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ABSTRACT 

 

Exploring the Role of Agrin in Skeletal Muscle Growth 

Michael De Cicco, M.Sc. 

Concordia University 2014 

 

 Skeletal muscle growth is important for organism development. It is also important 

throughout adult life as a result of exercise and to recover from injuries and diseases. Defects in 

the genetic programming underlying these processes give rise to myopathies. The molecular 

mechanisms underlying muscle growth are not fully elucidated, but it is known to be triggered by 

the initial contact between neuron and muscle fiber. This interaction promotes secretion of agrin 

by the motor neuron to initiate development of neuromuscular junctions. However, recent studies 

suggest that agrin may play a more prominent role in skeletal muscle growth and development. 

In this thesis, I characterized this new role for agrin by studying model myoblasts (cultured 

C2C12 cells) using fluorescence microscopy, immunoblot analysis and qPCR analysis. First, I 

examined effects of agrin on muscle cell proliferation and differentiation by treating C2C12 cells 

with recombinant neural agrin for the duration of their differentiation into myotubes. Agrin-

treated cells show greater levels of MEF2c and myogenin, markers indicative of differentiation, 

which correlates with an observed increase in myotube number and area. I then determined that 

agrin did not use the calcineurin pathway to achieve these phenotypes. Rather, agrin was able to 

restore growth of calcineurin-inhibited cells, suggesting it targets a different second messenger 

system. As the Akt/mTOR pathway is critical for muscle growth, I tested whether agrin utilizes 

this signaling pathway through the use of an mTOR inhibitor, rapamycin. Although the 

Akt/mTOR pathway was found to be upregulated with agrin treatment, this did not fully account 

for the effects of agrin on growth and differentiation, suggesting that perhaps another second 

messenger pathway may be responsible. Although there is much more to explore, this data 

uncovers a new role for agrin in the development of the early stages of skeletal muscle growth. 

These new findings allow a better understanding of muscle physiology, and serve as a novel 

potential target in the treatment of sarcopenia and cachexia. 
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INTRODUCTION 

 

 The neuromuscular system is a combination of the nervous and the skeletal muscle 

systems that work together to perform the primary function of movement and posture. Many 

diseases are at the core of a dysfunctional neuromuscular system, such as neuropathies, motor 

neuron diseases, and the spectrum of muscular dystrophies (Dupuis and Loeffler, 2009; Hettwer 

et al., 2014; Meinen and Ruegg, 2006). The brain controls most movements of the skeletal 

muscle through the nerves stemming from the spinal cord. NeuroMuscular Junctions (NMJs) are 

the gaps between the neuron and skeletal muscle fiber. They are not only essential for the body 

to move (contraction and relaxation) but for growth as well. Skeletal muscles depend on signals 

(electrical and chemical) from nerves to regulate skeletal muscle growth.   

 

Muscle growth and the neuromuscular junction 

 

The motor unit consists of a somatic efferent neuron that stems from the Central Nervous 

System (CNS) and a muscle fibre. By releasing neurotrophic factors (agrin, neurotrophin-4, 

neuroregulin), signaling molecules (calcium, nitric oxide), and a neurotransmitter (AcetylCholine 

(ACh)) into the NMJ, the motor neuron communicates with the muscle fibre (Angus et al., 

2005). Excitation-contraction couplings and growth-related signaling cascades in muscle fibres 

are the result of such interactions (Fig. 1). Many diseases are associated with dysfunctional 

NMJs that ultimately lead to atrophy caused by the loss of a growth stimulus. Several muscular 

dystrophies are caused by a nonfunctional or missing protein that compromises the structural and 

functional integrity of the NMJ and thus the muscle fibre (Burden et al., 2013; Deschenes, 2004; 

Dupuis and Loeffler, 2009; Meinen and Ruegg, 2006; Murray et al., 2012; Valdez et al., 2010). 

The aforementioned neurotrophic factor agrin has been linked to play a major part in many of 

these diseases (Dupuis and Loeffler, 2009; Hettwer et al., 2014; Meinen and Ruegg, 2006). 
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Agrin 

 

 Agrin is a large (217 kDa) heparan sulfate proteoglycan expressed in liver, kidney, lung, 

retina, brain, spinal cord, and skeletal muscle (Ferns et al., 1993; Hoch et al., 1993). Agrin has 

been shown to play a role in regulating growth of many of different tissues: it regulates 

hypertrophy and differentiation of chrondrocytes to generate connective tissue within the 

musculoskeletal system (Hausser et al., 2007), and mediates dendritic growth of hippocampal 

neurons within the central nervous system (Mantych and Ferreira, 2001; McCroskery et al., 

2006). However, agrin is best characterized for being essential for the development and 

stabilization of NMJs (Bezakova and Ruegg, 2003; Eusebio et al., 2003). Godfrey et al. (1984) 

and Nitkin et al. (1987) were the first to discover agrin as a neurotrophic factor that was 

sufficient for pre- and post-synaptic assembly of the NMJ. It was later shown that agrin induces 

aggregation of AcetylCholine Receptors (AChRs (Ferns et al., 1993)) – hence the name agrin - 

an early trigger for NMJ development. Agrin has been associated with several diseases such as 

myasthenia gravis (Burden et al., 2013; Liyanage et al., 2002; Takamori, 2012), congenital 

myasthenia syndrome (Meinen and Ruegg, 2006) and some forms of muscular dystrophy 

(Eusebio et al., 2003; Gramolini et al., 1998; Michel et al., 2004). Diseases caused by 

compromised NMJ include Duchenne Muscular Dystrophy (DMD; (Gramolini et al., 1998) and 

sarcopenia (Hettwer et al., 2014) among many others. Each of these diseases cause muscle 

atrophy. Although the underlying mechanisms that mediate disease caused by mutated agrin are 

largely unknown, the similarity in diseases caused by NMJ dysfunction and mutated agrin 

strongly suggests that agrin is crucial for NMJ function and muscle growth.   

 

Agrin has four splice variants, three of which are located at the C-terminal region and are 

known as the X, Y, and Z sites. One is located at the N-terminal which generates a short or long 

protein (Ferns et al., 1993). The longer N-terminal variant binds laminin and is localized in the 

basal lamina, while the shorter isoform is incapable of binding laminin and found in the nervous 

system (Bezakova and Ruegg, 2003). The C-terminal end of agrin has been shown to have AChR 

clustering activity (Ferns et al., 1993). Alternative splicing at the X site can lead to an insertion 

of 3 or 12 amino acids, neither of which is tissue specific or affect the biological activity of agrin 

(measured by AChR clustering). Alternative splicing at the Y site can lead to an insertion of 4 
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amino acids which has tissue specific expression, predominantly in neuronal tissues (Ferns et al., 

1993; Hoch et al., 1993). Lastly, alternative splicing at the Z site can lead to an insertion of 8, 11, 

or 19 amino acids and has been shown to affect the biological activity of agrin and the assembly 

and stabilization of the NMJ. The splice variant with the 8 amino acid insert in particular has 

been shown to be essential to form AChR aggregates at the post synaptic muscle surface (Ferns 

et al., 1993). The effectiveness of agrin to cluster AChR varies depending on the amount of 

amino acids inserted at the Z site; the order is 8 ≥ 19 > 11 > 0. The nomenclature used to 

describe a certain isoform is AGRX,Y,Z, where the number of amino acids spliced into each site is 

written. A recombinant C-terminal half of agrin (AGR3,4,8) was used for my thesis to explore its 

role in skeletal muscle growth. 

 

Agrin at the neuromuscular junction 

 

 Agrin is responsible for the stabilization and organization of molecules at the NMJ to 

ensure that there are efficient communications between nerves and muscles. Once it is released 

by the motor neuron into the synapse, it can bind to either of two receptors: α-DystroGlycan (α-

DG) and LDL-receptor Related Protein 4 (LRP4, see Figure 2; (Hoch, 1999). Binding to α-DG 

promotes aggregation of the Dystrophin-associated Glycoprotein Complex (DGC; (Hoch, 1999). 

The main function of the DGC is to maintain the NMJ. It also serves as a scaffold for important 

signaling molecules (Pilgram et al., 2010), as well as for AChRs to promote formation of NMJs 

(Campanelli et al., 1994). Specifically, the agrin - α-DG interaction promotes rapsyn binding and 

the downstream assembly of actin cytoskeleton through utrophin and the recruitment of AChRs 

(Zhou et al., 1999). To help stabilize the interaction between the neuron terminal and myotube, 

the amino-terminal end of agrin interacts with laminin-211 (Yoshida-Moriguchi et al., 2010). 

Finally, agrin can also bind the LRP4/Muscle Specific Kinase (MuSK) complex, which also 

contributes to AChR recruitment (Kim et al., 2008; Zhang et al., 2008). 

 

Although agrin plays an essential role in NMJ formation and stability, new studies 

suggest that it may have additional roles in skeletal muscle growth. For example, over-

expression of the agrin C-terminal domain in a transgenic mouse model of disease was sufficient 

to overcome the pathology of congenital muscular dystrophy (Meinen and Ruegg, 2006). Agrin 
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can also improve whole body health in diseased mice, restore muscle integrity, and improve 

contractile functions of dystrophic muscles. Agrin may also alleviate the muscle pathology in 

DMD by increasing the expression of utrophin, a structural and functional homolog of 

dystrophin (Gramolini et al., 1998). Utrophin transcription is upregulated by many transcription 

factors including Nuclear Factor of Activated T-cells (NFAT) which is downstream of 

calcineurin (Cn; Dunn et al., 1999). In addition, agrin stimulates the PhosphatidylInositol-4,5-

bisphosphate 3-Kinase (PI3K)/Akt signaling pathway through LRP4/MuSK (Schmidt et al., 

2012). Like Cn/NFAT signalling (Dunn et al., 1999; Friday et al., 2000), PI3K/Akt signalling is 

a major contributor to skeletal muscle growth (Pallafacchina et al., 2002).  

 

Signaling pathways that regulate muscle growth 

 

Skeletal muscle growth can occur via two mechanisms: hypertrophy and hyperplasia 

(Horsley and Pavlath, 2004). Hypertrophy is a growth in volume, where there is increased 

protein synthesis and the muscle fiber increases in size. Hyperplasia is a growth in the number of 

muscle fibers with a relative stability in size. For an in vitro system, myoblasts, stem cell-like 

muscle cells, must first differentiate into myotubes, multi-nucleated muscle cells, before their 

growth can take place. This process is called myogenesis (Horsley and Pavlath, 2004). In vivo 

muscle cells can undergo myogenesis during their embryonic phase or for muscle reparation 

after incurring an injury. This can occur due to satellite cells which become active for muscle 

reparation and must differentiate and fuse into the existing muscle fiber. Altogether, muscle cell 

differentiation and growth are important for muscle fiber development. 

 

Skeletal muscle growth is dependent on the balance between anabolic (hypertrophic) and 

catabolic (atrophic) processes. Skeletal muscle hypertrophy is mediated in large part by the 

IGF/Akt/mTOR pathway (Rommel et al., 2001): Insulin Growth Factor-1 (IGF-1) binds to the 

IGF-1 receptor (IGFR), which activates PI3K, leading to the phosphorylation of Akt (Lai et al., 

2004). Phosphorylated Akt then activates the mammalian Target Of Rapamycin (mTOR), which 

in turn phosphorylates p70 S6 kinase (p70S6K) to upregulate protein synthesis and growth (Lai 

et al., 2004). To amplify this pathway, Akt also phosphorylates and inhibits Glycogen Synthase 

Kinase 3 Beta (GSK3β) a negative regulator of hypertrophy (Cross et al., 1995). Inactivation of 
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GSK3β blocks export of NFAT from the nucleus, potentially mediating crosstalk between the 

IGF-1/Akt and Cn/NFAT signalling pathways (Rommel et al., 2001). Then, Cn dephosphorylates 

NFAT, allowing it to enter the nucleus and activate transcription required for hypertrophy, 

hyperplasia and differentiation underlying skeletal muscle growth (Dunn et al., 1999).  

 

Contrasting hypertrophy, atrophy can occur in skeletal muscles during disuse, cachexia, 

and denervation. Many transcripts that are upregulated during atrophy are repressed under 

IGF/Akt-mediated hypertrophy, e.g. Muscle RING Finger 1 (MuRF1) and Muscle Atrophy F-

box (MAFbx, also known as Atrogin-1), E3 ubiquitin ligases that induce atrophy by facilitating 

protein degradation (Bodine et al., 2001; Gomes et al., 2001). Proteins targeted by these E3 

ligases include Myosin Heavy Chains (MyHCs), Myosin Light Chains (MyLCs), MyoD, and 

Eukaryotic translation Initiation Factor 3 subunit F (eIF3f; (Clarke et al., 2007; Csibi et al., 2009; 

Tintignac et al., 2005).  Importantly, Akt phosphorylates and inhibits forkhead box O (FoxO) 

proteins – key upstream regulators of atrophy – by preventing entry into the nucleus (Li et al., 

2007; see Figure 4). Thus, Akt is a central regulator in skeletal muscle growth and a possible 

downstream target of agrin. 

 

Central hypothesis and approach 

 

Given that agrin is suggested to have additional roles in muscle development, and that 

these processes require IGF-1/Akt/mTOR or Cn/NFAT signaling, I hypothesize that agrin is 

critical for muscle growth and differentiation, processes mediated by the IGF-1/Akt/mTOR and 

Cn/NFAT signaling pathways. To test this hypothesis, I used fluorescence microscopy, 

immunoblot analysis, and qPCR analysis to study proliferation and differentiation of C2C12 

cells. These cells are a murine cell line capable of differentiating into myotubes (equivalent of an 

immature myofibre in vivo) and thus commonly used as an in vitro model of muscle growth. To 

identify the signaling pathways responsible for the observed effects of agrin on muscle growth, I 

treated these cells with chemical inhibitors that target signaling pathways of interest on different 

days of differentiation. Since Cn/NFAT pathway is most important at the early stages of 

myotube development, I treated the cells at Day 0 and termed it the Cn model. Since IGF-

1/Akt/mTOR pathway is most important once the myotubes have already formed, I treated the 
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cells at Day 2 and termed it the mTOR model. Discovering more of the roles of agrin in skeletal 

muscle tissue can be advantageous to help understand and treat muscle wasting diseases such as 

sarcopenia and cachexia.   
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Figure 1. Skeletal muscle growth signaling cascades at the neuromuscular junction 

An efferent motor neuron stemming from the CNS comes in contact with a skeletal muscle fibre 

and can induce a contraction. This leads to several molecular signaling cascades becoming active 

and leading to growth (from Michel, Dunn et al. 2004). 
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Figure 2. Dystrophin-Associated Glycoprotein Complex at the neuromuscular junction 

The DGC is an important protein complex that helps the neuron communicate with the skeletal 

muscle fibre. It also allows structural stability to the muscle cell membrane. Mutations in the 

DGC cause a variety of muscular dystrophy disorders (from Pilgram et al., 2010). 
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Figure 3. Potential signaling network downstream of agrin  

Based on literature, agrin can potentially stimulate these pathways, leading to translational and 

transcriptional upregulation of genes (modified from Rommel et al., 2001). 
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Figure 4. Schematic of hypertrophic and atrophic pathways regulating skeletal muscle 

growth 

IGF-1 and MSTN are the two best characterized pathways that regulate skeletal muscle growth. 

Akt is the focal point of both pathways. Stimulation by IGF-1 leads to the phosphorylation of 

Akt which promotes protein synthesis, whereas stimulation by MSTN leads to the 

dephosphorylation of Akt which promotes protein degradation (from Ruegg and Glass, 2011). 
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MATERIALS AND METHODS 

 

Reagents 

 

C2C12 cells were treated on Day 0 (Cn model) or Day 2 (mTOR model) of differentiation with 

Cyclosporin A (CsA; 2 µM; Sandimmune), FK506 (200 nM in dimethylsulphoxide (DMSO)); 

Enzo Life Science), R3-IGF-1 (10 ng/mL in 10 mM HCl; Sigma), rapamycin (20 ng/mL in 

DMSO; Calbiochem), or recombinant agrin (1 nM in 1XPBS; R&D Systems). CsA and FK506 

were applied to cells at Day 0 of differentiation. Rapamycin and IGF-1 were applied on Day 2 of 

differentiation. Recombinant agrin was added either at Day 0 or Day 5 of differentiation, 

depending on the model of growth used for the experiment.  

 

Cell culture 

 

C2C12 cells (gift from Dr. Basil Petrof, McGill University, Montreal, Canada) were cultured in 

Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% Fetal Bovine Serum 

(FBS), 1% L-glutamine, 1% penicillin and streptomycin under 8% CO2 at 37°C. Once grown to 

confluency (approximately 2 days) they were switched to DMEM supplemented with either 2% 

or 5% horse serum, and 1% penicillin and streptomycin to differentiate the cells. Horse serum 

induces differentiation by withdrawing the cells from their proliferation phase due to low 

concentration of growth factors (Levy, 1980). For microscopy analysis, cells were cultured on 

cover slips and treated with 1.0 nM recombinant agrin for 5 days in differentiation (horse serum) 

media. For RNA or protein analysis, cells were pelleted after 4 or 5 days of differentiation. Cell 

culture medium was purchased from Invitrogen. 

 

Myotube analysis 

 

For all treatments, micrographs were taken by capturing three fields at random, and all myotubes 

in the field were measured for several physiological markers. Myotube diameter was done by 

taking the average of five measurements along the length of the myotube. Myotube number was 

determined by counting all myotubes visible in the field and dividing by the area of the image 
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(myotubes/mm
2
). Myotube area was determined by measuring the percentage of the field 

covered by myotubes. Images were captured using a Nikon Eclipse TS100 microscope with a 

Nikon Digital Sight camera attachment. The myotubes were identified by tracing their outline 

and analyzed using ImagePro Plus version 6.3 software (Olympus).   

 

Cell viability assay 

 

To determine cell viability, Day 5 myotubes were washed with Phosphate Buffered Saline 

(PBS), submerged in 0.2 ml of 0.4% Trypan blue stain (T8154, Sigma), and then incubated at 

room temperature for 5 min. The dye was decanted then images were captured using a Nikon 

Eclipse TS100 microscope with a Nikon Digital Sight camera attachment. Dead myotubes 

stained blue. Cells were counted using a haemocytometer (3120, Hausser Scientific).   

 

Immunofluorescent imaging 

 

Myotubes were grown on a coverslip then fixed in 4 % paraformaldehyde and washed with 1X 

PBS two times for five minutes each. To label AChR, samples were then incubated in 

rhodamine-conjugated bungarotoxin (T0195, Sigma) for one hour at room temperature. Samples 

were washed six times with 1X PBS, dried and mounted on a slide with Vectashield containing 

4',6-DiAmidino-2-PhenylIndole  (DAPI; Vector Laboratories Inc.) to label nuclei, and sealed 

with nail polish. Images were captured at 20X magnification using an Olympus BX-60 

fluorescence microscope attached with a Retiga SRV camera (Qimaging). Acetylcholine receptor 

clusters and nuclei were quantified using ImagePro Plus version 6.3 software (Olympus). 

 

RNA extraction and real time quantitative-PCR (qPCR) 

 

Approximately 500,000 cells, determined using a haemocytometer (3120, Hausser Scientific) 

were scraped and pelleted at 3,000 x g for 5 min at 4°C. To extract RNA from a homogenate, cell 

pellets were vortexed in a solution made up of 4 M guanidinium thiocyanate (Sigma Aldrich), 25 

mM sodium citrate, 0.5% (v/v) N-laurylsarcosine (Sigma Aldrich) and 0.1 M 2-mercaptoethanol 

(Bioshop), followed by adding 0.2 M sodium acetate (pH 4.0), vortexing, then extracting 
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proteins from the aqueous phase with 1 vol. phenol (Sigma Aldrich) and 0.1 vol. 24:1 

chloroform:isoamyl alcohol. Samples were cooled on ice for 15 minutes, and then centrifuged at 

15,000 x g for 10 minutes at 4 ºC. Afterwards, two volumes of 99% ethanol were added to the 

aqueous phase, which was then vortexed and centrifuged again at 15,000 x g for 10 minutes at 4 

ºC. The supernatant was decanted; RNA in the pellet was washed with 500 μl of 70 % ethanol 

and centrifuged at 15,000 x g for 10 minutes at 4 ºC. Ethanol was again decanted and the RNA 

pellet was left to dry and suspended in 50 μl of RNAse-free H2O (Bioshop) with subsequent 

vortexing and heating at 70 ºC. To test RNA integrity, RNA concentration was determined using 

an photometer (Eppendorf) at A260nm and 1 μg of RNA was mixed with 2:1 formamide:ethidium 

bromide, formaldehyde (Sigma Aldrich), 10X 3-(N-MOrpholino) PropaneSulfonic acid (MOPS; 

pH 7.0) and bromophenol blue, heated at 65 ºC for 10 minutes and loaded in a 1.5 % agarose gel 

containing 1X MOPS and formaldehyde. The rRNA bands: 5S, 18S and 28S were visualized to 

indicate valid RNA integrity. 

To synthesis cDNA, reverse transcriptase-PCR was performed by combining 1 μg of 

RNA, ultrapure water, for a final volume of 10 μl. The final volume of the RT mixture was 40 μl, 

which consisted of 0.625 μM random primer hexamers (Invitrogen), 1X RT-buffer (Ambion), 

0.5 μM dNTPs (Invitrogen), 40 U of RNase Inhibitor (Ambion) and 100 U of MMLV-RT 

(Ambion). To amplify transcripts, PCR was conducted using the settings: 15 minutes at 20 ºC, 1 

hour at 37 ºC, and 10 minutes at 65 ºC for one cycle and using an S1000 Thermal Cycler (Bio-

Rad). As a negative control, RT samples were duplicated in the absence of MMLV-RT. 

Resulting cDNA was stored at -20 ºC until used for qPCR analysis.  

To amplify cDNA transcripts, quantitative PCR was performed using gene specific 

primers together with proper reference genes for quantification (CFX96 Real-Time System, Bio-

Rad). Relative quantities were then normalized by the Real-time System software to the relative 

quantities of RPL13 and TBP housekeeping genes. The primers sequences used for qPCR are 

listed in Table 1. 
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Protein extraction and immunoblotting  

 

To lyse the cells and expose their proteins for isolation, 500,000 harvested cells, determined 

using a haemocytometer (3120, Hausser Scientific), were mixed in 1X 

RadioImmunoPrecipitation Assay (RIPA) buffer solution (Sigma) for one minute consisting of 

1X PBS, 1% Igepal, 0.5% Sodium Deoxycholate, 0.1% Sodium Dodecyl Sulfate (SDS), 0.001 M 

Sodium Orthovanadate, 0.01 M Sodium Fluoride, 0.01 mg/ml Aprotinin, 0.01 mg/ml Leupeptin 

and 1 mM Phenylmethanesulfonyl fluoride. Homogenates were centrifuged at 13,000 x g for 10 

minutes and the supernatant layers were collected. Protein concentrations were measured using 

Bradford assay and measuring their absorbance at A595 compared to a standard curve. The whole 

cell protein was stored at -80 ºC until used for immunoblot anaylsis. 

Samples (30 μg) of protein were loaded on an SDS polyacrylamide gel consisting of a 5 

% w/v stacking gel composed of 3.9 % acrylamide (Sigma Aldrich), 0.125 M Tris (pH 6.8), 0.1 

% SDS, 0.06 % ammonium persulfate and 0.14% Tetramethylethylenediamine (TEMED) 

(Bioshop), and a 10 % w/v resolving gel composed of 9.9 % acrylamide, 0.375 M Tris (pH 8.8), 

0.1 % SDS, 0.06 % ammonium persulfate and 0.25 % TEMED. Samples underwent 

electrophoresis at 50 V until all of the protein enter the stacking gel then the voltage was 

increased to 120 V until the protein sizes of interest were visibly separated using the Amersham 

Full-Range Rainbow Molecular Weight Markers (GE Healthcare Bio-Sciences Corp). Proteins 

were transferred to a PVDF membrane (Millipore) at 100 V for 100 min, followed by blocking in 

3-5 % bovine serum albumin in 0.1 % Tween/Tris Buffered Saline (T/TBS) for one hour. 

Antibodies (Table 2) were added to membranes based on the manufacturer’s (Cell Signaling and 

Santa Cruz) recommendation: After the incubation period, membranes were washed three times 

with 0.1 % T/TBS and incubated with secondary antibody coupled to horseradish peroxidase for 

one hour at room temperature (see Table 2). Membranes were washed three times with 0.1 % 

T/TBS, developed with enhanced chemi-luminescence reagents (Millipore), and were imaged 

using the Alpha Innotec Fluorchem system (Cell Biosciences). 

 

 

 

 



15 
 

Statistical analysis and data presentation 

 

Data was analyzed by ANOVA using SPSS statistics software version 22.0. Multiple 

comparisons of means were performed with one-way ANOVA followed by a post-hoc test of 

LSD, while the interactions between experimental conditions were analyzed by using Two Way 

ANOVA. Only P values < 0.05 were considered significant.  

Figures were prepared using Microsoft Excel 2007. Standard error means (S.E.M.) are 

exclusively shown. Average sample size is n=3. Immunofluorescent images were traced using 

ImagePro. Modification of immunofluorescent images into greyscale was done using Microsoft 

Powerpoint 2007. All images had their brightness and contrast increased to increase the visibility 

of myotubes.  
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Table 1. Primers used for quantitative real-time PCR 

 

Gene Forward Primer Reverse Primer Size (bp) 

Atrogin 5’-aaccgggaggccagctaaagaaca-3’ 5’-tgggcctacagaacagacagtgc-3’ 288 

FoxO1 5’-caggagaagctcccaagtgact-3’ 5’-aggaggggtgaagggcatctttggactgc-3’ 146 

FoxO3a 5’-atcgcctcctggcgggctta-3’ 5’-acggcggtgctagcctgaga-3’ 297 

MEF2c
1 5’- aggatcaccggaacgaattccact-3’ 5’-gcatgcgcttgactgaaggactt-3’ 147 

MEF2d
2 5’-cgagatcgcgctcatcatctt-3’ 5’-agccgttgaaacccttcttcc-3’ 164 

MuRF1 5’-gagaacctggagaagcagct-3’ 5’-ccgcggttggtccagtag-3’ 146 

Myf5
3 5’-ccacctccaactgctctgat-3’ 5’-gcaatccaagctggataagg-3’ 143 

Myogenin 5’-ggaagtctgtgtcggtggac-3’ 5’-cgctgcgcaggatctccac-3’ 150 

Myoglobin 5’-catggttgcaccgtgctcacag-3’ 5’-gagcccatggctcagccctg-3’ 285 

Pax7
4 5’-tctccaagattctgtgccgat-3’ 5’-cggggttctctctcttatactcc-3’ 132 

RCAN1.4 5’-aaggaacctccagcttgggct-3’ 5’-ccctggtctcactttcgctg-3’ 160 

RPL13 5’-aaggtggtggtcgtacgctgtg-3’ 5’-gcgccagaaaatgcggctgg-3’ 153 

TBP 5’-caccaatgactcctatgacc-3’ 5’-gtttacagccaagattcacg-3’ 111 

TnIs 5’-tgctgaagagcctgatgcta-3’ 5’-ggcatggagctctcggcaca-3’ 164 

Utrophin A 5’-acgaattcagtgacatcattaagtcc-3’ 5’-atccatttggtaaaggttttcttctg-3’ 75 

1. Steffens et al., 2011 

2. Primer bank, http://pga.mgh.harvard.edu/primerbank/, ID 19526812a1 

3. Kemaladewi et al., 2012 

4. Primer bank, http://pga.mgh.harvard.edu/primerbank/, ID 34328055a1 

 

 

 

 

 

 

 

 

 

 

 

http://pga.mgh.harvard.edu/primerbank/
http://pga.mgh.harvard.edu/primerbank/
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Table 2. Antibodies used for immunoblotting 

 

Protein Supplier Size of target 

protein (kDa) 

1° Antibody 2° Antibody 

p-GSK3β Cell Signaling 

#9323 

46 1:3000 in 3% BSA 1:3000 in 3% BSA 

(anti-rabbit) 

Total GSK3β Cell Signaling 

#9315 

46 1:3000 in 3% BSA 1:3000 in 3% BSA 

(anti-rabbit) 

p-p70S6K Cell Signaling 

#9206 

70 1:1000 in 3% BSA 1:5000 in 5% BSA 

(anti-mouse) 

Total p70S6K Santa Cruz      

sc-230 

70 1:1000 in 3% BSA 1:2000 in 5% BSA 

(anti-rabbit) 
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RESULTS 

 

Agrin promotes incorporation of nuclei into myotubes 

 

In this study, I hypothesized that the addition of a recombinant C-terminal half of agrin 

(AGR3,4,8) to cultured C2C12 skeletal muscle cells would be sufficient to promote growth. To 

test this hypothesis, I verified that AGR was biologically active by examining the effect on 

AChR clustering by immunofluorescence using rhodamine-conjugated α-bungarotoxin (Fig. 5a). 

AGR-treated cells are known to have an increase of AChR clusters, indicative of NMJs, 

compared to non-treated cells (Ferns et al., 1993; Gramolini et al., 1998). I observed similar 

results when treating cells with 1 nM AGR (Fig. 5b). However, while counting the AChR 

clusters, I also observed that the AGR-treated myotubes were larger than non-treated cells. 

Therefore, to quantify myotube growth, I stained nuclei using DAPI immunofluorescence (Fig. 

5c), as “Nuclei per myotube” is considered a measure of growth (Rommel et al., 2001). We 

observed a significant 1.8-fold increase (P = 0.004) in the number of nuclei incorporated per 

myotube present in AGR-treated cells compared to non-treated cells. 

 

Agrin promotes growth via hyperplasia and hypertrophy 

 

After discovering that AGR treatment increases myotube growth, I next sought to 

determine which second messenger signaling pathways were involved. Since Cn/NFAT 

signaling is critical in the early stages of growth and development of skeletal muscle cells 

(Michel et al., 2004), I treated the samples at Day 0 with 1 nM AGR, 2 µM CsA, and 200 nM 

FK506 (Fig. 6a). This experimental model of growth used in this study is termed the “Cn 

model”. The latter two are Cn inhibitors that act by binding to cyclophillin A and FK506 binding 

protein 12 (FKBP12), respectively. Both drugs must be used to determine whether the effects are 

truly due to Cn inhibition since the CsA/cyclophillin A complex targets various other proteins, 

whereas the FK506/FKBP12 complex is specific to Cn in skeletal muscles. To assess possible 

toxicity caused by drug treatment, I measured the viability of the C2C12 cells by staining them 

with 0.4% trypan blue (Fig. 6b). The proportion of stained (dead) cells was below 3% in every 

group, indicating that the treatments were not toxic. Although a significant increase in non-viable 
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cells was observed with AGR+CsA and AGR+FK506 samples, it was not drastic enough to 

physiologically compromise the health of the cells. I then determined effects of treatments on 

myotube growth by quantifying myotube number and size: Number, an indicator of hyperplasia, 

was assessed by counting the number of myotubes per mm
2
, and size, an indicator of 

hypertrophy, was assessed by measuring myotube diameter and area. In the presence or absence 

of CsA or FK506, AGR treatment increased the number of myotubes (Fig. 6c). Although no 

changes in myotube diameter were observed in any of the samples (Fig. 6d), I observed an 

increase in myotube area with AGR treatment. However, unlike myotube number, effects of 

AGR on area were blocked by the Cn inhibitors (Fig. 6e). Together, these preliminary results 

suggest that AGR induces hyperplasia using a mechanism that does not require Cn, but possibly 

stimulates hypertrophy using the Cn/NFAT signalling pathway. 

 

Gene analysis of myotubes under calcineurin model of growth  

 

From the results above, it is clear that AGR can promote myotube growth, and that it may 

require Cn/NFAT signaling for hypertrophy. Thus, I next determined if Cn/NFAT signaling is 

triggered by AGR treatment by analyzing the mRNA (Fig. 7a, see Table 3 for a summary of 

results) of genes that are up- or down- regulated by NFAT to mediate myotube hypertrophy. 

Although CsA and FK506 caused an expected decrease in transcript levels of RCAN1.4, a direct 

gene target of Cn/NFAT signaling, AGR treatment had no effect on mRNA levels. Similarly, 

transcription of Utrophin A, TnIs, and myoglobin, other direct targets of Cn/NFAT-signaling, 

was not affected by AGR. The difference between those three genes and RCAN1.4, however, is 

that they can also be regulated by other transcription factors. Myoglobin, important for the 

transport and storage of oxygen, and TnIs, a contractile protein found in slow muscle fibres, can 

both by upregulated by signaling pathways that contribute to the slow fibre gene program, a 

program which converts the muscle into a more oxidative state, such as MAPK, AMPK, and 

CaMK (Ljubicic et al., 2011).  

 

MEF2c and MEF2d are other targets of the program; however, Cn has no influence on 

their transcription. These data suggest that AGR induces hypertrophy using a signaling pathway 

that is parallel to Cn/NFAT. These two genes, along with myogenin and Pax7, are also important 
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transcription factors that regulate myogenesis, the process by which a myoblast differentiated 

into a myotube (Horsley and Pavlath, 2004). All four genes were upregulated with AGR 

treatment (Fig. 7b). This indicates that AGR triggers an unknown second messenger that 

influences myogenic signaling pathways.  

 

To determine, if some of the results stem from possible crosstalk between these 

pathways, I next examined the effect of AGR on GSK3β phosphorylation. A target of many 

kinases including Akt, phosphorylation of GSK3β induces export of NFAT from of the nucleus, 

to impede downstream signaling. Surprisingly, AGR treatment significantly lowered the activity 

ratio of GSK3β protein, in the presence or absence of Cn inhibitors. As GSK3β is a target of 

many kinases, and thus a hub for crosstalk, this data suggests that AGR triggers a signaling 

pathway that infringes on the Cn/NFAT pathway at the level of NFAT-mediated transcription to 

help trigger hypertrophy. 

 

Agrin has less of an effect on growth when applied at later stages of myotube development 

 

Since positive effects on growth have been observed when AGR was applied early in 

myotube development (Day 0; Fig. 5-7), I wanted to examine whether it had an effect when 

applied later in its development. IGF-1, can act via many signaling pathways, one of which is the 

Akt/mTOR signaling cascade, one of the pathways that regulate hypertrophy (Musaro et al., 

2001). The pathway is primarily active once the myotubes have already been formed and need to 

grow in size. To study the pathway, along with the effect of agrin at the later stages of 

development, on Day 2 I begun the supplementation in the media of 1 nM AGR, 10 nM IGF-1 

(positive control), and 20 nM rapamycin (RAP; negative control). I termed this experimental 

model of growth the “mTOR model”.  

 

Again, I confirmed that drug treatment had little effect on cell viability. As shown 

previously (Fig. 6b), the amount of non-viable cells present was less than 3.0% of the total cells, 

indicating that the drugs had no adverse effects (Fig. 8b). As previously reported (Rommel et al., 

2001), IGF-1 and RAP significantly increased and decreased, respectively, myotube number, 

diameter, and area (Fig 8c-e). Furthermore, RAP blocked effects of IGF-1 as expected. Although 
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AGR did not significantly increase myotube number and area, an upward trend was still 

observed. Interestingly, RAP also blocked the effect of AGR on myotube number and area, 

suggesting that AGR-mediated myotube growth requires active mTOR when applied at later 

stages of development.  

 

Effect of blocking mTOR on agrin-mediated changes in transcription 

 

Because blocking mTOR impaired AGR-mediated growth, I next wanted to determine if 

RAP also blocked effects of AGR on transcription of genes regulating myotube growth. Because 

mTOR is also a well-known mediator of atrophy, I decided to focus on studying the 

transcriptional levels of genes involved in this process. FoxO1 is a transcription factor that 

regulates MuRF1 mRNA expression, and FoxO3a is a transcription factor that regulates atrogin 

mRNA transcription. In both cases, the downstream targets are components of the ubiquitin-

proteasome system responsible for protein degradation (Glass, 2003). Atrogin and MuRF1 are 

both down regulated in the presence of IGF-1, as well as with AGR treatment, consistent with 

the observation that both promote myotube growth (Fig. 9a). Again, I examined the extent of 

p70S6K phosphorylation (Fig. 9b) and confirmed an increase in phosphorylation in IGF-1 

treated cells compared to CTL and a decrease in RAP samples, as expected. An increase was also 

observed in AGR samples which indicate that AGR does influence the Akt/mTOR pathway 

when applied at later stages of development. IGF+RAP and AGR+RAP increased activity in 

p70S6K compared to RAP samples agrees with the observations thus far in this thesis that AGR 

can act on multiple pathways.  

 

 Next, I determined if RAP could block effects of AGR on gene expression that correlates 

with myotube growth (Fig. 10). Pax7 is a positive regulator of satellite cell activation, one of the 

phases in myogenesis (Buckingham et al., 2003). Interestingly, its relative transcript level is 

significantly decreased with AGR treatment, likewise for Myf5, an important gene in the 

determination step of myogenesis, where the stem cell (or satellite cell) develops into a muscle 

cell (Buckingham et al., 2003). Altogether, changes in these two genes seem to indicate that 

AGR does not positively promote myogenesis like it did when applied at the early stages of 
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development. This could explain why no significance was found for morphological markers in 

Fig. 8. 

 

 The phosphorylation ratio of GSK3β was measured and IGF treatment, with or without 

RAP, was significantly increased. Since mTOR does not interact with GSK3β, it makes sense 

that the activity was not changed with the inhibitor present. However, AGR treatment with 

mTOR inhibitor is significantly less than without the inhibitor (Fig. 10b). This result could 

signify that the treatment of AGR and RAP on those cells may have had a compounding effect 

on the activation of the protein.  
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Figure 5. Agrin promotes acetylcholine receptor clustering and myotube growth 

(a) Representative immunofluorescent images C2C12 myotubes treated with 1 nM recombinant 

agrin for 5 days. AChR (red) and nuclei (green) are stained. Quantification of AChR clustering 

(b) and nuclei per myotube (c) are shown (n=3). *Indicates statistical significance when 

compared to control (no AGR) (P < 0.05). Means ± SEM are shown.  
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Figure 6. Agrin requires calcineurin for hypertrophy but not hyperplasia 

(a) Representative light micrographs of C2C12 myotubes treated with 1nM AGR, 2μM CsA, 

and/or 200nM FK506. (b-e) Quantifications of morphological growth markers derived from the 

images similar to those shown in (a). * indicates statistical significance when compared to CTL, 

† when compared to AGR (P < 0.05). Means ± SEM are shown.  
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Figure 7. Agrin influences myogenic and hypertrophic signaling pathways independent of 

calcineurin/NFAT signaling 

Changes in relative mRNA expression levels using qPCR analysis for various genes related to 

Cn/NFAT signaling (a) and myogenic signaling (b) normalized to RPL13 and TBP (n=3). (c) 

Representative immunoblot and changes in relative phosphorylated protein expression levels 

using immunoblot analysis for GSK3β (n=3). * indicates statistical significance when compared 

to CTL, † when compared to AGR (P < 0.05). Means ± SEM are shown.    
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Figure 8. Agrin has a less prominent effect on growth in the mTOR model 

(a) Representative images of C2C12 myotubes treated with 1 nM AGR, 10 nM IGF-1, and 20 

nM RAP. (b-e) Quantifications of morphological growth markers derived from the images in (a). 

* indicates statistical significance when compared to CTL, † when compared to AGR (P < 0.05). 

Means ± SEM are shown. 
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Figure 9. Agrin decreases atrophy and promotes protein synthesis via mTOR 

(a) Changes in relative mRNA expression levels using qPCR analysis for atrophy-related genes 

normalized to RPL13 and TBP (n=3). (b) Representative immunoblot and changes in relative 

phosphorylated protein expression levels using immunoblot analysis for p70S6K (n=3). * 

indicates statistical significance when compared to CTL, † when compared to AGR (p < 0.05). 

Means ± SEM are shown.    
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Figure 10. Agrin does not positively regulate myogenesis in the mTOR model 

(a) Changes in relative mRNA expression levels using qPCR analysis for myogenic factors 

normalized to RPL13 and TBP (n=3). (b) Representative immunoblot and changes in relative 

phosphorylated protein expression levels using immunoblot analysis for GSK3β (n=3). * 

indicates statistical significance when compared to CTL, † when compared to AGR (p < 0.05). 

Means ± SEM are shown.    
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Table 3. Summary of effects of agrin on signaling targets 

 

Application of 

AGR 

Process Function Gene Effect on 

gene 

transcription 

 

 

 

 

 

 

 

 

 

 

 

Early 

 

 

Myogenesis 

 

 

Transcription factor 

MEF2c ↑ 

MEF2d ↑ 

Pax7 ↑ 

Myogenin ↑ 

Mitochondrial 

biogenesis 

Transcription factor PGC-1α ↑ 

Contraction Contractile protein TnIs ↑ 

Oxygen transport Transports oxygen to 

muscles 

Myoglobin ↑ 

Cn inhibition Binds catalytic 

domain of CnA 

RCAN1.4 - 

Structural stability Binds cytoskeleton 

to plasma membrane 

Utrophin A - 

 

Apoptosis 

 

Transcription factor 

FoxO3a ↑ 

Smad2 ↑ 

Protein 

degradation 

E3 ligase MuRF1 ↑ 

 

 

 

 

Late 

 

Apoptosis 

 

Transcription factor 

FoxO1 ↓ 

FoxO3a ↓ 

Protein 

degradation 

 

E3 ligase 

MuRF1 ↓ 

Atrogin ↓ 

 

Myogenesis 

 

Transcription factor 

Myf5 ↓ 

Pax7 ↓ 
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DISCUSSION 

 

 The work presented in this study demonstrates the role of agrin in skeletal muscle 

growth. I found that AGR can promote growth via hypertrophy and hyperplasia, while also 

upregulating many myogenic factors, thus, also promoting the fusion of myoblasts into 

myotubes. This confirms that AGR has a strong role in the early stages of myotube development. 

The exact mechanism by which AGR-mediated growth acts was not elucidated in this study, 

however, I found evidence that it is a pathway that shares common targets to Cn/NFAT 

signaling. A schematic has been drawn to help organize the data presented in this study (Fig. 11). 

 

Agrin promotes growth in C2C12 cells 

 

Upon analysis of fluorescent staining of nuclei with DAPI, a trend was observed in which 

the cells treated with AGR had many more nuclei. AGR treatment on skeletal muscle cells 

affected their growth by promoting the fusion of myoblasts into myotubes, an indicator of 

myogenesis upregulation (Mancini et al., 2011). The phase of growth that it affected was their 

differentiation since there were more myotubes with increased nuclei compared to CTL. An 

increase in the differentiation of cells leads to more myotubes being formed which is a form of 

growth called hyperplasia. Since AGR treated cells not only grew in number but also size, it was 

confirmed that AGR promoted growth not only through hyperplasia, but also hypertrophy.  

 

The connection between myogenic factors and agrin in skeletal muscles has been 

documented before (Ball, 2013). Although they were studying the effects of myogenin and 

myoD on agrin-mediated AChR clustering, they did not mention any effects on the growth of the 

cultured myotubes. They found that myogenin and MyoD are downstream of agrin/MuSK 

signaling. This explains the increase in myogenin mRNA in AGR treated cells I observed, 

however, the MyoD was not upregulated in my study (data not shown). An explanation for this 

occurrence is that MyoD acts in the early stages of differentiation when the cells are still 

primarily myoblasts. As the cells fuse to become myotubes, the presence of MyoD drops off 

(Ball, 2013). On the other hand, myogenin acts late in the differentiation process, and increases 

as myotubes form. Since my samples were harvested and analyzed at Day 5 of differentiation, 
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MyoD transcripts were likely degraded by that time. To investigate this further, cells should be 

harvested at Day 2 or earlier, and measure MyoD mRNA to observe an upregulation.  

 

Agrin does not interact with the calcineurin/NFAT pathway  

 

The Cn/NFAT pathway is one of interest due to its notable involvement in differentiation 

of skeletal muscle myoblasts (Friday et al., 2000). CsA and FK506 treated cells gave an insight 

into how the growth is being regulated. The results show that growth is partially restored in AGR 

treated cells with Cn inhibitors, indicating that AGR-mediated growth is sufficient to overcome 

the atrophic state induced by the Cn inhibitors. The fact that growth did not rise to the same 

extent as without Cn inhibitors could be a matter of the concentrations of agrin or Cn inhibitors 

used. A future study can be conducted where a higher dosage of AGR is supplied to the cells to 

observe that fully restores growth in Cn inhibited cells. If not, then it can be concluded that 

AGR-mediated growth shares components of the Cn/NFAT pathway. Another study can be 

conducted wherein the concentration of Cn inhibitors is lowered. Although the concentrations 

used in this thesis were not detrimental to the viability of the cells (Fig. 6b), it is possible that 

lower concentrations can still be used since a concentration gradient was performed (data not 

shown) and lower levels of CsA and FK506 were still able to inhibit myotube development. In 

the end, however, the basis for the partial rescue of Cn inhibited cells by AGR treatment is 

unknown and must be looked at further with future experiments.  

 

 The mRNA targets shown in Fig. 7a are downstream targets of Cn signaling as well as 

other signaling pathways that are all part of the slow fibre gene program. The oxidative, or 

“slow”, fibre gene program is a set of signaling pathways (MAPKs, Cn, CaMKs, AMPK 

pathways) that lead to more oxidative and energy efficient skeletal muscle fibres. Slow fibres 

also contain a higher percentage of mitochondria per cell compared their fast fibre counterparts. 

The increase in relative mRNA in AGR-treated cells is significant across most targets, indicating 

that Cn has a role to play in AGR-related growth. One gene in particular, MEF2c, is an important 

factor in myoblast fusion into myotubes and differentiation (Baylies and Michelson, 2001). The 

up regulation in AGR cells compared to CTL cells of the expression of MEF2c suggests that it 

may be responsible for the increased differentiation and hyperplasia observed. However, 
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RCAN1.4, a gene under direct transcriptional control from Cn is not significantly increased. 

Neither is utrophin A which is also heavily regulated by Cn signaling. Furthermore, we can see 

that the cells treated with CsA and FK506 do not behave identically even though they are both 

Cn inhibitors. As mentioned earlier, this is due to the fact that FK506 solely inhibits Cn whereas 

CsA binds to multiple other targets thus affecting other pathways. Cyclosporin A secondarily 

targets the mitochondria thus having effects on various related pathways such as MAPKs, 

CaMKs, and AMPK (Schiaffino et al., 2007). Since mRNA targets analyzed in Fig. 7a such as 

myoglobin and TnIs, demonstrate a more drastic decrease in relative mRNA levels in AGR+CsA 

cells compared to AGR+FK506 cells, points to the fact that CsA is also inhibiting all pathways 

contributing to the slow fibre gene program. Given the fact that RCAN1.4 did not increase with 

AGR treatment indicates that the addition of AGR to cells did not stimulate Cn signaling. 

Altogether, the results show that AGR promotes growth via the other pathway(s) that contributes 

to the slow fibre program. Recent evidence suggest that it might be MAPK pathway (Rimer, 

2011). The MAPKs have three pathways in which to act by; the one of interest is the MEK/ERK 

signaling cascade. It has been found to be agrin treatment at the NMJ, through MuSK signaling, 

which upregulated that pathway. MEK/ERK cascade has also been implicated in activation of the 

slow fibre program and promotion of differentiation in skeletal muscle cells. This strongly 

correlates with the phenotypes observed in my study, indicating that the MEK/ERK pathway 

might be the major component in the role of agrin in growth.  

 

The results from measuring GSK3β activity by immunoblot analysis did not help 

determine whether AGR stimulated Cn signaling since the protein is targeted by many other 

pathways. The results obtained indicate that AGR treatment can influence the activity of GSK3β; 

however, as we found out from the results in Fig. 7a, AGR is unlikely to stimulate Cn activity. 

The evidence for AGR affecting GSK3β phosphorylation, without Cn activity, is when the 

comparison between Cn inhibitors with or without AGR is done. GSK3β activity is lower in 

every sample with AGR treatment when compared to their non-AGR treated counterparts. 

Furthermore, if Cn was stimulated, GSK3β activity should have been increased with AGR 

treatment and not decreased as the results obtained show. It is possible that the lowered activity 

is due to interactions between AGR and the Wnt signaling pathway, which can affect the 

phosphorylation levels of GSK3B (Metcalfe and Bienz, 2011). Wnt signaling can bind to the 
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LRP4/MuSK receptor complex, prompting the dishevelled, Dvl, complex to dephosphorylate 

GSK3β (Shi et al., 2012). This pathway is also prompted by agrin, since LRP4/MuSK is the 

same receptor complex used to induce AChR clustering, therefore explaining the decrease in 

phosphorylation ratio of GSK3β in AGR treated cells.   

 

 

Agrin is involved in the earlier stages of myotube development 

 

Using the Cn model for cell growth, it did not appear that other major growth pathways, 

IGF/Akt and MSTN signaling, were stimulated by AGR treatment (data not shown). The mTOR 

model of cell growth allowed me to explore the later aspect of growth. Using the same 

morphological markers as Fig. 6, it can be seen that AGR does not stimulate growth to the same 

extent (Fig. 8). The mTOR model has no significance for myotube number or area in AGR 

treated cells, whereas using the Cn model did. This implicates the role of agrin in growth in the 

earlier stages of myotube development. Although AGR had less of an effect on growth in the 

mTOR model, I was able to conclude its interaction with the Akt/mTOR pathway through the 

upregulation of p70S6K activity (Fig. 9b). 

 

Concluding remarks 

 

In summary, the results presented in this thesis provide a role for AGR in skeletal muscle 

growth in vitro. The data presented suggest that AGR treatment is best when supplemented 

during the early phases of myotube development to ensure a more significant growth. There are 

various limitations of using this in vitro model as it does not include any of the other signals that 

would be released by the neuron, nor does it have blood vessels. Although studying the role of 

AGR in adult muscle fibers would be best, this allows us to explore its role in an isolated, 

controlled system. Since AGR plays such a prominent role in myotube differentiation, it is 

possible that it would only be important during an organism’s embryonic phase, while not having 

much of an effect in adult muscle fibers. There is still much unknown about the new role of agrin 

in skeletal muscle cells, therefore, it is hard to tell what the implications of effecting its 

biological concentrations would be for an in vivo system, and thus, future experiments must be 
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done. Agrin would not be the first neurotrophic factor to promote growth in skeletal muscles: 

brain-derived neurotrophic factor (Clow and Jasmin, 2010) and neurotropin-4 (Funakoshi et al., 

1995) are other neurotrophic factors that have been shown to regulate skeletal muscle growth.  

Although it remains unclear which growth pathway AGR interacts with, the data presented in 

this thesis suggest that it is likely through MAPKs, CaMKs, and/or AMPK. Given that there are 

recent studies indicating that AGR interacts with proteins in the MAPK family such as MEK and 

ERK (Rimer, 2011), it would be vital to explore that pathway in future work.  
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Figure 11: Proposed signaling cascade for agrin-related growth in skeletal muscle cells 
Agrin was found to stimulate mTOR at later stages of development which leads to growth. 

Evidence from literature points to MAPK signaling as the major pathway being used in agrin-

related growth, however, that has not been confirmed in this study and must be explored. Dashed 

lines represent data not studied in this thesis. 
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