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a b s t r a c t

Several machine learning and knowledge discovery approaches have been proposed for count data modeling
and classification. In particular, latent Dirichlet allocation (LDA) (Blei et al., 2003a) has received a lot of attention
and has been shown to be extremely useful in several applications. Although the LDA is generally accepted to
be one of the most powerful generative models, it is based on the Dirichlet assumption which has some
drawbacks as we shall see in this paper. Thus, our goal is to enhance the LDA by considering the generalized
Dirichlet distribution as a prior. The resulting generative model is named latent generalized Dirichlet allocation
(LGDA) to maintain consistency with the original model. The LGDA is learned using variational Bayes which
provides computationally tractable posterior distributions over the model's hidden variables and its
parameters. To evaluate the practicality and merits of our approach, we consider two challenging applications
namely text classification and visual scene categorization.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Count data appear in many domains (e.g. data mining, computer
vision, machine learning, pattern recognition, and bioinformatics) and
applications. Examples include textual documents and images model-
ing and classification where each document or image can be repre-
sented by a vector of frequencies of words (Nigam et al., 2000) or
visual words (Csurka et al., 2004), respectively. The extraction of
knowledge hidden in count data is a crucial problem which has been
the topic of a significant amount of research in the past. The naive
Bayes assumption, through the consideration of the multinomial
distribution, was extensively used for count data modeling (Nigam
et al., 2000). However, serious deficiencies such as, being prone to
training bias, the need for the assumption of independence for
features and failure to model text well, were observed with the
application of the multinomial distribution as thoroughly discussed in
Madsen et al. (2005) and Bouguila and Ziou (2007a). The most widely
used solution to overcome these deficiencies is the consideration of
the Dirichlet distribution as a conjugate prior to the multinomial
which generally offers better flexibility, generalization and modeling
capabilities (Madsen et al., 2005; Bouguila and Ziou, 2007a; Mei et al.,
2007). Despite many favorable features, it has been pointed out that
the Dirichlet distribution has some shortcomings, also. The main

disadvantages of the Dirichlet distribution are its very restrictive
negative covariance matrix and the fact that the elements with similar
mean values must have absolutely the same variance which is not
always the case in real-life applications (Bouguila, 2008). To overcome
those deficiencies, research has been focused on providing a transition
from the Dirichlet assumption to better modeling assumptions
(Bouguila, 2011). The context of this paper is majorly about this
transition as well, where the ultimate goal is to have more accurate
data modeling.

One of the immediate applications of proper data modeling is
classification. It covers a vast extent of problems such as placement of
textual data into appropriate library entries or classifying objects into
their relevant categories. In this context, one of the most challenging
tasks is the classification of visual scenes without going deep inside
their semantics. The challenge behind the former is that visual scenes
are generally composed of a huge number of minute objects. The
presence of this ever occurring objects makes it extremely complicated
to develop useful classifiers based on the semantics alone. After all one
would expect to see roads, trees, sun and the sky recurring in scenes
both taken inside the city or in the suburb. The need to consider the
presence of recurring data singletons, whether words, visual words or
visual objects, led to the so-called topic based models. Latent semantic
indexing (LSI) (Deerwester et al., 1990) is the first successful model
proposed to extract recurring topics from data. It was proposed for
textual documents modeling using mainly singular value decomposi-
tion (SVD). A generative successful extension of LSI called probabilistic
latent semantic indexing (PLSI) was proposed in Hofmann (2001). And
a hierarchical extension of PLSI was proposed in Vinokourov and
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Girolami (2002). However, PLSI is only generative at the words layer
and does not provide a probabilistic model at the level of documents.
Therefore, two major problems arise with PLSI. Firstly, the number of
parameters increases with the number of documents. Secondly, it is
not clear how one can learn a document outside of the training phase.
To overcome these shortcomings, the authors in Blei et al. (2003a)
proposed the LDA model which has so far proven to be a reliable and
versatile approach for data modeling. LDA has received a particular
attention in the literature and several applications (e.g. natural scene
classification Fei-Fei and Perona, 2005) and extensions have been
proposed. Examples of extensions include the hierarchical version of
LDA (Blei et al., 2003b), used for instance in Sivic et al. (2008) for
hierarchical object classification, the online version proposed in
Hoffman et al. (2010), and the discriminative supervised version
described in Lacoste-Julien et al. (2008). Of course, these extension
efforts are useful for several real-life applications and scenarios, but
have ignored an important aspect of LDA namely the fact that it
considers the Dirichlet distribution, including its drawbacks, for
generating latent topics. Previously other researchers tried to develop
latent topic models based on the conjugate priors other than Dirichlet
(Caballero et al., 2012). Their model however is based on Gibbs
sampling and Markov chain Monte Carlo (MCMC) method (Robert
and Casella, 2004). The advantage of the MCMC method is its relative
ease of derivation. However, it has been shown that sampling methods
require much more computation time than deterministic methods
such as variational Bayes. Therefore, where it is possible to derive an
analytic form, deterministic models are more preferable. In this work
we shall focus on deriving an extension to the LDA model using the
generalized Dirichlet assumption using the variational Bayes method.

Recently, the second author has shown that the generalized
Dirichlet is a good alternative to the Dirichlet when using finite
mixture models for count data clustering (Bouguila, 2008). Like the
Dirichlet, the generalized Dirichlet distribution is a conjugate prior to
the multinomial distribution which is a crucial property in the LDA
model. Moreover, the generalized Dirichlet has a more versatile
covariance matrix and also it lifts the variance limitations facing
Dirichlet vectors (Bouguila, 2008). The goal of this work is to propose
an extension of LDA based on the generalized Dirichlet distribution. To
maintain consistency with the LDA model we call our model, latent
generalized Dirichlet allocation (LGDA). We shall develop a variational
Bayes estimation approach inspired from the one proposed in Blei
et al. (2003a), yet with the generalized Dirichlet assumption. The
Dirichlet distribution is a special case of the generalized Dirichlet
distribution (Connor and Mosimann, 1969; Bouguila and Ziou, 2007b),
therefore it is expectable that the LGDA will provide good modeling
capabilities. In the experimental results we shall elaborate the
conjunctions between the two models further. We shall compare the
two models via two challenging applications namely text and visual
scene classification.

The rest of the paper is organized as follows. In Section 2, we
introduce the LGDA model and give the detailed derivations to
learn its parameters. Section 3 is devoted to the presentation of
the results of applying both LDA and LGDA. The applications
concern text and visual scene classification and are used to show
the strengths and weaknesses of both models. Finally, conclusion
and some thoughts about future directions follow in Section 4.

2. Latent generalized Dirichlet allocation

2.1. The model

Like LDA, LGDA is a fully generative probabilistic model over a
corpus. A corpus in our case is a collection ofM documents (or images)
denoted by M ¼ ðw1;w2;…;wMÞ. And each document wm is a
sequence of Nm words wm ¼ ðwm1;…;wmNm Þ. In what follows, for
sheer convenience, we drop the index m wherever we are not

referring to a specific document. The word wn ¼ ðw1
n;…;wV

n Þ is
considered as a binary vector drawn from a vocabulary of V words,
so that wj

n ¼ 1 if the j-th word is chosen and zero, otherwise. The
model proceeds with generating every single word (or visual word) of
the document (or the image) through the following steps:

1. Choose NpPoissonðζÞ.
2. Choose ðθ1;…;θdÞpGenDirð ξ

!
Þ.

3. For each of the N words wn:
(a) choose a topic znpMultinomialð θ

!
Þ,

(b) choose a word wn from pðwnjzn;μwÞ.

In above zn is a dþ1 dimensional binary vector of topics defined so
that zin ¼ 1 if the i-th topic is chosen and zero, otherwise. We

define θ
!¼ ðθ1;…;θdþ1Þ, where θdþ1 ¼ 1�∑d

i ¼ 1θi. We define

matrix μw so that a chosen topic is attributed to a multinomial
μw over the vocabulary of words so that μwðijÞ ¼ pðwj ¼ 1jzi ¼ 1Þ,
from which every word is randomly drawn. pðwnjzn;μwÞ is a single

draw multinomial probability conditioned on zn and GenDirð ξ
!

Þ is
a d-variate generalized Dirichlet distribution with parameters

ξ
!¼ ðα1;β1;…;αd;βdÞ and probability distribution function given by

pðθ1;…;θdj ξ
!

Þ¼ ∏
d

i ¼ 1

ΓðαiþβiÞ
ΓðαiÞΓðβiÞ

θαi �1
i 1� ∑

i

j ¼ 1
θj

 !γi

ð1Þ

where γi ¼ βi�αiþ1�βiþ1. It is straightforward to show that when
βi ¼ αðiþ1Þ þβðiþ1Þ, the generalized Dirichlet distribution is reduced to
Dirichlet distribution (Bouguila and Ziou, 2007b). We define

θ
!

¼ ðθ1;…;θdþ1Þ, where θdþ1 ¼ 1�∑d
i ¼ 1θi. With the above para-

meters, the mean and the variance matrix of the generalized Dirichlet
elements are as follows (Bouguila and Ziou, 2007b):

EðθiÞ ¼
αi

αiþβi
∏
i�1

k ¼ 1

βk

αkþβk
ð2Þ

VarðθiÞ ¼ EðθiÞ
αiþ1

αiþβiþ1
∏
i�1

k ¼ 1

βkþ1
αkþβk

þ1�EðθiÞ
 !

ð3Þ

and the covariance between θi and θj is given by

Covðθi;θjÞ ¼ EðθjÞ
αi

αiþβiþ1
∏
i�1

k ¼ 1

βkþ1
αkþβk

þ1�EðθiÞ
 !

ð4Þ

It can be seen from Eq. (4) that the covariance matrix of the general-
ized Dirichlet distribution is more general than the covariance matrix
of the Dirichlet distribution and unlike Dirichlet distribution it is
possible for two elements inside the random vector to be positively
correlated. Also unlike Dirichlet two elements with the same mean
value can have different variances. Generalized Dirichlet distribution,
like the Dirichlet distribution, belongs to the exponential family of
distributions (see Appendix A). This means that the generalized
Dirichlet distribution has a conjugate prior that can be developed in
a formal way, which is an important property that we shall used in the
following for the learning of our model. It turns out also that
generalized Dirichlet like Dirichlet is the conjugate prior of the
multinomial distribution. This implies that if ðθ1;…;θdÞ follows a

generalized Dirichlet distribution with parameters ξ
!

, and N
!¼

ðn1;…;ndþ1Þ follows a multinomial with parameter θ
!

, then the

posterior distribution pð θ
!

j ξ
!

; N
!Þ also follows a generalized Dirichlet

distribution with parameters ξ0 given as follows (Bouguila, 2008):

α0
i ¼ αiþni ð5Þ

β0
i ¼ βiþ ∑

dþ1

l ¼ iþ1
nl ð6Þ
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Having our generalized Dirichlet prior in hand, we proceed with
defining the ðdþ1Þ � V word-topic probability matrix μw which
element μwij

¼ pðwj ¼ 1jzi ¼ 1Þ shows the probability of drawing the

j-th word given that the i-th latent topic is chosen. Like the LDA case,
we proceed with assuming a non-generated μw matrix, but we will
show that this assumption does not have a serious impact and it can
be revoked without bringing harm to the entire model. By assuming
conditional independence of the variables, the same as LDA, one can
deduce the following joint distribution:

pð θ
!

; z;wj ξ
!

;μwÞ ¼ pð θ
!

j ξ
!

Þpðwjz;μwÞpðzj θ
!

Þ ð7Þ

where z is the set of latent topics. Integrating over the θ
!

parameters
and the topic space gives

pðwj ξ!;μwÞ ¼
Z

∏
d

i ¼ 1

ΓðαiþβiÞ
ΓðαiÞΓðβiÞ

θαi �1
i 1� ∑

i

j ¼ 1
θj

 !γi

∏
N

n ¼ 1
∑
dþ1

i ¼ 1
∏
V

j ¼ 1
ðθiμwij

Þwj
n d θ

! ð8Þ

In the previous equation, ξ
!

and μw are the corpus level parameters

that are selected once per each document in the corpus. θ
!

is the
document level parameter and is chosen once per document. z and w
are word level parameters and are chosen once per every word inside
each document. Thus, we can obtain the probability of the corpus as
follows:

pðDj ξ
!

;μwÞ ¼ ∏
M

m ¼ 1
pðwmj ξ

!
;μwÞ ð9Þ

LGDA has basically the same probabilistic graphical model as LDA as it
is shown in Fig. 1.

2.2. LGDA inference

The main inference problem of LGDA is estimating the poster-
ior of the hidden variables, θ

!
and z:

pð θ
!

; zjw; ξ
!

;μwÞ ¼
pð θ
!

; z;wj ξ
!

;μwÞ
pðwj ξ

!
;μwÞ

ð10Þ

The above equation is known to be intractable. As proposed in
Blei et al. (2003a), an efficient way to estimate the parameters in
this intractable posterior is to use the variational Bayes (VB)
inference. VB inference offers a solution to the intractability
problem by determining a lower bound on the log likelihood of
the observed data which is mainly based on considering a set of
variational distributions on the hidden variables (Jordan et al.,
1999; Watanabe and Watanabe, 2006; Fan et al., 2012):

qð θ
!

; zjw; ξq
!

;ΦwÞ ¼ qð θ
!

jξq
!

Þ ∏
N

n ¼ 1
qðznjϕnÞ ð11Þ

In the above qð θ!jξq
!Þ can be viewed as a variational generalized

Dirichlet distribution, calculated once per document, qðznjϕnÞ is a
multinomial distribution with parameter ϕn extracted once for every
single word inside the document, and Φw ¼ fϕ1;ϕ2;…;ϕNg. Using
Jensen's inequality (Jordan et al., 1999) one can derive the following:

log pðwj ξ!;μwÞZEq½log pð θ!; z;wj ξ!;μwÞ��Eq½log qð θ!; zÞ� ð12Þ
Assigning Lðξq

!
;Φw; ξ

!
;μwÞ to the right-hand side of the above

equation it can be shown that the difference between the left-hand
side and the right-hand side of the equation is the KL divergence
between the variational posterior probability and the actual posterior
probability, thus we have

log pðwj ξ
!

;μwÞ ¼ Lðξq
!

;Φw; ξ
!

;μwÞþKLðqð θ
!

; zjξq
!

;Φwjjpð θ
!

; zÞjw; ξ
!

;μwÞÞ
ð13Þ

The left-hand side of the above equation is constant in relation to
variational parameters, therefore to minimize the KL divergence on

the right-hand side one can proceed with maximizing Lðξq
!

;Φw;

ξ
!

;μwÞ. Up to here the formulation basically follows the LDA model.
The divergence of the models begins whenwe proceed with assigning
the generalized Dirichlet distribution as the parameter generator
instead of the LDA Dirichlet assumption. In Appendix B we bring the

breakdown of Lðξq
!

;Φw; ξ
!

;μwÞ.
Using variational inference to maximize the lower bound Lðξq

!
;

Φw; ξ
!

;μwÞ with respect to ϕnl, we derive the following updating
equations for the variational multinomial (see Appendix B.1)

ϕnl ¼ βlve
ðλn �1ÞeðΨ ðγlÞ�Ψ ðγl þδlÞÞ ð14Þ

ϕnðdþ1Þ ¼ βðdþ1Þve
ðλn �1ÞeðΨ ðδdÞ�Ψ ðγd þδdÞÞ ð15Þ

where Ψ is the digamma function, βlv ¼ pðwv ¼ 1jzl ¼ 1Þ and the
weighing constant eλn �1 is given by

eλn �1 ¼ 1
∑d

l ¼ 1βlveðΨ ðγlÞ�Ψ ðγ l þδlÞÞ þβðdþ1ÞveðΨ ðδdÞ�Ψ ðγd þδdÞÞ
ð16Þ

Maximizing the lower bound L with respect to the variational
generalized Dirichlet parameter gives the following updating
equations (see Appendix B.1):

γl ¼ αlþ ∑
N

n ¼ 1
ϕnl ð17Þ

δl ¼ βlþ ∑
N

n ¼ 1
∑
dþ1

ll ¼ lþ1
ϕnðllÞ ð18Þ

Comparing the above equations with Eqs. (5) and (6) shows that
the variational generalized Dirichlet for each document acts as a
posterior in the presence of the variational multinomial para-
meters. The same conclusion was observed in Blei et al. (2003a) for
the LDA case. This is a direct result of the conjugacy between the
generalized Dirichlet and the multinomial distribution.

2.3. Parameters estimation

The goal of this subsection is to find the model's parameters
estimates based on the variational parameters derived in the last
subsection. One needs to consider that the LGDA parameters are
corpus parameters and therefore they are estimated by consider-
ing all M documents inside the corpus. In the following, we denote
L¼∑M

m ¼ 1Lm as the lower bound corresponding to all the corpus,
where Lm is the lower bound corresponding to each document m.

Maximizing the corpus lower bound L with respect to μwðljÞ
delivers the following updating equation (see Appendix B.3):

μwðljÞp ∑
M

d ¼ 1
∑
Nd

n ¼ 1
ϕdnlw

j
dn ð19Þ

Fig. 1. Graphical representation of LGDA model. The shaded circles show observed
nodes. The blank circles are the hidden nodes. From outside to inside is the corpus
space, the document space and the word space.
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The model's parameters are the last ones to be derived. Following
the work of Minka (2007), it was shown in Blei et al. (2003a) that
in order to derive LDA parameters it was feasible to use the
Newton–Raphson algorithm for parameters estimation. It was also
shown that due to the characteristics of the Dirichlet distribution,
it is possible to exchange the computationally demanding problem
of inverting the Hessian matrix of the Lower bound with a linear
operator and therefore reducing the model complexity.

The Hessian matrix of the generalized Dirichlet distribution
offers the same useful, albeit in a different way, simplification. This
characteristic was analyzed in Bouguila and Ziou (2007b). The
nature of the generalized Dirichlet distribution leads the Hessian
matrix to take a 2�2 block-diagonal shape. The inverse matrix of a
block-diagonal matrix is another block-diagonal matrix consisting
of the inverses of the blocks of the original matrix. Therefore the

problem of inverting the 2d�2d Hessian matrix is reduced to
computing the inverse of 2�2 matrix for d instances. The
complete derivation of the model parameters is brought in
Appendix B.4.

The last formulation that we need to derive to prepare our
model for the classification task is the likelihood of a document in
our model. This can be done by deriving first the likelihood of a
randomly chosen word wn inside the document:

pðwnj ξ
!

Þ¼ ∑
dþ1

l ¼ 1

Z
pðwnjzlÞpðzlj θ

!
Þpð θ

!
j ξ
!

Þ d θ
!

¼ ∑
dþ1

l ¼ 1
pðwnjzlÞ

Z
pðzlj θ

!
Þpð θ

!
j ξ
!

Þ d θ
!

¼ ∑
d

l ¼ 1
βlðvjwv

n ¼ 1ÞE½θl�þβðdþ1Þðvjwv
n ¼ 1Þ 1� ∑

d

l ¼ 1
E½θl�

 !

ð20Þ
Combining Eq. (2) with Eq. (20) delivers the formulation for the
word likelihood as follows:

pðwnj ξ
!

Þ¼ ∑
d

l ¼ 1
βlðvjwv

n ¼ 1Þ
αl

αlþβl
∏
l�1

k ¼ 1

βk

αkþβk

 !

þβðdþ1Þwn
1� ∑

d

l ¼ 1

αl

αlþβl
∏
l�1

k ¼ 1

βk

αkþβk

 ! !
ð21Þ

The log likelihood of a document wm is derived as the sum of the
log likelihoods of the words present inside the document and

Table 1
Extracted classes and number of available documents per
each class.

Class name Number of documents

‘acq’ 2293
‘crude’ 579
‘earn’ 3939
‘grain’ 593
‘interest’ 479
‘money-fx’ 729

Fig. 2. Examples of binary classification success rates of the LGDA and LDA models when applied for text classification. Red line: LGDA, blue line: LDA. (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this paper.)
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therefore we have

log pðwmj ξ
!

Þ¼ ∑
Nm

n ¼ 1
log pðwnj ξ

!
Þ¼ ∑

V

v ¼ 1
cntmv log pðwvj ξ

!
Þ ð22Þ

where for each document wm, cntmv is the number of times the
v-th word is drawn. For the classification purposes, the class that
gives the highest likelihood is chosen as the class the document
belongs.

3. Experimental results

In this section, we bring the results of applying the LGDA model
on two distinct challenging applications namely text and visual
scene classification. The main goal of both applications is to
compare the LGDA and LDA performances.

3.1. Text classification

In text classification, the problem at hand is deciding which
distinctive class to assign a given document to Sebastiani (2002)
and Bouguila and Ziou (2009). An effective classification can be
used for different purposes such as retrieval, recommenda-
tion, filtering, and topic detection (Stokes and Carthy, 2001).
This problem has been the topic of extensive research in the past
(see, for instance, Sebastiani, 2002; Ruiz and Srinivasan, 2002;
Zhang et al., 2013, and references therein) and can be looked upon
from two distinct but related ways. Assuming that the number of
classes is known, from a first perspective text classification can be
viewed a binary categorization problem where the main task is to
decide to which class we should assign the text given two
distinctively chosen classes. The other way to look upon the
problem is to decide how accurately can the model assign the
proper class to a document at the presence of all other classes. We
proceed with giving results for each of the two mentioned
scenarios in the following.

For our simulations, we chose the Reuters-21578 dataset1

(Joachims, 1998). This dataset consists of 21 578 documents and
in total there are more than 20 000 words present inside it.
Independent works have, either manually or automatically,

Fig. 3. Comparison of binary classification success rates of the LGDA and LDA models for ‘Money-fx’ class against ‘interest’ class when we consider (a) 15 extracted latent
topics, and (b) 30 extracted latent topics. Red line: LGDA, blue line: LDA. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)

Fig. 4. Total text classification success rates obtained using LGDA and LDA models.
Red line: LGDA, blue line: LDA. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)

Table 2
Confusion matrix of the LGDA model, in the optimal case, when applied to text
classification.

acq crude earn grain interest money-fx

acq 718 16 171 0 31 8
crude 149 507 130 12 40 61
earn 25 17 445 6 8 20
grain 33 14 81 554 28 25
interest 26 11 80 6 252 238
money-fx 49 14 93 15 120 374

Table 3
Confusion matrix of the LDA model, in the optimal case, when applied to text
classification.

acq crude earn grain interest money-fx

acq 720 16 170 2 31 11
crude 150 510 132 12 36 61
earn 26 14 446 6 8 23
grain 30 12 79 554 28 29
interest 26 11 80 5 273 267
money-fx 48 16 93 14 103 335

1 http://www.daviddlewis.com/resources/testcollections/reuters21578/.
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already classified most of the 21 578 documents into superseding
categories (Joachims, 1998; Vinokourov and Girolami, 2002). Even
though there are many extracted categories thus obtained, not all
of them contain enough documents to be suitable for training and
testing purposes. Thus, we limit ourselves to the top 6 categories
extracted from the dataset. They, in total, comprise more than
9000 documents of the original dataset and nearly all the words
present in the unabridged dataset. Table 1 describes the consid-
ered classes.

To examine the classification accuracy of the models, in the first
step we choose a certain number of the documents in each of the
classes as training documents. Next, we learn our models for each of
the chosen training sets, for different numbers of latent topics to
observe the effect of choosing them on the classification accuracy.
Classification in this first experiment is regarded as a binary process
meaning that a given document is presented to two different trained
classes and the class that gives the higher likelihood is chosen as the
document class. Selected success rates of the two models are brought
in Fig. 2. From each class 100 documents are randomly chosen for
training and we limited our test to the classes which at least contained
500 documents. An interesting observation regarding the two models
can be deduced from this figure. The Reuters dataset consists of
relatively short documents that are presented as extremely sparse
count vectors over the entire vocabulary set. Both LDA and LGDA use
variational Bayes inference as their core learning method, however the
sparsity of the count vectors causes both models to basically provide
the same fit over the training set. The result is that facing sparse
vectors, the two models roughly offer the same success rate. This can
be seen in Fig. 2. There is an exception to this observation. When the
two classes are similar to each other, one may expect that the models
fail to separate them as precisely as when the classes are dissimilar. In
this case the model that offers the better fitting to its training set could
offer better classification. An instance of related classes is ‘interest’ and
‘money-fx’; the classification success rates obtained when using LGDA
and LDA, in this case, are displayed in Fig. 3. This example shows that
when there are similarities between distinct classes, LGDA offers a
more accurate classification than LDA. Thus, we can conclude, accord-
ing to Figs. 2 and 3, that in the majority of cases LGDA offers either
comparable or improved results as compared to LDA. That again
coincides with our expectation that LGDA acts like or better than LDA.

In Fig. 4, we compare the total classification accuracies of the two
models. We need to emphasize the difference between Figs. 2 and 4.
While Fig. 2 shows the class by class comparison of success rates, Fig. 4
shows the total success rate of the two models. In order to suppress
the effects of over compensation by different classes in derivation of
Fig. 4 we limited the number of documents in each class to 1000.
Tables 2 and 3 show the confusion matrices of the LGDA and LDA
models, respectively, for the optimal cases (i.e. corresponding to the
maximum rates in Fig. 4).

3.2. Visual scenes classification

3.2.1. Methodology
In this set of experiments, we apply our LGDA model to the

challenging task of visual scenes classification which is a crucial
step in several applications such as image annotation and retrieval

(Carneiro et al., 2007; Rashedi et al., 2013), and content-based
images recommendation (Boutemedjet et al., 2007). The main goal
is to compare the LGDA to the LDA which was considered for the
same task in Fei-Fei and Perona (2005). It is noteworthy that some
adaptations to the original LDA were proposed in Fei-Fei and
Perona (2005), and the reader is then referred to this paper for
more details, to make it applicable to scenes classification. The
very same adaptations were included in the LGDA without a need
for further assumptions. Indeed, the main idea that we use here is
based on the description of scenes using visual words (Csurka
et al., 2004). This approach has emerged over the past few years
and received strong interest that is mainly motivated by the fact
that many of the techniques previously proposed for text classi-
fication can be adopted for images categorization (Csurka et al.,
2004; van Gemert et al., 2010). For the construction of the visual
words vocabulary, we need first to extract local descriptors from a
set of training images. In our case, we use the scale invariant
feature transform (SIFT) descriptors (Lowe, 2004). The extracted
features are then quantized through clustering (the K-Means
algorithm in our case) and the obtained d clusters centroids are
considered as our visual words. Having the visual vocabulary in
hand, each image can be represented as a d-dimensional vector
containing the frequency of each visual word in that image. In our
experiment we take 7 classes from the natural scenes dataset
introduced in Oliva and Torralba (2001) and we combine it with
one indoor scenes class from Fei-Fei and Perona (2005). The
7 classes chosen from the data set described in Oliva and
Torralba (2001) are coast, forest, highway, inside of cities, open
country, street, and tall building, which contain respectively 361,
329, 261, 309, 411, 293, and 356 images, respectively. The class
chosen from the data set proposed in Fei-Fei and Perona (2005) is
the bedroom category which contains 217 images. Examples of
images from the different considered classes are shown in Fig. 5.

Fig. 5. Sample images from each group. (a) Highway, (b) Inside of cities, (c) Tall building, (d) Streets, (e) Forest, (f) Coast, (g) Open country, (h) Bedroom.

Fig. 6. Classification success rates, as a function of the number of extracted latent
topics, of the LGDA and LDA models applied for the visual scenes classification task.
Red line: LGDA, blue Line: LDA. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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Fig. 7. Examples of per class classification success rates, as a function of the number of extracted latent topics, of the LGDA and LDA models. Red line: LGDA, blue Line: LDA.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Table 4
Optimal confusion matrix of the LGDA model applied for the scenes classification task.

Coast Forest Highway Inside of cities Open country Streets Tall building Bedroom

Coast 223 0 51 3 50 1 2 1
Forest 1 192 10 12 0 23 0 0
Highway 33 2 104 6 18 8 14 1
Inside of cities 0 25 8 173 0 26 0 0
Open country 76 30 7 13 321 10 18 11
Streets 0 57 41 15 0 173 0 0
Tall building 9 0 3 22 7 3 268 12
Bedroom 16 18 30 59 11 42 51 185

Table 5
Optimal confusion matrix of the LDA model applied for the scenes classification task.

Coast Forest Highway Inside of cities Open country Streets Tall building Bedroom

Coast 231 0 59 2 53 1 1 1
Forest 1 187 5 16 0 21 0 0
Highway 55 10 100 21 47 19 62 4
Inside of cities 0 21 6 168 0 22 0 0
Open country 49 27 5 7 289 6 13 7
Streets 1 53 49 16 0 178 0 0
Tall building 5 0 2 13 4 2 219 6
Bedroom 16 28 29 61 15 40 58 192
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3.2.2. Results
From each category, in the considered data set, we randomly

chose 100 images for model training. Unlike text classification
which usually leads to sparse training matrices, the abundance of
visual descriptors in the images and the relatively lower number of
extracted visual keywords, as compared to the textual vocabulary,
lead to less sparse matrices for scenes classification. In Fig. 6, we
compare the success rates of the LGDA and LDA models, when
varying the number of extracted latent topics, dþ1 in Section 2,
over the data set. According to this figure it is clear that better
categorization results are obtained when adopting LGDA. Fig. 7
shows examples of per class comparisons between the success
rates obtained by both models. It is obvious that due to the less
sparse nature of the count data vectors extracted in the case of
scenes classification task (as compared to the text classification
task presented in the previous section), the better fitting capabil-
ities of the LGDA become more evident. Tables 4 and 5 show the
optimal confusion matrices of the LGDA and LDA models. It should
be noted that in few instances it happens that the likelihood of
two or more classes become equal. This happens when the
extracted visual keywords entirely fall outside the visual keywords
present in the training set. In these rare cases the models are set to

drop the scene altogether. According to these tables it is clear
again that the LGDA gives significantly a better classification
accuracy (65.69%) than the LDA (62.49%).

3.3. Comparison of the computational requirements of the LGDA
versus the LDA

An essential concernwhen proposing newmodels as replacements
for already established ones is the tradeoff between what the model
offers and what it requires in return. LGDA in general is a more
computationally demanding model than LDA. Indeed, in dimension d
the Dirichlet has dþ1 parameters while the generalized Dirichlet has
2d parameters. Thus, comparing to the Dirichlet, the generalized
Dirichlet has d�1 extra parameters which is a very important
advantage. Indeed, as the Dirichlet has dþ1 parameters, when
constructing a Dirichlet prior and if the mean probabilities of the
variables have been fixed, it remains only one degree of freedom (by
fixing the value of∑dþ1

l ¼ 1αlÞ to adjust the distribution (Bouguila, 2008).
For the generalized Dirichlet, however, it remains d degrees of freedom
which makes it more flexible. Thus, for the same number of latent
topics, the number of parameters related to the prior choice, that we

Fig. 8. Comparison of the computational time needed for training the LDA and LGDA models, for different numbers of training documents, as a function of the number of
latent topics. The numbers of considered training documents are: (a) 100, (b) 200, and (c) 300. Red line: LGDA, blue Line: LDA. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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need to estimate via variational inference in the LGDA case, is almost
twice the number needed for LDA. The other parameters remain the
same. One concern is the computational requirements of the model
parameters estimation regarding the inversion of the Hessian matrix
in both models. It was shown in this paper that like the LDA case the
computation of the Hessian matrix in LGDA is a linearly related to the
number of generalized Dirichlet parameters. To show the computa-
tional requirements of our model in comparisonwith LDAwe proceed
with performing a series of experiments depicting the time it takes for
both models to learn their parameters in different learning conditions.
The result of these experiments is shown in Fig. 8. From this figure, we
can see that although in general LGDA is a more computationally
demanding model, like LDA, the computational demand for additional
extracted topics clearly follows a linear curve.

4. Conclusion

In this work, an elegant generalized version of the LDA model
has been developed. Unlike the earliest efforts that were directed
to the extension of the LDA model (e.g. to online or hierarchical
settings, for instance) by keeping its basic Dirichlet assumption,
we propose an extension that offers greater generality by resorting
to the generalized Dirichlet distribution. The recourse to the
generalized Dirichlet is mainly motivated by the excellent results
that we obtained recently by its adoption, as both prior and parent
distribution, in several statistical modeling frameworks. The LGDA
model has the chief advantage of containing the LDA model as a
special case and then provides more versatile capabilities than the
basic LDA model. We tested our proposed model on two challen-
ging applications namely text and visual scenes classification. The
obtained results demonstrate superior performance of the LGDA.
The flexibility and generalization capabilities of our model offer
vast future research opportunities in the different fields where the
LDA model has been previously applied. Promising future works
could be devoted to the extension of our model to handle
hierarchical topic models as well as its adaptation for online
learning settings. The potential of the LGDA model is overwhelm-
ing and it is our hope that it will serve to inspire more interesting
applications and learning techniques.

Acknowledgment

The completion of this research was made possible thanks to
the Natural Sciences and Engineering Research Council of Canada
(NSERC). The complete source code of this work is available upon
request.

Appendix A. Exponential form of the generalized Dirichlet
distribution

Here, we present the exponential form of the generalized
Dirichlet distribution. The exponential form delivers us certain
relationships necessary for developing the variational Bayes infer-
ence that we shall adopt. It is straightforward to show the
generalized Dirichlet can be written in the following exponential
form (Bouguila, 2012):

pð θ!j ξ!Þ¼ Zð ξ!Þ� exp ∑
2d

l ¼ 1
Glð ξ

!ÞTlð θ
!Þ

" #
ð23Þ

In above we have

Zð ξ
!

Þ¼ ∏
d

l ¼ 1

ΓðαlþβlÞ
ΓðαlÞ � ΓðβlÞ

Glð ξ
!

Þ¼ αl; l¼ 1;…; d

Glð ξ
!Þ¼ βl�d�αl�dþ1�βl�dþ1; l¼ dþ1;…;2d�1

G2dð ξ
!

Þ¼ βd

Tlð θ
!

Þ¼ log ðθlÞ; l¼ 1;…; d

Tlð θ
!

Þ¼ log 1� ∑
l�d

t ¼ 1
θt

 !
; l¼ dþ1;…;2d

In the above Zð ξ
!

Þ is the normalization factor, G
!ð ξ

!
Þ¼ ðG1ð ξ

!
Þ;

…;G2dð ξ
!ÞÞ is the natural parameter and T

!ð θ!Þ¼ ðT1ð θ
!Þ;…;

T2dð θ
!

ÞÞ is the sufficient statistics of the distribution. For the
exponential family of distributions, we know that the derivative
of the logarithm of normalization factor with respect to the natural
parameters equals the expected value of the sufficient statistics.
Therefore, we have

E½log ðθlÞ� ¼Ψ ðαlþβlÞ�Ψ ðαlÞ�Ψ ðβlÞ; l¼ 1;…; d: ð24Þ

E log 1� ∑
l

t ¼ 1
θt

 !" #
¼Ψ ðβlÞ�Ψ ðαlþβlÞ; l¼ 1;…; d: ð25Þ

Appendix B. Breakdown of Lðξq
!

;Φw; ξ
!

;μwÞ

By factorizing Lðξq
!

;Φw; ξ
!

;μwÞ in Eq. (12), we obtain

Lðξq
!

;Φw; ξ
!

;μwÞ ¼ Eq½log pð θ
!

j ξ
!

Þ�þEq½log pðzÞ�

þEq½log pðwjz;μwÞ��Eq½log qð θ
!

Þ��Eq½log qðzÞ�
ð26Þ

We proceed with deriving each of the five factors of the above
equation in the following:

Eq½log pð θ!jξÞ� ¼ ∑
d

l ¼ 1
½logΓðαlþβlÞ� log ΓðαlÞ� logΓðβlÞ�

þ ∑
d

l ¼ 1
½ðΨ ðγlÞ�Ψ ðγlþδlÞÞαl

þðΨ ðδlÞ�Ψ ðγlþδlÞÞðβl�αlþ1�βlþ1ÞÞ� ð27Þ
where γl ¼ αlþ∑N

n ¼ 1ϕnl and δl ¼ βlþ∑N
n ¼ 1∑

dþ1
ll ¼ lþ1ϕnðllÞ

(see Appendix B.2)

Eqðlog pðzj θ
!

ÞÞ ¼ ∑
N

n ¼ 1
∑
d

l ¼ 1
ϕnlðΨ ðγlÞ�Ψ ðγlþδlÞÞ

þ ∑
N

n ¼ 1
ϕndþ1ðΨ ðδdÞ�Ψ ðγdþδdÞÞ ð28Þ

Eq½log pðwjz;μwÞ� ¼ ∑
N

n ¼ 1
∑
dþ1

l ¼ 1
∑
V

j ¼ 1
ϕnlw

j
nlog ðμwðljÞÞ ð29Þ

where μwðljÞ ¼ pðwj
n ¼ 1jzl ¼ 1Þ

Eq½log qð θ
!

Þ� ¼ ∑
d

l ¼ 1
ðlog ΓðγlþδlÞ� log ΓðγlÞ� log ΓðδlÞÞ

þ ∑
d

l ¼ 1
½ðΨ ðγlÞ�Ψ ðγlþδlÞÞγl

þðΨ ðδlÞ�Ψ ðγlþδlÞÞðδl�γlþ1�δlþ1Þ� ð30Þ

Eq½log qðzÞ� ¼ ∑
N

n ¼ 1
∑

d ¼ 1

l ¼ 1
ϕnllog ðϕnlÞ ð31Þ

Having the above formulas we proceed with finding the para-
meters estimates.
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B.1. Variational multinomial

In order to derive the parameter ϕnl, the probability that the n-
th word is generated by the l-th hidden topic, we proceed with
maximizing Eq. (26) with respect to ϕnl. Firstly, we separate the
terms in Eq. (26) containing ϕnl:

L½ϕnl� ¼ϕnlðΨ ðγlÞ�Ψ ðγlþδlÞÞþϕnl log μwðlvÞ

�ϕnllog ϕnlþλn ∑
dþ1

ll ¼ 1
ϕnðllÞ �1

 !
ð32Þ

and

L½ϕnðdþ1Þ� ¼ϕnðdþ1ÞðΨ ðδdÞ�Ψ ðγdþδdÞÞþϕnðdþ1Þlog βðdþ1Þv

�ϕnðdþ1Þlog ϕnðdþ1Þ þλn ∑
dþ1

ll ¼ 1
ϕnðllÞ �1

 !
ð33Þ

and therefore we have

∂L
∂ϕnl

¼ ðΨ ðγlÞ�Ψ ðγlþδlÞÞþ log βlv� log ϕnl�1þλn ð34Þ

and

∂L
∂ϕnðdþ1Þ

¼ ðΨ ðδdÞ�Ψ ðγdþδdÞÞþ log βðdþ1Þv� log ϕnðdþ1Þ �1þλn

ð35Þ
Setting the above equation to zero leads to

ϕnl ¼ βlve
ðλn �1ÞeðΨ ðγlÞ�Ψ ðγl þδlÞÞ ð36Þ

ϕnðdþ1Þ ¼ βðdþ1Þve
ðλn �1ÞeðΨ ðδdÞ�Ψ ðγd þδdÞÞ ð37Þ

considering that ∑dþ1
ll ¼ 1ϕnðllÞ ¼ 1 for the normalization factor, we

have

eλn �1 ¼ 1
∑d

l ¼ 1βlveðΨ ðγlÞ�Ψ ðγl þδlÞÞ þβðdþ1ÞveðΨ ðδdÞ�Ψ ðγd þδdÞÞ

B.2. Variational generalized Dirichlet

To find the updating equations for the variational generalized
Dirichlet we again proceed with separating the terms in Eq. (26)
containing the variational generalized Dirichlet parameters:

L½ ξ
!

q� ¼ ∑
d

l ¼ 1
½ðΨ ðγlÞ�Ψ ðγlþδlÞÞαlþðΨ ðδlÞ�Ψ ðγlþδlÞÞ

�ðβl�αlþ1�βlþ1Þ�þ ∑
N

n ¼ 1
ϕnlðΨ ðγlÞ�Ψ ðγlþδlÞÞ

þ ∑
N

n ¼ 1
ϕnðdþ1ÞðΨ ðγdÞ�Ψ ðγdþδdÞÞ

� ∑
d

l ¼ 1
ðlog ΓðγlþδlÞ� log ΓðγlÞ� log ΓðδlÞÞ

"

þ ∑
d

l ¼ 1
½ðΨ ðγlÞ�Ψ ðγlþδlÞÞγlþðΨ ðδlÞ

�Ψ ðγlþδlÞÞðδl�γlþ1�δlþ1Þ�
� ð38Þ

Setting the derivative of the above equation to zero leads to the
following updating equations:

γl ¼ αlþ ∑
N

n ¼ 1
ϕnl ð39Þ

δl ¼ βlþ ∑
N

n ¼ 1
∑
dþ1

ll ¼ lþ1
ϕnðllÞ ð40Þ

B.3. Topic based multinomial

In this appendix we derive the updating equations necessary
for estimating μw. Maximizing Eq. (26) with respect to μw leads to
the same equation as in the LDA case:

L½μw� ¼ ∑
M

d ¼ 1
∑
Ns

n ¼ 1
∑
kþ1

l ¼ 1
∑
V

j ¼ 1
ϕdnlw

j
dnlogμwðljÞ þ ∑

kþ1

l ¼ 1
λl ∑

V

j ¼ 1
μwðijÞ �1

 !

ð41Þ
Taking the derivative with respect to μwðljÞ and setting it to zero
gives

μwðljÞp ∑
M

d ¼ 1
∑
Nd

n ¼ 1
ϕdnlw

j
dn ð42Þ

B.4. Generalized Dirichlet parameters

We choose the terms of Eq. (26) containing the generalized

Dirichlet parameters ξ
!

:

L½ ξ
!

�¼ ∑
M

m ¼ 1
ðlog ðΓðαlþβlÞÞ� log ðΓðαlÞÞ� log ðΓðβlÞÞÞ

þ ∑
M

m ¼ 1
½ðΨ ðγmlÞ�Ψ ðγmlþδmlÞÞαl

þðΨ ðδmlÞ�Ψ ðγmlþδmlÞÞβl� ð43Þ
The derivative of the above with respect to the generalized
Dirichlet parameters gives

∂L½ ξ
!

�
∂αl

¼MðΨ ðαlþβlÞ�Ψ ðαlÞÞþ ∑
M

m ¼ 1
ðΨ ðγmlÞ�Ψ ðγmlþδmlÞÞ ð44Þ

and

∂L½ ξ
!

�
∂βl

¼MðΨ ðαlþβlÞ�Ψ ðβlÞÞþ ∑
M

m ¼ 1
ðΨ ðδmlÞ�Ψ ðγmlþδmlÞÞ ð45Þ

It can be seen from the two previous equations that the derivative
of the lower bound (Eq. (26)) with respect to each of the general-
ized Dirichlet parameters αl and βl depend not only on their own
values, but also on each other. To solve the optimization problem
we use the Newton–Raphson method. Thus, we need to compute
the Hessian matrix which takes in our case a peculiarly interesting
form:

∂2L½ ξ
!

�
∂α2

l

¼MðΨ 0ðαlþβlÞ�Ψ 0ðαlÞÞ ð46Þ

∂2L½ ξ
!

�
∂β2

l

¼MðΨ 0ðαlþβlÞ�Ψ 0ðβlÞÞ ð47Þ

∂2L½ ξ!�
∂αl∂βl

¼MðΨ 0ðαlþβlÞÞ ð48Þ

∂2L½ ξ
!

�
∂βl∂αl

¼MðΨ 0ðαlþβlÞÞ ð49Þ

The other entries of the Hessian matrix are zeros. According to the
previous four equations the Hessian matrix has a block diagonal
form and therefore its inverse will be the inverse of 2�2 matrices
on the diagonal which can be easily computed.
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