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Abstract

Partial Hedging of Equity-Linked Products in the Presence of Policyholder

Surrender Using Risk Measures

Mehran Moghtadai

Throughout the past couple of decades, the surge in the sale of equity linked products has

led to many discussions on the valuation of surrender options embedded in these products.

However, most studies treat such options as American/Bermudian style options. In this

thesis, a different approach is presented where only a portion of the policyholders react

optimally, due to the belief that not all policyholders are rational. Through this method,

a probability of surrender is found and the product is partially hedged by iteratively

reducing the measure of risk to a non-positive value. This partial hedging framework

is versatile since few assumptions are made. To demonstrate this, the initial capital

requirement for an equity linked product is found under a bivariate equity/interest model

with a copula based dependence structure. A numerical example is presented in order to

demonstrate some of the dynamics of this valuation method. In addition, a surprising

result is found during the adjustment of the surrender parameters which directly implies

that under a particular valuation method, an increased number of policy surrenders causes

a drop in the initial capital requirement. This counterintuitive result is directly caused

by the partial hedging method.

iii



To my parents: Masoud and Shirin.



Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor Dr. Patrice

Gaillardetz for his patience, support and input during my master’s studies at Concordia

University. This thesis would not have been possible without his guidance.

I would like to wholly thank the staff of the Mathematics and Statistics department at

Concordia University for creating an environment that is greatly conducive to graduate

research. I would also like to thank Dr. José Garrido for his continuous advice during my
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Introduction

Equity-linked products are a class of products that offer returns based on the stock market.

They typically provide a limited participation in the performance of an equity index or

a mutual fund, in the case of an equity-indexed annuity (EIA) or variable annuity (VA),

respectively. This is done while guaranteeing a minimum rate of return. The monograph

by Hardy (2003) has comprehensive discussions on the subject. Introduced by Keyport

Life Insurance Co in 1995, EIAs have been the most innovative annuity product over the

last 20 years. Equity-linked products have become increasingly popular since their debut

and in the case of EIAs the sales have steadily increased and hit a record high of $33.9

billion in 2012. (See LIMRA (2012))

Due to this popularity EIA’s have received much attention in the academic literature.

Tiong (2000) and Lee (2003) have obtained closed-form formulas for several equity-indexed

annuities in the Black-Scholes framework. Lin and Tan (2003) and Kijima and Wong

(2007) consider a more general model for EIAs, in which both the external equity index

and the interest rate satisfy general stochastic differential equations. Lin et al. (2009) price

annuity guarantees under a regime-switching model. In these papers however, mortality

is considered to be diversified.

Risk measures (see Artzner et al. (1999)) have also been used to evaluate equity-

linked products. A comprehensive introduction to risk measures may be found in Wirch

and Hardy (1999). The financial and actuarial approaches have been compared by Boyle

and Hardy (1997). Tasche (2000) and Wang (2002) apply risk measures to insurance

capital allocation problems.

1



A much studied approach for capital allocation in incomplete markets is to minimize

the expected square of the losses, which is known as quadratic hedging. Incomplete mar-

kets arise in finance when the number of securities is less than the number of risk factors.

Quadratic hedging was first introduced in the financial context by Föllmer and Sonder-

mann (1986) and was later applied in an actuarial context in equity-linked products by

Moller (1998). It has the advantage of being computationally simple, however the disad-

vantage is that the square of the loss does not distinguish positive losses from negative

losses. A more tractable and meaningful approach for capital allocation is the quantile

hedging approach introduced by Föllmer and Leukert (1999), applied to equity-linked

products by Melnikov and Skornyakova (2005). This is equivalent to the value-at-risk

(VaR) risk measure. Melnikov and Smirnov (2012) extend this principle and construct

hedging strategies that minimize the Conditional Value-at-Risk (CVaR) with illustrations

using equity-linked products. Conditional Value-at-Risk (CVaR) or Conditional Tail Ex-

pectation (CTE) has the advantage of being a coherent risk measure, see Artzner et al.

(1997) as well economically meaningful, see Laeven and Goovaerts (2004).

In this thesis a partial hedging strategy of equity-linked products with surrender option

is evaluated using iterated risk measures. For long-lived contracts such as equity-linked

products, it is more reasonable to hedge dynamically. For this reason it is attractive to

use an iterated approach such as those developed by Wang (1999). The initial hedging

strategy is determined using the iterated value-at-risk (IVaR) and conditional value-at-risk

(ICVaR) risk measures. The latter method is used in this thesis in order to determine

the initial capital requirement for a partial hedging strategy for a portfolio of equity-

linked products. This is done by minimizing the partial hedging costs while constraining

the CVaR to non-positive values, made possible through the use of linear programming.

Rockafellar and Uryasev (2000) present how linear programming can be used to minimize

the CVaR and Gaillardetz and Hachem (2014) apply this idea for use in minimizing

hedging costs.

This framework has the advantage of making as few assumptions as possible in order
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to function with various discrete financial models, risk measures, and products, both

path-dependent and path-independent, leaving these decisions to the insurer for their

particular market. This thesis takes advantage of this in order to bring forth a new

method for evaluating surrenders in a realistic setting, particularly in the case where

policyholders react non-optimally.

In Chapter 1 a bivariate economic model is presented. This model uses a discretized

regime-switching form of the Cox-Ingersoll-Ross short rate model presented by Cox et al.

(1985). The equity model uses a similar discretized regime-switching form of the geo-

metric Brownian motion. These two models are joined using a Markov-switching Copula

with Gaussian and student’s t regimes. While it may appear that this author abuses

regime-switching (Markov-switching) models, it is done with reason. The history of regime

switching models goes back to the works of Quandt (1958), however this model was first

introduced by Hamilton (1989) in a financial/economical context. The model permits

the index to vary between discrete regimes in a Markovian manner. This behaviour con-

sequently induces stochastic volatility while keeping the model simple. In addition, the

nature of regime-switching models makes model comparison and reduction easy due to

their nested nature.

In Chapter 2, the typically used actuarial notations are presented along with the risk

measures used. Chapter 3 presents the dynamic partial hedging portfolio and its valuation

through the use of iterated risk measures. Due to the economical model and example

product being Markovian and path-independent, respectively, a stochastic mesh is used

to evaluate the initial capital requirements of the partial hedging portfolio. In Chapter

4, the stochastic mesh method presented by Broadie and Glasserman (2004) is applied to

the problem at hand. In Chapters 5.1 and 5, a numerical example is detailed along with

a study of the impacts of different parameters on the initial capital requirement.

3



Chapter 1

Economic Model

In this chapter a multi-period bivariate discrete model will be presented that describes

the dynamic of the stock index and the interest rate. Lattice models like these have been

used to model stocks, interest rates, and other financial securities due to their flexibility

and tractability; see Panjer et al. (1998) and Lin (2006) for examples. Generally, the

premiums obtained from discrete models converge rapidly to the premiums obtained with

the corresponding continuous models when considering equity-linked products.

In this chapter, continuous models for equity and interest rates will be presented,

discretized and fitted to historical data. The model of choice for the equity and short rate

will be the lognormal regime-switching model and the regime-switching Cox-Ingersoll-Ross

model, respectively.

1.1 Interest Rate Model

A natural way of modeling interest rates in continuous time is through the use of a short

rate model. This rate can be seen as the instantaneous spot rate. That is, the short rate

which will be denoted by r(t) from here forth is the annualized continuously compounded

interest rate that one can borrow money for an infinitesimal period dt. This notion can

be formalized in the following way:

4



Definition 1.1.1 Let r(t) be the stochastic state variable for the short rate process and

Fr(t) = {r(s) : s ≤ t}. Then the price of a zero-coupon bond with a face value of 1 at

time t maturing at time t+ ∆ is given by

P (t, t+ ∆) = EQ
[

exp

(
−
∫ t+∆

t

r(s) ds

)∣∣∣∣Fr(t)] , (1.1.1)

where EQ(·) is the expectation under the risk neutral measure.

A desirable characteristic in a short rate model is mean reversion. In theory this

implies that the short rate will eventually move back towards the mean since interest

rates cannot realistically grow beyond a certain point. An early model that captured

this characteristic was introduced by Vasicek (1977). The Vasicek model however, carries

two important disadvantages: level independent volatility and the possibility for negative

interest rates. An extension to the Vasicek model which resolves these disadvantages is the

Cox-Ingersoll-Ross (CIR) model presented by Cox et al. (1985). This model is a particular

application of the square-root process. While the CIR model improves on Vasicek’s, it still

has the disadvantages of having constant volatility and assuming a homogeneous model.

This can be improved by using a regime-switching version of the CIR model, which would

let the process change to different CIR model states according to a continuous Markov

chain.

Let us begin by defining the underlying continuous Markov chain,

Definition 1.1.2 Let X(t) be the random variable describing the state of the process at

time t, and assume that the process is in state i at time t. Then X(t+ ∆) is independent

of previous values FX(t) = {X(s) : s ≤ t} and as ∆→ 0 uniformly in t ∀ j

Pr(X(t+ ∆) = j|X(t) = i) = δij + qij∆ +O(∆), (1.1.2)

where

δij =


1, i = j

0, otherwise

. (1.1.3)

Then qij can be seen as the rate of transition from i to j.

5



Definition 1.1.3 For all t ∈ [0, T ], let Xr(t) be the state of a continuous time Markov

chain on the finite space Ω = {1, . . . , Kr} at time t defined as in Definition 1.1.2. A

continuous time Cox-Ingersol-Ross regime-switching (RS-CIR) process r(t) is the solution

of the stochastic differential equation given by

dr(t) = κXr(t)(µXr(t) − r(t)) dt+ σXr(t)

√
r(t) dB(t) (1.1.4)

where B(t) is a Brownian motion, and κXr(t), µXr(t), σXr(t) are the parameters in state

Xr(t).

Note that in the single regime CIR process, the drift component κ(µ − r(t)) is the

same as in the Vasicek model. This ensures that the process reverts to the mean µ with

adjustment speed κ. However, while Vasicek’s volatility component is a constant σ, CIR’s

depends on the level of r(t) and as long as 2κµ > σ2 it precludes the possibility of negative

interest rates.

1.1.1 Discretization

In order to fit the model to historical data a discretized form of the model is needed. Let

r(t) be the short rate at time t and Xr(t) be the regime at time t.

Definition 1.1.4 Let P(∆) be the transition matrix for the Markov chain X(t), then

P(∆) = e∆Q, where {Q}ij = qij as in Definition 1.1.2. Then the transition matrix

entries are defined as

pij(∆) = {P(∆)}ij = Pr(X(t+ ∆) = j|X(t) = i) (1.1.5)

for i, j ∈ {1, . . . , K}.

Per Definition 1.1.3, the exact discrete model corresponding to the square-root process

given the regime is constant in [t, t+ ∆) is given by,

r(t+ ∆)|r(t), Xr(t) = e−κXr(t)∆r(t) + µXr(t)

(
1− e−κXr(t)∆

)
+σXr(t)

∫ t+∆

t

e−κXr(t)(t−s)
√
r(s) dB(s)

(1.1.6)

6



Feller (1951) shows that the transition density of this model given regime k ∈ {1, . . . , K}

is given by

fk (r(t+ ∆)|r(t), Xr(t) = k) = cke
−uk−vk

(
vk
uk

) qk
2

Iqk(2(ukvk)
1
2 ), (1.1.7)

where

ck =
2κk

σ2
k(1− e−κk∆)

, (1.1.8)

uk = ckr(t)e
−κk∆, (1.1.9)

vk = ckr(t), (1.1.10)

qk =
2κkµk
σ2
k

− 1, (1.1.11)

and Iqk(·) is the modified Bessel Function of the first kind of order qk. Note that this

density can also be seen as that of a non-central χ2 distribution, where 2ckr(t+∆) follows a

non-central χ2 distribution with 2(qk+1) degrees of freedom and non-centrality parameter

2uk. It is important to also note that an extra condition exists on the parameters in order

for the discrete model to follow this distribution, qk must be greater or equal to 0. In

the CIR model, this condition precludes the possibility of the process ever reaching 0. If

qk < 0, then r(t) may occasionally hit 0.

1.1.2 Parameter Estimation

For the estimation of parameters, weekly yields on 4-week US T-Bill data will be used, as

they are the shortest term US zero-coupon bonds available and are the closest candidates

for an annualized short rate. A better approximation may be had by fitting a yield

curve however additional assumptions are necessary to do so. For the purposes presented

here, the data will be used directly. This data is obtained from the website of the US

Department of the Treasury in weekly steps from the date of August 3rd, 2001 to July

12th, 2013 consisting of 624 data points.

The parameter constraint of qk > 0 presented in the previous section may cause

practical problems when fitting a single regime CIR model to this data. From early

7



August 2001 to early September 2008 the average annualized return on a 4-week US T-

Bill was 2.52%, whereas the same average calculated between September 2008 and July

2013 was .0813%. In fact the need for a regime-switching model stemmed from this

observed behaviour.

2002 2004 2006 2008 2010 2012 2014

0
1

2
3

4
5

Date

An
nu

al
iz

ed
 R

et
ur

n

Figure 1.1: 4 Week annualized US T-Bill Returns

This large difference can be seen more effectively when this data is plotted as in

Figure 1.1. It then becomes clear that when assuming a CIR model for interest rates, the

pre-2008 and post-2008 crash returns do not come from the same process. We use the

maximum likelihood method to fit a single regime CIR model and the quasi-likelihood

method presented by Hamilton (1989) to fit multi-regime CIR models. The likelihood

maximizations are programmed using The R Project for Statistical Computing. The code

8



can be found in Appendix A.1. Note that due to the multi-modal nature of the likelihood

function, the MLEs are obtained by using randomized starting values in order to find the

global maximum.

Table 1.1: RS-CIR Model Comparisons

Regimes # of Parameters AIC BIC

1 3 -6909.05 -6895.74

2 8 -6973.01 -6937.52

3 15 -6917.86 -6851.31

In order to pick the best model with the least number of parameters possible the

Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) will be used.

This is defined as

AIC = 2p− 2 log L̂, (1.1.12)

BIC = p logN − 2 log L̂ (1.1.13)

where p is the number of parameters, L̂ is the likelihood function evaluated at the estimates

and N is the number of data points. In Table 1.1 it can be seen that the results of the

AIC & BIC indicate that the best model is the two regime model.

Table 1.2: Estimated Parameters for RS-CIR Model

Regime i p̂
(r)
ii ( 1

52
) κ̂i µ̂i σ̂i

1 .99489 .071119 .10744 .12298

2 .58489 5.8046 .036573 .64452

In Table 1.2 the fitted parameters confirm what is observed in Figure 1.1. The second

regime has very high mean reversion speed but with a lower mean whereas the first has a

very low mean-reversion speed (κ) with a higher mean (µ). It is also worth noting that the

persistence (p̂
(r)
ii ( 1

52
)) of the first regime is considerably higher implying that the second

regime is short lived.
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1.2 Equity Model

The geometric Brownian motion (GBM) model famously used by Black and Scholes (1973)

is tractable and easily implementable for equities. However the use of an independent

lognormal model as the underlying market process carries with itself various assumptions,

particularly that of constant volatility. Since then many empirical studies have been

done that show how this model fails to capture the long-term extreme movements and

variability of the market. Kurpiel and Roncalli (1998) compare the accuracy of option

hedging strategies under stochastic volatility assumptions and those under the Black-

Scholes model to show these drawbacks. One method to improve on the independent

lognormal model would be to let volatility vary over time. A natural extension to the GBM

model would be the regime-switching model. Hardy (2001) investigates the effectiveness

of this model with the TSX and S&P indices. The regime-switching model allows us to

capture the stochastic volatility of an equity index while keeping many of the simplicities

of the GBM model. More specifically, the regime-switching lognormal model allows us to

randomly vary the price process between K regimes according to a Markov chain.

Then we can define our lognormal regime-switching model in the following way,

Definition 1.2.1 For all t ∈ [0, T ], let XS(t) be a continuous time Markov chain on

finite space Ω = {1, . . . , KS} defined as in Definition 1.1.2. A continuous time lognormal

regime-switching model is a stochastic process S(t) which is the solution of the stochastic

differential equation given by

dS(t) = µXS(t)S(t) dt+ σXS(t)S(t) dB(t), (1.2.1)

where B(t) is a Brownian motion, µXS(t) and σXS(t) are the drift and volatility in state

XS(t), respectively.

Hardy (2001) shows that a two regime model gives a good fit while keeping the model

simple and meaningful in an economical setting, this will be verified for the given data

set.
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1.2.1 Discretization and Estimation of the Equity Model

In order to fit the model to historical data a discretized form of the model is needed. Let

S(t) be the equity process at time t and XS(t) be the regime at time t, then we have that,

log
S(t+ ∆)

S(t)
|XS(t) ∼ Normal(µXS(t)∆, σXS(t)

√
∆). (1.2.2)

Table 1.3: RS-LN Model Comparisons

Regimes # of Parameters AIC BIC

1 2 -2768.63 -2759.76

2 6 -2962.39 -2935.77

3 12 -2926.55 -2873.31

As in Section 1.1.2, a one, two, and three regime model is fitted. Comparing these

models using the AIC and BIC in Table 1.3, it can be seen that the same conclusion as

Hardy (2001) is found and that the two regime model is the best model.

Then it stands that the parameter vector Θ = (µ1, µ2, σ1, σ2, p11(∆), p22(∆)) needs to

be estimated. The likelihood functions and the procedure for fitting these parameters can

be viewed in detail in Hamilton (1989). The numerical procedure for this fit is similar to

the one for the CIR model and is in fact a trivial adjustment in the code presented in

Appendix A.1.

Table 1.4: Estimated Parameters for RS-LN Model

Regime i p̂
(S)
ii (∆) µ̂i∆ σ̂i

√
∆

1 .96331 .003262 .01610

2 .9050 -.004639 .04246

The parameter estimates in Table 1.4 are based on weekly data of the S&P500 index

between August 2001 and July 2013, in fact, this data is made to be in sync with that

of Section 1.1.2. The regimes can be qualified as a low volatility and a high volatility
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regime. For the sake of consistency State 1 will be associated with low volatility and

State 2 with high volatility. Note that the persistence of State 1 is higher than that of

State 2, indicating that it is more likely for the process to stay in State 1 having started

in State 1 then to stay in State 2 having started in State 2.

1.3 Dependence Model

The dependence between the equity and bond market is something that is thoroughly

observed in classical finance. In fact this dependence plays a particularly important role

in the capital asset pricing model (CAPM). Financial wisdom implies that as investors sell

stock they will use these proceeds to fund bonds, or vice versa. Therefore it is expected

that equity and bond prices move in opposite directions. In this framework since rates

are used instead, the interpretation is that when higher yields are available on risk free

assets, investors expect higher returns in the equity market. In recent years however

the government has been keeping bond yields artificially low in order to promote equity

participation, as a result looking at recent data, the dependence is rather low. This recent

lack of dependence implies a heterogeneity and is essentially the same problem that had

to be tackled in the equity and bond model.

Modeling the dependence by assuming a particular multivariate model is a difficult

task, particularly when the two marginals can be shown to have widely different dynamics.

However with the use of a copula function this task becomes much more manageable as

it essentially facilitates a ‘divide and conquer’ strategy by making different assumptions

on the marginals and the dependence structure. The use of copulas in finance was popu-

larized by Embrechts et al. (2002) and Li (2000) who showed that the time-until-default

of financial instruments was correlated and could be modeled using copulas. During the

recent crisis copulas received bad press due to their use in pricing collateralized debt obli-

gations (CDOs) yet they remain a powerful tool in both financial and actuarial settings

when used with caution.
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The first introduction of copulas was made by Sklar (1959). The definition of a copula

function is given as follows.

Definition 1.3.1 A d-dimensional copula C : [0, 1]d → [0, 1] is a function which is a

joint cumulative distribution function (CDF) with uniform marginals.

This definition relies on the fact that if a random variable X has a continuous CDF F

then F (X) is distributed uniformly between 0 and 1. What completes the image is Sklar’s

Theorem which relates the marginal CDFs and copula to the multi-variate distribution.

Theorem 1.3.1 (Sklar (1959)) Let H be a d-dimensional CDF with marginal CDFs

F1, F2, . . . , Fd. Then there exists a copula function C such that

H(x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd))

In turn, for any univariate CDF Fi and any copula C, the function H is a d-dimensional

CDF with marginals Fi, i ∈ {1, . . . , d}. Furthermore, if Fi is continuous ∀i ∈ {1, . . . , d},

then C is unique.

The copula framework presented above is very general and opens the door to a vast set

of possible copula functions. The question then becomes which copula to use. Embrechts

(2009) gives an interesting overview of the historical context of copula functions and their

derivations along with cautions. Since the purpose of this thesis is not to analyze this

dependence but merely fit a meaningful model, the choice of copula will be limited between

Gaussian and t copulas. Gaussian copulas put less emphasis on tail dependence while t-

copulas put more. Both of these copulas belong to the elliptical copula family. Jondeau

and Rockinger (2006) consider a conditional dependence copula using a Markov switching

model that can be used when the marginals follow rather complicated distributions. This

copula would then enable periods of high-correlation and low-correlation which can be

observed in the data.
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The Gaussian and t copulas are defined as follows:

Definition 1.3.2 Let R ∈ Rd×d be a correlation matrix, then the Gaussian copula with

parameter R is defined by

CG(u1, . . . , ud) = ΦR(Φ−1(u1), . . . ,Φ−1(ud)),

where Φ is the distribution function of a standard normal random variable and ΦR is that

of multivariate normal distribution with mean vector zero and covariance matrix equal to

the correlation matrix R.

Definition 1.3.3 Let P ∈ Rd×d be a correlation matrix, then the Student’s-t copula with

parameters P, ν is defined by

Ct(u1, . . . , ud) = tν,P (t−1
ν (u1), . . . , t−1

ν (ud)),

where tν is the distribution function of a t random variable with ν degrees of freedom and

tν,P is that of multivariate t distribution with covariance matrix equal to the correlation

matrix P and ν degrees of freedom.

Definition 1.3.4 Let Xc(t), t ∈ {0,∆, . . . ,∆N} be a discrete Markov chain with K states

and Pc be its transition matrix where

p
(c)
ij = {Pc}ij = Pr (Xc(t+ ∆) = j|Xc(t) = i) , (1.3.1)

for i, j ∈ {1, . . . , K}. Then a d-dimensional Markov Switching Copula (MSC) is defined

by

CMSC(u1,t+∆, . . . , ud,t+∆|Xc(t) = i) = Ci(u1,t+∆, . . . , ud,t+∆), (1.3.2)

where i = {1, . . . , K} and uk,t is the kth marginal at time t.

Since the marginals together have a total of 14 parameters and a Markov switching

copula would be adding at least 4 more, it would be extremely unwieldy to maximize
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the likelihood of the whole structure in one step. Instead, a two-step estimation will be

used: first the marginals (which have already been estimated) then the copula parameters.

Patton (2006) shows that this method yields estimators that are asymptotically efficient

and normal. He also proves Sklar’s Theorem for copulas whose marginals are conditional

distributions.

Then the parameter estimate is given by

Θ̂c = argmax
N∑
i=1

log cMSC

(
FS

(
S(∆i)|S(∆i− 1); Θ̂S)

)
, Fr

(
r(∆i)|r(∆i− 1); Θ̂r

)
; Θc

)
,

(1.3.3)

where c(·) is the copula density and Θ̂c, Θ̂S and Θ̂r are the estimated parameters for the

copula, equity and short rate models respectively. FS(·) and Fr(·) are the distribution

functions of the equity and short rate models respectively. Note that the log likelihood in

(1.3.3) disregards the marginals since they have had their parameters already estimated

and are in fact constants. The Markov switching copula parameters can be estimated

using the same quasi likelihood method detailed by Hamilton (1989).

Table 1.5: MSC Model Comparisons

Model # of Parameters AIC BIC

Gaussian 1 2.10203 6.53818

t 2 -10.1997 -1.327399

Gaussian-Gaussian 4 -21.9025 -4.157899

Gaussian-t 5 -31.0640 -8.8832

t-t 6 -29.3771 -2.76019

The estimations will be restricted to single and two state models. In Table 1.5 the

models are listed in order of complexity along with their AIC. Keeping in mind that the

lowest AIC and BIC implies the best fit, the Gaussian-t MSC seems to give the best

fit for the number of parameters. It is important to keep in mind that the models are

15



Table 1.6: Estimated Parameters for MSC Model

State i p̂
(c)
ii ρ̂i ν̂i

1 (Gaussian) .9965 .05409 -

2 (t) .9923 .08536 1.0550

simply being compared to each other and no formal goodness-of-fit test is taking place,

Genest et al. (2009) gives an overview of goodness-of-fit tests for copulas. It is important

however to take into account that due to the conditional nature of the marginals, standard

goodness-of-fit tests may be misleading and care should be taken.

While the goodness-of-fit issue will not be tackled here, a likelihood ratio test will

be considered in order to justify the use of this dependence model over an independent

model. Note that the independent copula, CI(u, v) = uv, can be looked at as a special

case of the Markov switching copula presented here, therefore the condition of nested

model is satisfied. The test is

H0 = CI vs H1 = CMSC . (1.3.4)

Then the test statistic is given by

t = −2
(
l(θ̂I)− l(θ̂MSC)

)
. (1.3.5)

Note that the likelihood under the null is 1 and hence the log-likelihood, l(·), is equal to

0. Consequently the degrees of freedom under the null is 0 due to the lack of parameters.

Then t = 41.064 and has a χ2(5− 0) distribution. The p-value for this test is 9.108e− 08,

hence the null hypothesis is rejected with a very high significance. Therefore it can

be stated that the dependence model presented is a worthwhile improvement over the

independence assumption.

For the purposes of this thesis the Gaussian-t MSC will be used due to its large

improvement on the single state models. The improvement of the t-t MSC does not

appear to be worth the increase in complexity. Note that in the two state case the
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parameter matrix R can be reduced to the correlation coefficient ρ. In Table 1.6 the

fitted parameters imply a very high persistence along with low correlation in both states.

The fitted degrees of freedom parameter is rather small implying heavy tails in that state

along with tail dependence.
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Chapter 2

Actuarial Model

In Chapter 1, the model presented assumes the usual frictionless market. In this chapter

the actuarial notations for the mortality and surrender process will be presented along

with the dynamic risk measures. The simulation framework that will be presented will

assume that the insurance provider can only trade in certain intervals, that is, if the

simulation makes weekly movements, the provider can only trade monthly or quarterly.

It will also be assumed that there is a constant number of trading dates N1 each year

and ∆1 = 1/N1 is the length of time between each trading date. Assuming that there are

a total of N movements in the simulation, there are N2 = N/N1 unobserved movements

between the trading dates during each ∆1 period. Also let ∆ = 1/(N2N1) be the length

of time between each simulation step.
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2.1 Mortality and Surrender Model

The actuarial notation that will be presented is that described by Bowers (1997). Through-

out this thesis it will be assumed that the surrenders occur at the very beginning of a

period and deaths occur during said period while payments associated with death are

made at the end of the period.

Definition 2.1.1 Let l
(τ)
0 be the number of mutually independent policyholders aged x1, . . . , xl0

at time of issue, and T (xi) and U(xi) be the time until death and time until surrender for

policyholder (xi) at time t = 0, respectively. Then the curtate time until exit is defined

as:

K(xi) = bN1 min (T (xi), U(xi))c∆1,

computed up to multiples of ∆1 periods. Note that b·c is the floor function.

The surrender process is that of a discrete decrement that occurs at the beginning

of each period ∆1, independent from mortality. Let the rate of surrender for the period

[k, k + ∆1) be denoted by q
′(s)
k . The probability of death for the period [k, k + ∆1) is

denoted by q∆1

′(d)
x+k.

Let the probability that (x) remains in the cohort k years be denoted by kp
(τ)
x =

Pr[K(x) ≥ k]. Then let k|∆1q
(τ)
x denote the probability that (x) remains a policyholder

for k years and exits within the following ∆1 period, i.e

qk|∆1

(τ)
x = Pr[K(x) = k] = pk

(τ)
x q∆1

(τ)
x+k = pk

(τ)
x

(
q
′(s)
k + p

′(s)
k q∆1

′(d)
x+k

)
for k ∈ {0,∆1, 2∆1, . . .}. Similarly the probability of remaining a policyholder by the

end of the period is p∆1

(τ)
x+k = p

′(s)
k p∆1

′(d)
x+k. Note that the surrender probabilities do not

depend on the age of the policyholder. The choice of these probabilities will be presented

in CSection 4.2.1.

From here forth, without loss of generality, it will be assumed that l0 contracts are

signed with l0 policyholders at time 0. It is also assumed that the policyholders are all

independent, of the same age x, and their mortality follows the same law.
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Definition 2.1.2 Let Lk be the cohort of remaining policyholders right before the surren-

ders at time k:

Lk =

l0∑
i=1

1{min{T (xi),U(xi),ni}≥k} = l0 pk
(τ)
x , (2.1.1)

where T (xi) and U(xi) are the times until exits as defined in (2.1.1). Then let D∆1

(s)
k

and D∆1

(d)
k be the number of policyholders that surrender at time k and die in the period

[k, k + ∆1) for k ∈ {0,∆1, . . .}, respectively, i.e.

D (s)
k =

l0∑
i=1

1{U(xi)=k}, (2.1.2)

D∆1

(d)
k =

l0∑
i=1

1{T (xi)∈[k,k+∆1)}. (2.1.3)

2.2 Risk Measures

Risk measures have been widely used by financial institutions such as insurance and

investments companies to evaluate the risk level of business lines. This widespread use

is mainly due to its meaningfulness in a business setting. Mathematically speaking a

risk measure is defined as a mapping from a set of random variables to the real line.

This definition is rather broad and encompasses many mappings that do not necessarily

give any idea as to the level of risk in a corporate sense. The most common and well

known risk measure is the Value-at-Risk (VaR). VaR is widely used due to its ease of

implementation and interpretability in risk management, and regulatory requirements.

More recently however the Conditional Value-at-Risk (CVaR) has been lauded as a more

meaningful and appropriate risk measure because of the recognition that coherence, as

defined by Artzner et al. (1999), is a desirable property of risk measures. Essentially, a

coherent risk measure is said to possess the properties of monotonicity, sub-additivity,

positive homogeneity, and translation invariance. Note that VaR does not possess the

sub-additivity property and is therefore not a coherent risk measure. In this thesis the

focus will be mostly on CVaR, due to the fact that CVaR retains its coherence for discrete
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distributions.

Definition 2.2.1 The Value-at-Risk at time k is defined as the c-quantile of the dis-

counted loss random variable L. That is

R1 (L|F(k)) = inf{y ∈ R : Pr[L > y|F(k)] ≤ 1− c} (2.2.1)

for c ∈ [0, 1], k ∈ {0,∆1, 2∆1, . . .} and F(k) is the natural filtration associated with the

information on L up to time k.

Definition 2.2.2 The CVaR risk measure, which represents the expected value of the

worst (1− c) losses, is given at time k by

R2 (L|F(k)) = E [L|F(k), L > R1(L)] . (2.2.2)

In the case of a discrete loss random variable this can be expressed explicitly as

R2 (L|F(k)) = πc +
E
[
(L− πc)1{L>πc}|F(k)

]
1− c

, (2.2.3)

where πc = R1 (L|F(k)).

Wang (1999) proposes the use of risk measures in an iterative manner for discounted

random variables, which implies that the risk measure at time k is a function of the

loss random variable and the future capital requirements. This class of risk measures

is particularly useful in cases where there is an evolution in the future liabilities. This

concept has been applied to equity-linked insurance products with risk measures (see

Hardy and Wirch (2004) and Gaillardetz and Moghtadai (2014)).

Definition 2.2.3 The iterative risk measure at time k for a discounted random loss is

given by

DRj (L|F(k)) = Rj (DRj(L|F(k + ∆1))|F(k)) , (2.2.4)

for j ∈ {1, 2}, and k ∈ {0,∆1, . . . , n−2∆1}, where DRj (L|F(n−∆1)) = Rj (L|F(n−∆1))

and n represents the latest possible liability payment.

In other words the iteratively calculated measure of risk at time k is the measure of

risk as a function of the iterative measure of risk at time k + ∆1.

21



Chapter 3

Valuation

In this chapter the general iterative evaluation method will be presented for a product that

is contingent on mortality and surrender behaviors. Independently from this contingency

is the involvement in the financial market, which is the unique and defining feature of

equity-linked products. Typically, this involvement is through the level of survival and

death benefit that is linked to the performance of the financial market. The random payoff

denoted B(x,K(x)), at time 0 of this contract for the policyholder (x) is given by
D(x,K(x) + ∆1)1{T (x)≤U(x)}

+ (1− CK(x))D(x,K(x))1{T (x)>U(x)}

, if K(x) ∈ {0,∆1, . . . , n−∆1}

D(x, n) , if K(x) ∈ {n, . . . }

(3.0.1)

where CK(x) ∈ [0, 1] is the surrender fee at time K(x) and D(x,K(x)) is the deatch benefit

for policyholder (x) at time K(x). Note that here we assume that the death and surrender

benefits are paid at the end and beginning of the period respectively.

The framework put forth will use the discounted loss random variables that represent

the aggregate losses incurred by the issue of these contracts. These include the gains and

expenses that occur in the portfolio. It will be assumed that the initial capital will be

invested in a hedge portfolio denoted W which consists of index shares and a risk free

asset. The purpose of this framework is to calculate the initial capital requirement as well

as the hedge ratio.
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Definition 3.0.4 Let A = {a(k), b(k)} denote the hedging strategy at time k ∈ {0,∆1, . . .},

where a(k) is the dollar portion invested in index shares and b(k) is the dollar portion in-

vested in the risk free asset at time k.

Definition 3.0.5 Let W (t, k), k > t denote the value of the accumulated aggregate hedge

portfolio at time k given F(t) = {S(u), r(u),Lu : u ≤ t ∪ D (s)
t }. Then W (k, k) =

a(k)+b(k) for k ∈ {0,∆1, . . .}, and W (0, 0) = a(0)+b(0) is the initial capital requirement

of this hedging strategy. Similarly W (k, k + ∆−1 ) denotes the value of the hedge portfolio

prior to any benefit payment at time k+∆1 given F(k), then we have that the accumulated

hedge portfolio at time k+∆−1 is the hedge portfolio from time k accumulated for 1 period,

W (k, k + ∆−1 ) = a(k)
S(k + ∆1)

S(k)
+ b(k)er(k)∆1 (3.0.2)

for k ∈ {0,∆1, . . . , n−∆1}.

3.1 Loss Random Variable

By leveraging the use of dynamic risk measures as in Definition 2.2.3 it is possible to

establish a discounted loss random variable L by using the conditional losses between

time k and k + ∆1. Starting with the last period, the conditional loss variable at time

n − ∆1 is the discounted difference between the guarantees paid and the accumulated

hedge portfolio,

L|F(n−∆1) = (1− Cn−∆1)

D(s)
n−∆1∑
i=1

D(x, n−∆1)

+e−r(n−∆1)∆1

Ln−∆1
−D(s)

n−∆1∑
i=1

D(xi, n)−W (n−∆1, n
−)

 .

(3.1.1)

For periods k ∈ {0,∆1, . . . , n−2∆1} the discounted loss random variable needs to take

into consideration the benefits for the current period as well as the risk associated with

the remaining cohort. The conditional discounted loss random variable is the discounted
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difference between the expenses and the accumulated investment portfolio,

L|F(k) = (1− Ck)
D(s)

k∑
i=1

D(xi, k)

+e−r(k)∆1

( D∆1

(d)
k∑

i=1

D(xi, k + ∆1) +

Lk+∆1∑
i=1

DRj(L|F(k + ∆1))−W (k, k + ∆−1 )

)
,

(3.1.2)

for j = 1, 2.

The probability distribution associated with this random variable will be presented

in Section 4.3. This loss random variable can then be used to define the time 0 loss

associated with issuing such a contract. Typically it is desirable to set the equity-linked

product parameters such that the time 0 measure of loss is set to 0. These parameters

are said to set the fair value.

3.2 Dynamic Hedging Portfolio

The iterative risk measures method that will be used to evaluate the initial capital require-

ment is similar to the framework first presented by Gaillardetz and Moghtadai (2014),

where a portfolio of equity shares and risk-free assets are iteratively rebalanced while min-

imizing cost and setting the measure of risk to zero in a two step optimization process.

This method is an extension of the iterative CTE method presented by Hardy and Wirch

(2004), where they iteratively discount the payoff. A consequence of the latter method is

that it assumes the initial capital is wholly invested in risk-free assets leading to poten-

tially higher initial capital costs. The former hedging strategy however uses the fact that

one can always lower their risk by increasing the available capital, in other words one can

find a particular hedging portfolio which sets the measure of risk at a certain level to zero.

In fact, due to the unboundedness of risk measures there is an uncountably infinite set of

hedging portfolios for which the measure of risk at a certain level is zero. The method in

this chapter will similarly minimize the cost, however instead of setting the measure of
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risk to zero, it constrains it to be non-positive.

The level of risk measure and the type of risk measure need to be set by the insurance

company in a balancing act. The minimum cost at a high level of risk may still be very

costly and make the contract unattractive, while minimizing the cost under a low level of

risk may cause insolvency due to market shock in the latter years of the contract.

Rockafellar and Uryasev (2000) present a method for minimizing the CVaR through

linear programming using approximations. The main approximation step relies on the

fact that the CVaR for a continuous loss random variable can be found by generating

a finite number of random variables through Monte Carlo simulation and finding the

discrete CVaR instead, in essence turning Equation (2.2.2) into Equation (2.2.3). Then

through the use of auxiliary variables they transform the CVaR into a linear expression

that can be used in linear programming. This is convenient since it will permit the hedging

portfolio to be set by using a randomly generated tree. While their purpose is to minimize

the CVaR, here it is the cost that is optimized while the CVaR is a constraint, this is

presented by Gaillardetz and Hachem (2014).

The procedure will involve finding the optimum portfolio denotedA∗(k) = {a∗(k), b∗(k)}

iteratively for k ∈ {0,∆1, . . . , n −∆1} starting from time n −∆1. The linear expression

that is to be minimized at each step is simply the sum of the portions in equity shares

and risk free assets, i.e.

{a∗(k), b∗(k)} = argmin
a(k),b(k)≥0

a(k) + b(k). (3.2.1)

This objective is then minimized with respect to the constraint of DR2(L|F(k)) ≤ 0

at level c. To do this let L(j)|F(k) for j ∈ {1, . . . ,m} represent the j-th discounted

loss random variable that is generated from the random variable L|F(k) and pj be the

probability associated with that outcome. Using the formulation presented by Rockafellar

and Uryasev (2000), the CVaR constraint can be written in a linear way as follows,

−Lj|F(k) + α+ − α− + uj > 0, for j ∈ {1, . . . , q}, (3.2.2)

uj ≥ 0, for j ∈ {1, . . . ,m}, (3.2.3)
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α−, α+ ≥ 0, (3.2.4)

α+ − α− +
m∑
j=1

ujpj
1− c

≤ 0, (3.2.5)

where uj for j ∈ {1, . . . ,m} are auxiliary variables and (α+ − α−) is the VaR at level c.

Note that the variables that are being optimized, namely a(k) and b(k), are part of the

W (k, k+ ∆−1 ) portion of loss random variable. Since this optimization is done iteratively

starting with the last period, it is assumed that when finding A∗(k), DR2(L|F(k + ∆1))

was calculated using A∗(k + ∆1). This process will then eventually give us the initial

capital requirement A∗(0).

As previously stated, equity-linked contracts are generally issued with a fair value

parameter. Some parameters are set and one of the parameters is determined using

numerical methods such that the measure of loss at time 0 is equal to zero. In the

above framework it is also possible to find such a parameter for a homogeneous group of

policyholders.
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Chapter 4

Stochastic Mesh

Due to the nature of the problem presented in Section 3.2, everything must take place

in discrete time. One of the most popular and tractable models for pricing options and

option style liabilities is the binomial (or multinomial) option pricing model first presented

by Cox et al. (1979). This model has the advantage of converging to the continuous model

(for certain types of models) and being extremely tractable by having the recombining

property depending on the type of liability being priced. Bollen (1998) extends this

model into a pentanomial recombining lattice that can be used to price options when the

underlying equity movements follow a regime-switching model. While this latter extension

can be used for our equity and interest rate models separately, it is not appropriate under

the dependence conditions presented here.

It is important to note that in the scenario presented in this thesis there are four

dimensions: equity, interest rate, mortality and surrender. In this situation one might

want to use simulation. One method for doing so is the random tree method presented

by Broadie and Glasserman (1997) where m paths are simulated from the starting node

and m paths from each of those and so on (see Figure 4.1). It is then easy to see that this

method is not very tractable as the size of the tree explodes in an exponential manner,

in fact the computation requirements are O(mN), where N is the total number of steps.

While they show that only using 3 steps for a 1 year option on a single asset they are able

27



to get relatively accurate results, it is hard to extend this for long term multi-dimensional

liabilities. Another method that can be used to tackle this problem is the stochastic mesh

presented by Broadie and Glasserman (2004), this will be the method used in this thesis.

Figure 4.1: Random Tree (m = 3)

Figure 4.2: Stochastic Mesh (m = 5)

Broadie and Glasserman (2004) propose that under certain conditions, one can simu-

late m independent paths with N steps each and at each node use all m states from the

next time step by assigning an appropriate weight W t
jk, where t ∈ {0,∆1, . . . , n−∆} and

j, k ∈ {1, . . . ,m}, in other words the weight for going from node j at time step t to k at

time step t + ∆1 (see Figure 4.2). The advantage over the random tree becomes evident

as the number of nodes at each time step is fixed, avoiding the exponential growth, in

fact this method is O(Nm2).

Let Yi = (Yt1, . . . , Ytm) denote all nodes at step t ∈ {0,∆1, . . . , n − ∆}, then the
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conditions under which a stochastic mesh holds are

1. {Y0, . . . ,Yt−∆1} and {Yt+∆1 , . . . ,Yn} are independent given Yt, for all t ∈ {0, . . . , n−

∆1}

2. Each weight W t
jk is a deterministic function of Yt and Yt+∆1 .

3. For all t ∈ {0,∆1, . . . , n−∆1} and all j ∈ {1, . . . ,m},

1

m

m∑
k=1

E
[
W t
jkVt+∆1(Yt+∆1,k)|Yt

]
= Gt(Ytj), (4.0.1)

where Gt(Ytj) is the continuation value in state Ytj and Vt+∆1(Yt+∆1,k) is the value

of the option in state Yt+∆1,k.

Condition 1 is satisfied by our economic model since every process involved is Marko-

vian by nature, and the same is true for the surrender and mortality processes. Condition

2 and 3 depend on the choice of weights. Broadie and Glasserman (2004) suggest the use

of likelihood weights. These weights can be used to satisfy Conditions 2 and 3 as long

as the paths are generated using a model that satisfies Condition 1. They can then be

defined in the following manner,

W t
jk =


f(Yt+∆1,k|Ytj)
f(Yt+∆1,k|Y00)

, k 6= j

1, k = j,

(4.0.2)

where f(·|Ytj) and f(·|Y00) are transition densities from each respective state. The general

idea behind these weights is that since for j 6= k, Yt+∆1,k is not generated from Ytk, the

weights need to be adjusted with respect to the state from which they were generated

which is Y00. Using these weights the value of the American option at time t is given by,

V̂t(Ytj) = max

{
1

m

m∑
k=1

W t
jke

∆r(Ytj)V̂t+∆1(Yt+∆1,k), Dt(Ytj)

}
, (4.0.3)

where Dt(Ytj) is the immediate exercise value at time t in path j.

Broadie and Glasserman (2004) mention that this framework produces high bias esti-

mates that converge to the real value as m → ∞ and ∆ → 0. They suggest the use of
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an improved estimator that interleaves the high bias estimator with a low bias estimator.

However the application of this estimator is not computationally straightforward with

this model and the purpose of this thesis is not to get an accurate price but to study the

impact of surrender on the valuation method. Hence, a modified form of the original high

bias estimator will be used.

While Equation (4.0.3) is convenient for calculating expectations, it is not appropriate

for the valuation method used in this thesis. Since the valuation method essentially uses

a tail expectation, it is more appropriate and convenient to use probabilities instead of

weights. Equation (4.0.3) would suggest that
W t
jk

m
is the probability of going from state

Ytj to Ytk. However this would not necessarily sum to 1 and is therefore not appropriate.

To correct for this, the sum of the weights are used instead of m. These probabilities are

then defined in the following way,

Pr (Yt+∆,k|Ytj) = ptjk =
W t
jk

W t
j•
, (4.0.4)

where W t
j• =

∑
kW

t
jk

In order to show that these two methods are essentially equivalent, an American option

on a risk asset modeeled as a geometric Brownian motion is used for a numerical example.

The price of an American Call is calculated with initial stock price of 1 and strike of 1.

The constant interest rate is set to 3% and the volatility is 40%. The price calculated is

for a 1 year option and the length of the time steps ∆ is set to 0.1. Fifty simulations are

used for each number of paths tested. The exact price of the option is calculated using

the Black-Scholes formula.

In Figure 4.3 it can be seen that for a low number of paths the presented probabilities

actually give a more accurate result. However as the number of paths increases, both

methods converge to the true price. It should be noted that at each simulation the same

simulated paths are used for both methods and it can be seen that the presented method

is always lower than the alternate method. The code for this test can be seen in Appendix

A.2.1
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Figure 4.3: Weighing Methods

4.1 Economic Model Simulation

Following the general framework presented in the previous section, the simulation of

paths simplifies due to the independent path generation scheme. For the economic model

presented in Chapter 1 this can be done in two steps for each path, first by simulating N

copulas following the appropriate dynamic and second by using the inversion method with

the copula generated probabilities in order to generate a path for each process (equity

and interest rate).

The copula generation can be done by first simulating N − 1 states from the Xc(t)

Markov chain with a known Xc(0) and then simulating N pairs of uniform random vari-
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ables vt = (v
(S)
t , v

(r)
t ), t ∈ {∆, 2∆, . . . , n} from either a t-copula or a Gaussian copula

depending on the outcome of Xc(t), t ∈ {0,∆, 2∆, . . . , n−∆}. More explicitly,

vt = {(v(S)
t , v

(r)
t )} = 1{X̂c(t)=1}Φ

(
Φ−1

(ρ1)(u)
)

+ 1{X̂c(t)=2}t(ν2)

(
t−1
(ρ2,ν2)(u)

)
, (4.1.1)

where Φ−1
(ρ1)(·) is the inverse bivariate normal CDF and Φ(·) is the standard normal CDF

applied element wise. Similarly t−1
(ρ2,ν2)(·) is the inverse bivariate t CDF and t(ν2)(·) is the

univariate t CDF applied element wise. Also u is a generated uniform random variable.

Note that the inverse bivariate normal CDF evaluated at a point represents an uncountable

set. Instead a pair of correlated values can be found using the Cholesky decomposition,

that is, Φ−1
(ρ1)(u) is fixed to a particular set by generating 2 independent uniform random

variables (u1, u2),

u′1 = u1, (4.1.2)

u′2 = ρ1u
′
1 + u2

√
1− ρ2

1. (4.1.3)

Finally the generated copula given that X̂c(t) = 1 is vt = (Φ(u′1),Φ(u′2)).

For the t copula the multivariate normal variance mixture representation t ∼
√
WZ

can be used where Z is a multivariate normal with mean 0 and correlation matrix R and

ν/W ∼ χ2
ν . Then similar to the Cholesky decomposition above,

u′1 = ρ2u2 +
u1

√
1− ρ2

2√
wν2

, (4.1.4)

u′2 =
u2√
wν2

, (4.1.5)

where w is a generated χ2
ν2

random variable and u1, u2 are independently generated

uniform random variables. Finally the generated copula given that X̂c(t) = 2 is vt =(
t(ν2)(u

′
1), t(ν2)(u

′
2)
)
.

This is generally where a variance reduction method would be applied. However, one

must be careful in how this is done since the dependence structure can be broken by

either using unadjusted antithetic variables or Latin hypercube sampling. Packham and

Schmidt (2008) demonstrate a modified Latin hypercube sampling with dependence by
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using rank statistics. In this thesis however, through experimentation it became apparent

that variance minimization biases the results since the valuation method is based on the

tail expectation of the simulated paths. Therefore variance reduction was omitted.

4.1.1 Interest Rate Path Generation

Note that in order to generate a path for the regime switching Cox-Ingersoll-Ross (RS-

CIR) model it is necessary to know the conditional distribution for each step. Given

that the regime is k at time t, 2ckr(t + ∆) follows a χ2 distribution with degrees of

freedom 2(qk + 1) and non-centrality parameter 2uk as described in Section 1.1.1. For

generating the value at t = ∆, Xr(0) = ω is known and therefore the value of r(∆) can be

simulated by simply inverting the appropriate CDF, i.e. H
(r)−1
ω (v

(r)
∆ )/2/cω, where H

(r)
ω (·)

is the distribution function of a non-central χ2 with state ω parameters, this must be

found numerically. However for t = ∆, 2∆, . . . , N∆ the regime is unknown, instead the

probability of being in either state 1 or 2 is known. These probabilities are defined as pω1(t)

and pω2(t). Therefore the distribution is in fact a mixture. This mixture distribution with

parameters adjusted for ∆ length steps is defined by,

F
(r)
∆ (r(t+ ∆)|r(t), Xr(0) = ω) = H

(r)
1 (2c1r(t+ ∆))pω1(t) +H

(r)
2 (2c2r(t+ ∆))pω2(t),

(4.1.6)

for t ∈ {0,∆, 2∆, . . . , n − ∆}. This function can then be used to find r̂(t + ∆) =

F
(r)−1
∆ (v

(r)
t+∆|r̂(t), Xr(0) = ω), which can be done numerically. The numerical method

can be accelerated by using an Euler type approximation in order to obtain a good start-

ing value. To do so, the implicit Milstein scheme can be used. Alfonsi (2005) gives an

overview of various discretization methods for CIR processes. This method has the ad-

vantage of being computationally simple while still converging to the true process. For a

single regime this is given by,

r̂′(t+ ∆) ≈
r̂(t) + κµ∆ + σ

√
∆r̂(t)Z

1 + κ∆
, (4.1.7)
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this can then be extended to two regimes:

r̂′(t+ ∆) ≈ 1{Xr(t)=1}
r̂(t) + κ1µ1∆ + σ1

√
∆r̂(t)Z

1 + κ1∆
+ 1{Xr(t)=2}

r̂(t) + κ2µ2∆ + σ2

√
∆r̂(t)Z

1 + κ2∆
,

(4.1.8)

however as previously stated, 1{Xr(t)=1} is a random variable at time t, therefore its ex-

pected value will be used instead to simulate the value at t+ ∆, then

r̂′(t+ ∆) ≈ pω1(t)
r̂(t) + κ1µ1∆ + σ1

√
∆r̂(t)Z

1 + κ1∆
+ pω2(t)

r̂(t) + κ2µ2∆ + σ2

√
∆r̂(t)Z

1 + κ2∆
,

(4.1.9)

for t ∈ {∆, . . . , (N − 1)∆}, where Z ∼ N(0, 1). Therefore the starting value r̂′(t + ∆)

can be generated by generating Z through inversion using v
(r)
t+∆. Note that the Milstein

scheme produces positive interest rates as long as the parameters satisfy the following

condition: 4κµ > σ2 (this is the case in both regimes).

4.1.2 Equity Path Generation

Using v
(S)
t it is possible to generate the equity path since S(t+∆)

S(t)
|XS(t) is normally dis-

tributed. However since XS(t) is not exactly known, it is a mixture of normals, that

is,

log
S(t+ ∆)

Ŝ(t)
|Ŝ(t), XS(0) = ω ∼ N([µ1pω1(t) + µ2pω2(t)]∆, [σ1pω1(t) + σ2pω2(t)]

√
∆).

(4.1.10)

This can then be generated by inverting a standard normal CDF using v
(S)
t and then

applying the mean and variance transformation. In other words,

Ŝ(t+ ∆) = Ŝ(t) exp
{

[µ1pω1(t) + µ2pω2(t)]∆ + [σ1pω1(t) + σ2pω2(t)]
√

∆Z
}
, (4.1.11)

for t ∈ {0,∆, . . . , n−∆}, given starting values S(0) and XS(0), and where Z is a generated

N(0, 1) random variable.
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4.1.3 Economic Model Mesh

Finally using the above schemes m pairs of paths can be constructed, the elements of these

paths will be denoted by (Ŝ(i)(t), r̂(i)(t)), for i ∈ {1, . . . ,m} and t ∈ {∆1, 2∆1 . . . , n}. Note

that while simulations are done in N times ∆ length steps, only N1 states are observable

at steps of length ∆1. Using this information the weights for the economic model mesh

denoted by We can then be constructed,

Wetjk =


f∆1

(
S(t + ∆1) = Ŝ(k)(t + ∆1), r(t + ∆1) = r̂(k)(t + ∆1)|S(t) = Ŝ(j)(t), r(t) = r̂(j)(t)

)
ft+∆1

(
S(t + ∆1) = Ŝ(k)(t + ∆1), r(t + ∆1) = r̂(k)(t + ∆1)|S(0), r(0)

) , k 6= j

1, k = j

(4.1.12)

where fh(·) is the density of the bivariate model with parameters adjusted from for time

steps of length h, i.e.

fh(X = x, Y = y|X0 = x0, Y0 = y0) = ch,MSC

(
F

(S)
h (x|x0), F

(r)
h (y|y0)

)
f

(S)
h (x|x0)f

(r)
h (y|y0).

(4.1.13)

Note that the function cMSC(·, ·) depends on the Markov chain state and again since

the states are not known for the equity and interest rate, both F
(S)
h , f

(S)
h and F

(r)
h , f

(r)
h are

mixtures that depend on their respective Markov chains. It is important to note that the

parameters need to be adjusted for time steps of length ∆1 and t+ ∆1 for the numerator

and denominator, respectively. Finally the probabilities are given by petjk =
Wetjk
Wetj•

as

defined in (4.0.4).

4.2 Mortality and Surrender Simulation

Due to the assumed independence, mortality can be simulated independently from the

economic model. However, in order to simulate the cohort alive at each step it is also

necessary to simulate the number of policyholders that surrender their contract. This

surrender scheme will depend on the outcomes of the economic model. The surrender

probabilities will depend on a moneyness ratio which is denoted by MR. This ratio

35



is found by treating the equity-linked product as a Bermudian option with an exercise

fee. More precisely, it is the ratio of the surrender value to the continuation value. It

is found independently from the hedging portfolio presented in Chapter 3 and is instead

found by looking at this option from the perspective of a rational option holder. From this

perspective at each possible exercise time the policyholder will evaluate his/her position by

comparing the exercise value to the prospective value measured by staying in the contract

and will always pick the choice with the highest value. Let V̂ (k)(t) be the continuation

value for the period [k, k + ∆), P̂ (k)(t) be the option value and (1 − Ct)D̂
(k)(t) be the

value and the surrender value at time t ∈ {0,∆1, 2∆1, . . . , n} for path k ∈ {1, . . . ,m},

respectively. Then,

MR(k)(t) =
(1− Ct)D̂(k)(t)

V̂ (k)(t)
, (4.2.1)

P̂ (k)(t) = max
{

(1− Ct)D̂(k)(t), V̂ (k)(t)
}
, (4.2.2)

where V (k)(t) is the continuation value. This continuation value is then found under a

risk-neutral measure. This is done in this fashion since the product is treated as a tradable

option and therefore the price needs to be adjusted with respect to the investors/policy-

holders risk profile. However under a complete market with no arbitrage opportunities

this price can be found by using a risk-neutral measure which incorporates the market

risk premium. Such conditions lead to a unique price.

In the market conditions presented in this thesis, no assumption is made about the

completeness of the market. In fact the presented valuation partial hedging method is

most useful under the assumption that the market is incomplete. In this situation the

physical probabilities can be adjusted in order to find a risk-neutral measure. However

in an incomplete market setting the price is no longer unique. By proceeding this way

the replication cost can be found directly by calculating the expectation in the following

manner:

V̂ (k)(t) = e∆1r̂(k)(t)

m∑
i=1

P̂ (i)(t+ ∆1)qetki, (4.2.3)
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for t ∈ {0,∆1, . . . , n − ∆1} where V̂ (i)(n) = D(i)(n) and qetki is the probability of going

from state Xtk to Xt+∆1,i under a risk neutral measure. For the purposes of finding such

a measure, the Esscher transform presented by Gerber and Shiu (1994) will be used:

qetki(h) =

exp

(
he(∆1r̂(k)(t)) Ŝ

(i)(t+ ∆1)

Ŝ(k)(t)

)
petki

∑m
i=1 exp

(
he(∆1r̂(k)(t)) Ŝ

(i)(t+ ∆1)

Ŝ(k)(t)

)
petki

, (4.2.4)

h ∈ R. It should be noted that this implies that there are an uncountably infinite number

of possible risk-neutral measures. The impact and choice of the Esscher parameter h will

be discussed with numerical examples in Section 5.4.

4.2.1 Surrender Scheme

There are various ways to consider the surrender behaviour. One reasonable way is to as-

sume that the policyholder is rational and will surrender optimally. Grosen and Jørgensen

(1997) do exactly this when they show that a product with a revenue guarantee is es-

sentially equivalent to an American option and can hence be calculated through that

principle. Grosen and Jørgensen (2000) take this idea a step further by separating an eq-

uity linked contract into 3 components. The risk-free bonds, bonus option and surrender

option components are then priced separately using Monte Carlo simulation. Bacinello

(2004) calculates the price of a contract where the surrender value is calculated endoge-

nously. In all these scenarios the valuation is done while assuming that the policyholder

is rational. While this method is theoretically sound it leads to high capital requirements

due to the necessary rationality assumption. Note that as shown in Section 4.2 using the

stochastic mesh, the contract can simply be treated as an option. By adding mortality

into the valuation process, P (0) can then be considered as the total initial capital required

for this contract.

While rational behaviour is a reasonable assumption, there are many arguments against

it. The behavioural finance field studies these particular issues. The implications of the
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existence of irrational investors are rather impactful since many fundamental financial

theories such as the efficient market hypothesis rely heavily on this notion. Another

important factor to keep in mind is that in the case of equity-linked products, the poli-

cyholders are all categorized as individual investors. Barber and Odean (2011) show that

this category of investors often under-performs benchmarks through various irrational

behaviours. Therefore it is reasonable to assume that a portion of the cohort will not

act in an optimal way. Forsyth and Vetzal (2014) examines the effects of irrationality by

comparing the hedging costs of a variable annuity under optimal surrender behaviour and

sub-optimal surrender behaviour. The sub-optimal behaviour is defined as the surrender

occurring when the moneyness ratio is larger than a certain threshold. In the scheme pre-

sented in this thesis, the sub-optimal behaviour presented by Forsyth and Vetzal (2014)

is extended using the moneyness ratio defined in Equation (4.2.1).

The surrender rate q
′(s)
t is set to be a function of this ratio. This idea rests on the

hypothesis that policyholders do not all act the same. For example, a portion of the cohort

will surrender independently of the market for various reasons such as personal money

issues. Another portion of the population will only surrender if the moneyness ratio is

high enough. For this reason, the surrender rate q
′(s)(k)
t , k ∈ {1, . . . ,m} will be a piece-

wise function (Figure 4.4) that will be a constant φ for MR(k)(t) < 1 and increasing for

MR(k)(t) ≥ 1 until a particular threshold ψ where the probability of surrender becomes

1. More explicitly,

q
′(s)(k)
t =


φ, MR(k)(t) < 1,

φ+
1− φ
ψ

(
MR(k)(t)− 1

)
, 1 ≤ MR(k)(t) < ψ + 1,

1, MR(k)(t) ≥ ψ + 1,

(4.2.5)

for φ, ψ > 0. Note that as ψ → 0 then,

q
′(s)(k)
t =


φ, MR(k)(t) < 1,

1, MR(k)(t) ≥ 1,

(4.2.6)

38



which implies that all policyholders will surrender as soon as the moneyness ratio is higher

than 1. When φ is also set to 0, it implies optimal behaviour from the policyholder.

Similarly as ψ →∞, the probability of survival is q
′(s)(k)
t = φ and does not depend on

the moneyness ratio. Also note that the method presented by Forsyth and Vetzal (2014)

can be written as,

q
′(s)(k)
t =

⎧⎪⎪⎨⎪⎪⎩
0, MR(k)(t) < ψ + 1

1, MR(k)(t) ≥ ψ + 1,

(4.2.7)

in this framework.

ψ

Figure 4.4: Threshold ψ
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4.2.2 Surrender and Mortality Path Generation

Once the surrender probabilities for the mesh are found, the surrender and mortality

paths can then be generated. Keeping in mind that surrenders occur at the beginning of

the year, this can be done by generating D (s)(k)
t and D∆1

(d)(k)
t in two ordered steps, for

k ∈ {1, . . . ,m} and t ∈ {0,∆1, . . . , n − ∆1}. The generation of these random variables

is simplified due to the assumption of a homogeneous cohort in Section 2.1. D (s)(k)
t

follows a binomial distribution with size L̂(k)
t and probability of success q

′(s)(k)
t . Next,

D∆1

(d)(k)
t follows a binomial distribution with size L̂(k)

t − D̂
(s)(k)
t and probability of success

q∆1

(d)
x+t. Once D̂ (s)(k)

t and D̂∆1

(d)(k)
t are generated, then L̂(k)

t+∆1
= L̂(k)

t − D̂
(s)(k)
t − D̂∆1

(d)(k)
t .

Given that L(k)
0 = l0 ∀ k ∈ {1, . . . ,m}, this process can be repeated sequentially for

t = {∆1, . . . , n−∆1} in order to generate mortality for each path.

4.2.3 Surrender and Mortality Mesh

Once the paths are generated, it is then necessary to define the weights for each state.

This can be done independently from the economical model weights due to the assumed

independence. The weights for this can then be defined by Wm,

Wmt
jk = 1{

L̂(j)
t −D̂

(s)(j)
t ≥ D̂∆1

(d)(k)
t

}(L̂(j)
t − D̂

(s)(j)
t

D̂∆1

(d)(k)
t

)
(

q∆1

(d)
x+t

) D̂∆1

(d)(k)
t

(
1− q∆1

(d)
x+t

)L(j)
t −D̂

(s)(j)
t − D̂∆1

(d)(k)
t

, (4.2.8)

(4.2.9)

for j, k ∈ {1, . . . ,m} and t ∈ {0,∆1, . . . , n−∆1}. Unlike the equity weights, these weights

are not divided by the probability of reaching cohort state Yt+∆1,k since the value of D (s)(j)
t

is always known at the time of valuation and the lives are considered independently and

identically distributed.
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4.3 Complete Mesh Weights

In order to use the valuation method presented in Chapter 3, it is then necessary to have

a complete model which describes the probabilities of going from state Xtj to Xt+∆1,k.

This can be done by putting the weights together,

W t
jk = Wetjk ×Wmt

jk (4.3.1)

and finally the probabilities for the transition are given by

ptjk =
W t
jk

W t
j•
, (4.3.2)

for j, k ∈ {1, . . . ,m} and t ∈ {0,∆1, . . . , n−∆1}.

In summary, in order to achieve these weights several steps were needed. First the

economic model needs to be simulated and from there the economic mesh weights can be

found. When this is done the moneyness ratio is found for every node and the mortal-

ity/surrender mesh can be simulated. Once this last step is done the mortality weigths

needed can be found which completes the mesh weights given above.
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Chapter 5

Numerical Example

5.1 Equity-Linked Products

Equity-linked products appeal to investors because they offer the same protection as con-

ventional annuities by limiting the financial risks, but are also linked to the performance

of an equity market. A variety of these products currently exist on the market such as

variable annuities, equity-indexed annuities, universal life insurance and variable universal

life insurance.

When concluding the contract, the insured may usually opt for optional guarantees,

such as Guaranteed Minimum Death Benefits (GMDB) as well as Guaranteed Minimum

Living Benefits (GMLB). The risk profile of the investor is set by the specific selection of

mutual funds.

The guaranteed minimum death benefits (GMDB) consists of a death benefit that is

payable if the insured were to die during the deferment period. The simplest form is the

Return of Premium Death Benefit where the maximum of the current account value at

the time of death and the single premium is paid.

The guaranteed minimum living benefits (GMLB) are separated into three types,

Guaranteed Minimum Accumulation Benefits (GMAB), Guaranteed Minimum Income

Benefits (GMIB) and more recently Guaranteed Minimum Withdrawal Benefit (GMWB).
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GMAB is the simplest form the these benefits, where the insured is entitled to the single

premium or a roll-up benefit base at maturity. The roll-up benefit base is defined by

Bauer et al. (2008) as the theoretical value of the compounded single premium with a

constant interest rate, namely the roll-up rate. The GMIB offers the choice to obtain

the account value, annuitize the account value or annuitize some guaranteed amount at

specified rates. The GMWB offers the possibility to withdraw a certain amount in small

portions annually. The focus will be on GMDB and GMAB guarantees, where the annual

capital requirements may be obtained using the framework presented in this paper.

To illustrate an equity-linked product valuation, the simplest design of EIAs is used,

known as the point-to-point with term-end design where the index growth is based on

the growth between two time points over the entire term of the annuity. This design has

embedded GMDB and GMAB guarantees with the payoff at time t represented by

D(k) = max
[
min

[
1 + γR(t), (1 + ζ)t

]
, β(1 + g)t

]
, (5.1.1)

for t ∈ {∆1, . . . , n} with an embedded surrender option with value (1−Ct)D(t), where γ

represents the participation in the index and Ct is the surrender fee at time t. The “gain”

R(t) is defined by

R(t) =
S(t)

S(0)
− 1. (5.1.2)

EIAs provide a protection against the loss from a down market β(1 + g)t. The cap rate

(1 + ζ)t reduces the cost of such a contract since it imposes an upper bound on the

maximum return.

Financial options embedded in equity-indexed annuity contracts are usually dependent

on a set of parameters. These include the participation rate, the minimum guaranteed

rate, the guaranteed fraction of premium, etc. Therefore, the premium of the contract is

a function of this set of parameters.

To study the effects and side effects of surrender on the initial capital requirement, a

numerical example for the product presented above will be used. That is, a point-to-point

EIA where the index and interest rate is governed by the models presented in Chapter
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1. It will be assumed that the index and interest rates make weekly movements and

the partial hedging portfolio is rebalanced monthly according to the valuation method in

Chapter 3. The initial capital requirements will be calculated for a homogeneous cohort

with 5 year contracts with investment of 1. The cohort is assumed to all be of age 50 at

time of issue and their mortality follows that of the illustrative table in Bowers (1997).

The initial capital requirement is normalized with respect to the size of the cohort (i.e.

divided by the size).

Since the valuation using the model presented relies on simulation, the confidence

interval for each point estimate will also be presented in the plot. However it is important

to note that the confidence interval presented is a point-wise confidence interval and not

a simultaneous one.

5.2 Economical Model Effects

Initially the effects of the model parameters on a typical EIA product are inspected. This

is done under the assumption of no surrenders. The EIA contract is fixed with a guarantee

of 100% of the premium (β = 1) with a guaranteed annual return of 1% (g = .01), the

participation rate is fixed to 60% (γ = .6) and there is no cap (ζ =∞). The valuation is

done using CVaR at the 95% level for a cohort of 1 policyholder.

The first parameter that is altered is the initial interest rate r(0). This is done for the

fitted model and for an alternate model which assumes an independent and constant inter-

est rate equal to the initial interest rate. This is done for r(0) ∈ {.5%, 1%, 2%, 4%}. The

initial capital requirement is calculated using the average of 10 initial capital requirements

each using an independently simulated mesh with 1,000 paths (m = 1000).

As expected, in Figure 5.1, it can be seen that a higher initial interest rate does in fact

lower the hedging costs. This is expected since with higher interest rates the insurance

company can invest larger proportions in the risk free market and therefore can reduce

the CVaR. The second observation is that the effect of initial interest rate on the initial
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Figure 5.1: Initial Interest Rate Impact

capital requirement is mostly linear, that is, for every percent increase in the initial interest

rate the initial capital requirement is reduced by approximately 0.0071 under stochastic

interest rate and by 0.038 under independent constant interest rate. These values are

found through the use of regression on the simulated initial capital requirement.

One of the reasons why the initial interest rate appears to have less of an impact

on the initial capital requirement under the stochastic interest rate can be attributed

directly to the model. The model that was presented in Section 1.1 has the property of

mean reversion. Due to this property even when starting with different initial interest

rates, the process will revert to the model mean. This means that over time the impact of

the initial interest rate will be reduced which is not the case in the constant interest rate
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scenario. Finally it can be observed that the initial capital requirement under stochastic

and dependent interest rate is higher than that under independent and constant interest

rate. This increase can again be attributed to the mean-reverting nature of the interest

rate model. As it can be seen in Figure 5.1 for small initial interest rates the initial

capital requirement is close for both schemes. Then noticing the fitted parameters for

the second regime in Section 1.1.2, the high mean-reverting regime has a rather low mean

which implies that the process spends most of its time at lower interest rates. These lower

interest rates increase the hedging costs. The numerical data can be seen in Table B.1 in

Appendix B.
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Figure 5.2: Dependence Parameter Impact

Next the dependence is altered using the ρ parameters which are the dependence

correlations. The fitted parameters ρ̂i i ∈ {1, 2} are considered as a baseline. Multiples
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of the baseline: 0ρ̂i, 0.5ρ̂i, 1ρ̂i, 2ρ̂i, and 4ρ̂i are considered while the initial interest rate is

fixed to 1%. In Figure 5.2, it can be seen that the stochastic interest rate still produces

more expensive portfolios than under a constant independent interest rate whether there

is dependence or not. It can be also be noted that increasing the dependence from a factor

of 0.5 and beyond increases the initial capital requirement. Keeping in mind that the fitted

copula parameters implied a positive correlation between the two process, the increase

may be attributed to the fact that the two models will move more strongly together

which means higher interest rates will happen alongside higher equity returns. While

higher interest rates imply lower hedging costs as seen in Figure 5.1, higher equity returns

imply higher payoffs and hence a higher hedging cost. From the plot, stronger dependence

implies higher initial capital requirements and it can then be concluded that the higher

returns have a larger impact. Note that the type of product that is being evaluated is

bounded from below by the guarantee. Therefore the interest rate and equity returns

moving downward together would both imply a higher hedging cost. The numerical data

can be seen in Table B.2 in Appendix B.

5.3 EIA Parameter Effects

Typically EIA’s are priced through their parameters, usually either the spread, participa-

tion rate (γ), or cap (ζ). The contracts will be separated into two categories, one which

returns a minimum of 90% (β = 0.9) of initial investment plus guaranteed return (g) and

another with a minimum of 100% (β = 1). These will be calculated for a cohort of 1 with

no surrender option and with an initial interest rate of 1% (r(0) = 0.01). The simulation

parameters are same as in Section 5.2.

Looking at Figures 5.3 and 5.4 it can be seen that the effect of these parameters are

linear. As expected it can also be seen that given β, an increase in the guaranteed return

causes an increase in the initial capital requirement. However it can also be seen that

the increase is more pronounced for contracts with β = 100% than for contracts with
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Figure 5.3: Participation Rate Effects @ β = 1, 95% CVaR

β = 90%.

Using least-squares regression the slopes can be found and compared. In Figure 5.5 an

interesting behaviour can be seen. In the case where 100% of the investment is guaranteed,

the effect of the participation rate appears to be reduced as the guaranteed rates are

increased. However in the case where 90% of the investment is guaranteed, the effect

of the participation rate appears to be increased as the guarantees are increased. The

change of behaviour may be explained by a change in leverage.

Note that due to the linearity of the effects, the fair value participation rate can be

found by simply interpolating from the linear regression given that we have data for

contracts which the initial capital requirements are below 1.
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Figure 5.4: Participation Rate Effects @ β = 0.9, 95% CVaR

The impact of the cap parameter can be seen in Figures 5.6 and 5.7. In contrast to

the participation rate, the cap does not have a linear effect. In fact it can be seen that

the initial capital requirement is sensitive to low caps. However as the cap increases past

15% this sensitivity is gone, which is due to the fact that the index rarely makes gains of

more than 15% per year. As with the participation rate it can be seen that for a given β,

an increase in the guaranteed rate of return (g) causes an increase in the initial capital

requirements. Similarly, for the same guaranteed rate of return, an increase in β causes

an increase in the initial capital requirements as well. The numerical data can be seen in

Tables B.4 and B.5 in Appendix B.
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Figure 5.5: Participation Rate Effects

5.4 Esscher Parameter Effects

Before considering a surrender option it is necessary to pick a meaningful parameter for

the Esscher transform that is used to find the moneyness ratio presented in Section 4.2.

To evaluate the impact of the Esscher parameter on the initial hedging costs, a contract

similar to 5.2 will be used. In addition, the initial interest rate will be set to 1%. Also it

will be assumed that the policyholder is rational (i.e. ψ = 0 and φ = 0) and the contract

has a constant surrender fee of 1%.

It is important to first note that the Esscher transform essentially skews the distri-
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Figure 5.6: Cap Effects @ β = 1, 95% CVaR

bution. In particular, when h < 0 the distribution is skewed in such a way that lower

valued outcomes have a higher density and when h > 0 the distribution is skewed in such

a way that higher valued outcomes have a higher density. In Figure 5.8 this impact can

be seen particularly for the initial value of the Bermudian option. Since a higher h im-

plies that higher returns are more probable, it is then expected that the initial replicating

cost increases with respect to h. Due to this introduced skewness it can also be deduced

that the continuation values under a higher h will be higher than those calculated with a

smaller h.

This impact is not as great in the initial capital requirements using the iterative risk

measures (IRM) method and is in fact very subtle for h > −5. Recall that h is used to
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Figure 5.7: Cap Effects @ β = .9, 95% CVaR

calculate the continuation value which in return is used to determine the moneyness ratio

at a particular node. This ratio is then used to determine the probability of surrender

which in this case is either 0 or 1 depending on whether the moneyness ratio is larger or

smaller than 1. As previously stated due to the impact of h on the distribution, a higher

h would imply lower surrender opportunities since staying in contract is beneficial due

to the increased expected return. Conventional wisdom would imply that more frequent

rational surrenders would drive up the hedging costs, therefore it is not expected that the

initial capital requirements increase with respect to h. There are two factors to take into

account in this scenario.

The first is that at each node the costs calculated for the Bermudian option and the
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Figure 5.8: Esscher Parameter Impact

EIA using IRM represent fundamentally different things. In the case of the Bermudian

option it is the replication cost whereas under the IRM method it is the replication cost

of the worst 5%. Therefore it is completely possible that even though the policyholder

rationally surrenders, the surrender value is lower than the cost of hedging the worst 5%

future outcomes, hence the act of surrendering eliminates the risk. This behaviour will

be more thoroughly addressed in Section 5.5.

The second factor to take into account is that since a higher h induces higher pos-

sible returns, the fact that a policyholder rationally surrenders under a high h may not

necessarily translate to it being worthwhile under the physical measure which is used to

calculate the initial capital requirements under the IRM method.
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The final conclusion here is that the choice of h has a minimal impact on the initial

capital requirements under the IRM method compared to the Bermudian option costs.

The numerical data can be seen in Table B.3 in Appendix B.

5.5 Surrender Effects

To investigate the effect of surrenders on the framework, the contract parameters will be

fixed similarly to Section 5.2 with the addition of the initial interest rate being 1%. As

shown in Section 5.4, the initial capital requirement for the partial hedging strategy cal-

culated using iterative risk measures is rather robust in relation to the Esscher parameter.

For this chapter, the Esscher parameter will be fixed at h = −2.5 as at this value the

Bermudian option value is equal to the initial capital requirement under this particular

contract.

Initially, the effect of the surrender fee will be looked at under different surrender

scenarios. In Figure 5.9 the moneyness ratio threshold is set to 0 (ψ = 0), that is as

soon as the moneyness ratio (MR) is above 1, the probability of surrender is 1. This

is calculated for different values of non-rational surrender rates (φ). Note that here the

rates are stated as annual rates. As one would expect, it can be observed that as the fee

increases from 0% to 5%, the initial capital requirements (ICR) decrease for any given

non-rational surrender rate. It can also be observed that with a fee of 5% as the non-

rational surrender rate increases, the ICR decreases. Since the threshold is set to 0 every

other surrender that will occur due to the non-rational surrender rate will be at a time

where MR < 1. This act would in fact be beneficial to the insurance company due to the

non-zero surrender fee. In the case where the surrender fee is 0%, while one would still

expect a decrease in the ICR, this decrease is not as large.

In order to better understand this result, the effect of non-rational surrender is assumed

to be constant and through linear regression, the slope and the associated significance is

found. This is done for various thresholds in Table 5.1. It can be seen that as the surrender
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Figure 5.9: Effect of Surrender Fees

fee increases, the slope consistently decreases for all thresholds. This implies that non-

rational surrenders have a greater impact when the fees are higher. As previously stated

this is intuitive since a non-rational surrender occurring when MR < 1 would be beneficial

to the insurance company. This effect is then augmented by higher fees since this would

make the cases where MR < 1 more common.

It can also be noted that as the threshold (ψ) increases, the effect of non-rational

surrenders (φ) is reduced in the presence of a 5% surrender fee. This may be explained

by comparing the two extremes. When ψ = 0, policyholders react optimally and hence

every other surrender occurring due to φ will be non-optimal which would reduce the

price. When ψ =∞, no optimal surrender is occuring which means that a portion of the
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non-optimal surrenders may in fact happen to be optimal simply by chance. This would

then cause the effect of non-rational surrenders φ to be dampened.

Table 5.1: Non-Rational Surrender Effect

ψ (%) Fee (%) Slope P-Value

0
0 -0.040 1.02E-01

5 -0.124 1.27E-05

.1
0 -0.064 4.63E-05

5 -0.119 7.99E-06

1
0 -0.065 2.09E-04

5 -0.090 2.08E-05

∞
0 -.038 3.43E-02

5 -0.090 1.24E-05

Another interesting dynamic to observe is the effect of the surrender threshold ψ

on the initial capital requirement at different non-rational surrender rate levels φ. In

Figures 5.10 and 5.11 these are calculated for a contract with a 5% surrender fee. The

first observable feature is that non-rational surrenders decrease the ICR at any level of

ψ when comparing φ = 0% and φ = 5%. This doesn’t appear to be uniformly true for

φ = 0% and φ = 1%, however this may simply be due to the fact that the difference

are small and the confidence intervals wide. This is due to the fact that non-rational

surrenders may occur during non-optimal times, in fact the odds of this occuring at a

non-optimal time is higher partly due to the surrender fee (see Figure 5.13).

The most noteworthy feature however, is that as the threshold increases the initial

capital requirement does so as well. This behaviour was partially observed in Section 5.4.

This appears counter-intuitive since a higher threshold ψ implies that most people will

wait until a higher moneyness ratio is reached before surrendering and hence at lower

moneyness ratio there are less people surrendering their contracts while it may still be
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Figure 5.10: Threshold Effects on Initial Capital Requirements

optimal. A fully rational policyholder would in fact surrender as soon as MR is larger

than 1. In a pricing scenario where the whole contract is being hedged this should cause

an increase in the cost. However because in the presented valuation method only the

worst portion of the contract is hedged, a surrender, even when optimal, will decrease

the risk. In Figure 5.12 a histogram of the future payoffs can be seen. In this particular

case the moneyness ratio is at 1.0505, therefore a surrender is highly optimal. It can be

observed that indeed the surrender value is higher than the expected discounted payoff if

the policyholder were to stay. However the 95% CVaR is still considerably higher than

the expectation. This difference makes it so that a surrender becomes beneficial even

under optimal conditions.

57



ψ φ

ψ

φ
φ
φ

Figure 5.11: Threshold Effects on Initial Capital Requirements

The other noteworthy feature is the shape of the curve with respect to the threshold.

One can observe that the rate of increase is very high between thresholds of 0 and 10%.

This can be explained by the fact that given a moneyness ratio higher than 1, the density

of these ratios in the mesh are concentrated very close to 1. This can be seen in Figures

5.13 and 5.14. In fact, about 80% of these ratios are less than 1.005. This implies that

the initial capital requirement for the partial hedge is very sensitive to the threshold

parameter for low thresholds. This then explains the shape of Figure 5.10 since at low

thresholds the differences between the odds of surrender opportunities changes most.

As explained in Section 4.2.1, the presented method of surrender is an extension on

the method presented by Forsyth and Vetzal (2014). They present a binary scenario

58



Historgram of Possible Future Payoffs

Payoff

Fr
eq

ue
nc

y

1.8 1.9 2.0 2.1

0.
0

0.
1

0.
2

0.
3

Surrender Value
Expected Payoff
95% CVaR

Figure 5.12: Histogram of Future Payoffs

where 100% of the policyholders surrender at a moneyness ratio of larger than 1 + ψ and

no one surrenders at lower ratios. In the method presented in this thesis, between the

moneyness ratio of 1 and 1 + ψ there is a probability of surrender. In the latter method

one would expect a higher number of surrenders for a given ψ. This behaviour can be

observed in Figure 5.15 and 5.16. In this particular case the surrender fee is set to 5%

and the non-rational surrender rate is set to φ = 0%. Note that at a threshold of 0

(ψ = 0), both methods are equivalent. However as the threshold increases, the ICR under

the Forsyth method quickly increases and converges whereas under the presented method

this convergence is slower. Due to the non-binary nature of the presented surrender curve,

between a moneyness ratio of 1 and 1 + ψ there is an increasing portion of surrenders.
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Figure 5.13: Histogram of Moneyness Ratios a Mesh

This then causes more surrenders to occur on average than under the binary Forsyth curve

and as previously stated, under the presented valuation method, surrenders decrease the

initial capital requirements. The difference in initial capital requirement is not visibly

significant in this scenario but in Figure 5.16 it can be seen that at a threshold of ψ = .01

this difference is in fact statistically significant. The numerical data can be seen in Table

B.6 and B.7 in Appendix B.
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Histrogram of the Moneyness Ratio Given MR>1
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Figure 5.14: Histogram of Moneyness Ratios a Mesh Given MR > 1

5.6 Cohort Size Effects

The valuation method presented in Chapter 3 makes use of the CVaR risk measure. As

previously stated one of the nicer features of this risk measure is sub-additivity. That

is, the CVaR of the sum of random variables is less than the sum of the CVaR of the

same random variables. Due to this feature one would expect that adding individuals

to the cohort would in fact result in a reduction of tail risk and hence a reduction in

initial capital requirements. Figure 5.17 confirms this expectation. Note that it can be

seen that increasing the cohort size uniformly decreases the initial capital requirement

for the partial hedging strategy across different thresholds ψ. In this plot, the initial
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Figure 5.15: Surrender Methods

capital requirements are calculated for a contract similar 5.5 while keeping φ at 1% and

the surrender fee at 5%. The numerical data can be seen in Table B.8 in Appendix B.

5.7 Programming Note

The stochastic mesh presented in Chapter 4 makes it possible to have a meaningful and

rather realistic numerical example. However some notes should be made about the use

of stochastic mesh with the pricing framework presented in Chapter 3 and the model

presented in Chapter 1. The numerical example was programmed in C/C++. This

decision was made since neither R nor MATLAB are particularly efficient when it comes
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Figure 5.16: Surrender Methods

to concurrency and loops. In terms of runtime, a single run for a 5 year contract rebalanced

monthly with m = 1, 000 takes anywhere between 12 to 14 hours using MATLAB. Using

C/C++ this same run takes between 3-4 minutes. Both these times are for a machine

running an Intel Core i5-2500k running at 4.28GHz. While it can be argued that using

faster matrix based algorithms in MATLAB would reduce the runtime, the same can be

said of C/C++.

As previously stated the stochastic mesh relies on the transition density of the model.

While this is typically not an issue, the transition density of the CIR model, namely

the non-central χ2 distribution, is not available in closed form. This distribution relies

on the modified Bessel function of the first kind, the implementation that is used is the
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Figure 5.17: Effect of ψ with Differently Sized Cohorts

cyl bessel i function in the Boost C++ Libraries. This implementation returns accurate

results for low non-centrality as noted by van Aubel and Gawronski (2003). The fact that

this is not a closed form function and its reliance on recursion makes it very slow. In fact

this routine needs to be run m times at every m node at every N −1 time step, more over

this needs to be done 2 times since the interest rate process is actually a mixture of two

non-central χ2 distributions. During code analysis it was shown that this routine takes

≈ 42% of CPU time, by far the largest for a single routine. This is the main reason why

in the above examples m was restricted to 1,000, if the weights were all given by closed

form functions this could be substantially increased.

Secondly, the framework presented relies on linear programming, for which the GNU

Linear Programming Kit (GLPK) was opted for. It should be noted that without any
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modifications, the size of the constraint matrix is (m + 1) × (m + 4). While given large

enough available memory this can be done for fairly large values of m, it can be extremely

slow for the purposes in this thesis. Even for m = 1, 000 which is used for the examples

above this can be slow since this needs to be done for every m node at each N − 1 time

steps. Note that in Chapter 4 the nodes for time t + ∆1 are generated from the initial

node and not a particular node at t, hence it is possible that the probability of going

from Ytj to Yt+∆1,k can be very low. In fact depending on the progression of mortality

and surrender in each path, this probability can be zero. Therefore instead of using all

m nodes, a subset is used by sampling l nodes from the m nodes using the probabilities

calculated from the weights in Chapter 4. In the examples above l was set to 100. (See

Figure 5.18) A second note is that, GLPK package version 4.50 which was used here is

not re-enterable and should be recompiled with certain modifications in order to be used

in a concurrent manner.

Figure 5.18: Sampled Stochastic Mesh (m = 5, l = 3)

The C/C++ code used for the numerical examples is not included in the Appendix

of this thesis due to it being written in an object-oriented manner with multiple levels

of dependencies. That is, one piece of code would not give the complete picture of the

computation and due to the cumbersomeness of the code it is infeasible to include every

part. For this reason the source files are available upon request. Finally it should be noted

that due to the nature of the mesh, specifically the independence of the calculations for

the nodes at a particular time, it is a prime candidate for general-purpose computing on
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graphics processing units (GPGPU). However to do this, the GLPK package needs to

be recompiled (or a different package altogether) either to work with OpenCL or Nvidia

Corp’s CUDA. This was not done in these numerical examples since fast enough times

were achieved for the intended purposes and the recompiling of the GLPK package is

outside the scope of this author.
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Conclusions

In this thesis the main objective was to demonstrate the use of iterative risk measures

for partial hedging of an equity-linked product with surrender options. The model that

is presented in Chapter 1 is rather complex and most practitioners would perhaps see

it as cumbersome. The choice of this model however was to demonstrate the flexibility

of the valuation method. The method presented in Chapter 3 makes very little assump-

tion permitting the use of realistic surrender schemes like the one presented in Chapter

4.2. In turn, using this surrender scheme it was possible to show that when hedging the

riskiest and costliest portion of future liabilities, the capital requirements drop when the

policyholders react optimally to market conditions. This result is profound since a com-

pany may be selling these products assuming optimal behaviour under another valuation

method thinking that doing so would reduce the tail risk incurred by the business. How-

ever in this thesis it was demonstrated that if policyholders react non-optimally the risk is

actually increased and in fact assuming optimal behaviour would actually leave a business

unprepared. It should also be noted that this method is a partial hedging strategy which

hedges a particular percentage of the worse cases.

Another advantage of the presented surrender scheme coupled with this particular

valuation method is the fact that it is robust with respect to the choice of risk-neutral

measure used in the Bermudian option valuation. That is, while the impact of this choice

is very large in the evaluation of the price of an option, it is not the case for the initial

capital requirement of the partial hedging portfolio.

Due to the flexibility of the methods presented in this thesis, a lot more work can be
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envisioned. One area where improvements can be made is specifically the surrender scheme

and the choice of probability. In Section 4.2.1, the probabilities were a linear piecewise

function of the moneyness ratio. It could be argued that instead of using a linear function

other functions could be used in order to better capture policyholder behaviour. One

method for finding these better functions could be through the use of utility theory. In

addition, in order to reduce the initial capital requirements, more investment options can

be added to the partial hedging portfolios such as a call option.

Due to the complex nature of the model, the use of simulations was employed. While

this method gives a good opportunity to calculate numerical examples, it may also make

more subtle behaviours more fuzzy. Due to computing requirements/limits and time

constraints, the numerical examples in Chapter 5 were limited to a subset of parameter

interactions. In order to better observe these behaviours, one could use a simpler model

which avoids the use of cumbersome simulations.

Other areas of improvement are valuation of more complex products that may be

path-dependent. Unfortunately the stochastic mesh presented in Chapter 4 is inadequate

for this work. While a random tree can be used with minimal change to the valuation

method and surrender scheme, this author found that it was difficult to get any meaningful

numerical results using this method.

68



Bibliography

Alfonsi, A. (2005). On the discretization schemes for the cir (and bessel squared) processes.

Monte Carlo Methods and Applications (MCMA), 11(4):355–384.

Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1997). Thinking coherently. Risk

Magazine, 10:68–71.

Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent measures of risk.

Mathematical Finance, 9(3):203–228.

Bacinello, A. R. (2004). Modelling the surrender conditions in equity-linked life insur-

ance. Quaderni del Dipartimento di Matematica Applicata alle Scienze Economiche

Statistiche e Attuariali Bruno de Finetti, Università degli Studi di Trieste, (2).
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Appendix A

Code

A.1 R Code for Regime-Switching CIR

A.1.1 Discrete CIR Density

CIR . d<−function (par , x0 , x , dt ){

cc<−2*par [ 1 ] / (par [ 3 ] ˆ 2*(1−exp(−par [ 1 ] *dt ) ) )

uu<−cc*x0*exp(−par [ 1 ] *dt ) ; vv<−cc*x

qq<−2*par [ 1 ] *par [ 2 ] /par [3]ˆ2−1

l l<−cc*exp(−uu−vv )* ( vv/uu )ˆ( qq/2)*besselI (2* (uu*vv ) ˆ . 5 , qq )

return ( l l )

}

A.1.2 Regime-Switching ML Estimation

e s t . 1<−rep ( 0 , 8 )

l i k e . 1<−0

r s . c i r . mle<−function (dd , x )

{

for ( i in 1 : length ( x ) )

i f ( x [ i ]<0) return ( I n f )

for ( i in 1 : 2 )

i f ( x [ i ]>1) return ( I n f )

i f ( sqrt (2*x [ 3 ] *x [4 ])<x [ 5 ] | | sqrt (2*x [ 6 ] *x [7 ])<x [ 8 ] ) return ( I n f )

p11<−x [ 1 ] ; p22<−x [ 2 ] ; p12<−1−x [ 1 ] ; p21<−1−x [ 2 ]
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pi1<−p21/ ( p12+p21 ) ; p i2<−1−pi1

f1<−function (d , x0 ){ CIR . d(c ( x [ 3 : 5 ] ) , x0 , d , 1/52) }

f 2<−function (d , x0 ){ CIR . d(c ( x [ 6 : 8 ] ) , x0 , d , 1/52) }

f . 1 . s<−c ( ( p i1*p11+pi2*p21 )* f 1 (dd [ 2 ] , dd [ 1 ] ) , ( p i1*p12+pi2*p22 )

* f 2 (dd [ 2 ] , dd [ 1 ] ) )

f . 1<−sum( f . 1 . s )

r . 1<−f . 1 . s/ f . 1

l<−log ( f . 1 )

for ( i in 3 : ( length (dd ) ) )

{

f . 1 . s<−c ( p11 , p21 , p12 , p22 )*c ( f 1 (dd [ i ] , dd [ i −1]) , f 1 (dd [ i ] , dd [ i −1]) ,

f 2 (dd [ i ] , dd [ i −1]) , f 2 (dd [ i ] , dd [ i −1]))*rep ( r . 1 , 2 )

f . 1<−sum( f . 1 . s )

r . 1<−c ( ( f . 1 . s [1 ]+ f . 1 . s [ 2 ] ) / f . 1 , ( f . 1 . s [3 ]+ f . 1 . s [ 4 ] ) / f . 1 )

l<−l+log ( f . 1 )

}

i f ( i s .nan( l ) | | l==I n f ) return (0 ) else return(− l )

}

o1=c ( e s t .1 ,− l i k e . 1 )

for ( i in 1 : 100 )

{

par1<−c ( runif ( 1 , 0 , 1 ) , runif ( 1 , 0 , 1 ) )

par2a<−c ( runif ( 1 , 0 , 10 ) , runif ( 1 , 0 , 1 ) )

par2b<−sqrt (2*par2a [ 1 ] *par2a [2 ] ) − . 05

par3a<−c ( runif ( 1 , 0 , 10 ) , runif ( 1 , 0 , 1 ) )

par3b<−sqrt (2*par3a [ 1 ] *par3a [2 ] ) − . 05

par<−c ( par1 , par2a , par2b , par3a , par3b )

ts=optim(par , r s . c i r . mle , dd=r r .w)

o1<−rbind ( o1 , c ( ts$par , ts$value ) )

}

e s t .1=o1 [which( o1 [ ,9]==min( o1 [ , 9 ] ) ) , 1 : 8 ]

l i k e .1=−o1 [which( o1 [ ,9]==min( o1 [ , 9 ] ) ) , 9 ]

AIC.1=2*8+2*o1 [which( o1 [ ,9]==min( o1 [ , 9 ] ) ) , 9 ]

BIC.1=8*log ( length ( r r .w))−2* l i k e . 1
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A.2 C/C++ Code

A.2.1 Weight Comparison

#include <ppl . h>

#include <boost/math/ d i s t r i b u t i o n s /normal . hpp>

#include <boost/random/v a r i a t e genera to r . hpp>

#include <boost/random/normal d i s t r i b u t i o n . hpp>

#include <boost/random/mersenne t w i s t e r . hpp>

#include <chrono>

#include ” Stoch Mesh Test . h”

using namespace std ;

using namespace concurrency ;

boost : : mt19937 gen t e s t ( chrono : : system c lock : : now ( ) . time s i n c e epoch ( ) . count ( ) ) ;

double dN(double x , int n , double mu, double s i g ){

boost : : math : : normal norm(mu*double (n ) , s i g* s q r t (double (n ) ) ) ;

return ( pdf (norm , x ) ) ;

}

double rN(double mu, double s i g ){

boost : : random : : normal d i s t r i b u t i o n<> norm(mu, s i g ) ;

boost : : v a r i a t e generator<boost : : mt19937&, boost : : random : : normal d i s t r i b u t i o n<> >

next value ( gen te s t , norm ) ;

return ( next va lue ( ) ) ;

}

void Stoch Mesh( int tt , int m, int n , double *th , double *br ){

double r0 = . 0 3 ; double s = . 4 ; double div = 0 ; double s0 = 1 ; double K = 1 ;

double dt = 1 .0 / double (n ) ; int nt = t t*n ;

double mu = ( r0−div − pow( s , 2) / 2 . 0 ) * dt ; double s i g = s* s q r t ( dt ) ;

//Stock Matrix

double **Ms = new double* [m] ;

for ( int i = 0 ; i < m; i++)

Ms[ i ] = new double [ nt + 1 ] ;

for ( int i = 0 ; i < m; i++)

Ms[ i ] [ 0 ] = s0 ;
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for ( int i = 0 ; i < m; i++)

for ( int j = 1 ; j < ( nt + 1 ) ; j++)

Ms[ i ] [ j ] = Ms[ i ] [ j − 1 ] * exp (rN(mu, s i g ) ) ;

//Denominator Matrix

double **Qp = new double* [m] ;

for ( int i = 0 ; i < m; i++)

Qp[ i ] = new double [ nt + 1 ] ;

for ( int i = 0 ; i < m; i++)

Qp[ i ] [ 0 ] = 1 . 0 ;

for ( int i = 0 ; i < m; i++)

for ( int j = 1 ; j < ( nt + 1 ) ; j++)

Qp[ i ] [ j ] = dN( log (Ms [ i ] [ j ] / s0 ) , j , mu, s i g ) ;

double *V th = new double [m] ; double *V br = new double [m] ;

//Ending value

for ( int i = 0 ; i < m; i++) {

double temp = max(Ms [ i ] [ nt ]−K, double ( 0 ) ) ;

V th [ i ] = temp ; V br [ i ] = temp ;

}

double v = exp(−r0*dt ) ;

for ( int j j = ( nt − 1 ) ; j j >= 0 ; j j −−) {

double *P th = new double [m] ; double *P br = new double [m] ;

i f ( j j == 0) m = 1 ;

p a r a l l e l for (0 , m, [&] ( int i i ) {

double *qq = new double [m] ;

double *W th = new double [m] ; double *W br = new double [m] ;

for ( int i = 0 ; i < m; i++)

qq [ i ] = dN( log (Ms [ i ] [ j j + 1 ] / Ms[ i i ] [ j j ] ) , 1 , mu, s i g )

/ Qp[ i ] [ j j + 1 ] ;

qq [ i i ] = 1 . 0 ;

double W sum = 0 ;

for ( int i = 0 ; i < m; i++)

W sum += qq [ i ] ;
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for ( int i = 0 ; i < m; i++) {

W th [ i ] = qq [ i ] / W sum ; W br [ i ] = qq [ i ] / double (m) ;

}

double P0 = max(Ms [ i i ] [ j j ]−K, double ( 0 ) ) ;

double S th = 0 ; double S br = 0 ;

for ( int i = 0 ; i < m; i++) {

S th += V th [ i ] * W th [ i ] ; S br += V br [ i ] * W br [ i ] ;

}

P th [ i i ] = max(P0 , v*S th ) ; P br [ i i ] = max(P0 , v*S br ) ;

delete [ ] qq ; delete [ ] W th ; delete [ ] W br ;

} ) ;

for ( int i = 0 ; i < m; i++) {

V th [ i ] = P th [ i ] ; V br [ i ] = P br [ i ] ;

}

delete [ ] P th ; delete [ ] P br ;

}

th [ 0 ] = V th [ 0 ] ; br [ 0 ] = V br [ 0 ] ;

delete [ ] V th ; delete [ ] V br ;

for ( int i = 0 ; i < m; i++)

delete [ ] Ms [ i ] ;

delete [ ] Ms ;

for ( int i = 0 ; i < m; i++)

delete [ ] Qp[ i ] ;

delete [ ] Qp;

}
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Appendix B

Numerical Example Tables

Table B.1: Initial Interest Rate Impact

r(0) (%)

0.5 1 2 3

Type
Stochastic 1.152262 1.150239 1.144494 1.130885

Constant 1.148525 1.128504 1.092091 1.028354

Table B.2: Dependence Parameter Impact

Factor of ρi

0 0.5 1 2 4

1.148975 1.14849 1.149711 1.150639 1.151366
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Table B.3: Esscher Parameter Impact

h W (0, 0) P̂ (0)

-20 1.056079 1.004692

-10 1.094632 1.027577

-5 1.13684 1.068361

-1 1.14365 1.182629

0 1.145488 1.224168

1 1.144686 1.276933

5 1.146851 1.50764

10 1.148008 1.701284

20 1.148607 1.991466

Table B.4: Participation Rate Impact on Initial Capital Requirement (95% CVaR)

γ%

40 60 80 100

(β%, g%)

(90,0) 1.019801 1.059424 1.101603 1.145687

(90,1) 1.041379 1.08389 1.127228 1.173797

(90,3) 1.102541 1.143433 1.187944 1.232055

(100,0) 1.072927 1.115879 1.159206 1.205113

(100,1) 1.108452 1.148178 1.193363 1.236584

(100,3) 1.191035 1.227865 1.268617 1.310984
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Table B.5: Cap Impact on Initial Capital Requirement (95% CVaR)

ζ%

5 10 15 ∞

(β%, g%)

(90,0) 1.09614 1.13299 1.145358 1.146595

(90,1) 1.112389 1.158535 1.169813 1.172334

(90,3) 1.153769 1.209892 1.227589 1.231798

(100,0) 1.13481 1.188025 1.201479 1.203614

(100,1) 1.158096 1.215913 1.232514 1.23742

(100,3) 1.208355 1.282498 1.303699 1.31184

Table B.6: Surrender Parameter Effects on Initial Capital Requirement

(Fee (%), φ (%))

(0,0) (0,1) (0,5) (5,0) (5,1) (5,5)

ψ

0 1.13242 1.130872 1.130033 1.131299 1.128893 1.124694

0.001 1.13246 1.131708 1.129219 1.131972 1.129225 1.125511

0.01 1.133497 1.134444 1.130784 1.132005 1.129614 1.127031

0.1 1.133418 1.133907 1.131367 1.132204 1.132472 1.127045

∞ 1.132632 1.132794 1.130895 1.132473 1.132765 1.128328

Table B.7: Surrender Method Comparison

Forsyth Presented

ψ

0 1.129942 1.130316

0.001 1.130561 1.130768

0.01 1.132772 1.130747

0.1 1.132722 1.132488

∞ 1.133393 1.13338

82



Table B.8: Impact of Threshold (ψ) on Initial Capital Requirement at Different Cohort

Sizes

l0

1 5 10

ψ

0 1.129753 1.121804 1.11322

0.001 1.130179 1.122436 1.11412

0.01 1.130744 1.123311 1.114244

0.1 1.132518 1.123893 1.115308

∞ 1.132887 1.126575 1.117889
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