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ABSTRACT 
 

Modeling complex high level interactions in the process of visual mining 

 

Elaheh Mozaffari, Ph.D.  

Concordia University, 2014 

 
Visual Mining refers to the human analytical process that uses visual 

representations of raw data and makes suitable inferences. During this analytical 

process, users are engaged in complex cognitive activities such as decision 

making, problem solving, analytical reasoning and learning.  Now a days, users 

typically use interactive visualization tools, which we call as visual mining 

support tools (VMSTs), to mediate their interactions with the information present 

in visual representations of raw data and also to support their complex cognitive 

activities when performing visual mining.  

VMSTs have two main components: visual representation and interaction.  Even 

though, these two components are fundamental aspects of VMSTs, the research 

on visual representation has received the most attention. It is still unclear how to 

design interactions which can properly support users in performing complex 

cognitive activities during the visual mining process. Although some fundamental 

concepts and techniques regarding interaction design have been in place for a 

while, many established researchers are of the opinion that we do not yet have a 

generalized, principled, and systematic understanding of interaction components 
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of these VMSTs, and how interactions should be analyzed, designed, and 

integrated to support complex cognitive activities. Many researchers have 

recommended that one way to address this problem is through appropriate 

characterization of interactions in the visual mining process. Models that provide 

classifications of interactions have indeed been proposed in the visualization 

research community. While these models are important contributions for the 

visualization research community, they often characterize interactions at lower 

levels of human information interaction and high level interactions are not well 

addressed. In addition, some of these models are not designed to model user 

activity; rather they are most applicable for representing a system‟s response to 

user activity and not the user activity itself. 

In this thesis, we address this problem through characterization of the interaction 

space of visual mining at the appropriate level. Our main contribution in this 

research is the discovery of a small set of classification criteria which can 

comprehensively characterize the interaction space of visual mining involving 

interactions with VMSTs for performing complex cognitive activities. These 

complex cognitive activities are modeled through visual mining episodes, a 

coherent set of activities consisting of visual mining strategies (VMSs).  Using the 

classification criteria, VMSs are simply described as combinations of different 

values of these criteria. By considering all combinations, we can comprehensively 

cover the interaction space of visual mining. Our VMS interaction space model is 
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unique in identifying the activity tier, a granularity of interactions (high level) 

which supports performance of complex cognitive activities through interactions 

with visual information using VMSTs. 

As further demonstration of the utility of this VMS interaction space model, we 

describe the formulation of an inspection framework which can provide 

quantitative measures for the support provided by VMSTs for complex cognitive 

activities in visual mining. This inspection framework, which has enabled us to 

produce a new simpler evaluation method for VMSTs in comparison to existing 

evaluation methods, is based soundly on existing theories and models. Both the 

VMS interaction space model and the inspection framework present many 

interesting avenues for further research. 
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Chapter 1 : Introduction 

 

In the last decade, technological changes in large data acquisition, management, 

analysis, and dissemination have increased rapidly (Keim, 2002). Fields as 

diverse as bioinformatics, geophysics, astronomy, medicine, engineering, 

meteorology and particle physics are faced with the problems of dealing with 

exponentially increasing volumes of available data (Mann et al., 2002). Therefore, 

one of our greatest challenges is to take advantage of this flood of raw data and 

turn it into understandable information. As stated in the US National Science 

Foundation‟s (NSF) report on challenges in visualization research, “our primary 

problem is no longer acquiring sufficient information, but rather making use of it” 

(Johnson et al., 2006). Therefore, visualization tools are recommended to 

facilitate the transformation of raw data into understandable information, typically 

visual representations which help in the identification of relationships and patterns 

that are not evident in the raw data. 

Over the years, a large number of interactive visualization tools have been 

developed, all claiming to help users analyze, understand and gain insight into the 

large quantity of available data through appropriate transformations of the raw 

data into visual representations. In the literature, many different terms are used to 

denote this process of turning raw data into visual representations and their 

analysis by human analysts – data visualization, information visualization, visual 

exploration, visual analytics, visual mining, etc. Figure 1.1 below shows screen 

shots of three popular tools used in different domains. More details of these tools 
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will be discussed in Chapter 5 later. In this thesis, we shall use a single term, the 

Visual Mining (VM) process, to refer to the human analytical process that uses 

such visual representations of raw data and makes suitable inferences. It is that 

process which  uses the visual medium (through visual representations) and 

contributes to the discovery of patterns and relationships, which then form the 

knowledge required for informed decision making.  

       

Figure 1.1: Screen shots of three commercially available Visual mining tools 

(Left to right : Avizo, AVS/Express and Vapor) 

 

During this analytical process, users are engaged in complex cognitive activities 

(Sternberg et al., 2001) such as decision making, planning, problem solving, 

analytical reasoning and learning.  In the performance of complex cognitive 

activities, users are actively involved in goal-directed information processing 

(Funke, 2010). This information processing is comprised of users using and 

working with some existing information to derive new information (Knauff et al., 

2010). These days, users typically use interactive visualization tools such as those 

shown in Figure 1.1 to mediate their interaction with the information present in 

visual representations of raw data and to support their complex cognitive 

activities when performing visual mining. Specifically, users interact with the 
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information present in the visual representations to support their information- 

intensive thinking processes (Parson et al., 2012).  

Different terms are used to refer to the tools which are meant to provide support 

in the human analyst‟s information- intensive thinking processes, such as 

cognitive technologies, decision support systems, knowledge support systems, 

cognitive tools, learning support tools and mind tools (e.g., Markus et al., 2002; 

Fischer et al., 1998; Kim et al., 2007; Bhargava et al., 2007; Sedig et al., 2008). 

All of these invariably resort to presenting of information through visual 

representations to facilitate analysis activities. As our focus is on tools that 

mediate and enable visual mining activities, we unify all of them into one term 

and refer to all such tools as visual mining support tools (VMSTs). In this context, 

the term “support” suggests that VMSTs can partner, augment, guide, cognize 

with, and, transform human activities and human thinking to perform visual 

mining for the information which exists in visual representations of raw data.  

While interacting with visual representations using VMSTs, users engage in 

behaviors (activities) stimulated by their desire to manage a problem, resolve a 

problematic situation or resolve an anomalous state of knowledge. A single 

episode of visual mining consists of a coherent set of activities with a specific 

purpose, say, browsing through visual representations to keep up-to-date, 

searching for some specific information, and so on. There is clearly a variety of 

such activities leading to a wide range of visual mining episodes. We consider 

visual mining episodes as consisting of visual mining strategies (VMSs), a term 
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inspired by related work in library and information science
1
. It is important to 

note that, despite the wide range of forms that VMSs take, they are all interactions 

with visual representations. By interaction, we mean that, in such activities, 

people are not just passive recipients of information, but rather active seekers of 

information through visual representations, and active constructors of meaning 

from them. They look for potentially interesting information items, make 

judgments about the usefulness or interest of information items presented in 

visual representations by engaging with them and interpret them in order to 

understand them. Thus, their engagement with visual representations and their 

interpretations are central to their ability to use the information in these visual 

representations to reach their analysis goals. 

Based on the above, we see that the core of visual mining is user interaction with 

information present in the visual representations of raw data. This visual mining 

interaction space has the following three important aspects: 1) visual mining is 

inherently an interactive process, and that process is characterized by the general 

features of people's interactions with visual representations, 2) the interaction 

takes place through visual mining episodes (coherent set of user 

activities/behaviours) which we have termed as visual mining strategies (VMSs), 

and 3) the goal of VMSTs is to support the range of VMSs. 

                                                 
1
 In the field of library and information sciences, similar activities are called as information 

behaviors, defined as the totality of human behavior in relation to sources and channels of 

information (Wilson, 2000; Belkin et al., 1983; Dervin, 1983; Wersig, 1979; Schutz et al., 1973) 

and information seeking episodes are defined in terms of Information Seeking Strategies. 
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As we shall see next, appropriate characterization of the visual mining interaction 

space is essential to be able to address various issues concerning the design and 

evaluation of VMSTs based on the support provided for such interactions.  

 

1.1. Motivation 

 

Although some fundamental concepts and techniques regarding interaction design 

have been in place for a while (Bertin, 1983; Beynon et al., 2001; Lohse et al., 

1994; Shneiderman, 1991; Tufte, 1983; Yi et al., 2007), many are of the opinion 

that we do not yet have a generalized, principled, and systematic understanding of 

interaction components of these VMSTs, and how interactions should be 

analyzed, designed, and integrated to support complex cognitive activities (Sedigh 

et al., 2013-a). Many established researchers have recently endorsed this problem 

as can be seen from the following statements made in their publications:  

 The process of stimulating and enabling human reasoning with the aid of 

interactive visualization tools is still a highly unexplored field. (Meyer et 

al., 2010, p. 227);  

 There is hardly ever an explanation of what these benefits [of interaction] 

actually are as well as how and why they work. (Aigner, 2011, p. 18); 

 With all of this research, there is still a lack of precedent on how to 

conduct research into visually enabled reasoning. It is not at all clear how 

one might evaluate interfaces with respect to their ability to scaffold 

higher-order cognitive tasks. (Green et al., 2010, p. 45); and, 
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 We have barely scratched the surface of this exciting new line of research 

[regarding interaction], and much work remains to be done. (Elmqvist et 

al., 2011, p. 337).  

What manifests from an extensive survey of available literature is that more 

research is needed as there is no comprehensive model which can support 

researchers and practitioners in terms of understanding how visual representations 

of information and interactions relate in the context of performing complex 

cognitive activities.  

The interactions that take place between a user and a VMST can be characterized 

at multiple levels of granularity (Sedigh et al., 2013-b; Gotz et al., 2008; Yi et al., 

2007) as follows. Interactions at a high level are often complex and open-ended 

(e.g., problem solving, decision making, and forecasting) which are usually 

termed as activities. Tasks, at the next level, are goal-oriented behaviors that 

occur during the performance of activities (e.g., categorizing, identifying, ranking, 

etc.). Tasks are performed using interface features (tool-driven-actions performed 

on the visual representations, such as, navigation in the visual space, selection of a 

specific visual, filtering through visuals, and so on). Interface features are 

provided by the VMST that is being used for visual mining and form the third 

level, and are performed as a sequence of moves. Moves occur at the lowest level 

and are performed using the VMSTs interface; they can be mental or physical 

(e.g., mouse clicks, keyboard presses). While VMSTs are designed to provide 

support at the “feature” and “move” level, what is required is really support at the 

“task:” and “activity” levels. Thus, the understanding and representation of 
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activities that a user performs are essential for effective design and evaluation of 

VMSTs. 

Many researchers have recommended that one way to address this problem is 

through appropriate characterization of interactions in the visual mining process. 

Characterization takes the form of the interaction space being modeled by 

classification criteria (dimensions of the space) with different values along each 

of the criteria. For example, Thomas and Cook have claimed that “the grand 

challenge” of interaction is to develop a taxonomy to describe and clarify the 

interaction design space (Thomas et al., 2005). Some other researchers have 

suggested that not only do we need the knowledge of what actions are available, 

but we also require knowledge of how interactions facilitate visual mining 

activities such as problem solving and decision making (Keim et al., 2008; Liu et 

al., 2008). Models that provide classifications of interactions have indeed been 

proposed in the visualization community (e.g. Amar et al., 2005; Keim, 2002; 

Shneiderman, 1996; Zhou et al., 1998). While these models are important 

contributions for the visualization research community, they often characterize 

interactions at lower levels of human information interaction (Sedigh et al., 2012; 

Scholtz, 2006) and high level interactions are not well addressed. In addition, 

some of these models are not designed to model user activity; rather they are most 

applicable for representing a system‟s response to user activity and not the user 

activity itself (Gotz et al. 2008). Further details about these models will be 

provided in Chapter 2. 
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1.2. Problem Statement 

 

Our primary problem is motivated by the fact that characterization of the 

interaction space of visual mining, particularly the space which includes complex 

cognitive activities, has not been adequately addressed so far. The problem is 

articulated in the following two research questions: 

1) Are there generic classification criteria that can be used to comprehensively 

characterize the interaction space of visual mining so as to enable systematic 

thinking about user interactions with visual mining support tools which are 

intended to support complex cognitive (high level) activities? If so, what are 

they and how are they discovered in a trustworthy manner? 

2) A related problem is the one raised in the following question: how do we 

demonstrate that a model developed for characterization of the interaction 

space of visual mining can indeed be used in the evaluation of support 

provided by any VMST for performing the complex cognitive activities 

required in visual mining?  

 

1.3. Methodology 

 

Our research methodology is composed of the following stages: 

Qualitative research was chosen as the primary approach for determining 

appropriate classification criteria for interactive activities in visual mining. For 
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this, in the first stage, we developed a complete work-flow description of the 

visual mining process to enable us to identify all the analysis activities and 

information interactions which take place during visual mining. The workflow 

was developed as follows: A first version was created based on descriptions in the 

literature. Subsequent refinement of this workflow was based on reviews of the 

workflow by experts who have used interactive visualization tools for visual 

mining.  

 The second stage was discovery of a comprehensive set of criteria and their use 

in the formulation of visual mining strategies. This was done through qualitative 

content analysis of a comprehensive list of publications reporting case studies 

concerned with visual mining activities in different domains as follows:  

For our content analysis, we first identified and classified all human information 

interactions using the visual mining workflow created in the first stage. This gave 

us an initial set of classification criteria, which we shall term as the initial coding 

scheme for human information interaction. The aim of the qualitative content 

analysis is to finalize the set of classification criteria such that the finalized 

criteria are necessary and comprehensively model the interaction space. Each 

criterion could take on multiple values. Next, we chose around sixty published 

papers primarily concerned with reports on effective use of visualization for 

analysis and mining of large datasets. The chosen papers were from four different 

domains, namely, medicine, bioinformatics, epidemiology and geosciences. Each 

paper was studied and those which did not report actual case studies by experts 
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were excluded from further consideration.  Every one of the remaining papers was 

analyzed and used in the human-information interaction coding process. 

Refinement of the initial coding with the help of publications took place in 

multiple iterations over time. Iterations involving reading and coding of each 

publication, along with constant comparison with previous publications and 

coding, resulting in refinement of the initial coding scheme throughout the coding 

process. 

Throughout the coding process, dynamic models illustrating relationships among 

various criteria/values were used to explore and view connections and patterns in 

extracted codes. This process led us to formulate an interaction space model 

consisting of a comprehensive set of criteria and their possible values which 

characterizes the space of interactions in the visual mining process.  

Lastly, VMSs are simply derived in this interaction space model as combinations 

of values of these different criteria. By considering all possible combinations we 

believe that the resulting VMSs comprehensively cover the interaction space of 

visual mining and provide us with a compact interaction space model for 

reasoning with interactions involved in complex cognitive activities in visual 

mining. 

In the second stage, we designed an inspection framework that combines the 

proposed interaction space model and existing interaction models at the lower 

task/move levels in a way that enables us to produce quantitative estimates of the 

strengths and weaknesses in any given VMST. The framework enables us to 

estimate, for a given VMST, the support provided for performing user tasks, the 



11 

 

support provided by interface features of the VMST, and the support for complex 

cognitive activities or visual mining strategies (VMSs). 

In the final stage, in order to demonstrate the applicability of this framework, we 

used it to evaluate the three comprehensive visualization tools used in the 

community for visual mining (shown in Figure 1.1). The estimates we obtained 

using this framework were consistent with our own feel for the support provided 

by these tools, as we experimented with these tools for the purpose of evaluation.  

 

1.4. Research Contributions 

 

Our principal contribution is the discovery of a small set of classification criteria 

which can comprehensively characterize the interaction space of visual mining 

involving interactions with visual mining support tools for performing complex 

cognitive activities. These complex cognitive activities are modeled through 

visual mining episodes, a coherent set of activities consisting of visual mining 

strategies (VMSs).  Using the classification criteria developed, VMSs are simply 

described as combinations of different values of these criteria. By considering all 

combinations we can comprehensively cover the interaction space of visual 

mining. We call this as the VMS interaction space model. 

This model has the following four important characteristics, which position it 

extremely well to address existing research challenges in modelling the 

interaction space and to make a significant contribution to the existing literature:  
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a) Syncretic:  bringing together a number of previously disconnected ideas (some 

of the ideas are adapted from the field of library and information science; and they 

will be discussed in more detail in Chapters 2 and 4);  

b) General: operating at a level of abstraction that is applicable to all kinds of 

classes of visual mining activities, users and visual representations;  

c) Comprehensive: identifying patterns that cover an extensive range of complex 

cognitive activities; and,  

d) Generative:  the ability to motivate design and evaluation as well as to 

encourage further theoretical and applied research.  

We do recognise that no model or theoretical paradigm can address all possible 

activities, tasks and situations (Purchase et al., 2008; Thomas et al., 2005). 

Accordingly, we do not claim that the proposed criteria are exhaustive (necessary 

and sufficient), but on the basis of describing typical real-world visual mining 

scenarios which will be discussed in more detail in Chapter 4, we will show that 

they are necessary, if not sufficient, given the nature of the domain of “complex 

cognitive activities”. Further, we firmly believe that they represent at least a 

valuable starting point for characterizing user interactions with visual 

representations for performing complex cognitive activities in visual mining. 

Our other important contribution is the formulation of an inspection framework 

for comparative evaluation of VMSTs based on the above model. This framework 

is built upon principles for drawing relationships between different VMSs and 

design features of VMSTs intended for supporting the VMSs. This inspection 

framework, which has further enabled us to produce a new simpler evaluation 
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method for VMSTs, is based soundly on existing theories and models. The 

research approach taken to develop this inspection framework is similar to 

development of other, now established methods for developing an evaluation 

framework. Although there is no single established approach on how to build such 

an evaluation framework, there are several examples that we have followed. It 

includes the following phases: theory identification, development, application, 

validation, extension and further validation repeated as many times as needed 

(Wilson et al., 2009-a). For example, Peterson (2000), went through these stages 

in the development of the multi-point scale for questionnaires. Similarly, O‟Brien 

and Toms (2008) report that they too progressed through similar stages while 

developing a framework to evaluate user engagement with software. The GOMS 

approach (John et al., 1985) was built using the theoretical model of human 

information processing (Card et al., 1983). It was however validated only after 2 

years with an example study (John et al., 1987). Then, after a further 3 years, it 

was extended (John, 1990). In fact, the GOMS model has been extended and 

revalidated several more times afterwards by other researchers (Gray et al., 1992; 

Gong et al., 1994). Likewise, initial validation of the Cognitive Walkthrough 

method was performed by Lewis et al., (1990) and modifications were proposed 

in 1992 (Rowley et al., 1992). The modifications weren‟t applied until 8 years 

later (Spencer, 2000). Remarkably Blandford et al. (2008) explained a 10 year 

plan for designing and validating a method called PUM. 

In our work too, we have performed several of these key steps including theory 

identification, framework development, application and an initial attempt at 
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validation. Chapter 5 describes the advances through these key steps in greater 

detail.  

 

1.5. Structure of the thesis 

 

The rest of this thesis is organized as follows:  

Chapter 2: This chapter first draws attention to the importance of interaction in 

visualization research. While existing research in the area often focuses on 

presentation, in this chapter we highlight the overshadowed, but very important 

interaction component and strongly argue that it provides a way to overcome the 

limits of presentation and augment a user‟s cognition. We discuss how VMSTs 

mediate and supplement human cognition to enable complex cognitive activities.  

In addition, we review and classify existing prominent models of interaction 

related to visualization. We clearly bring out the much felt need for providing 

high level characterization of interactions that can guide the analysis, evaluation 

and design space of interaction in VMSTs in order to provide better support for 

complex cognitive activities.  This chapter also provides an overview of usability 

evaluation methods, background knowledge which is needed to understand our 

developments reported in Chapter 5.  

 

Chapter 3: This chapter first provides an overview of background concepts and 

terms about qualitative directed-content analysis which are necessary for 

understanding the methods we have used for deriving classification criteria for the 
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interaction space of visual mining reported in Chapter 4. It provides a detailed 

description of human analysis activities in visual mining, in order to identify 

analysis activities and user interaction with visual representation in the process. 

Then building upon this description of the analytical process, we create a visual 

mining work-flow which identifies all human–information interaction activities. 

Later in chapter 4, we will use this workflow to formulate our initial set of 

classification criteria that get appropriately refined by methods of qualitative 

directed-content analysis. 

 

Chapter 4: This chapter describes the method we have used for discovering and 

finalizing the set of classification criteria and their values which can characterize 

the interaction space of the visual mining process.  As already mentioned, we use 

qualitative directed-content analysis methods to reveal the visual mining activities 

of scientists from a large number of case studies reported in scientific 

publications. These publications in general, clearly record the behavior of experts 

while being engaged in visual mining activity. The finalized classification criteria 

make up our model for the interaction space for visual mining comprehensively 

encompassing, in our opinion, all visual mining episodes reported in these 

publications. The model thus helps us to define the full set of visual mining 

strategies.  Lastly, we discuss the steps we have taken to address trustworthiness 

of the qualitative content analysis methods we have used. 
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Chapter 5: This chapter demonstrates one use of the interaction space model 

created in the previous chapter by developing an inspection framework for 

evaluating the support provided by VMSTs for performing complex cognitive 

activities in visual mining. This inspection framework combines the interaction 

space model with previous lower level interaction models at the task/move levels 

in a way that can provide quantitative estimates of the strengths and weaknesses 

in any given VMST. It illustrates the application of this framework in a sample 

evaluation exercise for three commercially available and popular VMSTs. By 

applying this evaluation, it provides quantitative estimates of the strengths and 

weaknesses in supporting user tasks, the support provided by interface features, 

and the support for visual mining activities.  

 

Chapter 6: This Chapter summarizes the work, major research contributions that 

have resulted, research benefits that can be reaped from our proposed activity 

model and inspection framework, and future avenues for research in this area. 

 

There are also two Appendices as follows: 

Appendix A lists all the publications which have been used for content analysis. 

Appendix B shows examples of coding of publications in analysis process leading 

to the derivation of the final classification criteria. 
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Chapter 2 : Background and Related Work 

 

Visual Mining Support Tools (VMSTs) are software environments which are 

designed for users to explore information spaces. They present information in the 

form of visual representations and enable users to perform complex cognitive 

activities during visual mining process. A VMST acts as a partner in performing 

complex cognitive activities, enabling users to explore, investigate, deconstruct, 

decode, analyze, evaluate and generate information (Sedig et al., 2008). In 

particular, because they can share and distribute the cognitive processing load of 

users, VMSTs are touted for their abilities to transform the way in which complex 

cognitive activities are performed (Jonassen, 2000; Lajoie, 2000; Beynon et al., 

2001; Liang, 2009). In general, VMSTs do not provide any explicit instructions to 

users on what/how to carry out the investigation. Rather, users are provided with 

only the means to plan and realize their own investigative approach to reach their 

visual mining goals. That is, users are encouraged to formulate and test their 

hypotheses, analyze their findings, interpret their results, and draw their own 

conclusions which are all activities which need to be carried out in a dynamic 

fashion.  

VMSTs have two main components: visual representation and interaction (Sedigh 

et al, 2013-a; Yi et al., 2007).  The visual representation is concerned with the 

mapping of data to visuals and how best the information present in the data should 

be encoded and displayed. The interaction component is concerned with the 

discourse between the user and visual representation.  Although they are 
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discussed as two separate components, visual representation and interaction 

clearly are not mutually exclusive. Users can restructure and modify the form and 

amount of visually represented information through interaction.  

Even though, these two components are fundamental aspects of VMSTs of equal 

importance, the visual representation has received the vast majority of attention in 

visualization research as pointed out by a number of researchers (Liang et al., 

2009, Yi et al., 2007). For example, in a major review of advances in visual 

analytics, Thomas and Cook (2005, p. 73) point out that, „„researchers tend to 

focus on visual representations of data,‟‟ and that the interaction design aspect of 

such tools „„is not given equal priority.‟‟ They suggest that what is needed is to 

develop „„a deep understanding of the different forms of interaction and their 

respective benefits‟‟.  There are many other researchers who have expressed the 

same concern (e.g. Tory et al., 2004; Kosara et al., 2003; Dix et al., 1998; 

Tweedie, 1997; Buja et al., 1991). As we explained in Chapter 1, it is still unclear 

how to design interactions which can properly support users in performing 

complex cognitive activities during visual mining process (Thomas et al., 2005; 

Sedig et al., 2006-a; Keim et al., 2008; Liu et al., 2008). Many researchers have 

been recommending that one way to address this problem is through 

characterization of the interaction space of visual mining at the appropriate levels 

(Yi et al., 2007; Thomas et al., 2005). However, the characterization of the 

interaction space of visual mining, particularly concerning the higher level of 

complex cognitive activities, has not been adequately addressed so far (we will 

discuss this further in Section 2.2). In this research, our main goal is to provide a 
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better understanding of the interaction space of visual mining by developing an 

appropriate model of visual mining activities at the higher levels. This model 

should comprehensively characterize the interaction space and enable the 

evaluation of VMSTs which are intended to support complex cognitive activities.  

The remainder of this chapter is organized as follows. Section 2.1, explains the 

importance of interactive visual representations in the performance of complex 

cognitive activities.  Section 2.2, provides a review of prior research about 

interaction in visualization research, examines how other researchers have 

characterized interactions, identifies some of their shortcomings and explains how 

they are going to be addressed  in this thesis. Section 2.3 presents related research 

on different usability evaluation methods (UEMs) that have been proposed that 

could be used for human-information interaction evaluation. First a categorization 

of the different types of UEMs, such as user studies and expert methods, is 

presented. This categorisation provides context for the aims of different UEMs, 

which are each briefly described. This categorisation of UEMs is later used in 

Chapter 5 to explain how our proposed inspection framework relates to other 

methods. 

 

2.1. The Importance of Interacting with Visuals  

 

Visual representations are defined as a collection of graphical symbols organized 

to emphasize the functional, structural and semantic properties, and the 

relationships among the represented information (Glasgow et al., 1995; Peterson, 
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1996; Anderson et al., 2002; Cheng, 2002; Spence, 2007). They give perceptual 

access to an underlying information space in such a way that there is a unity of 

meaning between the visual representation and the information (Parsons et al., 

2013). In other words, from the perspective of the user interactions, the visual 

representation is the information to interact with (Cole et al., 2005; Peterson, 

1996; Zhang et al., 1994). 

Visual representations make use of the human visual channel (the most powerful 

information processing channel), to enhance the exploration of the represented 

information. During exploration, they support the perceptual abilities of users, 

allowing users to offload some lower-level cognitive processes (e.g., memory, 

attention) onto the visual form, and, as a result, free up resources to conduct other 

higher level cognitive activities. Therefore, visual representations constitute a 

particularly powerful aiding tool for supporting human information exploration as 

they provide many cognitive benefits (Card et al., 1999; Spence, 2007; Tufte, 

1990; Chen, 2004; Ware, 2004). In short, visual representations, through 

emphasis on visual inference, can dramatically increase user capacities to 

understand large amounts of information; investigate complex patterns and 

structures in the data; discover hidden and unexpected trends; observe 

inconsistencies and outliers; find solutions to problems, make appropriate 

decisions; construct mental models and create new knowledge (Norman, 1993; 

Card et al., 1999; Tufte, 2000; Ware, 2004; Fast & Sedig, 2005; Thomas et al., 

2005; Sedig et al., 2006-b; Liang, 2009).  
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Regardless of their numerous benefits, visual representations in just their static 

form will be very difficult to explore. As the data set that they represent grows 

larger with more variables, their usefulness becomes even more limited in the 

static form. It is by adding interactions to them that some of these limitations can 

be overcome. 

Interaction refers to the dual process of a user acting upon the visual 

representation through the intermediary of a human-computer interface, and the 

responses given back to these actions (Sedig et al., 2006-a). Therefore, interaction 

can be viewed as a communication loop (Kirsh, 1997), through which users can 

have conversation and have discourse with the visual representations (Perez-

Quinones et al., 1996; Dix et al., 2004; Thomas et al., 2005).  

In VMSTs, when using visual representations to assist with cognitive activities, 

cognition capabilities of the user are engaged (Scaife et al., 1996).The partnership 

that is formed between internal mental processes of the user and the visual forms 

presented by the VMST provides many benefits for performing complex cognitive 

activities. It should be noted that complex cognitive activities take place over a 

span of time, where internal mental processes (e.g., categorizations, abstractions, 

memory encodings, and comparisons) are dynamic and involve constant 

adjustment and reorganization of information. Static representations do not 

support this dynamic and temporal processing of information. Users have to put in 

a great deal of mental effort in order to reason and think about the information. 

Thus, use of static visual representations alone could put in more of the 

processing load onto internal mental processes. This creates a gap between the 
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mental process of the users and the visual representation. However, by adding 

interaction to visual representations, this gap can be bridged. If interaction is 

designed properly, a strong coupling forms between the mental processes of a 

user and a VMST (Figure 2.1). This coupling provides support for performing 

complex cognitive activities (Brey, 2005; Clark, 1998; Hoc, 2005; Kirsh, 1997, 

2005, 2010; Sedig et al., 2013-c).  

 

Figure 2.1: The coupling that is formed between a user and a VMST (based 

on Parson et al., 2013) 

 

In VMSTs which support interaction with visual representations, users can 

dynamically adapt visual representations to adjust them to their needs. As a visual 

representation typically encodes only a part of information present in the entire 

dataset, static visual representations can force users to put in a great deal of 

mental effort to bring hidden and implicit information to a more observable level 

(Kirsh, 2003). But, when using interactive visual representations, users can easily 
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and repeatedly act upon visual representations and adapt the visual representations 

according to their needs (Kirsh et al., 1994; Neth et al., 2002; Schwan, 2002). Dix 

and Ellis (1998, p. 133) suggest that the „„most important thing about computer 

visualization is interaction.‟‟ Interaction can extend the communicative power of 

static visual representations (Sedig et al., 2006-b).   

In this thesis, interaction is thought of as a communication loop (Kirsh, 1997), 

through which users can have discourse with visual representations (Thomas et 

al., 2005) to support performance of complex cognitive activities.  

In the next section we shall review prior research on interaction modeling in the 

visualization research community and examine how other researchers have 

attempted to define and characterize interactions with visual representations. 

 

2.2. Overview and Classification of Interaction 

Models  

 

As it was mentioned earlier, appropriate characterization of human-information 

interaction is essential to achieve a better understanding of the space of 

interactions supported by a VMST and enable its evaluation and design. A 

number of models have been developed which do characterize the interactions 

with information, visual or textual. Table 2.1 summarizes prominent existing 

models. A few of these models have been developed in the field of information 

and library science; however they have found use within the visualization 

research community, especially for visual information retrieval (Becks, 2001; 
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Morse, 1999).  These models fall into two distinct groups: system-oriented and 

user-oriented. Each of these is discussed in more detail below.  

System-oriented models focus on characterizing/describing visualization or data 

operations. They characterize system actions which are provided to help users 

reach their goals. For example, Chuah and Roth (1996) define a set of operations, 

called basic visualization interactions (BVIs), describing various data and visual 

interaction operations (e.g., set-graphical-value). These models are most 

applicable for representing a system‟s response to user actions.  

In contrast, user-oriented models typically characterize user‟s cognitive visual 

behaviours (Gotz, 2008; Bavoil, 2005). For example, Amar et al. (2005) have 

come up with ten basic task types describing various user needs in interactive 

information analysis.  

Table 2.1 : Units of Some prominent interaction models  

 

Publications Units modeled 

System-oriented models 

Shneiderman (1996) Overview, zoom, filter, details-on-demand, relate, 

history, and extract 

Buja et al. (1996)  

 

Focusing (choice of [projection, aspect ratio, zoom, 

pan], choice of [variable, order, scale, scale aspect 

ratio, animation, and 3-D rotation]), linking (brushing 

as conditioning / sectioning / database query), and 

arranging views (scatter plot matrix and conditional 

plot) 
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Chuah and Roth (1996)  

 

Basic visualization interaction (BVI) operations: 

graphical operations (encode data, set graphical 

value, manipulate objects), set operations (create set, 

delete set, summarize set, other), and data operations 

(add, delete, derived attributes, other) 

Dix and Ellis (1998)  

 

Highlighting and focus, accessing extra information – 

drill down and hyperlinks, overview and context, 

same representation / changing parameters, same data 

/ changing representation, linking representation – 

temporal fusion 
Keim (2002)  Dynamic projections, interactive filtering, interactive 

zooming, interactive distortion, interactive linking 

and brushing  
Wilkinson (2005)  Filtering (categorical/continuous/multiple/fast 

filtering), navigating (zooming/panning/lens), 

manipulating (node dragging/categorical reordering), 

brushing and linking (brush shapes/brush logic/fast 

brushing), animating 

(frame animation), rotating, transforming 

(specification/assembly/display/tap/2 taps/3 taps) 

Tweedie (1997) Interaction types (manual, mechanized, instructable, 

steerable, and automatic) and directness (direct and 

indirect manipulation) 
Spence (2007) Interaction modes (continuous, stepped, passive, 

and composite interaction) 

User-oriented models 

Belkin et al. (1993) Method of interaction (scan vs. search), goal of 

interaction (learn vs. select), mode of retrieval 

(recognize vs. specify), resource considered 

(information vs. meta-information) 
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Bates (1989) Footnote chasing, citation searching, journal run, area 

scanning, subject search in bibliographies and 

abstracting and indexing service, author searching 

Marchionini (1992) Define the problem, select the source, articulate the 

problem, examine the results, extract information 

Zhou et al. (1998) Visual grouping, visual attention, visual sequence, 

visual composition, structuring, encoding, 

modification, transition  

Amar et al. (2005)  

 

Retrieve value, filter, compute derived value, find 

extremum, sort, determine range, characterize 

distribution, find anomalies, cluster, and correlate 

Valiati et al. (2006) Identify, Determine, Visualize, Compare, Infer, 

Configure and Locate  

 

 

While the units used in the different models are all about interaction, actual units 

in individual models may vary in their granularity (see Table 2.1). Some models 

try to categorize low-level interaction techniques (Wilkinson, 2005; Keim, 2002; 

Dix et al., 1998; Buja et al., 1996; Chuah et al., 1996; Shneiderman, 1996).  Some 

other models provide classification criterion to describe interaction techniques 

(Spence, 2007; Tweedie, 1997). Similarly, some other models focus on tasks and 

activities or their classification criteria (Valiati et al., 2006; Amar et al., 2005, 

Zhou et al., 1998, Belkin et al., 1993; Marchionini, 1992; Bates, 1989). It is 

interesting to note that this divergence in the units of modeling corresponds rather 

well to Norman‟s action cycle (Norman, 2002). Norman‟s action cycle describes 

interaction between a user and the world in several steps (forming the goal, 

forming the intention, specifying an action, executing the action, perceiving the 

state of the world, interpreting the state of the world, and evaluating the outcome).   
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In summary, a modeled unit can be a) low level interaction technique which is in 

fact a representation of a system action, b) class of interaction techniques which 

forms a dimension along which one can describe interaction techniques, c) user 

task which is a representation of user actions and d) class of user tasks which also 

forms a dimension along which one can describe user actions.  

A model of interaction can be domain-dependent or domain-independent. 

Domain-dependent models can be further classified depending on their degree of 

domain-dependence (e.g. task models for text retrieval in general or task models 

for retrieving bibliographic data). Domain-independent models of interaction are 

generalized descriptions of interactions. They can be considered as meta-models 

from which domain-dependent models can be derived (Becks, 2001). 

Another criterion of distinguishing models of interaction is the type of 

relationship between units. Examples for possible relationships are a set, a logical 

sequence or a hierarchy of tasks.  

This categorization of existing interaction models is shown in Table 2.2. 

Table 2.2: Unit-based categorization of prominent interaction models 

 

Publications Modeled unit Domain Type of 

relationship 

Shneiderman (1996) low level interaction 

techniques 

domain-

independent 

set of 

interactions 

Buja et al. (1996)  low level interaction 

techniques 

domain-

independent 

set of 

interactions 

Chuah and Roth (1996)  low level interaction 

techniques 

domain-

independent 

set of 

interactions 
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Dix and Ellis (1998)  low level interaction 

techniques  

domain-

independent 

set of 

interactions 

Keim (2002)  low level interaction 

techniques 

domain-

independent 

set of 

interactions 

Wilkinson (2005)  low level interaction 

techniques  

domain-

independent 

set of 

interactions 

Tweedie (1997) interaction 

technique 

domain-

independent 

classes of 

interactions  

Spence (2007) interaction 

technique 

domain-

independent 

classes of 

interactions 

Belkin et al. (1993) user activity  domain-

independent 

classes of 

user tasks 

Bates (1989) user tasks literature 

retrieval 

set of tasks 

Marchionini (1992) user tasks retrieval and 

browsing 

sequence of 

tasks 

Zhou and Feiner (1998)  user tasks domain-

independent 

hierarchy of 

tasks 

Amar et al. (2005)  user tasks domain-

independent 

set of tasks 

Valiati et al. (2006) user tasks domain-

independent 

set of tasks 

 

From the units of modeling, it is clear that these models are useful in providing us 

an understanding of the interaction space of VMSTs at the lower levels (interface 

features and tasks). But, they are still lacking in a number of aspects important to 

visual mining, particularly concerning activities at the higher levels. We discuss 

below as to why the above mentioned models are not able to comprehensively 

characterize the interaction space of visual mining in a way that they can enable 
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systematic thinking about user interactions with VMSTs which are intended to 

support complex cognitive activities. 

 The models included in the first set in Table 2.1, are system-oriented. 

They are representing system‟s response to user activities (Gotz et al., 

2008). 

 Marchionini‟s approach is strongly related to goal-directed and query-

driven processes instead of allowing the description of complex cognitive 

activities in visual mining (Becks, 2001; Morse, 1999, Wilson, 1999).  

 The Bates model (Bates, 1989) is primarily designed for describing 

published literature, and oriented mainly to the discipline of library and 

information science, (Becks, 2001; Morse, 1999, Wilson, 1999). 

 The models by Zhou et al. (1998), Amar et al. (2005) and Valiati et al. 

(2006) characterize interactions at lower levels of human-information 

interaction (Sedigh et al., 2012, Scholtz, 2006). The high level interactions 

which are representative of complex cognitive activities are not addressed 

in these models. Their work is significant from the point of view of 

classification of the user tasks that users can perform in VMSTs. But they 

cannot provide explicit classification of complex cognitive activities 

carried out by analyst users. However, their work is important to us in this 

research, as we believe that it provides the substrate of user tasks 

performed to support different complex cognitive activities in visual 

mining. Hence, as we shall see later, the user tasks which are proposed in 

the models developed by Valiati et al. (2006) are used by us to provide 
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appropriate support for complex cognitive activities in the proposed 

inspection framework proposed  as part of our research (this will be 

discussed in more detail in Chapter 5). 

 The model of Belkin et al. (1993) was noted by the authors themselves, 

that it is limited and in need of possible elaboration and empirical support. 

In addition it is quite strictly limited to interactions with information 

aimed explicitly at information seeking (Cool et al., 2002). 

 Finally, measuring the effectiveness of a model is difficult itself. This 

issue is discussed by Beaudouin- Lafon (2004) who proposes three 

dimensions to evaluate interaction models:  

    1) descriptive power, “the ability to describe a significant range of 

existing interface”;  

    2) evaluative power: “the ability to help assess multiple design 

alternatives”; and  

    3) generative power: “the ability to help designers create new designs”.  

Based on the above points, none of the models listed above appear to address 

modeling of interaction space of visual mining at the higher level concerned with 

support for complex cognitive activities.  

For our work, we found the model proposed by Belkin et al., (1993) as being the 

best suited as a basis to develop an interaction space model whose primary 

concern is the modeling of complex cognitive activities in visual mining. This is 

because, as compared to the other user centered models mentioned above, 

Belkin‟s model is unique in identifying the activity tier, a granularity of 
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interactions (high level) which supports information seeking in the information 

retrieval domain. This model suggests a view of the total process as a kind of user 

interaction with text, more generally user interaction with information. They 

attempted to characterize the variety of information interactions in the information 

seeking process in a way that would be useful for the evaluation and design of the 

systems to support user information seeking activities.  

In Chapter 3, through presentation of the visual mining work-flow, it can be seen 

that all of the major analysis activities in the visual mining process are also in the 

form of information interactions, to be specific, interactions with visual 

representations. Following the same approach as Belkin et al., (1993) we too 

would like that the information interactions in the visual mining process are 

characterized through a small set of classification criteria. Goals and intentions 

leading to different interactions should be identified and visual mining episodes 

should be comprehensively characterized according to the chosen set of 

classification criteria. Such a classification scheme would lead us to an interaction 

space model for visual mining that will largely address the primary research 

problem mentioned earlier in this thesis. As already mentioned in Chapter 1, the 

use of such an interaction space model should be demonstrated through its 

application towards evaluating the specific interaction space instance of any given 

VMST. In the next section, we provide a review of existing evaluation methods 

for interaction spaces of VMSTs. 
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2.3. Related Work on Evaluation of Interactions 

Supported by a VMST 

 

In this section, previous related efforts in the field of visualization evaluation are 

examined. It discusses previous research closely related to the inspection 

framework proposed in this thesis in some detail so as to provide a perspective on 

how our approach compares. 

 

2.3.1. Existing Visualization Evaluation Methods 

A large number of evaluations have been conducted measuring the effectiveness 

of VMSTs using the following methods: 

1. Controlled experiments: This is a short-term evaluation, which consists of 

several different controlled experiments conducted over a short period of time. 

These experiments usually measure the time to perform the task and quality of the 

performed task (Espinosa, 2000). The study subjects are asked to perform a list of 

tasks and the evaluator observes and records the performance time. The dependent 

variables are usually accuracy and efficiency measures. Accuracy measures 

include precision, the average number of incorrect answers and error rate. 

Efficiency measures typically include the average time to complete the tasks 

(Chen et al., 2000). 
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We give two examples of controlled experiments as follows: (1) interface and 

data architecture for query preview in networked information systems evaluation 

(Plaisant et al., 1999), and (2) spatial ability and visual navigation evaluation 

(Chen et al., 1997). The strength of this method is that it can accurately measure 

the accuracy, efficiency, and other properties of a tool. Evaluation using 

controlled experiments has helped researchers to compare a new tool with an 

existing tool, which is considered to be the standard tool or a cutting edge 

technology tool (Plaisant et al., 2002; Wiss et al., 1998). 

2. Usability: This approach is also a short term approach. Usability is the most 

common evaluation method along with controlled experiments (Chen et al, 2000). 

It typically focuses on usability issues concerning the tool interfaces. A Usability 

evaluation method usually involves a usability survey or a “think aloud” protocol 

as an evaluator observes participants performing tasks with a tool or just simply 

using a tool. It identifies problems encountered while performing tasks, provides 

feedback on those problems, and helps to provide a new solution. In these 

evaluations, the study subjects are important because a lot of the outcome depends 

on the ability of the participants. Some examples of usability evaluations are tree 

visualization systems (Kosba, 2004) and usability evaluations of Bifocal Browser 

(Freitas, 2002). The strength of usability evaluation method is that it gives value 

to user opinions.  

3. Comparing two or more tools: This is another short-term evaluation. 

Although there are cases reported where such comparative evaluations have been 

conducted with methods such as usability evaluation (Kobsa, 2004), a controlled 
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experiment is the most common method used. This is because results of 

controlled experiments are easy to compare. The approach typically compares a 

number of tools and their particular features and design elements. Most of the 

time, the evaluation compares a new tool with another standard or cutting edge 

tool. Some examples include: comparison of SpaceTree with Microsoft explorer 

and hyperbolic tree browser (Plaisant et al., 2002) and comparison of different 

three dimensional information visualization designs (Wiss et al., 1998). The 

strength of this approach is that the evaluation method can highlight the 

improvements and the differences of the multiple tools being compared.  

4. Inspection: These methods are possible through the involvement of expert 

evaluators, who inspect the user interface and provide judgments based on their 

knowledge.  For example heuristic evaluation method focuses on finding usability 

problems in a user interface design by comparing interface design with several 

recognized usability principles by expert users (Nielsen et al., 1990).  Another 

method in this group is known as cognitive walk through, where experts step 

through scenarios of use repeatedly asking questions regarding the intuitiveness of 

the interface design. The strength of these methods is that it values expert view of 

usability and it effectively and efficiently evaluates interaction mechanism aspects 

of a tool. Also, like other short-term evaluation, it is time efficient.  

5. Insight-based: This is a newly introduced evaluation approach by Saraiya 

(Saraiya et al., 2005; Saraiya et al, 2004). An empirical study measures insight. 

This method allows evaluators to quantify insight using different characteristics.  
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6. Field/longitudinal studies: Field studies are different from the other 

evaluation methods because they are conducted in natural settings. Their goal is to 

understand what users do naturally and how technology impacts on them. They 

are useful for discovering the effectiveness, problems, and actual use of a tool in a 

real daily work environment over a longer period of time. Their use is beneficial 

when dealing with complex data, such as biology data which need a longer period 

of time to analyze and evaluation results may not be accurate if short-term 

evaluation methods are used (Plaisant, 2004). Short-term methods, such as 

controlled evaluation, are limited in a sense that they are conducted under 

controlled environments under a given period of time. Since insight may have to 

be gained by analyzing visual representation from different perspectives over a 

long period of time, a short-term evaluation cannot address this aspect of the tool 

(Park, 2008).  

 

2.3.2. Major Challenges in Evaluation of VMSTs 

 

In practice, most of the evaluations in the field of visualization are oriented 

towards usability evaluation and controlled experiments (empirical methods) in 

which evaluation is done through user participation (Thomas et al., 2005; Feritas 

et al., 2014; Carpendale, 2008; Tory et al., 2004 ). There are many challenges in 

evaluating a VMST. Most of them are common to all empirical research.  The 

major challenges are discussed further below. 
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Focus, Questions and Methodology 

In all empirical research it is difficult to choose the right focus and to ask the right 

questions. Given interesting questions, it is difficult to choose the right 

methodology and to be sufficiently rigorous in procedure and data collection. In 

addition, appropriate data analysis is difficult and the most difficult of all is 

relating a new set of results to previous research and to existing theory 

(Carpendale, 2008).  

 

Time Availability of Appropriate Experts 

Obtaining an appropriate sample of participants is always difficult. Usually 

VMSTs are intended for domain experts and it can be hard to obtain the required 

amounts of their time for evaluation (Plaisant, 2004).  

 

The Need for Large Number of Participants 

Results of empirical evaluations with users depend on the background knowledge, 

experience, and ability of participants. Therefore a large number of participants 

are preferred for producing reliable results from the experiment, which makes it 

expensive and time consuming.  

 

Difficulty in Including Complex High Level Tasks During Evaluation  

Empirical evaluations of human information interaction generally include only 

simple tasks such as locate, identify, etc.  Other tasks such as requiring users to 

compare, associate, distinguish, categorize or etc are rarely covered (Komlodi, 
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2004). Visual mining with VMSTs also involves performance of variety of 

complex high-level tasks (complex cognitive activities) which are challenging to 

test empirically in short time. Many complex cognitive activities can require 

weeks or months to complete.  

 

Dependence of Results on Choice of Test Data  

The test data used in empirical evaluations significantly affects the end result. As 

discussed by Plaisant (2004), there are two approaches: 1) to use real data 

gathered from real-world instances; 2) to use synthetically generated data. While 

use of real data may enhance external validity of the evaluation it may not be 

possible to determine ground truth and therefore to generate useful performance 

metrics. The real datasets can be interpreted in multiple ways, leading to 

ambiguous test results. Synthetic data provides an opportunity to insert known 

data that provides ground truth. However the validity of an experiment with 

synthetic data may not be applicable to real-world situations. Synthetic data may 

not reflect the operational environment. 

 

Unbiased Comparison of Different VMSTs 

In the case of comparing two or more VMSTs, a major problem is that they often 

report overall performance for a combined set of tasks. The composition of a set 

of tasks can favor one tool or another when measuring overall performance, 

therefore introducing a bias (Plaisant, 2004). Also it is likely that participants may 

be much more familiar with the existing software and that this may skew the 
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results. The other weaknesses of the method are that it requires having the 

“standard” tool to compare against.  

 

Subjectivity Introduced by Participant Knowledge and Expertise 

The weakness of using inspection methods are that results may be subjective and 

influenced by the knowledge of the expert performing the evaluation. According 

to Nielsen et al. (1990), the result can be varied by an evaluator‟s ability to find 

problems. In addition, performing inspection methods with VMSTs are 

challenging.  Because these techniques are (for the most part) designed for 

traditional user interface testing, it is not clear how well they will be able to 

evaluate the interaction space VMSTs. For example, walking through a complex 

cognitive task is very different from walking through a well-defined interface 

manipulation task (Tory et al., 2004). Also, heuristic evaluations can be 

challenging because few guidelines exist specific to user interaction while 

performing in visual environment (Feritas et al., 2014). 

 

Insight is Hard to  Measure 

In the case of insight based approach, usually what exactly insight is varies from 

person to person and instance to instance therefore it is hard to define and 

consequently hard to measure it. Plaisant (2004) describes this challenge as 

“answering questions you didn‟t know you had.”  While it is possible to ask 

participants what they have learned about a dataset after use of a given VMST, 

the answer strongly depends on the participants‟ motivation, their previous 
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knowledge about the domain, and their interest in the dataset (Carpendale, 2008; 

North, 2006; Saraiya et al., 2005). Development of insight is difficult to measure 

because in a realistic work setting it is not always possible to trace whether a 

successful discovery was made through the use of a VMST. This is because many 

factors might have played a role in the discovery. Insight is also temporally 

elusive in that, insight triggered by a given VMST may take place hours, days, or 

even weeks after the actual interaction with the VMST. 

In practice, only short-term insight evaluations have been performed. Authors of 

this evaluation approach explicitly explained their need for conducting a 

longitudinal study over a longer period of time to obtain valuable conclusions 

(Saraiya et al., 2005). 

 

Field Evaluations are Lengthy and Expensive 

The challenge of field studies/longitudinal studies is that they are time 

consuming to conduct, and results may not be replicable or generalizable 

(Plaisant, 2004). In addition, evaluating usability in the field is difficult, due to the 

complexity of the environment and the activities to be observed, and to the large 

amount of data to be analysed (Pascoe et al., 2000). Overall, this approach is 

lengthy and expensive. 

Table 2.3 provides a summary of disadvantages of above mentioned evaluation 

methods. 
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Table 2.3: Summary of challenges in current evaluation methods  

 

Method Challenges 

Controlled experiments 

evaluation 

 

-absence of realistic data sets reduces validity. 

-difficulty in obtaining sufficient number of participants. 

- requires large number of participants. 

-expensive and time consuming. 

Usability evaluation 

 

-difficulty in obtaining sufficient number of participants. 

- results may be subjective based on the background. 

knowledge, experience, and ability of experiment participants. 

- requires large number of participants. 

expensive and time consuming. 

 

Comparing two or more 

tools 

-it requires having the “standard” tool 

-difficulty in obtaining sufficient number of participants  

- requires large number of participants. 

Inspection methods 

evaluation 

-results may be subjective. 

-usually designed for traditional user interfaces. 

Insight-based 

evaluation 

 

-it is hard to measure. 

-requires long term studies. 

-in practice, only a short-term study has been performed to 

measure insight. 

Field studies/longitudinal 

studies 

 

 

-often lengthy and expensive. 

-different backgrounds and experience of experiment. 

participants leads to wide variation in performance. 

 

In summary, most of existing evaluation methods, from the traditional controlled 

experiments and usability evaluation to more recent ones such as quantifiable 

insights, are inherently biased towards the outcomes of using VMSTs by users 
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(Liu et al., 2010). In addition, the big downside of controlled experiments and 

usability evaluation which form the backbone of evaluations today (Chen et al., 

2000) is the uncertainty of actual integration of the VMST into the real work 

setting (Park, 2008). They are conducted in a laboratory environment with limited 

number of low level tasks and often unrelated field data sets. The absence of 

realistic data sets and high level cognitive activities reduces the effectiveness of 

these evaluations in terms of the appropriateness of the tool for a given domain.  

As it can be seen from Table 2.3, most of the methods are subjective and/or 

lengthy and expensive, hard to measure considering the complex nature of 

visualization and need large number of participants. In this thesis we provide a 

new inspection framework based on our proposed model of interaction space of 

visual mining. This inspection framework tries to address many of the challenges 

presented by existing evaluation methods.  The inspection framework and its 

benefits will be described in more detail later in Chapter 5. 

 

2.4. Summary 

 

In this chapter we first drew attention to the importance of interaction in 

visualization research. While existing research in the area often focuses much 

more on transformation of raw data into visual representations and their 

presentation, this chapter highlights the overshadowed, but very important 

interaction component. In this chapter we strongly argue that it is primarily 

interaction which provides a way to overcome the limits of representation and to 
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suitably augment a user‟s cognition. We have discussed how VMSTs mediate and 

supplement human cognition to enable complex cognitive activities. Due to their 

interactive nature, VMSTs allow users to perform actions on visual 

representations that facilitate mental information processing. This creates a strong 

coupling between the user and a VMST and allows the VMST to become an 

active participant in the user‟s cognitive processes. When using a VMST, to 

perform complex cognitive activities, users engage in an interaction cycle in 

which they perceive visual representations, interpret them and perform other 

mental operations, act upon them and so on to reach their goal. Next, we bring out 

the importance of having interaction space models which appropriately 

characterize complex cognitive activities which humans perform during visual 

mining. Such a model can help us in the evaluation of the support provided by 

existing VMSTs for such activities and can also help us in the process of 

designing the interaction space of VMSTs.     

We have reviewed and classified existing prominent models of interaction related 

to visualization. We have brought out the short-comings of existing models and 

clearly noted the need for providing high level characterization of interactions that 

can guide the analysis, evaluation and design of interactions supported by VMSTs 

in ways that provide better support for complex cognitive activities. Lastly, we 

have reviewed different methods of evaluating visual mining interactions using a 

VMST and the major challenges in using these evaluation methods.  
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Chapter 3 : The Visual Mining Workflow 

 

Belkin et al., (1993) model the interaction space of information seeking with the 

help of classification criteria which characterize complex cognitive activities in 

information seeking and allow us to define information seeking strategies 

covering the interaction space. Each classification criterion can take different 

values. As was previously mentioned, we wish to use this model as our basis and 

define visual mining strategies which will cover the interaction space of visual 

mining. For this we need to discover the classification criteria for visual mining 

activities. This will be done through qualitative directed-content analysis of a 

comprehensive list of publications reporting case studies concerned with visual 

mining activities in different domains. The initial set of criteria will be defined by 

identifying all the interactions which have taken place in visual mining, as 

gathered from many different case studies.   

In the first part of this chapter, we will provide some background on qualitative 

content analysis techniques. This background is necessary for understanding the 

specific methods we have adopted and described in Chapter 4 for discovery of 

classification criteria for visual mining. In the second part, we will develop a 

comprehensive work-flow description of the visual mining process. This visual 

mining workflow includes all the analysis activities and information interactions, 

described at a high level, which take place during the process of visual mining. 

Using this visual workflow we will be to identify a comprehensive set of 

interactions which take place in visual mining. This comprehensive set of 
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interactions will be used in Chapter 4 to create the initial set of criteria, which get 

refined by qualitative directed-content analysis. 

 

3.1. Content Analysis 

 

Content analysis refers to a research technique which is used to analyse written, 

verbal or visual communication messages (Cole, 1988).  As a research method, it 

is a systematic and objective way of describing and quantifying phenomena 

(Krippendorff, 2004; Sandelowski, 1995; Downe-Wamboldt, 1992). It is also 

known as a method of analysing documents (Elo et al., 2008). 

Through content analysis, researchers can test theoretical issues to enhance 

understanding of the data. It makes it possible to condense words into fewer 

content related categories with the assumption that when classified into the same 

categories, words, phrases, or even bigger text chunks share the same meaning 

(Cavanagh, 1997). Like other techniques, it is essential to be able to provide 

defensible inference based on valid and reliable data collection (Lewis-Beck, 

1995). 

There are two types of content analysis: qualitative and quantitative (Hsieh et al., 

2005, Krippendorff, 2004).  In the beginning, content analysis was used as a 

quantitative research method, with text data coded into explicit categories and 

then described using statistics. Later on, the potential of content analysis as a 

method of qualitative analysis was recognized which further led to its increased 

application and popularity (Nandy et al., 1997). Qualitative content analysis has 
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been defined as “a research method for the subjective interpretation of the content 

of text data through the systematic classification process of coding and identifying 

themes or patterns” (Hsieh et al, 2005, p.1278).  

The quantitative content analysis approach is deductive and is used to test 

hypotheses or address questions generated from theories. By contrast, qualitative 

content analysis is inductive and attempts to generate theory. Since the qualitative 

content analysis approach is used in this research, quantitative content analysis 

will not be discussed further. More details of the qualitative content analysis 

process will be given in the following subsections. 

 

3.1.1. Qualitative Content Analysis Approach 

 

The qualitative content analysis process uses inductive reasoning to condense raw 

data into categories or themes based on valid inference and interpretation. In 

inductive reasoning, themes and categories emerge from the data through careful 

examination and constant comparison by the researcher (Zhang et al., 2009). 

Hsieh and Shannon (2005) introduced three approaches to qualitative content 

analysis based upon the degree of involvement of inductive reasoning: 

 Conventional qualitative content analysis: in this approach, coding 

categories are derived directly and inductively from the raw data. The 

purpose of this approach is usually to develop a grounded theory.  

 Directed-content analysis: in this approach, initial coding starts with a 

theory or relevant research findings. Then, during data analysis, the 
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researchers immerse themselves in the data and allow themes to emerge 

from the data. The approach is normally used to validate or extend a 

conceptual framework or theory.  

 Summative content analysis: this approach starts with the counting of 

words then extends the analysis to include hidden themes and meanings. It 

looks quantitative in the early stages, but its goal is to investigate the 

usage of the words, phrases or chunks in an inductive manner. 

The analysis approach that is used in this research falls into the second category 

which is directed-content analysis. The initial classification criteria are extracted 

(a procedure termed as coding) from a comprehensive workflow representation of 

visual mining process. The workflow description is provided in a later section in 

this chapter. These initial criteria are continuously refined and finalized after 

coding a large number of published articles describing actual case studies of 

visual mining activities carried out by experts in different application domains 

(more details are given in Chapter 4). 

 

3.1.2. The Process of Qualitative Content Analysis 

 

A key feature of content analysis is that the many words of the text are classified 

into much smaller set of content categories (Weber, 1990; Burnard, 1996). 

Qualitative content analysis involves a set of systematic procedures for processing 

data to support valid and reliable inferences. Some of the steps overlap with the 
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quantitative content analysis procedures (Tesch, 1990), while others are unique to 

the qualitative content analysis.  

 

3.1.2.1. Preparation  

 

The preparation phase starts by selecting the unit of analysis (McCain, 1988; 

Cavanagh, 1997; Guthrie et al., 2004). The unit of analysis is the basic unit of text 

to be classified during content analysis. Unit of analysis can be a word or a theme 

(Polit et al., 2004).  Qualitative content analysis usually uses individual themes as 

the unit for analysis, rather than the physical linguistic units (e.g., word, sentence, 

or paragraph) which are most often used in quantitative content analysis. An 

instance of a theme might be expressed in a single word, a phrase, a sentence, a 

paragraph, or an entire document (Zhang et al., 2009).  

Themes primarily are expressions of an idea therefore a code might be assigned to 

a text chunk of any size as long as that chunk represents a single theme or issue 

relevant to the research question (Minichiello et al., 1990). 

 

3.1.2.2. Inductive Analysis 

 

In this phase researchers organize the data. It includes open coding, creating 

categories and abstraction. During open coding, notes and headings are written in 

the text while reading it. The written material is read again. As many headings as 
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necessary are identified and written down again to describe all aspects of the 

content (Burnard, 1991, 1996;  Hsieh et al., 2005). The headings are transferred to 

coding sheets (Cole, 1988; Downe-Wamboldt, 1992; Dey 1993) and categories 

are generated at this stage (Burnard, 1991).  

After open coding, the lists of categories are grouped under higher order headings 

(McCain, 1988; Burnard, 1991). The aim of grouping categories is to reduce the 

number of categories by putting similar ones into broader higher order categories 

(Burnard, 1991; Downe-Wamboldt, 1992; Dey, 1993). In this stage, constant 

comparison method is highly recommended (Glaser et al., 1967), because it is not 

only able to emerge new insights, but is also able to make differences between 

categories clear. The constant comparison method is based on (1) the comparison 

of each text assigned to a category with each of those already assigned to that 

category, in order to fully understand the theoretical properties of the category; 

and (2) integrating categories and their properties through the development of 

interpretive memos (Zhang et al., 2009). 

After creating categories, the content analysis researcher formulates a general 

description of the research topic through generation of categories (Robson, 1993; 

Burnard, 1996; Polit et al., 2004). Each category is named. Similar subcategories 

are grouped together as categories, categories are grouped as main categories, and 

so on (Dey, 1993; Robson, 1993; Kyngas et al., 1999). The abstraction process 

continues as far as possible.  

This step involves making sense of the themes or categories identified, and their 

properties. At this stage, the content analysis researcher will make inferences and 



49 

 

present their reconstructions of meanings derived from the data. This usually 

involves the researcher exploring the properties and dimensions of categories, 

identifying relationships between categories, uncovering patterns, and testing 

categories against the full range of data (Bradley, 1993).  

Let us recall that the categories we are interested in are those which will help us 

characterize complex cognitive activities in visual mining which are performed in 

the form of interactions with visual representations of raw data. These are at the 

conceptual/theme level and may be present in the published papers either as 

phrases, sentences or larger chunks of text. Coding of the content of these 

publications has to be done by keeping this in mind.  

 

3.1.2.3. Report Methods and Findings 

 

For the study to be replicable, the analytical procedures and processes should be 

reported completely and truthfully as possible (Patton, 2002). In addition, the 

decisions about the coding processes, decisions and methods used to establish the 

trustworthiness of study (discussed below) should be described. 

Presenting research findings of qualitative content analysis is challenging because 

it does not produce counts and statistical significance. Instead, it discovers 

patterns, themes, and categories important to a social reality. 

In the past it was a common practice to use a typical quotation to justify 

conclusions which is prone to mistakes and bias (Schilling, 2006). Miles and 

Huberman (1994) recommended other options for data display, including 



50 

 

matrices, graphs, charts, and conceptual networks. The form of reporting finally 

depends on the research questions and goals (Patton, 2002). 

It is recommended that in the reports, there should be a balance between 

description and interpretation. Description gives readers background and context 

therefore it should be rich and thick (Denzin, 1989). Interpretation represents 

researcher personal and theoretical understanding of the phenomenon under study. 

An interesting and readable report “provides sufficient description to allow the 

reader to understand the basis for an interpretation, and sufficient interpretation to 

allow the reader to understand the description” (Patton, 2002). 

 

3.1.2.3.1. Trustworthiness 

 

Credibility, dependability, confirmability, and transferability are the established 

trustworthiness criteria for qualitative research (Erlandson et al., 1993; Lincoln et 

al., 1985; Patton, 1990).  

Credibility is guaranteed truthfulness of the research report (Erlandson et al., 

1993; Lincoln et al., 1985; Patton, 1990). Lincoln and Guba (1985) recommended 

a number of methods that would help improve the credibility of the research 

results: prolonged engagement in the field, persistent observation, triangulation, 

negative case analysis, checking interpretations against raw data, peer debriefing, 

and member checking. To improve the credibility of qualitative content analysis, 

researchers not only need to design data collection strategies that are able to 
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adequately solicit the representations, but also to design transparent processes for 

coding and drawing conclusions from the raw data. 

Coders‟ knowledge and experience have significant impact on the credibility of 

research results. It is necessary to provide coders precise coding definitions and 

clear coding procedures. It is also helpful to prepare coders through a 

comprehensive training program (Weber, 1990). 

Transferability refers to external validity. It depends on the extent to which the 

working hypothesis of the researcher can be applied to another context. 

It is not the researcher‟s job to provide an index of transferability. However, the 

researcher is responsible for providing rich data sets and descriptions which 

makes it possible for other researchers to be able to apply the researcher‟s 

findings to other contexts. 

Dependability refers to the criterion of consistency (Lincoln et al., 1985). Bradley 

(1993) defines it as “the coherence of the internal process and the way the 

researcher accounts for changing conditions in the phenomena”. 

Confirmability depends upon the degree to which the findings result from data 

and not from researcher bias. It is supported through an audit trail (Lincoln et al., 

1985), which is a major technique for establishing confirmability. It is done by 

checking the internal coherence of the research products i.e.  the data, the 

findings, the interpretations, and the recommendations. The materials that could 

be used in these audits include raw data, field notes, theoretical notes and memos, 

coding manuals, process notes, and so on (Zhang et al., 2009).  
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3.1.3. Computer Support for Qualitative Content 

Analysis 

 

Qualitative content analysis is usually supported by software tools such as NVivo 

9 and ATLAS.ti. The objective of using these software tools is to assist 

researchers in organizing, managing, and coding qualitative data more efficiently. 

The main functions that are usually supported are: text editing, note and memo 

taking, coding, text retrieval, and node/category manipulation. The visual 

presentation module of these software tools provides good support for researchers 

to see the relationships between categories and to discover patterns in data. Some 

programs even record a coding history to allow researchers to keep track of the 

evolution of their interpretations. In our research, we used NVivo 9 software for 

performing qualitative content analysis. This is explained in more detail in 

Chapter 4.  

 

3.2. Visual Mining Workflow 

 

As it was explained in Chapter 1, visual mining refers to the human analytical 

process that uses visual representations of raw data and makes suitable inferences. 

It is the process which uses the visual medium (through visual representations) 

and contributes to the discovery of patterns and relationships, which then form the 

knowledge required for informed decision making.  
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In this process, users interact directly with visual representation, analyze, gain 

insight and perhaps even formulate a new hypothesis. Later on, the user can 

evaluate the best possible hypotheses and make a judgment based upon it. In fact, 

this visual information exploration process helps to form the knowledge for 

informed decision making.  

In this process, the user creates a mental picture and speaks of the mind‟s eye, 

when saying “I see” to indicate understanding and to express the connection 

among vision, visualization, and reasoning. It involves the user in analytical 

reasoning. As stated by Thomas and Cook (2005): “Analytical reasoning is central 

to the analyst‟s task of applying human judgments to reach conclusions from a 

combination of evidence and assumptions”. By applying analytical reasoning, 

hypotheses about the data can be generated, confirmed and discarded. This 

eventually leads to a better understanding of the data and supports the analysts in 

their task to gain insight (Keim et al., 2008).  

In order to identify analysis activities and user interactions with visual 

representations in visual mining, we first have a detailed look at how the human 

analysis process works.  

The analytical process itself is both structured and disciplined. Usually, analysts 

are asked to perform several different types of tasks such as assessing, forecasting 

and developing options (Thomas et al., 2005). Assessing requires the analyst to 

describe their understanding of the present world around them and explain the 

past. Forecasting requires that they estimate future capabilities, threats, 

vulnerabilities, and opportunities. Finally, options are developed in order to 
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establish different possible reactions to potential events and to assess their 

effectiveness and implications.  

The analytical process begins with planning. The analysts must determine when 

and how to address the issue, what resources to use, and how to allocate time to 

various parts of the process. Then, they must gather relevant information and 

evidence in order to relate them to their existing knowledge. Next, they are 

required to generate multiple candidate explanations in the form of hypotheses. 

Then, they evaluate these hypotheses based on the evidence and assumptions to 

reach a judgment about which hypothesis is the most likely. Once conclusions 

have been reached, the analysts broaden their way of thinking to include other 

explanations that were not previously considered and provide a summary of the 

judgments they had made (Thomas et al., 2005).  

Building upon the above description of the analytical process, we have created the 

visual mining workflow with all its activities as shown in Figure 3.1.  

From this work-flow, it can be seen that all complex cognitive activities are in the 

form of interactions with information which cover the four primary areas of 

peoples‟ interaction with interaction: a) interact; b) find; c) interpret and d) use 

(Albers, 2008).  

 

 

 

 

 



55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Human information interaction phases 

 

 

Figure 3.1: Work-flow of the visual mining process 
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changes to each entity. In order to characterize an interaction, it is necessary to 

specify the entities and the nature of each action. In the case of human 

information interaction, quite naturally he considers humans and information as 

the entities. Furthermore, he categorizes actions as mental and physical. Using 

this categorization, the various components of the visual mining work-flow are 

shown in Figure 3.1 and described in further detail next. 

The sequence of events used by the analyst in the above work-flow chart is as 

follows: 

a) The analyst initiates the visual mining process by planning which issue(s), and 

when and how to address it (them), what resources to use and how to allocate 

time to various parts of the process to meet deadlines. The next step is to 

gather all relevant information by seeking information through searching, 

browsing, monitoring and generally being aware (Bates, 2002). 

b) Searching refers to active attempts to answer questions, look for a specific 

item or develop understanding around a question or topic area. During the 

searching process, the analyst is involved in physical, intellectual and mental 

acts. Physical acts are at the level of human computer interaction and involve 

clicking on a link, panning and scrolling, etc. In a 3D virtual environment, 

there also could be more elaborate navigation behavior exhibited such as 

drive, fly, and orbit that involve using a pointing device (digital stylus or 

mouse) or gestures to control the view platform. At the intellectual level, the 

analyst may adopt a Boolean search strategy which also involves mental acts 

such as extracting and verifying the relevance of information retrieved. Also, 
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sometimes searching itself involves mental acts. For example in the case of a 

visual search, the analyst may note a cue.  

c) Browsing is an active yet undirected form of behavior. For example, when 

performing physical acts such as 3D navigation or panning and scrolling, the 

analyst has no special information need or interest, but becomes actively 

exposed to possible new information. From this mental act, patterns may be 

discovered and any useful cue would be noted. 

d) Monitoring is a passive but directed behavior. In this mental act, the analyst 

does not feel such a pressing need to engage in an active effort to gather 

interested information but may be motivated to take note of any expected 

information as it goes by. Also, when the analyst has a question in mind, and 

may not be specifically acting to find an answer, they would take note of any 

relevant information that appears. 

e) Being aware is a passive undirected behavior and is similar to browsing in a 

way that an analyst may find information that they need to know. It is a 

mental act of detecting unexpected information.  

f) The next step in the VM process is to relate the findings with the knowledge 

in the expert's mind. In this mental act, the analyst interprets information 

based on their experience and knowledge. 

g) Based on the findings, the analyst then generates multiple candidate 

explanations in the form of hypotheses. Again this is a mental act. By 

applying analytical reasoning the analyst can use their prerogative to either 
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confirm or reject any hypothesis and formulate a judgment about which ones 

are the most relevant.  

h) Once conclusions have been reached, the analyst will be engaged in the 

mental act of broadening their thinking to include other possible explanations 

that were not previously considered. Then the analyst summarizes the 

analytical judgment either as assessment, estimation or evaluation of options 

depending on the goal. 

i) As the concluding step, the analyst usually creates a product to include the 

analytical judgment in the form of reports, presentations or whatever other 

form of communication is deemed appropriate.  

 

3.3. Summary 

 

In this chapter we provided an overview of background concepts and terms about 

qualitative directed-content analysis which are necessary for understanding the 

methods used and described in the next chapter. We also provide a detailed 

description of human analysis process, in order to identify analysis activities and 

user interaction with visual representations in visual mining. Then building upon 

the description of the analytical process, the visual mining workflow was created 

which includes all complex cognitive activities in the visual mining process. In 

the next chapter we will identify all the interactive activities from this visual 

mining workflow and develop the initial classification criteria.   
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Chapter 4 : Visual Mining Strategies Model 

 

In this chapter we describe the process which has resulted in the discovery of the 

set of classification criteria that characterize the interaction space of visual 

mining. Qualitative directed-content analysis methods have been used to reveal 

the visual mining activities carried out by human analysts and reported in 

scientific publications as visual mining case studies. The publications chosen, in 

general, clearly record the behavior of experts while being engaged in visual 

mining activities.  We also describe how the naturalistic methods recommended 

by Lincoln and Guba are applied to ensure that the content analysis is credible, 

transferable, dependable and confirmable. Furthermore, using examples in four 

different domains (medical, geographical, bioinformatics and epidemiology) we 

demonstrate that the proposed interaction space model can comprehensively 

capture visual mining activities.  

 

4.1. Discovery of Classification Criteria 

 

Surveys and interviews are the most common research methods for studying user 

interactions with information (McKechine et al., 2002). As we know, in a typical 

user study or survey, the user‟s motivation, knowledge and expertise considerably 

influence user performance and, thus, the final conclusions. Of course, using 

domain experts provides more realistic results (Plaisant, 2004). However, it is not 
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easy to employ adequate number of participants (domain experts) for interviews 

and surveys in this type of study, nor is it possible to have access to them for any 

extended period of time because most of the experts work in many different 

institutions that are widely dispersed geographically. Therefore we have turned to 

scientific publications which, in general, clearly record the behavior of expert 

analysts while being engaged in visual mining activities and, equally importantly, 

are also peer reviewed. By adopting qualitative directed-content analysis methods 

(Kyngas et al., 1999), we will reveal the visual mining activities of expert analysts 

from case studies reported in such publications. As we have mentioned in the 

preceding chapter, qualitative content analysis is an unobtrusive method which 

uses nonliving form of data, generally categorized as texts, of which, one kind 

that can be used for qualitative data inquiry in content analysis is official 

publications (Patton, 2002; Bhowmick et al., 2007). The three main advantages of 

working with prior published works are:  

1) The data are stable and non-changing, 

2) The data exists in the world regardless of any research that is currently being 

undertaken (Hesse-Biber, 2006), and further is independent of the research 

itself because the data is not influenced through the researcher‟s interaction as 

is the case with interviews,  and: 

3) They provide information about procedures and past decisions carried out by 

visualization and domain experts, possibly over long periods of intense study, 

which could not have been observed by usability researchers in a short 

usability study (Patton, 1990).  
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Through analysis of end-results of visual mining activities as they were described 

in published scientific literature, we obtained the information on work practices. 

The naturalistic methods recommended by Lincoln and Guba were applied to 

ensure that the content analysis was (to the extent possible) credible, transferable, 

dependable and confirmable.  

 

4.1.1. Brief Description of Chosen Content 

 

For our content-matter, we initially chose around sixty published papers primarily 

concerned with reports on effective use of visualization for analysis and mining of 

large datasets. The chosen papers were from four different domains, namely, 

medicine, bioinformatics, epidemiology and geoscience. Each paper was studied 

and those which did not report actual case studies by expert analysts were 

excluded from further consideration. The final numbers of papers which 

contained case studies that described expert analyst‟s interaction with visual 

information in each domain are given in Table 4.1. Every one of these papers was 

analyzed and used in the information interaction coding process described next. 

Table A.1 in Appendix A includes the list of publications which have been used. 
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Table 4.1: Numbers of papers analyzed in each domain for qualitative 

content analysis 

 

 

 

4.1.2. The Coding of Visual Information Interactions  

 

As mentioned above, use was made of naturalistic inquiry analyses which is 

inductive and often uses the constant comparison method (Glaser et al., 1967; 

Lincoln et al., 1985). Restating from Glaser and Strauss (1967), constant 

comparison can be simply described as follows: "while coding an incident for a 

category, compare it with the previous incidents in the same category". Coding is 

the label provided by qualitative theorists to the process of data conceptualization. 

It is a transcript containing an idea which the researcher recognizes as belonging 

to a significant concept and labels the material to specify a link between data and 

Domain Number of 

papers initially 

chosen 

Number of papers 

excluded from further 

analysis 

Final 

numbers of 

papers 

analyzed 

Medical  19 10 8 

Geoscience  19 8 11 

Bioinformatics  13 5 8 

Epidemiology 10 7 2 
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concept (Foster, 2003). In this study, any interaction between user (expert analyst) 

and visual information is coded. Coding took place via three main iterations over 

an extended period of time. The coding of concepts in each paper began with 

manual annotation of papers during the process of close reading of case studies in 

papers to highlight each concept (visual information interaction) and label it. This 

process exactly corresponds to the unitization or open coding process. Subsequent 

iterations of reading and coding of concepts in each paper was constantly 

compared with previous papers.  

The development of coding, including the renaming and definition of categories 

was facilitated by using NVivo 9 software, which was used to manage the coding 

process. 

NVivo 9 is very useful when one is working with unstructured information such 

as documents, surveys, audio, video and pictures in order to assist in better 

decision-making (QSR International website, 2014). NVivo 9 allowed us to code 

relevant user interactions with visual information extracted from the articles and 

to assign them to nodes which can be hierarchical (tree nodes) or non-hierarchical 

(free nodes) as desired. In our case, the relevant visualization related interactions 

were first coded as free nodes. Then, after analyzing a number of articles and 

comparing the interaction nodes with previous ones, they were either modified to 

tree nodes, renamed or deleted as required. We found that coding with NVivo 9 

was convenient since it allowed adding, renaming, deleting or merging of codes 

as required but it did not, however, automate the coding process. The coding in 

NVivo 9 took place in multiple stages as described next. 
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(1) The work-flow of visual mining was used to develop the initial coding scheme 

(Kyngas et al., 1999). Figure 4.1 shows a static model of coding during this 

first stage. As analysis proceeded, additional codes were developed and this 

initial coding scheme was revised and got refined.  

 

Figure 4.1: NVivo model corresponding to first iteration of coding 

 

Figure 4.2: NVivo model corresponding to second iteration of coding 
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Figure 4.3: NVivo model corresponding to third iteration of coding 

 

(2) One additional coder was recruited. She was a PhD student and had 

background knowledge about using VMSTs for data analysis. She was 

required to carefully read the initial coding scheme. The questions about the 

initial coding scheme raised by the coder were answered. The two coders 

separately coded the 10 sample papers. They discussed the major inconsistent 

results and agreed on new coding rules. In the second stage they coded 10 

more papers and again checked for inconsistencies and agreed on new coding. 

In the final stage, they repeated the same process with remaining papers.  

(3) The issue of consistent coding was addressed by performing several iterations 

of coding spread over a period of about a year. 

(4) Coding changes were maintained for future reference and ideas, discussions, 

interpretations and decisions were recorded in the memos during analysis in 
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order to keep track of the development. NVivo also allowed an audit trail to 

be maintained.  

(5) Throughout the process, the dynamic models illustrating code relationships 

were used to visualize, explore and present connections and patterns in the 

data. As we mentioned, they were converted to static models and were 

maintained in the software in different stages of analysis.  

(6) Some of the changes that occurred through the coding process can be seen by 

comparing Figure 4.1 and Figure 4.2. As analysis of papers continued, we 

realized that the generation and evaluation of a hypothesis are basically 

repeated processes of information seeking and finding patterns from which a 

hypotheses or a final judgment is retrieved. Because information seeking, 

pattern and judgment already existed in the coding, we added a new code 

named retrieval and renamed hypothesis generation to hypothesis evaluation. 

Retrieval was created as a parent node and Judgment, Pattern and Hypothesis 

were considered as children nodes (Figure 4.3).  

(7) Again, by reviewing and coding several more papers, and by continuing to 

compare them, we noted that the goals of the visual mining process can be 

classified as being able to assess, estimate and develop options. Therefore, 

under the Goal node, we added three new children nodes named Assess, 

Estimate and Develop options. This is shown in Figure 4.3. 
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4.1.3. Trustworthiness of the Results from Our Coding 

Process 

 

As was described earlier in Chapter 3, credibility, dependability, confirmability, 

and transferability are the established trustworthiness criteria for qualitative 

research (Erlandson et al., 1993; Lincoln et al., 1985; Patton, 1990). The 

following section briefly describes these concepts and the approach we have used 

to address them in our analysis. 

Credibility is guaranteed truthfulness of the research report (Erlandson et al., 

1993; Lincoln et al., 1985; Patton, 1990). One method to establish credibility is 

member checking. According to Lincoln and Guba, member checking is one of 

the most important criteria when making a naturalistic inquiry. In our case this 

was conducted to test the result of analysis with that of a geographer and a 

research fellow in biomedical engineering. They confirmed the results and 

verified the interpretations. Yet another technique that we used to build credibility 

was peer-debriefing. This is used to confirm interpretations and coding decisions. 

Our peer-debriefer, an observer, but not a participant in our project, analyzed the 

research materials and questioned the data, meaning, and interpretation. She was a 

colleague and has a PhD in Computer Science but was in no way involved in the 

study although she has knowledge about qualitative research and the phenomenon 

under investigation. The interactions between researcher and the peer-debriefer 

also included the audit trail in which she later performed the role of an auditor. 
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Dependability refers to the criterion of consistency (Lincoln et al., 1985). An 

auditor was invited to conduct a dependability study by reviewing notes from the 

document review and reflexive journal which was kept by us. It consists of 

information about the implementation of the research, reasons for methodological 

decisions made throughout the research, and insights recorded during research 

implementation. 

Confirmability depends upon the degree to which the findings result from data 

and not from researcher bias. It is again supported through an audit trail (Lincoln 

et al., 1985). The auditor tracked findings to data by reviewing journals and 

documents to make sure that the interpretations made were consistent with the 

data. 

Transferability refers to external validity and depends, in large part, on the extent 

to which readers are able to apply findings of the research to other contexts. It is 

supported by a thick description (Lincoln et al., 1985) which brings readers into 

the setting of the study and allows them to determine if the findings can be 

transferred (Merriam, 2001). To support transferability, a thick description has 

been created in the form of final report which would allow readers to make 

constructive decisions. 
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4.1.4. The Result: Classification Criteria 

 

The above mentioned process enabled us to discover a set of classification criteria 

which characterizes the space of interactions in visual mining. Table 4.2 presents 

these criteria and the different values which each criterion can take. 

Table 4.2: Classification criteria for modeling interaction space in visual 

mining 

 

Criteria Values 

Goal Assess (A), Estimate (E), Develop Options (DO) 

Information 

seeking 

Searching (S), Browsing (B), Monitoring (M), 

Being Aware (BA) 

Retrieval Pattern (P), Hypothesis (H), Judgment (J) 

 

The above criteria for characterizing the interaction space in visual mining can be 

paraphrased in continuous text as follows. The user‟s goal of visual mining 

requires an understanding of the current situation and explaining the past (assess), 

estimating future capabilities (estimate) and developing different possible options 

(develop options). In order to accomplish these goals, the user must gather 

relevant information and evidence through active or passive information-seeking 

activities which, as already described, are classified as searching, browsing, 

monitoring and being aware. The retrieved item(s) during these activities 

(retrieval) can be a pattern, hypothesis or final analytical judgment. 
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4.1.4.1 Comprehensiveness of Classification Criteria  

 

 

In the last stage of our qualitative analysis process, in order to further validate the 

classification criteria for visual mining, typical real-world visual mining activities 

were extracted and listed from the reviewed literature. All extracted activities 

were re-described using these criteria in order to validate their necessity. Finally 

to ensure that further refinement is not needed (to ensure sufficiency, to the extent 

possible), visual mining activities were extracted from ten new papers all 

containing reports of visualization case studies. We then confirmed that in the 

process of describing these visual mining activities using the classification 

criteria, every value of every criterion was indeed needed. Further all these visual 

mining activities were comprehensively described by these criteria. This process 

was repeated again with an additional five papers. Since no changes were required 

in the set of classification criteria, we concluded that our refined set of criteria 

was stable and no further refinements seem to be needed. We do not claim that 

these criteria are exhaustive, but on the basis of describing typical real-world 

visual mining activities, they appear to be necessary if not sufficient, and 

represent at least a valuable starting point for characterizing the interaction space 

of visual mining. 
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4.2. Visual Mining Strategies (VMS) Model 

 

A complex visual mining activity is characterized by the relevant values of the 

three criteria, namely: Information seeking, Goal and Retrieval. We call each 

distinct combination of values as a Visual Mining Strategy (VMS). Table 4.3 lists 

all thirty-six possible strategies, and is called as the Visual Mining Strategy 

Model or VMS model for short. As formulated, since all admissible combinations 

of criteria values have included, collectively these VMSs span the entire 

interaction space in visual mining.  

Several VMSs would be adopted in the course of a visual mining episode. 

Consider the example of visually mining from a large medical dataset with the 

goal of diagnosing a certain disease. The different strategies which the users could 

adopt are: searching for some specific side effect of the disease, browsing to find 

some interesting information about the disease, identifying some unexpected 

information (such as changes in DNA sequence), finding expected information 

(such as fatigue), providing several candidate diagnoses in the form of 

hypotheses, diagnosing the disease which is making a judgment and so on. It is 

easy to see that the above strategies are actually differentiable according to their 

values on the chosen set of criteria in our VMS model. For example, searching for 

some specific side-effect of the disease is a classic example of a well-defined 

search to identify a pattern in data whereas exploring the visual representation to 

find something interesting about the disease is an example of typical browsing to 

identify an as yet unknown pattern in the data. Along the same lines, providing 
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candidate diagnosis is one example of developing a hypothesis about the data that 

can be done by browsing, searching, being aware or monitoring. And, diagnosing 

the disease is an example of making a judgment about the most likely hypothesis.  

 

Table 4.3: Visual Mining Strategies (VMSs) 

 

 

Strategy S* B* M* BA* A* E* DO* P* H* J* 

VMS1 ×    ×   ×   

VMS2 ×    ×    ×  

VMS3 ×    ×     × 

VMS4 ×     ×  ×   

VMS5 ×     ×   ×  

VMS6 ×     ×    × 

VMS7 ×      × ×   

VMS8 ×      ×  ×  

VMS9 ×      ×   × 

VMS10  ×   ×   ×   

VMS11  ×   ×    ×  

VMS12  ×   ×     × 

VMS13  ×    ×  ×   

VMS14  ×    ×   ×  

VMS15  ×    ×    × 

VMS16  ×     × ×   

VMS17  ×     ×  ×  

VMS18  ×     ×   × 

VMS19   ×  ×   ×   

VMS20   ×  ×    ×  

VMS21   ×  ×     × 
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VMS22   ×   ×  ×   

VMS23   ×   ×   ×  

VMS24   ×   ×    × 

VMS25   ×    × ×   

VMS26   ×    ×  ×  

VMS27   ×    ×   × 

VMS28    × ×   ×   

VMS29    × ×    ×  

VMS30    × ×     × 

VMS31    ×  ×  ×   

VMS32    ×  ×   ×  

VMS33    ×  ×    × 

VMS34    ×   × ×   

VMS35    ×   ×  ×  

VMS36    ×   ×   × 

 

* Refer to Table 4.2 for full nomenclature 

 

Our VMS model has many different applications. For example, it can be used to 

support requirements analysis in system engineering of VMSTs where 

understanding actual user needs are an important step in system modeling. From a 

user-centered view, studying and assessing different user activities which occur in 

visual mining could be undertaken using this model. However, because it 

provides a system-independent classification scheme of interaction space of visual 

mining, it can also be used for evaluating and classifying existing  VMSTs based 

on what they support (Morse, 1999). Since interaction is such an important aspect 

of VMSTs, this classification scheme should make a significant contribution to 

the improvement of functionality and interface design of newer systems. 
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4.2.1. Examples: Visual Mining Scenarios Using the VMS 

Model 

 

In this section, we give four examples of describing a user‟s high level 

interactions with visual representation using the VMS model. The examples are 

from case studies in the list of papers used in our qualitative content analysis.  

Example 1 (Medical domain): We take up a visual mining scenario known from a 

case study concerned with interactive blood damage analysis (Hentschel et al., 

2008). The goal is blood damage assessment (Goal: assess). The scientist starts 

the interactive analysis with a first look at the animated particle traces 

(Information seeking: browsing). The traces were colored by the cumulative 

hemolysis value. They observe a surprising fact: while the hemolysis level stayed 

low throughout most of the impeller, it quickly rose after leaving the impeller 

(Retrieval: pattern) (VMS10). Then, they investigate selected particles with high 

rates of hemolysis in more detail using the static view. In this view, they use the 

temporal browsing facility to quickly jump to both key positions (Information 

seeking: searching) and analyze the particle‟s motion in these regions more 

closely. They then make an interesting follow-up observation: some particles did 

not directly pass the diffuser. Instead, after passing halfway through, they were 

drawn back and floated around in the gap between impeller and diffuser 

eventually heading towards the outlet through another section of the diffuser. This 

observation led to the hypothesis that the high rates of hemolysis might somehow 

correlate with this backflow (Retrieval: hypothesis) (VMS2). Backflow or 
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recirculation is not easily detectable in a general setting. They investigate this 

using function plots (Information seeking: searching). The plot clearly reveals the 

following two facts: First, it confirms the existence of backflow areas in the 

transition region between the end of the impeller and diffuser. Negative z-velocity 

values can be predominantly found in that region. Second, the range of the z-

velocity values is widest there, i.e., both large positive and large negative values 

are revealed at the diffuser‟s entrance. Based on their previous knowledge and 

observations, they summarize that the transition region between impeller and 

diffuser has been identified as being a high-shear region leading to high hemolysis 

rates at the exit of the diffuser (Retrieval: judgment). 

Example 2 (Geographical domain): Here we take up a visual mining scenario 

concerned with analyzing the history of visits to a hotel (Weaver et al., 2007). The 

goal is to determine weather and climatic effects on hotel visits (Goal: assess). 

While visualizing the data, the analysts notice the regular pattern of Friday visits 

by one of the guests named A. M. Sheats (Information seeking: browsing, 

Retrieval: pattern) (VMS-10). This pattern prompts them to look for deviations 

from this routine (Information seeking: searching). By setting the view to a 

fourteen-day cycle then scrolling to earlier dates, the analysts are able to 

determine that there were two periods when his scheduled visits were not on 

Fridays. These two Fridays were during winter months (Retrieval: pattern) (VMS-

1). This leads the analysts to believe that the weather may have had something to 

do with these variations (Retrieval: hypothesis) (VMS2). While the exact reason 

for these deviations has not yet been determined, they examine historical climate 
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data to test this hypothesis. Such records indicate that on February 5–14, 1899, 

there occurred the coldest period of weather in the United States meteorological 

records (Information seeking: search, Retrieval: pattern) (VMS1). Further 

visualization also reveals how the time of year strongly correlates with the overall 

number of visits, possibly due to seasonal variations in climate that affect travel. 

(Information seeking: browsing, Retrieval: pattern) (VMS10). In addition, in the 

vertical histogram, the total number of visits is highest during the summer and 

lowest during the winter, with the exception of major holidays which confirms the 

hypothesis (Information seeking: search, Retrieval: judgment) (VMS3). 

Example 3 (Bioinformatics domain): In this example we take up a visual mining 

scenario from a case study concerned with finding the leftmost and rightmost 

protein alignment (Smoot et al., 2005) (Goal: assess). The analysts visualize the 

set of all near-optimal alignments in the path graph. Then they attempt to find 

candidate alignments by animating pathgraphs and filtering (Information seeking: 

searching). The successive application of tighter and tighter filters helps them to 

find evidences that the Left and Right output might not have been correct 

(Retrieval: pattern) (VMS1, VMS2). The software allows them to create new 

alignments manually using an alignment editor, path graph display, and a dual 

display from which they suppose that the new alignments are correct (Retrieval: 

hypothesis) (VMS2). To verify the hypothesis, they view the new alignments in 

the path graph with the rest of the set. To see the exact two alignments, they apply 

the filters and quickly find the new alignments and highlight them (Information 

seeking: search). They see that proper boundary edges of the path graph were 
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highlighted. Therefore, they conclude that the boundaries are correct (Retrieval: 

judgment) (VMS3). 

Example 4 (Epidemiology domain): This visual mining scenario is concerned 

with analyzing distribution, determinants, and potential impacts of the avian flu 

outbreak (Proulx et al., 2006) (Goal: estimate). By visualizing data, the analysts 

find that Asia is a hotspot for disease activity (Information seeking: search, 

retrieval: pattern) (VMS4). They decide to investigate this region more closely 

(Information seeking: search). They notice that the concentration of three 

different strains in the specific geographic area is apparent (Retrieval: pattern) 

(VMS4). Through visualizing and information seeking (Information seeking: 

browsing, search), they can find many patterns such as: disease events in Asia 

occur in clusters by location, the absence of the disease from nearby countries like 

Laos and Korea, Indonesia is not connected to mainland Asia. However, 

somehow disease events later occur there. These patterns suggests avian flu was 

somehow brought over from the mainland, perhaps due to bird migration or 

poultry exports (Retrieval: hypothesis) (VMS5). By continuing information 

seeking, finding patterns and relating them to their existing knowledge, they can 

generate possible hypothesis, evaluate them and reach the final judgment. 

 

4.3. Summary 

 

This chapter presented the formulation of our VMS model which 

comprehensively characterizes the interaction space of visual mining. This will 
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enable systematic thinking about user interactions with VMSTs which are 

intended to support complex cognitive activities. By using trustworthy qualitative 

directed-content analysis methods and using content from published papers 

reporting interactions with visual representation, it was discovered that user 

activities in this context, termed as visual mining strategies, can be differentiated 

along a small set of three criteria to make up a domain independent activity 

model, the VMS model. Furthermore, it is demonstrated through four examples in 

different domains (medical, geographical, bioinformatics and epidemiology) that 

the proposed VMS model can comprehensively capture visual mining activities in 

a tool independent fashion. 

In Chapter 5 we will develop a framework which uses this tool independent VMS 

model to design an inspection framework that can compare the strengths and 

weaknesses of a given VMST. For a demonstration of the capability of this 

inspection framework, we have applied this to three existing commercially 

available VMSTs. The goal is to estimate the strengths and weaknesses of a 

VMST when providing support for user operations, the support provided by 

interface features, and the support for all the strategies in the VMS model.  
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Chapter 5 : An Inspection Framework for 

Evaluation of Visual Mining Software Tools 

 

In this chapter, we develop an inspection framework which enables evaluation of 

the support provided by a VMST for performing complex cognitive activities 

required in visual mining without the need for extensive expert involvement.  The 

evaluation metrics defined consider, in a comprehensive manner, various levels of 

visual mining interaction. The framework considers interactions at four levels of 

granularity: activities, tasks, interface features and moves. As we explained in 

Chapter 1, interactions at a high level are often complex and open-ended (e.g., 

problem solving, decision making, and forecasting), and are usually termed as 

activities. Tasks, at the next level, are specific goal-oriented behaviors that occur 

at the next lower level during the performance of activities (e.g., categorizing, 

identifying, and ranking). Interface features occur at an even lower level and 

involve tool driven actions that are performed upon visuals (e.g., selecting and 

filtering). Moves occur at the lowest level and are performed using the VMSTs 

interface; they can be mental or physical (e.g., mouse clicks, keyboard presses). In 

fact with different levels of interactions, this framework views interactions in a 

VMST as hierarchical, embedded, and emergent. That is, each level of the 

interaction hierarchy is embedded within the level above and each level has 

emergent characteristics that result from the relationships occurring within the 

levels below (Figure 5.1). 
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Figure 5.1: Levels of interactions in visual mining  

 

Our proposed inspection framework integrates the VMS interaction space model, 

analyst-user tasks, (we use tasks proposed by Valiati et al. (2006)), and VMST 

interface features and moves to define new metrics. The evaluation is done 

through quantification of the strengths and weaknesses of a VMST in supporting 

analyst-user tasks and activities. The framework provides three types of analyses: 

1) analysis of the interface features of a VMST , such as spatial navigations or 

documentation, to identify how they contribute to the overall support provided by 

a VMST, 2) analysis of the support provided for analyst-user tasks such as  

identify and compare and 3)  analysis of the support provided for 36 visual mining 

strategies, which as per our interaction space model, comprehensively represent 

the complex cognitive activities in visual mining process. We demonstrate the 

Activities Interaction Episodes via VMS1…VMS36 

Identify, Determine, Infer 

… 

Tasks 

Interface features Filter, Measure, Transform 

… 

Moves Press, Click, Drag, 

Note a cue, … 
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value of our framework by using it to quantitatively measure the support for 

visual mining provided by three widely used VMSTs.  

This framework operates by assessing the ease of performing user tasks as a 

measure of support provided for visual mining. These measures may then be used 

for redesign and improvement of the VMST interface.  

 

5.1. Characteristics of an Evaluation  

 

Judging whether a VMST is effective requires answering the question: effective 

for what? Therefore, the evaluation methodology has to take into account, to the 

extent possible, the different kinds of complex cognitive activities and how they 

are performed through the mediation of VMSTs. 

In order to address this, the proposed inspection framework considers all the four 

levels of interactions in VMSTs. Then for developing the evaluation metric we 

define a mapping between these different levels of interactions.  

Similar attempts have been made in the field of library and information science by 

Wilson et al (2009-b). They have developed a framework to evaluate the support 

provided by different interfaces specifically for the activity of searching for 

information using the interface of a browser. This is done through the 

quantification of the strengths and weaknesses of the interfaces in supporting user 

tactics and information seeking strategies. Their framework also combines 

established models of information seeking. Specifically, they employ aspects of 

two models: the information seeking strategies from the interaction model of 
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information seeking (Belkin et al., 1993) and the levels of search strategies (i.e., 

moves, tactics) presented by Bates (1990) in her strategic model. In particular, the 

“moves” in Bates model are used to speculatively quantify the “tactics”. As 

previously mentioned, a “move” is a single action performed by users, either 

physically or mentally. They combined the information seeking strategies with 

metrics (the values produced by quantifying the tactics) to predict the support 

provided by different VMSTs.  

Following these ideas, we also develop a similar inspection framework which 

combines appropriate interaction models, but for the domain of visual mining. As 

per the VMS interaction space model, in the visual mining process, every activity 

of any visual mining episode can be categorized as belonging to one of the 36 

VMSs. For identifying the tasks performed in any activity, as mentioned earlier, 

we use the interaction model proposed by Valiati et al. (2006) (this model is 

explained in more detail in Section 5.1.1). Users perform these tasks using the 

interactive features provided by the VMST interface which in turn comprise of 

mental and physical acts.  

As in Wilson‟s framework, Bates moves (Bates, 1990) are used. Bates moves 

enable quantification of the support provided by each interface feature of the 

visualization tool for user tasks. Lastly, the measures obtained for each of the 

tasks are appropriately combined, so that the support for each activity can be 

calculated (See Figure 5.2).  More details are given in Section 5.2. 
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Figure 5.2: Evaluation environment for visual mining 
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5.1.1. User Tasks 

 

The interaction model by Valiati et al. (2006) is among the most recent interaction 

models for multidimensional visualizations. It is also called taxonomy of tasks in 

literature. This model focuses on the process of exploring the information in a large 

dataset. This work is based on many existing interaction models (Zhou et al., 1998, 

Wehrend et al., 1990). It integrates existing interaction models with new exploratory 

tasks in a multidimensional dataset. Valiati et al. (2006) have pointed out that a 

clear understanding and precise representation of tasks that a user performs while 

carrying out data analysis are essential for effective evaluation of information 

visualization tools. They have identified tasks that a user might need to execute to 

analyze data as follows: 

 Identify: Refers to any action of finding, discovering or visually estimating the 

value of some piece of information in the data. It begins each time the user begins 

a new activity with the goal of finding, discovering or estimating the value of 

some new information regarding the data.  

Determine: Corresponds to any action of calculating, defining or precisely 

indicating values such as mean, distance etc. This task begins each time a user 

needs to calculate a specific value. 

Visualize:  Represent graphically desired dimensions or data items.  

Compare: The user can compare identified, visualized, determined or located 

data by analyzing dimensions, properties, proportions, locations, distances, visual 

characteristics, etc. 
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Infer: After identifying, determining or comparing information, the user is able to 

infer knowledge from the information and define hypotheses. 

Configure. For visualizing the data space, the user usually has to configure the 

visual representation. This task is related to the possible actions available to 

change visual characteristics used to represent data items or attributes.  

Locate. This task is related to the actions of searching and finding precisely in the 

display, the information previously visualized, identified or determined.   

 

5.2. The Proposed Inspection Framework 

 

The user interaction space is vast, since an analyst user can perform any 

combination of moves any number of times. Hence it is important to be able to 

delimit the space to those regions in which most analyst user activities would 

belong. In the proposed framework, the analyst-user looks at the user interface 

(UI) (Figure 5.3) from the viewpoint of 1 of the 36 VMSs (Table 4.3).They see 

each VMS in terms of the tasks they can perform. The VMSs and the tasks act as 

filters. They delimit the space of possible interactions with the VMST interface. 

The VMST interface can be seen by each task, in terms of how easy it is to 

perform that task using its interactive features. As already mentioned, Bates 

moves (Bates, 1990) are used as a metric. Therefore, each user task can be 

assigned a total score indicative of how easily it can be performed using the 

VMST‟s user interface features. 
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                         Figure 5.3: Three layers of the inspection framework  

 

5.2.1. Internal Working of the Framework  

 

The inspection framework comprises of the following four stages: 

Stage 1: Feature Identification: 

For each VMST, user interface features are identified. 

Stage 2: Measuring Support for user tasks 

For each interface feature used in performing a user task, a count of the number of 

moves involved is recorded. Figure 5.4 illustrates the steps of measuring support in 

the proposed framework, by counting moves which consist of three loops: each 

VMST interface (L1), each interactive feature (L2), each user task (L3). 

 

 

 

VMSs 

(Tasks) 

User‟s Tasks 
User 

Interface 
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Figure 5.4: The steps of measuring support by counting moves 

 

As we mentioned before, to calculate the support for each user task, by each 

interactive feature, of each VMST interface, the notion of a move from Bates‟ 

model is used. When using an interactive feature to locate some specific 

information in visual representation, for example, a user might press the right 

mouse button  (move 1 - physical), drag the mouse (move 2 - physical), scan 

through visual representation (move 3- Mental) and note a cue (move 4 - Mental).  

Several existing models and analytical methods include the notion of mental 

moves. For instance, in the Keystroke Level Model, mental moves, which Card et 

al. (1983) call „Operators‟, can include actions, such as choosing a query, 

retrieving information from long term memory,  reading, or scanning through a 

list of options.     

L1. For each VMST interface 

 L2. For each interactive feature in VMST interface 

  L3. For each user task defined by Valiati 

Count the number of moves the user must make to 

achieve the current user task with the current feature 

  L3. Next user task 

 L2. Next feature 

L1. Next interface 
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By following the procedure described in Figure 5.4 and recording number of moves, 

for each VMST a table is generated. In this table, the tasks are listed across the top 

and the features down the side. The entry in each cell of this table is the count of 

moves. An example table is shown in Table 5.1. As further explanation, let us 

consider the Trackball interface feature. Two tasks, identify and configure would 

require to make use of the Trackball feature and the number of moves required each 

time is 3.                                 

Table 5.1: An example table 

 

Interface 

features 

Identify Determine Compare Configure … Total for 

interface 

feature 

Trackball 3   3  6 

Measure  4    4 

… … … … … … … 

Totals for 

user task 

      

 

Stage 3: Data Processing 

A well designed interface feature obtains a low score while a poorly designed feature 

obtains a high score. No support for an interface feature is represented by a blank 

entry. Before summarizing the result, the scores, except for blanks are inverted. 

Therefore better designs receive a higher score which approaches 1 and poor designs 

receive a lower score approaching zero. In this way, the graphs that are later produced 
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have the intuitively correct feeling that a taller bar, or a higher value, represents 

stronger support. These inverted values can then be summed by interface features and 

by user tasks. This calculates the support provided by an interface feature for all tasks 

and the support provided for a user task across all features. 

Stage 4: Visual Analysis 

To support analysis of results, various graphs can be produced to represent the 

results visually. We consider the following three graphs: 

1) Support for interface features: This graph includes the summed values for each 

interface feature in a tool. Strong interface features will produce tall bars, and a 

comparison of user effort within and among VMSTs can indicate a strong feature 

in the UI design. 

2) Support for user tasks: A second graph includes the summed values for each 

user task in a tool. Again, tall bars indicate strong support for a user task. This 

sort of comparison may help identify which user tasks require improved support 

through redesign in a given tool.  

3) Support for VMSs: The third graph shows the difference in support for 

different VMSs. Each user task is part of one or more of the 36 VMSs. For 

example, locate, a task typically used by the analyst-user to search for special 

information is part of a number of VMSs. Table 5.2 shows the 36 VMSs and the 

tasks that are included in each of them. In the following sections, more details will 

be given about the user-driven process adopted for assigning tasks to VMSs. 
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Table 5.2: The user tasks assigned to each VMS 

 

VMSs Tasks that support this VMS 

VMS1 locate, visualize, configure, identify, compare, determine 

VMS2 locate, visualize,  configure, Infer 

VMS3 locate, visualize, configure, determine 

VMS4 locate, visualize, configure, identify, compare, determine 

VMS5 locate, visualize,  configure, Infer 

VMS6 locate, visualize, configure, determine 

VMS7 locate, visualize, configure, identify, compare, determine 

VMS8 locate, visualize,  configure, Infer 

VMS9 locate, visualize, configure, determine 

VMS10 identify, visualize, configure, compare, determine 

VMS11 identify, visualize,  configure, Infer 

VMS12 identify , visualize, configure, determine 

VMS13 identify , visualize, configure, identify, compare, determine 

VMS14 identify , visualize,  configure, Infer 

VMS15 identify , visualize, configure, determine 

VMS16 identify, visualize, configure, identify, compare, determine 

VMS17 identify, visualize,  configure, Infer 

VMS18 identify, visualize, configure, determine 
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In 

the above table we can see the following. Locate is assigned to the VMSs in 

which their information seeking attribute is search. Visualize and configure are 

assigned to search and browsing because they are active information seeking 

activities. The infer task is assigned to VMSs in which their retrieval attribute is 

VMS19 visualize, identify, locate, configure, compare, determine 

VMS20 visualize,  identify, locate,  configure, Infer 

VMS21 visualize, identify, locate, configure, determine 

VMS22 visualize, identify, locate, configure, compare, determine 

VMS23 visualize, identify, locate, configure, Infer 

VMS24 visualize, identify, locate, configure, determine 

VMS25 visualize, identify, locate, configure, compare, determine 

VMS26 visualize, identify, locate, configure, Infer 

VMS27 visualize, identify, locate, configure, determine 

VMS28 visualize, identify, locate, configure, compare, determine 

VMS29 visualize, identify, locate, configure, Infer 

VMS30 visualize, identify, locate, configure, determine 

VMS31 visualize, identify, locate, configure, compare, determine 

VMS32 visualize, identify, locate, configure, Infer 

VMS33 visualize, identify, locate, configure, determine 

VMS34 visualize, identify, locate, configure, compare, determine 

VMS35 visualize, identify, locate, configure, Infer 

VMS36 visualize, identify, locate, configure, determine 
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hypothesis. Determine is assigned to VMSs in which their retrieval is judgment. 

Compare is assigned to VMSs in which their retrieval is either pattern or 

judgment. For each of the 36 VMSs, the sum of the total support values can be 

calculated and displayed as a graph.  

 

5.2.2. Example Analysis 

 

In order to demonstrate the evaluation capability of the proposed approach, we 

used this framework to compare and analyze the three VMSTs shown in Figure 

1.1. As a result three graphs are produced which provide a deep and rich insight 

into the strengths and weaknesses of each VMST in terms of support provided by 

the features of each VMST, support provided for 7 user tasks by each VMST and 

support provided for 32 VMSs. The  three VMSTs that we used are as follows: 1) 

Avizo, 2) Advanced Visual systems/Express (AVS/ Express) and 3) Visualization 

and Analysis Platform for Ocean, Atmosphere, and Solar Researchers (Vapor).  

Avizo (see Figure 5.5(a)) is 3D visualization software intended for visualizing, 

manipulating, and understanding scientific and industrial data (AVizo website, 

2014).  

AVS/ Express (see Figure 5.5(b)) an interactive data visualization software 

provides visualization methods for problems in a vast range of fields, including 

science, business, engineering, medicine, telecommunications and environmental 

research (AVS website, 2014).  
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Vapor (see Figure 5.5(c)) is meant as a visualization and analysis platform for use 

by ocean, atmosphere, and solar researchers (Vapor website, 2014). 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

Figure 5.5: Different VMSTs - Example screenshots during visual mining 

 

  

                  a) Avizo                                              b) AVS/ Express    

 

      c) Vapor visualization software 
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Table 5.3: Summary of features in each VMST    

                       

Generic 

feature 

VMST specific interface feature 

Avizo AVS/Express VAPOR 

Viewing Display single or multiple 

datasets in a single or 

multiple viewer windows, 

YZ,  XY and XZ Views 

Display single or 

multiple datasets 

in multiple 

windows 

Display single or 

multiple datasets in 

multiple windows 

Spatial 

navigation 

Trackball, translate, zoom, 

rotate, seek, home 

Trackball, 

translate, zoom, 

rotate 

Trackball, translate, 

zoom, rotate, home 

Temporal 

navigation 

Time navigation N/A Time navigation 

Show/hide 

parameters 

Activate/ Deactivate 

parameters 

Activate/ 

Deactivate 

parameters 

N/A 

Document

ation 

Create snapshot, 

annotation 

Create camera, 

Snapshot 

Capture single image, 

capture sequence of 

images  

Compute 

 

Query the exact values, 

probing, measuring, 

counting, quantify 

densities, distances, areas, 

Min/Max. 

Change the value 

of  through 

sliders 

Probing, change the 

value 

 

Table 5.3 lists a set of generic interface features and the specifics of the 

implementation of those features in AVS/Express, Avizo and Vapor.      
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5.2.2.1. Support for User Interaction Features 

 

 

For each of the three VMSTs (AVS/Express, Avizo and Vapor), similar interface 

features were identified. Then for each interface feature, number of moves 

required to perform each user task were recorded. This resulted in a table for each 

VMST of the type shown earlier in Table 5.1. 

 

 

Figure 5.6: The support provided by each interface feature of the three 

VMSTs 

 

Figure 5.6 shows support provided by each VMST for each of the identified 

interface feature. A number of observations can be drawn from this chart. The 

ease of using multiple view windows in Avizo and Vapor comes across clearly. In 

Avizo and Vapor, a user can do this by simply dividing a single window into 

multiple sections through a control in the main toolbar. In comparison, in AVS/ 
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Express this requires a user to invoke a main menu and follow a more 

cumbersome sequence of moves. Vapor provides better support for spatial 

navigation because the user can translate, zoom and rotate by using different 

mouse buttons. Both AVS/Express and Avizo provide lesser support for spatial 

navigation at somewhat equal levels except for rotation which needs more moves 

in AVS/express because of the need to go through extra menus. AVS/Express and 

Vapor have no seeking function, measuring and counting features, whereas they 

are well supported by Avizo. This can be clearly seen in the graph. Avizo and 

Vapor do not provide any static camera. All of them provide a snapshot feature, 

though it has weaker support in AVS/Express and Vapor because the user needs 

to go through menus requiring more moves.  

 

5.2.2.2. Support for User Tasks 

 

The support provided by each tool for each of the user tasks was measured (see 

Figure 5.7). Vapor provides better support for “Identify” due to the higher level of 

support that it includes for spatial navigation as can be seen from Figure 5.6. 

Although AVS/Express and Avizo are similar in their level of support for spatial 

navigation, Avizo provides better support for “Identify” and “Locate” than 

AVS/Express through features like (Multiple view window, temporal navigation, 

seeking, XY, YZ, XZ views as was already shown in Figure (5.6). AVS/Express 

and Vapor do not support “determine” because they do not provide any 

calculation feature. Avizo provides better support for “Visualize” due to the better 
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support that it provides for “Active/ Deactive parameters” feature. It also provides 

better support for compare and infer due to the extra features of “annotation”, 

“camera” and “snapshot”. 

 

 

  Figure 5.7: The support provided for each of user tasks by three VMSTs 

 

5.2.2.3. Support for VMSs 

 

The assignment of tasks to VMSs has been shown in Table 5.5. In Figure 5.8, 

there are three different lines in the graph which shows that Avizo provides better 

support for VMSs. The hidden pattern in the graph can show us under which 

specific criteria a visualization tool provides good support. It is important to note 

that in this graph the lines are just identification of trends not interpolation.  
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Explanation for the Sudden Rise  

From the graph, we can see the rise after first 18 VMSs. Let us note that the first 

18 VMSs constitute active information seeking criteria (searching and browsing).  

This is a predictable outcome as Bates (2007) explains most of the needed 

information is acquired in passive mode (monitoring and being aware) without 

requiring active efforts to acquire it.  

 

 

 

    Figure 5.8: The support provided by each VMST for each VMSs  

 

In Table 5.3 we can see that for VMSs(1-9) the information seeking value is 

search in contrast to VMSs(10-18) which have the information seeking value of 

browsing. In Figure 5.8, we can see the drop in support by VMSs(10-18) in 

comparison to VMSs(1-9) for both Avizo and AVS/Express. This is because they 
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both provide higher support for users that are looking for specific information 

(searching) than users who are just exploring visual information (Browsing). In 

contrast, Vapor provides more support for users who just want to browse, as can 

be seen from the rise in VMSs(10-18) in comparison to VMSs(1-9).  

If we compare alternating pairs (VMSs(1-3), VMSs(4-6) … VMSs(34-36)), we 

can see that the Avizo and AVS/Express values marginally increase where Vapor 

falls. For example, in Avizo and AVS/Express we can see rise from VMSs1 to 

VMSs2, from VMSs4 to VMSs5 and so on, however in Vapor we can see fall 

from VMSs1 to VMSs2, from VMSs4 to VMSs5 and so on. This denotes 

increasing support for hypothesis formulation in Avizo and AVS/ Express. Also, 

we can see that this increase is sharper in Avizo which may be due to the better 

support for documentation such as an extra feature for making annotation. 

 

5.2.2.4. Discussion 

 

In this section we summarize the strengths and weaknesses of each visualization 

tool interface, according to the above example inspection. The strength of Vapor 

lies notably in its good design for easy spatial navigation (visual exploration) 

which is a very important aspect in visual mining. However, it has notable 

absences as seen in Figure 5.6, showing that its support could be greatly improved 

by providing more functions such as “annotation”, “seeking”, “camera” and 

calculations. Also, some of the existing features such as “temporal navigation” 

can be further improved. 
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Avizo provides the broadest range of UI features which has resulted simply in the 

often-higher values shown in all three graphs. However, despite the broad range 

of features and providing good support for them, as we can see in Figure 5.7, 

there are only small height differences with Vapor. This is because Avizo 

provides less support for spatial navigation when compared with Vapor (Figure 

5.6).  

AVS/Express does suffer in all three graphs, given the absence of features such as 

“XY, XZ, YZ views”, temporal navigation, annotation”, “seeking” and often poor 

support in comparison with others in which these features exist.  

 

5.2.3. Relationship to Similar Evaluation Methods 

 

From the example analysis described above, we can see that our inspection 

framework can provide rich insights about the support for visual mining provided 

by different VMSTs. In this section, the relationship between our framework and 

other evaluation methods is discussed. The methods chosen for comparison are: 

Cognitive Walkthrough (CW), Heuristic Evaluation (HE), and GOMS. They have 

been chosen because of certain similarities with our inspection framework. 

Section 5.2.3.1 provides more details about these methods. Then they will be 

compared with our inspection framework in Section 5.2.3.2. 
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5.2.3.1. Similar Evaluation Methods 

 

 

Cognitive Walkthroughs (Wharton et al., 1994) allow evaluators to systematically 

step through example scenarios (Carroll, 1995) of use, usually produced in 

conjunction with Personas (Cooper, 1999) and Hierarchical Task Analysis 

(Diaper et al., 2003). With each action, or move, required to achieve a task, four 

simple questions are systematically asked, including: „does the user understand 

that a certain function is available?‟, and „does the user receive feedback about 

their action?‟  

The aim of this method is to evaluate user interactions. The method models the 

experiences of first-time users of the software. The Cognitive Walkthrough can be 

used throughout the design process, but is designed to evaluate systems where the 

design, functionality, and even terminology used are well defined. This may 

include carefully specified paper prototypes, but is usually applied to higher-

fidelity prototypes before empirical user testing. Procedurally, evaluators are 

expected to work separately, and then discuss their findings together. The key 

advantages lie in the speed and ease of use, without real users, and the drawbacks 

focus on the type of analysis (superficial, not functional), and the effect of 

evaluator skill on the results. 

Heuristic Evaluations (HEs) focus on comparing an interface design with several 

recognized usability principles (Nielsen et al., 1990). Although often considered 

to be fairly informal, the process is widely used to make sure that simple usability 
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issues, based around violation of known principles, do not hinder the design and 

development process. Heuristics include: consistency, feedback, providing short 

cuts, clear error messages, and maintaining clear and natural language. HE uses a 

document to understand the user‟s ability to use the software. HE is designed for 

use by a single evaluator, although multiple evaluator opinions may strengthen the 

analysis. 

Like the Cognitive Walkthrough, HE is designed for evaluating high-fidelity 

prototypes, or cheaply improving finished products, but can be used with well 

thought-out low fidelity prototypes. Like CW, the benefits of HE are speed and 

ease of use, but concerns relate to the quality of the results produced. 

GOMS is an HCI method that focuses on evaluating interfaces for how they 

support users in achieving their goals (John et al., 1996). GOMS stands for Goals, 

Operations (user actions), Methods, and Selection rules. The aim is mainly to 

analyze users for their specific set of goals, the operations (or functionality) 

available in software for achieving these goals, the methods (or task structure) 

used to achieve the goals, and the selection criteria for choosing different methods 

of achieving the same goal. GOMS requires explicit modeling of users, goals, and 

tasks. It also requires working software during evaluation, so that time estimates 

for performing certain methods can be identified. The time estimates are created 

using the earlier Keystroke Level Model (Card et al., 1983). GOMS was used, for 

example, to estimate that a new call-center workstation was less efficient, by 3%, 

for the tasks carried out by the staff (Gray et al., 1992). This type of analysis 

cannot be done through Cognitive Walkthroughs or heuristic Evaluations.  
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However GOMS is very complicated, does not consider different types of users 

(Preece et al., 2001), and does not evaluate the suitability of functionality in an 

interface; only the efficiency of implemented functions is evaluated. This method 

has received some criticism about the cost of use and the benefit it provides. 

GOMS analyses the optimal actions taken by an expert user, with a specific set of 

functionality. Therefore it does not allow for errors or optional interactions. 

Further, the results provided are typically represented by a difference in seconds 

for a single task. Consequently, this method has been used in industry more, 

where designers are building systems for tasks that are repeated many times, like 

the call centre mentioned above. The complaint has often been that GOMS does 

not often fit well into working practices for activities such as visual mining.  

 

5.2.3.2. Comparison of VMS Inspection Method to Similar 

Evaluation Methods 

 

To make the relationships between our inspection framework and other evaluation 

methods explicit, Table 5.7 compares a few usability evaluation methods based on 

several criteria. These criteria have been developed by Wilson (2009-a).  They are 

extracted from the RITE-method (Rapid Iterative Testing and Evaluation 

(Medlock et al., 2002)) and the types of insights provided by usability evaluation 

methods (Blandford et al., 2008).   

From Table 5.4 one can see that in our inspection framework, the procedure is 

somewhat similar to the Cognitive Walkthrough; the requirements are similar to 
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the Heuristic Evaluation and the outcomes are similar to GOMS. However, our 

inspection framework evaluates interfaces specifically for visual mining from 

multiple user perspectives while the other methods evaluate interfaces from the 

view of either novice or expert users. They are not specific to visual mining.  

 

Table 5.4: Comparison of proposed inspection framework to three other 

similar usability evaluation methods 

 

Criteria HE CW GOMS Proposed 

inspection 

framework 

UEM 

category 

Document 

based 

interactions 

model 

Model-based 

interactions 

evaluation 

 

User 

modeling 

method 

 

Model-based 

interactions 

evaluation 

 

Intent of 

method 

Check the  

learnability of 

the Interface 

 

Check the  

learnability of 

the Interface 

 

Model the 

goals and 

tasks of 

users 

Check for 

functionalities 

Type of user 

modeled 

Novice  Novice  

 

Expert  Novice to 

expert 

 

Procedure Step through Step through Identify Step through 
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checklist 

 

scenarios of use 

 

and model 

scenarios 

of use 

fixed 

scenarios 

 

Prerequisites None  Scenarios Task 

Analysis  

None 

Scope of 

interfaces 

Any Any Any Visual mining 

# of 

evaluators 

1+ 2+ 2+ 1+ 

Required time 

for evaluation 

(per UI) 

2h 12h 24h 2h 

Types of error User 

misconceptions 

User 

misconceptions 

System-

design 

System-design 

 

As we can see in the Table 5.4, our inspection framework is the only method 

specialized for VMSTs.  Specialized usability evaluation methods, however, are 

not uncommon. For Example SUE is a method that is designed for Hypermedia 

applications (Costabile et al., 1997; De Angeli et al., 2003). SUE is a model-based 

evaluation technique. Also, there are many variations of the Heuristic Evaluation 

method such as Ambient Displays (Mankoff et al., 2003) or mobile devices 

(Bertini et al., 2009). The results produced by our inspection framework are 

similar in format to the results generated by GOMS technique. Our framework 
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provides an overview of the entire interface, and assesses the functionality for 

different VMSs. While GOMS provides an analysis of how fast expert users can 

achieve a given task with an interface, our framework assesses how much support 

a user-analyst is provided with for visual mining tasks where better support is 

represented by the reduced effort required (shortness of the sequence of moves). 

When using GOMS, it is up to the evaluators, to choose which, and how many, 

tasks to evaluate. However, our framework by default assesses VMSTs for a 

comprehensive set of known VMSs. Performing an evaluation using our 

inspection framework, takes less time than a GOMS analysis and enables 

evaluators to get a broader view. Finally, instead of trying to decide which 

interface is fastest to use, our inspection framework provides a measure that 

correlates to a level of support. Therefore, our framework can easily determine 

that certain designs provide broader and better support for specific tasks and 

activities. 

In summary, in a broad sense, we can say that by using our framework the kind of 

results produced by GOMS can be generated using a procedure in the same 

category as in Cognitive Walkthrough, and with the speeds and costs like those in 

Heuristic Evaluation.  

 

5.3. Trustworthiness of the Framework 

 

There are two aspects of the framework‟s structure that confirm the 

trustworthiness of its evaluation of visualization software interfaces. Firstly, let us 
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look at the trustworthiness of the two models which were chosen from the 

literature for inclusion in our framework along with our VMS interaction space 

model. Our reasons for trust in these models are discussed in this section. 

Second, a mapping is used to combine our interaction space model and the 7 tasks 

identified by Valiati et al (2006). This section also reports on the user-driven 

process followed for development of a valid mapping. 

 

5.3.1. Trust in Models Used in the Framework 

 

One of the first and most important steps in trusting the framework is to be 

confident in the models chosen to produce the analysis. As we described above,   

Bates‟ moves (Bates, 1990) are used to assess how many moves it takes to 

perform different user tasks using a visualization tool interface. The idea that user 

interactions are made up of physical and mental moves performed by users is 

widely accepted and included in many UEMs such as GOMS model (John, 1985) 

and Keystroke Level Model (Card et al., 1980). The Keystroke Level Model aims 

to specifically measure the time taken to perform a task, by counting: keystrokes, 

moving the mouse, pressing a mouse button, releasing a mouse button, moving 

the hand between the mouse and keyboard, waiting for system response time, and 

any mental act such as visual scanning. Hence we believe that use of Bates‟ 

moves is a trustworthy choice for our inspection framework.  

In addition, our framework depends on the 7 user tasks suggested by Valiati et al. 

(2006).  Two factors are considered in discussing the trustworthiness of using 



108 

 

Valiatis‟ interaction model. First, reuse and acceptance in subsequent publications 

within the visualization community is used to discuss how established this model 

has become in the research community. Second, the appropriateness of this model 

to be used within an evaluation procedure is discussed.  

 

5.3.1.1. The Tasks Defined by Valiati et al. 

 

As mentioned before, the interaction model developed by Valiati et al. (2006) is 

among the more recent models which characterizes user tasks for visualization tools. 

It is based on many existing models (Wehrend et al., 1990; Zhou et al., 1998; Morse, 

1999). It integrates the existing tasks in other models with new exploratory tasks in a 

multidimensional dataset (Park, 2008).  

More importantly, Valiati et al. conducted several user studies over time to 

evaluate their model and to check for inconsistency and incompleteness.  Their 

first case studies involved Computer Science students and served as a preliminary 

case study.  In the second one, a biologist was the subject of the study. The results 

of these two case studies are published in Valiati et al. (2006). 

They performed three other case studies later on over a one year period from 

September 2006 to September 2007. These studies involved one geographer, one 

insurance broker, one education expert and three experts on elderly people. Each 

case study lasted six or more weeks, ranging from a minimum of two to a 

maximum of four months. The results are published in (Valiati et al., 2008; 

Valiati et al., 2007). 
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There are other researchers who have used their interaction model. Boton et al. 

(2011) used Valiati‟s model in their proposed method to design coordinated 

multiple views based on Model-Driven Engineering. Mayr et al. (2011) used 

some of the tasks in this model to study problem solving processes during the 

exploration of information visualizations.  Halin et al. (2011) used this model to 

present a usage-centered method that enables one to design “Adapted 

Visualization Services” in the field of Architecture, Engineering and 

Construction. Park (2008) used this model to develop intended use evaluation 

approach for information visualization. 

Several alternative sets of tasks exist in the literature. For example, the early work 

of Wehrend and Lewis (Wehrend et al., 1990) proposes a set of cognitive tasks 

and related data types (which they call objects). Shneiderman (1996) proposes 

task-by-data type taxonomy including 7 data types and 7 tasks.  Amar et al. 

(2004) have also proposed a categorization of low-level analytical tasks. Of the 

available task models, Valiati taxonomy explicitly includes the set of user tasks 

well-suited for evaluation purposes.  In addition, it integrates tasks at different 

levels, analytic, cognitive (low-level) and operational.  

However, this choice does not prevent the use of a different set of tasks, or the 

move to an alternative task level model in our inspection framework. An example 

of a somewhat similar case, the Cognitive Walkthrough method was refined by 

Spencer (2000), reducing the number of questions asked at every step of 

interaction from four to two. Any change in the interaction model representing 

tasks, however, will require the generation of a new mapping between the revised 

set of tasks and the VMSs. 
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Finally, in terms of scientometric impact, Valiati tasks have already been very 

well cited in the literature. It is a very recent model and is well cited by authors of 

recent papers which have reviewed models of visualization tasks (Cancino et al., 

2012;  Greitzer et al., 2011;   Munzner (2009), Minardo, 2007). Based on all the 

above, we believe that Valiati‟s interaction model is a trustworthy choice for our 

inspection framework.  

 

5.3.2. Developing the Mapping Between Models 

 

One of the key contributions of this work which has enabled the use of three 

models (VMSs, Valiati‟s taxonomy of tasks and Bates‟ moves)  within one UEM 

is the mapping used to identify which tasks are important for each of the VMSs. 

The integration of these models into a unified framework was not a trivial 

process, as it is not very obvious as to which task should be attributed to which 

specific VMS(s). It is important that the chosen mapping, however carefully 

reasoned and constructed, be user-validated. Since there is no fixed process or 

metric to produce the mapping, it can only be discussed with and supported by 

independent judges/experts.  

In order to develop such a mapping, 3 visual mining experts and 3 researchers 

from other academic fields, with some (non expert) knowledge about visual 

mining were involved. The method and results of this process are discussed 

below. 
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5.3.2.1. Method 

 

To create a proper mapping an analysis method was designed to: a) clearly 

present the models to multiple judges, b) collect mapping suggestions, c) identify 

variations in opinion, and d) create the mapping (by majority/consensus). 

A special form (see Figure 5.9) was created to present the visual mining strategies 

(VMSs) and tasks to participating judges and to collect mapping suggestions from 

them. This form clearly presents each of Valiati‟s tasks, one at a time, along with 

its‟ description. Below each task, a description of each of our interaction space 

model values is shown, which are10 in total.   

For every task shown one at a time, the participating judge was asked to select a 

dimension value that it supported. The decisions for each task, by each judge, 

were stored in a database.  As a first step for processing the decisions provided by 

judges, the number of times each dimension value was selected for each task was 

summed and the most popular choices highlighted. This analysis provided three 

types of information. First, it identified parts of the mapping that were 

unanimously agreed upon by all judges, including expert and novice opinion. All 

such decisions were accepted without further discussion. Second, the process 

identified parts of the mapping that were in close competition.  In this second 

case, preference was given to expert‟s opinion, especially if they were in 

agreement. Third, the process identified parts of the mapping that varied widely 

and required further investigation. The results of this analysis and the following 

discussions are presented in the next section. 
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Figure 5.9: The form used to collect expert and novice judgments about 

mappings 

 

5.3.2.1.1. Results of User Study for Mapping Development 

 

 

For almost 43% of the tasks, the mappings were unanimously agreed upon 

without need for further investigation (“compare” for “pattern” dimension; 

“configure” for “assess”, “estimate”, “develop options”; “infer” for “hypothesis” 

development). The rest of the tasks, were investigated by either assessing the 

difference in expert and novice opinion, or by revisiting literature to inform the 

discussion. The distribution of agreement between participants is shown in Table 

5.8. Another 43 % of the tasks received a high agreement. In one case the decision 

was taken on the side of the experts. In this case all experts and novices mapped 

“locate” task to “search” dimension which was accepted. However three experts 
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and one novice believed that it is also associated with “being aware” and 

“monitoring” dimensions. Two other novices did not map it to any other 

dimension. In this case the decision was taken by siding with experts.  The two 

other cases were related to “visualize” and “browsing” tasks. In this case, the 

highest agreement of the experts for the dimension matched the highest agreed 

dimension of the novices.  In part of mapping, all of them associated “visualize” 

with the dimensions of “assess”, “estimate” and “develop options”, while 

“identify” was associated with “browsing” dimension. However two experts and 

two novices also mapped them to “being aware” and “monitoring” dimensions 

which have been accepted.  

Finally, one of the tasks “determine” received varied opinion (14.3%). Most of 

the experts and novices mapped this task to “pattern” dimension which was 

accepted. In addition, one expert and one novice mapped it to “judgment” 

dimension. After further discussion with judges and referring to the definition of 

this task by Valiati et al. (2006) which mentions that this task can be used for 

hypothesis test, this mapping was also accepted. 

 

Table 5.5: The range of agreement and disagreement for mapping between 

the tasks and visual mining dimensions 

 

 Unanimous  High 

Agreement  

Varied 

Opinion 

# of tasks  3 3 1 

Percentage 42.85% 42.85% 14.3 
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5.4. Summary 

 

In this chapter we first described the design of an inspection framework that 

combines our VMS interaction space model and existing task models, through 

user validated mappings, in a way that it can be used to estimate the strengths and 

weaknesses of a VMST‟s interaction support for visual mining. Second, we 

demonstrated the application of this framework via a sample evaluation of three 

publicly available popular visualization tools. By applying this evaluation to three 

interfaces, it provides quantitative estimates of the strengths and weaknesses in 

supporting user tasks, the support provided by interface features, and the support 

for VMSs. 

Identifying weak or even missing features can promote changes and updates in 

implementation to support more tasks or to reduce the user effort required to 

achieve each task. Finally, by summarizing and normalizing these metrics into the 

VMS interaction space model, it identifies particular strengths and weaknesses of 

VMSTs in providing support for the complex cognitive activities in visual mining.  
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Chapter 6 : Conclusions and Future Work 

 

This chapter provides a brief summary of significant contributions, benefits of this 

research, and potential avenues for further investigation. 

 

6.1. Summary 

6.1.1. Characterizing Interaction Space Visual Mining 

Process 

 

In this thesis we first drew attention to the importance of interaction in 

visualization research. While existing research in the area often focuses much 

more on transformation of raw data into visual representations and their 

presentation, this thesis has highlighted the overshadowed, but very important 

interaction component and strongly argued that it is primarily interaction which 

provides a way to overcome the limits of representation and to suitably augment a 

user‟s cognition. We then bring out the importance of having interaction space 

models which appropriately characterize complex cognitive activities which 

humans perform during visual mining.  Such interaction models are essential for 

effective design and evaluation of visual mining support tools. Next we have 

reviewed and classified existing prominent models of interaction related to 

visualization. We have brought out the short-comings of existing models and 
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clearly noted the need for providing high level characterization of interactions that 

can guide the analysis, evaluation and design of interactions supported by VMSTs 

in a way that provide better support for complex cognitive activities.  

To address this need, we formulated a model which comprehensively 

characterizes the interaction space of visual mining. This will enable systematic 

thinking about user interactions with VMSTs which are intended to support 

complex cognitive activities. By using trustworthy qualitative directed-content 

analysis methods and using published papers reporting interactions with visual 

representations, it was discovered that user activities in this context, termed as 

visual mining strategies, can be differentiated along a small set of three criteria to 

make up a domain independent model, the VMS interaction space model. 

Furthermore, it is demonstrated through four examples in different domains 

(medical, geographical, bioinformatics and epidemiology) that the proposed VMS 

model can comprehensively capture visual mining activities. 

 

6.1.2. The Inspection Framework 

 

Further, in this thesis, as a demonstration of the utility of the VMS interaction 

space model, we proposed an inspection framework which uses the VMS model 

and can be applied to carry out a quantitative evaluation of the support provided 

by a VMST for performing complex cognitive activities in visual mining. We 

then do a comparative evaluation of three widely used VMSTs.  
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The inspection framework has been designed to analyse VMSTs in three ways. 

First, it analyses the VMST‟s interface features, such as spatial navigation or 

viewing to identify how they contribute to the overall support provided by the 

VMST. Second, the interface is analysed for how it supports a set of established 

user tasks. These tasks include identify, determine, visualize, compare, infer, 

configure and locate. The support for these user tasks are then summarised into 

user VMSs. The support for each of these VMSs is calculated by averaging the 

support provided for the user tasks that they will likely need. To provide these 

analyses, the framework is built upon the integration of interaction models at 

different levels, the Bates model for low level moves, Valiati  model at the task 

level and our VMS model at the activity level.  This integration is made possible 

by suitable mappings between the levels, which have been developed by us. One 

mapping establishes links between user tasks and VMSs. The mapping between 

user tasks and moves is via interface features. These mappings, which have 

enabled the combined use of different interaction models, represent another of the 

key contributions of the research presented in this thesis. 

As an evaluation method, the inspection framework, and the analyses it provides, 

has the following   advantages:  

1) The framework focuses on functionalities of VMSTs and is dataset agnostic. 

Consequently, any VMST can be evaluated independent of the input domain. 

Similarly, VMSTs can be directly compared even if they work on different 

collections of input datasets. 
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 2) Where empirical evaluations of VMSTs may tell us which design performs 

best for a given task, the three analyses from our inspection framework provide 

rich insight into the functionality provided by the VMST, and so, can be used to 

explain the cause of any such findings.  

3) The framework analyses VMSTs from 36 different perspectives (VMSs can be 

seen as being representative of user profiles), whereas the tasks of any empirical 

user studies typically covers one to three user profiles. Thus our inspection 

framework can provide a more holistic view of VMST, as compared to the limited 

view covered by the user study conditions in empirical user studies.  

4) The framework can be applied in relatively little time compared to a typical 

user study involving expert analyst users.  

 

In Chapter 5 we have compared the proposed framework to other similar 

methods. The proposed framework provides a similar evaluation to GOMS, but 

with a) less constrained functional analysis, b) specific visual mining oriented 

focus, c) a simple procedure similar to the Cognitive Walkthrough, and d) 

requiring less expertise and time, like Heuristic Evaluation. In combining the 

benefits of these methods, the proposed inspection framework provides fast and 

insightful analysis of functional support for visual mining. 

 

6.2. Contributions of This Research 

 

 We applied directed-content analysis techniques on a large number of 

publications on visual mining in different domains, and were able to discover a 
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small set of classification criteria that can be used to comprehensively 

characterize the interaction space of visual mining so as to enable systematic 

thinking about user interactions with visual mining support tools which are 

intended to support complex cognitive activities. 

 We presented the formulation of VMSs as combinations of different values of 

these criteria. The interaction space of visual mining can be comprehensively 

covered by considering all combinations, 

 We have developed an inspection framework for evaluation of VMSTs. The 

proposed framework incorporates the effects of supporting VMSs into 

measurements. It provides three contributions to the nature of academic 

research in evaluation of visual mining support tools:  

 The framework reuses three existing theoretical models in order to 

produce a metric that can be used in an evaluation. The contribution, 

therefore, is the approach used to convert visual mining theories into an 

operationalised usability evaluation method for making predictive 

analyses of VMSTs.  

 As mentioned above, the mappings developed to link these different 

models are another novel contribution. These mappings can be 

investigated, revised or extended by other researchers.  

 A detailed comparative analysis of three widely used VMSTs is 

presented, which provides some new insights into the support they each 

provide for visual mining at the episode level. 
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6.3. Future work 

 

There are still a number of other avenues that can be explored further. These are 

as follows: 

 

 To use VMSs interaction space model to develop suitable guidelines when 

developing or improving a visual mining support tool. 

 In the inspection framework, one issue that should be considered in the 

future is whether or not all of the user tasks are equally important to a 

given user. The importance or relevance of a task may vary depending on 

the goal and domain. Therefore different weights could be applied to the 

user tasks. 

 Our choice of models for the different levels was based on the current 

state of the art in interaction models and in user interfaces. As new 

interaction techniques evolve, e.g., gesture-based or full body interfaces, 

new models may have to be developed. Integrating these new models 

would be required.  

 More work is needed to further validate the results produced by our 

proposed inspection framework against existing evaluation results. 
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Appendix B: An example of coding of a 

publication in content analysis process  

NVivo permitted multiple codes to be applied to each text segment, and allowed 

codes and quotations to be linked quickly and easily. For example in this 

paragraph extracted from a case study of breast tumor diagnosis (Oeltze, 2010),  

the underlined text was coded to “information seeking”, the same paragraph was 

also coded to include “searching”. The italicised text denotes material coded as 

“Pattern”.  As explained, in Chapter 4, in the further iterations of coding process 

the italicised text also coded to “retrieval”. The double underlined texts were 

coded to “Hypothesis” which as patterns also got coded to “retrieval” in further 

iterations of coding process. 

 

“The visual analysis of the lesion in Mamma1 is illustrated by Figure 4.9. At first, a 

histogram of the scores of pc1 has been generated (Fig. 4.9 (b)). High scores have been 

brushed and the selection is visualized within the context of the entire mamma (Fig. 4.9 

(c)). The tumor boundary has been derived from the segmentation mask and is indicated 

as dotted line. Transferring the selection in Figure 4.9 (b) to a scatterplot opposing 

Wash-in (xaxis) and Wash-out (y-axis), reveals that regions exhibiting a fast CA 

accumulation as well as a fast washout have been selected (Fig. 4.9(d)). This is 

characteristic for malignant tumors. However, the remaining parts of the lesion exhibit 

different enhancement characteristics ranging from suspicious to benign. “ 


