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Abstract 

A GUI Driven Platform for 

Implementing Evolutionary Algorithms in Java 

Reza Etemadi 

 

CodeMonkey-GA (CM) is a GUI driven software development platform that enables non-experts 

and experts alike to turn an evolutionary algorithm design into a working Java program, with a 

minimum amount of manual coding. CM is provided as a framework and plug-in application for 

the Eclipse platform for non-commercial uses. 

We compare some of the most popular frameworks and platforms for evolutionary computation. 

We discuss their shortfalls and justify the need for still another platform. Hence, we present 

CodeMonkey-GA: its concept, internal architecture and design. We provide an overview of the 

graphical user interface (GUI) of the platform followed by examples of evolutionary algorithm 

applications, all generated using CodeMonkey’s Eclipse application. 

Through several examples we demonstrate the ease of use and (to some degree) the applicability 

of the CM application. The Ackley function is a well-known test function for optimization; the 

Traveling Salesman Problem is a famous example of NP-Complete problems; the Knapsack 

problem is an example of combinatorial optimization. In all three cases, CM is used to develop 

working Java programs that provided satisfactory solutions, which are as good as, or better than 

the given solutions. Critically, in all cases, not a line of code was entered or altered – bar the 

fitness function – by the user. 
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1 Introduction & Review 

 

Evolutionary Algorithms (EA) have broad applications not only in computer science but also in 

various fields of engineering, economics, finance, art and many branches of science such as 

physic, chemistry, biology and so on. Examples of application include Collision Avoidance 

Control [1], Industrial Design [2], Evolutionary Art [3], Pharmaceutical Drug Design [4]. 

Because of the broad range of application domains, the landscape of EA computational tools is 

rich with frameworks, libraries and platforms with various capabilities and based on different 

programming languages. Despite a wealth of options, there are gaps that justify the investment in 

a new EA software platform.  To demonstrate these gaps, it is only right that we survey the best 

existing solutions and then describe how Code Monkey targets the shortcomings of the existing 

alternatives. 

Designing a comprehensive tool that covers the different flavors of Evolutionary Algorithms and 

that is also easy to use is not a simple task. In this section we intend to look at the existing tools 

objectively, highlighting the areas that a new tool can cover. 

1.1 Competition 

There are various implementations of Evolutionary Algorithms (Genetic Algorithms or GA, 

Genetic Programming or GP, Evolutionary Strategies or ES, and Evolutionary Programming or 

EP) offered by different authors and vendors. These implementations differ from each other in: 

- The scope they cover; some of them are application specific like “Object-Oriented 

Framework for Genetic Algorithms with Application to Space Truss Optimization” [5] 

and some are general libraries like the genetic algorithm package, which is part of 

Apache Foundation common math library [6]. 

- Their performance and scalability, which is also influenced by the programming language 

and platform they are coded in or deployed on, respectively. 
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- The learn ability and usability of the implementation, which may come in the form of a 

library, framework, application or platform. 

In the sequel, we review the most widely used and referenced implementations, not specific to 

one domain of application.  

GEATbx [7]. Genetic and Evolutionary Algorithm Toolbox for use with Matlab (GEATbx) is a 

Matlab tool and one of the few packages that cover the four main flavors of EA (GA, GP, ES and 

EP). It allows one to define a homogenous genomic representation using one of four primitive 

data types. It has limited support for heterogeneous genotypes [4]. It has no GUI for novice 

users. It is proprietary, and has limited number of selection and genetic operations (i.e., crossover 

and mutation). It is not extendable via 3
rd

 party components and is currently sold under different 

levels of licensing. 

EO [8]. Evolving Objects (EO) is a template-based C++ open-source library/framework for 

writing stochastic optimization programs [9]. It allows for homogenous genomic representations 

using most primitive types, except for integer. It has no out-of-the box support for heterogeneous 

genotypes and their variation operations. Many different selection mechanisms are provided. It 

does not have a GUI based entry or customization ability. It is open-source and free to use under 

GPLv2. It is extendable via 3
rd

 party and some extensions such as PARADISEO (PARAllel and 

DIStributed Evolving Objects) [10] enable distributed implementations of the framework. 

EASEA [11]. EAsy Specification of Evolutionary Algorithms (EASEA) is a parallel Artificial 

Evolution platform developed by a team at Université de Strasbourg. It covers many types of 

optimization problems (continuous, discrete, combinatorial, mixed and more) using Genetic 

Programming.  

The main disadvantage of EASEA is the introduction of a special-purpose language that is not 

widely used. There is no built-in genotype for primitive types and also no support for 

heterogeneous genotypes. It is not easily extendable through 3
rd

 party components because of its 

special language. It supports computation in distributed environments using DEARM. It is free 

to download and use under LGPL.  
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DREAM [12]. Distributed Resource Evolutionary Algorithms Machine (DREAM) project 

(funded by the European commission) seeks to provide the technology and software 

infrastructure necessary to support the next generation of evolving info-habitants in a way that 

makes that infrastructure universal, open and scalable.  

Its software framework (Java Evolutionary Object) has many genotypes defined with many 

related operations. It does not provide any heterogeneous genotype. It has a GUI for non-

programmers for both I/O interaction and problem definition. It is open source and offered under 

a GPL license. The platform has a distributed architecture and the framework has an API that 

facilitates distributed implementations. 

Watchmaker  [13]. Watchmaker Framework for Evolutionay Computation is a software 

framework for implementing evolutionary algorithms in Java. It is used in the Apache Mahout 

Project [14] and some specialized frameworks such as GEP4J (Gene Expression Programming 

for Java) [15]. 

It does not provide any predefined genotypes and relies on types defined in another package 

(uncommons.maths) that is not provided in the bundle. There is a GUI for monitoring progress 

but it does not have any GUI for non-experts to generate code. It only supports pipelining of 

operations.  The number of variation operators provided out-of-the-box is very limited. It is open 

source and available under Apache software license and easily extendable.  

JGAP [16]. Java Genetic Algorithms Package (JGAP) (pronounced "jay-gap") is a Genetic 

Algorithms and Genetic Programming component provided as a Java framework. It provides 

basic genetic mechanisms that can be used to implement evolutionary solutions to problems. 

It has many out-of-the-box genotypes. There is no heterogeneous genotype support in the 

framework. Some of the limitations of the Watchmaker framework related to genetic operators 

are also present here. It does not provide any GUI for end-users to interact with to generate code; 

only expert users who must first learn the framework and has prior knowledge of GA or GP can 

make use of JGAP. It is however an open source project, free and extendable under LGPL and 

Mozilla licenses. 
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JCLEC [17]. Java Class Library for Evolutionary Computation (JCLEC) is a software system for 

EA written in Java. It is a high level framework that supports GA, GP and EP. Its architecture 

has three layers: the core that includes abstract definition, base implementations and utility 

classes; the second layer is the runner that executes the EA process based on a user defined 

configuration file; the last layer is GUI interface that allows a user to define the parameters for a 

configuration and view the result of execution. 

JCLEC targets both expert and novice users and therefore it offers more options to users. 

However the framework does not have any built-in support for heterogeneous genotype. Also the 

fact that GUI generates XML file instead of code it does not easily allow experts users to adopt a 

hybrid approach of generating some of the code using the GUI then directly entering or editing 

other parts.    

JCLEC does not provide a GUI based mechanism of selecting different combinations of 

variation operators. Another area of improvement is documentation and in particular the in-

context help for the GUI application. 

ECJ [18]. ECJ is a feature rich Evolutionary Computation framework written in Java. It covers 

many different implementations of EA. It is very flexible and it loads the algorithms dynamically 

at runtime based on user entered parameters. It is designed for large scale usage and supports 

multi-objective optimization, island models, co-evolution and many more features. The 

framework support fixed and variable length genotypes and there is wealth of variation 

operators. It has many pre-defined GP and GA application problem domains. The package 

includes a GUI for charting. 

The framework heavily relies on parameter files to configure and instantiate all of the EA 

processes. However there is no GUI or wizard process to help users go over configuration in a 

stepwise manner, leading to the generation of the parameters file. This means that the user needs 

to get familiar with numerous parameter names and value ranges. This is an error prone method 

and any problem is not detected until runtime. 

Because it was originated from a GP project, it is more suited for that branch of EA. Also the 

framework does not provide any heterogeneous genotype.  
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1.2 Comparison Table 

The result of comparison is summarized in table 1. The review factors are listed at the first 

column of the table. 

Table 1. Camparative summary of common EA platfroms 

Name GEATbx EO ESAEA DREAM Watchmaker JGAP JCLEC ECJ 

Programming 

Language 

Matlab C++ EASEA EASEA 

/Java 

Java Java Java Java 

Type Library Framework Platfrom Platform Framework Framework Platform Framework 

Homogeneous 

Genotypes 

Real, 

Integer, 

Binary, 

Permutation 

Real, Binary, 

Permutation 

Not defined Real,  

Integer, 

Binary, 

Tree 

Real, Byte, 

Integer, 

BitString (in 

a different 

lib) 

String, 

Integer, 

Binary, 

Real  & 

more 

Real,  

Integer, 

Binary, 

Tree 

Real,  

Integer, 

Binary,  

Tree 

Heterogeneous 

Genotypes  

None None None None None None None None 

Selection 

Types 

4  9 (more 

pluggable) 

Not 

documented 

11 (more  

pluggable) 

6 (more  

pluggable) 

4  (more 

pluggable) 

12 (more 

pluggable) 

12 (more 

pluggable) 

GUI for Novice 

End-users 

Yes No No Yes No No Yes Only for 

charting 

Open Source No Yes Yes Yes Yes Yes Yes Yes 

Extendable No  Yes Limited Limited Yes Yes Yes Yes 

Distributed 

Environment 

Support 

Possible by 

Matlab 

Available 

(by 

extensions, 

ParadisEO) 

Yes Yes Yes Yes Not 

defined 

Yes 

Licencing 

/Pricing 

Multi-tier   

/Not-free  

GPLv2 

/ Free 

LGPL 

/ Free 

GPL 

/ Free 

Apache v2.0 

/ Free 

LGPL and 

Mozilla 

/ Free 

GPL 

/Free 

Academic 

Free 

Licence 

/Free 
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1.3 Motivation 

The comparison table demonstrates that some EA platforms offer a GUI for end-users. In case of 

GEATbx it is bound by Matlab limitations and in case of DREAM and JCLEC it is a relatively 

out of date Java Swing based GUI; all other implementations require programmers able and 

willing to learn new frameworks. This is a major hurdle for end-users with limited background in 

computer programming. EA platform users from disciplines other than computer science and 

engineering would greatly benefit from a GUI based stepwise means of automatic code 

generation.  

In addition, none of the reviewed EA platforms provide built-in support for heterogeneous 

genotypes (where genes are made up of different types). While defining heterogeneous 

genotypes is possible with most of the reviewed platforms, it is an asset to have the capability of 

constructing a heterogeneous genotype through the combination of two or more different 

homogeneous genotypes; if this comes with the complementary capability of choosing 

appropriate variation operations then so much the better. 

Furthermore, other implementations excepting JGAP do not provide any mechanism for data 

serializing. This feature is quite handy if one is to invoke an external program for fitness 

calculation. This is important as real-world situations often require interacting EA software 

solutions with well-established - even proprietary - external software that is tried and tested by 

experts in the field of application. 

In contrast, we provide an easy-to-learn and use GUI-driven platform for generating different 

flavors of EA and for a wide range of target applications. It supports both homogeneous and 

heterogeneous genotypes with appropriately defined variation operators. It also offers a good 

degree of flexibility in both offspring generation and survivor selection.  

At the same time the framework part of the platform is open and can be directly used by expert 

users, who wish to customize the resulting evolutionary algorithm program in ways that are not 

possible via the GUI. A GUI driven platform with direct coding capabilities, in a widely adopted 

language, allow more experienced users quick code generation followed by custom modification, 

leading to an EA Java program that meats the exact needs of the programmer. 
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2 Design & Implementation 

 

Code Monkey- GA (CM) is the result of an ongoing project that takes advantage of modern 

features of Java (e.g., Generics and Annotation), combining them with the power & ease of use 

of the Eclipse platform, to provide an EA development framework for expert users and an 

Eclipse plug-in application for novice users. 

2.1 Concept 

As Evolutionary Algorithms are population based, an EA may be visually represented (as in 

Figure 1) by three pools, with individuals transiting to & from them, during various stages of 

evolution; this is described via high-level pseudo-code as well, for those who prefer it. 

BEGIN 

  INITIALIZE population with random candidate solutions; 

  EVALUATE each candidate; 

  REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO 

    1 SELECT parents; 

    2 RECOMBINE pairs of parents; 

    3 MUTATE the resulting offspring; 

    4 EVALUATE new candidates; 

    5 SELECT individuals for the next generation; 

  OD 

END  

 

Figure 1. General flow of evolutionary algorithms 

 

2.2 The Framework 

The CM framework is provided as a zip file. It can be imported into Eclipse as a Java Project. To 

explore the framework, we start by discussing its architecture and data model which are based on 

object-oriented concepts and design patterns. 



 

8 
 

2.2.1 The Core 

The class diagram (Figure 2) shows the core package of the framework. It includes the main 

components that we describe below. 

 

Figure 2. Class diagram 

Phenotype: This class represents an individual solution. This is an abstract class that has two 

other elements, Genotype and Fitness. It also has an optional object called data that is only 

needed if an implementation needs to store and process any epi-genetic data related to phenotype 

(e.g. Epigenetic Algorithm [19]). Any implementation based on the framework, including those 

generated by the CM application, will create a concrete subclass of the Phenotype class for 

representation of their individual solutions. Phenotype uses Java generics for its Genotype and 

Fitness elements. 

Genotype: This is the component that represents the encoding part of Phenotype in the search 

space. It is defined as a java interface that extends java Collection, Cloneable and Serializable 

interfaces. Being an interface allows any Java class to be used as a Genotype as long as it 

implements the methods of the interface. Since there are many existing implementations of the 

Java Collection interface (e.g. ArrayList, Vector etc.): they can be easily extended to represent 

Genotypes in the framework.  
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In fact the ‘genotype’ sub-package in the framework (edu.ccil.ec.genotype) extends Java 

ArrayList, LinkedList, TreeSet and Vector to provide an abstract level for genotype 

representation in the framework. Out of these abstract classes the ArrayListGenotype is further 

extended in the framework (edu.ccil.ec.genotype.arraylist) to provide implementation for data 

types such as Boolean, Integer, Permutation and Real values. These classes are used for building 

homogenous and heterogeneous genotypes in the CM application based on user input.  

Homogenous in this context means all genes have the same type such as Boolean. Where 

heterogeneous means that genes are from different types. The only constrain is that a gene at a 

specific allele always has the same type and variation operations do not violate the organization 

of heterogeneous genotype. 

Since variation operations are data type specific there is an equivalent operator class per 

genotype data type that provides several mutation and crossover operations related to that data 

type. These ready-to-use mutation and crossover operators are also used in the CM application to 

generate variation strategies based on user input. These operators will be described in the 

variation strategy section. 

Fitness:  The fitness component is used to represent how suitable a phenotype is as a solution in 

comparison to other phenotypes. This is also defined as a Java interface in the framework that 

extends Java Comparable interface. While, in most cases, Real values are used for representing 

fitness, this interface uses Java generics to provide more flexibility, by accepting any subclass of 

Java Number class that implements Comparable interface.  

Population: This class acts as the container of Phenotypes. It is a concrete class with generics 

that accepts any subtype of Phenotype class. This class (or its subtypes) can be registered to 

represent the initial population, parent pool, offspring and next generation. This class has many 

utility methods for random picking, sorting, getting different statistics of the population, based 

on fitness of individuals and so on. 

TerminationStrategy:  This class represents the termination criteria in the framework. All 

possible criteria that are provided for the CM application are defined in this class, but the class is 

abstract. Once a subclass that implements the abstract method 'check()'  is registered in the 

framework, it will be invoked iteratively to check whether the process should stop or continue.   



 

10 
 

ParentSelectionStrategy:  This is the class that applies parent selection based on mechanisms 

described below.  It has one abstract method that represents the selection process inside the 

selection window. Three subclasses of this class for Truncation, Proportional (Roulette wheel) 

and Random selection are provided by the framework. Any concrete subclass of 

ParentSelectionStrategy that is registered will be invoked to create the parent pool. 

VariationStrategy: This is an abstract class that represents the mating process in the framework. 

A concrete subclass of this class will invoke the variation methods that are implemented in the 

Genotype based on the arity (e.g., unary or binary) of the method with the desired probability 

and sequence. The class must be registered in order to be invoked to create an offspring pool 

from the parent pool. 

As mentioned earlier the framework provides a set of variation operators for Arraylist Genotypes 

based on Boolean, Integer, Permutation and Real data types. Here is a complete list of these 

operators: 

 Boolean Operators: One Point crossover, Two Point crossover, Uniform crossover, Flip 

Mutation, One-Position Mutation. 

 Integer Operators: One Point Crossover, Two Point Crossover, Discrete 

Recombination, One-Position Mutation and Creep Mutation. 

 Permutation Operators: PMX Crossover, Order Crossover, Cycle Crossover, Swap 

Mutation, Insert Mutation, Inversion Mutation. 

 Real Operators: Discrete Recombination, Continuous Recombination, Convex 

Recombination, Local Crossover, One-Position Mutation, Creep Mutation. 

For heterogeneous genotypes there are three crossover operators applicable to heterogeneous 

genotypes. They are: One Point, Two Point and Uniform Crossover. They are independent of 

gene type.  

When building a variation strategy, any arrangement of these operators, with different 

probabilities, can be combined. In fact, the CM application uses these operators to provide end 

users with a list of available operators based on selected genotypes. This allows users to define 
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the variation strategy by selecting operators and entering probabilities. This is described in more 

detail in the CM application section. 

SurvivalSelectionStrategy: This abstract class represent the survivor selection process in the 

framework. It internally relies on ParentSelectionStrategy as described before. A concrete 

subclass will need to define what percentage of the next population comes from available 

populations and based on what selection mechanisms. The subclass need to be registered to be 

invoked to create the next generation during the process. 

FitnessTransformer: Fitness transformation is optionally used in any selection implementation 

to scale or transform the fitness before the selection is done. FitnessTransformer is an abstract 

class that represents this need and certain concrete subclasses are provided in the framework for 

linear, exponential and ranking scaling. If a subclass of this class is registered or set in the 

ParentSelectionStrategy it will be invoked before the selection is applied inside each window.  

 ESException: This is a general class that represents any runtime exception related to the 

evolutionary process. Several error codes are pre-defined and used throughout the framework to 

identify the cause of errors that might occur in the process. 

Evolution: This class is the orchestrator of the evolutionary process in the framework. It is an 

abstract class that implements the general logic of the evolutionary process. Any implementation 

based on the framework will create a concrete subclass of this class and include a main method 

so it can be invoked as a Java application.  

All above mentioned registrations of data types and strategies need to be defined in the 

registration() method of a concrete subclass of Evolution class. Once all necessary elements are 

registered the class can act as the starting point of execution of the evolutionary process. The 

Evolution class uses Factory pattern and class registration is done using reflection. The following 

code is a sample of this registration procedure. 
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@Override                

public void registration(){ 

 //Any registration of strategy or type that is used in the process goes here   

 register(Phenotype.class,new Phenome());   

 register(Population.class, new PhenomePopulation()); 

 register(ParentSelectionStrategy.class, new edu.ccil.ec.selection.Proportional(20, 15, true));

 register(VariationStrategy.class, new myVariationStrategy(true)); 

 register(TerminationStrategy.class, new myTerminationStrategy());

 register(SurvivalSelectionStrategy.class, new mySurvivalSelectionStrategy());

 register(RandomEngine.class, new RandomEngine()); 

 register(FitnessTransformer.class,new edu.ccil.ec.selection.transform.Rank());   

 return; 

} 

 

Figure 3 shows how and in what sequence the Evolution class invokes the registered strategies 

over the course of one generation.  

 

Figure 3. Sequence diagram 
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Once the evolve() method is called, it starts with initialization, which includes registration of all 

strategy classes and initializing the first generation. Then the first generation is evaluated. Hence, 

Evolution calls the check() method of the TerminationStrategy class. If the termination criteria is 

not satisfied then  apply() method of ParentSelectionStrategy class is called to create the parent 

pool. Hence, the apply() method of the VariationStrategy() class is called to generate the 

offspring pool from the parent pool. Then, the offspring pool is evaluated and the apply() method 

of SurvivalSelectionStrategy class is called to create the next generation. The next generation 

replaces the current generation. This cycle is repeated until the check() method in 

TerminationStrategy class returns true. Once that happens, the evolutionary process stops and the 

best available individual is returned. 

2.2.2 Packaging & Structure 

The core of framework that contains all interfaces and abstract classes of all above mentioned 

components is in the edu.ccil.ec package. There are several sub packages in the framework that 

we describe here: 

 edu.ccil.ec.genotype: This package include abstract classes that extend some classes in the Java 

Collection API with implementation of genotype interface. Examples are: ArrayListGenotype, 

LinkedListGenotype.  

 edu.ccil.ec.genotype.arraylist: This package provides concrete implementations of 

ArrayListGenotype for primitive types. For each genotype there is also an Operator class that 

includes all mutation and crossover operations related to that specific genotype. 

edu.ccil.ec.selection: This package contains the three types of selection, deterministic 

probabilistic and random, which are part of the selection strategy architecture in CM.  

edu.ccil.ec.selection.transform: This package includes all different fitness transformation 

schemes that are provided by CM. They are all implementations of the FitnessTransformer 

interface in the core package. 

edu.ccil.ec.tool: This package contains internal utility classes that are used by the rest of the 

package (e.g., example logging, random generator). 
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edu.ccil.ec.plugin_template: This package contains the base classes used by the CM Plug-in 

Application to generate code based on input provided by user.  

In addition to the above mentioned packages there are two other top level packages. One is 

example that contains many sub packages. Each is an example generated using the plug-in 

application for known problems (e.g., Traveling Salesman Problem, several multi-dimensional 

multi-modal mathematical functions). It also contains one advanced example of Image 

possessing. 

The other package is called external which contains classes that are used for fitness calculation 

of the example package. 

2.3 Plug-in Application 

CodeMonkey application is built on top of the Eclipse platform. It uses Eclipse’s 

plug-in architecture [20] to create a GUI-based application. The CM plug-in application allows 

end-users to provide customizing input reflecting a specific EA flavor and target application. The 

CM application uses the Eclipse JDT (Java Development Tools) API to create the necessary 

code, which runs on the CM framework. The user can then launch the generated Java program in 

Eclipse or independently of it. 

The following use case diagram demonstrates the two types of interactions between a user and 

the CM. 

 

Figure 4. Use case diagram   
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As shown, two types of users can apply CM to customize and generate an EA in Java: novice 

and expert. Expert users can directly work with the framework by using existing functionalities 

or extending them and adding new implementations. Novice users are asked to provide the CM 

application with customizing input, and this allows CM to generate a Java program that 

implements a specific EA flavor for a specific EA application. The only part of interaction with 

CM application that necessitates the provision of either (1) actual code or (2) a link to an external 

program or function is the fitness function. This is justified as the fitness function is that part of 

EA process that pertains to the specific problem, which could come from any domain. It is also 

noteworthy that one user can be involved in both types of use cases: doing part of the work via 

the CM application and modifying or/and adding code to the resulting Java program, manually. 

Figure 5 exhibits the order of user interactions between a user and the CM application, to 

generate and run an EA application. 

 

Figure 5. Activity diagram of CM plug-in application 

As shown, once the CM plug-in application is launched, the first step is defining the genotype 

structure, followed by defining how the population will be initialized. Hence, the user defines 

how fitness will be calculated. This is the only step that necessitates manual code entry or 

external communications. The next step is defining what the termination criteria are. This is 

followed by defining the mechanism for parent selection. The remaining two steps are defining 

how variation operations are applied and how the next generation is created. Once those steps are 

completed, code generation is completed and the code can be compiled and executed. 

In the example section we will demonstrate each of the above steps in detail and show using 

screenshots how a user interacts with the CM plug-in application to generate and run a sample 

EA program. But here we describe the concept and internal design behind each step. 
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In the sections to follow, we describe in detail, how the application interacts with user to deliver 

the end result. Once the Eclipse plug-in is installed, the CM icon will appear in the Eclipse 

toolbar. Clicking on the icon will load the CM cheat sheet that guides the user throughout the 

development process. Every step in the development process has a clear help page associated 

with it and the wizard that takes one through that process is constantly verifying user input and 

hinting at typical valid entry values. 

2.3.1 Genotype Representation 

Having the right genotype representation has significant impact on the success of an evolutionary 

algorithm. CM divides genotype representation into three main categories: homogenous, 

heterogeneous and homogeneous of heterogeneous. A homogenous genotype is a collection of 

same primary type genes (e.g. Boolean, Integer, Real or Permutation). Heterogeneous genotype 

is a collection of homogeneous genes of different primary types. CM supports basic homogenous 

genotypes as part of the framework and easily allows building heterogeneous genotypes by 

combining homogenous types using the application GUI. To provide further flexibility, CM 

allows the end-user to utilize the heterogeneous genotype as a gene for creating a homogeneous 

genotype. Essentially allowing the creation of homogeneous genotypes with custom made genes. 

At this level the length of genotype can be fixed or variable. 

 

Figure 6. Genotype definition 
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As exhibited in Figure 6, genotype definition is the first step in the development process: this is 

shown in the flow chart. The rest of the figure exhibits the relationship between homogeneous 

and heterogeneous genotypes. The first example (Homogenuous-1) is that of a Homogeneous 

genotype made of 4 Booleans. The second example (Heterogenuous-1) is that of Heterogeneous 

genotype consisting of 4 Booleans and 3 Integers. The third example (Homogeneous of 

Heterogenuous-1) is a homogenous genotype made of 5 Heterogenous-1 parts. 

The type and structure of genotypes are closely related to variation operations. This will be 

explained in detail in the variation strategy section.  

2.3.2 Population Initialization  

Initialization is directly bound to the genotype representation. For every Homogeneous type, CM 

provides an initialization mechanism at Genotype level.  

As exhibited in Figure 7, initialization is the second step in the development process: this is 

shown in the flow chart. In addition, a random generator engine is used create the initial 

population. The random generator class is registered during design time either manually or 

through the CM application and then invoked at runtime by the CM framework. 
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Figure 7. Population initialization 

2.3.3 Fitness Calculation 

Fitness calculation is dependent on the problem domain. The one thing that all fitness 

calculations have in common is that they return one or more numerical values. Also, fitness 

calculation may require communications with sources external to the EA application.  To 

accommodate this possibility, CM allows both internal and external fitness calculation. Internal 

fitness calculation code must be entered by the user. As to external fitness calculation, CM 

allows invoking external processes, serializing the population data to those resources, parsing the 

response from the external resources to retrieve the calculated fitness values and hence, 

processing (e.g., scaling and combining) the retrieved values- should the user require it. 

Figure 8 illustrates that defining fitness calculation is the 3
rd

 step in the development process. It 

also shows that fitness calculation can be carried out entirely within the CM framework or via a 

link to an external resource; even if an external resource is used for fitness evaluation, there 

remains the option of further manipulation of the received fitness values by internal processes. 
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Figure 8. Fitness calculation 

If the external option is selected then there are two formats that CM supports for serialization: 

XML and JSON. The contextual help of the CM application provides concrete examples of how 

data may be presentated in these two formats. Below, we provide arbitrary examples of 

phenotype serialization in JSON and XML, where the phenotype has a heterogeneous genotype. 

JSON Example: 

{ 

"phenome":{ 

 {"genome":[{"genome":[true,false,false]},{"genome":[5.913120788

467042,5.273583533759099,]}]}, 

 "data":null 

 } 

} 

 

Equivalent serialization in XML: 

<?xml version="1.0"?> 

<Phenome> 
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 <Genome> 

 <Allele> 

  <Genome> 

  <Allele>true</Allele> 

  <Allele>false</Allele> 

  <Allele>false</Allele> 

  </Genome> 

 </Allele> 

 <Allele> 

  <Genome> 

  <Allele>5.367599004466042</Allele> 

  <Allele>5.821700080361726</Allele>  

  </Genome> 

 </Allele> 

 </Genome> 

 <Data> 

 </Data> 

</Phenome> 

 

It is expected for the external process to be able to parse these data, extract the genotype values 

and return the fitness as in the same format e.g. in case of JSON it could be: {"fitness" : "the 

value" } and in case of XML it could be : <result name="fitness" value ="the value" /> . There 

can be multiple entries of name/value pairs in the result. The framework extract all and pass has 

Java HashMap<String,String> to the evaluate method inside Phenotype for further internal 

processing. 

2.3.4 Termination Criteria 

The evolutionary process cannot run infinitely. As shown in Figure 9, CM places all possible 

termination criteria into three categories, which the user can select from and combine: (a) the 

Goal Achieved category, which means that an acceptable level of fitness has been attained by at 

least one individual in the population; (b) the Stagnation Reached category, which means that the 

improvement in fitness over a preset number of generations is too low to justify continuation; (c) 

the Resources Exhausted category, which means that a preset limit on a computational resource, 

such as processing time, has been reached or breached. Finally, the flow chart illustrates the fact 

that defining the termination criteria is the 4
th

 step in the software development process.  
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Figure 9. Termination strategy 

2.3.5 Parent Selection 

Selection shapes the evolutionary process as it influences how the space of possible solutions 

(individuals) is explored. It is typically independent of an individual’s representation, and is a 

function of an individual’s fitness relative to some pool of individuals. Selection occurs at two 

points in the evolutionary process: when parents are selected from the current generation and 

when survivors are selected to make the next generation. 

During parent selection, one only deals with the current generation, in contrast to survivor 

selection, where one may deal with both the current generation and the offspring population. 

Still, the algorithms used for parent selections can also be utilized for survivor selection. We 

shall cover this relation in more detail but first, we discuss parent selection algorithms. 

There is a wide spectrum of algorithms for parent selection [21]. They range from fully 

deterministic (e.g., Truncation) to fully probabilistic (e.g., Random). They can be applied to two 

individuals (e.g., Binary Tournament) and to part of, or the totality of, a given population (e.g., 

Roulette Wheel). Also prior to actual application of any selection method, the ‘raw’ fitness of an 

individual can be transformed (e.g., via ranking or scaling) into a different value: it is this new 

value that is used by the selection method.  
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Regarding selection methods, a unique contribution of CM is the way it unifies many different 

parent selection mechanisms into one customizable generic window-based selection mechanism 

(see figure 10). The selection window can be as large as the whole population or as small as two 

individuals. Inside the selection window, selection can occur in a deterministic or probabilistic 

manner. Since fitness is the primary factor in selection, any fitness transformation can also be 

applied to individuals within the selection window before selection occurs. The output of the 

window will be deposited into the parent pool. The process of creating windows and extracting 

parents from it repeats until the parent pool reaches its pre-set size. From this window-based 

perspective, a Binary Tournament selection can be seen as truncation type selection applied to a 

window of size two. Also, Roulette Wheel selection can be viewed as probabilistic selection 

from a window the size of the whole population. 

 

Figure 10. The customizable generic parent selection mechanism adopted by CM 

2.3.6 Variation Operations 

 Variation operations (crossover and mutation) are directly related to genetic representation. In 

CM’s framework the appropriate variation operators are defined for different homogenous 

genotypes, including Boolean, Integer, Real and Permutation. By definition, crossover occurs at 
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genotype level while mutation is a gene level phenomenon (except for Permutation mutation, 

which causes gene shuffling). Hence, the framework provides an assortment of crossover 

operations for heterogeneous genotypes but no mutation operators.  

in case of HofH where genotype consists of heterogeneous blocks, the framework provides 

crossover operations at top level where heterogeneous blocks can be exchanged. There is no 

crossover between heterogeneous blocks provided. But inside each heterogeneous block there are 

homogeneous sub parts where both crossover and mutation operators are available for them. 

Since HofH also supports flexible number of heterogeneous blocks therefore insertion and delete 

operators are provided as a type of mutation that affect the size of the HofH genotype. 

When it comes to the manner and timing of application of variation operations, different flavors 

of Evolutionary Algorithms adopt different approaches. For example the canonical GA [22] 

includes probabilistic crossover followed by mutation. Evolutionary Strategies (ES) is similar but 

crossover may be skipped [23] and Evolutionary Programming (EP) uses mutation only. Genetic 

Programming (GP) is very much like GA with tree-style genotypes representing programs. GP 

has both crossover and mutation but often run them in parallel.  

With regard to variation operations (Figure 11), a unique contribution of CM is that any number 

of variation operations can be used with different probabilities and in different sequencing 

arrangements along one or more paths linking the parent pool to the offspring pool. This allows 

users of CM to define a GA-like single sequence of variation operations of, say, crossover 

followed by mutation, each with its own independent probability. Alternatively, the user can 

define a GP-style tree of variation operations, with crossover running in parallel to mutation. In 

this case, the sum of probabilities of all paths must come to 1, and this is checked by CM during 

development. The definition of the variation operators is the penultimate step in the process of 

software development, followed only by the definition of survivor selection. 
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Figure 11. Variation operations 

2.3.7 Survivor Selection 

Survivor selection creates the next generation using individuals from the current generation 

and/or offspring pool. With reference to Figure 12, note that all the selection mechanisms that 

are allowed for parent selection are also available for survival selection. The difference is that we 

can apply the selection window to any one or both of the current generation pool and the 

offspring pool or their combined population. In addition, CM allows the use of the special 

mechanisms of elitism and injection. Elitism is widely used to ensure that the fittest of the 

current population pass to the next generation. Injection is the re-initialization of part of the next 

generation, as an added measure of enhancing diversity (and preventing stagnation). Just as it is 

reasonable to have a low level of elitism, it is analogously advisable to have a low level of 

injection (if any). In summation, the various means of survivor selection allow up to five 

different paths from the current population and/or the offspring pool to the next population. This 

is the final step in the process of software development of an Evolutionary Algorithm using 

CodeMonkey. 



 

25 
 

 

Figure 12. Survivor selection in CM 

2.4 Program Execution 
Whether the code is generated by the CM application or directly written into the generated 

program, the execution of the resulting Java program follows the process described in figure 13. 

 

Figure 13. Activity diagram of code execution 

First is initialization of the first generation, followed by fitness calculation. Hence, the 

termination criteria are evaluated. As long as the termination criteria are not satisfied the process 

goes through parent selection, applying variation operations, evaluating the fitness of the new 

individuals and generating the next population. 
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2.5 Use of Eclipse JDT and AST 

Eclipse provides powerful APIs (JDT: Java Development Tool and AST: Abstract Syntax Tree) 

to generate and/or manipulate Java source code and execute it. The CM Eclipse plug-in 

application makes use of JDT and AST in every step of its interaction with end user. The result is 

that CM application generates the Java code that runs on top of CM framework for end user.  

The design and implementation of the framework itself provides help for the plug-in application. 

Here the integration points between the framework and the plug-in application are described. 

- Some of the user interface features of the CM plug-in application are generated on the fly 

based on available features provided in the framework. For example, the list of available 

variation operations for each supported data type are computed based on the methods that 

are defined in the framework. In order to make it as flexible as possible, Java annotations 

were used inside the framework to explicitly mark the variation methods. Hence, the 

plug-in implementation, which uses Eclipse AST, is able to parse the framework code 

and generate the list of available variation operations for each type. There is a significant 

advantage to this arrangement. If new variation methods are added to the framework (for 

existing types) then they will automatically be utilized in the plug-in GUI, given that the 

@VariationOperator annotation is added to their declaration. @VariationOperator is 

a custom annotation defined in the CM framework primarily to preserve meta data about 

variation operators, intended for use inside the CM application. When the CM application 

builds a list of available variation methods of each type, it dynamically scans the code 

using JDT, and retrieves a complete list of variation methods, by detecting the 

@VariationOperator at method declarations. Another advantage of this annotation is the 

‘friendlyName’ attribute. It is used in populating the drop-down list for the GUI of the 

CM application. Since the methods list is generated from the CM framework, if correctly 

annotated methods are added to the existing types then they will be automatically picked 

up by the CM application and populated in its GUI. 

- The use of registration pattern in the framework allows dependency injection through CM 

application for registering different strategies. The registration code for these strategies 

(e.g., parent selection) is added to the generated code based on user input during the 

various steps of EA software development. This pattern is also useful for expert users 
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who may want to modify the generated code and register a different implementation for 

some strategies.  

- The framework includes a sub package (edu.ccil.ec.plugin_template) that is used as 

template by CM application. The application creates any new implementation by copying 

the template code into a user defined package and then modifying it and adding more 

classes based on user interaction.  

- All fitness transformation implementations in the framework are listed in the application 

GUI- though this is not as dynamic as the listing of variation operators. 

- Similarly, all the termination criteria methods that are defined in the framework are 

present in the application’s GUI. 
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3 Examples of Application 

 

Several experiments conducted to demonstrate the versatility and ease of use of Code Monkey 

platform. Here we present three of them. The first example deals with mathematical formula, the 

second and third are examples of combinatorial optimizations. For the first example we provide 

the detailed step by step interaction with CM application while for the next two we only show 

the summary of parameters that were given before showing the result. 

3.1 The Ackley Function 

This function portrays a global optimum surrounded by many local sub-optima. We demonstrate 

how an end-user can use CM to implement an EA solution to this multi-dimensional multi-modal 

optimization problem.  

3.1.1 Problem Description 

The Ackley problem [24] is an n-dimensional minimization problem. The goal is to find the 

vector                  within                      that minimizes the function below: 

                   
 

 
    

  
          

 

 
           
 
          (1) 

For this example we use a 10 dimensional space (e.g. n=10). 

3.1.2 Solution Outline 

We start by defining the genotype. In this case it will be a list of real-valued numbers, one per 

dimension. The dimensions can be initialized randomly to values from a limited range. The 

fitness function is the formula itself. The termination criteria are a combination of goal achieved, 

evolutionary stagnation and resource exhaustion. For parent selection and survivor selection 

many types of deterministic and probabilistic selection methods can be selected. To generate 

offspring, a number of crossover and mutation operators can be used.  

3.1.3 Implementation Details 

The process of EA software development via GUI-based configuration is described below. 
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Genotype Definition. For this problem, we choose a homogeneous genotype of size 10, and set 

gene type to real. As shown in Figure 14 we select all available variation operators that the 

framework provides for real numbers.  

 

Figure 14. Genotype definition step 

Population Initialization. Here, we set the size of the population - which is fixed in CM - and 

type of initialization. For this application, we set population size to 300, and chose random 

uniform initialization. Snapshots of the window used to enter the values are shown in Figure 15. 

 

Figure 15. Population initialization step 
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Fitness Calculation. Here, we indicate whether the computation of fitness will be done 

internally or externally, as well as set a few relevant parameters. Optionally, we may enter a 

value for optimal fitness, and may enter lower and/or upper bounds to the range of fitness values. 

We also indicate whether the current application is one of minimization or maximization. For 

this problem, we indicated internal fitness calculation and set the optimal fitness value to 0.0. We 

provides a Java code fragment reflecting the Ackley function. In fact, CM opens a window that 

allows the user to input the Java fragment (shown below), then automatically copies it into the 

right location within the CM framework. Finally, we set the nature of the optimization process to 

‘minimization’. Snapshots of the window used to enter the values are shown in Figure 16. 

 @Override 

 public void evaluate(HashMap<String,String> externalData) { 

  Double[] xArr = this.genome.toArray(new Double[genome.size()]); 

  this.fitnessValue = external.Ackley.evaluate(xArr); 

  return;  

 }  

 

 

Figure 16. Fitness calculation step 

Termination Criteria. Next, the GUI allows the user to select, configure and combine the three 

conditions of termination. If optimal fitness is known then one can set the Goal Reached 

condition to a specific absolute or relative value; here an absolute value of 0.0 was entered. If a 

user wishes to include a Stagnation Reached condition to the termination criteria then he must 

also enter the lowest acceptable value of relative fitness improvement over a certain number of 

generations; here we set 3% over 1000 generations. Finally, the user can also include a 

Resources Exhausted condition in the overall termination criteria, and then set an upper limit to 

the number of generations or fitness calculations or raw time permissible for evolution; here, we 

set 3000 generations. These conditions can be combined using the AND or OR logical operators; 



 

31 
 

for this problem we set an OR combination of all three conditions, as configured above. 

Snapshots of the window used to enter the values are shown in Figure 17. 

 

Figure 17. Termination criteria step 

Parent Selection. The user is expected to set the size of the selection window (here, 20) and the 

number of selected individuals (here, 15). He must also chose the type of selection mechanism. 

We chose fitness proportional selection. Optionally, the user may choose a particular fitness 

transformation to be applied to (raw) fitness, prior to selection. We opted to transform row 

fitness into a population rank. The user must also indicate whether replacement (re-insertion of 

individuals that had already participated in a selection event) is allowed or not. We opted for 

replacement. Finally, the size of the resulting parent pool must be set (here, 150). Snapshots of 

the window used to enter the values are shown in Figure 18. 
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Figure 18. Parent selection step 

Variation Operations. The next step is defining how the variation operations that were selected 

during genotype definition are going to be applied to the parents. First, we define the size of the 

offspring pool and whether replacement is allowed. Hence, we define how many parallel 

branches are needed and set the probability of each branch. Any residual probability will be 

automatically assigned to the pass-through path, which does not vary the individual in any way. 

For each path, one can select any of the available variation operators in sequence and assign each 

an independent probability. For the current problem, we set the offspring pool to 150 and 

allowed replacement. Also, we choose two parallel paths, and associated each path with two 

different crossover and mutation operations, as shown in Figure 19.  
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Figure 19. Variation operations step 

Survivor Selection. Here, one is required to indicate how much of the next generation comes 

from (a) the current population, the offspring pool or the two combined. For each of these 

options, the user must specify the selection method (if any). Also, the user must decide whether 

and how much of the next population will come through elitism or injection. For our application, 

we opted for 90% of the next population to come, through fitness proportional selection, from 

the union of the current population and the offspring pool (without replacement). A further 5% of 

the next population will come via elitism, with the final 5% coming from injection. Snapshots of 

the window used to enter the values are shown in Figure 20. 
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Figure 20. Survivors selection step 

Open and Run. At this point, CodeMonkey’s framework is fully specified and is capable of 

generating a full Java encoded EA. 

The summary of our configuration that was described above through GUI interaction with CM 

application is presented in Table 2. 

Table 2. List of parameters and their values for the Ackley problem 

Genotype Definition Length = 10 Type = Real List 

Lower Bound = -32.0 (for all 

genes) 

Upper Value = 32.0 (for all genes) 

Selected Variation Operator: 

Discrete Recombination, Continuous Recombination, Convex 

Recombination, Local Crossover, One-Position Mutation, Creep Mutation 

Population 

Initialization 

Population Size = 300 Random Generator = Uniform 
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Fitness Calculation Mechanism :  Internal (the formula is manually entered in the code) 

Optimization Type = Minimization ,  Target Fitness Value = 0.0 

Termination Criteria Goal Achieved :   Stop once Fitness reached the 0.000001 vicinity of target 

Stagnation Reached :  Stop if progress in Fitness was less than %3 over 3000 

generation 

Resource Exhausted :  Stop if  number of generations reached 5000 

Parent Selection Window Input Size = 20 ,  Window Output Size =15 , Selection  Type = 

Proportional 

Replacement  Allowed ,  Fitness Transformation =Ranking , Parent Pool Size 

= 150 

Variation Operations Offspring Pool Size = 150 , Replacement  Allowed , Number of Branches = 2 

Branch One Probability = 0.7 Operator Probability 

Discrete Recombination 0.8 

One-position Mutation 0.2 

Branch Two Probability = 0.3 Operator Probability 

Convex Recombination 0.8 

Creep Mutation 0.2 

Pass through Probability = 0.0 

Survivor Selection Combined Population (Current and Offspring) = % 90 

Window Input Size = 450  , Window Output Size = 270 , Selection Type = 

Proportional , Replacement Allowed , Fitness Transformation = None 

Elitism = % 5 Re-initialization = % 5 
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3.1.4 Result 

From the chart in figure 21 we see that the best  fitness reached zero (actual value: 8.88 10
-16

). 

This was achieved at the 67
th

 generation. Since the target fitness value was 0.0 and the 

termination condition had the accepted vicinity of 0.000001 the process stopped at the 67th 

generation. The genotype of the best individual is a vector of 0s along all 10 dimensions. A time 

course for the evolution of best fitness and mean fitness is presented in that figure as well.  

  

Figure 21. The progress in fitness over generations in Ackley's problem  

As it can be seen the mean fitness reduces gradually while the best fitness at first declines 

sharply as it finds local optima points and then slowly finds the global optima.  

The flexibility of the framework allows the user to go back to any of the steps and change the 

settings for that particular part of the evolutionary process. A re-run of the code will incorporate 

the changes and affect the results.  

3.2 The Traveling Salesman Problem 

The Traveling Salesman Problem (TSP) is one of the most studied combinatorial  optimization 

problem in computer science [25].  
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3.2.1 Problem Definition 

For definition let         be a graph where V is a set of n vertices. A is a set of arcs or edges, 

and let         be a distance matrix associated with A. The TSP consists of determining a 

minimum distance circuit passing through each vertex once and only once. In several 

applications, C can also be interpreted as cost or travel time matrix.  

3.2.2 Implementation  

We used the sample data set provided by John Burkardt, with known ideal solutions [26]. 

Table 3 below summarizes all the information used to configure CM for this application. 

Table 3. List of parameters and their values for the TSP 

Genotype Definition Length = 15 Type = Permutation List 

Selected Variation Operator: 

PMX Crossover, Order Crossover, Cycle Crossover, Swap Mutation, Insert Mutation, 

Inversion Mutation 

Population Initialization Population Size = 300 Random Generator = Uniform 

Fitness Calculation Mechanism :  Internal (the formula is manually entered in the code) 

Optimization Type = Minimization ,  Target Fitness Value = not specified 

Termination Criteria Goal Achieved :   N.A. because Target is not known 

Stagnation Reached :  Stop if progress in Fitness was less than %0.1 over 500 

generation 

Resource Exhausted :  Stop if  number of generations reached 15000 

Parent Selection Window Input Size = 20 ,  Window Output Size =15 , Selection  Type = Proportional 

Replacement Not Allowed ,  Fitness Transformation =Ranking , Parent Pool Size = 150 

Variation Operations Offspring Pool Size = 150 , Replacement  Allowed , Number of Branches = 3 

Branch One Probability = 0.3 Operator Probability 
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PMX Crossover 0.6 

Swap Mutation 0.2 

Branch Two Probability = 0.3 Operator Probability 

Order Crossover 0.6 

Creep Mutation 0.2 

Branch Two Probability = 0.3 Operator Probability 

Cycle Crossover 0.6 

Inversion Mutation 0.2 

Pass through Probability = 0.1 

Survivor Selection Combined Population (Current and Offspring) = % 90 

Window Input Size = 450  , Window Output Size = 270 , Selection Type = Truncation , 

Replacement Allowed , Fitness Transformation = None 

Elitism = % 5 Re-initialization = % 5 

 

3.2.3 Result 

The result of running the generated code is shown in the figure 22. The three parameters are Best 

Fitness (in blue), the mean fitness (in Red) and Sigma (in yellow). Sigma is the standard 

deviation. It shows how much variation from average exists. Low Sigma indicates data are tend 

to be very close to mean while high sigma indicates data are spread out across a wide range. 
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Figure 22. Progress in fitness over generations in TSP 

Similar to previous example the mean and best fitness follow the same trend with sharp decline 

as local optima points are found quickly but the improvement slows down as it tries to find more 

global optimum. Meanwhile the sigma slightly increases but stabilizes across the process since 

we have dedicated %5 of population to random injection. 

The generated code reaches the optimum fitness that was known for this data set (best fitness = 

291.0) at the generation 217. Because no target fitness was given during configuration, the 

process continues the search until it reaches other termination criteria. In this case with less than 

%0.1 improvement over the next 500 generation process stops at generation 717.   The best 

overall fitness of 291.0 was obtained by this Genotype= [11, 13, 9, 7, 5, 3, 10, 0, 12, 1, 14, 8, 4, 

6, 2]. While this genotype is different than what was defined in the data set the experiment shows 

that more than one answer exists for this data set.    

3.3 The Knapsack Problem 

Knapsack is a family of combinatorial problem [27].  

3.3.1 Problem Definition 

In all variants there are items with profit   and weight    which are packed into a knapsack of 

capacity c. The Unbounded Knapsack Problem is the problem of choosing a subset of n items 
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such that the corresponding profit sum in maximized without having the weight sum to exceed 

the capacity c. This can be formulated as follow: 

maximize       
 
    

subject to       
 
              ≥ 0 integer,  j = 1,...,n    (2) 

Where    is an integer variable representing the amount of each item in the knapsack. In the 

formula, there is no limit on the number of each item but in reality it is limited by the capacity of 

knapsack. 

3.3.2 Implementation 

To have a point of reference and comparison we use the dataset hosted at rosettacode.org [28]. 

According to problem description in the rosettacode.org a traveler leaving Shangri La can pick as 

many Panacea, Ichor and Gold as he can fit into his knapsack with the given weight and volume 

constrains. The exact number is provided in table 4. 

Table 4. Unbounded knapsack criteria 

Item Explanation Value (each) weight Volume (each) 

panacea (vials of) Incredible healing properties 3000 0.3 0.025 

ichor (ampoules of) Vampires blood 1800 0.2 0.015 

gold (bars) Shiny shiny 2500 2.0 0.002 

Knapsack For the carrying of (maximize) <=25 <=0.25  

 

Table 5 summarizes all the information used to configure CM for this application. Note that each 

gene has different upper  boundary based on the weight and volume associated with each item in 

table 3 above. 

Table 5. List of parameters and their values for knapsack problem 

Genotype Definition Length = 3 Type = Integer List ( with different range 

for each gene as shown in Figure. 16) 



 

41 
 

Selected Variation Operator: 

One Point Crossover, Two Point Crossover,  Discrete Crossover, One-Position 

Mutation and Creep Mutation 

Population Initialization Population Size = 50 Random Generator = Uniform 

Fitness Calculation Mechanism :  Internal (the formula is manually entered in the code) 

Optimization Type = Maximization ,  Target Fitness Value = Not Specified 

Termination Criteria Goal Achieved :   N.A. (because Target is not known) 

Stagnation Reached :  Stop if progress in Fitness was less than %0.1 over 300 

generation 

Resource Exhausted :  Stop if  number of generations reached 5500 

Parent Selection Window Input Size = 3 ,  Window Output Size =1 ,  Selection  Type = Proportional 

Replacement Not Allowed ,  Fitness Transformation =None , Parent Pool Size = 40 

Variation Operations Offspring Pool Size = 30 , Replacement  Allowed , Number of Branches = 2 

Branch One Probability = 0.6 Operator Probability 

One Point Crossover 0.7 

Two Point Crossover 0.7 

Branch Two Probability = 0.3 Operator Probability 

Creep Mutation 0.1 

One-Position Mutation 0.1 

Pass through Probability = 0.1 

Survivor Selection Combined Population (Current and Offspring) = % 96 

Window Input Size = 10  , Window Output Size = 4 , Selection Type = Proportional , 

Replacement Allowed , Fitness Transformation = None 
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Elitism = % 4 Re-initialization = % 0 

 

3.3.3 Result 

The result of running the generated code is shown in the figure 23. This is a maximization 

problem and fitness climbed quickly to 54500 by 7th generation. As target was not given the 

process continues and only stopped after additional 300 generations as it was defined stagnation 

criteria. 

 

 

Figure 23.  Progress in fitness over generations in knapsack problem 

This experiment was repeated and it they all the maximum ideal value of 54500. This is in line 

with the value obtained from deterministic code that is given in the rosettacode.org website. The 

advantage of using the CM generated code is that it provided different answers with the same 

optimal fitness. Whereas the deterministic code always returns one answer (0 Panacea, 15 Ichor 

and 11 Gold). The discovery of more solutions using evolutionary process provides more options 

as shown in the Table 6. 
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Table 6. - Unbounded knapsack best found solutions 

Solution # of Panacea # of Ichor # of Gold Total Value  Total weight Total Volume  

Expected 0 15 11 54500 25 0.247 

EA alternative 3 10 11 54500 24.9 0.247 

EA alternative 6 5 11 54500 24.8 0.247 

 

It can be argued that EA process found better alternatives because they include all three items in 

the knapsack whereas the deterministic solution only put two items in the bag. Also the weight is 

slightly less in the alternatives solutions. 

3.4 Image Noise Cancelation    

To better demonstrate the capabilities of CM, we provide an example of image de-noising using 

evolutionary computing.  

3.4.1 Problem Definition 

First, a set of 60 greyscale images from the Berkeley Data Set [29] was compiled. The images 

are then converted from JPEG to PGM format using ImageJ [30] for easier evaluation.  To create 

a noisy version of these reference images we chose Salt and Pepper noise that is available in 

ImageJ as shown in figure 24. Salt and Pepper noise is non-Gaussian noise that consists of white 

and black points randomly scattered over the image. By default, ImageJ adds 5% Salt and Pepper 

noise, where around half of it is Salt (white) and the other half pepper (black). 

 

Figure 24.  ImageJ salt and pepper noise 
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For example, figure 25 shows one of the reference images (image #277095) before and after 

noises is added. 

  

   Figure 25. Sample image from Berkley data set, before and after salt & pepper noise 

We save the noisy images in PGM format as well to be used as the input to the evolutionary 

process. The goal is to find a set of Cellular Automata (CA) rules to perform image noise 

reduction via conditional filtering. In Rosin [31] a sequential floating forward search is used to 

train the CA rules. Here, we use an evolutionary process to evolve the rule set. 

3.4.2 Implementation  

For this experiments we are trying to find a set of rules that each acts independently based on the 

value of a pixel and its neighborhood. We chose to use a 5x5 array around each pixel as it's 

neighborhood. In this case each rule is a 25 length array of integer values. Each value is in the 

range of [0,255] which is the color range of pixel in the 8-bit grayscale images. 
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Each candidate solution contains a set of rules. We chose to limit the length of the set between 2 

and 20 rules. The fitness of each candidate is calculated based on randomly selected pixels from 

first three noisy images that are used as training points. Each training point and its neighbors 

values are compared to each rule in a given candidate to find possible match. A match is found if  

the center value of a rule in candidate matches the value of the training point. If no rules satisfies 

this condition then that training point is not affected by rules in the candidate solution. If 

however center of more than one rule in the candidate matches the training point we choose the 

rule that sum of its values is closest to the sum of values of training point and its neighbors (i.e. 

has least distance). Once a match is found the value of the training point is replaced by the 

average of values in the matching rule. If no match the training point remains unchanged. To 

calculate the fitness of a candidate each point is compared with its counterpart in the non noisy 

version of the image. The difference in their values is calculated. This process is repeated for all 

training points in all training images and the differences are summed up. The raw fitness of the 

candidate is this sum after all training points are evaluated. To have penalty for large rule sets the 

length of the candidate's rule set is added to raw fitness. The following pseudo code shows how 

up to 1/16 (used as ratio) of points are chosen randomly from a selected image for training. 

FUNCTION  pickCoordinatesRandom(imageHieght, imageWidth, ratio) BEGINS 
             //randomly select points from image up to provided ratio  
 Coordinates := the empty map      // the map of selected coordinates 
 Total : = imageHight * imageWidth 
 Needed : = Total * ratio 
 Points : = new empty data set     // to keep the points 
 WHILE Size of Points < Needed  DO 
  P : = Random number between 0 and Total 
  Add P to Points set 
 END WHILE  
 FOR every P in Points DO  //converting point to x,y coordinate 
  X : = P / imageWidth      // quotient 
  Y := P % imageWidth      //reminder  
  Ys : = Row in coordinates map of I key 
  IF  Ys is empty  THEN      // new X 
   Ys := new empty set 
  END IF 
  Add Y to Ys 
  Put X as key with Ys as value into Coordiantes 
 END FOR 
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       RETURN coordinates 
FUNCTION ENDS 
 
The goal is to find rule set with minimum fitness value. The following pseudo code demonstrates 

how the fitness is calculate for a given rule set using training points. 

FUNCTION evaluate(ruleSet) BEGINS 

//for every coordinate in the map get the neighbors & finds the best matched rule, //then apply 

the rule if there is match or keep the point unchanged 

//calculate error by comparing the output with reference and return sum of errors   

   errorSum := 0.0 

   FOR n=0 to n<3  //three is the number of training images 

 //For every point in each coordinate map 

 FOR Point p:=first training point TO last training point in image n DO  

  output := p    

  //Get the neighborhood 

  neighbors := Read 5x5 Neighbors of p in input image 

  //Find the best matching rule (if there is one) 

  bestRuleMatchIndex = Find closest to neighbors rule in ruleSet  

  //If there is matching rule, apply it to update output 

  IF  bestRuleMatchIndex > -1  THEN    // Match found, apply rule  

     output = Average of values in the matching rule 

  END IF 

  //Calculate the distance of output value of reference value 

  error = Absolute difference between output & Reference point 

  errorSum := errorSum + error; 

  END FOR 

    END FOR 

RETURN  errorSum 

FUNCTION ENDS 

 

The fitness evaluation is performed for all candidates in initial population (300 individuals). The 

population then goes through proportional parent selection and after that through recombination 

based on the parameters that were provided to CM. Then fitness of each offspring is calculated 

with the method described earlier. Finally population goes through survival selection to create 

the next generation. The process continues until the termination criteria is met. In this case it is 
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one of the three options. Either a rule set of size 2 with raw fitness of zero is found OR there is 

no improvement in fitness over 200 generations OR the execution exceeds 7000 generations.  

At this point, the best found rule set is applied to all 60 images one by one to generate an output 

image for each. The Root Mean Square (RMS) error of each output image in comparison to its 

reference (non noisy) image is calculated. Finally the Average and Standard Deviation of the 

RMS error values are obtained. 

A summary of the parameters and their values for configuration of CM are provided in table 7. In 

this experiment, we introduced a custom initialization mechanism based on regions of images. 

Therefore, in addition to writing code for fitness calculation (as required by CM application for 

the generated Phenotype class), we also added code to the generated Genotype class to fully 

implement our custom initialization. This shows the flexibility of CM, since users can modify the 

generated code as needed, hence using a hybrid approach to code generation. We also did a 

similar customization at the end, to generate PGM images after applying the best evolved rule 

sets to all the noisy images. 

Table 7. Parameters and their values used for the image noise cancelation problem 

Genotype Definition Type = Dynamic List of List 

Minimum size = 2  

Maximum Size = 20 

Selected Variation Operators: 

One Point Crossover, Two Point Crossover, 

Uniform Crossover, Merge Mutation, Insert 

Mutation, Delete Mutation 

Genotype Part  

 

Type =  Integer List 

Length = 25  ( value range of each gene [0,255] ) 

Selected Variation Operators: 

One Point Crossover, Two Point Crossover, Discrete 

Recombination, One-Position Mutation, Creep Mutation 

Population Initialization Population Size = 300 Random Generator = Uniform 

Population initialized with Randomly selected region of noisy image ( code added 

manually ) 
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Fitness Calculation Mechanism :  Internal (manually entered formula:  sum of errors + genotype size ) 

Optimization Type = Minimization ,  Target Fitness Value = 2.0 

Termination Criteria Goal Achieved :   Stop once Fitness reached the 0.01 vicinity of target 

Stagnation Reached :  Stop if no progress in Fitness over 200 generation 

Resource Exhausted :  Stop if  number of generations reached 7000 

Parent Selection Window Input Size = 20 ,  Window Output Size =15 , Selection  Type = Proportional 

Replacement Allowed ,  Fitness Transformation =Ranking , Parent Pool Size = 150 

Variation Operations Offspring Pool Size = 150 , Replacement  Not Allowed , Number of Branches = 2 

Branch One Probability = 0.6 Operator Probability 

One Point Crossover 0.9 

Insert Mutation 0.1 

(Part) Two Point Crossover 0.9 

(Part) One Position Mutation 0.05 

Branch Two Probability = 0.2 Operator Probability 

Uniform Crossover 0.9 

Delete Mutation 0.1 

(Part) Discrete 

Recombination  

0.9 

(Part) Creep Mutation 0.05 

Pass through Probability = 0.2 

Survivor Selection Combined Population (Current and Offspring) = % 90 

Window Input Size = 45  , Window Output Size = 27 , Selection Type = Truncation , 

Replacement Not Allowed , Fitness Transformation = None 

Elitism = % 10 Re-initialization = 0 
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To contrast the effectiveness of our evolutionary method of de-noising we apply three different 

image enhancement filters that are available in ImageJ to the same noisy images. We calculate 

the RMS errors, their means and standard deviations to compare the result with the 

corresponding results given by CM.  

ImageJ Despeckle Filter. The first ImageJ filter to compare is called despeckle [32] . This filter 

is a median filter. A median filter is a class of order-statistic filters where filter statistic are 

derived from ordering (ranking) the elements of a set rather than computing means [33]. In case 

of the despeckle filter, it replaces each pixel of the image with the median value in its 3x3 

neighborhood. The following pseudo-code represents this filter.  

FOR each pixel in the image 

 Extract the 3x3 neighbors around the pixel (for edge pixels there is less) 

 Find the median by sorting the extracted values  

 Replace the pixel value with the median value 

END FOR  

 

It is noteworthy that for an edge pixel the immediate neighborhood will be smaller than 3x3. For 

example, a corner pixel there are only 3 points in the immediate neighborhood. The algorithm 

takes that into account. 

This type of filter is specialized for removing speckles such as salt and pepper noise. Since it is 

based on medians it is less prone to outliers. The source code of this filter is available at 

ij.plugin.filter.RankFilters.java file, which is part of ImageJ source code at GitHub repository 

[34].  

ImageJ Smooth Filter. The second ImageJ filter is called smooth [35]. It is an arithmetic mean 

filter [36], which finds the arithmetic average of the pixel values in a     window.  It tends to 

blur the image while mitigating the noise, as it replaces each pixel with the calculated average. In 

case of ImageJ, its smooth filter is described below:  

FOR each pixel in the image 

 Extract the 3x3 neighbors around the pixel (for edge pixels there is less) 

 Calculate the average of the extracted values 

 Replace the pixel value with the calculated average 

END FOR  
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Same restriction for edge pixels that was mentioned in despeckle filter applies here as well. This 

filter is also good for reducing salt & pepper type noise but is more prone to the negative effects 

of outliers. The source code of this filter is available inside ij.process.ImageProcessor.java class 

[37] of ImageJ source code. 

ImageJ Remove Outliers Filter. The third ImageJ filter is called remove outliers [38]. It is a 

conditional median filter. It replaces a pixel with the median value of its surrounding pixels if 

and only if its value deviates from that median by more than given threshold. So the filter 

requires three inputs (shown in figure 19). A radius of neighborhood equaling 1 means 3x3 and 2 

means 5x5. One also needs to input a threshold value and indicate whether a noise pixel is 

brighter or darker than the median. For this experiment, we uses ImageJ default values as shown 

in figure 26. 

 

Figure 26. Remove outlier filter input parameters 

The pseudo-code for this filter follows: 

FOR each pixel in the image   

 Find the median value within the neighborhood (defined by a radius)  

 IF the pixel value + threshold > median value (for dark outliers less) 

  Replace the pixel value with the median value 

 ELSE 

  Do nothing 

 END IF 

END FOR 

 

The code of this algorithm is available in the ij.plugin.filter.RankFilters.java class file [34] in 

ImageJ application source code. 
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3.4.3 Result 

We ran our EA code multiple times and we took the rule set that yielded the lowest mean RMS 

error as the best found solution. Note that the best rule set does not improve all noisy images 

equally but that is also the case for ImageJ filters. Figure 27 shows the process of finding the best 

rule set.  

 

Figure 27. Progress of fitness over the course of the best run of image denoising  

The best found rule set contains 9 rules where each is a 25 length array of integer values. After 

applying this rule set to the noisy images it resulted in average RMS error of 5.828 with the 

standard deviation of 7.064. In comparison the average RMS error of input noisy images was 

31.352 with a standard deviation of 2.573. This means that, on average, there was close to 5 

times reduction in noise after applying the evolved rule set. The interesting point is that despite 

allowing the number of rules in a set to reach 20, the best solution did not contain more than 9 

rules. This means that the process did not only look for the best de-noising rule sets but also 

minimized the number of rules in sets, as it was required by the fitness formula. 

Table 8 shows sample output of the best, the median and the least good run of the CM process. 

While the RMS values varies in multiple runs the visual differences between CM outputs are not  

significant. 
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Table 8. Sample RMS and output of best, least and median found solutions by CM 

 

 

 

 

 

 

 

 

CM Best Rule Set  CM Median Rule Set  CM least good Rule Set  

Size : 9 rules 

@ Gen: 1932 

Size : 9 rules 

@ Gen : 1169 

Size: 17 rules 

@ Gen : 1162 

Image S&P Noisy input Output Output Output 

 

12003 

RMS= 30.977 

 

RMS= 4.724 

 

RMS= 5.941  

 

RMS= 7.050 

 

 

42049 

RMS= 31.612 

 

RMS= 4.364 

 

RMS= 7.036 

 

RMS= 10.681 

 

 

21077 

RMS= 30.466 

 

RMS= 7.607 

 

RMS= 10.835 

 

RMS= 13.430 

 

 

28075 

RMS= 29.926 

 

RMS= 4.746 

 

RMS= 5.588 

 

RMS= 5.447 

 

 

 To better demonstrate the results, we also include the output of the run with the least reduction 

and the one with median output quality. In table 9 we include the average RMS of all three cases 

and the three ImageJ filters that were applied. 
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Table 9. Summary of RMS comparison between CM and ImageJ filters 

Image Set Average RMS Standard Deviation 

Input Salt & Pepper 

 

31.352 2.573 

 

CM 

Outputs 

Best Run 

 

5.828 7.064 

Least good Run 

 

8.834 28.774 

Median Run 7.276 15.624 

 

ImageJ 

Filter 

Outputs 

Despeckle 9.080 21.275 

Smooth 14.993 11.880 

Remove 

Outliers 

19.241 24.082 

 

The table shows CM has outperformed all three filters of ImageJ. Although this is a comparison 

of average RMSs, still even the CM output with least improvement was better than the ImageJ 

filters. To give a more complete picture of the differences in the results, we sampled some of the 

images from CM output and the outputs of the three filters, and compared them with the each 

other and the noisy image itself. In table 10 we show a section of these images along with their 

calculated RMS. 

 

 

Table 10. Sample comparison of RMS and output images of CM and filters  

Image 

No. 

S&P Noisy Input CM Best Output  ImageJ Despeckle 

Filter  

ImageJ Smooth 

Filter  

Remove Outlier 

Filter  



 

54 
 

 

12003 

RMS= 30.977 

 

RMS= 4.724 

 

RMS= 7.848 

 

RMS= 13.738 

 

RMS= 19.701 

 

 

42049 

RMS= 31.612 

 

RMS= 4.364 

 

RMS= 5.881 

 

RMS= 13.662 

 

RMS= 27.619 

 

 

21077 

RMS= 30.466 

 

RMS= 7.607 

 

RMS= 9.625 

 

RMS= 15.409 

 

RMS= 22.282 

 

 

28075 

RMS= 29.926 

 

RMS= 4.746 

 

RMS= 9.817 

 

RMS= 14.097 

 

RMS= 17.048 

 

 

The comparison shows that applying CM optimized rule sets to noisy images generated lower  

RMS error relative to the filters. However, ImageJ’s Despeckle filter does often return de-noised 

images that, to the human eye, appear less noisy than CM’s filter, though somewhat fuzzy. The 

main reason is that CM’s evolved rule sets are conditional filters that only affect discrete pixels 

whereas two of ImageJ’s filters affect all the pixels, which reduce noise at expense of overall 

smoothing. Although the Remove Outlier filter is a conditional filter, it did not perform well 

because the condition is manually pre-set (and fixed). We could have uses this filter multiple 

times with different threshold values but that would have achieved little beyond accentuating its 

reliance on manual human rather than automated machine optimization.  
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4 Summary & Conclusion 

 

CodeMonkey-GA (CM) is a GUI driven software development platform that allows non-

experts and experts alike to turn evolutionary algorithm designs into working Java programs, 

with a minimum amount of manual code entry, usually related to fitness calculation. 

Besides it main feature, which is step-wise GUI-driven customization of a generic EA 

framework, CM has other strengths worthy of note. In terms of representation, CM allows 

the user to specify a wide variety of homogenous & heterogeneous genotypes. This is done in 

a manner that allows for automatic identification (by CM) of all acceptable variation 

operators, to go with the specified genotype. CM has highly configurable definitions for 

parent as well as survivor selection. CM offers termination criteria that combine any number 

of three generic & customizable termination conditions.   CM has data serialization 

capabilities, for external fitness computation purposes, which are not available in other 

platforms. CM is provided as a framework and plug-in application for the Eclipse platform 

for non-commercial users. 

The architecture of CM is based on two parts. One: the framework that contains the core and 

the implementations of the different genotypes and their associated operators. Two: the 

application which provides a GUI for end-users to describe their own EA design, terminating 

with automatic source code generation, in Java. 

 

Through several examples we demonstrated the ease of use and (to some degree) the 

applicability of the CM application. The Ackley function is a well-known test function for 

optimization; the Traveling Salesman Problem is a famous example of NP-Complete 

problems; the Knapsack problem is an example of combinatorial optimization. In all three 

cases, CM was used to develop working Java programs that provided satisfactory solutions, 

which were as good as, or better than the given solutions. Critically, in all cases, not a line of 

code was entered or altered – bar the fitness function – by the user. 
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5 Future Work 

 

As for all software packages, there is room to extend and improve CodeMonkey. Here, we list 

some of the areas that we are considering for future releases of CM. 

The ability to graphically monitor the progress of evolutionary processing is a useful 

improvement. Currently, the program logs the key parameters (e.g., fitness) into the console as 

well as a CSV file, which can be visualized using 3rd party products (e.g., Microsoft Excel). 

Such charting is, in principle, possible using the Eclipse Chart Engine. 

Another area for enhancement is the ability to run the framework on a distributed environment. 

Since raw fitness calculation can be done in parallel, the ability to compute fitness in parallel 

would greatly enhance performance and render CM a viable solution for large scale optimization 

applications. 

The scope of use of CM can be extended if support for multi-objective optimization and 

parameter-less EAs were added to the current version. 

Since CM is an open source project we hope it would be embraced by developers who can 

contribute to the ongoing expansion and improvement of the platform. 
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Appendix A 

  Code Monkey Installation/Un-installation Guide 

Code Monkey consists of a framework and eclipse plug-in application that enables rapid 

development of evolutionary algorithms using Java language. 

Below are the steps to download and install Code Monkey artifacts and their prerequisites. 

1. Download Eclipse IDE for Java from Eclipse website http://www.eclipse.org/downloads/. 

If you already have Eclipse environment skip to step 3. 

2. Unpack the downloaded eclipse zip file into a new directory (e.g. Eclipse) 

3. Download the Code Monkey plug-in (PGAF2Plug_1.0.0.xxxx.jar) from CM website.  

4. Copy the downloaded jar file into the plugins subdirectory of your eclipse installation. 

5. Start Eclipse application by running eclipse.exe (or .bin in Linux). 

6. The Code Monkey icon should be visible in the tool bar as highlighted below 

 

Figure A.28. CM icon in Eclipse toolbar 

7. Next you need to import the code base project into Eclipse. First download the project 

archive file (PGAF2.zip) from CM website.  

8. Import the project into your Eclipse workspace through File->Import menu 

8.1 In the Import popup dialog select General -> "Existing Projects into Workspace" 

as shown here, and press Next 

http://www.eclipse.org/downloads/
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Figure A.29. Import project wizard source selection 

8.2 In the new page, select the “Select archive file:”option and browse to the location 

of downloaded zip file. After project’s name appears under “Projects” section 

select the checkbox next to the project’s name (PGAF2) and press Finish button. 

 

Figure A.30. Import project wizard  

9. This completes the installation. The environment is now ready for development of EA 

application using the Code Monkey plug-in and Framework.  

10. Code Monkey application contains a step by step guided navigation on how to generate 

EA code. To launch the guided navigation (a.k.a. cheat sheet), click on the Code Monkey 
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icon in the toolbar. Follow the cheat sheets steps to generate the code according to your 

requirements. For more information read the user guide or watch video tutorials. 

 

 

Figure A.31. Eclipse environment after CM installation 

To uninstall Code Monkey plug-in application, simply remove the jar 

(PGAF2Plug_1.0.0.xxxx.jar) from eclipse plugins directory and restart the Eclipse. This is also a 

good practice if you want to install a newer version of Code Monkey plug-in application. 

The framework part of Code Monkey is a standard Java project that you imported into Eclipse 

workspace. It can be removed through Project Explorer in Eclipse. 
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Appendix B 

  Code Monkey User Guide 

Code Monkey consists of a framework and an eclipse plug-in application that enables rapid 

development of evolutionary algorithms using Java language. This document guides you through 

Code Monkey application to generate and execute Evolutionary Algorithm (EA) programs based 

on your requirements. For installation of Code Monkey please refer to “Code Monkey 

Installation Guide” document. 

This user guide is a more detailed companion to the Code Monkey guided navigation help that is 

available as part of the plug-in application itself. Upon installation of the Code Monkey plug-in 

application into eclipse you can launch the guided navigation (also known as cheat sheet in 

eclipse) by clicking on the Code Monkey icon ( ) in the eclipse toolbar. Below is sample page 

that shows the Code Monkey guided navigation inside Eclipse Cheat Sheet panel on the right. 

 

 

Figure B.32. CM initial page 
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The guided navigator is self explanatory however in this document we follow the guide and provide more 

details on each step of the process. In the rest of this document the term 'CM' refers to Code Monkey 

while 'EA' refers to Evolutionary Algorithms. 

1. Introduction 

This is the entry point to the process that ultimately generates the EA code. It acts as a welcome message. 

The actual process starts once you hit the “Click to Begin” at the bottom of welcome message. 

2. Configuration 

Before any code being generated the process asks you to choose a package name. The package will be 

created inside the CM framework project and all the will be generated code will reside under this newly 

created package. The package name can be any valid Java package name and if the package already exists 

you will be warned to confirm to overwrite. Note that certain package names that conflict with CM 

framework’s package names will not be accepted. 

 

Figure B.33. Configuration wizard 

After you entered a valid package name and pressed Finish button the package folder will be created and 

the next step (Genotype Definition) in the guided navigation panel will expand. 
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3. Genotype Definition 

This step allows you to shape the structure of the genotype that will be created and used inside the 

package. In total there are three category of genotypes. Homogeneous, Heterogeneous, Homogeneous of 

Heterogeneous. We describe all three categories in order. The wizard page is preselected with 

homogenous genotype (where all genes are of the same primitive type) which is also the simplest form of 

genotype.  

If homogenous genotype satisfies your requirements, simply enter the length and then select the type from 

one of the available primitive types (Boolean, Integer, Real or Permutation). 

Note: throughout the wizards you would see a light bulb ( ) or an info ( ) icon next to some of the UI 

input elements. If you move cursor over those icons you will see extra hint about that input or what is 

expected. 

 

Figure B.34. Genotype definition wizard 

If you choose Integer or Real as the type of the genome the wizard expands the section to allow you to 

enter lower and upper boundary for each gene’s value. Since normally the same boundary is used for all 



 

66 
 

genes the value that you provide for the first gene will be propagated to the rest of empty ranges but you 

can manually change each boundary separately. 

 

Figure B.35. Homogeneous genotype 

Next you need to select some of the available variation operators that you expect to use for the chosen 

genotype. If you notice the wizard updates the list of available operators based the primitive type that you 

select as shown below: 

 

Figure B.36. Variation operators 
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You have to select at least one variation operator from the list. You will not be asked at this stage to 

specify the order and probability of these operators. This is the subject of Variation Operations wizard 

that we will cover later on. However it is recommended to choose as many variation operators as 

available unless you are certain about not using some of them. You won’t be forced to use all selected 

operators as part of the variation but by selecting them all here you will keep your options open when you 

reach the Variation Operations wizard. 

At this point you have provided all necessary information for your homogeneous genotype. Once you 

click Finish button the genotype class will be generated. 

If you require a heterogeneous genotype (where genes are made of different primitive types) then you 

must instead select the “Heterogeneous Genotype” checkbox and enter the number of subparts of your 

heterogeneous genotype based on the number of primitive types that you will need. For example if your 

genotype consists of a Boolean part and integer part you enter two as the number of parts. Each part will 

represent a homogeneous genotype itself that you provide their detail in the next page of wizard. 

 

Figure B.37. Heterogeneous genotype subpart selection 

Once you click Next button you will be directed to the next page of Genotype Definition wizard where 

you provide the detail of your heterogeneous genotype and its parts. 

A the first section you only need to select what variation operators will be used at heterogeneous level (if 

any). Note that at heterogeneous level only recombination (crossover) operators are available and there is 

no mutation since mutation is only a gene level operator (except for Permutation type). 

For each sub parts of the genotypes the wizard is exactly the same as homogenous genotype wizard that 

was described earlier. You will choose the size, type and variation operators for each sub part and if 

applied the gene values boundaries. 
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Figure B.38. Heterogeneous genotype wizard 

After you entered all necessary information you can press Finish button and the wizard will generate 

genotype class and its sub parts (one class per each subpart). Note that the heterogeneous variation 

operator is optional but for each subpart you must choose at least one variation operator. The Finish 

button will remain grayed out as long as any necessary information is missing. This is a feature through-

out the wizard to make sure that each step is completed correctly. 

The third type of Genotype which is the most complex one supported by CM application, is a 

homogenous genotype made of the heterogeneous genotype as its gene. This type of genotype is for the 

cases where you need a homogenous genotype but a single primitive type is not enough to be used as the 

gene, rather a combination of them is needed as gene. If that is what desired by your requirements you 

need to select the checkbox in that indicate this option. The checkbox is below the heterogeneous 

variation operators section. 

 

Figure B.39. Selecting homogeneous of heterogeneous option 
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By selecting this option you will still need to provide information for each subpart of heterogeneous but 

the whole heterogeneous section will be treated as gene for next step. One difference is that you will not 

be allowed to specify any recombination operator at heterogeneous level and that section will be grayed 

out. We provide that option at the next page for the top level genotype. After entering the information of 

subparts as described earlier you can press Next button to go to the final page. 

 

Figure B.40. Homogeneous of heterogeneous genotype definition 

At this page you define the structure of the top level homogenous genotype. To provide more flexibility 

the top level homogeneous genotype can have fixed or variable length depending on your requirements. If 

fixed length is selected you specify the size and optionally select some variation operators from available 

list. The variation operators for fixed length genotype are limited to recombination (crossover) since 

mutation is only possible at gene level (i.e. at each subpart of each heterogeneous unit). 
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Figure B.41. Homogeneous of heterogeneous fixed length 

If a variable length homogeneous genotype is selected you will to need specify the minimum and 

maximum size for the genotype instead of fixed length. Optionally you are provided with two extra 

variation operators (Insertion and Deletion) that allow the size of genotype to change over the course of 

EA process. 

 

Figure B.42. Homogeneous of heterogeneous variable length 

Insertion and deletion can be interpreted as mutation at top level since it is a unary operator. In case of 

insertion a new randomly generated gene (heterogeneous unit) is created and attached to the genotype. 

And in case of deletion a randomly selected gene (heterogeneous unit) is removed from the genotype. The 

CM framework will respect the min/max boundaries when applies insertion and deletion. 
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At this point you are finished with Genotype Definition step. By pressing Finish button a class for top 

level homogenous genotype will be created along with its heterogeneous unit as inner class. For each 

subpart of heterogeneous unit a separate class will be generated. 

4. Population Initialization 

After deciding on the structure of Genotype you need specify how many individuals should be created for 

the start of the process. This is done in the Population Initialization step where you set the population 

size. Since all the initial individuals are generated randomly you also choose the type of random 

generator. Both available options generate numbers with uniform distribution. The difference is in their 

implementation. The “Secure” option uses newer Java API to generate the random data. 

Note that the population size remains constant throughout the process. The size that you provide in this 

step will be used as reference in following steps to calculate and validate other related numbers. If you 

change the population size later on you will need to redo steps that use this number as reference. Those 

steps show the population size as a read only value in their wizard pages. 

 

Figure B.43. Population initialization wizard 

 

5. Fitness Calculation 
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In this step you specify how the fitness of each individual will be calculated. There are two options to 

choose from when deciding on fitness calculation: Internal or External. The main difference is that with 

external option you execute an external program to help with fitness calculation. Although this require 

serialization of data between external program and CM that we explain further. 

Regardless of Internal or External calculation, you can optionally set the target value (the optimal fitness) 

or lower/upper boundary of fitness, if any of these values is known in advance.  These values will be 

useful when you are determining the termination conditions. For example if you want the EA process to 

stop when it reaches the exact target fitness or its vicinity. 

More importantly you need to define whether this is a minimization or maximization process. This sets 

the direction of selection process and is specifically needed when the target fitness is not known. 

 

Figure B.44. Fitness calculation wizard 

If you choose External strategy the wizard will ask you to provide three more parameters. First is the 

path-filename of the external program that is needed to run. Optionally provide the folder that program 

should use as its working directory if it different from the program's location and finally the format to be 

used for serialization of data between CM framework and external program. 
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Figure B.45. Fitness calculation wizard detail 

The assumption is that the external program already understands the CM data format and is able to parse 

the incoming data and send the result in the expected format. Examples of the data format are available in 

the guided navigator help. 

Once you click Finish button the wizard opens a source file (the Phenotype) in the editor. Note that this is 

the only place where you are required to manually code. The reason is that there is no way to generalize 

the logic of fitness calculation. The logic for fitness calculation is required inside the “evaluate” method. 

If you do not provide any code the EA process will not be able to calculate and compare the fitness value 

of individual candidates and will fail to run. 
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Figure B.46. Phenotype source file for fitness code entry 

If you have selected the External option then the data from the execution of external program is available 

to you as the input parameter “externalData” of the “evaluate” method.  Using the external data and the 

genome itself you should be able to calculate and set the fitness value of phenotype. Note that fitness 

value is expected to be of type Double (Real number). 

After entering the fitness calculation logic save the file and proceed with the next step in guided 

navigator. 

 

6. Termination Criteria 

Any EA process needs termination conditions. In this step you choose a combination of up to three 

categories. “Goal Achieved”, “Stagnation Reached” and/or “Resource Exhausted”. We will describe them 

in the same order. 

If you have provided target fitness or fitness boundaries you can select the “Goal Achieved” option and 

define the acceptable vicinity. For that, enter the acceptable delta from Absolute target value that you 

specified earlier. Or if you have provided the lower/upper boundary you can choose “Normalized” option 

instead of “Absolute” and enter that vicinity as percentage. During the EA process once any individual 

reaches that vicinity the process will stop. 
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Since the EA process may never reach the goal you can combine the second or third category to avoid 

infinite loop. The “Stagnation Reached” category allows you to track the progress of fitness and terminate 

the process if the best fitness does not progress at the desired rate. To set the rate, you enter the minimum 

acceptable fitness progress in percentage over the expected period (i.e. the number of generation). 

 

Figure B.47. Termination criteria wizard 

The third category is “Resource Exhausted”. This is where you set a fix deadline for the EA process to 

stop regardless of fitness value. You have a choice of three options. You can specify a number and use it 

as maximum number of generation, execution time or number of fitness calculation. 

 

Figure B.48. Resource exhausted condition 

Note that you can combine the categories with “AND” or “OR” options.  After deciding on termination 

strategy, click on Finish button to generate the termination criteria code. 
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7. Parent Selection 

Any EA process goes through a step of selecting individuals from current population and use them as 

parents to generate offsprings. In this step you provide the information on how this selection should 

happen. In the parent selection wizard the current population acts as input. You can see its size as you 

provided in an earlier step. 

 

Figure B.49. Parent selection wizard 

The selection process in CM is based on unification mechanism that is described in the Coke Monkey 

paper (http://link.springer.com/chapter/10.1007%2F978-3-642-37192-9_44).  First you enter the size of a 

window that will be created from current population (it can be any number between 2 and population 

size). Then you define the size of window’s output. Note that this number can’t be bigger than window 

size. The window is filled randomly from population but selection from window will be defined by you. 

There are three main techniques; “Truncation”, “UniformRandom” and “Proportional”. Truncation is 

equivalent of deterministic selection. In case of Truncation the top N fittest individuals (where N is 

window’s output size) will be picked from the window in one shot. In case of “Uniform Random” an 

individual is picked randomly from the window regardless of its fitness. In the case of Proportional each 

http://link.springer.com/chapter/10.1007%2F978-3-642-37192-9_44
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individual is given a selection probability based on their fitness and selection is probabilistic and it is 

biased toward fittest individuals. 

Optionally you can select a fitness transformation scheme. This will be mainly useful for Proportional 

selection. There are four different types of transformation provided by CM. Linear, Logarithmic, 

PowerLaw and Rank. Each may requires extra parameters when you choose from the drop down list. 

 

Figure B.50. Fitness transformation option 

 

The Linear choice asks for two coefficients a & b for liner transformation formula:               

where f(x) is the fitness value before transformation and tf(x) is transformed value. 

 

Figure B.51. Linear fitness transformation option 

The Logarithmic transformation asks for one coefficient T for logarithmic formula:                

 

Figure B.52. Logarithmic fitness transformation option  

The Power Law transformation asks for one coefficient u in the formula:             
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Figure B.53. Power law fitness transformation option 

The Rank transformation does not require extra parameter because it calculates the rank of each 

individual based on their fitness and uses the rank number instead of the actual fitness value. 

The other option related to selection process section is whether you want replacement (re-insertion) be 

allowed or not. If you choose “Without Replacement” the selection process guarantees that each 

individual is at maximum selected once as parent. 

The last part of wizard is to set the size of parent pool which the output of this step. The selection process 

will calculate how many window it has to create and select from, to fill the parent pool. In case the 

numbers do not match you will be warned to modify the settings. For example if the ratio of window size 

over window output is very big and  replacement is not allowed then the process may find that it is not 

able to create as many windows that is needed to fill the parent pool and it will warn you to change the 

numbers. 

Once all data are provided and there is no warning you can click on Finish button to go to next step. 

 

8. Variation Operations 

After you decided how the parent pool is created you need to specify how the offsprings are created from 

the individuals in parent pool. This step will provide you with means to achieve that.  
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Figure B.54. Variation operations wizard 

 

The first step in defining the variation strategy is to set the size of offspring pool where the result of 

variation operations goes into. To help you make that decision the population size and parent pool size 

that you defined earlier are shown. Then you need to decide if replacement is allowed in other words if 

each individual in parent pool gets maximum one chance to generate offspring (Without Replacement) or 

more (With Replacement). 

Next you specify the number of parallel branches you need to apply your variation strategy. By default 

there are two branches, one to apply variation operations and one for pass-through without any variation. 

You can increase the number of branches up to the number of available operations. 

All the variation operators that you selected in the Genotype Definition step are available here to choose. 

If for example in extreme case you want all operations to have their own path, you can do so. Remember 

that each branch requires a probability and the sum of all probabilities cannot exceed 1.0. 

In each branch first you set the probability of that branch then from the list of available operations you 

choose the first method for that branch. You also provide a independent probability for that operation. If 

you want another operation happens after the first one you click on “Add More” button and select another 
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operation and subsequently assign an independent probability to it. You can continue adding more 

operations  in each branch as many as you want to run sequentially with each operation having its own 

independent probability. Any added operation can be removed if you click on “Remove This” button 

except for the first one because it is required for each branch to have at least one operation. 

Below is an example of two branches with the first branch having three sequential operations and the 

second branch having only one operation. Note that if you have created heterogeneous genotype there is a 

“part(n):” prefix for the operations that belong to genotype parts. This will help you to distinguish which 

operations in the list is for the subpart and which is for the whole genotype. 

 

Figure B.55. Variation operation branches definition 

The probability of pass-through is calculated automatically. In above example no probability left for the 

pass-through branch. 

Once you entered all the parallel and serial branches with their probabilities and desired operations you 

can click on Finish button. The CM application generates the code for the logic you provided and stores it 

in the variation class. 

 

9. Survival Selection 

This last step in an EA process cycle is creating the next generation also known as survival selection. This 

is where you specify how the current generation and offspring pool participate in creation of the next 

generation. 
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Figure B.56. Survival selection wizard 

In this wizard page the size of both current population and offspring pool are shown based on what you 

defined earlier. You have a combination of five branches to choose from when deciding the survival 

selection logic as shown in the picture below. 

 

Figure B.57. Survival selection options 
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For any of branches that you select you need to specify what percentage of the next generation is created 

from that branch. 

If you choose any of the first three branches, in addition to specifying their percentage, you will need to 

choose a selection mechanism similar to the one you defined for parent selection. The difference here is 

that the selected individuals go directly to the next generation. 

For example in the picture below we chose the %90 of the next generation to be create from combination 

of current population and offspring pool based on proportional ranking selection without possibility of 

duplication. 

 

Figure B.58. Survival selection detail 

The last two branches (Elitism & Re-Initialization) are simpler and you will only need to specify their 

participation percentage. The Elitism branch is a way of preserving the best of current generation and 

passing them to the next generation. The “ReInitialization” branch on the other hand is a way of injecting 

new random individual to the next generation. 

In the example below we chose %5 of the next generation to come from elitism and another %5 from Re-

initialization. 
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Figure B.59. Survival selection elitism and re-initialization options 

The sum of all percentages must reach 100%. The CM application validated the numbers and warns you if 

there is any problem. Once you selected branches and fulfilled their parameters you can click on Finish 

button and the code will be generated for survival selection step in a new class in the package. 

10. Open the Process 

At this point the CM application has generated all required code for you. Assuming that you have entered 

the fitness evaluation code manually as it was requested in the Fitness Calculation step you are almost 

ready to launch the generated code. Once you click on “Open the Process” step in the guided navigator, 

the CM opens the entry class to your newly generated package in the eclipse editor. This is more for your 

information in case you want to view the generated codes. There is no need to modify anything. You can 

proceed to the next and final step in the wizard. 
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Figure B.60. CM entry point to generated code 

11. Run the Process 

The last step is to run the generated code. Once you hit the “Click to Perform” link in the guided 

navigator the main method in the opened file will be called and executed. The runtime output will be 

visible in the console. If there is any issue with executing the code you can alternatively right click on the 

opened file and choose “Run As” Java application from the context menu. 

During the run two log files will be generated in the same folder at CM framework. One is similar to what 

is being logged on console. The other is a comma separated value (CSV)  file that is ideal to be views and 

processed in an spreadsheet such as Microsoft Excel. You can use it to generate charts of mean fitness, 

best fitness and diversity over the course of execution.  If they are not shown in the project explorer just 

right click on project explorer and choose refresh from the context menu. 
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Figure B.61. Running the generated code 

This concludes the Code Monkey user guide. You can get more information on each step of the CM 

application by clicking on question mark ( ) icon next to each step. This will open the Eclipse content 

help with the page relate to that step. There will find more in-depth knowledge of inner working of CM 

framework itself. 

Also if you want to change CM default preferences you can do so by going to Windows->Preferences in 

Eclipse and select the "CodeMonkey Preferences" from the left menu. Modify them at your own risk. 

 

 

 


