They helped me understand the most intricate and amazing details of

real-time aircraft simulation systems. CAE also provided me with the tools and labs that I

needed to evaluate the approach presented in this work. Without CAE support and

involvement, this research could have not been possible.

I would also like to deeply thank CRIAQ (Consortium de recherche et d'innovation en

aérospatiale du Québec), NSERC (Natural Sciences and Engineering Research Council of

Canada), the Faculty of Engineering and Computer Science at Concordia University,

CAE Inc., and Opal-RT for their financial support. This work would not have been

possible without them.

Additionally, I would like to thank all members of the Software Behaviour Analysis

(SBA) Research Lab at Concordia University for their friendship and encouragement.

They brought the perfect atmosphere to combine work and life.

 v

No matter where I go or what I become I will be always infinitely thankful to my parents.

They gave me a life full of values and principles. Dad, from very early you taught me the

importance of family, trust and love. Mom, you taught me to never give up and to follow

my dreams. Every single thing I have achieved in my life is because of you both. I will

never find enough words to tell you how much I love you. Thank you for all your

sacrifices. Thank you for being such perfect parents. Love you!

Last but not least, I would like to express my gratitude to my awesome brother, Efraim

Enmanuel. Thank you for spending tons of hours dealing with bureaucratic procedures in

Venezuela so that I could be in a healthy financial position here in Canada. It made my

life so much easier. I like to thank my oldest brother, Javier, for being a second father. I

know I can always count on you no matter what. Finally, thanks to my sister Sara and my

brother David. We all together make a wonderful family. Thank you all!

 vi

Table of Contents

Chapter 1 Introduction ... 1

1.1 Introduction to CAE’s Simulation System .. 1

1.2 Problem and Motivation .. 2

1.3 Research Contribution ... 5

1.4 Thesis Outline... 5

Chapter 2 Background .. 7

2.1 Simulation Scheduling Mechanism .. 7

2.1.1 Critical and Non-Critical Overruns ... 9

2.1.2 Qualification, Approval and Restricted-Loop ... 10

2.2 Related Work ... 11

2.2.1 Mincut Methods .. 12

2.2.2 Spectral Clustering Methods .. 12

2.2.3 Multi-Level Methods .. 13

2.2.4 Evolutionary Methods .. 14

2.2.5 Discussion ... 15

Chapter 3 Algorithm ... 16

3.1 Overview .. 16

3.2 Objectives and Constraints .. 17

3.3 Algorithm Inputs .. 18

3.3.1 Applications Set.. 18

3.3.2 Categories .. 18

3.3.3 Dependency Graph .. 19

3.3.4 Restricted-Loop .. 20

3.3.5 Number of Desired Partitions / Scheduler Trees ... 21

3.3.6 Number of Scheduler Tree Levels .. 22

3.3.7 Execution Path Real Time Budged (Scheduler Frequency in Hertz) 23

3.3.8 Execution Path Virtual Time Budget .. 23

 vii

3.4 Algorithm Steps .. 24

3.4.1 Placing Critical Applications ... 30

3.4.2 Placing Non-Critical Applications ... 31

3.4.3 Balancing .. 35

Chapter 4 Evaluation .. 46

4.1 Flight Simulator Model (applications, dependencies and restricted-loop) 46

4.2 Configuration Scenarios (Human-based vs. Algorithm-based configurations) 47

4.3 Simulation Scenarios .. 48

4.3.1 Aircraft on Ground ... 48

4.3.2 Aircraft in Air .. 48

4.4 Experiment definitions and data collection process .. 49

4.5 Data results & Analysis... 51

4.5.1 2- Scheduler Configuration, On Ground .. 51

4.5.2 2- Scheduler Configuration, In Air .. 56

4.5.3 3-Scheduler Configuration, On Ground ... 58

4.5.4 3-Scheduler Configuration, In Air ... 62

Chapter 5 Conclusion .. 67

5.1 Research Contributions .. 68

5.2 Future Research Opportunities .. 69

References ... 71

 viii

List of Figures

Figure 1. Multi-Host Simulation ... 8

Figure 2. Scheduler Data Structure .. 9

Figure 3. Algorithm’s general approach ... 16

Figure 4. Registering application procedure (1/2) ... 27

Figure 5. Registering application procedure (2/2) ... 28

Figure 6. Collapsing strategy example ... 33

Figure 7. Scheduler tree load example .. 38

Figure 8. Cost function example .. 39

Figure 9. Best transfer example (1/2) .. 44

Figure 10. Best Transfer Example (2/2) ... 45

Figure 11. Exp: 2-Scheduler (1/2), On Ground. Human-based in Blue; Algorithm-based in Red .. 52

Figure 12. Exp: 2-Scheduler (2/2), On Ground. Human-based in Blue; Algorithm-based in Red. . 53

Figure 13. Exp: 2-Scheduler (1/2), In Air. Human-based in Blue; Algorithm-based in Red 56

Figure 14. Exp: 2-Scheduler (2/2), In Air. Human-based in Blue; Algorithm-based in Red 57

Figure 15. Exp: 3-Scheduler (1/3), On Ground. Human-based in Blue; Algorithm-based in Red .. 59

Figure 16. Exp: 3-Scheduler (2/3), On Ground. Human-based in Blue; Algorithm-based in Red .. 60

Figure 17. Exp: 3-Scheduler (3/3), On Ground. Human-based in Blue; Algorithm-based in Red .. 61

Figure 18. Exp: 3-Scheduler (1/3), In Air. Human-based in Blue; Algorithm-based in Red 63

Figure 19. Exp: 3-Scheduler (2/3), In Air. Human-based in Blue; Algorithm-based in Red 64

Figure 20. Exp: 3-Scheduler (3/3), In Air. Human-based in Blue; Algorithm-based in Red 65

 ix

List of Listings

Listing 1. Pseudo-Code for registering an application in a given tree ... 28

Listing 2. Pseudo-Code for finding an application’s target tree level .. 29

Listing 3. Pseudo-Code for finding the best feasible node for an app in a given tree and level ... 30

Listing 4. Pseudo-Code for the Placing Critical Applications Step ... 31

Listing 5. Pseudo-Code for the Placing Non-Critical Applications Step ... 35

Listing 6. Pseudo-Code for the Balancing Step .. 41

Listing 7. Pseudo-Code for the K-way Ratio-Cut Cost Function ... 41

Listing 8. Pseudo-Code for calculating the total load of a given scheduler tree 41

Listing 9. Pseudo-Code for calculating the outgoing edges weight of a given scheduler tree 42

file:///C:/Users/umroot/Desktop/research/thesis/final_submission/LopezSanchez_MASc_F2014.docx%23_Toc388360366
file:///C:/Users/umroot/Desktop/research/thesis/final_submission/LopezSanchez_MASc_F2014.docx%23_Toc388360367

 x

List of Tables

Table 1. Best Transfer Example .. 44

Table 2. List of Experiments ... 50

Table 3. Avg. execution path time in µs of schedulers in the 2-Schedulers Configuration, On

Ground, experiments ... 55

Table 4. Avg. execution path time in µs of schedulers in the 2-Schedulers Configuration, In Air,

experiments ... 58

Table 5. Avg. execution path time in µs of schedulers in the 3-Schedulers Configuration, On

Ground, experiments ... 62

Table 6. Avg. execution path time in µs of schedulers in the 3-Schedulers Configuration, In Air,

experiments ... 66

 1

Chapter 1 Introduction

1.1 Introduction to CAE’s Simulation System

Flight simulators are essential components in aircraft industry. They are to reproduce, in

a cost-effective way, the behaviour of all the elements of an airplane, its environment and

the interactions between the airplane itself and its environment. To be cost-effective,

most of the real aircraft’s components are recreated by means of real-time simulation

software applications. Flight simulation is used by the industry for a variety of reasons,

the most important one is for pilot training. Other usages of aircraft simulators include

the design and development of aircrafts.

A flight simulator is comprised of two major components: a mechanical part and a

simulation unit. When a pilot interacts with the mechanical part, the latter produces

electronic signals that are sent to the simulation unit through a middleware. The

simulation unit does the required processing, and sends back the output to the mechanical

part through the same middleware.

In this research, we are only concerned about the simulation unit, which in some ways,

acts as the flight simulator’s brain. It encompasses the real-time aircraft simulation

applications that are in charge of replicating the behaviour of every single component of

an aircraft. Some examples of these applications are the flight controls, autopilot, aircraft

dynamics, cockpit, engine, radar, etc.

 2

At CAE, the company on which this research was conducted, the simulation unit is

comprised of many hosts, each of them running one or many schedulers. A scheduler is a

process bound to a given CPU and is used to execute all possible applications registered

in it. Each scheduler uses a binary tree data structure, also known as the scheduler tree,

which provides an integration specialist the ability to define the execution order and

priority of the applications involved in the simulation. Specifically, the scheduler’s data is

represented in an XML file. A CAE integration specialist uses this file to add applications

to the corresponding scheduler tree. Applications could be registered in any scheduler

tree node. During execution, each scheduler systematically traverses its scheduler tree,

going through every tree path, giving each application access to the CPU to execute. The

compendium of all the scheduler tree definitions done by the integration specialist is

referred as the flight simulation configuration files.

1.2 Problem and Motivation

Simulation software is extremely complex by nature. This is usually comprised of

hundreds or thousands of applications that work collaboratively to produce the final

result. In the particular case of real-time aircraft simulation systems, such as the ones

used at CAE, the situation is even more complex. These applications are low-latency

applications that need to meet stringent timing constraints. They also have to execute

with different priorities. This makes in most cases impossible to execute all the

applications in a single processor.

To overcome this situation, it is necessary to partition the full simulation among a

particular number of hosts or processors. Since applications have data dependencies, it is

 3

important to distribute the simulation in different processors in such a way that inter-

processor communication is minimized; while also keeping the total load balanced.

Accomplishing the previous is necessary but not sufficient. For each resulting partition, it

is still indispensable to arrange the applications in a binary tree so that their priorities and

their expected execution orders are taken into account. As mentioned earlier, this binary

tree serves as a configuration file that is used by the scheduler mechanism associated with

each processor running the simulation.

Finding a global solution to the partitioning problem through exhaustive methods is

unfeasible. The order of complexity of this approach would be O(), where n is the

number of applications and k the desired partitions. The combination of all possible

solutions is giving by the Stirling Numbers of the Second Kind [Abramowitz72] (see

equation (1)):

∑ (

)

 , n ≥ k ≥ 1 (1)

This said, a heuristic-based approach is warranted. Aircraft simulation systems can be

easily represented as a graph, where applications are nodes and their data dependencies

are edges. The traditional way to tackle this issue would be through graph partitioning

methods such as spectral clustering [Hagen92] and multi-level methods [Karypis95,

Karypis98, Schloegel02]. However, to our knowledge, none of these techniques address

the given constraints in our domain. They do not deal with must-link constraints, used to

state that two or more nodes having a special relationship must be grouped into the same

partition. This is essential to aircraft simulation systems as the core applications must run

in a deterministic mode, and to ensure this, it is necessary, although not sufficient, that

 4

these applications execute within the boundaries of the same processor, or partition. In

addition, these techniques do not take into account any special semantic associated with

the partitions. In our domain, each partition is abstracted as a binary tree, with finite

capacity, and added semantic for defining applications’ priority and execution order. To

the extent of our knowledge, there is no algorithm in the literature that is designed to

organize applications in a binary tree based on their priorities and expected execution

order.

In the present time, at CAE, it is the responsibility of integration specialists to create

scheduler configurations manually. They rely on knowledge acquired in the past to create

ad-hoc configurations that are only valid for specific airplane models. In some cases,

these configurations differentiate for the same model when they present small variations,

for example, the same flight simulator that is adjusted twice to be sold to two different

airlines. This process is error-prone and time consuming. To overcome this issue, we

propose an approach that is intended to automatically develop configurations for real-

time aircraft simulation systems used at CAE. First, the approach places all critical

applications together in the same binary tree. Next, non-critical applications are placed in

a systematic way. An application is placed in the current scheduler tree as long as it does

not make the scheduler tree exceed its capacity; otherwise, the application is placed in the

next one. Finally, a balancing step based on a generalized ratio-cut objective function

[Yeh92] is used to minimize the dependencies among resulting scheduler trees, while

maximizing the total load added to each of them.

 5

1.3 Research Contribution

The main contributions of this thesis are as follows:

 An algorithm to automatically create configuration files for real-time aircraft

simulation systems.

 The application of the approach to real world systems at CAE.

 The validation of the approach by comparing its effectiveness to configuration

files created by domain experts.

1.4 Thesis Outline

The rest of the thesis is structured as follows:

 In Chapter 2, we present background information. In the first section, we

contextualize CAE aircraft simulation architecture in further detail. We go

through the concept of multi-host simulation architecture and explain how the

scheduling mechanism works. Next, we introduce critical and non-critical

overruns, two metrics used at CAE to evaluate the performance of the simulation.

Then, we briefly comment on the qualification and approval process undergone

by flight simulators, and its implications in the so called Restricted-Loop, a

sequence of execution of the most critical applications. In the second section, we

review the literature and we comment on the most influential works in the graph

partitioning theory, and how they relate to our study.

 In Chapter 3, we propose an algorithm to automatically build configuration files

for real-time aircraft simulation systems. We start the chapter with a brief

 6

overview of it. Next, we explain in detail the multi-objective optimization

problem that this algorithm aims at solving, and all the constraints it is subject to.

The chapter proceeds with a formalization of all the inputs required by the

algorithm. The proposed algorithm is a set of heuristics distributed in 3 major

steps: a) placing critical applications; b) placing non-critical applications; and c)

balancing; in the final section of this chapter we elaborate on these steps in further

detail.

 In Chapter 4, we present an evaluation of our algorithm on CAE’s flight

simulation environment. We present the flight simulation unit technology used to

test our algorithm. The chapter continues with a formal definition of the

configuration (simulation units with 2 and 3 scheduling processes) and simulation

scenarios (aircraft in air, on ground) used to carry out this experimental study. We

ask an Integration Specialist to build the proposed configuration scenarios and we

do the same using the algorithm. In the final section of this chapter we compare

the results obtained by the human being versus the ones obtained with the

algorithm.

 In Chapter 5, we summarize the main contributions of this thesis, and we

comment on future directions.

 7

Chapter 2 Background

2.1 Simulation Scheduling Mechanism

Real-time aircraft simulation systems are comprised of many applications that must run

in a time-constrained fashion. To ensure that all of them run within the time constraint, it

is necessary to spread the simulation among many processors. At CAE, this is performed

following a trial-and-error process in which an integration specialist partitions the N

number of applications into K number of partitions. Next, each group is assigned to a

different scheduler, which will eventually execute the applications. Each scheduler runs

as a separated process, and it is usually bound to a physical CPU in the target PC (see

Figure 1). The drawback of partitioning the simulation is that a synchronization

mechanism over the network must be activated. This adds a significant delay to the

simulation if many applications running in one partition require data of many others

running in a different partition.

 8

Figure 1. Multi-Host Simulation

Clustering the applications among many processors usually does not suffice. In each

resulting partition, it is still necessary to provide a scheduling mechanism to ensure that

applications not only run but also meet their expected execution rate (priority) and their

expected execution order.

The scheduler uses a configuration file that enables an integration specialist to register

the applications in a binary tree data structure (see Figure 2). Each tree node can hold

zero or many applications, and each application is given an execution order within the

node. Ultimately, the scheduler considers each tree path as an execution path. The root

node is the first node of all execution paths, while any leaf node in the binary tree is the

last one of its execution path. Note that there is a one to one relationship between a

scheduler and its associated binary tree. For simplicity, in this work we will call the latter

the scheduler tree.

The scheduler runs in an infinite loop, executing one tree path per cycle and within a time

constraint. This is expressed in Hertz or milliseconds, usually 60Hz=16,7ms. A scheduler

 9

tree of level 5, for example, means that the applications registered in the root node are

executed approximately once every 16ms. Moreover, applications in second, third, fourth

and fifth level are executed approximately once every 32, 64, 128 and 256ms

respectively. It is easy to see that the root node always runs in each cycle, or at the fastest

execution rate. As we will describe later, the root node contains the most critical

applications.

Figure 2. Scheduler Data Structure

2.1.1 Critical and Non-Critical Overruns

In an ordinary scenario, at each scheduler cycle, a high priority thread executes all

applications registered in the critical node of an execution path, this is, the root node.

Likewise, a low priority thread executes the applications registered in the remaining, non-

critical, nodes. If the execution of the critical node does not complete within the time

constraint, the scheduler waits for its finalization before calling the critical node of the

next execution path. This is known as a critical overrun. If the execution of the non-

 10

critical nodes does not complete within the time constraint, the scheduler pre-empts them

and starts the execution of the next execution path. This is known as a non-critical

overrun.

Critical and non-critical overruns can become problematic because they degrade the

simulation and may result in an unusable flight simulator. An adequate configuration is

the one that minimizes the number of overruns.

2.1.2 Qualification, Approval and Restricted-Loop

A flight simulator must be approved by the local national aviation authority. To do so, a

number of tests are executed against the simulator and the results are evaluated based on

a predefined level of criteria. In the particular case of the United States of America, these

qualification criteria and regulations are imposed by the Federal Aviation Administration

(FAA) through 14 CFR Part 60 [FAA06]. One of the key points to evaluate in this

qualification and approval process is the delay time between critical components of an

airplane. In the attachment 2 to Appendix A to Part 60, FFS Objective Tests, Paragraph

#15, we find the title Transport Delay Testing, which literally states the following:

“The transport delay should be measured from control inputs through the interface,

through each of the host computer modules and back through the interface to motion,

flight instrument, and visual systems. The transport delay should not exceed the maximum

allowable interval”

To comply with the aforementioned, an integration specialist must ensure two aspects.

First, all critical applications must run according to a governing execution order. This is

 11

also called the Restricted-Loop. Second, all critical applications must run within the same

processor, hence registered in the same scheduler tree. These two aspects convey to the

required determinism.

The restricted-loop can be defined as a set of ordered categories. Note that each critical

application belongs to exactly one category defined in the loop. The arrangement of the

categories in the loop inherently imposes the final execution order of the critical

applications. Applications belonging to the same category can execute in any order

within the boundaries of their categories. However, they can execute only after

applications in the preceding category complete. Examples of categories defined in the

loop are: flight controls, aircraft dynamics, flight instruments and visual and motion

cueing. For example, to comply with the regulations, all flight control applications must

execute before the aircraft dynamics ones, and visual and motion cueing applications can

execute in parallel right after the aircraft dynamics ones run. It is important to highlight

that non-critical applications are not constrained by this, so they can be placed in any

cluster and scheduler tree node that leads to good results.

2.2 Related Work

Scientific simulation systems can be easily represented as a graph, where applications are

nodes and their relationships are edges. There will be a relationship between two

applications A and B if A produces an output that serves as input for B. The problem of

partitioning a graph has been studied for years. This is an NP-Hard problem, hence

finding a global optimal solution to it is intractable. Many heuristics coming from all

 12

sorts of disciplines in computer science have been suggested. In the next subsections, we

present the state of the art of the most common graph partitioning methods.

2.2.1 Mincut Methods

Many minimum cut algorithms have been proposed. The main idea is to obtain two

partitions A and B out of a graph G such that the edge-cut, the weight of the edges

linking the nodes between A and B, is minimized [Jain10]. One of the first efforts was

proposed by Kernighan et al [Kernighan70], which produces local optima. The idea is to

start with an initial partition and then continuously swap the two applications that reduce

the most the edge-cut between partitions. The problem with this technique is that it

strongly depends on the initial partition. Karger [Karger93] proposed to randomly

collapse the nodes of a graph until only two nodes are left. In general, pure minimum

edge-cut algorithms may easily lead to imbalanced partitions.

2.2.2 Spectral Clustering Methods

Spectral graph theory has been used to address the partitioning problem. Spectral

clustering approaches rely on properties of the entire graph and may yield global optima.

A matrix of pairwise similarities between the nodes is built, from which an adjacency and

a degree matrix are derived, which in turn are used to create the laplacian matrix. Next,

the first K eigenvalues and eigenvectors of the laplacian are computed, where K equals

the number of desired partitions. The final step is to arbitrary choose a clustering

algorithm, e.g. K-means, and produce the K partitions based on the obtained eigenvectors

[Luxburg07]. An imbalanced partition is one of the major drawbacks of the initial

methods following this approach as their objective functions are based on the minimum

 13

cut. Hagen et al. [Hagen92] proposed probably one of the most influential works. They

used the Ratio Cut metric introduced by Wei et al. [Wei89] as objective function, which

favors for more balanced partitions.

Shi et al. [Shi00] used spectral clustering to address the image segmentation problem.

The problem is represented as a weighted undirected graph G=(V,E), where the weight of

the edges w(i,j) is based on a function that measures the similarity between the nodes i

and j. The goal is to partition the graph V into disjoints V1, V2, …, Vi, so that the

similarity between nodes belonging to different groups Vi, Vj is low, and high among

nodes within the same set Vi. To solve this issue, a normalized cut cost function is

proposed. The function calculates the cost as a fraction of the similarity between the

nodes in the graph. This way, partitions with small number of nodes will certainly have a

big cut value, hence discarded. Next, the cost function is minimized by computing a

generalized eigenvalue problem.

2.2.3 Multi-Level Methods

Most recently, multi-level methods have gained some relevance. Without loss of

generality, the partitioning is done in 3 phases [Karypis95]. First, the coarsening phase

permits to reduce the complexity of the graph by collapsing its nodes in an iterative

process. Each iteration results in a graph that is smaller than the previous one. Different

matching criteria are used to merge the nodes, being Random Matching (RM), Heavy

Edge Matching (HEM), Light Edge Matching (LEM) and Heavy Clique Matching

(HCM) the most commons. Secondly, the partitioning phase takes place. The central idea

is to obtain a minimum edge-cut of the coarsest graph such that the total nodes’ weight is

 14

balanced among the resulting partitions. The partition can be done using different

approaches: Spectral Bisection, Combinatorial Methods, or even Geometric Bisection.

Finally, in the uncoarsening phase the coarsest graph is mapped back to the original one.

Karypis et al. [Karypis95] proposed METIS, probably the most influential work

following this philosophy.

2.2.4 Evolutionary Methods

Genetic algorithms, a.k.a GA's, are heuristics based on the theory of natural selection or

evolution that are used in a wide range of fields in computer science to mainly address

optimization and search problems. The population, which are candidate solutions to the

problem, is subject to crossover and mutator operators that make it change over time. In

the next generation of the population, the less fit individuals, among parents and

offspring, are left out based on a fitness function. More specifically, genetic algorithms

have been used to tackle the graph partitioning problem. Maini et al. [Maini94] used

crossover operators that take advantage of domain specific knowledge and information

from history of genetic search. Each individual, or candidate solution, is represented as a

vector in which the i
th

 element is mapped to a specific node in the graph and its value in

the vector matches its target partition. The fitness function considers both the inter-

partition communication cost and the partitions load balance. The crossover operator is

based on a probability vector that is used to select the best genetic material from both

parents, or from the region that is best known to produce higher quality individuals. One

of the drawbacks of genetic algorithms is that they might get stuck in local optimal

solutions. Besides, they require much more time to execute when compared with multi-

 15

level, spectral or mincut methods, and the solution depends on an initial set of individuals

that are randomly generated in most cases.

2.2.5 Discussion

To the extent of our knowledge, there is no graph partitioning method that permits adding

must-link constraints, though this has been already studied in Constrained Clustering

through different implementations of K-means. This is particularly relevant to our

problem since we need to place all critical applications, or the Restricted-Loop, within

the same partition. Additionally, as far as we know, there is no algorithm designed to

arrange components within a binary tree considering constraints such as priorities and

sequence of the components, as well as the total load added to the tree paths.

 16

Chapter 3 Algorithm

3.1 Overview

In this section, we introduce our approach to automatically develop configurations for

real-time aircraft simulation systems. The approach encompasses three steps (see Figure

3).

In the first step, we arrange the critical applications in the same scheduler tree, while

respecting the order of applications based on their categories and the restricted-loop. In

the second step, we place the non-critical applications by filling up the capacity of each

scheduler tree. It is only after one scheduler tree is complete that we move to another

scheduler tree. In the final step, we balance the scheduler trees using a generalized ratio

cut objective function [Yeh92]. The idea is to minimize the dependencies among

scheduler trees while keeping the load of each partition balanced.

Figure 3. Algorithm’s general approach

 17

3.2 Objectives and Constraints

This work intends to solve an optimization problem whose general objectives are:

a) Distribute the applications among hosts while minimizing inter-host dependencies.

b) Distribute the applications among hosts while keeping the load balanced.

c) In each resulting scheduler tree, distribute the applications among execution paths

while keeping the load balanced.

While the first two optimization objectives are tackled in the last step of the algorithm,

the last one is met every time an application is placed in a scheduler tree through

common functionalities.

Note that our work is also constrained by the definition of the restricted-loop exposed in

the previous section:

d) Critical applications must run within the same partition.

e) Critical applications must run by respecting the governing order.

Two additional constraints that apply generally to all applications are also added:

f) Applications should run at their expected execution rate (priority).

g) Total path execution time cannot exceed an establish threshold.

The aforementioned time threshold defines the time constraint for each execution path. If

a scheduler runs at a frequency of 60Hz, this means that a tick is generated approximately

 18

every 16.7ms. Upon receipt of a tick, the scheduler should run the next execution path. In

other words, the current running execution path has 16.7ms to complete.

3.3 Algorithm Inputs

Several inputs must be provided to the algorithm so that its goals are met. This section

formally defines each of them.

3.3.1 Applications Set

These are the applications that run the simulation. Each of them has to be registered in

one scheduler tree. Let’s APPS be the set of non-ordered applications, this is:

APPS = {app1, app2, app3,…, appi} (2)

Where i is said to be the total number of applications to be considered by this algorithm

and appi is a given application in the set. APPS cannot be empty. Each app in APPS is a

3-tuple denoted as:

app = (ExecRate, ExecTime, Category) (3)

ExecRate and ExecTime are the expected execution rate (priority) and the expected

execution time in Hertz. The last one defines the category to which the application is

associated.

3.3.2 Categories

To differentiate between critical and non-critical applications, we check if the

application’s category is in the restricted-loop. In such a case, we say that the application

is critical; otherwise it is non-critical. For instance, an application “A” is linked to a

 19

category “C”. If this category is in the restricted-loop, then “A” is critical. Let CATS be

the set of non-ordered categories, this is:

CATS = {cat1, cat2, cat3, …, cati} (4)

Where i is said to be the total number of categories to be considered by this algorithm and

cati is a given category in the set. CATS cannot be empty as it must contain at least a

default category, which is normally assigned to a non-critical application. Each cat in

CATS is denoted as:

cat = (Name) (5)

Name refers to the unique, and self-descriptive, identifier of the category.

3.3.3 Dependency Graph

Applications share information by exchanging data. For example, an application “B”

depends on “A” if “A” modifies or overwrites the content of a variable “V”, used later by

“B”. For instance, the engine system and the fuel indicator are dependent on each other.

As the engine consumes oil, after each execution it has to overwrite the new available oil

quantity. Then, this new quantity is provided as input to the fuel indicator so that the pilot

can see updated information. If these two applications “A” and “B” happen to run in

different hosts, a synchronization process runs so that the new variable values are

transferred at each scheduler cycle.

We represent these dependencies using a dependency graph, and the algorithm uses it to

minimize this problem. Let DEPENDENCIES be a directed graph, which can be

represented as an ordered pair:

 20

DEPENDENCIES = (S, T) (6)

Where:

 S is a set of vertices, each one representing an application.

 T is a set of ordered pairs of vertices, called edges, weighted, and indicating a

dependency between two applications.

In a directed edge E = (x, y, w), y is said to be dependent on x with weight w.

3.3.4 Restricted-Loop

As mentioned before, this is a list of ordered categories that defines the execution order

of critical applications. In the loop, a given category may be succeeded or preceded by

one or many categories. For instance, the following draws what could be a valid

sequence: AB; AC; BD; CD. In this example, “D” can only execute after “B”

and “C”. Likewise, “B” and “C” can only execute after “A” completes. To formalize this,

let RESTRICTED_LOOP be a directed acyclic graph (DAG), which can be represented

as an ordered pair:

RESTRICTED _LOOP = (V, A) (7)

Where:

 V is a set of vertices, each one representing a category.

 A is a set of ordered pairs of vertices, called edges, non-weighted, indicating a

sequence of execution between two categories.

 21

In a directed edge E = (x, y), y is said to be the successor of x, and x is said to be the

predecessor of y. To traverse this graph, the starting vertex, or root element, must also be

provided.

3.3.5 Number of Desired Partitions / Scheduler Trees

As mentioned in Sections 2.1, there is one scheduler running per CPU, and each

scheduler has an associated scheduler tree data structure. In this sense, the number of

desired partitions equals the number of desired schedulers, hence, the number of required

scheduler trees. Although the user only provides the number of desired partitions, it is

worth mentioning that our algorithm internally represents this as initially empty scheduler

trees. Let SCHEDULERS be a set of non-ordered trees, this is:

SCHEDULERS = {tree1, tree2, tree3, …, treei} (8)

Where i is said to be the total number of schedulers or partitions desired and treei is a

given tree in the set. SCHEDULERS cannot be empty. Each tree in SCHEDULERS is a

directed acyclic graph, which can be represented as an ordered pair:

TREE = (V, A) (9)

Where:

 V is a set of vertices, each one representing an ordered list of applications.

 A is a set of ordered pairs of vertices, called edges, non-weighted, indicating a

relationship between two nodes.

 22

Note that this is a binary tree. In others words, at each level each vertex has exactly two

directed edges, or children, except for the last level where vertices have no children. Each

vertex v in V is denoted as:

VERTEX_APPS = (app1, app2, app3, …, appi) (10)

Where i is said to be the total number of applications registered in the node and appi is a

given application in the node. VERTEX_APPS can be empty. Each app in

VERTEX_APPS is a subset of the previously defined APPS, this is:

VERTEX_APPS ⊆ APPS (11)

Initially, every VERTEX_APPS is empty. As the algorithm advances, applications will

be registered.

3.3.6 Number of Scheduler Tree Levels

An application execution rate is guided by the level of the node which it is registered in.

Nodes belonging to each next level in the tree execute at a double rate than nodes in the

previous level. For example, assuming that the scheduler is running at a frequency of 60

Hertz, this means that the root node, level 1, executes at 60 Hertz. Next nodes, those in

the second level, execute at 30 Hertz, followed by those in level 3 at 15 Hertz, and so on.

Applications registered in the root node execute at the fastest rate. Likewise, applications

registered in any leaf node execute at the slowest rate. Note that a given application is

registered at the fastest closest available execution rate. If the expected execution rate of

an application “A” is 25 Hertz, in the previous example it will be registered in level 2.

 23

The required level of the scheduler trees is provided as input as

SCHEDULER_TREE_LEVELS.

3.3.7 Execution Path Real Time Budged (Scheduler Frequency in Hertz)

As pointed out in Section 2.1, each tree path is considered as an execution path for the

scheduling mechanism. The frequency at which the scheduler is running imposes the real

time constraint. For instance, if a scheduler is running at 60 Hertz, this means that a tick

is generated approximately every 16.7ms. Upon receipt of a tick, the scheduler should

execute the next execution path. In other words, an execution path has 16.7ms to

complete. This input is expressed in Hertz and is denoted as

EXEC_PATH_REAL_BUDGET.

3.3.8 Execution Path Virtual Time Budget

In practice, placing applications in a given execution path until it is at capacity (real time

budged) may not be the best way to proceed. At any time, the operating system may

switch the scheduler (do not confuse with the operating system scheduler) from running

state to ready or waiting state in response to an interrupt or simply to give another process

an opportunity to execute. Due to this, we cannot take the real time budget for granted.

We use instead a percentage of the time budget to constraint the load added to an

execution path by the algorithm. This input is expressed as a real number ∈ [0, 1] and is

denoted as VIRTUAL_TIME_PERC. For example, if the real time budget is 60 Hertz

and this input is 30% (expressed as 0.30), this means that the algorithm will add

approximately up to 5ms load to each execution path:

 24

 ms (12)

3.4 Algorithm Steps

To meet the objective in Section 3.2.C and the general constraints in Sections 3.2.F and

3.2.G, we have developed algorithm functionalities that are used by all the steps. More

specifically, to register an application in a scheduler tree we first ascertain the target

execution level of the application. Considering that the root node is executing at the given

(input) scheduler frequency, and that each next level runs at half rate of its preceding

level (see Sections 2.1 and 3.3.6), the application execution level is given by the

following:

 ⌊

 ⌋ (13)

The floor function is necessary because we need to approximate the application execution

level to the closest fastest available execution level. For instance, let us assume that we

are dealing with a scheduler tree of 3 levels, running at 60Hz, 30Hz, and 15Hz

respectively. In this scenario, the target execution level of an application whose execution

rate is 25Hz would be the second level, running at 30Hz, and not the third one, running at

15Hz. It is important to point out that an application execution rate cannot be higher

than the scheduler frequency. Also note that we add one just to make level base 1. We do

this only for the sake of clarity. Level base 0 may be confusing.

The next step is to find the candidate vertex in the obtained level that can support the load

without affecting the balance of the whole tree. The best candidate vertex is the one that:

 25

 All possible execution paths crossing the vertex have enough room to

accommodate the additional weight associated with the application. No execution

path exceeds the time constraint. We call this a feasible vertex.

 Among all feasible vertices, the total load summation of all paths crossing the

vertex is the minimum.

More formally, the total load added to a vertex is given by:

 ∑

 (14)

Likewise, the total load added to an execution path is given by:

 ∑

 (15)

Then, for each vertex in the previously found tree level, the total load summation of all

paths crossing the vertex is given by:

 ∑

 (16)

Where, ∈

If vertex meets the previous constraint, then vertex is in the feasible set. Lastly, the best

candidate vertex is given by:

 ∈ (17)

Finally, if best_vertex exists, then the given application is registered there at the last

position and TRUE is returned. Otherwise, FALSE is returned.

 26

The next two figures are examples of the procedure used by the algorithm to register an

application. In figure 4 a scheduler tree of 3 levels is depicted. The head, or root, node is

running at 60Hz. Assuming a virtual capacity of 100% of the theoretically real capacity

(see Section 3.3.8), the time constraint of every single execution path is approximately

16.67. This is: 1000s / 60Hz. We want to register an application that needs 12ms to run

and is expected to be executed at a rate of 30Hz. If the root node is running at 60Hz, this

means that the second level is running at 30Hz. That said, the target execution level for

this application would be 2. As depicted in the figure 4, there are 2 available nodes at the

target level. We can see that before trying to register the application there is already an

accumulated load of 5ms in the level 2’s second node. Adding the expected application

load, this is 12ms, to this node would be unfeasible as this would cause the 2 execution

paths crossing the node to have a total load of 17ms, which clearly exceeds the time

budged. As it can be noticed, the only feasible node is the level 2’s first node;

consequently, the application is registered in it. The scenario after registering the

application is depicted in the right part of Figure 4.

 27

Figure 4. Registering application procedure (1/2)

Next, using the same scheduler tree, we want to register an application that needs 3ms to

run and is expected to be executed at a rate of 15Hz. In Figure 5, it is not difficult to see

that the target application execution level is 3, and there are 4 available nodes at this

level. Adding the expected application load to any node in the third level will not cause

any problem. This means that the four execution paths are feasible. In this case the best

candidate node is the one whose summation of all paths crossing it is the minimum.

Registering the application in either first or second node of Level 3 would result in

execution paths with 15ms. On the other hand, registering the application in either level

3’s third or fourth node would result on execution paths with 8ms. It is clear that the best

candidate node is either the third or the fourth. To be systematic, we simply pick the first

one from left to right among the best options. The scenario after registering the

application is depicted in the right part of Figure 5.

 28

Figure 5. Registering application procedure (2/2)

Finally, the pseudo code for the registerApp(schedulerTree,app) function and its related

functions is shown below in listings 1, 2 and 3.

function registerApp(schedulerTree, app):

1: leveltargetDepthLevel(app.ExecRate)

2: vertexbestFeasibleVertex(schedulerTree, level, app.ExecTime)

3: if vertex not NULL then:

4: addAtLast(vertex, app)

5: return TRUE

6: else:

7: return FALSE

8: end if

Listing 1. Pseudo-Code for registering an application in a given tree

 29

function bestFeasibleVertex(schedulerTree, level, execTime):

1: bestVertexNULL

2: for each vertex in VERTICES IN (level) do:

3: feasibleTRUE

4: vertex.G_ExecTimeINFINITY

5: for each path in PATHS CROSSING VERTEX do:

6: if path.ExecTime + execTime > TIME BUDGET then:

7: feasibleFALSE

8: /* NON FEASIBLE VERTEX, BREAK INNER LOOP */

9: else:

10: vertex.G_ExecTimevertex.G_ExecTime+path.ExecTime

11: end if

12: end for

13: if feasible and vertex.G_ExecTime<bestVertex.G_ExecTime then:

14: bestVertexvertex

15: end if

16: end for

function targetDepthLevel(execRate):

1: if execRate > SCHEDULER_FREQUENCY then:

2: /* ERROR, APP CANNOT RUN FASTER THAN SCHEDULER*/

3: end if

4: log2log base 2 (SCHEDULER_FREQUENCY / execRate) + 1

5: targetLevelfloor(log2)

6: if targetLevel <= SCHEDULER_TREE_LEVELS then:

7: return targetLevel

8: else:

9: return SCHEDULER_TREE_LEVELS

10: end if

Listing 2. Pseudo-Code for finding an application’s target tree level

 30

17: return bestVertex

Listing 3. Pseudo-Code for finding the best feasible node for an app in a given tree and level

3.4.1 Placing Critical Applications

The idea behind placing critical applications is simple. We need to ensure that there

exists a scheduler tree with enough room to accommodate all critical applications

together (see Section 3.2.D). As a convention, we call this tree the critical scheduler tree.

Note that the critical scheduler tree could be any of the desired scheduler trees (see

Section 3.3.5). If we were to place critical and non-critical applications in the same step,

it is easy to see that the load carried by non-critical applications may fill up the critical

scheduler tree before having placed all critical applications. Some may argue that it is

still possible to open room for critical applications by moving non-critical ones to a non-

critical scheduler tree. This has particularly two disadvantages:

 It may easily lead to a cumbersome step.

 Ideally, we want to move applications that degrade the performance the least (see

Section 3.2.A). Moving applications among scheduler trees before having the full

picture may lead to wrong local optimal decisions.

To meet the constraint stated in Section 3.2.E, we use the well-known Breadth First

Search algorithm [Cormen09], or just BFS, to traverse the categories of the

RESTRICTED_LOOP (remember that the loop is a DAG and each vertex represents a

category; see sections 2.1.2 and 3.3.4). Using BFS ensures that the algorithm traverses all

the vertices that are at a distance N from the starting vertex of the RESTRICTED_LOOP

before traversing those at a distance N+1. Upon traversing, or visiting a category “C”, the

 31

algorithm queries all the applications in APPS (see Section 3.3.1) whose associated

category matches “C”. Next, all found applications are registered in the critical scheduler

tree. If trying to place a critical application in the critical scheduler tree makes the latter

overflows its capacity, then there is no feasible solution to this problem. In such case, the

algorithm aborts. Otherwise, this step stops when all categories have been processed. The

pseudo code for this step is shown in Listing 4.

function placeCriticalApps(configuration):

1: schedulerTree find critical scheduler tree

2: categoriesBreadthFirstSearchIterator(RESTRICTED_LOOP)

3: for each category in categories do:

4: appsInCategoryAPPS.findAppsByCategory(category)

5: for each app in appsInCategory do:

6: okregisterApp(schedulerTree, app)

7: if ok==FALSE then:

8: abort algorithm

9: end if

10: end for

11: end for

Listing 4. Pseudo-Code for the Placing Critical Applications Step

3.4.2 Placing Non-Critical Applications

At this point all critical applications have been already registered in the critical scheduler

tree. In this step, we apply heuristics aiming at placing highly dependent applications

together in the same scheduler tree. We first need to define an initial pivot application

that is already registered in the current scheduler tree, which initially is the critical

scheduler. The pivot application is subsequently used to find highly related applications

 32

and register them in the current scheduler tree. We could choose any arbitrary application

among the already registered critical applications. However, this would only allow us to

place applications that are relevant to the chosen critical application. Instead, we build a

collapsed version of the DEPENDENCIES graph (see Section 3.3.3). The collapsing

strategy is straightforward. We merge all critical application vertices in

DEPENDENCIES. We call this new vertex the critical set vertex. At this point we are

able to choose this critical set vertex as pivot application. Following this strategy allows

us to find relevant applications to the whole critical set of applications. This is interesting

because in reality the critical set of applications can be seen as a whole unit that cannot

be separated. And even more importantly, we prioritize non-critical applications that

highly influence the behaviour of the whole RESTRICTED_LOOP. An example of the

collapsing strategy is shown in Figure 6. The original dependency graph is depicted on

the left. All critical applications are coloured in red and non-critical ones in white. The

new collapsed version of the dependency graph is depicted on the right. The new

resulting node in red is the critical set vertex.

 33

Figure 6. Collapsing strategy example

Next, we enter in a loop and at each iteration we register the applications in the current

scheduler tree that are not yet marked as registered and are related to the pivot

application. The order in which these applications are registered is given by their

relevance to the pivot application. To measure this relevance we simply query all the

adjacent vertices of the pivot application in the collapsed dependency graph. Then, these

edges are sorted in descending order according to their weights. Note that once an

application is registered, it is marked as so and consequently push onto a queue. When all

applications related to the pivot applications have been processed, a new pivot

application is taken from the queue and this process starts all over again. This is

particularly important because the next pivot application is the next one in order of

relevance to an already registered application. The assumption is ordinary: applications

that are highly relevant to the new pivot application are likely to be highly relevant to one

or many applications already registered in the current tree. If the queue is empty and there

are applications yet to be placed, this means that we were in the presence of a disjoint

group of applications. This situation is exceptional and unlikely to happen. In such cases,

 34

we choose a new pivot application among the not marked ones. The new pivot would be

the one whose sum of inbound and outbound edge weights is the maximum. The reason is

that this application is likely to be the most representative one, and consequently more

likely to pair relevant applications together within the same scheduler tree.

At some point trying to place an application in the current scheduler tree will return

FALSE since it does not have enough room to accommodate it. In such cases we assign

the next available tree in SCHEDULERS (see Section 3.3.5) to the current pointer and

try to register the application again. For example, if current tree is in the 2
nd

 position out

of 3 trees in SCHEDULERS, the next available tree is the one in the 3
rd

 position.

Likewise, if current tree is in the 3
rd

 position, the next available tree is the one in 1
st

position. We keep trying moving to the next available tree until

registerApp(schedulerTree,app) (see section 3.4) returns TRUE or all of the trees in

SCHEDULERS return FALSE. If we cannot register the application in any tree, then the

algorithm cannot find a solution to this problem. In such case it aborts. As the reader can

realize this step does not tackle any objective or constraint. Nonetheless, it prepares a

good initial partition for the next step. The pseudo code for this step is shown in listing 5.

function placeNonCriticalApps():

1: Qcreate a queue

2: currentTree  find critical scheduler tree

3: Gcollapse critical apps in DEPENDENCIES

4: pivotApp  find critical set vertex in G

5: while pivotApp is not NULL do:

6: mark pivotApp as visited

7: edgesG.adjacentEdges(pivotApp)

 35

8: sort edges from highest to lowest weight

9: for each e in edges do:

10: appe.oppositeVertex(pivotApp)

11: if app is visited then:

12: continue with next edge

13: end if

14: okregister app in current or next available scheduler tree

15: if ok==FALSE then do:

16: abort algorithm

17: end if

18: mark app as visited

19: enqueue w onto Q

20: end for

21: pivotAppQ.dequeue()

22: if pivotApp is NULL then:

23: pivotAppfind not marked vertex with highest inbound outbound

edge weight sum in G

24: okregister pivotApp in current or next available scheduler tree

25: if ok==FALSE then do:

26: abort algorithm

27: end if

28: end if

29: end while

Listing 5. Pseudo-Code for the Placing Non-Critical Applications Step

3.4.3 Balancing

In this final step, we intend to minimize the number of dependencies among applications

belonging to different scheduler trees, or the inter-cluster dependencies, while also

balancing the total load of the resulting clusters (see Sections 3.2.A and 3.2.B). To tackle

this optimization problem, in this work we use a generalized k-way ratio-cut cost

 36

function, also called the cluster ratio, introduced by Yeh, Cheng and Lin [Yeh92]. Our

objective is to minimize this cost function:

(∑

)

∑ ∑

 (18)

Where:

 k equals the number of desired partitions, this is: |SCHEDULERS|

 , or , is a given tree in SCHEDULERS

 equals the sum of the weights of directed edges with source in and target

in , for i≠j. Note that we could sum all inbound and outbound edges. In such

case the edge cut (numerator), which is the sum of the weights of the edges in the

cut, would be: (

∑

) + 1

 We add 1 to ensure a minimum cut of 1. A value of 0 cancels the numerator.

The total load of a given scheduler tree is given by the sum of the load added by each of

the applications registered in the tree. Likewise, the total load that an application adds to

its tree is given by its total execution time times the number of paths that intersect the

scheduler tree node which it belongs to. This is:

 ∑ ()

 (19)

Where:

 MAX equals the input SCHEDULER_TREE_LEVELS.

 37

 is the application execution level as defined in the equation (13) in

the section 3.4.

 We add 1 to ensure a minimum weight of 1. A value of 0 cancels the denominator in

the cost function (18), producing an invalid division by 0.

We do not use the application execution time alone to compute the scheduler tree load

due to an important reason. A given application “A” could be registered in one or many

execution paths, and each execution path is independently executed. If this same

application “A” were to be registered, say, in 4 execution paths, “A” would be executed

in 4 different scheduler iterations. We would be ignoring this fact if we were to count the

execution time of “A” only once. To illustrate, assume there are two scheduler trees T1

and T2 of 3 levels each. An application A1 is registered in the root node of T1. And

applications B1, B2, B3, and B4 are registered in each leaf node of T2. All applications

execute in 2ms. In this example all execution paths in T1 and T2 execute in 2ms, even

though only 2ms were added to T1 and 8ms were added to T2. In terms of time required

to execute, T1 and T2 are equivalent. This exemplary scenario is depicted in Figure 7.

 38

Figure 7. Scheduler tree load example

To demonstrate how the cost function leads to good results, let us analyze the example

depicted in Figure 8. For simplicity, all the vertices, each of them corresponding to an

application, have a weight of 5, and all the edges, representing data exchange between

applications, have a weight of 1. For the sake of clarity, in this example we are going to

conceive each partition load as the summation of all its vertices’ load. In the left-most

graph a cut divides it in two partitions, the first one with 6 nodes and a total weight of 30,

and the second one with 2 nodes and total weight of 10. The total edge cut is 3. Using the

formula in equation (18) we obtain a total cost of 0.0133. To reduce this cost, in the

middle graph we draw a new cut that creates two partitions and whose total edge cut is 1.

The first partition’s load is 35, whereas the second one is 5. This time the cost function

favors partitions a bit less balanced than the previous one, but significantly reduces the

data exchange from 3 to 1. Finally, in the right-most graph we choose a new cut that

divides the graph in a perfectly balanced 2 partitions whose weights are 20. The new edge

cut is slightly higher than the previous one, this is 2. It is not difficult to see that this is

the best cut among the 3 options. As expected, the cost function produces its lowest

 39

value with the last cut, this is 0.0075. Clearly, the cost function favors both more

balanced partitions and less inter-partition dependencies, or data exchanges (see Sections

3.2.A and 3.2.B).

Figure 8. Cost function example

Finding a global solution to the optimization problem addressed in this step is unfeasible.

Instead, we have defined an extra heuristic that is very simple, converges fast, and

attempts to find optimal transfers of applications between scheduler trees. We first need

to calculate the cost of the initial partition built by the previous two steps. Next we enter

in an iterative, k-way partitioning process. At each iteration we compute all possible

transfers and try to find the one that reduces the cost the most. A transfer simply means

moving an application from its current scheduler tree to a different scheduler tree. A

transfer is feasible if there is capacity in the target scheduler tree to accommodate the

application. In such case, we calculate the cost of the new partitions in the imaginary case

 40

that this transfer were executed. Next, we find the transfer that minimizes the cost the

most. If this imaginary new cost is actually lower than the current partitions cost, we

execute the transfer permanently and update the new partitions cost. Additionally, we

remove the transferred application from further consideration. Also note that in this step

we only consider non-critical applications for transfers. Involving critical applications

would require considering the RESTRICTED_LOOP. Additionally, critical applications

are unlikely to produce feasible transfers since we must move them all, or none of them.

Yet, should the transfer be feasible, there is no guarantee it will minimize the cost. This

step finishes when there is no more applications to be considered, or when the cost cannot

longer be minimized. The pseudo code for this step is shown below in Listings 6, 7, 8 and

9.

function balancingStep():

1: cost  calculate costFunction()

2: apps find non-critical applications in APPS

3: do:

4: transferscompute 3-tuples (app, sourceSchedulerTree,

targetSchedulerTree) for all possible transfers in apps

5: iteration_costscreate empty list of duple(transfer,cost)

6: for each t in transfers do:

7: if t is feasible then:

8: ccalculate costFunction() if t were executed

9: add duple c,t to iteration_cost

10: end if

11: end for

12: minTransferfind transfer with min cost in iteration_cost

13: if minTransfer is not NULL and minTransfer.cost<cost then:

 41

14: executeTransfer(minTransfer)

15: remove minTransfer.transfer.app from apps

16: costminTransfer.cost

17: end if

18: while (cost is minimized and apps is not empty)

Listing 6. Pseudo-Code for the Balancing Step

function costFunction():

1: edgeWeight1

2: loadProduct1

3: for each tree in SCHEDULERS do:

4: edgeWeight edgeWeight + schedulerTreeOutEdgesWeight(tree):

5: loadProduct  loadProduct * schedulerTreeLoad(tree)

6: end for

7: return edgeWeight / loadProduct

Listing 7. Pseudo-Code for the K-way Ratio-Cut Cost Function

function schedulerTreeLoad(schedulerTree):

1: load1

2: for each vertex in VERTICES IN (schedulerTree) do:

3: for each app in vertex do:

4: level targetDepthLevel(app.ExecRate)

5: appLoadapp.ExecTime*2^(SCHEDULER_TREE_LEVELS–

level)

6: loadload + appLoad

7: end for

8: end for

9: return load

Listing 8. Pseudo-Code for calculating the total load of a given scheduler tree

 42

function schedulerTreeOutEdgesWeight(schedulerTree):

1: outWeight0

2: for each vertex in VERTICES IN (schedulerTree) do:

3: for each app in vertex do:

4: edgesDEPENDENCIES.outEdges(app)

5: for each e in edges do:

6: if e.targetApp is not registered in schedulerTree then:

7: outWeightoutWeight + e.weight

8: end if

9: end for

10: end for

11: end for

12: return outWeight

Listing 9. Pseudo-Code for calculating the outgoing edges weight of a given scheduler tree

Figure 9 depicts a candidate configuration built after running the first two steps of this

algorithm. The example shows 7 applications arranged into 2 partitions. For simplicity,

let us assume that all the data exchange between applications is equal to 1 and all

applications are non-critical. As it can be seen in any of the 2 partitions, some nodes hold

2 or more applications, whereas others hold only 1. This is a perfectly valid scenario in

which the first two steps tried their best to build scheduler trees whose execution paths’

load are balanced. The tree 1 has 4 execution paths, each of them holding a load of either

5 or 6. Likewise, the tree 2 has 4 execution paths, each of them holding a load of 2.

However, the load between the scheduler trees is clearly not balanced. The inter-partition

dependencies is pretty fair, and the only way to reduce it would be moving App 6 and/or

App 7 to Tree 1, which in turn will create more load imbalanced between the partitions.

One of the key concepts introduced by this balancing step is possible transfers. In this

 43

example all applications are transferable as they are all non-critical. Table 1 summarizes

all possible transfers at the first iteration, and the hypothetical new cost if the transfers

were to be executed. The cost of the initial partitions is 0.0170. It should not be

surprising that transfering either App 6 or App 7 to Tree 1 increases this cost to 0.0192.

Likewise, transfering App 2 to Tree 2 is a poor decision that would increase the cost to

0.0231. It slightly improves the load balance at the expense of duplicating the inter-

partition dependencies. It is easy to see that the best options would be transfering either

App 4 or App 5 to Tree 2. They do not augment the data exchange between the partitions

and result in more balanced trees. However, choosing App 5 over App 4 is a better

decision as it produces even more balanced trees. As a result, at the first iteration of this

step the algorithm transfers App 5 to Tree 2 permanently and it is not longer considered

for further transfers in subsequent iterations. Figure 10 shows how the partitions look

after completing the first iteration. The new cost to be minimized is 0.0133.

 44

Figure 9. Best transfer example (1/2)

Application From To Hypothetical new cost

App1 Tree1 Tree2

App2 Tree1 Tree2

App3 Tree1 Tree2

App4 Tree1 Tree2

App5 Tree1 Tree2

App6 Tree2 Tree1

App7 Tree2 Tree1

Table 1. Best Transfer Example

 45

Figure 10. Best Transfer Example (2/2)

 46

Chapter 4 Evaluation

To evaluate the effectiveness of our approach we have conducted a case study at CAE.

We have asked an integration specialist to build the configuration files for a specific

flight simulator model using different inputs (e.g., number of schedulers, applications,

etc.). We have run our algorithm to build configuration files for the same model using the

same input.

Next, we have run the simulation software using both the human-based and algorithm-

based configuration files and compared the results in terms of performance. Performance

is measured using critical and non-critical overruns metrics (see Section 2.1.1). As we

will see later, the outcome of this case study is encouraging. In some cases we were able

to produce configuration files that outperformed those produced by an integration

specialist. In some other cases we produced configuration files that were almost as good

as those built by the technician.

4.1 Flight Simulator Model (applications, dependencies and

restricted-loop)

At CAE, engineers use virtual labs specifically designed to emulate the behaviour of real

mechanical components. As in a normal scenario, there is a middleware used to transport

the information between the mechanical part and the simulation unit. As far as the

simulation unit is concerned, the simulation environment is exactly the same as the real

one. For this experimental study, we have used one virtual lab.

 47

With regard to the simulation software, we use a generic aircraft simulation platform,

comprised of approximately 50 applications and their dependencies (see Sections 3.3.1

and 3.3.2). In the rest of this work we will simply refer to this platform as GAS. Each

application simulates a specific component of the airplane, or its environment. For

instance: air, weather, radar, flight controls, aerodynamic, etc. As the reader may sense,

some of the applications in the GAS Platform form the so called restricted-loop (see

Section 3.3.4). A list of all applications used in this study, their dependencies and the

formal definition of the restricted-loop of the GAS Platform is omitted in this work since

it is extremely sensitive information.

4.2 Configuration Scenarios (Human-based vs. Algorithm-

based configurations)

To carry out this experimental study we have used exactly 2 configuration scenarios:

a. 2-Scheduler Configuration: The 50 applications comprising the GAS Platform are

grouped into 2 scheduler trees.

b. 3-Scheduler Configuration: The 50 applications comprising the GAS Platform are

grouped into 3 scheduler trees.

The abovementioned inherently specifies the number of required scheduler trees (see

section 3.3.5). Note that both configuration scenarios are constrained by the following:

 The scheduler tree depth level is 5 (see section 3.3.6)

 The execution path real time budged is 60 Hertz (see section 3.3.7)

 48

 The execution path virtual time budget is 0.30 (see section 3.3.8)

These configuration scenarios were not arbitrarily designed. We used previous working

configurations and met with CAE engineers to properly define them. Indeed, these

configuration scenarios resemble the common ones used by CAE to setup the flight

simulators they commercialize. Lastly, we have asked an integration specialist to build

both configuration scenarios based on the best of his knowledge. We call them Human-

Based configurations. Likewise, we use our algorithm to build the two of them. We call

them Algorithm-Based configurations.

4.3 Simulation Scenarios

For this case study, we have defined two simulation scenarios: a) Aircraft on ground; b)

Aircraft in air. As a matter of fact, these scenarios were highly suggested by CAE

Engineers. According to them, simply positioning the aircraft on ground and in air is

enough to execute most of the source code execution paths of all the applications

involved in the simulation. Due to this reason, we left out most specific simulation

scenarios such as an aircraft crashing, landing, increasing or decreasing altitude, etc.

4.3.1 Aircraft on Ground

The aircraft is in take-off position. The engine is started and all applications are running.

This scenario allows simulating the very exact moment when the aircraft is just about to

start taking off.

4.3.2 Aircraft in Air

 49

The aircraft is positioned at an altitude of approximately 10.000 feet. All flight related

applications are running. The flight is unfreeze, which means that the aircraft is indeed

moving horizontally in the air. The altitude is freeze. This means that the aircraft cannot

move vertically in the air. As there is no pilot, we need to freeze the altitude, otherwise

the aircraft would crash. Note that many applications are also simulating the environment

in which the aircraft is. Considering the latter, we placed a heavy storm right on top of

the aircraft and a turbulence of around 64%.

4.4 Experiment definitions and data collection process

To conduct this experimental study, we execute every configuration scenario (human-

based and algorithm-based) against each simulation scenario. To make our results more

solid and to avoid false positives, each combination of configuration scenario / simulation

scenario is run exactly tree times. In overall, we have run 24 experiments, this is:

 4 configuration scenarios: 2 human-based and 2 algorithm-based.

 Multiplied by 2 simulation scenarios.

 Multiplied by 3 runs each

A table depicting all possible combinations is shown below:

Id Configuration Simulation Times

C21 2-Scheduler-Human On Ground 3

C22 2- Scheduler -Human In Air 3

C23 2- Scheduler -Algorithm On Ground 3

 50

C24 2- Scheduler -Algorithm In Air 3

C31 3- Scheduler -Human On Ground 3

C32 3- Scheduler -Human In Air 3

C33 3- Scheduler -Algorithm On Ground 3

C34 3- Scheduler -Algorithm In Air 3

Table 2. List of Experiments

Each scheduler is in charge of producing statistical information in the end of every

scheduler cycle for debugging and testing purposes. CAE Engineers use this information

to find problems and to improve the performance of the simulation. For this case study

we are only concerned about critical and non-critical overruns (see section 2.1.1). At

each scheduler iteration, an updated version of the statistics overrides the previous one.

Note that for this study each scheduler of all configuration scenarios is running at 60Hz

(see section 4.2). This means that any scheduler produces a new set of statistics

approximately every 16.7ms. Trying to capture a snapshot of these statistics every

16.7ms is not only impractical, but would also significantly degrade the performance of

the simulation. Taking only 1 snapshot in the end of the simulation would allow us to see

the final performance results, but we would not be able to see the evolution of these

statistics along the simulation. Considering this, we take a snapshot of the statistics

approximately every 25sec; this is, every 1500 scheduler cycles:

SNAPSHOT_TIME = 16,667ms * 1500 iteration = 25000.5 ms/snapshot

We run each experiment for approximately 31mins. This is:

EXPERIMENT_TIME = 31mins = 31 * 60sec * 1000ms = 1860000ms

 51

Based on the previous two definitions it is easy to see that the total number of required

statistical data snapshot per scheduler is 75:

TOTAL_SNAPSHOTS = EXPERIMENT_TIME / SNAPSHOT_TIME

TOTAL_SNAPSHOTS = 1860000ms / 25000.5 ms/snapshot

TOTAL_SNAPSHOTS = 74.39 snapshot

Note that some configurations run with 2 schedulers, while others run with 3 schedulers.

The number of statistical snapshots is proportional to the number of schedulers for a

given configuration. To illustrate, for a given 2-scheduler configuration we collect 150

snapshots, this is, 75 for each scheduler.

4.5 Data results & Analysis

To better understand the results, we carry out this analysis by comparing the outcome of

human-based configurations against algorithm-based ones, both in a 2-Scheduler and a 3-

Scheduler configuration (see section 4.2). As it was previously pointed out, the main goal

of this study is to evaluate the performance of human-based and algorithm-based

configurations in terms of critical and non-critical overruns.

4.5.1 2- Scheduler Configuration, On Ground

Figure 11 shows the average critical and non-critical overruns obtained in the first

scheduler after executing the 3 trials, both for human-based and algorithm-based

configurations, with the aircraft on ground and using a 2-Scheduler configuration. Note

that this first scheduler is used to register all critical applications. Clearly the algorithm-

based configuration (in red) outperformed the human-based one (in blue). In average, the

 52

algorithm-based configuration produced 9.3 and 11 critical and non-critical overruns

respectively. On the other hand, the human-based one caused 15 and 22 critical and non-

critical overruns respectively.

Figure 11. Exp: 2-Scheduler (1/2), On Ground. Human-based in Blue; Algorithm-based in Red

Figure 12 shows the average critical and non-critical overruns obtained in the second

scheduler after executing the 3 trials, both for human-based and algorithm-based

configurations, with the aircraft on ground and using a 2-Scheduler configuration. Once

again, the algorithm-based configuration (in red) surpassed the human-based one (in

blue) when it comes to critical overruns. In average, the algorithm-based configuration

produced 4.6 critical overruns, while the human-based one caused 8.3. However, when it

comes to non-critical overruns both configurations behaved similarly. The algorithm-

based one provoked 9.6 non-critical overruns, while the human-based one generated 9.3.

 53

Figure 12. Exp: 2-Scheduler (2/2), On Ground. Human-based in Blue; Algorithm-based in Red.

The algorithm was capable of producing a better distribution of the applications between

the 2 schedulers, and this is likely the major reason why its configuration produced better

results than that of the human. More specifically, the algorithm added a total load of

51780.00µs (microseconds) to the first scheduler and 51600.01µs to the second one.

Many non-critical applications that were not highly dependent on the critical ones were

placed in the second scheduler. The algorithm produced more balanced partitions when

compare with those of the human-based configuration. More exactly, the human added

70715.46µs to the first scheduler and 32664.64µs to the second one. As the reader can

observe, the first scheduler of the human-based configuration was far more loaded than

the algorithm-based one, therefore producing worse results. However, the second

scheduler of the human-based configuration was considerably less loaded than the

algorithm-based one, but this was not enough to produce significant better results as both

configurations performed similarly. The key to understand this behaviour is not how full

 54

one scheduler is, but how much room there is available to face non-uniform application

execution times. For example, a given application called AircraftDynamics might be

expected to execute in 800µs, but in very few scheduler cycles this execution time might

be way higher, say 1200µs. If such situation happens to many applications in the same

scheduler cycle, this will certainly cause one or more critical or non-critical overruns.

The reason why both human-based and algorithm-based configurations performed

equally in the second scheduler is likely due to the fact that having a scheduler up to 20%

of its capacity is good enough to handle most of the non-uniform execution times. Note

that the real time budget per execution path is 60 Hertz (see section 4.2), the theoretically

capacity of any scheduler in all the experiments is 16666.67µs per execution path

multiplied by 16 possible execution paths, this is 266666.67µs. Based on this, the second

scheduler of the human-based configuration is at 12.24% of its capacity while the

algorithm-based one is at 19.35%.

In reality, distributing the load among partitions is necessary but not sufficient. It is still

indispensable to look at the load distribution among execution paths for every scheduler

tree. In our experiments all scheduler trees count with 16 execution paths. If 15 execution

paths were to be absolutely empty and only one carried with the entire load, this would

certainly be a problematic scheduler tree causing thousands of critical and non-critical

overruns in short time. Table 3 shows the average execution path time in microseconds

for every execution path in both human-based and algorithm-based configuration

schedulers. We have executed any experiment 3 times and collected around 111600 (this

is approximately the number of scheduler cycles in 31mins execution time for a scheduler

running at 60Hertz) statistical samples per execution path, scheduler and experiment trial.

 55

Exec

Path

Human

Sched 1

Algorithm

Sched 1

Human

Sched 2

Algorithm

Sched 2

1 3407.33 2542.00 1379.67 2268.33

2 3284.00 2453.00 1379.67 2454.67

3 3418.00 2452.83 1379.67 2268.33

4 3283.33 2453.33 1379.67 2306.00

5 3585.33 2438.67 1379.67 1837.33

6 3219.33 2438.33 1379.67 2070.67

7 3041.00 2439.00 1379.67 1837.33

8 3041.33 2439.00 1379.67 1879.33

9 3107.67 2451.67 1379.67 2709.33

10 3040.67 2451.67 1379.67 3171.00

11 3839.33 2451.33 1379.67 2709.33

12 3772.67 2451.00 1379.67 2751.00

13 3839.33 2611.33 1379.67 2336.67

14 3772.67 2611.33 1379.67 2628.00

15 4017.00 2611.33 1379.67 2336.67

16 3272.33 2611.33 1379.67 2384.67

AVG 3419.44 2494.20 1379.67 2371.79

STD 0320.85 0071.53 0000.00 0354.94

Table 3. Avg. execution path time in µs of schedulers in the 2-Schedulers Configuration, On Ground,

experiments

As it can be seen, in the first scheduler of the algorithm-based configuration the average

execution path time is not only significantly lower than that of the human-based one, but

also the load is better evenly distributed among all execution paths, this is, a 71.53µs

standard deviation. This is another reason why the first scheduler of the algorithm-based

configuration performed better than the human-based one. As we can also see, in the

second scheduler of the human-based configuration the load was perfectly distributed

among all execution paths. The reason behind this is that the integration specialist placed

all the applications in the scheduler tree’s root node, leaving all the remaining nodes

empty. However, in average the integration specialist used only 8.27% of the capacity of

all execution paths. On the other hand, our algorithm placed more applications in the

second scheduler. In average, it filled the execution paths capacity up to 14.23%, which

 56

produced better results in terms of critical overruns and similar ones in terms of non-

critical overruns. The theoretically execution path capacity of any execution path is

16666.67µs (based on 60Hertz).

4.5.2 2- Scheduler Configuration, In Air

Figure 13 shows the average critical and non-critical overruns obtained in the first

scheduler after executing the 3 trials, both for human-based and algorithm-based

configurations, with the aircraft in air and using a 2-Scheduler configuration. Once again,

algorithm-based configuration (in red) outperformed the human-based one (in blue). In

average, the algorithm-based configuration produced 12 and 13 critical and non-critical

overruns respectively. On the other hand, the human-based one caused 20.67 and 29.67

critical and non-critical overruns respectively.

Figure 13. Exp: 2-Scheduler (1/2), In Air. Human-based in Blue; Algorithm-based in Red

 57

Likewise, Figure 14 shows the results obtained in the second scheduler for the same

experiments. As for the second scheduler in the previous subsection, the algorithm-based

configuration (in red) surpassed the human-based one (in blue) when it comes to critical

overruns. In average, the algorithm-based configuration produced 6 critical overruns,

while the human-based one caused 12.67. Additionally, both set of configurations

produced in average equal number of non-critical overruns, this is 12.67. The reasons

why the algorithm-based configuration clearly outperformed the human-based

configurations are exactly the same reasons pointed out in the previous subsection. These

are, the total load was better and evenly distributed among the partitions, and even more,

very well distributed among all the execution paths of the two scheduler trees.

Figure 14. Exp: 2-Scheduler (2/2), In Air. Human-based in Blue; Algorithm-based in Red

Table 4 shows the average execution path time in microseconds for every execution path

in both human-based and algorithm-based configuration schedulers. As for the previous

 58

experiments, we have executed any experiment 3 times and collected around 111600

statistical samples per execution path, scheduler and experiment trial.

Exec

Path

Human

Sched 1

Algorithm

Sched 1

Human

Sched 2

Algorithm

Sched 2

1 4694.33 3619.67 1962.33 2455.00

2 4549.67 3532.33 1962.33 2687.33

3 4691.33 3532.00 1962.33 2455.00

4 4549.33 3531.67 1962.33 2498.67

5 5337.67 3501.33 1962.33 2006.67

6 4717.33 3501.33 1962.33 2234.67

7 4862.33 3501.00 1962.33 2006.67

8 4717.33 3501.33 1962.33 2045.00

9 4309.67 3801.67 1962.33 2920.67

10 4309.67 3802.67 1962.33 3366.33

11 4380.33 3801.67 1962.33 2920.67

12 4309.33 3802.67 1962.33 2983.00

13 5236.67 3677.33 1962.33 2643.67

14 5162.67 3677.33 1962.33 2972.33

15 5444.33 3677.00 1962.33 2643.67

16 5162.33 3677.33 1962.33 2703.33

AVG 4777.15 3633.65 1962.33 2596.42

STD 0371.91 0069.23 0000.00 0113.48

Table 4. Avg. execution path time in µs of schedulers in the 2-Schedulers Configuration, In Air,

experiments

4.5.3 3-Scheduler Configuration, On Ground

The following three charts show the average critical and non-critical overruns generated

in the three schedulers after executing the 3 trials, both for human-based (in blue) and

algorithm-based (in red) configurations with the aircraft on ground. Note that the first

scheduler is used to register all critical applications. With regard to the first, critical,

scheduler, once again the algorithm-based configuration outperformed the human-based

one (see Figure 15). In average, the algorithm-based configuration produced 16 and 16.3

critical and non-critical overruns respectively. On the other hand, the human-based one

 59

caused 21.67 and 26 critical and non-critical overruns respectively. These results are not

surprising and the most likely reasons for this behaviour are the same ones pointed out in

the previous subsections: when comparing to the human, the algorithm was able to assign

less load to the first scheduler and to better distribute the load among all the scheduler

execution paths.

Figure 15. Exp: 3-Scheduler (1/3), On Ground. Human-based in Blue; Algorithm-based in Red

An interesting outcome of these experiments is observed in the second and third

schedulers. In both of them, the human-based configuration clearly performed much

better than its algorithm-based counterpart. In the second scheduler, the human-based

configuration generated in average 8 and 8.3 critical and non-critical overruns

respectively, while the algorithm-based one produced 12.3 and 20.67 (see Figure 16).

Similarly, in the third scheduler, the human-based configuration caused in average 2.67

and 9 critical and non-critical overruns, while the algorithm-based one generated 4 and

 60

20.3 (see Figure 17). Special attention must be paid to the third scheduler, as this was

bound to a shared CPU. Logically, the integration specialist posed almost no load on it,

registering only one application in it, the flight management guidance system, which in

average needed only 77.67µs to execute in all execution paths. The algorithm is not

aware of this fact, and distributes the load among the schedulers as if they were all

equally free. In average, the third scheduler’s execution paths needed 1059.88µs to

execute (see table 5).

Figure 16. Exp: 3-Scheduler (2/3), On Ground. Human-based in Blue; Algorithm-based in Red

 61

Figure 17. Exp: 3-Scheduler (3/3), On Ground. Human-based in Blue; Algorithm-based in Red

Table 5 shows the average execution path time in microseconds for every execution path

in both human-based and algorithm-based configuration schedulers. As for the previous

experiments, we have executed any experiment 3 times and collected around 111600

statistical samples per execution path, scheduler and experiment trial.

Exec

Path

Human

Sched 1

Algorithm

Sched 1

Human

Sched 2

Algorithm

Sched 2

Human

Sched 3

Algorithm

Sched 3

1 3458.00 2325.67 1341.00 1351.67 0077.67 0979.33

2 3333.67 2326.00 1341.00 1351.67 0077.67 1204.67

3 3472.33 2326.33 1341.00 1351.67 0077.67 0979.33

4 3333.33 2326.00 1341.00 1429.33 0077.67 1017.00

5 3948.00 2326.00 1341.00 1567.33 0077.67 0519.00

6 3270.00 2326.00 1341.00 1567.33 0077.67 0743.00

7 3416.67 2326.67 1341.00 1842.33 0077.67 0519.00

8 3269.67 2327.00 1341.00 1842.33 0077.67 0553.33

9 3110.33 2451.67 1341.00 1465.00 0077.67 1382.00

10 3110.00 2451.67 1341.00 1465.00 0077.67 1830.33

11 3177.00 2451.33 1341.00 1465.00 0077.67 1382.00

12 3110.00 2451.67 1341.00 1465.00 0077.67 1417.67

13 3909.00 2395.67 1341.00 1504.33 0077.67 1031.33

 62

14 3840.00 2395.67 1341.00 1504.33 0077.67 1287.33

15 4088.33 2395.33 1341.00 1504.33 0077.67 1031.33

16 3840.33 2395.67 1341.00 1504.33 0077.67 1081.33

AVG 3480.42 2374.90 1341.00 1511.31 0077.67 1059.88

STD 0323.13 0033.48 0000.00 0071.96 0000.00 0092.12

Table 5. Avg. execution path time in µs of schedulers in the 3-Schedulers Configuration, On Ground,

experiments

4.5.4 3-Scheduler Configuration, In Air

The following thee charts show the average critical and non-critical overruns generated in

the three schedulers after executing the 3 trials, both for human-based (in blue) and

algorithm-based (in red) configurations with the aircraft in air. As in the previous 3-

scheduler experiments, the human-based configuration clearly outperformed the

algorithm-based one. One of the most interesting results is produced in the first scheduler

(see Figure 18), in which the human-based configuration caused in average 14 critical

overruns, while the algorithm-based one produced 19.3. In terms of non-critical overruns,

both configurations performed similarly producing in average 21 per experiment. This

was the only case in which the human was capable of producing better results in the first,

critical, scheduler. The average execution time of all execution paths for the algorithm-

based and human-based configurations were 3509.08µs and 4838.46µs respectively.

Even more, the algorithm was capable of better distributing the load among all execution

paths. In average, the execution time standard deviations of all execution paths for the

algorithm-based and human-based configurations were 64.18µs and 369.50µs

respectively. Yet, the human was able of producing better results. An in-depth analysis

shows an irregular behaviour in the algorithm experiment first trial. In approximately

30sec, from the snapshot 53 to the 54, the total number of critical overruns went from 17

to 30, an increase of 76.47%. At the end, this trial alone caused 36 critical overruns,

 63

while the others two generated 8 and 14. We believed this abnormal behaviour might

have been caused by non-simulation related components or factors. For example, the

operating system scheduler mechanism could have taken the CPU from the simulation

process for an unusual, long period of time.

Figure 18. Exp: 3-Scheduler (1/3), In Air. Human-based in Blue; Algorithm-based in Red

The second scheduler also shows an interesting result (see Figure 19). In average, the

algorithm-based configuration caused 8.7 and 21 critical and non-critical overruns

respectively, while the human-based one generated 12.67 and 13.67. The average

execution time of all execution paths for the algorithm and human-based configurations

were 1655.27µs and 1393.33µs respectively. The human placed the entire load in the

critical node, which means that the execution time standard deviation of all execution

paths equaled to 0µs, while the algorithm-based one equaled to 157.33µs. Even though

 64

the human-based configuration caused less non-critical overruns, the algorithm-based one

performed much better as it produced less critical overruns. The final and third scheduler

shows results not far different from those of the previous experiments in section 4.5.3

(see Figure 20). The human placed almost no load in it, probably knowing in advance

that the CPU was shared with another process. The algorithm is not aware of this fact and

tried to balance the load among all the schedulers. This resulted in a far more loaded third

scheduler when compared with the human-based one. This is likely the reason why the

latter produced better results. In average, the algorithm-based configuration caused 11

and 22.67 critical and non-critical overruns, while the human-based one generated 7.67

and 12.67.

Figure 19. Exp: 3-Scheduler (2/3), In Air. Human-based in Blue; Algorithm-based in Red

 65

Figure 20. Exp: 3-Scheduler (3/3), In Air. Human-based in Blue; Algorithm-based in Red

Table 6 shows the average execution path time in microseconds for every execution path

in both human-based and algorithm-based configuration schedulers. As for the previous

experiments, we have executed any experiment 3 times and collected around 111600

statistical samples per execution path, scheduler and experiment trial.

Exec

Path

Human

Sched 1

Algorithm

Sched 1

Human

Sched 2

Algorithm

Sched 2

Human

Sched 3

Algorithm

Sched 3

1 4752.67 3453.00 1393.33 1683.67 0583.00 1631.33

2 4604.67 3453.00 1393.33 1683.67 0583.00 1879.00

3 4745.00 3452.67 1393.33 1683.67 0583.00 1631.33

4 4605.00 3452.67 1393.33 1774.67 0583.00 1675.33

5 5398.00 3448.33 1393.33 1628.67 0583.00 1177.00

6 4777.33 3448.00 1393.33 1628.67 0583.00 1404.67

7 4926.33 3448.00 1393.33 2026.00 0583.00 1177.00

8 4776.67 3448.33 1393.33 2026.00 0583.00 1214.33

9 4379.00 3604.67 1393.33 1523.00 0583.00 2050.33

10 4379.00 3604.67 1393.33 1523.00 0583.00 2505.33

11 4447.33 3604.67 1393.33 1523.00 0583.00 2050.33

12 4379.00 3604.67 1393.33 1523.00 0583.00 2112.33

13 5297.67 3530.67 1393.33 1564.33 0583.00 1805.67

14 5224.67 3530.67 1393.33 1564.33 0583.00 2072.33

 66

15 5498.33 3530.67 1393.33 1564.33 0583.00 1805.67

16 5224.67 3530.67 1393.33 1564.33 0583.00 1857.33

AVG 4838.46 3509.08 1393.33 1655.27 0583.00 1753.08

STD 0369.50 0064.18 0000.00 0157.32 0000.00 0363.74

Table 6. Avg. execution path time in µs of schedulers in the 3-Schedulers Configuration, In Air,

experiments

 67

Chapter 5 Conclusion

Generating configuration scenarios for the real-time aircraft simulation systems used at

CAE, such as flight simulators, is a complex process. A configuration refers to the

distribution of the execution of all applications comprising these systems among different

processors. To do this, applications are arranged into binary trees, also called scheduler

trees, which in turn are individually provided as input to schedulers. A scheduler, which

is bound to a CPU, traverses its associated scheduler tree to give each application

registered in it an opportunity to execute. At CAE, the task of building configuration files

is performed by an integration specialist who relies on knowledge acquired in the past to

build configurations that are valid only for a particular flight simulator.

To properly build a configuration, an integration specialist must take into account several

restraints, such as applications' execution order, priority, and stringent time constraint.

Applications have dependencies in the form of data exchange. In an ideal configuration,

dependent applications are grouped together so that inter-processor communication is

minimized, while the total load among the processors is balanced. This process is not

only complex, but error-prone and time consuming. That said, the availability of an

approach to automatically build configurations for flight simulators could significantly

reduce the cost and time associated to this task.

In this thesis, our contribution is an approach that encompasses several steps and

heuristics to automatically build configuration files for real-time aircraft simulation

systems. A general overview of this contribution is presented in section 5.1. Next, we

comment on future research opportunities in section 5.2.

 68

5.1 Research Contributions

The main contribution of this study is an algorithm to automatically develop

configuration files for real-time aircraft simulation systems. It is comprised of three

major steps aiming at placing applications in binary trees. First, in the placing critical

applications step, the algorithm places all critical applications together in the same binary

tree, ensuring with this that they execute within the boundaries of the same processor.

Next, in the placing non-critical applications step, non-critical applications are placed in

a systematic way. An application is placed in the current scheduler tree as long as it does

not exceed its capacity; otherwise, the application is placed in the next one. Finally, in the

balancing step, a generalized ratio-cut objective function [Yeh92] is used to minimize the

dependencies among resulting scheduler trees, while maximizing the total load added to

each of them.

To the best of our knowledge, there is no technique designed to address our domain

constraints. This is, distributing N applications into K different partitions, such that inter-

partition communication is minimized, the load is balanced, and each partition is denoted

as a binary tree, with finite capacity, and added semantic that allows meeting compulsory

applications’ priority and expected execution order.

To evaluate our approach we have conducted a case study at CAE. We have worked with

CAE engineers to define two typical configuration scenarios: a 2-scheduler flight

simulator, and a 3-scheduler one. We have automatically built these configurations using

our algorithm. Likewise, we have asked an integration specialist to build them using the

best of his knowledge. We have run the flight simulation software several times using

 69

two simulation scenarios: one with the aircraft on ground, and another with the aircraft in

air. To compare the results of human-based configurations against algorithm-based

configurations, we used critical and non-critical overruns, two metrics used at CAE to

evaluate the performance of the simulation. With regard to the 2-scheduler configuration,

the results show that the algorithm-based configuration clearly outperformed the human-

based one. The former produced more balanced partitions, and for each of them, the

application’s load was evenly distributed among all scheduler execution paths. With

regard to the 3-scheduler configuration, the algorithm-based configuration produced

better or at least similar results when compared to the human-based one in the particular

case of the critical partition, this is, the one holding the critical applications. The reasons

are likely the same as those for the case of the 2-scheduler configuration. For the

remaining 2 partitions, the human-based configuration outperformed the algorithm-based

one. Lastly, results are encouraging as in most of the cases the algorithm-based

configurations outperformed or produced similar results when compared to the human-

based ones.

5.2 Future Research Opportunities

To improve the results, we could include the multi-phase nature of our domain to the

analysis. Flight simulation software usually executes and performs differently depending

on the state or phase in which the simulation is. For instance, the engine application

requires less processing time when the aircraft is on ground than when the aircraft is in

air. Using this information may result in configurations that adapt to the changes in the

simulation’s state. It would be also possible to use this knowledge to take better decisions

when building configurations that do not necessarily change over time.

 70

Additionally, we could build on our current approach to allow for an automatic detection

of the ideal number of partitions based on the inputs. This is desirable since it would

produce configurations with adequate number of partitions, which in turn could help in

reducing costs and deployment time.

Finally, we could also upgrade our approach to relax the penalty when dependent

applications are grouped into different binary trees that are mapped to schedulers that run

within the boundaries of the same PC, but bound to different CPU’s. In such situations,

the synchronization process required to exchange data among dependent applications

running in different schedulers takes considerably less time as it does not require going

over the network.

 71

References

[Karypis98] Karypis, G. and Kumar, V., (1998), “Multilevel algorithms for

Multi-Constraint Graph Partitioning,” In proc. of the 1998

ACM/IEEE Conference on Supercomputing, Orlando, FL, USA.

[Karypis95] Karypis, G. and Kumar, V., (1995), “METIS: Unstructured Graph

Partitioning and Sparse Matrix Ordering System, Version 2.0,”

Technical Report, Department of Computer Science, University of

Minnesota. Minnesota, USA.

[Schloegel02] Schloegel, K., Karypis, G. and Kumar, V., (2002), “Parallel static

and dynamic multi-constraint graph partitioning," Concurrency

and Computation: Practice and Experience, 2012, 14(3), pp. 219-

240.

[Hagen92] Hagen, L. and Kahng, A.B, (1992), “New spectral methods for

ratio cut partitioning and clustering,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,

11(9), pp. 1074-1085.

[FAA06] Federal Aviation Administration, (2006), “Part-60 Flight

Simulation Training Device Initial and Continuing Qualification

and Use,” Federal Aviation Administration, National Simulator

 72

Program, Federal Register, 71(209), October 30, 2006.

Washington, USA.

[Kernighan70] Kernighan, B.W. and Lin, S., (1970), “An Efficient Heuristic

Procedure for Partitioning Graphs”, In the Bell System Technical

Journal, 49 (1970), pp. 291-307.

[Jain10] Jain, Anil K., (2010), “Data Clustering: 50 Years Beyond K-

means”, In Pattern Recognition Letters 31 (award winning papers

from the 19
th

 International Conference on Pattern Recognition,

Tampa, FL, USA), 31(8), 1 June 2010, pp. 651-666.

[Karger93] Karger, D.R., (1993), “Global min-cuts in RNC, and other

ramifications of a simple min-out algorithm,” In proc. of the fourth

annual ACM-SIAM Symposium on Discrete Algorithms,

Philadelphia, PA, USA, pp. 21-30.

[Luxburg07] Luxburg, Ulrike von, (2007), “A tutorial on spectral clustering,”

Statistics and Computing, December 2007, 17(4), pp. 395-416.

[Wei89] Wei, Y.-C. and Cheng, C.-K., (1989), “Towards efficient

hierarchical designs by ratio cut partitioning,” In proc. of the 1989

IEEE International Conference on Computer-Aided Design, Santa

Clara, CA, USA, pp. 298-301.

 [Yeh92] Yeh, C.-W., Cheng, C.-K. and Lin, T.-T.Y., (1992), “A

probabilistic multicommodity-flow solution to circuit clustering

 73

problems,” In proc. of the 1992 IEEE/ACM International

Conference on Computer-Aided Design, Santa Clara, CA, USA,

pp. 428-431.

 [Chan92] Chan, P.K., Schlag, M. and Zien, J., (1992), “Spectral K-Way

Ratio-Cut Partitioning Part I: Preliminary Results,” Technical

Report, Computer Engineering Board of Studies, University of

California, Santa Cruz, CA, USA.

[Shi00] Shi, J. and Malik, J., (2000), “Normalized Cuts and Image

Segmentation,” In IEEE Transactions on Pattern Analysis and

Machine Intelligence, 22(8), pp. 888-905.

[Abramowitz72] Abramowitz, M. and Stegun, I. A., (1972.), "Stirling Numbers of

the Second Kind," §24.1.4 In Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables, 9th

printing. New York: Dover, pp. 824-825.

[Cormen09] Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C., (2009),

“Breadth-first search” §22.2 In Introduction to Algorithms, third

edition, The MIT Press, pp. 594-602.

[Maini94] Maini, H., Mehrotra, K., Mohan, C. and Ranka, S., (1994),

“Genetic Algorithms for graph partitioning and incremental graph

partitioning,” In proc. of the 1994 ACM/IEEE Conference on

Supercomputing, Washington, DC, USA, pp. 449-457.

