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Abstract

Gas Turbine Engine Prognostics Using Time-Series Based Approaches

Maryam Gholamhossein

In todays market, the increasing demand on utilizing gas turbine engines can be quite costly

if users rely only on traditional time-based maintenance schedules. Meeting both the safety

and the economical aspects of such systems could be realized by using an appropriate

maintenance strategy in which the prediction of the engine health condition is employed to

ensure that the system is maintained only if necessary. Towards this end, in this thesis the

prognosis problem in the gas turbine engines is investigated.

As in every rotational mechanical equipment, gas turbine rotating components also

degrade during the engine operation which may deteriorate their performance. The engine

degradation may originate from different sources such as aging, erosion, fouling, corrosion,

etc. Hard particles mixed with the air can remove the materials from the flow path com-

ponents (erosion) and cause aerodynamic changes in the blades, which can consequently

reduce the affected components performance. Accumulated particles on the flow path com-

ponents and annulus surfaces of the gas turbine (fouling) can also reduce the flow rate of

the gas and consequently decrease the power and efficiency of the affected components.

Among different degradation sources in the engine, erosion and fouling are considered as

two well-known degradation phenomena and their effects on the engine system prognostics

are studied in this thesis.

Towards the above end, a controller is designed to control the thrust level of the engine

and a Matlab/Simulink platform is employed to incorporate the effects of the above degra-

dation factors and the engine dynamic model. The engine performance degradation trends

are modeled by using three types of time-series based techniques namely, the autoregres-

sive integrated moving average (ARIMA), the vector autoregressive (VAR) and the hybrid

fuzzy autoregressive integrated moving average (hybrid fuzzy ARIMA) models. One of

the challenges associated with time-series approaches is selecting a proper model which

represents the structure of the time-series and is employed for prediction and prognosis

purposes. Two widely used criteria namely, the Akaike’s information criterion (AIC) and
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the Bayesian information criterion (BIC) are used in order to select the best model. The

challenges of coping with the uncertainties due to variety of sources such as measurement

noise, insufficient data and changing operating conditions are inevitable factors. Taking the

above facts into account, it may not be practical to obtain or be concerned with an exact

prediction information. Therefore, we construct instead confidence bounds that provide a

realistic boundary for the prediction and this is applied to all our proposed approaches in

this thesis.

The first method in this thesis deals with modeling a measurable parameter using its

historical data which is a fine-tuned version of the ARMA model for non-stationary time

series analysis. The second method, VAR model, models the measurable parameters by

fusing historical data with the current and past data of some other engine measurable data

in a vector form so that one can get benefit of more measurement parameters of the engine.

The third method deals with fusing two measurable parameters using a Takagi-Sugeno

fuzzy inference engine.

In this thesis we are focused on modeling the engine performance degradations due to

the fouling and the erosion which are the two main causes of gas turbine engine deterio-

ration. In order to evaluate the performance of the proposed methods, they are applied to

three different scenarios. These scenarios include the compressor fouling, turbine erosion

phenomena and their combination with different severities. Our numerical simulation re-

sults show that the performance of the hybrid fuzzy ARIMA model is superior to that of

the ARIMA and VAR methods.
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ṁ Mass flow rate, Kg
s

η Efficiency

γ Heat capacity ratio

π Pressure ratio

amb Ambient

C Compressor

cp Specific heat at constant pressure, J
Kg.K

cv Specific heat at constant volume, J
Kg.K

CC Combustion chamber

d Intake

f Fuel

Hu Fuel specific heat, J
Kg

J Rotational moment of inertia, Kg.m2

M Mach number

M Mixer

mech Mechanical

xxv



N Rotational speed, RPM

n Nozzle

P Pressure, Pascal

P0 Pressure at sea level at standard day

R Gas constant, J
Kg.K

T Temperature, K

T Turbine

T0 Temperature at sea level at standard day

V Volume, m3

CBM Condition Based Maintenance

DPHM Diagnosis, Prognosis and Health Management system

ARIMA Autoregressive Integrated Moving Average

VAR Vector Autoregressive

AIC Akaikes Information Criterion

BIC Bayesian Information Criterion

RCM Reliability Centered Maintenance

TPM Total Productive Maintenance

xxvi



Chapter 1

Introduction

Increasing the complexity of sensitive and expensive systems along with necessity of meet-

ing the safety and economic aspects of such systems have necessitated different mainte-

nance strategies in every industry. In general, there are three main types of maintenance

strategies namely unscheduled maintenance, programmed maintenance and maintenance

of improvement [1]. Unscheduled maintenance or corrective maintenance is the most basic

type of the maintenance. Because of the nature of this maintenance which is unplanned,

it is also called ”crisis maintenance”. When a failure happens to the system or its subsys-

tems, the system goes through the required maintenance services including a replacement,

or a repairment service in order to bring the system back to its minimum acceptable perfor-

mance and condition [19, 20]. Programmed maintenance is based on a predefined logic or

a schedule and it can be categorized in two sections namely, preventive maintenance and

condition based maintenance [1]. Preventive maintenance is performed based on specific

accumulation of predefined hours cycles of the system, kilometers run, or other factors

that have been selected according to the rate of failure of the system or other reliability

measures of the system. Condition based maintenance (CBM) is performed based on the

continuously monitoring the system health parameters. Though CBM is considerably more

advanced than preventive maintenance, but it can be still perceived as a branch of preventive
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maintenance as it also leads to forecast the system failure. Figure 1.1 shows the relation-

ships between different maintenance strategies. As it is seen in this figure, CBM subtends

predictive maintenance and proactive maintenance [1, 21]. Employing appropriate feed-

backs, one can move from reactive maintenance to proactive maintenance or maintenance

for improvement. The latter deals with prognostics techniques which will be explained in

details later.

Figure 1.1: Maintenance strategies relationships [1].

Figure 1.2: Maintenance policies relationships [1].

It is worth noting that there also exist maintenance policies describing the overall treatments

that a company would take confronting the maintenance problems. Each policy deals with

2



some of the aforementioned maintenance strategies. The desired policy is chosen accord-

ing to the type of the system, system sensitivity, economical limitations and other company

strategies and measures [1]. Figure 1.2 shows the maintenance policies relationships.

Efficiency, maintainability, safety, cost, reliability, availability and their effects on each

other are different factors that should be taken into consideration for choosing an efficient

and proper maintenance strategy. It is clear that the more advanced maintenance strategies

lead to have greater and more complex requirements such as equipments, trainings and

their interrelationships [21].

Condition based maintenance by employing modern continuous monitoring systems

can enable one to transform from reactive type to proactive type of maintenance policies.

By utilizing continuous monitoring strategies and developing reliable prognosis techniques

one can reach an efficient condition based maintenance [22]. Today it can be shown that

following an old belief of fixing things before their breakdown may lead to facing more

damages and unscheduled breakdowns [23].

However, among aforementioned maintenance strategies, CBM is the most preferable

in terms of both total cost and reliability. CBM acts based on the actual condition of

the system and not based on some predefined schedules and this difference makes CBM

a predictive solution rather than a preventive solution. Most often there does not exist a

direct connection between the aging of a system and its failure and this has been proven

by researchers [23]. Moreover, the conventional maintenance which are time based can not

be efficient for sensitive and complex systems and there is a need to extend and develop

new maintenance methods which are operating based on the actual condition of the systems

elements along with considering the propagation effects of faulty part on other parts of the

system. This strategy decreases the total cost of the desired system and is recommended

for the systems with costly maintenance. Because by using CBM the maximum use of each

component based on the collected data over the monitoring procedure will be handled.
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In other words, CBM of any equipment can be entailed by an association of different

technologies, strategies, procedures for achieving a reliable evaluation of the system and

efficient maintenance in terms of quantitative measures [23].

Non-destructive identification techniques are modern methods in area of systems and

apparatus maintenance. These techniques can be assigned in the category of predictive

maintenance which gets numerous benefits such as performing the maintenance based on

the condition of the system, avoiding unforeseen downtimes, stopping chain reactions and

causing the global reliability of the system to improve and at the same time reduce the main-

tenance cost [1]. The predictive maintenance is about predicting and identifying of incipi-

ent faults and informing the maintenance personnel to take necessary correcting measures

before the breakdown point of the system happens and it is not about extending the mean

time between failures (MTBF) value of the system or altering the cycle of failure. Here,

the basic assumption is that rarely a component breaks down suddenly and for most of the

systems such as mechanical, hydraulic and pneumatic systems it occurs after a progressive

deterioration. Towards this end, in the first step we need to define the condition of the sys-

tems based on some parameters and in the second step, we attempt to detect and quantify

them by using some measurement techniques such as visual inspection, non-destructive

controls and finally operational or functional tests. These inspections and measurements

should be performed on a regular schedule for each parameter of the system to allow the

maintenance personnel detect the instant that system starts to deteriorate and predict the

breakdown point of the system and repair or replace that component in advance. In more

details this maintenance technique is performed based on the following steps [1]:

• Search for mechanical failure signs such as fatigue, welding defects and misalignments

during the visual inspection

• Measure the measurable parameters of the system such as pressure, flow rate, tempera-

ture and speed and comparing it with their designed nominal values.

4



• Monitor the vibrations and noise of the system.

• Check the debris of the system resulting from the utilization of the system.

In predictive maintenance, one focuses on the trend of the monitored measurements.

The possible failures are predicted based on the determined trends and the probability

methodologies are not taking into consideration for accomplishing the failure prognosis.

In some ways, one may perceive this type of the maintenance process as a diagnostic pro-

cess due to its ability to deliver symptoms or indications, leading to perform maintenance

procedure based on the latest condition of the system’s components, regardless of their run-

ning time. Indeed this type of maintenance can be considered as an essential and important

part of the complex mechanical systems which may minimize inactive time of the system

owing to number of examinations and inspections. In order to monitor and determine the

condition of any system, the necessary access to the system’s components should be pro-

vided. Today, developing these necessary accesses are taken into consideration from the

beginning of the designing phase of the systems. Identification of the components need to

be checked, identification of the vital and informative parameters are the examples of these

required tasks for determining the systems’ components efficiency [1]. A list of benefits

associated with employing CBM and how they deliver these benefits are listed below [1]:

1. Increased safety - CBM response time prevents the system reaching to the failure

point.

2. Increased availability of the system, lower maintenance cost - CBM may provide

greater intervals between two successive inspections and by procuring the required

resources in advance, the down time will be decreased.

3. Increased system efficiency - CBM helps the system to work under its best operating

condition and achieve better efficiency.
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4. Better opportunity to negotiate with the manufacturers - Having the measured

data of the system parameters from its new condition and later one can compare the

data at the end of the period of the guarantee.

5. Improved customer relations - Ability of anticipating an incipient or possible fail-

ure provides a better organization of production.

6. Opportunity to improve the design of the future systems - Benefiting collected

experiences of using a system may serve this goal.

Depending on the application and the environment in which the system is working,

different condition based maintenance requirements should be considered. Today designers

of complex systems take CBM requirements into consideration in the design stage so that

changing the components, accessibility to the critical components can be accomplished

easier and faster which eventually decrease down time of the system. If the CBM system

is not designed from the design step of the system, compatibility requirements with the

sensors and other components of the system should be met. Ultimately, a CBM system

should improve system maintainability, safety, and decrease overall life cost of the system

[5].

There are different types of engineering systems and they differ considerably in their

nature and operation principles. Therefore, different techniques are needed to effectively

monitor them. However, these techniques could be categorized as belonging to vibration

monitoring, wear debris analysis, visual inspection, noise monitoring, and environment

pollution monitoring [24]. For rotating machinery such as gas turbines and internal com-

bustion engines the vibration monitoring and wear debris analysis methods are typically

used [25].

The total number of different parts and components in a basic jet engine could be more

than 20,000 and even more for heavy duty turbines which are worth millions of dollars.
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Therefore, in the case of engine failure the direct expense is high and the indirect costs

could be even greater. For this reason, all gas turbines and jet engines should be equipped

with effective monitoring systems [25]. For gas turbine engine health monitoring and fault

detection in addition to the aforementioned methods the gas path analysis (GPA) could be

also used [26]. A more detailed description of gas turbine monitoring methods is given as

follows [27, 28]:

• Oil and debris monitoring

The excessive wear and fatigue failure of engine moving components such as gearboxes

and bearings result in abnormal size and number of debris in the lubricant oil. Therefore,

monitoring the oil and debris inside it could be a good measure of health monitoring. In

another technique which is somehow related to the debris in the gas paths in the inlet and

exhaust section, the number of debris could be analysed in the same manner.

• Vibration monitoring

Loss of blades, fouling, erosion, or failure in rotating parts of the engine results in un-

balance rotor and it can be detected by monitoring the engine vibration at all operating

speeds.

• Life usage monitoring

In this approach the level of damage in critical components such as disks and blades are

monitored and their remaining useful life are computed [29].

• Gas path performance monitoring

This method is also called gas path analysis and module performance analysis. It is per-

formed based on the measurements of air/gas flow properties such as temperature, pressure,

and density to detect failure in the engine components. In other words, the gas path analysis
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is a performance analysis method that can also provide estimation of the fault severities.

Since the first attempts in 1972 in this field, a vast body of works have appeared in this area

and many research results are published [27, 26, 14, 30].

• Visual inspection

This is based on regular inspection of the engine and scheduled maintenance of the system.

• Borescope inspection, X-ray checks, eddy current checks, turbine exit spread monitor-

ing, etc.

In order to examine possible mechanical damage, crack or other abnormalities in the air-

frame structure of the aircraft non-destructive testing methods which are cost effective

inspection methods are conducted during the procedure of the gas turbine engine main-

tenance. Borescope inspection, X-ray checks and eddy current checks are the examples

of non-destructive testing methods [31]. Borescope or endoprobes is a precise optical in-

strument which consists of a high precise optical system with high intensity light sources

and is used to detect the above damages in the engine. More advanced borescopes are

equipped with magnification options and other accessories that help the maintenance team

to perform inspection procedure effectively. When a conductor of electricity is exposed to

an alternating magnetic field, electrical currents are induced within the conductor which

are well-known as Eddy currents. Eddy currents inspection are widely used to detect the

surface and subsurface anomalies and corrosion in fastener holes of the engine [31].

However, in order to implement an effective and complete solution for fault diagnosis

and health monitoring system of gas turbine engines usually a combination of above tech-

niques is used. Fusion of vibration monitoring and gas path analysis is utilized in [32, 33].

In [34] Dempsey and Afjeh presented a hybrid fault detection method based on vibration

and oil analysis of helicopter gearbox. In an ambitious program, which is initiated by

NASA a while ago and presented in [35], the researchers attempted to fuse different data
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sourced listed above. However, they faced several problems to fuse different available data

streams and they fused two different gas path analysis (GPA) methods in their work [27].

Due to the nature of GPA, it results in a deep understanding of the engine compo-

nents performance and therefore reveals gradual degradation mechanisms along with abrupt

faults. Furthermore, it can be used to detect faults and malfunctions in sensors and engine

control systems. It also provides estimation of the engine parameters such as shaft power,

thrust, overall engine efficiency, specific fuel consumption and compressor surge margin

which are not directly measurable. Another important engine health indicator that could

be calculated based on GPA is the deviations in the measured variables that are caused by

faults and deterioration of the engine [25].

In this section a number of advantages in employing an effective maintenance have

been addressed. On the contrary, non-proper and poor maintenance of a system may cause

severe and more frequent damages and failures in the system’s components along with

unexpected delays in production schedules [21].

1.1 Motivation of the Work

With emerging more complex systems, their maintenance procedures are becoming more

and more expensive and more time consuming which eventually increase the down time

of the system. This condition combined with necessity of meeting safety criteria and pro-

ductivity need lead researchers to work on new possible methods and technologies in the

maintenance field. One of the main drawbacks of conventional maintenance (corrective or

preventive) methods is that a component may get changed before it is really necessary or it

may go through the maintenance process when it undergoes the fault or a failure because

of a broken component [2]. One of the common solutions to cope with these situations is

employing condition based maintenance (CBM) techniques. Number of CBM techniques

have been introduced in the literature so far but it predominantly consists of continuous
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monitoring of the important parameters of the system or health parameters of the system to

realize when they reach to their associated predefined thresholds and scheduling for appro-

priate actions based on the health state of the system [2].

Based on an analysis conducted by Trcka [36] main causes of aircraft accidents origi-

nated by factors such as flight crew, mechanical and maintenance, miscellaneous and un-

known faults, 16% of the aircraft accidents are raised from mechanical and maintenance

condition and in this category 70% of break down goes for engine and propulsion system.

One of the promising methods of maintenance to reduce the maintenance cost, system

downtime, boost the safety of the system, plan successful missions, and finally the schedule

maintenance is revealed to be prognostic. Furthermore, a growing interest has appeared in

industries in this topic and it has become one of the most interested research areas [37].

1.2 Literature Review

As mentioned earlier, CBM is a combination of several procedures including data collec-

tion, signal processing, feature extraction of the collected data, fault detection and isolation,

failure prognosis and finally decision making. In order to achieve an appropriate CBM for

a process or a complex system, one needs to develop health monitoring and management

strategies as well as employing a proper diagnostic, isolation and prognostic schemes so

that the condition of all the critical components of the process are being monitored and an-

alyzed. Next, the maintenance procedure will be scheduled based on the remaining useful

lifetime (RUL) of the components which is the outcome of the health management anal-

ysis [38]. This complete framework is also known as a diagnosis, prognosis and health

management system (DPHM). It is clear that the overall performance of a DPHM system

is highly dependent on the performance of both the fault diagnosis and the failure progno-

sis schemes. These two schemes and their relationships will be presented in detail in the

following sections.
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Fault Diagnostics versus Prognostics

Any undesired or unexpected deviation in a system’s behavior from its normal and desired

function is called a fault. Fault diagnostics schemes comprise of three main tasks namely,

fault detection, isolation and identification (FDI) [39]. In fault detection stage any unex-

pected abnormal behavior in the system of interest is detected. Then in the fault isolation

step the faulty component in the system is determined and its location is spotted and finally

the severity and type of the detected fault is estimated in the fault identification stage.

A number of definitions for prognostics has been rendered in the literature [40, 41]. ”An

estimation of time to failure and risk for one or more existing and future failure modes” is

the definition introduced by International Standard Organization (ISO13381-1) [40]. Al-

though there is no explicit and clear line of demarcation between fault diagnostics and

prognostics, their relationship and dependence of prognostics on diagnostics is almost an

acceptable fact in the literature [40]. Sikorska et al. in [40] rendered a demarcation be-

tween prognostics and diagnostics. According to their definition, in diagnostics one deals

with identification and quantification of the damage or fault that has already happened to

the system, whereas in prognostics one deals with predicting the damage which has not

occurred yet. It is worth mentioning that despite the valuable outcomes of fault diagnostics

methods such as fault signals, prognostics is dependent upon the diagnostics outcome.

Figure 1.3 depicts the demarcation line between fault diagnostics and prognostics. Au-

tomated fault detection following by identification and isolation of the detected faults is the

modern notion of diagnostics and automated estimate of the time to a failure in the system

is the modern definition of the prognostics [41]. Although research in the prognostic field

is a relatively new area in the CBM, prognostics have shown promising results in reducing

expensive downtime, disaster conditions, and increasing the safety and availability of the

system of interest [41].

Prognostic is the ability to predict the time at which a component will no longer perform
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Figure 1.3: Prognostics and diagnostics in terms of time [2].

its desired task through continuous monitoring of the system and tracking the existing faults

growth. Prognostic is willing to find the remaining useful lifetime of a component or a

system [5].

1.2.1 Fault Diagnostics

Diagnostics methods can be categorized into two main categories namely, hardware redun-

dancy and analytical redundancy [42]. Hardware redundancy is referring to the traditional

diagnosis methods in which one uses multiple sensors, actuators and components to mea-

sure or control the variable of interest. Then, employing voting technique one can decide

if any fault has occurred or not and based on the decision, one can identify the faulty com-

ponent. The problems associated with this traditional diagnosis method are the required

space for the redundant components which make the system of interest bulky and as well

as high-cost of the extra components that are needed as hardware redundancy. On the con-

trary, in analytical redundancy or software redundancy one uses the analytical relationships

between various variables measurements of the system and the difference between a mea-

sured variable and its estimation generates the residual signal which leads to determining

whether a fault has occurred or not [39, 43]. As in analytical redundancy approach one

employs the mathematical model of the system of interest instead of using the redundant

components. This is also known as the model-based approach to fault diagnosis [3]. Figure

1.4 depicts the hardware and analytical redundancy concepts.

Generally, the analytical fault diagnosis approach is comprised of two main parts namely
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Figure 1.4: Comparison between hardware and analytical redundancy concepts [3].

residual generation and residual evaluation or decision-making [44]. In the residual gener-

ation step, one employs all the available measurements of the system under monitoring to

generate the residual signals. As long as the residual signals are close to zero the system is

fault-free. In the residual evaluation stage, one analyzes the generated residual signals in

order to examine the likelihood of occurring faults. This procedure is accomplished based

on a decision rule. There are number of approaches in the literature for selecting decision

rules such as setting a predefined threshold on the moving average of the generated residu-

als or statistical approaches such as sequential probability ratio testing and likelihood ratio

testing [45] or knowledge-based approaches such as fuzzy logic [46]. In [47], the authors

have proposed an adaptive threshold for decision-making process. Figure 1.5 depicts the

concept of the analytical fault diagnosis structure [4].

Analytical fault diagnosis approaches are based on the type of the required information
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Figure 1.5: Concept of an analytical fault diagnosis structure [4].
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about the system under study and can be categorized into two categories namely, model-

based and computational intelligence (CI)-based fault diagnosis approaches [44]. In model-

based fault diagnosis approach one uses system mathematical model derived based on the

physical principles [48, 42] and one needs to have a good knowledge of the system in terms

of the relationships among its variables that are not always feasible to obtain. Computa-

tional intelligence (CI)-based approach deals with historical data and data-driven models of

the system under study and one does not require a precise mathematical model of the system

[4, 43]. Model-based fault diagnosis methodology emerged in the early 1970s, affected by

the observer theory which was proposed and established nearly at that time [42]. Beard and

Jones [49, 50] introduced the first model-based fault detection approach which was called

failure detection filters. Model-based fault detection has developed significantly since then

and has become an important and inevitable part of any automatic control system [42].

Various techniques have been introduced in the literature for both the model-based and the

CI-based fault diagnosis approaches including Isermann [48], Mrugalski [51], Frank [4]

and Ding [42] which will be discussed further in this section.

In [4], Frank provided a complete survey on the major achievements in model-based

fault diagnosis field and he classified the model-based techniques into the following three

categories:

• Observer-based techniques

• Parity space techniques

• Parameter estimation techniques

In observer-based or filter-based techniques, one may employ Kalman filter (in stochas-

tic framework), Luenberger observers (in deterministic framework) [52, 53] or sliding

mode observers [54, 55] in order to obtain system states estimation from measurements

[56]. The difference between the actual measurements and their associated estimates forms
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the residual signal. According to [57, 42], it has been shown that there exist relationships

between the above mentioned approaches. For example, the parity space methods can be

considered as a special case of observer-based methods [58]. Moreover, the observer-based

techniques and the parameter estimation techniques have similarities in residual generation

stage of the fault diagnosis but they are different in the residual evaluation stage [42]. In ad-

dition, various choices of the observers along with increasing demands on using state-space

models have made observer-based fault diagnosis techniques as one of the most popular ap-

proaches in this field [56].

In [59] a bank of Kalman filters were employed in order to detect and isolate sensor and

actuator faults in conjunction with the components faults detection for an aircraft engine. In

[13] the authors proposed a hierarchical multiple model approach by using both extended

Kalman filter (EKF) and unscented Kalman filter (UKF) which could perform detection

and isolation of concurrent faults in the jet engine.

In parity space techniques [60], in order to generate the residual signals one employs

parity functions which are defined over a time window of the system input and output data.

In other words, the residuals or parity vectors are generated through monitoring and veri-

fying the existence of any inconsistency in the input and output data of the system under

study over a predefined time window [56]. As mentioned earlier, the parity space approach

is a special case of the observer-based method when the high-gain observer-method is em-

ployed [44]. Due to the higher sensitivity of the parity space approach to the measurement

and process noise as compared to the observer-based approach which is more robust to the

disturbance and measurement noise, observer-based methods are of more interest among

the researchers. In [61] a parity space-based fault diagnosis framework is used in order to

detect and isolate sensor faults in the vehicle lateral dynamics control system.

Faults may arise from sensors, actuators or physical system under study. Sensor faults

occur due to incorrect readings from the installed sensors on the system. Actuator faults
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indicate malfunction in control action of the system and component faults indicate changes

in the physical parameters of the system under study [62]. The third group of the faults,

i.e. component faults are usually handled by parameter estimation techniques [63]. In

parameter estimation-based fault diagnosis techniques, the system parameters are estimated

on-line and the estimated parameters are compared to the parameters of the reference model

which was obtained initially when the system was fault-free. References [62, 64] have

provided more details on parameter estimation-based approaches for fault diagnosis and its

implementation for some applications.

Due to the computational simplicity of the parameter estimation-based techniques along

with the recent development of the parallel computing techniques, the parameter estimation-

based techniques are promising candidates for performing real-time fault diagnosis for the

systems with low complexity. Parameter estimation-based techniques are also used for

fault tolerant control (FTC) design as in the parameter estimation-based methods the faulty

model parameters are estimated continuously which can be used for updating the controller

parameters [65]. Main disadvantages of the parameter estimation-based techniques are

weak robustness to the external disturbances and performing an accurate parameter esti-

mation by these techniques are very time consuming and may not be applicable for many

complex systems. For these reasons many researchers such as [66] and [57] are employing

parameter estimation-based techniques with other techniques such as parity space methods

or CI-based techniques in order to get better results in terms of accuracy and robustness.

Computational intelligence-based fault diagnosis approaches can be categorized into the

following three categories [67]:

• Artificial neural networks

• Fuzzy logic-based techniques

• Evolutionary algorithms
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Artificial neural networks consists of a number elements known as neurons which are

highly interconnected through weighted links. According to the selected neural network

architecture and the weighted links, each neuron acts as a mathematical function which

maps the inputs to the output space. The outputs of the neurons have an effect on one

another and all the neurons together may represent the complex process or system under

study [68]. Neural networks have been frequently used for fault diagnosis purposes in

many applications [69, 70]. Dynamic neural networks [71, 72], autoassociative neural

networks [43, 73, 74], recurrent neural networks [75, 76], multi-layer perceptron networks

[77], wavelet neural networks [78], radial basis function neural networks [79] and their

integration with other methods such as fuzzy logic and genetic algorithms [80, 81, 82]

show the variety of utilization of artificial neural networks in the field of fault diagnosis.

Mohammadi et al. in [71] proposed a dynamic neural network-based fault diagnosis

platform in jet engines which is similar to the feed-forward multi-layer perceptron neural

network except that the neurons in the proposed neural network have dynamical properties.

In their work each dynamic neuron entails three modules namely, adder, linear finite im-

pulse filter and a nonlinear activation module. Autoassociative neural networks have been

widely used for data validation and faulty sensor correction purposes. In [43] autoassocia-

tive neural network is utilized for noise reduction, filtering outliers and sensor correction in

aircraft jet engine. Autoassociative neural networks have shown considerable robustness in

presence of sensor faults and noise [43]. In [74] the authors have utilized a set of autoasso-

ciative neural networks in which each neural network has been set for particular fault mode

in power transformers. A recurrent neural network-based fault diagnosis approach namely,

recurrent adaptive time delay neural networks (ATDNN) has been developed in [75] for a

satellite. The faults are originated from the actuators in the attitude control subsystem of the

satellite. Their proposed recurrent neural network is capable of performing fault detection

and isolation of concurrent faults satisfactory.
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As mentioned earlier, neural network-based fault diagnosis approaches have been uti-

lized in many applications and domains. In [77] a multi-layer perceptron neural network

was employed in order to perform detection and isolation of the high impedance faults in

distribution networks and to identify this type of fault from other similar faults such as ad-

jacent feeders faults and insulator leakage current. The features which were used for train-

ing part of these neural networks were obtained by using a new pattern recognition-based

algorithm. Yangwen in [78] has investigated two neural network-based fault diagnosis ap-

proaches namely, wavelet neural network and back propagation neural network for rotating

machinery systems. Wavelet neural network is formed based on wavelet transform princi-

ples in which a wavelet function is used as excitation functions of the neurons. The results

and comparisons in his work have shown that wavelet neural network could overcome the

drawbacks of back propagation neural network. Chen et al. in [83] investigated neural

network-based fault diagnosis schemes for the fuel system of an automobile engine and ra-

dial basis function neural network has shown better performance when the system is under

multiple fault symptoms. In radial basis function neural networks the nonlinear mapping

function associated with each node in hidden layer of the network is different from each

other and this leads to have a faster learning speed [83].

In [80] the author proposed a hybrid neural network-based fault diagnosis scheme in

which the optimal link weights are obtained by using genetic algorithms for a chemical re-

actor and it was compared with conventional back propagation neural networks. Li et al. in

[81] have employed genetic algorithm in order to optimize the radial basis function neural

network for fault diagnosis purposes in analog circuits. Genetic algorithms have enhanced

the performance of the neural network in terms of getting trapped into the local minima.

Zhang et al. [82] have proposed fuzzy neural network-based fault diagnosis approach for

rotary machines of an oil plant water pump sets. In this approach based on defining a series

of standard fault pattern pairs (fault symptoms and fault) and using fuzzy logic the fault
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diagnosis system is capable of functioning when the unknown samples are inputs to the

system.

Fuzzy systems are promising candidates for decision making purposes when the mea-

surements are not precise and for systems in which the interpretation of the measurements

depends on the context and the human judgment i.e. in the form of if-then rules [68, 70]. It

is worth mentioning that in many applications, one may not be able to obtain a comprehen-

sive expert knowledge nor qualitative physics of the system of interest in order to provide

the fuzzy if-then rules and this can be considered as a disadvantage for fuzzy logic-based

approaches. However, when providing the proper set of rules for a system is feasible one

is able to get benefits from advantages offered by implementing expert systems or fuzzy

logic-based fault diagnosis approaches such as transparent reasoning and ability to function

under uncertainty in order to find the reason and its associated case [84].

There are many articles investigating different expert system-based fault diagnosis ap-

proaches for engineering applications such as [85] and [86]. A hierarchical fault diagnosis

scheme based on fuzzy logic was proposed in [87] for satellites formation flight. The pro-

posed method improved the autonomous fault diagnosis procedure at ground stations. It

is prompting the operator to the potential faulty components that need to be closely ob-

served. In order to improve the performance of the fault diagnosis schemes similar to

neural network-based fault diagnosis approaches, integrating fuzzy logic-based with other

non-model-based [84] or model-based techniques [88] is quite popular.

Salar et al. [88] have proposed a hybrid extended Kalman filter-fuzzy based fault detec-

tion and isolation for industrial gas turbines. Employing extended Kalman filter the health

parameter changes of the system are estimated and then a fuzzy system obtained by em-

pirical data and the Kalman filter outputs performs the fault locations in the compressor

or turbine. In [84] the authors developed a fuzzy logic-based fault diagnosis scheme for

performing gas turbine fault isolation. In order to maximize the fault isolation success rate
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in their work a genetic algorithm is used to tune the fuzzy sets. Their results showed how

the errors originated from human trial and error decreased in the design phase of the fuzzy

system. Also in [84] the authors used a radial basis function neural network for prepro-

cessing the measurements before the isolation stage which eventually led to a robust fault

diagnosis approach.

Evolutionary algorithms are dealing with stochastic optimization algorithms inspired

by Darwins theory of evolution and natural selection [67]. Evolutionary algorithms and

their applications have been deeply investigated in [67, 89, 90]. In [91] the authors have

proposed a genetic programming-based fault diagnosis approach for aircraft jet engines.

Using genetic programming the interrelations among different engine parameters during

take off and cruise flight phases are derived and is followed by estimating the exit turbine

temperature as a significant health parameter of the jet engines.

Despite existing conventional fault diagnosis approaches such as robust observer-based

techniques which are working seemingly robust under uncertainties, there still exists the

problem of mismatch between the linearized model and the nonlinear model of the system

under study. Poster and Passino [67] introduced a genetic adaptive observer approach to

cope with this problem. As an efficient optimizer, genetic algorithms have been widely

used in combination with other methods such as fuzzy logic-based and neural network-

based approaches [92, 93, 94].

1.2.2 Failure Prognostics

Prognostic emerged as an area of interest by the modal analysis community [37]. It was

originally dealt with the fracture mechanics and fatigue. Early on, prognostic was about

prediction of the remaining useful life (RUL) of the system. Then by developing different

techniques in this field, it was also defined as a probability measure which described the

probability of a system working without failure for a specified future time [37]. In this
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perspective, prognostic has achieved a few acceptance among the researchers and there is

a small number of papers based on this definition of prognostics. The prediction part is the

common phase of all the mentioned prognostics definitions which is about estimating the

RUL of the component or system. One can find other terms in addition to RUL, such as

estimated time to failure (ETTF) or probability of the system of interest operating properly

and without failure [2].

Failure prognostics has been approached through a number of techniques introduced in

the engineering applications (such as gas turbine engines). These techniques encompass

a wide range of methodologies and tools such as artificial intelligence methods, proba-

bilistic and statistical methods, Bayesian estimation techniques, adaptive Kalman filtering,

time series modeling, stochastic autoregressive integrated moving average models, Weibull

models, pattern and cluster search-based approaches, parameter estimation methods, neu-

ral networks, etc. [5]. Failure prognostics methods can be divided into three main cat-

egories namely, model-based approaches, data-driven-based approaches and experience-

based (knowledge-based) approaches [2, 5, 18]. Figure 1.6 depicts different prognostics

approaches based on the range of applicability of the systems and also their accuracy and

cost. It is worth mentioning that despite the above mentioned generic prognostics ap-

proaches, designing a prognostic scheme becomes specific for the application of interest

[5].

Model-based prognosis schemes work based on an accurate mathematical model of

the system as well as the degradation model. The analytical model demonstrates how

the system functions along with the degradation incident [2]. Modeling procedure can

be performed at two levels namely, micro and macro. Macro level models represent the

mathematical model of the system which demonstrates the relationships among input vari-

ables, system state variables and measurement variables or system outputs. Macro level

models are simplified forms of representing the system. Then a model uncertainty will
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Figure 1.6: Prognostics technical methods [5].

be considered to manage these simplifications. At micro level modeling, relationships be-

tween the operational condition of the system and degradation of the system components

at a given time are described by a set of dynamical equations associated with their corre-

sponding physical models [95]. For example modeling of the damage propagation is often

performed at the micro level modeling.

When a complete understanding of first principles of the system operation are not avail-

able or developing an accurate model of the system is expensive due to its complexity,

model-based methods are not applicable for prognostic purposes. On the contrary, data-

driven methods are capable of predicting the degradation growth trend without requiring to

have the degradation mathematical model. Despite the valuable benefit of using data-driven

methods, they are less precise than model-based methods and their accuracy is highly de-

pendent on the quantity and quality of the operational data. Utilizing more informative data

leads to better results in terms of accuracy and reliability in data-driven based methods.

Applicability and easy implementation are other advantages of using data-driven methods

[95, 96].

In data-driven prognostics, the data collected by the appropriate sensors installed on the
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system for monitoring purposes are taken into an analysis procedure to detect any degra-

dation indication [2]. The measurements usually include parameters such as temperature,

pressure, oil debris, currents, voltages, power, vibration and acoustic signals, spectrometric

data as well as calibration and calorimetric data, etc. Outcome of the analysis procedure is

the prediction of the remaining time before the system fails following the reach of critical

parameters of the system to specific values. These specific values can be derived by us-

ing either available standards and manuals provided by the manufacturers or failure history

of the system of interest. In order to prevent catastrophic failure of the system due to its

degradation evolution, the aforementioned predefined final values are defined with enough

safe margins [97]. Some other factors that should be taken into account for determining

these predefined limits that are so-called ”alarm limits” are confidence level required for

prognosis, required time for spare parts delivery, extrapolation of the parameters trends and

their behavior [97].

For prognostics purposes, to deal with uncertainties associated with the degradation and

system models and measurement noise, one determines the confidence intervals besides

determining the absolute value of the RUL. Number of methods have been introduced to

calculate the confidence intervals. In [97], a number of factors which may have effects

on these intervals have been introduced and suggested. Figure 1.7 depicts the RUL and

its corresponding confidence. Two types of uncertainties are shown in this figure. One

uncertainty is due to the prediction and the other one is associated with the threshold value

[2].

In experience-based prognostics, the operational data of the system should be collected

over a significant time so that it includes the maintenance and operating data, historical

failures, etc. Then the data is used to form some reliability models such as Weibull and

exponential models [2]. These models will be used for determining the RUL of the system

under investigation [2].
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Figure 1.7: Uncertainty associated with RUL [2].

Some of the above mentioned failure prognostics methods in the literature will be pre-

sented in the following. References [98, 99] have investigated different prognostics ap-

proaches which have been used in the literature for different engineering systems including

gas turbine engines.

One of the popular application of model-based prognostics approaches is crack growth

modeling [100, 101, 102]. Li et al. in [100] have proposed an adaptive model-based ap-

proach for predicting the defect growth in rolling element bearing system. They employed

vibration measurements and predicted defect sizes for estimating and fine tuning the pa-

rameters of the propagation model. In [102] a spur gear fatigue crack prognostic scheme

by using Paris crack growth model for crack propagation has been developed for predicting

the remaining useful life time of a cracked gear. In [101] Chana et al. have investigated

a crack propagation in a cyclic engine test and evaluate the accuracy and capability of the

tip-timing measurements taken from an eddy current sensor (QinetiQ) and a prognosis soft-

ware system called ”Reasoner”. This software has been used to isolate a crack and predict

the remaining useful lifetime of the blade. Spey RB168 MK 101 engine with titanium

blades has been put under this examination. The tip-timing data coming from the eddy

sensors has been used to verify the movement of the blade due to disc crack growth. The
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prognosis reasoned software combines the data from the sensors with physics-based mod-

els for monitoring the cracks growth and identification purposes. Their results proved the

ability of the software for identifying the crack presence, its location, size and determining

the remaining useful life time of the blade under study.

Considering the fact that all the subsystems of any complex system are somehow under

deterioration, Abbas et al. in [103] worked on the interaction of subsystems deterioration

on one another and eventually on the failure prognostic problem in the turbofan engine of

avionic propulsion systems. This phenomenon accelerates the trend of failure process for

the system under study.

In [103] Abbas et al. have investigated how the degradation in high pressure compressor

(HPC) and low pressure compressor (LPC) influence on creep damage of high pressure

turbine blades for an avionic propulsion system of aircraft engine. Creep phenomenon in

the HPT blades is considered as one of the major failure causes in the aircraft engines.

The results of this investigation have shown that creep damage growth in the HPT is linear

as long as other subsystems are operating in healthy condition. This research [103] also

showed that the effect of HPC deterioration on HPT creep damage evolution is much higher

than the LPC deterioration and their results were supported by using C-MAPSS simulation

platform.

Sankavaram et al. [104] have proposed an approach for failure prognosis of the coupled

systems such as automotive systems incorporating three types of data (failure time data,

status parameter and dynamic data). In the proposed data-driven prognosis framework

two methods namely soft dynamic multiple fault diagnosis (DMFD) and Cox proportional

hazards model (Cox PHM) have been employed for deducing the degraded trends of the

components and estimating the components RUL. Also, this approach has been applied for

estimating RUL of an automotive electronic throttle control system by using a simulator.

In order to predict the remaining useful life time of an automotive suspension system
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which has multiple operational modes Lue et al. [105] have proposed a model-based prog-

nostics approach by employing interacting multiple model (IMM) filter for estimating the

degradation measure and time-averaged mode probabilities for predicting the remaining

useful life time of the system. In [106] a model-based approach for health monitoring of an

industrial gas turbine has been introduced. This work developed an extended Kalman filter

observer which compensates the effects of the ambient conditions.

Wang and Vachtsevanos [107] have presented a prognosis approach comprising of a

dynamic wavelet neural network as a predictor and a static virtual sensor as a mapping

gadget between known measurements and faulty data. The dynamic neural network tends

to determine the evolution of the failure mode over time and estimate the component’s

RUL. This prognosis framework has been utilized for a damaged bearing with a crack in its

inner race. The damaged bearings or weak mounting screw brings a pump to vibrate and in

this approach the vibration measurements are monitored via an accelerometer.

Mejia et al. [2] have introduced a data-driven prognostics method which has been

verified on real data linked to the bearings. This method works by using a mixture of

Gaussian hidden Markov models (MoG-HMM) which are capable of managing complex

probability density functions (pdf). In order to extract a proper set of features from the

raw collected data, they have used wavelet packet decomposition (WPD) and the pdfs are

generated from the obtained features.

In [108] Wenskey et al. have investigated the effects of environment on the performance

degradation and useful life of the modern aero engines. The authors divided the problem

into two areas namely, erosive and anthropogenic areas and their survey was accomplished

upon these two categories using engine overhauls data at MTU maintenance. Erosive ef-

fects address the most effective natural causes (i.e., dust) on the engine performance. These

particles mostly manifest themselves on the HPC by increasing the speed of scrapping the

HPC airfoil owning to erosion. Anthropogenic areas address those that are more exposed to
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the chemical and industrial pollutants. Considering nitrogen dioxide (outcomes of burning

fossil fuels) as a proper indicator for these types of pollutants, scrap growth in the HPT will

be accelerated due to the chemical pollutants. In this study the data taken from about 70

engines (General Electric CF6) have been analyzed. Wenskey et al. quantified the above

environmental effects by using the gradient of delta exhaust gas temperature (dEGT) per

cycle. They showed that the interaction of these two environmental factors may double the

maintenance cost.

As mentioned earlier, vibration signal analysis is one of the useful monitoring methods

especially in CBM of mechanical systems. Any noise added to the vibration signal data can

influence the overall performance of the CBM. In order to improve the signal to noise ratio

of the data coming from a helicopter gearbox test bed, Zhang et al. [38] have introduced a

new de-noising procedure. The proposed procedure in [38] consists of a de-convolution de-

noising procedure in parallel with an effective feature extraction and modeling the vibration

so that informative features can be extracted from the noisy signals.

In [109] Ganguli has developed a fuzzy logic system in order to model the structural

damage of a helicopter rotor blade. Using a finite element model of the rotor blade, one

is capable of determining the blade frequencies changes and later the changes due to the

damage are fuzzified. Ganguli has proposed a fuzzy logic to detect four levels of damage

in the rotor blade at five locations across the blade.

In [110] Naeem et al. has taken the fuel usage as the most important criteria which

highly affects the overall effectiveness of an aircraft as the fuel weight is highly related to

the load and passengers number that can be transported. Using a computer program called

PYTHIA which is developed by Escher et al. [111], consequences of engine degradation

based on the fuel consumption are predicted over an assumed military aircraft mission

scenario including multiple flight phases. Therefore, predicting the engine degradation

leads to making more reasonable decisions about the appropriate time for an aero-engine
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to get removed from the aircraft for going through maintenance procedure.

Naeem [112] has accomplished a comprehensive research in quantifying the different

degradation effects on the engine of a military aircraft and its components on the HPT

blades creep life, HPT blades low cycle fatigue (LCF) life consumption, engine’s fuel us-

age, effectiveness of mission operational and HPT blades thermal fatigue life. The results

showed that the take-off phase has the most impact on the missions operational efficiency.

Also the HPC has the most impact on the missions operational efficiency in comparison to

other engine components such as LPC, low pressure turbine (LPT) and HPT. In addition,

HPT deterioration has the most impact on the fuel consumption.

In [113] Abdul et al. have investigated the effects of a hot section component’s creep

life (high pressure turbine) on a single spool turbo-shaft gas turbine engine performance

under its different health conditions (such as compressor fouling and turbine erosion) and

operating points (such as engine’s speed, altitude and ambient temperature). The quantita-

tive value of the creep life is determined based on a model-based creep analysis approach

by introducing creep factor that is defined as the ratio between the actual creep life and

the reference creep life (this reference or threshold is defined by the user). Their results

showed among the engine speed, altitude and ambient temperature, the engine speed has

the highest impact on the creep factor and as the degradations have occurred concurrently

the impact on the creep factor will be more severe.

An approach towards assessing the general engine performance between two mainte-

nance procedures has been introduced by Ebmeyer et al. in [114]. This analytical method

consists of two tools namely GasTurbTM and MTU-engine trend monitoring (MTU-ETM)

which are thermodynamic gas path models and are modular based. ETM-MTU tool is used

for monitoring the in-flight engine parameters and the measured data (also called on-wing

data) is transferred into the ground station via aeronautical radio incorporated (ARINC)

for analysis purposes. The authors used these two tools, on-wing and off-wing data to
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perform the engine on-wing performance degradation. Fan, LPC, HPC, combustor, HPT,

LPT and nozzle form the modules and the parameters which have been used for evaluating

these modules, and where performances are pressure ratio, isentropic efficiency, change of

specific enthalpy and capacity corresponding to a standard day. This approach has been

applied to a General Electric CF6 engine.

Number of work and investigations have been accomplished in failure prognosis in

the context of discrete-event systems (DES) [115, 15]. In [115] the authors investigated

the failure prognosis in real-time discrete-event systems (RTDES) and they modeled the

system by timed automata (TA). The proposed approach is based on a diagnosis algorithm

which was introduced by these authors before [116]. This prognosis method has been

formed by modifying the real-time prognosis problem via employing TA transformation

and transferring the real-time prognosis problem into the non-real time prognosis problem.

Based on the authors’ claims, the state space explosion problem is significantly reduced by

using this method as compared to other prognosis methods. State space explosion problem

which refers to the case that the state space of the system is very large or even infinite is

one of the most serious problems with model checking in practice.

In [117] the growth and evolution of faults are defined by using deterministic or stochas-

tic models, as the faults are considered to change continuously. In order to get benefit of

model-based prognostics approaches along with overcoming their drawbacks and in order

to increase the reliability and the performance of the prognostics procedures, the hybrid

approaches have been extensively used for engineering applications [118, 119]. In [118]

the authors have fused monitoring data (vibration features) and fatigue model of the com-

ponents and utilized it for calculating remaining useful life time of the critical components

of the gas turbine engines.

Time-series analysis techniques are another popular data-driven prognostics approaches
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which have attracted attention of many researchers in different fields from economic fore-

casting [120, 121] and biological data analysis [122] to control systems and signal process-

ing domains [123, 124, 125].

Autoregressive moving average (ARMA) models as a time-series-based techniques in

prognostics have been used in many practical applications. For example, in the railway

industry turnout system is used to determine the direction of a train by moving rails. In

[126] the authors have proposed an ARMA model to predict the future health condition of

the electro-mechanical turnout system with exponential failure degradation and have deter-

mined the remaining useful life time of the system successfully. In [127] the authors have

employed two prognostics approaches, namely ARIMA and hidden Markov model-based

techniques to detect performance changes of the water level sensor for a steam separator

system used in thermal power plants and the results for both approaches were acceptable.

However, the results of hidden Markov-model based approach showed better performance

in terms of delay time and error probability due to employing cross correlation functions

between available measurements of the system such as water level, water and steam flow.

In [14] Marinai has proposed a new method for gas path diagnostics and this method

was developed based on fuzzy logic and was tested for the Rolls-Royce Trent 800 engine.

Mariani has worked on engine performance analysis based on time-series methods and

regression methods and has rendered a prognostics platform in order to perform short-term

and long-term predictions considering factors such as maintenance and extra fuel originated

from the engine degradation and deterioration. In [128] the authors in order to reduce

the cost of maintenance and fuel consumption in turbofan engines have employed two

time-series-based techniques namely ARIMA method and regression analysis to perform

deterioration in a turbofan engine. Their results have shown that ARIMA method has better

performance for shorter term predictions and regression analysis are preferable for long-

term predictions.
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In order to be able to perform performance prediction with longer horizons for engine

systems, Want et al. [129] have proposed a method consisting of a Match matrix and

auto regressive moving average method. In their approach the feature vectors (a signa-

ture describing the engine health status) from past maintenance cycles were used for the

new maintenance cycle through this Match matrix which eventually led to better predic-

tion horizon. In [130] the authors have proposed a time-series based prognostics scheme

determining the RUL of an autoclave burner which is an industrial equipment by using an

artificial neural network and a sliding window technique.

To conclude this section, it is worth mentioning that both data-driven and model-based

approaches have been widely used in the literature and practice. However, compared to

fault diagnostics, failure prognostics are much less addressed in the literature. Model-

based approaches provide more accurate and robust results in comparison with data-driven

approaches. Choosing an appropriate approach depends on many factors. Availability of

the mathematical models of the system, having a good understanding of the physics of the

system under study, feasibility of performing identification procedures such as exciting the

system’s modes by feeding the system with different inputs and finally cost associated with

deriving the mathematical model of the system or degradations are all important factors

that determine whether or not a model-based prognostics approach should be utilized.

In contrast, data-driven approaches are more applicable and easier to implement along

with lower cost when compared to model-based approaches. In other words, data-driven

methods allow one to predict the evolution trend of the degradation of the component or

system of interest without any need of having prior mathematical model of the degradation

[96]. However, they are less accurate than model-based techniques and are more sensitive

to noise which have motivated the researchers toward employing hybrid approaches rather

than using pure model-based or data-driven approaches.
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1.3 Statement of the Research Problem

The main objective of this thesis is to investigate the degradation prognostics in gas turbine

engines by using time-series and fuzzy based methods. Prognostics is one of the inevitable

parts of any health monitoring system. An efficient prognostics scheme lets the mainte-

nance team plan maintenance procedure so that it supports a smooth transition from faulty

condition to a functional and healthy state. Taking advantage of such a prognostics scheme

holds the promise of having a considerable cost saving by avoiding unscheduled mainte-

nance along with boosting the operational safety by employing condition-based mainte-

nance strategies.

The ultimate goal of the prognostics is to answer the question on whether the system

under study is able to continue working properly or not and for how long it can function

without any problem based on its past and current health condition. The more complex

the system is, the more important and challenging the issue becomes. Aircraft engines,

power plants, medical equipment are examples of such complex systems as their downtime,

availability and safety are critical.

Gas turbine engines as in other mechanical systems which work under different condi-

tions, such as high temperature and stress undergo degradations. For the case of gas turbine

engines, these degradations may occur in different paces. Sensors faults, system failures

and foreign object damage are considered rapid deteriorations and fouling, erosion, cor-

rosion, mechanical wear are categorized as gradual or slow deteriorations. Fouling and

erosion as two important sources of gradual degradations in the gas turbine engines are

reflected on the health parameters of the compressor and turbine namely, flow capacity and

efficiency. As these health parameters are not measurable directly, we have investigated the

effects of fouling and erosion particularly in the compressor and turbine on the measurable

parameters of the engine that are obtained from the gas path measurements during its take

off mode. Note that the effects of degradations on the engine parameters are manifested
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more strongly in the take off mode, since the maximum thrust is expected to be provided

in this mode.

Towards this end, two time-series and hybrid fuzzy-time-series approaches to predict

the degradation trends in the gas turbine engine are used. Autoregressive integrated moving

average (ARIMA), vector autoregressive (VAR) and hybrid fuzzy-time-series approaches

have been employed and compared in terms of their effectiveness and prediction horizons.

The objective of the above methods is to predict the trends of the gas turbine engine degra-

dation by using the past and the current engine gas path measurements in order to determine

whether the engine should go through maintenance procedure or it can continue working

for next flights.

1.4 Thesis Contributions

In this thesis, our goal is to develop novel solutions for the problem of gas turbine engine

prognostics based on data driven approaches. Towards this end, three different time-series

based approaches are employed to address the problem of engine degradation trend pre-

diction due to two physical phenomenon, i.e. fouling and erosion which are considered as

main sources of slow degradations in the gas turbine engine. Fouling is related to accumu-

lating and adhering of particles (usually with the size less than 2 to 10 μm) to airfoils and

annulus surfaces and erosion is related to removal of the materials from the flow path by

hard particles attacking the flow surfaces.

In order to develop an effective prognostics scheme for predicting the health condi-

tion of the engine for safe-enough number of flights ahead, various available approaches

in the prognostics field have been studied which are relatively a few as compared to the

existing fault diagnostics approaches. To the best of the author’s knowledge the proposed

time-series based approaches that incorporate the two above mentioned degradations have

not been introduced in the literature. Moreover, the capability of time-series analysis in
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performing trend prediction makes these methods suitable candidates for degradation prog-

nostics of the gas turbine engine. The outcome of the proposed approaches can be used as

part of a condition-based monitoring system for the gas turbine engine. The contributions

of this thesis in solving the above problem are listed as follows:

First, for obtaining the engine gas path measurements data a Simulink model of a single

spool gas turbine engine developed in [13] by Naderi et al. is used. This model does not

include the governor which controls the fuel flow. Therefore, a controller is developed for

the single spool engine model to control the engine pressure ratio (EPR) in the take off

mode. One of the challenges in this part is that the engine system is highly nonlinear and

cannot be controlled by the conventional linear controllers. To cope with this problem a

controller consisting of a feed forward controller (by constructing a look up table) and a

negative feedback controller is developed so that the desired EPR is regulated by controlling

the fuel flow. Then, the steady state data of the take off mode are captured for prognostics

purposes.

Second, since fouling and erosion in the compressor and the turbine lead to increase in

turbine exhaust gas temperature, in this thesis this variable is taken as a health measure of

the system and its trend is used for degradation prognosis purposes. As mentioned in the

previous sections, functionality of the data-driven approaches are dependent on the qual-

ity of the data as we are performing prediction procedure based on the past and current

data of the system. Therefore, the data from the engine under different degradations with

different severities are generated and fed to a time-series based approach namely vector au-

toregressive (VAR) method in order to predict the engine degradation trend and compared

it with the univariate ARIMA model. The data obtained from the engine model (integrated

with the degradation models) are validated by the well-known software known as the gas

turbine simulation program (GSP) [131]. As mentioned earlier in the literature review sec-

tion of this thesis, univariate ARIMA models are good predictors for short-term predictions
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[128, 129, 130]. In order to improve the prediction accuracy, in addition to the turbine tem-

perature, compressor temperature have also been employed by using the proposed VAR

method. By benefiting from more data from the engine, we are able to have longer term

predictions along with higher accuracy in terms of the mean and the standard deviation of

the prediction errors.

Third, in order to improve the accuracy of the prediction the turbine temperature and

the spool speed are fused by using a fuzzy inference engine and a hybrid fuzzy ARIMA

model is proposed. This fused data is obtained by feeding the turbine temperature and the

spool speed into two Takagi-Sugeno fuzzy engines that represent the turbine temperature in

a given spool speed. Our results show that the performance of this approach as compared to

the two first methods is improved in terms of prediction horizon and quantitative measures

such as the mean and standard deviation of the prediction errors. For all the proposed

methods prediction bounds based on the normal theory have been constructed in order to

deal with uncertainties associated with prediction.

The capabilities of our proposed approaches are demonstrated under different scenarios

and compared in terms of quantitative and qualitative measures. These scenarios which

are fully demonstrated in Chapters 3 and 4 in detail entail the engine measurements under

different degradation severities. Some of the results of this research have been published in

the following work:

1. M. Gholamhossein, A. Vatani, N. Daroogheh, and K. Khorasani, “Prediction of the

jet engine performance deterioration,” in ASME International Mechanical Engineer-

ing Congress and Exposition, pp. 359-366, 2012.
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1.5 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, the background informa-

tion about the methods that are employed in the later chapters is given. This chapter starts

by reviewing the ARIMA and VAR models, different criteria such as the Akaikes informa-

tion criterion (AIC) and the Bayesian information criterion (BIC) for selecting the order of

the models are explained and these are followed by reviewing the fuzzy system structure.

Afterwards, the aircraft gas turbine engine model which will be used in this thesis is pro-

vided. This chapter concludes by describing the engine degradation models and how they

are integrated into the engine model. The generated data from this model will be used for

the prediction purpose in the later chapters. Chapter 3 begins by explaining the designed

controller for the engine model. Next, the engine degradation trend is predicted by the

proposed VAR method under different scenarios which are explained in detail in this chap-

ter and finally these results are compared with the ARIMA method both qualitatively and

quantitatively. In Chapter 4, the proposed hybrid fuzzy ARIMA approach is explained and

the prognostics performance by using this method is compared with the two other methods.

Finally, the conclusion and suggestions for future work are provided in Chapter 5.
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Chapter 2

Background Information

In the first chapter of this thesis different prognostics approaches in the literature were

reviewed. Also the advantages and drawbacks of both model-based and data-driven prog-

nostics approaches were given. When an accurate mathematical model of the system under

study or the degradation evolution model are not available it is preferable to use data-driven

techniques. In this thesis, we are aiming to perform degradation prediction for a gas tur-

bine engine where an accurate mathematical model is not available. Therefore, we decided

to employ a data-driven approach for this work. Among different data-driven approaches

such as artificial neural networks, fuzzy logic and hidden Markov models, time-series tech-

niques are less investigated. The time-series prediction methods are capable of predicting

the future incidents based on the known and observed past data points before they are

observed and measured [132]. However, studies on empirical systems and specially large-

scale ones [133] have shown accuracy of the prediction can be improved by combining

different methods. In other words, combining different techniques increases the likelihood

of capturing different patterns in the experimental data which eventually leads to a better

performance. Inspired by these facts, the main body of the thesis is devoted to use of time

series (univariate and bivariate) and a hybrid fuzzy-time series methods as main prognosis

tools.
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In the following sections, first time-series modeling and prediction methods are re-

viewed and presented. Then the fuzzy logic will be explained. After that, the gas turbine

engine components and their associated equations will be presented. Finally, the degra-

dations in the engine and how these degradations are integrated in the engine model are

described.

2.1 Time-Series Modeling and Prediction

A time-series is a collection of quantitative observations over time which are measured

sequentially [134, 135]. Daily recorded temperature of a room, daily monitoring price

of gas and annual recorded rainfall data are examples of time-series. Figure 2.1 depicts

a time-series of measured monthly rainfall for Auckland [6]. Throughout this thesis the

realization of a time-series at time t is denoted by xt and we use {xt} for denoting the

time-series process.

Figure 2.1: Monthly rainfall data for Auckland [6].
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Deterministic and Statistical Time-Series

If one can determine the future values of a time-series by adopting a mathematical model,

the time-series is called deterministic. Non-deterministic or statistical time-series is the

time-series in which its future values are only characterized based on a probabilistic distri-

bution. Figure 2.1 depicts a statistical time-series as it is not possible to predict the exact

amount of the rainfall for the next month. One may consider the statistical time-series as a

specific realization of a stochastic process based on probabilistic laws of the system under

analysis [134].

Stationarity of the Stochastic Processes

A stochastic process is said to be a stationary process if its statistical properties do not

change over time. Consider the stochastic process constructed by n observations xt1 ,xt2 , ...,xtn

captured at the times t1, t2, ..., tn. The joint probability distribution of this stochastic process

over the mentioned times should be the same as the joint probability distribution of the pro-

cess with n observations xt1+d,xt2+d, ...,xtn+d captured at the times t1 +d, t2 +d, ..., tn +d.

The stationarity properties of a time-series is an important feature in order to fit a model

to the time-series under study and its importance will be explained later in this chapter. As

indicated in the previous chapter, time-series methods are among one of the approaches that

are used in prognosis problems. The problem of time-series prediction deals with using

previous and current time-dependent system data to evaluate its future behavior [136].

2.1.1 Autoregressive Integrated Moving Average (ARIMA) Model

Consider the following generalized polynomial model structure [137]:

A(z)y(t) =
B(z)
F(z)

u(t)+
C(z)
D(z)

e(t) (2.1)
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where A(z), B(z), C(z), D(z), and F(z) denote the following polynomials:

A(z) = 1+a1z+ ...+anazna

B(z) = b1z+ ...+bnbznb

C(z) = 1+ c1z+ ...+ cncz
nc

D(z) = 1+d1z+ ...+dnd znd

F(z) = 1+ f1z+ ...+ fn f z
n f

where na, nb, nc, nd , and n f denote the order of above polynomials, y(t) denotes the output

value at time t, u(t) denotes the value of input signal (control input) at time t, and {e(t)}
denotes a sequence of independent (identically distributed) random variables, z denotes the

backward operator or the delay operator. The model indicated in the equation (2.1) is too

general and most often depending on the application some of the above polynomials (A, F,

C, and D) would be set to unity.

Among the various available techniques to analyze the data in time domain and fre-

quency domain, the Box-Jenkins models are the most common methods which were de-

veloped in 1970 [138] by Box and Jenkins. Because of the high contribution of Box and

Jenkins in developing the methodology of the autoregressive moving average (ARMA)

models, the ARMA models are also referred to as Box and Jenkins models. A Box-Jenkins

model with the order of p and q is denoted by ARMA(p,q) in which p is the order of the

autoregressive terms and q is the order of the moving average terms. Both the autoregres-

sive (AR) model with the order of p and the moving average (MA) model with the order of

q also fall into the category of Box-Jenkins models and will be explained further in this sec-

tion. The general form of the ARMA(p,q) model which is a special case of the generalized

polynomial model structure shown above can be presented as follows:

ϕ(z)xt = θ(z)εt (2.2)

where p denotes the autoregressive order and q denotes the moving average order of the

41



model, xt denotes the value of time-series at the time t, {εt} denotes a sequence of inde-

pendent and identically distributed random variables with zero mean and variance of δ , z

denotes the back shift operator such that zxt = xt−1, and ϕ(z) and θ(z) denote the autore-

gressive operator and the moving average operator of the forms:

ϕ(z) = 1−ϕ1z− ...−ϕpzp, θ(z) = 1+θ1z+ ...+θqzq

In the case that all the θi’s are zero, the ARMA model is said to be an autoregressive

(AR) model. If all the φi’s are zero, the ARMA model is said to be a moving average (MA)

model.

Box and Jenkins models are based on the following ARMA difference equation:

xt = ϕ1xt−1 +ϕ2xt−2 + ...+ϕpxt−p + εt +θ1εt−1 + ...+θqεt−q (2.3)

where θ1, ...,θq,ϕ1, ...,ϕp denote the parameters of the model.

Before presenting different approaches for estimating the ARMA model parameters

given the measurements xt , we will be explaining stationarity and invertability conditions

of the ARMA model and their importance in the modeling of the time-series data.

Stationarity

In order to study stationarity of an ARMA model, we consider the model as a difference

equation in xt so that φ(z)xt = θ(z)εt is a linear equation between xt ,xt−1, ...,xt−p. It fol-

lows that this is the conventional algebraic difference equation except the right hand part

of the equation which includes the random terms {εt}. The general solution of a differ-

ence equation comprises of a complementary solution and a particular solution [139]. The

complementary solution is the solution of the homogeneous difference equation and the

particular solution is any solution to the original difference equation. Let’s take the homo-

geneous ARMA equation which is φ(z)xt = 0 as follows:
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xt −φ1xt−1 −φ2xt−2...−φpxt−p = 0 (2.4)

The solution of the above equation is any function in the form of xt = krt such that krt −
kφ1rt−1...− kφprt−p = 0, where k denotes the constant value which can be calculated by

the initial values of xt . Rearranging the above equation gives us:

krt
(

1−φ1(
1

r
)...−φp(

1

r
)p
)
= krtφ(1/r) = 0 (2.5)

From the equation (2.5), a trivial solution is r = 0 or r is any solution to φ(1/r) = 0.

Therefore, the solution of this homogeneous equation is the reciprocal of the roots of the

polynomial φ(z). Similar to other ordinary difference equations depending on the roots of

φ(z), the complementary function comprises of the linear function of all the solutions to

φ(z) in the following form k1(
1
r1
)t +k2(

1
r2
)t + ...+kp(

1
rp
)t , where k1, ...,kp are constants and

can be determined by using the initial values x1, ...,xp. Particular solution of the ARMA

model is determined as follows:

xt = φ−1(z)θ(z)εt (2.6)

As mentioned earlier, the model is stationary if its statistical properties such as mean

and variance do not change over time. From the general solution to the ARMA model

introduced above, the ARMA model is stationary if all the roots of φ(z) are outside the unit

circle [140]. This condition is for ensuring that for large t, xt is independent of the initial

value of xt and leads to a constant mean. Here, let’s take the AR(1) model as an example:

xt = φxt−1 + εt (2.7)

The complementary function xt = kφ t is derived from the corresponding homogeneous
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equation, where k is a constant. The particular solution is determined as follows:

φ(z)xt = εt

xt = φ−1(z)εt = ψ(z)εt

φ(z)ψ(z)εt = εt

(2.8)

By equating the coefficients of z from both sides of the above equation, the particular

solution of the AR(1) is derived. Finally the general solution to the AR(1) model will be as

follows:

xt = kφ t +
∞

∑
j=0

φ jεt− j (2.9)

As seen from the equation (2.9) when |φ | < 1 the complementary function approaches to

zero by increasing the t. In other words, in this case the mean of xt is independent of t, as

only the particular solution has remained. Also for the variance of the general solution, it

converges when |φ |< 1, [140].

Invertibility

An ARMA model could be presented as an infinite AR representation. Let’s take ARMA(1,1)

model as an example. In order the determine the infinite AR representation of this model,

one can take the following steps:

xt = φ1xt−1 + εt +θ1εt−1 (2.10)

εt = xt −φ1xt−1 −θ1εt−1

εt−1 = xt−1 −φ1xt−2 −θ1εt−2 (2.11)
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Substituting εt−1 in the first equation of (2.11) and continuing with this substitution we get:

εt = xt −φ1xt−1 −θ1(xt−1 −φ1xt−2 −θ1εt−2)

= xt − (φ1 +θ1)xt−1 +θ1(φ1 +θ1)xt−2 −θ 2
1 (φ1 +θ1)xt−3...− (−θ1)

k−1(φ1 +θ1)xt−k + ...

(2.12)

From the above equation, it is clear that when |θ1| < 1 the weights of the coefficients ap-

proach to zero and eventually the estimation of ε will converge. For the general ARMA

model (φ(z)xt = θ(z)εt), similar to the approach which was explained earlier for determin-

ing the MA polynomial of an ARMA model (in the form of xt =ψ(z)εt), one can determine

the AR polynomial of an ARMA model in the form of εt = π(z)xt and to make sure that

the weights are approaching to zero as we go back in time t, all the roots of θ(z) should be

outside of the unit circle. This condition is called invertibility condition [140].

Invertibility is useful for estimation purposes that use least squares estimation. When

we have two ARMA models with the same likelihood and the same coefficients for the

φ(z) but different for the θ(z), in order to choose one model over the other one, invertibility

condition should be verified. In other words, the model in which its MA coefficients are

invertible distinguish the model. The invertibility condition is necessary as in the estimation

stage of the modeling, we choose ε1 (initial value of ε) arbitrary and under invertibility

condition, we make sure that the coefficient of ε1 decays over increasing the time and this

can attenuate the error raised by choosing ε1 arbitrary.

Model Parameter Estimation Methods

In order to estimate the parameters of an ARMA model i.e. φ(z) and θ(z) one can employ

different approaches such as [138]:

• Off-line identification methods
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• Bayesian approaches for recursive identification

• Stochastic approximation

• Pseudo linear regressions

• Model reference techniques

As mentioned earlier in the first chapter in this thesis we are looking for investigating

and modeling the engine performance degradation due to the compressor fouling and the

turbine erosion over number of flights and processing of the measurements data from the

engine is not online. Therefore, in this thesis we use off-line methods for parameter estima-

tion of the models. Below some common off-line recursive approaches will be explained:

1. Least squares method

Considering F(z) = D(z) = C(z) = 1 in equation (2.1) gives A(z)y(t) = B(z)u(t)+

v(t) where v(t) is the disturbance. Let’s define the vector Θ in terms of A(z) and B(z)

parameters and vector Φ(t) in terms of the regression variables as follows:

ΘT = (a1...anab1...bnb)

ΦT (t) = (−y(t −1)...− y(t −na)u(t −1)...u(t −nb))

(2.13)

From equation (2.13), the difference equation model described by the equation (2.1)

can be rearranged as follows:

y(t) = ΘT Φ(t)+ v(t) (2.14)

The goal is estimating the parameters vector Θ from the measurements y(t) by the

recursive least squares method. In this method one is trying to estimate the parame-

ters of the model by minimizing the equation error, y(t)−ΘT Φ(t) with respect to the
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parameters vector Θ. In other words, the cost function can be defined as follows:

VN(Θ) =
1

N

N

∑
1

αt
[
y(t)−ΘT Φ(t)

]2
(2.15)

where αt is a parameter that can be set to 1 or it can be chosen according to the

variance of the term v(t) and it can be used to give different weights to different

measurements and N is the number of measurements used for parameters estimation.

As seen from the cost function VN(Θ), one is trying to find the best prediction or

estimation of the measurements y(t), which is quadratic in Θ and which allows us to

minimize it analytically. After taking the derivative of the cost function with respect

to Θ, one gets:

Θ̂(N) =

[
N

∑
t=1

αtΦ(t)ΦT (t)

]−1 N

∑
t=1

αtΦ(t)y(t) (2.16)

In the recursive least squares method, equation (2.16) should be expressed in a re-

cursive manner. After some manipulations (see [138] and [141] for more details),

the estimated parameters vector Θ̂ can be determined recursively by the following

algorithm:

Θ̂(t) = Θ̂(t −1)+L(t)
[
y(t)− Θ̂T (t −1)Φ(t)

]
L(t) =

P(t −1)Φ(t)
1/αt +ΦT (t)P(t −1)Φ(t)

P(t) = P(t −1)− P(t −1)Φ(t)ΦT (t)P(t −1)

1/αt +ΦT (t)P(t −1)Φ(t)

(2.17)

It can be shown that by using the recursive least squares algorithm explained above,

the estimated parameters Θ̂ converge to the true values Θ0 only under the following

conditions:

• {v(t)} is a white noise (sequence of independent random variables with the

mean of zero),
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• The input control {u(t)} should be independent of the noise sequence {v(t)}
and the regression variables vector Φ(t) should have only u terms.

2. Instrumental variable method

The instrumental variable method has been developed to modify the short comings

of the recursive least squares method which has been mentioned above. The modi-

fication has been done by using a vector ζ (t) in place of Φ(t) in the equation (2.16)

such that ζ (t) and v(t) are uncorrelated. After this replacement and doing some

manipulations we get to the new estimated parameter formula as follows:

Θ̂(N) = Θ0 +

[
1

N

N

∑
t=1

ζ (t)ΦT (t)

]−1
1

N

N

∑
t=1

ζ (t)v(t) (2.18)

where Θ0 is the true value of the estimated parameters. The above estimated pa-

rameters vector can be rewritten in a recursive manner after some manipulations as

follows:

Θ̂(t) = Θ̂(t −1)+L(t)
[
y(t)− Θ̂T (t −1)Φ(t)

]
L(t) =

P(t −1)ζ (t)
1/αt +ΦT (t)P(t −1)ζ (t)

= P(t)ζ (t)

P(t) = P(t −1)− P(t −1)ζ (t)ΦT (t)P(t −1)

1/αt +ΦT (t)P(t −1)ζ (t)

(2.19)

The vector ζ (t) is called the instrumental variables. Under the three conditions below

the estimated parameters Θ̂(N) is approaching to its true values Θ0 as N goes to

infinity using the above algorithm [138]:

• ζ (t) and v(t) are uncorrelated.

• v(t) should have a zero mean.

• According to equation (2.18), the matrix limN→∞
[

1
N ∑N

t=1 ζ (t)ΦT (t)
]

should be

invertible.

There are many approaches for choosing the instrumental variables ζ (t) [138], but
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in general the instrumental variables should be correlated with Φ(t) and uncorrelated

with the system noise terms. Following vector is an example of a common choice of

ζ (t) [138]:

ζ T (t) = (−yM(t −1)...− yM(t −na)u(t −1)...u(t −nb)) (2.20)

where yM(t) is the output of a deterministic system with the actual input signal u(t)

as follows:

yM(t)+ ā1yM(t −1)...+ ānayM(t −na) = b̄1u(t −1)...b̄nbu(t −nb) (2.21)

In this approach proposed by Young [142], Mayne [143] and Wong et al. [144]

the coefficients āi and b̄i are assumed to be time-dependent. Next, one can use the

estimated values of âi(t) and b̂i(t) from the equation (2.19) in the equation (2.21)

which gives us:

yM(t) = Θ̂T (t)ζ (t) (2.22)

3. Recursive prediction error method (RPEM)

Both the recursive least squares method and the instrumental variable method are

good approaches for estimating the model parameters as long as the cost function is

quadratic in terms of Θ. Because when the cost function VN(Θ) is a nonlinear func-

tion of Θ, it cannot be globally minimized analytically similar to what we did so far.

Furthermore, as seen in equation (2.19) in order to perform numerical minimization

procedure one needs to pass all the data from t = 1 to t = N for several iterations and

this can not be used in a recursive algorithm that requires a vector memory with fixed

size. In this case we have to determine approximations to Θ̂(t) in a recursive manner.

We define Vt(Θ) as follows:
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Vt(Θ) =
1

2

t

∑
τ=1

ε2(τ,Θ) (2.23)

In order to take the derivative of the cost function Vt(Θ), we write the Taylor series

expansion of Vt(Θ) around Θ̂(t − 1) as follows (assuming Θ̂(t − 1) is the optimal

estimate of Θ at time (t −1)):

Vt(Θ) =Vt(Θ̂(t −1))+V ′
t (Θ̂(t −1))[Θ− Θ̂(t −1)]

+
1

2
[Θ− Θ̂(t −1)]TV ′′

t (Θ̂(t −1))[Θ− Θ̂(t −1)]+ f (|Θ− Θ̂(t −1)|2)
(2.24)

where f (Θ) is a function such that lim|x|→0
f (x)
|x| → 0.

V ′
t (Θ) =V ′

t (Θ̂(t −1))+
1

2
(Θ− Θ̂(t −1))T [V ′′

t (Θ̂(t −1))+V ′′
t (Θ̂(t −1))T ]= 0

(2.25)

Since the second derivative of a scalar function is symmetric, one gets:

V ′
t (Θ̂(t −1))+(Θ− Θ̂(t −1))TV ′′

t (Θ̂(t −1)) = 0 (2.26)

Solving equation (2.26) with respect to Θ one can approximate Θ̂(t) as follows:

Θ̂(t)≈ Θ = Θ̂(t −1)− [V ′′
t (Θ̂(t −1))T ]−1V ′

t (Θ̂(t −1))T (2.27)

As we defined the cost function earlier:

Vt(Θ) =
1

2

t

∑
τ=1

ε2(τ,Θ) ⇒ V ′
t (Θ) =

t

∑
τ=1

ε(τ,Θ)
dε(τ,Θ)

dΘ (2.28)
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And by defining the gradient vector ψ such that ψ(t,Θ)
def
= [−dε(t,Θ)

dΘ ] = dŷ(t,Θ)
dΘ , equa-

tion (2.28) can be rearranged as follows:

[V ′
t (Θ)]T =−

t

∑
τ=1

(−dε(τ,Θ)

dΘ
)T ε(τ,Θ) = [V ′

t−1(Θ)]T −ψ(t,Θ)ε(t,Θ)

(2.29)

For the second derivative of the cost function, we have:

[V ′′
t (Θ)]T = [V ′′

t−1(Θ)]T +ψ(t,Θ)ψT (t,Θ)+ ε ′′(t,Θ)ε(t,Θ) (2.30)

In order to minimizing the cost function Vt(Θ) approximately the following approx-

imations should be taken:

• Assume that the estimate Θ̂(t − 1) and its next estimate Θ̂(t) are within their

small neighborhood when t is large. This implies that f (|Θ̂(t)− Θ̂(t −1)|) can

be neglected and V ′′
t (Θ̂(t)) =V ′′

t (Θ̂(t −1))

• It is assumed that Θ̂(t − 1) is an optimal estimate of Θ(t − 1) and this implies

that V ′
t−1(Θ̂(t −1)) = 0.

• It is assumed that ε ′′(t,Θ̂(t −1))ε(t,Θ̂(t −1)) = 0

Taking the above assumptions into consideration, equation (2.30) can be rewritten as

follows:

R̄(t) = R̄(t −1)+ψ(t,Θ̂(t −1))ψT (t,Θ̂(t −1)) (2.31)

where R̄(t) denotes the second derivative of the function Vt(Θ), i.e. V ′′
t (Θ).

Next, from equation (2.29) and the above mentioned assumption V ′
t−1(Θ̂(t −1)) = 0,

one gets:

[V ′
t (Θ̂(t −1))]T =−ψ(t,Θ̂(t −1))ε(t,Θ̂(t −1)) (2.32)

51



Finally, substituting equation (2.32) into the equation (2.27), one gets:

Θ̂(t) = Θ̂(t −1)+ R̄−1(t −1)ψ(t,Θ̂(t −1))ε(t,Θ̂(t −1)) (2.33)

In the prediction stage and the identification part when we employ the least squares meth-

ods, evaluating the invertibility condition becomes important. As we do not have access

to the past values of xt for an infinite number of steps, therefore it is necessary that the

coefficients of xt decay to zero over time t, so that our estimation error due to this will be

diminished sufficiently.

The ARMA method is only practical when one deals with stationary data. However, in

most real-life application cases the observation data is non-stationary. Towards this end, the

dth difference of the non-stationary time-series {xt} is written as (1− z)dxt . Subsequently,

the new data become stationary and one can fit an ARMA model into this data. This method

is known as autoregressive integrated moving average (ARIMA). The ARIMA model is

also known as the Box and Jenkins [134] which in the extended form can be written as:

xt = ϕ1xt−1 +ϕ2xt−2 + ...+ϕpxt−p + εt +θ1εt−1 + ...+θqεt−q (2.34)

where θ1, ...,θq,ϕ1, ...,ϕp denote the parameters of the model. In other words, the ARIMA

model can be considered as a combination of a random walk and a random trend model

which are finely tuned.

The ARIMA(p,d,q) is one of the most general types of time-series representations for

prediction purposes. The stationarization is achieved through differencing and lagging

procedure. Depending on the number of the differences taken (d), from the original time-

series (before fitting the data into an ARMA model) one is said to have an ARIMA(p,d,q)

model as follows [145]:
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ϕ(z)(1− z)dxt = θ(z)εt (2.35)

The first difference ARIMA time-series may be written as follows [145]:

ϕ(z)(1− z)xt = θ(z)εt (2.36)

One can consider a new time-series representation, that is:

yt = (1− z)xt (2.37)

where {yt} denotes the differenced series of {xt}. According to the results in [137], the

polynomials ϕ(z) and θ(z) in the ARIMA model must not have any common factors in or-

der to guarantee the identifiability of the selected model. The coefficients θ1, ...,θq,ϕ1, ...,ϕp

are estimated by using the recursive prediction error method known as the RPEM [137, 138]

(which was given earlier) that effectively specifies the ARIMA model. One can use the

standard training error as a measure to determine the appropriate p and q that gives the best

model, fitting to the time-series data.

2.1.2 Vector Autoregressive (VAR) Model

Future values of measurable parameters in a complex system such as a gas turbine engine

cannot be accurately predicted from the past measurements. Given that the data sets are

non-deterministic due to the parameter uncertainties and system noise, a model that can

include this random behavior leads to a better and a more accurate prediction. The ARMA

model has the above noted flexibilities by including the random shock terms. In the uni-

variate modeling approach in this thesis we consider only one of the measurable parameters
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namely, the turbine exit temperature (TET). Here, the ultimate goal in the time-series anal-

ysis is to predict the future behavior of the engine. Therefore, an approach that can enable

us to have a longer step-ahead prediction is more preferable due to its resulting possible

cost effectiveness and safety improvements. An improved prediction is accomplished by

taking advantage of more than one measurement parameter.

The n-variate AR(p) model is given by [146]:

φ(z)Xt = Zt (2.38)

where Xt = {x1,t , ...,xn,t} and Zt = {z1,t , ...,zn,t} denote the vector of time-series values

at time t and the vector of sequences of independent and identically distributed random

variables, respectively. Equation (2.38) can be rewritten in an extended form:

Xt +φ1Xt−1 + ...+φpXt−p = Zt (2.39)

where φ1, ...,φp denote n×n matrices. For example, if n= 2 and p= 1 then equation (2.39)

becomes: ⎡
⎢⎣x1,t

x2,t

⎤
⎥⎦=

⎡
⎢⎣ϕ1,11 ϕ1,12

ϕ1,21 ϕ1,22

⎤
⎥⎦
⎡
⎢⎣x1,t−1

x2,t−1

⎤
⎥⎦+
⎡
⎢⎣z1,t

z2,t

⎤
⎥⎦ (2.40)

It can be verified that the current value of x1 depends on its previous values as well as

the previous values of x2. Therefore, given that more information from a larger number

of parameters are utilized one can expect a longer prediction horizon. For any given data

set the target is to determine a proper model for the purpose of farthest future prediction

possible. By following the Box and Jenkins [134] modeling procedure one can derive the

model of the system under study. This procedure consists of model specification, model

parameter estimation, and model checking. For estimating the model parameters one can

use the maximum likelihood estimation method which is a commonly used method in the
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literature [145, 137]. Akaike’s information criterion (AIC) [137], mean and variance of the

error are commonly used measures for verifying the model quality.

2.1.3 Time-Series Model Selection

As pointed out in the previous sections in order to fit an ARMA(p,q) model the time-series

should be stationary by itself unless we need to differentiate the data until we achieve a

stationary time-series. The orders of the model p and q can be selected by using back-

wards elimination [140]. In the backward elimination procedure, one estimates the model

parameters using one of the estimation methods assuming an arbitrary order of the model.

Then, the estimated parameters should be verified and the parameters which are too small

should be set to zero. Because we are looking for a parsimonious model with the optimal

number of lags and the parameters with very small values do not have significant affect on

the results and is better to omit them from the model. Next, we estimate the model param-

eters again with the updated orders p and q. This procedure should be repeated until all the

parameters are large enough.

There exist other alternative and widely used quantitative measures to choose the best

ARMA model with the fewest parameters which properly describes the data. Akaike’s

information criterion (AIC) [137, 124] and Bayesian information criterion (BIC) [147, 124]

are the common measures when one needs to select the best model among several models

which all are fitted to the data. These criteria have been defined based on information

theory and address a trade off between the goodness of a fit to the actual data and the order

of the model. These two criteria are defined as follows [124]:

AIC = nLn(
σ̂e

2

n
)+2p

BIC = nLn(
σ̂e

2

n
)+ p+ pLn(n)

(2.41)
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where n denotes the number of data that is used for model fitting, p denotes the number of

model parameters and σ̂e
2 denotes the sum of squared residuals. A model with smaller AIC

or BIC is a better model [140, 137]. Indeed, the penalty terms are associated with these

two criteria so that increasing the order of the model will cause an increase in the value of

AIC and BIC.

2.1.4 Time-Series Model for Prediction

The goal of prediction is to determine x̂t(m) by obtaining xt+m given xt ,xt−1, ...,xt−p+1 and

εt ,εt−1, ...,εt−q+1 where m denotes the step-ahead lead time. In other words:

x̂t(m) = E[xt+m|xt ,xt−1, ...] (2.42)

As mentioned earlier in equation (2.34), the random shock terms should be normally dis-

tributed. In view of this point and replacing t +1 by t in equation (2.34) one gets:

xt+1 = ϕ1xt +ϕ2xt−1 + ...+ϕpxt−p+1 + εt+1 +θ1εt + ...+θqεt−q+1 (2.43)

And taking the expectations of both sides, it yields:

x̂t(1) = ϕ1xt +ϕ2xt−1 + ...+ϕpxt−p+1 +θ1εt + ...+θqεt−q+1 (2.44)

Knowing that εt+1|t ,εt+2|t , ... which denote the conditional expectation of εt+1, εt+2, ... at

time t, are equal to 0, we obtain:

x̂t(2) = ϕ1x̂t(1)+ϕ2xt + ...+ϕpxt−p+2 +θ2εt + ...+θqεt−q+2 (2.45)

x̂t(3) = ϕ1x̂t(2)+ϕ2x̂t(1)+ϕ3xt + ...+ϕpxt−p+3 +θ3εt + ...+θqεt−q+3 (2.46)
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And by following the above steps one can obtain x̂t(m). At time t + 1, using xt+1 it is

possible to obtain εt+1 from equation (2.44) as follows:

εt+1 = xt+1 − x̂t(1) (2.47)

2.2 Fuzzy Logic

In recent years employing fuzzy logic as an artificial intelligence method for identification

and control of dynamic systems has increased. In 1969, professor Zadeh introduced the

concept of the fuzzy sets [8]. A Fuzzy set includes the elements that may have a partially

membership of the set. In other words, a fuzzy set does not have a precise and crisp

boundary. In general the fuzzy logic is [7]:

• Conceptually easy to be understood by humans.

• Flexible.

• Tolerant against the imprecise data.

• Useful to model any complex nonlinear function.

• A good method to incorporate the knowledge of the expert person to control the

system.

• Compatible with the conventional control techniques and can be augmented with

them.

• Uses the same basis of the human communication.

Using fuzzy logic allows us to deal with intermediate values that cannot be used in

conventional true-false, yes-no, high-low, ... logical systems. So it will be more similar to

the human decision making scheme [148].
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To explain the fuzzy logic concept an illustrating example is the set of tall people. Here

the universe of discourse is the set of all possible human heights. Let us assume that it is the

interval of [1.2,2.5] meters. The linguistic term ”tall” does not specify a certain height and

it considers a range of heights. If we try to define a tall person as one with height greater

than a specific height for example 1.8 meters it is not reasonable to consider some one as a

short person and some other one as a tall person because their height difference is as small

as 1 millimeter. On the other hand, to deal with this issue we could use a smoothly varying

curve to define a tall person instead of using a sharp tall-short definition. Figure 2.2 depicts

classical and fuzzy definition of a tall person. In the fuzzy logic terminology these curves

are called membership functions and usually are denoted by μ(.). In a classical set, the

membership degree of each element could be either 0 or 1, but in a fuzzy set it could be any

real number between 0 and 1. As seen in Figure 2.2, the transition between short and tall in

the fuzzy membership function is very smooth which results in a more realistic definition

for a tall person [7].

Figure 2.2: Classical and fuzzy definitions of a tall person [7].
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2.2.1 Fuzzy Set

Now let us define fuzzy set, universe of discourse and membership functions in more de-

tails. The universe of discourse is a classical set of all possible values of the variables and

is denoted by X . The fuzzy set M is defined on X as follows:

M = {(x,μM(x)) |x ∈ X }

where μM(x) : X �→ [0,1] is the membership function of the fuzzy set M. It is worth to

mention that a classical set C can be also represented as a fuzzy set where its membership

function μC(.) is defined as follows:

μC(x) =

⎧⎪⎨
⎪⎩

1, x ∈C

0, x /∈C

For the fuzzy set M the support of M is the set of all x ∈ X that μM(x)> 0 and the α-cut

of M is the set of all x ∈ X that μM(x) > α . The height of M is maxx∈X μM(x). Usually

the height of fuzzy sets is 1 and in this case it is called a normal fuzzy set. A convex fuzzy

set is a fuzzy set that its membership function is a convex function which implies that:

∀x1,x2 ∈ X and 0 < λ < 1 μM(λx1 +(1−λ )x2)≥ min{μM(x1),μM(x2)}

The triangular membership function is one of the membership functions which is often

used in fuzzy sets and is defined as:

μ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
w(x−m+w), m−w ≤ x < m

1
w(m+w− x), m ≤ x < m+w

0, otherwise
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Figure 2.3 depicts a plot of the above membership function. The trapezoidal is another

Figure 2.3: Triangular membership function.

commonly used membership function and is defined in equation (2.48) and Figure 2.4

depicts a plot of it.

μ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
w1
(x−m1 +w1), m1 −w1 ≤ x < m1

1, m1 ≤ x < m2

1
w2
(m2 +w2 − x), m2 ≤ x < m2 +w2

0, otherwise

(2.48)

Another possible membership function that can be used to describe a fuzzy set is the

Gaussian membership function of Figure 2.5 and is defined as:

μ(x) = exp

(
−1

2

(
x− c

σ

)2
)

(2.49)
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Figure 2.4: Trapezoidal membership function.

Figure 2.5: Gaussian membership function.
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The classical concepts in the set theory are needed to be redefined for fuzzy sets. As-

sume that M1 and M2 are two fuzzy sets on X and μ1(x), μ2(x) are their associated mem-

bership functions respectively. The fuzzy set M1 is a subset of M2 if and only if ∀x ∈ X ,

μ1(x)≤ μ2(x).

The compliment of the fuzzy set M1 is denoted by fuzzy set M̄1 and its membership

function is:

μ̄1(x) = 1−μ1(x)

The intersection of two fuzzy sets MA = M1
⋂

M2 can be defined in two different ways.

In the first method, it can be defined based on the minimum of the membership function

degrees as follows:

μA(x) = min{μ1(x),μ2(x)}

The other way that can be used to define the intersection of two fuzzy sets is using algebraic

product. The following formula represents this:

μA(x) = μ1(x)μ2(x)

Note that other than min and algebraic product there are other methods to define the inter-

section operator [9, 149, 150, 151, 152, 153].

To define the union of fuzzy sets it is also possible to use different methods [9, 149,

150]. Let MU = M1
⋂

M2 be the union of the fuzzy sets M1 and M2 and μU(x) denotes its

associated membership function. It can be defined based on maximum or algebraic sum

operators as follows:

μU(x) = max{μ1(x),μ2(x)}

μU(x) = μ1(x)+μ2(x)−μ1(x)μ2(x)
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As an example, let us consider WARM temperature fuzzy set and COLD temperature

fuzzy set defined by the following membership functions [8]:

μw(T ) = exp

(
−0.5

(
T −25

5

)2
)

μw(T ) = exp

(
−0.5

(
T −15

5

)2
)

Figure 2.6 and Figure 2.7 show the sketch of these two membership functions. We

define COLDandWARM temperature fuzzy set as the intersection of the two fuzzy sets of

WARM temperature and COLD temperature with the following membership function:

μcw(T ) = min{μc(T ),μw(T )}

μcw(T ) = min

{
exp

(
−0.5

(
T −15

5

)2
)
,exp

(
−0.5

(
T −25

5

)2
)}

Figure 2.8 depicts the membership function of the COLDandWARM fuzzy set. The

solid line in this figure indicates the membership function μcw.

Singleton fuzzy set is a fuzzy set that includes only one member with the membership

degree of one. Figure 2.9 depicts five singleton fuzzy sets for the VOLTAGE parameter.

Positive large (PL), positive small (PS), zero (Z), negative small (NS) and negative large

(NL) voltages are defined as exactly 1, 0.5, 0, -0.5, and -1 volts respectively. This type of

fuzzy set is widely used for fuzzification.

Fuzzy logic system is a powerful tool for nonlinear mapping of an input vector of a

feature of interest into a scalar output [154]. Due to heuristic nature of the fuzzy logic, one

can use it to deal with the systems with unknown dynamical model, measurement noise, etc.

The heuristic language employs linguistic language to incorporate the expert knowledge,
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Figure 2.6: Membership function μw for the WARM temperature fuzzy set.

Figure 2.7: Membership function μc for the COLD temperature fuzzy set.
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Figure 2.8: Membership function μcw for the COLDandWARM temperature fuzzy set.

Figure 2.9: Membership functions defining five singleton fuzzy sets [8].
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rules of thumb and experience based strategies and resulting with a set of rules in form of

If-Then rules that allows us to work with fuzzy values instead of working with crisp values

for input and output values. For example:

IF input-voltage = Positive large THEN output-voltage = Negative large

As seen this kind of rule can be integrated with human operators strategies and also the

assumption of linearity is not necessary [155].

2.2.2 Fuzzy System Structure

A fuzzy system consists of four main parts namely, fuzzification, rule base, inference and

defuzzification. Figure 2.10 depicts the structure of a fuzzy system.

Figure 2.10: Fuzzy system structure [9].

Fuzzification

In the fuzzification stage the actual values of the inputs of the fuzzy system are converted

into some fuzzy sets. These fuzzy sets in the inference mechanism are further combined

together based on a set fuzzy rules and generate the output fuzzy sets. Here, the fuzzy rules

are a combination of the intersection, union and complement operators. At the defuzzifi-

cation stage the output fuzzy set is mapped to actual values to apply as the outputs of the

fuzzy system.
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Rule Base

Collection of a number of rules is called a ”rule base” and is used to perform a task. A rule

base for controlling the temperature of a room could be a good example of this decision

making procedure:

1. If TEMPERATURE is LOW & TEMPERATURE VARIATION is POSITIVE , then

HEAT UP RATE is SLOW.

2. If TEMPERATURE is LOW & TEMPERATURE VARIATION is ZERO , then HEAT

UP RATE is MEDIUM.

3. If TEMPERATURE is LOW & TEMPERATURE VARIATION is NEGATIVE , then

HEAT UP RATE is FAST.

4. If TEMPERATURE is MEDIUM & TEMPERATURE VARIATION is NEGATIVE

, then HEAT UP RATE is SLOW.

5. If TEMPERATURE is MEDIUM & TEMPERATURE VARIATION is ZERO , then

HEAT UP RATE is ZERO.

6. If TEMPERATURE is MEDIUM & TEMPERATURE VARIATION is POSITIVE ,

then HEAT UP RATE is ZERO.

7. If TEMPERATURE is HIGH then HEAT UP RATE is ZERO.

Inference

Let us take the example of room temperature control which was mentioned earlier. Let T

and ΔT denote the temperature and the temperature variation, respectively and μLOW (T )

represents the membership function of the ”LOW” temperature fuzzy set and μPOS(ΔT )

represents the membership function of the ”POSITIVE” temperature variation fuzzy set.
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Let y be the heat up rate and μSLOW (y) be the membership function of the ”SLOW” heat up

rate. To inference the first rule first we need to evaluate if the first rule is fired or not. In the

crisp notion of the rules it can be either on or off but in fuzzy it is represented by a fuzzy

set called the ”premise fuzzy set” for that rule. Here its membership function is as follows:

μ1(T,ΔT ) = μLOW (T )
∧

μPOS(ΔT )

Also an ”implied fuzzy” set is defined for the rule output and its membership function

as follows:

μ̂SLOW (y) = μSLOW (y)
∧

μ1(T,ΔT )

Now let us denote the membership function of premise fuzzy set of the ith rule by μi(x)

where x is the vector of the inputs of the fuzzy system and let us denote the membership

function of the output of the rule by μQi(y) where y denotes the output of the fuzzy system.

Then, the membership function of the implied fuzzy set is defined as follows:

μQ̂i
(y) = μQi(y)

∧
μi(x) (2.50)

Having R rules in a rule base generates R implied fuzzy sets μQ̂i
, i = 1,2, ...,R defined

by the membership function of the equation (2.50).

Defuzzification

As explained above, in the inference step of the fuzzy system, first we need to find the

degree of the firing of each rule in the rule base of interest and then provide the implied

fuzzy sets of each rule according to the degree of firing of that rule.

In order to map the output of the fuzzy system into a crisp output, one can use different

available methods of defuzzification, such as center of gravity (COG), center average (CA),
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bisector of area (BOA), mean of maximum (MOM), smallest of maximum (SOM) and

largest of maximum (LOM) defuzzification techniques. Here two of the above mentioned

techniques which are employed mostly in practice are explained in more details.

1. Center of gravity (COG) defuzzification

Having μQi(y) as the membership function of the output of the rule i. The ”center of

area” of μQi(y), point Ci is a point such that:

∫ Ci

−∞
μQi(y)dy =

∫ ∞

Ci

μQi(y)dy

Therefore, the corresponding crisp output of the fuzzy system is determined as fol-

lows:

ycrisp =
∑R

i=1Ci
∫

μQ̂i

∑R
i=1

∫
μQ̂i

2. Center average (CA) defuzzification

Similar to the COG defuzzification technique, for performing the CA defuzzification

technique the following formula can be used:

ycrisp =
∑R

i=1Ci maxy{μQ̂i(y)}
∑R

i=1 maxy{μQ̂i(y)}

There are two main types of fuzzy systems named, Mamdani [9] and Takagi-Sugeno

(TS) [156].

• Mamdani fuzzy system

The explanation presented so far was for Mamdani fuzzy systems which let us to model the

system more intuitively and human like manner.

• Takagi-Sugeno fuzzy system
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Takagi-Sugeno fuzzy systems is very similar to the Mamdani fuzzy system, except for the

rule base part of the system. In Mamdani fuzzy system, both inputs and outputs of the rules

constructed by the fuzzy sets. On the contrary, the output of the rules are constructed by

memoryless functions fi(.) in TS fuzzy system by the following form of rule:

I f x1 is P1 & x2 is P2 & ..., then Ci = fi(.)

where P1 and P2 denote the input fuzzy sets.

The consequence of the rules in the TS fuzzy system are mathematical descriptions

and can be any function of the input variables. That’s why the TS fuzzy systems are less

intuitive than the Mamdani fuzzy systems.

For the defuzzification stage of the TS fuzzy systems, similar to what we explained for

the Mamdani fuzzy systems, one can determine the crisp output of the system as follows:

ycrisp =
∑R

i=1CiμQ̂i

∑R
i=1 μQ̂i

Compared to the Mamdani fuzzy systems, TS fuzzy systems work better with linear

techniques such as PID control and have better performance in fuzzy identification of dy-

namic systems. TS fuzzy systems are also better to mathematical analysis [157, 8].

2.3 Aircraft Gas Turbine Engine

Gas turbines are machines which are widely used for delivering power, heat or thrust. In

industrial or stationary gas turbine engines, the goal is delivering the shaft power for elec-

tricity production or other purposes. In aircraft gas turbines, the goal is providing the thrust

or propulsion power. Depending on the application, other names are also used for the gas

turbine engines. The gas turbine engine for electrical power generation purposes are also

70



called ”combustion turbine” or ”turboshaft engine”. In aviation domain the gas turbine

engine is also called a ”jet engine” and depending on its specific usage it may be called

”turbojet”, ”turboprop”, ”turbofan” or ”ramjet” [10]. Figure 2.11 depicts the block dia-

grams of an aircraft jet engine and a stationary gas turbine engine. As seen in this figure

the hot air flow passing through the turbine is accelerated into the air via the nozzle and

the reaction of this produced thrust will cause the aircraft move forward. For the stationary

gas turbine engine, the accelerated hot air flow is used as an output shaft power to derive

an electrical generator or other devices [158].

Figure 2.11: Block diagram of an aircraft gas turbine engine (a) and a stationary gas turbine

engine (b) [10].

Figure 2.12 depicts the schematic of a single spool jet engine. All the jet engines work

based on the same basis. Surrounding air is taken through the intake part of the engine
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and is compressed in the compressor. The pressurized air is directed into the combustion

chamber to burn with the fuel. Therefore, the energy will be absorbed by the fluid (here

air) as heat. Then, this heated air is expanded in the turbine followed by the combustion

chamber and then passes through the nozzle to generate thrust which leads to push the plane

forward. A portion of the gas which is expanded in the turbine is employed to derive the

compressor via a shaft [159, 11].

Figure 2.12: Schematic of a single spool jet engine [11].

2.3.1 Gas Turbine Cycles

A gas turbine cycle explains the status of the air in terms of the volume of the air occupied

and its correspondent pressure throughout its path in the engine. The working cycle or

Brayton cycle is also shown in Figure 2.13. As demonstrated in this figure, in the com-

pressor the air is compressed so that its pressure increases and its volume decreases. Then,

in the combustion chamber, the pressure is kept almost the same and the volume will be

increased. In the turbine and the nozzle, the expansion phase of the cycle, the volume

increases and the pressure drops.
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Figure 2.13: Working cycle pressure-volume graph in the gas turbine engine [12].

2.3.2 Aircraft Gas Turbine Engine Mathematical Model

Mathematical representation of the gas turbine engines have been investigated by a number

of authors in the literature [160, 71, 161]. The model of the engine which is used in this

thesis is the nonlinear model of a single spool jet engine which has been developed in

Matlab Simulink software by Naderi et. al [13]. The model represents the relationships

between different engine variables such as the turbine temperatures, pressures, and gas

flow rates, etc.

In this model, the compressor and turbine components are modeled by the performance

maps adopted from a commercial software GSP 11 [131]. Also the derived model in the

work of Naderi et. al has been validated by GSP. In the remainder of this section, the

detailed mathematical expressions defining the dynamics of the engine components are

presented. Figure 2.14 depicts the information flow between the engine modules in the

Simulink model of the single spool engine.

In order to derive the mathematical model of the jet engine, one needs to identify the

dynamics of the rotor, volume and heat transfer of the jet engine for transient response. In

this model, the heat transfer dynamics of the system is neglected as compared to the rotor

and volume dynamics, as the effect of heat transfer dynamics is negligible. Refer to the
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Figure 2.14: Flow diagram and interdependencies of different modules of the jet engine

dynamics [13].

nomenclature section for definitions of the variables and terms.

Rotor Dynamics

The rotors connecting the pairs of turbine and compressor might be accelerated or deceler-

ated due to the existing power imbalance between the turbine and the compressor. There-

fore the energy balance between the compressor and the shaft or spool should be modeled

as follows:

dE
dt

= ηmechWT −WC (2.51)

where E =
J(N2π

60 )
2

2 .
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Volume Dynamics

Any mass flow unbalance through the engine components may lead to changes in pressure

of volumes and should be taken into consideration as volume dynamics. Volume dynamics

with the assumption that the gas with the homogeneous properties has zero speed is given

as follows:

Ṗ =
RT
V

(
∑ ṁin −∑ ṁout

)
(2.52)

Components - Intake

Assuming adiabatic process (a process in which the net heat transfer to or from the working

fluid (e.g. gas) is zero), the pressure and the temperature of the engine intake are determined

by the following formulae:

Pd

Pamb
=

[
1+ηd

γ −1

2
M2

] γ
γ−1

(2.53)

Td

Tamb
= 1+

γ −1

2
M2 (2.54)

Components - Compressor

As mentioned earlier for modeling the compressor behavior, compressor performance map

taken from the commercial software GSP has been used [131]. In order to determine

the efficiency (ηC) and mass flow rate (ṁC

√
θ

δ ) of the compressor by having the pres-

sure ratio (πC) and the corrected rotational speed ( N√
θ

) one needs to employ an interpo-

lation technique, so that θ = Ti
To

and δ = Pi
Po

. In other words, ṁC

√
θ

δ = fṁC

(
N√
θ
,πC

)
and

ηC = fηC

(
N√
θ
,πC

)
. Using the determined compressor efficiency and mass flow rate, the

mechanical power and compressor temperature increase can be obtained by the following

formulae:
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To = Ti

[
1+

1

ηC
(πC

γ−1
γ −1)

]
(2.55)

WC = ṁCcp(To −Ti) (2.56)

Components - Combustion Chamber

The combustion chamber manifests both the volume dynamics and energy cumulation be-

tween the turbine and the compressor simultaneously which eventually have the following

relationships:

ṖCC =
PCC

TCC
ṪCC +

γRTCC

VCC
(ṁC + ṁ f − ṁT ) (2.57)

ṪCC =
1

cvmCC

[
(cpTCṁC +ηCCHuṁ f − cpTCCṁT )− cvTCC(ṁC + ṁ f − ṁT )

]
(2.58)

Components - Turbine

As mentioned earlier for modeling the turbine behavior, turbine performance map taken

from the commercial software GSP has been used [131]. In order to determine the effi-

ciency (ηT ) and mass flow rate (ṁT

√
θ

δ ) of the turbine by having the pressure ratio (πT ) and

the corrected rotational speed ( N√
θ

) one needs to employ an interpolation technique, so that

θ = Ti
To

and δ = Pi
Po

. In the other words ṁT

√
θ

δ = fṁT

(
N√
θ
,πT

)
and ηT = fηT

(
N√
θ
,πT

)
. Us-

ing the determined turbine efficiency and mass flow rate, the mechanical power and turbine

temperature decrease can be obtained by the following formulae:

To = Ti

[
1−ηT (1−πT

γ−1
γ )

]
(2.59)
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WT = ṁT cp(To −Ti) (2.60)

The mass flow rate of the nozzle is obtained by the following formula:

ṁn
√

Tni

Pni

=

⎧⎪⎨
⎪⎩

u√
Tni

An
R

Pamb
Pni

Tni
Tno

, Pamb
Pni

<
[
1+ 1−γ

ηn(1+γ)

] γ
γ−1

u√
Tni

An
R

Pcrit
Pni

Tni
Tcrit

, otherwise

(2.61)

where u
Tni

=

√
2cpηn(1− Pamb

Pni

γ−1
γ ),

Tno
Tni

= 1−ηn(1− (Pamb
Pni

)
γ−1

γ ),

Pcrit
Pni

= (1− 1
ηn
( γ−1

γ+1))
γ

γ−1 , u
Tni

= 2γR
γ+1 and Tcrit

Tni
= 2

γ+1 , where Pni is equal to the turbine pressure

PT and Tni is equal to the mixer temperature TM. Using the energy balance in the mixer gives

the mixer temperature as follows:

TM =
ṁT TT +β ṁCTC

ṁT +β ṁC
(2.62)

Set of Governing Nonlinear Equations

Finally the aforementioned process and dynamics of a single spool jet engine can be sum-

marized by the following set of governing nonlinear equations [13]:

ṪCC =
1

cvmCC

[
(cpTCṁC +ηCCHuṁ f − cpTCCṁT )− cvTCC(ṁC + ṁ f − ṁT )

]
Ṅ =

ηmechṁT cp(TCC −TT )− ṁCcp(TC −Td)

JN( π
30)

2

ṖT =
RTM

VM
(ṁT +

β
β +1

ṁC − ṁn)

ṖCC =
PCC

TCC
ṪCC +

RTCC

VCC
(ṁC + ṁ f − ṁT )

(2.63)

where ηmech and J denote the mechanical efficiency and the inertia of the spool. The

dynamics of the fuel flow rate is described by the following expression [13]:
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τ
d

dt
ṁ f + ṁ f = Gu f d (2.64)

where τ denotes the time constant, G and u f d denote the gain associated with the fuel valve

and the required fuel.

2.3.3 Degradations in the Engine

Gas turbine engines like any other complex system contain a lot of elements and each of

these elements might fail in variety of manners. A faulty element does not only affect that

element’s normal behavior but due to existing action and reaction between this element

and other system’s elements, it can affect normal behavior of other system’s elements.

Obviously the severity of these effects on other system’s elements can be different. It is

possible that the subsequent faults are different from the primary faults in both severity and

propagation dynamics point of views. In other words, in some cases, the faults arise due to

a non-serious primary fault by itself are critical and damaging to the engine. Compressor

fouling is a good example of this type. Compressor fouling fault is not considered as a

critical and serious fault for the engine, but it can lead to blades degradation and eventually

to the engine failure [103]. In general, every engine can be considered as a collection of

three main sets as follows [30]:

• Accessory equipment consisting of components such as fuel pump, fuel control, engine

air bleed, and lubrication and ignition systems.

• Thermodynamic gas path components entailing the compressor, the gas containment

path, the burner and the turbine.

• Rotational mechanical equipment including rotors, engine bearings and gear trains.

Engine degradation can be initiated from different sources such as fouling, blade ero-

sion and corrosion, worn seals and excessive blade tip clearance that can induce gradual
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degradation in the performance of the engine [14, 162]. References [163] and [164] have

investigated several degradation mechanisms in the gas turbines.

Types of Degradation in the Engine

Generally engine degradations can be categorized in to three main categories as follows

[112]:

• Recoverable degradation

Particles such as dust, dirt, soot might be accumulated on the gas path surfaces and com-

pressor airfoils due to the engines normal operation. Permeation of oil particles into the

compressor input with the incoming air flow can work as glue, consequently the dirt parti-

cles stick to compressors airfoils. In addition, at the end of the compressor module these

oily particles can be baked due to the high temperature of that area and they can form a non-

uniform and thick coating. Depending on the amount and type of these particles the engine

will be subjected to performance degradation. A proper cleaning or washing procedure can

recover the engine from this type of deterioration [112].

• Non-recoverable degradation

Despite going through maintenance, the degraded engine may not be recovered completely.

This can happen due to the surface deposit that is not removed by washing procedure.

Basically any surface erosion or corrosion, increasing of tip and seal clearance and many

other causes will not be retrieved employing washing procedure [112].

• Permanent performance degradation

Purpose of the maintenance procedure is restituting the engine to its normal condition as

much as possible. Therefore, during the maintenance procedure some of the damaged parts
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will be replaced, the eroded airfoils get recoated. Despite all this, after a major maintenance

or overhaul, the engine performance will not be restored to its new condition. This can be

due to increasing the roughness of the gas path components surfaces, or cylinder distortion

[112].

An engine model derived by using accurate definition of engine components character-

istics can be used for evaluating the engine performance. One can express the engine per-

formance in terms of dependent measurable parameters and independent parameters which

are not measurable [114]. Dependent parameters are addressing the parameters such as fuel

flows, thrust, spool speeds, turbine and compressor temperatures and pressures of com-

pressor and turbine. Independent parameters (performance parameters) or engine health

parameters are referring to flow capacities and efficiencies of the engine rotating elements

and discharge coefficient of the propelling nozzles [14]. One can perform analysis and

assess the changes in the engine performance based on the dependent parameters from the

engine’s gas path. Figure 2.15 depicts different connections in the mentioned performance

analysis [14].

As shown in Figure 2.15 performance changes due to the gas path components degra-

dation could have originated from physical faults such as blade tip clearance because of

erosion and wearing, fouling, corrosion, hot end component damage, foreign object dam-

age (FOD), etc. The physical faults are the results of variations in the gas turbine ther-

modynamic performances which are unavoidable for any mechanical equipment such as

an aero engine [14, 28]. Components flow capacities and efficiencies are employed for

determining these performances. Flow capacity and efficiency (performance parameters)

changes reflects on engine parameters such as pressure, temperature, spools speeds, and

fuel flow. Using the engine parameters which convey the degraded performance of the

engine components, one can detect, isolate the faulty components [28].
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Figure 2.15: Gas Turbine Engine Performance Analysis [14],[15].

The main moving subsystems of a jet engine are fan, low pressure compressor (LPC),

high pressure compressor (HPC), high pressure turbine (HPT), and finally low pressure

turbine (LPT) and operating conditions of engine are namely ambient temperature, inlet air

pressure and aircraft speed [103].

A non-rigorous definition of the engine deterioration is an increased level of losses in

the components of the engine and it is reflected in the overall performance of the engine

such as decreases in the engine thrust and increases in the specific fuel consumption. In

the following a brief description of main sources of deterioration in the gas turbine engines

will be presented [27, 165, 166, 167]:

• When dust and external particles accumulate on the airfoils and interior surfaces of the

engine, it is called fouling and results in increasing the surface roughness and chang-

ing shape of the blades. The effect of fouling can be seen in Figure 2.16.
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Figure 2.16: The blade fouling in the compressor [16].

• In the case of collision between a solid particle suspended in the inlet air or gas and the

engine’s blade, it is possible that some material from blades are removed. We call

this phenomenon erosion. Figure 2.17 shows the blade erosion in an engine.

Figure 2.17: The blade erosion [17].

• If the removal of material from the rotor blades is caused by physical contact between

the rotor components and the stator parts it is called abrasion or rubbing-wear and

it naturally happens during the engine running-in period before establishing proper

clearances. It also occurs due to the loss of the engine bearings stiffness as engine

ages.
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• Corrosion in the engine components is the loss of material caused by chemical reactions

between the component material and the air/gas fluids contamination such as salts or

reactive gases and usually occurs at high temperatures.

• In general, if the failure in a component is severe it is called damage. There are differ-

ent source for damage including foreign object damage such as the bird strike, and

domestic object damage such as a piece of seal impacting a downstream component

[27].

There are different sources that may cause gradual deterioration in the engine during its

normal operation but mainly they are fouling, erosion and corrosion. In [168] the effects

of these factors on different components of the engine are described. These factors lead to

increase in tip clearance and change in the geometry and surface structure of the airfoils

in the compressor and cause reduction in the compressor efficiency, flow capacity and its

work capacity. Except for the severe cases such as plugged fuel injector, the combustion

chamber is not subject to gradual deterioration and its efficiency does not decrease [27].

However, in case of combustor deterioration the temperature of exiting gases is fluctuated

and the peak temperatures may result in damages in turbine components. The mechanism

of effects of the above factors on the turbine are similar to those of the compressor and

cause the reduction in efficiency and increase flow capacity. These facts are supported by

analysis of operational data of engine in [27].

Although the mechanisms that cause engine deterioration are known, due to their de-

pendence on some extent of factors such as usage, environment and time, they are not

purely deterministic and each engine experiences a unique degradation profile. [27].

2.3.4 Flight Phases

In general, each flight consists of five main phases namely, take off, climb, cruise, descent

and landing. Take off is the part of the flight that aircraft goes through a transition from
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ground to flying in the air and its engine is working under full power in order to produce

the necessary thrust. Climb is the next phase of the flight and it starts from retracting the

wheels into the aircraft. During the climb phase, aircraft should reach to altitude (typically

10Km). After the climb phase, aircraft goes through the cruise phase at this altitude which

is more economic in terms of fuel consumption. Commercial aircraft engines are designed

such that they function optimally in the cruise phase as it is the longest phase of the flight

[169].

During the flight, whenever the aircraft decreases the altitude, it is called descent. De-

scent is a necessary phase of the flight before the last phase, landing. The other situations

that the aircraft may go through descent phase are for avoiding traffic, air conditions, clouds

or entering into warm weather. The last phase of the flight is landing in which the aircraft

speed down to return to the ground. In order to perform a smooth landing, this speed reduc-

tion is performed by a decrease in the speed combining with inducing a larger drag value

(this can be done by employing landing gear, flaps and air brakes) [169].

2.4 Integrating Engine Degradation into the Engine Model

In this thesis, we have investigated the effects of the compressor fouling and the turbine

erosion as two main soft degradation causes of the gas turbine engines. In order to quan-

titatively represent the effects of the turbine erosion and compressor fouling on the engine

performance, we introduce an erosion factor denoted by 0 ≤ Ei < 1 and a fouling factor

denoted by 0 ≤ Fi < 1. Based on the approach presented in [112, 162] the dynamics of the
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engine is affected by Fi and Ei as follows:

ṁC = (1− 1

2
Fi)ṁ∗

C

ηC = (1−Fi)η∗
C

ṁT = (1+
1

2
Ei)ṁ∗

T

ηT = (1−Ei)η∗
T

(2.65)

where ṁ∗
C,η

∗
C, ṁ

∗
T and η∗

T denote mass flow rate and efficiency of the compressor and the

turbine of the healthy engine, respectively.

To model the degradation of engine different scenarios are considered and based on

each scenario Fi and Ei are calculated in each take off simulation cycle. For example in

fouling scenario with fouling index FI the fouling factor Fi at cycle n is computed as:

Fi(n) =
n

Total f light cycles
FI

and in the erosion scenario with erosion index EI at nth simulation cycle Ei(n)= n
Total f light cycles EI.

Other considered scenarios and their details are presented in Chapter 3. The model which is

used in this work for generating the healthy and degraded data (process parameters) is taken

from the work of Naderi et al. [13]. The degraded data as indicated above are due to the

injection of physical faults, compressor fouling and turbine erosion. The model is a single

spool turbojet engine which also includes degradations in the system health parameters, i.e.

the mass flow rate and the efficiency of both the compressor and the turbine. It should be

noted that the aforementioned degradation model with its validation procedure presented in

this section had been accomplished in cooperation with the author of this thesis and some

of these results have been published in the following conference:
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1. N. Daroogheh, A. Vatani, M. Gholamhossein and K. Khorasani,“Engine life evalu-

ation based on a probabilistic approach,” in ASME International Mechanical Engi-

neering Congress and Exposition, pp. 347-358, 2012.

In order to validate the accuracy of the numerical model in presence of compressor fouling

and turbine erosion, first the fouling scenario with different FI 1%, FI 2% and FI 3% is

considered for 100 flight cycles. At each flight cycle the value of Fi is computed and based

on that numerical simulation using our Simulink model and GSP software are performed.

Figure 2.18 shows the compressor temperature, turbine temperature, spool speed and fuel

consumption of the engine that result by our Simulink model. As shown the compressor

fouling decrease the compressor efficiency and mass flow rate and its ratio is 1:2. It also

shows the fouling caused increase in the turbine temperature and despite increase in mass

flow rate the engine spool speed is decreased. The quantitative comparison of our model

and GSP is presented in Table 2.1. Although it shows some discrepancies in the data due

to difference in compressor and turbine mapping functions, the trend is the same.

In the second step the erosion scenario for 200 flight cycles and EI 1%, 2% and 3% is

considered and both our Simulink model and GSP software are used to perform numerical

simulations. The results obtained from our engine model software are presented in Figure

2.19. As shown the erosion caused increase in the turbine temperature and decrease in

compressor temperature and spool speed. It is worth mentioning the erosion has more

effect on engine states and the trend is more nonlinear. The quantitative results for both

our Simulink model and GSP software simulation results are presented in Table 2.2. Here

again, the results show the same trend for both cases despite some discrepancies.
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Figure 2.18: The outputs of the degraded model associated with the fouling degradation

[18].

87



Figure 2.19: The outputs of the degraded model associated with the erosion degradation

[18].
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Table 2.1: Per unit changes in the engine parameters corresponding to the fouling scenarios.

Engine Parameter Per Unit Change in Per Unit Change

Our Model in the GSP [131]

Fuel Flow consumption in FI 1% 0.0699 0.01678

Fuel Flow Consumption in FI 2% 0.04855 0.02368

Fuel Flow Consumption in FI 3% 0.02127 0.03210

Compressor Temperature in FI 1% 0.05798 0.03817

Compressor Temperature in FI 2% 0.03287 0.08371

Compressor Temperature in FI 3% 0.01776 0.01187

Turbine Temperature in FI 1% 0.093 0.01151

Turbine Temperature in FI 2% 0.0652 0.02370

Turbine Temperature in FI 3% 0.02839 0.03255

Spool Speed in FI 1% -0.007087 -0.01456

Spool Speed in FI 2% -0.02325 -0.02795

Spool Speed in FI 3% -0.03543 -0.04016

Table 2.2: Per unit changes in the engine parameters corresponding to the erosion scenarios.

Engine Parameter Per Unit Change in Per Unit Change

Our Model in the GSP [131]

Fuel Flow consumption in EI 1% 0.04181 0.01763

Fuel Flow consumption in EI 2% 0.08272 0.03367

Fuel Flow consumption in EI 3% 0.01236 0.04949

Compressor Temperature in EI 1% -0.05626 -0.04173

Compressor Temperature in EI 2% -0.01112 -0.07378

Compressor Temperature in EI 3% -0.01648 -0.09640

Turbine Temperature in EI 1% 0.0568 0.01771

Turbine Temperature in EI 2% 0.01086 0.03352

Turbine Temperature in EI 3% 0.01632 0.05396

Spool Speed in EI 1% -0.07583 -0.01029

Spool Speed in EI 2% -0.01502 -0.01854

Spool Speed in EI 3% -0.02246 -0.02500

89



2.5 Summary

In this chapter, first the time-series modeling and prediction focused on ARIMA and VAR

methods were presented. AIC and BIC as two widely used criteria for model selection

have also been explained. Fuzzy logic structure and its components were reviewed. The

aircraft gas turbine engine components, its components and flight phases were reviewed.

This was followed by reviewing the degradation in the engine and finally we explained how

the degradations models were integrated into the engine model.
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Chapter 3

VAR a Time-series Approach

In this chapter, first the designed controller for generating the data will be explained. Then,

two time-series based models employed for predicting the deterioration trend of a single-

spool gas turbine engine performance will be described. The proposed time-series methods

are applied to certain engine measurable variables namely, the turbine and the compressor

temperatures. Finally, the two methods are compared at the end of this chapter.

3.1 Gas Turbine Engine Controller

The data used in this thesis are generated by the Simulink model that was explained in

previous chapter. The data is captured at the time when the maximum thrust is applied to the

engine in the take off mode. The take off time for each flight is 20 seconds. Therefore, we

keep one data from each cycle for each parameter. The reason that the engine degradation

is investigated in the take off mode is that the effects of the degradation on the engine

parameters are manifested more strongly in the take off mode, since the maximum thrust is

expected to be provided in this mode. A feed forward and a negative feedback controller

have been designed to control the amount of the fuel flow of the engine to keep the thrust

at the desired level. In order to find out the fuel range of the engine under study, first the
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fuel has been increased until the turbine temperature does not exceed its maximum value

and the spool speed is still within its normal range. This gives us the maximum value of

the fuel. In order to find the minimum amount of the fuel for the engine, the fuel should be

decreased until the engine is not going to its idle mode.

Engine pressure ratio (EPR) is the ratio of the engine exhaust pressure to the intake

pressure into the gas turbine engine and it is proportional to the engine thrust. To make

sure that the collected data is suitable for further analysis in each cycle, engine EPR should

follow its desired value despite any changes in its efficiency as a result of the fouling and

erosion. To achieve this goal a controller is needed to keep the EPR value at the desirable

value.

In order to generate the required data for degradation trend modeling purposes, one

needs to capture the steady state data of the Simulink model. Therefore, the objective of

this controller under all possible engine health conditions are set as follows:

• Settling time as small as 0.5 second.

• Steady state error less than 1%.

Engine is a nonlinear system. To deal with its nonlinearity first a feed-forward con-

troller is designed. The idea is to find a mapping function between the amount of the fuel

and the steady state value of the EPR for the healthy engine. For any desired engine EPR

value we could provide the feed-forward fuel input of the engine. Hence, the engine can be

considered as a linear system around that operating point and a linear feedback controller

could be used to force the error to approach to zero. In order to implement the feed-forward

controller for some EPR desired values, the amount of input fuel in the Simulink model is

manually adjusted until the engine EPR reaches its desired value. After that, the look-up

table block of Simulink is used to interpolate the other mapping points. Finally a propor-

tional controller is used to implement the linear control part. It is worth mentioning that a

saturation block is also used to guarantee that the fuel input of the engine always remains
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Table 3.1: Steady state error % and settling time of the controller response under different

engine conditions

Engine condition Steady state error % Settling time (second)

Healthy 2.95e-4 0.14

EI1% 0.012 0.14

EI3% 0.038 0.15

FI1% 0.0198 0.14

FI3% 0.0605 0.14

FI3% EI3% 0.09 0.15

in its acceptable range and the engine does not exceed its limitations. Figure 3.1 depicts the

diagram of the controller in the Simulink and Table 3.1 depicts how the controller meets the

above objectives. As seen in this table, steady state error of the controller for the healthy

condition of the engine is close to zero and it increases as the engine gets eroded or fouled

but still remains in its acceptable region. The settling time remains almost the same under

different engine conditions.

Figure 3.1: Schematic of the fuel flow controller for the gas turbine engine.
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Furthermore, to show the effectiveness of the aforementioned controller, the EPR out-

put, tracking error and the control input of the engine are shown in Figures 3.2-3.4, respec-

tively.

Figure 3.2: Tracking the desired engine pressure ratio using the feed-forward and negative

feedback controllers in the healthy condition.

Figures 3.5-3.10 depict the controller performance in presence of the turbine erosion,

compressor fouling and both of them, respectively.
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Figure 3.3: Tracking error in the healthy condition.

Figure 3.4: The control input of the engine in the healthy condition.
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Figure 3.5: Tracking the desired engine pressure ratio using a feed-forward and negative

feedback in the presence of the compressor fouling.

Figure 3.6: Tracking error in the presence of the compressor fouling.
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Figure 3.7: Tracking the desired engine pressure ratio using a feed-forward and negative

feedback in the presence of the turbine erosion.

Figure 3.8: Tracking error in the presence of the turbine erosion.
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Figure 3.9: Tracking the desired engine pressure ratio using a feed-forward and negative

feedback in the presence of both fouling and erosion.

Figure 3.10: Tracking error in the presence of both fouling and erosion.

98



3.2 ARIMA and VAR Model Selection

In order to find the appropriate order of the model, different scenarios have been applied

to different orders of the model. Using the mean and standard deviation of the prediction

errors, AIC and BIC criteria, which were explained in the second chapter, one can select

the best model. Tables 3.2 to 3.5 depict some selected results of the simulations which

are employed for choosing the order of the ARIMA model and the VAR model, respec-

tively. Tables 3.2 and 3.3 shows the BIC and AIC values associated with different orders

of ARIMA and VAR models in presence of the compressor fouling (FI 1%), turbine ero-

sion (EI 1%) and both of them (FI 1% and EI 1%). Tables 3.4 and 3.5 show the mean and

standard deviation of the prediction errors for different orders of ARIMA and VAR models

in presence of the compressor fouling (FI 1%), turbine erosion (EI 1%) and both of them

(FI 1% and EI 1%). As shown in these four tables, ARIMA(4,5) and VAR(6) have been

selected as the appropriate models which fit better overall to the data and eventually lead to

better predictions for different degradations.
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Table 3.2: BIC and AIC values for different orders of the ARIMA model in the presence

of compressor fouling (FI 1%), Erosion (EI 1%) and both of them (FI 1% and EI 1%).

In the presence of compressor fouling
ARIMA(p,q) BIC AIC
(2,1) 459.58 466.75

(3,1) 448.54 459.27

(3,2) 455.18 465.91

(3,6) 463.71 474.34

(4,5) 441.44 455.66

(5,3) 444.21 461.97

In the presence of the turbine erosion
ARIMA(p,q) BIC AIC
(2,1) 549.28 466.45

(3,1) 448.16 458.88

(3,2) 455.05 465.77

(3,6) 464.34 474.97

(4,5) 447.23 461.51

(5,3) 444.01 461.78

In the presence of both fouling and erosion
ARIMA(p,q) BIC AIC
(2,1) 423.91 431.07

(3,1) 414.01 424.74

(3,2) 414.75 425.48

(3,6) 404.21 414.84

(4,5) 404.19 418.41

(5,3) 408.38 426.15
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Table 3.3: BIC and AIC values for different orders of the VAR model in the presence of

compressor fouling (FI 1%), Erosion (EI 1%) and both of them (FI 1% and EI 1%).

In the presence of compressor fouling
VAR(p) BIC AIC
(3) 893.05 886.00

(4) 883.70 876.65

(5) 875.49 868.44

(6) 867.54 860.50

(7) 867.03 859.99

(8) 865.26 858.22

(9) 864.52 857.48

In the presence of the turbine erosion
VAR(p) BIC AIC
(3) 1075.5 1065.4

(4) 1054.0 1047.0

(5) 1032.8 1025.7

(6) 1024.8 1017.8

(7) 1023.5 1016.5

(8) 1020.1 1013.1

(9) 1018.7 1011.7

In the presence of both fouling and erosion
VAR(p) BIC AIC
(3) 616.95 609.91

(4) 582.05 575.00

(5) 581.68 574.43

(6) 567.37 560.33

(7) 566.57 559.53

(8) 566.07 559.03

(9) 565.04 557.10
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Table 3.4: The description of the mean and the standard deviation of the prediction errors

for different orders of the ARIMA model for ten steps ahead prediction in the presence of

compressor fouling (FI 1%), Erosion (EI 1%) and both of them (FI 1% and EI 1%).

In the presence of compressor fouling
ARIMA(p,q) Mean Standard deviation
(2,1) 1.5527 2.8238

(2,5) 1.5729 2.8278

(3,2) 1.5817 2.8549

(3,5) 1.5673 2.8265

(4,3) 1.5902 2.8702

(4,5) 1.5469 2.8222

In the presence of the turbine erosion
ARIMA(p,q) Mean Standard deviation
(2,1) 1.2835 1.9674

(2,5) 1.3084 1.9836

(3,2) 1.3177 1.9799

(3,5) 1.3297 2.0165

(4,3) 1.2926 1.9664

(4,5) 1.2830 1.9704

In the presence of both fouling and erosion
ARIMA(p,q) Mean Standard deviation
(2,1) 1.5953 2.8381

(2,5) 1.5943 2.8266

(3,2) 1.6159 2.8541

(3,5) 1.6145 2.8437

(4,3) 1.5793 2.8139

(4,5) 1.5934 2.8235

(5,2) 1.5527 2.8238
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Table 3.5: The description of the mean and the standard deviation of the prediction errors

for different order of the VAR model for ten steps ahead prediction in the presence of

compressor fouling (FI 1%), Erosion (EI 1%) and both of them (FI 1% and EI 1%).

In the presence of compressor fouling
VAR(p) Mean Standard deviation
(3) 1.6606 2.6335

(4) 1.5811 2.6882

(5) 1.5369 2.7125

(6) 1.5734 2.7857

(7) 1.5894 2.8435

(8) 1.6171 2.9180

(9) 1.5527 2.8238

In the presence of the turbine erosion
VAR(p) Mean Standard deviation
(3) 1.3654 1.8437

(4) 1.2420 1.8345

(5) 1.2648 1.8121

(6) 1.2332 1.8463

(7) 1.2502 1.8642

(8) 1.2561 1.8838

(9) 1.2629 1.9484

In the presence of both fouling and erosion
VAR(p) Mean Standard deviation
(3) 1.9601 2.7923

(4) 1.7842 2.7809

(5) 1.6130 2.8520

(6) 1.6319 2.7897

(7) 1.6884 2.9344

(8) 1.8198 3.0075

(9) 1.8308 2.8810
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3.3 Case Study Scenarios

Given that the data sets are non-deterministic due to parameter uncertainties and system

noise, a model that can include this random behavior results in a better and a more accurate

prediction. The ARMA model has the above noted flexibilities by including the random

shock terms. In the univariate modeling approach in this thesis we consider only one of

the measurable parameters, namely the turbine exit temperature (TET). In order to verify

the effectiveness of the ARIMA and VAR models in terms of the prediction horizons and

accuracy, different case study scenarios are applied to each of these models. The prediction

of the gas turbine performance degradation is then obtained which can be used to schedule

maintenance actions for a jet engine. The take off time for each flight is 20 seconds. In

each take off cycle, we capture the data at the steady state point. Therefore we keep one

data from each cycle for each parameter. Each scenario consists of 250 points that form the

time-series data we are working with. In Table 3.6, the details of the scenarios are given.

In the first scenario, the engine is considered to start operating from healthy condition,

then the compressor is injected with fouling for the next 120 cycles to reach to the FI of

3%. Then the compressor gets washed through the maintenance procedure and the engine

continues working for 10 cycles in the healthy condition. Afterwards, it is injected with

fouling for the next 70 cycles to reach FI of 2%. Then the engine gets washed so that it

starts working for 50 cycles and the FI reaches to 1%.

In the second scenario, the effects of the turbine erosion on the engine is investigated.

In this scenario, the engine is considered to start operating from healthy condition, then

the engine is injected with erosion for the next 125 cycles to reach to the of EI 3%. Then

the turbine goes through the maintenance procedure and the engine continues working for

25 cycles under healthy condition. Afterwards, it is injected with erosion for the next 60

cycles to reach EI of 2%. Then the engine goes through the maintenance and starts working

for 40 cycles and the EI reaches to 1%.
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In the third scenario, the effects of both the turbine erosion and compressor fouling on

the engine are investigated. In this scenario, the engine is considered to start operating from

healthy condition, then the compressor is injected with fouling for the next 100 cycles to

reach to the FI of 2%. For the next 50 cycles while compressor fouling is increasing to

reach to the FI of 3%, the turbine gets eroded with EI of 1%. Then the engine goes through

the maintenance procedure and the engine continues working from healthy condition and

the compressor is injected with fouling for the next 70 cycles to reach FI of 1%. After the

180th cycle the turbine is injected with erosion and compressor continues getting fouled

and eventually they reach to the FI of 2% and EI of 2% at the 250th cycle.

Table 3.6: The description of the scenarios that are considered for conducting simulations.

First Scenario

Engine Condition FI 3% Healthy FI 2% FI 1%

Number of Cycles 120 10 70 50

Second Scenario

Engine Condition EI 3% Healthy EI 2% EI 1%

Number of Cycles 125 25 60 40

Third Scenario

Engine Condition FI 2% FI 3% and EI 1% FI 1% FI 3% and EI 2%

Number of Cycles 100 50 30 70

3.4 Simulation Results

3.4.1 ARIMA Model

The ARIMA model that was described in the previous section is applied to the Turbine Exit

Temperature (TET) which is one of the most important health parameters of the engine

[170]. In real life prognostic problems dealing with uncertainties is inevitable. These

uncertainties could be originated from insufficient data and changing operating conditions.

Taking the above facts into account, it may not be practical to obtain or be concerned with

an exact prediction point. Therefore, one needs to construct instead confidence bounds that
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give a realistic boundary for the prediction. When a specified upper bound threshold is

met one may determine and declare that the engine should be taken for maintenance. To

determine the confidence bounds for evaluating the prediction performance of the model,

Monte Carlo simulations are performed and according to normal theory a multiple of the

standard deviations of the prediction error (for a given confidence level, that is 95%) is

added and subtracted from the actual values.

Data Preprocessing

Figure 3.11 depicts the results of the prediction for a ten step ahead using ARIMA(4,5).

The dashed lines show our upper and lower prediction intervals. The star points in the

figure represent actual data values and the circle points indicate the predicted tempera-

tures. All the figures shown in this thesis depict the prediction portion of the scenario,

since certain parts of the data were used for testing. It should be mentioned that from the

available measurements for the ARIMA method, we used 40% of the measurements for

model parameters estimation. The remaining measurement points are used for testing and

evaluating the prediction performance. As seen in Figure 3.11 between the 120th to the

130th cycles and also at the 200th cycle, the prediction error is significantly large due to

the maintenance that was performed at the cycles 120 and 200. Clearly the data before

the maintenance action is not sufficient to allow for a reliable prediction subsequent to this

action. Despite this, even after 10 cycles (number of steps ahead for this case) prediction

error is significantly large and this occurs when there is gap between the values of the cap-

tured data. These gaps can be originated from possible dramatically degradation changes

or post maintenance capturing data. To cope with this problem and achieving a better and

more acceptable prediction in terms of accuracy, in this thesis a compensation method in

the form of data preprocessing has been conducted.

In order to identify the gap between the values of the measurement points, the difference
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Figure 3.11: Ten step ahead prediction results by using the ARIMA(4,5) model without

compensator for the first scenario.
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of the data will be verified and when the difference of the two consequent data exceeds a

specified value, the algorithm takes these two points as a gap. After finding all the gaps,

the average of the specified window of the data before and after the gap point is calculated

and depending on the gap direction, all the data values after the gap point will be added or

subtracted by the difference of two average values. Finally, when the prediction procedure

is finished, this modifier value will be extracted from the results. Figure 3.13 shows the

results of the prediction for the same scenario with the mentioned compensator.

Subsequently, the aforementioned compensator will be applied to all the simulations

throughout this section.

Scenario 1

The detailed description of the first scenario was presented earlier in the section Case Study

Scenarios. The standard deviation of the measurement noise is considered as 1 (0.097

percent of the nominal value of the turbine temperature [13]). Figures 3.12-3.15 depict

the results of the prediction in the presence of the same level of measurement noise. The

dashed lines show our upper and lower prediction intervals. The star points represent actual

data values and the circle points indicate the predicted temperatures. Table 3.7 shows the

mean and the standard deviation of the prediction errors for different number of steps ahead

in presence of the measurement noise with the standard deviation of 1.

In order to investigate the effects of measurement noise on the prediction results, each

scenario has been repeated for different value of measurement noise. Figures 3.16-3.18

depict the results of the prediction in presence of the same level of measurement noise with

the standard deviation of 2. Table 3.8 represents the mean and the standard deviation of the

prediction errors for different number of steps ahead in presence of the measurement noise

with the standard deviation of 2.

Figures 3.19-3.21 depict the results of the prediction in presence of the same level of
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Figure 3.12: Five step ahead prediction results by using the univariate ARIMA(4,5) model

for the first scenario in presence of the measurement noise with the standard deviation of 1.
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Figure 3.13: Ten step ahead prediction results by using the ARIMA(4,5) model including

compensator for the first scenario in presence of the measurement noise with the standard

deviation of 1.
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Figure 3.14: Fifteen step ahead prediction results by using the univariate ARIMA(4,5)

model for the first scenario in presence of the measurement noise with the standard devia-

tion of 1.
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Figure 3.15: Thirty step ahead prediction results by using the univariate ARIMA(4,5)

model for the first scenario in presence of the measurement noise with the standard de-

viation of 1.
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Figure 3.16: Five step ahead prediction results by using the univariate ARIMA(4,5) model

for the first scenario in presence of the measurement noise with the standard deviation of 2.
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Figure 3.17: Fifteen step ahead prediction results by using the univariate ARIMA(4,5)

model for the first scenario in presence of the measurement noise with the standard devia-

tion of 2.
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Figure 3.18: Thirty step ahead prediction results by using the univariate ARIMA(4,5)

model for the first scenario in presence of the measurement noise with the standard de-

viation of 2.
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Table 3.7: Mean and standard deviation of the prediction errors for the ARIMA model for

the first scenario in presence of the measurement noise with the standard deviation of 1.

Number of steps ahead Mean Standard deviation

3 1.9746 5.5320

5 2.7945 7.0279

10 4.5364 9.6166

15 6.3432 11.3959

20 8.2333 12.7161

25 10.0870 13.6326

30 11.8863 14.2086

Table 3.8: Mean and standard deviation of the prediction errors for the ARIMA model for

the first scenario in presence of the measurement noise with the standard deviation of 2.

Number of steps ahead Mean Standard deviation

3 2.8909 5.5274

5 3.6079 6.8187

10 5.1188 9.2927

15 6.8562 11.0814

20 8.5631 12.2012

25 10.2439 13.0616

30 11.9772 13.7022

measurement noise with the standard deviation of 5. Table 3.9 shows the mean and the

standard deviation of the prediction errors for different number of steps ahead in presence

of the measurement noise with the standard deviation of 5.

As seen in Figure 3.12, all the predicted values are within the defined boundaries. At

120th and 200th flight cycles for 5 flight cycles, the predicted values are outside the bound-

aries. This happens because of the maintenance that was performed at the cycles 120 and

200 in the first scenario and the compressor got washed. Clearly the data before the main-

tenance action is not sufficient to allow for a reliable prediction subsequent to this action.

As the prediction horizon increases to ten, as seen in Figure 3.13, the predicted values are

still within the boundaries but it takes a few more cycles for the model to perform enough

accurate prediction after the maintenance at the cycles 120 and 200. When the number of
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Figure 3.19: Five step ahead prediction results by using the univariate ARIMA(4,5) model

for the first scenario in presence of the measurement noise with the standard deviation of 5.
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Figure 3.20: Fifteen step ahead prediction results by using the univariate ARIMA(4,5)

model for the first scenario in presence of the measurement noise with the standard devia-

tion of 5.
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Figure 3.21: Thirty step ahead prediction results by using the univariate ARIMA(4,5)

model for the first scenario in presence of the measurement noise with the standard de-

viation of 5.
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Table 3.9: Mean and standard deviation of the prediction errors for the ARIMA model for

the first scenario in presence of the measurement noise with the standard deviation of 5.

Number of steps ahead Mean Standard deviation

3 6.2754 8.4807

5 7.1134 9.9517

10 8.5847 12.0376

15 10.1466 13.7248

20 11.7623 14.9629

25 12.4388 15.2695

30 13.7327 15.8727

steps ahead reaches to 30, the predicted values are marginally within the boundaries. Fig-

ures 3.16-3.18 depict the same scenario in presence of the measurement noise with standard

deviation of 2. By increasing the measurement noise level, the accuracy of the prediction

decreases in comparison to cases with the same number of step ahead predictions. Figures

3.19-3.21 depict the same scenario in presence of the measurement noise with standard

deviation of 5. Due to the high level noise associated with the measurement data, the

predicted values are more scattered and marginally within the boundaries. By increasing

the number of steps ahead prediction the predicted data maintain the trend and even for

the thirty steps ahead in Figure 3.21 the predicted values are still within the boundaries.

However, the prediction accuracy is not as good as before.

Scenario 2

The detailed description of the second scenario was presented in the section Case Study

Scenarios. The standard deviation of the measurement noise is considered as 1 (0.097

percent of the nominal value of the turbine temperature [13]). Figures 3.22-3.24 depict the

results of the prediction in presence of the same level of measurement noise. The dashed

lines show our upper and lower prediction intervals. The star points in the figure represent

the actual data values and the circle points indicate the predicted temperatures. Table 3.10

shows the mean and the standard deviation of the prediction errors for different number of
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steps ahead in presence of the measurement noise with the standard deviation of 1.

Figure 3.22: Five step ahead prediction results by using the univariate ARIMA(4,5) model

for the second scenario in presence of the measurement noise with the standard deviation

of 1.

Figures 3.25-3.27 depict the results of the prediction for the second scenario in presence

of the same level of measurement noise with the standard deviation of 2. Table 3.11 shows

the mean and the standard deviation of the prediction errors for different number of steps

ahead in presence of the measurement noise with the standard deviation of 2.

Figures 3.28-3.30 depict the results of the prediction in presence of the same level of

measurement noise with the standard deviation of 5. Table 3.12 shows the mean and the

standard deviation of the prediction errors for different number of steps ahead in presence

of the measurement noise with the standard deviation of 5.

As seen in Figure 3.22, all the predicted values are within the defined boundaries. At
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Figure 3.23: Fifteen step ahead prediction results by using the univariate ARIMA(4,5)

model for the second scenario in presence of the measurement noise with the standard

deviation of 1.
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Figure 3.24: Thirty step ahead prediction results by using the univariate ARIMA(4,5)

model for the second scenario in presence of the measurement noise with the standard

deviation of 1.
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Figure 3.25: Five step ahead prediction results by using the univariate ARIMA(4,5) model

for the second scenario in presence of the measurement noise with the standard deviation

of 2.
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Figure 3.26: Fifteen step ahead prediction results by using the univariate ARIMA(4,5)

model for the second scenario in presence of the measurement noise with the standard

deviation of 2.

125



Figure 3.27: Thirty step ahead prediction results by using the univariate ARIMA(4,5)

model for the second scenario in presence of the measurement noise with the standard

deviation of 2.
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Figure 3.28: Five step ahead prediction results by using the univariate ARIMA(4,5) model

for the second scenario in presence of measurement noise with the standard deviation of 5.
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Figure 3.29: Fifteen step ahead prediction results by using the univariate ARIMA(4,5)

model for the second scenario in presence of the measurement noise with the standard

deviation of 5.
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Figure 3.30: Thirty step ahead prediction results by using the univariate ARIMA(4,5)

model for the second scenario in presence of the measurement noise with the standard

deviation of 5.
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Table 3.10: Mean and standard deviation of the prediction errors for the ARIMA model for

the second scenario in presence of the measurement noise with the standard deviation of 1.

Number of steps ahead Mean Standard deviation

3 1.5527 3.5020

5 2.0285 4.4178

10 3.0963 5.9582

15 4.3212 7.2008

20 5.4455 8.0721

25 6.6459 8.7613

30 7.7710 9.3717

Table 3.11: Mean and standard deviation of the prediction errors for the ARIMA model for

the second scenario in presence of measurement noise with the standard deviation of 2.

Number of steps ahead Mean Standard deviation

3 2.3321 3.9033

5 2.8696 4.8410

10 3.8452 6.4152

15 5.1542 7.6210

20 6.3336 8.7144

25 7.5401 9.4937

30 8.7345 10.1242

125th and 210th flight cycles for 5 flight cycles, the predicted values are outside the bound-

aries. This happens because of the maintenance that was performed at the cycles 125 and

210 in the second scenario and the eroded components have been changed with the new

ones. Clearly the data before the maintenance action is not sufficient to allow for a reliable

prediction subsequent to this action. As the prediction horizon increases to fifteen, as seen

in Figure 3.23, the predicted values are still within the boundaries but it takes a few more

cycles for the model to perform enough accurate prediction after the maintenance at the cy-

cles 125 and 210. When the number of steps ahead reaches to 30 in the second scenario, the

predict values are marginally within the boundaries and their predicted values are outside

of the boundaries. Figures 3.25-3.27 depict the same scenario in presence of the measure-

ment noise with the standard deviation of 2. By increasing the measurement noise level,

the accuracy of prediction decreases in comparison to cases with the same number of step
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Table 3.12: Mean and standard deviation of the prediction errors for the ARIMA model for

the second scenario in presence of the measurement noise with the standard deviation of 5.

Number of steps ahead Mean Standard deviation

3 5.2366 6.9094

5 5.6643 7.8375

10 6.2346 8.8596

15 7.3275 9.7231

20 8.2246 10.0577

25 8.4377 10.0574

30 9.4644 10.2106

ahead predictions and for thirty steps ahead the predicted values are accurate enough. In

Figures 3.28-3.30 the prediction results have been shown for the same scenario in presence

of the measurement noise with standard deviation of 5. Due to the high level noise asso-

ciated with the measurement data, the predicted values are more scattered and marginally

within the boundaries as compared to the measurement noise with the standard deviations

of 1 and 2. By increasing the number of steps ahead prediction the predicted data maintain

the trend and even for the thirty steps ahead in Figure 3.30 the predicted values are barely

within the boundaries.

Scenario 3

The detailed description of the third scenario was presented in the section Case Study

Scenarios. The standard deviation of the measurement noise is considered as 1 (0.097

percent of the nominal value of the turbine temperature [13]). Figures 3.31-3.33 depict the

results of the prediction in presence of the same level of measurement noise. The dashed

lines show our upper and lower prediction intervals. The star points in the figure represent

actual data values and the circle points indicate the predicted temperatures. Table 3.13

shows the mean and the standard deviation of the prediction errors for different number of

steps ahead in presence of the measurement noise with the standard deviation of 1.

Figures 3.34-3.36 depict the results of the prediction for the third scenario in presence
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Figure 3.31: Five step ahead prediction results by using the univariate ARIMA(4,5) model

for the third scenario in presence of the measurement noise with the standard deviation of

1.
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Figure 3.32: Fifteen step ahead prediction results by using the univariate ARIMA(4,5)

model for the third scenario in presence of the measurement noise with the standard devia-

tion of 1.
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Figure 3.33: Thirty step ahead prediction results by using the univariate ARIMA(4,5)

model for the third scenario in presence of the measurement noise with the standard de-

viation of 1.
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Table 3.13: Mean and standard deviation of the prediction errors for the ARIMA model for

the third scenario in presence of measurement noise with the standard deviation of 1.

Number of steps ahead Mean Standard deviation

3 1.8533 5.5818

5 2.9440 7.1066

10 4.5461 9.8598

15 6.6062 12.0289

20 8.3154 13.6296

25 9.9066 15.0818

30 11.5437 16.3052

Table 3.14: Mean and standard deviation of the prediction errors for the ARIMA model for

the third scenario in presence of measurement noise with the standard deviation of 2.

Number of steps ahead Mean Standard deviation

3 2.8051 5.5696

5 3.5618 7.1859

10 4.7961 9.5748

15 6.4305 11.4981

20 8.0404 13.2292

25 9.5016 14.6031

30 10.9545 15.8002

of the same level of measurement noise with the standard deviation of 2. Table 3.14 shows

the mean and the standard deviation of the prediction errors for different number of steps

ahead in presence of measurement noise with the standard deviation of 2.

Figures 3.37-3.39 depict the results of the prediction in presence of the same level of

measurement noise with the standard deviation of 5. Table 3.15 shows the mean and the

standard deviation of the prediction errors for different number of steps ahead in presence

of the measurement noise with the standard deviation of 5.

As seen in Figures 3.31, 3.34 and 3.37 showing the prediction results under three differ-

ent measurement noise with standard deviations of 1, 2 and 5 for the five steps ahead, the

predicted values are marginally within the boundaries. However, the prediction accuracy

decreases as noise level increases. At 150th flight cycle for 5 flight cycles, the predicted
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Figure 3.34: Five step ahead prediction results by using the univariate ARIMA(4,5) model

for the third scenario in presence of the measurement noise with the standard deviation of

2.
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Figure 3.35: Fifteen step ahead prediction results by using the univariate ARIMA(4,5)

model for the third scenario in presence of the measurement noise with the standard devia-

tion of 2.
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Figure 3.36: Thirty step ahead prediction results by using the univariate ARIMA(4,5)

model for the third scenario in presence of the measurement noise with the standard de-

viation of 2.
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Figure 3.37: Five step ahead prediction results by using the univariate ARIMA(4,5) model

for the third scenario in presence of the measurement noise with the standard deviation of

5.
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Figure 3.38: Fifteen step ahead prediction results by using the univariate ARIMA(4,5)

model for the third scenario in presence of the measurement noise with the standard devia-

tion of 5.
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Figure 3.39: Thirty step ahead prediction results by using the univariate ARIMA(4,5)

model for the third scenario in presence of the measurement noise with the standard de-

viation of 5.
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Table 3.15: Mean and standard deviation of the prediction errors for the ARIMA model for

the third scenario in presence of measurement noise with the standard deviation of 5.

Number of steps ahead Mean Standard deviation

3 5.3217 7.6909

5 5.8700 8.9263

10 6.8720 11.1903

15 8.2628 12.6852

20 9.0866 13.4829

25 10.3172 14.7415

30 11.5288 16.0321

values are outside the boundaries. This happens because of the maintenance that was per-

formed at the cycle 150 in the third scenario and the compressor got washed and the turbine

eroded blades were changed. Clearly, the data before the maintenance action is not suffi-

cient to allow for a reliable prediction subsequent to this action. As seen in Figures 3.32,

3.35, 3.33 and 3.36 the prediction accuracy is not acceptable and considerable parts of the

predicted values are outside the boundaries.

3.4.2 VAR Model

VAR(6) model is fitted into the vector of time-series entailing the turbine exit temperature

(TET) and the compressor temperature. In this thesis, as given in equation (2.40), the

non-diagonal elements of the matrix φ1 (ϕ1,12 and ϕ1,21) show the effect of the past values

of the two time-series on each other present values. By using the VAR model, one takes

advantage of this characteristic for prediction purposes. Similar to what was accomplished

for meeting the required prediction performance, Monte Carlo simulations are conducted

with confidence levels of 95% that are implemented according to the normal theory. It

should be noted that from the 250 available measurements in the VAR method we used

40% of the measurements for model parameters estimation and the remaining points are

used for testing and evaluating the prediction performance of the model.
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Data Preprocessing

Figure 3.40 depicts the results of the prediction for a ten step ahead for the VAR(6) model.

The dashed lines show our upper and lower prediction intervals. The star points in the

figure represent actual data values and the circle points indicate the predicted temperatures.

All the figures depict the prediction portion of the scenario, since certain parts of the data

were used for testing as mentioned earlier.

As seen in Figure 3.40, between the 120th to the 130th cycles and also at the 200th

cycle, the prediction error is significantly large due to the maintenance that was performed

at the cycles 120 and 200. Clearly the data before the maintenance action is not sufficient

to allow for a reliable prediction subsequent to this action. Despite this even after 10

cycles (number of steps ahead for this case) prediction error is significantly large and this

occurs when there is a gap between the values of the captured data. These gaps can be

originated from possible dramatically degradation changes or post maintenance capturing

data. To cope with this problem and achieving a better and more acceptable predictions in

terms of accuracy, in this thesis a compensation method in the form of data preprocessing

has been conducted. The procedure is similar to the one that is used for ARIMA model

and it has been demonstrated earlier in this section. Figure 3.43 shows the results of the

prediction for the same scenario with the above mentioned compensator. Subsequently, the

aforementioned compensator will be applied to all the simulations throughout this section.

Scenario 1

The detailed description of the first scenario was presented in the section Case Study Sce-

narios. The standard deviation of the measurement noise is considered as 1. Figures 3.41-

3.45 depict the results of the prediction in presence of the same level of measurement noise

for both turbine and compressor temperatures. The dashed lines show our upper and lower

prediction intervals. The star points in the figure represent actual data values and the circle
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Figure 3.40: Ten step ahead prediction results by using the VAR(6) model without com-

pensator for the first scenario in presence of measurement noise with the standard deviation

of 1.
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points indicate the predicted temperatures. Table 3.16 represents the mean and the stan-

dard deviation of the prediction errors for different number of steps ahead in presence of

measurement noise with the standard deviation of 1.

Figure 3.41: Five step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the first scenario in presence of measurement noise with the standard

deviation of 1.

In order to investigate the effects of measurement noise on the prediction results, each

scenario has been repeated for different value of measurement noise. Figures 3.46-3.49

depict the results of the prediction in presence of the same level of measurement noise with

the standard deviation of 2. Table 3.17 represents the mean and the standard deviation of

the prediction error for different number of steps ahead in presence of measurement noise

with the standard deviation of 2.

Figures 3.50-3.53 depict the results of the prediction in presence of the same level of

145



Figure 3.42: Five step ahead compressor temperature prediction results by using the bivari-

ate VAR(6) model for the first scenario in presence of measurement noise with the standard

deviation of 1.
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Figure 3.43: Ten step ahead prediction results by using the VAR(6) model including com-

pensator for the first scenario in presence of measurement noise with the standard deviation

of 1.
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Figure 3.44: Fifteen step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the first scenario in presence of measurement noise with the standard

deviation of 1.
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Figure 3.45: Thirty step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the first scenario in presence of measurement noise with the standard

deviation of 1.
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Figure 3.46: Five step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the first scenario in presence of measurement noise with the standard

deviation of 2.
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Figure 3.47: Five step ahead compressor temperature prediction results by using the bivari-

ate VAR(6) model for the first scenario in presence of measurement noise with the standard

deviation of 2.
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Figure 3.48: Fifteen step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the first scenario in presence of measurement noise with the standard

deviation of 2.
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Figure 3.49: Thirty step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the first scenario in presence of measurement noise with the standard

deviation of 2.
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Table 3.16: Mean and standard deviation of the prediction errors for the VAR model for the

first scenario in presence of measurement noise with the standard deviation of 1.

Turbine temperature Compressor temperature

Number of steps ahead Mean Standard Mean Standard

deviation deviation

3 1.9478 5.5505 0.8001 1.8626

5 2.6303 6.9669 1.0118 2.3819

10 4.4182 9.6522 1.6163 3.2421

15 6.3504 11.3587 2.3058 4.0714

20 8.2984 12.7969 2.8375 4.2897

25 10.1600 13.7229 3.4659 4.5876

30 11.8872 14.2123 4.1713 4.9759

Table 3.17: Mean and standard deviation of the prediction errors for the VAR model for the

first scenario in presence of measurement noise with the standard deviation of 2.

Turbine temperature Compressor temperature

Number of steps ahead Mean Standard Mean Standard

deviation deviation

3 2.4927 5.2811 0.8112 1.9906

5 3.1609 6.5429 1.0383 2.4193

10 4.8167 9.0826 1.6608 3.3662

15 6.6294 11.1476 2.2862 3.8679

20 8.3792 12.2241 3.0280 4.5164

25 9.7858 12.9092 3.3897 4.5970

30 11.4435 13.6340 4.0244 4.8319

measurement noise with the standard deviation of 5. Table 3.18 shows the mean and the

standard deviation of the prediction error for different number of steps ahead in presence

of measurement noise with the standard deviation of 5.

As seen in Figure 3.41, all the predicted values are completely within the defined bound-

aries and the accuracy of the prediction is satisfactory. At 120th and 200th flight cycles for

5 flight cycles, the predicted values are outside the boundaries. This happens because of

the maintenance that was performed at the cycles 120 and 200 in the first scenario and the

compressor got washed. Clearly, the data before the maintenance action is not sufficient to

allow for a reliable prediction subsequent to this action. As the prediction horizon increases
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Figure 3.50: Five step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the first scenario in presence of measurement noise with the standard

deviation of 5.
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Figure 3.51: Five step ahead compressor temperature prediction results by using the bivari-

ate VAR(6) model for the first scenario in presence of measurement noise with the standard

deviation of 5.
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Figure 3.52: Fifteen step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the first scenario in presence of measurement noise with the standard

deviation of 5.
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Figure 3.53: Thirty step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the first scenario in presence of measurement noise with the standard

deviation of 5.
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Table 3.18: Mean and standard deviation of the prediction errors for the VAR model for the

first scenario in presence of measurement noise with the standard deviation of 5.

Turbine temperature Compressor temperature

Number of steps ahead Mean Standard Mean Standard

deviation deviation

3 5.0315 7.5360 0.7906 1.8871

5 5.6436 8.4000 1.0523 2.3827

10 7.1729 10.5646 1.6907 3.3197

15 8.4105 11.9981 2.3020 4.0000

20 9.9438 13.3387 2.9267 4.3895

25 11.5522 14.2821 3.5319 4.6882

30 13.1832 15.1653 4.1582 4.9308

to fifteen, as seen in Figure 3.44, the predicted values are within the boundaries with ac-

ceptable accuracy. When the number of steps ahead reaches to 30, the prediction accuracy

is not acceptable and there are many predicted values outside the boundaries. Figures 3.46

and 3.50 depict the same scenario in presence of the measurement noise with standard de-

viation of 2 and 5 for five steps ahead. Despite the high level of the measurement noise

the predicted values are completely within the boundaries and the prediction accuracy is

completely satisfactory. Figures 3.48 and 3.52 show the predicted values for fifteen steps

ahead under the measurement noise with the standard deviations of 2 and 5. The predicted

values are within the boundaries and the prediction accuracy is good. As seen in Figures

3.49 and 3.53 many of the predicted values are outside of the boundaries and the prediction

accuracy is not acceptable.

Scenario 2

The detailed description of the second scenario was presented in the section Case Study

Scenarios. The standard deviation of the measurement noise is considered as 1. Figures

3.54-3.57 depict the results of the prediction in presence of the same level of measurement

noise. The dashed lines show our upper and lower prediction intervals. The star points
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in the figure represent actual data values and the circle points indicate the predicted tem-

peratures. Table 3.19 shows the mean and the standard deviation of the prediction errors

for different number of steps ahead in presence of measurement noise with the standard

deviation of 1. Figures 3.58-3.61 depict the results of the prediction in presence of the

Figure 3.54: Five step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the second scenario in presence of measurement noise with the standard

deviation of 1.

same level of measurement noise with the standard deviation of 2. Table 3.20 shows the

mean and the standard deviation of the prediction error for different number of steps ahead

in presence of measurement noise with the standard deviation of 2.
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Figure 3.55: Five step ahead compressor temperature prediction results by using the bi-

variate VAR(6) model for the second scenario in presence of measurement noise with the

standard deviation of 1.

161



Figure 3.56: Fifteen step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the second scenario in presence of measurement noise with the standard

deviation of 1.
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Figure 3.57: Thirty step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the second scenario in presence of measurement noise with the standard

deviation of 1.
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Figure 3.58: Five step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the second scenario in presence of measurement noise with the standard

deviation of 2.
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Figure 3.59: Five step ahead compressor temperature prediction results by using the bi-

variate VAR(6) model for the second scenario in presence of measurement noise with the

standard deviation of 2.
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Figure 3.60: Fifteen step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the second scenario in presence of measurement noise with the standard

deviation of 2.
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Figure 3.61: Thirty step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the second scenario in presence of measurement noise with the standard

deviation of 2.
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Table 3.19: Mean and standard deviation of the prediction errors for the VAR model for the

second scenario in presence of measurement noise with the standard deviation of 1.

Turbine temperature Compressor temperature

Number of steps ahead Mean Standard Mean Standard

deviation deviation

3 1.4601 3.4640 0.7801 1.8545

5 1.9611 4.4107 1.0530 2.3785

10 3.0882 5.9786 1.7424 3.3318

15 4.3240 7.2258 2.3885 4.0081

20 5.4897 8.1474 3.0695 4.4746

25 6.6794 8.8692 3.7350 4.8713

30 7.7611 9.3436 4.7078 5.5034
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Table 3.20: Mean and standard deviation of the prediction errors for the VAR model for the

second scenario in presence of measurement noise with the standard deviation of 2.

Turbine temperature Compressor temperature

Number of steps ahead Mean Standard Mean Standard

deviation deviation

3 2.1943 3.7853 0.7923 1.8640

5 2.6711 4.7678 1.0571 2.3939

10 3.8798 6.5545 1.7517 3.3384

15 5.1290 7.7681 2.4380 4.0514

20 6.2943 8.8394 3.1454 4.5527

25 7.4938 9.6679 3.8159 4.9678

30 8.5734 10.2989 4.4443 5.2903

Figures 3.62-3.65 depict the results of the prediction in presence of the same level of

measurement noise with the standard deviation of 5. Table 3.21 shows the mean and the

standard deviation of the prediction error for different number of steps ahead in presence

of measurement noise with the standard deviation of 5.
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Figure 3.62: Five step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the second scenario in presence of measurement noise with the standard

deviation of 5.
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Figure 3.63: Five step ahead compressor temperature prediction results by using the bi-

variate VAR(6) model for the second scenario in presence of measurement noise with the

standard deviation of 5.
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Figure 3.64: Fifteen step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the second scenario in presence of measurement noise with the standard

deviation of 5.
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Figure 3.65: Thirty step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the second scenario in presence of measurement noise with the standard

deviation of 5.

Figure 3.54 shows how all the predicted values are completely within the defined bound-

aries and the accuracy of the prediction is satisfactory. At 125th and 210th flight cycles for

5 flight cycles, the predicted values are outside the boundaries. This happens because of

the maintenance that was performed at the cycles 125 and 210 in the second scenario and

the eroded components have been changed with the new ones. Clearly, the data before

the maintenance action is not sufficient to allow for a reliable prediction subsequent to this

action. Figures 3.58 and 3.62 depict the same scenario in presence of the measurement

noise with standard deviation of 2 and 5 for five steps ahead. Despite the high level of

the measurement noise the predicted values are completely within the boundaries and the
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Table 3.21: Mean and standard deviation of the prediction errors for the VAR model for the

second scenario in presence of measurement noise with the standard deviation of 5.

Turbine temperature Compressor temperature

Number of steps ahead Mean Standard Mean Standard

deviation deviation

3 4.5991 6.4320 0.8161 1.8782

5 5.0112 7.4119 1.1052 2.4194

10 5.6431 8.4561 1.8723 3.3960

15 6.7597 9.5686 4.0771 5.0997

20 7.9426 10.3890 3.1389 4.5545

25 8.7901 10.8835 3.8049 4.9484

30 9.8141 11.3199 4.3949 5.2620

prediction accuracy is completely satisfactory. As the prediction horizon increases to fif-

teen, as seen in Figure 3.56 the predicted values are within the boundaries with acceptable

accuracy. When the number of steps ahead reaches to 30, the prediction accuracy is not

acceptable and there are many predicted values outside the boundaries. Figures 3.60 and

3.64 depict the predicted values for fifteen steps ahead under the measurement noise with

the standard deviations of 2 and 5. The predicted values are within the boundaries and the

prediction accuracy is good. As seen in Figures 3.61 and 3.65 many of the predicted values

are outside of the boundaries and the prediction accuracy is not acceptable.

Scenario 3

The detailed description of the third scenario was presented in the section Case Study Sce-

narios. The standard deviation of the measurement noise is considered as 1. Figures 3.66-

3.69 depict the results of the prediction in presence of the same level of measurement noise.

The dashed lines show our upper and lower prediction intervals. The star points in the fig-

ure represent actual data values and the circle points indicate the predicted temperatures.

Table 3.22 shows the mean and the standard deviation of the prediction errors for different

number of steps ahead in presence of measurement noise with the standard deviation of 1.

Figures 3.70-3.73 depict the results of the prediction in presence of the same level of
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Figure 3.66: Five step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the third scenario in presence of measurement noise with the standard

deviation of 1.
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Figure 3.67: Five step ahead compressor temperature prediction results by using the bi-

variate VAR(6) model for the third scenario in presence of measurement noise with the

standard deviation of 1.
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Figure 3.68: Fifteen step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the third scenario in presence of measurement noise with the standard

deviation of 1.
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Figure 3.69: Thirty step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the third scenario in presence of measurement noise with the standard

deviation of 1.
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Table 3.22: Mean and standard deviation of the prediction errors for the VAR model for the

third scenario in presence of measurement noise with the standard deviation of 1.

Turbine temperature Compressor temperature

Number of steps ahead Mean Standard Mean Standard

deviation deviation

3 1.6645 5.5288 0.5561 1.1305

5 2.2883 7.0135 0.6183 1.2922

10 3.5866 9.6792 0.9352 1.8238

15 4.8393 11.6567 1.1934 2.1362

20 6.1417 13.1343 1.4363 2.4041

25 7.4556 14.5035 1.6639 2.6296

30 8.8546 15.6309 1.8733 2.7872

Table 3.23: Mean and standard deviation of the prediction errors for the VAR model for the

third scenario in presence of measurement noise with the standard deviation of 2.

Turbine temperature Compressor temperature

Number of steps ahead Mean Standard Mean Standard

deviation deviation

3 2.5578 5.5233 0.5650 1.1230

5 3.0537 6.8401 0.6253 1.2863

10 4.2235 9.3211 0.9306 1.8142

15 5.5481 11.1124 1.1894 2.1245

20 6.8053 12.6884 1.4273 2.3923

25 7.9559 14.0237 1.6652 2.6247

30 9.2560 15.1058 1.8800 2.7799

measurement noise with the standard deviation of 2. Table 3.23 shows the mean and the

standard deviation of the prediction error for different number of steps ahead in presence

of measurement noise with the standard deviation of 2.

Figures 3.74-3.77 depict the prediction results in presence of the same level of measure-

ment noise with the standard deviation of 5. Table 3.24 shows the mean and the standard

deviation of the prediction error for different number of steps ahead in presence of mea-

surement noise with the standard deviation of 5.
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Figure 3.70: Five step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the third scenario in presence of measurement noise with the standard

deviation of 2.
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Figure 3.71: Five step ahead compressor temperature prediction results by using the bi-

variate VAR(6) model for the third scenario in presence of measurement noise with the

standard deviation of 2.

181



Figure 3.72: Fifteen step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the third scenario in presence of measurement noise with the standard

deviation of 2.
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Figure 3.73: Thirty step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the third scenario in presence of measurement noise with the standard

deviation of 2.
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Figure 3.74: Five step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the third scenario in presence of measurement noise with the standard

deviation of 5.
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Figure 3.75: Five step ahead compressor temperature prediction results by using the bi-

variate VAR(6) model for the third scenario in presence of measurement noise with the

standard deviation of 5.
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Figure 3.76: Fifteen step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the third scenario in presence of measurement noise with the standard

deviation of 5.
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Figure 3.77: Thirty step ahead turbine temperature prediction results by using the bivariate

VAR(6) model for the third scenario in presence of measurement noise with the standard

deviation of 5.

Figures 3.66, 3.70 and 3.74 demonstrate how all the predicted values are completely

within the defined boundaries and the accuracy of the prediction is satisfactory with all

the three noise levels for the five steps ahead. At 150th flight cycle for 5 flight cycles, the

predicted values are outside the boundaries. This happens because of the maintenance that

was performed at the cycle 150 in the third scenario and the compressor got washed and

the turbine eroded blades were changed. Clearly, the data before the maintenance action is

not sufficient to allow for a reliable prediction subsequent to this action. As seen in Figures

3.68 and 3.69 as opposed to the ARIMA model, all the predicted values for both the 15 and

30 number of steps ahead are within the boundaries and the accuracy is satisfactory. The

same superiority is observed for the higher level of noise for the third scenario.
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Table 3.24: Mean and standard deviation of the prediction errors for the VAR model for the

third scenario in presence of measurement noise with the standard deviation of 5.

Turbine temperature Compressor temperature

Number of steps ahead Mean Standard Mean Standard

deviation deviation

3 5.2095 7.5972 0.5690 1.1281

5 5.6308 8.7208 0.6208 1.2847

10 6.5119 10.8720 0.9298 1.8112

15 7.9286 12.3199 1.1881 2.1288

20 8.9548 13.2670 1.4176 2.3964

25 9.9981 14.4545 1.6510 2.6221

30 11.1494 15.7134 1.8639 2.7771

3.5 Comparison of VAR and ARIMA Models

In this chapter, in order to generate data from the engine Simulink model, an EPR controller

has been designed. Three different scenarios are considered:

• Scenario 1 including compressor fouling with different severities.

• Scenario 2 including turbine erosion with different severities.

• Scenario 3 including both compressor fouling and turbine erosion with different severi-

ties.

For three different levels of measurement noise (low, medium and high) time-series data are

generated. In order to select the order of ARIMA and VAR models based on Monte Carlo

simulation approach for each different model AIC, BIC, mean and standard deviation of the

prediction errors have been computed and are presented in Tables 3.2 and 3.5. ARIMA(4,5)

and VAR(6) were selected based on the derived results.

The selected ARIMA and VAR models have been applied to time-series generated for

the above mentioned scenarios and noise levels. For each time-series different numbers of

step ahead prediction horizons are considered and the qualitative results are presented in

Figures 3.12-3.77 and the quantitative results are presented in Tables 3.7-3.24.
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Based on the outcome of the simulations and in order to show the effectiveness of the

two presented methods the mean and the standard deviation of the prediction errors are

evaluated. In the first scenario, the performance of VAR model is better than the ARIMA

model except in presence of the low noise level and higher number of steps ahead. In the

second scenario, for all noise levels the VAR model performance is better than ARIMA

model in lower number of steps ahead. On the contrary, for all noise levels the ARIMA

model performance is better than the VAR model in higher numbers of steps ahead. In

the third scenario for all of the cases VAR model performance is better than the ARIMA

model.

In general, the performance of the VAR model is better than the ARIMA model. How-

ever, for the scenarios 1 and 2 in which only the fouling or erosion is considered, the

ARIMA model performance is better than the VAR model in predicting higher steps ahead.

This result is reasonable as the performance of simpler models for longer prediction hori-

zons and simpler scenarios is better than more complex models. However, the precision of

the prediction for smaller prediction horizons and more complex scenarios is poor.

In order to benefit from the long term prediction along with high precision for complex

scenarios, we are proposing a hybrid fuzzy ARIMA model which will be presented in the

next chapter.

3.6 Summary

In this chapter, first the specifications of the designed controller for the gas turbine engine

model have been explained. Next, ARIMA and VAR model selection procedures based on

AIC and BIC criteria were given. The case study scenarios including fouling and erosion

degradations are presented in detail and this section was followed by the simulation results

showing the prediction performance of these methods.
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At the end of this chapter the effectiveness of the engine degradation prognostics (pre-

diction) performance of the proposed VAR model as compared to the ARIMA method was

investigated. Qualitative results are shown in the figures of this chapter by depicting that

the predicted values are within the defined boundaries based on the normal theory with a

given confidence level of 95%. Defining the upper and lower bounds instead of emphasiz-

ing on the exact predicted values are more realistic. Quantitative results of the prediction

namely, mean and standard deviation of the prediction errors are given in tables for both

ARIMA and VAR models for all the scenarios. From both qualitative and quantitative per-

spectives VAR method achieves better results in complex scenarios including both erosion

and fouling degradations. The VAR method has been developed by the author in [162].
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Chapter 4

Hybrid Fuzzy ARIMA Approach

In this chapter a single spool gas turbine engine performance degradation trend based on

another novel approach namely, hybrid fuzzy autoregressive integrated moving average

(ARIMA) is proposed. In the previous chapter the ARIMA and VAR methods were applied

to perform the engine performance prediction under different scenarios including fouling

and erosion and their combinations. In this chapter, in order to improve the prediction

effectiveness a hybrid fuzzy ARIMA approach is introduced by considering the turbine

exit temperature (TET) and the spool speed (N) as the measuring parameters of the engine.

Three scenarios are considered to demonstrate the effectiveness of the proposed method.

The results show a better performance of the hybrid method in terms of mean and standard

deviation of the prediction errors. The simulation results are followed by a comparison of

the hybrid fuzzy ARIMA model with the VAR and ARIMA models.

4.1 Hybrid Fuzzy ARIMA Modeling

In the ARIMA method, one of the system measurements can be used for prediction pur-

poses. Since the dynamical model of the engine is nonlinear, using ARIMA method results

in poor prediction accuracy of the turbine temperature. Therefore, using the VAR method,
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that can use more than one measurement of the system boosts the prediction performance

and the results presented in [162] support this. In this chapter, a hybrid fuzzy approach is

applied to fuse different measurements of the systems into a single one to use as ARIMA

method input. To compare the performance of the proposed hybrid fuzzy ARIMA method

and that of the VAR method, three different scenarios are considered and the results of the

numerical simulations are presented.

Towards this end, the turbine exit temperature denoted by T and the spool speed denoted

by N of the engine are fused by employing the fuzzy inference engine. The fuzzy inference

engine used in this work consists of two Takagi-Sugeno (TS) fuzzy functions [156]. One

named, α(N), employs 14 rules and the other one, named β (N) uses 18 rules which are

adjusted based on the simulation data. The fused data denoted by f is computed by the

following equation:

f = α(N)

(
T

β (N)
−1

)
(4.1)

The time-series resulting from the fused data is denoted by ft that is fed to an ARIMA

model for prediction purposes. In the ARIMA(p,q) model, p and q are set to 4 and 5,

respectively. The coefficients of the ARIMA model are determined by the recursive pre-

diction error method. More information about the details of this identification method is

available in [138].

For the prediction step, one determines f̂t(m) by obtaining ft+m given ft , ft−1, ..., ft−h

where m and h denote the step-ahead lead time and prediction window respectively. In the

other words:

f̂t(m) = E[ ft+m| ft , ft−1, ..., ft−h] (4.2)

In every prediction iteration the prediction error Et is computed by using equation (4.3),

Et = f̂(t−m)(m)− ft (4.3)
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and the prediction horizon h is increased by one so that we can get more benefit from the

longer number of data as we go forward in the prediction step. Moreover, the moving

average of the prediction errors denoted by T h is calculated for a window size of 3m at

each iteration. In order to improve the prediction performance in this work we reset the

value of h to the value of m whenever the prediction error exceeds the value of T h as an

adaptive threshold for m consequent times.

After predicting f̂t , using the following equation the prediction values of the turbine

temperature T are reconstructed as:

T̂t(m) = β (N)

(
f̂t(m)

α(N)
+1

)
(4.4)

As mentioned in the previous chapter the fuzzy logic system is a powerful tool for

nonlinear mapping of an input vector of a feature of interest into a scalar output [154]. Due

to heuristic nature of the fuzzy logic, one can use it to deal with systems with unknown

dynamical model, measurement noise, etc. A fuzzy system consists of fuzzy rules, fuzzifier,

inference engine, defuzzifier. There are two main types of defuzzifier, Mamdani [9] and

Takagi-Sugeno (TS) [156]. Depending on the application, one may employ one of these

systems. For example, for classification and controller design problems Mamdani systems

are widely used due to their intuitive nature and their capability to deal with multiple output

systems. On the other hand, TS systems are more flexible than Mamdani systems which

allow several parameters in the output as the output is expressed as a mathematical function

that can consist of several inputs and parameters. Moreover, TS systems are more flexible

than Mamdani systems in terms of less complexity of the defuzzification process which

makes TS systems computationally faster and more efficient than Mamdani systems. Since

in this thesis we are dealing with quantitative data and given that TS fuzzy systems are

more suitable for mathematical analysis [157, 8], we choose TS method to implement the

fuzzy inference engine.
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Fuzzy rules consist of several IF-THEN statements that are usually provided by the

expert or numerical data. In this thesis we used 14 rules for α and 18 rules for β which

have the following format:

Rule i : if (N ∈ Mi) then yi = ai(N −Ni)+bi

where the fuzzy set Mi and parameters ai and bi should be adjusted by using numerical

simulation data. By increasing the number of rules, one may achieve more accurate results.

However, this increase in the accuracy is achieved at the cost of increase in design com-

plexity and computational time. In order to determine proper number of rules we employed

different number of rules for both functions α(N) and β (N) and evaluated the prediction

results in terms of the mean and the standard deviation of prediction error. Table 4.1 shows

these results in which it follows that by exceeding the number of rules from 14 and 18 the

result is not improved. Therefore, we have selected 14 and 18 rules for the functions α(N)

and β (N) in this chapter.

Table 4.1: Mean and standard deviation of the prediction errors for the hybrid fuzzy

ARIMA model for 10 steps ahead for different number of fuzzy rules.

Number of rules for α(N) Number of rules for β (N) Mean Standard deviation

6 8 2.8889 8.4541

8 8 2.8881 8.4507

8 10 2.8672 8.3604

10 10 2.8752 8.3933

10 12 2.8593 8.3246

12 12 2.8598 8.3265

12 14 2.8478 8.2748

14 14 2.8420 8.2506

14 16 2.8115 8.0862

14 18 2.8055 8.0850

16 18 2.8054 8.0848

16 20 2.8054 8.0830

There are different types of membership functions that one may use such as triangular,

trapezoidal, piece-wise linear or Gaussian functions. Different membership functions such

194



as triangular, square, step could be considered as special cases of the trapezoidal function

and noting that trapezoidal membership functions are easy to implement and modification

and fast in computing, therefore, we used trapezoidal function in this thesis. In order to ob-

tain the numerical values of α(N) and β (N), first for each rule the spool speed is fuzzified

by using the trapezoidal membership functions μ(Mi). These membership functions are

depicted in Figures 4.1 and 4.2, respectively. In the next step for each fuzzy rule the value

of the associated function is computed and weighted based on the degree of membership

of the fuzzy rule. Finally, in defuzzification step the weighted average of the associated

function values are evaluated [156].

Figure 4.1: Trapezoidal functions defining the degree of memberships for α(N).

The fuzzy rules of β (N) are defined by using the engine turbine temperature under

healthy condition. We start this procedure by setting N1 to the lowest acceptable spool

speed and simulate the healthy engine for several times and set b1 to the average value

of turbine temperatures. In the next step we perform simulations to obtain the average

turbine temperature for a spool speed N slightly larger than N1 and try to adjust a1 such

that y1 = a1(N −N1)+ b1 be close to the turbine temperature average value as much as

possible. We use the average of the turbine temperature for the sake of minimizing the
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Figure 4.2: Trapezoidal functions defining the degree of memberships for β (N).

effects of measurement noise. If the difference between y1 and the average value of the

turbine temperature is small enough we repeat this step with a slightly larger spool speed

until selecting a proper value for a1 is not possible longer.

At this stage we select N2 approximately as 2N −N1 and adjust b2 and a2 by following

along the same steps and repeat the procedure until at step n the value of 2N −Nn is larger

than the maximum acceptable spool speed. After selecting all Ni,ai and bi for i = 1, ...,n

we set the parameters of trapezoidal membership functions μMi such that μMi(Ni) = 1 for

i = 1, ...,n, μMi(
Ni+Ni+1

2 ) = 1
2 for i = 1, ...,n−1 and μMn(Nmax) = 1.

In the final step we adjust the slope of the trapezoidal edges of the membership func-

tions such that for any spool speed in the acceptable range, β (N) is close to the average

of engine turbine temperature under healthy condition as much as possible. Similar ap-

proach is also employed to adjust the fuzzy rules of α(N). Towards this end, we consider

a non-healthy model of the engine and start the procedure from the minimum acceptable

spool speed of the engine. At each step the average turbine temperature denoted by Ti from

repeated simulation results are determined and we set bi such that bi

(
Ti

β (Ni)
−1
)

is constant

for all Ni.
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We employ the average of the turbine temperature by repeating the simulations for the

sake of minimizing the effects of measurement noise. Next, we choose a slightly larger

spool speed and adjust ai as much as possible. Then, we choose 2N − Ni as Ni+1 for

the next rule. Finally, we set the trapezoidal membership functions and adjust the slopes

of trapezoids edges such that at any spool speed N in the acceptable range the value of

α(N)
(

T
β (N) −1

)
is the same constant.

By applying the above procedure we set the fuzzy rules that are required to compute

the value of functions α(N) and β (N) as presented in Tables 4.2 and 4.3, respectively.
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Table 4.2: Rule base of α(N)

if N ∈ M1 then y= 1.1875e-4 N + 0.1771

if N ∈ M2 then y=-5.8333e-5 N + 2.0648

if N ∈ M3 then y= 1.2500e-4 N + 0.0870

if N ∈ M4 then y=-2.3667e-4 N + 3.9785

if N ∈ M5 then y=-4.6000e-4 N + 6.4486

Continued on next page
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Table 4.2: Rule base of α(N)

if N ∈ M6 then y=-1.7097e-4 N + 3.2230

if N ∈ M7 then y=-4.7143e-4 N + 6.6693

if N ∈ M8 then y=-1.6923e-4 N + 3.1608

if N ∈ M9 then y= 4.4444e-5 N + 0.6522

Continued on next page

199



Table 4.2: Rule base of α(N)

if N ∈ M10 then y=-1.0781e-4 N + 2.4808

if N ∈ M11 then y=-6.6000e-4 N + 9.4660

if N ∈ M12 then y=-9.4091e-5 N + 2.2224

if N ∈ M13 then y=-1.7421e-4 N + 3.2655

Continued on next page
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Table 4.2: Rule base of α(N)

if N ∈ M14 then y=-1.1648e-4 N + 2.5029

Table 4.3: Rule base of β (N)

if N ∈ M1 then y= 0.1541 N - 993.4353

if N ∈ M2 then y= 0.2557 N - 2077.5

Continued on next page
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Table 4.3: Rule base of β (N)

if N ∈ M3 then y= 0.2413 N - 1922.1

if N ∈ M4 then y= 0.1800 N - 12594

if N ∈ M5 then y= 0.2067 N - 1549.0

if N ∈ M6 then y= 0.3714 N - 3372.9

if N ∈ M7 then y= 0.1258 N - 636.2692

Continued on next page
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Table 4.3: Rule base of β (N)

if N ∈ M8 then y= 0.0994 N - 335.5909

if N ∈ M9 then y= 0.1662 N - 1118.7

if N ∈ M10 then y=0.1383 N - 788.7333

if N ∈ M11 then y=0.1462 N - 882.2235

Continued on next page
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Table 4.3: Rule base of β (N)

if N ∈ M12 then y=0.1619 N - 1075.4

if N ∈ M13 then y= 0.1900 N - 1428.2

if N ∈ M14 then y=0.1782 N - 1279.7

if N ∈ M15 then y=0.2256 N - 1885.8

Continued on next page
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Table 4.3: Rule base of β (N)

if N ∈ M16 then y=0.2296 N - 1937.7

if N ∈ M17 then y=0.2963 N - 2819.0

if N ∈ M18 then y=0.3346 N - 3336.0
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4.2 Case Study Scenarios

In order to compare the prediction performance of the hybrid fuzzy ARIMA method with

that of the other methods, the dynamical model of a single spool turbojet engine presented

in Naderi et al. [13] is used for numerical simulation purposes. In the following simulations

the compressor fouling and the turbine erosion faults with different severities are injected

to the numerical model at different flight numbers. The detailed description of the scenarios

that are used in this chapter has been presented in the previous chapter in the section Case

Study Scenarios.

4.3 Simulation Results

Scenario 1

The standard deviation of the measurement noise is considered as 1 (0.097 percent of the

nominal value of the turbine temperature [13]). Figures 4.3-4.5 depict the results of the

prediction in presence of the same level of measurement noise. The dashed lines show our

upper and lower prediction intervals. The star points in the figure represent actual data

values and the circle points indicate the predicted temperatures. Table 4.4 shows the mean

and the standard deviation of the prediction errors for different number of steps ahead in

presence of measurement noise with the standard deviation of 1.

In order to investigate the effect of measurement noise on the prediction results, each

scenario has been repeated for different value of measurement noise. Figures 4.6-4.8 depict

the results of the prediction in presence of the same level of measurement noise with the

standard deviation of 2. Table 4.5 represents the mean and the standard deviation of the

prediction errors for different number of steps ahead in presence of measurement noise

with the standard deviation of 2.

Figures 4.9-4.11 depict the results of the prediction in presence of the same level of
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Figure 4.3: Five step ahead prediction results by using the hybrid fuzzy ARIMA(4,5) model

for the first scenario in presence of measurement noise with the standard deviation of 1.
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Figure 4.4: Fifteen step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the first scenario in presence of measurement noise with the standard deviation

of 1.
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Figure 4.5: Thirty step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the first scenario in presence of measurement noise with the standard deviation

of 1.
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Figure 4.6: Five step ahead prediction results by using the hybrid fuzzy ARIMA(4,5) model

for the first scenario in presence of measurement noise with the standard deviation of 2.
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Figure 4.7: Fifteen step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the first scenario in presence of measurement noise with the standard deviation

of 2.
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Figure 4.8: Thirty step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the first scenario in presence of measurement noise with the standard deviation

of 2.
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Table 4.4: Mean and standard deviation of the prediction errors for the hybrid fuzzy

ARIMA model for the first scenario in presence of measurement noise with the standard

deviation of 1.

Number of steps ahead Mean Standard deviation

3 1.5898 5.3050

5 2.2132 6.5357

10 3.9363 8.7927

15 5.5561 10.2953

20 7.2075 11.4131

25 8.7952 12.1921

30 10.4087 12.6988

Table 4.5: Mean and standard deviation of the prediction errors for the hybrid fuzzy

ARIMA model for the first scenario in presence of measurement noise with the standard

deviation of 2.

Number of steps ahead Mean Standard deviation

3 2.0553 5.4522

5 2.6387 6.6727

10 4.4626 8.8844

15 6.1130 10.5990

20 7.7925 11.6746

25 9.4988 12.5560

30 11.0795 13.1747

measurement noise with the standard deviation of 5. Table 4.6 shows the mean and the

standard deviation of the prediction errors for different number of steps ahead in presence

of measurement noise with the standard deviation of 5.

As seen in Figures 4.3, 4.6 and 4.9 showing 5 steps ahead prediction results all the

predicted values are within the defined boundaries for all the three level noises. At 120th

and 200th flight cycles for 5 flight cycles, the predicted values are outside the boundaries.

This happens because of the maintenance that was performed at the cycles 120 and 200 in

the first scenario and the compressor got washed. Clearly, the data before the maintenance

action is not sufficient to allow for a reliable prediction subsequent to this action. As the

prediction horizon increases even to thirty, as seen in Figures 4.4 and 4.5 the predicted

values are completely within the boundaries. The same observation is valid for the other
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Figure 4.9: Five step ahead prediction results by using the hybrid fuzzy ARIMA(4,5) model

for the first scenario in presence of measurement noise with the standard deviation of 5.
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Figure 4.10: Fifteen step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the first scenario in presence of measurement noise with the standard deviation

of 5.
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Figure 4.11: Thirty step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the first scenario in presence of measurement noise with the standard deviation

of 5.
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Table 4.6: Mean and standard deviation of the prediction errors for the hybrid fuzzy

ARIMA model for the first scenario in presence of measurement noise with the standard

deviation of 5.

Number of steps ahead Mean Standard deviation

3 3.6567 7.0307

5 4.2665 8.4764

10 6.4593 11.2734

15 8.3005 13.1829

20 10.2857 14.6583

25 12.2357 15.7905

30 13.6965 16.0877

noise levels. However, by increasing the noise level the predicted values become more

scattered within the boundaries.

As compared to the prediction results of the ARIMA and VAR models, hybrid fuzzy

ARIMA model are more accurate even for higher number of steps ahead predictions.

Scenario 2

Figures 4.12-4.14 depict the results of the prediction for the second scenario in presence of

the same level of measurement noise. The dashed lines show our upper and lower prediction

intervals. The star points in the figure represent actual data values and the circle points

indicate the predicted temperatures. Table 4.7 shows the mean and the standard deviation

of the prediction errors for different number of steps ahead in presence of measurement

noise with the standard deviation of 1.

Figures 4.15-4.17 depict the results of the prediction in presence of the same level of

measurement noise with the standard deviation of 2. Table 4.8 shows the mean and the

standard deviation of the prediction errors for different number of steps ahead in presence

of measurement noise with the standard deviation of 2.

Figures 4.18-4.20 depict the results of the prediction in presence of the same level of

measurement noise with the standard deviation of 5. Table 4.9 shows the mean and the
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Figure 4.12: Five step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the second scenario in presence of measurement noise with the standard deviation

of 1.
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Figure 4.13: Fifteen step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the second scenario in presence of measurement noise with the standard deviation

of 1.
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Figure 4.14: Thirty step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the second scenario in presence of measurement noise with the standard deviation

of 1.
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Figure 4.15: Five step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the second scenario in presence of measurement noise with the standard deviation

of 2.
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Figure 4.16: Fifteen step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the second scenario in presence of measurement noise with the standard deviation

of 2.
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Figure 4.17: Thirty step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the second scenario in presence of measurement noise with the standard deviation

of 2.
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Table 4.7: Mean and standard deviation of the prediction errors for the hybrid fuzzy

ARIMA model for the second scenario in presence of measurement noise with the stan-

dard deviation of 1.

Number of steps ahead Mean Standard deviation

3 0.9031 2.4771

5 1.0732 2.8795

10 1.7391 3.9105

15 2.5186 4.7608

20 3.2054 5.4570

25 3.8379 5.9854

30 4.5490 6.4551

Table 4.8: Mean and standard deviation of the prediction errors for the hybrid fuzzy

ARIMA model for the second scenario in presence of measurement noise with the stan-

dard deviation of 2.

Number of steps ahead Mean Standard deviation

3 1.4130 2.6614

5 1.5810 3.0653

10 2.2954 4.1520

15 2.9529 4.9162

20 3.5983 5.6059

25 4.1214 6.0914

30 4.8638 6.5893

standard deviation of the prediction errors for different number of steps ahead in presence

of measurement noise with the standard deviation of 5.

As seen in Figures 4.12, 4.15 and 4.18 showing 5 steps ahead prediction results all

the predicted values are within the defined boundaries for all the three levels of noise.

At 125th and 210th flight cycles for 5 flight cycles, the predicted values are outside the

boundaries. This happens because of the maintenance that was performed at the cycles

125 and 210 in the second scenario and the eroded components have been changed with

the new ones. Clearly, the data before the maintenance action is not sufficient to allow for

a reliable prediction subsequent to this action. In the second scenario, as the prediction

horizon increases to thirty, as shown in Figures 4.4 and 4.5 the predicted values are within

the boundaries although not as good as the first scenario results. The same observation is
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Figure 4.18: Five step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the second scenario in presence of measurement noise with the standard deviation

of 5.
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Figure 4.19: Fifteen step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the second scenario in presence of measurement noise with the standard deviation

of 5.
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Figure 4.20: Thirty step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the second scenario in presence of measurement noise with the standard deviation

of 5.
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Table 4.9: Mean and standard deviation of the prediction errors for the hybrid fuzzy

ARIMA model for the second scenario in presence of measurement noise with the stan-

dard deviation of 5.

Number of steps ahead Mean Standard deviation

3 3.0261 4.1686

5 3.2116 4.5132

10 4.3561 6.0054

15 5.1270 6.8436

20 5.6638 7.3866

25 6.3850 8.0841

30 7.1244 8.6652

valid for the other noise levels. However, by increasing the noise level the predicted values

become more scattered within the boundaries.

Similar to the first scenario, as compared to the prediction results of the ARIMA and

VAR models, the hybrid fuzzy ARIMA model is more accurate even for higher number of

steps ahead predictions.

Scenario 3

Figures 4.21-4.23 depict the results of the prediction for the third scenario in presence of the

same level of measurement noise. The dashed lines show our upper and lower prediction

intervals. The star points in the figure represent actual data values and the circle points

indicate the predicted temperatures. Table 4.10 shows the mean and the standard deviation

of the prediction errors for different number of steps ahead in presence of measurement

noise with the standard deviation of 1.

Figures 4.24-4.26 depict the results of the prediction in presence of the same level of

measurement noise with the standard deviation of 2. Table 4.11 shows the mean and the

standard deviation of the prediction errors for different number of steps ahead in presence

of measurement noise with the standard deviation of 2.

Figures 4.27-4.29 depict the results of the prediction in presence of the same level of
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Figure 4.21: Five step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the third scenario in presence of measurement noise with the standard deviation

of 1.
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Figure 4.22: Fifteen step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the third scenario in presence of measurement noise with the standard deviation

of 1.
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Figure 4.23: Thirty step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the third scenario in presence of measurement noise with the standard deviation

of 1.
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Figure 4.24: Five step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the third scenario in presence of measurement noise with the standard deviation

of 2.
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Figure 4.25: Fifteen step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the third scenario in presence of measurement noise with the standard deviation

of 2.
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Figure 4.26: Thirty step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the third scenario in presence of measurement noise with the standard deviation

of 2.
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Table 4.10: Mean and standard deviation of the prediction errors for the hybrid fuzzy

ARIMA model for the third scenario in presence of measurement noise with the standard

deviation of 1.

Number of steps ahead Mean Standard deviation

3 1.2281 5.2677

5 1.6285 6.2951

10 2.8609 8.5008

15 4.0589 10.2555

20 5.2189 11.5711

25 6.5489 12.7982

30 7.7535 13.8067

Table 4.11: Mean and standard deviation of the prediction errors for the hybrid fuzzy

ARIMA model for the third scenario in presence of measurement noise with the standard

deviation of 2.

Number of steps ahead Mean Standard deviation

3 1.7140 5.3362

5 2.1138 6.2380

10 3.3953 8.3608

15 4.5917 10.1159

20 5.7367 11.4094

25 6.7342 12.5442

30 7.9933 13.5580

measurement noise with the standard deviation of 5. Table 4.12 shows the mean and the

standard deviation of the prediction errors for different number of steps ahead in presence

of measurement noise with the standard deviation of 5.

Figure 4.21 depicts five steps ahead prediction results under the low noise level, where

all the predicted values are within the boundaries and the prediction accuracy is completely

satisfactory. At 150th flight cycle for 5 flight cycles, the predicted values are outside the

boundaries. This happens because of the maintenance that was performed at the cycle 150

in the third scenario and the compressor got washed and the turbine eroded blades were

changed. Clearly, the data before the maintenance action is not sufficient to allow for a

reliable prediction subsequent to this action. By increasing the number of steps ahead the

prediction accuracy is kept even for other noise levels and this can be observed from Figures

235



Figure 4.27: Five step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the third scenario in presence of measurement noise with the standard deviation

of 5.
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Figure 4.28: Fifteen step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the third scenario in presence of measurement noise with the standard deviation

of 5.
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Figure 4.29: Thirty step ahead prediction results by using the hybrid fuzzy ARIMA(4,5)

model for the third scenario in presence of measurement noise with the standard deviation

of 5.
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Table 4.12: Mean and standard deviation of the prediction errors for the hybrid fuzzy

ARIMA model for the third scenario in presence of measurement noise with the standard

deviation of 5.

Number of steps ahead Mean Standard deviation

3 3.4277 6.8423

5 3.9855 8.1131

10 5.8970 10.2022

15 7.1848 11.8886

20 8.4081 13.4111

25 9.7770 14.8535

30 10.7403 15.6441

4.22-4.29.

For the third scenario which is the most complex and realistic scenario, the proposed

hybrid fuzzy ARIMA model has good performance in terms of both prediction horizon and

accuracy.

239



4.4 Comparison of Hybrid Fuzzy ARIMA Approach with

ARIMA and VAR Models

A hybrid fuzzy ARIMA model was developed in this chapter. The turbine temperature and

the spool speed are fused by using a fuzzy inference engine. The time-series generated

from the fused data is given to an ARIMA model for prediction purposes. In order to be

able to compare the performance of the proposed hybrid fuzzy ARIMA with the presented

methods in the previous chapter, the same scenarios under the same noise levels have been

considered.

The qualitative results are presented in Figures 4.3-4.29 and the quantitative results are

presented in Tables 4.4-4.12. Compared to both the univariate ARIMA model and VAR

model, for all the conducted scenarios and under all the noise levels, the hybrid fuzzy

ARIMA model performance is better in terms of its accuracy.

It is worth mentioning that the third scenario in which we considered both the fouling

and erosion phenomena is a more realistic scenario as in real world the engine is always

facing the combination of these two degradation faults. Considering this fact and our re-

sults, one can conclude that the hybrid fuzzy ARIMA model performance is more practical

and applicable as compared to the other two approaches.

4.5 Summary

In this chapter, a hybrid fuzzy ARIMA approach was proposed for performing engine

degradation trend prediction. Towards this end, the procedure in which the turbine exit

temperature and the spool speed measurements are fused by using Takagi-Sugeno fuzzy

inference engine was presented. The rules and the membership functions associated with

the proposed approach were given. Similar scenarios which were used in Chapter 3 were

employed to evaluate the proposed method. Finally, the simulation results and comparison
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between the three time-based methods were provided.
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Chapter 5

Conclusions and Future Work

5.1 Thesis Summary

In this thesis the problem of engine degradation trend prediction has been addressed by

using three types of time-series based techniques namely, ARIMA, VAR and hybrid fuzzy

ARIMA models. The effects of the compressor fouling, the turbine erosion and their com-

bination as two important reasons of slow degradation in the engine have been investigated

and the engine degradation trend due to these phenomena have been predicted. A proper

prognostics scheme should be capable of projecting the future state and trend of the identi-

fied faults by the FDI scheme on system performance. Moreover, it is required to be able

to predict the future condition of the system early enough for the sake of reliability and

safety. As mentioned in the first chapter, time-series approaches are delivering promising

techniques for short time trend prediction purposes [128, 129, 130].

The required data for performing the engine degradation trend prediction were gener-

ated by using a Simulink model [13] that is integrated with models of the aforementioned

degradations [18]. First, a controller has been designed to control the EPR level of the

engine in the take off phase of the flight. Then, the generated data from the engine under

different degradations with different severities are formed as the time-series data which
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were fed into the proposed time-series based prognostics approaches. The turbine tem-

perature as the most important parameter of the gas turbine engine was considered as the

engine’s health indicator.

The proposed VAR model was constructed by using the turbine temperature and the

compressor temperature measurement of the engine. The prognostics results showing the

prediction values of the turbine temperature trends have been compared with the conven-

tional ARIMA model. In the scenarios dealing with no combination of the fouling and

erosion, the ARIMA model has better performance in terms of the number of steps ahead.

However, for complex and more realistic scenarios in which there are combinations of both

fouling and erosion, the VAR model performance was better in terms of the prediction

accuracy.

The third time-series model namely, hybrid fuzzy ARIMA model was constructed by

fusing the turbine exhaust temperature and the spool speed via a Takagi Sugeno fuzzy

inference engine. Compared to the ARIMA and VAR models, the hybrid fuzzy ARIMA

model had better performance in terms of prediction accuracy (mean and standard deviation

of the error) for all different scenarios and noise levels. This is due to the flexible nature of

the fuzzy method which allows to have more robust prediction results.

One of important challenges in prediction algorithms are how we deal with uncertain-

ties. In this thesis, we have defined confidence bounds based on the normal theory with a

given confidence level of 95%. Defining the upper and lower bounds instead of emphasiz-

ing on the exact predicted values is more realistic for practical applications.

5.2 Suggestions for Future Work

The ultimate goal and future trend in the gas turbine engine health monitoring area is mov-

ing towards developing intelligent engines [98] which are thoroughly automated including

self-diagnostics systems along with prognostics capabilities. Towards this end, and based
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on the works that have been done in this thesis and the obtained results, some of the poten-

tial areas of study and work are suggested as follows:

• In this thesis we have used the gas path measurements for gas turbine engine degradation

trend prognostics by using time-series approaches. One of the challenges in time-

series modeling and other data-driven methods are employing the most informative

data of the system. In VAR approach we employed the turbine exit temperature and

the compressor temperature measurements and for hybrid fuzzy ARIMA method, we

used the spool speed and turbine exit temperature. Developing effective data mining

algorithms to refine the entire raw data without loosing the information can boost the

effectiveness of this work.

• Available failure prognostics schemes are dealing with determining and evaluating the

future state and ultimately the remaining useful life of a component or a subsystem

of the system under study. Because proposing a unique scheme covering all the

components of the system along with considering their interactions on one another is

a challenging area and needs to advance in the software developing area. Developing

information/data fusion techniques is a growing field for study.

• Despite the fact that the turbine exhaust temperature is the most important measurement

parameter of the engine for inspection and monitoring purposes, employing other

measurements can improve the accuracy of the monitoring and prognostics results.

In this thesis data fusion by using an fuzzy approach was conducted and the improve-

ments in the prediction results have been achieved. One may use neural networks in

order to perform this data fusion and then compare the results.

• In this thesis recursive prediction error method was employed for estimating the ARIMA

and VAR model parameters. One can use other techniques such as support vector

machines, different neural networks such as radial basis function and dynamic neural
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networks for estimating the model parameters. Some of these have already been

implemented on the engines but not for the type of degradations we are dealing within

this thesis.

• In order to be able to compare the efficiency of our methods in real world, one may apply

the proposed methods to some existing practical data available in the prognostics data

repository part of the NASA which are available in [171]. Another advantage of using

these practical data is in being able to have access to the run-to-failure data which is

necessary for determining the remaining useful life time of the system.

• Finally, the proposed prognostics methods in this thesis can be combined with a well-

designed fault diagnostics scheme to form a complete and comprehensive health sys-

tem monitoring for the gas turbine engine. Fault diagnostics schemes will be de-

tecting the slow dynamic degradation in the engine and our prognostics scheme can

predict the trend of these degradations which will then be used for condition-based

maintenance system.
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