
Agent-Based Modeling and Simulation of Earthmoving

Operations

Ahmad Jabri

A Thesis

In the Department of

Building, Civil and Environmental Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

The Master of Applied Science (Building Engineering) at

Concordia University

Montreal, Quebec, Canada

July, 2014

© Ahmad Jabri, 2014

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Ahmad Jabri

Entitled: Agent-based Modeling and Simulation of Earthmoving

Operations

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Building Engineering)

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

_________________________________Chair

Dr. O. Moselhi, Chair

_________________________________External Examiner

Dr. S. Tahar

_________________________________BCEE Examiner

Dr. S. Rahaman

_________________________________BCEE Examiner

Dr. O. Moselhi

_________________________________Supervisor

Dr. T. Zayed

Approved by _________________________________

Chair of Department or Graduate Program Director

Dean of Faculty

Date _________________________________

iii

ABSTRACT

Agent-Based Modeling and Simulation of Earthmoving Operations

Ahmad Jabri

Simulation has been used in construction modeling for decades, especially in

large scale operations, such as earth moving, where heavy and costly equipment is used.

Simulation can be used as a planning tool to analyze the time and cost of earthmoving

operations. Current methods used in simulating earthmoving operations are based on

Discrete-Event Simulation (DES), with recent efforts to introduce System Dynamics

(SD) in a hybrid DES-SD approach. However, due to the predetermined nature of

Discrete-Event Simulation (DES) models, some inflexibility is experienced when

modeling earthmoving operations, which translates into a higher degree of difficulty in

regards to model creation and a reduced accuracy of outputs. Although the introduction

of System Dynamics (SD) contributed significantly to accounting for qualitative factors

and strategic aspects of earthmoving operations, there still exists a need for enhancing the

accuracy of capturing the logistics of these operations in a smart and flexible manner.

With the advancement of computational capabilities, Agent-Based Modeling and

Simulation (ABMS) is rapidly replacing the conventional simulation techniques. This

thesis introduces Agent-Based Modeling and Simulation (ABMS) as an effective tool for

modeling earthmoving operations. First of all, it provides a generic methodology

introduced for creating Agent-Based models for construction operations, based on a set of

rules and criteria. Then, an Agent-Based (AB) model for earthmoving operations

consisting of bulldozers, loaders, haulers and spotters is developed. The model in

iv

question governs the process logistics, information sharing, equipment properties as well

as activity durations. Finally, a Java-Based software application (ABSEMO) is developed

as an implementation of the proposed Agent-Based (AB) simulation model. Overall, the

desired outcome is to create a smart system that has a flexible logic in addition to a good

representation of model operations.

A real-life case study of a riverbed excavation in a dam construction project is

simulated using ABSEMO and the results are compared with those obtained from

Discrete-Event Simulation (DES) models for verification. A percentage difference of

0.42% from the DES results was finally obtained, indicating that the model’s logic and

flow of resources are indeed accurate. The proposed Agent-Based (AB) methodology and

the developed model aim at enhancing current practices of modeling earthmoving

operations by looking at these operations from an individual Agent-Based (AB)

prospective. This allows the capturing of realistic behaviors, through crafting agents’

attributes, roles and interactions. The proposed methodology can be extended to general

applications in construction management, where heterogeneity can be accounted for

through replicating the different participants of construction projects in Agent-Based

(AB) models as well as studying the emergent behavior of their interactions on the

system.

v

ACKNOWLEDGEMENT

Foremost, all praises and thanks are due to Allah for giving me the patience and

determination to successfully accomplish my MASc. program.

Furthermore, my sincerest gratitude goes to my supervisor Professor Tarek Zayed

for the valuable comments, remarks and constant engagement throughout the learning

process of this master’s thesis. I would like to thank him for introducing me to the topic

as well as for his appreciated support along the way. His kind gestures, tolerance and

valued observations played a crucial role in the fulfillment of this work.

I wish to express my appreciation to my dear friend Karim Orabi for his

continuous help and sharp remarks which assisted me in enhancing my model and

strengthening its capabilities.

In addition, I would like to thank my loved ones, who have supported me

throughout the entire process, by keeping me focused and helping me put all the pieces

together. I will be forever grateful for my mother Sausan, my father Amer, my sister

Hadoun and my brother Hassan for being there for me whenever I needed them and for

being the wonderful family that they are.

vi

TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

LIST OF ABBREVIATIONS ... xiii

CHAPTER 1: INTRODUCTION .. 1

1.1 General Overview .. 1

1.2 Problem Statement ... 3

1.3 Research Objectives ... 4

1.4 Research Methodology ... 5

1.5 Thesis Organization.. 5

CHAPTER 2: LETIRATURE REVIEW ... 8

2.1 Chapter Overview .. 8

2.2 Simulation Techniques ... 9

2.2.1 Discrete-Event Simulation (DES) ... 12

2.2.2 Limitations of the Discrete-Event Simulation Technique 14

2.2.3 System Dynamics (SD) ... 16

2.2.4 Limitations of the SD Technique .. 26

2.3 Simulation in Construction Management ... 26

2.3.1 Discrete-Event Simulation (DES) Applications ... 27

2.3.2 System Dynamics Applications .. 31

2.3.3 Hybrid Simulation Applications ... 33

2.3.4 Earthmoving Simulation Practices .. 34

2.4 Agent-Based Modeling and Simulation (ABMS) .. 35

2.4.1 ABMS Methodology ... 36

2.4.2 ABMS Applications in Civil Engineering and Construction Management 44

2.5 Summary and Limitations of Literature ... 48

CHAPTER 3: METHODOLOGY .. 50

vii

3.1 Chapter Overview .. 50

3.2 A Procedure for Creating AB Models for CM Applications 51

3.2.1 Environment Recognition ... 54

3.2.2 Participant Identification ... 55

3.2.3 Participants’ Characteristics Determination ... 56

3.2.4 Process Understanding .. 57

3.2.5 Interaction Mechanism and Stages Identification 57

3.2.6 Characteristics Influence on Interaction ... 58

3.2.7 Agent Objects and Non-Agents Objects ... 59

3.2.8 Modeling Tool Determination .. 60

3.3 A Comprehensive AB Model for Earthmoving Operations 60

3.3.1 The Scope of the Model .. 61

3.3.2 The Creation of Agents ... 64

CHAPTER 4: IMPLEMENTATION ... 82

4.1 Chapter Overview .. 82

4.2 Main Class .. 83

4.2.1 Earthmoving Environment .. 85

4.2.2 Agent Populations ... 86

4.2.3 Agents’ Queues ... 87

4.2.4 Model Run Control ... 88

4.2.5 Results and Analysis ... 89

4.3 Agent Classes ... 91

4.3.1 The Bulldozer Agent ... 92

4.3.2 The Loader Agent ... 94

4.3.3 The Hauler Agent .. 97

4.3.4 The Spotter Agent ... 100

4.4 Graphical User Interface (Java Application) .. 101

4.5 Reporting of Results ... 106

4.6 System Verification .. 109

4.6.1 Case Study Description ... 110

viii

4.6.2 Scope of Work .. 110

4.6.3 Fleet Selection and Configuration .. 112

4.6.4 DES Simulation Results .. 113

4.6.5 ABMS Simulation Results .. 115

4.6.6 Comparison between DES and ABMS Results .. 116

4.7 Superiority of ABMS ... 117

4.8 Implementation of ABMS in Other CM Areas .. 118

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 120

5.1 Summary and Conclusions ... 120

5.2 Research Contributions .. 122

5.3 Research Limitations .. 122

5.4 Future Work and Recommendations .. 123

REFERENCES .. 125

APPENDIX A .. 132

APPENDIX B .. 137

ix

LIST OF FIGURES

Figure 1-1: Research methodology ... 7

Figure 2-1: Literature review areas ... 8

Figure 2-2: Simulation of real world problems (Borshchev and Filippov 2004) 10

Figure 2-3: Simulation techniques (Alzraiee et al. 2012) ... 11

Figure 2-4: DES bank service example (Borshchev and Filippov 2004) 13

Figure 2-5: System state update in DES and continuous simulation (Alzraiee 2013) 16

Figure 2-6: CLD of ‘work to do’ for a typical construction operation (Alzraiee 2013) ... 23

Figure 2-7: Stocks and Flow Diagramming (SFD) (Alzraiee 2013)................................. 24

Figure 2-8: System state computation in SD (Alzraiee 2013) .. 25

Figure 2-9: SFD and associated equations (Alzraiee 2013).. 25

Figure 2-10: A typical agent in AB models (Macal and North 2010) 39

Figure 2-11: AB simulation model of Conway’s Game of Life (Chan et al. 2010) 42

Figure 2-12: Boids simulation (initial random configuration) (Macal and North 2008) .. 43

Figure 2-13: Boids simulation (after 500 updates) (Macal and North 2008) 43

Figure 2-14: Agents in an infrastructure AB model ... 47

Figure 3-1: Methodology breakdown ... 51

Figure 3-2: Procedure for developing AB Models in construction management 52

Figure 3-3: Color legend for agents’ state charts .. 64

Figure 3-4: Bulldozer’s state chart .. 67

Figure 3-5: Loader’s state chart .. 72

Figure 3-6: Hauler’s state chart ... 78

Figure 3-7: Spotter’s state chart .. 80

Figure 3-8: Summary of agents’ interactions in the proposed earthmoving AB model ... 81

Figure 4-1: Implementation breakdown .. 83

Figure 4-2: Earthmoving Environment ... 85

Figure 4-3: Bulldozer’s state chart in ABSEMO ... 92

Figure 4-4: Loader’s state chart in ABSEMO ... 94

Figure 4-5: Hauler’s state chart in ABSEMO .. 97

Figure 4-6: Spotter’s state chart in ABSEMO ... 100

x

Figure 4-7: Welcome page of ABSEMO ... 103

Figure 4-8: Earthmoving environment in ABSEMO ... 103

Figure 4-9: Material input in ABSEMO .. 104

Figure 4-10: Equipment and labor input in ABSEMO .. 104

Figure 4-11: Model run control in ABSEMO .. 105

Figure 4-12: 2-D snapshot of model run in ABSEMO .. 105

Figure 4-13: 3-D snapshot of model run in ABSEMO .. 106

Figure 4-14: Equipment utilization statistics in ABSEMO ... 107

Figure 4-15: Bulldozers detailed utilization statistics in ABSEMO 107

Figure 4-16: Loaders detailed utilization statistics in ABSEMO 108

Figure 4-17: Haulers detailed utilization statistics in ABSEMO 108

Figure 4-18: Spotters detailed utilization statistics in ABSEMO 109

Figure 4-19: Location of Sainte-Marguerite-3 dam (Hydro Quebec 2003) 111

Figure 4-20: Sainte-Marguerite-3 dam (Hydro Quebec 2003) 111

Figure 4-21: EZStrobe DES model of riverbed excavation in the Sainte-Marguerite dam

construction project (Alzraiee 2013) .. 113

xi

LIST OF TABLES

Table 2-1: DES chronological list example .. 14

Table 2-2: Denotations for Causal Loop Diagramming (Sterman 2000) 21

Table 2-3: CYCLONE modeling elements (Halpin 1976) ... 28

Table 2-4: Literate review on SD applications in construction management 32

Table 3-1: Earthmoving operations’ participants and their properties 56

Table 3-2: Proposed AB model participants ... 62

Table 3-3: Agents’ attributes and variables in the proposed AB model 63

Table 3-4: Bulldozers’ attributes and variables .. 66

Table 3-5: Bulldozer’s state chart transitions ... 68

Table 3-6: Loader’s attributes and variables ... 70

Table 3-7: Loader’s state chart transitions .. 74

Table 3-8: Hauler’s attributes and variables ... 77

Table 3-9: Hauler’s state chart transitions .. 79

Table 3-10: Spotter’s attributes and variables .. 80

Table 3-11: Spotter’s state chart transitions.. 81

Table 4-1: AnyLogic elements used in ABSEMO... 84

Table 4-2: Agent populations’ elements in ABSEMO .. 86

Table 4-3: Agent queues’ elements in ABSEMO .. 87

Table 4-4: Model run control in ABSEMO ... 88

Table 4-5: Results and Analysis in ABSEMO ... 89

Table 4-6: Bulldozer class elements in ABSEMO... 92

Table 4-7: Loader class elements in ABSEMO ... 95

Table 4-8: Hauler class elements in ABSEMO ... 98

Table 4-9: Spotter class elements in ABSEMO ... 100

Table 4-10: Scope of work in in the SM-3 dam construction earthmoving operations

(Alzraiee 2013) ... 112

Table 4-11: Hauler and loader fleet configurations in the SM-3 dam construction

earthmoving operations (Alzraiee 2013) .. 114

xii

Table 4-12: Spread and compact equipment characteristics in the SM-3 dam construction

earthmoving operations (Alzraiee 2013) .. 114

Table 4-13: A comparison between DES and ABMS Results for the SM-3 Riverbed

Excavation... 116

Table A-1: Agent populations’ elements in ABSEMO (Java code) 132

Table A-2: Agent queues’ elements in ABSEMO (Java code) .. 134

Table A-3: Model run control in ABSEMO (Java code) ... 134

Table A-4: Results and Analysis in ABSEMO (Java code) ... 135

Table A-5: Bulldozer class elements and transitions in ABSEM (Java code) 137

Table A-6: Loader class elements and transitions in ABSEMO (Java code) 143

Table A-7: Hauler class elements and transitions in ABSEMO (Java code) 152

Table A-8: Spotter class elements and transitions in ABSEMO (Java code) 162

xiii

LIST OF ABBREVIATIONS

AB Agent-Based

ABMS Agent-Based Modeling and Simulation

ABSEMO Agent-Based Simulator for Earthmoving Operations

AI Artificial Intelligence

CLD Causal Loop Diagram

CM Construction Management

CYCLONE Cyclic Operation Network

DES Discrete-Event Simulation

DISCO Dynamic Interface Simulation for Construction Operation

FIFO First-In-First-Out

GUI Graphical User Interface

HiSim Hybrid Simulation

HSM Hierarchical Simulation Modeling

KEYSTONE Knowledge Discovery Based Simulation System

RBM Resource-Based Modeling

SD System Dynamics

SFD Stocks and Flows Diagram

SM-3 Sainte Marguerite Three

WBS Work Breakdown Structure

1

CHAPTER 1: INTRODUCTION

1.1 General Overview

Primarily, simulation is the attempt to imitate a real-life or hypothetical situation

(Banks et al. 2000), which provides a powerful tool to experiment and plan operations

before the actual execution. The latter is done in an effort to avoid time delays and cost

overruns. Creating a successful simulation model often leads to more realistic planning

and more accurate estimation of the required resources. One of the most common

applications of simulation in the construction industry is the simulation of earthmoving

operations. Since these operations are typically lengthy in duration and fall on the critical

path of construction projects, accurate planning is crucial in ensuring the success of such

projects. In addition, earthmoving operations are often considered equipment-intensive,

utilizing large fleets of trucks, loaders, bulldozers, etc.

Due to time and cost constraints, an efficient use of resources is a vital objective

for contractors in projects involving such operations (Moselhi and Alshibani 2009). The

cyclic nature of earthmoving operations and the type of work tasks involved in such

operations make the simulation process a valid planning tool where good forecasting of

productivity and costs are expected (Touran 1990). There are numerous applications of

simulation of earthmoving operations available in literature.

The most common simulation techniques are Discrete Event Simulation (DES),

System Dynamics (SD) and Agent-Based Modeling and Simulation (ABMS). Although

these three types have all been used in construction management applications, the

application of simulation is still limited in this field (Marzouk and Moselhi 2003). In

2

regards to DES, it is by far the simulation technique with the most applications in

construction management. This is due to the fact that DES was the first to be introduced

to construction operations (Halpin 1977). Furthermore, the nature of DES provides, in

most cases, a sufficient solution to modeling most construction operations, especially on

the operational and technical level. To address the decision-making aspect of construction

management, recent efforts suggested the utilization of SD to address the complex

strategic level when simulating construction operations (Alzraiee et al. 2012).

In this thesis, the simulation technique that is going to be used will be of the third

type, which is ABMS. The latter is the newest simulation field (Schelling 1971) that

offers solutions to overcome many limitations of current simulation practices. ABMS is

based on the idea of simulating the interactions of autonomous objects, in order to

identify, explain, generate and design emergent behaviors (Chan et al. 2010). Basically,

ABMS is a bottom-up modeling approach, where individual participants of the operation

are modeled and given attributes and roles to reach an emergent behavior of the whole

system (Macal and North 2008). Conveniently, the main advantage of using ABMS is the

ability to create a system of smart agents that adapt with varying conditions and act

accordingly to capture the real behavior of the system being studied. The latter is done

without the need to make assumptions or direct the model in a way which is acceptable

by the capacities of the simulation technique. ABMS is gaining the interest of many in

multiple fields, especially those related to supply chains and consumer behavior (Garcia

2005). This is due to the fact that the capabilities of ABMS fit quite well the requirements

of modeling individuals’ behavior in consumer markets. However, the applications of

ABMS in construction management are still limited and few in number (Ren and

http://scholar.google.ca/citations?view_op=search_authors&mauthors=Hani+Alzraiee&hl=en&oi=ao

3

Anumba 2003, Tah 2004, Bernhardt and McNeil 2008, Min and Bjornsson 2008, El-

Adawy and Kandil 2009, Osman 2012).

1.2 Problem Statement

There is a need to incorporate Agent-Based (AB) technologies with significant

construction operations such as earthmoving. This must be completed in a smart and

flexible paradigm that accepts various types of data, maintains a presentable view of

model operation and analysis and produces accurate results. This research aims at

rebuilding the methodology of creating earthmoving simulation models, based on the AB

approach.

While the application of simulation in earthmoving remains a well-researched

area (Touran 1990, Oloufa 1993, Martinez 1998, AbouRizk and Hajjar 1998, Smith et al.

2000), all previous work is based solely on a DES or on a DES-SD hybrid system

(Alzraiee et al. 2012). Even presently, simulation models often lack graphical modeling

support, which is the key of model definition and manipulation (Hajjar et al. 2002). In

addition, building and validating SD models is time consuming, requires modeling skills

and is heavily dependent on conceptual models as well as the availability of detailed data

(Alzraiee 2013).

Other limitations arise from the fact that the developed models behave in a

predetermined manner, mainly due to the nature of DES and SD. Although various

efforts succeeded in overcoming some of these limitations, these efforts were scattered in

various research works and were never gathered in one complete system. Consequently,

http://scholar.google.ca/citations?view_op=search_authors&mauthors=Hani+Alzraiee&hl=en&oi=ao

4

this is where ABMS comes into play as a modeling tool that can deliver a comprehensive

system for modeling and simulating earthmoving operations.

Drawbacks and limitations of current research can be briefly encapsulated as follows:

 Earthmoving models are often inflexible in accepting different types of data; such

as the case when having trucks` capacities that are not multiples of loaders’

capacities.

 Often, earthmoving models have a predetermined behavior. This can be clearly

observed in the truck loading process, where trucks are always loaded to their full

capacities.

 Most earthmoving models are inflexible in modeling equipment capacities and

properties. For instance, when having two or more trucks with different capacities

in the same earthmoving model, properties cannot be directly established.

 Earthmoving models, similar to other DES-based models, require visualization

when implementing. As the earthmoving operation becomes more complicated,

its visualization becomes more difficult.

 Hybrid DES-SD models that rely on DES for the operational level will have the

same previous technical limitations, in addition to the SD part requiring detailed

sets of data, large amount of time and specialized modeling skills.

1.3 Research Objectives

The general objective of this thesis is the introduction of ABMS into earthmoving

operations for the purpose of overcoming limitations of current research work and

5

enhancing current practices. This general objective can be broken down into the

following sub-objectives:

 Generate a procedure for creating AB models, which can be used for construction

management applications.

 Develop a detailed AB model for earthmoving operations, which captures the

properties and interactions of model elements.

 Design a stand-alone ABMS software system for earthmoving operations and

verify the model using a real-world case study.

1.4 Research Methodology

A generic flow chart that summarizes the research methodologies and major tasks

is depicted in Figure 1-1. Major components and contributions are highlighted in grey.

Primarily, the literature will be reviewed on the basis of different simulation techniques,

applications of simulation in construction management and the ABMS technique.

Afterwards, the methodology section, which presents a generic procedure for building

AB models for construction management applications and a comprehensive AB model

for earthmoving operations, will be outlined in detail. Finally, the implementation of the

proposed model will be presented and followed by the verification of the implemented

system.

1.5 Thesis Organization

This thesis is comprised of five chapters. Chapter 1 is an introduction to the topic

which includes the problem statement, research objectives and the thesis organization.

6

Chapter 2 summarizes the literature review on the state-of-the-art techniques related to

this research work. It discusses areas related to computer simulation, applications of

simulation in construction management, current earthmoving simulation techniques and

an elaborate review on the AB methodology. In Chapter 3, the methodology of producing

AB models is provided, followed by the development of the proposed earthmoving

simulation model. Chapter 4 represents the implementation of the proposed model in a

stand-alone software application, while explaining the various elements of the application

and their uses. Finally, Chapter 5 outlines the conclusions and recommendations of this

research work at-hand.

7

AB model of

Earthmoving

Opertations

 Procedure for Building

AB Models for CM

applications

System

 Verification

Stand-Alone

System

(ABSEMO)

Case

Study

Methodology

Implementation

Literature Review

Agent-Based

Modeling and

Simulation

Simulation

Techniques

Simulation in

CM

Figure 1-1: Research methodology

8

CHAPTER 2: LETIRATURE REVIEW

2.1 Chapter Overview

This chapter is dedicated to summarizing the literature that was visited prior to the

model development and implementation. It mainly aims at highlighting different

simulation techniques, going over simulation practices used in construction management

in general and earthmoving operations in particular and explaining the AB Methodology

in detail. Figure 2-1 depicts the different literature review areas of this thesis.

Literature Review

Agent-Based

Modeling and

Simulation

Simulation

Techniques

Discrete-Event

Simulation

CM

applications

AB

Methodology

System

Dynamics

Simulation in CM

Earthmoving

Applications

General

Applications

Figure 2-1: Literature review areas

Section 2.2 gives an overview about different simulation techniques. It discusses

Discrete-Event Simulation (DES) and its limitations, as well as System Dynamics (SD)

and its limitations. Furthermore, Section 2.3 demonstrates the application of simulation in

construction management. It includes the applications of DES, SD and Hybrid DES-SED

9

in the construction industry. In addition, this section demonstrates the current practices of

simulating earthmoving operations as well as some general and special purpose

simulation software. In Section 2.4, the ABMS methodology is thoroughly explained.

Major AB components, such as agents, environments, interactions and emergence, are

broken down and explained in detail. Also, some ABMS applications, in construction

management, are highlighted. Section 2.5 summarizes the literature review and points out

some gaps and limitations of current research.

2.2 Simulation Techniques

Different areas have witnessed the application of simulation including the

manufacturing, industrial, environmental and construction fields (Banks et al. 2000).

Simulation was defined by Shannon (1992) as “the process of designing a model of a real

system and conducting experiments with this model for the purpose of either

understanding the behavior of the system and/or evaluating various strategies for the

operation of the system.” Hence, simulation is a preplanning tool to help regulate

resources, mitigate risk and forecast durations and costs. In relation, Figure 2-2

demonstrates how simulation can help reach a solution for a real-world problem without

the need of experimenting.

10

Figure 2-2: Simulation of real world problems (Borshchev and Filippov 2004)

Computer simulation refers to simulation models being run on computers to

acquire different sets of analysis and results. Simulation models can be classified

according to various independent pairs of attributes. The most famous of the latter are:

 Deterministic or stochastic; deterministic models are based on constant variables,

while stochastic models include randomness. One of the most crucial uses of

simulation is its ability to account for randomness and inaccuracy. This is why

complex simulation models mostly fall under the stochastic type.

 Static or dynamic; static models are those that represent static environments,

while dynamic models are those characterizing dynamic operations. The

simulation of construction operations is clearly an example of dynamic

simulation.

 Discrete or continuous; this is the most important classification when it comes to

computer simulation models. It is related to the changing nature of variables with

respect to time during the simulation run. The change in these variables over the

simulation time can be discrete, continuous or a combination of both.

11

When variables change in a discrete manner, the system is referred to as a

Discrete-Event Simulation (DES) System. A DES model depicts the operation of a

system as a sequential order of events called the chronological list. In DES, a change in a

variable occurs as an event at a specific point in time, marking a change of state in the

system (Halpin and Riggs 1992). On the other hand, in continuous simulation models,

variables change over a period of time and not instantaneously at specific points in the

simulation run time. This change is performed using a set of mathematical equations.

Also, in DES models, time progresses by time steps; while in continuous

simulation models, time advances constantly. In combined simulations systems, changes

in variables occur instantaneously at certain simulation points in time and continuously at

others. Hence, time in such systems advances by steps or constantly depending on the

change type of variables. SD is an example of a continuous simulation technique. Figure

2-3 demonstrates the change in the dependent variable with time in discrete, continuous

as well as combined simulation.

Figure 2-3: Simulation techniques (Alzraiee et al. 2012)

12

2.2.1 Discrete-Event Simulation (DES)

The DES technique focuses on a list of events which occur instantaneously,

changing the state of the system. This same list is updated every time an event occurs.

DES models a system as a network or a flow diagram of a collection of queues and

processes, where changes in the system occur at distinct points in time (Brailsford and

Hilton 2001). Overall, in DES, entities involved in the process being modeled are treated

as passive objects. They can represent people, equipment, organizations, documents,

tasks, messages, etc.

These entities travel through the DES flowchart where they stay in queues, get

processed and then release resources (Borshchev and Filippov 2004). Basically, an entity

flows through a DES model, seizing resources to perform different tasks, and releasing

these resources once the work task has been completed. But, if these resources are busy

and unavailable when the entity requires them to complete the work task, the entity will

pause and be delayed in a queue until the required resources become available again.

Once an event is performed, an object called the simulation clock steps right to the time

when that event was accomplished. Afterwards, this information is stored in a

chronological list based on the order of occurrences.

Figure 2-4 illustrates an example of a DES system. The model describes the cycle

a customer undergoes, from the time they enter into the bank until the time they leave. It

demonstrates how customers pass through the flow diagram based on the needs of their

visit. Moreover, tellers here are used as resources which customers can seize when they

require a teller service. However, the authors chose not to use ATMs as resources;

13

instead, ATMs are just implanted in the system in a form of vacant spaces that can be

filled with customers. It is also clear in this model how queues are embedded in processes

instead of being separated in two different entities. The latter are all conventions of the

authors. DES models can be built in different ways as shall be seen later in this chapter.

Figure 2-4: DES bank service example (Borshchev and Filippov 2004)

As an example, a chronological list of this bank`s operations is depicted in Table

2-1. As can be observed in the table, events are ranked based on their order of

completion. During twelve minutes of the bank service, three customers have arrived,

one customer has used the ATM, two customers have used the teller service and one

customer has exited the bank. This is a very simple example of a chronological list,

which is demonstrated for the purpose of understanding how the technique works and

how entities travel and seize resources in simulation.

14

Table 2-1: DES chronological list example

Activity Duration Tend (min)

Customers

Arrive
0 0

Use ATM 3 3

Teller service 5 8

Customers

Arrive
0 8

Customers

Exit
1 9

Customers

Arrive
0 9

Teller service 4 12

2.2.2 Limitations of the Discrete-Event Simulation Technique

Since DES is a simulation approach that involves the process of creating a

computer model and applying the DES methodology to it, limitations of both the

technique itself and the developed model are expected. As a simulation technique, DES

has some limitations which were previously highlighted by researches. One major

limitation of DES is that it cannot quite capture the external factors that influence the

operation that is being modeled.

15

Also, DES does not have the aptitude of determining the modeled system’s

stability in the surrounding environment. Hence, the performance of the system could,

due to its surrounding environment, be driven by hidden causal relationships that could

be non-linear (Helal 2008). This is because the strategic aspect of any operation is often

qualitative and continuous in nature, in turn creating challenges when applying DES to

model such an aspect (Zulch et al. 2002).

Other researchers state that DES encounters a lot of difficulties in accounting for

the overall strategy of the project or operation being modeled, due to its time step

advancement mechanism (Martin and Raffo 2001). In addition, even on the operational

level, DES fails to deliver a clear representation of the state of the system between

consecutive events and time steps. Alzraiee (2013) demonstrated the latter through the

example shown in Figure 2-5. This figure portrays three consecutive events (E1, E2 and

E3) that occur at three sequential times (T1, T2 and T3). At the starting point of the

simulation, time is at zero (T0) and the state of the system is S0. When event E1 occurs,

the simulation clock is advanced to T1 and the system`s state changes to S1.

 Similarly, the occurrence of events E2 and E3 at times T2 and T3 changes the

system state to S2 and S3 consecutively. The purpose of illustrating this figure is to

highlight the state of the system in DES between two different but consecutive states. The

zero-slope line (A) between events E1 and E2 and events E2 and E3 demonstrates how the

state of the system between two consecutive events in DES remains constant. The state of

the system after the occurrence of event E1 becomes S1 and stays this way until event E2

occurs. The latter is also the case between events E2
 and E3. So, the state of the system

16

between times T0 and T1, T1 and T2, and T2 and T3 is not updated. As an alternative, the

state of the system is only updated once the next scheduled event occurs.

Figure 2-5: System state update in DES and continuous simulation (Alzraiee 2013)

On the other hand, this major limitation of DES, which is associated with the

behavior of the technique itself, limits the full understanding and representation of the

actual state of the system being modeled and the interaction between the system’s entities

and parameters. Correspondingly, this limitation can lead to delays in taking corrective

measures due to any deviation that may occur based on what is planned to happen in the

operation (Alzraiee 2013). Curve B forms an expected representation of the actual state

of the system without adhering to the time step principle of DES.

2.2.3 System Dynamics (SD)

 In continuous simulation, change is governed by a set of differential equations,

which can be formulated in a conceptual model that represents the system on an abstract

level. Continuous simulation is often deterministic, simple and requires less data in order

to develop a working model. However, the more complex the continuous simulation

17

model becomes, the more complex the differential equations associated to it become

(Alzraiee 2013).

 The most famous type of continuous simulation is System Dynamics (SD). Unlike

DES, variables involved in an SD simulation model change in a continuous fashion.

Thus, the state of the system changes in a continuous fashion as well. SD was first

introduced by Jay Forrester in 1961 in a book titled “Industrial dynamics” (Forrester

1961). It was then considered as a new modeling and planning approach aiming at

solving complex problems in social systems related to the industrial sector. Also, SD is

based on the principle that the overall behavior of the system is determined by its

structure. For instance, systems requiring holistic consideration as well as feedback loops

among their participants have been successfully modeled using SD (Alzraiee 2013). SD

has been used in many disciplines, especially those related to social, economic,

engineering, environmental, as well as management problems (Wolstenholme 1990).

Researchers believe that SD constitutes an elaborate extension on continuous simulation

aiming at addressing the complexity of systems and nonlinearity of feedback processes. It

is basically an approach utilized to solve problems at top management levels (Sterman

2000, Lyneis 2001).

 Involving both “soft” and “hard” data, considering the project as a whole rather

than a sum of individual elements, examining non-linear scenarios of element interaction

and the failure of the conventional DES tools to address the project management aspect

of systems are all motivations behind utilizing SD as a modeling tool for different

applications (Rodrigues and Bowers 1996, Sterman 2000).

18

 Sterman (2000) developed a methodology of five steps for modeling a system

using SD. Firstly; it begins with understanding the system, where the modeler should

break the system into smaller components for a better visualization and understanding of

its overall behavior. The second step is conceptualization, where feedback loops are

identified and theories related to the behavior of the system at-hand are studied. The third

step is the formulation of the simulation model at-hand. The fourth step is testing the

model in order to verify it. The fifth and final step is the design and evaluation of the

policy, which deals with the environmental conditions and new decision rules and

strategies.

 The most important terms in SD are Model Boundary, Causal Loops Diagrams

(CLDs), which capture the conceptual relationships of variables in the system and finally

Stocks and Flows Diagrams (SFDs), which define the movement of entities and its rate

from start to end in the model. To understand how SD works, each of these terms is

explained individually.

Model Boundary:

 The behavior of the system in SD models is generated within a closed boundary

of the feedback process. In order to define this boundary in an SD model, it is required to

identify the behavior of interest, which can be extracted from the purpose of the model.

The components of interaction that are necessary to generate this behavior have to be

identified and selected. In order to summarize the scope of the model in SD, key

variables should be classified as endogenous, exogenous or excluded (Alzraiee 2013).

19

 On a similar note, endogenous variables are the most important variables in an SD

model. The latter usually portray the dynamic inherent in systems. Endogenous variables

exist in a casual-effect structure in SD models and their values are determined by the

state of other variables in the system. Exogenous variables, on the other hand, are

variables external to the model and are not represented by the model’s feedback structure.

Exogenous variables are also involved in casual-effect structure. However, unlike

endogenous variables, the value of exogenous variables is independent from the state of

other variables; their values are determined by variables external to the system. In other

words, the system’s internal interactions will have no influence on exogenous variables.

Excluded variables are variables beyond the scope of the SD model. These

variables are not included in the causal-effect feedback of the structure. It is usually

better to exclude such variables from the model in order to keep the model simple and

comprehensible. For example, in an SD model of a typical construction project, fatigue,

overtime required and error are all considered as endogenous variables. A project’s

planned duration and planned productivity are considered as exogenous variables. Other

unrelated variables to the operation, such as the number of site engineers or the traffic

condition around the site, are considered as excluded variables (Alzraiee 2013).

Causal Loops Diagrams (CLDs):

 The major strength of an SD model lies in its feedback loops, which are the main

reason behind the dynamic behavior in a system (Sterman 2000). CLDs, in essence,

conceptualize the feedback structure of the system as being understood by the modeler

(Richardson and Pugh 1981). In addition, CLD systems can be classified according to

20

two independent pairs of attributes. The first classification is based upon the outputs’

influence on the inputs in the system, while the second classification is related to the

tendency of the CLD to stabilize or destabilize the system itself (Sterman 2000).

 In the first classification, when the system’s outputs are responsive towards their

inputs but have no influence on them, it is referred to as an open CLD. On the other hand,

outputs in a closed CLD both respond to and influence their inputs. In the other

classification, a CLD can be either positive or negative. Positive CLDs consist of a series

of causal relationships which signify a self-reinforcing process and amplify results. On

the other hand, negative CLDs consist of a series of causal relationships that aim at

directing the operation to a specific goal value (Sterman 2000).

 Table 2-2 demonstrates how a causal link containing two variables, ‘A’ and ‘B’,

can be positive or negative. In the first row, it is demonstrated that an increase in the

value of ‘A’ causes an increase in the value of ‘B’, and a decrease in the value of ‘A’

causes a decrease in the value of ‘B’. In this scenario, ‘A’ has a positive impact on ‘B’

and a positive sign is marked at the end of the arrow. In the second row, an increase in

the value of ‘A’ causes a decrease in the value of ‘B’, and a decrease in the value of ‘A’

causes an increase in the value of ‘B’. In this scenario, ‘A’ has a negative impact on ‘B’

and a negative sign is placed at the end of the arrow. What can be retained from this is

that changes in variables can be mathematically computed through the integration of

variables’ rate of change.

 The third row of the table is dedicated to explain an important concept in SD,

which is delay. In SD, delay is a term used to describe a process whose outputs lags

21

behind its inputs. Plus, delays represent crucial sources of dynamic behavior in systems

and they should be managed in order to avoid creating instability (Sterman 2000). In

Table 2-2, delay is represented by parallel lines placed on the causal link between ‘A’ and

‘B’.

Table 2-2: Denotations for Causal Loop Diagramming (Sterman 2000)

Causal Link Description
Mathematical

Formulation

All else remaining equal, if variable ‘A’

increases (decreases) then ‘B’ increases

(decreases) in variable above (below)

All else remaining equal, if variable ‘A’

increases (decreases) then ‘B’ decreases

(increases) in variable below (above)

Significant time delay is involved in

implementing the causal relationship

between the variables ‘A’ and ‘B’

 Alzraiee (2013) presented the CLD shown in Figure 2-6 of ‘work to do’ in a

typical construction operation. As can be seen in the figure, three causal loops exist in the

operation. ‘A’ is a reinforcing (positive) loop, while ‘B’ and ‘C’ are both balancing

(negative) loops. The variables contained in loop ‘A’ are ‘work to do’, ‘overtime hours

required’, ‘fatigue’ and ‘error’. As the ‘work to do’ variable increases, overtime hours

become essential to meet the schedule of this operation and the overall deadline of the

project. This increase in ‘overtime hours required’ will cause an increase in ‘fatigue’,

which in turn causes an increase in ‘error’. Going back to the starting point of this loop,

the increase in ‘error’ will require some rework, which will add to the initial scope of

work causing an increase in ‘work to do’. Furthermore, multiplying the signs of all

22

variables in loop ‘A’ (+, +, +, +) leads to a positive sign, which represents the overall

positive polarity of the loop.

 Loop ‘B’ consists of ‘work to do’, ‘overtime’ and ‘work done’. In loop ‘A’, an

increase in ‘work to do’ causes an increase in ‘overtime hours required’. Of course, an

increase in ‘overtime hours required’ entails an increase in ‘work done’. However, an

increase in ‘work done’ means that parts of the scope of work are accomplished,

decreasing ‘work to do’. The latter is what causes the negative polarity of loop ‘B’, as

multiplying the signs of its variables (+, +, -) leads to an overall negative sign. In the

CLD displayed in Figure 2-6, loops ‘A’ and B’ counter influence each other, as they have

different polarities. Hence, it is clear that loop ‘A’ tends to increase the ‘work to do’

variable, while loop ‘B’ tends to decrease it. In this case, since it is desirable to have less

‘work to do’, it is the responsibility of decision makers to decrease the effect of loop ‘A’

and in turn facilitate the conditions surrounding loop ‘B’ (Alzraiee 2013).

 The previously discussed concept of delay in SD models can be observed in loop

‘C’, which is of a negative polarity similar to loop ‘B’. In the situation where the

‘required workforce’ variable increases due to an increase in ‘work to do’, the

management has to hire workface to accommodate the extra work packages and recover

from schedule slippage. Consequently, this hiring process has to pass through different

stages and the new workforce has to be trained. This is when delay occurs, as the decision

to hire requires time to affect the productivity. The Duration between the decision to hire

more workforce and the noticeable effect of that decision is delay, represented by the

parallel-lines arrow in Figure 2-6.

23

Figure 2-6: CLD of ‘work to do’ for a typical construction operation (Alzraiee 2013)

 Although CLDs are considered practical in representing variable

interdependencies and the feedback process, on their own, they cannot capture the stocks

and flows of an SD system, which in turn represents the rate at which variables change in

the model (Sterman 2000). This is exactly where the need for Stocks and Flows Diagrams

(SFDs) arises.

Stocks and Flows Diagrams (SFDs):

 SFDs are generally generated from CLDs (Sterman 2000). SFDs are the reason

behind the dynamic behavior of SD models. The term stock in SD refers to an

accumulation characterizing the state of the system and generating information which is

the basis of decisions and actions. The mechanism by which a stock can change is

through flows. A stock accumulates the difference between inflows going in the stock and

outflows leaving the stock, and this is how delay is created in the system. This explains

why stocks are modeled by the mathematical integration of the sum of inflows and

outflows (Alzraiee 2013). In SFDs, flows influence and control the level of accumulation

at stocks. A Flow is basically a rate that represents the source of disequilibrium in SD

24

(Sterman 2000). SFDs are added to the CLDs in SD models in order to improve the

clarity of the model schema (Alzraiee 2013).

 An SFD consists of three elements which are stocks represented by rectangles,

flows represented by pipes with valves pointing at the stocks and sources of inflow to or

outflow from the model represented by clouds. Clouds are related to the model boundary,

as model inputs before the cloud and model outputs after the cloud are considered outside

the boundary of the model. Figure 2-7 represents a typical SFD.

Figure 2-7: Stocks and Flow Diagramming (SFD) (Alzraiee 2013)

 To control the mechanism of flows in SD, the hydraulic principle was utilized.

This principle states that the accumulation of water in a reservoir during a specific time

period is equal to the quantity of water that flows into the reservoir subtracted from the

quantity of water flowing out of the reservoir (Forrester 1961). Applying this principle to

SFDs, the net flow into a stock becomes equal to the rate of change of that same stock.

This can be applied by using a set of mathematical equations that describe the model.

Stocks are given initial values which change during the model run. Decision makers

monitor the system’s performance over time by constantly observing the updated stocks

and flows. Therefore, they can change strategies accordingly (Alzraiee 2013).

 To explain how mathematical equations are used in order to represent SFDs, the

mechanism of time elapsing in SD must be understood. Simulation time has to be broken

25

into small equal time intervals, as displayed in Figure 2-8. At the beginning of the

simulation (T1), the system’s state is S1. At T2, the system’s state updates to S2, which is

the summation of the original S1 state and the net flow between T1 and T2. Likewise, the

S3 state at T3 is the summation of the S2 state and the net flow between T2 and T3.

Figure 2-8: System state computation in SD (Alzraiee 2013)

 Figure 2-9 represents a simple stock with inflow and outflow and its associated

mathematical equations. The stock level at any given time (t) is equal to the initial stock

level at the initial time (t0) in addition to the net flow from the initial time (t0) up until that

time (t). This is clearly represented by the first equation in the figure. Similarly, the net

rate of change of that stock at any given time (t) is the derivative of inflows less outflows,

which is represented by the second equation.

Figure 2-9: SFD and associated equations (Alzraiee 2013)

26

2.2.4 Limitations of the SD Technique

 As in DES, SD has a number of known limitations that arise from the nature of

the method. Most criticisms towards SD are based on the fact that SD, alone, is not able

to capture a detailed view of the quantitative operational aspects of the systems being

modeled.

 SD is usually used to model systems with the purpose of having a holistic view

and control over system variables. This is why SD is believed to have a wider focus on

the system being modeled, by viewing it as general and abstract when compared to the

narrowly focused DES (Lane 2000). Alzraiee (2013) states that SD models are unable to

represent in detail the operational aspects of the systems being modeled.

Another drawback of SD is the matter of randomness. SD, in nature, is a more

deterministic modeling approach, compared to stochastic modeling techniques such as

DES (Meadows 1980). This is due to the simulation mechanism of SD that relies on

mathematical differential equations which are deterministic in nature. Finally, developing

and validating SD models is a time consuming procedure which relies heavily on the

availability of detailed sets of data, while requiring time and specialized modeling skills

(Alzraiee 2013).

2.3 Simulation in Construction Management

 Several attempts have been made by researchers to utilize simulation in modeling

and planning construction operations. Despite the fact that the vast majority of these

applications utilize DES as the modeling tool, there have been some efforts to make use

27

of SD, Hybrid DES-SD and Agent-Based Modeling and Simulation (ABMS) in modeling

construction operations. The main objective of current research is to create robust

simulation models, which produce accurate results, while being easy to understand and

operate by end users. Researchers constantly try to enhance the accuracy of available

models by either incorporating factors which were not included before or by introducing

new modeling techniques to their existing work.

2.3.1 Discrete-Event Simulation (DES) Applications

 DES was the first simulation technique to be introduced to construction

management. Until now, it has by far the majority of applications in this field. This is due

to the fact that DES is relatively older than other simulation techniques and has a strong

support for operations which are cyclic in nature.

 The introduction of simulation in construction management was through

CYCLONE, CYCLic Operation Network (Halpin 1977), which is a general purpose

simulation language providing users with a systematic way of planning, analyzing and

controlling construction operations. CYCLONE is best used for modeling construction

operations with a cyclic nature such as highway projects, earthmoving operations, pipe

laying, concrete pouring and crane operations. However, due to its generic nature, this

language can be used for modeling certain operations outside of the construction industry

or for modeling acyclic systems such as projects’ schedules. CYCLONE consists of six

basic elements, as demonstrated in Table 2-3. 1) QUEUE, which resembles a waiting

location for resources to be served or used; 2) FUNCTION, which is related to a process

function, like generating resources from a resource or consolidating a number of

28

resources into one resource; 3) NORMAL, which represents a work task that is

unconstrained; 4) COMBI, which represents a constrained work task; 5) ARC, which

indicates the flow logic of resources; 6) COUNTER, which controls the mechanism of

counting processed resources by the model.

Table 2-3: CYCLONE modeling elements (Halpin 1976)

Name QUEUE FUNCTION NORMAL COMBI ARC COUNTER

Symbol

 Various implementations of the CYCLONE modeling language were later

developed by researchers including INSIGHT (Paulson 1978), RESQUE (Chang and

Carr 1987), UMCYCLONE (Ioannaou 1989), Micro-CYCLONE (Halpin and Riggs

1992) and CIPROS (Tommelein et al. 1994).

 Oloufa (1993) developed a simulation tool, MODSIM, which was one the first

systems that utilized object-oriented programming in modeling and simulating

construction operations. The idea behind MODSIM was to simplify the process of

building simulation models, by reducing the required amount of code users must write

and using a graphical interface for the application. Objects of diverse classes are created

in order to represent the different entities and resources participating in the operation

being modeled. These objects have properties, store information and communicate using

messages.

29

 Haung and Halpin (1994) developed an application called Dynamic Interface

Simulation for Construction Operations (DISCO). This application employs a schematic

modeling format to demonstrate the dynamics of the construction operation being

modeled. An abstract model diagram of the construction operation is used as a static

display. Then, information results are dynamically demonstrated on the screen. At the

end of the simulation, the application reports the statistical information in a tabular

format.

 CIPROS (Tommelein et al. 1994) is an object-oriented system that models

construction operations by matching their resource properties to the properties of the

design components. Product components and construction resources represent the two

types of resources distinguished by the model. Product components refer to the design

elements, while construction resources are the equipment, material and labor used during

construction.

Sawhney and AbouRizk (1995) developed a hierarchical simulation modeling tool

named HSM. It utilizes the principle of Work Breakdown Structure (WBS) and the

regular construction process modeling for planning construction projects. The project is

broken down into work tasks and the CYCLONE modeling language is employed for the

process modeling.

Resource-based Modeling (RBM) (Shi and AbouRizk 1997) is a construction

simulation tool that treats processes of active resources as atomic models. These atomic

models are stored in the application’s library and can be project-specific based on the

user’s preferences as well as project characteristics. An end user can construct a

30

simulation model for any construction operation using an atomic model as a base. Then,

the required resources are chosen from the resource library and the model is generated by

formatting processes into SLAM II network statements (Pritsker 1986).

 STROBOSCOPE (Martinez and Ioannou 1999, Martinez 1996) is a very famous

general purpose simulation language. It is a programmable simulation system that allows

users to model complex construction operations and create special purpose simulation

applications. The user can develop models in STROBOSCOPE by writing codes or by

using its graphical-based tool, EZStrobe, in which elements similar to those of the

CYCLONE language can be dragged and placed in a network form representing the

construction operation being modeled. STROBOSCOPE provides users with the ability

to access information related to the state of simulation and distinguish involved entities

and resources.

 McCabe (1997) integrated belief networks and computer simulation in an

automated modeling approach. Belief networks are used as a diagnostic tool to assess

different performance indices in the project, while computer simulation is used to model

the different construction operations. The overall performance of the system is evaluated

by belief networks in order to take corrective actions such as modifying the number of

servers involved in the model and/or their capacities.

 Oluofa et al. (1998) proposed a special purpose simulation system which is a

collection of resource-based simulation libraries. The wider the range of defined libraries,

the more construction applications it can accommodate. Construction resources are

31

selected from the libraries and linked together based on the logic of their interaction in

the operation.

 Simphony (Hajjar and AbouRizk 1999) is a computer application used for

developing special purpose simulation tools for construction operations. Special purpose

simulation templates can be generated in the Simphony environment by either using the

Simphony editor for writing codes or the Simphony graphical designer. Simphony has

built-in libraries, which users can utilize to create and run special purpose simulation

models. Simphony is the result of accumulating three special purpose simulation tools

developed prior to its creation, which are AP2-Earth (Hajjar and AbouRizk 1997) for

earthmoving operations, CRUISER (Hajjar and AbouRizk 1998) for aggregate

production plants and CSD (Hajjar et al. 1998) for optimizing construction dewatering

operations.

 Knowledge Discovery Based Simulation System (KEYSTONE) (Elwakil 2011) is

a simulation tool that accounts for the subjectivity in modeling construction operations

using the Fuzzy logic. KEYSTONE accounts for missing data points and outliers in input

data. It uses Fuzzy clustering to model qualitative variables and includes an optimization

engine in order to select the optimum combination of resources.

2.3.2 System Dynamics Applications

 SD has been applied to construction management for the sake of addressing the

issue of dynamic inherent (Alzraiee 2013). In literature, there is a wide range of SD

applications that, based on the nature of the problem and the modeler’s preference, vary

32

in different aspects such as the level of details in the model and whether the model is full

scale, representing a group of projects or narrow scale, representing one single project.

 The previously demonstrated ‘work to do’ cycle shows how an increase in the

scope of work in a construction project can affect other variables in its CLD. This work

was the basis of many enhanced SD models that proceeded it. Alzraiee (2013)

summarized the literature review on the application of SD in construction management.

His list is depicted in Table 2-4.

Table 2-4: Literate review on SD applications in construction management

Idea Author/s

Project features such as the

development stages of a project

Cooper (1980), Richardson & Pugh

(1981)

A quality assurance cycle and a rework

cycle
Abel-Hamid (1984)

Nonlinear constraints imposed on work

availability and progress
Homer et al. (1993)

Releasing completed work downstream Ford (1995)

The concurrence constraints limiting

the execution of work in parallel
Ford and Sterman (1998)

Managing fund contingency Ceylan and Ford (2002)

Creating schedule buffer and dynamic

planning
Park and Pena-Mora (2003)

Managing iterative errors and change

cycles
Lee et al. (2007)

33

2.3.3 Hybrid Simulation Applications

 Alzraiee (2013) states that there exists a need to incorporate DES and SD in

hybrid construction simulation models, due to the fact that construction operations are

neither completely discrete nor continuous in nature. In addition, operational details are

the basis for implementing strategies. Yet, SD has drawbacks in representing the

operational level of construction projects in detail. There have been few examples on the

application of DES-SD hybrid systems in construction management.

 Peña-Mora et al. (2008) used a hybrid DES-SD system in order to analyze the

strategic and operational aspects of construction management. The main idea was that the

incorporation of the operational details and the strategic viewpoint of construction

operations is the backbone of enhancing these operations and increasing performance.

The latter is done by allowing managers to identify, assess and respond to improvement

areas which traditional modeling techniques would normally miss.

Alzraiee (2013) proposed a framework focused on integrating DES and SD in a

single computational platform. The hybrid simulation model was developed by

decomposing the construction project into smaller units and developing simulation

models based on these units. Three variables, which are the sender, receiver and

interface, were defined to achieve the interfacing process among the different simulation

models. A synchronization method was established to control the data mapping process

between variables and an automated tool, HiSim, was then developed as an

implementation of the developed method.

34

2.3.4 Earthmoving Simulation Practices

 There are several applications on the simulation of earthmoving operations in

literature. Earthmoving simulation models mainly aim to account for the uncertainties

involved in these operations (Marzouk and Moselhi 2003).

Examples on object-oriented simulation applications for earthmoving operations

include MODSIM (Oloufa 1993), which was reviewed in Subsection 2.3.1, and SimEarth

(Marzouk and Moselhi 2003). SimEarth provides users with a tool to select a near-

optimum fleet configuration that minimizes the total cost and duration of earthmoving

operations. The technique utilizes object-oriented modeling and DES to simulate

earthmoving operations. It also uses a generic algorithm for optimization purposes. In

addition, SimEarth uses a fuzzy-based approach to measure more accurately the haul and

return durations of trucks.

 Resource-based simulation applications for earthmoving operations include

RBM-earth (Shi and AbouRizk 1998), in which different activities involved in the

earthmoving operation are linked by the user to formalize the model.

Special purpose simulation applications for earthmoving operations include AP2-

Earth (Hajjar and AbouRizk 1997), which is a part of Simphony (Hajjar and AbouRizk

1999). AP2-Earth focuses on providing contractors with an automated planning tool for

earthmoving operations directed at delivering accurate estimates on haul and return

durations of trucks. In addition, Martinez (1998) developed a special purpose simulation

tool for earthmoving operations named EarthMover. Different inputs to the model can be

35

defined using the graphical interface of the application. Inputs include loading and

hauling equipment types as well as road segments’ length and characteristics.

2.4 Agent-Based Modeling and Simulation (ABMS)

 Agent-Based Modeling and Simulation (ABMS) is the third and most advanced

simulation technique being used in scientific research. ABMS has different names in

literature including Agent-Based Simulation (ABS), Agent-Based Modeling (ABM),

Multi-Agent Simulation (MAS) and Individual-Based Modeling (IBM). Being an

evolving computational simulation method, ABMS has been recognized as a suitable

instrument for capturing complexity in different systems (North and Macal 2007).

 Grimm and Railsback (2013) define an agent-based model as a “class of

computational models for simulating the actions and interactions of autonomous agents,

both individual or collective entities such as organizations or groups, with a view to

assessing their effects on the system as a whole.” Agents are self-contained entities that

have the ability to control their own actions based on their perception of other agents and

their operating environments (Gilbert and Troitzsch 2005). Agents may represent various

entities such as people, vehicles, equipment units, projects, ideas, organizations, products,

etc.

 Unlike DES and SD, which are considered as top-down modeling techniques,

ABMS is a bottom-up modeling approach, in which model elements are built before the

process is studied as whole. Such an approach allows for the investigation of the

fundamentals of model dynamics and leads to realistic conclusions (Unsal 2010). Plus,

ABMS has no specific convention on time progression during the model run; it can be

36

discrete, continuous, or a hybrid of both (Chan et al. 2010). ABMS has the potential to

have extensive effects on the way researchers use laboratories in order to support their

research and businesses use computers to support decision-making (North and Macal

2007).

2.4.1 ABMS Methodology

 ABMS studies the interaction among objects and their relationship with their

surrounding environment (Bonabeau 2002). The main idea behind ABMS is the

reproduction of the system being modeled by replicating its different entities and their

properties. This is done in an effort to forecast the overall behavior of the system. The

goal of an AB model is to peruse explanatory insight into the collective behavior of

agents interacting in a certain environment and obeying simple rules (Niazi and Hussain

2011).

 The first AB simulation work is believed to be the Dynamic Models of

Segregation (Schelling 1971). Schelling modeled individuals in households as agents and

gave them characteristics, among which was race. Schelling’s model applied cellular

automata for the purpose of studying housing segregation patterns. It demonstrated that

ghettos can develop spontaneously, even if individuals were colorblind, meaning they

have no preference regarding the race of their neighbors. Since then, ABMS has had

many applications in different fields, including military, biology, social science,

economics and business. The ABMS community has grown very largely and ABMS has

become a multidisciplinary subject integrating computer science, cognitive and social

sciences as well as simulation (Chan et al. 2010).

37

 Researchers do not agree on a precise definition of agents in AB models. On one

hand, some researchers believe that any type of independent entities can be modeled as

agents (Bonabeau 2001). However, on the other hand, the majority believe that entities

should be adaptive in behavior to be considered as agents. Agents should learn from each

other and from their environment and change their behavior in response to their

experience (Macal and North 2008). Furthermore, in AB models, agents are given rules

to guide their adaption and responsiveness. Casti (1997) believes that agents in AB

models should have base-level rules to guide their behavior and respond to the

environment as well as higher-level rules to guide how they can adapt by changing their

rules (rules to change the rules).

 In relation, Macal and North (2008) argue that the most fundamental

characteristic of agents is their independence in making decisions, which requires agents

to be active members that respond and interact rather than being purely passive in the

model. They list the following common features of agents in AB models, which should

not necessarily all exist in every agent:

 Agents are identifiable individual components; they have a set of characteristics

and rules to guide their behavior and decision-making capacities.

 Agents are autonomous and self-directed; they function independently in their

environment and in their interactions with other agents.

 Agents are social; they are able to recognize other agents, distinguish their traits

and interact with them based on protocols for interaction and communication.

38

 Agents are situated; they exist in an external environment with which they

interact.

 Agents are goal-directed; they have tasks to achieve and a mechanism to compare

the outcome of their behavior to their initial goals.

 Agents are flexible and adaptive; they learn, gain experience, store information

and change their behavior accordingly.

 Wooldridge and Jennings (1995) gave more detailed specifications on the

properties that agents in AB model should possess. They summarized those properties in

four specific terminologies as follows:

 Autonomy; agents operate independently, without other agents having direct

control over their actions and internal states.

 Social ability; agents interact with other agents in the environment through a

specific type of ‘language’ (a computer language).

 Reactivity; agents are able to perceive and respond to their environment, whether

it is physical or virtual.

 Proactivity; agents are able to take the initiative to engage in a goal-directed

behavior.

 Figure 2-10 demonstrates a typical agent in an AB model. Each agent has

different characteristics and methods to govern its behavior and adaption. In addition,

agents interact with other agents as well as with their surrounding environment.

39

Figure 2-10: A typical agent in AB models (Macal and North 2010)

The environment in which agents interact can take many forms in AB models. It

can be a 2-D or a 3-D space, in the form of a ring or lattice, in the form of a random

network, or based on a map such as Geographic Information System (GIS) maps. In AB

models, agents have the ability to move freely in their environments, which promotes

ABMS as an effective tool for modeling and visualizing complex behaviors in physical

systems such as evacuation models, traffic simulations and mechanical systems (Chan et

al. 2010).

 Furthermore, what makes ABMS powerful is the simulation of the interaction of

agents, which creates opportunities to better understand the nature of complex systems.

40

The strong point of ABMS is that it allows for the simulation of cascading effects arising

from minor local interactions, the experimental examination of tipping points, the

identification and explanation of beneficial or malicious emergent behaviors and, most

importantly, the learning of design mechanisms to grow beneficial behaviors and discard

malicious ones (Chan et al. 2010).

 The goal of any AB model is to achieve behavior as a result of the interaction of

agents. This behavior is often referred to in the AB terminology as emergence or

emergent behavior. Macal and North (2010) discuss the issue of emergence in AB models

by stating that the bottom-up approach of building AB models agent-by-agent and

interaction-by-interaction leads to a state of self-organization. For example, patterns,

behaviors and structures emerge from AB models without being explicitly programmed

into these models. They state that the focus of ABMS on representing the heterogeneity

of agents across their populations and the emergence of self-organization are the main

distinguishing features of ABMS when compared to DES and SD.

 The principle of emergence can be observed in many existing AB models, even

those which are simple and have neither a complex agent architecture nor sophisticated

interaction guidelines (Chan et al. 2010). Two simple ABMS examples will be

demonstrated in order to give a better idea of agents, environments, interactions and

emergence.

 The first example is the application of John Conway’s game of life (Berlekamp et

al. 2004). The environment is a two dimensional grid that consists of small cells which

are considered as agents that align horizontally to make rows and vertically to make

41

columns. Each cell is surrounded by eight neighbors (right, left, up, down and four

diagonals). In addition, cells cannot move in the grid and each cell has two states: alive or

dead. Live cells are represented with red dots, while dead cells are represented with white

dots. The state of the cells is randomly assigned in the grid and at every time step, there is

a possibility for the cell to change its state based on the following three simple rules

(Chan et al. 2010):

1. A live cell will remain alive in the next time step, if it has exactly two or three

live neighbors.

2. A dead cell will come to life in the next time step, if it has exactly three live

neighbors.

3. Other than condition (1) or (2), the cell will die.

 The left panel of Figure 2-11 demonstrates the initial state of the system. The

simulation is stopped after 100 time steps (100 iterations of executing the AB algorithm)

and the state of the system is shown in the right panel of Figure 2-11. The emergent

behavior can be clearly noticed in the formation of patterns after the 100 iterations.

 What makes the observations of the Game of Life AB model interesting is the fact

that the rules are simple and only use local information. The reached patterns are not

planned goals which were programmed into the system. Each cell had a set of rules that

depended only on its state and the state of its immediately neighboring cells (Chan et al.

2010). In other words, simple rules that rely only on local information can lead to

sustainable emergent patterns that are sensitive to those rules and to the agents’ initial

conditions.

42

Figure 2-11: AB simulation model of Conway’s Game of Life (Chan et al. 2010)

 Another simple example of AB models is the Boids simulation (Reynolds 1999).

The flocking behavior of birds or fish is studied in an AB paradigm. The movement of

each agent in the flock is governed by the following three simple rules enumerated

below:

1. Separation: agents steer to avoid crowding local ‘flockmates’.

2. Alignment: agents steer towards the average heading of local ‘flockmates’.

3. Cohesion: agents steer towards the average position of its nearby ‘flockmates’.

 A fourth rule was added to insure that, during simulation, agents remain close to

their initial locations. Figure 2-12 shows the initial configuration of the system, where the

number, locations and orientations of agents were randomly assigned. As the simulation

started, the behavior of agents started to emerge and a coordinated leaderless flock began

to develop. Figure 2-13 demonstrates the state of the system after 500 updates, where

clear patterns of organized movement are observed.

43

Figure 2-12: Boids simulation (initial random configuration) (Macal and North 2008)

Figure 2-13: Boids simulation (after 500 updates) (Macal and North 2008)

44

The same conclusions drawn from the Game of Life simulation can be drawn

from the Boids simulation as well. Simple rules that depend on local information and

agents’ initial conditions are enough to create emergent patterns which are not

programmed into the model (Macal and North 2008). This is the major strength of the

ABMS methodology and the key reason behind this technique replacing current

simulations methods such as DES and SD. Hence, lessons learned from applying the

Game of Life and the Boids simulations can be extended and applied on a larger scale to

represent complex operations in different fields, especially since the ABMS methodology

is relatively simple and easy to learn as well as implement.

2.4.2 ABMS Applications in Civil Engineering and Construction Management

 Since ABMS is a relatively new technique, it is expected to have very few

applications in fields that do not heavily rely on Artificial Intelligence (AI) such as civil

engineering and construction management. The majority of ABMS applications in these

fields are focused on the following areas: 1) supply chain management (Tah 2005, Min

and Bjornsson 2008); 2) construction claims management (Ren and Anumba 2002, El-

Adaway and Kandil 2009); 3) infrastructure management (Sanford Bernhardt and McNeil

2008, Osman 2012).

 Supply chain management involves highly complex chains of interacting entities.

Sharing information about stocks, costs, quantities and schedules is vital to assure

successful supply chain operations. Likewise, construction claims management involves

interaction among project participants such as contractors and consultants. It involves

discussions, sharing of information and organizing work tasks. Infrastructure

45

management using ABMS is a promising topic, in which components of an infrastructure

system are treated as interacting agents. Governments, infrastructure management

agencies, infrastructural assets and users are all modeled as intelligent agents with

attributes and goals. This can help anticipate performance, plan maintenance and manage

budgets.

 Tah (2005) suggested a methodology to develop a modeling platform that can

provide inexpensive and risk-free AB environments for organizations to experiment with

evolving supply chain management practices prior to execution. Hence, a prototype

system was developed using the ZUES tool kit (Ndumu et al. 1999) in an effort to

explore the potential of using such an approach to model and simulate collaborative

project supply chain networks.

 Min and Bjornsson (2008) developed a construction supply chain simulator (CS2)

that utilized the AB technique in modeling a virtual supply chain for construction

projects. The work introduces two types of simulations, which are human-to-human and

computer-to-human interactive simulations. In the developed models, groups of people

play different roles, as a resemblance to the current practice in construction. The main

idea was to test and verify the significance of real-time information sharing in

construction.

 Ren and Anumba (2002) developed an AB model that utilizes agents’ interaction

and communication capabilities in AB models to facilitate the claim negotiations among

different participants in construction projects. Different project entities are modeled as

agents which have different attributes, roles and communication mechanisms. Multi-

46

Agent System for Construction Claims Negotiation (MASCOT) was created, with the

core objective of enhancing the negotiation power and speeding up the rate of

convergence between agents in a construction project.

 El-Adaway and Kandil (2009) proposed an AB model for generating legal

arguments based on precedent construction disputes. The authors created an AB system

for construction dispute resolution (MAS-COR) that automates a previously developed

algorithm by the authors. Thirty previously arbitrated construction disputes were used to

test and validate MAS-COR. The results of this validation process demonstrated that

MAS-COR was capable of originating significant legal arguments for construction claim

and dispute professionals, which can help them save time and effort while preparing the

defense of their respective positions.

 Sanford Bernhardt and McNeil (2008) presented an AB model as a paradigm to

improve infrastructure decision-making. The model defines four types of agents: 1)

infrastructure segments; 2) users which operate the infrastructure segments; 3)

maintenance personnel; 4) politicians/decision makers. Each agent has several predefined

characteristics. The model aims at studying the interaction among these agents in order to

explore the emergent behavior of the modeled infrastructure system, while aiding in

decision-making and budget allocation.

 Osman (2012) presented an AB framework to capture the complex interactions

occurring in urban infrastructure management. A generic AB model, shown in Figure

2-14, is constructed with four agents: 1) assets; 2) users; 3) operators; 4) politicians. Each

of these agents has a set of generic attributes, actions and behaviors. The service quality

47

domain, which represents customer perceptions and actions that are related to the

infrastructure asset level of service, was used as a basis for a detailed behavioral model.

A descriptive example of twenty assets and fifty users is simulated to demonstrate

emergent behaviors. The simulation showed how changing the social and psychological

behavior of users influences their response to consuming municipal infrastructure

services. Hence, the results of the simulation highlighted how socio-technical aspects can

be incorporated with complex decision-making of urban infrastructure management.

Figure 2-14: Agents in an infrastructure AB model

 There are a few other ABMS applications on construction management areas

including procurement (Dzeng and Lin 2004), construction site safety (Palaniappan et al.

2007) and construction workers’ behavior (Ahn et al. 2013).

48

2.5 Summary and Limitations of Literature

 This chapter gave a thorough insight on the different simulation techniques being

used in science, and reviewed their applications in construction management in general

and earthmoving operations in particular. Firstly, the structure of DES and SD as well as

their limitations were presented. Then, different applications of DES, SD and hybrid

DES-SD in the construction industry were demonstrated, followed by a discussion on

different earthmoving simulation practices. After that, a separate section was dedicated to

thoroughly explain the AB methodology and the techniques behind the ABMS realm.

Finally, some applications of ABMS in civil engineering and construction management

were illustrated.

 As mentioned earlier in this chapter, drawbacks of current simulation models of

different construction operations in general and earthmoving in particular arise from

limitations in both the simulation technique being used as well as the implemented

simulation tool itself. DES is considered as a very effective technique for modeling

quantitative aspects of operations. However, it is believed that DES cannot capture the

external factors that influence the performance of the operation being modeled, which in

turn can be driven by hidden causal relationships. In addition, DES is incapable of

accounting for the overall strategy of the project or operation being modeled, due to its

time step advancement mechanism.

 On the other hand, SD is believed to be unable to capture a detailed view of the

quantitative operational aspects of modeled systems. SD has a wider and more abstract

perspective of the system being studied, compared to the narrowly focused DES. In

49

addition, SD is a deterministic modeling approach which does not support the

representation of operations with stochastic data. Finally, validating SD models is a time

consuming process, depends on the availability of detailed data sets and requires

specialized modeling skills.

 In regards to earthmoving simulation practices, most developed models lack good

graphical modeling support, behave in an inflexible and predetermined manner, require

visualization when implementing and are rigid in accepting various sets of data. Despite

the fact that some researchers were able to overcome limitations of earthmoving

simulation practices using DES, SD or a hybrid of both, there is a strong need to

introduce the relatively new and promising simulation technique, which is ABMS, to the

study and planning of earthmoving operations in one comprehensive simulation system.

50

CHAPTER 3: METHODOLOGY

3.1 Chapter Overview

 This chapter is dedicated to providing a detailed explanation of the research

methodology. The main idea of the proposed framework is the development of a

conceptual AB model for earthmoving operations which will later be implemented in an

automated simulation tool. In order to achieve this goal, a clear procedure on how to

create AB models for construction operations should be first outlined. Figure 3-1

demonstrates the breakdown of the proposed methodology.

 In Section 3.2, a general procedure for creating AB models for different

construction management applications is presented. This procedure was developed based

on the author’s knowledge about the AB methodology, which in turn was obtained from

reviewing the literature on applications of ABMS in different disciplines. The presented

procedure is intended to be generic and simple. Examples will be given in this section to

demonstrate how this procedure can be implemented to develop AB models for real-

world applications in construction management.

 Section 3.3 is devoted to demonstrating the development of a comprehensive AB

model for earthmoving operations. Each component of the model is outlined, including

agents and their environment. Agents’ types, attributes and roles are defined in detail. In

addition, the interaction logic and the guidelines for the implementation of the

earthmoving AB model are discussed in this section.

51

AB model of

Earthmoving

Operations

 Procedure for Building

AB Models for CM

applications

Environment Setup

Equipment and

Labor Properties

Interaction Logic

Soil Handling

Procedures

Equipment & Labor

Types

Process

Logistics

Methodology

Figure 3-1: Methodology breakdown

3.2 A Procedure for Creating AB Models for CM Applications

 ABMS is a relatively new technique that is gaining an increasing interest in

different fields. As mentioned in Subsection 2.4.2, the applications of ABMS in civil

engineering and construction management are very few in number. Consequently,

researchers who are interested in developing AB models for systems in these areas have

to go through an extensive literature review on the AB methodology and applications in

order to familiarise themselves with the method and understand the logic behind it. This

is why it was decided to summarize the techniques of building AB models in the simple

step-by-step procedure shown in Figure 3-2.

52

Characteristics

Determination

Participants

Identifications

Environment/s

Recognition

Modelling Tool

Determination

Agent Objects

 Characteristics Influence

on Interaction

Process Understading

AB Model Creation

Interaction Mechanism

and Stages Identification

Active Participants

Non-Agent Objects

Passive Participants

Figure 3-2: Procedure for developing AB Models in construction management

53

 The procedure presented by the flow chart in Figure 3-2 emphasizes that ABMS

is a bottom-up approach. It shows how several steps have to be carried out to insure a

successful transition of ideas into a working and realistic model. Prior to the

implementation of any AB model, the following nine-step procedure should be carried

out:

1) Recognise the environment/s in which the operation takes place.

2) Identify all participants in the real-world operation.

3) Identify all possible characteristics and properties, both quantitative and

qualitative, of each participant.

4) Understand in detail the process which is going to be simulated.

5) Determine the stages of the operation at which participants would directly or

indirectly interact.

6) Identify how the different characteristics of each participant would affect the

interaction.

7) Consider any participant, whose characteristics and states change during the

operation and which directly interacts with other participants, as an agent.

8) Consider other participants in the operation as passive objects that are imbedded

in the environment (considering such participants as agents is not wrong;

however, it overcrowds the model and increases the required memory in computer

programs).

9) Determine the best tool for modeling the system after viewing and studying the

properties and capabilities of the available modeling tools.

54

 After all these tasks have been fulfilled, the model can then be created. In ABMS,

each agent population is formed separately. After finalizing the agents’ properties, the

modeler can then move on to reflect on the process as a whole. Agents are firstly linked

to the environment, and then the interaction among them at certain stages of the operation

is established. During model construction, modifications to the structure of the model can

be made if needed. The following subsections demonstrate how this procedure is applied

to create an AB model for construction operations

3.2.1 Environment Recognition

 The first step in creating AB models is defining the environment in which the

system or the operation being modeled exists. An environment in AB terms refers to a

platform in which agents live and interact. Having a realistic view of the environment

helps the modeler understand and anticipate effects that this environment would have on

the model in general and agents in particular. It is important to note that in AB models,

more than one environment can exit. An agent, for example, can interact with an agent in

a certain environment and with another agent in a different environment.

 When modeling most construction operations, the environment would be the

construction site. However, in cases where the operation being modeled is specific to one

area of the construction site, the modeler could choose that area to be the environment of

the AB model. Environments in AB models are not always physical. For example, if an

AB model is created to represent different parties working in a construction project

(contractors, consults, construction managers and owners) for conflict resolution

purposes, then it would make no sense for the modeler to use the construction site as the

55

environment of the AB model. Hence, the choice of the environment in that case would

heavily depend on the agents’ interaction mechanism. A reasonable choice would be a

computer database containing the entire project’s contracts, schedules, change orders,

BOQ’s, etc.

 When developing an AB model for earthmoving operations, the environment

should be the physical area in which the operation takes place. The latter includes the

excavation area, loading area, hauling road, dumping area, returning road and any other

physical space which the earthmoving operation occupies or affects through any of its

equipment or labor at any of its stages.

3.2.2 Participant Identification

 Prior to deciding on agent types and characteristics in AB models, it is crucial for

the modeler to identify all participants in the system being modeled. Even if the modeler

believes that a certain object or entity does not significantly contribute to the operation, it

is better at this stage to consider it as a candidate for becoming an agent. All individuals,

equipment and physical objects that are parts of the system should be put in a list at this

point. To reiterate, any entity in the system that has characteristics and attributes which

are likely to influence the operation of that system in any direct or indirect way, is

considered as a participant.

Participants in a simple earthmoving operation can be soil, dozers, loaders,

haulers (trucks), dump spotters, transportation roads and weather conditions. Later in

Subsection 3.2.7, it will be decided which of these participants will be an agent and

which will not.

56

3.2.3 Participants’ Characteristics Determination

 The emergent behaviour of AB models occurs mainly due to the attributes of

agents and their interactions. This is why the more accurate the representation of agents’

attributes and interactions in an AB model is, the more realistic the emergent behaviour

becomes.

 Table 3-1 iterates some major properties of the aforementioned participants of an

AB model for earthmoving operations. It is crucial to note that selecting these

participants and their properties was based on the author’s experience and perception of

the operation. Different modelers can come up with lists containing different properties

than those shown in Table 3-1.

Table 3-1: Earthmoving operations’ participants and their properties

Participant Properties

Soil Type, Quantity, Moisture Content, Density

Dozer/s Weight, Condition, Blade Dimensions, Speed

Loader/s
Condition, Excavation Rate, Bucket Capacity, Loading

Rate, Speed

Truck/s
Weight, Condition, Load Capacity, Dumping Rate,

Hauling Speed, Empty Speed

Spotter/s Experience, Age, Walking Speed

Weather Conditions Temperature, Precipitation, Humidity, Wind Speed

Transportation Road Terrain, Length, Inclination, Traffic, Stops

57

3.2.4 Process Understanding

 After recognizing the environment of the system, identifying its participants and

determining their characteristics, it is time to take a look at the operation of the system as

a whole and understand its mechanism in total depth. Contrary to other simulation

techniques, the process understanding in creating AB models is the fourth step and not

the first. The latter is due to the bottom-up modeling style of ABMS, which builds the

model from its agents up to a full representation of the process as a whole. In addition, if

modelers thoroughly investigate systems before identifying participants and their

properties, it would affect their judgement on these participants and properties. When

creating AB models, modelers might disregard certain agents or attributes of agents

thinking that they do not contribute to the operation or that their contribution is

negligible. This is a risky issue in ABMS, as very simple attributes of agents can lead to

complex emergent behaviours.

 In an earthmoving AB model, the process is fairly simple. The operation of an

earthmoving system with the aforementioned participants would begin by dozers

excavating a specific area. Then, loaders would carry the excavated earth and lay it in

trucks. Then, trucks would haul the carried earth to a certain location, dump it and return

to the initial site in order to carry and haul more earth. This goes on until the intended

quantity of earth is excavated and dumped.

3.2.5 Interaction Mechanism and Stages Identification

 The interaction of agents is the backbone of ABMS. The interaction mechanism,

location and time are all very important in carving the emergent behaviour of the system

58

being modeled. Although the interaction mechanism and stages can be inferred by

studying the process being modeled in general (process understanding step), an in-depth

focus on the interaction procedure is vital, as it will be the core of the implementation

stage later on in the process.

 An example of the interaction of participants in an earthmoving AB model is a

loader loading a truck numerous times until that truck is full and ready to go. How the

loader loads the truck, the distance between the two equipment units while working

together and the communication between the operators of the two equipment units are all

examples of the mechanism of interaction between the loader and truck agents in the AB

model. An elaborate discussion on this issue will be presented in Section 3.3.

3.2.6 Characteristics Influence on Interaction

 The interaction between agents in AB models heavily relies on the characteristics

and states of these agents. This principle is the source of agent intelligence in ABMS.

Since agents are proactive and adaptive, their interactions with other agents will take into

consideration their attributes and states. This should be studied by modelers prior to the

implementation of AB models, as it will help them design agents’ attributes, roles and

communication methods in a more realistic manner.

Going back to the truck-loading activity example, when the loader arrives at the

truck location its operator observes two things: 1) the capacity of the truck, which is an

attribute; 2) the level of earth in the truck, which is a variable (state). Truck capacity is

fixed, but the quantity of carried earth increases after each load. Truck capacity and

carried earth (or available space) determines the duration of interaction between the

59

loader and the truck, as the loader will stop loading the truck when it is full. More on that

will be discussed in Section 3.3.

3.2.7 Agent Objects and Non-Agents Objects

 After recognizing the model’s environment, defining its participants and their

attributes, understanding the process, identifying the interaction stages and figuring out

the influence of model participants on the interactions, the model is almost ready for

implementation. The last major step prior to model implementation is to select which

model participants qualify for being agents and which do not. In AB models, the logic is

not affected if all participants are considered to be agents. However, it is a common

practice for agents in AB models to be of those participants which are active, have

multiple attributes and engage in diverse interactions. Other participants that have limited

properties, fixed goals and minimal interaction with other model components are

considered as passive non-agent objects. The reason behind this classification is to avoid

overcrowding the model, saving memory and reducing run time in implemented

computer programs.

 For the earthmoving operation participants listed in Table 3-1, a modeler can

choose the equipment units (dozers, loaders and trucks) and spotters to be agents. Soil,

weather conditions and transportation roads can be embedded in the model’s

environment. However, this choice relies heavily on the purpose of the model in question

and its required level of complexity.

60

3.2.8 Modeling Tool Determination

 Implementing AB models is heavily dependent on computer programming. The

nature of ABMS makes object-oriented programming the most suitable implementation

tool for this technique. Object-oriented programs are developed through a bottom-up

approach in which independent objects are created and given attributes and roles. The

majority of AB models in literature were developed using object-oriented programming.

 Modelers can choose to use common programming languages including C#, C++,

Java, etc. to create an AB model and simulate with it. However, there are some ready AB

modeling applications that were created in order to facilitate modeling for users,

especially those who do not have a strong programming background. These applications

are created using object-oriented programming and have built-in AB libraries, so that

users can create AB models in a fast manner without the need of writing many lines of

code. Also, flexibility in representing agents, accommodating variables, defining roles,

executing actions, producing results and performing analysis differs from one tool to

another. The nature of the system being modeled, the required complexity of the model

and the targeted type of results and analysis are the major criteria in choosing the

appropriate AB modeling tool.

3.3 A Comprehensive AB Model for Earthmoving Operations

 This section is dedicated for applying the methodology presented in Section 3.2 in

developing a comprehensive AB model for earthmoving operations. The term

‘earthmoving’ refers to the process of excavating and transporting quantities of soil from

one location to another, mainly prior to the construction of facilities. Thus, earthmoving

61

operations utilize different equipment based on the construction project’s scope of work

and available resources. The most common earthmoving operation represents the

excavation of earth from a certain location and the transportation of that earth to another

location where it will be dumped. However, the mechanism of the excavation,

transportation and dumping activities differ from one project to another, leading to

different combinations of equipment types and interactions.

3.3.1 The Scope of the Model

 The AB model developed in this research is of an earthmoving operation that

includes bulldozers, loaders, haulers (trucks) and dump spotters. Accordingly, the

operation would be as follows: 1) bulldozers excavate earth in a certain area and push it

in stockpiles; 2) loaders fill trucks with earth from the stockpiles; 3) trucks transport the

carried earth to a certain dumping location; 4) with the help of dump spotters, trucks

dump their loads in stock piles; 5) trucks return to the loading area to carry and transport

more earth.

 The model should also accommodate earthmoving operations which do not

include bulldozers. This would be the case if the operation was simply the transportation

of earth from a stock pile into a dumping area, or if the loaders, or any type of excavators,

are performing both the excavation and truck loading activities.

 The aforementioned equipment units and dump spotters will all be considered as

agents. The structure of the model indicating the types of participants and whether they

are agents or not is illustrated by Table 3-2. As can be noted from the table, weather

conditions were neglected and soil as well as transportation roads were considered as

62

passive objects that are embedded in the model’s environment. The soil and the

transportation road components are represented by the model, but in a passive manner in

which agents are in control of them.

 It is important to stress the fact that an AB model’s accuracy in representing a

real-world operation is heavily dependent on the efforts put forth while preparing the

model. Highly complex AB models, in which all agents’ attributes are captured in detail,

the interaction logic replicates the one in real-life operations, all surrounding factors are

taken into consideration to the best possible ability, are expected to deliver outstandingly

accurate and realistic behaviors and results. The developed AB model captures the

operational aspects of earthmoving very accurately, as will be demonstrated in

Subsection 3.33.3.2. However, there is still much room for improvement in accounting

for factors surrounding the operation. This will be summarized when discussing future

work recommendations.

Table 3-2: Proposed AB model participants

Participant Agent or Non-Agent

Soil Environment-Embedded Object

Dozer/s Agent Object

Loader/s Agent Object

Truck/s Agent Object

Spotter/s Agent Object

Weather Conditions Neglected Participant

Transportation Road Environment-Embedded Object

63

 Two types of properties are defined for each agent in the proposed AB model: 1)

attributes, which refer to fixed properties of agents that do not change at any time and are

unaffected by interactions with the environment or other agents; 2) variables, which refer

to properties of agents that can change due to interactions with the environment or other

agents. Table 3-3 lists agents along with their attributes and variables in the proposed AB

model. These attributes and variables are explained in detail in Section 3.3, by illustrating

their definition and demonstrating how they influence agent interactions.

Table 3-3: Agents’ attributes and variables in the proposed AB model

Agent Attributes Variables

Bulldozer/s

 Push Quantity (PQ)

 Push Duration (PD)

 Time to Adjust Position (TAP)

 Return Duration (RD)

 Actual Push Quantity

(APQ)

 Actual Push Duration

(APD)

Loader/s

 Bucket Capacity (BC)

 Time to Load Full Bucket (TLFB)

 Time to Adjust Position While Full

(TAPF)

 Time to Unload Full Bucket (TUFB)

 Time to Adjust Position While Empty

(TAPE)

 Carried Earth (CE)

 Time to Load Bucket

(TLB)

 Unloading Quantity

(UQ)

 Time to Unload

Bucket (TUB)

Hauler/s

 Capacity (C)

 Time to Get in Load Position (TGLP)

 Hauling Duration (HD)

 Time to Get in Dump Position (TGDP)

 Dumping Duration (DD)

 Returning Duration (RD)

 Carried Earth (HCE)

 Available Space (AS)

Spotter/s Time to Adjust Position (STAP) None

64

3.3.2 The Creation of Agents

In AB models, diagrams referred to as state charts are often used to describe the

different stages (states) that agents pass through while performing their roles. In turn,

state charts are basically flow charts that consist of blocks connected by arrows. Each

block forms a state and each arrow represents a transition from a state to another. Thus,

state charts are used to construct agents and govern their roles as well as their

communication mechanism. The overall behavior of the AB model is generated from the

interaction of its agents’ state charts. After creating state charts, they are implemented in

computer programs for simulation purposes to obtain the emergent behavior of the

system.

For the proposed earthmoving model, four state charts are created; one for each

agent. Figure 3-3 demonstrates a color legend for the agents’ state charts, which is going

to be used throughout the model construction and implementation. The red color refers to

an idle state of the agent. It signifies that the agent is waiting for a certain condition to be

fulfilled or a certain type of interaction to be carried out in order for it to move on to the

next state. Furthermore, a green color represents a working state of the agent. It indicates

that the agent is currently performing its main role. Finally, a yellow color is used to

describe a transitional state of the agent. It indicates that the agent is working, but on a

minor task that is mostly a complement of the main task.

WorkingTransitioningIdle

Figure 3-3: Color legend for agents’ state charts

65

Each agent will be explained separately. A table containing the agent’s attributes

and variables will be presented and subsequently, its components will be illustrated.

Then, the agent’s state chart will be demonstrated along with a description on how the

agent progresses through the different states of that state chart. Finally, a table that

includes a description on the state chart’s transitions will be shown. The condition/s and

action/s of each transition are listed in that table.

Prior to getting into details, it is important to define three variables which are

crucial to understanding the agents’ breakdown:

1) Soil Ready for Excavation (SRE): refers to the quantity of soil available to be

excavated by bulldozers.

2) Soil Ready for Loading (SRL): refers to the quantity of excavated soil that is ready

to be loaded in trucks (or to the quantity of soil available to be excavated by

loaders or other excavators, if the operation does not include bulldozers).

3) Dumped Soil (DS): refers to the quantity of soil that has already been transported

and dumped at the dumping location.

The Bulldozer Agent:

The attributes and variables of the bulldozer agent are shown in Table 3-4. Push

Quantity refers to the quantity of excavated soil by the bulldozer at the end of each pass.

Push Duration is the time it takes for the bulldozer to excavate that quantity of soil (to

make one pass). Time to Adjust Position refers to the time it takes for the bulldozer to

turn and rotate to the opposite orientation. Return Duration is the time it takes for the

bulldozer to return back to the location where it can begin another excavation pass.

66

In addition, Actual Push Quantity and Actual Push Duration are designed for

special cases when the quantity of soil available for excavation is less than the push

quantity of the bulldozer. In such cases, the Actual Push Quantity would be whatever

quantity is available and the Actual Push Duration would be an interpolated fraction of

the regular Push Duration based on the ratio of the Actual Push Quantity to the regular

Push Quantity. Regularly, Actual Push Quantity and Actual Push Duration are equal to

Push Quantity and Push Duration.

Table 3-4: Bulldozers’ attributes and variables

Agent Attributes Variables

Bulldozer/s

 Push Quantity (PQ)

 Push Duration (PD)

 Time to Adjust Position (TAP)

 Return Duration (RD)

 Actual Push Quantity (APQ)

 Actual Push Duration (APD)

The state chart of the bulldozer agent is depicted in Figure 3-4. The state chart

commences by the bulldozer being at the starting point, ready to begin excavating. If

there is no Soil Ready for Excavation, the bulldozer remains idle. However, if there is

Soil Ready for Excavation, the bulldozer starts moving and excavating that soil, either to

the regular Push Quantity or to whatever quantity is available. After the bulldozer reaches

the end of its excavation pass, it adjusts its position and rotates to be able to move in the

opposite direction. Subsequently, the bulldozer starts returning and heading for the

starting point of the excavation pass, where it adjusts its position and rotates again to be

in the correct form, ready to perform another excavation run. In view of that, the

bulldozer agent in the proposed AB model has no interactions with other agents.

67

However, considering the bulldozer participant as an agent is necessary since it is an

equipment unit that is actively participating in the system. In addition, it is better to keep

it as a flexible entity in case its mechanism changes when upgrading the model in the

future.

Ready To Excavate

2

Soil Available

Excavating

1

Soil Unavailable

Adjusting Position

3

Returning

Adjusting Position

4

6

5

Start

Figure 3-4: Bulldozer’s state chart

Table 3-5 provides a detailed elaboration on the bulldozer’s state chart transitions.

The actions of transition 2 were explained earlier when studying the bulldozer agent’s

68

state chart. The actions of transition 3 include reducing the quantity of Soil Ready for

Excavation by the Actual Push Quantity. Aside from this state, all other states and

transitions are straightforward.

Table 3-5: Bulldozer’s state chart transitions

Transition Condition/s Action/s

1 SRE = 0 No action

2A

SRE > 0

&

SRE > PQ

APQ = PQ

APD = PD

Start Excavating

2B

SRE > 0

&

SRE ≤ PQ

APQ = SRE

APD = PD ×
𝐴𝑃𝑄

𝑃𝑄

Start Excavating

3 Excavation pass completed

SRE reduced by APQ

SRL increased by APQ

Start adjusting position

4 Position adjustment completed Start returning

5 Return completed Start adjusting position

6 Position adjustment completed No action

The Loader Agent:

Table 3-6 illustrates the attributes and variables of the loader agent. In turn,

Bucket Capacity refers to the quantity of soil that the loader can carry in its bucket. Time

to Load Full Bucket is the time it takes for the loader to fill its bucket with that quantity

69

of soil (Bucket Capacity). Time to Adjust Position While Full refers to the time it takes

for the loader, when its bucket is full, to get in an appropriate position for loading trucks

(haulers). Time to Unload Full Bucket is the time it takes for the loader to dump its full

bucket load (Bucket Capacity) of soil in the truck. Time to Adjust Position While Empty

refers to the time it takes for the loader, when its bucket is empty, to get in a position for

loading its bucket after dumping its load in the truck.

Moreover, Carried Earth represents the actual quantity of soil in the loader’s

bucket. This variable is added to accommodate different bucket quantity scenarios,

determined by the availability of soil. Time to Load Bucket refers to the actual time it

takes to load the bucket based on Carried Earth. Thus, it is an interpolated fraction of the

regular Time to Load Full Bucket based on the ratio of the Carried Earth to the Bucket

Capacity. Unloading Quantity represents the quantity of soil that the loader chooses to

dump in the truck it is serving, which depends on a variable of the hauler agent called

Available Space. To elaborate, if the Available Space of the truck is less than the loader’s

Carried Earth, the loader dumps only a quantity of soil equal to the truck’s Available

Space. Accordingly, the Time to Unload Bucket is an interpolated fraction of the regular

Time to Unload Full Bucket based on the ratio of the Unloading Quantity to the Bucket

Capacity. This can be further understood by examining the loader’s state chart.

Since the model is designed in a way that allows for the loader agent to perform

the excavation activity when no bulldozers are included, all attributes and variables in

Table 3-6 are made to be generic and can accommodate both scenarios. Time to Load

Bucket can refer to either the time it takes for the loader to fill its bucket from an

excavated soil in stock piles or the time it takes for the loader, or other types of

70

excavators, to perform the excavation activity and fill their buckets with soil. If needed,

other attributes and variables change accordingly as well. This is an example of flexibility

in AB models.

Table 3-6: Loader’s attributes and variables

Agent Attributes Variables

Loader/s

 Bucket Capacity (BC)

 Time to Load Full Bucket (TLFB)

 Time to Adjust Position While Full

(TAPF)

 Time to Unload Full Bucket (TUFB)

 Time to Adjust Position While Empty

(TAPE)

 Carried Earth (CE)

 Time to Load Bucket

(TLB)

 Unloading Quantity

(UC)

 Time to Unload Bucket

(TUB)

Figure 3-5 represents the state chart of the loader agent. Accordingly, the initial

state is the loader being ready to begin loading its bucket by carrying soil from an

excavated stockpile (or performing the excavation). If there is no Soil Ready for Loading,

the loader remains idle. If, however, there is Soil Ready for Loading, the loader starts

filling its bucket either to its maximum capacity (Bucket Capacity) or to the available

quantity of soil if it is less than that capacity. After the loader’s bucket is filled, the loader

adjusts its position to be ready for loading the arriving truck. At that point, the loader

checks the truck’s queue. If there are no trucks waiting to be loaded, the loader remains

idle. However, if trucks are available, the loader signals the first truck in the queue to

move to the loading area. Then, the loader determines the Available Space in the truck. If

that Available Space is larger than or equal to the loader’s Carried Earth, the loader

dumps its entire bucket load in the truck. Otherwise, the loader dumps a quantity equal to

71

the truck’s Available Space. Regularly, when trucks arrive for loading, their Available

Space will be equal to their Capacity. After unloading the bucket’s load in the truck, the

loader checks the Available Space in the truck again and determines whether the truck as

reached its Capacity or not. In the event that the truck is full or if there is no Soil Ready

for Loading at that point, the loader signals the truck that the interaction between the two

equipment units is over and that the truck should start hauling to the dumping location.

The loader then has to adjust its position to get in the bucket loading setup again and

waits for extra quantities of soil to become available. On the other hand, if the loader

determines that the truck has not yet reached its full Capacity and that there is still Soil

Available for Loading, the loader adjusts its position, fills its bucket and loads the truck

again. This cycle is repeated until the truck reaches its Capacity or the Soil Ready for

Loading is fully consumed.

In light of that, the loader in the proposed AB model is a good example of a

dynamic agent that adapts actively with the changes of model conditions and other

agents’ properties. During different cycles of the loader’s operation, the same variable

can have different values that depend on the cycle’s conditions and interactions. This

demonstrates the strength of the ABMS technique and its promising capabilities for

future enhancements.

72

Ready To Fill

Bucket

2

Soil Available
Filling Bucket

1

Soil Unavailable

Waiting for

Trucks

3

Unloading

Bucket

6

Truck Available

5

Truck Unavailable 11

Truck Full || Soil Unavailable

Adjusting

Position (B)

12

7

Adjusting

Position (B)
Filling Bucket

Adjusting

Position (A)

Adjusting

Position (A)

4

9

10

Start

8

Figure 3-5: Loader’s state chart

Table 3-7 presents a detailed breakdown of the loader’s state chart transitions.

Consequently, these few points need to be clarified about the table:

 There are two types of position adjustments made by the loader agent; position

adjustment A is performed when the bucket is filled with a quantity of soil, while

position adjustment B is performed when the bucket is empty. This distinction

73

was made to make possible the option of using a longer duration for the position

adjustment when the bucket contains soil.

 For the 6th transition, since the truck has just arrived for loading, it may appear

that the only valid option is the one in the second row (Truck’s Available Space >

Carried Earth). However, designing the state chart to accommodate the other

alternative (Truck’s Available Space ≤ Carried Earth) does not affect the logic

and is more generic.

 For the second alternative of the 6th and 10th transitions (Truck’s Available Space

> Carried Earth), a quantity of (Carried Earth - Unloading Quantity) is added

back to the Soil Ready for Loading to indicate that the extra quantity of carried

soil, which could not be added to the truck because it was full, is still in the

operation and will be used for upcoming loading activities of other trucks.

 The condition (Soil Ready for Loading = 0) was added to the conditions of the

11th transition to guide the interaction between the loader and hauler agents in a

way that when there is no soil available for the loader to use in filling the truck,

the loading activity is completed and the truck should be able to leave the loading

area.

 It can be observed in the table that the loader is controlling its interaction with the

hauler. Hence, the loader is using some of the hauler’s properties in its state

chart’s conditions and actions. Although this interaction depends on the properties

of both equipment units, the hauler cannot tell how much soil it is being filled

with or when it reaches its full capacity. So, the loader has the overall authority

over the loading activity, and the hauler acts only based on commands from the

74

loader. This will be further explained when discussing the hauler’s state chart and

transitions in Figure 3-6 and Table 3-9.

Table 3-7: Loader’s state chart transitions

Transition Condition/s Action/s

1 SRL = 0 No action

2A

SRL > 0

&

SRL > BC

CE = BC

TLB = TLFB

Start filling bucket

2B

SRL > 0

&

SRL ≤ BC

CE = SRL

TLB = TLFB ×
𝐶𝐸

𝐵𝐶

Start filling bucket

3 Bucket filling completed
SRL reduced by CE

Start adjusting position (A)

4 Position adjustment (A) completed Start waiting for Truck

5 Truck unavailable No action

6A

Truck available

&

Truck’s AS > CE

UQ = CE

TUB = TUFB

Start dumping UQ in truck

6B

Truck available

&

Truck’s AS ≤ CE

UQ = Truck’s AS

TUB = TUFB ×
𝑈𝑄

𝐵𝐶

Start dumping UQ in truck

SRL increased by

(CE - UQ)

75

Transition Condition/s Action/s

7

UQ dumped in truck

&

Truck’s AS > 0

&

SRL > 0

Truck’s AS reduced by UQ

Truck’s HCE increased by UQ

Start adjusting position (B)

8A

Position adjustment (B) completed

&

SRL > BC

CE = BC

TLB = TLFB

Start filling bucket

8B

Position adjustment (B) completed

&

SRL ≤ BC

CE = SRL

TLB = TLFB ×
𝐶𝐸

𝐵𝐶

Start filling bucket

9 Bucket filling completed
SRL reduced by CE

Start adjusting position (A)

10A

Position adjustment (A) completed

&

Truck’s AS > CE

UQ = CE

TUB = TUFB

Start dumping UQ in truck

10B

Position adjustment (A) completed

&

Truck’s AS ≤ CE

UQ = Truck’s AS

TUB = TUFB ×
𝐶𝐸

𝐵𝐶

Start dumping UQ in truck

SRL increased by

(CE - UQ)

11

UQ dumped in truck

&

Truck’s AS = 0 or SRL = 0

SRL reduced by CE

Truck’s AS reduced by UQ

Truck’s HCE increased by UQ

Start adjusting position (B)

12 Position adjustment (B) completed No action

76

The Hauler Agent:

The attributes and variables of the hauler agent are demonstrated in Table 3-8.

Capacity refers to the maximum quantity of soil that the hauler can carry. Time to Get in

Load Position is the time it takes for the hauler to leave the queue and arrive at the

loading area. Hauling Duration refers to the duration of the hauler’s trip from the loading

area to the dumping site (truck dumping queue). Similarly, Returning Duration refers to

the duration of the hauler’s trip from the dumping area to the loading area (truck loading

queue). Accordingly, it is important to note that these two attributes depend on the

properties of both the hauler itself and the hauling and returning roads. However, in the

proposed AB model, the trip durations are assumed to be attributes of the hauler agent.

Time to Get in Dump Position is the time it takes for the hauler to leave the queue and

arrive at the dumping area. Dumping Duration refers to the time it takes for the truck to

dump its carried load in a stockpile. In addition, an important observation on the hauler’s

attributes is that unlike Dumping Duration, the truck’s loading duration is not an

attribute. This is because the hauler agent does not govern its loading activity, which is

under the control of the loader agent.

Moreover, Carried Earth represents the actual quantity of soil carried by the

hauler. This variable is added as an updating mechanism of the quantity of soil present in

the hauler at different stages of its cycle. Available Space is a variable dependent on

Carried Earth. Always, the hauler’s Available Space is equal to its Capacity less its

Carried Earth. Available Space is a very important variable for the loader’s agent due to

the influence it has on the transition’s conditions and actions of its state charts, as proven

by Table 3-7.

77

Table 3-8: Hauler’s attributes and variables

Agent Attributes Variables

Hauler/s

 Capacity (C)

 Time to Get in Load Position

(TGLP)

 Hauling Duration (HD)

 Time to Get in Dump Position

(TGDP)

 Dumping Duration (DD)

 Returning Duration (RD)

 Carried Earth (HCE)

 Available Space (AS)

The state chart of the hauler agent is illustrated by Figure 3-6. The initial state

represents the hauler waiting in the queue for loaders to become idle. Once a loader

becomes idle, it signals the hauler to move to the loading area. The hauler then moves

and gets in the loading position. At this point, the loading activity begins and the loading

cycles described in the loader’s state chart start to be executed. As indicated when

describing the loader’s state chart transitions in Table 3-7, when the hauler reaches its

Capacity or when there is no Soil Ready for Loading, the interaction between the loader

and hauler agents is finalized. Subsequently, the hauler starts hauling to the dumping

location, where it stops first at a queue of haulers waiting for a spotter to become idle.

Once a spotter becomes idle, it signals the hauler to move to the dumping area. The

hauler then moves and gets in the dumping position. At that point, the hauler starts

dumping its load with the help of the spotter, and once its load is fully dumped, the

spotter signals the truck to leave, ending the interaction between the two agents. The

hauler then heads back to the loading area, where it stops first at a queue waiting for

loaders to become idle and starts repeating the cycle again.

78

Waiting For

Loader

1

Loader Unavailable

Getting In

Loading

Position

2

Loader Available

Hauling

3

Returning

10

Dumping

Getting In

Dumping

Position

Waiting For

Spotter

Being Loaded

4

8

Start

5

7

Spotter Available

9

6

Spotter Unavailable

Figure 3-6: Hauler’s state chart

Table 3-9 demonstrates the transitions and states of the hauler agent’s state chart.

The state chart is simple, owning to the fact that the hauler is not in control of its loading

and dumping activities. As mentioned earlier, the loader agent performs all the actions in

the loading activity. Similarly, the hauler needs the permission of the spotter before

coming to or leaving the dumping area. However, unlike the loading activity, the

dumping activity relies solely on properties of the hauler agent. The spotter only acts as a

regulator for the dumping activity.

79

Table 3-9: Hauler’s state chart transitions

Transition Condition Action

1 Loader unavailable No action

2 Loader available Start getting in loading position

3 Permission from loader No action

4 Permission from loader Start hauling

5 Arriving at dumping queue No action

6 Spotter unavailable No action

7 Spotter available Start getting in dumping position

8 Permission from spotter Start dumping load

9 Permission from spotter

HCE = 0

DS increased by HCE

Start returning

10 Arriving at loading queue No action

The Spotter Agent:

The spotter agent is the most basic agent in the proposed AB model. Its only

attribute, Time to Adjust Position, is depicted in Table 3-10. This attribute refers to the

time it takes for the spotter agent to adjust its position before and after a dumping activity

to accommodate arriving and departing haulers.

80

Table 3-10: Spotter’s attributes and variables

Agent Attributes Variables

Spotter/s Time to Adjust Position (STAP) None

The state chart of the spotter agent is demonstrated in Figure 3-7. The initial state

represents the spotter waiting for a truck ready to dump its load. The spotter checks the

truck’s queue, and if there are no trucks waiting to dump, it remains idle. If, however,

trucks are available, the hauler agent signals the first truck in the queue to move to the

dumping area, while adjusting its position to engage with the arriving truck. When the

truck dumps its load, the spotter agent gives it the permission to leave the dumping area

and return back to be loaded again. After signaling the truck to depart, the spotter agent

adjusts its position again and waits for the next truck to arrive.

Ready To Spot
2

Truck Available

Spotting

1

Truck Unavailable

Adjusting

Position

Adjusting

Position

3 5

Start

4

Figure 3-7: Spotter’s state chart

81

Table 3-11 represents the transitions’ conditions and actions of the spotter agent’s

state chart. The spotter in the proposed AB model has limited interactions and

responsibilities, which can be clearly verified by its simple transitions displayed in Table

3-11.

Table 3-11: Spotter’s state chart transitions

Transition Condition Action

1 Truck unavailable No action

2 Truck available Start adjusting position

3 Position adjustment completed Start spotting

4 Hauler dumping completed Start adjusting position

5 Position adjustment completed No action

Figure 3-8 summarizes the interaction between different participants, both agents

and non-agents, in the proposed earthmoving AB model.

Environment

Bulldozer

Spotter Hauler

Loader

Hauling &

Returning

Roads

Soil

Non-Agent

Agent

Interaction

Figure 3-8: Summary of agents’ interactions in the proposed earthmoving AB model

82

CHAPTER 4: IMPLEMENTATION

4.1 Chapter Overview

This chapter presents the implemented system and describes its components.

Accordingly, it demonstrates the modeling aspects of the simulation process utilizing

ABMS and object-oriented programming. Also, it primarily focuses on the development

of the stand-alone earthmoving simulation program named Agent-Based Simulator for

Earthmoving Operations (ABSEMO). Figure 4-1 demonstrates the breakdown of the

implementation process. The developed simulation application has some interesting

aspects: 1) it is the first ever AB simulation tool to be developed for planning

earthmoving operations; 2) it can model different types of equipment units performing

the same activity; 3) it can accept stochastic data for the characteristics of equipment

units as well as for activity durations. 4) it requires neither knowledge in programming

nor simulation from end-users to operate; 5) it is a stand-alone system that can be easily

shared and run on different platforms.

AnyLogic 7 was utilized in the development of ABSEMO. In light of that,

AnyLogic is a Java-based modeling tool that includes libraries for DES, SD and ABMS.

Thus, users can use the graphical modeling language of Anylogic to prepare simulation

models, with the option of extending the model with additional Java code. The Java

nature of AnyLogic allows for custom model extensions via Java coding as well as the

creation of Java applications, which can be a basis for decision support tools (Wartha et

al. 2002). Those applications can be easily shared and run on any standard browser.

AnyLogic elements used in the creation of ABSEMO are demonstrated in Table 4-1.

83

System

 Verification

Stand-Alone

System

(ABSEMO)

Case

Study

Implementation

Agent Classes

Reporting of

Results

Main Class

Graphical User

Interface

Figure 4-1: Implementation breakdown

4.2 Main Class

The main class in the developed system represents the simulation engine that

integrates all model components, manages the interaction between agents and their

environment, performs major simulation actions and generates results and analysis. In

view of that, the main class duties can be summarized in five point: 1) setting up the

earthmoving environment; 2) creating and governing agent populations; 3) managing

agent queues; 4) controlling model run-time conditions; 5) performing analysis and

producing results. These tasks are separately explained in subsections 4.2.1 ~ 4.2.5.

84

Table 4-1: AnyLogic elements used in ABSEMO

Element Symbol

Agent population

Parameter (attribute)

Variable

Java function

Event (scheduled function)

Collection (linked list)

Pointer

Statistics

Data set

Excel file

Bulldozer agent

Loader agent

Hauler agent

Spotter agent

Link to agent/s

Link to main class

Time-triggered transition

Message-triggered transition

State-end-triggered transition

85

4.2.1 Earthmoving Environment

The earthmoving environment of the proposed AB model is portrayed in Figure

4-2. It represents the physical space in which the different activities involved in the

earthmoving operation take place. Hence, the excavation area, hauler load queue, loading

area, haul road, hauler dump queue, dumping area and return road are illustrated by

Figure 4-2. Other components including a residential area, a commercial area and a body

of water were added for aesthetic purposes. Pointers are placed at different locations in

the environment to guide the movement of agents during different activities.

Figure 4-2: Earthmoving Environment

Return Road

Haul Road

Excavation Area

Road

Loading Area Road

Dumping

Area

Hauler Dump Queue

Hauler Load Queue

86

4.2.2 Agent Populations

Although the structure of each agent is represented by its state chart, agent

populations are created in the main the class and they live and interact in its environment.

Some major elements that were utilized in configuring and managing agent populations

in the main class are listed and explained in Table 4-2. These elements mainly focus on

creating agents, setting up their initial locations and managing their populations.

Table 4-2: Agent populations’ elements in ABSEMO

Element Purpose

Creates bulldozer agents with types and properties

specified by the user

Creates loader agents with types and properties

specified by the user

Creates hauler agents with types and properties

specified by the user

Creates spotter agents with types and properties

specified by the user

Sets up the initial location of agents in the

environment

Represents the created population of bulldozers as

one group for control purposes

Represents the created population of loaders as one

group for control purposes

Represents the created population of haulers as one

group for control purposes

Represents the created population of spotters as one

group for control purposes

87

4.2.3 Agents’ Queues

The function and queues in the main class, depicted in Table 4-3, govern the

hauler agent’s interaction with the loader agent, when it attains the point of being loaded,

and with the spotter agent, when it reaches the step of dumping its load. These functions

and queues are necessary prior to the loading and dumping activities. Before trucks get to

the loading and dumping areas, queues, represented in the form of requests, need to be

organized based on the First-In-First-Out (FIFO) principle.

Table 4-3: Agent queues’ elements in ABSEMO

Element Purpose

Places a request for loading by the hauler agent as

soon as it arrives at the loading queue

Places a request for dumping by the hauler agent as

soon as it arrives at the dumping queue

 Stores the hauler agents’ loading requests in a list

 Stores the hauler agents’ dumping requests in a list

Called by the loader agent when it becomes idle to

check if there are any stored loading requests

Called by the spotter agent when it becomes idle to

check if there are any stored dumping requests

Called by the loader agent to remove the first request

in the list after responding to it

Called by the loader agent to remove the first request

in the list after responding to it

88

4.2.4 Model Run Control

The main class includes elements that are defined by the author to control the

model run time, by pausing or stopping simulation based on conditions specified by the

user. These elements are shown in Table 4-4. Hence, different elements are added to

accommodate different choices of the user regarding model pause, resume and stop

mechanisms.

Table 4-4: Model run control in ABSEMO

Element/s Purpose

Pause and resume the simulation

Stop the simulation when the whole quantity of

soil is excavated, transported and dumped

Stop the simulation when a specific quantity of

soil is dumped

Stop the simulation when a specific quantity of

soil is excavated

Stops the simulation at a specific point of time,

which is defined in terms of hours, minutes and

seconds of simulation time

89

4.2.5 Results and Analysis

The main class is also responsible for updating major soil quantities, calculating

productivity, gathering statics related to equipment utilization and updating the Excel

sheets linked to the model. Such types of analysis and results performed by ABSEMO are

depicted in Table 4-5.

Table 4-5: Results and Analysis in ABSEMO

Element/s Purpose

Refers to the quantity of soil available for

excavation by bulldozers

Refers to the quantity of soil available for loading

(or excavation) by loaders

 Refers to the quantity of soil dumped by haulers

Updates productivity every minute of simulation

time

Refers to the productivity of the system, which is

obtained by dividing the quantity of dumped soil by

the simulation time

Gather statistics on the average time spent by

bulldozer agents at each state during simulation

Gather statistics on the average time spent by loader

agents at each state during simulation

90

Element/s Purpose

Gather statistics on the average time spent by hauler

agents at each state during simulation

Gather statistics on the average time spent by spotter

agents at each state during simulation

Create data sets for the average time spent in states

obtained by the bulldozer agent’s statistics

Create data sets for the average time spent in states

obtained by the loader agent’s statistics

Create data sets for the average time spent in states

obtained by the hauler agent’s statistics

91

Element/s Purpose

Create data sets for the average time spent in states

obtained by the spotter agent’s statistics

Updates the statistics of equipment utilization every

100 minutes of simulation time

Updates and excel file with statistics related to the

utilization of bulldozer agents

Updates and excel file with statistics related to the

utilization of loader agents

Updates and excel file with statistics related to the

utilization of hauler agents

Updates and excel file with statistics related to the

utilization of spotter agents

4.3 Agent Classes

Besides the main class, ABSEMO has four classes that represent the three

equipment units and the spotters participating in the earthmoving operation. Each of these

classes contains an agent’s state chart, along with elements required in the operation of

that state chart. Consequently, the same states, transitions, attributes and variables

defined earlier in the methodology are used in the implementation of agent classes in

ABSEMO. Some extra elements are added to the implemented system for programming

details. Subsections 4.3.1 ~ 4.3.4 discuss each agent class individually. The state chart of

the agent is displayed, followed by a table that explains major elements used in the

agent’s structure.

92

4.3.1 The Bulldozer Agent

Figure 4-3 demonstrates the state chart of the bulldozer agent, as implemented in

ABSEMO.

Figure 4-3: Bulldozer’s state chart in ABSEMO

Table 4-6 illustrates the major elements used in the structure of the bulldozer

agent. The bulldozer agent does not have direct interactions with other agents in the

proposed model. Two properties of the bulldozer agent are considered as variables.

Table 4-6: Bulldozer class elements in ABSEMO

Element Purpose

 Changes the color of the bulldozer agent based on its state

Refers to the ID of the bulldozer agent in the bulldozer

population for assigning initial locations

93

Element Purpose

The push capacity of the bulldozer at the end of a full

pass, as specified by the user

The full pass duration of the bulldozer, as specified by the

user

The direction change duration of the bulldozer, as

specified by the user

The return movement duration of the bulldozer, as

specified by the user

Transforms the user’s input on the bulldozer’s push

capacity into a parameter usable by the bulldozer’s state

chart

Transforms the user’s input on the bulldozer’s full pass

duration into a parameter usable by the bulldozer’s state

chart

Transforms the user’s input on the bulldozer’s direction

change duration into a parameter usable by the bulldozer’s

state chart

Transforms the user’s input on the bulldozer’s return

movement duration into a parameter usable by the

bulldozer’s state chart

The push capacity of the bulldozer used in the bulldozer’s

state chart

The full pass duration of the bulldozer used in the

bulldozer’s state chart

The direction change duration of the bulldozer used in the

bulldozer’s state chart

The return movement duration of the bulldozer used in the

bulldozer’s state chart

Determines the excavation quantity of the bulldozer based

on the available soil

 The actual excavation quantity of the bulldozer

 The actual excavation duration of the bulldozer

Establishes a link between the agent class of the bulldozer

and the main class

94

4.3.2 The Loader Agent

Figure 4-4 represents the state chart of the loader agent as implemented in

ABSEMO.

Figure 4-4: Loader’s state chart in ABSEMO

95

Elements used in the creation of the loader agent are displayed in Table 4-7. The

loader agent has four changing properties (variables) and interacts only with the hauler

agent.

Table 4-7: Loader class elements in ABSEMO

Element Purpose

Changes the color of the loader agent based on its

state

The bucket capacity of the loader, as specified by

the user

The bucket load duration of the loader, as

specified by the user

The position adjustment duration of the loader

while its bucket is full, as specified by the user

The bucket unload duration of the loader, as

specified by the user

The position adjustment duration of the loader

while its bucket is empty, as specified by the user

Transforms the user’s input on the loader’s

bucket capacity into a parameter usable by the

loader’s state chart

Transforms the user’s input on the loader’s

bucket load duration into a parameter usable by

the loader’s state chart

Transforms the user’s input on the loader’s

position adjustment while full duration into a

parameter usable by the loader’s state chart

Transforms the user’s input on the loader’s

bucket unload duration into a parameter usable by

the loader’s state chart

Transforms the user’s input on the loader’s

position adjustment while empty duration into a

parameter usable by the loader’s state chart

96

Element Purpose

The bucket capacity of the loader used in the

loader’s state chart

The bucket load duration of the loader used in the

loader’s state chart

The position adjustment duration of the loader

while its bucket is full used in the loader’s state

chart

The bucket unload duration of the loader used in

the loader’s state chart

The position adjustment duration of the loader

while its bucket is empty used in the loader’s

state chart

Determines the loading quantity of the loader’s

bucket based on the available soil

Determines the required loading quantity of the

hauler based on its available space

 The actual quantity of soil carried by the loader

The actual quantity of soil in the loader’s bucket

to be dumped in the truck

 The actual bucket load duration of the loader

 The actual bucket unload duration of the loader

Stores the hauler agent as a variable for

communication purposes

Establishes a link between the agent class of the

loader and the agent class of the hauler

Establishes a link between the agent class of the

loader and the main class

97

4.3.3 The Hauler Agent

The state chart of the hauler agent, as implemented in ABSEMO, is demonstrated

in Figure 4-5.

Figure 4-5: Hauler’s state chart in ABSEMO

98

Table 4-8 demonstrates elements used in the structure of the hauler agent. The

hauler agent interacts with the loader and spotter agents and has two variables among its

properties.

Table 4-8: Hauler class elements in ABSEMO

Element Purpose

Changes the color of the hauler agent based on

its state

The capacity of the hauler, as specified by the

user

The get in load position duration of the hauler,

as specified by the user

The haul duration of the hauler to the dumping

site, as specified by the user

The get in dump position duration of the

hauler, as specified by the user

The dump duration of the hauler, as specified

by the user

The return duration of the hauler to the loading

site, as specified by the user

Transforms the user’s input on the hauler’s

capacity into a parameter usable by the

hauler’s state chart

Transforms the user’s input on the hauler’s get

in load position duration into a parameter

usable by the hauler’s state chart

Transforms the user’s input on the hauler’s

haul duration into a parameter usable by the

hauler’s state chart

Transforms the user’s input on the hauler’s get

in dump position duration into a parameter

usable by the hauler’s state chart

99

Element Purpose

Transforms the user’s input on the hauler’s

dump duration into a parameter usable by the

hauler’s state chart

Transforms the user’s input on the hauler’s

return duration into a parameter usable by the

hauler’s state chart

The capacity of the hauler used in the hauler’s

state chart

The get in load position duration of the hauler

used in the hauler’s state chart

The haul duration of the hauler to the dumping

site used in the hauler’s state chart

The get in dump position duration of the hauler

used in the hauler’s state chart

The dump duration of the hauler used in the

hauler’s state chart

The return duration of the hauler to the loading

site used in the hauler’s state chart

 The quantity of soil carried by the hauler

 The available space in the hauler

Stores the loader agent as a variable for

communication purposes

Stores the spotter agent as a variable for

communication purposes

Establishes a link between the agent class of

the hauler and the agent classes of the loader

and the spotter

Establishes a link between the agent class of

the hauler and the main class

100

4.3.4 The Spotter Agent

Figure 4-6 represents the state chart of the spotter agent as implemented in

ABSEMO.

Figure 4-6: Spotter’s state chart in ABSEMO

Elements used in the construction of the spotter agent are displayed in Table 4-9.

The spotter agent interacts only with the hauler agent and has no variables.

Table 4-9: Spotter class elements in ABSEMO

Element Purpose

Changes the color of the spotter agent based

on its state

The position adjustment duration of the

spotter, as specified by the user

Transforms the user’s input on the spotter’s

position adjustment duration into a parameter

usable by the spotter’s state chart

The position adjustment duration of the

spotter used in the spotter’s state chart

101

Element Purpose

Stores the hauler agent as a variable for

communication purposes

Establishes a link between the agent class of

the spotter and the agent class of the hauler

Establishes a link between the agent class of

the spotter and the main class

4.4 Graphical User Interface (Java Application)

The Graphical User Interface (GUI) of the implemented earthmoving model was

developed after finalizing the structure of the main class and the four agent classes. The

main purpose of the GUI is to create a user-friendly tool that allows for planning

earthmoving operations with flexibility in inputs to fit different case studies.

Figure 4-7 demonstrates the introductory welcome page of ABSEMO, where

general information about the owners and the application is presented. In addition, Figure

4-8 presents the environment of the earthmoving model and highlights its elements.

Figure 4-9 displays the material input page of ABSEMO, where information about the

material type, quantity of soil to be excavated and quantity of excavated soil to be

transported (or quantity of soil to be excavated by loaders) are entered by users. The

material type has no effect on the model’s structure or operation; it was just added for

appearance purposes related to the color of each type of material. On the other hand, the

quantity of soil to be excavated refers to the quantity of soil that is planned to be

excavated by bulldozers. The quantity of excavated soil to be transported (or quantity of

soil to be excavated by loaders) is added to give users the ability to model earthmoving

systems that have the following two scenarios: 1) a quantity of soil is already excavated

102

and ready to be loaded in trucks; 2) the earthmoving operation does not include the

utilization of bulldozers, and loaders (or excavators) are the equipment units responsible

for excavating and loading soil in trucks. ABSEMO accepts and employs inputs of both

cases.

Furthermore, Figure 4-10 demonstrates the equipment and labor input page of

ABSEMO. Users can select up to three types of each equipment unit to participate in the

earthmoving operation. Having more than three types of the same equipment unit

performing the same task is not realistic. However, the model can be easily upgraded to

accommodate more types of equipment units if needed. A color legend is added for users

to identify the state of each equipment unit during model run. Figure 4-11 displays the

model run control elements in ABSEMO. Users can choose to stop the model when the

whole quantity of soil is excavated, loaded and dumped, when the dumped or excavated

soil reaches a specific quantity, or at a specific time instance specified by hours, minutes

and seconds of simulation time.

Figure 4-12 and Figure 4-13 are snapshots of the model run in 2-D and 3-D views.

While the model is running, users can monitor major statics including the quantity of soil

available for excavation, the quantity of soil available for loading, the quantity of dumped

soil, the productivity of work, the number of trucks in the loading queue and the number

of trucks in the dumping queue. Users can alternate between the 2-D view, the 3-D view

and the metrics view, which will be shown in Section 4.5. Users also have the ability to

run the model at a fast speed, pause and resume simulation, or stop and terminate the

simulation.

103

Figure 4-7: Welcome page of ABSEMO

Figure 4-8: Earthmoving environment in ABSEMO

104

Figure 4-9: Material input in ABSEMO

Figure 4-10: Equipment and labor input in ABSEMO

105

Figure 4-11: Model run control in ABSEMO

Figure 4-12: 2-D snapshot of model run in ABSEMO

106

Figure 4-13: 3-D snapshot of model run in ABSEMO

4.5 Reporting of Results

ABSEMO reports simulation results both during model run and after the

simulation is concluded. Major statistics demonstrated in Section 0 are constantly

updated while the model is running. Figures 4-14 ~ 4-18 are snap shots of the equipment

and labor utilization graphs.

Figure 4-14 represents basic statistics on the average percentage of simulation

time in which agent units belonging to the same class are either working or idle. Figure

4-15, Figure 4-16, Figure 4-17 and Figure 4-18 demonstrate a detailed version of the

equipment and labor utilization statistics for the bulldozer, loader, hauler and spotter

agents respectively. In these detailed graphs, the average percentage of time spent by the

107

agent group at each state is represented separately and given different colors. Major

statistics and equipment utilization data are added to excel sheets which were previously

created and linked to ABSEMO.

Figure 4-14: Equipment utilization statistics in ABSEMO

Figure 4-15: Bulldozers detailed utilization statistics in ABSEMO

108

Figure 4-16: Loaders detailed utilization statistics in ABSEMO

Figure 4-17: Haulers detailed utilization statistics in ABSEMO

109

Figure 4-18: Spotters detailed utilization statistics in ABSEMO

4.6 System Verification

This section is dedicated to test and verify the developed AB simulation model

using a real-world case study from the construction sector. The case study is related to

earthmoving operations in a dam construction project in the province of Quebec, Canada.

It involves two main operations: 1) the excavation of riverbed soil at the location of the

dam; 2) the backfill of three types of soils in three stages. The scope of work involved in

these two operations is estimated from the structural design of the dam, and the hauling

and returning durations of trucks are calculated based on routes’ profiles and rolling

resistance. As a proof of concept, only the excavation of the riverbed soil will modeled

and simulated using ABSEMO.

110

4.6.1 Case Study Description

The case study is concerned with modeling and simulating the riverbed

excavation operation involved in the construction of Sainte-Marguerite-3 (SM-3) Dam

(1994-2002), which is located on the Sainte-Marguerite River in Sept-Îles City, 700 km

northeast of Montréal, Canada. Figure 4-19 shows a map of the river’s location and

Figure 4-20 shows a picture of the dam after construction. Information about this this

case study were obtained from Peer (2001), Hydro Quebec (2003), Marzouk (2004) and

Alzraiee (2013).

4.6.2 Scope of Work

Earthmoving operations in the SM-3 dam construction project were allotted three

years by the management. Regarding the riverbed excavation operation, which will be

used to verify ABSEMO, the actual quantity of excavated natural soil was 1,038,000 m3

(Peer 2001). The quantity of excavated soil was not used in the construction of the dam;

instead, it was hauled away and dumped in another location. Accordingly, the backfill

operation was performed by borrowing 6,300,000 m3 of soil from three pits. Table 4-10

summarizes the scope of work. The excavation part, which is the interest in this study, is

highlighted in bold.

111

Figure 4-19: Location of Sainte-Marguerite-3 dam (Hydro Quebec 2003)

Figure 4-20: Sainte-Marguerite-3 dam (Hydro Quebec 2003)

112

Table 4-10: Scope of work in in the SM-3 dam construction earthmoving operations (Alzraiee

2013)

Element Rock Granular Moraine Total

Backfilling Stage 1 (m3) 192,700 14,500 29,200 236,400

Backfilling Stage 2 (m3) 3,209,400 286,500 555,900 4,051,800

Backfilling Stage 3 (m3) 1,602,900 139,000 269,000 2,011,800

Loose Density (t/m3) 1.66 1.72 1.66 1.6

Bank Density (t/m3) 2.73 1.93 2.02 2.4

Load Factor 80 90 100 100

Total Quantity of Soil 5,005,000 440,000 855,000 6,300,000

Excavation (m3) 1,038,000 1,038,000

4.6.3 Fleet Selection and Configuration

Table 4-11 and Table 4-12 represent the equipment fleet combinations selected

for performing the different earthmoving operations involved in the SM-3 dam

construction. Triangular probability distributions were considered for the process

durations of loading, hauling, returning, spreading and compaction. On the other hand,

uniform distributions were considered for the dumping process (Alzraiee 2013). The last

row of Table 4-11, which is highlighted in bold, depicts the fleet configuration, material

properties and activity durations of the riverbed excavation operation.

113

4.6.4 DES Simulation Results

Alzraiee (2013) created an EZStrobe DES simulation model for the riverbed

excavation of the SM-3 dam construction project, which is portrayed in Figure 4-21. The

model consists of two bulldozers, two loaders, seven haulers and two spotters. As

demonstrated in Table 4-10, the quantity of soil to be excavated is 1,038,000 m3. Also,

equipment properties and activity durations are the ones listed in the last row of Table

4-11. The results of the DES model suggested that a duration of 808.33 hours with an

average productivity of 1284.52 m3/hour is required to complete the operation.

Figure 4-21: EZStrobe DES model of riverbed excavation in the Sainte-Marguerite dam

construction project (Alzraiee 2013)

114

Table 4-11: Hauler and loader fleet configurations in the SM-3 dam construction earthmoving operations (Alzraiee 2013)

Hauled

Material

Hauler

Model

Loader

Model

Bucket

Capacity

of

Loader

Loose

Density

of Soil

(ton/m3)

Hauled

Soil

Volume

(m3)

Hauled

Soil

Weight

(ton)

Loading

Process-Time

Distribution

(min)

Hauling

Process-Time

Distribution

(min)

Dumping

Process-Time

Distribution

(min)

Returning

Process-Time

Distribution

(min)

Rock 777D 992G 12.3 1.66 49 81.67
(3.94, 4.15,

4.57)

(4.3, 4.53,

4.98)
(1.9, 2.2)

(3.17, 3.34,

3.67)

Moraine 773D 990 SII 9.2 1.66 28 45.82
(3.01, 3.2,

3.32)

(19.47, 20.5,

22.55)
(1.6, 1.9)

(16.71, 17.59,

19.35)

Granular 769C 988F 6.9 1.72 20 34.36 (2.3, 2.42, 2.5)
(30.6, 32.34,

35.57)
(1.3, 1.5)

(25.85, 26.51,

29.16)

Riverbed

Soil
777D 375L 4.59 1.6 32 51.41

(4.26, 4.48,

4.93)

(5.32, 5.6,

6.16)
(1.6, 1.9)

(2.86, 3.01,

3.31)

Table 4-12: Spread and compact equipment characteristics in the SM-3 dam construction earthmoving operations (Alzraiee 2013)

Process Bulldozer Model Productivity (m3/Cycle) Time Distribution (min)

Spread D8R 27 (2.47, 2.6, 2.86)

Compact CS-583C 19 (1.8, 1.9, 2.09)

115

4.6.5 ABMS Simulation Results

Activity durations presented in Table 4-10 are all of DES nature. The excavation,

loading, hauling, dumping and returning activities are all single entities with single

durations. Verifying ABSEMO using this data requires some manipulation.

Consequently, some inputs of the riverbed excavation process used in ABSEMO are

adjusted based on the following assumptions:

 Setting the excavation duration equal to the ‘push duration’ in ABSEMO. Other

durations in the bulldozer agent inputs have no value (0 min).

 By dividing the hauler’s capacity over the loader’s bucket capacity, the number of

loader cycles to fill one truck is obtained (49 m3 / 4.59 m3 = 10.675381). The

loading duration is then divided by that number to get the duration of the loader

cycle ((4.26 min, 4.48 min, 4.93 min) / 10.675381 = (0.399049 min, 0.419657

min, 0.461810 min)). Finally, 75% of the duration of the loader cycle (0.299287

min, 0.314743 min, 0.3463575 min) is inputted as the ‘bucket load duration’ and

25% (0.099762 min, 0.104914 min, 0.115453 min) is inputted as the ‘full bucket

unload duration’ in ABSEMO. Other durations in the loader agent inputs have no

value (0 min).

 Setting the haul, dump and return durations as ‘haul duration’, ‘return duration’

and ‘dump duration’. Other durations in the hauler agent inputs have no value (0

min).

 The ‘position adjustment duration’ input of the spotter agent has no value (0 min)

116

After inputting the soil quantity to be excavated, the equipment capacities and the

adjusted activity durations of the riverbed excavation in ABSEMO, a duration of 804.95

hours with an average productivity of 1289.52 m3/hour was obtained for the completion

of the operation.

4.6.6 Comparison between DES and ABMS Results

DES results represent a good verification tool for AB models. The nature of DES

provides an accurate flow of resources, which allows for verifying the quantitative

aspects of AB models. There are some examples in literature on the verification of

ABMS outputs using DES results (Biswas and Merchawi 2000, Fortino et al. 2005).

However, it is important to note that to validate the accuracy and precision of ABMS, the

emergent behavior of the AB model should be compared to that of the real-world system.

Table 4-3 summarizes the comparison between the DES and ABMS results for the

SM-3 riverbed excavation operation. The percentage difference between the DES and

ABMS durations was 0.42%, indicating that the representation of agents’ properties, the

interaction logic and the flow of resources in ABSEMO are correct. Therefore, ABSEMO

can now be used to plan earthmoving operations with more complex inputs that fit its

capabilities and takes advantage of its strength.

Table 4-13: A comparison between DES and ABMS Results for the SM-3 Riverbed Excavation

Technique Duration (hours) Productivity (m3/hour)

DES 808.33 1284.52

ABMS 804.95 1289.52

117

4.7 Superiority of ABMS

Subsequently to developing and implementing an AB model for earthmoving

operations, several advantages of the ABMS technique are noted. Compared to DES and

SD, the following points of superiority exist in ABMS:

 ABMS allows for creating combined time progression models (discrete and

continuous), which helps capture a realistic flow of resources based on the

activities at-hand. In DES and SD, modelers have to follow the time progression

mechanism of the technique being used, regardless of the operation being

modeled.

 ABMS is a stochastic approach, compared to the deterministic SD technique.

ABMS heavily relies on randomness of variables to produce realistic emergent

behaviors. In addition, unlike existing DES models, AB models can accept

variables from different probability distributions, not only for activity durations,

but also for agents’ characteristics including quantity-related attributes. Examples

from ABSEMO include bulldozers’ push capacities, loaders’ bucket loading

quantities, haulers’ capacities, etc.

 ABMS offers a huge flexibility in modeling agents’ characteristics and roles to

match those of the real-world participants of the systems being modeled. In

ABSEMO, Different equipment attributes and the ability of the loader agent to

perform the excavation as well as the loading activities or only the loading

activity are examples of flexibility in AB models. DES and SD models are often

rigid in nature, offering limited capabilities of representing resources of different

characteristics.

118

 The smart behavior of agents in AB models establishes a strong mechanism for

replicating the real-world operations, by adapting and behaving differently at

different situations. In other words, changing quantities and activity durations

based on agents’ capacities and states are examples of adaption in AB models.

DES and SD are often inflexible in terms of behavior of model entities, which

translates into a predetermined performance of the systems being modeled using

these techniques.

4.8 Implementation of ABMS in Other CM Areas

Although this research work mainly focused on the development of an AB model

for earthmoving operations, the applied procedures and methodologies can be easily

extended to the modeling of other construction operations. The heterogeneity of

construction operations can be captured with great accuracy through the utilization of

smart, flexible and comprehensive AB models. Accordingly, simulation knowledge,

ABMS understanding and object-oriented programming skills are essential requirements

for creating such models.

The generic procedure for creating AB models for construction management

applications presented in Section 3.2 acts as a guide for planners who are interested in

using this technique to model different construction operations. Generally, construction

operations include different participants which are interacting to fulfil a certain goal.

Identifying the properties and roles of these participants, understanding their interaction

logic and communication mechanism as well as recognizing the environment they exist

119

and interact within are all key tasks in developing accurate AB models for construction

operations.

Differences in AB models for construction management applications arise from

the nature of the systems being modeled. Agents in an earthmoving AB model are

expected to be the equipment units and labor participating in the different earthmoving

activities. Similarly, technical operations in construction including tower crane

operations, concrete pouring, formwork installation, and so on will have the same

principles in developing agents and assigning their properties and roles. However,

managerial aspects of construction management including workers’ behavior, claims

negotiations, conflict resolution, contract management, etc. involve a psychological

human side that cannot be easily captured to produce emergent behaviors. In light of that,

systems, in which humans are agents, represent a far bigger challenge to planners when

developing AB models. So, although ABMS is a relatively simple technique to apply, the

nature of the operations being modeled profoundly affects the ability of modelers to

design agents and simulate their behavior.

120

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary and Conclusions

This research work proposes ABMS as an effective tool for modeling

earthmoving operations. Essentially, the core idea is relying on the strength of the AB

technique in representing model participants’ properties, roles and interactions to enhance

the planning of earthmoving operations and overcome limitations of current earthmoving

simulation practices including poor graphical modeling support, predetermined and

inflexible behaviors as well as the necessity of detailed data when modeling.

In turn, an in-depth literature review was conducted to investigate current

simulation techniques and their applications in construction management in general and

earthmoving operations in particular. Thus, DES and SD were examined by studying

their methodologies, identifying their limitations and inspecting their applications. The

ABMS technique was thoroughly examined by studying its major aspects including

agents, environments, interactions and emergence and going over its applications in civil

engineering and construction management. Gaps and limitations of current research were

illustrated to highlight the need of ABMS in planning earthmoving operations.

Moreover, a detailed explanation of the research methodology was provided. A

simple step-by-step procedure on how to develop AB models for different construction

operations based on a set of rules and criteria was outlined, according to the author’s

perception of the AB technique. Then, the development of a comprehensive AB model

for earthmoving operations consisting of bulldozers, loaders, haulers and spotters was

demonstrated. The model governs the process logistics, information sharing, equipment

121

properties and activity durations. In addition, agents’ types, attributes, roles and

interaction logic were discussed in detail, and the guidelines for the implementation of

the earthmoving AB model were highlighted.

A Java-based object-oriented software application, Agent-Based Simulator for

Earthmoving Operations’ (ABSEMO), was developed as an implementation of the

proposed earthmoving AB model. ABSEMO was verified through a real-life case study of

the riverbed excavation operation in the SM-3 dam construction project. Subsequently,

the available data was manipulated to fit model inputs and the simulation results were

compared with those obtained from a DES model of the same operation. A percentage

difference of 0.42% from the DES results was obtained, verifying that the model’s logic

and flow of resources are accurate.

Fundamentally, the strength of ABMS is explored in this research work. The

developed procedure for building AB models presents valuable guidelines on how to plan

construction operations with ABMS. The proposed earthmoving AB model and the

implemented system (ABSEMO) aim at enhancing the accuracy of current modeling

practices of earthmoving operations, by adding flexibility and introducing adaption to the

planning of these operations. Creating agents and assigning their attributes and roles from

an individual AB prospective allows for capturing a realistic behavior of earthmoving

operations. Hence, the proposed methodology can be extended to general applications in

construction management, where studying the emergent behavior of participants’

interactions can help planners account for the heterogeneity of operations in this field.

122

5.2 Research Contributions

Key contributions of this research are noted in the following points:

 Establish a generic methodology for applying ABMS in construction management

based on a bottom-up procedure of nine steps.

 Develop a comprehensive AB model for planning earthmoving operations, which

governs’ the environment setup, the equipment and labor properties and roles, the

interaction logic and the flow of resources.

 Produce a stand-alone software application (ABSEMO) as an implementation of

the proposed earthmoving AB model, which offers flexibility in agents’ roles and

allows for modeling equipment units of different properties, in an intelligent

manner that adapts to changes in material quantities, agent variables and other

model conditions.

5.3 Research Limitations

The limitations of the proposed framework can be summarized in the following points:

 Earthmoving process logistics, which are related to handling soil quantities and

assigning activity durations in the proposed AB model are mainly based on

observations of earthmoving operations and include many assumptions.

 The proposed AB model assumes the availability of haul and return durations of

trucks, and does not include a mechanism for measuring those parameters based

on roads’ characteristics and haulers’ properties or for selecting the best haul and

return roads from a number of options.

123

 Direct and indirect costs are not taken into consideration in the proposed

earthmoving AB model and hence, ABSEMO does not provide users with an

optimization tool to select optimum fleet combinations.

5.4 Future Work and Recommendations

Based on the aforementioned research limitations, the following future work areas

and recommendations are presented:

 Current research enhancement areas:

 More effort should be put in upgrading agents’ state charts to capture a more

realistic behavior of handling soil quantities and assigning activity durations.

Current assumption are based on linear interpolation. For example, the time

required to fill half a bucket is equal to half the time required to fill the whole

bucket. In reality, the distribution of the bucket filling duration might not be as

linear as this.

 Some options can be added to ABSEMO to allow users to customize the handling

of soil quantities and the assignment of activity durations based on their

preference, instead of having fixed assumptions for these variables. For instance,

if the user wishes that the loader does not start filling its bucket unless a quantity

of soil equal to or larger than the buck capacity is available, they should be able to

specify that prior to the simulation.

124

 Current research extension areas:

 The procedure of creating AB models for construction management applications

can be made more specific, with added templates for common construction

operations. This can be of great benefit to planners, especially if an automated

tool is provided to guide users on the exact procedure of building their AB models

and suggest the best modeling tool.

 The provision of a procedure to measure the haul and return durations of trucks

and/or to select the best haul and return roads can be a valuable addition to the

existing earthmoving AB model. Since the haul and return activities of trucks are

lengthy in duration and represent variables that are highly affected by conditions

external to the operation, obtaining accurate durations of these activities has

always been a major goal in earthmoving simulation. In addition, selecting the

best haul and return roads among a number of options is an interesting research

area that can benefit from the nature of agents in ABMS, which are smart,

independent and have the ability of making the best choices when facing

alternatives.

 Accounting for direct and indirect costs in the proposed earthmoving AB model

grasps the whole process and allows for adding an optimization tool to ABSEMO

which can suggest optimum fleet combinations based on equipment availability

and other preferences and conditions related to the earthmoving operation at-

hand. In view of that, minimizing cost per unit of production, while adhering to

the work schedule, is a crucial objective in planning earthmoving operations.

125

REFERENCES

Abdel-Hamid, T., and Madnick, S. E. (1991). Software project dynamics: an integrated

approach, Prentice-Hall, Englewood Cliffs, NJ.

AbouRizk, S. M., and Hajjar, D. (1998). "A framework for applying simulation in

construction." Canadian Journal of Civil Engineering, 25(3), 604-617.

Ahn, S., Lee, S., and Steel, R. P. (2013). "Effects of workers’ social learning: Focusing

on absence behavior." Journal of Construction Engineering and Management, 139(8),

1015-1025.

Alzraiee, H. S. (2013). Hybrid Simulation for Construction Operations. Ph.D.

Dissertation, Building, Civil and Environmental Engineering Department, Concordia

University, Montreal, QC, Canada.

Alzraiee, H., Moselhi, O., and Zayed, T. (2012). "Dynamic planning of earthmoving

projects using system dynamics." Gerontechnology, 11(2), 316.

Alzraiee, H., Zayed, T., and Moselhi, O. (2012). "Methodology for synchronizing

discrete event simulation and system dynamics models." Proceedings of the 2012 Winter

Simulation Conference, IEEE, Berlin, Germany, No. 54.

Banks, J., Carson, J., and Nelson, B. (2000). Discrete-Event System Simulation, Prentice-

Hall, Englewood Cliffs, NJ.

Berlekamp, E. R., Conway, J. H., and Guy, R. K. (2004). Winning Ways for Your

Mathematical Plays, Volume 4, A. K. Peters, Wellesley, MA.

Biswas, S., & Merchawi, S. (2000). “Use of discrete event simulation to validate an agent

based scheduling engine.” Proceedings of the 32nd Conference on Winter Simulation,

SCS, Orlando, FL, USA, 1778-1782.

Borshchev, A., and Filippov, A. (2004). "From system dynamics and discrete event to

practical agent based modeling: reasons, techniques, tools." Proceedings of the 22nd

international conference of the system dynamics society, Oxford, England, No. 22.

Brailsford, S., and Hilton, N. (2001). "A comparison of discrete event simulation and

system dynamics for modelling health care systems." School of Management, University

of Southampton, UK.

Ceylan, B. K., and Ford, D. N. (2002). “Using Options to Manage Dynamic Uncertainty

in Acquisition Projects.” Acquisition Review Quarterly, 9(4), 243-258.

126

Chan, W. K. V., Son, Y., and Macal, C. M. (2010). "Agent-based simulation tutorial-

simulation of emergent behavior and differences between agent-based simulation and

discrete-event simulation." Proceedings of the 2010 Winter Simulation Conference,

Baltimore, WSC, MD, USA, 135-150.

Chang, D. Y., & Carr, R. I. (1987). “RESQUE: A resource oriented simulation system for

multiple resource constrained processes.” In Proceedings of the PMI

Seminar/Symposium, Milwaukee, WI, USA, 4-19.

Cooper, K. G. (1980). "Naval ship production: A claim settled and a framework built."

Interfaces, 10(6), 20-36.

Dzeng, R., and Lin, Y. (2004). "Intelligent agents for supporting construction

procurement negotiation." Expert Systems with Applications, 27(1), 107-119.

El-Adaway, I. H., and Kandil, A. A. (2009). "Multiagent system for construction dispute

resolution (MAS-COR)." Journal of Construction Engineering and Management, 136(3),

303-315.

Elwakil, E. (2011). Knowledge Discovery Based Simulation System in Construction.

Ph.D. Dissertation, Building, Civil and Environmental Engineering Department,

Concordia University, Montreal, QC, Canada.

Ford, D. N. (1995). The Dynamics of Project Management: An Investigation of the

Impacts of Project Process and Coordination on Performance. Ph.D. Dissertation,

Massachusetts Institute of Technology, Sloan School of Management, Cambridge, MA.

Ford, D. N., and Sterman, J. D. (1998). "Dynamic modeling of product development

processes." System Dynamics Review, 14(1), 31-68.

Forrester, J. (1961). Industrial dynamics, Productivity Press, Acton, MA.

Fortino, G., Garro, A., & Russo, W. (2005). “A Discrete-Event Simulation Framework

for the Validation of Agent-based and Multi-Agent Systems.” Annual Western

Orthopaedic Association Meeting, Camerino, MC, Italy, 75-84.

Garcia, R. (2005). "Uses of Agent‐Based Modeling in Innovation/New Product

Development Research*." Journal of Product Innovation Management, 22(5), 380-398.

Gilbert, N., and Troitzsch, K. (2005). Simulation for the social scientist. McGraw-Hill

International, Maidenhead, Berkshire.

Grimm, V., and Railsback, S. F. (2013). Individual-based modeling and ecology.

University Press, Princeton, NJ.

127

Hajjar, D., and AbouRizk, S. (1999). "Simphony: an environment for building special

purpose construction simulation tools." Proceedings of the 31st Conference on Winter

Simulation: Simulation---a Bridge to the Future-Volume 2, ACM, Phoenix, AZ, USA,

998-1006.

Hajjar, D., and AbouRizk, S. (1997). "AP2-Earth: a simulation based system for the

estimating and planning of earth moving operations." Proceedings of the 29th Conference

on Winter Simulation, IEEE, Atlanta, GA, USA, 1103-1110.

Hajjar, D., and AbouRizk, S. M. (2002). "Unified modeling methodology for

construction simulation." Journal of Construction Engineering and Management, 128(2),

174-185.

Hajjar, D., and AbouRizk, S. M. (1998). "Modeling and analysis of aggregate production

operations." Journal of Construction Engineering and Management, 124(5), 390-401.

Hajjar, D., AbouRizk, S., and Xu, J. (1998). "Construction site dewatering analysis using

a special purpose simulation-based framework." Canadian Journal of Civil Engineering,

25(5), 819-828.

Halpin, D. W. (1977). "CYCLONE-method for modeling job site processes." Journal of

the Construction Division, 103 (ASCE 13234 Proceeding).

Halpin, D. W., Jen, H., and Kim, J. (2003). "A construction process simulation web

service." Proceedings of the 2003 Winter Simulation Conference, ACM, New Orleans,

LA, USA, 1503-1509.

Halpin, D. W., and Martinez, L. (1999). "Real world applications of construction process

simulation." Proceedings of the 31st Conference on Winter Simulation: Simulation---a

Bridge to the Future-Volume 2, ACM, Phoenix, AZ, USA. 956-962.

Halpin, D., and Riggs, L. (1992). Planning and analysis of construction operations. John

Wiley and Sons, New York, NY.

Homer, J., Sterman, J., Greenwood, B., and Perkola, M. (1993). "Delivery time reduction

in pulp and paper mill construction projects: a dynamic analysis of alternatives." SYSTEM

93, Cancun, Mexico. 212-221.

Huang, R., and Halpin, D. W. (1994). "Visual construction operation simulation: the

DISCO approach." Computer‐Aided Civil and Infrastructure Engineering, 9(3), 175-184.

Hydro Quebec (2003). "Construction of the Sainte-Marguerite-3 Hydroelectric

Development 1994-2002." Bibliotheque Nationale du Quebéc.

Ioannou, P. (1989). "UM-CYCLONE user’s manual." Division of Construction

Engineering and Management, Purdue University, West Lafayette, IN.

128

Lane, D. C. (2000). "You just don't understand me: Modes of failure and success in the

discourse between system dynamics and discrete event simulation." Working Paper,

London School of Economics and Political Sciences, London, UK.

Lee, S., Han, S., and Peña-Mora, F. (2007). "Hybrid system dynamics and discrete event

simulation for construction management." Proceeding of the 2007 ASCE International

Workshop on Computing in Civil Engineering, TCCIT, Pittsburgh, Pennsylvania. 232-239.

Lyneis, J. M., Cooper, K. G., and Els, S. A. (2001). "Strategic management of complex

projects: a case study using system dynamics." System Dynamics Review, 17(3), 237-260.

Macal, C. M., and North, M. J. (2010). "Tutorial on agent-based modelling and

simulation." Journal of Simulation, 4(3), 151-162.

Macal, C. M., and North, M. J. (2008). "Agent-based modeling and simulation: ABMS

examples." Proceedings of the 40th Conference on Winter Simulation, WSC, Miami, FL,

USA. 101-112.

Martínez, J. C. (1998). "Earthmover-simulation tool for earthwork planning." Winter

Simulation Conference Proceedings, ACM, Washington DC, USA. 1263-1271.

Martinez, J. C., and Ioannou, P. G. (1999). "General-purpose systems for effective

construction simulation." Journal of Construction Engineering and Management, 125(4),

265-276.

Martinez, J. C. (1996). STROBOSCOPE: State and resource based simulation of

construction processes. Ph.D. Dissertation, University of Michigan, Ann Arbor, MI,

USA.

Marzouk, M. (2002). Optimizing Earthmoving Operations using Computer Simulation,

Ph.D. Dissertation, Building, Civil and Environmental Engineering Department,

Concordia University, Montreal, QC, Canada.

Marzouk, M., and Moselhi, O. (2003). "Object-oriented simulation model for

earthmoving operations." Journal of Construction Engineering and Management, 129(2),

173-181.

Mccabe, B. Y. (1997). An automated modeling approach for construction performance

improvement using simulation and belief networks. Ph.D. Dissertation, Civil and

Environmental Engineering Department, Alberta University, Edmonton, AB, Canada.

Meadows, D. H. (1980). "The unavoidable a priori." Elements of the System Dynamics

Method, 23-57, Productivity Press, Acton, MA.

129

Min, J. U., and Bjornsson, H. C. (2008). "Agent-Based Construction Supply Chain

Simulator (CS 2) for Measuring the Value of Real-Time Information Sharing in

Construction." Journal of Construction Engineering and Management, 24(4), 245-254.

Moselhi, O., and Alshibani, A. (2009). "Optimization of earthmoving operations in heavy

civil engineering projects." Journal of Construction Engineering and Management,

135(10), 948-954.

Ndumu, D., Collis, J., Owusu, G., Sullivan, M., and Lee, L. (1999). ZUES: “A Toolkit

for Building Distributed Multi-Agent Systems.” AgentLink News (2). pp. 6-9.

Niazi, M., and Hussain, A. (2011). "Agent-based computing from multi-agent systems to

agent-based models: a visual survey." Scientometrics, 89(2), 479-499.

North, M., and Macal, C. (2006). "Tutorial on Agent-Based Modeling and Simulation

Part 2: How to Model with Agents." Proceedings of the 2006 Winter Simulation

Conference, WSC, Monterey, CA, USA.

North, M. J., and Macal, C. M. (2007). Managing business complexity: discovering

strategic solutions with agent-based modeling and simulation. Oxford University Press,

Oxford, UK.

Oloufa, A. A. (1993). "Modeling operational activities in object-oriented simulation."

Journal of Construction Engineering and Management, 7(1), 94-106.

Osman, H. (2012). "Agent-based simulation of urban infrastructure asset management

activities." Automation in Construction, 28 45-57.

Palaniappan, S., Sawhney, A., Janssen, M. A., and Walsh, K. D. (2007). "Modeling

construction safety as an agent-based emergent phenomenon." The 24th International

Symposium on Automation and Robotics in Construction, Indian Institute of Technology,

Madras, India.

Park, M., and Peña‐Mora, F. (2003). "Dynamic change management for construction:

introducing the change cycle into model‐based project management." System Dynamics

Review, 19(3), 213-242.

Paulson Jr, B. C., Chan, W. T., and Koo, C. C. (1987). "Construction operations

simulation by microcomputer." Journal of Construction Engineering and Management,

113(2), 302-314.

Peer, G. (2001). "Powerhouse takes shape far from dam SM-3 project." Heavy

Construction News, 14-16.

130

Peña-Mora, F., Han, S., Lee, S., and Park, M. (2008). "Strategic-operational construction

management: Hybrid system dynamics and discrete event approach." Journal of

Construction Engineering and Management, 134(9), 701-710.

Pritsker, A. A. B. (1986). Introduction to stimulation and Slam II, John Wiley & Sons,

New York, NY.

Ren, Z., and Anumba, C. J. (2002). "Learning in multi-agent systems: a case study of

construction claims negotiation." Advanced Engineering Informatics, 16(4), 265-275.

Reynolds, C. W. (1999). "Steering behaviors for autonomous characters." Game

developers conference, San Jose, CA, USA, 763-782.

Richardson, G. P., and Pugh III, A. I. (1981). Introduction to system dynamics modeling

with DYNAMO, Productivity Press, Acton, MA.

Sanford Bernhardt, K., and McNeil, S. (2008). "Agent-based modeling: approach for

improving infrastructure management." Journal of Infrastructure Systems, 14(3), 253-

261.

Sawhney, A., and AbouRizk, S. M. (1995). "HSM-simulation-based planning method for

construction projects." Journal of Construction Engineering and Management, 121(3),

297-303.

Schelling, T. C. (1971). "Dynamic models of segregation†." Journal of Mathematical

Sociology, 1(2), 143-186.

Shannon, R. E. (1992). "Introduction to simulation." Proceedings of the 24th Conference

on Winter Simulation, ACM, Arlington, VA, USA, 65-73.

Shi, J., and AbouRizk, S. M. (1997). "Resource-based modeling for construction

simulation." Journal of Construction Engineering and Management, 123(1), 26-33.

Shi, J., and AbouRizk, S. S. (1998). "An automated modeling system for simulating

earthmoving operations." Computer‐Aided Civil and Infrastructure Engineering, 13(2),

121-130.

Sterman, J. (2000). Business dynamics: Systems thinking and modeling for a complex

world, McGraw-Hill Irwin, Boston, MA.

Tah, J. H. (2005). "Towards an agent-based construction supply network modelling and

simulation platform." Automation in Construction, 14(3), 353-359.

Tommelein, I., Carr, R., and Odeh, A. (1994). "Assembly of simulation networks using

designs, plans, and methods." Journal of Construction Engineering and Management,

120(4), 796-815.

131

Touran, A. (1990). "Integration of simulation with expert systems." Journal of

Construction Engineering and Management, 116(3), 480-493.

Wartha, C., Peev, M., Borshchev, A., and Filippov, A. (2002). "Manufacturing supply

chain applications 1: decision support tool-supply chain." Proceedings of the 34th

Conference on Winter Simulation: Exploring New Frontiers, WSC, San Diego, CA,

USA, 1297-1301.

Wolstenholme, E. F. (1990). System enquiry: a system dynamics approach, John Wiley &

Sons, New York, NY.

Wooldridge, M., and Jennings, N. R. (1995). "Intelligent agents: Theory and practice."

The Knowledge Engineering Review, 10(02), 115-152.

132

APPENDIX A

Main Class Java Code:

Table A-1: Agent populations’ elements in ABSEMO (Java code)

Element/s Java Code

Startup code

stopAtTimeEnabled();
bulldozersTypeConfiguration();
loadersTypeConfiguration();
haulersTypeConfiguration();
spottersTypeConfiguration();
startUpLocations();

//Adds the data based on the user's input
for (int i = 0; i < numberOfBulldozers;
i++){
add_bulldozers(timeToExcavate,
bulldozerCapacity, timeToTurn,
timeToReturn, 0, 0, 0, 0);
}
for (int i = 0; i < numberOfBulldozers2;
i++){
add_bulldozers(timeToExcavate2,
bulldozerCapacity2, timeToTurn2,
timeToReturn2, 0, 0, 0, 0);
}
for (int i = 0; i < numberOfBulldozers3;
i++){
add_bulldozers(timeToExcavate3,
bulldozerCapacity3, timeToTurn3,
timeToReturn3, 0, 0, 0, 0);
}

//Adds the data based on the user's input
for (int i = 0; i < numberOfLoaders;
i++){
add_loaders(timeToLoadFullBucket,
bucketCapacity, timeToAdjustWhileEmpty,
timeToUnloadFullBucket,
timeToAdjustWhileFull, 0, 0, 0, 0, 0);
}
for (int i = 0; i < numberOfLoaders2;
i++){
add_loaders(timeToLoadFullBucket2,
bucketCapacity2, timeToAdjustWhileEmpty2,
timeToUnloadFullBucket2,
timeToAdjustWhileFull2, 0, 0, 0, 0, 0);
}
for (int i = 0; i < numberOfLoaders3;
i++){
add_loaders(timeToLoadFullBucket3,
bucketCapacity3, timeToAdjustWhileEmpty3,

133

Element/s Java Code

timeToUnloadFullBucket3,
timeToAdjustWhileFull3, 0, 0, 0, 0, 0);
}

//Adds the data based on the user's input
for (int i = 0; i < numberOfHaulers;
i++){
add_haulers(movingToLoadPositionTime,
capacity, returningTime,
movingToDumpPositionTime, haulingTime, 0,
0, 0, 0, 0);
}
for (int i = 0; i < numberOfHaulers2;
i++){
add_haulers(movingToLoadPositionTime2,
capacity2, returningTime2,
movingToDumpPositionTime2, haulingTime2,
0, 0, 0, 0, 0);
}
for (int i = 0; i < numberOfHaulers3;
i++){
add_haulers(movingToLoadPositionTime3,
capacity3, returningTime3,
movingToDumpPositionTime3, haulingTime3,
0, 0, 0, 0, 0);
}

//Adds the data based on the user's input
for (int i = 0; i < numberOfSpotters;
i++){
add_spotters(timeToAdjustPosition,
dumpingTime, 0, 0);
}

//Bulldozers Locations
double a= bulldozerPointer.getX();
double b= bulldozerPointer.getY();
for(int i=0;i<bulldozers.size();i++){
bulldozers.get(i).setXY(a,b);
b = b-20;
}
//Loaders Locations
double c= loaderPointer.getX();
double d= loaderPointer.getY();
for(int i=0;i<loaders.size();i++){
loaders.get(i).setXY(c,d);
c = c+50;
}
//Spotters Locations
double e= spotterPointer.getX();
double f= spotterPointer.getY();
for(int i=0;i<spotters.size();i++){
spotters.get(i).setXY(e,f);
f = f-50;
}

134

Table A-2: Agent queues’ elements in ABSEMO (Java code)

Element/s Java Code

//add service request to the queue
haulerQueueAtLoaders.addLast(truck);
//and make all service crews check the
request queue
for(Loader ld : loaders) ld.receive(
"CHECK QUEUE");

//add service request to the queue
haulerQueueAtSpotters.addLast(truck);
//and make all service crews check the
request queue
for(Spotter sp : spotters)
sp.receive("CHECK QUEUE");

return !
haulerQueueAtLoaders.isEmpty();

return !
haulerQueueAtSpotters.isEmpty();

if(! haulerQueueAtLoaders.isEmpty())
return
haulerQueueAtLoaders.removeFirst();
else return null;

if(! haulerQueueAtSpotters.isEmpty())
return
haulerQueueAtSpotters.removeFirst();
else return null;

Table A-3: Model run control in ABSEMO (Java code)

Element/s Java Code

if (button16.getText() == "Pause" ||
button13.getText() == "Pause" ||
button10.getText() == "Pause"){
pauseSimulation();
pauseAndResume = "Resume";
}
if (button16.getText() == "Resume" ||
button13.getText() == "Resume" ||
button10.getText() == "Resume"){
runSimulation();
pauseAndResume = "Pause";
}

Condition: dumpedSoil >=
dumpedSoilToStopRun &&
applyDumpedSoilOption
finishSimulation();

135

Element/s Java Code

Condition: dumpedSoil >=
dumpedSoilToStopRun &&
applyDumpedSoilOption
finishSimulation();

Condition: soilAvailableForLoading >=
excavatedSoilToStopRun &&
applyExcavatedSoilOption
finishSimulation();

if (applyStopAtTimeOption){
stopAtTime.restart();
}
Timeout: (hoursToStopRun * 60) +
(minutesToStopRun) +
(secondsToStopRun/60)
finishSimulation();

Table A-4: Results and Analysis in ABSEMO (Java code)

Element/s Java Code

Cyclic: every 1 minute
productivity = dumpedSoil / time();

//record results
bulldozersIdleSet.add(
bulldozersIdle.mean());
bulldozersWorkingSet.add(
bulldozersWorking.mean());
bulldozersExcavatingSet.add(
bulldozersExcavating.mean());
bulldozersRepositioningSet.add(
bulldozersRepositioning.mean());
loadersIdleSet.add(loadersIdle.mean()
);
loadersWorkingSet.add(
loadersWorking.mean());
loadersLoadingSet.add(
loadersLoading.mean());
loadersUnloadingSet.add(
loadersUnloading.mean());
haulersIdleSet.add(haulersIdle.mean()
);
haulersWorkingSet.add(
haulersWorking.mean());
haulersBeingLoadedSet.add(
haulersBeingLoaded.mean());

136

Element/s Java Code

haulersHaulingSet.add(
haulersHauling.mean());
haulersDumpingSet.add(
haulersDumping.mean());
haulersReturningSet.add(
haulersReturning.mean());
spottersIdleSet.add(
spottersIdle.mean());
spottersWorkingSet.add(
spottersWorking.mean());
spottersSpottingSet.add(
spottersSpotting.mean());
spottersAdjustingSet.add(
spottersAdjusting.mean());
//rest the results each time interval
bulldozersIdle.reset();
bulldozersWorking.reset();
bulldozersExcavating.reset();
bulldozersRepositioning.reset();
loadersIdle.reset();
loadersWorking.reset();
loadersLoading.reset();
loadersUnloading.reset();
haulersIdle.reset();
haulersWorking.reset();
haulersBeingLoaded.reset();
haulersHauling.reset();
haulersDumping.reset();
haulersReturning.reset();
spottersIdle.reset();
spottersWorking.reset();
spottersSpotting.reset();
spottersAdjusting.reset();

137

APPENDIX B

Agent Class Java Code:

The Bulldozer Agent:

Table A-5: Bulldozer class elements and transitions in ABSEM (Java code)

Element/s Java Code

Changes the color of the bulldozer agent based on its

state

boolean isTriangular =
bulldozerCapacityUser.startsWith("T");
boolean isUniform =
bulldozerCapacityUser.startsWith("U");
boolean isNormal =
bulldozerCapacityUser.startsWith("N");
if(isTriangular){
int parLocation1 =
bulldozerCapacityUser.indexOf('(',0);
int parLocation2 =
bulldozerCapacityUser.indexOf(')',parLocation1);
int commaLocation1 =
bulldozerCapacityUser.indexOf(',',0);
int commaLocation2 =
bulldozerCapacityUser.indexOf(',',commaLocation1+1
);
String tempvalue1 =
bulldozerCapacityUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
bulldozerCapacityUser.substring(commaLocation1+1,
commaLocation2);
String tempvalue3 =
bulldozerCapacityUser.substring(commaLocation2+1,p
arLocation2);
double value1 = Double.parseDouble(tempvalue1);
double value2 = Double.parseDouble(tempvalue2);
double value3 = Double.parseDouble(tempvalue3);
bulldozerCapacity =
triangular(value1,value2,value3);
}
else if(isUniform){
int parLocation1 =
bulldozerCapacityUser.indexOf('(',0);
int parLocation2 =
bulldozerCapacityUser.indexOf(')',parLocation1);
int commaLocation1 =
bulldozerCapacityUser.indexOf(',',0);
String tempvalue1 =

138

Element/s Java Code

bulldozerCapacityUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
bulldozerCapacityUser.substring(commaLocation1+1,
parLocation2);
double value1 = Double.parseDouble(tempvalue1);
double value2 = Double.parseDouble(tempvalue2);
bulldozerCapacity = uniform(value1,value2);
}
else if(isNormal){
int parLocation1 =
bulldozerCapacityUser.indexOf('(',0);
int parLocation2 =
bulldozerCapacityUser.indexOf(')',parLocation1);
int commaLocation1 =
bulldozerCapacityUser.indexOf(',',0);
String tempvalue1 =
bulldozerCapacityUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
bulldozerCapacityUser.substring(commaLocation1+1,
parLocation2);
double value1 = Double.parseDouble(tempvalue1);
double value2 = Double.parseDouble(tempvalue2);
bulldozerCapacity = normal(value1,value2);
}
else{
bulldozerCapacity =
Double.parseDouble(bulldozerCapacityUser);
}

boolean isTriangular =
timeToExcavateUser.startsWith("T");
boolean isUniform =
timeToExcavateUser.startsWith("U");
boolean isNormal =
timeToExcavateUser.startsWith("N");
if(isTriangular){
int parLocation1 =
timeToExcavateUser.indexOf('(',0);
int parLocation2 =
timeToExcavateUser.indexOf(')',parLocation1);
int commaLocation1 =
timeToExcavateUser.indexOf(',',0);
int commaLocation2 =
timeToExcavateUser.indexOf(',',commaLocation1+1);
String tempvalue1 =
timeToExcavateUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
timeToExcavateUser.substring(commaLocation1+1,
commaLocation2);
String tempvalue3 =
timeToExcavateUser.substring(commaLocation2+1,parL

139

Element/s Java Code

ocation2);
double value1 = Double.parseDouble(tempvalue1);
double value2 = Double.parseDouble(tempvalue2);
double value3 = Double.parseDouble(tempvalue3);
timeToExcavate = triangular(value1,value2,value3);
}
else if(isUniform){
int parLocation1 =
timeToExcavateUser.indexOf('(',0);
int parLocation2 =
timeToExcavateUser.indexOf(')',parLocation1);
int commaLocation1 =
timeToExcavateUser.indexOf(',',0);
String tempvalue1 =
timeToExcavateUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
timeToExcavateUser.substring(commaLocation1+1,
parLocation2);
double value1 = Double.parseDouble(tempvalue1);
double value2 = Double.parseDouble(tempvalue2);
timeToExcavate = uniform(value1,value2);
}
else if(isNormal){
int parLocation1 =
timeToExcavateUser.indexOf('(',0);
int parLocation2 =
timeToExcavateUser.indexOf(')',parLocation1);
int commaLocation1 =
timeToExcavateUser.indexOf(',',0);
String tempvalue1 =
timeToExcavateUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
timeToExcavateUser.substring(commaLocation1+1,
parLocation2);
double value1 = Double.parseDouble(tempvalue1);
double value2 = Double.parseDouble(tempvalue2);
timeToExcavate = normal(value1,value2);
}
else{
timeToExcavate =
Double.parseDouble(timeToExcavateUser);
}

boolean isTriangular =
timeToTurnUser.startsWith("T");
boolean isUniform =
timeToTurnUser.startsWith("U");
boolean isNormal =
timeToTurnUser.startsWith("N");
if(isTriangular){
int parLocation1 = timeToTurnUser.indexOf('(',0);
int parLocation2 =

140

Element/s Java Code

timeToTurnUser.indexOf(')',parLocation1);
int commaLocation1 =
timeToTurnUser.indexOf(',',0);
int commaLocation2 =
timeToTurnUser.indexOf(',',commaLocation1+1);
String tempvalue1 =
timeToTurnUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
timeToTurnUser.substring(commaLocation1+1,
commaLocation2);
String tempvalue3 =
timeToTurnUser.substring(commaLocation2+1,parLocat
ion2);
double value1 = Double.parseDouble(tempvalue1);
double value2 = Double.parseDouble(tempvalue2);
double value3 = Double.parseDouble(tempvalue3);
timeToTurn = triangular(value1,value2,value3);
}
else if(isUniform){
int parLocation1 = timeToTurnUser.indexOf('(',0);
int parLocation2 =
timeToTurnUser.indexOf(')',parLocation1);
int commaLocation1 =
timeToTurnUser.indexOf(',',0);
String tempvalue1 =
timeToTurnUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
timeToTurnUser.substring(commaLocation1+1,
parLocation2);
double value1 = Double.parseDouble(tempvalue1);
double value2 = Double.parseDouble(tempvalue2);
timeToTurn = uniform(value1,value2);
}
else if(isNormal){
int parLocation1 = timeToTurnUser.indexOf('(',0);
int parLocation2 =
timeToTurnUser.indexOf(')',parLocation1);
int commaLocation1 =
timeToTurnUser.indexOf(',',0);
String tempvalue1 =
timeToTurnUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
timeToTurnUser.substring(commaLocation1+1,
parLocation2);
double value1 = Double.parseDouble(tempvalue1);
double value2 = Double.parseDouble(tempvalue2);
timeToTurn = normal(value1,value2);
}
else{
timeToTurn = Double.parseDouble(timeToTurnUser);

141

Element/s Java Code

}

boolean isTriangular =
timeToReturnUser.startsWith("T");
boolean isUniform =
timeToReturnUser.startsWith("U");
boolean isNormal =
timeToReturnUser.startsWith("N");
if(isTriangular){
int parLocation1 =
timeToReturnUser.indexOf('(',0);
int parLocation2 =
timeToReturnUser.indexOf(')',parLocation1);
int commaLocation1 =
timeToReturnUser.indexOf(',',0);
int commaLocation2 =
timeToReturnUser.indexOf(',',commaLocation1+1);
String tempvalue1 =
timeToReturnUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
timeToReturnUser.substring(commaLocation1+1,
commaLocation2);
String tempvalue3 =
timeToReturnUser.substring(commaLocation2+1,parLoc
ation2);
double value1 = Double.parseDouble(tempvalue1);
double value2 = Double.parseDouble(tempvalue2);
double value3 = Double.parseDouble(tempvalue3);
timeToReturn = triangular(value1,value2,value3);
}
else if(isUniform){
int parLocation1 =
timeToReturnUser.indexOf('(',0);
int parLocation2 =
timeToReturnUser.indexOf(')',parLocation1);
int commaLocation1 =
timeToReturnUser.indexOf(',',0);
String tempvalue1 =
timeToReturnUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
timeToReturnUser.substring(commaLocation1+1,
parLocation2);
double value1 = Double.parseDouble(tempvalue1);
double value2 = Double.parseDouble(tempvalue2);
timeToReturn = uniform(value1,value2);
}
else if(isNormal){
int parLocation1 =
timeToReturnUser.indexOf('(',0);

142

Element/s Java Code

int parLocation2 =
timeToReturnUser.indexOf(')',parLocation1);
int commaLocation1 =
timeToReturnUser.indexOf(',',0);
String tempvalue1 =
timeToReturnUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
timeToReturnUser.substring(commaLocation1+1,
parLocation2);
double value1 = Double.parseDouble(tempvalue1);
double value2 = Double.parseDouble(tempvalue2);
timeToReturn = normal(value1,value2);
}
else{
timeToReturn =
Double.parseDouble(timeToReturnUser);
}

if(get_Main().soilAvailableForExcavation >
bulldozerCapacity){
return bulldozerCapacity;
}
else{
return get_Main().soilAvailableForExcavation;
}

startExcavating transiton

Condition: get_Main().soilAvailableForExcavation >
0
excavationQuantity = excavationType();
excavationDuration = timeToExcavate *
(excavationType() / bulldozerCapacity);
get_Main().soilAvailableForExcavation =
get_Main().soilAvailableForExcavation -
excavationQuantity;
moveToInTime(get_Main().bulldozerPointer2.getX(),
get_Main().bulldozerPointer.getY() - (indexNumber
* 20), timeToExcavate);

startTurningA transition

moveToInTime(get_Main().bulldozerPointer3.getX(),
get_Main().bulldozerPointer3.getY() - (indexNumber
* 20), timeToTurn);
get_Main().soilAvailableForLoading =
get_Main().soilAvailableForLoading +
excavationQuantity;

startReturning transition

moveToInTime(get_Main().bulldozerPointer4.getX(),
get_Main().bulldozerPointer4.getY() - (indexNumber
* 20), timeToReturn);

startTurningB transition

moveToInTime(get_Main().bulldozerPointer.getX(),
get_Main().bulldozerPointer.getY() - (indexNumber
* 20), timeToTurn);

143

The Loader Agent:

Table A-6: Loader class elements and transitions in ABSEMO (Java code)

Element/s Java Code

boolean isTriangular =
bucketCapacityUser.startsWith("T");
boolean isUniform =
bucketCapacityUser.startsWith("U");
boolean isNormal =
bucketCapacityUser.startsWith("N");
if(isTriangular){
int parLocation1 =
bucketCapacityUser.indexOf('(',0);
int parLocation2 =
bucketCapacityUser.indexOf(')',parLocation1)
;
int commaLocation1 =
bucketCapacityUser.indexOf(',',0);
int commaLocation2 =
bucketCapacityUser.indexOf(',',commaLocation
1+1);
String tempvalue1 =
bucketCapacityUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
bucketCapacityUser.substring(commaLocation1+
1, commaLocation2);
String tempvalue3 =
bucketCapacityUser.substring(commaLocation2+
1,parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
double value3 =
Double.parseDouble(tempvalue3);
bucketCapacity =
triangular(value1,value2,value3);
}
else if(isUniform){
int parLocation1 =
bucketCapacityUser.indexOf('(',0);
int parLocation2 =
bucketCapacityUser.indexOf(')',parLocation1)
;
int commaLocation1 =
bucketCapacityUser.indexOf(',',0);
String tempvalue1 =
bucketCapacityUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
bucketCapacityUser.substring(commaLocation1+

144

Element/s Java Code

1, parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
bucketCapacity = uniform(value1,value2);
}
else if(isNormal){
int parLocation1 =
bucketCapacityUser.indexOf('(',0);
int parLocation2 =
bucketCapacityUser.indexOf(')',parLocation1)
;
int commaLocation1 =
bucketCapacityUser.indexOf(',',0);
String tempvalue1 =
bucketCapacityUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
bucketCapacityUser.substring(commaLocation1+
1, parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
bucketCapacity = normal(value1,value2);
}
else{
bucketCapacity =
Double.parseDouble(bucketCapacityUser);
}

boolean isTriangular =
timeToLoadFullBucketUser.startsWith("T");
boolean isUniform =
timeToLoadFullBucketUser.startsWith("U");
boolean isNormal =
timeToLoadFullBucketUser.startsWith("N");
if(isTriangular){
int parLocation1 =
timeToLoadFullBucketUser.indexOf('(',0);
int parLocation2 =
timeToLoadFullBucketUser.indexOf(')',parLoca
tion1);
int commaLocation1 =
timeToLoadFullBucketUser.indexOf(',',0);
int commaLocation2 =
timeToLoadFullBucketUser.indexOf(',',commaLo
cation1+1);
String tempvalue1 =
timeToLoadFullBucketUser.substring(parLocati
on1+1, commaLocation1);
String tempvalue2 =
timeToLoadFullBucketUser.substring(commaLoca

145

Element/s Java Code

tion1+1, commaLocation2);
String tempvalue3 =
timeToLoadFullBucketUser.substring(commaLoca
tion2+1,parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
double value3 =
Double.parseDouble(tempvalue3);
timeToLoadFullBucket =
triangular(value1,value2,value3);
}
else if(isUniform){
int parLocation1 =
timeToLoadFullBucketUser.indexOf('(',0);
int parLocation2 =
timeToLoadFullBucketUser.indexOf(')',parLoca
tion1);
int commaLocation1 =
timeToLoadFullBucketUser.indexOf(',',0);
String tempvalue1 =
timeToLoadFullBucketUser.substring(parLocati
on1+1, commaLocation1);
String tempvalue2 =
timeToLoadFullBucketUser.substring(commaLoca
tion1+1, parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
timeToLoadFullBucket =
uniform(value1,value2);
}
else if(isNormal){
int parLocation1 =
timeToLoadFullBucketUser.indexOf('(',0);
int parLocation2 =
timeToLoadFullBucketUser.indexOf(')',parLoca
tion1);
int commaLocation1 =
timeToLoadFullBucketUser.indexOf(',',0);
String tempvalue1 =
timeToLoadFullBucketUser.substring(parLocati
on1+1, commaLocation1);
String tempvalue2 =
timeToLoadFullBucketUser.substring(commaLoca
tion1+1, parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
timeToLoadFullBucket =

146

Element/s Java Code

normal(value1,value2);
}
else{
timeToLoadFullBucket =
Double.parseDouble(timeToLoadFullBucketUser)
;
}

boolean isTriangular =
timeToAdjustWhileFullUser.startsWith("T");
boolean isUniform =
timeToAdjustWhileFullUser.startsWith("U");
boolean isNormal =
timeToAdjustWhileFullUser.startsWith("N");
if(isTriangular){
int parLocation1 =
timeToAdjustWhileFullUser.indexOf('(',0);
int parLocation2 =
timeToAdjustWhileFullUser.indexOf(')',parLoc
ation1);

int commaLocation1 =
timeToAdjustWhileFullUser.indexOf(',',0);
int commaLocation2 =
timeToAdjustWhileFullUser.indexOf(',',commaL
ocation1+1);
String tempvalue1 =
timeToAdjustWhileFullUser.substring(parLocat
ion1+1, commaLocation1);
String tempvalue2 =
timeToAdjustWhileFullUser.substring(commaLoc
ation1+1, commaLocation2);
String tempvalue3 =
timeToAdjustWhileFullUser.substring(commaLoc
ation2+1,parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
double value3 =
Double.parseDouble(tempvalue3);
timeToAdjustWhileFull =
triangular(value1,value2,value3);
}
else if(isUniform){
int parLocation1 =
timeToAdjustWhileFullUser.indexOf('(',0);
int parLocation2 =
timeToAdjustWhileFullUser.indexOf(')',parLoc
ation1);
int commaLocation1 =
bucketCapacityUser.indexOf(',',0);
String tempvalue1 =
timeToAdjustWhileFullUser.substring(parLocat

147

Element/s Java Code

ion1+1, commaLocation1);
String tempvalue2 =
timeToAdjustWhileFullUser.substring(commaLoc
ation1+1, parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
timeToAdjustWhileFull =
uniform(value1,value2);
}
else if(isNormal){
int parLocation1 =
timeToAdjustWhileFullUser.indexOf('(',0);
int parLocation2 =
timeToAdjustWhileFullUser.indexOf(')',parLoc
ation1);
int commaLocation1 =
timeToAdjustWhileFullUser.indexOf(',',0);
String tempvalue1 =
timeToAdjustWhileFullUser.substring(parLocat
ion1+1, commaLocation1);
String tempvalue2 =
timeToAdjustWhileFullUser.substring(commaLoc
ation1+1, parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
timeToAdjustWhileFull =
normal(value1,value2);
}
else{
timeToAdjustWhileFull =
Double.parseDouble(timeToAdjustWhileFullUser
);
}

boolean isTriangular =
timeToUnloadFullBucketUser.startsWith("T");
boolean isUniform =
timeToUnloadFullBucketUser.startsWith("U");
boolean isNormal =
timeToUnloadFullBucketUser.startsWith("N");
if(isTriangular){
int parLocation1 =
timeToUnloadFullBucketUser.indexOf('(',0);
int parLocation2 =
timeToUnloadFullBucketUser.indexOf(')',parLo
cation1);
int commaLocation1 =
timeToUnloadFullBucketUser.indexOf(',',0);
int commaLocation2 =
timeToUnloadFullBucketUser.indexOf(',',comma

148

Element/s Java Code

Location1+1);
String tempvalue1 =
timeToUnloadFullBucketUser.substring(parLoca
tion1+1, commaLocation1);
String tempvalue2 =
timeToUnloadFullBucketUser.substring(commaLo
cation1+1, commaLocation2);
String tempvalue3 =
timeToUnloadFullBucketUser.substring(commaLo
cation2+1,parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
double value3 =
Double.parseDouble(tempvalue3);
timeToUnloadFullBucket =
triangular(value1,value2,value3);
}
else if(isUniform){
int parLocation1 =
timeToUnloadFullBucketUser.indexOf('(',0);
int parLocation2 =
timeToUnloadFullBucketUser.indexOf(')',parLo
cation1);
int commaLocation1 =
bucketCapacityUser.indexOf(',',0);
String tempvalue1 =
timeToUnloadFullBucketUser.substring(parLoca
tion1+1, commaLocation1);
String tempvalue2 =
timeToUnloadFullBucketUser.substring(commaLo
cation1+1, parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
timeToUnloadFullBucket =
uniform(value1,value2);
}
else if(isNormal){
int parLocation1 =
timeToUnloadFullBucketUser.indexOf('(',0);
int parLocation2 =
timeToUnloadFullBucketUser.indexOf(')',parLo
cation1);
int commaLocation1 =
timeToUnloadFullBucketUser.indexOf(',',0);
String tempvalue1 =
timeToUnloadFullBucketUser.substring(parLoca
tion1+1, commaLocation1);
String tempvalue2 =
timeToUnloadFullBucketUser.substring(commaLo

149

Element/s Java Code

cation1+1, parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
timeToUnloadFullBucket =
normal(value1,value2);
}
else{
timeToUnloadFullBucket =
Double.parseDouble(timeToUnloadFullBucketUse
r);
}

boolean isTriangular =
timeToAdjustWhileEmptyUser.startsWith("T");
boolean isUniform =
timeToAdjustWhileEmptyUser.startsWith("U");
boolean isNormal =
timeToAdjustWhileEmptyUser.startsWith("N");
if(isTriangular){
int parLocation1 =
timeToAdjustWhileEmptyUser.indexOf('(',0);
int parLocation2 =
timeToAdjustWhileEmptyUser.indexOf(')',parLo
cation1);
int commaLocation1 =
timeToAdjustWhileEmptyUser.indexOf(',',0);
int commaLocation2 =
timeToAdjustWhileEmptyUser.indexOf(',',comma
Location1+1);
String tempvalue1 =
timeToAdjustWhileEmptyUser.substring(parLoca
tion1+1, commaLocation1);
String tempvalue2 =
timeToAdjustWhileEmptyUser.substring(commaLo
cation1+1, commaLocation2);
String tempvalue3 =
timeToAdjustWhileEmptyUser.substring(commaLo
cation2+1,parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
double value3 =
Double.parseDouble(tempvalue3);
timeToAdjustWhileEmpty =
triangular(value1,value2,value3);
}
else if(isUniform){
int parLocation1 =
timeToAdjustWhileEmptyUser.indexOf('(',0);
int parLocation2 =
timeToAdjustWhileEmptyUser.indexOf(')',parLo

150

Element/s Java Code

cation1);
int commaLocation1 =
bucketCapacityUser.indexOf(',',0);
String tempvalue1 =
timeToAdjustWhileEmptyUser.substring(parLoca
tion1+1, commaLocation1);
String tempvalue2 =
timeToAdjustWhileEmptyUser.substring(commaLo
cation1+1, parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
timeToAdjustWhileEmpty =
uniform(value1,value2);
}
else if(isNormal){
int parLocation1 =
timeToAdjustWhileEmptyUser.indexOf('(',0);
int parLocation2 =
timeToAdjustWhileEmptyUser.indexOf(')',parLo
cation1);
int commaLocation1 =
timeToAdjustWhileEmptyUser.indexOf(',',0);
String tempvalue1 =
timeToAdjustWhileEmptyUser.substring(parLoca
tion1+1, commaLocation1);
String tempvalue2 =
timeToAdjustWhileEmptyUser.substring(commaLo
cation1+1, parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
timeToAdjustWhileEmpty =
normal(value1,value2);
}
else{
timeToAdjustWhileEmpty =
Double.parseDouble(timeToAdjustWhileEmptyUse
r);
}

if(get_Main().soilAvailableForLoading >
bucketCapacity){
return bucketCapacity;
}
else {
return get_Main().soilAvailableForLoading;
}

if (carriedEarth < Hauler.availableSpace){
return carriedEarth;
}else{
get_Main().soilAvailableForLoading =

151

Element/s Java Code

get_Main().soilAvailableForLoading +
carriedEarth - Hauler.availableSpace;
return Hauler.availableSpace;
}

soilAvailable transition

Condition:
get_Main().soilAvailableForLoading > 0
carriedEarth = loadingType();
get_Main().soilAvailableForLoading =
get_Main().soilAvailableForLoading -
carriedEarth;
timeToLoadBucket = timeToLoadFullBucket
*(carriedEarth/bucketCapacity);

loadReadyA transition
Timeout: timeToLoadBucket +
timeToAdjustWhileFull
setRotation(3.14159265359);

haulerAvailable transition

Condition:
get_Main().thereAreRequestsLoader()
Hauler = get_Main().getRequestLoader();
send(this, Hauler);

startUnloading transition

Message: "BEGIN UNLOADING"
unloadingQuantity = unloadingType();
timeToUnloadBucket = timeToUnloadFullBucket
*(unloadingQuantity/bucketCapacity);

finishUnloading transition

Timeout: timeToUnloadBucket
Hauler.carriedEarth = Hauler.carriedEarth +
unloadingQuantity;
Hauler.availableSpace =
Hauler.availableSpace - unloadingQuantity;
carriedEarth=0;

haulerNotFilled transition setRotation(0);

continueLoading transition Timeout: timeToAdjustWhileEmpty

loadReadyB transition

Timeout: timeToLoadBucket
carriedEarth = loadingType();
get_Main().soilAvailableForLoading =
get_Main().soilAvailableForLoading -
carriedEarth;

continueUnloading transition

Timeout: timeToAdjustWhileFull
setRotation(3.14159265359);
unloadingQuantity = unloadingType();
timeToUnloadBucket = timeToUnloadFullBucket
*(unloadingQuantity/bucketCapacity);

haulerFilled transition

Condition: (Hauler.carriedEarth ==
Hauler.capacity) ||
(get_Main().soilAvailableForLoading == 0)
(Hauler.carriedEarth == Hauler.capacity) ||
(get_Main().soilAvailableForLoading == 0)

returnToWaitingPosition transition Timeout: timeToAdjustWhileEmpty

152

The Hauler Agent:

Table A-7: Hauler class elements and transitions in ABSEMO (Java code)

Element/s Java Code

Startup code

Point pt =
get_Main().haulerQueueL.randomPointInside();
setXY(pt.x, pt.y);
setRotation(3.14159265359);

boolean isTriangular =
capacityUser.startsWith("T");
boolean isUniform =
capacityUser.startsWith("U");
boolean isNormal =
capacityUser.startsWith("N");
if(isTriangular){
int parLocation1 =
capacityUser.indexOf('(',0);
int parLocation2 =
capacityUser.indexOf(')',parLocation1);
int commaLocation1 =
capacityUser.indexOf(',',0);
int commaLocation2 =
capacityUser.indexOf(',',commaLocation1+1);
String tempvalue1 =
capacityUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
capacityUser.substring(commaLocation1+1,
commaLocation2);
String tempvalue3 =
capacityUser.substring(commaLocation2+1,parL
ocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
double value3 =
Double.parseDouble(tempvalue3);
capacity = triangular(value1,value2,value3);
}
else if(isUniform){
int parLocation1 =
capacityUser.indexOf('(',0);
int parLocation2 =
capacityUser.indexOf(')',parLocation1);
int commaLocation1 =
capacityUser.indexOf(',',0);
String tempvalue1 =
capacityUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
capacityUser.substring(commaLocation1+1,
parLocation2);

153

Element/s Java Code

double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);

capacity = uniform(value1,value2);
}
else if(isNormal){
int parLocation1 =
capacityUser.indexOf('(',0);
int parLocation2 =
capacityUser.indexOf(')',parLocation1);
int commaLocation1 =
capacityUser.indexOf(',',0);
String tempvalue1 =
capacityUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
capacityUser.substring(commaLocation1+1,
parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
capacity = normal(value1,value2);
}
else{
capacity = Double.parseDouble(capacityUser);
}

boolean isTriangular =
movingToLoadPositionTimeUser.startsWith("T")
;
boolean isUniform =
movingToLoadPositionTimeUser.startsWith("U")
;
boolean isNormal =
movingToLoadPositionTimeUser.startsWith("N")
;
if(isTriangular){
int parLocation1 =
movingToLoadPositionTimeUser.indexOf('(',0);
int parLocation2 =
movingToLoadPositionTimeUser.indexOf(')',par
Location1);
int commaLocation1 =
movingToLoadPositionTimeUser.indexOf(',',0);
int commaLocation2 =
movingToLoadPositionTimeUser.indexOf(',',com
maLocation1+1);
String tempvalue1 =
movingToLoadPositionTimeUser.substring(parLo
cation1+1, commaLocation1);
String tempvalue2 =

154

Element/s Java Code

movingToLoadPositionTimeUser.substring(comma
Location1+1, commaLocation2);
String tempvalue3 =
movingToLoadPositionTimeUser.substring(comma
Location2+1,parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
double value3 =
Double.parseDouble(tempvalue3);
movingToLoadPositionTime =
triangular(value1,value2,value3);
}
else if(isUniform){
int parLocation1 =
movingToLoadPositionTimeUser.indexOf('(',0);
int parLocation2 =
movingToLoadPositionTimeUser.indexOf(')',par
Location1);
int commaLocation1 =
movingToLoadPositionTimeUser.indexOf(',',0);
String tempvalue1 =
movingToLoadPositionTimeUser.substring(parLo
cation1+1, commaLocation1);
String tempvalue2 =
movingToLoadPositionTimeUser.substring(comma
Location1+1, parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
movingToLoadPositionTime =
uniform(value1,value2);
}
else if(isNormal){
int parLocation1 =
movingToLoadPositionTimeUser.indexOf('(',0);
int parLocation2 =
movingToLoadPositionTimeUser.indexOf(')',par
Location1);
int commaLocation1 =
movingToLoadPositionTimeUser.indexOf(',',0);
String tempvalue1 =
movingToLoadPositionTimeUser.substring(parLo
cation1+1, commaLocation1);
String tempvalue2 =
movingToLoadPositionTimeUser.substring(comma
Location1+1, parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);

155

Element/s Java Code

movingToLoadPositionTime =
normal(value1,value2);
}
else{
movingToLoadPositionTime =
Double.parseDouble(movingToLoadPositionTimeU
ser);
}

boolean isTriangular =
haulingTimeUser.startsWith("T");
boolean isUniform =
haulingTimeUser.startsWith("U");
boolean isNormal =
haulingTimeUser.startsWith("N");
if(isTriangular){
int parLocation1 =
haulingTimeUser.indexOf('(',0);
int parLocation2 =
haulingTimeUser.indexOf(')',parLocation1);
int commaLocation1 =
haulingTimeUser.indexOf(',',0);
int commaLocation2 =
haulingTimeUser.indexOf(',',commaLocation1+1
);
String tempvalue1 =
haulingTimeUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
haulingTimeUser.substring(commaLocation1+1,
commaLocation2);
String tempvalue3 =
haulingTimeUser.substring(commaLocation2+1,p
arLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
double value3 =
Double.parseDouble(tempvalue3);
haulingTime =
triangular(value1,value2,value3);
}
else if(isUniform){
int parLocation1 =
haulingTimeUser.indexOf('(',0);
int parLocation2 =
haulingTimeUser.indexOf(')',parLocation1);
int commaLocation1 =
haulingTimeUser.indexOf(',',0);
String tempvalue1 =
haulingTimeUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =

156

Element/s Java Code

haulingTimeUser.substring(commaLocation1+1,
parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
haulingTime = uniform(value1,value2);
}
else if(isNormal){
int parLocation1 =
haulingTimeUser.indexOf('(',0);
int parLocation2 =
haulingTimeUser.indexOf(')',parLocation1);
int commaLocation1 =
haulingTimeUser.indexOf(',',0);
String tempvalue1 =
haulingTimeUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
haulingTimeUser.substring(commaLocation1+1,
parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
haulingTime = normal(value1,value2);
}
else{
haulingTime =
Double.parseDouble(haulingTimeUser);
}

boolean isTriangular =
movingToDumpPositionTimeUser.startsWith("T")
;
boolean isUniform =
movingToDumpPositionTimeUser.startsWith("U")
;
boolean isNormal =
movingToDumpPositionTimeUser.startsWith("N")
;
if(isTriangular){
int parLocation1 =
movingToDumpPositionTimeUser.indexOf('(',0);
int parLocation2 =
movingToDumpPositionTimeUser.indexOf(')',par
Location1);
int commaLocation1 =
movingToDumpPositionTimeUser.indexOf(',',0);
int commaLocation2 =
movingToDumpPositionTimeUser.indexOf(',',com
maLocation1+1);
String tempvalue1 =
movingToDumpPositionTimeUser.substring(parLo

157

Element/s Java Code

cation1+1, commaLocation1);
String tempvalue2 =
movingToDumpPositionTimeUser.substring(comma
Location1+1, commaLocation2);
String tempvalue3 =
movingToDumpPositionTimeUser.substring(comma
Location2+1,parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
double value3 =
Double.parseDouble(tempvalue3);
movingToDumpPositionTime =
triangular(value1,value2,value3);
}
else if(isUniform){
int parLocation1 =
movingToDumpPositionTimeUser.indexOf('(',0);
int parLocation2 =
movingToDumpPositionTimeUser.indexOf(')',par
Location1);
int commaLocation1 =
movingToDumpPositionTimeUser.indexOf(',',0);
String tempvalue1 =
movingToDumpPositionTimeUser.substring(parLo
cation1+1, commaLocation1);
String tempvalue2 =
movingToDumpPositionTimeUser.substring(comma
Location1+1, parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
movingToDumpPositionTime =
uniform(value1,value2);
}
else if(isNormal){
int parLocation1 =
movingToDumpPositionTimeUser.indexOf('(',0);
int parLocation2 =
movingToDumpPositionTimeUser.indexOf(')',par
Location1);
int commaLocation1 =
movingToDumpPositionTimeUser.indexOf(',',0);
String tempvalue1 =
movingToDumpPositionTimeUser.substring(parLo
cation1+1, commaLocation1);
String tempvalue2 =
movingToDumpPositionTimeUser.substring(comma
Location1+1, parLocation2);
double value1 =
Double.parseDouble(tempvalue1);

158

Element/s Java Code

double value2 =
Double.parseDouble(tempvalue2);
movingToDumpPositionTime =
normal(value1,value2);
}
else{
movingToDumpPositionTime =
Double.parseDouble(movingToDumpPositionTimeU
ser);
}

boolean isTriangular =
dumpingTimeUser.startsWith("T");
boolean isUniform =
dumpingTimeUser.startsWith("U");
boolean isNormal =
dumpingTimeUser.startsWith("N");
if(isTriangular){
int parLocation1 =
dumpingTimeUser.indexOf('(',0);
int parLocation2 =
dumpingTimeUser.indexOf(')',parLocation1);
int commaLocation1 =
dumpingTimeUser.indexOf(',',0);
int commaLocation2 =
dumpingTimeUser.indexOf(',',commaLocation1+1
);
String tempvalue1 =
dumpingTimeUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
dumpingTimeUser.substring(commaLocation1+1,
commaLocation2);
String tempvalue3 =
dumpingTimeUser.substring(commaLocation2+1,p
arLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
double value3 =
Double.parseDouble(tempvalue3);
dumpingTime =
triangular(value1,value2,value3);
}
else if(isUniform){
int parLocation1 =
dumpingTimeUser.indexOf('(',0);
int parLocation2 =
dumpingTimeUser.indexOf(')',parLocation1);
int commaLocation1 =
dumpingTimeUser.indexOf(',',0);
String tempvalue1 =
dumpingTimeUser.substring(parLocation1+1,

159

Element/s Java Code

commaLocation1);
String tempvalue2 =
dumpingTimeUser.substring(commaLocation1+1,
parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
dumpingTime = uniform(value1,value2);
}
else if(isNormal){
int parLocation1 =
dumpingTimeUser.indexOf('(',0);
int parLocation2 =
dumpingTimeUser.indexOf(')',parLocation1);
int commaLocation1 =
dumpingTimeUser.indexOf(',',0);
String tempvalue1 =
dumpingTimeUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
dumpingTimeUser.substring(commaLocation1+1,
parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
dumpingTime = normal(value1,value2);
}
else{
dumpingTime =
Double.parseDouble(dumpingTimeUser);
}

boolean isTriangular =
returningTimeUser.startsWith("T");
boolean isUniform =
returningTimeUser.startsWith("U");
boolean isNormal =
returningTimeUser.startsWith("N");
if(isTriangular){
int parLocation1 =
returningTimeUser.indexOf('(',0);
int parLocation2 =
returningTimeUser.indexOf(')',parLocation1);
int commaLocation1 =
returningTimeUser.indexOf(',',0);
int commaLocation2 =
returningTimeUser.indexOf(',',commaLocation1
+1);
String tempvalue1 =
returningTimeUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =

160

Element/s Java Code

returningTimeUser.substring(commaLocation1+1
, commaLocation2);
String tempvalue3 =
returningTimeUser.substring(commaLocation2+1
,parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
double value3 =
Double.parseDouble(tempvalue3);
returningTime =
triangular(value1,value2,value3);
}
else if(isUniform){
int parLocation1 =
returningTimeUser.indexOf('(',0);
int parLocation2 =
returningTimeUser.indexOf(')',parLocation1);
int commaLocation1 =
returningTimeUser.indexOf(',',0);
String tempvalue1 =
returningTimeUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
returningTimeUser.substring(commaLocation1+1
, parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
returningTime = uniform(value1,value2);
}
else if(isNormal){
int parLocation1 =
returningTimeUser.indexOf('(',0);
int parLocation2 =
returningTimeUser.indexOf(')',parLocation1);
int commaLocation1 =
returningTimeUser.indexOf(',',0);
String tempvalue1 =
returningTimeUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
returningTimeUser.substring(commaLocation1+1
, parLocation2);

double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
returningTime = normal(value1,value2);
}

161

Element/s Java Code

else{
returningTime =
Double.parseDouble(returningTimeUser);
}

goToLoadingPosition transition

Message: unconditional (any message)
Loader=msg;
moveToInTime(Loader.getX(), Loader.getY()
+30, movingToLoadPositionTime);

startLoading transition send("BEGIN UNLOADING", Loader);

finishLoading transition
Message: "FINISHED LOADING"
Loader = null;

startHauling transition
Point pt =
get_Main().haulerQueueD.randomPointInside();
moveToInTime(pt.x, pt.y, haulingTime);

readyForSpotter transition get_Main().haulerRequestsSpotter(this);

goToDumpingPosition transition

Message: unconditional (any message)
Spotter=msg;
moveToInTime(Spotter.getX(), Spotter.getY()
+25, movingToDumpPositionTime);

spotterAvailable transition
send("BEGIN DUMPING", Spotter);
setRotation(3.14159265359);

startReturning1 transition

Message: "FINISHED DUMPING"
get_Main().dumpedSoil =
get_Main().dumpedSoil + carriedEarth;
carriedEarth = 0;
availableSpace = capacity;
Spotter = null;

readyToReturn transition
Point pt =
get_Main().haulerQueueL.randomPointInside();
moveToInTime(pt.x, pt.y, returningTime);

readyForLoader transition setRotation(3.14159265359);

162

The Spotter Agent:

Table A-8: Spotter class elements and transitions in ABSEMO (Java code)

Element/s Java Code

boolean isTriangular =
dumpingTimeUser.startsWith("T");
boolean isUniform =
dumpingTimeUser.startsWith("U");
boolean isNormal =
dumpingTimeUser.startsWith("N");
if(isTriangular){
int parLocation1 =
dumpingTimeUser.indexOf('(',0);
int parLocation2 =
dumpingTimeUser.indexOf(')',parLocation1);
int commaLocation1 =
dumpingTimeUser.indexOf(',',0);
int commaLocation2 =
dumpingTimeUser.indexOf(',',commaLocation1+1
);
String tempvalue1 =
dumpingTimeUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
dumpingTimeUser.substring(commaLocation1+1,
commaLocation2);
String tempvalue3 =
dumpingTimeUser.substring(commaLocation2+1,p
arLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
double value3 =
Double.parseDouble(tempvalue3);
dumpingTime =
triangular(value1,value2,value3);
}
else if(isUniform){
int parLocation1 =
dumpingTimeUser.indexOf('(',0);
int parLocation2 =
dumpingTimeUser.indexOf(')',parLocation1);
int commaLocation1 =
dumpingTimeUser.indexOf(',',0);
String tempvalue1 =
dumpingTimeUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
dumpingTimeUser.substring(commaLocation1+1,
parLocation2);
double value1 =

163

Element/s Java Code

Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
dumpingTime = uniform(value1,value2);
}
else if(isNormal){
int parLocation1 =
dumpingTimeUser.indexOf('(',0);
int parLocation2 =
dumpingTimeUser.indexOf(')',parLocation1);
int commaLocation1 =
dumpingTimeUser.indexOf(',',0);
String tempvalue1 =
dumpingTimeUser.substring(parLocation1+1,
commaLocation1);
String tempvalue2 =
dumpingTimeUser.substring(commaLocation1+1,
parLocation2);
double value1 =
Double.parseDouble(tempvalue1);
double value2 =
Double.parseDouble(tempvalue2);
dumpingTime = normal(value1,value2);
}
else{
dumpingTime =
Double.parseDouble(dumpingTimeUser);
}

haulerAvailable transition

Condition:
get_Main().thereAreRequestsSpotter()
Hauler = get_Main().getRequestSpotter();
send(this, Hauler);

startSpotting transition
Condition: "BEGIN DUMPING"

finishedSpotting transition Timeout: dumpingTime (Hauler variable)

timeToGetReady transition Timeout: timeToAdjustPosition

