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ABSTRACT 

Agent-Based Modeling and Simulation of Earthmoving Operations 

 
Ahmad Jabri 

 

Simulation has been used in construction modeling for decades, especially in 

large scale operations, such as earth moving, where heavy and costly equipment is used. 

Simulation can be used as a planning tool to analyze the time and cost of earthmoving 

operations. Current methods used in simulating earthmoving operations are based on 

Discrete-Event Simulation (DES), with recent efforts to introduce System Dynamics 

(SD) in a hybrid DES-SD approach. However, due to the predetermined nature of 

Discrete-Event Simulation (DES) models, some inflexibility is experienced when 

modeling earthmoving operations, which translates into a higher degree of difficulty in 

regards to model creation and a reduced accuracy of outputs. Although the introduction 

of System Dynamics (SD) contributed significantly to accounting for qualitative factors 

and strategic aspects of earthmoving operations, there still exists a need for enhancing the 

accuracy of capturing the logistics of these operations in a smart and flexible manner.  

With the advancement of computational capabilities, Agent-Based Modeling and 

Simulation (ABMS) is rapidly replacing the conventional simulation techniques. This 

thesis introduces Agent-Based Modeling and Simulation (ABMS) as an effective tool for 

modeling earthmoving operations. First of all, it provides a generic methodology 

introduced for creating Agent-Based models for construction operations, based on a set of 

rules and criteria. Then, an Agent-Based (AB) model for earthmoving operations 

consisting of bulldozers, loaders, haulers and spotters is developed. The model in 
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question governs the process logistics, information sharing, equipment properties as well 

as activity durations. Finally, a Java-Based software application (ABSEMO) is developed 

as an implementation of the proposed Agent-Based (AB) simulation model. Overall, the 

desired outcome is to create a smart system that has a flexible logic in addition to a good 

representation of model operations. 

A real-life case study of a riverbed excavation in a dam construction project is 

simulated using ABSEMO and the results are compared with those obtained from 

Discrete-Event Simulation (DES) models for verification. A percentage difference of 

0.42% from the DES results was finally obtained, indicating that the model’s logic and 

flow of resources are indeed accurate. The proposed Agent-Based (AB) methodology and 

the developed model aim at enhancing current practices of modeling earthmoving 

operations by looking at these operations from an individual Agent-Based (AB) 

prospective. This allows the capturing of realistic behaviors, through crafting agents’ 

attributes, roles and interactions. The proposed methodology can be extended to general 

applications in construction management, where heterogeneity can be accounted for 

through replicating the different participants of construction projects in Agent-Based 

(AB) models as well as studying the emergent behavior of their interactions on the 

system.  
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CHAPTER 1:  INTRODUCTION 

1.1 General Overview 

Primarily, simulation is the attempt to imitate a real-life or hypothetical situation 

(Banks et al. 2000), which provides a powerful tool to experiment and plan operations 

before the actual execution. The latter is done in an effort to avoid time delays and cost 

overruns. Creating a successful simulation model often leads to more realistic planning 

and more accurate estimation of the required resources. One of the most common 

applications of simulation in the construction industry is the simulation of earthmoving 

operations. Since these operations are typically lengthy in duration and fall on the critical 

path of construction projects, accurate planning is crucial in ensuring the success of such 

projects. In addition, earthmoving operations are often considered equipment-intensive, 

utilizing large fleets of trucks, loaders, bulldozers, etc.  

Due to time and cost constraints, an efficient use of resources is a vital objective 

for contractors in projects involving such operations (Moselhi and Alshibani 2009). The 

cyclic nature of earthmoving operations and the type of work tasks involved in such 

operations make the simulation process a valid planning tool where good forecasting of 

productivity and costs are expected (Touran 1990). There are numerous applications of 

simulation of earthmoving operations available in literature.  

The most common simulation techniques are Discrete Event Simulation (DES), 

System Dynamics (SD) and Agent-Based Modeling and Simulation (ABMS). Although 

these three types have all been used in construction management applications, the 

application of simulation is still limited in this field (Marzouk and Moselhi 2003). In 



2 

 

regards to DES, it is by far the simulation technique with the most applications in 

construction management. This is due to the fact that DES was the first to be introduced 

to construction operations (Halpin 1977). Furthermore, the nature of DES provides, in 

most cases, a sufficient solution to modeling most construction operations, especially on 

the operational and technical level. To address the decision-making aspect of construction 

management, recent efforts suggested the utilization of SD to address the complex 

strategic level when simulating construction operations (Alzraiee et al. 2012).  

In this thesis, the simulation technique that is going to be used will be of the third 

type, which is ABMS. The latter is the newest simulation field (Schelling 1971) that 

offers solutions to overcome many limitations of current simulation practices. ABMS is 

based on the idea of simulating the interactions of autonomous objects, in order to 

identify, explain, generate and design emergent behaviors (Chan et al. 2010). Basically, 

ABMS is a bottom-up modeling approach, where individual participants of the operation 

are modeled and given attributes and roles to reach an emergent behavior of the whole 

system (Macal and North 2008). Conveniently, the main advantage of using ABMS is the 

ability to create a system of smart agents that adapt with varying conditions and act 

accordingly to capture the real behavior of the system being studied. The latter is done 

without the need to make assumptions or direct the model in a way which is acceptable 

by the capacities of the simulation technique. ABMS is gaining the interest of many in 

multiple fields, especially those related to supply chains and consumer behavior (Garcia 

2005). This is due to the fact that the capabilities of ABMS fit quite well the requirements 

of modeling individuals’ behavior in consumer markets. However, the applications of 

ABMS in construction management are still limited and few in number (Ren and 

http://scholar.google.ca/citations?view_op=search_authors&mauthors=Hani+Alzraiee&hl=en&oi=ao
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Anumba 2003, Tah 2004, Bernhardt and McNeil 2008, Min and Bjornsson 2008, El-

Adawy and Kandil 2009, Osman 2012). 

1.2 Problem Statement 

There is a need to incorporate Agent-Based (AB) technologies with significant 

construction operations such as earthmoving. This must be completed in a smart and 

flexible paradigm that accepts various types of data, maintains a presentable view of 

model operation and analysis and produces accurate results. This research aims at 

rebuilding the methodology of creating earthmoving simulation models, based on the AB 

approach.  

While the application of simulation in earthmoving remains a well-researched 

area (Touran 1990, Oloufa 1993, Martinez 1998, AbouRizk and Hajjar 1998, Smith et al. 

2000), all previous work is based solely on a DES or on a DES-SD hybrid system 

(Alzraiee et al. 2012). Even presently, simulation models often lack graphical modeling 

support, which is the key of model definition and manipulation (Hajjar et al. 2002). In 

addition, building and validating SD models is time consuming, requires modeling skills 

and is heavily dependent on conceptual models as well as the availability of detailed data 

(Alzraiee 2013).  

Other limitations arise from the fact that the developed models behave in a 

predetermined manner, mainly due to the nature of DES and SD. Although various 

efforts succeeded in overcoming some of these limitations, these efforts were scattered in 

various research works and were never gathered in one complete system. Consequently, 

http://scholar.google.ca/citations?view_op=search_authors&mauthors=Hani+Alzraiee&hl=en&oi=ao
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this is where ABMS comes into play as a modeling tool that can deliver a comprehensive 

system for modeling and simulating earthmoving operations.  

Drawbacks and limitations of current research can be briefly encapsulated as follows:  

 Earthmoving models are often inflexible in accepting different types of data; such 

as the case when having trucks` capacities that are not multiples of loaders’ 

capacities.   

 Often, earthmoving models have a predetermined behavior. This can be clearly 

observed in the truck loading process, where trucks are always loaded to their full 

capacities.  

 Most earthmoving models are inflexible in modeling equipment capacities and 

properties. For instance, when having two or more trucks with different capacities 

in the same earthmoving model, properties cannot be directly established. 

 Earthmoving models, similar to other DES-based models, require visualization 

when implementing. As the earthmoving operation becomes more complicated, 

its visualization becomes more difficult. 

 Hybrid DES-SD models that rely on DES for the operational level will have the 

same previous technical limitations, in addition to the SD part requiring detailed 

sets of data, large amount of time and specialized modeling skills. 

1.3 Research Objectives 

The general objective of this thesis is the introduction of ABMS into earthmoving 

operations for the purpose of overcoming limitations of current research work and 
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enhancing current practices. This general objective can be broken down into the 

following sub-objectives:  

 Generate a procedure for creating AB models, which can be used for construction 

management applications. 

 Develop a detailed AB model for earthmoving operations, which captures the 

properties and interactions of model elements.  

 Design a stand-alone ABMS software system for earthmoving operations and 

verify the model using a real-world case study. 

1.4 Research Methodology 

A generic flow chart that summarizes the research methodologies and major tasks 

is depicted in Figure 1-1. Major components and contributions are highlighted in grey.  

Primarily, the literature will be reviewed on the basis of different simulation techniques, 

applications of simulation in construction management and the ABMS technique. 

Afterwards, the methodology section, which presents a generic procedure for building 

AB models for construction management applications and a comprehensive AB model 

for earthmoving operations, will be outlined in detail. Finally, the implementation of the 

proposed model will be presented and followed by the verification of the implemented 

system.  

1.5 Thesis Organization 

This thesis is comprised of five chapters. Chapter 1 is an introduction to the topic 

which includes the problem statement, research objectives and the thesis organization. 
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Chapter 2 summarizes the literature review on the state-of-the-art techniques related to 

this research work. It discusses areas related to computer simulation, applications of 

simulation in construction management, current earthmoving simulation techniques and 

an elaborate review on the AB methodology. In Chapter 3, the methodology of producing 

AB models is provided, followed by the development of the proposed earthmoving 

simulation model. Chapter 4 represents the implementation of the proposed model in a 

stand-alone software application, while explaining the various elements of the application 

and their uses. Finally, Chapter 5 outlines the conclusions and recommendations of this 

research work at-hand.  
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CHAPTER 2:  LETIRATURE REVIEW 

2.1 Chapter Overview 

This chapter is dedicated to summarizing the literature that was visited prior to the 

model development and implementation. It mainly aims at highlighting different 

simulation techniques, going over simulation practices used in construction management 

in general and earthmoving operations in particular and explaining the AB Methodology 

in detail.  Figure 2-1 depicts the different literature review areas of this thesis.   

Literature Review

Agent-Based 

Modeling and 

Simulation

Simulation 

Techniques

Discrete-Event 

Simulation

CM 

applications

AB 

Methodology

System 

Dynamics

Simulation in CM

Earthmoving 

Applications

General 

Applications

 

Figure 2-1: Literature review areas 
 

Section 2.2 gives an overview about different simulation techniques. It discusses 

Discrete-Event Simulation (DES) and its limitations, as well as System Dynamics (SD) 

and its limitations. Furthermore, Section 2.3 demonstrates the application of simulation in 

construction management. It includes the applications of DES, SD and Hybrid DES-SED 
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in the construction industry. In addition, this section demonstrates the current practices of 

simulating earthmoving operations as well as some general and special purpose 

simulation software. In Section 2.4, the ABMS methodology is thoroughly explained. 

Major AB components, such as agents, environments, interactions and emergence, are 

broken down and explained in detail. Also, some ABMS applications, in construction 

management, are highlighted. Section 2.5 summarizes the literature review and points out 

some gaps and limitations of current research. 

2.2 Simulation Techniques 

Different areas have witnessed the application of simulation including the 

manufacturing, industrial, environmental and construction fields (Banks et al. 2000). 

Simulation was defined by Shannon (1992) as “the process of designing a model of a real 

system and conducting experiments with this model for the purpose of either 

understanding the behavior of the system and/or evaluating various strategies for the 

operation of the system.” Hence, simulation is a preplanning tool to help regulate 

resources, mitigate risk and forecast durations and costs. In relation, Figure 2-2 

demonstrates how simulation can help reach a solution for a real-world problem without 

the need of experimenting.  
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Figure 2-2: Simulation of real world problems (Borshchev and Filippov 2004) 

Computer simulation refers to simulation models being run on computers to 

acquire different sets of analysis and results. Simulation models can be classified 

according to various independent pairs of attributes. The most famous of the latter are: 

 Deterministic or stochastic; deterministic models are based on constant variables, 

while stochastic models include randomness. One of the most crucial uses of 

simulation is its ability to account for randomness and inaccuracy. This is why 

complex simulation models mostly fall under the stochastic type.    

 Static or dynamic; static models are those that represent static environments, 

while dynamic models are those characterizing dynamic operations. The 

simulation of construction operations is clearly an example of dynamic 

simulation. 

 Discrete or continuous; this is the most important classification when it comes to 

computer simulation models. It is related to the changing nature of variables with 

respect to time during the simulation run. The change in these variables over the 

simulation time can be discrete, continuous or a combination of both.   
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When variables change in a discrete manner, the system is referred to as a 

Discrete-Event Simulation (DES) System. A DES model depicts the operation of a 

system as a sequential order of events called the chronological list. In DES, a change in a 

variable occurs as an event at a specific point in time, marking a change of state in the 

system (Halpin and Riggs 1992). On the other hand, in continuous simulation models, 

variables change over a period of time and not instantaneously at specific points in the 

simulation run time. This change is performed using a set of mathematical equations. 

Also, in DES models, time progresses by time steps; while in continuous 

simulation models, time advances constantly. In combined simulations systems, changes 

in variables occur instantaneously at certain simulation points in time and continuously at 

others. Hence, time in such systems advances by steps or constantly depending on the 

change type of variables. SD is an example of a continuous simulation technique. Figure 

2-3 demonstrates the change in the dependent variable with time in discrete, continuous 

as well as combined simulation.  

 

Figure 2-3: Simulation techniques (Alzraiee et al. 2012) 
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2.2.1 Discrete-Event Simulation (DES) 

The DES technique focuses on a list of events which occur instantaneously, 

changing the state of the system. This same list is updated every time an event occurs. 

DES models a system as a network or a flow diagram of a collection of queues and 

processes, where changes in the system occur at distinct points in time (Brailsford and 

Hilton 2001). Overall, in DES, entities involved in the process being modeled are treated 

as passive objects. They can represent people, equipment, organizations, documents, 

tasks, messages, etc.  

These entities travel through the DES flowchart where they stay in queues, get 

processed and then release resources (Borshchev and Filippov 2004). Basically, an entity 

flows through a DES model, seizing resources to perform different tasks, and releasing 

these resources once the work task has been completed. But, if these resources are busy 

and unavailable when the entity requires them to complete the work task, the entity will 

pause and be delayed in a queue until the required resources become available again. 

Once an event is performed, an object called the simulation clock steps right to the time 

when that event was accomplished. Afterwards, this information is stored in a 

chronological list based on the order of occurrences.  

Figure 2-4 illustrates an example of a DES system. The model describes the cycle 

a customer undergoes, from the time they enter into the bank until the time they leave. It 

demonstrates how customers pass through the flow diagram based on the needs of their 

visit. Moreover, tellers here are used as resources which customers can seize when they 

require a teller service. However, the authors chose not to use ATMs as resources; 
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instead, ATMs are just implanted in the system in a form of vacant spaces that can be 

filled with customers. It is also clear in this model how queues are embedded in processes 

instead of being separated in two different entities. The latter are all conventions of the 

authors. DES models can be built in different ways as shall be seen later in this chapter.  

 

Figure 2-4: DES bank service example (Borshchev and Filippov 2004) 

As an example, a chronological list of this bank`s operations is depicted in Table 

2-1. As can be observed in the table, events are ranked based on their order of 

completion.  During twelve minutes of the bank service, three customers have arrived, 

one customer has used the ATM, two customers have used the teller service and one 

customer has exited the bank. This is a very simple example of a chronological list, 

which is demonstrated for the purpose of understanding how the technique works and 

how entities travel and seize resources in simulation. 
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Table 2-1: DES chronological list example 

Activity Duration Tend (min) 

Customers 

Arrive 
0 0 

Use ATM 3 3 

Teller service 5 8 

Customers 

Arrive  
0 8 

Customers 

Exit 
1 9 

Customers 

Arrive  
0 9 

Teller service 4 12 

 

2.2.2 Limitations of the Discrete-Event Simulation Technique  

Since DES is a simulation approach that involves the process of creating a 

computer model and applying the DES methodology to it, limitations of both the 

technique itself and the developed model are expected. As a simulation technique, DES 

has some limitations which were previously highlighted by researches. One major 

limitation of DES is that it cannot quite capture the external factors that influence the 

operation that is being modeled.  
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Also, DES does not have the aptitude of determining the modeled system’s 

stability in the surrounding environment. Hence, the performance of the system could, 

due to its surrounding environment, be driven by hidden causal relationships that could 

be non-linear (Helal 2008). This is because the strategic aspect of any operation is often 

qualitative and continuous in nature, in turn creating challenges when applying DES to 

model such an aspect (Zulch et al. 2002). 

Other researchers state that DES encounters a lot of difficulties in accounting for 

the overall strategy of the project or operation being modeled, due to its time step 

advancement mechanism (Martin and Raffo 2001). In addition, even on the operational 

level, DES fails to deliver a clear representation of the state of the system between 

consecutive events and time steps. Alzraiee (2013) demonstrated the latter through the 

example shown in Figure 2-5. This figure portrays three consecutive events (E1, E2 and 

E3) that occur at three sequential times (T1, T2 and T3). At the starting point of the 

simulation, time is at zero (T0) and the state of the system is S0. When event E1 occurs, 

the simulation clock is advanced to T1 and the system`s state changes to S1. 

 Similarly, the occurrence of events E2 and E3 at times T2 and T3 changes the 

system state to S2 and S3 consecutively. The purpose of illustrating this figure is to 

highlight the state of the system in DES between two different but consecutive states. The 

zero-slope line (A) between events E1 and E2 and events E2 and E3 demonstrates how the 

state of the system between two consecutive events in DES remains constant. The state of 

the system after the occurrence of event E1 becomes S1 and stays this way until event E2 

occurs. The latter is also the case between events E2
 and E3. So, the state of the system 
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between times T0 and T1, T1 and T2, and T2 and T3 is not updated. As an alternative, the 

state of the system is only updated once the next scheduled event occurs.  

 

Figure 2-5: System state update in DES and continuous simulation (Alzraiee 2013) 

On the other hand, this major limitation of DES, which is associated with the 

behavior of the technique itself, limits the full understanding and representation of the 

actual state of the system being modeled and the interaction between the system’s entities 

and parameters. Correspondingly, this limitation can lead to delays in taking corrective 

measures due to any deviation that may occur based on what is planned to happen in the 

operation (Alzraiee 2013). Curve B forms an expected representation of the actual state 

of the system without adhering to the time step principle of DES.  

2.2.3 System Dynamics (SD) 

 In continuous simulation, change is governed by a set of differential equations, 

which can be formulated in a conceptual model that represents the system on an abstract 

level. Continuous simulation is often deterministic, simple and requires less data in order 

to develop a working model. However, the more complex the continuous simulation 
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model becomes, the more complex the differential equations associated to it become 

(Alzraiee 2013).  

 The most famous type of continuous simulation is System Dynamics (SD). Unlike 

DES, variables involved in an SD simulation model change in a continuous fashion. 

Thus, the state of the system changes in a continuous fashion as well. SD was first 

introduced by Jay Forrester in 1961 in a book titled “Industrial dynamics” (Forrester 

1961). It was then considered as a new modeling and planning approach aiming at 

solving complex problems in social systems related to the industrial sector. Also, SD is 

based on the principle that the overall behavior of the system is determined by its 

structure. For instance, systems requiring holistic consideration as well as feedback loops 

among their participants have been successfully modeled using SD (Alzraiee 2013). SD 

has been used in many disciplines, especially those related to social, economic, 

engineering, environmental, as well as management problems (Wolstenholme 1990). 

Researchers believe that SD constitutes an elaborate extension on continuous simulation 

aiming at addressing the complexity of systems and nonlinearity of feedback processes. It 

is basically an approach utilized to solve problems at top management levels (Sterman 

2000, Lyneis 2001).  

 Involving both “soft” and “hard” data, considering the project as a whole rather 

than a sum of individual elements, examining non-linear scenarios of element interaction 

and the failure of the conventional DES tools to address the project management aspect 

of systems are all motivations behind utilizing SD as a modeling tool for different 

applications (Rodrigues and Bowers 1996, Sterman 2000). 
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 Sterman (2000) developed a methodology of five steps for modeling a system 

using SD. Firstly; it begins with understanding the system, where the modeler should 

break the system into smaller components for a better visualization and understanding of 

its overall behavior. The second step is conceptualization, where feedback loops are 

identified and theories related to the behavior of the system at-hand are studied. The third 

step is the formulation of the simulation model at-hand. The fourth step is testing the 

model in order to verify it. The fifth and final step is the design and evaluation of the 

policy, which deals with the environmental conditions and new decision rules and 

strategies.  

 The most important terms in SD are Model Boundary, Causal Loops Diagrams 

(CLDs), which capture the conceptual relationships of variables in the system and finally 

Stocks and Flows Diagrams (SFDs), which define the movement of entities and its rate 

from start to end in the model. To understand how SD works, each of these terms is 

explained individually. 

Model Boundary: 

 The behavior of the system in SD models is generated within a closed boundary 

of the feedback process. In order to define this boundary in an SD model, it is required to 

identify the behavior of interest, which can be extracted from the purpose of the model. 

The components of interaction that are necessary to generate this behavior have to be 

identified and selected. In order to summarize the scope of the model in SD, key 

variables should be classified as endogenous, exogenous or excluded (Alzraiee 2013).  
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 On a similar note, endogenous variables are the most important variables in an SD 

model. The latter usually portray the dynamic inherent in systems. Endogenous variables 

exist in a casual-effect structure in SD models and their values are determined by the 

state of other variables in the system. Exogenous variables, on the other hand, are 

variables external to the model and are not represented by the model’s feedback structure. 

Exogenous variables are also involved in casual-effect structure. However, unlike 

endogenous variables, the value of exogenous variables is independent from the state of 

other variables; their values are determined by variables external to the system. In other 

words, the system’s internal interactions will have no influence on exogenous variables.  

Excluded variables are variables beyond the scope of the SD model. These 

variables are not included in the causal-effect feedback of the structure. It is usually 

better to exclude such variables from the model in order to keep the model simple and 

comprehensible. For example, in an SD model of a typical construction project, fatigue, 

overtime required and error are all considered as endogenous variables. A project’s 

planned duration and planned productivity are considered as exogenous variables. Other 

unrelated variables to the operation, such as the number of site engineers or the traffic 

condition around the site, are considered as excluded variables (Alzraiee 2013). 

Causal Loops Diagrams (CLDs): 

  The major strength of an SD model lies in its feedback loops, which are the main 

reason behind the dynamic behavior in a system (Sterman 2000). CLDs, in essence, 

conceptualize the feedback structure of the system as being understood by the modeler 

(Richardson and Pugh 1981). In addition, CLD systems can be classified according to 
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two independent pairs of attributes. The first classification is based upon the outputs’ 

influence on the inputs in the system, while the second classification is related to the 

tendency of the CLD to stabilize or destabilize the system itself (Sterman 2000). 

  In the first classification, when the system’s outputs are responsive towards their 

inputs but have no influence on them, it is referred to as an open CLD. On the other hand, 

outputs in a closed CLD both respond to and influence their inputs. In the other 

classification, a CLD can be either positive or negative. Positive CLDs consist of a series 

of causal relationships which signify a self-reinforcing process and amplify results. On 

the other hand, negative CLDs consist of a series of causal relationships that aim at 

directing the operation to a specific goal value (Sterman 2000).  

  Table 2-2 demonstrates how a causal link containing two variables, ‘A’ and ‘B’, 

can be positive or negative. In the first row, it is demonstrated that an increase in the 

value of ‘A’ causes an increase in the value of ‘B’, and a decrease in the value of ‘A’ 

causes a decrease in the value of ‘B’. In this scenario, ‘A’ has a positive impact on ‘B’ 

and a positive sign is marked at the end of the arrow. In the second row, an increase in 

the value of ‘A’ causes a decrease in the value of ‘B’, and a decrease in the value of ‘A’ 

causes an increase in the value of ‘B’. In this scenario, ‘A’ has a negative impact on ‘B’ 

and a negative sign is placed at the end of the arrow. What can be retained from this is 

that changes in variables can be mathematically computed through the integration of 

variables’ rate of change. 

  The third row of the table is dedicated to explain an important concept in SD, 

which is delay. In SD, delay is a term used to describe a process whose outputs lags 



21 

 

behind its inputs. Plus, delays represent crucial sources of dynamic behavior in systems 

and they should be managed in order to avoid creating instability (Sterman 2000). In 

Table 2-2, delay is represented by parallel lines placed on the causal link between ‘A’ and 

‘B’. 

Table 2-2: Denotations for Causal Loop Diagramming (Sterman 2000) 

Causal Link Description 
Mathematical 

Formulation 

 

All else remaining equal, if variable ‘A’ 

increases (decreases) then ‘B’ increases 

(decreases) in variable above (below)  

 

All else remaining equal, if variable ‘A’ 

increases (decreases) then ‘B’ decreases 

(increases) in variable below (above)  

 

Significant time delay is involved in 

implementing the causal relationship 

between the variables ‘A’ and ‘B’ 

 

 

  Alzraiee (2013) presented the CLD shown in Figure 2-6 of ‘work to do’ in a 

typical construction operation. As can be seen in the figure, three causal loops exist in the 

operation. ‘A’ is a reinforcing (positive) loop, while ‘B’ and ‘C’ are both balancing 

(negative) loops. The variables contained in loop ‘A’ are ‘work to do’, ‘overtime hours 

required’, ‘fatigue’ and ‘error’. As the ‘work to do’ variable increases, overtime hours 

become essential to meet the schedule of this operation and the overall deadline of the 

project. This increase in ‘overtime hours required’ will cause an increase in ‘fatigue’, 

which in turn causes an increase in ‘error’. Going back to the starting point of this loop, 

the increase in ‘error’ will require some rework, which will add to the initial scope of 

work causing an increase in ‘work to do’. Furthermore, multiplying the signs of all 
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variables in loop ‘A’ (+, +, +, +) leads to a positive sign, which represents the overall 

positive polarity of the loop.  

  Loop ‘B’ consists of ‘work to do’, ‘overtime’ and ‘work done’. In loop ‘A’, an 

increase in ‘work to do’ causes an increase in ‘overtime hours required’. Of course, an 

increase in ‘overtime hours required’ entails an increase in ‘work done’. However, an 

increase in ‘work done’ means that parts of the scope of work are accomplished, 

decreasing ‘work to do’. The latter is what causes the negative polarity of loop ‘B’, as 

multiplying the signs of its variables (+, +, -) leads to an overall negative sign. In the 

CLD displayed in Figure 2-6, loops ‘A’ and B’ counter influence each other, as they have 

different polarities. Hence, it is clear that loop ‘A’ tends to increase the ‘work to do’ 

variable, while loop ‘B’ tends to decrease it. In this case, since it is desirable to have less 

‘work to do’, it is the responsibility of decision makers to decrease the effect of loop ‘A’ 

and in turn facilitate the conditions surrounding loop ‘B’ (Alzraiee 2013).  

  The previously discussed concept of delay in SD models can be observed in loop 

‘C’, which is of a negative polarity similar to loop ‘B’. In the situation where the 

‘required workforce’ variable increases due to an increase in ‘work to do’, the 

management has to hire workface to accommodate the extra work packages and recover 

from schedule slippage. Consequently, this hiring process has to pass through different 

stages and the new workforce has to be trained. This is when delay occurs, as the decision 

to hire requires time to affect the productivity. The Duration between the decision to hire 

more workforce and the noticeable effect of that decision is delay, represented by the 

parallel-lines arrow in Figure 2-6.  
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Figure 2-6: CLD of ‘work to do’ for a typical construction operation (Alzraiee 2013) 

 Although CLDs are considered practical in representing variable 

interdependencies and the feedback process, on their own, they cannot capture the stocks 

and flows of an SD system, which in turn represents the rate at which variables change in 

the model (Sterman 2000). This is exactly where the need for Stocks and Flows Diagrams 

(SFDs) arises. 

Stocks and Flows Diagrams (SFDs): 

  SFDs are generally generated from CLDs (Sterman 2000). SFDs are the reason 

behind the dynamic behavior of SD models. The term stock in SD refers to an 

accumulation characterizing the state of the system and generating information which is 

the basis of decisions and actions. The mechanism by which a stock can change is 

through flows. A stock accumulates the difference between inflows going in the stock and 

outflows leaving the stock, and this is how delay is created in the system. This explains 

why stocks are modeled by the mathematical integration of the sum of inflows and 

outflows (Alzraiee 2013). In SFDs, flows influence and control the level of accumulation 

at stocks. A Flow is basically a rate that represents the source of disequilibrium in SD 
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(Sterman 2000). SFDs are added to the CLDs in SD models in order to improve the 

clarity of the model schema (Alzraiee 2013). 

  An SFD consists of three elements which are stocks represented by rectangles, 

flows represented by pipes with valves pointing at the stocks and sources of inflow to or 

outflow from the model represented by clouds. Clouds are related to the model boundary, 

as model inputs before the cloud and model outputs after the cloud are considered outside 

the boundary of the model. Figure 2-7 represents a typical SFD. 

 

Figure 2-7: Stocks and Flow Diagramming (SFD) (Alzraiee 2013) 

  To control the mechanism of flows in SD, the hydraulic principle was utilized. 

This principle states that the accumulation of water in a reservoir during a specific time 

period is equal to the quantity of water that flows into the reservoir subtracted from the 

quantity of water flowing out of the reservoir (Forrester 1961). Applying this principle to 

SFDs, the net flow into a stock becomes equal to the rate of change of that same stock. 

This can be applied by using a set of mathematical equations that describe the model. 

Stocks are given initial values which change during the model run. Decision makers 

monitor the system’s performance over time by constantly observing the updated stocks 

and flows. Therefore, they can change strategies accordingly (Alzraiee 2013). 

  To explain how mathematical equations are used in order to represent SFDs, the 

mechanism of time elapsing in SD must be understood. Simulation time has to be broken 
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into small equal time intervals, as displayed in Figure 2-8. At the beginning of the 

simulation (T1), the system’s state is S1. At T2, the system’s state updates to S2, which is 

the summation of the original S1 state and the net flow between T1 and T2. Likewise, the 

S3 state at T3 is the summation of the S2 state and the net flow between T2 and T3. 

 

Figure 2-8: System state computation in SD (Alzraiee 2013) 

  Figure 2-9 represents a simple stock with inflow and outflow and its associated 

mathematical equations. The stock level at any given time (t) is equal to the initial stock 

level at the initial time (t0) in addition to the net flow from the initial time (t0) up until that 

time (t). This is clearly represented by the first equation in the figure. Similarly, the net 

rate of change of that stock at any given time (t) is the derivative of inflows less outflows, 

which is represented by the second equation.  

 

Figure 2-9: SFD and associated equations (Alzraiee 2013)  
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2.2.4 Limitations of the SD Technique 

 As in DES, SD has a number of known limitations that arise from the nature of 

the method. Most criticisms towards SD are based on the fact that SD, alone, is not able 

to capture a detailed view of the quantitative operational aspects of the systems being 

modeled. 

 SD is usually used to model systems with the purpose of having a holistic view 

and control over system variables. This is why SD is believed to have a wider focus on 

the system being modeled, by viewing it as general and abstract when compared to the 

narrowly focused DES (Lane 2000). Alzraiee (2013) states that SD models are unable to 

represent in detail the operational aspects of the systems being modeled.  

Another drawback of SD is the matter of randomness. SD, in nature, is a more 

deterministic modeling approach, compared to stochastic modeling techniques such as 

DES (Meadows 1980). This is due to the simulation mechanism of SD that relies on 

mathematical differential equations which are deterministic in nature. Finally, developing 

and validating SD models is a time consuming procedure which relies heavily on the 

availability of detailed sets of data, while requiring time and specialized modeling skills 

(Alzraiee 2013). 

2.3 Simulation in Construction Management 

 Several attempts have been made by researchers to utilize simulation in modeling 

and planning construction operations. Despite the fact that the vast majority of these 

applications utilize DES as the modeling tool, there have been some efforts to make use 
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of SD, Hybrid DES-SD and Agent-Based Modeling and Simulation (ABMS) in modeling 

construction operations. The main objective of current research is to create robust 

simulation models, which produce accurate results, while being easy to understand and 

operate by end users. Researchers constantly try to enhance the accuracy of available 

models by either incorporating factors which were not included before or by introducing 

new modeling techniques to their existing work.  

2.3.1 Discrete-Event Simulation (DES) Applications 

 DES was the first simulation technique to be introduced to construction 

management. Until now, it has by far the majority of applications in this field. This is due 

to the fact that DES is relatively older than other simulation techniques and has a strong 

support for operations which are cyclic in nature.  

 The introduction of simulation in construction management was through 

CYCLONE, CYCLic Operation Network (Halpin 1977), which is a general purpose 

simulation language providing users with a systematic way of planning, analyzing and 

controlling construction operations. CYCLONE is best used for modeling construction 

operations with a cyclic nature such as highway projects, earthmoving operations, pipe 

laying, concrete pouring and crane operations. However, due to its generic nature, this 

language can be used for modeling certain operations outside of the construction industry 

or for modeling acyclic systems such as projects’ schedules. CYCLONE consists of six 

basic elements, as demonstrated in Table 2-3. 1) QUEUE, which resembles a waiting 

location for resources to be served or used; 2) FUNCTION, which is related to a process 

function, like generating resources from a resource or consolidating a number of 
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resources into one resource; 3) NORMAL, which represents a work task that is 

unconstrained; 4) COMBI, which represents a constrained work task; 5) ARC, which 

indicates the flow logic of resources; 6) COUNTER, which controls the mechanism of 

counting processed resources by the model. 

Table 2-3: CYCLONE modeling elements (Halpin 1976) 

Name QUEUE FUNCTION NORMAL COMBI ARC COUNTER 

Symbol 

    
 

 

 

 Various implementations of the CYCLONE modeling language were later 

developed by researchers including INSIGHT (Paulson 1978), RESQUE (Chang and 

Carr 1987), UMCYCLONE (Ioannaou 1989), Micro-CYCLONE (Halpin and Riggs 

1992) and CIPROS (Tommelein et al. 1994).  

 Oloufa (1993) developed a simulation tool, MODSIM, which was one the first 

systems that utilized object-oriented programming in modeling and simulating 

construction operations. The idea behind MODSIM was to simplify the process of 

building simulation models, by reducing the required amount of code users must write 

and using a graphical interface for the application. Objects of diverse classes are created 

in order to represent the different entities and resources participating in the operation 

being modeled. These objects have properties, store information and communicate using 

messages.  
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 Haung and Halpin (1994) developed an application called Dynamic Interface 

Simulation for Construction Operations (DISCO). This application employs a schematic 

modeling format to demonstrate the dynamics of the construction operation being 

modeled. An abstract model diagram of the construction operation is used as a static 

display. Then, information results are dynamically demonstrated on the screen. At the 

end of the simulation, the application reports the statistical information in a tabular 

format. 

 CIPROS (Tommelein et al. 1994) is an object-oriented system that models 

construction operations by matching their resource properties to the properties of the 

design components. Product components and construction resources represent the two 

types of resources distinguished by the model. Product components refer to the design 

elements, while construction resources are the equipment, material and labor used during 

construction. 

Sawhney and AbouRizk (1995) developed a hierarchical simulation modeling tool 

named HSM. It utilizes the principle of Work Breakdown Structure (WBS) and the 

regular construction process modeling for planning construction projects. The project is 

broken down into work tasks and the CYCLONE modeling language is employed for the 

process modeling. 

Resource-based Modeling (RBM) (Shi and AbouRizk 1997) is a construction 

simulation tool that treats processes of active resources as atomic models. These atomic 

models are stored in the application’s library and can be project-specific based on the 

user’s preferences as well as project characteristics. An end user can construct a 
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simulation model for any construction operation using an atomic model as a base. Then, 

the required resources are chosen from the resource library and the model is generated by 

formatting processes into SLAM II network statements (Pritsker 1986).  

 STROBOSCOPE (Martinez and Ioannou 1999, Martinez 1996) is a very famous 

general purpose simulation language. It is a programmable simulation system that allows 

users to model complex construction operations and create special purpose simulation 

applications. The user can develop models in STROBOSCOPE by writing codes or by 

using its graphical-based tool, EZStrobe, in which elements similar to those of the 

CYCLONE language can be dragged and placed in a network form representing the 

construction operation being modeled. STROBOSCOPE provides users with the ability 

to access information related to the state of simulation and distinguish involved entities 

and resources.   

 McCabe (1997) integrated belief networks and computer simulation in an 

automated modeling approach. Belief networks are used as a diagnostic tool to assess 

different performance indices in the project, while computer simulation is used to model 

the different construction operations. The overall performance of the system is evaluated 

by belief networks in order to take corrective actions such as modifying the number of 

servers involved in the model and/or their capacities. 

 Oluofa et al. (1998) proposed a special purpose simulation system which is a 

collection of resource-based simulation libraries. The wider the range of defined libraries, 

the more construction applications it can accommodate. Construction resources are 
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selected from the libraries and linked together based on the logic of their interaction in 

the operation.  

 Simphony (Hajjar and AbouRizk 1999) is a computer application used for 

developing special purpose simulation tools for construction operations. Special purpose 

simulation templates can be generated in the Simphony environment by either using the 

Simphony editor for writing codes or the Simphony graphical designer. Simphony has 

built-in libraries, which users can utilize to create and run special purpose simulation 

models. Simphony is the result of accumulating three special purpose simulation tools 

developed prior to its creation, which are AP2-Earth (Hajjar and AbouRizk 1997) for 

earthmoving operations, CRUISER (Hajjar and AbouRizk 1998) for aggregate 

production plants and CSD (Hajjar et al. 1998) for optimizing construction dewatering 

operations.  

 Knowledge Discovery Based Simulation System (KEYSTONE) (Elwakil 2011) is 

a simulation tool that accounts for the subjectivity in modeling construction operations 

using the Fuzzy logic. KEYSTONE accounts for missing data points and outliers in input 

data. It uses Fuzzy clustering to model qualitative variables and includes an optimization 

engine in order to select the optimum combination of resources.  

2.3.2 System Dynamics Applications 

 SD has been applied to construction management for the sake of addressing the 

issue of dynamic inherent (Alzraiee 2013). In literature, there is a wide range of SD 

applications that, based on the nature of the problem and the modeler’s preference, vary 
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in different aspects such as the level of details in the model and whether the model is full 

scale, representing a group of projects or narrow scale, representing one single project.  

 The previously demonstrated ‘work to do’ cycle shows how an increase in the 

scope of work in a construction project can affect other variables in its CLD. This work 

was the basis of many enhanced SD models that proceeded it. Alzraiee (2013) 

summarized the literature review on the application of SD in construction management. 

His list is depicted in Table 2-4. 

Table 2-4: Literate review on SD applications in construction management 

Idea Author/s 

Project features such as the 

development stages of a project 

Cooper (1980), Richardson & Pugh 

(1981) 

A quality assurance cycle and a rework 

cycle  
Abel-Hamid (1984) 

Nonlinear constraints imposed on work 

availability and progress 
Homer et al. (1993) 

Releasing completed work downstream Ford (1995) 

The concurrence constraints limiting 

the execution of work in parallel 
Ford and Sterman (1998) 

Managing fund contingency Ceylan and Ford (2002) 

Creating schedule buffer and dynamic 

planning 
Park and Pena-Mora (2003) 

Managing iterative errors and change 

cycles 
Lee et al. (2007) 
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2.3.3 Hybrid Simulation Applications 

 Alzraiee (2013) states that there exists a need to incorporate DES and SD in 

hybrid construction simulation models, due to the fact that construction operations are 

neither completely discrete nor continuous in nature. In addition, operational details are 

the basis for implementing strategies. Yet, SD has drawbacks in representing the 

operational level of construction projects in detail. There have been few examples on the 

application of DES-SD hybrid systems in construction management. 

 Peña-Mora et al. (2008) used a hybrid DES-SD system in order to analyze the 

strategic and operational aspects of construction management. The main idea was that the 

incorporation of the operational details and the strategic viewpoint of construction 

operations is the backbone of enhancing these operations and increasing performance. 

The latter is done by allowing managers to identify, assess and respond to improvement 

areas which traditional modeling techniques would normally miss.  

Alzraiee (2013) proposed a framework focused on integrating DES and SD in a 

single computational platform. The hybrid simulation model was developed by 

decomposing the construction project into smaller units and developing simulation 

models based on these units. Three variables, which are the sender, receiver and 

interface, were defined to achieve the interfacing process among the different simulation 

models. A synchronization method was established to control the data mapping process 

between variables and an automated tool, HiSim, was then developed as an 

implementation of the developed method.  
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2.3.4 Earthmoving Simulation Practices 

 There are several applications on the simulation of earthmoving operations in 

literature. Earthmoving simulation models mainly aim to account for the uncertainties 

involved in these operations (Marzouk and Moselhi 2003).  

Examples on object-oriented simulation applications for earthmoving operations 

include MODSIM (Oloufa 1993), which was reviewed in Subsection 2.3.1, and SimEarth 

(Marzouk and Moselhi 2003). SimEarth provides users with a tool to select a near-

optimum fleet configuration that minimizes the total cost and duration of earthmoving 

operations. The technique utilizes object-oriented modeling and DES to simulate 

earthmoving operations. It also uses a generic algorithm for optimization purposes. In 

addition, SimEarth uses a fuzzy-based approach to measure more accurately the haul and 

return durations of trucks. 

 Resource-based simulation applications for earthmoving operations include 

RBM-earth (Shi and AbouRizk 1998), in which different activities involved in the 

earthmoving operation are linked by the user to formalize the model.  

Special purpose simulation applications for earthmoving operations include AP2-

Earth (Hajjar and AbouRizk 1997), which is a part of Simphony (Hajjar and AbouRizk 

1999). AP2-Earth focuses on providing contractors with an automated planning tool for 

earthmoving operations directed at delivering accurate estimates on haul and return 

durations of trucks. In addition, Martinez (1998) developed a special purpose simulation 

tool for earthmoving operations named EarthMover. Different inputs to the model can be 
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defined using the graphical interface of the application. Inputs include loading and 

hauling equipment types as well as road segments’ length and characteristics.  

2.4 Agent-Based Modeling and Simulation (ABMS) 

 Agent-Based Modeling and Simulation (ABMS) is the third and most advanced 

simulation technique being used in scientific research. ABMS has different names in 

literature including Agent-Based Simulation (ABS), Agent-Based Modeling (ABM), 

Multi-Agent Simulation (MAS) and Individual-Based Modeling (IBM). Being an 

evolving computational simulation method, ABMS has been recognized as a suitable 

instrument for capturing complexity in different systems (North and Macal 2007).  

 Grimm and Railsback (2013) define an agent-based model as a “class of 

computational models for simulating the actions and interactions of autonomous agents, 

both individual or collective entities such as organizations or groups, with a view to 

assessing their effects on the system as a whole.” Agents are self-contained entities that 

have the ability to control their own actions based on their perception of other agents and 

their operating environments (Gilbert and Troitzsch 2005). Agents may represent various 

entities such as people, vehicles, equipment units, projects, ideas, organizations, products, 

etc.  

 Unlike DES and SD, which are considered as top-down modeling techniques, 

ABMS is a bottom-up modeling approach, in which model elements are built before the 

process is studied as whole. Such an approach allows for the investigation of the 

fundamentals of model dynamics and leads to realistic conclusions (Unsal 2010). Plus, 

ABMS has no specific convention on time progression during the model run; it can be 
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discrete, continuous, or a hybrid of both (Chan et al. 2010). ABMS has the potential to 

have extensive effects on the way researchers use laboratories in order to support their 

research and businesses use computers to support decision-making (North and Macal 

2007). 

2.4.1 ABMS Methodology 

 ABMS studies the interaction among objects and their relationship with their 

surrounding environment (Bonabeau 2002). The main idea behind ABMS is the 

reproduction of the system being modeled by replicating its different entities and their 

properties. This is done in an effort to forecast the overall behavior of the system. The 

goal of an AB model is to peruse explanatory insight into the collective behavior of 

agents interacting in a certain environment and obeying simple rules (Niazi and Hussain 

2011). 

 The first AB simulation work is believed to be the Dynamic Models of 

Segregation (Schelling 1971). Schelling modeled individuals in households as agents and 

gave them characteristics, among which was race. Schelling’s model applied cellular 

automata for the purpose of studying housing segregation patterns. It demonstrated that 

ghettos can develop spontaneously, even if individuals were colorblind, meaning they 

have no preference regarding the race of their neighbors. Since then, ABMS has had 

many applications in different fields, including military, biology, social science, 

economics and business. The ABMS community has grown very largely and ABMS has 

become a multidisciplinary subject integrating computer science, cognitive and social 

sciences as well as simulation (Chan et al. 2010). 
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 Researchers do not agree on a precise definition of agents in AB models. On one 

hand, some researchers believe that any type of independent entities can be modeled as 

agents (Bonabeau 2001). However, on the other hand, the majority believe that entities 

should be adaptive in behavior to be considered as agents. Agents should learn from each 

other and from their environment and change their behavior in response to their 

experience (Macal and North 2008). Furthermore, in AB models, agents are given rules 

to guide their adaption and responsiveness. Casti (1997) believes that agents in AB 

models should have base-level rules to guide their behavior and respond to the 

environment as well as higher-level rules to guide how they can adapt by changing their 

rules (rules to change the rules).  

  In relation, Macal and North (2008) argue that the most fundamental 

characteristic of agents is their independence in making decisions, which requires agents 

to be active members that respond and interact rather than being purely passive in the 

model. They list the following common features of agents in AB models, which should 

not necessarily all exist in every agent:  

 Agents are identifiable individual components; they have a set of characteristics 

and rules to guide their behavior and decision-making capacities.   

 Agents are autonomous and self-directed; they function independently in their 

environment and in their interactions with other agents. 

 Agents are social; they are able to recognize other agents, distinguish their traits 

and interact with them based on protocols for interaction and communication. 
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 Agents are situated; they exist in an external environment with which they 

interact. 

 Agents are goal-directed; they have tasks to achieve and a mechanism to compare 

the outcome of their behavior to their initial goals. 

 Agents are flexible and adaptive; they learn, gain experience, store information 

and change their behavior accordingly.   

 Wooldridge and Jennings (1995) gave more detailed specifications on the 

properties that agents in AB model should possess. They summarized those properties in 

four specific terminologies as follows:  

 Autonomy; agents operate independently, without other agents having direct 

control over their actions and internal states. 

 Social ability; agents interact with other agents in the environment through a 

specific type of ‘language’ (a computer language). 

 Reactivity; agents are able to perceive and respond to their environment, whether 

it is physical or virtual. 

 Proactivity; agents are able to take the initiative to engage in a goal-directed 

behavior. 

 Figure 2-10 demonstrates a typical agent in an AB model. Each agent has 

different characteristics and methods to govern its behavior and adaption. In addition, 

agents interact with other agents as well as with their surrounding environment.  
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Figure 2-10: A typical agent in AB models (Macal and North 2010)  

The environment in which agents interact can take many forms in AB models. It 

can be a 2-D or a 3-D space, in the form of a ring or lattice, in the form of a random 

network, or based on a map such as Geographic Information System (GIS) maps. In AB 

models, agents have the ability to move freely in their environments, which promotes 

ABMS as an effective tool for modeling and visualizing complex behaviors in physical 

systems such as evacuation models, traffic simulations and mechanical systems (Chan et 

al. 2010). 

 Furthermore, what makes ABMS powerful is the simulation of the interaction of 

agents, which creates opportunities to better understand the nature of complex systems. 
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The strong point of ABMS is that it allows for the simulation of cascading effects arising 

from minor local interactions, the experimental examination of tipping points, the 

identification and explanation of beneficial or malicious emergent behaviors and, most 

importantly, the learning of design mechanisms to grow beneficial behaviors and discard 

malicious ones (Chan et al. 2010).  

 The goal of any AB model is to achieve behavior as a result of the interaction of 

agents. This behavior is often referred to in the AB terminology as emergence or 

emergent behavior. Macal and North (2010) discuss the issue of emergence in AB models 

by stating that the bottom-up approach of building AB models agent-by-agent and 

interaction-by-interaction leads to a state of self-organization. For example, patterns, 

behaviors and structures emerge from AB models without being explicitly programmed 

into these models. They state that the focus of ABMS on representing the heterogeneity 

of agents across their populations and the emergence of self-organization are the main 

distinguishing features of ABMS when compared to DES and SD. 

 The principle of emergence can be observed in many existing AB models, even 

those which are simple and have neither a complex agent architecture nor sophisticated 

interaction guidelines (Chan et al. 2010). Two simple ABMS examples will be 

demonstrated in order to give a better idea of agents, environments, interactions and 

emergence. 

 The first example is the application of John Conway’s game of life (Berlekamp et 

al. 2004). The environment is a two dimensional grid that consists of small cells which 

are considered as agents that align horizontally to make rows and vertically to make 
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columns. Each cell is surrounded by eight neighbors (right, left, up, down and four 

diagonals). In addition, cells cannot move in the grid and each cell has two states: alive or 

dead. Live cells are represented with red dots, while dead cells are represented with white 

dots. The state of the cells is randomly assigned in the grid and at every time step, there is 

a possibility for the cell to change its state based on the following three simple rules 

(Chan et al. 2010): 

1. A live cell will remain alive in the next time step, if it has exactly two or three 

live neighbors. 

2. A dead cell will come to life in the next time step, if it has exactly three live 

neighbors. 

3. Other than condition (1) or (2), the cell will die. 

 The left panel of Figure 2-11 demonstrates the initial state of the system. The 

simulation is stopped after 100 time steps (100 iterations of executing the AB algorithm) 

and the state of the system is shown in the right panel of Figure 2-11. The emergent 

behavior can be clearly noticed in the formation of patterns after the 100 iterations.  

 What makes the observations of the Game of Life AB model interesting is the fact 

that the rules are simple and only use local information. The reached patterns are not 

planned goals which were programmed into the system. Each cell had a set of rules that 

depended only on its state and the state of its immediately neighboring cells (Chan et al. 

2010). In other words, simple rules that rely only on local information can lead to 

sustainable emergent patterns that are sensitive to those rules and to the agents’ initial 

conditions. 
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Figure 2-11: AB simulation model of Conway’s Game of Life (Chan et al. 2010) 

 Another simple example of AB models is the Boids simulation (Reynolds 1999). 

The flocking behavior of birds or fish is studied in an AB paradigm. The movement of 

each agent in the flock is governed by the following three simple rules enumerated 

below: 

1. Separation: agents steer to avoid crowding local ‘flockmates’. 

2. Alignment: agents steer towards the average heading of local ‘flockmates’. 

3. Cohesion: agents steer towards the average position of its nearby ‘flockmates’. 

 A fourth rule was added to insure that, during simulation, agents remain close to 

their initial locations. Figure 2-12 shows the initial configuration of the system, where the 

number, locations and orientations of agents were randomly assigned. As the simulation 

started, the behavior of agents started to emerge and a coordinated leaderless flock began 

to develop. Figure 2-13 demonstrates the state of the system after 500 updates, where 

clear patterns of organized movement are observed. 
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Figure 2-12: Boids simulation (initial random configuration) (Macal and North 2008) 

 

Figure 2-13: Boids simulation (after 500 updates) (Macal and North 2008) 
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The same conclusions drawn from the Game of Life simulation can be drawn 

from the Boids simulation as well. Simple rules that depend on local information and 

agents’ initial conditions are enough to create emergent patterns which are not 

programmed into the model (Macal and North 2008). This is the major strength of the 

ABMS methodology and the key reason behind this technique replacing current 

simulations methods such as DES and SD. Hence, lessons learned from applying the 

Game of Life and the Boids simulations can be extended and applied on a larger scale to 

represent complex operations in different fields, especially since the ABMS methodology 

is relatively simple and easy to learn as well as implement. 

2.4.2 ABMS Applications in Civil Engineering and Construction Management 

 Since ABMS is a relatively new technique, it is expected to have very few 

applications in fields that do not heavily rely on Artificial Intelligence (AI) such as civil 

engineering and construction management. The majority of ABMS applications in these 

fields are focused on the following areas: 1) supply chain management (Tah 2005, Min 

and Bjornsson 2008); 2) construction claims management (Ren and Anumba 2002, El-

Adaway and Kandil 2009); 3) infrastructure management (Sanford Bernhardt and McNeil 

2008, Osman 2012).  

 Supply chain management involves highly complex chains of interacting entities. 

Sharing information about stocks, costs, quantities and schedules is vital to assure 

successful supply chain operations. Likewise, construction claims management involves 

interaction among project participants such as contractors and consultants. It involves 

discussions, sharing of information and organizing work tasks. Infrastructure 
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management using ABMS is a promising topic, in which components of an infrastructure 

system are treated as interacting agents. Governments, infrastructure management 

agencies, infrastructural assets and users are all modeled as intelligent agents with 

attributes and goals. This can help anticipate performance, plan maintenance and manage 

budgets. 

 Tah (2005) suggested a methodology to develop a modeling platform that can 

provide inexpensive and risk-free AB environments for organizations to experiment with 

evolving supply chain management practices prior to execution. Hence, a prototype 

system was developed using the ZUES tool kit (Ndumu et al. 1999) in an effort to 

explore the potential of using such an approach to model and simulate collaborative 

project supply chain networks.  

 Min and Bjornsson (2008) developed a construction supply chain simulator (CS2) 

that utilized the AB technique in modeling a virtual supply chain for construction 

projects. The work introduces two types of simulations, which are human-to-human and 

computer-to-human interactive simulations. In the developed models, groups of people 

play different roles, as a resemblance to the current practice in construction. The main 

idea was to test and verify the significance of real-time information sharing in 

construction.  

 Ren and Anumba (2002) developed an AB model that utilizes agents’ interaction 

and communication capabilities in AB models to facilitate the claim negotiations among 

different participants in construction projects. Different project entities are modeled as 

agents which have different attributes, roles and communication mechanisms. Multi-



46 

 

Agent System for Construction Claims Negotiation (MASCOT) was created, with the 

core objective of enhancing the negotiation power and speeding up the rate of 

convergence between agents in a construction project.  

 El-Adaway and Kandil (2009) proposed an AB model for generating legal 

arguments based on precedent construction disputes. The authors created an AB system 

for construction dispute resolution (MAS-COR) that automates a previously developed 

algorithm by the authors. Thirty previously arbitrated construction disputes were used to 

test and validate MAS-COR. The results of this validation process demonstrated that 

MAS-COR was capable of originating significant legal arguments for construction claim 

and dispute professionals, which can help them save time and effort while preparing the 

defense of their respective positions. 

 Sanford Bernhardt and McNeil (2008) presented an AB model as a paradigm to 

improve infrastructure decision-making. The model defines four types of agents: 1) 

infrastructure segments; 2) users which operate the infrastructure segments; 3) 

maintenance personnel; 4) politicians/decision makers. Each agent has several predefined 

characteristics. The model aims at studying the interaction among these agents in order to 

explore the emergent behavior of the modeled infrastructure system, while aiding in 

decision-making and budget allocation.  

 Osman (2012) presented an AB framework to capture the complex interactions 

occurring in urban infrastructure management. A generic AB model, shown in Figure 

2-14, is constructed with four agents: 1) assets; 2) users; 3) operators; 4) politicians. Each 

of these agents has a set of generic attributes, actions and behaviors. The service quality 
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domain, which represents customer perceptions and actions that are related to the 

infrastructure asset level of service, was used as a basis for a detailed behavioral model. 

A descriptive example of twenty assets and fifty users is simulated to demonstrate 

emergent behaviors. The simulation showed how changing the social and psychological 

behavior of users influences their response to consuming municipal infrastructure 

services. Hence, the results of the simulation highlighted how socio-technical aspects can 

be incorporated with complex decision-making of urban infrastructure management. 

 

Figure 2-14: Agents in an infrastructure AB model 

 There are a few other ABMS applications on construction management areas 

including procurement (Dzeng and Lin 2004), construction site safety (Palaniappan et al. 

2007) and construction workers’ behavior (Ahn et al. 2013). 

 



48 

 

2.5 Summary and Limitations of Literature 

 This chapter gave a thorough insight on the different simulation techniques being 

used in science, and reviewed their applications in construction management in general 

and earthmoving operations in particular. Firstly, the structure of DES and SD as well as 

their limitations were presented. Then, different applications of DES, SD and hybrid 

DES-SD in the construction industry were demonstrated, followed by a discussion on 

different earthmoving simulation practices. After that, a separate section was dedicated to 

thoroughly explain the AB methodology and the techniques behind the ABMS realm. 

Finally, some applications of ABMS in civil engineering and construction management 

were illustrated.  

 As mentioned earlier in this chapter, drawbacks of current simulation models of 

different construction operations in general and earthmoving in particular arise from 

limitations in both the simulation technique being used as well as the implemented 

simulation tool itself. DES is considered as a very effective technique for modeling 

quantitative aspects of operations. However, it is believed that DES cannot capture the 

external factors that influence the performance of the operation being modeled, which in 

turn can be driven by hidden causal relationships. In addition, DES is incapable of 

accounting for the overall strategy of the project or operation being modeled, due to its 

time step advancement mechanism.  

 On the other hand, SD is believed to be unable to capture a detailed view of the 

quantitative operational aspects of modeled systems. SD has a wider and more abstract 

perspective of the system being studied, compared to the narrowly focused DES. In 
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addition, SD is a deterministic modeling approach which does not support the 

representation of operations with stochastic data. Finally, validating SD models is a time 

consuming process, depends on the availability of detailed data sets and requires 

specialized modeling skills. 

 In regards to earthmoving simulation practices, most developed models lack good 

graphical modeling support, behave in an inflexible and predetermined manner, require 

visualization when implementing and are rigid in accepting various sets of data. Despite 

the fact that some researchers were able to overcome limitations of earthmoving 

simulation practices using DES, SD or a hybrid of both, there is a strong need to 

introduce the relatively new and promising simulation technique, which is ABMS, to the 

study and planning of earthmoving operations in one comprehensive simulation system.  
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CHAPTER 3:  METHODOLOGY 

3.1 Chapter Overview 

 This chapter is dedicated to providing a detailed explanation of the research 

methodology. The main idea of the proposed framework is the development of a 

conceptual AB model for earthmoving operations which will later be implemented in an 

automated simulation tool. In order to achieve this goal, a clear procedure on how to 

create AB models for construction operations should be first outlined. Figure 3-1 

demonstrates the breakdown of the proposed methodology.  

 In Section 3.2, a general procedure for creating AB models for different 

construction management applications is presented. This procedure was developed based 

on the author’s knowledge about the AB methodology, which in turn was obtained from 

reviewing the literature on applications of ABMS in different disciplines. The presented 

procedure is intended to be generic and simple. Examples will be given in this section to 

demonstrate how this procedure can be implemented to develop AB models for real-

world applications in construction management.  

 Section 3.3 is devoted to demonstrating the development of a comprehensive AB 

model for earthmoving operations. Each component of the model is outlined, including 

agents and their environment. Agents’ types, attributes and roles are defined in detail. In 

addition, the interaction logic and the guidelines for the implementation of the 

earthmoving AB model are discussed in this section.  
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Figure 3-1: Methodology breakdown 

3.2 A Procedure for Creating AB Models for CM Applications 

 ABMS is a relatively new technique that is gaining an increasing interest in 

different fields. As mentioned in Subsection 2.4.2, the applications of ABMS in civil 

engineering and construction management are very few in number. Consequently, 

researchers who are interested in developing AB models for systems in these areas have 

to go through an extensive literature review on the AB methodology and applications in 

order to familiarise themselves with the method and understand the logic behind it. This 

is why it was decided to summarize the techniques of building AB models in the simple 

step-by-step procedure shown in Figure 3-2. 
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Figure 3-2: Procedure for developing AB Models in construction management 
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 The procedure presented by the flow chart in Figure 3-2 emphasizes that ABMS 

is a bottom-up approach. It shows how several steps have to be carried out to insure a 

successful transition of ideas into a working and realistic model. Prior to the 

implementation of any AB model, the following nine-step procedure should be carried 

out: 

1) Recognise the environment/s in which the operation takes place.  

2) Identify all participants in the real-world operation. 

3) Identify all possible characteristics and properties, both quantitative and 

qualitative, of each participant. 

4) Understand in detail the process which is going to be simulated. 

5) Determine the stages of the operation at which participants would directly or 

indirectly interact. 

6) Identify how the different characteristics of each participant would affect the 

interaction. 

7) Consider any participant, whose characteristics and states change during the 

operation and which directly interacts with other participants, as an agent. 

8) Consider other participants in the operation as passive objects that are imbedded 

in the environment (considering such participants as agents is not wrong; 

however, it overcrowds the model and increases the required memory in computer 

programs). 

9) Determine the best tool for modeling the system after viewing and studying the 

properties and capabilities of the available modeling tools.  
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 After all these tasks have been fulfilled, the model can then be created. In ABMS, 

each agent population is formed separately. After finalizing the agents’ properties, the 

modeler can then move on to reflect on the process as a whole. Agents are firstly linked 

to the environment, and then the interaction among them at certain stages of the operation 

is established. During model construction, modifications to the structure of the model can 

be made if needed. The following subsections demonstrate how this procedure is applied 

to create an AB model for construction operations  

3.2.1 Environment Recognition 

 The first step in creating AB models is defining the environment in which the 

system or the operation being modeled exists. An environment in AB terms refers to a 

platform in which agents live and interact. Having a realistic view of the environment 

helps the modeler understand and anticipate effects that this environment would have on 

the model in general and agents in particular. It is important to note that in AB models, 

more than one environment can exit. An agent, for example, can interact with an agent in 

a certain environment and with another agent in a different environment. 

 When modeling most construction operations, the environment would be the 

construction site. However, in cases where the operation being modeled is specific to one 

area of the construction site, the modeler could choose that area to be the environment of 

the AB model. Environments in AB models are not always physical. For example, if an 

AB model is created to represent different parties working in a construction project 

(contractors, consults, construction managers and owners) for conflict resolution 

purposes, then it would make no sense for the modeler to use the construction site as the 
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environment of the AB model. Hence, the choice of the environment in that case would 

heavily depend on the agents’ interaction mechanism. A reasonable choice would be a 

computer database containing the entire project’s contracts, schedules, change orders, 

BOQ’s, etc.  

 When developing an AB model for earthmoving operations, the environment 

should be the physical area in which the operation takes place. The latter includes the 

excavation area, loading area, hauling road, dumping area, returning road and any other 

physical space which the earthmoving operation occupies or affects through any of its 

equipment or labor at any of its stages.  

3.2.2 Participant Identification 

 Prior to deciding on agent types and characteristics in AB models, it is crucial for 

the modeler to identify all participants in the system being modeled. Even if the modeler 

believes that a certain object or entity does not significantly contribute to the operation, it 

is better at this stage to consider it as a candidate for becoming an agent. All individuals, 

equipment and physical objects that are parts of the system should be put in a list at this 

point. To reiterate, any entity in the system that has characteristics and attributes which 

are likely to influence the operation of that system in any direct or indirect way, is 

considered as a participant. 

Participants in a simple earthmoving operation can be soil, dozers, loaders, 

haulers (trucks), dump spotters, transportation roads and weather conditions. Later in 

Subsection 3.2.7, it will be decided which of these participants will be an agent and 

which will not. 
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3.2.3 Participants’ Characteristics Determination 

 The emergent behaviour of AB models occurs mainly due to the attributes of 

agents and their interactions. This is why the more accurate the representation of agents’ 

attributes and interactions in an AB model is, the more realistic the emergent behaviour 

becomes.  

 Table 3-1 iterates some major properties of the aforementioned participants of an 

AB model for earthmoving operations. It is crucial to note that selecting these 

participants and their properties was based on the author’s experience and perception of 

the operation. Different modelers can come up with lists containing different properties 

than those shown in Table 3-1. 

Table 3-1: Earthmoving operations’ participants and their properties 

Participant Properties 

Soil Type, Quantity, Moisture Content, Density 

Dozer/s Weight, Condition, Blade Dimensions, Speed 

Loader/s 
Condition, Excavation Rate, Bucket Capacity, Loading 

Rate, Speed 

Truck/s 
Weight, Condition, Load Capacity, Dumping Rate, 

Hauling Speed, Empty Speed 

Spotter/s Experience, Age, Walking Speed 

Weather Conditions Temperature, Precipitation, Humidity, Wind Speed 

Transportation Road Terrain, Length, Inclination, Traffic, Stops 
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3.2.4 Process Understanding 

 After recognizing the environment of the system, identifying its participants and 

determining their characteristics, it is time to take a look at the operation of the system as 

a whole and understand its mechanism in total depth. Contrary to other simulation 

techniques, the process understanding in creating AB models is the fourth step and not 

the first. The latter is due to the bottom-up modeling style of ABMS, which builds the 

model from its agents up to a full representation of the process as a whole. In addition, if 

modelers thoroughly investigate systems before identifying participants and their 

properties, it would affect their judgement on these participants and properties. When 

creating AB models, modelers might disregard certain agents or attributes of agents 

thinking that they do not contribute to the operation or that their contribution is 

negligible. This is a risky issue in ABMS, as very simple attributes of agents can lead to 

complex emergent behaviours.  

 In an earthmoving AB model, the process is fairly simple. The operation of an 

earthmoving system with the aforementioned participants would begin by dozers 

excavating a specific area. Then, loaders would carry the excavated earth and lay it in 

trucks. Then, trucks would haul the carried earth to a certain location, dump it and return 

to the initial site in order to carry and haul more earth. This goes on until the intended 

quantity of earth is excavated and dumped.   

3.2.5 Interaction Mechanism and Stages Identification 

 The interaction of agents is the backbone of ABMS. The interaction mechanism, 

location and time are all very important in carving the emergent behaviour of the system 
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being modeled. Although the interaction mechanism and stages can be inferred by 

studying the process being modeled in general (process understanding step), an in-depth 

focus on the interaction procedure is vital, as it will be the core of the implementation 

stage later on in the process.  

 An example of the interaction of participants in an earthmoving AB model is a 

loader loading a truck numerous times until that truck is full and ready to go. How the 

loader loads the truck, the distance between the two equipment units while working 

together and the communication between the operators of the two equipment units are all 

examples of the mechanism of interaction between the loader and truck agents in the AB 

model. An elaborate discussion on this issue will be presented in Section 3.3. 

3.2.6 Characteristics Influence on Interaction 

 The interaction between agents in AB models heavily relies on the characteristics 

and states of these agents. This principle is the source of agent intelligence in ABMS. 

Since agents are proactive and adaptive, their interactions with other agents will take into 

consideration their attributes and states. This should be studied by modelers prior to the 

implementation of AB models, as it will help them design agents’ attributes, roles and 

communication methods in a more realistic manner.  

Going back to the truck-loading activity example, when the loader arrives at the 

truck location its operator observes two things: 1) the capacity of the truck, which is an 

attribute; 2) the level of earth in the truck, which is a variable (state). Truck capacity is 

fixed, but the quantity of carried earth increases after each load. Truck capacity and 

carried earth (or available space) determines the duration of interaction between the 
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loader and the truck, as the loader will stop loading the truck when it is full. More on that 

will be discussed in Section 3.3. 

3.2.7 Agent Objects and Non-Agents Objects  

 After recognizing the model’s environment, defining its participants and their 

attributes, understanding the process, identifying the interaction stages and figuring out 

the influence of model participants on the interactions, the model is almost ready for 

implementation. The last major step prior to model implementation is to select which 

model participants qualify for being agents and which do not. In AB models, the logic is 

not affected if all participants are considered to be agents. However, it is a common 

practice for agents in AB models to be of those participants which are active, have 

multiple attributes and engage in diverse interactions. Other participants that have limited 

properties, fixed goals and minimal interaction with other model components are 

considered as passive non-agent objects. The reason behind this classification is to avoid 

overcrowding the model, saving memory and reducing run time in implemented 

computer programs. 

 For the earthmoving operation participants listed in Table 3-1, a modeler can 

choose the equipment units (dozers, loaders and trucks) and spotters to be agents. Soil, 

weather conditions and transportation roads can be embedded in the model’s 

environment. However, this choice relies heavily on the purpose of the model in question 

and its required level of complexity.  



60 

 

3.2.8 Modeling Tool Determination 

 Implementing AB models is heavily dependent on computer programming. The 

nature of ABMS makes object-oriented programming the most suitable implementation 

tool for this technique. Object-oriented programs are developed through a bottom-up 

approach in which independent objects are created and given attributes and roles. The 

majority of AB models in literature were developed using object-oriented programming.   

 Modelers can choose to use common programming languages including C#, C++, 

Java, etc. to create an AB model and simulate with it. However, there are some ready AB 

modeling applications that were created in order to facilitate modeling for users, 

especially those who do not have a strong programming background. These applications 

are created using object-oriented programming and have built-in AB libraries, so that 

users can create AB models in a fast manner without the need of writing many lines of 

code. Also, flexibility in representing agents, accommodating variables, defining roles, 

executing actions, producing results and performing analysis differs from one tool to 

another. The nature of the system being modeled, the required complexity of the model 

and the targeted type of results and analysis are the major criteria in choosing the 

appropriate AB modeling tool. 

3.3 A Comprehensive AB Model for Earthmoving Operations 

 This section is dedicated for applying the methodology presented in Section 3.2 in 

developing a comprehensive AB model for earthmoving operations. The term 

‘earthmoving’ refers to the process of excavating and transporting quantities of soil from 

one location to another, mainly prior to the construction of facilities. Thus, earthmoving 
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operations utilize different equipment based on the construction project’s scope of work 

and available resources. The most common earthmoving operation represents the 

excavation of earth from a certain location and the transportation of that earth to another 

location where it will be dumped. However, the mechanism of the excavation, 

transportation and dumping activities differ from one project to another, leading to 

different combinations of equipment types and interactions. 

3.3.1 The Scope of the Model  

 The AB model developed in this research is of an earthmoving operation that 

includes bulldozers, loaders, haulers (trucks) and dump spotters. Accordingly, the 

operation would be as follows: 1) bulldozers excavate earth in a certain area and push it 

in stockpiles; 2) loaders fill trucks with earth from the stockpiles; 3) trucks transport the 

carried earth to a certain dumping location; 4) with the help of dump spotters, trucks 

dump their loads in stock piles; 5) trucks return to the loading area to carry and transport 

more earth.  

 The model should also accommodate earthmoving operations which do not 

include bulldozers. This would be the case if the operation was simply the transportation 

of earth from a stock pile into a dumping area, or if the loaders, or any type of excavators, 

are performing both the excavation and truck loading activities.  

 The aforementioned equipment units and dump spotters will all be considered as 

agents. The structure of the model indicating the types of participants and whether they 

are agents or not is illustrated by Table 3-2. As can be noted from the table, weather 

conditions were neglected and soil as well as transportation roads were considered as 
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passive objects that are embedded in the model’s environment. The soil and the 

transportation road components are represented by the model, but in a passive manner in 

which agents are in control of them. 

 It is important to stress the fact that an AB model’s accuracy in representing a 

real-world operation is heavily dependent on the efforts put forth while preparing the 

model. Highly complex AB models, in which all agents’ attributes are captured in detail, 

the interaction logic replicates the one in real-life operations, all surrounding factors are 

taken into consideration to the best possible ability, are expected to deliver outstandingly 

accurate and realistic behaviors and results. The developed AB model captures the 

operational aspects of earthmoving very accurately, as will be demonstrated in 

Subsection 3.33.3.2. However, there is still much room for improvement in accounting 

for factors surrounding the operation. This will be summarized when discussing future 

work recommendations. 

Table 3-2: Proposed AB model participants 

Participant Agent or Non-Agent 

Soil Environment-Embedded Object 

Dozer/s Agent Object 

Loader/s Agent Object 

Truck/s Agent Object 

Spotter/s Agent Object 

Weather Conditions Neglected Participant 

Transportation Road Environment-Embedded Object 
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 Two types of properties are defined for each agent in the proposed AB model: 1) 

attributes, which refer to fixed properties of agents that do not change at any time and are 

unaffected by interactions with the environment or other agents; 2) variables, which refer 

to properties of agents that can change due to interactions with the environment or other 

agents. Table 3-3 lists agents along with their attributes and variables in the proposed AB 

model. These attributes and variables are explained in detail in Section 3.3, by illustrating 

their definition and demonstrating how they influence agent interactions. 

Table 3-3: Agents’ attributes and variables in the proposed AB model 

Agent Attributes Variables 

Bulldozer/s 

 Push Quantity (PQ) 

 Push Duration (PD) 

 Time to Adjust Position (TAP) 

 Return Duration (RD) 

 Actual Push Quantity 

(APQ) 

 Actual Push Duration 

(APD) 

Loader/s 

 Bucket Capacity (BC) 

 Time to Load Full Bucket (TLFB) 

 Time to Adjust Position While Full 

(TAPF) 

 Time to Unload Full Bucket (TUFB) 

 Time to Adjust Position While Empty 

(TAPE) 

 Carried Earth (CE) 

 Time to Load Bucket 

(TLB) 

 Unloading Quantity 

(UQ) 

 Time to Unload 

Bucket (TUB) 

Hauler/s 

 Capacity (C) 

 Time to Get in Load Position (TGLP) 

 Hauling Duration (HD) 

 Time to Get in Dump Position (TGDP) 

 Dumping Duration (DD) 

 Returning Duration (RD) 

 Carried Earth (HCE) 

 Available Space (AS) 

Spotter/s  Time to Adjust Position (STAP) None 
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3.3.2 The Creation of Agents 

In AB models, diagrams referred to as state charts are often used to describe the 

different stages (states) that agents pass through while performing their roles. In turn, 

state charts are basically flow charts that consist of blocks connected by arrows. Each 

block forms a state and each arrow represents a transition from a state to another. Thus, 

state charts are used to construct agents and govern their roles as well as their 

communication mechanism. The overall behavior of the AB model is generated from the 

interaction of its agents’ state charts. After creating state charts, they are implemented in 

computer programs for simulation purposes to obtain the emergent behavior of the 

system. 

For the proposed earthmoving model, four state charts are created; one for each 

agent. Figure 3-3 demonstrates a color legend for the agents’ state charts, which is going 

to be used throughout the model construction and implementation. The red color refers to 

an idle state of the agent. It signifies that the agent is waiting for a certain condition to be 

fulfilled or a certain type of interaction to be carried out in order for it to move on to the 

next state. Furthermore, a green color represents a working state of the agent. It indicates 

that the agent is currently performing its main role. Finally, a yellow color is used to 

describe a transitional state of the agent. It indicates that the agent is working, but on a 

minor task that is mostly a complement of the main task.  

WorkingTransitioningIdle

 

Figure 3-3: Color legend for agents’ state charts 
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Each agent will be explained separately. A table containing the agent’s attributes 

and variables will be presented and subsequently, its components will be illustrated. 

Then, the agent’s state chart will be demonstrated along with a description on how the 

agent progresses through the different states of that state chart. Finally, a table that 

includes a description on the state chart’s transitions will be shown. The condition/s and 

action/s of each transition are listed in that table.  

Prior to getting into details, it is important to define three variables which are 

crucial to understanding the agents’ breakdown: 

1) Soil Ready for Excavation (SRE): refers to the quantity of soil available to be 

excavated by bulldozers. 

2) Soil Ready for Loading (SRL): refers to the quantity of excavated soil that is ready 

to be loaded in trucks (or to the quantity of soil available to be excavated by 

loaders or other excavators, if the operation does not include bulldozers). 

3) Dumped Soil (DS): refers to the quantity of soil that has already been transported 

and dumped at the dumping location. 

The Bulldozer Agent: 

The attributes and variables of the bulldozer agent are shown in Table 3-4. Push 

Quantity refers to the quantity of excavated soil by the bulldozer at the end of each pass. 

Push Duration is the time it takes for the bulldozer to excavate that quantity of soil (to 

make one pass). Time to Adjust Position refers to the time it takes for the bulldozer to 

turn and rotate to the opposite orientation. Return Duration is the time it takes for the 

bulldozer to return back to the location where it can begin another excavation pass.  
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In addition, Actual Push Quantity and Actual Push Duration are designed for 

special cases when the quantity of soil available for excavation is less than the push 

quantity of the bulldozer. In such cases, the Actual Push Quantity would be whatever 

quantity is available and the Actual Push Duration would be an interpolated fraction of 

the regular Push Duration based on the ratio of the Actual Push Quantity to the regular 

Push Quantity. Regularly, Actual Push Quantity and Actual Push Duration are equal to 

Push Quantity and Push Duration. 

Table 3-4: Bulldozers’ attributes and variables 

Agent Attributes Variables 

Bulldozer/s 

 Push Quantity (PQ) 

 Push Duration (PD) 

 Time to Adjust Position (TAP) 

 Return Duration (RD) 

 Actual Push Quantity (APQ) 

 Actual Push Duration (APD) 

 

The state chart of the bulldozer agent is depicted in Figure 3-4. The state chart 

commences by the bulldozer being at the starting point, ready to begin excavating. If 

there is no Soil Ready for Excavation, the bulldozer remains idle. However, if there is 

Soil Ready for Excavation, the bulldozer starts moving and excavating that soil, either to 

the regular Push Quantity or to whatever quantity is available. After the bulldozer reaches 

the end of its excavation pass, it adjusts its position and rotates to be able to move in the 

opposite direction. Subsequently, the bulldozer starts returning and heading for the 

starting point of the excavation pass, where it adjusts its position and rotates again to be 

in the correct form, ready to perform another excavation run. In view of that, the 

bulldozer agent in the proposed AB model has no interactions with other agents. 
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However, considering the bulldozer participant as an agent is necessary since it is an 

equipment unit that is actively participating in the system. In addition, it is better to keep 

it as a flexible entity in case its mechanism changes when upgrading the model in the 

future.  

Ready To Excavate

2

Soil Available

Excavating

1

Soil Unavailable

Adjusting Position

3

Returning

Adjusting Position

4

6

5

Start

 

Figure 3-4: Bulldozer’s state chart 

Table 3-5 provides a detailed elaboration on the bulldozer’s state chart transitions. 

The actions of transition 2 were explained earlier when studying the bulldozer agent’s 
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state chart. The actions of transition 3 include reducing the quantity of Soil Ready for 

Excavation by the Actual Push Quantity. Aside from this state, all other states and 

transitions are straightforward.   

Table 3-5: Bulldozer’s state chart transitions 

Transition Condition/s Action/s 

1 SRE = 0 No action 

2A 

SRE > 0 

& 

SRE > PQ  

APQ = PQ 

APD = PD 

Start Excavating 

2B 

SRE > 0 

& 

SRE ≤ PQ 

APQ = SRE 

APD = PD × 
𝐴𝑃𝑄

𝑃𝑄
 

Start Excavating 

3 Excavation pass completed 

SRE reduced by APQ 

SRL increased by APQ 

Start adjusting position 

4 Position adjustment completed Start returning 

5 Return completed Start adjusting position 

6 Position adjustment completed No action 

 

The Loader Agent: 

Table 3-6 illustrates the attributes and variables of the loader agent. In turn, 

Bucket Capacity refers to the quantity of soil that the loader can carry in its bucket. Time 

to Load Full Bucket is the time it takes for the loader to fill its bucket with that quantity 
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of soil (Bucket Capacity). Time to Adjust Position While Full refers to the time it takes 

for the loader, when its bucket is full, to get in an appropriate position for loading trucks 

(haulers). Time to Unload Full Bucket is the time it takes for the loader to dump its full 

bucket load (Bucket Capacity) of soil in the truck. Time to Adjust Position While Empty 

refers to the time it takes for the loader, when its bucket is empty, to get in a position for 

loading its bucket after dumping its load in the truck. 

Moreover, Carried Earth represents the actual quantity of soil in the loader’s 

bucket. This variable is added to accommodate different bucket quantity scenarios, 

determined by the availability of soil. Time to Load Bucket refers to the actual time it 

takes to load the bucket based on Carried Earth. Thus, it is an interpolated fraction of the 

regular Time to Load Full Bucket based on the ratio of the Carried Earth to the Bucket 

Capacity. Unloading Quantity represents the quantity of soil that the loader chooses to 

dump in the truck it is serving, which depends on a variable of the hauler agent called 

Available Space. To elaborate, if the Available Space of the truck is less than the loader’s 

Carried Earth, the loader dumps only a quantity of soil equal to the truck’s Available 

Space. Accordingly, the Time to Unload Bucket is an interpolated fraction of the regular 

Time to Unload Full Bucket based on the ratio of the Unloading Quantity to the Bucket 

Capacity. This can be further understood by examining the loader’s state chart. 

Since the model is designed in a way that allows for the loader agent to perform 

the excavation activity when no bulldozers are included, all attributes and variables in 

Table 3-6 are made to be generic and can accommodate both scenarios. Time to Load 

Bucket can refer to either the time it takes for the loader to fill its bucket from an 

excavated soil in stock piles or the time it takes for the loader, or other types of 
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excavators, to perform the excavation activity and fill their buckets with soil. If needed, 

other attributes and variables change accordingly as well. This is an example of flexibility 

in AB models. 

Table 3-6: Loader’s attributes and variables 

Agent Attributes Variables 

Loader/s 

 Bucket Capacity (BC) 

 Time to Load Full Bucket (TLFB) 

 Time to Adjust Position While Full 

(TAPF) 

 Time to Unload Full Bucket (TUFB) 

 Time to Adjust Position While Empty 

(TAPE) 

 Carried Earth (CE) 

 Time to Load Bucket 

(TLB) 

 Unloading Quantity 

(UC) 

 Time to Unload Bucket 

(TUB) 

 

Figure 3-5 represents the state chart of the loader agent. Accordingly, the initial 

state is the loader being ready to begin loading its bucket by carrying soil from an 

excavated stockpile (or performing the excavation). If there is no Soil Ready for Loading, 

the loader remains idle. If, however, there is Soil Ready for Loading, the loader starts 

filling its bucket either to its maximum capacity (Bucket Capacity) or to the available 

quantity of soil if it is less than that capacity. After the loader’s bucket is filled, the loader 

adjusts its position to be ready for loading the arriving truck. At that point, the loader 

checks the truck’s queue. If there are no trucks waiting to be loaded, the loader remains 

idle. However, if trucks are available, the loader signals the first truck in the queue to 

move to the loading area. Then, the loader determines the Available Space in the truck. If 

that Available Space is larger than or equal to the loader’s Carried Earth, the loader 

dumps its entire bucket load in the truck. Otherwise, the loader dumps a quantity equal to 
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the truck’s Available Space. Regularly, when trucks arrive for loading, their Available 

Space will be equal to their Capacity. After unloading the bucket’s load in the truck, the 

loader checks the Available Space in the truck again and determines whether the truck as 

reached its Capacity or not. In the event that the truck is full or if there is no Soil Ready 

for Loading at that point, the loader signals the truck that the interaction between the two 

equipment units is over and that the truck should start hauling to the dumping location. 

The loader then has to adjust its position to get in the bucket loading setup again and 

waits for extra quantities of soil to become available. On the other hand, if the loader 

determines that the truck has not yet reached its full Capacity and that there is still Soil 

Available for Loading, the loader adjusts its position, fills its bucket and loads the truck 

again. This cycle is repeated until the truck reaches its Capacity or the Soil Ready for 

Loading is fully consumed. 

In light of that, the loader in the proposed AB model is a good example of a 

dynamic agent that adapts actively with the changes of model conditions and other 

agents’ properties. During different cycles of the loader’s operation, the same variable 

can have different values that depend on the cycle’s conditions and interactions. This 

demonstrates the strength of the ABMS technique and its promising capabilities for 

future enhancements. 
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Figure 3-5: Loader’s state chart 

Table 3-7 presents a detailed breakdown of the loader’s state chart transitions. 

Consequently, these few points need to be clarified about the table: 

 There are two types of position adjustments made by the loader agent; position 

adjustment A is performed when the bucket is filled with a quantity of soil, while 

position adjustment B is performed when the bucket is empty. This distinction 
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was made to make possible the option of using a longer duration for the position 

adjustment when the bucket contains soil.  

 For the 6th transition, since the truck has just arrived for loading, it may appear 

that the only valid option is the one in the second row (Truck’s Available Space > 

Carried Earth). However, designing the state chart to accommodate the other 

alternative (Truck’s Available Space ≤ Carried Earth) does not affect the logic 

and is more generic.  

 For the second alternative of the 6th and 10th transitions (Truck’s Available Space 

> Carried Earth), a quantity of (Carried Earth - Unloading Quantity) is added 

back to the Soil Ready for Loading to indicate that the extra quantity of carried 

soil, which could not be added to the truck because it was full, is still in the 

operation and will be used for upcoming loading activities of other trucks.  

 The condition (Soil Ready for Loading = 0) was added to the conditions of the 

11th transition to guide the interaction between the loader and hauler agents in a 

way that when there is no soil available for the loader to use in filling the truck, 

the loading activity is completed and the truck should be able to leave the loading 

area.  

 It can be observed in the table that the loader is controlling its interaction with the 

hauler. Hence, the loader is using some of the hauler’s properties in its state 

chart’s conditions and actions. Although this interaction depends on the properties 

of both equipment units, the hauler cannot tell how much soil it is being filled 

with or when it reaches its full capacity. So, the loader has the overall authority 

over the loading activity, and the hauler acts only based on commands from the 
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loader. This will be further explained when discussing the hauler’s state chart and 

transitions in Figure 3-6 and Table 3-9. 

Table 3-7: Loader’s state chart transitions 

Transition Condition/s Action/s 

1 SRL = 0 No action 

2A 

SRL > 0 

& 

SRL  > BC 

CE = BC 

TLB = TLFB 

Start filling bucket 

2B 

SRL > 0 

& 

SRL ≤ BC 

CE = SRL 

TLB = TLFB × 
𝐶𝐸

𝐵𝐶
 

Start filling bucket 

3 Bucket filling completed 
SRL reduced by CE 

Start adjusting position (A) 

4 Position adjustment (A) completed Start waiting for Truck 

5 Truck unavailable No action 

6A 

Truck available 

& 

Truck’s AS > CE 

UQ = CE 

TUB =  TUFB 

Start dumping UQ in truck 

6B 

Truck available 

& 

Truck’s AS ≤ CE 

UQ = Truck’s AS 

TUB =  TUFB × 
𝑈𝑄

𝐵𝐶
 

Start dumping UQ in truck 

SRL increased by 

(CE - UQ) 
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Transition Condition/s Action/s 

7 

UQ dumped in truck 

& 

Truck’s AS > 0 

& 

SRL > 0 

Truck’s AS reduced by UQ 

Truck’s HCE increased by UQ 

Start adjusting position (B) 

8A 

Position adjustment (B) completed 

& 

SRL > BC 

CE = BC 

TLB = TLFB 

Start filling bucket 

8B 

Position adjustment (B) completed 

& 

SRL ≤ BC 

CE = SRL 

TLB = TLFB × 
𝐶𝐸

𝐵𝐶
 

Start filling bucket 

9 Bucket filling completed 
SRL reduced by CE 

Start adjusting position (A) 

10A 

Position adjustment (A) completed 

& 

Truck’s AS > CE 

UQ = CE 

TUB =  TUFB 

Start dumping UQ in truck 

10B 

Position adjustment (A) completed 

& 

Truck’s AS ≤ CE 

 

UQ = Truck’s AS 

TUB =  TUFB × 
𝐶𝐸

𝐵𝐶
 

Start dumping UQ in truck 

SRL increased by 

(CE - UQ) 

11 

UQ dumped in truck 

& 

Truck’s AS = 0 or SRL = 0 

SRL reduced by CE 

Truck’s AS reduced by UQ 

Truck’s HCE increased by UQ 

Start adjusting position (B) 

12 Position adjustment (B) completed No action 
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The Hauler Agent: 

The attributes and variables of the hauler agent are demonstrated in Table 3-8. 

Capacity refers to the maximum quantity of soil that the hauler can carry. Time to Get in 

Load Position is the time it takes for the hauler to leave the queue and arrive at the 

loading area. Hauling Duration refers to the duration of the hauler’s trip from the loading 

area to the dumping site (truck dumping queue). Similarly, Returning Duration refers to 

the duration of the hauler’s trip from the dumping area to the loading area (truck loading 

queue). Accordingly, it is important to note that these two attributes depend on the 

properties of both the hauler itself and the hauling and returning roads. However, in the 

proposed AB model, the trip durations are assumed to be attributes of the hauler agent. 

Time to Get in Dump Position is the time it takes for the hauler to leave the queue and 

arrive at the dumping area. Dumping Duration refers to the time it takes for the truck to 

dump its carried load in a stockpile. In addition, an important observation on the hauler’s 

attributes is that unlike Dumping Duration, the truck’s loading duration is not an 

attribute. This is because the hauler agent does not govern its loading activity, which is 

under the control of the loader agent.  

Moreover, Carried Earth represents the actual quantity of soil carried by the 

hauler. This variable is added as an updating mechanism of the quantity of soil present in 

the hauler at different stages of its cycle. Available Space is a variable dependent on 

Carried Earth. Always, the hauler’s Available Space is equal to its Capacity less its 

Carried Earth. Available Space is a very important variable for the loader’s agent due to 

the influence it has on the transition’s conditions and actions of its state charts, as proven 

by Table 3-7. 
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Table 3-8: Hauler’s attributes and variables 

Agent Attributes Variables 

Hauler/s 

 Capacity (C) 

 Time to Get in Load Position 

(TGLP) 

 Hauling Duration (HD) 

 Time to Get in Dump Position 

(TGDP) 

 Dumping Duration (DD) 

 Returning Duration (RD) 

 Carried Earth (HCE) 

 Available Space (AS) 

 

The state chart of the hauler agent is illustrated by Figure 3-6. The initial state 

represents the hauler waiting in the queue for loaders to become idle. Once a loader 

becomes idle, it signals the hauler to move to the loading area. The hauler then moves 

and gets in the loading position. At this point, the loading activity begins and the loading 

cycles described in the loader’s state chart start to be executed. As indicated when 

describing the loader’s state chart transitions in Table 3-7, when the hauler reaches its 

Capacity or when there is no Soil Ready for Loading, the interaction between the loader 

and hauler agents is finalized. Subsequently, the hauler starts hauling to the dumping 

location, where it stops first at a queue of haulers waiting for a spotter to become idle. 

Once a spotter becomes idle, it signals the hauler to move to the dumping area. The 

hauler then moves and gets in the dumping position. At that point, the hauler starts 

dumping its load with the help of the spotter, and once its load is fully dumped, the 

spotter signals the truck to leave, ending the interaction between the two agents. The 

hauler then heads back to the loading area, where it stops first at a queue waiting for 

loaders to become idle and starts repeating the cycle again. 
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Figure 3-6: Hauler’s state chart 

Table 3-9 demonstrates the transitions and states of the hauler agent’s state chart. 

The state chart is simple, owning to the fact that the hauler is not in control of its loading 

and dumping activities. As mentioned earlier, the loader agent performs all the actions in 

the loading activity. Similarly, the hauler needs the permission of the spotter before 

coming to or leaving the dumping area. However, unlike the loading activity, the 

dumping activity relies solely on properties of the hauler agent. The spotter only acts as a 

regulator for the dumping activity. 
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Table 3-9: Hauler’s state chart transitions 

Transition Condition Action 

1 Loader unavailable No action 

2 Loader available Start getting in loading position 

3 Permission from loader No action 

4 Permission from loader Start hauling 

5 Arriving at dumping queue No action 

6 Spotter unavailable No action 

7 Spotter available Start getting in dumping position 

8 Permission from spotter Start dumping load 

9 Permission from spotter 

HCE = 0 

DS increased by HCE 

Start returning 

10 Arriving at loading queue No action 

 

The Spotter Agent: 

The spotter agent is the most basic agent in the proposed AB model. Its only 

attribute, Time to Adjust Position, is depicted in Table 3-10. This attribute refers to the 

time it takes for the spotter agent to adjust its position before and after a dumping activity 

to accommodate arriving and departing haulers. 
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Table 3-10: Spotter’s attributes and variables 

Agent Attributes Variables 

Spotter/s Time to Adjust Position (STAP) None 

 

The state chart of the spotter agent is demonstrated in Figure 3-7. The initial state 

represents the spotter waiting for a truck ready to dump its load. The spotter checks the 

truck’s queue, and if there are no trucks waiting to dump, it remains idle. If, however, 

trucks are available, the hauler agent signals the first truck in the queue to move to the 

dumping area, while adjusting its position to engage with the arriving truck. When the 

truck dumps its load, the spotter agent gives it the permission to leave the dumping area 

and return back to be loaded again. After signaling the truck to depart, the spotter agent 

adjusts its position again and waits for the next truck to arrive.  
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Figure 3-7: Spotter’s state chart 
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Table 3-11 represents the transitions’ conditions and actions of the spotter agent’s 

state chart. The spotter in the proposed AB model has limited interactions and 

responsibilities, which can be clearly verified by its simple transitions displayed in Table 

3-11.  

Table 3-11: Spotter’s state chart transitions 

Transition Condition Action 

1 Truck unavailable No action 

2 Truck available Start adjusting position 

3 Position adjustment completed Start spotting 

4 Hauler dumping completed Start adjusting position 

5 Position adjustment completed No action 

 

Figure 3-8 summarizes the interaction between different participants, both agents 

and non-agents, in the proposed earthmoving AB model.   
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Figure 3-8: Summary of agents’ interactions in the proposed earthmoving AB model 



82 

 

CHAPTER 4:  IMPLEMENTATION 

4.1 Chapter Overview 

This chapter presents the implemented system and describes its components. 

Accordingly, it demonstrates the modeling aspects of the simulation process utilizing 

ABMS and object-oriented programming. Also, it primarily focuses on the development 

of the stand-alone earthmoving simulation program named Agent-Based Simulator for 

Earthmoving Operations (ABSEMO). Figure 4-1 demonstrates the breakdown of the 

implementation process. The developed simulation application has some interesting 

aspects: 1) it is the first ever AB simulation tool to be developed for planning 

earthmoving operations; 2) it can model different types of equipment units performing 

the same activity; 3) it can accept stochastic data for the characteristics of equipment 

units as well as for activity durations. 4) it requires neither knowledge in programming 

nor simulation from end-users to operate; 5) it is a stand-alone system that can be easily 

shared and run on different platforms. 

AnyLogic 7 was utilized in the development of ABSEMO. In light of that, 

AnyLogic is a Java-based modeling tool that includes libraries for DES, SD and ABMS. 

Thus, users can use the graphical modeling language of Anylogic to prepare simulation 

models, with the option of extending the model with additional Java code. The Java 

nature of AnyLogic allows for custom model extensions via Java coding as well as the 

creation of Java applications, which can be a basis for decision support tools (Wartha et 

al. 2002). Those applications can be easily shared and run on any standard browser. 

AnyLogic elements used in the creation of ABSEMO are demonstrated in Table 4-1. 
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Figure 4-1: Implementation breakdown 

4.2 Main Class 

The main class in the developed system represents the simulation engine that 

integrates all model components, manages the interaction between agents and their 

environment, performs major simulation actions and generates results and analysis. In 

view of that, the main class duties can be summarized in five point: 1) setting up the 

earthmoving environment; 2) creating and governing agent populations; 3) managing 

agent queues; 4) controlling model run-time conditions; 5) performing analysis and 

producing results. These tasks are separately explained in subsections 4.2.1 ~ 4.2.5. 
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Table 4-1: AnyLogic elements used in ABSEMO 

Element Symbol 

Agent population  

Parameter (attribute)  

Variable  

Java function  

Event (scheduled function) 
 

Collection (linked list)  

Pointer  

Statistics  

Data set  

Excel file  

Bulldozer agent  

Loader agent 

 

Hauler agent  

Spotter agent 
 

Link to agent/s 
 

Link to main class 
 

Time-triggered transition  

Message-triggered transition  

State-end-triggered transition  
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4.2.1 Earthmoving Environment 

The earthmoving environment of the proposed AB model is portrayed in Figure 

4-2. It represents the physical space in which the different activities involved in the 

earthmoving operation take place. Hence, the excavation area, hauler load queue, loading 

area, haul road, hauler dump queue, dumping area and return road are illustrated by 

Figure 4-2. Other components including a residential area, a commercial area and a body 

of water were added for aesthetic purposes. Pointers are placed at different locations in 

the environment to guide the movement of agents during different activities.  

 

Figure 4-2: Earthmoving Environment 

 

Return Road 

Haul Road 

Excavation Area 

Road 

Loading Area Road 

Dumping 

Area  

Hauler Dump Queue 

Hauler Load Queue 
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4.2.2 Agent Populations  

Although the structure of each agent is represented by its state chart, agent 

populations are created in the main the class and they live and interact in its environment. 

Some major elements that were utilized in configuring and managing agent populations 

in the main class are listed and explained in Table 4-2. These elements mainly focus on 

creating agents, setting up their initial locations and managing their populations.  

Table 4-2: Agent populations’ elements in ABSEMO 

Element Purpose 

 
Creates bulldozer agents with types and properties 

specified by the user  

 
Creates loader agents with types and properties 

specified by the user  

 
Creates hauler agents with types and properties 

specified by the user 

 
Creates spotter agents with types and properties 

specified by the user 

 
Sets up the initial location of agents in the 

environment 

 
Represents the created population of bulldozers as 

one group for control purposes 

 

Represents the created population of loaders as one 

group for control purposes 

 

Represents the created population of haulers as one 

group for control purposes 

 

Represents the created population of spotters as one 

group for control purposes 
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4.2.3 Agents’ Queues 

The function and queues in the main class, depicted in Table 4-3, govern the 

hauler agent’s interaction with the loader agent, when it attains the point of being loaded, 

and with the spotter agent, when it reaches the step of dumping its load. These functions 

and queues are necessary prior to the loading and dumping activities. Before trucks get to 

the loading and dumping areas, queues, represented in the form of requests, need to be 

organized based on the First-In-First-Out (FIFO) principle.  

Table 4-3: Agent queues’ elements in ABSEMO 

Element  Purpose  

 
Places a request for loading by the hauler agent as 

soon as it arrives at the loading queue 

 
Places a request for dumping by the hauler agent as 

soon as it arrives at the dumping queue 

 Stores the hauler agents’ loading requests in a list 

 Stores the hauler agents’ dumping requests in a list 

 
Called by the loader agent when it becomes idle to 

check if there are any stored loading requests  

 
Called by the spotter agent when it becomes idle to 

check if there are any stored dumping requests 

 
Called by the loader agent to remove the first request 

in the list after responding to it 

 
Called by the loader agent to remove the first request 

in the list after responding to it 
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4.2.4 Model Run Control 

The main class includes elements that are defined by the author to control the 

model run time, by pausing or stopping simulation based on conditions specified by the 

user. These elements are shown in Table 4-4. Hence, different elements are added to 

accommodate different choices of the user regarding model pause, resume and stop 

mechanisms.   

Table 4-4: Model run control in ABSEMO 

Element/s Purpose 

  

Pause and resume the simulation 

 

Stop the simulation when the whole quantity of 

soil is excavated, transported and dumped 

 

Stop the simulation when a specific quantity of 

soil is dumped 

 

Stop the simulation when a specific quantity of 

soil is excavated 

 

Stops the simulation at a specific point of time, 

which is defined in terms of hours, minutes and 

seconds of simulation time 
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4.2.5 Results and Analysis 

The main class is also responsible for updating major soil quantities, calculating 

productivity, gathering statics related to equipment utilization and updating the Excel 

sheets linked to the model. Such types of analysis and results performed by ABSEMO are 

depicted in Table 4-5. 

Table 4-5: Results and Analysis in ABSEMO 

Element/s Purpose 

 
Refers to the quantity of soil available for 

excavation by bulldozers 

 
Refers to the quantity of soil available for loading 

(or excavation) by loaders 

 Refers to the quantity of soil dumped by haulers 

 

Updates productivity every minute of simulation 

time 

 

Refers to the productivity of the system, which is 

obtained by dividing the quantity of dumped soil by 

the simulation time 

 

Gather statistics on the average time spent by 

bulldozer agents at each state during simulation 

 

Gather statistics on the average time spent by loader 

agents at each state during simulation 



90 

 

Element/s Purpose 

 

Gather statistics on the average time spent by hauler 

agents at each state during simulation 

 

Gather statistics on the average time spent by spotter 

agents at each state during simulation 

 

Create data sets for the average time spent in states 

obtained by the bulldozer agent’s statistics 

 

Create data sets for the average time spent in states 

obtained by the loader agent’s statistics 

 

Create data sets for the average time spent in states 

obtained by the hauler agent’s statistics 
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Element/s Purpose 

 

Create data sets for the average time spent in states 

obtained by the spotter agent’s statistics 

 

Updates the statistics of equipment utilization every 

100 minutes of simulation time 

 

Updates and excel file with statistics related to the 

utilization of bulldozer agents 

 

Updates and excel file with statistics related to the 

utilization of loader agents 

 

Updates and excel file with statistics related to the 

utilization of hauler agents 

 

Updates and excel file with statistics related to the 

utilization of spotter agents 

 

4.3 Agent Classes 

Besides the main class, ABSEMO has four classes that represent the three 

equipment units and the spotters participating in the earthmoving operation. Each of these 

classes contains an agent’s state chart, along with elements required in the operation of 

that state chart. Consequently, the same states, transitions, attributes and variables 

defined earlier in the methodology are used in the implementation of agent classes in 

ABSEMO. Some extra elements are added to the implemented system for programming 

details. Subsections 4.3.1 ~ 4.3.4 discuss each agent class individually. The state chart of 

the agent is displayed, followed by a table that explains major elements used in the 

agent’s structure.  
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4.3.1 The Bulldozer Agent 

Figure 4-3 demonstrates the state chart of the bulldozer agent, as implemented in 

ABSEMO. 

 

Figure 4-3: Bulldozer’s state chart in ABSEMO 

Table 4-6 illustrates the major elements used in the structure of the bulldozer 

agent. The bulldozer agent does not have direct interactions with other agents in the 

proposed model. Two properties of the bulldozer agent are considered as variables.  

Table 4-6: Bulldozer class elements in ABSEMO 

Element Purpose 

 Changes the color of the bulldozer agent based on its state  

 
Refers to the ID of the bulldozer agent in the bulldozer 

population for assigning initial locations 
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Element Purpose 

 
The push capacity of the bulldozer at the end of a full 

pass, as specified by the user 

 

The full pass duration of the bulldozer, as specified by the 

user 

 

The direction change duration of the bulldozer, as 

specified by the user 

 

The return movement duration of the bulldozer, as 

specified by the user 

 

Transforms the user’s input on the bulldozer’s push 

capacity into a parameter usable by the bulldozer’s state 

chart 

 

Transforms the user’s input on the bulldozer’s full pass 

duration into a parameter usable by the bulldozer’s state 

chart 

 

Transforms the user’s input on the bulldozer’s direction 

change duration into a parameter usable by the bulldozer’s 

state chart 

 

Transforms the user’s input on the bulldozer’s return 

movement duration into a parameter usable by the 

bulldozer’s state chart 

 

The push capacity of the bulldozer used in the bulldozer’s 

state chart 

 

The full pass duration of the bulldozer used in the 

bulldozer’s state chart 

 

The direction change duration of the bulldozer used in the 

bulldozer’s state chart 

 

The return movement duration of the bulldozer used in the 

bulldozer’s state chart 

 
Determines the excavation quantity of the bulldozer based 

on the available soil  

 The actual excavation quantity of the bulldozer 

 The actual excavation duration of the bulldozer 

 

Establishes a link between the agent class of the bulldozer 

and the main class 
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4.3.2 The Loader Agent 

Figure 4-4 represents the state chart of the loader agent as implemented in 

ABSEMO. 

 

Figure 4-4: Loader’s state chart in ABSEMO 
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Elements used in the creation of the loader agent are displayed in Table 4-7. The 

loader agent has four changing properties (variables) and interacts only with the hauler 

agent. 

Table 4-7: Loader class elements in ABSEMO 

Element Purpose 

 
Changes the color of the loader agent based on its 

state  

 

The bucket capacity of the loader, as specified by 

the user 

 
The bucket load duration of the loader, as 

specified by the user 

 

The position adjustment duration of the loader 

while its bucket is full, as specified by the user 

 

The bucket unload duration of the loader, as 

specified by the user 

 

The position adjustment duration of the loader 

while its bucket is empty, as specified by the user 

 

Transforms the user’s input on the loader’s 

bucket capacity into a parameter usable by the 

loader’s state chart 

 

Transforms the user’s input on the loader’s 

bucket load duration into a parameter usable by 

the loader’s state chart 

 

Transforms the user’s input on the loader’s 

position adjustment while full duration into a 

parameter usable by the loader’s state chart 

 

Transforms the user’s input on the loader’s 

bucket unload duration into a parameter usable by 

the loader’s state chart 

 

Transforms the user’s input on the loader’s 

position adjustment while empty duration into a 

parameter usable by the loader’s state chart 
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Element Purpose 

 
The bucket capacity of the loader used in the 

loader’s state chart 

 

The bucket load duration of the loader used in the 

loader’s state chart 

 

The position adjustment duration of the loader 

while its bucket is full used in the loader’s state 

chart 

 

The bucket unload duration of the loader used in 

the loader’s state chart 

 

The position adjustment duration of the loader 

while its bucket is empty used in the loader’s 

state chart 

 
Determines the loading quantity of the loader’s 

bucket based on the available soil  

 
Determines the required loading quantity of the 

hauler based on its available space  

 The actual quantity of soil carried by the loader 

 
The actual quantity of soil in the loader’s bucket 

to be dumped in the truck 

 The actual bucket load duration of the loader 

 The actual bucket unload duration of the loader 

 
Stores the hauler agent as a variable for 

communication purposes 

 

Establishes a link between the agent class of the 

loader and the agent class of the hauler 

 

Establishes a link between the agent class of the 

loader and the main class 

 



97 

 

4.3.3 The Hauler Agent 

The state chart of the hauler agent, as implemented in ABSEMO, is demonstrated 

in Figure 4-5. 

 

Figure 4-5: Hauler’s state chart in ABSEMO 
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Table 4-8 demonstrates elements used in the structure of the hauler agent. The 

hauler agent interacts with the loader and spotter agents and has two variables among its 

properties. 

Table 4-8: Hauler class elements in ABSEMO 

Element Purpose 

 
Changes the color of the hauler agent based on 

its state  

 
The capacity of the hauler, as specified by the 

user 

 

The get in load position duration of the hauler, 

as specified by the user 

 

The haul duration of the hauler to the dumping 

site, as specified by the user 

 

The get in dump position duration of the 

hauler, as specified by the user 

 

The dump duration of the hauler, as specified 

by the user 

 

The return duration of the hauler to the loading 

site, as specified by the user 

 

Transforms the user’s input on the hauler’s 

capacity into a parameter usable by the 

hauler’s state chart 

 

Transforms the user’s input on the hauler’s get 

in load position duration into a parameter 

usable by the hauler’s state chart 

 

Transforms the user’s input on the hauler’s 

haul duration into a parameter usable by the 

hauler’s state chart 

 

Transforms the user’s input on the hauler’s get 

in dump position duration into a parameter 

usable by the hauler’s state chart 
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Element Purpose 

 

Transforms the user’s input on the hauler’s 

dump duration into a parameter usable by the 

hauler’s state chart 

 

Transforms the user’s input on the hauler’s 

return duration into a parameter usable by the 

hauler’s state chart 

 

The capacity of the hauler used in the hauler’s 

state chart 

 

The get in load position duration of the hauler 

used in the hauler’s state chart 

 

The haul duration of the hauler to the dumping 

site used in the hauler’s state chart 

 

The get in dump position duration of the hauler 

used in the hauler’s state chart 

 

The dump duration of the hauler used in the 

hauler’s state chart 

 

The return duration of the hauler to the loading 

site used in the hauler’s state chart 

 The quantity of soil carried by the hauler 

 The available space in the hauler 

 
Stores the loader agent as a variable for 

communication purposes 

 
Stores the spotter agent as a variable for 

communication purposes 

 

Establishes a link between the agent class of 

the hauler and the agent classes of the loader 

and the spotter  

 

Establishes a link between the agent class of 

the hauler and the main class 
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4.3.4 The Spotter Agent 

Figure 4-6 represents the state chart of the spotter agent as implemented in 

ABSEMO. 

 

Figure 4-6: Spotter’s state chart in ABSEMO 

Elements used in the construction of the spotter agent are displayed in Table 4-9. 

The spotter agent interacts only with the hauler agent and has no variables.  

Table 4-9: Spotter class elements in ABSEMO 

Element  Purpose 

 
Changes the color of the spotter agent based 

on its state  

 
The position adjustment duration of the 

spotter, as specified by the user 

 

Transforms the user’s input on the spotter’s 

position adjustment duration into a parameter 

usable by the spotter’s state chart 

 
The position adjustment duration of the 

spotter used in the spotter’s state chart 
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Element  Purpose 

 
Stores the hauler agent as a variable for 

communication purposes 

 

Establishes a link between the agent class of 

the spotter and the agent class of the hauler 

 

Establishes a link between the agent class of 

the spotter and the main class 

 

4.4 Graphical User Interface (Java Application)  

The Graphical User Interface (GUI) of the implemented earthmoving model was 

developed after finalizing the structure of the main class and the four agent classes. The 

main purpose of the GUI is to create a user-friendly tool that allows for planning 

earthmoving operations with flexibility in inputs to fit different case studies. 

Figure 4-7 demonstrates the introductory welcome page of ABSEMO, where 

general information about the owners and the application is presented. In addition, Figure 

4-8 presents the environment of the earthmoving model and highlights its elements. 

Figure 4-9 displays the material input page of ABSEMO, where information about the 

material type, quantity of soil to be excavated and quantity of excavated soil to be 

transported (or quantity of soil to be excavated by loaders) are entered by users. The 

material type has no effect on the model’s structure or operation; it was just added for 

appearance purposes related to the color of each type of material. On the other hand, the 

quantity of soil to be excavated refers to the quantity of soil that is planned to be 

excavated by bulldozers. The quantity of excavated soil to be transported (or quantity of 

soil to be excavated by loaders) is added to give users the ability to model earthmoving 

systems that have the following two scenarios: 1) a quantity of soil is already excavated 
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and ready to be loaded in trucks; 2) the earthmoving operation does not include the 

utilization of bulldozers, and loaders (or excavators) are the equipment units responsible 

for excavating and loading soil in trucks. ABSEMO accepts and employs inputs of both 

cases.  

Furthermore, Figure 4-10 demonstrates the equipment and labor input page of 

ABSEMO. Users can select up to three types of each equipment unit to participate in the 

earthmoving operation. Having more than three types of the same equipment unit 

performing the same task is not realistic. However, the model can be easily upgraded to 

accommodate more types of equipment units if needed. A color legend is added for users 

to identify the state of each equipment unit during model run. Figure 4-11 displays the 

model run control elements in ABSEMO. Users can choose to stop the model when the 

whole quantity of soil is excavated, loaded and dumped, when the dumped or excavated 

soil reaches a specific quantity, or at a specific time instance specified by hours, minutes 

and seconds of simulation time.  

Figure 4-12 and Figure 4-13 are snapshots of the model run in 2-D and 3-D views. 

While the model is running, users can monitor major statics including the quantity of soil 

available for excavation, the quantity of soil available for loading, the quantity of dumped 

soil, the productivity of work, the number of trucks in the loading queue and the number 

of trucks in the dumping queue. Users can alternate between the 2-D view, the 3-D view 

and the metrics view, which will be shown in Section 4.5. Users also have the ability to 

run the model at a fast speed, pause and resume simulation, or stop and terminate the 

simulation.  
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Figure 4-7: Welcome page of ABSEMO 

 

Figure 4-8: Earthmoving environment in ABSEMO 
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Figure 4-9: Material input in ABSEMO 

 

Figure 4-10: Equipment and labor input in ABSEMO 
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Figure 4-11: Model run control in ABSEMO 

 

Figure 4-12: 2-D snapshot of model run in ABSEMO 
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Figure 4-13: 3-D snapshot of model run in ABSEMO 

4.5 Reporting of Results 

ABSEMO reports simulation results both during model run and after the 

simulation is concluded. Major statistics demonstrated in Section 0 are constantly 

updated while the model is running. Figures 4-14 ~ 4-18 are snap shots of the equipment 

and labor utilization graphs. 

Figure 4-14 represents basic statistics on the average percentage of simulation 

time in which agent units belonging to the same class are either working or idle. Figure 

4-15, Figure 4-16, Figure 4-17 and Figure 4-18 demonstrate a detailed version of the 

equipment and labor utilization statistics for the bulldozer, loader, hauler and spotter 

agents respectively. In these detailed graphs, the average percentage of time spent by the 
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agent group at each state is represented separately and given different colors. Major 

statistics and equipment utilization data are added to excel sheets which were previously 

created and linked to ABSEMO. 

 

Figure 4-14: Equipment utilization statistics in ABSEMO 

 

Figure 4-15: Bulldozers detailed utilization statistics in ABSEMO 
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Figure 4-16: Loaders detailed utilization statistics in ABSEMO 

 

Figure 4-17: Haulers detailed utilization statistics in ABSEMO 



109 

 

 

Figure 4-18: Spotters detailed utilization statistics in ABSEMO 

4.6 System Verification  

This section is dedicated to test and verify the developed AB simulation model 

using a real-world case study from the construction sector. The case study is related to 

earthmoving operations in a dam construction project in the province of Quebec, Canada. 

It involves two main operations: 1) the excavation of riverbed soil at the location of the 

dam; 2) the backfill of three types of soils in three stages. The scope of work involved in 

these two operations is estimated from the structural design of the dam, and the hauling 

and returning durations of trucks are calculated based on routes’ profiles and rolling 

resistance. As a proof of concept, only the excavation of the riverbed soil will modeled 

and simulated using ABSEMO. 
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4.6.1 Case Study Description  

The case study is concerned with modeling and simulating the riverbed 

excavation operation involved in the construction of Sainte-Marguerite-3 (SM-3) Dam 

(1994-2002), which is located on the Sainte-Marguerite River in Sept-Îles City, 700 km 

northeast of Montréal, Canada. Figure 4-19 shows a map of the river’s location and 

Figure 4-20 shows a picture of the dam after construction. Information about this this 

case study were obtained from Peer (2001), Hydro Quebec (2003), Marzouk (2004) and 

Alzraiee (2013). 

4.6.2 Scope of Work 

Earthmoving operations in the SM-3 dam construction project were allotted three 

years by the management. Regarding the riverbed excavation operation, which will be 

used to verify ABSEMO, the actual quantity of excavated natural soil was 1,038,000 m3 

(Peer 2001). The quantity of excavated soil was not used in the construction of the dam; 

instead, it was hauled away and dumped in another location. Accordingly, the backfill 

operation was performed by borrowing 6,300,000 m3 of soil from three pits. Table 4-10 

summarizes the scope of work. The excavation part, which is the interest in this study, is 

highlighted in bold. 
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Figure 4-19: Location of Sainte-Marguerite-3 dam (Hydro Quebec 2003) 

 

Figure 4-20: Sainte-Marguerite-3 dam (Hydro Quebec 2003) 
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Table 4-10: Scope of work in in the SM-3 dam construction earthmoving operations (Alzraiee 

2013) 

Element Rock Granular Moraine Total 

Backfilling Stage 1 (m3) 192,700 14,500 29,200 236,400 

Backfilling Stage 2 (m3) 3,209,400 286,500 555,900 4,051,800 

Backfilling Stage 3 (m3) 1,602,900 139,000 269,000 2,011,800 

Loose Density (t/m3) 1.66 1.72 1.66 1.6 

Bank Density (t/m3) 2.73 1.93 2.02 2.4 

Load Factor 80 90 100 100 

Total Quantity of Soil 5,005,000 440,000 855,000 6,300,000 

Excavation (m3) 1,038,000 1,038,000 

 

4.6.3 Fleet Selection and Configuration  

Table 4-11 and Table 4-12 represent the equipment fleet combinations selected 

for performing the different earthmoving operations involved in the SM-3 dam 

construction. Triangular probability distributions were considered for the process 

durations of loading, hauling, returning, spreading and compaction. On the other hand, 

uniform distributions were considered for the dumping process (Alzraiee 2013). The last 

row of Table 4-11, which is highlighted in bold, depicts the fleet configuration, material 

properties and activity durations of the riverbed excavation operation. 
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4.6.4 DES Simulation Results 

Alzraiee (2013) created an EZStrobe DES simulation model for the riverbed 

excavation of the SM-3 dam construction project, which is portrayed in Figure 4-21. The 

model consists of two bulldozers, two loaders, seven haulers and two spotters. As 

demonstrated in Table 4-10, the quantity of soil to be excavated is 1,038,000 m3. Also, 

equipment properties and activity durations are the ones listed in the last row of Table 

4-11. The results of the DES model suggested that a duration of 808.33 hours with an 

average productivity of 1284.52 m3/hour is required to complete the operation. 

 

Figure 4-21: EZStrobe DES model of riverbed excavation in the Sainte-Marguerite dam 

construction project (Alzraiee 2013) 
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Table 4-11: Hauler and loader fleet configurations in the SM-3 dam construction earthmoving operations (Alzraiee 2013) 

Hauled 

Material 

Hauler 

Model 

Loader 

Model 

Bucket 

Capacity 

of 

Loader 

Loose 

Density 

of Soil 

(ton/m3) 

Hauled 

Soil 

Volume 

(m3) 

Hauled 

Soil 

Weight 

(ton) 

Loading 

Process-Time 

Distribution 

(min) 

Hauling 

Process-Time 

Distribution 

(min) 

Dumping 

Process-Time 

Distribution 

(min) 

Returning 

Process-Time 

Distribution 

(min) 

Rock 777D 992G 12.3 1.66 49 81.67 
(3.94, 4.15, 

4.57) 

(4.3, 4.53, 

4.98) 
(1.9, 2.2) 

(3.17, 3.34, 

3.67) 

Moraine 773D 990 SII 9.2 1.66 28 45.82 
(3.01, 3.2, 

3.32) 

(19.47, 20.5, 

22.55) 
(1.6, 1.9) 

(16.71, 17.59, 

19.35) 

Granular 769C 988F 6.9 1.72 20 34.36 (2.3, 2.42, 2.5) 
(30.6, 32.34, 

35.57) 
(1.3, 1.5) 

(25.85, 26.51, 

29.16) 

Riverbed 

Soil 
777D 375L 4.59 1.6 32 51.41 

(4.26, 4.48, 

4.93) 

(5.32, 5.6, 

6.16) 
(1.6, 1.9) 

(2.86, 3.01, 

3.31) 

 

Table 4-12: Spread and compact equipment characteristics in the SM-3 dam construction earthmoving operations (Alzraiee 2013) 

Process Bulldozer Model Productivity (m3/Cycle) Time Distribution (min) 

Spread D8R 27 (2.47, 2.6, 2.86) 

Compact CS-583C 19 (1.8, 1.9, 2.09) 
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4.6.5 ABMS Simulation Results 

Activity durations presented in Table 4-10 are all of DES nature. The excavation, 

loading, hauling, dumping and returning activities are all single entities with single 

durations. Verifying ABSEMO using this data requires some manipulation.  

Consequently, some inputs of the riverbed excavation process used in ABSEMO are 

adjusted based on the following assumptions: 

 Setting the excavation duration equal to the ‘push duration’ in ABSEMO. Other 

durations in the bulldozer agent inputs have no value (0 min).  

 By dividing the hauler’s capacity over the loader’s bucket capacity, the number of 

loader cycles to fill one truck is obtained (49 m3 / 4.59 m3 = 10.675381). The 

loading duration is then divided by that number to get the duration of the loader 

cycle ((4.26 min, 4.48 min, 4.93 min) / 10.675381 = (0.399049 min, 0.419657 

min, 0.461810 min)). Finally, 75% of the duration of the loader cycle (0.299287 

min, 0.314743 min, 0.3463575 min) is inputted as the ‘bucket load duration’ and 

25% (0.099762 min, 0.104914 min, 0.115453 min) is inputted as the ‘full bucket 

unload duration’ in ABSEMO. Other durations in the loader agent inputs have no 

value (0 min).  

 Setting the haul, dump and return durations as ‘haul duration’, ‘return duration’ 

and ‘dump duration’. Other durations in the hauler agent inputs have no value (0 

min). 

 The ‘position adjustment duration’ input of the spotter agent has no value (0 min) 
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After inputting the soil quantity to be excavated, the equipment capacities and the 

adjusted activity durations of the riverbed excavation in ABSEMO, a duration of 804.95 

hours with an average productivity of 1289.52 m3/hour was obtained for the completion 

of the operation. 

4.6.6 Comparison between DES and ABMS Results 

DES results represent a good verification tool for AB models. The nature of DES 

provides an accurate flow of resources, which allows for verifying the quantitative 

aspects of AB models. There are some examples in literature on the verification of 

ABMS outputs using DES results (Biswas and Merchawi 2000, Fortino et al. 2005). 

However, it is important to note that to validate the accuracy and precision of ABMS, the 

emergent behavior of the AB model should be compared to that of the real-world system.  

Table 4-3 summarizes the comparison between the DES and ABMS results for the 

SM-3 riverbed excavation operation. The percentage difference between the DES and 

ABMS durations was 0.42%, indicating that the representation of agents’ properties, the 

interaction logic and the flow of resources in ABSEMO are correct. Therefore, ABSEMO 

can now be used to plan earthmoving operations with more complex inputs that fit its 

capabilities and takes advantage of its strength.   

Table 4-13: A comparison between DES and ABMS Results for the SM-3 Riverbed Excavation 

Technique Duration (hours) Productivity (m3/hour) 

DES 808.33 1284.52 

ABMS 804.95 1289.52 
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4.7 Superiority of ABMS 

Subsequently to developing and implementing an AB model for earthmoving 

operations, several advantages of the ABMS technique are noted. Compared to DES and 

SD, the following points of superiority exist in ABMS: 

 ABMS allows for creating combined time progression models (discrete and 

continuous), which helps capture a realistic flow of resources based on the 

activities at-hand. In DES and SD, modelers have to follow the time progression 

mechanism of the technique being used, regardless of the operation being 

modeled.  

 ABMS is a stochastic approach, compared to the deterministic SD technique. 

ABMS heavily relies on randomness of variables to produce realistic emergent 

behaviors. In addition, unlike existing DES models, AB models can accept 

variables from different probability distributions, not only for activity durations, 

but also for agents’ characteristics including quantity-related attributes. Examples 

from ABSEMO include bulldozers’ push capacities, loaders’ bucket loading 

quantities, haulers’ capacities, etc.  

 ABMS offers a huge flexibility in modeling agents’ characteristics and roles to 

match those of the real-world participants of the systems being modeled. In 

ABSEMO, Different equipment attributes and the ability of the loader agent to 

perform the excavation as well as the loading activities or only the loading 

activity are examples of flexibility in AB models. DES and SD models are often 

rigid in nature, offering limited capabilities of representing resources of different 

characteristics.  
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  The smart behavior of agents in AB models establishes a strong mechanism for 

replicating the real-world operations, by adapting and behaving differently at 

different situations. In other words, changing quantities and activity durations 

based on agents’ capacities and states are examples of adaption in AB models. 

DES and SD are often inflexible in terms of behavior of model entities, which 

translates into a predetermined performance of the systems being modeled using 

these techniques. 

4.8 Implementation of ABMS in Other CM Areas 

Although this research work mainly focused on the development of an AB model 

for earthmoving operations, the applied procedures and methodologies can be easily 

extended to the modeling of other construction operations. The heterogeneity of 

construction operations can be captured with great accuracy through the utilization of 

smart, flexible and comprehensive AB models. Accordingly, simulation knowledge, 

ABMS understanding and object-oriented programming skills are essential requirements 

for creating such models. 

The generic procedure for creating AB models for construction management 

applications presented in Section 3.2 acts as a guide for planners who are interested in 

using this technique to model different construction operations. Generally, construction 

operations include different participants which are interacting to fulfil a certain goal. 

Identifying the properties and roles of these participants, understanding their interaction 

logic and communication mechanism as well as recognizing the environment they exist 
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and interact within are all key tasks in developing accurate AB models for construction 

operations.  

Differences in AB models for construction management applications arise from 

the nature of the systems being modeled. Agents in an earthmoving AB model are 

expected to be the equipment units and labor participating in the different earthmoving 

activities. Similarly, technical operations in construction including tower crane 

operations, concrete pouring, formwork installation, and so on will have the same 

principles in developing agents and assigning their properties and roles. However, 

managerial aspects of construction management including workers’ behavior, claims 

negotiations, conflict resolution, contract management, etc. involve a psychological 

human side that cannot be easily captured to produce emergent behaviors. In light of that, 

systems, in which humans are agents, represent a far bigger challenge to planners when 

developing AB models. So, although ABMS is a relatively simple technique to apply, the 

nature of the operations being modeled profoundly affects the ability of modelers to 

design agents and simulate their behavior. 
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CHAPTER 5:  CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary and Conclusions 

This research work proposes ABMS as an effective tool for modeling 

earthmoving operations. Essentially, the core idea is relying on the strength of the AB 

technique in representing model participants’ properties, roles and interactions to enhance 

the planning of earthmoving operations and overcome limitations of current earthmoving 

simulation practices including poor graphical modeling support, predetermined and 

inflexible behaviors as well as the necessity of detailed data when modeling. 

In turn, an in-depth literature review was conducted to investigate current 

simulation techniques and their applications in construction management in general and 

earthmoving operations in particular. Thus, DES and SD were examined by studying 

their methodologies, identifying their limitations and inspecting their applications. The 

ABMS technique was thoroughly examined by studying its major aspects including 

agents, environments, interactions and emergence and going over its applications in civil 

engineering and construction management. Gaps and limitations of current research were 

illustrated to highlight the need of ABMS in planning earthmoving operations.  

Moreover, a detailed explanation of the research methodology was provided. A 

simple step-by-step procedure on how to develop AB models for different construction 

operations based on a set of rules and criteria was outlined, according to the author’s 

perception of the AB technique. Then, the development of a comprehensive AB model 

for earthmoving operations consisting of bulldozers, loaders, haulers and spotters was 

demonstrated. The model governs the process logistics, information sharing, equipment 
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properties and activity durations. In addition, agents’ types, attributes, roles and 

interaction logic were discussed in detail, and the guidelines for the implementation of 

the earthmoving AB model were highlighted.  

A Java-based object-oriented software application, Agent-Based Simulator for 

Earthmoving Operations’ (ABSEMO), was developed as an implementation of the 

proposed earthmoving AB model. ABSEMO was verified through a real-life case study of 

the riverbed excavation operation in the SM-3 dam construction project. Subsequently, 

the available data was manipulated to fit model inputs and the simulation results were 

compared with those obtained from a DES model of the same operation. A percentage 

difference of 0.42% from the DES results was obtained, verifying that the model’s logic 

and flow of resources are accurate.  

Fundamentally, the strength of ABMS is explored in this research work. The 

developed procedure for building AB models presents valuable guidelines on how to plan 

construction operations with ABMS. The proposed earthmoving AB model and the 

implemented system (ABSEMO) aim at enhancing the accuracy of current modeling 

practices of earthmoving operations, by adding flexibility and introducing adaption to the 

planning of these operations. Creating agents and assigning their attributes and roles from 

an individual AB prospective allows for capturing a realistic behavior of earthmoving 

operations. Hence, the proposed methodology can be extended to general applications in 

construction management, where studying the emergent behavior of participants’ 

interactions can help planners account for the heterogeneity of operations in this field. 
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5.2 Research Contributions 

Key contributions of this research are noted in the following points: 

 Establish a generic methodology for applying ABMS in construction management 

based on a bottom-up procedure of nine steps.  

 Develop a comprehensive AB model for planning earthmoving operations, which 

governs’ the environment setup, the equipment and labor properties and roles, the 

interaction logic and the flow of resources. 

 Produce a stand-alone software application (ABSEMO) as an implementation of 

the proposed earthmoving AB model, which offers flexibility in agents’ roles and 

allows for modeling equipment units of different properties, in an intelligent 

manner that adapts to changes in material quantities, agent variables and other 

model conditions. 

5.3 Research Limitations 

The limitations of the proposed framework can be summarized in the following points: 

 Earthmoving process logistics, which are related to handling soil quantities and 

assigning activity durations in the proposed AB model are mainly based on 

observations of earthmoving operations and include many assumptions.  

 The proposed AB model assumes the availability of haul and return durations of 

trucks, and does not include a mechanism for measuring those parameters based 

on roads’ characteristics and haulers’ properties or for selecting the best haul and 

return roads from a number of options.  
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 Direct and indirect costs are not taken into consideration in the proposed 

earthmoving AB model and hence, ABSEMO does not provide users with an 

optimization tool to select optimum fleet combinations. 

5.4 Future Work and Recommendations 

Based on the aforementioned research limitations, the following future work areas 

and recommendations are presented: 

 Current research enhancement areas: 

 More effort should be put in upgrading agents’ state charts to capture a more 

realistic behavior of handling soil quantities and assigning activity durations. 

Current assumption are based on linear interpolation. For example, the time 

required to fill half a bucket is equal to half the time required to fill the whole 

bucket. In reality, the distribution of the bucket filling duration might not be as 

linear as this. 

 Some options can be added to ABSEMO to allow users to customize the handling 

of soil quantities and the assignment of activity durations based on their 

preference, instead of having fixed assumptions for these variables. For instance, 

if the user wishes that the loader does not start filling its bucket unless a quantity 

of soil equal to or larger than the buck capacity is available, they should be able to 

specify that prior to the simulation. 
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 Current research extension areas: 

 The procedure of creating AB models for construction management applications 

can be made more specific, with added templates for common construction 

operations. This can be of great benefit to planners, especially if an automated 

tool is provided to guide users on the exact procedure of building their AB models 

and suggest the best modeling tool.  

 The provision of a procedure to measure the haul and return durations of trucks 

and/or to select the best haul and return roads can be a valuable addition to the 

existing earthmoving AB model. Since the haul and return activities of trucks are 

lengthy in duration and represent variables that are highly affected by conditions 

external to the operation, obtaining accurate durations of these activities has 

always been a major goal in earthmoving simulation. In addition, selecting the 

best haul and return roads among a number of options is an interesting research 

area that can benefit from the nature of agents in ABMS, which are smart, 

independent and have the ability of making the best choices when facing 

alternatives.  

 Accounting for direct and indirect costs in the proposed earthmoving AB model 

grasps the whole process and allows for adding an optimization tool to ABSEMO 

which can suggest optimum fleet combinations based on equipment availability 

and other preferences and conditions related to the earthmoving operation at-

hand. In view of that, minimizing cost per unit of production, while adhering to 

the work schedule, is a crucial objective in planning earthmoving operations.  
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APPENDIX A 

Main Class Java Code: 

Table A-1: Agent populations’ elements in ABSEMO (Java code) 

Element/s Java Code 

Startup code 

stopAtTimeEnabled(); 
bulldozersTypeConfiguration(); 
loadersTypeConfiguration(); 
haulersTypeConfiguration(); 
spottersTypeConfiguration(); 
startUpLocations(); 

 

//Adds the data based on the user's input 
for ( int i = 0; i < numberOfBulldozers; 
i++){ 
add_bulldozers(timeToExcavate, 
bulldozerCapacity, timeToTurn, 
timeToReturn, 0, 0, 0, 0); 
} 
for ( int i = 0; i < numberOfBulldozers2; 
i++){ 
add_bulldozers(timeToExcavate2, 
bulldozerCapacity2, timeToTurn2, 
timeToReturn2, 0, 0, 0, 0); 
} 
for ( int i = 0; i < numberOfBulldozers3; 
i++){ 
add_bulldozers(timeToExcavate3, 
bulldozerCapacity3, timeToTurn3, 
timeToReturn3, 0, 0, 0, 0); 
} 

 

//Adds the data based on the user's input 
for ( int i = 0; i < numberOfLoaders; 
i++){ 
add_loaders(timeToLoadFullBucket, 
bucketCapacity, timeToAdjustWhileEmpty, 
timeToUnloadFullBucket, 
timeToAdjustWhileFull, 0, 0, 0, 0, 0); 
} 
for ( int i = 0; i < numberOfLoaders2; 
i++){ 
add_loaders(timeToLoadFullBucket2, 
bucketCapacity2, timeToAdjustWhileEmpty2, 
timeToUnloadFullBucket2, 
timeToAdjustWhileFull2, 0, 0, 0, 0, 0); 
} 
for ( int i = 0; i < numberOfLoaders3; 
i++){ 
add_loaders(timeToLoadFullBucket3, 
bucketCapacity3, timeToAdjustWhileEmpty3, 
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Element/s Java Code 

timeToUnloadFullBucket3, 
timeToAdjustWhileFull3, 0, 0, 0, 0, 0); 
} 

 

//Adds the data based on the user's input 
for ( int i = 0; i < numberOfHaulers; 
i++){ 
add_haulers(movingToLoadPositionTime, 
capacity, returningTime, 
movingToDumpPositionTime, haulingTime, 0, 
0, 0, 0, 0); 
} 
for ( int i = 0; i < numberOfHaulers2; 
i++){ 
add_haulers(movingToLoadPositionTime2, 
capacity2, returningTime2, 
movingToDumpPositionTime2, haulingTime2, 
0, 0, 0, 0, 0); 
} 
for ( int i = 0; i < numberOfHaulers3; 
i++){ 
add_haulers(movingToLoadPositionTime3, 
capacity3, returningTime3, 
movingToDumpPositionTime3, haulingTime3, 
0, 0, 0, 0, 0); 
} 

 

//Adds the data based on the user's input 
for ( int i = 0; i < numberOfSpotters; 
i++){ 
add_spotters(timeToAdjustPosition, 
dumpingTime, 0, 0); 
} 

 

//Bulldozers Locations 
double a= bulldozerPointer.getX(); 
double b= bulldozerPointer.getY(); 
for(int i=0;i<bulldozers.size();i++){ 
bulldozers.get(i).setXY(a,b); 
b = b-20; 
} 
//Loaders Locations 
double c= loaderPointer.getX(); 
double d= loaderPointer.getY(); 
for(int i=0;i<loaders.size();i++){ 
loaders.get(i).setXY(c,d); 
c = c+50; 
} 
//Spotters Locations 
double e= spotterPointer.getX(); 
double f= spotterPointer.getY(); 
for(int i=0;i<spotters.size();i++){ 
spotters.get(i).setXY(e,f); 
f = f-50; 
} 
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Table A-2: Agent queues’ elements in ABSEMO (Java code) 

Element/s Java Code 

 

//add service request to the queue 
haulerQueueAtLoaders.addLast( truck ); 
//and make all service crews check the 
request queue 
for( Loader ld : loaders ) ld.receive( 
"CHECK QUEUE" ); 

 

//add service request to the queue 
haulerQueueAtSpotters.addLast( truck ); 
//and make all service crews check the 
request queue 
for( Spotter sp : spotters ) 
sp.receive( "CHECK QUEUE" ); 

 
return ! 
haulerQueueAtLoaders.isEmpty(); 

 
return ! 
haulerQueueAtSpotters.isEmpty(); 

 

if( ! haulerQueueAtLoaders.isEmpty()) 
return 
haulerQueueAtLoaders.removeFirst( ); 
else return null; 

 

if( ! haulerQueueAtSpotters.isEmpty()) 
return 
haulerQueueAtSpotters.removeFirst( ); 
else return null; 

 

Table A-3: Model run control in ABSEMO (Java code) 

Element/s Java Code 

  

if (button16.getText() == "Pause" || 
button13.getText() == "Pause" || 
button10.getText() == "Pause"){ 
pauseSimulation(); 
pauseAndResume = "Resume"; 
} 
if (button16.getText() == "Resume" || 
button13.getText() == "Resume" || 
button10.getText() == "Resume"){ 
runSimulation(); 
pauseAndResume = "Pause"; 
} 

 

Condition: dumpedSoil >= 
dumpedSoilToStopRun && 
applyDumpedSoilOption 
finishSimulation(); 
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Element/s Java Code 

 

Condition: dumpedSoil >= 
dumpedSoilToStopRun && 
applyDumpedSoilOption 
finishSimulation(); 

 

Condition: soilAvailableForLoading >= 
excavatedSoilToStopRun && 
applyExcavatedSoilOption 
finishSimulation(); 

 

if (applyStopAtTimeOption){ 
stopAtTime.restart(); 
} 
Timeout: (hoursToStopRun * 60) + 
(minutesToStopRun) + 
(secondsToStopRun/60) 
finishSimulation(); 

 

Table A-4: Results and Analysis in ABSEMO (Java code) 

Element/s Java Code 

 

Cyclic: every 1 minute 
productivity = dumpedSoil / time(); 

 

//record results  
bulldozersIdleSet.add( 
bulldozersIdle.mean() ); 
bulldozersWorkingSet.add( 
bulldozersWorking.mean() ); 
bulldozersExcavatingSet.add( 
bulldozersExcavating.mean() ); 
bulldozersRepositioningSet.add( 
bulldozersRepositioning.mean() ); 
loadersIdleSet.add( loadersIdle.mean() 
); 
loadersWorkingSet.add( 
loadersWorking.mean() ); 
loadersLoadingSet.add( 
loadersLoading.mean() ); 
loadersUnloadingSet.add( 
loadersUnloading.mean() ); 
haulersIdleSet.add( haulersIdle.mean() 
); 
haulersWorkingSet.add( 
haulersWorking.mean() ); 
haulersBeingLoadedSet.add( 
haulersBeingLoaded.mean() ); 
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haulersHaulingSet.add( 
haulersHauling.mean() ); 
haulersDumpingSet.add( 
haulersDumping.mean() ); 
haulersReturningSet.add( 
haulersReturning.mean() ); 
spottersIdleSet.add( 
spottersIdle.mean() ); 
spottersWorkingSet.add( 
spottersWorking.mean() ); 
spottersSpottingSet.add( 
spottersSpotting.mean() ); 
spottersAdjustingSet.add( 
spottersAdjusting.mean() ); 
//rest the results each time interval 
bulldozersIdle.reset(); 
bulldozersWorking.reset(); 
bulldozersExcavating.reset(); 
bulldozersRepositioning.reset(); 
loadersIdle.reset(); 
loadersWorking.reset(); 
loadersLoading.reset(); 
loadersUnloading.reset(); 
haulersIdle.reset(); 
haulersWorking.reset(); 
haulersBeingLoaded.reset(); 
haulersHauling.reset(); 
haulersDumping.reset(); 
haulersReturning.reset(); 
spottersIdle.reset(); 
spottersWorking.reset(); 
spottersSpotting.reset(); 
spottersAdjusting.reset(); 
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APPENDIX B 

Agent Class Java Code: 

The Bulldozer Agent: 

Table A-5: Bulldozer class elements and transitions in ABSEM (Java code) 

Element/s Java Code 

 
Changes the color of the bulldozer agent based on its 

state 

 
 

boolean  isTriangular = 
bulldozerCapacityUser.startsWith("T"); 
boolean  isUniform = 
bulldozerCapacityUser.startsWith("U"); 
boolean  isNormal = 
bulldozerCapacityUser.startsWith("N"); 
if(isTriangular){ 
int parLocation1 = 
bulldozerCapacityUser.indexOf('(',0); 
int parLocation2 = 
bulldozerCapacityUser.indexOf(')',parLocation1); 
int commaLocation1 = 
bulldozerCapacityUser.indexOf(',',0); 
int commaLocation2 = 
bulldozerCapacityUser.indexOf(',',commaLocation1+1
); 
String tempvalue1 = 
bulldozerCapacityUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
bulldozerCapacityUser.substring(commaLocation1+1, 
commaLocation2); 
String tempvalue3 = 
bulldozerCapacityUser.substring(commaLocation2+1,p
arLocation2); 
double value1 = Double.parseDouble(tempvalue1); 
double value2 = Double.parseDouble(tempvalue2); 
double value3 = Double.parseDouble(tempvalue3); 
bulldozerCapacity = 
triangular(value1,value2,value3); 
} 
else if(isUniform){ 
int parLocation1 = 
bulldozerCapacityUser.indexOf('(',0); 
int parLocation2 = 
bulldozerCapacityUser.indexOf(')',parLocation1); 
int commaLocation1 = 
bulldozerCapacityUser.indexOf(',',0); 
String tempvalue1 = 
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Element/s Java Code 

bulldozerCapacityUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
bulldozerCapacityUser.substring(commaLocation1+1, 
parLocation2); 
double value1 = Double.parseDouble(tempvalue1); 
double value2 = Double.parseDouble(tempvalue2); 
bulldozerCapacity = uniform(value1,value2); 
} 
else if(isNormal){ 
int parLocation1 = 
bulldozerCapacityUser.indexOf('(',0); 
int parLocation2 = 
bulldozerCapacityUser.indexOf(')',parLocation1); 
int commaLocation1 = 
bulldozerCapacityUser.indexOf(',',0); 
String tempvalue1 = 
bulldozerCapacityUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
bulldozerCapacityUser.substring(commaLocation1+1, 
parLocation2); 
double value1 = Double.parseDouble(tempvalue1); 
double value2 = Double.parseDouble(tempvalue2); 
bulldozerCapacity = normal(value1,value2); 
} 
else{ 
bulldozerCapacity = 
Double.parseDouble(bulldozerCapacityUser); 
} 

 

 

boolean  isTriangular = 
timeToExcavateUser.startsWith("T"); 
boolean  isUniform = 
timeToExcavateUser.startsWith("U"); 
boolean  isNormal = 
timeToExcavateUser.startsWith("N"); 
if(isTriangular){ 
int parLocation1 = 
timeToExcavateUser.indexOf('(',0); 
int parLocation2 = 
timeToExcavateUser.indexOf(')',parLocation1); 
int commaLocation1 = 
timeToExcavateUser.indexOf(',',0); 
int commaLocation2 = 
timeToExcavateUser.indexOf(',',commaLocation1+1); 
String tempvalue1 = 
timeToExcavateUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
timeToExcavateUser.substring(commaLocation1+1, 
commaLocation2); 
String tempvalue3 = 
timeToExcavateUser.substring(commaLocation2+1,parL
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Element/s Java Code 

ocation2); 
double value1 = Double.parseDouble(tempvalue1); 
double value2 = Double.parseDouble(tempvalue2); 
double value3 = Double.parseDouble(tempvalue3); 
timeToExcavate = triangular(value1,value2,value3); 
} 
else if(isUniform){ 
int parLocation1 = 
timeToExcavateUser.indexOf('(',0); 
int parLocation2 = 
timeToExcavateUser.indexOf(')',parLocation1); 
int commaLocation1 = 
timeToExcavateUser.indexOf(',',0); 
String tempvalue1 = 
timeToExcavateUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
timeToExcavateUser.substring(commaLocation1+1, 
parLocation2); 
double value1 = Double.parseDouble(tempvalue1); 
double value2 = Double.parseDouble(tempvalue2); 
timeToExcavate = uniform(value1,value2); 
} 
else if(isNormal){ 
int parLocation1 = 
timeToExcavateUser.indexOf('(',0); 
int parLocation2 = 
timeToExcavateUser.indexOf(')',parLocation1); 
int commaLocation1 = 
timeToExcavateUser.indexOf(',',0); 
String tempvalue1 = 
timeToExcavateUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
timeToExcavateUser.substring(commaLocation1+1, 
parLocation2); 
double value1 = Double.parseDouble(tempvalue1); 
double value2 = Double.parseDouble(tempvalue2); 
timeToExcavate = normal(value1,value2); 
} 
else{ 
timeToExcavate = 
Double.parseDouble(timeToExcavateUser); 
} 

 

 

boolean  isTriangular = 
timeToTurnUser.startsWith("T"); 
boolean  isUniform = 
timeToTurnUser.startsWith("U"); 
boolean  isNormal = 
timeToTurnUser.startsWith("N"); 
if(isTriangular){ 
int parLocation1 = timeToTurnUser.indexOf('(',0); 
int parLocation2 = 
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Element/s Java Code 

timeToTurnUser.indexOf(')',parLocation1); 
int commaLocation1 = 
timeToTurnUser.indexOf(',',0); 
int commaLocation2 = 
timeToTurnUser.indexOf(',',commaLocation1+1); 
String tempvalue1 = 
timeToTurnUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
timeToTurnUser.substring(commaLocation1+1, 
commaLocation2); 
String tempvalue3 = 
timeToTurnUser.substring(commaLocation2+1,parLocat
ion2); 
double value1 = Double.parseDouble(tempvalue1); 
double value2 = Double.parseDouble(tempvalue2); 
double value3 = Double.parseDouble(tempvalue3); 
timeToTurn = triangular(value1,value2,value3); 
} 
else if(isUniform){ 
int parLocation1 = timeToTurnUser.indexOf('(',0); 
int parLocation2 = 
timeToTurnUser.indexOf(')',parLocation1); 
int commaLocation1 = 
timeToTurnUser.indexOf(',',0); 
String tempvalue1 = 
timeToTurnUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
timeToTurnUser.substring(commaLocation1+1, 
parLocation2); 
double value1 = Double.parseDouble(tempvalue1); 
double value2 = Double.parseDouble(tempvalue2); 
timeToTurn = uniform(value1,value2); 
} 
else if(isNormal){ 
int parLocation1 = timeToTurnUser.indexOf('(',0); 
int parLocation2 = 
timeToTurnUser.indexOf(')',parLocation1); 
int commaLocation1 = 
timeToTurnUser.indexOf(',',0); 
String tempvalue1 = 
timeToTurnUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
timeToTurnUser.substring(commaLocation1+1, 
parLocation2); 
double value1 = Double.parseDouble(tempvalue1); 
double value2 = Double.parseDouble(tempvalue2); 
timeToTurn = normal(value1,value2); 
} 
else{ 
timeToTurn = Double.parseDouble(timeToTurnUser); 
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Element/s Java Code 

} 

 

boolean  isTriangular = 
timeToReturnUser.startsWith("T"); 
boolean  isUniform = 
timeToReturnUser.startsWith("U"); 
boolean  isNormal = 
timeToReturnUser.startsWith("N"); 
if(isTriangular){ 
int parLocation1 = 
timeToReturnUser.indexOf('(',0); 
int parLocation2 = 
timeToReturnUser.indexOf(')',parLocation1); 
int commaLocation1 = 
timeToReturnUser.indexOf(',',0); 
int commaLocation2 = 
timeToReturnUser.indexOf(',',commaLocation1+1); 
String tempvalue1 = 
timeToReturnUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
timeToReturnUser.substring(commaLocation1+1, 
commaLocation2); 
String tempvalue3 = 
timeToReturnUser.substring(commaLocation2+1,parLoc
ation2); 
double value1 = Double.parseDouble(tempvalue1); 
double value2 = Double.parseDouble(tempvalue2); 
double value3 = Double.parseDouble(tempvalue3); 
timeToReturn = triangular(value1,value2,value3); 
} 
else if(isUniform){ 
int parLocation1 = 
timeToReturnUser.indexOf('(',0); 
int parLocation2 = 
timeToReturnUser.indexOf(')',parLocation1); 
int commaLocation1 = 
timeToReturnUser.indexOf(',',0); 
String tempvalue1 = 
timeToReturnUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
timeToReturnUser.substring(commaLocation1+1, 
parLocation2); 
double value1 = Double.parseDouble(tempvalue1); 
double value2 = Double.parseDouble(tempvalue2); 
timeToReturn = uniform(value1,value2); 
} 
else if(isNormal){ 
int parLocation1 = 
timeToReturnUser.indexOf('(',0); 



142 

 

Element/s Java Code 

int parLocation2 = 
timeToReturnUser.indexOf(')',parLocation1); 
int commaLocation1 = 
timeToReturnUser.indexOf(',',0); 
String tempvalue1 = 
timeToReturnUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
timeToReturnUser.substring(commaLocation1+1, 
parLocation2); 
double value1 = Double.parseDouble(tempvalue1); 
double value2 = Double.parseDouble(tempvalue2); 
timeToReturn = normal(value1,value2); 
} 
else{ 
timeToReturn = 
Double.parseDouble(timeToReturnUser); 
} 

 

if(get_Main().soilAvailableForExcavation > 
bulldozerCapacity){ 
return bulldozerCapacity; 
} 
else{ 
return get_Main().soilAvailableForExcavation; 
} 

startExcavating transiton  

Condition: get_Main().soilAvailableForExcavation > 
0 
excavationQuantity = excavationType(); 
excavationDuration = timeToExcavate * 
(excavationType() / bulldozerCapacity); 
get_Main().soilAvailableForExcavation = 
get_Main().soilAvailableForExcavation - 
excavationQuantity; 
moveToInTime(get_Main().bulldozerPointer2.getX(), 
get_Main().bulldozerPointer.getY() - (indexNumber 
* 20), timeToExcavate); 

startTurningA transition 

moveToInTime(get_Main().bulldozerPointer3.getX(), 
get_Main().bulldozerPointer3.getY() - (indexNumber 
* 20), timeToTurn); 
get_Main().soilAvailableForLoading = 
get_Main().soilAvailableForLoading + 
excavationQuantity; 

startReturning transition 

moveToInTime(get_Main().bulldozerPointer4.getX(), 
get_Main().bulldozerPointer4.getY() - (indexNumber 
* 20), timeToReturn); 

startTurningB transition 

moveToInTime(get_Main().bulldozerPointer.getX(), 
get_Main().bulldozerPointer.getY() - (indexNumber 
* 20), timeToTurn); 
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The Loader Agent: 

Table A-6: Loader class elements and transitions in ABSEMO (Java code) 

Element/s Java Code 

 

boolean  isTriangular = 
bucketCapacityUser.startsWith("T"); 
boolean  isUniform = 
bucketCapacityUser.startsWith("U"); 
boolean  isNormal = 
bucketCapacityUser.startsWith("N"); 
if(isTriangular){ 
int parLocation1 = 
bucketCapacityUser.indexOf('(',0); 
int parLocation2 = 
bucketCapacityUser.indexOf(')',parLocation1)
; 
int commaLocation1 = 
bucketCapacityUser.indexOf(',',0); 
int commaLocation2 = 
bucketCapacityUser.indexOf(',',commaLocation
1+1); 
String tempvalue1 = 
bucketCapacityUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
bucketCapacityUser.substring(commaLocation1+
1, commaLocation2); 
String tempvalue3 = 
bucketCapacityUser.substring(commaLocation2+
1,parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
double value3 = 
Double.parseDouble(tempvalue3); 
bucketCapacity = 
triangular(value1,value2,value3); 
} 
else if(isUniform){ 
int parLocation1 = 
bucketCapacityUser.indexOf('(',0); 
int parLocation2 = 
bucketCapacityUser.indexOf(')',parLocation1)
; 
int commaLocation1 = 
bucketCapacityUser.indexOf(',',0); 
String tempvalue1 = 
bucketCapacityUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
bucketCapacityUser.substring(commaLocation1+
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1, parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
bucketCapacity = uniform(value1,value2); 
} 
else if(isNormal){ 
int parLocation1 = 
bucketCapacityUser.indexOf('(',0); 
int parLocation2 = 
bucketCapacityUser.indexOf(')',parLocation1)
; 
int commaLocation1 = 
bucketCapacityUser.indexOf(',',0); 
String tempvalue1 = 
bucketCapacityUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
bucketCapacityUser.substring(commaLocation1+
1, parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
bucketCapacity = normal(value1,value2); 
} 
else{ 
bucketCapacity = 
Double.parseDouble(bucketCapacityUser); 
} 

 

boolean  isTriangular = 
timeToLoadFullBucketUser.startsWith("T"); 
boolean  isUniform = 
timeToLoadFullBucketUser.startsWith("U"); 
boolean  isNormal = 
timeToLoadFullBucketUser.startsWith("N"); 
if(isTriangular){ 
int parLocation1 = 
timeToLoadFullBucketUser.indexOf('(',0); 
int parLocation2 = 
timeToLoadFullBucketUser.indexOf(')',parLoca
tion1); 
int commaLocation1 = 
timeToLoadFullBucketUser.indexOf(',',0); 
int commaLocation2 = 
timeToLoadFullBucketUser.indexOf(',',commaLo
cation1+1); 
String tempvalue1 = 
timeToLoadFullBucketUser.substring(parLocati
on1+1, commaLocation1); 
String tempvalue2 = 
timeToLoadFullBucketUser.substring(commaLoca
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tion1+1, commaLocation2); 
String tempvalue3 = 
timeToLoadFullBucketUser.substring(commaLoca
tion2+1,parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
double value3 = 
Double.parseDouble(tempvalue3); 
timeToLoadFullBucket = 
triangular(value1,value2,value3); 
} 
else if(isUniform){ 
int parLocation1 = 
timeToLoadFullBucketUser.indexOf('(',0); 
int parLocation2 = 
timeToLoadFullBucketUser.indexOf(')',parLoca
tion1); 
int commaLocation1 = 
timeToLoadFullBucketUser.indexOf(',',0); 
String tempvalue1 = 
timeToLoadFullBucketUser.substring(parLocati
on1+1, commaLocation1); 
String tempvalue2 = 
timeToLoadFullBucketUser.substring(commaLoca
tion1+1, parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
timeToLoadFullBucket = 
uniform(value1,value2); 
} 
else if(isNormal){ 
int parLocation1 = 
timeToLoadFullBucketUser.indexOf('(',0); 
int parLocation2 = 
timeToLoadFullBucketUser.indexOf(')',parLoca
tion1); 
int commaLocation1 = 
timeToLoadFullBucketUser.indexOf(',',0); 
String tempvalue1 = 
timeToLoadFullBucketUser.substring(parLocati
on1+1, commaLocation1); 
String tempvalue2 = 
timeToLoadFullBucketUser.substring(commaLoca
tion1+1, parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
timeToLoadFullBucket = 



146 

 

Element/s Java Code 

normal(value1,value2); 
} 
else{ 
timeToLoadFullBucket = 
Double.parseDouble(timeToLoadFullBucketUser)
; 
} 

 

boolean  isTriangular = 
timeToAdjustWhileFullUser.startsWith("T"); 
boolean  isUniform = 
timeToAdjustWhileFullUser.startsWith("U"); 
boolean  isNormal = 
timeToAdjustWhileFullUser.startsWith("N"); 
if(isTriangular){ 
int parLocation1 = 
timeToAdjustWhileFullUser.indexOf('(',0); 
int parLocation2 = 
timeToAdjustWhileFullUser.indexOf(')',parLoc
ation1); 
 
int commaLocation1 = 
timeToAdjustWhileFullUser.indexOf(',',0); 
int commaLocation2 = 
timeToAdjustWhileFullUser.indexOf(',',commaL
ocation1+1); 
String tempvalue1 = 
timeToAdjustWhileFullUser.substring(parLocat
ion1+1, commaLocation1); 
String tempvalue2 = 
timeToAdjustWhileFullUser.substring(commaLoc
ation1+1, commaLocation2); 
String tempvalue3 = 
timeToAdjustWhileFullUser.substring(commaLoc
ation2+1,parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
double value3 = 
Double.parseDouble(tempvalue3); 
timeToAdjustWhileFull = 
triangular(value1,value2,value3); 
} 
else if(isUniform){ 
int parLocation1 = 
timeToAdjustWhileFullUser.indexOf('(',0); 
int parLocation2 = 
timeToAdjustWhileFullUser.indexOf(')',parLoc
ation1); 
int commaLocation1 = 
bucketCapacityUser.indexOf(',',0); 
String tempvalue1 = 
timeToAdjustWhileFullUser.substring(parLocat
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ion1+1, commaLocation1); 
String tempvalue2 = 
timeToAdjustWhileFullUser.substring(commaLoc
ation1+1, parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
timeToAdjustWhileFull = 
uniform(value1,value2); 
} 
else if(isNormal){ 
int parLocation1 = 
timeToAdjustWhileFullUser.indexOf('(',0); 
int parLocation2 = 
timeToAdjustWhileFullUser.indexOf(')',parLoc
ation1); 
int commaLocation1 = 
timeToAdjustWhileFullUser.indexOf(',',0); 
String tempvalue1 = 
timeToAdjustWhileFullUser.substring(parLocat
ion1+1, commaLocation1); 
String tempvalue2 = 
timeToAdjustWhileFullUser.substring(commaLoc
ation1+1, parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
timeToAdjustWhileFull = 
normal(value1,value2); 
} 
else{ 
timeToAdjustWhileFull = 
Double.parseDouble(timeToAdjustWhileFullUser
); 
} 

 

boolean  isTriangular = 
timeToUnloadFullBucketUser.startsWith("T"); 
boolean  isUniform = 
timeToUnloadFullBucketUser.startsWith("U"); 
boolean  isNormal = 
timeToUnloadFullBucketUser.startsWith("N"); 
if(isTriangular){ 
int parLocation1 = 
timeToUnloadFullBucketUser.indexOf('(',0); 
int parLocation2 = 
timeToUnloadFullBucketUser.indexOf(')',parLo
cation1); 
int commaLocation1 = 
timeToUnloadFullBucketUser.indexOf(',',0); 
int commaLocation2 = 
timeToUnloadFullBucketUser.indexOf(',',comma
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Location1+1); 
String tempvalue1 = 
timeToUnloadFullBucketUser.substring(parLoca
tion1+1, commaLocation1); 
String tempvalue2 = 
timeToUnloadFullBucketUser.substring(commaLo
cation1+1, commaLocation2); 
String tempvalue3 = 
timeToUnloadFullBucketUser.substring(commaLo
cation2+1,parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
double value3 = 
Double.parseDouble(tempvalue3); 
timeToUnloadFullBucket = 
triangular(value1,value2,value3); 
} 
else if(isUniform){ 
int parLocation1 = 
timeToUnloadFullBucketUser.indexOf('(',0); 
int parLocation2 = 
timeToUnloadFullBucketUser.indexOf(')',parLo
cation1); 
int commaLocation1 = 
bucketCapacityUser.indexOf(',',0); 
String tempvalue1 = 
timeToUnloadFullBucketUser.substring(parLoca
tion1+1, commaLocation1); 
String tempvalue2 = 
timeToUnloadFullBucketUser.substring(commaLo
cation1+1, parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
timeToUnloadFullBucket = 
uniform(value1,value2); 
} 
else if(isNormal){ 
int parLocation1 = 
timeToUnloadFullBucketUser.indexOf('(',0); 
int parLocation2 = 
timeToUnloadFullBucketUser.indexOf(')',parLo
cation1); 
int commaLocation1 = 
timeToUnloadFullBucketUser.indexOf(',',0); 
String tempvalue1 = 
timeToUnloadFullBucketUser.substring(parLoca
tion1+1, commaLocation1); 
String tempvalue2 = 
timeToUnloadFullBucketUser.substring(commaLo
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cation1+1, parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
timeToUnloadFullBucket = 
normal(value1,value2); 
} 
else{ 
timeToUnloadFullBucket = 
Double.parseDouble(timeToUnloadFullBucketUse
r); 
} 

 

boolean  isTriangular = 
timeToAdjustWhileEmptyUser.startsWith("T"); 
boolean  isUniform = 
timeToAdjustWhileEmptyUser.startsWith("U"); 
boolean  isNormal = 
timeToAdjustWhileEmptyUser.startsWith("N"); 
if(isTriangular){ 
int parLocation1 = 
timeToAdjustWhileEmptyUser.indexOf('(',0); 
int parLocation2 = 
timeToAdjustWhileEmptyUser.indexOf(')',parLo
cation1); 
int commaLocation1 = 
timeToAdjustWhileEmptyUser.indexOf(',',0); 
int commaLocation2 = 
timeToAdjustWhileEmptyUser.indexOf(',',comma
Location1+1); 
String tempvalue1 = 
timeToAdjustWhileEmptyUser.substring(parLoca
tion1+1, commaLocation1); 
String tempvalue2 = 
timeToAdjustWhileEmptyUser.substring(commaLo
cation1+1, commaLocation2); 
String tempvalue3 = 
timeToAdjustWhileEmptyUser.substring(commaLo
cation2+1,parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
double value3 = 
Double.parseDouble(tempvalue3); 
timeToAdjustWhileEmpty = 
triangular(value1,value2,value3); 
} 
else if(isUniform){ 
int parLocation1 = 
timeToAdjustWhileEmptyUser.indexOf('(',0); 
int parLocation2 = 
timeToAdjustWhileEmptyUser.indexOf(')',parLo
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cation1); 
int commaLocation1 = 
bucketCapacityUser.indexOf(',',0); 
String tempvalue1 = 
timeToAdjustWhileEmptyUser.substring(parLoca
tion1+1, commaLocation1); 
String tempvalue2 = 
timeToAdjustWhileEmptyUser.substring(commaLo
cation1+1, parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
timeToAdjustWhileEmpty = 
uniform(value1,value2); 
} 
else if(isNormal){ 
int parLocation1 = 
timeToAdjustWhileEmptyUser.indexOf('(',0); 
int parLocation2 = 
timeToAdjustWhileEmptyUser.indexOf(')',parLo
cation1); 
int commaLocation1 = 
timeToAdjustWhileEmptyUser.indexOf(',',0); 
String tempvalue1 = 
timeToAdjustWhileEmptyUser.substring(parLoca
tion1+1, commaLocation1); 
String tempvalue2 = 
timeToAdjustWhileEmptyUser.substring(commaLo
cation1+1, parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
timeToAdjustWhileEmpty = 
normal(value1,value2); 
} 
else{ 
timeToAdjustWhileEmpty = 
Double.parseDouble(timeToAdjustWhileEmptyUse
r); 
} 

 

 

if(get_Main().soilAvailableForLoading > 
bucketCapacity){ 
return bucketCapacity; 
} 
else { 
return get_Main().soilAvailableForLoading; 
} 

 

if (carriedEarth < Hauler.availableSpace){ 
return carriedEarth; 
}else{ 
get_Main().soilAvailableForLoading = 
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Element/s Java Code 

get_Main().soilAvailableForLoading + 
carriedEarth - Hauler.availableSpace; 
return Hauler.availableSpace; 
} 

soilAvailable transition 

Condition: 
get_Main().soilAvailableForLoading > 0 
carriedEarth = loadingType(); 
get_Main().soilAvailableForLoading = 
get_Main().soilAvailableForLoading - 
carriedEarth; 
timeToLoadBucket = timeToLoadFullBucket 
*(carriedEarth/bucketCapacity); 

loadReadyA transition 
Timeout: timeToLoadBucket + 
timeToAdjustWhileFull 
setRotation(3.14159265359); 

haulerAvailable transition 

Condition: 
get_Main().thereAreRequestsLoader() 
Hauler = get_Main().getRequestLoader(); 
send( this, Hauler ); 

startUnloading transition 

Message: "BEGIN UNLOADING" 
unloadingQuantity = unloadingType(); 
timeToUnloadBucket = timeToUnloadFullBucket 
*(unloadingQuantity/bucketCapacity); 

finishUnloading transition 

Timeout: timeToUnloadBucket 
Hauler.carriedEarth = Hauler.carriedEarth + 
unloadingQuantity; 
Hauler.availableSpace = 
Hauler.availableSpace - unloadingQuantity; 
carriedEarth=0; 

haulerNotFilled transition setRotation(0); 

continueLoading transition Timeout: timeToAdjustWhileEmpty 

loadReadyB transition 

Timeout: timeToLoadBucket 
carriedEarth = loadingType(); 
get_Main().soilAvailableForLoading = 
get_Main().soilAvailableForLoading - 
carriedEarth; 

continueUnloading transition 

Timeout: timeToAdjustWhileFull 
setRotation(3.14159265359); 
unloadingQuantity = unloadingType(); 
timeToUnloadBucket = timeToUnloadFullBucket 
*(unloadingQuantity/bucketCapacity); 

haulerFilled transition 

Condition: (Hauler.carriedEarth == 
Hauler.capacity) || 
(get_Main().soilAvailableForLoading == 0) 
(Hauler.carriedEarth == Hauler.capacity) || 
(get_Main().soilAvailableForLoading == 0) 

returnToWaitingPosition transition Timeout: timeToAdjustWhileEmpty 
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The Hauler Agent: 

Table A-7: Hauler class elements and transitions in ABSEMO (Java code) 

Element/s Java Code 

Startup code 

Point pt = 
get_Main().haulerQueueL.randomPointInside(); 
setXY(pt.x, pt.y); 
setRotation(3.14159265359); 

 

 

 

boolean  isTriangular = 
capacityUser.startsWith("T"); 
boolean  isUniform = 
capacityUser.startsWith("U"); 
boolean  isNormal = 
capacityUser.startsWith("N"); 
if(isTriangular){ 
int parLocation1 = 
capacityUser.indexOf('(',0); 
int parLocation2 = 
capacityUser.indexOf(')',parLocation1); 
int commaLocation1 = 
capacityUser.indexOf(',',0); 
int commaLocation2 = 
capacityUser.indexOf(',',commaLocation1+1); 
String tempvalue1 = 
capacityUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
capacityUser.substring(commaLocation1+1, 
commaLocation2); 
String tempvalue3 = 
capacityUser.substring(commaLocation2+1,parL
ocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
double value3 = 
Double.parseDouble(tempvalue3); 
capacity = triangular(value1,value2,value3); 
} 
else if(isUniform){ 
int parLocation1 = 
capacityUser.indexOf('(',0); 
int parLocation2 = 
capacityUser.indexOf(')',parLocation1); 
int commaLocation1 = 
capacityUser.indexOf(',',0); 
String tempvalue1 = 
capacityUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
capacityUser.substring(commaLocation1+1, 
parLocation2); 
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Element/s Java Code 

double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
 
capacity = uniform(value1,value2); 
} 
else if(isNormal){ 
int parLocation1 = 
capacityUser.indexOf('(',0); 
int parLocation2 = 
capacityUser.indexOf(')',parLocation1); 
int commaLocation1 = 
capacityUser.indexOf(',',0); 
String tempvalue1 = 
capacityUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
capacityUser.substring(commaLocation1+1, 
parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
capacity = normal(value1,value2); 
} 
else{ 
capacity = Double.parseDouble(capacityUser); 
} 

 

boolean  isTriangular = 
movingToLoadPositionTimeUser.startsWith("T")
; 
boolean  isUniform = 
movingToLoadPositionTimeUser.startsWith("U")
; 
boolean  isNormal = 
movingToLoadPositionTimeUser.startsWith("N")
; 
if(isTriangular){ 
int parLocation1 = 
movingToLoadPositionTimeUser.indexOf('(',0); 
int parLocation2 = 
movingToLoadPositionTimeUser.indexOf(')',par
Location1); 
int commaLocation1 = 
movingToLoadPositionTimeUser.indexOf(',',0); 
int commaLocation2 = 
movingToLoadPositionTimeUser.indexOf(',',com
maLocation1+1); 
String tempvalue1 = 
movingToLoadPositionTimeUser.substring(parLo
cation1+1, commaLocation1); 
String tempvalue2 = 
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movingToLoadPositionTimeUser.substring(comma
Location1+1, commaLocation2); 
String tempvalue3 = 
movingToLoadPositionTimeUser.substring(comma
Location2+1,parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
double value3 = 
Double.parseDouble(tempvalue3); 
movingToLoadPositionTime = 
triangular(value1,value2,value3); 
} 
else if(isUniform){ 
int parLocation1 = 
movingToLoadPositionTimeUser.indexOf('(',0); 
int parLocation2 = 
movingToLoadPositionTimeUser.indexOf(')',par
Location1); 
int commaLocation1 = 
movingToLoadPositionTimeUser.indexOf(',',0); 
String tempvalue1 = 
movingToLoadPositionTimeUser.substring(parLo
cation1+1, commaLocation1); 
String tempvalue2 = 
movingToLoadPositionTimeUser.substring(comma
Location1+1, parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
movingToLoadPositionTime = 
uniform(value1,value2); 
} 
else if(isNormal){ 
int parLocation1 = 
movingToLoadPositionTimeUser.indexOf('(',0); 
int parLocation2 = 
movingToLoadPositionTimeUser.indexOf(')',par
Location1); 
int commaLocation1 = 
movingToLoadPositionTimeUser.indexOf(',',0); 
String tempvalue1 = 
movingToLoadPositionTimeUser.substring(parLo
cation1+1, commaLocation1); 
String tempvalue2 = 
movingToLoadPositionTimeUser.substring(comma
Location1+1, parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
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Element/s Java Code 

movingToLoadPositionTime = 
normal(value1,value2); 
} 
else{ 
movingToLoadPositionTime = 
Double.parseDouble(movingToLoadPositionTimeU
ser); 
} 

 

 

 

boolean  isTriangular = 
haulingTimeUser.startsWith("T"); 
boolean  isUniform = 
haulingTimeUser.startsWith("U"); 
boolean  isNormal = 
haulingTimeUser.startsWith("N"); 
if(isTriangular){ 
int parLocation1 = 
haulingTimeUser.indexOf('(',0); 
int parLocation2 = 
haulingTimeUser.indexOf(')',parLocation1); 
int commaLocation1 = 
haulingTimeUser.indexOf(',',0); 
int commaLocation2 = 
haulingTimeUser.indexOf(',',commaLocation1+1
); 
String tempvalue1 = 
haulingTimeUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
haulingTimeUser.substring(commaLocation1+1, 
commaLocation2); 
String tempvalue3 = 
haulingTimeUser.substring(commaLocation2+1,p
arLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
double value3 = 
Double.parseDouble(tempvalue3); 
haulingTime = 
triangular(value1,value2,value3); 
} 
else if(isUniform){ 
int parLocation1 = 
haulingTimeUser.indexOf('(',0); 
int parLocation2 = 
haulingTimeUser.indexOf(')',parLocation1); 
int commaLocation1 = 
haulingTimeUser.indexOf(',',0); 
String tempvalue1 = 
haulingTimeUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
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Element/s Java Code 

haulingTimeUser.substring(commaLocation1+1, 
parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
haulingTime = uniform(value1,value2); 
} 
else if(isNormal){ 
int parLocation1 = 
haulingTimeUser.indexOf('(',0); 
int parLocation2 = 
haulingTimeUser.indexOf(')',parLocation1); 
int commaLocation1 = 
haulingTimeUser.indexOf(',',0); 
String tempvalue1 = 
haulingTimeUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
haulingTimeUser.substring(commaLocation1+1, 
parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
haulingTime = normal(value1,value2); 
} 
else{ 
haulingTime = 
Double.parseDouble(haulingTimeUser); 
} 

 

boolean  isTriangular = 
movingToDumpPositionTimeUser.startsWith("T")
; 
boolean  isUniform = 
movingToDumpPositionTimeUser.startsWith("U")
; 
boolean  isNormal = 
movingToDumpPositionTimeUser.startsWith("N")
; 
if(isTriangular){ 
int parLocation1 = 
movingToDumpPositionTimeUser.indexOf('(',0); 
int parLocation2 = 
movingToDumpPositionTimeUser.indexOf(')',par
Location1); 
int commaLocation1 = 
movingToDumpPositionTimeUser.indexOf(',',0); 
int commaLocation2 = 
movingToDumpPositionTimeUser.indexOf(',',com
maLocation1+1); 
String tempvalue1 = 
movingToDumpPositionTimeUser.substring(parLo
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cation1+1, commaLocation1); 
String tempvalue2 = 
movingToDumpPositionTimeUser.substring(comma
Location1+1, commaLocation2); 
String tempvalue3 = 
movingToDumpPositionTimeUser.substring(comma
Location2+1,parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
double value3 = 
Double.parseDouble(tempvalue3); 
movingToDumpPositionTime = 
triangular(value1,value2,value3); 
} 
else if(isUniform){ 
int parLocation1 = 
movingToDumpPositionTimeUser.indexOf('(',0); 
int parLocation2 = 
movingToDumpPositionTimeUser.indexOf(')',par
Location1); 
int commaLocation1 = 
movingToDumpPositionTimeUser.indexOf(',',0); 
String tempvalue1 = 
movingToDumpPositionTimeUser.substring(parLo
cation1+1, commaLocation1); 
String tempvalue2 = 
movingToDumpPositionTimeUser.substring(comma
Location1+1, parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
movingToDumpPositionTime = 
uniform(value1,value2); 
} 
else if(isNormal){ 
int parLocation1 = 
movingToDumpPositionTimeUser.indexOf('(',0); 
int parLocation2 = 
movingToDumpPositionTimeUser.indexOf(')',par
Location1); 
int commaLocation1 = 
movingToDumpPositionTimeUser.indexOf(',',0); 
String tempvalue1 = 
movingToDumpPositionTimeUser.substring(parLo
cation1+1, commaLocation1); 
String tempvalue2 = 
movingToDumpPositionTimeUser.substring(comma
Location1+1, parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
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double value2 = 
Double.parseDouble(tempvalue2); 
movingToDumpPositionTime = 
normal(value1,value2); 
} 
else{ 
movingToDumpPositionTime = 
Double.parseDouble(movingToDumpPositionTimeU
ser); 
} 

 

 

boolean  isTriangular = 
dumpingTimeUser.startsWith("T"); 
boolean  isUniform = 
dumpingTimeUser.startsWith("U"); 
boolean  isNormal = 
dumpingTimeUser.startsWith("N"); 
if(isTriangular){ 
int parLocation1 = 
dumpingTimeUser.indexOf('(',0); 
int parLocation2 = 
dumpingTimeUser.indexOf(')',parLocation1); 
int commaLocation1 = 
dumpingTimeUser.indexOf(',',0); 
int commaLocation2 = 
dumpingTimeUser.indexOf(',',commaLocation1+1
); 
String tempvalue1 = 
dumpingTimeUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
dumpingTimeUser.substring(commaLocation1+1, 
commaLocation2); 
String tempvalue3 = 
dumpingTimeUser.substring(commaLocation2+1,p
arLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
double value3 = 
Double.parseDouble(tempvalue3); 
dumpingTime = 
triangular(value1,value2,value3); 
} 
else if(isUniform){ 
int parLocation1 = 
dumpingTimeUser.indexOf('(',0); 
int parLocation2 = 
dumpingTimeUser.indexOf(')',parLocation1); 
int commaLocation1 = 
dumpingTimeUser.indexOf(',',0); 
String tempvalue1 = 
dumpingTimeUser.substring(parLocation1+1, 
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commaLocation1); 
String tempvalue2 = 
dumpingTimeUser.substring(commaLocation1+1, 
parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
dumpingTime = uniform(value1,value2); 
} 
else if(isNormal){ 
int parLocation1 = 
dumpingTimeUser.indexOf('(',0); 
int parLocation2 = 
dumpingTimeUser.indexOf(')',parLocation1); 
int commaLocation1 = 
dumpingTimeUser.indexOf(',',0); 
String tempvalue1 = 
dumpingTimeUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
dumpingTimeUser.substring(commaLocation1+1, 
parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
dumpingTime = normal(value1,value2); 
} 
else{ 
dumpingTime = 
Double.parseDouble(dumpingTimeUser); 
} 

 

 

boolean  isTriangular = 
returningTimeUser.startsWith("T"); 
boolean  isUniform = 
returningTimeUser.startsWith("U"); 
boolean  isNormal = 
returningTimeUser.startsWith("N"); 
if(isTriangular){ 
int parLocation1 = 
returningTimeUser.indexOf('(',0); 
int parLocation2 = 
returningTimeUser.indexOf(')',parLocation1); 
int commaLocation1 = 
returningTimeUser.indexOf(',',0); 
int commaLocation2 = 
returningTimeUser.indexOf(',',commaLocation1
+1); 
String tempvalue1 = 
returningTimeUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
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returningTimeUser.substring(commaLocation1+1
, commaLocation2); 
String tempvalue3 = 
returningTimeUser.substring(commaLocation2+1
,parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
double value3 = 
Double.parseDouble(tempvalue3); 
returningTime = 
triangular(value1,value2,value3); 
} 
else if(isUniform){ 
int parLocation1 = 
returningTimeUser.indexOf('(',0); 
int parLocation2 = 
returningTimeUser.indexOf(')',parLocation1); 
int commaLocation1 = 
returningTimeUser.indexOf(',',0); 
String tempvalue1 = 
returningTimeUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
returningTimeUser.substring(commaLocation1+1
, parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
returningTime = uniform(value1,value2); 
} 
else if(isNormal){ 
int parLocation1 = 
returningTimeUser.indexOf('(',0); 
int parLocation2 = 
returningTimeUser.indexOf(')',parLocation1); 
int commaLocation1 = 
returningTimeUser.indexOf(',',0); 
String tempvalue1 = 
returningTimeUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
returningTimeUser.substring(commaLocation1+1
, parLocation2); 
 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
returningTime = normal(value1,value2); 
} 
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else{ 
returningTime = 
Double.parseDouble(returningTimeUser); 
} 

goToLoadingPosition transition 

Message: unconditional (any message) 
Loader=msg; 
moveToInTime(Loader.getX(), Loader.getY() 
+30, movingToLoadPositionTime); 

startLoading transition send("BEGIN UNLOADING", Loader); 

finishLoading transition 
Message: "FINISHED LOADING" 
Loader = null; 

startHauling transition 
Point pt = 
get_Main().haulerQueueD.randomPointInside(); 
moveToInTime(pt.x, pt.y, haulingTime); 

readyForSpotter transition get_Main().haulerRequestsSpotter( this ); 

goToDumpingPosition transition 

Message: unconditional (any message) 
Spotter=msg; 
moveToInTime(Spotter.getX(), Spotter.getY() 
+25, movingToDumpPositionTime); 

spotterAvailable transition 
send("BEGIN DUMPING", Spotter); 
setRotation(3.14159265359); 

startReturning1 transition 

Message: "FINISHED DUMPING" 
get_Main().dumpedSoil = 
get_Main().dumpedSoil + carriedEarth; 
carriedEarth = 0; 
availableSpace = capacity; 
Spotter = null; 

readyToReturn transition 
Point pt = 
get_Main().haulerQueueL.randomPointInside(); 
moveToInTime(pt.x, pt.y, returningTime); 

readyForLoader transition setRotation(3.14159265359); 
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The Spotter Agent: 

Table A-8: Spotter class elements and transitions in ABSEMO (Java code) 

Element/s Java Code 

 

boolean  isTriangular = 
dumpingTimeUser.startsWith("T"); 
boolean  isUniform = 
dumpingTimeUser.startsWith("U"); 
boolean  isNormal = 
dumpingTimeUser.startsWith("N"); 
if(isTriangular){ 
int parLocation1 = 
dumpingTimeUser.indexOf('(',0); 
int parLocation2 = 
dumpingTimeUser.indexOf(')',parLocation1); 
int commaLocation1 = 
dumpingTimeUser.indexOf(',',0); 
int commaLocation2 = 
dumpingTimeUser.indexOf(',',commaLocation1+1
); 
String tempvalue1 = 
dumpingTimeUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
dumpingTimeUser.substring(commaLocation1+1, 
commaLocation2); 
String tempvalue3 = 
dumpingTimeUser.substring(commaLocation2+1,p
arLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
double value3 = 
Double.parseDouble(tempvalue3); 
dumpingTime = 
triangular(value1,value2,value3); 
} 
else if(isUniform){ 
int parLocation1 = 
dumpingTimeUser.indexOf('(',0); 
int parLocation2 = 
dumpingTimeUser.indexOf(')',parLocation1); 
int commaLocation1 = 
dumpingTimeUser.indexOf(',',0); 
String tempvalue1 = 
dumpingTimeUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
dumpingTimeUser.substring(commaLocation1+1, 
parLocation2); 
double value1 = 
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Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
dumpingTime = uniform(value1,value2); 
} 
else if(isNormal){ 
int parLocation1 = 
dumpingTimeUser.indexOf('(',0); 
int parLocation2 = 
dumpingTimeUser.indexOf(')',parLocation1); 
int commaLocation1 = 
dumpingTimeUser.indexOf(',',0); 
String tempvalue1 = 
dumpingTimeUser.substring(parLocation1+1, 
commaLocation1); 
String tempvalue2 = 
dumpingTimeUser.substring(commaLocation1+1, 
parLocation2); 
double value1 = 
Double.parseDouble(tempvalue1); 
double value2 = 
Double.parseDouble(tempvalue2); 
dumpingTime = normal(value1,value2); 
} 
else{ 
dumpingTime = 
Double.parseDouble(dumpingTimeUser); 
} 

haulerAvailable transition 

Condition: 
get_Main().thereAreRequestsSpotter() 
Hauler = get_Main().getRequestSpotter(); 
send( this, Hauler ); 

startSpotting transition 
Condition: "BEGIN DUMPING" 

 

finishedSpotting transition Timeout: dumpingTime (Hauler variable) 

timeToGetReady transition Timeout: timeToAdjustPosition 

 


