
Specifying and Verifying Contract-driven Composite Web Services: a Model Checking

Approach

Ahmed Saleh Bataineh

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfilment of the Requirements for the Degree of Master of Applied

Science at

Concordia University

Montréal, Québec, Canada

c© Ahmed Saleh Bataineh 2014

ii

CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Ahmed Bataineh

Entitled: “Specifying and Verifying Contract-driven Composite Web
 Services: a Model Checking Approach”

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

Complies with the regulations of this University and meets the accepted
standards with respect to originality and quality.

Signed by the final examining committee:

 __ Chair
 Dr. M. Z. Kabir

 __ Examiner,
External

Dr. J. Paquet (CSE) To the Program

 __ Examiner
 Dr. A. Ben Hamza

 __ Supervisor
 Dr. J. Bentahar

 __ Supervisor
 Dr. Dr. R. Dssouli

Approved by: ___
 Dr. W. E. Lynch, Chair
 Department of Electrical and Computer Engineering

____________20_____

 Dr. Amir Asif, Dean

iii

ABSTRACT

As a promising computing paradigm in the new era of cross-enterprise e-applications, web

services technology works as plugin mode to provide a value-added to applications using

Service-Oriented Computing (SOC) and Service-Oriented Architecture (SOA). Verification

is an important issue in this paradigm, which focuses on abstract business contracts and where

services’ behaviors are generally classified in terms of compliance with / violation of their

contracts. However, proposed approaches fail to describe in details both compliance and vi-

olation behaviors, how the system can distinguish between them, and how the system reacts

after each violation. In this context, specifying and automatically generating verification prop-

erties are challenging key issues. This thesis proposes a novel approach towards verifying the

compliance with contracts regulating the composition of web services. In this approach, prop-

erties against which the system is verified are generated automatically from the composition’s

implementation. First, Business Process Execution Language (BPEL) that specifies actions

within business processes with web services is extended to create custom activities, called la-

bels. Those labels are used as means to represent the specifications and mark the points the

developer aims to verify. A significant advantage of this labeling is the ability to target specific

points in the design to be verified, which makes this verification very focused. Second, new

translation rules from the extended BPEL into ISPL, the input language of the MCMAS model

checker, are provided so that model checking the behavior of our contract-driven compositions

is possible. The verification properties are expressed in the CTLC logic, which provides a

powerful representation for modeling composition contracts using commitment-based multi-

agent interactions. A detailed case study with experimental results are also reported ins the

thesis.

iv

ACKNOWLEDGEMENTS

All praises be to ALLAH Almighty who enabled me to complete this task successfully and

my utmost respect to His last Prophet Mohammad (S.A.W.). This thesis would have never

been completed without the will and blessing of Allah, the most gracious, the most merciful.

AL HAMDU LELLAH. Next, my gratitude to my supervisors prof. Jamal Bentahar and prof.

Rachida Dssouli, whose constant encouragement and guidelines at each step made this thesis

possible. I am very grateful for their invaluable support, patience and kindness, for never

lacking enthusiasm for research. I want to thank them for having so strongly believed in me

and provided me with insights which helped me solve many of the problems I encountered in

my research.

My family; Dad, Mom, Alaa’, Roa’a , Mohammad and Sa’ed, I don’t know how I can

thank you for your constant moral support and your prayers. You are the people who are the

closest to me and suffered most for my higher study abroad. Your support was invaluable in

completing this thesis. My family, I love you too much.

v

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

1. INTRODUCTION . 1

1.1 Context of the Research . 1

1.2 Motivations and Research Questions . 3

1.3 Contributions . 4

1.4 Related Work . 5

1.5 Thesis Organization . 10

2. BACKGROUND AND LITERATURE REVIEW 12

2.1 Web Services . 12

2.1.1 Service Oriented Architecture . 12

2.1.2 Web Service Definition . 13

2.1.3 Web Services Stack . 15

2.2 Web Service Composition . 17

2.2.1 Composition Approaches . 17

2.2.2 Web Service Composition Models 19

2.3 Business Process Execution Language (BPEL) 20

2.3.1 Business Process Management and Workflow 21

2.3.2 BPEL Overview . 21

2.3.3 BPEL Main Parts . 22

vi

2.4 Formal Verification and Model Checking . 25

2.4.1 Model Checking . 25

2.4.2 Computation Tree Logic (CTL) . 27

2.4.3 Interpreted Systems . 30

2.4.4 CTLC . 33

2.5 MCMAS: a Model Checker for Multi-Agent Systems 35

2.5.1 ISPL General Structure . 35

2.5.2 ISPL Syntax . 38

3. PROPOSED APPROACH . 42

3.1 General Overview . 42

3.2 Analyzing BPEL Process in terms of Contracts and Service Behaviors 44

3.3 Marking the BPEL Process . 50

3.4 Automatic Compilation from BPEL to ISPL 56

3.4.1 General Overview of the Internal Design of the Compiler 57

3.4.2 Encoding the Communication Architecture in ISPL 58

3.4.3 Translation Rules . 61

3.4.4 Encoding Automata into ISPL . 76

3.5 Generated Properties and their Expressiveness 83

4. DETAILED CASE STYDY AND EXPERIMENTAL ANALYSIS 89

5. CONCLUSION AND FUTURE WORK . 98

5.1 Summary of Contributions . 98

5.2 Future Work . 99

BIBLIOGRAPHY . 101

Appendices . 113

vii

LIST OF TABLES

4.1 Case study: contract clauses . 89

4.2 Comparison with Lomuscio’s Approach (57) 97

viii

LIST OF FIGURES

2.1 Service Oriented Architecture . 13

2.2 Purchase application involving interacting web services 14

2.3 Web Service Stack . 15

2.4 Model Checking General Framework . 26

2.5 An example of social accessibility relation ∼i→j 33

3.1 Verification Architecture . 43

3.2 Example for an explicit behavior during the composition 49

3.3 Example for an implicit behavior during the composition 50

3.4 General schema for system verification 51

3.5 Implementation and specifications relationship 51

3.6 Marking the BPEL process . 52

3.7 Example of marking a BPEL process . 56

3.8 Abstract compiler’s outputs . 57

3.9 Internal design of the compiler . 58

3.10 The proposed communication architecture 60

3.11 BPEL translating - Assign and Invoke Activities 72

3.12 Translating BPEL - Control Activities . 75

3.13 Translating BPEL - Custom Activities . 76

1 BPEL Process . 114

2 Environment ISPL-code . 115

ix

3 Client ISPL-code . 116

4 PSP ISPL-code . 117

5 Evaluation ISPL-code . 117

6 Verification Results . 118

7 Statistics Results . 119

1

CHAPTER 1. INTRODUCTION

1.1 Context of the Research

In business applications, when the functional requirements become more and more com-

plex, the possibility of finding a single web service satisfying the users’ requests fades. Be-

cause of this, there should be a possibility to combine services together in order to fulfill

complex requests, which strikes the need for the composition of web services (29). Web ser-

vice composition is a fundamental task in which the process responsible for coordinating and

integrating heterogeneous web services is defined. Web services and their compositions are

a key technology that strongly underpins many modern applications such as cloud comput-

ing, which gained a considerable momentum over the past few years as a new computing

paradigm for providing flexible services and dynamic infrastructures on demand (5; 78; 97).

When services are combined, a significant challenge is to guarantee the correctness, integrity

and robustness of the composition. A key issue in a such composition is to govern service

interactions to accomplish the overall outcomes, particularly when the autonomy of services

is a main perspective (90). Certain services may become completely or partially unable to

provide the expected functionalities in the future. This imposes more challenges to guarantee

the composition robustness against the future errors and that services will not be hurt by the

errors consequences.

Providing rules to model and represent interactions among services and verifying their

behaviors in the presence of these rules are two key problems in this setting. Service level

agreements (SLAs) and contracts are two useful concepts to be considered and studied when

2

addressing such problems (52; 65; 67; 72). SLAs are rules describing agreed level of services

that providers should supply when those services are invoked using particular parameters (14).

Like in business settings, the concept of service contract is mainly used to specify obligations

and permissions in a variety of circumstances including those produced when services are not

performing as expected. Compared to SLAs, contracts consider and capture more sophisti-

cated specifications such as human-like activities and legal-like agreements among services. A

considerable number of proposals, specifically on formal verification of service compositions,

has been provided. Although these proposals are all significant, web services are not fully

mature yet and more attention to specification and verification of contract-driven compositions

of web services is still needed. Currently, a huge number of web services are functional, but

most of them have been deployed with dependability problems and are exhibiting unexpected

behaviors because of lack of rigorous verification processes (12; 87; 63; 96).

Many tools, models and approaches have been provided to design and implement web ser-

vice compositions. Workflow technologies and languages such as Business Process Execution

Language (BPEL) are widely used in this domain (2; 37). BPEL can be seen as a design tool

to specify and design the composition in a perspective and as an implantation tool to exe-

cute the composition in another perspective. Modeling a system using workflows, like in all

composition approaches, is a challenging activity and designers are likely to introduce errors.

Guaranteeing the overall correctness and robustness of the workflow processes becomes more

and more important if the workflow coordinates and controls the interactions based not on

abstract variables representing those interactions, but on evaluating and understanding their

real contents. Verification is generally used to prove and implement this correctness, and the

majority of the verification approaches adopt the model checking techniques to reason about

and verify the interactions among services (see for instance (16) for a survey).

3

1.2 Motivations and Research Questions

As revealed in (16), many verification approaches adopt the model checking techniques to

reason about and verify the interactions among services. Two key perspectives in this context

have been considered: functional and structural. In the functional perspective, the attention is

focused on the functionality of services described by their inputs and outputs. According to

the structural perspective, each service is described in terms of its behavior, i.e., in terms of

state transitions or activities performed. The resulting contributions focus on three general as-

pects: 1) communication models; 2) web services’ functionalities; and 3) coordination of web

services roles into the compositions. It is worth noting that these approaches may not provide

accurate understanding of the contracts regulating web services into compositions. The reason

is that those proposals are limited to represent and reason about the contracts’ obligations, but

do not satisfy the web developers’ interests in studying the extent to which services are in com-

pliance with their contracts and what legal remedies the composition exhibits when some of

the services are breaking their contracts in certain ways. Moreover, there is lack of approaches

and tools that would enable service developers to check particular aspects of the business pro-

cess and whether overall requirements are met or not. In addition, verification properties are

generated manually or semi-automatically either by appending them directly in the verification

frameworks or modeling the contract obligations and then extracting them semi-automatically,

which is an error-prone and time-consuming process.

The main research questions this thesis aims to answer are:

• How to guarantee that service compositions comply with their contracts?

• How those contracts can be specified so that their verification in terms of compliance

can be possible?

• How desirable properties to be be verified can be directly and automatically extracted

from executable composition of services?

4

• How to make the verification of composite services focused to help developers verify

specific parts of the design?

1.3 Contributions

In this thesis, we propose a novel approach towards verifying compositions of web services

where services interactions are regulated by binding electronic contracts. In our approach, the

composition is specified using an extension of BPEL. We implement this extension by adding

custom activities called labels, which we use to mark and distinguish services’ desired behav-

iors. We also implement a compiler that takes as input the BPEL process (or its extension)

and generates a model of multi-agent systems written in Interpreted Systems Programming

Language (ISPL). The ISPL program is used as input to an extended version of the symbolic

model checker MCMAS (55) introduced in (9). In addition to the ISPL code, the compiler

automatically generates verification properties to verify the contracts details. Those proper-

ties are written in the CTLC logic that incorporates commitments, a natural tool to express

contracts’ components and services desired behaviors (9). In fact, the main motivation behind

using the extended MCMAS model checker is the fact that it is the only model checker that

fully supports CTLC, which is expressive enough to describe contract-driven composition of

interactive services. The main contributions of this thesis are as follows.

First, the proposed approach introduces a new technique to represent and reflect the con-

tract’s specifications in the implementation. In the traditional techniques such as (57), the

specifications are represented completely and separately from the implementation by means of

any transition-based structure or software design tool. With this traditional approach, it is hard

to guarantee that the specification outcome matches the implementation. Instead of this classic

way, we use the composition’s implementation to represent the contract’s specifications. In

particular, we create labels by which the specifications are marked inside the implementation

of the composition. The idea comes from our point of view that the workflow technologies are

5

originally tools for expressing the software specifications before using them for designing the

composition. In fact, this labeling process enables web developers to verify their designs at

particular points. As a result, the approach allows verifying the system partially by choosing a

particular part of the design, which is inline with the general observation that web developers

intend to verify parts of their design first, mainly to confine the places of mistakes. Further-

more, this labeling process is the key point behind the automatic generation of the verification

properties.

Second, unlike other proposals that focus only on the correctness of the composition by

verifying the composition against given properties, the proposed approach goes a step further

by incorporating the recovery process to verify the robustness of the composition. This has

been made possible thanks to the deep analysis of all the contracts’ details. Specifically, the

approach pays attention not only to the violations, but also to the commitments made by ser-

vices to each other. New mechanism is provided to show the recoverable and unrecoverable

violations. It shows in details the reactions of the system against each violation and conse-

quences of such a violation. Studying in depth all services’ behaviors in presence of their

contracts gives us the chance not only to study the recoveries, but also to measure the possibil-

ity of future errors the system can encounter. Furthermore, our approach provides a powerful

framework to verify different aspects of contract-driven compositions of web services, includ-

ing the communication models, messages contents and their relations to services’ behaviors.

1.4 Related Work

Commitments are employed in many approaches used to define a formal semantics for

agent communication languages, which successfully provide a powerful representation for

modeling multi-agent interaction. Several commitment formalisms have been proposed in

computer science over more than ten years (9; 30; 69; 61; 60; 11; 10; 92; 91; 7; 79; 26; 25; 24).

The presentation given here follows that of (9). Our approach depends partially on the line of

6

distinguishing between ideal and actual (possibly incorrect) behaviors in the context of com-

puting systems.

The notion of compliance has strongly been considered in the past few years in the area

of agent computing. Several efforts have been made in this field. In particular, Giunchiglia

et al. (40) dealt with persistence by specifying acceptable and disallowed transitions using an

action language. In (23), the authors labeled the transitions rather than states and emphasize

on the system modelling. Unlike these two approaches, ours labels the states rather than the

transitions and emphasizes on efficient verification. Ägotnes and his collaborators (41) present

a normative system by a subset of a transition system in terms of allowed and disallowed

transitions. The authors focus on the meta logical properties of the logic and the theoretical

complexity of the resulting model checking problem. In contrast, the main point of our ap-

proach is the practical verification of contract-regulated composite web services. Lomuscio

and his group (57) proposed a novel approach to (semi-) automatically compile and verify

contract-regulated service compositions implemented as multi-agent systems. The proposed

approach uses temporal epistemic logic to verify the agents behaviors against their contracts

in terms of compliance and violation. However, their formalism cannot represent in details the

contracts clauses. Due to this limitation, unlike our proposal, their approach shows whether

there is a recovery or not when a service breaks its contract but it cannot express which clause

is violated. Moreover, the properties are generated manually by exploring the generated ISPL

code. These two problems are solved in our proposed approach. More specifically, instead of

separating the contract (e.g., compliant behaviors) from the composition, and then using the

contract model to verify the composition implementation, in our approach we highlight the

contract’s specifications in the composition implementation directly using our marking pro-

cess. Moreover, we differ from (57)’s proposal in the way we represent the services behaviors

and the composition itself. Thus, unlike (57)’s approach that represents the composition by

building a BPEL process for each participating service, we represent the composition by one

BPEL process from which we automatically extract the services behaviors.

7

The problem of WS-BPEL modeling and verification has been studied by many researchers.

Solaiman et al. (83) proposed an approach in which contracts are mapped into finite state ma-

chines (FSM). Then, the model checker SPIN has been used to verify the contracts. While

this work is relevant, it uses the LTL properties to verify the contracts and focuses on the con-

tract themselves only. Unlike our work, this proposal does not discuss the case where agents

break their contracts and how the system can recover from this. Fu et al. (39) verified auto-

matically web services compositions using SPIN. They modeled the interactions of composite

web services as conversations and services as peers interacting via asynchronous messages.

A compiler has been developed to translate the conversation protocol implemented by BPEL

to PROMELA, the input language of the SPIN model checker. Properties expressed in LTL

have been used to verify the conversation protocol. Walton (88) defined a lightweight protocol

language which represents the interactions among web services in form of dialogue. In the

proposed approach, the SPIN model checker has also been used to perform the verification on

this language, where only LTL is being exploited. Unlike our logic that can express contracts

by means of commitments, LTL can only express classic temporal protocol properties such as

deadlock and reachability.

Kazhamiakin et al. (50) discussed an approach to verify the communication models in the

composition. The proposal provided a parametric model to capture a hierarchy of communica-

tion models, and then used NuSMV and SPIN to perform the verification. Su, Bultan, and Fu

(85), formalized the web service interaction models into a conversation concept using FIFO

queues. They showed the impact of asynchronous communication on the conversation behav-

ior. Some abstract strategies for both bottom-up and top-down design approaches are outlined.

However, neither analysis nor implementation of these strategies was provided. Hull et al. (47)

proposed the Mealy conversation model as a composition model to analyze the web services.

Propositional Linear Temporal Logic has been used for specifying properties. The proposal

technique gives the verification results in terms of bounded queues, unbounded queues and

white boxes mediators. However, synchronization between behaviors and verification of com-

8

position design were not analyzed.

In (27), the authors used commitments to reason about the correctness of business con-

tracts. Baldoni et al. (8) verified the conformance of agents with respect to a public protocol.

However, (27) (8) did not consider CTL in their verification, which make them different from

our proposal. Yeung (94) addressed the conformance problem considering only one type of be-

havior, namely the contract negotiation process. He introduced a formal approach using model

checking as an automated means of verifying choreography conformance based on WS-CDL

and WS-BPEL.

Pistore et al. (70) proposed a general framework for composition using planning and model

checking. The paper follows the line of automated composition and monitoring of BPEL pro-

cesses. The proposed approach exhibited a distinction with non-deterministic domains, partial

observability and extended goals. Similarly, Lazovik et al. (53) presented a planning and mon-

itoring framework to watch the execution against predefined standard business processes. The

framework also considered the interactions with the users by releasing an XSRL (XML Service

Request Language) request. In the same context, Huang et al. (46) generated automatically

test cases for composite scenarios. Unlike (70) (53), they verified the OWL-S process. Saab et

al. (15) used a formal semantics for BPEL via process algebra to study the issue of generating

an appropriate client given a BPEL-based description of the interaction protocol of a web ser-

vice. An algorithm deciding whether such a client exists and synthesizes the description of this

client as a timed automaton was introduced. Baresi et al. (46) proposed an approach to verify

the BPEL workflows at the run time. The required properties are monitored by checking the

assertions defined in ALBERT, an assertion language (74). Mongiello et al. (64) used formal

methods to model and formalize the correctness properties about the reliability of business pro-

cess design methods. They built a framework that performs automatic verification of formal

models of business processes through the NuSMV model checker. Rossetti (76) verified the

composition using TCTL logic to represent specifications that will be verified on the business

processes represented by the semantically annotated timed transition systems. Ouyang et al.

9

(50) proposed an approach emphasizing the reachability analysis and the garbage collection

on queued messages by employing the capabilities of Petri nets. All these proposals are differ-

ent from our work from the perspectives of 1) the used language for specification; and 2) the

underlying algorithms and techniques for model checking.

Souter and Pollock (84) proposed a way to realize a structural testing methodology. The

provided approach constructs contextual def-use associations, in which a context is provided

for each definition and use of an object. Lu et al. (58) studied the effect of the contexts, which

are environmental information relevant to an application program, in pervasive context-aware

software. They provided a novel family of testing criteria which measures the comprehensive-

ness of their test sets. The provided approach has been tested on an RFID (Radio Frequency

IDentification)-based location sensing software running on top of context-aware middleware.

Yan et al. (93) considered the testing of the concurrency aspect of WS-BPEL programs. In

this proposal, the WS-BPEL is modeled as a set of concurrent finite state machines, and then

reachability analysis to find concurrent paths for the set of FSMs is conducted by a heuristic

approach.

Foster et al. (38) proposed a model-based approach to verify web service composition

implemented by BPEL. The approach traces the equivalence between the design and imple-

mentation. The message sequence charts in UML are used to model the specifications while

the implementation is constructed by BPEL. The specifications and the implementation are

translated into the FSP (Finite State Process) process algebra and then the LTSA (A Tool for

Model-Based Verification of Web Service Compositions and Choreography) analyzes the re-

sulting implementation.

Rouached et al.(77) used theorem proving to verify the web service conversations and their

choreography. They mapped BPEL constructs representing web service composition interac-

tions onto the EC algebra. However, theorem proving is computationally more complicated

than model checking, particularly for expressive logics and the verification time is usually

longer. Bentahar et al (12) used the model checking techniques, specifically, the NuSMV to

10

verify if composite web services design meets some desirable properties in terms of deadlock

freedom, safety, and reachability. The proposed approach models the business and control

aspects of web services separately using automata-based techniques, and then operational be-

havior is checked against properties defined in the control behavior. However, the approach

focuses on the verification of sequences of interactions that the operational behavior should

follow rather than the actions themselves and how the composite should behave against the

invalid actions.

There is an ongoing interest in translating specifications into verification properties. Yonghua

(95) proposed an approach to generate automatically verification properties by extending UML

as service threat-driven model. The insecure behaviors are specified using the Probabilistic

Timed Live Sequence Chart (PTLSC). However, the work focuses on time constraints and

probability during service interactions. Unlike our approach, generating the properties au-

tomatically still needs a separate complete representation for services’ behaviors. Also, the

approach considers the undesired behaviors only not all possible behaviors. Minmin (43) for-

mally modeled adaptive web applications via StateCharts and then extracted the proprieties

from the model. Rogin (75) automatically generated the properties by describing the abstract

design behaviors. Hu (45) generated automatically both verification properties and test cases

by defining a standardized structure for access control models. Soeken (82) developed an ap-

proach extracting automatically the properties from the protocol specification for the formal

verification of bus bridges. Unlike those initiatives, in our approach, the proprieties are au-

tomatically extracted from the actual implementation by formalizing some points without the

need to model the specifications separately.

1.5 Thesis Organization

After this chapter that discusses the context of the research, motivations, contributions that

this research will add to the state of the art and the literature review of relevant related work, the

11

rest of the thesis is organized as follows: Chapter 2 presents the background, which includes

some introductory information about web services, web service compositions, BPEL, formal

verification and model checking. Chapter 3 introduces and discusses our approach. First,

we present our proposed verification framework and analyze the BPEL process. Second, we

describe the marking of the BPEL process and the custom activities. Third, we discuss the

compiler and translating rules in details. Thereafter, we describe the generated properties and

their expressiveness. Chapter 4 introduces a motivating example with some typical obligations

and violations of contract parties, and presents experimental results of our approach on that

example. Chapter 5 concludes the thesis and identifies some relevant directions for future

work.

12

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2.1 Web Services

2.1.1 Service Oriented Architecture

Service oriented architecture (SOA) is a set of principles governing the design and develop-

ment process of interoperable services (68). This architecture describes service-based systems

as a collection of interoperable and communicating services presented by discrete software

components, where each one is responsible of providing a well-defined business function.

Those software components communicate together via exchanging messages to complete the

desired main functionality of the software system. Web applications invoking web services are

concrete examples of service-based software implemented according to the SOA principles.

Web service architecture consists of three main entities responsible of performing specific

functionalities using supported protocols, standards and tools. Those entities, illustrated in

Figure 2.1, are web service provider, web service registry and web service consumer. Web

service provider is a software agent that provides the web service to be used by other software

components. It has the ability to publish the web service description using web service descrip-

tion language (WSDL) into the web service registry. Web service consumer is a software agent

that searches the web service registry to find the desired web service meeting its requirements

and invokes it using simple object access protocol (SOAP).

Standardized service contracts that make services adhere to a communication agreement as

defined collectively by service description documents is an important principle in SOA. Com-

munication agreements focus on specific aspects of contract design, including the manner in

13

which services express their functionalities, how data types and data models are defined and

how policies are asserted and attached. Although SOA simplifies the testing process by sup-

porting the possibility of testing each service individually, this principle adds more challenges

when it comes to test interactions among services. In this case, testing requires both providers

and consumers on a continuous basis.

Figure 2.1: Service Oriented Architecture

2.1.2 Web Service Definition

Web service is defined as a self-contained and self-describing software model that resides

on the network. It has the ability to provide a complete description about its operations, such as

what the service does, the procedure through which it can be invoked and the expected results

(68). It provides the necessary I/O requirements for any software application that intends to use

it. Web services are built to be independent models that can be executed remotely on the server

side without the need for the resources residing on the client side which call those services.

Generally, they do not have a GUI as they are not meant to be used directly by the users.

14

The W3C working group (42) provided the following precise definition to clear the am-

biguous semantics of the self-contained notion: “A software system designed to support in-

teroperable machine-to-machine interaction over a network. It has an interface described in

a machine-processable format (specifically WSDL). Other systems interact with the Web ser-

vice in a manner prescribed by its description using SOAP-messages, typically conveyed using

HTTP with an XML serialization in conjunction with other Web-related standards.”

In Figure 2.2, a purchase order application is shown (68). In this application, different

web services collaborate together and finally a purchase is accomplished. First, the customer

initiates the process by sending a purchase order to the application. Then, the web services re-

sponsible for the tasks of credit checking, stock checking and calculating the bills are executed

concurrently. There are also some tasks that are executed sequentially such as, an item will

be shipped after the billing is done. This example shows some services interacting with each

other to perform a single task through the Internet.

Figure 2.2: Purchase application involving interacting web services

15

2.1.3 Web Services Stack

Invoking web services within a software system is summarized into four major steps. Each

step is carried out by one of the architecture components (68; 42) (see Figure 2.3). Each com-

ponent communicates with its counterpart on a different machine. So, communication proto-

cols that define the message formats, exchanging message patterns and messaging framework

to guarantee the communication at each level has been built.

Figure 2.3: Web Service Stack

At the process level, UDDI stands for universal description, discovery and integration. It

is an XML-based standard for describing, publishing and discovering web services. UDDI

is the specification of web services distributed registries. Such registries are defined as a set

of records or data structures, each record consists of fields in which the web service’s data is

embedded. Each record is limited to one web service and each field is used for a specific data.

The idea behind those registries is to provide an abstract description of web services interfaces

based on WSDL.

Once a web service is developed, its author (or a company developing it), starts to fill a

registry with required data to publish it and make it accessible on the web. This process is

known as the web service publishing. Software systems, such as web applications, requiring

16

web services to accomplish some tasks explore the registries to find the suitable services. This

process is the web service discovery. Manipulating and exploring registries are performed

through APIs defined in the UDDI.

At the description level, fully detailed description of web services is provided. The func-

tionality of each service is clearly described using WSDL, the specialized language for de-

scribing the web services. A WSDL file is an XML file that describes the service as a set of

endpoints operating on messages containing either document-oriented or procedure-oriented

information. The messages and communications are structurally represented via an XML

grammar defined in WSDL.

WSDL is extensible; it allows extending or including customized elements needed to rep-

resent a specific technology. The extensibility property has been provided to support possible

changes in the underlying protocols used in invocation and transport layers. The extended el-

ements are implemented into name spaces outside WSDL, often in the underlying protocols.

The importance of the extensibility property appears in the binding process, where there is a

need to define new message formats. This property makes WSDL compatible with a large set

of protocols.

At the invocation level, the actual invocation of web services is performed. Exchanging

messages between web services at the invocation layer follows SOAP, one of the different

technologies through which SOA has been implemented. SOAP, Simple Object Access Proto-

col, is a transport protocol on which web services rely to exchange their messages. It specifies

how a web application formats its requests to the server and how the server should formats its

response. SOAP describes the communication between two endpoints at the application level.

SOAP messages are part of the actual communication between two software components on

the network.

The widespread use of SOAP is a consequence of its adoption of the XML format as many

free tools that support message exchange are XML-based. Moreover, many parsers which can

understand and convert XML format are available.

17

The transport layer is responsible of the transmission of SOAP messages. The transmission

process is implemented based on well-known standard transport protocols, such as HTTP,

SMTP and FTP. HTTP protocol is the transport protocol in the application layer. In general,

this layer manages the communication between two application processes, e.g., a web browser

communicates with the web application hosted in a server. HTTP protocol has been designed to

exchange the hypermedia information in distributed systems. The ultimate destination address

of the application message is known via the HTTP header.

2.2 Web Service Composition

Web service composition has been introduced to meet the urgent need of combining web

services functionalities in order to deliver a specific business request to the end-customers

(1). A composition is a web service implemented by invoking a set of many web services. It

does not matter for the client whether the web service is a composite or basic service as far

as the request is answered. How the request is managed is rather a matter of implementation

choice. Composing web services need to implement a workflow system to manage, organize

and coordinate the roles of these services. Web service composition must follow the design

standards in this field such as SOA.

2.2.1 Composition Approaches

Approaches to the web service composition problem have been exceptionally diverse and

offer different interpretations of what should be addressed in a composition scenario. The

approaches are classified into three groups: workflow-based, model-based, and AI planning-

based. This thesis aims to verify web service compositions implemented by BPEL, so it fo-

cuses on the workflow approach while the others are briefly shown.

These groups are classified based on their degree of dynamism; they are ranged from the

static to the full dynamic. In the static approaches, the services are chosen, linked together,

18

and finally compiled and deployed at design time. The flaw of this approach is the inability

to adapt automatically with unpredictable changes. Any updates lead to unavoidable changes

on the design and the architecture of the system or at least changes on the service level. In

(86), Microsoft Biztalk and Bea WebLogic are introduced as an example on static composition

engines. In the dynamic approaches, the services are chosen, linked together, and finally com-

piled and deployed run time. These approaches may include an implementation for several

features such as dynamic service discovery and dynamic conversation selection. They enable

the web service composition system to adapt automatically to unpredictable changes with min-

imal user intervention. Casati, et al.(17) introduced e-flow from HP as an implementation for

dynamic composition engine.

1. Workflow-based approaches

For more than twenty years, Workflow organizations have been a major research topic.

Drawing mainly from the fact that a composite service is conceptually similar to the

workflow, the accumulated knowledge in the workflow field is exploited to build the Web

service composition. The workflow technique was one of the initial solutions proposed

for web service composition. Initially, it was exploited in static and manual compositions

and then, it has been extended to semi-automated and to fully automated composition.

Most workflow approaches employ BPEL in one way or another (see for instance (73)

for a survey).

Recent efforts have attempted to realize automated web service composition in this

category by proposing frameworks that automatically construct a workflow for the web

service composition. Majithia, et al. (59) proposed a workflow generator that attempts to

create an abstract workflow (written in BPEL) from a high-level objective taken as input.

PAWS (3) provides a semi-automated composition framework that takes SLA (Service

Level Agreement) represented in BPEL and then, by performing SLA negotiation, it

attempts to find services that have the required interface and do not violate any constraint

19

at the same time.

2. Model-based approaches

Model-based approaches have been proposed to deal with the increasing complexity

of systems by raising a level of abstraction to simplify such systems. They represent

web services and service composition using well-established models such as FSM. The

general procedure in this category is to provide a representation for the web services and

the compositions via one of the designing models, which is then translated automatically

to one of the composition executable languages. Berardi et al. (13) modeled the behav-

iors of services using FSM transformed to DPDL (Deterministic Propositional Dynamic

Logic). Skogan et al. (81) proposed an approach modeling service compositions using

the UML activity diagrams. The UML diagrams are then used to generate executable

BPEL processes.

3. AI Planning approaches

This category employs all research efforts in AI community in order to generate a

composition schema. The AI planning techniques generate series of actions starting from

the initial state reaching the goal state accomplishing the service requester requirement.

A large amount of composition approaches fall into this category, which forced many

researchers such as Chan et al. (73) and Ghallab et al. (66) to classify these approaches

into sub-categories based on the technique used to generate the composition plans.

2.2.2 Web Service Composition Models

Web services composition needs to coordinate the sequence of service invocations, man-

age data flow, and manage execution of compositions as transaction units. To accomplish this

mission, many models adopted by the previous approaches have been defined. In the following

a look at the most composition models has been taken.

20

1. Orchestration Model

Orchestration model describes the internal behavior for the composition. It governs

the workflow of composite web service via main flow control patterns which define the

order in which and the conditions under which web services are invoked. Specifically,

it describes how services interact at the message level, including the business logic and

the sequence of interactions.

Service orchestrations are typically described and executed using workflow languages.

Dumez et al.(28) introduced UML-S activity diagram as process-modeling to design the

orchestration model. The most prominent and universally adopted language for describ-

ing service orchestration is Business Process Execution Language (BPEL) (2).

2. Choreography Model

Choreography models the composition by making services able to control their inter-

nal business processes, which makes it different from orchestration in which the control-

ling task is empowered to the environment party. Thus, choreography defines rules of

interactions and agreements that occur between services or sometimes multiple business

processes. The choreography is conceptually associated with the conversation protocols

among services. The principal language for defining choreographies is Web Services

Choreography Description Language (WS-CDL) (49).

2.3 Business Process Execution Language (BPEL)

The research discussed in this thesis is about verifying web services composition built

using BPEL. We start this section by an overview about the business process management and

21

workflow technologies. And then, we briefly show an overview about BPEL and how it is

used.

2.3.1 Business Process Management and Workflow

The standardization of business process management and workflow technology has been

discussed for more than ten years (37). Several standardizations have been proposed for dif-

ferent aspects of business process management. WFMC (Workflow Management Coalition) is

the first of these standards that separates five different interfaces of workflow systems (37; 54).

Each interface addresses a particular aspect in the workflow model such as the process defini-

tion. BPMI (Business Process Management Initiative) came in 2000 as a standard for business

process management. BPMI was significantly developed twice. In the first version released

in 2002, the XML-based language for the specification of executable processes with web ser-

vice interaction was added to generate BPML (4). The second version, called BPMN, was

developed in 2004 where a visual notation for business process was provided (89).

2.3.2 BPEL Overview

Web Services Business Process Execution Language (WS-BPEL) (2) is an orchestration

language that coordinates and organizes the web services participating in the composition

system. The BPEL process controls and describes the interactions between the participat-

ing service by simple communication primitives and control flow constructs corresponding to

parallel, sequential, and conditional execution, event and exception handling, and compensa-

tion. The interactions adopt the approach of SOA (34) and the web service paradigm (51).

Each executable business process can be seen from the technical point of view as a stateful

web service presenting itself as an abstract WSDL service.

BPEL supports the description of both abstract and executable service-based processes.

An abstract process captures the specifications of the classes composing the service as well as

the ordering of messages to be sent or received. This thesis is not interested in the descrip-

22

tion of abstract processes; it provides an approach for verifying the executable service-based

processes. An executable process initially defines the services participating in the process, the

messages exchanged, and the events and associated exception handling. Then the executable

service-based process defines in order the activities’ execution.

The BPEL process definition relates a number of activities. Activities are split into two

groups: basic and structured. The Basic activities group contains the atomic actions which

describe the communication process between the participating services such as invoke, receive,

reply, wait, assign, throw, compensate, exit, and empty. Structured activities impose behavioral

and execution constraints on a set of nested activities. These include: sequence, switch, pick,

while, if, fault and compensation handlers.

BPEL came to life by IBM and Microsoft after the great success of BPMI.org and the open

BPMS. IBM, after launching WSFL (Web Services Flow Language), and Microsoft, after de-

veloping Xlang (Web Services for Business Process Design), decided to combine their efforts

into a new language, BPEL4WS (2). The OASIS (The Organization for the Advancement of

Structured Information Standards) released the BPEL4WS 1.0, the first version of BPEL, as

a result of cooperation between BEA Systems, IBM, Microsoft, SAP, and Siebel Systems. In

April 2003, the second version of BPEL, BPEL4WS 1.1, was submitted to OASIS. Significant

enhancements have been made to BPEL4WS 1.1 to create WS-BPEL 2.0. In the last version

of BPEL, BPEL4People, human interactions are implemented.

2.3.3 BPEL Main Parts

1. BPEL Process

Process element is the root of the BPEL document. It includes the global declaration

of elements composing this process such as partnerLinks, partners, variables, correla-

tionSets, faultHandlers, compensationHandlers, eventHandlers. The used elements are

abstracted in the process while the actual workflow definition is included under these

elements.

23

2. Variables

The variables element is one of the direct children of the process. It defines the

variables needed to be used in the process. This definition contains the types of these

variables, and the initial value for each variable. The variables types are WSDL mes-

sageType, XML Schema simple type, and XML Schema element. The exchanged mes-

sages between the services in the process are variables defined with WSDL messageType

and considered as input/output of the partners or as fault variables of the invoke, reply,

receive, and throw constructs. The variables’ values are changed in the process by the

assign or receive activities. In the verification process, in general, the variables capture

the state of the interactions during the whole business process.

3. Basic Activities

• Receive activity

The receive activity defines an external interface for the Web Service to wait for

the input messages. In the definition of the receive activity, the incoming input

message must match the portType and the operation defined in the interface. Each

service in the business process can have maximum one receive activity.

• Reply activity

The reply activity defines an output interface for the web service, through which

the messages are sent. The reply activity is used in two cases: normal and fault

cases. The normal case is when the output message is the actual message sent from

the partner; in this case the variable attribute must match the declared response

message type for the operation. In the second case, the sent message is a response

for the fault. The second case of the reply activity can be distinguished by pre-

senting the faultName attribute and matching the variable attribute for the message

type of this fault’s variable.

• Invoke activity

24

The invoke construct is used to invoke a partner web service. The web service

invocation needs to define previously the partner link, port type and operation and

optionally an input variable and an output variable. The catch construct has been

added to the invoke activity to treat the possible faults raised by the partner in han-

dling the requests. The faults are defined for a particular operation in the partner’s

WSDL definition, and are treated using the catchAll element. Compensation han-

dler also has been added to the invoke activity. It rolls back the effect of the activity

in case of failure.

• Throw activity

The throw construct is used to specify optionally additional data that will be

available to the fault handler.

• Wait activity

The wait construct is used to represent a time point, delay or deadline, in BPEL,

e.g., blocking the process after the timeout.

• Assign activity

The assign activity aims to initialize or change the values of the variables. More-

over, assign allows performing simple computation by evaluating general expres-

sions.

4. Structured Activities

• Sequence activity

The sequence activity includes in its body a list of activities. These activities are

executed in the order in which they are listed.

• Switch activity

The switch construct is used to choose different behaviors depending on a Boolean

condition following the order in which the behaviors are listed. The first branch

25

whose condition is true will be executed, while the others will be ignored.

• While activity

The while activity is a loop activity; the activities listed inside its body are exe-

cuted as long as the Boolean condition is true.

• Pick activity

The pick activity is composed of multi-branches. Each branch waits for events

to be executed. In the execution of the pick activity, the first occurring event will

trigger the associated branch and the others will be skipped. The event can be either

an arrival message or onAlert.

• Compensate activity

The Compensation handler is used to recover from a possible fault if it happens.

It returns back to the point before the activity started.

2.4 Formal Verification and Model Checking

After discussing web services, web service composition and BPEL, we discuss in this

section some model checking techniques and formal verification methods which are needed

to understand our proposal about reasoning about and verifying contract-based web service

compositions. Moreover, this section briefly describes computation tree logic (CTL), which

provides the main basis for the commitment concept used to reason about the interactive be-

haviors of autonomous services.

2.4.1 Model Checking

Model checking is a model-based verification technique using formal methods. Formal

methods have the advantage of dealing with ambiguities and inconsistencies in the system

specification in precise manners because of their mathematical and logical foundations. Based

26

on those methods, model checking aims to verify the system correctness against desired prop-

erties. In this way, model checkers (i.e., model checking tools) check whether a given model

satisfies a given property or not in a systematic and rigorous way. The key idea is to exam-

ine all possible system scenarios by exploring all possible system states (6; 21). Figure 2.4

depicts the model checking framework. As shown in this figure, model checking uses the sys-

tem models and properties as inputs. The properties are resulted from formalizing the needed

specifications. Model checkers display the results of verifying each encoded property. If the

property is not satisfied, a counter example is provided.

Requirements System

Property

Specification

System

Model

Satisfied

Counterexample

Formalizing Modeling

Model Checking

Figure 2.4: Model Checking General Framework

In the model checking approach, specifications are expressed in a temporal logic and sys-

tems are modeled as finite-state transition systems. There are two main techniques for model

checking: automata-based and symbolic techniques. In the automata-based technique, both

the system and specification are modeled as automata, then, the technique makes a comparison

between the specification and the system to determine whether the system behavior conforms

to that of the specification. This technique suffers from the state explosion problem where

the global state space grows exponentially with the number of variables (19; 20). To combat

27

and alleviate this problem, the symbolic technique uses Ordered Binary Decision Diagrams

(OBDD) and Boolean functions to encode the model and specifications (62).

The huge effort performed in the model checking field has led to the creation of new ver-

ification algorithms and tools which can verify larger models and deal with a wide variety of

extended frameworks (18; 22; 19; 20; 80). Many tools are developed for this purpose such

as SPIN (44), NuSMV (18), and MCMAS (55). SPIN is a model checker for LTL (Linear

Temporal Logic) (71). The theoretical foundation of SPIN for the verification is based on the

automata-theoretic approach. NuSMV Takes as input the finite state machines by means of

declaration and instantiation mechanisms for modules and processes, corresponding to syn-

chronous and asynchronous composition and to express a set of requirements in CTL (22) and

LTL. Generally, these tools are used in the verification process to serve different purposes. MC-

MAS differs from the mainstream model checkers such as NuSMV, SPIN, etc., in the fact that

it enables the engineer to verify not only temporal properties but also epistemic, commitment

and other expressive agent-based logics. The approach proposed in this thesis to reason about

and verify contract-regulated services in composition settings uses the logic of commitment,

CTLC, supported in a recent extension of MCMAS (9).

Different model checking techniques and model checkers use different temporal logics for

modeling the system and specifying the properties. In the following, we briefly review the logic

used in our work. And in the next section, we briefly summarize MCMAS and its capabilities

along with its specification language.

2.4.2 Computation Tree Logic (CTL)

Computation tree logic (CTL) is a branching temporal logic introduced in (22; 33) to spec-

ify and verify software systems. The underlying structure of time in CTL is assumed to have a

branching tree-like nature, which refers to the non-deterministic behaviors in software systems

where each moment in time may have several possible moments in the future. Each node in

the tree has at most one preceding node. The root of the tree is a node with no predecessors

28

and from which all other nodes are reachable.

Definition 1 (CTL Syntax).

CTL is defined by the following syntactic rules:

• CTL Elements

– AP (p ∈ AP) : A set of atomic propositions.

– c: Boolean operators.

– ∧,→,↔ : Additional operators.

– X(next), U (until), G(always), F (eventually) : Temporal Operators.

– A, E : Path quantifiers.

• Temporal Operators and Path quantifiers

– Xp: In the next, p is true.

– Gp: Always p.

– Fp: Eventually p.

– pU q : p until q.

– A : In all paths.

– E : In some paths.

• State formulas are assertions about the atomic propositions in the states and their branch-

ing structure.

• Path formulas express temporal properties of paths.

• Propositional atoms are state formulas, that is to say formulas evaluated on the models

states.

• if ϕ, ψ are state formula then ¬ϕ, ϕ ∨ ψ are state formulas.

29

• if ϕ is a path formula then Eϕ, Aϕ are state formulas.

• if ϕ, ψ are state formulas then Xϕ, ϕUψ are path formulas.

• A, E are immediately followed by a single one of the temporal operators.

– AFp = A(true U p) : For all paths, p holds at some point in the future.

– AGp = ¬E(true U ¬p) : For all paths, p holds globally.

– EFp = E(true U p) : There exists a path such that p holds at some future point.

– EGp = ¬A(true U ¬p) : In some paths, p holds globally.

– EFp = E(true U p) : In some paths, p holds at some point in the future.

– AXp = ¬EX¬p : For all paths, in the next state p holds.

– AGp = ¬EF¬p

Definition 2 (CTL Semantics).

• s : State

• S : States where s ∈ S.

• σ : Path, an infinite sequence of states and transitions.

• Label(s) : S → 2AP : An interpretation function, which assigns a set of atomic proposi-

tions to each state s ∈ S.

• σi : A path starting at a given state si.

• Path(s) : The set of all paths emanating from a given state s.

• s |= p iff p ∈ label(s)

• s |= ¬ϕ iff not (s |= ϕ)

• s |= ϕ ∨ ψ iff (s |= ϕ) or (s |= ψ)

30

• s |= Eϕ iff σ |= ϕ for some σ ∈ Paths(s)

• s |= Aϕ iff σ |= ϕ for all σ ∈ Paths(s)

• s |= Xϕ iff σ1 |= ϕ

• σ |= ϕUψ iff ∃j ≥ 0.s.t.(σj |= ψ and ∀k, 0 ≤ k < j(σk |= ϕ))

2.4.3 Interpreted Systems

The interpreted system model is introduced in (35) as a formal framework to model and

reason about multi-agent systems (MASs). This formalism addresses the two main classes of

MASs, namely synchronous and asynchronous. It also provides tools to represent and reason

about knowledge and temporal properties. The formalism of interpreted systems is defined as

follows (36):

• A = {1, . . . , n} : a set of n agents forming the system.

• Li = {l1, l2, . . . , lm} : a set of local states for agent i ∈ A. Intuitively, each local state

of an agent represents the complete information about the system that the agent has his

disposal at a given moment.

• g = {l1, l2, . . . , ln} : where g is a global state; g is defined by a tuple consisting of a

local state from each agent participating in the system.

• G = {g1, g2, . . . , gm} : is a set of global states. The set of all global states G ⊆ L1 ×

L2 × · · · × Ln is a non-empty subset of the Cartesian product of all local states of n

agents.

• li(g) : is a notation to represent the local state of agent i in the global state G.

• I ⊆ G : is the set of initial global states for the system

• Acti : set of local actions associated with agent i.

31

• Pi : L → 2Acti : where Pi is local protocol which gives the set of enabled actions that

may be performed by i in a given local state.

• τ : G× ACT → G : where τ is global evolution function, ACT = Act1 × · · · × Actn

and each component a ∈ ACT is a joint action,which is a tuple of actions (one for each

agent).

• τi : Li × Acti → Li : where τi is an evolution function that determines the transitions

for an individual agent i between his local states.

Bentahar et al. (9) extended the formalism of interpreted systems to explicitly capture the

communication between agents that occurs during the execution of MASs. This extension is

as follows:

• V ari: a set of n local Boolean variables which represent the communication channels

through which messages are sent and received (each agent has one communication chan-

nel with each other agent).

• lxi (g): a notation which denotes the value of a variable x in the set V ari at local state

li(g).

• li(g) = li(g
′) iff lxi (g) = lxi (g′) for all x ∈ V ari.

• Agents i and j can communicate if the following conditions are satisfied:

– |V ari ∩ V arj| = 1.

– lxi (g) = lxj (g′).

In this extended version of interpreted systems, the concept of model is defined as follows:

Definition 3. (Model). A modelM = (S, I, Rt, {∼i→j |(i, j) ∈ A2},V) that belongs to the

set of all models M is a tuple, where:

32

• S ⊆ L1 × · · · × Ln is the set of reachable global states for the system.

• I ⊆ S is a set of initial global states for the system.

• Rt ⊆ S×S is the transition relation defined by (s, s′) ∈ Rt iff there exists a joint action

(a1, . . . , an) ∈ ACT such that τ(s, a1, . . . , an) = s′.

• For each pair (i, j) ∈ A2, ∼i→j⊆ S × S is the social accessibility relation defined by

s ∼i→j s
′ iff the following conditions are satisfied

– li(s) = li(s
′).

– V ari ∩ V arj 6= ∅ such that ∀x ∈ V ari ∩ V arj we have lxi (s) = lxj (s′).

– ∀y ∈ V arj − V ari we have lyj (s) = lyj (s′).

• V : S → 2Φp is a valuation function where Φp is a set of atomic propositions.

The intuition of the social accessibility relation ∼i→j from one global state s to another

global state s′ (s ∼i→j s
′) is that there is a communication channel (shared variable) between

i and j. Agent i fills the channel in s, and agent j receives the information (i.e., the channel’s

contents) in s′. After receiving the information, all the shared variables between i and j will

have the same values (i.e., lxi (s) = lxj (s′) ∀x ∈ V ari ∩ V arj) and the values of the unshared

variables for agent j remain the same (i.e., lyj (s) = lyj (s′)) (9; 32). Figure 2.5 illustrates an

example of this relation where two agents i and j are communicating and their shared and

unshared variables are as follows. Agent i: V ari = {x1, x2}, Agent j: V arj = {x1, x3}

where x1 represents the shared variable and x2 and x3 represent the unshared variables. After

establishing the communication channel, the value of the shared variable for agent j at state s′

becomes equal the value of x1 for agent i. However, the value of the unshared variable x3 is

not changed.

33

(li (s'), lj(s'))

x1 x2

vari [1 2]

varj [1 3]

x1 x3

(li (s), lj(s))

x1 x2

vari [1 2]

varj [0 3]

x1 x3

S S'

i � j
Shared

variable

x1=1
Unshared

variables

Figure 2.5: An example of social accessibility relation ∼i→j

2.4.4 CTLC

As mentioned earlier in this thesis, we use the expressive CTLC logic, supported in an

extended version of MCMAS (9), to express the properties to be verified for the contract-driven

compositions of web services. The syntax of CTLC, which is a combination of branching time

CTL (20) with social commitments, is defined as follows (9):

Definition 4 (Syntax of CTLC).

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | E(ϕUϕ) | EGϕ | Ci→jϕ | Fu(Ci→jϕ).

where:

• p ∈ Φp is an atomic proposition.

• ϕ, ψ are formulas.

• The boolean connectives ¬ and ∨ are defined in the usual way.

• E is the existential quantifier on paths.

• X , U , and G are CTL path modal connectives standing for “next”, “until”, and “glob-

ally” respectively.

• The modal connective Ci→j stands for “commitment from i to j”.

• The modal connective Fu stands for “fulfillment”.

34

The modal connectives Ci→jϕ and Fu(Ci→jϕ) stand for commitment and fulfillment of

commitment, respectively. Ci→jϕ is read as agent i commits towards agent j that ϕ, or equiv-

alently from communication perspective as i is conveying information ϕ to j, or simply as

ϕ is committed to when i and j are understood from the context. Fu(Ci→jϕ) is read as the

commitment Ci→jϕ is fulfilled. Other temporal modalities, e.g., F (future), and the universal

path quantifier A can be defined in terms of the above as usual (see for example (20)).

Definition 5 (Semantics of CTLC from (9)).

• (M, s) |= p iff p ∈ V(s);

• (M, s) |= ¬ϕ iff (M, s) 2 ϕ;

• (M, s) |= ϕ ∨ ψ iff (M, s) |= ϕ or (M, s) |= ψ;

• (M, s) |= EXϕ iff there exists a path π starting at s such that (M, π(1)) |= ϕ;

• (M, s) |= E(ϕUψ) iff there exists a path π starting at s such that for some k ≥ 0,

(M, π(k)) |= ψ and (M, π(j)) |= ϕ for all 0 ≤ j < k;

• (M, s) |= EGϕ iff there exists a path π starting at s such that (M, π(k)) |= ϕ for all

k ≥ 0;

• (M, s) |= Ci→jϕ iff for all global states s′ ∈ S such that s ∼i→j s
′, we have (M, s′) |=

ϕ;

• (M, s) |= Fu(Ci→jϕ) iff there exists s′ ∈ S such that s′ ∼i→j s and (M, s′) |= Ci→jϕ.

In this semantics, the state formula Ci→jϕ is satisfied in the modelM at s iff the content ϕ

holds in every accessible state s′ obtained by the social accessibility relation ∼i→j . The state

formula Fu(Ci→jϕ) is satisfied in the model M at s iff there exists a state s′ satisfying the

commitment and s is accessible from s′ by the social accessibility relation ∼i→j .

35

2.5 MCMAS: a Model Checker for Multi-Agent Systems

MCMAS is a fully symbolic model checker for Multi-Agent Systems (MAS) that uses

Ordered Binary Decision Diagrams (OBDD) (55). As a model checker, MCMAS takes two

inputs: a model description for the system to be verified and a set of specifications against

which the system is to be checked. MCMAS can verify a variety of properties specified by

different logics such as CTL, CTLC (9; 31), and CTLK, the extension of CTL with the knowl-

edge operator (36). The inputs of MCMAS are formatted by the ISPL language which is used

to describe the MAS to be checked and encode the desired specifications. The ISPL is a ded-

icated programming language for interpreted systems that formalize MASs (35). MCMAS

automatically evaluates the truth value of the encoded specifications and produces counterex-

amples which can be analyzed graphically for false specifications. MCMAS can also provide

witness executions for the satisfied specifications and graphical interactive simulations.

2.5.1 ISPL General Structure

An ISPL code has the following format:

Agent Environment

Obsvars:

...

end Obsvars

Vars:

...

end Vars

RedStates:

...

end RedStates

Actions = ...;

36

Protocol:

...

end Protocol

Evolution:

...

end Evolution

end Agent

Agent TestAgent

Lobsvars = ...;

Vars:

...

end Vars

RedStates:

...

end RedStates

Actions = ...;

Protocol:

...

end Protocol

Evolution:

...

end Evolution

end Agent

Evaluation

...

end Evaluation

InitStates

37

...

end InitStates

Fairness

...

end Fairness

Formulae

...

end Formulae

The following elements form the ISPL code:

• Set of agents: One of these agents is a special agent representing the environment in

which the agents interact together. The environment agent have a role in coordinating

and organizing the agents interactions and it sometimes intervenes and govern the busi-

ness itself. The rest are normal agents.

• Each agent has a set of local variables defined in the variables block, Vars. The local

variables cannot be observed by the other agents, but this is a little different for the

environment agent where some of these variables can be observed by the other agents.

The observed variables block, Vars, is defined only in environment agent. The local

states of each agent composed of a valuation of its local variables.

• The set of red states is used to check the correct behavior properties. It can be formed

by copying the noncompliant states into red states.

• The navigation between the states for each agent can be simulated by the actions, proto-

col function and evolution function.

• For the model, the initial state is described by determining the initial state for each agent.

Actually, the initial state for the agent is expressing the initial values of its local variables.

38

• The properties which will be checked are specified in ISPL by the initial states, proposi-

tions, groups and formulas.

• All the strings in the above structure are reserved keywords except TestAgent

2.5.2 ISPL Syntax

• Definition of variables

As all programming languages, the variables are defined in ISPL by giving a name and

determining its data type. Three data types are allowed in ISPL; BOOLEAN, ENUMER-

ATION and INTEGER. The following example introduces three variables, one from

each type.

x : boolean;

y : a, b, c;

z : 1 .. 4;

The allowable arithmetic and logical operations can be performed over the variable based

on its type. The following table explains the allowed operations for each type.

DATA TYPE Allowed operations

ENUMERATION Equality comparison only

INTEGER Arithmetic operations: =, !=, <,

<=, >, >=,

BOOLEAN Bit operations: ∼, |, & ,

• Definition of local observable variables

In the following, the syntax of local observable variables for an agent in the Lobservars

section is provided.

39

Lobsvars = {x, y, z};

Where x , y and z are standard variables of the environment.

• Definition of red states

Actually the red states are represented by Boolean formulas over the agents local vari-

ables. Any state that satisfies one of these formulas is consider as a red state. The

following is an example of a Boolean formula defined in the red states section.

x = true and (!(Environment.y = ’a’) or z >3).

Where x and z are local variables while y is a local variable belongs to the Envi-

ronment.

• Actions

All agents’ actions are included in the action section. For example:

Actions = {a1, b2, c3};

• Definition of protocol function

The protocol function returns the allowed actions to be performed by the agent at a

particular state. This can be represented by two parts: the condition and list of actions.

The condition is a Boolean formula used to represent a state or a group of states. The

following is an example of protocol function:

x = true and Environment.z < 2 : {a1, a2};

Where a1 and a2 are defined actions.

For the local states in which there are no expected actions to be performed, ISPL

reserves Other as a keyword to represent a null action. The following is an example for

using this keyword:

40

Other : { a1, a2, a3};

Where a1, a2 and a3 are defined actions.

• Definition of the evolution function:

This section describes how the agent can navigate between its states. A line in an

evolution function consists of two parts: the left hand side (LHS) and the right hand side

(RHS). The LHS contains a set of assignments over local variables for the agent. The

RHS is known by the enabling condition which is represented by a Boolean formula

over local variables, observable values of the environment and actions of all agents. The

following is an example of a line in the evolution function:

x=true and z=Environment.z+1

if y=b and TestAgent.Action=a1;

• Definition of the initial states

The initial states are defined by a Boolean formula which contains only assignments

over the agent’s variables. The following example shows how to define an initial state:

Environment.x = false

and TestAgent.x = true

and Environment.y = a

and TestAgent.z = 1;

• Definition of fairness formulae

The fairness formula is a type of formula to be checked in the model. It means an

existence of fair scheduling of the execution of processes. Fairness is concerned with a

fair resolution. The fairness formula, like the other formulas, is a Boolean formula over

atomic proposition. The fairness formula can be distinguished from other formulas by

the ”→ ” operator.

41

• Definition of formulae to be checked

A formula to be verified is defined over atomic propositions. It can have one of the

following forms:

Formula ::= Formula

| Formula and Formula

| Formula or Formula

| ! Formula

| AG (Formula)

| EG (Formula)

| AX (Formula)

| EX (Formula)

| AF (Formula)

| EF (Formula)

| A (Formula U Formula)

| E (Formula U Formula)

| AtomicProposition

| C(i,j,commitment content)

| Fu(i,j,commitment content)

42

CHAPTER 3. PROPOSED APPROACH

3.1 General Overview

This section presents the framework, illustrated in Figure 3.1, proposed for the verification

of contract-regulated MASs implementing web services. It takes a BPEL process representing

the composition as an input to be verified. The BPEL process controls and coordinates the

participating web services in the composition according to the business process composed of

service contracts, which are usually expressed in natural languages. The BPEL process acts as

the environment which implements the business process.

From the contract that specifies desired and undesired behaviors, our framework provides

the option to mark the BPEL process manually using BPEL custom activities, called labels.

This process is proposed as an untraditional mean to highlight the contract clauses in BPEL

instead of representing those clauses separately. It accomplishes the following functionalities

in the proposed approach:

• Distinguishing between the types of services behaviors.

• Highlighting the contracts details.

• Making the automatic process of generating the verification properties possible.

43

Marking the BPEL by the labels

“Custom activities”

Contracts

Composition represented by BPEL Process

“ Orchestration Model ”

Compiler

ISPL-CODE

Proprieties(generated

automatically)

MCMAS

Composition represented by BPEL Process

“ Orchestration Model ”

Undesired Behaviors Desired Behaviors

ISPL-CODE

Proprieties

Encoding

Manually

Verification Result

OR

Figure 3.1: Verification Architecture

The compiler, the key ingredient in the proposed framework, takes the marked BPEL pro-

cess as an input and produces an ISPL program to be used in the MCMAS model checker.

Considering the CTLC logic used in expressing the verification properties, well-defined trans-

44

lation rules from BPEL to ISPL are implemented into the compiler. In addition to the ISPL

code that encodes the system, the compiler generates verification properties.

The main objective of the proposed approach is verifying the robustness and correctness of

the composition. Specifically, the aim of the generated verification properties is to analyze the

following:

• The extent to which the overall system meets the desired outcomes of the composition

by verifying the contract’s details. In case of failure, the purpose is to determine services

causing the violations.

• The ability of the system to understand or evaluate the services’ behaviors whether they

are in compliance or in violation with their contracts.

• The violations which the system can treat, the extent to which the system can prevent

the consequences of these violations, and how the violations can be recovered from.

3.2 Analyzing BPEL Process in terms of Contracts and Service

Behaviors

In our approach, the composition system is implemented using the orchestration model

where the role of services is limited to receiving and sending messages and the business pro-

cess is implemented as part of the environment. In the orchestration model, web services

interact in the composition as black boxes where the main focus is on the control and coor-

dination of services participating in the composition system. Using the orchestration model

in our approach for implementing the composition has the following advantages. First, the

Cartesian product of services states needed for the composition is reduced by implementing

the business process into a centralized unit, which forms the environment. Second, unlike the

approaches modeling the composition by explicitly representing services as peers in addition

to the interaction protocol using the choreography model, the orchestration focuses only on the

45

composition protocol, removing thus any replication from the representation of the composi-

tion. Moreover, web developers usually aim to verify a particular part in the system and show

the involved states of services in that part. The orchestration model represents the system as

one agent moving from one state to another, and therefore the part to be verified can be easily

determined by selecting two points only, namely starting and ending points in the BPEL pro-

cess representing the environment. In contrast, in the chorography model, there is a need to

select a starting and ending points for each single service to determine this part, and there is

no guarantee that these points are correctly selected in the sense that they are relevant to that

particular part.

An orchestrated business process is an activity or a set of activities that will accomplish a

specific organizational goal. Many useful concepts were proposed to describe business pro-

cesses; contract is one of them coming from human societies. The contract regulates the

interactions between services to reach the desired goals of the business process. Providing

a comprehensive analysis of composition design and verification outcomes needs a deep un-

derstanding of the key components of the contract and how the contract describes the system.

Clarity of the contract depends on the power of its representation. The proposed approach

uses an expressive logic, CTLC, to specify the contract in terms of commitments, a natural

choice to describe contract clauses. Each commitment is representing one clause in the con-

tract between two services where one of those services is committed towards the other to send a

particular message with a particular content. If a commitment is violated, the contract provides

a description how the system should react to recover from this situation.

The contract details are described as follows:

1. Debtor: the service committing to another service and acting as sender of messages.

2. Creditor: the service to which the debtor is committed and acts as receiver of messages.

3. Commitment content: the content of the message sent by debtor and its content.

46

4. Condition of the commitment: the action which causes the commitment to be activated

(i.e., launched).

5. Violation conditions: all the cases that are considered as breaking of a commitment

whether it is the sender did not send the message, unwanted message, unwanted content

of the message, or breaking the environment conditions related to this commitment.

6. Recovery: the reaction once the commitment is broken and the service responsible to

execute it.

Services show different types of behaviors during the composition with respect to their

contracts. We classify these behaviors into the following three categories:

1. Compliances: Compliant behaviors are the set of all agreed behaviors in the contract

that must be followed by the services in the system. Services behave in conformance

with their contract if they follow and satisfy their commitments.

2. Violations: Violations are the set of arbitrary behaviors that the system can in principle

engage in and they are considered as infringement of what is agreed on in the contract.

For instance, a service in the system may fail to respect one of the contract clauses, or

perform actions in violation with certain clauses in the contract.

3. Recoveries: Recoveries are the set of reactions arising once any of the contract clauses

has been violated. The recoveries in general try to make the system on the track again,

or protect the services’ rights. Who executes the recovery and what is the action to be

taken are two key attributes to describe the recovery. The self-recovery which is executed

by the service breaking its contract as a try to fix its mistake, and the penalty-recovery

which is executed by the environment that governs the interaction between the services

to punish the service breaking its contract are two typical examples of recoveries.

Compliances and recoveries are classified as desired behaviors, while violations are unde-

sired. Based on that, the system can engage into two types of states: undesired states that arise

47

when any service violates the contract; and desired states that arise when all services act with-

out deviating from their contracts or the system recovers from the violations. In general, most

of the proposals in this field focus on compliance behaviors. These are often very well defined

and described with a range of formal mechanisms. Indeed, the adoption of compliances alone

in the verification process of web service composition may have the ability to check whether

services act without deviating from their commitments or not, and verify whether the details

of commitments are correctly implemented or not, but it cannot verify the withstand of the

composition against the violations and its reactions to recover from them. Verifying this sig-

nificant aspect needs a deep reasoning about the violations and a knowledge on how they can

be represented in the compositions.

In fact, as argued in (48), system engineers have often problems in considering undesired

behaviors, which are poorly analyzed and documented. The proposed approach embeds a

mechanism to consider this type of behavior. The first step is to define more accurately the

undesired behaviors. Based on this definition, types of undesired behaviors are extracted and

classified. The second step is to determine the expected possible undesired behaviors that the

system may engage in. The final step is to observe how the undesired behaviors are represented

in the BPEL process.

As mentioned earlier, the role of services into the composition is limited to exchange mes-

sages. The CTLC logic we use in our approach specifies the contract in terms of commitments

conveyed as exchanged messages between interacting services. Based on that, ruling a be-

havior for a particular service as desired (compliance) or undesired (violation) is given by the

message sent by this service. The desired behavior are the set of all agreed messages in the

commitments with their agreed values that must be sent by the services in the system. There-

fore, undesired behaviors can take place by two possible actions:

1. Not sending the message:

This type of action occurs because of the external influences that may hinder or com-

pletely prevent the services to fulfill their commitments. For instance, failure in network

48

can lead to delay or not deliver the message. Although services have no control on such

actions, they are unjustly inset under undesired behaviors of those services. Also, it can

be added under this action the case in which a service sends a wrong message to invoke

another service.

2. Sending the message with wrong contents:

The possible contents of messages are a representation of the possible behaviors of

services toward their commitments. Ruling a behavior for a particular service as desired

or undesired is given by the contents of the messages sent by this service. Thus, our

approach classifies the possible values for each defined message into two main subcate-

gories. The first one includes all possible values that lead to fulfilling the commitment,

and the second one contains all possible values that lead to violate the commitments.

Generally, web services communicate into the composition by the following two scenarios.

1. Explicit behaviors:

The debtor’s possible behaviors with respect to a particular commitment are repre-

sented using different types of messages. This describes the case in which it is allowed

for a service to choose between different types of operations, deployed on different port

types. Some of these operations are considered as fulfillment, while the others are con-

sidered as violations. The judgment on the behavior is done via the type of message

not its content. Because of the non-deterministic debtor’s behaviors at this moment, the

pick activity is used to represent the possible messages. In such a representation, the

service possible behaviors, i.e., violations and compliances, are directly extracted from

the BPEL process.

Figure 3.2 illustrates two services communicating in the composition. Delivering

the software to the client triggers the commitment of payment from the client to the

software provider. The client may want to change the software instead of payment,

49

this is considered as a violation and it should be punished by paying more as penalty.

Note that the fulfillment is satisfied by invoking the payment operation via pay-decision

message while the violation happens by invoking another operation via change-software

message.

Environment-service

SoftwareProvider-service

Client-service

Change Software

Pay-Decision

Client

Software

Environment

Software

Provider

P

i

c

k

I

n

v

o

k

e

p

a

y

m

e

n

t

I

n

v

o

k

e

p

e

n

a

l

t

y

I

n

v

o

k

e

s

o

f

t

w

a

r

e

Figure 3.2: Example for an explicit behavior during the composition

2. Implicit behaviors

When the commitment is launched, the debtor-service sends the related message for

this commitment to the environment-service. The environment-service picks up this

message and transfers its content into a container variable. The environment analyzes the

value held by the container, if the value is a fulfillment value, the environment delivers

the message to the creditor-service, otherwise the system should enter into a recovery

stage.

In the implicit representation, the debtor’s possible behaviors with respect to a particu-

lar commitment are represented using multiple possible values for one message deployed

on one port type. The possible service behaviors in such a representation are indirectly

extracted from the BPEL process via the control operations inside the composition. It

is worth noticing that most of the interactions during the composition are represented in

50

BPEL as implicit behaviors.

Figure 3.3 illustrates two services communicating in the composition. Delivering

the software to the client triggers the commitment of payment from the client to the

software provider. The client may pay or reject. The client responses are recognized in

the environment by analyzing the value of pay-decision message. In case of payment,

i.e., fulfillment, the environment sends the amount to the software provider. In case of

rejection, i.e., violation, the environment stops the execution of the BPEL process.

The composition deals with the violations in different ways; some cases treat the vi-

olations together as one set by the same recovery, while in other cases each violation is

separately handled by a different recovery. This distinction is important to extract the

undesired behaviors from the recoveries.

Pay-Decision

Amount/NP

amount

Container

amount

NP

Environment

Software

Software

Provider

I

n

v

o

k

e

p

a

y

m

e

n

t

I

n

v

o

k

e

s

o

f

t

w

a

r

e

Client

Invoke

Receiving

Software

Environment-service

SoftwareProvider-service

Client-service

Figure 3.3: Example for an implicit behavior during the composition

3.3 Marking the BPEL Process

Specifying and generating verification properties for web service composition is still a

challenging issue. As mentioned earlier, one of the contributions of this thesis is generating

the verification properties automatically. As illustrated in Figure 3.4, most of the verification

techniques use a specification language to generate the model, and then the desired verification

51

properties are expressed by considering this model. Undeniably, the manual specification of

such properties is time-consuming and error-prone.

System

Description

Specification

model

System design

properties

Verification

process

Verification

results

Figure 3.4: General schema for system verification

The proposed approach verifies the web service composition designed using BPEL. In

our point of view, the BPEL language can be used for both specification and design of the

system. As explained in Figure 3.5, if the specifications are modeled by BPEL, we obtain a

specifications model that is included in the composition model. Note that the specifications are

the desired behaviors.

Composition

Implementation

/design

Specifications

Desired behaviors

U

n

d

e

s

i

r

e

d

b

e

h

a

v

i

o

r

s

Figure 3.5: Implementation and specifications relationship

The proposed approach uses the composition design that includes all specifications to rep-

52

resent those instead of modeling separately. The idea is to highlight (mark) the specifications

as points in the BPEL process representing the composition design. Specifically, the marking

process is based on choosing manually the beginning of the contract clauses, beginning of the

fulfillment and beginning of the recovers and then the compiler automatically extracts how

the contract clauses has been implemented in the composition. The points are not selected

arbitrarily. However, arbitrary points can easily be recognized by the incorrect syntax of gen-

erated properties. These points are marked by custom activities called labels, which have no

effect on the design or execution of the process. This no-effect of the labels holds also at the

automata level. If a comparison is made between two generated automata for the same system,

one generated from marked BPEL and the other from unmarked one, they will have the same

number of states and transitions. Thus, labeling does not exacerbate the state explosion prob-

lem. Figure 3.6 illustrates the marking process. As shown in the figure, the contract consists

of clauses. Each clause describes the commitment, violation conditions and recoveries. Based

on the contracts clauses, the labels are inserted in the composition process to highlight the

specifications.

BPEL process

“Composition”

Label 1

Label 2

Label 3

Contracts

1. clause 1 :

- Commitment/Fulfillment

- violation conditions

- Recoveries

2. clause 2 : ...

Compiler

Verification properties

Label 4

Figure 3.6: Marking the BPEL process

53

In fact, marking the BPEL process is not only a mechanism to represent the specifications,

but it also enables the web developers to verify what the design exhibits at particular points.

However, incorrect marking can negatively affect the correctness of the verification outcomes.

For instance, stating incorrectly that the system recovers from a violation because of marking

some undesired behaviors as desired behaviors. The following is a description of the labels

and their functionalities.

1. Trace-label:

This label is used to distinguish between the desired and undesired behaviors in the

BPEL process. It has two attributes: service-name and behavior-type. The behavior-type

attribute is a Boolean variable; 0 for the undesired behaviors and 1 for the desired ones.

The service-name attribute catches the service that performed this behavior.

<bpel:extensionActivity>
<ext:Trace-label

name="UndesiredBehaviour"
ServiceName ="Service1"

BehaviourType = 0 >
</ext:Trace-label>

</bpel:extensionActivity >

The number of the trace-labels equals the number of the services participating in the

system as each service is associated to one label. It is worth mentioning that we do not

need to label each behavior in the system to denote its type. The trace-label’s value is

reassigned each time the service behavior is changed from undesired to desired behavior

or vies versa.

2. Str-label / end-label:

These labels are provided to verify the system partially. Str-label is inserted at the

beginning of the part to be verified and end-label is inserted at the end of this part. If

these custom activities are inserted, only this part will be encoded into the ISPL code;

otherwise the whole system is encoded.

54

<bpel:extensionActivity>
<ext:str-label
name="Strpoint" >
</ext:str-label>

</bpel:extensionActivity>

<bpel:extensionActivity>
<ext:end-label

name="Endpoint" >
</ext:end-label>

</bpel:extensionActivity>

3. Commitment-label:

This label is used to mark services commitments inside the BPEL. It is not manda-

tory to mark all the commitments; only those related to the contract clauses the web

developer wants to verify are marked. The label is inserted at the beginning of the com-

mitment, the point at which it is thought that the commitment becomes active. Often the

condition activating the commitment is a message received by the debtor-service, so the

commitment-label is often inserted before the invoke-activities.

The label consists of three attributes; debtor, creditor and the commitment-ID. Commitment-

ID attribute is used as a primary key to distinguish between the selected commitments.

The compiler, as explained later, uses this label to determine the parties involved in the

commitment, content of the commitment, and the condition under which the commit-

ment can be launched.

<bpel:extensionActivity>
<ext:commitment-label

name="Comm1"
commitment-ID = 1

debtor = "Service1"
creditor = "Service2">
</ext:commitment-label>

</bpel:extensionActivity>

4. Fulfillment-label:

55

This label is used to mark the points at which it is thought that the commitments are

successfully fulfilled. The fulfillment takes place when the creditor-service receives the

message sent by the debtor-service, so it is often inserted before the invoke-activities.

The compiler uses the fulfillment-label to extract the message contents which are con-

sider in compliance with the contract as well as the contents that are considered in vio-

lation. The label has one attribute, commitment-ID as a foreign key to interrelate it with

the commitment-label.

<bpel:extensionActivity>
<ext:fulfillment-label

name="Fu1"
commitment-ID = 1>

</ext:fulfillment-label>
</bpel:extensionActivity>

5. Recovery-label:

This label is used to mark the points at which it is thought that the recoveries start.

The label has one attribute, commitment-ID as a foreign key.

<bpel:extensionActivity>
<ext:recovery-label

name="Rec1"
commitment-ID = 1>

</ext:recovery-label>
</bpel:extensionActivity>

Figure 3.7 illustrates an example of marking a BPEL process, in which the client-

service is committed to pay for the SoftwareProvider-service if he gets the software.

The client may violate his commitment by sending change-software request instead of

paying. As recovery, the system forces the client to pay more as a penalty for his viola-

tion.

56

Client-service

Environment-service

SoftwareProvider-service

C

o

m

m

1

Change Software

Pay-Decision

Software

Environment

Software

Provider

P

i

c

k

I

n

v

o

k

e

p

a

y

m

e

n

t

I

n

v

o

k

e

p

e

n

a

l

t

y

I

n

v

o

k

e

s

o

f

t

w

a

r

e

Client

I

n

v

o

k

e

R

e

c

e

i

v

i

n

g

S

o

f

t

w

a

r

e

F

u

1

R

e

c

1

C

l

i

e

n

t

-

T

r

a

c

e

-

l

a

b

e

l

(

0

)

C

l

i

e

n

t

-

T

r

a

c

e

-

l

a

b

e

l

(

1

)

Figure 3.7: Example of marking a BPEL process

3.4 Automatic Compilation from BPEL to ISPL

The compiler is the core component in the proposed framework which automatically trans-

lates the BPEL process to ISPL-code including the CTLC verification properties. It extracts

the behaviors for each participating service from the overall behavior of the composition. In

the cases in which services act as black boxes or their behaviors are unknown until run time,

the compiler extracts their behaviors from the control operations implemented in the compo-

sition. It generates the verification properties if the marking step has been performed. Figure

3.8 illustrates the abstract compiler’s outputs.

57

Compiler

BPEL-Process

Servic1-

behaviour

Servic2-

behaviour

Servic N-

behaviour

Properties

….

Figure 3.8: Abstract compiler’s outputs

3.4.1 General Overview of the Internal Design of the Compiler

The internal architecture of the compiler is illustrated in Figure 3.9 showing a five-step

construction process to generate the corresponding ISPL code from the BPEL process. This

section shows the abstract steps of this process while the technical details are given in Sections

3.4.3 and 3.4.4. In a nutshell, this process is performed as follows.

1. The BPEL process is translated into one automaton representing the composition and

then it is flooded into a database.

2. Systematically, an automaton is extracted for each service from the composition automa-

ton.

3. The generated automata are colored. Specifically, the trace-labels’ values are used to

color each state. The violation states are colored red while the others green.

4. The labels’ positions are analyzed and then verification properties are generated. Specif-

ically, the actions happening at the commitment-labels and the recovery-labels are for-

malized. Then, a set of verification properties showing the elements that the designers

may wish to verify on the contract’s clauses referred by these labels are generated.

58

5. The colored automata in addition to the proprieties are encoded in ISPL, which forms

the output of our compiler.

Xml Parser

Translator

D

a

t

a

B

a

s

e

Extractor

Colorer/Analyzer

Encoder

Composition-Automaton

Service 1

automaton

Service 2

automaton

Service N

automaton

.

Colored Service 1

automaton

Colored Service 2

automaton

Colored Service N

automaton

Properties

. . .

BPEL Process

ISPL-Code

Figure 3.9: Internal design of the compiler

3.4.2 Encoding the Communication Architecture in ISPL

In the verification process, the system model must be compatible with the used logic. The

CTLC logic we use in our approach captures the intuition that commitments are conveyed

through communication between interacting agents. Thus, the BPEL process is translated as a

set of services interacting through our communication architecture to exchange commitments.

This architecture, illustrated in Figure 3.10, allows us to capture the intuitive semantics of so-

cial commitments as defined in CTLC by Bentahar et al. (9). Associated with each service is a

set of local variables used to represent the communication buffers (each service has one com-

59

munication buffer for each other service it is interacting with) through which the messages are

exchanged. The buffers are an implementation for the shared variables used in the semantics

of social commitments (see Section 2.4.4).

The environment is implemented using a set of local variables which represent the com-

munication channels. These channels hold the communications between the participating ser-

vices. They capture the intuitive functionality of the orchestration model in controlling and

coordinating the interactions between services. The number of the communication channels

equals the maximum number of concurrent communications in the composition, which de-

pends on the flow activity used to represent the concurrent communications. To hold a com-

munication between two services, channel 1 is firstly checked, if it is busy by another commu-

nication, then channel 2 is checked and so on.

Let us consider the example of two services i and j. Service i commits to service j by

establishing a connection using its shared buffer with service j, Buffer i − j, and the first

available communication channel in the environment. The communication process between i

and j is performed in two steps:

1. First step: service i fills its shared buffer with service j. This can be observed immedi-

ately by the environment service. Consequently, a communication channel is also filled

out with the sent message in this step.

2. Second step: the held message is sent to service j and inserted into its shared buffer

with service i. At the end of this step, the shared buffers in both services become equal.

60

EnvironmentService i Service j

Service K

Msg2

Msg3

30

“200HK”

TRUE

-

-

Msg1

-

-

-

Msg1

-

Msg1

-

-

Msg1

Service r

Buffer i-j

Buffer i-k

Buffer i-r

Buffer i-j

Buffer i-k

Buffer i-r

Buffer j-k

Buffer j-r

Buffer j-k

Buffer j-r

Buffer k-r

Buffer k-r

Channel-1

Channel-2

Channel-3

Msg1-Container

Msg2-Container

Msg3-Container

Msg1 30

Msg1 30

Msg2 200HK

Msg2 200HK

Figure 3.10: The proposed communication architecture

The social accessibility relation is successfully represented by encoding these steps as two

states in the generated automata. However, modeling the communication process alone is

not enough to represent the commitment; still there is a need to reason about the commitment

content. As explained earlier, the commitment content is determined either by the sent message

in the explicit behaviors or the message values in the implicit behaviors. Thus, it is held by the

shared buffers in the explicit behaviors and by the containers in the implicit behaviors.

The containers are a set of variables catching the contents of the exchanged messages dur-

ing the composition. Their values are assigned in the first step of the communication process

and evaluated later to know whether they are fulfillments or violations. Each container can

catch the values for one message. Because of the implicit services behaviors, the real values of

61

the containers can only be observed at runtime. At design time, only approximate values can

be obtained from the control operations in which those containers are involved. The containers

are then translated into automata with those approximate values. The technical details on how

this translation is performed are given in Section 3.4.3.

The commitment content is accounted for by reasoning about the shared buffers values and

the container values. As argued by Bentahar et al. in (9), the key idea is that the communication

process is established to deliver the commitment content. However, unlike (9)’s proposal where

shared variables are only used to indicate the existence of a communication channel between

two services, in our approach, shared variables are effectively used to convey the commitment

content.

3.4.3 Translation Rules

As intermediate representation between BPEL and MCMAS, we use an automata-based

model in our approach. The BPEL process is translated into automata, close to the ones pre-

sented in (39). However, our approach differs from (39) by constructing the composition

built over a communication infrastructure. More complicated translation rules are declared

to model the communication processes especially in the case of implicit services behaviors.

Furthermore, translation rules for the pick, switch and the labels are added.

In fact, the XML-parser and translator, the parts in the compiler responsible for translating

the BPEL process into automata, have many implementation details such as parsing the XML

text as states and loading them into the database. To shorten those details, we settle to clarify

the internal design of these parts by simple BPEL examples and simple description of the

algorithms implementing the translation rules. Those rules are described as follows:

• Main Parties

As a first step, the participating services are extracted from the BPEL process via the

partnerlinks tag. A set of variables are directly defined for each service to represent

62

its shared buffers as explained earlier in the communication architecture. In addition, a

Boolean variable is added for each service to capture the trace-label values.

The environment includes three types of variables: communication channels, contain-

ers and operational variables. The containers and operational variables are extracted

from the variables tag defined in the BPEL process. The containers differ from the op-

erational variables in the fact that their values are assigned from service messages. In

addition, a set of variables representing the communication channels are defined. The

number of communication channels is extracted from the flow activities defined in the

BPEL process. It equals the maximum number of branches defined in those flow activi-

ties.

• Assign-Activities

Each assign-activity is composed by a list of assignments. Its translation depends

on the types of variables involved in the list. Thus, it results in different transitions in

automata. The followings are the proposed rules to translate the assign-activity:

– Message variables

In BPEL, the communication process between two services is represented by

the assignment and invoke activities respectively. The assignment activity assigns

the output message of the sender service to the input message of the receiver ser-

vice and then the receiver service is invoked by the invoke activity. So, if the

assignment activity assigns a variable message to another variable message such as

var1 = var2, an initiation for a communication process between two services is

considered. Such assignments represent the first step of the communication pro-

cess, while the invoke activities represent the second step (see Section 3.4.2).

The following BPEL code represents an example for a communication process

between service i (the sender) and service j (the receiver). The communication

process code starts from line 9 while the first eight lines are definitions of the mes-

63

sages. As explained from line 9 to line 14, the assignment activity assigns var2,

the output message of service i, to the input message of service j, var1. From line

15 to line 17, the actual transmission is performed by invoking service j.

Line1: <bpel:variable name="var1"

Line2: messageType="ns:servicej input ">

Line3: </bpel:variable>

Line4: <bpel:variable name="var2"

Line5: messageType="ns0:servicei output ">

Line6: </bpel:variable>

Line7: <bpel:invoke name="Invoke servicei"

partnerLink="servicei"

Line8: outputVariable="var2"></bpel:invoke>

Line9: <bpel:assign validate="no" name="assign var1">

Line10: <bpel:copy>

Line11: <bpel:from part="parameters" variable="var2">

Line12: </bpel:from>

Line13: <bpel:to part="parameters" variable="var1">

Line14: </bpel:to> </bpel:copy> </bpel:assign>

Line15: <bpel:invoke name="Invoke servicej"

Line16: partnerLink="servicej"

Line17: InputVariable="var1"></bpel:invoke>

The translation of such assignments in (lines 9-14) depicts the scenario of the first

step of the communication process when service i prepares itself to commit toward

service j. Thus, the shared buffer in service i, buffer i − j, and a communication

channel in the environment are filled by the sent message, var2 (see Section 3.4.2).

64

Figure 3.11.A illustrates the resulting translation of the above BPEL code. First,

the source state S0 results from the translation of the BPEL activity preceding the

assign activity. It most probably holds the condition which triggers service i to send

its message. The condition oftentimes is a message received at service i. According

to the above code, S0 results from the translation of Invoke service i in lines 7-8

(translation of the invoke activity is also explained in Section 3.4.3). Second, the

transition labeled by an action performed by the service i, servicei.Action = Send-

Var2, and the target state S result from the translation of the assignment activity

in lines 9-14. In state S, the shared buffer i − j and channel1 in the environment

are filled by the sent message, var2. In terms of commitments, S0 contains the

commitment condition while S1 contains the commitment content.

In a nutshell, this rule is technically implemented in the compiler as following:

∗ Determining the assignment type: The compiler recognizes the assignment

type by the variables involved in the assignment activity. If these variables

are messages, the compiler considers that a communication process will take

place. From the variables attributes in the from-tag and the

to-tag (lines 11 & 13) the variables are extracted, var1 and var2. The vari-

ables are defined as messages in the BPEL process by assigning the MessageType

attribute . Lines 1-6 are definitions for var1 and var2. Lines 2 and 5 de-

note that var1 and var2 are messages respectively.

∗ Determining the participating services: The participating services are also

determined by the variables involved in the assignment activity. The services

to which the variables belong are extracted from the inputvariable and

outputvariable attributes in the invoke activities. Lines 16 and 17 de-

note that var1 is an input message for service j while lines 7 and 8 denote that

var2 is an output message for service i. Based on this, the compiler concludes

the correct buffer, the sender and the receiver.

65

∗ Translating into automata: After determining the sender, the receiver and

the message content, the compiler creates a transition and a target state. The

transition is labeled by an action performed by the sender. In the target state,

the shared buffer between the sender and receiver in the sender side is filled by

the sent message. Also, one of the communication channels in the environment

is filled by the sent message. The translation of such assignments affects the

local states for both services: the sender and environment. As explained in

Figure 3.11.A, state S0 and S are global sates. The local states of service i

and the environment are updated in the global target state S. Regarding service

i, it receives a message from service k in the source state S0. This triggers

service i to prepare for sending its message, var2, to service j in the target

state S. In terms of commitment, the local state of service i in S0 contains

the commitment condition, while its local state in S contains the commitment

content (see Section 3.4.2).

– Containers

The containers refer to the variables defined in the BPEL process and their val-

ues are assigned from the services messages. Specifically, the containers are the

variables which are used in the control operations and based on their values the

implicit services behaviors are evaluated to enable the system to react properly. In

contrast, services messages are exchanged without containers in the explicit ser-

vices behaviors (see Section 3.2).

In BPEL, the implicit service behavior is represented by the assignment, one

of the control flow constructs, and invoke activities respectively. The assignment

activity assigns the output message of the sender service to a container in the en-

vironment. Then, the environment analyzes the content held by the container to

choose whether entering in recovery stage or invoking the receiver. So, if the as-

signment activity assigns a variable message to a container such as var1 = var2,

66

this means the message values will be checked by one of the workflow constructs.

Such an assignment depicts the first step of the communication process (see Section

3.4.2).

The following BPEL code represents an example for an implicit communication

process between service i (sender) and service j (receiver). The code, lines 1-7, de-

fines three variables; two messages, var1 and var2, and an integer variable, con1.

The communication process code starts from line 9 to line 16. As explained, the

assignment activity assigns var2, the output message of service i, to an environ-

ment container, con1. In lines 17-18, the environment checks con1 whether it is

less than 5000 or not. In case it is less, service j is invoked to deliver con1, lines

19-29.

Line1: <bpel:variable name="var1"

Line2: messageType="ns:servicej input ">

Line3: </bpel:variable>

Line4: <bpel:variable name="var2"

Line5: messageType="ns0:servicei output ">

Line6: </bpel:variable>

Line7: <bpel:variable name="con1" type="ns3:integer">

Line8: <bpel:invoke name="Invoke servicei"

partnerLink="servicei"

Line9: outputVariable="var2"></bpel:invoke>

Line10: <bpel:assign validate="no" name="assign con1">

Line11: <bpel:copy>

Line12: <bpel:from part="parameters" variable="var2">

Line13: </bpel:from>

Line14: <bpel:to part="parameters" variable="con1">

67

Line15: </bpel:to> </bpel:copy> </bpel:assign>

Line16: <bpel:if name="checkcon1">

Line17: <bpel:condition><![CDATA[$ con1 < 5000]]>

Line18: </bpel:condition>

Line19: <bpel:sequence name="Sequence1">

Line20: <bpel:assign validate="no" name="assign var1">

Line21: <bpel:copy>

Line22: <bpel:from part="parameters" variable="con1">

Line23: </bpel:from>

Line24: <bpel:to part="parameters" variable="var1">

Line25: </bpel:to> </bpel:copy> </bpel:assign>

Line26: <bpel:invoke name="Invoke servicej"

Line27: partnerLink="servicej"

Line28: InputVariable="var1"></bpel:invoke>

Line29: </bpel:sequence>

Line30: <bpel:else>

Line31: <bpel:sequence name="Sequence1">

Line32: ...

Line33: </bpel:sequence>

Line34: </bpel:else>

Line35: </bpel:if>

Similar to the translation of the message variables assignments, the resulting

translation from the containers assignments simulates the first step of the commu-

nication process. Thus, the shared buffer in service i, buffer i − j, and a com-

munication channel in the environment are filled by the sent message, var2 (see

Section 3.4.2). The values of the containers are not assigned until the runtime.

68

As explained in Section 3.2, the possible container values reflect different possible

service behaviors toward a particular contract clause. Thus, the possible container

contents are considered in the translation process.

Figure 3.11.C illustrates the resulting translation of the above BPEL code. First,

the source state S0 results from the translation of the invoke activity in lines 8-9.

Second, the assignment in lines 10-15 is translated into two transitions and two

target states, S1 and S2. The number of transitions equals the number of possi-

ble contents that the container may hold. The resulting transitions are labeled by

actions performed by service i, servicei.Action = Send3000 and servicei.Action

= Send7000. The target states represent the first step of the communication pro-

cess. Thus, the shared buffer between the sender and receiver at the sender side, a

communication channel in the environment and the container are filled by one of

the possible container contents. As explained in Figure 3.11.C , in S1, the shared

buffer i− j in service i and channel1 in the environment are filled by the first pos-

sible content for con1, 3000, while in S2, they are filled by the second possible

content, 7000. The possible container contents are approximate values, they are

extracted from the control operation in which the container is involved. In lines

16-18, If-activity checks the container con1 whether it is less than 5000 or not, so

the compiler generates two random contents: one content is less than 5000, 3000,

and another content is greater than 5000, 7000.

In a nutshell this rule is technically implemented in the compiler as following:

∗ Determining the assignment type: As mentioned before, the compiler rec-

ognizes the assignment type by the variables involved in the assignment activ-

ity. If the assignment assigns a message variable to a container, the compiler

considers an implicit communication process will be triggered. the variables,

var2 and con1, are extracted from the variables attributes in the

from-tag and the to-tag (lines 12 & 13). Line 4 defines var2 as a mes-

69

sage and line 7 defines con1 as a regular integer variable. The compiler con-

siders con1 as a container because of assigning con1 by a value from var2, the

message variable (see Section 3.2).

∗ Determining the participating services: The participating services are also

determined by the variables involved in the assignment activity. The sender

is extracted by matching the message variable with the outputVariable

attribute in the invoke activities. Line 9 denotes that var2 is an output message

for service i. Then, the compiler traces the container during the code to catch

the receiver. Delivering the container to the receiver is done by another assign-

ment in which the container content is assigned to the input message of the

receiver. The assignment-activity in lines 20-25 assigns con1 to var1. var1 is

defined in lines 1-3 as a message. The receiver is determined by determining

the service to which the input message belongs. Lines 26-28 denote that var1

is an input message for service j. Based on this, the compiler chooses the

correct buffer.

∗ Determining the container content: After determining the sender, the re-

ceiver and the correct shared buffer, The remaining part is to determine the

possible container contents by which the shared buffer is filled. The compiler

catches the first control operation in which the container is involved, which

comes after assigning that container. From the condition in the control-flow

construct, the compiler extracts the possible contents. The compiler generates

one example on each case covered by this condition. For example, suppose

x is a container and the condition is 3 < x < 5, the compiler will generate

{2, 4, 6} as possible contents. In the switch-activity, the compiler complies

with the values mentioned in the cases.

∗ Translating into automata: After determining the sender, the receiver, the

correct shared buffers and the message content, the compiler creates the tran-

70

sitions and target states. The transitions are labeled by actions performed by

the sender. In the target states, the shared buffer between the sender and re-

ceiver in the sender side is filled by one of the possible container contents.

Also, one of the communication channels in the environment is filled. The

translation of such assignments impacts the local states of both services: the

sender and environment. As explained in Figure 3.11.C, States S0, S1 and S2

are global sates. The local states of service i and the environment are updated

in the global target states S1 and S2. Service i receives a message from ser-

vice k in the source state S0. This triggers filling the shared buffer i − j in

service i by var2. In terms of commitment, the local state of service i in S0

contains the commitment condition while its local states in S1 and S2 contain

the commitment content (see Section 3.4.2).

– Process variables

The process variables refer to the variables defined in the BPEL process and their

values are not assigned from services messages. Such assignments are translated

into transitions with true as their guards where the new values of the variables held

in the target state (see Figure 3.11.D)

• Invoke-Activities

As explained before, the assignment-activity precedes the invoke-activity to assign the

input message of the receiver to the output message of the sender. The actual transmis-

sion of the message is done by the invoke-activity. The assignment simulates the first

step of the communication process, which is committing, while the invoke simulates

the second step of the communication process, which is fulfilling the commitment (see

Section 3.4.2). Thus the translation of the invoke-activity simulates what happens in the

receiver side.

Let us consider the example of two services i (the sender) and j (the receiver). Figure

71

3.11.B illustrates the resulting translation when service j is invoked. First, the source

state S1 results from the translation of the BPEL activity preceding the invoke activity.

It is not necessary for S1 to be the same state resulting from translation of the assign-

ment activity which assigns the output message of service i to the input message of

service j because the invoke activity may not come directly after the assignment in the

BPEL process. Second, the transition is labeled by an action performed by service i,

servicei.Action = transmissionvar2. The resulting transition is labeled by an action

performed by the sender in the explicit behaviors and by the environment in the implicit

behaviors. In the target sate S2, the shared buffer i − j in service j is filled by the sent

message, var2. Figure 3.11.A combined with Figure 3.11.B show the whole commu-

nication process established in the explicit behavior. By means of the invoke-activity

translation, the shared buffers values in services i and j become equal. The target states

resulting from the translation of the assignments and invoke activities compose the the

accessibility relation.

• If-Activities

The if-activity permits to define two different behaviors of the process depending on

a Boolean condition. Then-branch is executed when the condition is true while the else-

branch when it is false. Thus, to translate the if-activity into automata, each branch is

separately translated. Assume that S1, S ′1 are the beginning and ending states respec-

tively for then-branch, and, similarly, S2, S ′2 for else-branch. The activity is translated

into two transitions: one ends at S1 with the Boolean condition as a guard, while the

other ends at S2 with the negative Boolean condition as a guard. As before, the source

state is the state resulting from the translation of the preceding activity of the if-activity

(see Figure 3.12.A).

72

M

S

G

B

u

f

f

e

r

i

-

K

-

B

u

f

f

e

r

i

-

j

Service i

C

o

m

m

i

t

m

e

n

t

c

o

n

d

i

t

i

o

n

S0 / source State

M

S

G

B

u

f

f

e

r

i

-

K

V

a

r

2

B

u

f

f

e

r

i

-

j

Shared

Buffer Value

S / target State

Service i.Action =SendVar2

S

e

r

v

i

c

e

i

E

n

v

i

r

o

n

m

e

n

t

V

a

r

2

C

h

a

n

n

e

l

M

s

g

1

B

u

f

f

e

r

i

-

j

S

e

r

v

i

c

e

j

C

o

m

m

i

t

m

e

n

t

C

o

n

t

e

n

t

Service i. Action = transmissionvar2

S1 / source State

S

2

/

t

a

r

g

e

t

S

t

a

t

e

A. Variable message translation

B. Invoke activity translation

A

c

c

e

s

s

i

b

l

e

R

e

l

a

t

i

o

n

Service i.Action = Send7000

C. Container translation

C

o

m

m

i

t

m

e

n

t

s

t

a

t

e

F

u

l

f

i

l

l

m

e

n

t

s

t

a

t

e

Service i.Action = Send3000

E

n

v

i

r

o

n

m

e

n

t

V

i

o

l

a

t

i

o

n

V

a

l

u

e

3000

Container

Var2

channel

B

u

f

f

e

r

i

-

K

3

0

0

0

B

u

f

f

e

r

i

-

j

S

e

r

v

i

c

e

i

M

s

g

C

o

m

m

i

t

m

e

n

t

V

a

l

u

e

7

0

0

0

C

o

n

t

a

i

n

e

r

E

n

v

i

r

o

n

m

e

n

t

B

u

f

f

e

r

i

-

K

7

0

0

0

B

u

f

f

e

r

i

-

j

S

e

r

v

i

c

e

i

M

s

g

V

a

r

1

c

h

a

n

n

e

l

M

S

G

B

u

f

f

e

r

i

-

K

-

B

u

f

f

e

r

i

-

j

S

e

r

v

i

c

e

i

Environment

M

S

G

C

h

a

n

n

e

l

S0 / source State

S1/ Target State

S2 / Target State

y := 3y := 1

true

D. Regular Variables translation

Figure 3.11: BPEL translating - Assign and Invoke Activities

• While-Activities

The while-activity is composed of a Boolean condition and a loop body which is

executed as long as the Boolean condition is true. To translate the while-activity into

automata, the loop body is firstly translated. Assume that S, S ′ are beginning and ending

73

states respectively, assume also that S1, S ′1 are beginning and ending states for a BPEL

process coming after the while-activity block. The while-activity is translated into an

empty state S0 preceding S and three transitions. Figure 3.12.B illustrates the guard for

each transition.

• Pick-Activities

The pick-activity is composed of multi branches, each branch is associated with an

event triggering the branch execution. There are basically two types of events. The first

type, onMessage, is the arrival of a new message. The second kind of event, onAletre, is

alarm, which a condition for something to happen. These can be seen as multi-branches

if-activity. Thus, the pick-activities are encoded by translating each branch as an if-

activity (see Figure 3.12.C).

74

C

o

n

d

i

t

i

o

n

i

s

t

r

u

e

C

o

n

d

i

t

i

o

n

i

s

f

a

l

s

e

S / Beginning of then-

Branch

S2 / Beginning of Else-

Branch

S’ / End of then-

Branch

S2' / End of Else-

Branch

A. Translation of IF-activity

C

o

n

d

i

t

i

o

n

i

s

f

a

l

s

e

B. Translation of while-Activity

S / beginning state of the

body

S’ / End state of the body

S1

S1'

S0 / while Head State

C

o

n

d

i

t

i

o

n

i

s

t

r

u

e

T

r

u

e

C

o

n

d

i

t

i

o

n

1

C

o

n

d

i

t

i

o

n

2

C

o

n

d

i

t

i

o

n

4

C

o

n

d

i

t

i

o

n

3

C. Translation of Pick-Activity

a

1

a

2

b

1

c

1

c

2

A1 and b1 and c

A2 and c2

D.Translation of Flow-Activity

75

C

o

n

d

i

t

i

o

n

1

!

C

o

n

d

i

t

i

o

n

1

C

o

n

d

i

t

i

o

n

3

E. Switch-activity translation

T

r

u

e

C

o

n

d

i

t

i

o

n

2

!

C

o

n

d

i

t

i

o

n

2

C

o

n

d

i

t

i

o

n

n

!

C

o

n

d

i

t

i

o

n

3

C

o

n

d

i

t

i

o

n

n

-

1

C

o

n

d

i

t

i

o

n

4

.

Empty States

!

C

o

n

d

i

t

i

o

n

n

Figure 3.12: Translating BPEL - Control Activities

• Flow-Activities

The flow-activity is composed of multi-branches which are executed concurrently.

The links defined in the flow scope enable us to enforce precedence between these ac-

tivities, i.e., they permit synchronization. To encode the Flow-activity, each branch is

separately translated into automata, and then they are combined into a main automaton

by synchronizing the corresponding transitions (see Figure 3.12.D).

• Switch-Activities

The Switch-activity is composed of multi-branches, execution of each one is asso-

ciated with a Boolean condition. The first branch whose condition is true is executed

while the others are ignored. To translate the switch-activity, the branches are separately

translated into automata. An empty state giving off two transitions is added at the begin-

ning of each automaton. The first transition ends at the beginning state with the branch

Boolean condition as a guard. The second transition ends at the empty state belonging to

76

the next branch with a negation for the branch Boolean condition as a guard (see Figure

3.12.E).

• Custom-Activities

The custom-activities are provided to mark the generated automata and select some

particular points to verify the system at. As explained earlier, the custom-activity has

a set of assigned attributes with no internal operations. In fact, they are dealt with as

a special type of assignment-activities where the attributes are considered as assigned

variables. Thus, the compiler defines first the attributes as variables, then the custom-

activities translation follows the process variables translation. Because of their non-

impact on the BPEL-process, the translation results are merged. Figure 3.13 shows an

example where a custom-activity is translated into a transition e0 from S to S0. e0 is

neglected and S0 is merged with the next state.

S0

S1

e

0

e

1

e

1

S2

S

S

Figure 3.13: Translating BPEL - Custom Activities

This section provided a proof of soundness of the translation process. The completeness is

straightforward as all the BPEL constructs are considered.

3.4.4 Encoding Automata into ISPL

The whole BPEL process representing the composition is translated into an automaton and

then the services behaviors are extracted. In this section, we present the extraction and encod-

ing processes. The compiler starts the encoding process at the point marked by the str-label and

77

ends at the point marked by the end-label. A database has been implemented in the compiler

to store the resulting translation of the BPEL process. States table, the key table inside the

database, consists of the following tuple < StateID, StateName, SourceStateID,

ActionName, EffectingService, EffectedService, VaraiableName, VaraiableValue,

ActivityType > . EffectingService and EffectedService denote the sender and receiver

respectively. Each row in the table represents a local state. The action name is the name of the

action that causes the transition to this state, not the action allowed in this state. The Effect-

ingService is the sender which performs this action while the EffectedService is the receiver.

ActivityType denotes the BPEL-activity which is translated in this row. This tuple describes

each transition in the resulting automaton. The extractor and encoder, the main parts in the

compiler responsible to build the ISPL code, consist of SQL statements and stored procedures

which are executed to retriever all the required information to compose the ISPL code. The

encoding rules are described as follows:

1. Local states generation:

As mentioned before, each service has two types of variables; the shared buffers and

the Boolean variable to capture the trace-label values. The extractor initially defines

the shared buffers for each service (each service has one communication buffer for each

other service is interacting with). The service local states are simply generated by eval-

uating its shared buffers and its Boolean variable. Regarding to the environment, it has

three types of variables: communication channels, containers and operational variables.

The environment local states are generated by evaluating its communication channels as

well as all the variables defined in the process.

The following SQL-statement retrieves all possible values for each variable belonging

to service i. It takes the service name as a parameter.

Select distinct EffectedService, VariableName, VariableValue

from States table

78

where EffectedService = ’Servicei’

order by VaraiableName

Then, the encoder formats the SQL-statement output in ISPL as shown in the following exam-

ple:

Vars:

Buffer i j: { Msg1, Msg2, ...};

Buffer i K: { Msg11, Msg12, ...};

i trace : boolean;

end Vars

2. Local actions generation:

As explained in the translation rules earlier, each transition is labeled by action per-

formed by a particular service. The service actions are simply generated by retrieving all

actions performed by this service. The following SQL-statement retrieves all possible

actions belonging to service i. It takes the service name as a parameter.

Select distinct EffectingService, ActionName

from States table

where EffectingService = ’Servicei’

Then, the encoder formats the SQL-statement output in ISPL:

Actions = { SendMsg1, SendMsg2, ... };

3. Protocol generation:

The protocol defines at which state an action becomes allowed. Thus, for any service,

its protocol is extracted by determining the source states for its actions. The service

actions are fired based on the observed values of the communication channels defined in

the environment and not only on the values of its internal buffers. This captures the fact

that the services autonomy is affected by the environment, where they are temporally

disabled until the environment reaches particular states.

79

The following SQL-statement retrieves the allowed actions for each state belonging to

service i:

Select distinct SS.StateID RefStateID, SS.StateName RefStateName,

S.StateID State ID, S.StateName State Name,

S.EffectingService Effecting Service, S.ActionName

from States table S inner join States table SS

on S.SourceStateID = SS.StateID

where S.EffectingService = servicei

order by SS.state id

The extractor executes different stored procedures to get the values of the shared

buffers and the communication channels at each state. Then, the encoder formats the

SQL-statement output in ISPL, such as the following example:

Protocol:

Environment.Ch1 = Msg2 and Buffer i j = Msg2: { SendMsg6,SendMsg8

};

Environment.Ch1 = Msg15 and Buffer i k = Msg3 :{ SendMsg30 };

Other :{ none };

end Protocol

4. Evolution function generation:

For a service, the evolution function describes the evolution of its local states in the

system. Specifically, it returns the next local states given a source state and a transi-

tion. The local states can be affected by actions from other services. Consequently, it is

possible that the transition is not a local transition.

The following ISPL code is an example on the evolution function for service i. As

explained in lines 1-4, service i goes to new state, new value for buffer i k (line 1),

if service k performs its action, K SendMsg i (line 4), and the values of the shared

80

buffer i k in service i and Ch1 in the environment are Msg1 (lines 3 & 4). In

line 5, service i goes to another new state, new value for buffer i j , if it performs

its action, i PrepareSendMsg j , and the values of the shared buffer i k in

service i and Ch1 in the environment are Msg2 (lines 7 & 8).

line1: Buffer i k = Msg2

line2: if (Environment.Ch1 = Msg1

line3: and Buffer i k = Msg1

line4: and ServiceK.Action = K SendMsg i) ;

line5: Buffer i j = Msg3

line6: if (Environment.Ch1 = Msg2

line7: and Buffer i k = Msg2

line8: and Action = i PrepareSendMsg j);

To generate the evolution function for service i, We need to retrieve all attributes of the

States table tuple. In addition, we need to correlate each state in the table with its source

state. The following SQL-statement retrieves all transitions for service i. It executes

an inner join on the same table to retrieve the source states for each state. In fact, the

extractor executes more complicated procedures to resolve hard issues such as a state has

multiple source states, synchronized actions from multiple services (as in the translation

of flow activity) and a transition with conditions.

Select distinct SS.StateID RefStateID, SS.StateName RefStateName,

S.*

from States table S inner join States table SS

on S.SourceStateID = SS.StateID

where S.EffectingService = servicei

order by SS.state id

81

5. Generating the initial state:

The system initial state consists of services initial states. It is expressed by assign-

ments to services local variables. The system evolves from the initial state according to

the protocols and evolution functions, and this process is used to compute the truth value

of formulae specified by the user. The communication channels and shared buffers are

assigned by empty values to denote that there is no communication that has been estab-

lished yet among the services. The variables defined in the BPEL process are initialized

using the same initialization values defined in the BPEL process.

6. Generating evaluation and formula sections:

Evaluation section contains the propositions and basic formulae forming the verifica-

tion properties. This section is built by formalizing the automata states marked by the

translated labels. Specifically, the encoder uses the trace-labels to formalize the types

of the services behaviors, desired or undesired behaviors, and it uses the commitment,

fulfillment and recovery labels to formalize the messages received at the states marked

by those labels.

As mentioned earlier, the trace-label is a Boolean variable. The service behavior is

undesired if the value of this variable is 0. The encoder retrieves the Boolean variable

for each service and then specifies two atomic propositions, RedState and GreenState,

for each variable. the following ISPL code is an example on these atomic propositions

to represent the types of service i behaviors.

iRedstate if (i BehaviorType =0);

iGreenstate if (i BehaviorType =1);

As explained in Section 3.4.3, the custom-activities are translated into automata by defining

their attributes as variables, then the translation follows the translation rule of the assignment of

the process variables. Thereafter, the resulting states are merged with the other states. In fact,

the commitment-ID (defined in Section 3.3) is the key attribute in the commitment, fulfillment

82

and recovery labels. The compiler defines commitment-ID as an integer variable at the begging

of the translation process. The commitment-ID value is 0 in all states, except the marked states

where it has an integer number greater than 0. The encoder retrieves all marked states, and then

generates for each state an atomic proposition formalizing the message it receives (as explained

in Section 3.3, the commitments labels family (commitment, fulfillment and recovery labels)

are inserted before the invoke activities).

The following SQL statement retrieves all marked states in the system. The compiler in-

serts global states into States table, and each row in the table represents a local state inside a

global state. Thus, there are many rows with the same StateID and StateName. Merging the

commitment-labels state with the invoke activity state results to insert two rows in the table

with the same StateID and StateName, one for assigning commitment-ID variable while the

other for filling a buffer in the receiver. The SQL statement retrieves the message and the

buffer on which the receiver gets the message, then the encoder formats the atomic proposition

into ISPL-code as shown below.

SQL statement:

Select distinct EffectedService, VaraiableName, VaraiableValue

from States table

where StateID in (Select StateID

from States table where VaraiableName = ’commitment-ID’

and VaraiableValue <> 0) and VaraiableName <> ’commitment-ID’

ISPL:

Msg1 if (Buffer i-j = Msg1 and Environment.Ch1 = Msg1) ;

83

3.5 Generated Properties and their Expressiveness

A set of properties is automatically produced to verify the system at particular points.

Specifically, the compiler formalizes the actions performed at the marked points and generates

the consequent properties that should hold in the system. These properties reflect key issues

that web developers generally aim to investigate in the composition, such as the commitments

details and the parties’ possible behaviors, implicit and explicit behaviors, evaluation of ser-

vices behaviors in terms of fulfillment and violations, violations consequences and recoveries.

The automatic properties can be used as a foundation to encode more complex properties. The

compiler generates the properties automatically with static format, but the atomic propositions

used in these properties are changed dynamically based on the marked points. This means that

the compiler generates the same type of properties each time is executed, but the propositions

are dynamic.

In a nutshell, generating the verification properties is implemented in the compiler as fol-

lows:

• Generating the atomic propositions:

For each point marked by one of the commitment labels family (commitment, fulfill-

ment and recovery labels), the encoder generates an atomic proposition formalizing the

received message. This step is explained in details in Section 3.4.4.

• Determining labels types and properties components

The encoder depends on the ActivityName attribute in the States table to extract

the label types. Based on the label type and its attributes, the encoder builds the proper-

ties. The points marked by the commitment-label capture the beginnings of the contract

clauses. Mainly, the encoder investigates three key items for any point marked by the

commitment-label: commitment condition, commitment content, and what behaviors re-

spect to this commitment the committed service can engage in. Property (1) is generated

automatically as a result of compiling the commitment-label as follows.

84

A(¬ϕU(ϕ ∧ EX(Ci→jψ) ∧ iGreenstate)) (1)

– The encoder considers the atomic proposition, ϕ, generated from the point marked

by the commitment-label as the commitment condition.

– Based on the debtor and creditor attributes in the commitment-label, the

encoder determines the contracting parties in this clause, and then encodes the

commitment operator, Cdebtor→creditor. As expressed in Property (1), service i is

the debtor while service j is the creditor.

– For each path emerging from the state marked by the commitment-label, the en-

coder explores it and fetches the first message sent by the debtor toward the creditor.

The encoder formalizes the fetched message as an atomic proposition as explained

in Section 3.4.4. This message is considered as the commitment content. As shown

in Property (1), ψ is the sent message, i.e., commitment content, from service i to

service j.

– Based on the value of the debtor trace-label in the explored path, the encoder de-

termines whether the fetched message is an desired or undesired behavior.

– The encoder generates a copy from Property (1) for each explored path to show

what behaviors, with respect to this commitment, the debtor can engage in. The

copies have different atomic propositions, ψ, representing the sent messages with

different atomic proposition (iGreenstate, iRedstate) representing the behavior types

(desired and undesired).

The encoder generates Properties (6-14) by defining a conjunction between the atomic

proposition resulting of compiling the commitment-label and the atomic propositions

resulting of compiling the fulfillment and recovery labels which have the same value of

the commitment-ID in the commitment-label.

Generally, the point marked by the commitment-label catches the firing moment at which

the commitment condition holds. After this moment, service i behaves either toward fulfilling

85

or violating its commitment. Property (1) means that there exists a path where service iwill not

commit to service j about ψ, commitment content, until it receives message ϕ, commitment

condition. This property expresses reachability, which is a particular situation that can be

reached from the initial state via some computation sequences.

The proposed approach uses the CTLC ability in describing the exchanging message to

express the violations.

The commitment operator abstracts the operation of conveying messages, while the atomic

proposition iRedstate is used to indicate violation. Suppose that Properties (2-5) are generated

with respect to a particular commitment between service i (the debtor) and service j (the

creditor). Property (3) means that service iwill conveyMsg2 to service j and this is considered

as a violation, iRedstate. In the case of explicit behaviors, Msg1, Msg2, Msg3 and NullMsg

represent the service i’s behaviors toward its commitment. In the case of implicit behaviors,

Msg1, Msg2, Msg3 and NullMsg represent what the environment expects from service i

toward its commitment.

A(¬Msg0 U(ϕ ∧ EX(Ci→jMsg1) ∧ iGreenstate)) (2)

A(¬Msg0 U(ϕ ∧ EX(Ci→jMsg2) ∧ iRedstate)) (3)

A(¬Msg0 U(ϕ ∧ EX(Ci→jMsg3) ∧ iRedstate)) (4)

A(¬Msg0 U(ϕ ∧ EX(Ci→jNullMsg) ∧ iRedstate)) (5)

Web developers can catch any missing behaviors in the design with respect to a particular

contract clause just by reviewing these copies independently of their satisfiability in the system.

Property (5) is generated when one of the explored paths does not observe any behavior from

service i toward its commitment where NullMsg is null. Property (5) indicates that some

clauses are not implemented in the system. This property will be engendered, for instance,

if a service assigns a container and then this container is unchecked by any of the control

operations in the environment. Entire absence of Properties (3),(4) and (5) refers to an absolute

compliance of service i toward its commitment.

86

More faults in the system can be discovered by scanning the satisfiability of the generated

copies. For instance, an incorrect or incomplete commitment implementation is captured when

Property (2) is false. This refers to the absence of accessibility relation, which means that

service j does not receiveMsg1. However, unsatisfiability of Property (3) does not necessarily

mean an existence of faults; because in the violation cases, most of the compositions stop the

communication process.

In fact, the previous properties reflect immediate reactions of service i toward its com-

mitment. However, services do not always show immediate reactions, so the operator X is

replaced by the operator F in cases of the non-immediate reactions. The system engineers

may still wish to guarantee that the commitment held at the marked point will eventually hap-

pen in their design as well as it will not happen without its condition. This is classified under

the notions of liveness and safety properties which state that a particular thing will eventually

happen and something bad never happens respectively. Property (6) is generated to achieve

this goal. It means that in all paths eventually the condition will happen and service i will

commit to service j. The importance of this property is checking whether the system recovers

from service i’s violations by forcing it to commit again to service j or not.

AF (ϕ ∧ (Ci→jψ)) (6)

Still, these properties do not verify the commitments completely; precisely, commitments

fulfillment is missing. The key issue related to the fulfillment is checking whether the fulfill-

ment takes place in all commitment paths or not. In the following, two properties are auto-

matically proposed to serve this goal (Properties (7) and (8)). Property (7) means in all paths

globally if service i commits to service j, then in all future computations, the fulfillment will

happen. If Property (7) is false, it can be stated by Property (8) whether the fulfillment may

not take place in any path or may take place in some paths and not in the remains. Property

(8) means in all paths globally, if service i commits to service j, then in some future compu-

tations, the fulfillment will happen. The two properties together determine exactly the case.

87

When they are true, it is inferred that the commitment will be correctly realized and delivered

to the creditor.

AG((Ci→jψ)→ AF (Fu(Ci→jψ))) (7)

AG((Ci→jψ)→ EF (Fu(Ci→jψ))) (8)

One may want to check the systems resilience in dealing with the violation cases. Par-

ticularly, whether the system can recover or not and what reactions the system provides. As

mentioned earlier, red states denote the violations. So, the recoveries are observed when the

system switches from the red states to the green states. Initially, the compiler generates Prop-

erties (9) and (10) which examine generally the system paths in terms of totally compliant and

unrecovered violations respectively.

EG(iGreenstate) (9)

EF (G(iRedstate)) (10)

Property (11) is automatically generated to know whether the system can recover from a

particular violation or not. It means that in some paths eventually the commitment will not take

place and there is no way for service i to recover from its situation. If Property (11) is true, this

reports unrecovered violations associated with this commitment. Property (12) is generated to

determine unrecovered violations.

EF ((¬Ci→jψ) ∧ EG(iRedstate)) (11)

AG((Ci→jψ1)→ AF ((iRedstate) ∧ (iRedstate U iGreenstate))) (12)

Indeed, these properties are not able to show recoveries details. The recoveries may be ap-

plicable in the form of penalties, additional rights to some party, and, possibly, compensations

paid to the affected services. Properties (13) and (14) formalize for each violation its recovery

via the recovery-labels. Precisely, the compiler formalizes the action ω captured at the point

88

where the recovery-label is inserted. The captured events may be applicable in form of com-

mitments or fulfillments. Property (13) means that in all paths globally if service i violates

its commit toward service j, then the recovery represented by ω will be executed in all future

computations. One may want to check if a recovery may result to force service i to recommit

to service j about the same violated commitment. Property (14) is generated to do that.

AG(Ci→jψ1 ∧ iRedstate → AF (iRedstate ∧ (iRedstate U (iGreenstate ∧ ω)))) (13)

AG(ω → AF (Ci→jψ1) ∧ AF (Fu(Ci→jψ1))) (14)

89

CHAPTER 4. DETAILED CASE STYDY AND EXPERIMENTAL

ANALYSIS

In this section, we apply our approach on a case study, which was presented in (56) to verify

service composition with MCMAS. We selected this case study, so that we can compare our

results with those obtained from (56). The case study is summarized into subcontracts where

each one is represented here as a commitment from one of the participating services toward

another one. In the scenario, the participating contract parties include a principal software

provider (PSP), a software provider (SP), a software client (C), a testing agency (T), a hardware

supplier (H), and a technical expert (E). Table 1 illustrates these commitments, the conditions

under which some local violations may occur and the recoveries if any.

Table 4.1: Case study: contract clauses

Clause

number

Contract’s content Creditor

Service

Message Name Debtor

service

Violation condition Recovery

1 Client C would like to have

a piece of software developed

and deployed on hardware. To

do that, the client C initiates

this scenario by sending a re-

quest to the PSP asking for the

needed software.

C Software request PSP

2 PSP sends this request to SP PSP component request SP

Continued on next page

90

Table 4.1 – Continued from previous page

Clause

number

Contract’s content Creditor

Service

Message Name Debtor

service

Violation condition Recovery

3 SP replies to the PSP’s request

by sending the needed compo-

nents. And then the PSP inte-

grates these components.

SP components PSP

4 Through the integration pro-

cess, the PSP has to update

the client C twice about the

progress of the software devel-

opment.

PSP Update process C If PSP does not send his

updates as per schedule

charging a penalty

5 After the first update from the

PSP, C can update the soft-

ware specification by sending a

change request. This at no cost

before the second round of up-

dates.

C Change request PSP Any change required by

the client after the second

update

The client may be charged

a penalty at PSP’s dis-

cretion. If the penalty

is levied, the client can

recover from this viola-

tion by paying the penalty

or by withdrawing the re-

quest for changes.

6 After the PSP has integrated

the components, he sends the

integrated software to T for

testing.

PSP Integrated Components T

7 If the integration test fails, the

components are revised and

tested again. Components can

be revised twice.

T Revised component req PSP The third test fails. C may cancel the contract

with PSP

8 Through the testing process,

PSP has to update SP and C

concurrently after each time he

gets the result from T.

PSP Testing result SP PSP does not send this up-

date as per schedule

charged a penalty

9 If the testing succeeds, PSP

delivers the integrated compo-

nents to C.

PSP Software C

Continued on next page

91

Table 4.1 – Continued from previous page

Clause

number

Contract’s content Creditor

Service

Message Name Debtor

service

Violation condition Recovery

10 After getting the integrated

components, C then has to pay

PSP as a first payment.

C Payment PSP C does not pay to PSP PSP does not send the

code and then the process

is stopped

11 After getting the integrated

components, C then invokes H

to order the hardware.

C Hardware Req H

12 H then replays by sending the

needed hardware

H Hardware C H does not deliver the

Hardware

The process is stopped

13 Finally C invokes E to get the

software deployed.

C Deployment Req E

14 If the software cannot be de-

ployed, then the hardware and

the components have to be re-

evaluated. Software compo-

nents can be revised twice at no

penalty.

E Revised Request H third test fails C cancels the contract with

PSP and H.

15 If the software and hardware

are deployed correctly, then C

has to pay the second payment

to PSP.

C Second Payment PSP C does not pay for PSP process is stopped

16 After the payment, E has to

send the deployed component

to the client

E Deployed Software C

17 PSP has to pay SP PSP payment portion SP PSP does not pay SP PSP has to be charged di-

rectly.

18 After the payment, the process

will be successfully finished

Various properties of contract details for the motivating case study are formalized. Some

of these properties, as explained earlier, are generated automatically based on the custom ac-

92

tivities, while the others are generated manually. An illustrative example, suppose that the

BPEL-process representing the case study is marked to cover the contract clauses 4 and 8 de-

scribed in Table 4.1. We only explain these two clauses as they cover the key cases addressed

in the proposed approach, specifically, the recovery process.

As mentioned in clause 4 (Table 4.1), PSP may show two behaviors. First, he commits to

the client to send an updating message when he receives the components. Second, he does not

send the updating message. Formulas 16 and 17 specify these behaviors respectively.

A(¬componentsU (components ∧ EX(CPSP→Cupdate process))) (16)

A(¬componentsU (components ∧ EX(CPSP→Cnull ∧ PSPRedstate))) (17)

Unlike Formula 17 that returns false, Formula 16 holds in the system. In fact, Formula 17

represents a violation in which the debtor-service does not send any message to the creditor

service, which means unsatisfiability of the social accessibility relation∼PSP→C . As expressed

in Formula 18, if PSP commits to send the update message, then in all paths eventually C will

receive it.

AG(CPSP→Cupdate process → AF (Fu(CPSP→Cupdate process))) (18)

In case PSP does not send the update message, it is considered as a violation, which can

be recovered from by charging PSP a penalty. As expressed in Formula 19, charging the PSP

brings him back to the green state.

AG(CPSP→Cnull→

AF (PSPRedstate ∧ (PSPRedstate U (PSPGreenState ∧ Fu(CPSP→CCharging))))) (19)

Clause (8) (Table 4.1) is similar to Clause (4); PSP has to update C about the testing-results

after each time he gets the result from T. Thus, the following properties, similar to the above,

are generated.

93

A(¬ResultfromT U (ResultfromT ∧ EX(CPSP→Ctesting result))) (20)

A(¬ResultfromT U (ResultfromT ∧ EX((CPSP→Cnull) ∧ PSPRedstate))) (21)

AG(CPSP→Ctesting result → AF (Fu(CPSP→Ctesting result))) (22)

AG(CPSP→Cnull→

AF (PSPRedstate ∧ (PSPRedstate U (PSPGreenState ∧ Fu(CPSP→CCharging))))) (23)

The first violation for C is spotted when he gets the software, which means that C is always

in compliance until getting the software where he becomes committed to PSP about the first

payment. Properties 24 and 25 describe the behaviors of C towards this commitment. Property

25 encodes a possibility for C to not fulfill his commitment by sending a cancel message. It

is desired to make sure that the payment is successfully delivered to PSP in case C has paid.

Property 26 states that if C commits to PSP about the first payment, then in all paths eventually

PSP will get the amount; the fulfillment will be held in all paths. As expressed by properties

27 and 28, the violation case is handled in the system by stopping the process where C is

blocked. The system cannot recover from this situation so the client becomes always in red

state. Properties 24, 25, 26 hold while 27 and 28 are false.

A(¬softwareU (software ∧ EX(CC→PSPfirst payment))) (24)

A(¬softwareU (software ∧ EX((CC→PSPCancel) ∧ CRedstate))) (25)

AG(CC→PSPfirst payment → AF (Fu(CC→PSPfirst payment))) (26)

AG(CC→PSPCancel→

AF (CRedstate ∧ (CRedstate U (CGreenState ∧BlockingProcess)))) (27)

AG(BlockingProcess→ (AF (CC→PSPnull) ∧ AF (Fu(CC→PSPnull)))) (28)

The second violation case for C takes place when he would not pay the final payment for

PSP after getting the deployed software. This violation is handled in the same manner in which

the first payment is handled. So, the following properties are similar to those through which the

94

C’s second commitment is verified. The only difference is the commitment condition which,

in our case, is getting the deployed software.

A(¬DeplsoftwareU (Deplsoftware ∧ EX(CC→PSP second payment))) (29)

A(¬DeplsoftwareU (Deplsoftware ∧ EX((CC→PSPCancel) ∧ CRedstate))) (30)

AG(CC→PSP second payment → AF (Fu(CC→PSP second payment))) (31)

AG(CC→PSPCancel→

AF (CRedstate ∧ (CRedstate U (CGreenState ∧BlockingProcess)))) (32)

AG(BlockingProcess→ (AF (CC→PSPnull) ∧ AF (Fu(CC→PSPnull)))) (33)

In all paths, PSP must pay to SP his portion once C has paid. The system will not allow PSP

to escape from his commitment, so as recovery in the violation case, PSP pays SP inevitably.

As expressed by the following property, the recovery forces eventually PSP to commit towards

SP to send him his portion and satisfy his commitment.

AG(Fu(CC→PSP second payment)→

AF ((CPSP→SP portion payment) ∧ AF (Fu(CPSP→SP portion payment)))) (34)

There is a trace in which the software will be eventually delivered once C has requested it

from PSP. Property 35 describes this particular situation.

AG(¬software request U (software request ∧ EF (Fu(CPSP→Csoftware)))) (35)

Always in all paths, if PSP commits to C about the software, then there is a path in which

the software will be eventually delivered to the client provided that the software has not un-

dergone more than two times the testing process. This is expressed in property 36 which is

satisfied in the system.

AG(CPSP→Csoftware→ EF (Fu(CPSP→Csoftware) ∧ TestingLess 3)) (36)

95

To make sure that the software will be never delivered to C if it does not pass the testing

process from the first two times, the property 37 is used. This property verifies if there is a

possible computation in which eventually the software undergoes the testing process more than

three times and then it is delivered for the client. This property is false in our case study.

EF (TestingLess 3 ∧ Fu(CPSP→Csoftware)) (37)

Failing to pass the testing process in the first two times is considered as a violation and the

system must handle the case. As mentioned in the example, the system cancels the contract

with PSP if the integrated software does not pass the testing process into two rounds as a

maximum. The cancelation cannot recover the system, so PSP becomes always in red state.

Property 38, which holds in the example, formalizes this issue.

AG((EF (Testingmore 3)∧CC→PSP software)→ A(Cancel∧AG(PSPRedstate))) (38)

The system allows C to update the software specifications with no cost after the first update-

round. Property 39 checks the existence of a path in which C can eventually request a change

in the software specifications. As a result of this request, PSP must respond by revising the

components of the software. Property 40 is provided to make sure that in all paths PSP eventu-

ally revises the software’s components once the changing request is sent by C. these properties

are both holding in the case study.

AG(FirstRoundUpdate→ EF (Fu(CC→PSPChangeRequest1))) (39)

AG(Fu(CC→PSPChangeRequest1)→ AF (Fu(CPSP→Crevisedcomponent))) (40)

It is possible for C to make update request after the second round, but it is considered as

a type of violation. However, the scenario here is similar to the previous one except that C,

in addition, must be charged penalty. Property 41 states that always in all computations if the

second update round comes, then there is a trace in which C can request an update for the

software specifications. This property is true. As expressed in property 42, once the update

96

request after the second round is sent, in all paths PSP must revise the software components

as C desires. The system gives C the chance to withdraw his request but if he insists to update

the specifications, then the system recovers by charging him. Property 43 is provided to serve

this goal. It verifies if in all paths C is charged, PSP revises the software’s components and C’s

reaches a green state again after his request for an update in the specifications. Because of the

withdraw option, this property is false. However, property 44, which instead of considering

all the paths as in property 43, it only considers the possibility of finding a path, holds in the

system.

AG(SecondRoundUpdate→ EF (Fu(CC→PSP changeRequest2))) (41)

AG(Fu(CC→PSP changeRequest2)→ AF (Fu(CPSP→Crevisedcomponent))) (42)

AG(CC→PSP changeRequest2→ AF (Fu(CC→PSPCharging) ∧

AF (Fu(CPSP→Crevisedcomponent) ∧ EG(CGreenstate)))) (43)

AG(CC→PSP changeRequest2→ EF (Fu(CC→PSPCharging) ∧

AF (Fu(CPSP→Crevisedcomponent) ∧ EG(CGreenstate)))) (44)

To guarantee that C does not completely get the software until he pays the first payment to

PSP, property 45 is satisfiable in the example.

A(¬GettingSoftwareCodeU Fu(CPSP→CFirstPayment)) (45)

In the same way, property 46 is provided to guarantee that C does not get the hardware

until he pays the second payment to PSP. This property also holds in the example.

A(¬DeployedSoftwareU Fu(CPSP→CSecondpayment)) (46)

In some paths, the software can be eventually integrated, tested and deployed if PSP and H

fulfill their commitments about software and hardware respectively. This property (47) is true

in the example.

97

AG(Fu(CPSP→Csoftware) ∧ EF (Fu(CH→CHardware))→

EF (Fu(CE→CDeployedsoftware))) (47)

For more clarification and better understanding of the proposed approach, we provide de-

tails about clause 10 (see Table 4.1) in Appendices A and B. Figure 1 shows section of the

BPEL process file which implements clause 10. Figures 2, 3, and 4 show section of the gen-

erated ISPL code for the Environment, C, and PSP respectively. Finally, Figure 5 presents the

generated properties.

We are not aware of any work supporting commitment properties in contract-oriented set-

tings to compare with in terms of execution statistics of the verification process (e.g., execution

time, memory, number of states). However, the closest work to ours is the framework proposed

in (57), which is based on epistemic logic. Table 4.2 compares those execution statistics in the

two proposals using the same case study On a machine running Windows 7 Enterprise on an

Intel(R) Core (TM) i7 2.6GHz with 9GB memory. It is worth mentioning that the techniques

used in the two approaches are different and also the models generated are different (see Sec-

tion 1.4 for the technical comparison). The main point in this empirical comparison is that the

size of the model in our approach is smaller than the one from (57). This is mainly because in

our approach the service composition is explicitly modeled as the environment agent, which

allows us to better control the possible actions that services can perform. Consequently, the

number of reachable states in our approach is smaller. This justifies why our approach shows

better performance in terms of execution time and memory usage.

Table 4.2: Comparison with Lomuscio’s Approach (57)
Proposed Approach Lomuscio’s Approach (57)

Number of BDD variables 150 134
Number of properties 28 22

Execution time 1.132 sec 9 sec
Memory consumption 8 MB 16 MB

Number of Global States 642 13799

98

CHAPTER 5. CONCLUSION AND FUTURE WORK

5.1 Summary of Contributions

In this thesis, we proposed an automatic novel approach to verify the correctness and ro-

bustness of web services compositions designed by BPEL. The approach starts by marking

the BPEL process to represent the specifications. Custom activities, called labels, are created

to mark the BPEL process. In addition to represent the specifications, the labels are used

to determine the points at which the system engineers desire to verify the composition. We

implemented a tool translating automatically the marked BPEL process into ISPL code and

generating the verification properties. The CTLC logic, expressive enough to represent details

of the contracts regulating MASs, is used to verify the web service composition. Translation

rules are provided for transforming BPEL process into ISPL implementing a communication

infrastructure to apply the CTLC logic. The tool has been implemented to provide a fully auto-

matic verification process. Thereafter, the resulting code together with the required properties

against which the system will be checked are used as inputs to the MCMAS model checker

that supports CTLC. MCMAS shows then whether the properties are satisfied or not in the

system. We have discussed our approach using a case study and the simulation results shows

that the whole approach is promising in terms of performance.

The approach has many salient features distinguishing it from the literature. First, we opti-

mize the verification process by marking the specifications instead of fully modeling the whole

specification set separately; which also decreases the change of having errors in representing

the specifications and time consumption. Second, the verification properties are generated au-

99

tomatically; they are extracted from the composition implementation. The approach extracts

what properties the system exhibits rather than checking some properties randomly on the sys-

tem. Some faults are discovered just by observing the existence and absence of some types of

generated properties without verifying them in the system. Third, our approach allows verify-

ing the composition partially and at particular points. Fourth, we brought a rich and expressive

range of specifications coming directly from multi-agent systems theories and applied them

into web services environments. Fifth, a powerful representation of the contracts regulating

web services is provided. Services’ behaviors are described in terms of contract-compliant,

violations, and recoveries. We can reason about multiple violations as required, respect to a

particular contract clause. Sixth, our approach is realistic and rational. It 1) considers web

services as black boxes, which hide their internal implementations; and 2) realizes the chal-

lenges, difficulties and sometimes the inability to model the specifications, i.e. commitments

mentioned in the contracts, separately or to compile them from their informal representations.

Seventh, the approach is automatic and paired with a state-of-the-art model checker for multi-

agent systems, thereby enabling the possibility of verifying very large state spaces such as

those arising from real scenarios.

5.2 Future Work

One of the limitations of this work is the common problem of model checking, which is

state explosion problem. The other limitation is related to the MCMAS model checker itself,

which cannot define concurrent behaviors of the same service. On the other hand, we are

investigating the extension of the present framework to generate more complicated properties

formalizing different types of actions and commitments, such as, the actions that go beyond

the exchanging messages, or the commitments which have interventions from the environment

or other services. This approach limited the services’ roles into exchanging messages because

of unawareness of their internals. As future work we aim to extend the framework to verify

100

the composition if there is possibility to get the actual code of each participating service.

101

BIBLIOGRAPHY

[1] ALONSO, G., CASATI, F., KUNO, H., AND MACHIRAJU, V. Web Services: Con-

cepts, Architectures and Applications, 1st ed. Springer Publishing Company, Incorpo-

rated, 2010.

[2] ALVES, A., ARKIN, A., ASKARY, S., AND BARRETO, C. Web Services Business

Process Execution Language Version 2.0 (OASIS Standard). WS-BPEL TC OASIS,

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007.

[3] ARDAGNA, D., COMUZZI, M., MUSSI, E., PERNICI, B., AND PLEBANI, P. Paws: A

framework for executing adaptive web-service processes. Software, IEEE 24, 6 (2007),

39–46.

[4] ARKIN, A. Business Process Modeling Language (BPML). Tech. rep., Business Process

Management Initiative (BPMI), 2002.

[5] ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D., KATZ, R., KONWINSKI, A.,

LEE, G., PATTERSON, D., RABKIN, A., STOICA, I., AND ZAHARIA, M. A view of

cloud computing. Communications of the ACM 53, 4 (2010), 50–58.

[6] BAIER, C., AND KATOEN, J. Principles of Model Checking (Representation and Mind

Series). The MIT Press, 2008.

[7] BALDONI, M., BAROGLIO, C., AND MARENGO, E. Behavior-oriented commitment-

based protocols. In Proceedings of the 2010 Conference on ECAI 2010: 19th European

102

Conference on Artificial Intelligence (Amsterdam, The Netherlands, The Netherlands,

2010), IOS Press, pp. 137–142.

[8] BALDONI, M., BAROGLIO, C., MARTELLI, A., AND PATTI, V. Verification of protocol

conformance and agent interoperability. In Computational Logic in Multi-Agent Systems

(London, UK, 2005), Springer, pp. 265–283.

[9] BENTAHAR, J., EL-MENSHAWY, M., QU, H., AND DSSOULI, R. Communicative

commitments: Model checking and complexity analysis. Knowledge-Based Systems 35

(2012), 21–34.

[10] BENTAHAR, J., MOULIN, B., MEYER, J., AND CHAIB-DRAA, B. A logical model

for commitment and argument network for agent communication. In Proceedings of

the Third International Joint Conference on Autonomous Agents and Multiagent Systems

(Washington, DC, USA, 2004), IEEE Computer Society, pp. 792–799.

[11] BENTAHAR, J., MOULIN, B., MEYER, J., AND LESPÉRANCE, Y. A new logical se-

mantics for agent communication. In Proceedings of the 7th International Conference

on Computational Logic in Multi-agent Systems (Berlin, Heidelberg, 2007), Springer-

Verlag, pp. 151–170.

[12] BENTAHAR, J., YAHYAOUI, H., KOVA, M., AND MAAMAR, Z. Symbolic model check-

ing composite web services using operational and control behaviors. Expert Systems with

Applications 40, 2 (2013), 508–522.

[13] BERARDI, D., CALVANESE, D., DE GIACOMO, G., LENZERINI, M., AND MECELLA,

M. Automatic service composition based on behavioral descriptions. International Jour-

nal of Cooperative Information Systems 14, 4 (2005), 333–376.

[14] BLAKE, M. B., CUMMINGS, D. J., BANSAL, A., AND BANSAL, S. K. Workflow

composition of service level agreements for web services. Decision Support Systems 53,

1 (2012), 234–244.

103

[15] BOUTROUS-SAAB, C., COULIBALY, D., HADDAD, S., MELLITI, T., MOREAUX, P.,

AND RAMPACEK, S. An integrated framework for web services orchestration. Interna-

tional Journal of Web Services Research 6, 4 (2009), 1–29.

[16] BOZKURT, M., HARMAN, M., AND HASSOUN, Y. Testing verification in service-

oriented architecture: A survey. Software Testing, Verificaton and Reliability 23, 4 (2012),

261 – 313.

[17] CASATI, F., AND SHAN, M. Dynamic and adaptive composition of e-services. Informa-

tion Systems 26, 3 (2001), 143–163.

[18] CIMATTI, A., CLARKE, E. M., GIUNCHIGLIA, E., GIUNCHIGLIA, F., PISTORE, M.,

ROVERI, M., SEBASTIANI, R., AND TACCHELLA, A. Nusmv 2: An opensource tool

for symbolic model checking. In Proceedings of the 14th International Conference on

Computer Aided Verification (London, UK, UK, 2002), Springer-Verlag, pp. 359–364.

[19] CLARKE, E., EMERSON, E. A., AND SISTLA, A. P. Automatic verification of finite-

state concurrent systems using temporal logic specifications. ACM Transactions on Pro-

gramming Languages and Systems 8, 2 (1986), 244–263.

[20] CLARKE, E., GRUMBERG, O., AND PELED, D. Model Checking. The MIT Press,

Cambridge, 1999.

[21] CLARKE, E., GRUMBERG, O., AND PELED, D. Model Checking. MIT Press, 2000.

[22] CLARKE, E. M., AND EMERSON, E. A. Design and synthesis of synchronization skele-

tons using branching-time temporal logic. In Logic of Programs, Workshop (London,

UK, UK, 1982), Springer-Verlag, pp. 52–71.

[23] CRAVEN, R., AND SERGOT, M. Agent strands in the action language. Journal of Applied

Logic 6, 2 (2008), 172–191.

104

[24] DASTANI, M., HINDRIKS, K. V., AND MEYER, J. Specification and Verification of

Multi-agent Systems. Springer Publishing Company, Incorporated, 2010.

[25] DESAI, N., CHENG, Z., CHOPRA, A. K., AND SINGH, M. P. Toward verification of

commitment protocols and their compositions. In Proceedings of the 6th International

Joint Conference on Autonomous Agents and Multiagent Systems (New York, NY, USA,

2007), ACM, pp. 144–146.

[26] DESAI, N., CHOPRA, A. K., AND SINGH, M. P. Amoeba: A methodology for modeling

and evolving cross-organizational business processes. ACM Transactions on Software

Engineering and Methodology 19, 2 (2009), 1–45.

[27] DESAI, N., NARENDRA, N. C., AND SINGH, M. P. Checking correctness of business

contracts via commitments. In Proceedings of the 7th International Joint Conference on

Autonomous Agents and Multiagent Systems (Richland, SC, 2008), International Foun-

dation for Autonomous Agents and Multiagent Systems, pp. 787–794.

[28] DUMEZ, C., SIDI MOH, A. N., GABER, J., AND WACK, M. Modeling and specification

of web services composition using UML-S. Next Generation Web Services Practices,

International Conference on (2008), 15–20.

[29] DUSTDAR, S., AND SCHREINER, W. A survey on web services composition. Interna-

tional Journal of Web and Grid Services 1, 1 (2005), 1–30.

[30] EL-MENSHAWY, M., BENTAHAR, J., AND DSSOULI, R. Verifiable Semantic Model for

Agent Interactions Using Social Commitments, vol. 6039 of Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2010, ch. 8, pp. 128–152.

[31] EL-MENSHAWY, M., BENTAHAR, J., EL KHOLY, W., AND DSSOULI, R. Verifying

conformance of multi-agent commitment-based protocols. Expert Systems with Applica-

tions 40, 1 (2013), 122–138.

105

[32] EL-MENSHAWY, M., BENTAHAR, J., KHOLY, W. E., AND DSSOULI, R. Reducing

model checking commitments for agent communication to model checking ARCTL and

GCTL*. Autonomous Agents and Multi-Agent Systems 27, 3 (2013), 375–418.

[33] EMERSON, E. A., AND HALPERN, J. Y. Decision procedures and expressiveness in

the temporal logic of branching time. In Proceedings of the Fourteenth Annual ACM

Symposium on Theory of Computing (New York, NY, USA, 1982), ACM, pp. 169–180.

[34] ENDREI, M., ANG, J., ARSANJANI, A., CHUA, S., COMTE, P., KROGDAHL, P., LUO,

M., AND NEWLING, T. Patterns: Service-Oriented Architecture and Web Services. IBM

Redbooks, 2004.

[35] FAGIN, R., AND HALPERN, J. Y. Reasoning about knowledge and probability. Journal

of the ACM 41, 2 (1994), 340–367.

[36] FAGIN, R., HALPERN, J. Y., MOSES, Y., AND VARDI, M. Y. Reasoning about Knowl-

edge. The MIT Press, Cambridge, 1995.

[37] FAN, S., ZHAO, J. L., DOU, W., AND LIU, M. A framework for transformation from

conceptual to logical workflow models. Decision Support Systems 54, 1 (2012), 781–794.

[38] FOSTER, H., UCHITEL, S., MAGEE, J., AND KRAMER, J. Ltsa-ws: A tool for model-

based verification of web service compositions and choreography. In Proceedings of the

28th International Conference on Software Engineering (New York, NY, USA, 2006),

ACM, pp. 771–774.

[39] FU, X., BULTAN, T., AND SU, J. Analysis of interacting bpel web services. In Pro-

ceedings of the 13th International Conference on World Wide Web (New York, NY, USA,

2004), ACM, pp. 621–630.

[40] GIUNCHIGLIA, E., LEE, J., LIFSCHITZ, V., MCCAIN, N., AND TURNER, H. Non-

monotonic causal theories. Artificial Intelligence 153, 1-2 (2004), 49–104.

106

[41] GOTNES, T., VAN DER HOEK, W., RODRGUEZ-AGUILAR, J. A., SIERRA, C., AND

WOOLDRIDGE, M. On the logic of normative systems. In IJCAI (2007), M. M. Veloso,

Ed., pp. 1175–1180.

[42] GROUP, W3C W. Web Services Glossary. http://www.w3.org/TR/ws-gloss/, 2007.

[43] HAN, M., AND HOFMEISTER, C. Modeling and verification of adaptive navigation in

web applications. In Proceedings of the 6th International Conference on Web Engineer-

ing (New York, NY, USA, 2006), ACM, pp. 329–336.

[44] HOLZMANN, G. J. The model checker spin. IEEE Transactions on Software Engineering

23, 5 (1997), 279–295.

[45] HU, V., KUHN, D., AND XIE, T. Property verification for generic access control mod-

els. In Embedded and Ubiquitous Computing, 2008. EUC ’08. IEEE/IFIP International

Conference on (2008), IEEE Computer Society, pp. 243–250.

[46] HUANG, H., TSAI, W., PAUL, R., AND CHEN, Y. Automated model checking and

testing for composite web services. In 2008 11th IEEE International Symposium on Ob-

ject and Component-Oriented Real-Time Distributed Computing (ISORC) (Los Alamitos,

CA, USA, 2005), IEEE Computer Society, pp. 300–307.

[47] HULL, R., BENEDIKT, M., CHRISTOPHIDES, V., AND SU, J. E-services: A look behind

the curtain. In Proceedings of the Twenty-second ACM SIGMOD-SIGACT-SIGART Sym-

posium on Principles of Database Systems (New York, NY, USA, 2003), ACM, pp. 1–14.

[48] JAMSHIDI, M. Systems of Systems Engineering: Principles and Applications, 1 ed. CRC

Press, 2008.

[49] KAVANTZAS, N., BURDETT, D., RITZINGER, G., FLETCHER, T., LAFON, Y.,

AND BARRETO, C. Web services choreography description language version 1.0.

http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109, 2007.

107

[50] KAZHAMIAKIN, R., PISTORE, M., AND SANTUARI, L. Analysis of communication

models in web service compositions. In Proceedings of the 15th International Conference

on World Wide Web (New York, NY, USA, 2006), ACM, pp. 267–276.

[51] KREGER, H. Web services conceptual architecture (wsca 1.0). Tech. rep., IBM Software

Group, May 2001.

[52] LAMANNA, D. D., SKENE, J., AND EMMERICH, W. Slang: A language for defining

service level agreements. In Proceedings of the The Ninth IEEE Workshop on Future

Trends of Distributed Computing Systems (Washington, DC, USA, 2003), IEEE Com-

puter Society, pp. 100–107.

[53] LAZOVIK, A., AIELLO, M., AND PAPAZOGLOU, M. Associating assertions with busi-

ness processes and monitoring their execution. In ICSOC ’04: Proceedings of the 2nd

international conference on Service oriented computing (New York, NY, USA, 2004),

ACM Press, pp. 94–104.

[54] LAZOVIK, A., AIELLO, M., AND PAPAZOGLOU, M. Planning and monitoring the ex-

ecution of web service requests. International Journal on Digital Libraries 6, 3 (2006),

235–246.

[55] LOMUSCIO, A., QU, H., AND RAIMONDI, F. Mcmas: A model checker for the veri-

fication of multi-agent systems. In Proceedings of the 21st International Conference on

Computer Aided Verification (Berlin, Heidelberg, 2009), Springer-Verlag, pp. 682–688.

[56] LOMUSCIO, A., QU, H., AND SOLANKI, M. Towards verifying compliance in agent-

based web service compositions. In AAMAS (1) (2008), IFAAMAS, pp. 265–272.

[57] LOMUSCIO, A., QU, H., AND SOLANKI, M. Towards verifying contract regulated

service composition. Autonomous Agents and Multi-Agent Systems 24, 3 (2012), 345–

373.

108

[58] LU, H., CHAN, W. K., AND TSE, T. H. Testing context-aware middleware-centric

programs: A data flow approach and an rfid-based experimentation. In Proceedings of the

14th ACM SIGSOFT International Symposium on Foundations of Software Engineering

(New York, NY, USA, 2006), ACM, pp. 242–252.

[59] MAJITHIA, S., WALKER, D., AND GRAY, W. A framework for automated service com-

position in service-oriented architectures. In The Semantic Web: Research and Applica-

tions, C. Bussler, J. Davies, D. Fensel, and R. Studer, Eds., vol. 3053 of Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 2004, pp. 269–283.

[60] MALLYA, A. U., AND HUHNS, M. N. Commitments among agents. Internet Computing,

IEEE 7, 4 (2003), 90–93.

[61] MALLYA, A. U., YOLUM, P., AND SINGH, M. P. Resolving commitments among

autonomous agents. In Advances in Agent Communication, International Workshop on

Agent Communication Languages (Melbourne, Australia, 2003), pp. 166–182.

[62] MCMILLAN, K. L. Symbolic Model Checking: An Approach to the State Explosion

Problem. PhD thesis, Pittsburgh, PA, USA, 1992.

[63] MICHAEL, P. P., PAOLO, T., SCHAHRAM, D., AND FRANK, L. Service-oriented com-

puting: State of the art and research challenges. Computer 40, 11 (2007), 38–45.

[64] MONGIELLO, M., AND CASTELLUCCIA, D. Modelling and verification of BPEL busi-

ness processes. In MDB/MOMPES (2006), pp. 144–148.

[65] MORGAN, G., PARKIN, S. E., MOLINA-JIMNEZ, C., AND SKENE, J. Monitoring

middleware for service level agreements in heterogeneous environments. In I3E (2005),

M. Funabashi and A. Grzech, Eds., Springer, pp. 79–93.

[66] NAU, D., GHALLAB, M., AND TRAVERSO, P. Automated Planning: Theory & Practice.

Morgan Kaufmann Publishers Inc., 2004.

109

[67] PANAGIOTIDI, S., VÁZQUEZ-SALCEDA, J., ALVAREZ-NAPAGAO, S., ORTEGA-

MARTORELL, S., WILLMOTT, S., CONFALONIERI, R., AND STORMS, P. Intelligent

contracting agents language. In In Proceedings of the Symposium on Behaviour Regula-

tion in Multi-Agent Systems (BRMAS) at AISB (2008), pp. 49–55.

[68] PAPAZOGLOU, M. P. Web Services: Principles and Technology. Pearson, Prentice Hall,

2008.

[69] PHAM, D. Q., AND HARLAND, J. Temporal linear logic as a basis for flexible agent

interactions. In Proceedings of the 6th International Joint Conference on Autonomous

Agents and Multiagent Systems (New York, NY, USA, 2007), ACM, pp. 28:1–28:8.

[70] PISTORE, M., BARBON, F., BERTOLI, P., SHAPARAU, D., AND TRAVERSO, P. Plan-

ning and monitoring web service composition. In AIMSA (2004), pp. 106–115.

[71] PNUELI, A. The temporal logic of programs. In Proceedings of the 18th Annual Sympo-

sium on Foundations of Computer Science (Washington, DC, USA, 1977), IEEE Com-

puter Society, pp. 46–57.

[72] PRISACARIU, C., AND SCHNEIDER, G. A formal language for electronic contracts. In

FMOODS (2007), pp. 174–189.

[73] RAO, J., AND SU, X. A survey of automated web service composition methods. In

SWSWPC (2004), pp. 43–54.

[74] ROBBY, DWYER, M. B., AND HATCLIFF, J. Bogor: A flexible framework for creat-

ing software model checkers. In TAIC PART (2006), P. McMinn, Ed., IEEE Computer

Society, pp. 3–22.

[75] ROGIN, F., KLOTZ, T., FEY, G., DRECHSLER, R., AND RLKE, S. Advanced verifi-

cation by automatic property generation. IET Computers and Digital Techniques 3, 4

(2009), 338–353.

110

[76] ROSSETTI, A. Model checking business processes. Doctoral Thesis, Universit Politec-

nica delle Marche. (2009).

[77] ROUACHED, M., FDHILA, W., AND GODART, C. Web services compositions modeling

and choreographies analysis. International Journal of Web Services Research 2, 7 (2010),

87–110.

[78] SAVITHA SRINIVASAN, I. B. M., AND VLADIMIR GETOV, U. O. W. Navigating

the cloud computing landscape - technologies, services, and adopters. Computer 44,

3 (2011), 22–23.

[79] SINGH, M. P. A social semantics for agent communication languages. In Issues in Agent

Communication (2000), pp. 31–45.

[80] SISTLA, A. P., AND CLARKE, E. The complexity of propositional linear temporal logics.

Journal of ACM 32, 3 (1985), 733–749.

[81] SKOGAN, D., GROENMO, R., AND SOLHEIM, I. Web service composition in uml. In

Enterprise Distributed Object Computing Conference, 2004. EDOC 2004. Proceedings.

Eighth IEEE International (Sept 2004), pp. 47–57.

[82] SOEKEN, M., KHNE, U., FREIBOTHE, M., FEY, G., AND DRECHSLER, R. Auto-

matic property generation for the formal verification of bus bridges. In DDECS (2011),

R. Kraemer, A. Pawlak, A. Steininger, M. Schlzel, J. Raik, and H. T. Vierhaus, Eds.,

IEEE, pp. 417–422.

[83] SOLAIMAN, E., MOLINA-JIMENEZ, C., AND SHRIVASTAV, S. Model checking correct-

ness properties of electronic contracts. In Service-Oriented Computing - ICSOC 2003,

M. Orlowska, S. Weerawarana, M. Papazoglou, and J. Yang, Eds., vol. 2910 of Lecture

Notes in Computer Science. Springer Berlin Heidelberg, 2003, pp. 303–318.

111

[84] SOUTER, A. L., AND POLLOCK, L. L. The construction of contextual def-use associ-

ations for object-oriented systems. IEEE Transactions on Software Engineering 29, 11

(2003), 1005–1018.

[85] SU, J. Web service interactions: Analysis and design. In Computer and Information

Technology, 2005. CIT 2005. The Fifth International Conference on (Sept 2005), pp. 3–

3.

[86] SUN, H., WANG, X., ZHOU, B., AND ZOU, P. Research and implementation of dynamic

web services composition. In Advanced Parallel Processing Technologies, X. Zhou,

M. Xu, S. Jhnichen, and J. Cao, Eds., vol. 2834 of Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2003, pp. 457–466.

[87] VIEIRA, M., LARANJEIRO, N., AND MADEIRA, H. Benchmarking the robustness of

web services. In Dependable Computing, 2007. PRDC 2007. 13th Pacific Rim Interna-

tional Symposium on (Dec 2007), pp. 322–329.

[88] WALTON, C. D. Model checking agent dialogues. In DALT (2004), pp. 132–147.

[89] WHITE, S. A. Process modeling notations and workflow patterns. http://www.bpmn.org,

2004.

[90] WOOLDRIDGE, M. An Introduction to MultiAgent Systems, 2nd ed. Wiley Publishing,

2009.

[91] XING, J., AND SINGH, M. P. Formalization of commitment-based agent interaction. In

Proceedings of the 2001 ACM Symposium on Applied Computing (New York, NY, USA,

2001), ACM, pp. 115–120.

[92] XING, J., AND SINGH, M. P. Engineering commitment-based multiagent systems: a

temporal logic approach. In AAMAS (2003), ACM, pp. 891–898.

112

[93] YAN, J., LI, Z. J., YUAN, W., AND SUN, J. Z. BPEL4WS unit testing: Test case

generation using a concurrent path analysis approach. In ISSRE (2006), IEEE Computer

Society, pp. 75–84.

[94] YEUNG, W. L. A formal and visual modeling approach to choreography based web

services composition and conformance verification. Expert Systems with Applications

38, 10 (2011), 12772–12785.

[95] YONGHUA, Z., AND HONGHAO, G. A novel approach to generate the property for

web service verification from threat-driven model. Applied Mathematics Information

Sciences 8, 2 (2014), 657–664.

[96] YU, Q., LIU, X., BOUGUETTAYA, A., AND MEDJAHED, B. Deploying and managing

web services: issues, solutions, and directions. The VLDB Journal 17, 3 (2008), 537–572.

[97] ZHANG, Q., CHENG, L., AND BOUTABA, R. Cloud computing: state-of-the-art and

research challenges. Journal of Internet Services and Applications 1, 1 (2010), 7–18.

Appendices

113

114

BPEL Process File

Figure 1: BPEL Process

115

ISPL code

Figure 2: Environment ISPL-code

116

Figure 3: Client ISPL-code

117

Figure 4: PSP ISPL-code

Figure 5: Evaluation ISPL-code

118

Execution of ISPL code

Figure 6: Verification Results

119

Figure 7: Statistics Results

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. INTRODUCTION
	1.1 Context of the Research
	1.2 Motivations and Research Questions
	1.3 Contributions
	1.4 Related Work
	1.5 Thesis Organization

	2. BACKGROUND AND LITERATURE REVIEW
	2.1 Web Services
	2.1.1 Service Oriented Architecture
	2.1.2 Web Service Definition
	2.1.3 Web Services Stack

	2.2 Web Service Composition
	2.2.1 Composition Approaches
	2.2.2 Web Service Composition Models

	2.3 Business Process Execution Language (BPEL)
	2.3.1 Business Process Management and Workflow
	2.3.2 BPEL Overview
	2.3.3 BPEL Main Parts

	2.4 Formal Verification and Model Checking
	2.4.1 Model Checking
	2.4.2 Computation Tree Logic (CTL)
	2.4.3 Interpreted Systems
	2.4.4 CTLC

	2.5 MCMAS: a Model Checker for Multi-Agent Systems
	2.5.1 ISPL General Structure
	2.5.2 ISPL Syntax

	3. PROPOSED APPROACH
	3.1 General Overview
	3.2 Analyzing BPEL Process in terms of Contracts and Service Behaviors
	3.3 Marking the BPEL Process
	3.4 Automatic Compilation from BPEL to ISPL
	3.4.1 General Overview of the Internal Design of the Compiler
	3.4.2 Encoding the Communication Architecture in ISPL
	3.4.3 Translation Rules
	3.4.4 Encoding Automata into ISPL

	3.5 Generated Properties and their Expressiveness

	4. DETAILED CASE STYDY AND EXPERIMENTAL ANALYSIS
	5. CONCLUSION AND FUTURE WORK
	5.1 Summary of Contributions
	5.2 Future Work

	BIBLIOGRAPHY
	Appendices

