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Abstract

Diameter and Broadcast Time of the Knddel graph

Efficient dissemination of information remains a central challenge for all types of
networks. There are two ways to handle this issue. One way is to compress the amount of
data being transferred and the second way is to minimize the delay of information
distribution. Well-received approaches used in the second way either design efficient
algorithms or implement reliable network architectures with optimal dissemination time.
Among the well-known network architectures, the Knddel graph can be considered a
suitable candidate for the problem of information dissemination. The Knddel graph W, ,,
is a regular graph, of an even order n and degree d, 1 < d < |log, n]. The Knddel graph
was introduced by W. Knodel almost four decades ago as network architecture with good
properties in terms of broadcasting and gossiping in interconnected networks. Although
the Knddel graph has a highly symmetric structure, its diameter is only known for W, ,a.
Recently, the general upper and lower bounds on diameter and broadcast time of the
Knddel graph have been presented.

In this thesis, our motivation is to find the diameter, the number of vertices at a
particular distance and the broadcast time of the Knddel graph. Theoretically, we succeed
to prove the diameter and broadcast time of the Knddel graph W ,,. We also claim that
the Knodel graph W3 ,, for n = 4 mod 6 and n > 16 is a diametral broadcast graph. We
present that W3 5, is a broadcast graph. Experimentally, however, we obtain the following
results; (a) the diameter of some specific Knddel graphs, and (b) the propositions on the
number of vertices at a particular distance. We also construct a new graph, denoted as
HW ; ,a, by connecting Knddel graph W ;_, ,a-1 to hypercube H;_; and experimentally

show that HW ; ,a has even a smaller diameter than Knddel graph W ,a.
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Chapter 1

Introduction

Since the birth of the Internet, our world has become a global village where
almost all commercial, social, private, public, and research and development networks
are covered under the umbrella of the Internet. Fast and reliable dissemination of
information remains the central issue in all types of real networks such as ad-hoc,
wireless, satellite communications, supercomputers, Internet, cloud-based infrastructure.
Much effort, money and time has been spent improving dissemination of information.
There are two ways to approach this issue. One way would be to compress the amount of
data that is being transferred and the second way would be to minimize the delay of
information distribution. The well-received approaches used in the second way either
design efficient algorithms or implement reliable network architectures with optimal
dissemination time. Network architecture can be defined as the logical and structural
layout of the network. Regular network architectures provide the platform to implement
the powerful algorithms related to routing, broadcasting and parallel and distributed

computing [42].

1.1 Network architecture design

There are some important aspects of network architecture design i.e., (1) network
implementation cost (ii) support to create or extend a network to any size, (iii)
performance of the network architecture in terms of information dissemination. Along

with other aspects of network architecture design, the above three play an important role
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in the design of network architecture. There are many network architectures available for
dissemination of information, each with its own advantages and limitations. For instance,
some networks are less expensive in terms of implementation cost but they lack the
ability to provide better performance. In another case, the network architecture may
provide a better performance, but it may not support the creation or extension of a
network to any size. A network architecture is needed that not only provides better
performance, low implementation costs, and the support to create a network of any size,
but also appropriately addresses and handles other important issues related to the
dissemination of information.

Among well-known network architectures, the Knddel graph can be considered a
suitable candidate for the problem of information dissemination. The Knodel graph not
only supports important aspects of network architecture design, but it also contains a
wide class of graphs. Using the Knddel graph one can design any type of network, where

either distribution of information is on high priority or with less implementation cost.

1.2 Communication model for dissemination of information

In this thesis, we focus on the problem of broadcasting. Broadcasting is a process
of information distribution in an interconnected network by which messages are
transmitted from the originator to the remaining nodes of the network. To broadcast in a
network, we consider the classical communication model. This model is simple and can
be utilized when small messages are exchanged. Additionally, this model is also suitable
for the type of networks, where the nodes of the network have very limited processing

power and resources.



We studied the problem of information dissemination under these constraints:

e Each call requires one unit of time.

e A vertex can participate in only one call per unit of time.

e Each call involves only one informed vertex and one of its uninformed neighbors.
The following section provides definitions and notations helpful to understand the

research work provided in this thesis.

1.3 Definitions and notations

In general, any interconnected network can be modeled as a graph G = (V, E),
where V' is the set of vertices (nodes) and E is the set of edges (communication links) as
depicted by Figure 1.1.
G =(V,E)
V = {vy,v;,v3, 04 05}

E = {e1;,€33,€43,€24,€54, €15, }

e
Vs 4y,

Figure 1.1 Graph G with 5 vertices and degree 3

Two vertices u, v € V, are adjacent, if there is an edge e € E, such that e = (u, v).
In this case, we can say that u and v are neighbors. The degree of vertex v, deg(v), is
the number of neighbors of this vertex. The degree of graph G, A(G), is the maximum

degree among all vertices, formally written as:
A(G) = max{deg(v) |v eV}

Figure 1.2 demonstrates that A(G) = 3. A graph G, where each vertex has the same

degree, is called a regular graph. A path P ina graph G, is a sequence of edges which



deg(vs) deg(v,)

Graph G
deq(v2)

deg(vs) deq(va)
Figure 1.2 The degree of graph G'is 3

connect a sequence of vertices. Generally it is of the form P = (vy,vy,...,v,, ), n > 1,
where the length of the path is the number of edges of P. The length of the shortest path
between two vertices v and u is the distance between them, dist(v, u). The diameter of
the graph is the maximum distance between any pair of vertices of the graph:

D(G) = max{dist(v,u) |v,u € V}
A graph is connected, if there is a path between every two nodes in G.

Broadcasting and gossiping are two problems of information dissemination
described for a group of individuals connected by a communication network. In
broadcasting, an individual has a piece of information which needs to be communicated
to everyone else. In gossiping, each person in the network has a unique piece of
information and needs to communicate it to everyone else [33].

The message broadcasting from originator v in a graph G = (V,E) is a sequence
of vertex sets{v}=5,cS; ¢ S, =V, where each S; represents the set of
informed vertices after the i-¢4 time unit. All vertices from S;\S;_; are connected by
disjoint edges with S;_;. Given an originator v, the broadcast time, b(v), is defined as the
minimum number of time units required to complete broadcasting from vertex v. It is
easy to conclude that for any vertex v in a connected graph G with n vertices,

[log,n] < b(v) < n—1, since during each time unit the number of informed vertices



can at most double. The broadcast time of graph G, b(G), is defined as the maximum
broadcast time among all the vertices, formally written as:
b(G) = max{b(v) |v €V}
The process of broadcasting and the broadcast time of graph G are demonstrated

in Figure 1.3, where v, is the originator of broadcasting.

V1 U, V1 U,
Graph G 1
143 Uy Vs 2
Time 0, S, = {v;} Time 1, §; = {vy,v2}
(a) (b)
v1 1 172 ‘Ul 1 UZ
2 2
2 U3 2 V3
3
Vs Uy Vs Vs
Time 2, S, = {v4,v,,V3,Vs5} Time 3, S3 = {vq,v,, V3,0, Vs5}
(c) (d)

Figure 1.3 The process of broadcasting in graph G, where b(G) =3

A graph on n vertices with b(G) = [log,n| is called a broadcast graph. A
broadcast graph with the minimum possible number of edges is called minimum
broadcast graph (mbg). The broadcast function, denoted B(n), is defined as the number
of edges in an n vertex mbg. A minimum gossip graph is a gossip graph with a minimum
number of edges. The graph, where the broadcast time equals to its diameter, is called the

diametral broadcast graph.



1.4 Motivation

Many interconnection networks for efficient communication are considered in the
literature i.e., Path B,, Cycle C,, Complete tree Tj*, Complete graph K,,, Hypercube H,,,
Cube-connected cycles CCC,,, Butterfly BF,,, Shuffle-exchange SE,,, DeBruijn DB,,,
Grid Gla, X a, X ... X ay] and Recursive circulant G(2™,4) [36][37]. All these network
architectures either have constant degree and relatively small diameter or they have
logarithmic degree and logarithmic diameter. Also all of the above mentioned
interconnection networks can be designed only for specific number of nodes. In particular
the network architectures i.e., ", H,,, CCCp, BEy, SE,, DBy, Gla; X a, X... X ay4]
and G(2™,4) have (K™ —1)/(k — 1), 2™, m2™, m2™, 2™ 2™, a, a, ..ay and 2™
number of nodes, respectively.

Compared to all of the networks, Knodel graph is the only network that can be
designed for any even number of nodes. Moreover, the degree of every node in Knddel
graph on n nodes can be any value between 2 and [log, n|. When the degree of Knodel
graph is 2, then it becomes the well-known cycle. When the degree is equal to |log, n|,
then Knddel graph is a broadcast and gossip graph, in which the main communication
tasks can be performed, theoretically in minimum possible time.

The above properties make the Knoddel graph the largest possible unique
interconnection network, which could be sparse (when degree is constant) or dense (when
degree is logarithmic of n). This way Knddel graph can be suitable for all possible
applications based on communication time, network design or implementation cost.

All this gives us the motivation to study the Knddel graph. Therefore, in this
thesis we studied the diameter, broadcast time and also the number of nodes at particular
distance in Knddel graph for all possible even number of nodes and degree of any node.

6



1.5 Contribution of this thesis

In this thesis, our motivation is to find the diameter, the number of vertices at a
particular distance and the broadcast time of the Knddel graph. Theoretically, we succeed
in proving the diameter and the broadcast time of the Knodel graph Ws,,. We claim that
the Knodel graph W3, for n = 4mod 6 and n > 16, is the first infinite family of
diametral broadcast graphs in the Knddel graph W, ,. Experimentally, however, we
obtain the following results: (a) the diameter of some specific Knddel graphs, and (b) the
propositions on the number of vertices at a particular distance. The obtained results

increase the list of explored communication properties of the Knddel graph.

1.6 Thesis outline

The rest of the thesis is structured as follows: Chapter 2 is divided in two sections;
the first section covers the brief review of commonly used interconnection topologies.
The second section surveys the Knddel graph in the light of known important results from
the previous research work.

Chapter 3 is divided in three sections. In the first section, the diameter of the
Knodel graph W3, for n > 8, is given through a constructive proof. In the second
section, we give the diameters of some specific Knodel graphs through extensive
simulation. In the last section, we present three propositions for the number of vertices at
a particular distance in some specific Knddel graphs.

In Chapter 4, we present the broadcast time of Knodel graph W;,. We also
present that Knodel graph W3 ,,, for n = 4 mod 6 and n > 16, is the first infinite family

of the diametral broadcast graphs in the Knodel graph W ,,.



In chapter 5, we construct a new graph, denoted as HW ; ,4, by connecting the
vertices of the Knddel graph W,_,,a-1 to hypercube Hy_;. We investigate the
communication properties of HW ;,a in terms of number of vertices, degree, edges,

diameter, and broadcast time. With the use of extensive simulation, we provide diameter

and broadcast time of H Wd’zd forall d < 24.

Chapter 6 concludes the thesis and lists the future work.



Chapter 2

Literature Review

This chapter is divided in two sections. The first section of this chapter briefly
reviews the commonly used interconnection topologies. A topology is a schematic or
geometric description of the arrangement of a network (graph), including its nodes
(vertices) and connecting lines (edges). The second section of this chapter surveys the

Knddel graph in the light of known important results from the previous research work.

2.1 Commonly used topologies

This section reviews the commonly used topologies on basis of three important

communication parameters: (i) the degree, (i1) the diameter, and (iii) the broadcast time.

The Path P,

The path P, is a tree with two end nodes of vertex degree 1, and the remaining

n -2 nodes of vertex degree 2, thus the maximum degree of P, is 2. The D(B,) =
b(P,) = n — 1. A path is therefore a graph that can be drawn so that all of its vertices and
edges lie on a single straight line [24]. Figure 2.1 shows a path with seven vertices, where

D(P,) = b(P,) = 6.

® ® ® ® ® ® ®
1 2 3 4 5 6 7

Figure 2.1 Path P,




The Cycle C,,
Cycle C,, n>=3, is a simple graph with vertices vq,..,v, and edges
{vy, v2},{vy, 3}, oo, {Vp—1, v}, {vy, v1}. In other words cycle C,, is a path such that the

start vertex and end vertex are also connected by an edge. C,, has n vertices and the
maximum degree is 2. The D(C,) = [EJ and the b(C,) = [g] Figure 2.2 demonstrates

Cs, where the diameter and the broadcast time of Cg is 3.

! |

6 b 6 2

6 2 Ce

3
3
5 3 5
5
4 4
Figure 2.2 Cycle Cg in three different shapes
The Complete graph K,

A complete graph K, is a simple graph with exactly one edge between any pair of
distinct vertices. K,, has n vertices and degree n — 1. The diameter of K,;is 1. K, is a
broadcast graph because during each time unit the number of informed vertices is

doubled, thus b(K,) = [log,n]. Figure 2.3 shows a complete graph K, where b(K,) = 3.

6 5

Figure 2.3 The Complete graph K

10



The Hypercube H,,

The hypercube of dimension n, denoted by H,,, is a simple graph with vertices
representing 2™ bit strings of length n, n > 1 such that adjacent vertices have bit strings
differing in exactly one bit position. H,, has 2™ vertices and n - 2"~1 edges. The diameter
of H, is n and each vertex has exactly degree n. A (n+1)-dimensional hypercube can be
constructed from two n-dimensional hypercubes by connecting each pair of the
corresponding vertices. H,, is the minimum broadcast graph. The b(H,,) = [log, 2™] = n.

Figure 2.4 illustrates three hypercubes of dimensions 1, 2 and 3.

H,

Hj
Figure 2.4 Hypercubes of dimensions 1, 2 and 3

The Cube-Connected Cycles CCC,,
CCC, is a modification of the hypercube H, by replacing each vertex of the
hypercube with a cycle of n vertices. The i-th dimensional edge incident to a node of the

hyper-node is then connected to the i-th node of corresponding cycle of the CCC,,. Thus,

CCC, has n - 2™ nodes and the maximum degree is 3. The D(CCC,,)) = 2n + BJ — 2. The

b(CCCy) = [5711] — 1 [9], first every informed vertex sends the message to the hypercube

neighbor, then to the right neighbor on the ring, and finally to the left one. Figure 2.5

shows a 3-dimensional cube connected cycle.

11



* « %

Figure 2.5 Cube Connected Cycle CCC3

The Shuffle-Exchange SE,,

SE, is the graph whose vertices can be represented by binary strings of length 7.
Each edge of SE,, connects vertex fa, where [ is a binary string of length n — 1 and a is
in {0, 1}, with vertex Bc and vertex ffa, where c is the binary complement of a. SE,, has
2™ vertices and the maximum degree is 3. The D(SE,) =2n—1and in [38], it is

provided that b(SE,) < 2n — 1. Figure 2.6 presents a Shuffle-Exchange graph SE;.

010 011

000 00 110 111

100 101

Figure 2.6 Shuffle-Exchange graph SE3

12



The DeBruijn DB,

DB, is the graph, whose nodes can be represented by binary strings of length »
and whose edges connect each string fa, where f is a binary string of length n — 1 and a
is in {0, 1}, with the strings fb, where b is a symbol in {0, 1}. DB,, has 2" vertices with
the maximum degree 4 and the diameter is n. [43] provides the lower bound b(DB,) =
1.3171n, and [4] proves the upper bound, b(DB,) < 1.5n + 1.5. Figure 2.7 illustrates a

DeBruijn graph of dimension 3.

001 011

000 010 111

100 110

Figure 2.7 DeBruijn graph DBy

The d-Grid Gla,; X a; X ... X ay]

The d-dimensional grid (or mesh) is the graph whose nodes are all d-tuples of
positive integers (zq,Zy,...,24), Where 0 < z; < a; for all i (1 <i<d), and whose
edges connect d-tuples, which differ in exactly by coordinate one. For example, in
G[3,3], vertex (1, 1) is connected to vertices (0, 1), (2, 1), (I, 0) and (1, 2).
Gla; Xa, X... Xay] has a;Xa,X..Xa, vertices with the maximum degree 2d, if
each a; is at least 3. The diameter of d-Grid Gla;Xa, X... Xay] is (a; — 1) +
(a —1)+--+(ag —1) and [33] provides the b(Gla;Xa,])=a; +a, — 2.
Figure 2.8 shows a 2-Grid graph G[4 x 5].

13



Figure 2.8 2-Grid graph G[4 x 5]

The d-Torus T
A d-Torus graph is a d-grid graph with both ends of rows and columns connected.

Tla; X a, X... X ay] denotes the d-Torus graph. The diameter of k x k X-Torus is given

in [24], that is |k/2] + 1 if k is odd, and |k/2] if k is even. It is proven in [11] that the
optimal broadcast time of 2-Torus graph is [%] + [%], when a; or a, is even; and it is

[%] + [% - 1, when both a, and a, are odd. The bounds on the broadcast time of Torus

are D < b(T[a; Xa, X ... Xay]) <D + max(0,m — 1), where D = Y% ,a; —d, and m

is the number of odd a;. Figure 2.9 shows a 2-Torus graph T[4 x 3].

| —

i "'.-
I e _— |
! T T

Figure 2.9 2-Torus graph T[4 x 3]

o
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Recursive Circulant graph G(n, d)

The recursive circulant graph G (n, d) is introduced by Park and Chwa [37]. We
define the recursive circulant graph G(n,d) = (V,E) with d > 2, to be a graph where,
V ={0,1,...,n — 1}, and the edge set E = {uv|3i,0 < i < [loggz(n)] — 1, such thatu +
d' = v(mod n)}. G(N, d) has recursive structure when N = cd™, 1 < c < d. The [37]

provides the diameter as follows: if d is odd, D(G(cdm, d)) =|d/2]m + |c/2]. When d

is even and c is odd, the diameter is [? m] + |c/2]. Finally, when both d and ¢ are

even, the diameter is l? mJ + |c/2]. G(2™,4), whose degree is m, compares favorably

to the hypercube H,,. G(2™,4) has the maximum possible connectivity, and its diameter
is [3m — 1/4]. The broadcast time of G(2™, 4) is m. Figure 2.10 shows the two recursive

circulant graphs, G(8,4) and G(16,4).

(a) G(8,4) (b) G(16,4)

Figure 2.10 Recursive circulant graphs G(8,4) and G(16,4)
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The summary of the communication properties (i.e., the degree, the diameter and

the broadcast time, of reviewed commonly used topologies), is provided in Table 2.1.

Table 2.1 Summary of commonly used topologies

Graph Degree Diameter Broadcast time
Path graph B, 2 n—1 n—1
n n
Complete graph w1 1 log,n]
Ky
Hypercube H, _ n
(n = dimension) " " n = [log,2"]
Cube-Connected n 5n
Cycles CCC,, 3 2n+ 5] -2 [7] -1
Shuffle-Exchange 3 om—1 om—1
SE,
DeBruijn DB, 4 n 1.3171n < b(DB,) £ 15n+ 15
~ (a, — 1) : -
d-Grid 2d Fla, = 1)+ Broadcast time of a 2-grid
G[alxazx...xad] +(a2 _1) b(G[a]_Xaz]) = al +a2 -2
Diameter of kxk | The bounds on the broadcast time
d-Torus, is of d-Torus are D <
d-Torus graph o d lk/2] +1ifk | b(Tla;xa;x..xaq]) <D+
[a;xa; x... xay] is odd and max(0,m — 1),
lk/2]ifkis where D = ¥, a; — d, and m is
even the number of odd a;.
Recursive
Circulant m [3m — 1/4] m
G(2™,4)
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2.2 Survey of the Knodel graph

The Kndodel graph W, ,, is a regular graph of even order n and degree d, 1 < d <
llog, n]. It was introduced by W. Knddel for d = |log, n] in 1975 and was used in an
optimal gossiping algorithm [40]. For smaller d, the family of Knddel graphs has been
defined formally by Fraigniaud and Peters [19]. Since 1994 a lot of research has been
done on Knddel graph, especially because some subfamilies of the Knddel graph tend to
have good properties in terms of broadcasting and gossiping [16]. Many graphs
introduced as minimum broadcast (resp. gossip) graphs, such as in [7] [39] [41], were in

fact isomorphic to the Knodel graphs [17].

In particular, for any n = 2%, the Knodel graph of order n and degree d, W g 2a,

turns out to be minimum broadcast (resp. gossip, linear gossip) graph [16]. In that way

W 4 ,a competes to the hypercube of dimension d, Hy, and the recursive circulant graph

G(2%,4) [37]. These three topologies are comparable because they all have good
properties in terms of interconnection networks. Moreover, they are of the same order 2¢,
and regular of the same degree d. The Knddel graph become famous due to its smallest

known diameter among all regular and minimum broadcast graphs on 2% vertices with

degree d [26].

Definitions of the Knodel graph

The Knddel graph has been formally defined in [19] as follows:

Definition 1: (Knddel graph — one layer representation)

The Knodel graph Wy, of an even order n and degree d is the graph G = (V, E)
with number of vertices, V={0, 1,..., n-1} and E = {(i,j)| i + j = 2" — 1 mod n,

0<ij<n—-1,1<r<d}
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6 =—— Dimension 1 6

............ Dimension 2
———: [imension 3

Figure 2.11 One layer representations of the Knodel graph W 4,

It is clear from the above definition that the Knddel graph is a regular graph of
degree d. Through-out this thesis we will refer to this definition as one-layer

representation. Figure 2.11 demonstrates the one-layer representations of the Knddel

graph W3 ;5.

Definition 2: (Knddel graph — Bipartite or two-layer representation)
The Knodel graph on n > 2 vertices (n even) and degree d, 1 <d < |log,n|, is

denoted by Wy . The vertices of Wy, are the pairs (i,j) with i =0,1and 0 <
Jj < % - 1, and the set of edges: E = {(0,i),(1,j)| j=i+2"-1mod g, 0<

ij<>-1, 0sr<d-1}

Dimensions of the Knodel graph

An edge of W, ,, that connects a vertex (0,)) to vertex (1,1’ + 2"-1mod g) is

said to be in dimension r, where 0 < r < d- 1. Figure 2.12 illustrates an example of the

Kndodel graph Wj 5, in a bipartite representation.
18



0,00 (0,1) (02) (03) (0.4 (05)
Layer 0 ©, 2 ’ ’ 2
yerv o L X ) . & & 9 : :
PR ER N MG P Dimension 0
\\‘ 1 \\\/2,:’ ~ ’/, //:
S PN LT Ll s e Dimension 1
S, Nigt -)/
3 Y D A\ N .
FAEIREN B4 RS I Sl | ====- : :
I R SR A Y Dimension 2
z 2 ~ k, ~ B ~ .
Pt et N . NN
e 7’ . 7N DN N
3 ’ N A

(1L,o) (L) (1,20 (L3) (14 (1,5

Figure 2.12 Bipartite or two-layer representation of the Knodel graph W 4,

It is clear from the above definition, that the Knddel graph W, ,, is a bipartite
graph. Knodel graph W, is connected, iff d = 2, since in that case it suffices to

alternate edges in dimensions 0 and 1 to get Hamiltonian cycle [16].

The Knodel graph Wy ,, can also be defined as a Cayley graph [34] [35], as stated
in Proposition 1 below.
Proposition 1 [35]

For any even n and 1< d <|logn|, W;, is a Cayley graph on the semi-direct
product G = Z, x Z,, for the multiplicative law: (x,y)(x’,y") =(x+x’, y+(-1)* y’), with
x,x € L, and y,y’ € L/, with the set of generators § = {(1,2-1),0 <i <A —1}.
Corollary 1 [16]

Foranyevennand 1 < d < [logn], Wy, is vertex-transitive.

Proof: This follows directly from Proposition 1 above because it is well known that any

Cayley graph is vertex-transitive (see [44]).

It has been proven in [16], that for any n and 1 < d < |logn], it is possible to
construct Wy 1 », by taking two copies of W; ,, and linking the vertices of each copy by

a certain perfect matching.
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Knodel graphs, along with their routing, broadcasting and gossiping
performances, have been studied in [2], where at each step only edges in a certain
dimension k are being used. Such graphs are called Modified Knodel Graphs, which turn
out to be isomorphic to Knddel graphs Wjog,n)|n according to Definition 2, for any n
not a power of 2 [16]. Their main goal was to study the performances of these graphs,
when dimensions are used alternatively. They proved that the dimensions of the Knodel
graphs had a similar role than the ones of hypercubes, with respect to routing,

broadcasting and gossiping.

Shortest path problem in the Knodel graph
In [31] 2-approximation algorithm with the logarithmic time complexity is

proposed for the shortest path problem in the Knddel graph W ,a.
Diameter of the Knodel graph

Despite being a highly symmetric and widely studied graph, the diameter of the
Knédel graph Wy ,, is only known for n = 2% and degree d. In [13], it was proven that
D(Wdlzd) = [%] The nontrivial proof of this result is algebraic and the actual
diametral path is not presented. The diameter of W ; ,a is the smallest among all known
regular and broadcast networks on 2¢ vertices with degree d [26].

The diameter is one of the parameters for which we can say that W, ,a can

compete with Hypercube H,; and Recursive circulant G(2¢%,4) graphs. Table 2.2 [16]

provides the comparison between W ; ,a, Hg, and G(24,4).
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Table 2.2 Comparison between W, ,4, Hy, and G(2%,4)

Properties H, G(2%,4) W ;24
Number of vertices 24 24 24
Degree d d d
Diameter d [(3d —1)/4] [(d+2)/2]
Vertex-transitivity Yes Yes Yes
Edge-transitivity Yes No No
Hamiltonian cycle Yes Yes Yes
Binomial Tree Yes Yes Yes

The upper and lower bounds on the diameter of the Knodel graph W, , have

recently been proved in [22]. These bounds are given by the following Theorem 1 and 2.

Theorem 1 [22]: (Upper bound on Diameter) Let a = E [nA_ZZ

e ” and b = A—2(A= 3).
n-—2
282

Ifa=bthenD(Wy,) <2a+3=2 E[ ” + 3, otherwise

D(Wyn) <2a+3[(A—2—-a)/41+7 <ZA+2a+~.

Theorem 2 [22]: (Lower bound on Diameter) D(WA_n) > 2 E [:A__Zz” + 1.

Broadcasting in the Knodel graph

The Knddel graph has been studied since long time in terms of broadcasting and
gossiping. The Knddel graph Wjjog,(n))n 18 @ broadcast and gossip graph [2] [13] [18].
The Wiiog,(n)n 18 used to construct sparse broadcast graphs of a bigger size by
interconnecting several smaller copies or by adding and deleting vertices [3] [8] [23] [27]

[28] [29] [30] [31]. The broadcast time of the Knddel graph is known only for W, ,a and

for Wy_,,a_,. It is shown that b(W,,q) =d (d=1) [12] [37] [40] and that
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b(Wd_l‘zd_z) =d (d =2) [7] [39]. Table 2.3 [42] provides a summary of known
broadcast and gossiping properties of the Knodel graph.

Table 2.3 Broadcast and gossip properties of the Knodel graphs

Type of graph Properties

Minimum broadcast graph [12]
W 4 pa Minimum gossip graph [40]
Minimum linear gossip graph [19]

Minimum broadcast graph [7] [39]
Wy 124 Minimum gossip graph [41]
Minimum linear gossip graph [19]

Minimum gossip graph [41]

Wa-121-4 Minimum linear gossip graph [19]
Wi 1246 Minimum linear gossip graph [19]
Wa_on Broadcast graph [14]

Gossip graph [14]
d-1 d-2 i i
2977 +2=n<3-2""—4 |Linear gossip graph [15]

Wy_q Broadcast graph [14]
d-2 " d Gossip graph [14]
3:297°-4<n<2°-2 |Linear gossip graph [15]

It is shown in [2] that the edges of the Knddel graph can be grouped into
dimensions that are similar to hypercube dimensions. This allows these dimensions to be
used in a similar manner to hypercube for broadcasting [27].

The broadcast graphs on odd number of vertices have been constructed in [1], by
applying a vertex deletion method to the Knddel graph. This construction provides an
improved general upper bound on B(n) for all odd n except when n = 24 — 1.

The general upper and lower bounds on the broadcast time of the Knddel graph

W, ., have recently been proven in [23], which are as follows:

1n-—-2 n—2
2[5[2d—2”+1Sb(Wd'”)S[2d—2]+d_1
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Chapter 3

The Diameter of the Knodel graph

This chapter is divided in three sections. In the first section, the diameter of the
Knoédel graph W3, for n > 8, is given through a constructive proof. In the second
section, we find the diameters of some specific Knddel graphs through extensive
simulation. In the last section, we present three propositions for the number of vertices at

a particular distance in some specific Knddel graphs.

3.1 The Diameter of Knodel graph W3,

In this section, we present the diameter of the Knodel graph Ws,,. Our proof is
constructive and we provide an actual diametral path in Wj,. The distance between
vertices u and vis denoted by dist(u,v). Using these notations and the vertex
transitivity of the Knoddel graph, we state that

D(Ws,,) = max {dist(0,y)| 0 <y <n—1}.

3.1.1 Paths in the Knodel graph W3 ,

Recall that according to the Definition 1 of the Knédel graph W, ,,, in W3, three
different paths can be formed using the dimensions: (i) 1 and 2, (i1) 2 and 3, and (ii1) 1
and 3. In the first path the 1 and 2-dimensional edges “move” forward by only two
vertices. In the second path 2 and 3-dimensional edges, “move” forward by only four
vertices. In fact, a shorter path can be formed by the 1 and 3-dimensional edges, where
every “move” is of six vertices.
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We construct three different paths between two vertices in the Knddel graph W ,,.
These paths have certain properties, which will be used to determine the diameter of
W3 .. We first discuss the set of vertices in W3, that can be reached from vertex 0, using
1 and 3-dimensional edges. It is clear that in W3, we can “move” either clockwise or

anti-clockwise from vertex 0, as shown in Figure 3.1. We can choose the path

dim:1 dim:3 dim:1 dim: 3 dim: 1 dim: 3
1 6 n—>5 6(2) 6x (clockwise)

or the path

dim:3 _dim:1 dim:3 dim: 1 dim: 3 dim: 1 . .
0 —7—n—-6—>13—>n—-6(2) — ... — n — 6x (anti — clockwise)

by alternating the 1 and 3-dimensional edges. The 3-dimensional edges move “forward”
by 5 vertices, whereas the 1-dimensional edges by 1 vertex only. So, in the each iteration,
the 1 and 3-dimensional edges move forward by 6 vertices. These two paths will
eventually intersect or overlap, somewhere near the vertex n/2. There are six possible
cases of W3 ,, depending on the number of vertices. The 1 and 3-dimensional edges will

split W3 ,, into 2x segments, where

number of vertices
2x = )
6

each having length 6, except the one containing vertex n/2. We can perform only

1 (number of vertices> number of vertices
X == =

2 6 12
1 and 3-dimensional passes in each of these two paths, (i.e., clockwise and anti-

clockwise), before they intersect. Therefore, we will never use more than x 1 and 3-

dimensional passes to reach a vertex in Ws ,,.
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Using 1 and 3-dimensional edges, we can reach the vertices 6, 6(2),
6(3),...,6(x — 1), 6x from vertex 0, in the clockwise direction. Similarly, anti-

clockwise, we reach the verticesn — 6, n — 6(2), n—6(3),..., n—6(x—1), n — 6x.

n.6(x.1)"\ f‘-)e(x-1)
" . . ¥

n-6x n/2 6x

Figure 3.1 Schematic illustration of paths (clockwise and anti-clockwise) in W ,,.

Once, we arrive at the vertices v; = 6x and v, = n — 6x, then our goal is to find
and reach the diametral vertices. Since, these diametral vertices of W3, cannot be
reached using 1 and 3-dimensional edges. Therefore, these vertices are reached by the
small moves of 1, 2 or 3 dimensional edges, either in “forward” or “backward”

directions, from vertices v; and v,.

3.1.2 Six cases of the Knodel graph W3,
In this section, we consider six different cases depending on number of vertices of

the Knodel graph Ws ,, in order to determine the diameter of W5 ,,.
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Case 1: n = 0 mod 6 and % is even
n = 0 mod 6 and % i1s even, can be written as n = 0 mod 12. Let us consider
n = 12x, for some x € Z* (Z*: set of positive integers). We can perform only x = %, 1

and 3-dimensional passes in each of these two paths (i.e., clockwise and anti-clockwise),
before they intersect. Figure 3.2 illustrates the discussed path. The vertices v; and v, can

be determined as follows:
v, =6x =6 (—) = 2 (clockwise)
(anti-clockwise)

In this case, in either direction, we reach the vertex v = g, using 1 and 3-
dimensional edges. The distance between the vertices 0 and v,

dist(o, §)=2x =2(%) =1

Case-1

n-8 n =0 mod 6 and n/2 is EVEN

O Vertices at distance 2x-1

Vertices V1 and V2 .

\...~ atdistance 2x .
-

-

O Vertices at distance 2x

Dlameteral vertices
at distance 2x + 1

Ve,

Figure 3.2 The diameter of the Knddel graph W, where n = 0 mod 6 and n/2 is even
26



Two vertices, g + 3 and §+ 5, are the neighbors of the vertices those are at
distance 2x, from vertex 0. Therefore, their distance from vertex 0 is 2x + 1. Since, there

is no any other vertex in the graph, whose distance is greater than the vertices % + 3 and
§+ 5, from vertex 0. Therefore, these are the diametral vertices of W5,, when n =
0 mod 6 and % is even. Each diametral vertex can be reached from three vertices of

distance 2x as follows:

dim: 1 dim: 2 dim: 3
S—2——>+3, ~—— 43 and Z+4— "+3

dim: 1 dim: 2 dim: 3
n_g L nys B MM g D2 L

Since the diametral vertices are at distance 2x + 1 = % + 1 from vertex 0, thus,

p(ws,) = % +1 for n = 0 mod 6 and %is even

Case 2: n = 0 mod 6 and % is odd

n = 0 mod 6 and % is odd, can be written as n = 6 mod 12. Let us consider n =

12x + 6, for some x € Z*. We can perform only x = nl—_zé 1 and 3-dimensional passes in

each of these two paths (i.e., clockwise and anti-clockwise), before they intersect. The
discussed path is demonstrated in Figure 3.3. The vertices v; and v, can be determined as

follows:
v, =6x =6 (n—_6) =10 g— 3 (clockwise)

and V,=n—6x =n—=~6 (—) =n-— (—) = % +3 (anti-clockwise)
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Case -2
n =0 mod 6 and n/2 is ODD

O Vertices at dist: 2x - 1

»
Vertices V1 and V2 -
at distance 2x .

(O Vertices at distance 2x
[[] vertices at dist: 2x + 1

Diameteral vertices
at distance 2x + 2

Diameteral or farthest
vertices are In this area

Figure 3.3 The diameter of the Knodel graph W, where n =0 mod 6 and n/2 is odd

The vertices v; and v, are at distance 2x from vertex 0.
dist (0, 2-3)=2x =2(%F) =22 =2-1
dist (0, 3+3)=2x =2(%%) = = =2
Once we reach the vertices v; = % —3and v, = % + 3 then our goal is to find and
reach the diametral vertices, using the paths discussed in Section 3.1.1. The vertices >~
7, %— 5, %+ 5 and %+ 7 are also at distance 2x because they are the neighbors of the
vertices of distance 2x — 1 from vertex 0. The vertices g, %+ 2, % + 4, g + 6,

and % + 8 are the neighbors of the vertices of distance 2x from vertex 0. Therefore, their

distance from vertex 0 is 2x + 1. Two vertices labeled with %— 1 and %+ 1, are only

connected to the vertices of distance 2x + 1. Therefore, these two vertices are at distance
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2x + 2, from vertex 0. Since there is no any other vertex in the graph whose distance is

greater than the distance of vertices % + 3 and % + 5, from vertex 0. Therefore, these are

the diametral vertices of W3, when n = 0 mod 6 and % is odd. Each diametral vertex

can be reached from three vertices of distance 2x + 1 as follows:

dim: 1 dim: 2 dim: 3
42— -1, “+4+4——>>-1 and -+8——-—1
2 2 2 2 2 2

dim: 1 dim: 2 dim: 3
S—— 41, 42— >+1 and S+6— Z+1

Since the diametral vertices are at distance 2x + 2 from vertex 0, thus
D(Wsp) = 2x +2 Z(%—1)+2=%+1 Whererz%—l

D(W3,n) = % +1 for n=0mod 6 and % is odd

Case 3: n =2 mod 6 and % is even

n = 2 mod 6 and % 1S even, can be written as n = 8 mod 12. Let us consider

n = 12x + 8, for some x € Z*. We can perform only x = nl_—zs 1 and 3-dimensional

passes in each of these two paths (i.e., clockwise and anti-clockwise), before they
intersect. The discussed path is demonstrated in Figure 3.4. The vertices v; and v,, can

be determined as follows:

-8 -8 .
v;=6x =6 (n1_z) = nT = 2— 4 (clockwise)

and V,=n—6x =n—=~6 (nl—_zs) =n-— (n—_g) =244 (anti-clockwise)

From vertex 0, the vertices v; and v, are at the distance:

dist(o,g—4):2x =2("1_‘28) _ =



Case-3
n=2mod 6 and n/2 is EVEN

O Vertices at dist: 2x - 1

»~, Vertices V1 and V2
at distance 2x

(O vertices at distance 2x

[[] vertices at dist: 2x + 1

niz+10
’ Diameteral vertices
at distance 2x + 2

.....

-
-----

-———r T mﬁ\"‘:‘e,
e gtotal OF s @
eruces 2

Figure 3.4 The diameter of the Knodel graph W, where n =2 mod 6 and n/2 is even

Once we reach the vertices v; = % —4and v, = % + 4 then our goal is to find and

reach the diametral vertices, using the paths discussed in Section 3.1.1. The vertices % -

8, % -6, §+ 6 and §+ 8 are also at distance 2x because they are the neighbors of the

vertices of distance 2x — 1 from vertex 0. The vertices %— 1, %+ 1, §+ 3, §+
5, §+ 7 and §+ 9 are the neighbors of the vertices of distance 2x, from vertex 0.

Therefore, their distance from vertex 0 is 2x + 1.

Three vertices labeled with g, 2 — 2 and g + 2, are only connected to the vertices

of distance 2x + 1, from vertex 0. Therefore, their distance from vertex 0, is 2x + 2.

Since there is no any other vertex in the graph, whose distance is greater than the distance

30



of vertices g, % — 2 and % + 2, from vertex 0. Therefore, these are the diametral vertices

of W3, when n = 2 mod 6 and % is even. Each diametral vertex can be reached from

three vertices of distance 2x + 1, as follows:

4+ ﬂ)%, 4+ e and —+7ﬂ>2
Z+ &2—2, 2+5ﬂ>§—2 and —+9ﬂ>2—2
>-1 &§+2, §+1M>§+2 and D45 ny g
Since the diametral vertices are at distance 2x + 2 from vertex 0, thus,
D(Ws,) = 2x +2 =(%—%)+2=%+2§ wher62x=%—%
D(Wg'n) = %+% for n>8, n=2mod 6 and % is even
Case 4: n=2m0d6and%is0dd

n = 2 mod 6 and % is odd, can be written as n = 2 mod 12. Let us consider n =

12x + 2, for some x € Z*. We can perform only x = nl_—zz 1 and 3-dimensional passes in

each of these two paths (i.e., clockwise and anti-clockwise), before they intersect. Figure

3.5 illustrates the discussed path. The vertices v; and v,, can be determined as follows:
v, =6x =6 (nl_—zz) =—=--1 (clockwise)
and V=n—6x =n—=~6 (nl_—zz) =n-— (nT_Z) =241 (anti-clockwise)

From vertex 0, the vertices v; and v, are at the distance:

dist (o, > 1) =2x =2 (”1—‘22)

c\ |

n—2

dist(O, o+ 1)=2x =2("1_—22) _ n=2
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Case-4
n=2 mod 6 and n/2 is ODD

O Vertices at distance 2x-1 .
-~ Vertices V1 and V2 .
\.__) at distance 2x .
O Vertices at distance 2x :

Diameteral vertices
at distance 2x + 1

»
-
L
-
-
-

.—""‘.‘. e
s, ...-"-- \ o““ \.“‘s he
M e A 860
LT y

Figure 3.5 The diameter of the Knodel graph W, where n =2 mod 6 and n/2 is odd

Once we reach the vertices v; = % —land v, = % + 1 then our goal is to find and

reach the diametral vertices, using the paths discussed in Section 3.1.1. The vertices % -

5, %— 3, ;n+ 3 and % + 5 are also at distance 2x because they are the neighbors of the

vertices of distance 2x — 1 from vertex 0. There are three vertices, % + 2, % + 4 and % +

6, those are only connected to the vertices of distance 2x. Therefore, their distance from

vertex 0, is 2x + 1. Since there is no any other vertex in the graph whose distance is

greater than the distance of vertices §+ 2, §+ 4 and g+ 6, from vertex 0. Therefore,

these are the diametral vertices of W3 ,,, when n = 2 mod 6 and % is odd. Each diametral

vertex can be reached from three vertices of distance 2x, as follows:
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dim: 1 dim: 2 m:3
“+1——>2+2, 43— +2 and —+7—>"+2
n dim:1 p n dim:2 p dim:3 p,
st3——2+4 S+5—— - +4 and —+9—> ~+4
n dim:1 p n dim:2 p dim:3 p
;—1——2>+6, -+1—— -+6 and —+5—> ~+6

Since the diametral vertices are at distance 2x + 1 from vertex 0, thus,

D(Wyp)=2x+1="2 41 =020 112 where 2x = 222

’ 6 6 6 6
D(W3n) —% % forn=2mod6and% is odd

Case 5: n = 4 mod 6 and % is even

n =4 mod 6 and % 1S even, can be written as n = 4 mod 12. Let us consider

n = 12x + 4, for some x € Z*. We can perform only x = n1_—24 1 and 3-dimensional
passes in each of these two paths (i.e., clockwise and anti-clockwise), before they
intersect. The discussed path is demonstrated in Figure 3.6. The vertices v; and v,, can

be determined as follows:

v;=6x =6 (nl—_;) =1t 2— 2 (clockwise)

and v,

n—6x =n—=6 (nl—_;) =n-— (nT_‘}) = % +2 (anti-clockwise)

From vertex 0, the vertices v; and v, are at the distance:
i n = —2(rt) = -2
dist (0, 2—2)=2x =2(%") =

dist(O, §+2):2x zz(nl_—;) _n-4

33



Case-5
n =4 mod 6 and n/2 is EVEN

n=6

O Vertices at dist: 2x - 1

-

L}

" 7~ Verticas V1 and V2
- ../ atdistance 2x

L]

(O Vertices at distance 2x
[_] vertices at dist: 2x + 1

Diameteral vertex
at distance 2x + 2

Dlameteral or farthest
vertex is in this area

Figure 3.6 The diameter of Knodel graph W, where n =4 mod 6 and n/2 is even

Once we reach the vertices v; = 2 —2and v, = g + 2 then our goal is to find and
reach the diametral vertices, using the paths discussed in Section 3.1.1. The vertices % —
6, g — 4, g 4+ 4 and g + 6 are also at distance 2x because they are the neighbors of the
vertices of distance 2x — 1 from vertex 0. The vertices labeled with g + 1, g + 3, §+ 5

and g + 7 are the neighbors of the vertices of distance 2x from the vertex 0. Therefore,

they are at distance 2x + 1, from vertex 0.
There is a vertex, % that is only connected to the three vertices of distance 2x + 1,
from vertex 0. Therefore, the distance of the vertex % 1s 2x + 2, from vertex 0. Since

there is no any other vertex in the graph whose distance is greater than the distance of
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vertex %’ from vertex 0. Therefore, this is the diametral vertex of W;,, when n =

4 mod 6 and % is even. This diametral vertex can be reached, by any of the three vertices

of distance 2x + 1, as follows:

n dim: 1

41 n dim:2 p dim: 3
- e —
2

, St3—— 3 and %+7—>

NS
NS

Since the diametral vertex is at distance 2x + 2 from vertex 0, thus,

—4 —4
D(W3,n)=2x+2=(nT)+2 where 2x = =
n-4+12  n+38
B 6 6
n 4 n .
D(W3,n)=g+§ forn = 4mod 6 and - is even

Case 6: n =4 mod 6 and % is odd

n =4 mod 6 and % is odd, can be written as n = 10 mod 12. Let us consider

n = 12x + 10, for some x € N (N:set of natural numbers). We can perform only x =

n-—10

1 and 3-dimensional passes in each of these two paths (i.e., clockwise and anti-

clockwise), before they intersect. The discussed path is demonstrated in Figure 3.7. The

vertices v; and v,, can be determined as follows:

v, = 6x = 6(n—10) n-10

= =2_5 (clockwise)
12 2 2

and v,=n—6x =n-—=6 (n;zm) =n-— (n—210) = % +5  (anti-clockwise)

From vertex 0, the vertices v; and v, are at the distance:

dist (0, g— 5) =2y =2 (n;210) _ n—61o
dist (0, g+ 5) =2x =2 (n;210) _ n—61o
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- CASE-6 -
» n=4 mod 6 and n/2is ODD .

O Vertices at dist: 2x - 1

C_:) Vertices V1 and V2
- at distance 2x

O Vertices at distance 2x
[ vertices at dist: 2x+1
1| Vertices at dist: 2x+2

Dlameteral vertax
at distance 2x + 3

Figure 3.7 The diameter of the Knodel graph W, where n =4 mod 6 and n/2 is odd

Once we reach the vertices v; = 2 —S5and v, = g + 5 then our goal is to find and

reach the diametral vertices, using the paths discussed in Section 3.1.1. The vertices g —

n

7, e 9, g 4+ 7 and g + 9 are also at distance 2x because they are the neighbors of the

Z, 242 46 -+8
2 2

vertices of distance 2x — 1 from vertex 0. The vertices 2 -2, > 5

and g+ 10, are one edge far from the vertices of distance 2x, from vertex 0. So, they

are at distance 2x + 1, from vertex 0. The vertices g -1, g -3, % + 1 and g + 3, can

only be reached by the vertices of distance 2x + 1, from vertex 0. Therefore, these

vertices are at distance 2x + 2, from vertex 0.
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There is a vertex, % + 4, that is only connected to the three of vertices of distance

2x + 2. Since there is no any other vertex in the graph whose distance is greater than the

distance of vertex 2+ 4, from vertex 0. Therefore, this is the diametral vertex of W3,

when n = 4 mod 6 and % is odd. This diametral vertex can be reached, from any of the

three vertices of distance 2x + 2, as follows:

dim: 1 dim: 2 im: 3
S—3—— 2 +4, S-1——2+4  and —+3—>"+4

Since the diametral vertex is at distance 2x + 3 from vertex 0, thus,

D(Ws,) =2x+3 = (n_10)+3 where 2x =n_610
n-10+18 ~ n+8
6 6
D(W3’n) = %+§ forn = 4mod 6 andg is odd

3.1.3 Generalized Expression for Diameter of the Knodel graph W3,

We get the following expressions for the diameter of the Knddel graph Ws ,,.

() D(Wsp)=zZ+1 forn=0mod6

(i) D(Wspn)=2+> forn=2mod6andn>8
(i) D(Wsp)= 2+ forn=4mod6

From the above three expressions, the generalized expression for the diameter of

the Knodel graph W3 ,, can be obtained as,

for n> 8
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3.2 The diameter of some specific Knodel graphs

In this section, we provide the exact diameter of some specific Knodel graphs.
The diameter of these graphs is obtained, by the extensive use of simulation. The
simulation uses the Breadth-First-Search technique. Due to limited computer memory,

we went up to the certain number of vertices and degrees.
Diameter of the Knodel graph Wd_l‘ 2d_o

D(Wy_yqa_,) = %2 for 3<d<24
Example 1.1 D(W,yy ) = |222] =3
Diameter of the Knodel graph W ;_, ,a

D(Wy_p,0)= [Z2] for 5<d<24
Example 1.2: D(We_y, o) = [22] =5
Diameter of the Knodel graph W ; 54,

D(Wy ay,) = |22 for 4<d <24
Example 1.3: D(W, 170) = |22 = 4
Diameter of the Knodel graph W ,a .,

D(Wypae) = |22 for 5<d<24

Example 1.4: D(Wyg 50,) = [222] =6
Diameter of the Knodel graph W ; ,a, a-1_,

D(Wd, 2442415 ) = [%]

for 3<d<24
Example 1.5: D(W9,29+28_2) = [9%2] =6
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3.3 The number of vertices at a particular distance in Knodel graph

In this section, we present three propositions, regarding the number of vertices at
a particular distance, denoted as N;, where 0 <i < D(Wd,n), from vertex 0, for six
specific Knodel graphs. The N; can be obtained, using the Breadth-First-Search (BFS)
operation on the Knodel graph.

The massive experimental work, enables us to obtain the N; for the six Knddel
graphs i.e.,Wdlzd, Wd,2d+2, Wd, 2d 440 Wd, 2d g Wd, ,dig and Wd_llzd_z. The N; for
the specified Knodel graphs is presented in Tables 3.1 to 3.6. Due to limited computer

memory, we went up to the 22% + 8 = 16777224 vertices and degree 24.

Proposition 3.1

Let N; denotes the number of vertices of the Knodel graph W ; ,a at distance i,
where 0 < i < D(Wd'zd ). Then Ny =1, Ny =d, N, = (d — 1) + (d — 2)? and

_ (d-2)%*(d-3)

N3 5

+ 2, for4 <d < 24.

The careful study of the N; values for W, ,a presented in Table 3.1, enables us to
give the N; for N, to N3. Using vertex transitivity of the Knodel graph, we consider the
vertex labeled 0, as the root vertex. N, = 1 because at distance 0, there is only one root
vertex. N; = d, because, the Knddel graph W, ,a is a regular graph of degree d,

therefore, vertex 0 is connected to the d vertices. N, = (d — 1) + (d — 2)? and N; =

—2(d—-
(dz)—(d?’), are determined by observing the data presented in Table 3.1.
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Table 3.1 Number of vertices at particular distance from vertex 0 in W ; ,a

# of Number of vertices at distance
Vertices(0|1| 2 | 3 4 5 6 7 8 9 10 11 12 | 13
22 (1|33 | 1
24 (1|47 | 4
25 [1|5(13| 11 2
25 (1|6(21] 26 | 10
27 (1|7(31]| 52| 32 5
22 (1/843| 92 | 84 28
2° [1|/9|57 (149 192 | 98 6
210 11]10|73 | 226 | 386 | 276 52
211 11)11|91 (326| 702 | 673 230 14
212 11|12|111|452 | 1182 | 1459 | 754 125
213 |1|13|133|607 | 1874 | 2869 | 2070 | 607 18
214 |1|14|157|794 | 2832 | 5214 | 4980 | 2170 222
21> |1|15|183|1016| 4116 | 8891 | 10790 | 6426 1294 36
216  |1|16(|211|1276| 5792 | 14393 | 21470 | 16593 | 5294 490
217  |1|17|241|1577| 7932 | 22319 | 39832 | 38476 | 17484 | 3147 46
218 11/18|273(1922|10614| 33384 | 69730 | 81758 | 49628 | 13990 | 826
219 |1|19|307(2314|13922| 48429 116280 161624 | 125346 | 49670 | 6288 88
220 11(20|343|2756|17946| 68431 [186100| 300752 | 288184 | 150599 | 31714 | 1730
221 |1(21|381(3251|22782| 94513 |287570| 531707 | 613116 | 404710 | 124614 | 14374 | 112
222 |1|22|421|3802|28532(|127954 (431112 | 899776 |1222248| 987186 | 411968 | 78412 | 2870
23 [123|463|4412|35304 (170199 (629490 (1466278 |2305560 (2222841 1195796 | 330347 | 27690 | 204
22*  1(24|507|5084 (43212 (222869 (898130 (2312384 (4147588 |4679309|3130098 (1163154 (169072 |5784

Table 3.2 Number of vertices at a particular distance from vertex 0 in W, 54,
#of Number of vertices at distance
Vertices|0|1]| 2 | 3 4 5 6 7 8 9 10 11 12 |13
2242 [1(3]|4 | 2
242 [1{4|8 | 5
25+2 [1]5]16| 12
242 (106 26|27 | 6
27+2 [1]738| 58 | 26
2842 [1|8(52(107| 76 | 14
2°+2 [1/968|176 | 188 | 72
2142 |1]10|86 | 268 | 406 | 235 20
2142 |1|11|106|386 | 770 | 628 | 148
2242 |1]12|128|533 {1328 | 1459 | 592 45
28+2 [1]13(152| 712 {2134 | 3006 | 1810 | 366
2%+2 |1]14|178|926 | 3248 | 5634 | 4702 | 1619 64
2%+2 |1|15|206|1178|4736 | 9804 | 10750 | 5388 | 692
21542 |1|16/|236|1471| 6670 | 16083 | 22210 | 15067 | 3652 | 132
2Y+2 |1]17268|1808| 9128 | 25154 | 42312 | 36983 | 13828 | 1575
218+2 |1|18302|2192|12194| 37826 | 75478 | 81896 | 42920 | 9141 | 178
2°+2 |1]19|338|2626(15958| 55044 | 127562 | 166861 | 115482 | 37595 | 2804
2°+2 |1|20|376|3113|20516| 77899 | 206110 | 317494 | 278114 | 125414 | 19172 | 349
2242 |1|21|416|3656|25970|107638 | 320640 | 570679 | 612558 | 360586 | 88992 | 5997
2242 |1]22|458|4258|32428|145674 | 482942 | 977748 |1253554 | 924570 | 327304 | 44881 | 466
22+2 |1|23502|4922 40004 193596 | 707398 |1608170 2412368 |2161999 1023654225595 | 10378
242 |1]24|548|5651(48818|253179 1011322 (2553786 4406962 |4685323 | 2831108 | 889781 | 89850 | 865
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Table 3.3 Number of vertices at a particular distance from vertex 0 in W 54,

# of Number of vertices at distance
Vertices|0| 1 | 2 3 4 5 6 7 8 9 10 11 12 13
2344 |1|3| 5 3
244 |1|4 | 8 6 1
2°>+4 (1|5 |14 | 13 3
2°44 |1|6 |24 | 28 9
2’+4 (1|7 (36| 55 29 4
2844 |18 |50 (101 | 79 21
2°+4 |1|9 |66 | 168 | 189 81 2
29+4 [1(10|84 | 258 | 393 246 36
2'+4 [1(11|104|374 | 741 635 180 6
22+4 [1(12|126|519 | 1279 | 1436 644 83
23+4 [1(13|150| 696 | 2061 | 2926 | 1880 463 6
2%+4 [1(14|176|908 | 3147 | 5463 | 4730 1809 140
2'5+4 [1(15|204|1158| 4603 | 9502 | 10626 | 5696 952 15
2'%+4 [1(16|234|1449| 6501 | 15604 | 21750 | 15398 4284 303
2Y7+4 (1(17(266|1784| 8919 | 24446 | 41246 | 37032 15088 2259 18
2'%+4 [1(18|300(2166(11941| 36831 | 73440 | 81009 | 44898 | 11050 494
2%+4 [1(19|336(2598(15657| 53698 (124078 | 163881 | 117696 | 41915 4378 35
22°+4 (1(20(374|3083|20163| 76132 |200586| 310588 | 278810 | 133450 | 24356 1017
22'+4 [1(21|414|3624(25561|105374|312350| 557144 | 607698 | 372582 | 102508 | 9833 46
22244 |1(22|456|4224|31959(142831|471016| 953799 |1235436| 937195 | 356652 | 59083 | 1634
22+4 [1(23|500(4886(39471|190086|690810(1568709|2367834|2163911|1077286| 266607 | 18404 | 84
2%%+4 |1(24|546|5613|48217|248908|988878(2492150(4315164 |4650128|2911614 | 988533 [{124190 (3254

Table 3.4 Number of vertices at a particular distance from vertex 0 in W ,a, ¢

# of Number of vertices at distance
Vertices|0| 1 | 2 3 4 5 6 7 8 9 10 11 12 13
2’+6 (1|3 6
2°+6 1|4 (10| 7
2°+6 |1|5|16| 14 2
2°+6 |1|/6|26| 29 | 8
246 |17 |38 59 28 1
2%+6 |1/8 |52 |111| 78 12
2°+6 (1|9 |68 (183 | 190 67
2%6 |1|10|86 |278 | 418 227 10
2'+6 |1(11|106|399 | 808 617 112
2246 |1(12(128|549 | 1402 | 1472 520 18
2346 |1(13|152| 731 | 2254 | 3103 1692 252
2%+6 |1(14|178|948 | 3424 | 5900 4574 1333 18
2546 |1(15|206|1203| 4978 | 10345 | 10800 4824 402
21546 |1(16(|236|1499| 6988 | 17027 | 22822 14189 2724 40
2746 |1(17|268|1839| 9532 | 26651 | 44136 | 36174 11602 858
21846 [1(18(302(2226(12694| 40048 | 79488 | 82356 | 38546 6427 44
2%+6 |1(19|338|2663|16564| 58185 | 135110 | 171162 | 108800 | 30118 1334
22°+6 |1(20|376|3153(21238| 82175 | 218982 | 330259 | 271436 | 108598 | 12258 86
2246 |1(21|416|3699(26818(113287| 341112 | 599375 | 613706 | 329482 | 66526 2715
22246 |1(22|458(4304|33412(152956| 513836 1033593 1280454 | 878982 | 268888 | 27298 106
22346 |1(23|502(4971|41134(202793| 752138 1707154 2499484 (2117922 | 896876 | 161444 | 4172
22°+6 |1(24|548(5703 (50104 (264595 (1073990 (2717807 |4613846 |4695835 |2600068 | 704452 | 50054 | 195
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Table 3.5 Number of vertices at a particular distance from vertex 0 in W ,a,¢

# of Number of vertices at distance
Vertices|0| 1 | 2 3 4 5 6 7 8 9 10 11 12 13
248 (1|4 |11 | 8
2°+8 (1|5]|16| 15 3
2°48 (16 (24| 30 11
2748 (1|7 (36| 59 31 2
2548 (18|50 (103 | 81 21
2°+8 [1(/9 |66 |169 | 193 82
2948 [1(10|84 | 259 | 405 247 26
21148 [1(11(|104|375 | 753 641 170 1
21248 (1(12|126|520 | 1293 | 1463 632 57
2348 [1(13|150| 697 | 2077 | 2973 1872 417
2448 (1(14|176|909 | 3165 | 5534 | 4774 1739 80
2'5+8 |1(15|204(1159| 4623 | 9600 | 10764 | 5613 796 1
21648 |1(16(234|1450]| 6523 | 15732 | 22040 | 15404 3974 170
2'7+8 |1(17|266|1785| 8943 | 24607 | 41750 | 37298 | 14580 1833
21848 11(18|300(|2167(11967| 37028 | 74224 | 81810 | 44350 10053 234
21948 [1(19|336(|2599(15685| 53934 (125214 | 165600 | 117612 | 39995 3300 1
22048 [1(20|374|3084 (20193 | 76410 (202152 | 313724 | 280268 | 130591 | 21304 463
2248 (1(21|414|3625|25593 (105697 |314430| 562321 | 612586 | 369768 | 95556 7148
22248 |1(22|456|4225(31993 (143202 [473700| 961774 |1246716| 937484 | 343672 | 50449 618
22348 |1(23|500(4887(39507 |190508 |694194 [1580382 2389820 (2173945|1057906 | 244562 | 12380 | 1
22°+8 |1(24|546|5614|48255|249384|993064 |2508575 |4353808 |4682129(2891370| 941718 |101568 (1168

Table 3.6 Number of vertices at a particular distance from vertex 0in W;_; ,4_,

# of Number of vertices at distance
Vertices|0|1| 2 | 3 4 5 6 7 8 9 10 11 12 13
22 |1|3|6 | 4
2°-2 (1|4)12| 11 2
26-2 (1(5|20] 26 10
27-2 |1|/6|30]| 52 32 5
282 (1|7 |42 92 84 28
2°-2 (18|56 (149 | 196 98 2
2102 |1[9 (72226 | 396 | 276 42
2112 |1(10(90 |326 | 720 | 680 | 212 7
212.2 |1(11|110| 452 | 1210 | 1496 726 88
213.2 1112|132 607 | 1914 | 2962 | 2046 514 2
242 |1|13|156| 794 | 2886 | 5395 | 5018 1989 130
2152 |1|14|182|1016| 4186 | 9198 | 11032 | 6146 982 9
216.2 11(15|210|1276| 5880 | 14870 | 22160 | 16353 4516 253
272 |1|16|240|1577| 8040 | 23016 | 41328 | 38712 | 15924 2214 2
218.2 |1|17|272|1922(10744| 34357 | 72522 | 83436 | 47192 | 11339 340
2192 |1|18|306(2314(14076| 49740 (121008 | 166515 | 122844 | 43545 3908 11
2202 |1|19|342(2756|18126| 70148 |193572| 311733 | 288496 | 138985 | 23750 646
2212 |1(20|380(3251|22990| 96710 |298780| 553095 | 623028 | 387223 | 103394 | 8276 2
2222 |121|420|3802|28770(130711|447258| 937706 1255058 | 969451 | 364790 | 55460 854
2232 |122|462|4412|35574 (173602 (6519921529121 2384558 |2224673|1107612 | 262460 | 14104 | 13
2242 |123|506|5084 |43516(227010(928648 2411205 |4310476|4748350(2995290 | 995394 |110170 (1541
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Proposition 3.2

In Wd, 2d, Wd‘2d+2, Wd’2d+4, Wd’2d+6, Wd‘ ,d g and Wd_l,zd_z, the maximum

. : d
number of vertices, are at distance 1 + [EJ’ for 3<d <24,

Tables 3.1 to 3.6 present the number of vertices at a particular distance from
vertex 0, for Knddel graphs, W, ,a, W, sa,5 Wy says Wy sae Wy e, and

Wd—l, ,d_,, respectively. It can be observed from the data that the maximum numbers of

vertices are at a distance 1 + EJ from vertex 0.

Proposition 3.3
Let N, denotes the number of vertices at diametral distance of the Knédel graphs
Waoaar Woodyy W odp Woodarg Wy parg and Wy g 5a . Then, No <

N, < < ngJ < N1+lgl > NZ"'[EJ > > N, where 3 < d < 24.
3

3

This proposition is based on the data presented in Tables 3.1 to 3.6, where the

number of vertices increases from distance O until the distance is 1+ EJ Once the
vertex count reaches its maximum at distance 1 + l%], then the number of vertices starts

to decrease from the distance 2 + lg] till N,. Here N, denotes the number of vertices at
diametral distance of the Knddel graphs Wa, 2d, Wd’ 2d 4o Wd' 2d 440 Wd, 2d 46

Wd, ,d g and Wd—l, 2d_y.

3.4 Summary

Table 3.7 provides the summary of contributions, regarding the diameter of some

specific Knddel graphs.
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Table 3.7 Diameter of some specific Knodel graphs

Knodel graph Diameter Tested ranges
n—2
W3,n [ 3 ] +1 n>8§
Wa-1,24-2 e 3<d<24
Wy, 442] 5<d<24
W d+2 .
d, 2942 — 5<d<24anddis odd
Wy 2o —¥_ 4 <d<24anddiseven
Wy g 442] S<d<24
Wd, 244 2d-1_3 -¥_ 3<d<24

Three propositions, regarding the number of vertices at a particular distance, in

the Knddel graphs W, ,a, W ya,n Wy paiy Wy gare Wy gaugand Wy g a
e Proposition 3.1: Let N; denotes the number of vertices of Knodel graph W ; ,a at
distance i, where 0 < i < D(Wd' ,a) Then Ng=1, Ny=d, Ny =(d—1)+(d —

—2)%(d—
2)? and N3 = W+2,for4§d§24.

e Proposition 3.2: In W ; ,a, W, 5a,5 Wy sa,0 Wy sare Wy pargand W, a_y,

. . . d
the maximum number of vertices, are at distance 1 + [;J, for 3 <d <24

e Proposition 3.3: Let N, denotes the number of vertices at diametral distance of the
Knodel graphs Wy ,a, Wy pdry Wy gdis Wy dre Wy sag and W, ) sa .

Then, Ny < N; < -+ < ngl < Nl"'lgl > N2+I§J >+ > N, where 3 <d < 24.
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Chapter 4

The Broadcasting in the Knodel graph W ,,

In this chapter, we present the broadcast time of the Knddel graph Ws,, for all
even n and degree 3. There are six possible cases of Ws ,,, depending on the number of
vertices. We present a broadcast scheme for six cases of the Knodel graph Ws,. We
show that the Knodel graph Ws,, for n = 4 mod 6 and n > 16, is the first infinite family

of diametral broadcast graphs in the Knodel graph W ,,.

4.1 Broadcasting in the Knodel graph W ,

In this section, we study the broadcast problem in the Knddel graph W3 ,. In
general the broadcast problem can be defined as follows:

Let G = (V,E) be a graph and let v be a vertex in G. Now consider that v knows

a piece of information, I (v), that is unknown to all other vertices in V = {v}. The

broadcast problem is to find a communication strategy, called broadcast scheme,

such that all nodes from G learn the piece of information /(v) in the minimum

possible time [42].

Now we present the broadcast scheme for the Knodel graph Wj,,. For that we
consider only the 1 and 3-dimensional edges of the Knodel graph W3 ,,. Recall that 1 and
3-dimensional edges split W3 ,, into 2x segments, where

number of vertices
6

X =
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Each segment is of length 6, except the one containing the vertex n/2. We can perform

exactly

1 (number of vertices ) number of vertices
X =— =
2

6 12

1 and 3-dimensional passes clockwise and anti-clockwise, before they intersect. Using 1
and 3-dimensional edges, we can reach the vertices 6, 6(2), 6(3),...,6(x — 1), 6x from
vertex 0, in the clockwise direction. Similarly, going anti-clockwise, we reach the
verticesn — 6, n — 6(2), n—6(3),..., n—6(x—1), n — 6x.

Using the vertex transitivity of the Knodel graph, we consider the vertex labeled 0
as the originator (initially informed vertex) in broadcasting. The broadcasting in the

Knéodel graph W3 ,, will be performed in two steps.

Step —1:

In step — 1 our goal is to pass the message from the vertex 0 to the vertices 6x and
n — 6x as early as possible. To achieve this goal, we use the long “moves” of 1 and 3-
dimensional edges (see Figure 4.1). We start the broadcasting from vertex 0. At time 1
the vertex 0 sends the message to the vertex 1 in the clockwise direction. At time 2, the
vertex 0 informs the vertex 7 in the anticlockwise direction. Since the vertices 6x and
n — 6x are at distance 2x from the vertex 0, and we start broadcasting in a clockwise
direction first, the vertex 6x will be informed at the time T = 2x. Subsequently, the
vertex n — 6x will receive the message one time unit later than the vertex 6x, so the
vertex n — 6x will be informed at time T + 1.

Recall that to pass the message to the vertex 6x, in the clockwise direction, we
use the path and time slots as follows:
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Timel Time2 Time3 Time 4 Time 5 TimeT
00— 1—m—m6——n—-5——6(2)—— ... — 6.

Similarly, to pass the message to the vertex n — 6x, in the anti-clockwise direction, we

use the path and time slots as follows:

Time 2 _Time 3 Time 4 Time 5 Time 6 Time T+1
l—m—m7—n—-6—>13—n-6(2)— ... ———n — 6x.

Note that in the above specified two paths, the single line arrow “——” is representing
the 1-dimensional edge and the double line arrow “==" is representing the 3-
dimensional edge.

When we broadcast in W3, from the vertex 0 using the above specified paths,
formed by 1 and 3-dimensional edges, the 3-dimensional edge forms a “cycle” of length
6. As the “cycle” of length 6 is formed, it starts to broadcast within itself, and in parallel
broadcasting continues on the specified path that forms other “cycles” of length 6. Now
consider the “cycle” in the clockwise direction where the 3-dimensional edge is labeled
with time unit 2. Recall that at time 2, the vertex 1 informs the vertex 6 using 3-
dimensional edge, that forms the cycle of length 6 (see Figure 4.1). At time 3, the vertex
1 informs the vertex 2 and the vertex 6 sends the message to the vertex n — 5 that is out
of this “cycle” but it is on the specified path. At time 4, the vertices labeled with 2 and 6
inform the vertices n — 1 and n — 3, respectively. In parallel at time 4, the vertex n — 5
sends the message to the vertex 6(2) using 3-dimensioal edge, this forms another “cycle”
of length 6 on above specified path. At time 5, the vertex n — 1 informs the vertex 4, this
way broadcasting in this “cycle” finishes in 4 time units (i.e., from time 2 to 5). And also
at time 5 the vertex n — 3 sends the message using 3-dimensional edge to the vertex 10

that is in the next “cycle” of length 6 where 3-dimensional edge is labeled with time 4.
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Similarly, in anti-clockwise direction the “cycle”, where the 3-dimensional edge is
labeled with time 2, completes the broadcasting in 4 time units (i.e., from time 2 to 5).
Here we can see that the second “cycle” on each path is formed at time 4, whereas the
broadcasting in first “cycle” where 3-dimensional edge is labeled with time 2 completes

broadcasting at time 5.

Broadcast Scheme for W3

. T = dist(0,6x) = 2x .

I:l Broadcast Originator

Figure 4.1 The general broadcast scheme for the Knodel graph W,

The broadcasting in the remaining 2x — 2 “cycles” of length 6 is performed in a
similar way as described above, except that the one of the vertices in each of these
“cycles” is informed by a vertex from the previous “cycle” of length 6, using 3-

dimensional edge. Now consider the “cycle” in clockwise direction where 3-dimensional
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edge is labeled with time 4. Recall that at time 4, the vertex n — 5 informs the vertex
6(2) using 3-dimensional edge, that forms the “cycle” of length 6 (see Figure 4.1). At
time 5, the vertex n — 5 informs the vertex 8, the vertex n — 3, the informed vertex from
the previous “cycle”, informs the vertex 10, and the vertex 6(2) sends the message to the
vertex n — 11 that is out of this “cycle” but it is on the specified path. At time 6, the
vertices labeled with 6(2) and 8 inform the vertices n —9 and n — 7, this way the
broadcasting in this “cycle” finishes in 3 time units (i.e., from time 4 to 6). Also in
parallel at time 6 the vertex n — 11, that is out of this “cycle”, informs the vertex 6(3)
using 3-dimensional edge, that forms another “cycle” of length 6 on specified path. At
time 7 the vertex n — 9 will inform one of the vertices of a newly formed “cycle” of
length 6 using 3-dimensional edge. Similarly, in anti-clockwise direction the “cycle”
where the 3-dimensional edge is labeled with time 4, completes the broadcasting in 3
time units (i.e., from time 4 to 6). And in parallel at time 6, the vertex n — 6(2) informs a
certain vertex using 3-dimensional edge that forms another “cycle” of length 6 on
specified path. The process of broadcasting as described above continues till the x-#4 (the
last) “cycle” of length 6 on each path (clockwise and anti-clockwise). It follows that,
except 2 “cycles” where 3-dimensioal edges are labeled with time 2, the broadcasting in
each of the remaining 2x — 2 “cycles” of length 6 finishes at the same time when the
next “cycle” of length 6 is formed on the paths specified above (see Figure 4.1).
Moreover, except 2 “cycles”, where 3-dimensioal edges are labeled with time 2,
the broadcasting in each of the remaining 2x — 2 “cycles” of length 6 is performed in 3
time units. Because one of the vertices in each of these 2x — 2 “cycles” is informed by a

vertex from the previous “cycle” of length 6, using 3-dimensional edge, therefore it is
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taking 3 time units. In general this can be expressed as follows: “If any “cycle” from
2x — 2 “cycles” of length 6, where the 3-dimensional edge is labeled with time y, it
takes 3 time units (i.e., ¥, y +1and y + 2 ) to finish the broadcasting within it”. Now
consider the last two “cycles” of length 6, where the 3-dimensional edges are labeled
with time T, the broadcasting in these two “cycles” finishes in 3 time units (i.e. T, T +
land T + 2).

Recall that we can perform only x 3-dimensional passes on each path (clockwise
and anti-clockwise), that is formed by 1 and 3-dimensional edges. The x-th
3-dimensional pass on each path forms the last “cycle” of length 6. Since x-th “cycles” of
length 6 on each path are formed at the same time when (x — 1)-th “cycles”, where 3-
dimensional edges are labeled with time T — 2, finish the broadcasting within
themselves. It follows that when the x-th “cycles” of length 6 on each path are formed,
where 3-dimensional edges are labeled with time T, the vertices in all previous “cycles”
will receive the message by time T'.

Step — 2:

The second step of broadcasting in Wj,, starts when the vertices 6x and n — 6x
have been informed at time units T and T + 1, respectively. Recall that, there are six
cases of W3, depending on the number of vertices. In the following, we present the six
broadcast schemes, one for each case, to inform the remaining vertices starting from time
T + 1 onwards. We also obtain the upper bound on the broadcast time for each of these

six cases of W3, using the following broadcast schemes.
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Case 1: n = 0 mod 6 and % is even

Recall from Case 1 under Section 3.1, that after x = — 1 and 3-dimensional

passes in each direction, we the reach the vertex labeled % The vertex — is at distance —
from vertex 0. If we start broadcasting in a clockwise direction, the vertex % will receive

the message at time T = %. Figure 4.2 demonstrates the broadcast scheme for Case 1.

CASE-1
. n=0mod & and n/2is EVEN i .
R
- 3 ‘.
: T=n/6 A .
D Broadcast Originator -
P Verticas informed at LT
£ o\TN last time unit (T+2) i ™,
I o 5,
oy 2,
3 2., '
A i
c4 -..,_._______- b ‘lo'
e 3
, .". " ® *

-
-~

. N -__..-‘C 1

Figure 4.2 The broadcast scheme for W,,, where n = 0 mod 6 and n/2 is even
Also recall that when the x-t4 “cycles” of length 6 on each path are formed, where
3-dimensional edges are labeled with time T, the vertices in all previous “cycles” will
receive the message by time T. Therefore all the vertices in any “cycles” of length 6

except Ci and C; will receive the message by time T. The broadcasting in C; will be

completed at time T + 2 in the following way.
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Since the vertex % + 7 is on the specified path, therefore at time T — 1 it is
informed by the vertex % — 6 using 1-dimensional edge. At time T, the vertex % +7
sends the message to the vertex %, that forms the x-th “cycle” of length 6 in the
clockwise direction. Now at time T + 1 the vertices % + 7 and % send the message to
the vertices % — 4 and % + 3, respectively. Also at time T + 1 the vertex % + 9 (the
informed vertex from (x — 1)-th “cycle”) informs the vertex % — 2 using 3-dimensional

edge. At time T + 2 the vertex % — 4 informs the Vertex% + 5 using 3-dimensional edge,

this completes the broadcasting in x-th “cycle” on specified path (clockwise direction).
Similarly, the broadcasting in Cz, the x-th “cycle” on specified path in anti-
clockwise direction, will be completed at time T + 2 in a similar way as described

above. Since there is no other vertex left to be informed, this proves that, b(O, Wg'n) <

T+ 2, where T = %, n = 0 mod 6 and % is even. Thus,

b(Wg,n) < D(Wg,n) +1= % +2= r%z + 2, forn=0mod®6 and% is even

Case 2: n = 0 mod 6 and % is odd

Recall from Case 2 under Section 3.1, that after x = n1—_26 1 and 3-dimensional
passes in clockwise and anti-clockwise directions, we reach the vertices % — 3 and % +
3, respectively. Both of these vertices are at distance % — 1 from vertex 0. If broadcasting
is started in a clockwise direction the vertex % — 3 receives the message at time T = % —

1. The vertex % + 3 receives the message one time unit later than vertex % — 3, at time
T + 1. Figure 4.3 demonstrates the broadcast scheme for Case 2.
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Recall that when the x-th “cycles” of length 6 on each path are formed, where 3-
dimensional edges are labeled with time T, the vertices in all previous “cycles” will
receive the message by time T. Also recall that the broadcasting in the x-th “cycles” of
length 6 on each path will finish by time T + 2. Therefore all the vertices in any “cycles”
of length 6 except two vertices of C; will receive the message by time T + 2. The

broadcasting in C; will be completed at time T + 3 in the following way.

CASE-2 Sl e
n=0mod&6 and n/2iIs ODD ’ .

T = n/8-1
D Broadcast Originator

e Vertices informed at [
S last ime unit (T+3) DN
;e 75
! 3
5 e 2y
“‘ i\r” EI 4 i N A A Vi -, E
AN e, £
t\ ) q@ '.,'
ca%, */
o, "’2:2 o

C1
Figure 4.3 The broadcast scheme for W, where n = 0 mod 6 and n/2 is odd

Since the vertices % —3 and % + 3 are informed at time T and T + 1,
respectively, therefore at time T + 1 the vertex % — 3 sends the message to the vertex
% + 4. Now at time T + 2 the vertices % + 3 and % + 4 send the message to the vertices
Z and = — 1, respectively. There are only two vertices left to be informed in C;. Finally

2 2
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at time T + 3 vertices % — 1 and % send the message to the vertices % + 2 and % +1,

respectively. Since there is no other vertex left to be informed, this proves that

b(0,Wsp) < T+ 3, where T = = —1,n = 0 mod 6 and —- is odd. Thus,

b(Wsp) < D(W3p) +1=%+2=[==2|+2. forn=0mod 6and = is odd

Case 3: n = 2 mod 6 and % is even
) -8 . .
Recall from Case 3 under Section 3.1, that after x = nT 1 and 3-dimensional
passes in clockwise and ant-clockwise directions, we the reach the vertices % —4 and

%+4 respectively. Both of these vertices are at distance %—% from vertex 0. If

broadcasting is started in a clockwise direction the vertex % — 4 will receive the message

w1

at time T =

o3

The vertex % + 4 will receives the message one time unit later then

the vertex % — 4, attime T + 1. Figure 4.4 depicts the broadcast scheme for Case 3.

Recall that when the x-th “cycles” of length 6 on each path are formed, where 3-
dimensional edges are labeled with time T, the vertices in all previous “cycles” will
receive the message by time T. Also recall that the broadcasting in the x-th “cycles” of
length 6 on each path will finish by time T + 2. Therefore all the vertices in any “cycles”
of length 6 except four vertices of C; will receive the message by time T + 2. The

broadcasting in C1 will be completed at time T + 3 in the following way.

Since the vertices % —4 and % + 4 are informed at time T and T + 1,
respectively, therefore at time T + 1 the vertex % — 4 sends the message to the vertex

%+ 5. At time T + 2 the vertices %— 2 and %— 1 receive the message from the
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vertices % + 5 and % + 4, respectively. Now there are only four vertices left to be
informed in C;. At time T + 3 the vertices % — 2 and % — 1 inform the vertices % +3

and % + 2, respectively. As the vertices % + 7 and % + 6 are from the x-th “cycles” and
they get informed by time T + 2, so they can participate in the broadcasting process.

Therefore at time T + 3 the vertices % + 7 and % + 6 send the message to the vertices %
and % + 1 of Cy, respectively. Since there is no other vertex left to be informed, this
proves that, b(O, W3,n) < T+ 3,whereT = % - g, n = 2 mod 6 and % is even. Thus,

b(W3,n) < D(W3,n) +1= % +§ = [%] + 2, forn>8 n=2mod6 and% is even

~
- CASE-3 -
- n=2mod6 and n/2 is EVEN ) -
" T = n/6 - 4/3 .
. D Broadcast Criginator ; nrz.19
....... ; Vertices informed at 1.3 -

/,:,:S O last time unit (T+3) ) “Fe1 '45;;.,_‘
"'I'Jb -.-' - Wi’ ““
H . H
[ & Nz,
AY e :‘% 4

N e T e

A} " fc2

C3 ‘\ e - ‘o"

Figure 4.4 The broadcast scheme for W, ,, where n =2 mod 6 and n/2 is even
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Case 4:

n =2 mod 6 and % is odd

Recall from Case 4 under Section 3.1, that after x = —

1 and 3-dimensional
. R . . . . . n n
passes in clockwise and anti-clockwise directions, we reach the vertices —— 1 and St

. . . 1 .
1, respectively. Both of these vertices are at distance % —-3 from vertex 0. If broadcasting

n
6

[SS =Y

is started in a clockwise direction the vertex — — 1 will receive the message at time T =

. The vertex % + 1 will receive the message one time unit later then the vertex - —

1, at time T + 1. Figure 4.5 illustrates the broadcast scheme for Case 4

CASE-4

. n=2mod6 and n/2is ODD .
hi " .
. T=n/6-1/3 ' .
. |:| Broadcsst Originator .

/.»;s, Vertices informed at

V; 5{ last time unit (T+2)

{c @

{ ‘9' e

1 N

| & ¥

\ &

......
FITITTRA T,

-’
', -
o TS g c

Figure 4.5 The broadcast scheme for W,,, where n =2 mod 6 and n/2 is odd

Recall that when the x-th “cycles” of length 6 on each path are formed, where 3-

dimensional edges are labeled with time T, the vertices in all previous “cycles” will

receive the message by time T. Therefore all the vertices in any “cycles” of length 6
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except C; and C, (the x-th “cycles”) will receive the message by time T. The

broadcasting in C; will be completed at time T + 2 in the following way.

Since the vertex % + 8 is on the specified path, therefore at time T — 1 it is
informed by the vertex % — 7 using 1-dimensional edge. At time T the vertex % +8
sends the message to the vertex % — 1 that forms the x-th “cycle” of length 6 in the
clockwise direction. At time T + 1 the vertices % + 8 and % — 1 send the message to the

vertices % — 5 and % + 2, respectively. As the vertex % + 10 is from the (x — 1)-th
“cycle” and it get informed by time T, so this can participate in the broadcasting process.
Therefore at time T + 1 the vertex % + 10 sends the message to the vertices % — 3 using
3-dimensional edge. Now there are two vertices left to be informed in Ci. At time T + 2
the vertices % —5 and % — 1 inform the vertices % + 6 and % + 4, respectively, this
completes the broadcasting in C;.

Similarly, the broadcasting in Ca, the x-th “cycle” on specified path in anti-
clockwise direction, will be completed at time T + 2 in a similar way as described

above. Since there is no other vertex left to be informed, this proves that, b(O, Wg,n> <

T + 2, where T=%—

W=

, n = 2mod 6 and % is odd. Thus,

b(Wg,n) < D(Wg,n) +1= % + % = [%] + 2, forn =2mod 6 and% is odd

Case 5: n =4 mod 6 and % is even

Recall that in Case 5 under Section 3.1 after x = n1_—24- 1 and 3-dimensional passes

. . . . . . . n n
in clockwise and anti-clockwise directions, we reach the vertices 5~ 2 and ;+ 2,
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: . : 2
respectively. Both of these vertices are at distance %—5 from vertex 0. If the
broadcasting is started in a clockwise direction the vertex % — 2 will receive the message

attimeng—

[SSE S

. The vertex % + 2 will be informed one time unit later then the vertex

% — 2, attime T + 1. Figure 4.6 shows the broadcast scheme for Case 5.

n=4mod 6 and n/2is EVEN T

¥ " ‘-
. T=n6-23 ) .
. |:| Broadcast Originator S
. Vertices informed at i o “,
last ime unit (T+2) Qi‘.}\
& y %,
."St ®.. * |
i R,
P & ® j
\ & 0 /
N
™,

o
f T—

c1
Figure 4.6 The broadcast scheme for W,,, where n =4 mod 6 and n/2 is even

Recall that when the x-th “cycles” of length 6 on each path are formed, where 3-
dimensional edges are labeled with time T, the vertices in all previous “cycles” will
receive the message by time T. In other words, all the vertices from “cycle” 1 to (x — 1)
of length 6 on each path will receive the message by time T. The broadcasting in x-th
“cycles” of length 6 on each path and the vertices between these two “cycles” will be

completed at time T + 2.
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Now consider the C (x-th “cycle” of length 6 in clockwise direction). Since the

vertex % + 9 is on the specified path, therefore at time T — 1 it is informed by the vertex
% — 8 using 1-dimensional edge. At time T the vertex % + 9 sends the message to the
vertex % — 2, that forms the x-th “cycle” of length 6 in the clockwise direction. At time
T + 1 the vertices % + 9 and % — 2 send the message to the vertices % — 6 and % + 3,

respectively. As the vertex % + 11 is from the (x — 1)-th “cycle” and it get informed by
time T, so this can participate in the broadcasting process. Therefore at time T + 1 the

vertex % + 11 sends the message to the vertices % — 4 using 3-dimensional edge. Now
there are two vertices left to be informed in C,. At time T + 2 the vertices % — 6 and

% — 2 inform the vertices % + 7 and % + 5, respectively, this completes the broadcasting

in Cz. Similarly the broadcasting in Cs, the x-th “cycle” on specified path in anti-
clockwise direction, will be completed at time T + 2 in a similar way as described above.
Ci consists of the vertices between x-th “cycles” of length 6 on each path. The

broadcasting in C; will also be completed at time T + 2 in the following way. Recall that

at time T + 1 the vertices % — 2 and % — 1 send the message to the vertices % + 3 and
% + 2, respectively. Now at time T + 2 the vertices % + 3 and % + 2 inform the vertices
% and % + 1, respectively, this way all the vertices of the graph are informed. Since there
is no other vertex left to be informed, this proves that b(O, W3,n) < T+ 2, where T =
n 1

n .
<3 N= 4 mod 6 and - is even. Thus,

b(Wg,n) < D(Wg,n) = % +5; = [’%2 +1, for n > 16, n = 4mod 6 and%is even
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Case 6: n =4 mod 6 and % is odd

- 10

Recall that in Case 6 under Section 3.1 after x = = 1 and 3-dimensional
passes in clockwise and anti-clockwise directions, we reach the vertices % — 5 and % +
5, respectively. Both of these vertices are at distance g - g from vertex 0. If the
broadcasting is started in a clockwise direction the vertex % — 5 will receive the message

. 5 : . . .
attime T = = — e The vertex % + 5 will receives the message one time unit later than the

vertex % — 5,attime T + 1. Figure 4.7 depicts the broadcast scheme for Case 6.

- CASE-6 -
- n=4 mod 6 and n/2is ODD -
. -

T =n/6-5/3
Broadcast Originator
Vertices informed at

O last ime unit (T+3)

Figure 4.7 The broadcast scheme for W,,, where n =4 mod 6 and n/2 is odd

Recall that when the x-th “cycles” of length 6 on each path are formed, where 3-
dimensional edges are labeled with time T, the vertices in all previous “cycles” will

receive the message by time T. Also recall that the broadcasting in the x-th “cycles” of
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length 6 on each path finish by time T + 2. Therefore all the vertices from the “cycle” 1
to x-th of length 6 on each path will receive the message by time T + 2. The vertices
between x-th “cycles” of length 6 on each path (Ci) will be informed by time T + 3 in the

following way.

Recall that, at time T + 1, the vertices % — 5 and % — 4 send the message to the
vertices % + 6 and % + 5, respectively. Now, at time T + 2, the vertices % + 6 and
% + 5 inform the vertices % — 3 and % — 2, respectively. After time T + 2, there are 6
vertices yet to be informed in Ci. At time T + 3, the vertices % — 3 and % — 2 using
I-dimensional edge inform the vertices % + 4 and % + 3, respectively. Also at time T +
3 the vertices % + 6, % + 8, % +5 and % + 7 using 3-dimensional edge inform the
vertices % +1, % -1, % + 2 and %, respectively. Since there is no other vertex left to
be informed, this proves that b(O, W3,n) < T+ 3, where T = % — §= n = 4 mod 6 and
% is odd. Thus,

b(W3n) < D(Ws,) = 5 +3 = [=2]| +1. for n> 10, n = 4mod 6 and - is odd

4.2 Broadcast time of W3,

In this section, we present the b(W3_n) for all even n and degree 3. We know that
b(G) = D(G), for any connected graph G. The following lemma provides the lower
bound on b(G), when at least two vertices are at diametral distance D, from vertex u.
Lemma 4.1 [18]

If there exists at least two vertices at diameteral distance D from

vertex u in graph G, then b(G) = D + 1.
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Recall that the Knddel graph W;,, when n = 0 mod 6, has two vertices at
diametral distance D from vertex 0. Also recall that W3, when n > 8 and n = 2 mod 6,
has three vertices at diametral distance D from vertex 0. Based on the Lemma 4.1, it
follows that b(Ws,,) = D(Ws,) + 1, where n > 8 and n = 0,2 mod 6. In Section 4.1
we derived that (W5 ,,) < D(Ws,) + 1, where n > 8 and n = 0,2 mod 6. Combining

these two inequalities we get,

b(Wsn) = D(Wsn) +1= 2| +2| for n=0,2mod6

The lower bound on b(W3,n), when n = 4 mod 6, follows from its diameter. We
need at least D(W3 n) [ ] + 1, time units to inform a vertex at distance [—] +1,
from the broadcast originator. Thus,

b(W3,) = D(Ws,) = [ ]+ 1 for n=4mod6

In Section 4.1, we derived that b(W3,n) < D(W3’n), where n =4 mod 6.

Combining these two inequalities we get,

b(Wsn) = D(W3,) = [“2] +1 for n > 16, n = 4mod 6

W3 10 and W3 44 are the only two graphs in W3, for n = 4 mod 6, where the
broadcasting cannot be done in diametral time. The D(W3,10) = 3, and b(W3'10) =4.In
W3 10, 8 vertices will be informed in 3 time units, because a Knddel graph of order 8 and
degree 3 is a broadcast graph, where b(W3,8) = [log, 8] = 3. The remaining 2 vertices
of W31 will be informed at time 4. Similarly, the D(W516) = 4, and b(W5,6) = 5. In
W3 16, 8 vertices will be informed in 3 time units. After time 3, 2 out of 8 informed

vertices will not participate in the rest of the broadcasting process, since all of their

62



neighbors are already informed. So, at time 4, at most 6 vertices can be informed and the
remaining 2 vertices will be informed at time 5, thus b(W3,16) = 5. Figures 4.8 and 4.9

illustrate the diametral broadcasting in W3 ,, and W3 ,g, respectively.

Figure 4.9 The diametral broadcast graph, the Knodel graph W ,,
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4.3 The first diametral broadcast graph family in W ,

Recall that for the lower bound on the broadcast time of any graph G, we have
b(G) = [log,n]. Another obvious lower bound on the broadcast time is b(G) = D(G).
Also recall that the graph, where the broadcast time equals to its diameter, i1s known as
the diametral broadcast graph.

The graphs with b(G) = D(G) have been studied in [23], where the problem of
existence of graphs with broadcast time equal to their diameter was introduced. The
diametral broadcast graph (dbg) problem is to answer the question whether for a given n
and d, a graph on n vertices can be constructed whose diameter and broadcast time are
equal to d [23]. They also defined the diametral broadcast function DB(n,d) as the
minimum possible number of edges in a dbg on n vertices and diameter d. In [23], the
following three different constructions were presented to solve the diametral broadcast
graph problem for all possible values of n and d.

In [23], the first construction was based on trees and provided the exact value of
DB(n,d) = n — 1, for a few values of n and d. The second construction was based on a

hypercube and binomial subtrees attached to it, where they obtained that the DB(n,d) =
%n([logz n] —1). In the last construction a dbg was obtained by removing certain

vertices with adjacent edges from the hypercube and they obtained DB(n,d) = %n[log2 nl.

However, in section 4.2, we have presented and proved that the broadcasting in
the Knodel graph W3, where n > 16 and n = 4 mod 6, can be performed in diametral

time. Since the Knodel graph W, has degree d and n vertices, and it is bipartite,

therefore the number of edges are equal to |E| = %n. Subsequently, the number of edges

. 3n
in W3, where n > 16 and n = 4 mod 6, are |E| = - Moreover, W3 ,,, where n >
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16 and n = 4 mod 6, is the first infinite diametral broadcast graph family in Knoddel

graph W ,,.

4.4 The Broadcast graph W 5,

The construction of the graphs with b(G) = [log, n]| (i.e., broadcast graphs) is a
well-studied problem in literature. See e.g. [3] [5] [6] [7] [10] [12] [20] [21] [27] [29]
[30]. In terms of Knddel graph, it is presented in [14] that W,;_, ,, where 2071 42 <
n < 3-2972 — 4, is a broadcast graph. Recall that a graph on n vertices with b(G) =
[log,n| is known as a broadcast graph. For the Knddel graph W;, the number of
vertices can be calculated from the range of n given above in [14]. Since the degree in
Wy_2n is d — 2, therefore d = 5 in W3 ,,. Thus,

2071 +2<n<3-292-4
2°714+2<n<3-25% -4
18<n <20

For Wj, the interval of n presented in [14] is calculated as 18 <n < 20.
Because of the the interval of n from [14], the Knddel graph W3 ,,, cannot be considered
as a broadcast graph. But we show that Wj,, is the broadcast graph. In Figure 4.8, we
present the broadcast scheme for Wj,,, which demonstrates that the broadcasting in
W3 5, can be done in [log 22] = 5 time units. The broadcasting of Wj ,, is also presented
in Table 4.1, where the information, like 0—7(3), can be interpreted as follows: the
vertex 0 informs the vertex 7 using 3-dimensional edge. Moreover b(W3,22) = D(W3,22).

Therefore this is a diametral broadcast graph too.
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Table 4.1 Broadcasting in the Knodel graph W ,,

Time Informed vertices
0 0
1 0—1(1)
2 0—7(3), 1-6(3)
3 0—3(2), 1-2(2), 6—17(1), 7T—16(1)
4 2—21(1), 3—20(1), 6—19(2), 7—18(2), 16—9(2), 17—8(2)
5 8—15(1), 9—14(1), 16—13(3), 17—12(3), 18—11(3), 19—10(3), 20—5(2),

21—4(2)

4.5 Summary

In this chapter, we studied the problem of broadcasting in the Knddel graph W3 ,,,

for all even n and degree 3. Our contributions to this chapter are the following:

o b(Ws,)=D(Ws3,)+1=[=2[+2 for n=0,2mod 6

o b(W3,)=D(W;3,)=|"|+1  for n>16 n=4mod6

e We showed that W3, for n > 16 and n = 4 mod 6, is the first diametral
broadcast graph family in the Knodel graph W, ,,.

e Using the broadcast scheme, we proved that, W;,,, is a broadcast graph.
Moreover, b(W; 5,) = D(Ws 5;), so this is also a diametral broadcast graph.

e Since b(W3,n) = [%] + 1 forn > 16 and n = 4 mod 6. Therefore, it turns

n-2
242

out that the conjecture b(Wd,n) = [ ] + d — 1 for all even n and degree d

given in [23] is not valid anymore.
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Chapter 5

New graph construction and its communication properties

In this chapter we construct a new graph, denoted as HW ; ,4, by connecting the
vertices of the Knddel graph W, ;.41 to hypercube Hy_;. We investigate the
communication properties of HW ; 5a in terms of number of vertices, degree, edges,

diameter, and broadcast time. With the use of extensive simulation, we provide diameter

and broadcast time of H Wdlzd forall d < 24.

5.1 The construction of HW ;54

We construct the HW ; ,a graph of order 2% and degree d by connecting the
vertices of the Knodel graph W, ,,a-1 and hypercube Hy ;. The construction of
HW ; ,a is as follows:

Consider the Knodel graph W ;_; ,a-1 and hypercube Hy_1, we use the definition
1 for Knédel graph. Now connect the vertices of Knddel graph W ;_; ,4-1 and hypercube
H,_4 using d-dimensional edges in a way that the vertex i, for all 0 < i < 2971 — 1, of
the Knodel graph is connected to the vertex of H;_; whose binary label is equal to i.
Connecting both of these graphs using d-dimensional edges, we have a HW ; ,a graph of
order 2¢ and degree d.

To demonstrate the construction of HW ; ,a graph, let’s consider HW, 54, where
the vertex labeled 0 of Knddel graph W;,3 connects to the vertex labeled 000 of

hypercube H; using 4-dimensioanl edge. Now the rest of the vertices labeled 1, 2, 3, 4, 5,
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6, 7 of Knodel graph W ,3 connect to the vertices 001,010,011, 100, 101,110,111 of
hypercube H;, respectively, using 4-dimensional edges. Figure 5.1 illustrates the
construction of HW,,« graph by connecting the vertices of W3,s and H; using 4-

dimensional edges.

Figure 5.1 The construction of HW 4 ,4 graph by connecting the vertices of W3 ,3
and H; using 4-dimensional edges.

5.2 The communication properties of HW ; ,a

In this section we investigate the communication properties of HW ; ,a graph in
terms of number of vertices, degree, edges. The HW ; ,a graph has 2% vertices and the
degree d. The number of edges of HW ; ,a graph is obtained from the number of edges of
W 4_1 5a-1, Hy—1 and the edges those connects these two graphs. Thus, HW ; ,a graph has
|E| =d-2471.

5.3 Diameter of HW ; ,a graph

In order to obtain D(HWd,Zd), we have performed an experiment, where the
Breadth-First-Search operation is applied on the HW ; ,a graph. The simulation results

suggest that D(delzd) = lejJ, for 1 <d < 24.
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5.4 Broadcast time of HW ; ,4 graph

This section provides the broadcast time of HW ; ,a graph that is based on the
simulation results. The broadcasting in HW ,,a graph is performed using classical
broadcast model. The careful study of generated data regarding b(H Wd,zd) demonstrates
that the broadcasting in HW ; ,a graph is performed in [log; n| time. Recall that a graph
on n vertices with b(G) = [log,n] is called a broadcast graph. Thus, HW,a is a

broadcast graph of order 2¢ and degree d.

b(HW ,,4) = [log, 2% =d  for 1<d <24

5.5 Comparison of Hy, G(2%,4), W ;54 and HW ; 54

For any n = 2% and degree d, hypercube Hy, recursive circulant G(2%,4) and the
Knddel graph W, ,a are the three non-isomorphic infinite graph families known to be
minimum broadcast and gossip graphs [16][22]. Recall that a broadcast graph with the

minimum possible number of edges is called minimum broadcast graph. Since HW ; ,a

graph has 2¢ vertices and degree d, and the broadcasting is performed in [log, n] time (as
in Hy, G(2%,4) and W ; ,a), therefore, HW ; ,a, when 1 < d < 24, is also a minimum
broadcast graph.

These four topologies are comparable because they all have good communication
properties in terms of interconnection networks. Moreover, they are of the same order 2¢
and regular graphs with the same degree d. Table 5.1 provides the comparison between

Hgy, G(2%,4),W 4 ,a and HW ; ,a graphs.
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Table 5.1 Comparison between H;, G(Zd, 4),

Wd,zd and de,zd

Properties Hg4 G(2%,4) W, pa HW ;,q
Number of 2d d 2d 2d
vertices
Degree d d d d
Edges d-24-1 d-24-1 d-24-1 d-24-1
Diameter d [3d4_ 1] [dzﬁ] ld T ZJ for1<d < 24
Broadcast time d d d
Minimum
broadcast Yes Yes Yes Yes
graph

It is observed from Table 5.1, that diameter of HW ; ,a and W, ,a is equal to %
for even degree d and 2 < d < 24. Whereas, when degree d is odd and 3 < d < 24 then

D(HWd,zd) = l?J, that is smaller than the D(Wd'zd) = [?], for any odd degree d.

5.6 Summary

In this chapter, we provided the construction of a new graph, denoted as HW ; ,a,
by connecting the vertices of the Knddel graph W,_,,4-1 to hypercube Hy_;. Our
contributions to this chapter are the following:

* The construction of a new graph, denoted as HW ; ,a

o D(HW,,0)=|22],  for 1<a<24

o b(HW,,a) =[log, 2% =d, for 1<d<24

e HW , ,a graph is a minimum broadcast graph
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Chapter 6

Conclusion and Future Work

In this thesis we studied three inter-related communication properties, i.e.,
diameter, number of vertices at a particular distance and the broadcast time of the Knodel
graph. We can divide our work in three parts.

In the first part, the Knddel graph is studied in terms of diameter. Theoretically,
we provide D(W3,n) = [nT_Z] + 1 for n > 8. Moreover, the massive experimental work
on the Knddel graph, and careful studies of the observed properties lead us to give the
exact diameter of some other specific Knoédel graphs, i.e., W1 043 Wy_q o,
W 2diz0 Wy payyand Wy paypa-1_y.

In the second part, we studied the Knddel graph in terms of the number of vertices
at a particular distance. In this regard, the experiment was conducted, where Breadth-
First-Search operation was performed on Knddel graphs W, ,a, W, ya,, W a.,,

Wy aare Wy paig and W,y 5a_,. The comprehensive study of the data and observed
properties enables us to give three propositions for the number of vertices at a particular
distance in specific Knddel graphs.

The problem of determining the broadcast time of the Knddel graph Wj,, for all
even n and degree 3 has been undertaken in the last part of our work. Regarding the

broadcast time of Knodel graph W3 ,,, we obtained the following results:
o b(Ws3,)=D(Ws3,)+1=|"2|+2 for n=0,2mod6
. b(W3,n) = D(W3,n) = [nT_Z] +1 for n>16andn =4 mod 6

e We showed that Ws,,, for n > 16 and n = 4 mod 6, is the first diametral
broadcast graph family in the Knddel graph W, .
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e Using the broadcast scheme, we proved that W;,, is a broadcast graph.
Moreover, b(W; 5,) = D(Ws5;), so this is also a diametral broadcast graph.

e Since b(Wg’n) = [nT_Z] + 1 for n > 16 and n = 4 mod 6. Therefore, it turns

n-—2

out that the conjecture b(Wy,) = [m

] + d — 1 for all even n and degree d

given in [23] is not valid anymore.

In Chapter 5, we provided the construction of a new graph, denoted as HW ; ,a,

and also investigated it’s communication properties. It turns out that this is a minimum

broadcast graph on order 2% and degree d, 1 < d < 24. Also when degree d is odd and
3<d <24 then D(HWd’Za) = l%], that is smaller than the D(Wd’zd) = [?], for

any odd degree d.

Following this we would like to mention few open questions for future research:

e The exact value of diameter is given in this thesis for some specific Knddel graphs.
To find the diameter for other families of Knddel graph W, ,, is still an open and a
challenging question.

e We presented that Ws,,, where n > 16, n = 4 mod 6, is the first diametral broadcast
graph family in the Knddel graph W, ,,. But we are expecting that there might be

other families of diametral graphs in Knodel graph W, ,,, where 4 < d < |log, n|.

The remarkable number of vertices to diameter ratio characteristic enables Knodel
graph to compete with hypercube and circulant graphs of same order and degree. Knddel
graph with its known characteristics in terms of dissemination of information becomes a
suitable candidate for communication networks, where parallel algorithms are heavily

employed.
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