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ABSTRACT 

 

Investigation of single-section InAs/InP quantum dot mode-locked lasers 

 

Zhejing Jiao, Ph.D. 

Concordia University, 2014 

 

The study of mode-locking in generating short pulses began in the 1960s. Since then, 

the advances have been remarkable over almost 50 years and some of the mode-locked 

lasers (MLLs) have been commercialized. Short pulses from sub-picoseconds to 

femtoseconds have been successfully demonstrated from crystal and fiber based lasers. 

The diverse applications of MLLs have been pushing the development of MLLs in high 

bit rate transmission, optical time division multiplexed transmission, optical clock 

recovery, ultrafast signal processing and frequency comb, etc. Semiconductor lasers have 

advantages of simplicity, compactness and high efficiency. They have attracted interests 

in the application of optical communications. Until now, semiconductor MLLs are 

mainly based on bulk and quantum well (QW) structures. More recently, quantum dot 

(QD) based MLLs have attracted more and more attentions. The main characteristic of 

QD is the delta-function-like density of states with electrons confined in all three 

dimensions. It is promising in ultrashort and ultrafast pulse generations as a result of 

inhomogeneous gain broadening, broad gain bandwidth and fast carrier dynamics. In 

passive mode-locking, a two-section structure is usually used. A saturable absorber 

section is essential in the lasing cavity to initiate and shape pulses, which is also the case 

in almost all QD MLLs. However, without the absorber, passive mode-locking can also 
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be achieved in single-section QD cavity, which has not been well studied yet. This thesis 

focuses on investigating single-section InAs/InP QD MLLs. It aims at improving the 

laser performance by both experimental and theoretical analyses. The following works 

have been done in this thesis. 

Firstly, as an important parameter of all semiconductor lasers, the linewidth 

enhancement factor is measured using two methods: the Hakki-Pauli method that is used 

for a laser below threshold and injection-locking technique for a laser above threshold. 

The results from the two methods agree with each other, and it is found that the linewidth 

enhancement factor of our QD lasers is much smaller than that of QW based lasers.  

Secondly, the time-domain travelling-wave model is used to investigate the single-

section QD MLLs. By introducing an equivalent saturable absorber, the pulse generation 

and evolution are successfully simulated. Furthermore, this model is improved by 

including the effects of group-velocity dispersion (GVD) and self-phase modulation. It is 

found that the GVD effect plays an important role in the pulse width evolution of our 

mode-locked lasers. The improved model can be widely extended to other types of 

semiconductor lasers and amplifiers. 

Thirdly, high-repetition-rate pulse trains of up to 1 THz are generated from a QD 

laser combined with fiber-Bragg-grating (FBG) external cavities. The QD laser is used 

for multi-mode gain and several specific modes are selected by the FBGs. The pulse train 

is measured by using the time-domain autocorrelator, and the repetition rate is in 

agreement with the frequency spacing of the FBGs. Finally, tunable terahertz beat waves 

of up to 2.1 THz are generated also using FBG external cavities. This method may find 

applications for generating microwave, millimeter wave and terahertz wave.  
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Chapter 1 Introduction to Quantum Dot Mode-Locked Lasers 

1.1 Introduction 

1.1.1 Density of states in QDs 

The word mode-locking describes fixed phase difference among longitudinal modes in a 

laser cavity. The mode-locking technique is used to generate very short pulses, from a 

few tens of picoseconds (ps) to femtoseconds (fs). It was first indicated on ruby lasers by 

Gürs and Müller [1] and on He-Ne lasers by Statz and Tang [2]. Mode-locked lasers are 

potential candidates for lots of applications in optical communications. Tremendous 

advances have been achieved in mode-locking over almost five decades. The earliest sub-

ps pulses were generated with dye-lasers and the shortest pulses so far were achieved 

with Ti:sapphire lasers, with ultrashort pulse durations of less than 10 fs [3]. 

Semiconductor mode-locked lasers (MLLs) have advantages of compact size, high 

efficiency, and easy operation. Mode-locked semiconductor lasers have been investigated 

for over 20 years based on bulk and quantum well (QW) heterostructures. By restricting 

the carrier movement along one dimension, mode-locking was improved with modified 

density of states (DOS) in the QWs. Further improvements can be obtained in the 

structures of quantum dash (QDash) and quantum dot (QD), where electrons are confined 

in two dimensions and three dimensions, respectively.  

The DOS is defined as the number of available electronic states per unit volume per 

unit energy around some energy E in a three-dimensional system. The DOS is a function 

of energy and reflects the energy distribution of allowed states. Fermi-Dirac distribution 

gives the electron occupation probability at a certain energy E. Thus the carrier 
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distribution in energy is given by the product of the DOS and the Fermi-Dirac 

distribution. The DOS is an important parameter as it determines many physical 

properties of materials. Electron confinement in dimensions can change the energy 

spectrum, resulting in the change of DOS. 

The comparison of DOS in the four structures is shown in Fig. 1.1 [4]. In the bulk 

system, the DOS is proportional to 1/2E , where it is small at the bottom of the energy 

band. It is a step-like function in QW, and proportional to 1/2E in QDash (wire). With the 

three dimensional confinement, QDs have sizes of only a few nanometers and are usually 

referred to as artificial atoms. Carriers in QDs occupy only a set of discrete energy levels, 

where the DOS shows delta-function-like peaks. The shape of the DOS becomes more 

favorable for laser applications with the increase of confined dimensions due to 

accumulated carrier states at transition energy. The special DOS leads to unique 

characteristics of QD gain material compared to bulk and QW counterparts. For example, 

the gain spectrum becomes sharper with increasing confined dimensions due to the DOS 

as shown in Fig. 1.2. In QDs, the DOS is a delta function so the gain bandwidth is only 

determined by the relaxation broadening of QD, while for the other structures the shape 

of the DOS and thermal effect also have effect on carriers. Further calculations found that 

the gain of QD could reach 10 to 15 times of the bulk structure depending on the material 

[5]. In addition, significant advantages include low threshold current densities [6], low 

confinement factor, small linewidth enhancement factor (LEF or α), high temperature 

insensitivity [7], fast carrier dynamics and inhomogeneous broadband gain have also 

been explored in QD based optical devices. The first three properties are helpful in the 
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reduction of noise. And the last two properties are desirable for generating high repetition 

and short duration pulses. 

 

Fig. 1.1 DOS of bulk, QW, QDash and QD semiconductor structures with different confined 
dimensions [4]. 

 

Fig. 1.2. Comparison of calculated gain spectra for four semiconductor structures: QD 
(box), QDash (wire), QW and bulk. The semiconductor material and sizes of the four 
structures are indicated in the figure. The intraband relaxation time in  is assumed to be 

the same of 131 10 s as the bulk value and N is the carrier density [5]. 
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QDs can be formed and self-assembled during the 2D to 3D transition in the epitaxial 

growth. Defect-free self-organized QD islands have been obtained with III-V materials 

deposited on semiconductor substrates. For example, InGaAs/InAs QDs can be grown on 

a GaAs substrate with the emission wavelengths of 1.0-1.3 μm or an InP substrate with 

the emission wavelengths of 1.4-1.9 μm, where the latter one covers the important optical 

telecommunication band. The size, shape, density and composition of the QDs can be 

well controlled at growth, promising in making QD lasers, amplifiers, saturable absorbers 

(SAs), detectors and other optoelectronic devices. Another type is nitride-based, II-VI 

self-assembled QDs [8], such as CdSe, CdS, etc, which is not discussed in this thesis. 

1.1.2 Development of QD lasers and QD MLLs 

The idea of QD laser was proposed by Dingle et al. in 1976 [9]. The first QD lasers were 

demonstrated in the early 1990s [7, 10]. The first QD laser near 1.3 μm on the substrate 

of GaAs was obtained in 1998 [11]. With the modified DOS, the threshold current 

density Jth and the temperature sensitivity should be reduced [12]. A QD laser with single 

QD layer in the active region by the atomic-layer epitaxy was reported with the Jth of 25 

A/cm2 in the pulsed mode and 45 A/cm2 in the continuous mode, for the first time 

breaking the record held a long time by the QW laser with the Jth between 40-50 A/cm2 

[13]. Later, the Jth of as low as 11.7 A/cm2 and 10.4 A/cm2 were achieved at the 

wavelength of 1.22 μm in the continuous mode at room temperature in 2008 [14] and in 

2009 [15], respectively, which were also the lowest values among all types of 

semiconductor lasers. Fig. 1.3 shows Jth as a function of year in bulk, QW and QD lasers 

at room temperature. 
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Fig. 1.3. The threshold current density at room temperature versus calendar year for bulk, 
QW and QD lasers with different confined dimensions in the active layer [16].  

Besides the low threshold current density, QD based lasers also exhibit high 

temperature stability. The characteristic temperature of semiconductor lasers was firstly 

observed to enhance with carriers confined in two or three dimensions by Arakawa et al. 

in 1982 [17]. The temperature stability was improved from 45 to 84 K by increasing the 

number of QD layers from one to three [18]. With 10 layers of QDs, high characteristic 

temperature of 150 K was achieved in 2002 for the first time [19]. Further, significant 

improvement of the characteristic temperature was obtained through p-type doping of QD 

lasers where the characteristic temperature reached 161 K in the temperature range of 0 to 

80 C [12]. Extremely high operation temperature of up to 200 C was reported in QD 

lasers with emission wavelength of around 1300 nm [20]. The threshold current increased 

from 5 to 75 mA with the temperature increased from 30 to 200ºC and the characteristic 

temperature was 170 K. The good performance is mainly due to the high saturation gain 

and large energy separation between ground state (GS) and excited state (ES). 
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Besides threshold current density and high characteristic temperature, large 

modulation bandwidth, low chirp and small LEF are also desirable for semiconductor 

lasers. In conventional In(Ga)As QD lasers at 1.0-1.3 μm, the modulation bandwidth is 

only 6-8 GHz, limited by the hot-carrier effects [21]. But using the tunnel injection and p-

doping, the modulation bandwidth was increased to ~25 GHz [22]. The other parameters 

of QD lasers could be also improved with the new structure, such as differential gain, 

characteristic temperature, LEF and chirp, etc. The LEF is a key parameter of 

semiconductor lasers, where the laser linewidth is 21  times larger than the Schawlow-

Townes linewidth limit, and the chirp is proportional to α. The LEF in QW lasers is 

typically larger than 2, which is expected to be reduced in QD lasers with their large 

differential gains. Nearly zero LEF is obtained in p-doped 1.1 μm tunnel injection QD 

lasers. The zero LEF was also obtained in 1.3 μm QD lasers around the lasing peak [22]. 

Due to the delta-like DOS and reduced active volume [23], QDs have attracted lots of 

attention in making MLLs. The first QD MLL laser was demonstrated by Huang et al. in 

2001 with a repetition rate of 7.4 GHz at the wavelength of 1.3 μm [24]. The QD laser 

material was InAs/GaAs and the pulse duration was 17 ps under appropriate bias 

conditions. Since then, there have been many reports in QD based MLLs. In 2004, 

Fourier-transform-limited pulses from a passive QD MLL with repetition rate of 18 GHz 

was emitted at 1.3 μm [25]. At the same year, the first sub-ps pulses at the repetition rate 

of 21 GHz were demonstrated [26]. By optimizing the current/voltage parameters, the 

pulse width was decreased from 2 ps to as short as 390 fs. It is the shortest pulse 

generated directly from a monolithic laser source at that time. In 2005, stable mode-

locking at 21 GHz was observed for a temperature range from 20ºC to 80ºC, 
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demonstrating good temperature stability for ultrafast optical communications [27]. The 

first colliding pulse mode-locking in QD lasers was demonstrated at 20 GHz with close to 

transform limited pulse of 7 ps, highlighting the potential for high repetition rate pulse 

generation using QD lasers [28]. The first single-section QD MLL was reported in 2005 

by Renaudier et al. The laser was grown on an InP substrate, and the repetition rate was 

45 GHz [29]. The first QD mode-locking from both GS and ES was obtained at 21 GHz 

and 20.5 GHz, where the switching between the two states was controlled by the biased 

current/voltage [30]. The first external cavity two-section QD MLL was reported with a 

low repetition rate of 5 GHz at 1.3 μm [31].  

In 2006, harmonic mode-locking from QD lasers was realized from 39 to 238 GHz 

implementing a multi-contact configuration [32]. The lowest timing jitter of 7.5 fs was 

reported from active QD MLLs based on an external cavity structure, showing that QD 

MLLs are promising low noise pulse sources [33]. An external cavity QD MLL using a 

QD semiconductor saturable absorber mirror (SESAM) was first time demonstrated with 

high average power of up to 27 mW over a repetition frequency range of 350 MHz to 1.5 

GHz [34]. A 53-GHz two-section QD MLL with pulse duration as short as 500 fs at 1.56

μm was demonstrated in 2006 [35]. Repetition rate of 134 GHz and near transform 

limited pulses were generated from a single-section QDash MLL emitting in the 1.5 μm 

range [36]. 

In the following years, many research groups were involved in the development of 

QD MLLs and have improved their performance on the aspects of output power [37-41], 

pulse duration [42-46], phase noise [47-50], repetition rate [51-55], dual-wavelength 

emission [56-59] and theoretical analysis [60-64], etc.  
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There are three main mode-locking techniques: active, passive and hybrid. In the 

active mode-locking, the gain section is modulated by an external electrical signal. In the 

passive mode-locking, a SA is usually used together with the gain in the cavity. And the 

hybrid mode-locking is the combination of the two techniques above. Passive mode-

locking does not need any external sources and has been widely used to generate short 

pulses. Two sections are normally required in this type of mode-locking, which are gain 

and SA sections. The gain section is forward biased and the SA section is reversely 

biased. The saturable absorption in the absorber section has the effect of shortening the 

pulse while pulse broadening is mainly caused by the gain saturation in the gain section. 

The dynamics of the two sections is very crucial in pulse shaping. Stable mode-locking is 

achieved through balancing between pulse broadening and shortening in the two sections. 

The two-section structure is very typical, not only in QD but also in QW and bulk based 

passive mode-locked lasers. The locking mechanism of such structure has been 

extensively studied, and the SA plays an important role in the mode-locking. However, 

mode-locking in single-section QD lasers where the SA does not exist have also been 

realized using QDs. There is no interaction between the gain and the SA sections and the 

physical mechanism leading to locking in this structure is not clear yet.  

1.1.3 Applications of QD MLLs 

The MLLs can be used for local wireless sub-Terahertz (THz) communication systems as 

the local oscillators and carriers, Orthogonal Frequency Division Multiplexing systems as 

the multi-optical-carriers, or optical clock in the photonic assisted analog-digital-

converters. The three applications are explained as follows. 
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Fig. 1.4. Experimental setup for the generation of sub-THz beating signal at the transmitter 
side [65].  

The data rates in wireless and fiber-optic communications have been increasing over 

the past decades. But the spectral sources are limited in the conventional frequency range 

of up to 60 GHz even with the quadrature amplitude modulation and multiple-input and 

multiple-output technology. Larger bandwidth is required for multi-gigabit or even terabit 

wireless transmission capacity. The frequency range of 100 GHz to 30 THz is an 

unexplored region, where the transmission window between 200 and 300 GHz has low 

atmospheric losses. A wireless communication system with single-input and single-

output at 237.5 GHz with data rate of 100 Gb/s has been demonstrated for transmission 

over 20 m recently. An unmodulated comb line from a MLL acts as a local oscillator and 

two other selected carrier lines are modulated with data. By photomixing the local 

oscillator and the modulated carriers through a uni-travelling-carrier photodiode and 

radiated over an antenna, radio frequency (RF) signals are generated. The repetition rate 

of the MLL is 12.5 GHz. The carrier as the local oscillator is at 193.138 THz and the two 

optical carriers are at 193.3755±12.5 THz. The frequency spacing between the local 

oscillator and the optical carrier is 237.5 GHz [65]. The detailed experimental setup of 

the transmitter is shown in Fig. 1.4. 
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Multi-carriers are used to reduce symbol modulation rate for a given data rate in 

orthogonal frequency division multiplexing, coherent Wavelength Division Multiplexing 

and optical arbitrary waveform generation [66]. In the orthogonal frequency division 

multiplexing, the frequency spacing between the carriers is exactly 1/Ts, where Ts is the 

symbol duration. The MLLs can be used as the multi-carriers with frequency spacing 1/Ts 

between longitudinal modes (carriers). The longitudinal modes in the MLLs are 

correlated, which makes it easier for filtering the noise and detecting the signal in the 

demodulation at the receiver side. 

Optical pulses from MLLs can also be used as a clock to make optoelectronic 

switches in electronic sampling as shown in Fig. 1.5, which has the advantages of fast 

rise times and low timing jitter. But it has the difficulty of integrating a MLL into an 

analog to digital converter circuit [67]. 

In all, MLLs including QD MLLs have wide applications in high speed transmissions 

for optics, wireless communications as well as microwave photonics. 

 

Fig. 1.5. An example of a photonics assisted analog to digital converter where a stable mode-
locked laser is used as clock [67]. 
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1.2 Motivations and contributions 

High repetition rate and short duration pulses have been successfully generated from 

single-section QD MLLs. For example, the pulse width of a 92-GHz QD MLL at C band 

was as short as 312 fs [68]; the pulse width of a L-band 46-GHz QD MLL was 445 fs 

[69]. Pulse duration of ~590 fs with a repetition rate of 245 GHz was demonstrated in a 

single-section QDash MLLs [52]. A high repetition rate of 346 GHz with pulse width of 

~560 fs was also reported from a single-section QDash MLLs at 1.55 μm [70]. The 

repetition rate is inversely proportional to the cavity length, which is shorter with only 

one section in the cavity. Because of no SA section, the pulse width is not affected by the 

group velocity dispersion (GVD) and the self-phase-modulation (SPM) in the absorber 

section. Considering both repetition rates and pulse widths, single-section MLLs are 

attractive in ultrafast and short pulse generation. In addition, they are easier to fabricate 

due to only one section in the cavity.  

Most reported passive QD MLLs consist of two sections. The working mechanism 

and performance have been well investigated. The passive mode-locking with a SA is an 

established technique as it has been realized in dye, solid state and semiconductor lasers. 

The mode-locking properties have been improved by optimizing two-section driving 

conditions, i.e. drive current of the gain section and reverse-biased voltage of the SA 

section, modifying the ratio of the two-section lengths, and using external cavity methods, 

etc. However, researches on single-section QD MLLs are limited. There have been only a 

few demonstrations of this type of QD MLLs based on InAs QDashes on the substrate of 

InP [71], InAs QDs on the substrate of InP [72] and InAs QDs on the substrate of GaAs 

[43]. There have been also a few experimental reports on pulse width shortening by GVD 
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compensation [73-75], low timing jitter [76] and phase noise reduction [47]. Besides, the 

locking phenomenon has been attributed to high nonlinearity of the QD gain medium [68] 

or random population of carriers in QDs [77]. But there is still no theoretical study or 

explanation on the locking mechanism for this type of mode-locked lasers.  

In this thesis, the research focuses on investigating and optimizing the mode-locking 

performance of single-section InAs/InP QD lasers. The main contributions include:  

1) Measurement the LEF of our QD lasers, which is one of the key parameters of 

semiconductor lasers. 

2) Simulation of single-section QD MLLs using time-domain travelling wave (TDTW) 

models. An equivalent SA is proposed to model the mode-locking in single-section 

QD MLLs. 

3) Investigation of the GVD and SPM effects on the pulse evolution in single-section QD 

MLLs. 

4) Demonstration of ultra-high repetition rate pulse generation of up to 1.01 THz using 

single-section QD lasers combined with external fiber-Bragg-grating (FBG) cavities. 

5) Generation of tunable THz beating signal from 1 to 2.1 THz using single-section QD 

lasers combined with external cavities composed of two FBGs. 

1.3 Organization of the thesis 

In this chapter, the basic concept of mode-locking is introduced. The DOS in QDs is 

compared to bulk, QW and QDash structures, which leads to unique characteristics of 

QD based lasers and MLLs. The applications of QD MLLs are also briefly introduced. 

Then, the motivations and contributions of the research work are presented.  
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In chapter 2, the key properties of QD based amplifiers and lasers will be discussed. 

Then theoretical models used in simulating QD MLLs will be given, including the 

TDTW model and the delayed differential model. The TDTW model will be described in 

detail. Electric field and carrier dynamics are described by the TDTW equations and rate 

equations in this model, respectively. The inhomogeneous gain, homogeneous gain, and 

grouping of QDs are included too. Moreover, the experimental and theoretical work on 

QD MLLs will be reviewed. 

In chapter 3, the LEF of our QD lasers will be measured using two methods, i.e. 

Hakki-Pauli and injection locking. The LEF is a fundamental parameter in all 

semiconductor lasers. The obtained small LEF indicates that our QD gain material is 

ideal for making QD lasers and amplifiers. 

In chapter 4, the TDTW model is applied for single-section QD MLLs, and an 

equivalent SA will be proposed to deal with the mode-locking. With shorter and shorter 

pulses generated in QD MLLs, it is necessary to take GVD effect into consideration in 

modeling the pulse evolution in the cavity. And SPM may also be important due to the 

relative high power density in the laser cavity. Therefore, the TDTW model is improved 

by including both of the effects. To solve the improved model, numerical methods such 

as Taylor expansion and central difference approximation are adopted. The simulation 

results are compared with ours experimental results, and the effects of GVD and SPM on 

the pulse evolution are also discussed. Finally the nonlinear effect in the cavity is 

analyzed. 

In chapter 5, ultrahigh-repetition-rate pulses generated from QD lasers combined with 

external cavities are demonstrated. Using the external cavity structure, the repetition rate 
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can be greatly increased and the limit of inadequate gain caused by short cavity is 

overcome. The external cavities consist of FBGs and the repetition rate can be varied by 

using FBGs with different frequency spacings. Repetition rates of 394 GHz, 403 GHz, 

437 GHz and 1.01 THz have been realized using this structure. The FBG selected 

longitudinal modes are phase correlated and the FWM effect is observed on the spectra.  

In chapter 6, QD laser with the external cavity structure is then used to generate 

tunable THz beating waves. THz beating from 1 to 2.1 THz is observed. Pulse trains are 

also observed using the autocorrelator, indicating phase correlation between selected 

modes. This method can be used to generate microwave signals for microwave photonic 

applications.  

In chapter 7, a summary of the accomplished results are given. The potential 

applications are also concluded at last. Future research on single-section QD MLLs is 

suggested.  
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Chapter 2 Fundamental Properties and Theoretical Models  

2.1 Introduction 

Due to the delta-function-like DOS, QDs have shown some special properties, making 

them very attractive in the fabrication of amplifiers, lasers and MLLs. In this chapter, 

fundamental theory and experimental results obtained in QDs are given. Firstly in section 

2.2, the growth of QDs is simply introduced. Then the fundamental properties of QD 

based optoelectronic devices are presented in section 2.3. After that, three types of 

passive QD MLLs are explained in section 2.4 and two numerical models are given in 

section 2.5, which are delayed differential model and TDTW model. The TDTW model is 

described in detail, where the QD homogeneous gain, inhomogeneous gain, optical 

susceptibility, spontaneous emission are fully included in the model. The electric field 

and carrier dynamics are obtained by solving the TDTW equations and rate equations 

together. Then, techniques for improving mode-locking performance in QDs, including 

pulse duration, repetition rate, phase noise, etc., are reviewed in section 2.6. A conclusion 

for this chapter is drawn in section 2.7 at last. 

2.2 Growth of QDs 

QDs can be fabricated by epitaxial techniques such as Chemical Beam Epitaxy (CBE), 

Molecular Beam Epitaxy (MBE) and Metal Organic Chemical Vapor Deposition 

(MOCVD). In the MBE, the thermally evaporated molecular beams are deposited onto 

the substrate to form thin epitaxial layers. It has high degree of control in the growth of 

semiconductor layers and is a good technology in developing sophisticated optoelectronic 

devices. In contrast to MBE, a series of chemical reactions but not physical deposition 
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occur in the process of MOCVD. And in the epitaxial growth, there are three modes of 

growth: Frank-van der Merwe, Volmer-Weber, and Stranski-Krastanow (SK). The 

growth mode is determined by the interface energies and lattice mismatch. By epitaxial 

growth of a semiconductor material on another material with a smaller lattice constant 

(such as In(Ga)As on GaAs), layer-by-layer occurs at first. Then when the planar layer 

gets thick enough, atoms tend to form clusters to release strain and self-assembled islands 

are formed. The self-assembled islands are QDs and the thin (a few monolayers) 2D layer 

formed before the islands is called the wetting layer (WL). This mode of growth is called 

SK. Using the SK method, the growth of InGaAs QDs on InGaAsP, InGa on GaAs, 

InGaAs on GaAs, InAs on InP, InP on GaInP etc. have all been realized. Using the same 

substrate, the size and shape of the QDs varies with the deposited dot material in a certain 

range. The energy states of QDs also change with different dot sizes and shapes due to 

the strain in the dots.  

Besides, QDs have also been produced by etching QWs. However, surface states are 

created, leading to high threshold current density. The self-assembled QDs are defect-free 

and have shown excellent characteristics compared with the etched ones. The SK growth 

method makes QDs promising for laser applications. An atomic force microscopy of 

InAs QDs grown on InP (113)B by MBE is shown in Fig. 2.1 [73]. Multiple QD layers 

can be stacked to increase the QD area density, lower the threshold current and increase 

the modal gain in lasers. Electroluminescence and photocurrent spectroscopy are the 

techniques often used to determine the physical structure and transition energies of dots. 

Typical electroluminescence spectrum for two injection currents and photocurrent 

spectrum are shown in Fig. 2.2 [78]. Up to four QD transitions (E0 to E3) are observed on 
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the photocurrent spectrum, which corresponds to four interband transitions: GS, ES, and 

higher levels. The GS is the lowest energy state of QDs and ES is the higher QD state. 

More than one ES could be observed.  

For the electroluminescence, only one emission peak at energy E0 is observed at low 

current corresponding to GS, and when GS is fully occupied another peak at E1 appears at 

higher current corresponding to ES. The transition states indicated by the above two 

methods are in coincidence with each other. 

 

Fig. 2.1. Illustration of self-assembled InAs QDs grown on InP by MBE. The dot diameter is 
~30 nm and dot density is 1011 cm-2 [73]. 
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Fig. 2.2. Photoluminescence (dash line) and electroluminescence (solid line) spectra at room 
temperature for self-assembled QDs [78]. 

A schematic band structure of a typical QD laser is shown in Fig. 2.3. In the figure, 

the active layer consists of three QD layers surrounded by higher bandgap material 

(InGaAsP barrier) and the WL is formed between QDs and the barrier. Three layers of 

QDs are vertically aligned to increase the dot density and the modal gain. The emission 

wavelengths vary with different substrates and dot materials. Due to the dispersion of the 

dot sizes and shapes, the energy states of QDs are different, resulting in inhomogeneous 

gain broadening. 
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Fig. 2.3. Band structure of a typical QD laser. Three layers of self-assembled QDs with 
equal size and shape are illustrated in the figure. 

2.3 Key properties 

2.3.1 Small LEF 

The LEF is one of the most important parameters in semiconductor lasers including QD 

lasers. It determines many fundamental properties of QD lasers, such as linewidth, 

feedback sensitivity, frequency chirp and timing jitter of MLLs.  

The LEF is defined as [79] 

 2

4 / 4 /
/ /

dn dN n d dN
dg dN dg dN

 (2.1) 

where n is the refractive index, g is the net modal gain, and N is the carrier density. It 

measures the coupling between the refractive index and the gain with the variation of 

carrier densities in the active region. It can be calculated directly from the gain spectrum 

below threshold using the equation above. 

Ideally, the delta-function DOS in QDs results in a symmetrical gain spectrum where 

only one energy level exist in the gain spectrum and the differential refractive index 
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change is exactly zero at the lasing peak. Thus zero LEF value is expected at the gain 

peak [23]. However, due to the inhomogeneous broadening and the existence of ES, the 

LEF in QDs could not reach zero. But it is still smaller than in QWs [80]. Typical LEF 

values in bulk and QWs are about 3 and 2, respectively, whereas in QDs it is usually less 

than 1 [81]. The LEF value of as low as 0.1 has been reported in an InAs/GaAs QD laser 

emitting at 1.22 μm [82]. In p-doped tunnel injection QD lasers, almost zero LEF was 

found, and no wavelength shift with biased current was observed in the sub-threshold 

spectrum [22]. The chirp is the change of the carrier frequency with time in a signal, 

which is originated from and proportional to the LEF. The carrier induced refractive 

index change is reduced in QDs, leading to small frequency chirp in high bit rate data 

transmissions [80]. 

2.3.2 Inhomogeneous broadening gain 

Due to the unique DOS of QDs, the original purpose was to design single wavelength 

lasers using QDs as the gain material. But real QD lasers show very broad spectral 

bandwidth compared with conventional QW lasers. Ideally, QDs have the same shape 

and size, corresponding to a single line in the emission spectrum representing either GS 

or ES (Fig. 2.4 (a)). However, it is impossible for QDs to be self-assembled at the same 

size and shape. Actually, the sizes of QDs follow the Gaussian distribution roughly (Fig. 

2.4 (b)), leading to a broadband Gaussian shape gain spectrum, which is referred to as 

inhomogeneous gain broadening. This is a unique property of self-assembled QDs, which 

makes QDs very attractive for the generation of ultrashort ML pulses because the pulse 

width is inversely proportional to the gain bandwidth. Hence, shorter pulses are expected 

in QD MLLs compared to bulk and QW counterparts.  
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Fig. 2.4. Illustration of QDs growth and the corresponding DOS (D(E)) in (a) an ideal QD 
system and (b) a real QD system [83]. 

Due to the inhomogeneous gain broadening, the 3-dB and 10-dB bandwidth of a QD 

semiconductor optical amplifier (SOA) could reach 150 and 300 nm respectively [84]. In 

Fig. 2.5, the optical spectrum of the QD SOA is compared with QW SOAs and EDFAs. 

Obviously, the spectrum of the QD SOA is much broader than other broadband 

amplifiers. The centre wavelength and gain bandwidth can even be shifted/controlled at 

growth. 
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Fig. 2.5. Comparison of emission spectra of QD SOA, QW SOAs and EDFAs [84]. 

2.3.3 Fast carrier dynamics and gain /absorption recovery time 

In zero-dimensional QDs, the electron-phonon scattering rate is reduced due to the delta-

function-like DOS, which is known as phonon bottleneck effect [85]. Then it is predicted 

that the low scattering rate will lead to longer relaxation time (ps order) between QD 

states than in QW and bulk materials. The long relaxation time will strongly limit the 

application of QDs in lasers and amplifiers. But contrary to the predictions, fast carrier 

dynamics have been demonstrated by pump-probe experiments. In QDs, two distinct 

recovery times of the absorption exist. A fast recovery (1 ps) was found to be followed by 

a slow decay (100 ps) as shown in Fig. 2.6 [86]. An ultrafast recovery time of ~100 fs is 

also measured, attributed to Auger scattering, which provides a channel for carriers 

relaxing from ES into GS [87].  
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Fig. 2.6 Illustration of two recovery times of a QD-based device by pump-probe 
measurements [86]. ΔT is the change in the transmission of the probe due to absorption 
saturation of the pump. 

In an experiment directly measuring the absorption recovery, the recovery time is 

decreased from 62 ps to 700 fs with the reversed bias changed from 0 to -10 V [88]. The 

fast recovery at higher applied bias is attributed to tunneling effect. The absorption 

recovery time is found to be an important parameter for pulse shaping. By increasing the 

reversed bias, the recovery is more efficient, which has the effect of further shortening 

the pulses. Ultrafast gain compression recovery of only ~100 fs was also measured in a 

QD SOA [89]. With fast carrier dynamics and gain/absorption recovery time, the QD 

based optoelectronic devices are promising for high speed applications and high 

repetition rate pulse generation. 

2.4 Passive QD MLLs 

2.4.1 Two-section QD MLLs 

Two-section passive mode-locked semiconductor lasers usually have two sections: gain 

and SA as illustrated in Fig. 2.7. The gain section with length Lg is forward biased while 
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the SA section with length La is reversely biased. This is also the typical structure of two-

section QD passive MLLs.  

 

Fig. 2.7. A typical structure of two-section passive semiconductor MLLs. LR and 0R are the 
reflectivity at the two facets. 

The working principle in the two-section structure is well-understood that the 

interaction of the two sections determines pulse formation. Pulse broadening and pulse 

shortening are governed by the gain and SA sections, respectively, the balancing of 

which leads to stable mode-locking.  

The laser modes start from noisy bursts, the peak of which experience less attenuation 

and more amplification in the cavity due to the loss saturation. Then the bursts are further 

shaped by the saturation absorption when travelling back and forth in the cavity until 

stable mode-locked pulse train is formed at steady state [83]. The dynamics of gain and 

loss in the pulse shaping is shown in Fig. 2.8. At steady state, when the leading edge of 

the pulse reaches the cavity, the loss is unsaturated and higher than the gain. But the 

leading edge of the pulse saturates the absorber faster than the gain, leaving a net gain 

window around the pulse peak area. The absorber also recovers from saturation to highly 

loss state more quickly than the gain. Then the trailing edge of the pulse is attenuated by 

the absorber. A net gain window is formed around the peak area as shown in Fig. 2.8. 

The saturation power and recovery time of the absorber are two important parameters in 
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the pulse formation and shaping. With the reversely biased voltage, generated carriers can 

be swept out of the SA section quickly and thus the absorber recovery time is decreased. 

By increasing the reverse bias on the SA, pulse widths can also be shortened due to the 

reduction of the gain window.  

 

Fig. 2.8. Interaction of gain and saturable absorption for pulse generation in a two-section 
passive MLL [83]. 

2.4.2 Single-section passive QD MLLs 

Without the SA section, mode-locking has also been realized in QDs. There is only a 

forward biased gain section. It is believed that the mode-locking principle is different 

from the two-section QD MLLs. No detailed theoretical analysis has been given based on 

this structure but four-wave mixing (FWM), Kerr-lens effect and random population 

model have been reported to be the possible mechanisms leading to the locking. 

The FWM effect originates from the nonlinear response of the medium to the optical 

field where the medium plays a passive role. A wave at a new frequency ω4 is generated 

by three optical fields at frequencies ω1, ω2 and ω3. And the four frequencies have the 

relationship of 4 1 2 3 . The momentum conservation should be satisfied for 
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this process to occur, which is referred as phase-matching condition. The relationship 

4 3 1 2 corresponds to the case where two photons at frequencies ω1 and ω2  

generate two new photons at frequencies ω3 and ω4. The phase-matching condition for 

this process to occur is 4 4 3 3 1 1 2 2 0k n n n n c . For the specific case  

1 2 3 1 4 1= , = + , and , where Ω is the frequency difference, the phase-

matching condition is relatively easy to be satisfied and the FWM is referred as 

degenerate FWM otherwise it is non-degenerate.  

Non-degenerate FWM in semiconductor lasers and amplifiers is very promising for 

wavelength conversion in high-bit-rate optical transmission systems with a bit rate of 160 

Gb/s to 1 Tb/s due to its fast speed and free modulation format [90]. But the conversion is 

usually asymmetry, and the efficiency is low at the long wavelength side in conventional 

bulk and QW based SOAs [91]. Due to the 3-D confinement and small active volume, 

high nonlinearity is expected in QDs. And QD based SOAs are very promising in 

symmetric and direction-independent conversion with smaller LEF value. The efficiency 

of non-degenerate FWM is often obtained by pump-probe experiment. In the experiment, 

a pump and a probe signal are injected into a laser to amplify the probe signal and 

generate FWM sidebands. The efficiency is defined as the FWM sideband power on the 

pump side (conjugate signal power) over the probe input power for a constant pump 

power. As an example in Fig. 2.9 [92], the negative detuning (longer wavelength side) is 

greatly improved in a QD SOA (Fig. 2.9 (a)) compared to a bulk SOA (Fig. 2.9 (b)). The 

positive detuning efficiency is also improved. The conversion slopes are almost identical 

for positive and negative detunings in the QD SOA. The symmetric conversion efficiency 
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has also been reported in other QD amplifiers and lasers [91, 93], indicating low LEF 

value in the QD gain material. 

 

Fig. 2.9. Comparison of conversion efficiency and symmetry in QD and bulk based SOAs. 
Δf is the frequency detuning between the pump and the probe. Δf>0 when pump probe ; 

Δf<0 when pump probe  [92]. 

The phase correlation in a single-section passively QD MLLs is measured through the 

spectral linewidth at half maximum of the RF spectrum [94]. Three different couples of 

modes are taken from the emission spectrum of a QD MLL and their mode-beating 

spectra are compared with RF spectrum of the whole spectrum. The measured spectral 

linewidth are the same for the four spectra, indicating that the modes have the same phase 

noise and are partly correlated through FWM in the QD laser. Besides, the mode-beating 

linewidth is much narrower than the linewidth of each single longitudinal mode, 

demonstrating the synchronization of the phase fluctuations of these longitudinal modes. 

Thus the phase correlation might be attributed to the FWM effect in the QD cavity.  

    The Kerr-lens effect is also a nonlinear effect working as an artificial SA in the 

Fabry-Perot cavity which imposes a spatial intensity dependent profile on the beam 
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propagating in the gain cavity. If we consider waveguides as thick hard apertures, random 

intensity spike will lead to periodic pulse trains by Kerr-lens effect due to self-focusing 

[58]. The random intensity spike will be focused and get enhanced in the cavity while 

low intensity light will be filtered out by the waveguide. The refractive index is given by 

0 2n n n I , where 2n  is the nonlinear refractive index and I is the intensity. Assuming a 

Gaussian-shape laser beam, the centre is more intensive than the edge due to the 

nonlinear refractive index and thus experiences more gain by the waveguide as shown in 

Fig. 2.10 [3]. This way of producing mode-locking pulse trains is called Kerr-lens mode-

locking. 

 

Fig. 2.10. Illustration of Kerr-lens mode-locking by an artificial SA [3]. 

In the random population model, even above the threshold, some QDs are considered 

as gain while the others are considered absorptive similar to the SA in two-section QD 

MLLs. In this model, self-pulsation or pulse trains can be obtained without the nonlinear 

effects mentioned above [77]. Further study is still required to explain mode-locking in 

single-section QD MLLs. 
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2.4.3 QDash MLLs 

Besides QD, two-section and single-section MLLs have also been realized in QDash. 

Carriers in the QDash are two-dimensional confined and QDash is usually considered as 

elongated dot. They are usually formed by MBE epitaxial grown on InP (100) surface 

whereas QDs are usually fabricated by Metal-Organic Vapor Phase Epitaxy (MOVPE) or 

CBE techniques [71]. InAs QDash lasers and amplifiers at 1.4-1.6 μm wavelength range 

have been realized based on the substrate of InP [94, 95]. The typical thickness, width, 

and length of the dashes are about 2 nm, between 15 nm to 20 nm and between 40 nm 

and 300 nm, respectively. InAs/InP QDash MLLs at 1.55 μm have been realized in both 

single-section and two-section structures. Three types of grown structures have been 

studied: dots in a barrier, dots-in-a-well and tunnel injection as illustrated in Fig. 2.11 

[96]. In the dots-in-a-well structure, QDs are surrounded by QW, which is helpful for 

capturing carriers into dots and lowering the threshold current [97]. High repetition rate 

pulses and short pulse widths have also been achieved in single-section QDash MLLs. It 

is suggested that there is no fundamental difference between QD MLLs and QDash 

MLLs [83]. 

 

Fig. 2.11. Energy band diagrams of three structures of QDash lasers: (a) dots in a barrier 
structure, (b) dots in a well structure and (c) tunnel injection structure [96]. 
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2.5 Modeling of QD lasers 

For modeling QD lasers, rate equations are generally used to describe carrier dynamics in 

the laser cavity. To describe the electric field, different methods are used. In the 

following, two methods will be introduced: TDTW and delay differential. The equations 

for carrier dynamics and electric filed are combined together to model the performance of 

QD lasers. 

2.5.1 Time-domain travelling wave model 

2.5.1.1 TDTW equations 

Semiconductor lasers and amplifiers can be described by TDTW equations for electric 

field and rate equations for carrier densities in the cavity.  

The theory of calculating the electromagnetic field starts from the Maxwell equations 

for the electric field EE  and magnetic field HH in the frequency domain. 

 0E j HE j HE  (2.2a) 

 H j EH j EEH   (2.2b) 

where 0 is the vacuum magnetic permeability and is the permittivity given by 

0 ,r rr . 0  is the vacuum permittivity and ,r rr is the dielectric constant of 

the background medium, which is spatial ( rr ) and frequency ( ) dependent. Two 

additional terms need to be added into Eq. (2.2b) when electromagnetic field in the 

semiconductor active medium is considered. Then Eq. (2.2b) is changed to 

 0 , , ,rH j r E j P r J rHH j r r,Jr E j P rPj P r,,,E P J rJE j Pj Pr E j P rPj P r  (2.3) 
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where PP  is the additional polarization induced by the QD active medium and JJ  is the 

stochastic current density due to the spontaneous emission noise from the QD active 

medium. 

A few approximations and assumptions have to be made for getting the solution. In 

the equations, the vectors ( E, H, P, JE H P J ) can be decomposed into transverse (x-, y-) and 

propagation (z-) directions. In the transverse plane, x-axis is along the growth direction 

and y-axis is the lateral ridge direction. In the planar waveguide, two sets of orthogonal 

modes exist: TE (transverse electric) and TM (transverse magnetic) modes. Whereas in 

ridge waveguides, TE and TM modes cannot be strictly defined and only quasi-TE and 

quasi-TM modes with small electric or magnetic components on the z-direction are 

supported. In addition, as the predominant field in QD edge-emitting devices [98, 99], 

only quasi-TE field will be considered in the following. And the ridge waveguide is 

usually designed to support a single fundamental transverse mode transmission at the 

operating frequency. The propagation constant is given by = n
c

, where c  is the 

speed of light and n is the refractive index. 

Then a second-order differential equation can be obtained: 

 
2 2

2 2
0 0 02 2, , , , ,E z n E z z E z j J z

z c
 (2.4) 

The polarization P is expressed through electronic susceptibility ,z by  

 0, , ,P z z E z  (2.5) 

To solve Eq. (2.4), the electric field is decomposed into forward and backward 

propagation directions as 
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 0 0 00 0

0

, , ,j z j z j tE z t E z t e E z t e e  (2.6) 

where 0  is the centre reference frequency and 0  is the corresponding propagation 

constant at 0  ( 0 0
0 0 0 0n n

c c
). The centre frequency 0  is usually 

chosen to be close to the lasing frequency and the slowly varying envelope 

approximation is applied, where the bandwidth of the electric field is much smaller than

0 . If the lasing wavelength is at 1550 nm, then ω0 equals to 193.55 THz. If the 

inhomogeneous gain bandwidth is about 40 meV, the maximum frequency detuning from 

the centre is max
9.67THz , which is small compared with ω0. The electric field in 

Eq. (2.6) is normalized so that the power flow in each direction is simply given by either 

2
,E z t  or 

2
,E z t . 

Converting Eq. (2.6) into the frequency domain, we get 

 0 00 0
0

0

, , ,j z j zE z E z e E z e  (2.7) 

where is the relative frequency to the centre frequency 0  ( 0 ). Substituting 

Eq. (2.7) into Eq. (2.4) and assuming 
2

02

E E
t t0

E
t

EE
00  and 

2

02

E E
z z0

E
z

EE
0 zz

, we obtain 

 

0
0

0

0 0
0

0

, , , ,
2

1 ,
2

g g

E z j E z j z E z
z v cn

J z
 (2.8) 

where 0gv is the group velocity and gn is the group index. By converting Eq. (2.8) into the 

time-domain, we get 
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 , , ,
, ,

,
2

igE E
E jP z t F z t

z t
nz t z t

z t
c

 (2.9) 

where the variables z and t represent wave transmission position and time, i is the 

intrinsic waveguide loss, and ,P z t  and ,F z t  are forward (+) / backward (-) 

modified polarization and spontaneous emission noise, respectively. Note that i is 

additionally introduced into Eq. (2.9) to account for the loss in the waveguide, which is 

not considered in Eq. (2.8). 

The modified polarization ,P z t  is given by 

 0, , , ,
2

t

g

P z t z t E z d
cn

,,z t Ez t,,, t Et Ez t  (2.10) 

where 0
0

1, , ,
2

j tj tz t z e d z t e is the modified optical 

susceptibility. 

And the spontaneous emission noise is defined as 

 00 0 0 0
0

0 0

1 1 1, , ,
2 2 2

j tj tF z t J z e d J z t e
k k

 (2.11) 

Eq. (2.9) is the TDTW equation in forward and backward propagation directions. It is 

widely applied to model electric field in edge-emitting optical devices. For the Fabry-

Perot cavity, two additional boundary conditions are required: 

 
0, 0,

, ,
r

l

E t r E t
E L t r E L t

 (2.12) 

where L is the cavity length, and rr and rl are the amplitude reflectivity at the two facets. 
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2.5.1.2 Inhomogeneous and homogeneous gain 

Due to the size and shape fluctuation of QDs at growth, inhomogeneous line broadening 

of 30-70 meV has been measured [100]. The inhomogeneous bandwidth is expressed by a 

Gaussian distribution function as 

 
2

0
2

1 exp 4ln 2 ,i
iG

A E

2
00ii 0  (2.13) 

where i is the group number from 1 to N, E is energy of the full-width at half-maximum 

(FWHM),  00 is transition energy at the gain peak frequency, ii  is the transition 

energy of each QD group, and A is a normalization constant such that 
1

1
N

i
G i . QDs 

are divided into N groups, and within each group QDs are assumed to have the same 

transition energy and carrier density. After normalization, G(i) represents the growth 

probability of QDs belonging to the i-th group. For each QD group, there is a Lorentzian 

shape linewidth corresponding to homogeneous broadening due to interband polarization 

dephasing process. The complex Lorentzian function in the frequency and time domains 

is given by 

 
0

1 ,
1

i
i

L
j

 (2.14a) 

 0exp expi kL t j t  (2.14b) 

where 1 is the characteristic dephasing time of the interband transition, i  is the centre 

frequency of the i-th QD group. The FWHM of the homogeneous linewidth is 2 where 

Γ is the dephasing rate. A homogeneous broadening model was used to explain the 

emission spectra of QD lasers. Due to the delta-function like DOS and spatial localization, 
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QDs with different transition energies lase independently at low temperature and the 

spectra is very broad by inhomogeneous linewidth. While at room temperature, QDs with 

different transition energies interact with each other through homogeneous broadening 

and the lasing spectra is narrowed by increased temperature [101]. The two cases are 

shown in Fig. 2.12. In Fig. 2.12 (a), homogeneous linewidth is very narrow compared 

with inhomogeneous linewidth at low temperature, and in Fig. 2.12 (b), they are 

comparable at room temperature. The optical spectra as a function of current for the two 

cases are shown in Fig. 2.13. At the low current of 1.5 mA, the spectrum is very broad 

due to spontaneous emission in both Fig. 2.13 (a) and (b). At 1 meVcv 1 mcv

(homogeneous linewidth), all dots start lasing independently if the gain is larger than the 

loss, leading to a very broad spectrum of over 25 meV at 10 mA. At 10 meVcv 10 mcv , dots 

compete within the range of the homogeneous linewidth and lasing occurs only at the 

centre modes, resulting into a narrow peak in the spectrum. At 80 K, the broad band 

emission of over 50-60 meV has been found. At room temperature (298 K), the 

homogeneous broadening could reach 16-19 meV, corresponding to the dephasing time 

of 70-80 fs [102].  
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Fig. 2.12. Inhomogeneous and homogeneous broadening at (a) low temperature and (b) 
room temperature [101]. 

 
(a)                                                          (b) 

Fig. 2.13. Emission spectra change with the increase of current for homogeneous linewidth 
of (a) 1 meV and (b) 10 meV. The inhomogeneous broadening is 20 meV [101]. 

The total gain in the frequency domain can be expressed through dipole matrix 

element as [103] 

 

2

, ,0
0

0

( ) Re
i i i
k c k v k ik i d

k
k i w

d f fD G Ng E L E E E
cnH

RR  (2.15) 
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where dN  is the dot density per unit area, kD  is the degeneracy of QD state, Gi is growth 

probability of the i-th QD group, n is the refractive index, wH  is the QD height, i
kd is the 

dipole matrix element, ,
i

c kf  is the electron occupation probability in the conduction band, 

,
i

v kf  is the electron occupation probability in the valence band, the subscript k represents 

energy states of QDs (GS, ES etc.), i represents QD group number, and the real part of 

the L function represents the homogeneous broadening given above. The homogeneous 

gain of each group and the total gain are illustrated in Fig. 2.14. Each Lorentzian curve at 

the lower part of the figure corresponds to homogeneous gain of each QD group i with 

centre frequency i . The total gain equals to the sum of all QD contributions. The real 

part of the Lorentzian function for each QD group centred at 0
i
kE E  is illustrated in Fig. 

2.15 (a). The total gain ( )g E  at energy E receives gain not only from local group but also 

from other groups of dots within the broadening range, weighted by the occupation 

probability and the Lorentzian function. 

 

Fig. 2.14. Illustration of the contribution of gain from each QD group to the total gain. 
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Fig. 2.15. (a) The real part of the Lorentzian function in the expression of gain in Eq. (2.15). 
(b) The imaginary part of the Lorentzian function in the expression of refractive index in 
Eq. (2.17). The x-axis is normalized by  and the centre is shifted by 0

i
kE E . 

2.5.1.3 Polarization 

The polarization can be expressed through the electronic susceptibility χ. The optical 

susceptibility is given as [61] 
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2

, ,0
0

0

( )
i i i
k c k v k ik i d

xy k
k i w

j d f fD G NE L E E E
H

      (2.16) 

The QD gain and refractive index are related to the imaginary and real parts of the 

susceptibility, respectively. Similarly, the refractive index change can be expressed in the 

same way as gain as 

  2

, ,
0

0

1( ) Re
2

Im
i i i
k c k v k ik i d

xy k
k i w

n E E
n

d f fD G N L E E E
nH

II
   (2.17) 

where Im L represents the imaginary part of the Lorentzian function, which is 

responsible for the broadening of the refractive index. The imaginary part of the 

Lorentzian function versus energy is plotted in Fig. 2.15 (b). The refractive index at the 

lasing energy E will be affected by the carrier density variation in the state i
kE  due to this 

broadening effect. By comparing Fig. 2.15 (a) and (b), it is seen that the broadening 

effect of the refractive index given by Im L  is much broader than that of the gain given 

by Re L . Due to the broadness, LEF and frequency chirp at GS will be affected by the 

ES even no stimulated emission occurs at the ES. 

By replacing Eq. (2.16) into the modified polarization, Eq. (2.10) is written as 

0
,, , , ,

2 i k
i kg

P z t z t E z t p z t
cn

,z t E,,t E                 (2.18) 

where , ,i kp z t  is the polarization contributed from each QD group and is written as 

2

, ,0
, ,

0

( , ) ,
2

i i i
k c k v kk i d

i k xy i k
w

j d f fD G Np z t L t E z t
cnH

  (2.19) 
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where xy is the confinement factor in the QD layers and the symbol  represents 

convolution between the Lorentzian function and the electric field in the time-domain. 

Note that the occupation probability term , ,
i i

c k v kf f  is not included in the convolution 

integral by the adiabatic approximation because the probability dynamics is much slower 

than the polarisation dephasing time (1/Γ). The optical response of the QD medium to the 

electric field is described by filtering the electric field through the Lorentzian function 

with different interband transitions. 

In the literature, charge neutrality approximation is often assumed for all QD states 

(GS, ES), QW and barrier. Then the probability expression changes to 

 , , , , , ,1 2 1 2 1i i i i i
c k v k c k c k c k i kf f f f f f   (2.20) 

where ,i kf  gives the probability to find an electron in the state k for the i-th group of QDs. 

This is referred as excitonic model which describes the behaviours of the electron-hole 

pairs in the cavity [104]. 

By introducing Eq. (2.18) into the travelling wave equation Eq. (2.9), the polarization 

term can be eliminated. 

Then the TDTW equation Eq. (2.9) can be solved by finite difference scheme. The 

whole cavity is divided into sections with unit step Δz, and the corresponding unit time 

step is Δt. They have the relationship as 
g

zt
v

. The Δz should be small enough so that 

the electric field and carrier dynamics within each section does not change. 

Eq. (2.9) in the frequency domain is a non-homogeneous equation, the solution of 

which can be written as the sum of a general solution corresponding to the homogeneous 

part and a particular solution corresponding to the non-homogeneous part. The step-by-
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step solution is as follows. By replacing the polarization expression into the TDTW 

equation, using Fourier transform and the finite difference method, we get 

 0, exp 1 , , ,
2g

g

E z z jn z j z z E z zF z
c cn

(2.21) 

where a 1st order expansion is taken in the derivation. 

Converting back into the time-domain, we get 

 , , , , ,
2

iE z z t t E z t jP z t z F z t z E z t z  (2.22) 

where i  
is an additional term introduced to account for the cavity loss. For each Δz 

section, the electric field at time t+Δt can be calculated from the field at the previous time 

point t.  

The convolution term in the polarization expression in Eq. (2.19) needs to be further 

simplified. Use , ,i kI z t to represent the convolution: 

, 0

, 0

, 0

, 0 , 0

, ,

,

, , ,

,

1 1, ,
2 2

1, , ,
2

i k

i k

i k

i k i k

t
j t t

i k i k

t t j t t

j t t

j t j tt t
i k

I z t L t E z t e e E z d

e e E z d

te e E z t t tE z t

e e I z t t t E z t e e E z t t

t t je j

(2.23) 

Eq. (2.23) allows us to calculate the convolution at time t from the value at the 

previous time point t-Δt. 
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2.5.1.4 Spontaneous emission 

The spontaneous emission rate is given by , , ,
,

1,sp i i
k c k v k i k

sp k

R f f f , where ,sp k is the 

characteristic spontaneous emission time constant and can be calculated from Einstein 

approach as 
2 3

1 ,
, 3

0

i
k i k

sp k

d n
c h .

 

The spontaneous emission power per unit length, per unit bandwidth generated and 

coupled into the guided mode can be simply obtained by Einstein approach [105]: 

 
2 ,

,
1,...

, , Re
2
sp i k sp

d l i k k i k
i N k

F z N WN G D R z t Li k sp,i k, sp  (2.24) 

where sp  is the spontaneous emission coupling factor accounting for the coupling of the 

total emission into the active region. The spontaneous emission generated in different 

slices of the cavity is random and independent. Assuming a group of independent 

complex random processes ,exp ,i kj z t  with zero mean and unit variance, where 

, ,i k z t  is uniformly distributed between 0 and 2π and are uncorrelated in time. To have 

the power spectral density given by Eq. (2.24), ,exp ,i kj z t  is filtered by the 

Lorentzian function ,i kL  and then the spontaneous emission noise term in the travelling 

wave equation is written as 

 ,,
,

1,...

,
, ,

2
sp i ki k sp

i ksp
i N k k

N z t
F z t z I z t

t
spi k N, spi k,  (2.25) 

where , ,i kN z t  is the number of carriers in each Δz section, , ,sp
i kI z t is the convolution 

of the Lorentzian function and the random process. The expression for , ,sp
i kI z t  is 
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 (2.26) 

2.5.1.5 Rate equations in the gain section 

The electric field in the Fabry-Perot cavity is described by forward and backward 

travelling-wave equations combined with two boundary conditions of the two facets of 

the Fabry-Perot cavity. The electric field changed by the gain and refractive index is 

expressed through the polarization term. The gain, refractive index and the spontaneous 

emission is tightly related to the carrier distributions in the QD active medium. So the 

carrier dynamics described by the rate equations will be introduced in this section. 

Since charge neutrality is assumed in all states, rate equations actually describe the 

dynamics of electron-hole pairs in the active medium, where the number of electrons in 

the conduction band equals to the number of holes in the valence band. The model is 

referred to as excitonic model. There is one rate equation for the separate confinement 

heterostructure (SCH) state, one for the WL and N for each confined QD state (GS, ES). 

The SCH state is a 3D bulk state where carriers are injected and the WL is a 2D state as a 

carrier reservoir. The QDs in the same group have the same characteristics and are 

described by one rate equation. Following the works in ref. [103, 106], the capture and 

escape of carriers exist only between two adjacent levels, such as SCH to WL, WL to ES2, 

ES2 to ES1 and ES1 to GS. The energy levels and time constants are illustrated in Fig. 

2.16.  
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Fig. 2.16. Schematic of the energy band diagram of the active region of a typical QD laser. 
Intraband transitions are illustrated in the figure. I is the injected current, k

r is the 

interband recombination time, including radiative and non-radiative recombinations, k
c is 

the capture time to the state k and k
e  is the escape time from the state k.

 
The whole set of equations describing the carrier dynamics in the QD gain section is 

as follows [61]: 

SCH state: SCH SCH SCH W
i SCH W W

r c e

dN N N NJ zW
dt e

    (2.27) 

WL: 2

22 21 1
1

N N iESW SCH W W i
W iESES ESW W W

c e r c ei i

NdN N N N G N f
dt

        (2.28) 

ES2: 

2 2 2

22 2 2

2 1

1 21 1

1

1 1

iES iES iESi
W iESES iES iES

c e s

iES iES
iES iESES iES

c e

dN N NG N f
dt

N N
f f

     (2.29) 

ES1: 
2 1 1 1

1 2 11 1 1

1 1 1 1

1

1

* * * *

1 1 1 1iES iES iES iES iES iGS
iES iES iGS iESES iES iES GS iGS

c e s c e

iES iES iES iES
iES

dN N N N N Nf f f f
dt

j z E E Ef f f fE
1iES1

EE

 (2.30) 
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GS:  
* * * *

1iGS i iGS iGS
W iGSGS iGS iGS

c e s

iGS iGS iGS iGS
iGS

dN G N NN f
dt

j z E E fEfEf f
iGS

EE
   (2.31) 

where the subscript i  is the group number, ηi is the internal quantum efficiency and J is 

the applied current density. Note that kN and ,i kN are the total carrier numbers per square 

meters at state k and group i within each longitudinal slice of size Δz. They are related 

with the occupation probabilities as [61] 

 , ,, , .i k l D i k i kN z t N N G D f z t W z  (2.32) 

The last terms in Eq. (2.30) and Eq. (2.31) represent the stimulated emission and 

absorption in the GS and ES1 states, respectively. Here the stimulated emission occurs in 

these two states but not the state ES2. These last terms connect carrier dynamics with 

electric field and thus TDTW equations. 

In the rate equations, the capture and escape rates strongly depend on the occupation 

probabilities of the initial and final states. They follow Pauli exclusion principle as 
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where 'k k
 is the time constant defined as:  

k
r  is the recombination time within each state k, k=SCH and WL 

k
c  is the carrier capture time to the state k, k=WL, ES2, ES1, and GS 

k
e  is the carrier escape time to the state k, k=WL, ES2, ES1, and GS  

k
r  is the spontaneous emission recombination time in the state k, k=ES2, ES1, and GS  
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The carrier capture from SCH to WL has two parts: diffusion across the SCH region 

and the capture in the WL, that is WL
c SCH WL diff cap . For other intraband 

transitions, the capture and relaxation times of electrons between other states are in the 

range of hundreds of fs to a few ps and are assumed to be constant, independent of carrier 

densities, to reduce the calculation complexity. With no external perturbations, quasi-

equilibrium distribution holds for electrons in the conduction band and holes in the 

valence band. With this distribution, the relation between carrier capture and escape times 

involved in the same transition states is 
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 Thus the escape times are given by [103] 

 expW W W l SCH W
e c

SCH SCH

NDOS E
DOS h k T

 (2.35a) 

 2 22 2 expES D W iESiES iES
e c

W B

D N E
DOS K T

iESi 222iES2  (2.35b) 

 1 2 11 1

2

expES iES iESiES iES
e c

ES B

D
D K T

iES iESiES iiES2 12 12 1iES iES2 12  (2.35c) 

 1

1

exp iES iGSiGS GS
e c

ES B

iGS D
D K T

iES iGSiES i1iES iGS1iES iGS1  (2.35d) 

where SCHDOS is the effective DOS per volume in the SCH, WDOS is the effective DOS 

per area in the WL, 
2ESD is the degeneracy in the ES2 state,  

1ESD is the degeneracy in the 

ES1, GSD is the degeneracy in the GS, Nl is the number of QD layers, ND is the QD surface 

density and hSCH is the thickness of the SCH. 
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The effective DOS in the SCH and the WL can be calculated as [103] 

 
*
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 (2.36a)  
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where *
SCHm  and *

Wm are the electron effective masses in the SCH and WL, respectively. 

2.5.1.6 Rate equations in the SA section 

The travelling wave equations describing the electric field are applicable to the whole 

Fabry-Perot cavity. However, to describe a two-section MLL, additional rate equations 

are required for the reverse biased SA section. As shown in Fig. 2.17, due to the applied 

static electric field, the carrier dynamics and electric field change significantly in this 

section [88]. The applied electric field can lower the barrier height and enhance carrier 

escape rates from QD states to WL and WL to SCH. It can also lead to the formation of a 

triangular barrier, which allows for carrier tunnelling from confined QD states to SCH 

directly at high applied field. The carriers can be more efficiently swept out of the active 

region. Besides, the red shift of the carrier confined energies is observed due to the 

quantum confined stark effect. This effect is negligible compared to the other two and is 

not considered here.  
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Fig. 2.17. Energy diagram with reverse biased voltage applied in the SA section. Barrier 
height reduction and tunneling process through the triangle barrier are indicated in the plot. 

The barrier height can be lowered by / 2W yE h e F , where Wh is width of the WL, 

e is the electron charge, and yF is the reverse biased voltage caused electric field 

perpendicular to the p-i-n junction as shown in Fig. 2.17. yF is calculated as bi
y

SCH

V VF
h

, 

where V is the reverse biased voltage, biV  is the built-in electric field of the junction [88].  

Then the escape times become reverse-voltage-dependent. They are calculated as [88] 

 2 2 0 exp y WiES iES
e y e

B

eF h
F

k T
 (2.37a) 

 0 exp y WW W
e y e

B

eF h
F

k T
 (2.37b) 

where 2 0iES
e  and 0W

e  are the escape times at zero reverse voltage ( 0yF ). The 

modified escape times are applied to the rate equations of ES2 and WL for the SA section.  
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The tunnelling rates from the QD states and WL directly to SCH state can be 

calculated as the barrier collision frequency multiplying barrier transmission probability. 

The barrier transmission probability can be estimated by the Wentzel-Kramer-Brillouin 

approximation [88].   
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where the subscript k represents QD states, * 22tun
k w

f
m h*  is the barrier collision 

frequency and WN ( kN ) is the carrier density in the WL (QD states). 

With this newly introduced parameter, we can now update rate equations for the SCH 

state in the SA section. 

 , ,2
SCH bi SCH SCH W

d SCH tun W tun kSCH W W
kSCH nr c e

dN V V N N NN R R
dt h

 (2.39) 

where d  is the electron mobility of the barrier material. This equation and rate equations 

of the WL and confined QD states with modified carrier escape times can be applied to 

describe carrier dynamics in the SA section.   

Up to now, complete description of TDTW equations for propagation electric fields 

and rate equations for carrier dynamics has been presented. In the next section, the 

numerical method for solving the whole set of equations will be given. 
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2.5.1.7 Reference frequency ω0 and the time step Δt 

The reference frequency ω0 is chosen to ensure the validity of the slow varying envelope 

approximation. It is usually chosen to be close to the lasing frequency. If both GS and ES 

are lasing, the reference frequency ω0 can be set to the centre of the two emission peaks, 

i.e. 0 1 2, 1 2, 2N GS N GS . 
If only GS level is lasing, it can be set to the GS 

emission peak of the central QD group, i.e. 0 1 2,N GS . But additional contribution 

from the ES to the refractive index at the GS is required to be considered in the TDTW 

equation. With the unit time step Δt, the simulation bandwidth is then in the range of 

0 0[ , ]
t t

. The simulation bandwidth needs to cover all QD transitions. Besides, 

the Lorentzian function describing the homogeneous broadening has long tails in the 

frequency domain (see Fig. 2.15) that may be beyond the bandwidth t  when Δt is not 

chosen small enough. Thus a small time step of Δt is required for simulation accuracy. 

However, computation cost is increased accordingly. 

2.5.1.8 Numerical model implementation 

With the unit step of the time Δt selected, the unit step Δz along the Fabry-Perot cavity 

can be fixed. Then the whole cavity is discretized into L/Δz subsections and each 

subsection is either forward or reverse biased. After initializing the parameters, the 

following steps are performed. 

1. , 2 1, , 1... , , ,i kf z t z L k ES ES GS  

The probabilities of ES2, ES1 and GS states for each group of QDs at time t are obtained 

through carrier densities , ,i kN z t at time t by Eq. (2.32) 
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2. ,P z t  

The polarization terms are calculated according to Eq. (2.18) 

3. ,F z t z  

The spontaneous emission in each Δz section is computed by Eq. (2.25) 

4. ,E z t t  

The forward and backward electric field at the next time t+Δt can be calculated according 

to TDTW equation Eq. (2.22). 

5. , , ,kN z t t k SCH WLand , 2 1, , , ,i kN z t t k ES ES GS  

The carrier densities at the next time t+Δt can be updated by solving the rate equations 

using the first-order finite difference method. The rate equations for the gain and SA 

sections include Eqs. (2.27) to (2.31) and Eq. (2.39). 

The above steps are repeated to compute the electric field and carrier dynamics until 

steady state is achieved.  

2.5.2 Delayed differential model 

The delayed differential equations (DDE) describing electric field in the cavity are 

directly derived from the TDTW equations. As shown in Fig. 2.18, the whole Fabry-Perot 

cavity is considered as a unidirectional ring cavity with three sections: the SA section 

from Z2 to Z3, the gain section from Z3 to Z4, and a filter as the bandwidth limiting 

element from Z5 to Z1+L, where L is the cavity length [107]. The electric field starting 

from the SA section is [108] 

 
1 /2 1 /21 g qi G t T i Q t TE t

E t ae E t T
t

 (2.40) 
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where E t is the normalized envelope of the electric field, γ is the dimensionless 

bandwidth of the filter, αg is the LEF in the gain section, αq is the LEF in the SA section, 

T is the cavity round trip time given by Ring gT L v and a is the round trip cavity loss. 

Carrier dynamics in each section is described by the rate equations.  

 

Fig. 2.18. Illustration of the ring cavity structure in the delayed differential model. Three 
sections are shown in the cavity [107]. 

 
2, 1Q G

t g g g g g gF N e e E    (2.41a) 

 2, 1 Q
t q q q q q qF N s e E  (2.41b) 

 0 2 ,t g g g g g g gN N N F N  (2.42a) 

 0 2 ,t q q q q q q qN N N F N  (2.42b) 

where the subscript g represents the gain section, q represents the SA section, ,g qN t is 

the carrier density in the WL, ,g q t  is the occupation probability of the QD state and the 

function , , ,,g q g q g qF N  describes carrier exchange between the WL and the QD layer. G 

and Q are dimensionless saturable gain and absorption given as 

 2 2 1g g gG t g L t   (2.43a) 
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 2 2 1q q qQ t g L t  (2.43b) 

The definition of other parameters can be found in ref. [108]. The function 

, , ,,g q g q g qF N  describes carrier exchange between carrier capture and escape and is 

written as 

 , , , , , , , , , , , ,, 1 1cap esc esc
g q g q g q g q g q g q g q g q g q g q g q g qF N R R B N R  (2.44) 

where ,g qB is the capture rate, ,1 g q  is the Pauli blocking factor, and ,
,

cap esc
g qR is the carrier 

capture and escape between the WL and the QD state. Carrier escape is a linear process 

proportional to the occupation probability ,g q  while the capture process is nonlinearly 

proportional to , , ,1g q g q g qB N . The competing of the two processes results in the fast 

and slow recovery stages of the saturable gain and absorption. The two-recovery stage is 

a distinct feature in QD states. In the WL, however, the recovery is slow and almost 

linear, similar to that of QW lasers. The model can describe some general properties in 

QD mode-locking, especially the gain and absorber recovery processes. Additional 

effects can be easily included into the model to be studied. 

In this delayed differential model, only two energy levels can be included, WL and 

GS. Then, a more generalized model, multi-section delayed differential equation (MS-

DDE) model, was proposed to simulate ML in QD lasers as shown in Fig. 2.19 [109]. In 

the MS-DDE, the ring cavity is composed of a number of isolated sections either forward 

or reversely biased; intrinsic waveguide losses are treated within each section; and lasing 

from both GS and ES1 states can be considered. 

The equation for the electric field is [109] 

 expk k kE R t T E t T  (2.45) 
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where τ is the coordinate given as / gt z v , kR T is the round trip gain and the 

first term is the Lorentzian bandwidth limiting filter. kR  is the product of gain and 

loss of all the F sections, including both amplitude and phase changes and it can be 

calculated as 

 
1~

k ki i
i F

R B M  (2.46) 

where the subscript i is the subsection number, k is the QD state (GS or ES), the kiB is the 

round trip gain/loss, iM  is the intrinsic waveguide loss. A stable ML is achieved when 

= =1i iR T R  if V 0i  

= 1i iR T R  if V 0i  

 

Fig. 2.19. Ring cavity structure in the MS-DDE model. Filter effect is modeled at z=0. 
Waveguide losses are considered at the interface between each two sections as indicated by 
the red lines. there are F sections in the figure where the yellow and blue areas represent 
gain and SA sections, respectively [109]. 

The gain/absorption can be expressed by the density matrix element, the same as in 

the TDTW model. The rate equations in the MS-DDE model are also the same as in the 

TDTW model except the stimulated emission rate which is calculated as 
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 (2.47)  

The MS-DDE model is then applied to an Fabry-Perot MLL and compared to the 

TDTW model. Differences are observed in optical power, pulse peak power and light-

current efficiency. They are caused by the intrinsic discrepancy between the two 

modeling approaches [109]. However, the pulse widths as a function of injection currents 

are in good agreement for the two methods. Moreover, and the discrepancy is much 

reduced compared to the standard DDE model. Although not as precise as the TDTW 

model, the MS-DDE model is effective and accurate in modeling Fabry-Perot MLLs. 

And the computation cost is much lower which allows for extensively studying and 

analyzing parameters of QD MLLs. 

2.6 Techniques for improvement of mode-locking performances 

2.6.1 GS and ES switching 

In the two-section laser, by altering the DC current of the gain section and the reverse 

bias of the absorber section, QD laser can switch operation between GS and ES. The 

lasing starts from the GS and is followed by the ES when the intensity of the GS becomes 

saturated. Stable mode-locking is demonstrated through both GS (1260 nm) and ES 

(1190 nm) in a two-section QD laser, with repetition frequencies of 21 and 20.5 GHz, 

respectively [110]. However, GS-lasing suppression or quench has been observed in a 

few experiments on 1.3 μm InAs/InGaAs QD lasers. As plotted in Fig. 2.20, the GS starts 

lasing at first. With the increase of the current, the total emission power is increased. 

However, once ES starts to lase, the GS emission is suppressed and gradually decreased 

to zero. Some possible explanations have been reported: self-heating leads to the increase 



56 
 

of substrate temperature and causes the degradation of GS emission [111]; electron-hole 

distribution asymmetry causes the transition from two states to single ES [112]; the 

homogeneous broadening leads to the decrease of optical gain with increased current; and 

slower capture rates in holes than in electrons combined with electron-hole distribution 

asymmetry [113].  

 

Fig. 2.20. GS-lasing suppression and quenching as a function of biased current. Energy 
bands and transitions are simply shown in the inset [113].  

In order to independently study the lasing properties of each transition state, grating 

based external cavity could be applied to select GS or ES [114]. By changing the angle of 

the grating, pulse widths from the two states were measured to be 14 ps and 10.8 ps 

before dispersion compensation, in which the lasing from ES is not affected by the GS. 

2.6.2 Pulse duration shortening 

In the two-section QD MLLs, the absorption in the SA section provides the dominant 

pulse shortening mechanism. Pulse widths can be shortened by increasing the applied 

reverse bias to speed up the recovery of the SA. The pulse duration is shortened from 2 ps 

to 390 fs by optimizing the current/voltage parameters at the repetition rate of 21 GHz by 
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Rafailov et al in 2005 [115]. On the contrary, the average output power and pulse 

durations increase with the increase of the biased gain-section current. The lengths of the 

two sections also affect mode-locking pulses. Pulse shortening could be realized by using 

smaller gain-to-absorber length ratio to increase the absorption but at the expense of 

decreased peak power [116]. Additional pulse shortening may be obtained by increasing 

the carrier escape rate out of the QDs. The shortest pulse width at 30ºC is 5.1 ps while at 

60ºC is 3.2 ps possibly by thermal-induced faster rate of carrier escape [117]. 

Besides, the pulse can be further shortened with external structures, such as 

dispersion compensation fibers and grating based dispersion compensator in the external 

cavity. In both methods, linear chirp is compensated. By using a 90-m single mode fiber, 

the pulse from a 42.72 GHz QDash MLL was compressed from 4.7 ps to 1.1 ps [118]. 

The pulse width of 15 ps was compressed to 1.2 ps by using a dual grating dispersion 

compensator [31]. And the time-bandwidth product (TBP) is decreased from 6 to 0.69 

after the chirp compensation. The larger TBP value before the compression implies 

highly chirped pulses generated in the cavity. The large chirp in the device can also be 

decreased by the bias condition of the two sections. By using the same dual-grating, the 

pulse width was also compressed to 970 fs from 14 ps for the GS transition and 1.2 ps 

from 10.8 ps for the ES transition [114].  

2.6.3 Repetition rate 

The lowest repetition rate reported from monolithically passive QD MLLs is 2.1 GHz 

[53]. To achieve even lower repetition rate, external cavity combined with QD gain 

material has been employed. Then the total cavity length equals to the QD cavity plus the 

external cavity length. Although the external cavity configuration increases the 
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complexity, it has advantages of repetition rate tunability, wavelength selection and 

dispersion compensation. The configuration of a typical external cavity mode-locked 

laser (ECMLL) is illustrated in Fig. 2.21, where the light emitting from the gain facet is 

focused on a reflection element through a lens fiber. The first external cavity laser was 

reported by Choi et al. in 2005 where low repetition rate of 5 GHz was demonstrated. To 

construct the external cavity, one facet of the two-section laser is curved to reduce back 

reflection and an external mirror is used instead. The ECMLL can improve noise 

performance with reduced active length for the same repetition rate generated from a 

monolithic laser [31]. Low repetition rate of 1.14 GHz with an average power of 23.2 

mW, and 2.4 GHz with an average power of 60 mW were demonstrated using an 

ECMLL including a 96% coupler and a two-section QD laser with one antireflection 

coated facet and bending ridge waveguide [39]. Alternatively, a semiconductor SESAM 

that contains 35 layers of InAs QDs is used as the SA in the external cavity to generate 

pulses with repetition rates from 350 MHz to 1.5 GHz. The SESAM has the function of 

both reflection mirror and SA. It has fast recovery time for ultra-short pulse generation 

[119]. By the same group, tuning range of 1 GHz to record-low value of 191 MHz was 

reported from an ECMLL with cavity length from 15 to 78.5 cm [120]. To get stable 

fundamental rather than harmonic ML, the external reflection back to the QD cavity 

should be adjusted for each operation case. And at the repetition rate of 281 MHz, the 3-

dB RF linewidth was measured to be ~30 Hz at the current of 300 mA and the reverse 

biased voltage of 8V, which is the narrowest value ever in passive mode-locked 

semiconductor lasers. The narrow RF linewidth indicates low noise and high stability in 

the ECMLL. 
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Fig. 2.21. Configuration of an external cavity QD MLL. The elements include a two-section 
QD laser, a coupling lens/an optical coupler and a mirror or SESAM (no SA required in the 
QD cavity for SESAM). 

On the other hand, the direct way to increase the repetition rate is to decrease cavity 

length. The highest repetition rate generated is 80 GHz from a two-section passive QD 

MLL and 346 GHz from a single-section QDash MLL by exploiting a higher optical 

confinement factor. The repetition rate is inversely proportional to the cavity length, 

which imposes a limit for realizing higher repetition rates due to reduced gain from short 

cavities. The higher repetition rate is also limited by the absorber recovery time in two-

section QD MLLs. In two-section QD MLLs, harmonic mode-locking is another effective 

method for high repetition rate pulse generation without the challenge of reduced gain. In 

order to support multiple pulses circulating in the cavity, higher drive current is required 

to increase the gain. Harmonic repetition rates of 2.2, 3.3, and 4.4 GHz were generated 

with increased drive currents based on the fundamental ML of 1.1 GHz with a 14-cm-

long cavity [51]. In a colliding pulse MLL, the SA is placed in the centre of the cavity 

and the second harmonic is excited. The 1st colliding pulse ML was demonstrated by M. 

Thompson et al. using a 3.9 mm-long cavity with a 245-μm-long absorber, and the 

obtained repetition rate was 20 GHz, twice of the 10-GHz fundamental resonance [28, 

121]. Mode-locking at the 1st, 2nd, 3rd, 6th harmonics was demonstrated by Rae et al. in 
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2006, which correspond to repetition rates from 39 GHz to 238 GHz. In the device, the p-

contact is divided into a number of multi-contact isolated sections and the SA section can 

be placed at the position corresponding to the desired harmonic [32]. 

In addition, higher repetition rates of up to 1.1 THz have been demonstrated in 

InAs/InP single-section QD MLLs [55, 122, 123]. 

2.6.4 Injection locking 

Injection locking is often applied to improve the performance of single mode lasers. Its 

effect on QD MLLs has also been studied. It is found that single-tone injection can 

significantly narrow the optical spectrum of QD MLLs but has almost no effect on the 

pulse width [124]. The TBP, given by the product of the two parameters, is thus reduced. 

When close to the injection wavelength, the longitudinal modes are locked to the injected 

light and the mode linewidth is reduced as well as phase noise. But the linewidth of the 

longitudinal modes is not reduced when far from the injection wavelength. 

To further improve the noise performance of QD MLLs, dual-tone injection locking 

is used. Dual-mode light, separated by the resonance frequency of the QD MLL, was 

injected into a QD MLL and close to a pair of its longitudinal modes. Then the emission 

spectrum of the QD MLL was narrowed and moved with the injection wavelength. The 

TBP is reduced by 10 to 15 times compared to the free-running one. The linewidth of 

free-running QD MLL has a parabolic dependence on the mode wavelength, varying 

from 10 to 40 MHz while the dual-injection locked linewidth is about 100 kHz for all 

longitudinal modes. The timing jitter is also greatly decreased from 11~21 ps to 1~300 fs 

in the range of 20 kHz-80 MHz. The chirp, optical linewidth and phase noise of the MLL 

has been significantly improved by this method [50]. And the reduction is also observed 
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at triple-tone injection or when the dual-mode separation is increased to three times of the 

resonance frequency [124]. 

Injection locking has also been applied between two separate QD MLLs. The 

repetition rates of the two lasers are the same and the spectrum of the master laser is 

partially overlapped with the slave laser. Due to the overlap, coherent coupling occurs 

between the two spectra, and the bandwidth of the slave laser is expanded resulting in 

pulse width shortening. And the TBP is not significantly changed [125]. 

2.6.5 Noise reduction 

Noise performance in QDs is improved due to reduced spontaneous emission, high 

gain saturation energy, and small LEF, etc. Spontaneous emission in QDs is greatly 

reduced, which suppresses fluctuations in the carrier density, refractive index and thus the 

round-trip time. The RF linewidth is also related to the laser cavity configurations. For 

example as illustrated in Fig. 2.22, the RF linewidth increases with the decreased gain-to-

absorber length ratio from 7:1 to 3:1. It is impossible to obtain the minimum pulse 

durations and lowest RF linewidth at the same time. The pulse width shows an opposite 

tendency [116] in Fig. 2.22. There is a trade-off between the two parameters in the design. 
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Fig. 2.22. RF linewidth and pulse duration at different gain-to-absorber length ratios of a 20 
GHz QD MLL [116].  

It has also been shown that external optical feedback or injection can largely improve 

the RF linewidth/timing jitter of MLLs. And the improvement is sensitive to both the 

feedback level and the fiber loop length of the external cavity [126]. The RF linewidth 

was narrowed from 1 MHz to 500 Hz with external optical feedback [127]. The lowest 

RF linewidth reported so far is 350 Hz which is reduced from 8 KHz by using the optical 

feedback. The RF principal peak in the spectrum can be stabilized by an external optical 

fiber cavity [128]. Besides, significant improvement in RF linewidth was demonstrated 

by phase-locking a QD MLL to a master laser using dual-mode optical injection [50]. 

2.7 Conclusion 

This chapter provides an extensive review on the basic characteristics of QDs and QD 

lasers. The delayed differential and TDTW models have been widely applied in 

theoretically analyzing mode-locking performance in two-section semiconductor MLLs 

including QD MLLs. The TDTW model will be improved and applied to our single-
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section QD MLLs in Chapter 4. The external cavity structure combined with QD cavity 

has demonstrated low repetition rate pulses and reduced phase noise. It will be used to 

increase the pulse repetition rate in our experimental work in Chapters 5 and 6.  

In the following chapters, our research work on single-section QD MLLs will be 

given in detail.  
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Chapter 3 Investigation of Linewidth Enhancement Factor of 

InAs/InP QD Lasers 

3.1 Introduction 

As introduced in the previous chapter, the LEF is an important parameter of 

semiconductor lasers. It determines many fundamental properties of QD lasers, such as 

linewidth, filamentation in high power lasers [129], feedback sensitivity [130], frequency 

chirping and timing jitter of mode-locked lasers [76]. The LEF value can be measured by 

methods of Hakki-Pauli [79] and injection locking [131]. Small LEF values of less than 1 

in InAs/GaAs QD lasers and SOAs have been obtained [82, 132, 133]. To reach the most 

important 1.5 μm wavelength range for telecommunication applications, many efforts 

have been put to develop QD lasers [134, 135] and SOAs [84] operating around 1.5 μm. 

However, only a few groups have reported their experiments to quantify LEF of InAs/InP 

QD lasers, and the LEF are in the range of 2.2 to 7.6 [136, 137].  

In this chapter, the LEF parameter of an InAs/InP QD multi-wavelength laser (MWL) 

with the centre wavelength of 1.53 μm is investigated for the first time. The injection 

locking technique is used to evaluate the above-threshold LEF. The LEF can be directly 

deduced from the positive and negative locking bandwidth without using other fitting 

parameters. The LEF is found to be only 1.37 at the gain peak of 1.53 μm. Then the result 

is confirmed by the Hakki-Pauli method which shows a reduced LEF of less than 1 just 

below threshold. The measured small LEF values have indicated that our developed 

InAs/InP QD gain materials will lead to ultra-narrow linewidth of QD distributed 

feedback (DFB) lasers [138], much less sensitivity of QD MWLs [139] to optical 



65 
 

feedback [140], and also lead to a lower frequency chirp and timing jitter of QD MLLs 

[69, 84] which are suitable for very high data rate transmission systems [141]. 

3.2 Injection locking method 

3.2.1 Experimental setup 

The InAs/InP QD laser wafers used in this study were grown by CBE on exactly (100) 

oriented n-type InP substrates. The undoped active region of the QD sample consisted of 

five stacked layers of InAs QDs with In0.82Ga0.18As0.39P0.61 (1.15Q) barriers. The QDs 

were tuned to operate in the desirable operation wavelength range by using a QD double 

cap growth procedure and a GaP sublayer [142]. In the double cap process the dots are 

partially capped with a thin layer of the barrier material, followed by a 30 second growth 

interruption and then complete capping. The thickness of the partial cap controls the 

height of the dots, and hence their emission wavelengths. It also helps to control the 

height distribution of the dots, and therefore control the 3-dB spectral bandwidth of the 

gain spectrum. Growing the dots on a thin GaP layer allows a high dot density to be 

obtained and improves layer uniformity when stacking multiple layers of dots, providing 

maximum gain. This active layer was embedded in a 355 nm thick 1.15Q waveguiding 

core, providing both carrier and optical confinement. An average dot density of 

approximately 104 10  cm-2 per layer was obtained according to our atomic force 

microscopy measurement on uncapped stacked dot samples. The waveguiding core was 

surrounded by p-doped (top) and n-doped (bottom) layers of InP and capped with a 

heavily doped thin InGaAs layer to facilitate the fabrication of low resistance Ohmic 
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contacts. The sample was fabricated into single lateral mode ridge waveguide lasers with 

a ridge width of 3 μm, and then cleaved to form an Fabry-Perot laser cavity.  

 

Fig. 3.1. Typical spectrum of an InAs/InP QD multi-wavelength laser with the injection 
current of 60 mA at 18°C. 

The laser was driven by a DC current, and tested on a heat sink maintained at 18°C. 

The threshold current is 45.5 mA under CW operation. Fig. 3.1 shows the typical 

spectrum of a C-band QD MWL with DC current of 60 mA. The experimental setup used 

in the LEF measurement by injection locking method is shown in Fig. 3.2. A tunable 

laser (Agilent 8164B) worked as the master laser is used to lock the QD MWL (slave 

laser). The master laser has a wavelength accuracy of 0.1 pm. Output light from the 

master laser is injected into the slave laser through one port of a polarization-maintaining 

(PM) circulator. A single mode lensed fiber is used to lead light from the master laser 

into the slave laser and receive light from the slave laser after locking. The PM circulator 

ensures light transmission in only one direction. A power meter and a high resolution (10 

pm) optical spectrum analyzer (OSA) are connected to two ports of a 3-dB coupler to 

monitor the power and the spectrum simultaneously. 
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When light from the master laser is injected into the QD MWL, i.e. the slave laser, 

the injected light competes with all longitudinal modes of the slave laser. At the locked 

state, the slave laser emits at the injected wavelength of the master laser while gain at 

other wavelengths is highly suppressed. While at the unlocked state, the total spectrum 

shows the sum of the two. The locked and unlocked conditions are dependent on power 

of the injected light and frequency detuning from the closest longitudinal mode of the 

slave laser. The locking bandwidth is given by the formula [143] 

 21 negative positiver r    (3.1) 

where 1/22 ir c nL P P  is the injection rate, iP is the injected power from the master 

laser, P is  the power of the slave laser, n is the refractive index and α is the LEF of the 

slave laser. Locking is achieved within the detuning range given in Eq. (3.1). It is obvious 

that the positive and negative locking range is asymmetric, which can be used to calculate 

the LEF. It is given by [143] 

 

2

1negative

positive

 (3.2) 

 Master 

laser 

Polarization 

controller 
QD 

MWL 

OSA  

50:50 

coupler 

Power 

meter 

Lensed fiber 

PM circulator 

Fig. 3.2. Schematic diagram of measuring the LEF factor using injection locking 
method. 
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3.2.2 Experimental results 

In the experiment, the slave laser was pumped by a CW injection current of 60 mA and 

the temperature was controlled at 18°C. Three different wavelengths at 1524.24 nm, 

1529.53 nm and 1535.52 nm are selected to measure the LEF which cover the main gain 

region as shown in Fig. 3.3. The locking condition is reached when at least 30 dB side-

mode suppression ratios (SMSRs) are observed on the OSA for each injected power. The 

detuning frequency at both positive and negative sides increases with injected power of 

the master laser as shown in Fig. 3.3. By linear fitting, the LEF is calculated as the ratio 

of the two slopes of detuning ranges [131] using Eq. (3.2). The LEF values at the three 

wavelengths are 1.63, 1.37 and 1.59, respectively. To our best knowledge, it is the lowest 

values reported so far for QD lasers emitting around 1.5 μm based on the substrate of InP. 
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Fig. 3.3. Positive detuning and negative detuning as function of square root of injected 
power from the ML at three different wavelengths. The solid lines are linear fitting of 
experimental results. 

3.3 Hakki-Pauli method 

The LEF obtained by the injection locking technique is a reflection of the laser’s working 

performance at lasing while the Hakki-Pauli method is the one to know the key properties 

of lasers. In order to remove the influence of heating to the change of refractive index, a 
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pulse generator (Agilent 8114A) was taken to provide pulsed current. Pulse width of 400 

ns and duty cycle of 2.5% were used in the experiment. In this method, the LEF is 

calculated as [79] 

 2

4 / 4 /
/ /

dn dN n d dN
dg dN dg dN

 (3.3) 

where n is the refractive index, g is the net modal gain, and N is the carrier density. It 

shows the relationship between change of refractive index and gain caused by the 

variation of carrier density in the active region. The net modal gain is given by 

1 1ln
1

rg
L r

, where L is the cavity length and r is the peak to valley ratio of each 

longitudinal mode in the amplifier spontaneous emission (ASE) spectrum of the QD 

MWL. And the refractive index change can be obtained by measuring the frequency shift 

of each peak in the ASE spectrum. Under pulsed condition, output power is low below 

threshold so only 1 nm of the ASE spectrum around the gain peak was analyzed to get 

gain and wavelength shift. Three peaks are observed within the 1 nm range from 1529.5 

to 1530.5 nm. Blue shift of wavelength and increase of gain are observed with increased 

current. Wavelength shifts against gains at the three peaks are shown in Fig. 3.4 for 

injection currents from 42 to 44 mA ( 45.5thI mA ) with 0.5-mA step.  
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Fig. 3.4. Wavelength shift as a function of gain for three longitudinal modes within the 
spectrum span of 1 nm around the gain peak. In each graph, five points correspond to five 
current levels from 42 mA to 44 mA by 0.5-mA step. 

The refractive index n is determined by the channel spacing between two longitudinal 

modes and is about 3.52 for the cavity length of 1 mm. Then the LEF calculated by Eq. 

(3.3) is shown in Fig. 3.5. The LEF value decreases with increased current [82, 144] and 

is reduced to be less than 1 at 43.5 mA. The smaller α factor below the threshold as 

compared with LEF value above the threshold is consistent with the other analysis [145].  
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Fig. 3.5. LEF obtained for three peaks at the 1 nm range. Averaged LEF among the three 
peaks is also shown. 

3.4 Conclusion 

We have reported LEF measurement of InAs/InP QD lasers. The obtained LEF above 

threshold is 1.37 at the gain peak and maintains to be less than 2 in the main gain region 

from 1524 to 1535 nm. The LEF below threshold is found to decrease with increased 

current and to be less than 1 with current increasing to 43.5 mA by Hakki-Pauli method. 

To our best knowledge, they are the lowest values reported so far for InAs/InP QD lasers 

emitting around 1.5 μm. Our LEF is smaller than the other reported values on InAs/InP 

QDs [136, 137] and may be attributed to the nearly symmetric gain spectrum [84], less 

sensitive refractive index change with carrier density and larger differential gain in our 

QD lasers. Therefore, our InAs/InP QDs with small LEF are perfect gain materials for 

QD MWLs, QD MLLs and QD DFB lasers around 1.5 μm.  

 

  



72 
 

Chapter 4 Modeling of Single-Section InAs/InP QD MLLs 

4.1 Introduction 

In two-section QD MLLs, the low saturation energy and fast recovery time of the QD 

absorber leave a narrow net gain window for the pulse shaping and amplification [53, 83, 

116]. In single-section QD MLLs, the SA section does not exist and thus there is no 

interplay for evolving pulses in gain and saturation absorber sections [55, 68, 69]. In both 

types of lasers, pulse durations from ps to hundreds of fs have been reported. As the 

pulses become shorter and shorter [72] [115], the GVD impact will be more and more 

significant and cannot be ignored. Some techniques mitigating the dispersion effect have 

already been developed to compress the pulse width. For example, by using a dual 

grating dispersion compensator, the pulse width is reduced from 14 ps to 970 fs [114]. 

With the help of a 1200-meter-long single mode compensation fiber, the pulse width of 

770 fs has also been obtained [43]. These works indicate that the pulse evolution is 

strongly affected by the GVD in the laser cavity. On the other hand, due to the relative 

high peak power density in the laser cavity, the nonlinearity induced SPM is another 

important factor that affects the pulse evolution. Thus, it is essential to include the GVD 

and SPM in modeling to accurately model the pulse evolution in QD MLLs, especially 

when the pulses have width of hundreds of fs and the pulse peak power is high. 

Travelling-wave (TW) model is a popular method to solve the electromagnetic wave 

propagation in optical fibers, semiconductor lasers and amplifiers. A TDTW model for 

QD MLLs, which was proposed by Rossetti [61] and introduced in section 2.4.2, has 

been successfully used in the simulations of two-section QD MLLs [61, 62, 109, 146]. 

This TDTW model, coupled with rate equations, can give an accurate description of the 
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spatiotemporal electric field and carrier dynamics in the cavity. And the QD carrier 

dynamics in all states and the QD optical susceptibility are fully accounted in this model. 

However, the GVD effect was not included in the model. Although two different group 

velocities for GS and ES were applied [62], the GVD effect was neglected within each 

state (one state includes multiple longitudinal modes). Here, we will establish a TDTW 

model that includes the GVD and SPM effect to accurately model the evolution of pulses 

generated from the QD MLLs. To our knowledge, it is the first time that the effects of 

both GVD and SPM are directly involved in the dynamic lasing process of QD MLLs. 

The nonlinearity in a laser system includes two aspects: 1) the nonlinearity from the 

material itself; and 2) the nonlinearity induced by the confined (interband/intraband) 

energy levels. In our improved model, the 1st part is considered as the SPM term, and the 

2nd part, which is complex but especially important in the mode-locking, is treated as an 

equivalent SA. Careful and detailed discussions on the above nonlinearities will be 

presented.  

For numerical techniques, we will adopt the first-order Taylor expansion and the 

central difference approximation to deal with the GVD term, and then the whole model is 

solved iteratively. To verify the accuracy of the first-order Taylor approximation, the 

second-order Taylor expansion is also applied for comparison. It is found that our 

presented model can be used to successfully simulate the pulse evolution of QD MLLs. 

The effects of GVD and SPM on the pulse evolution are discussed. 

This chapter is organized as follows. The device structure in the simulation is simply 

introduced in section 4.2. Also in this section, the TDTW model is modified by taking 

into account the GVD and SPM, and then it is applied to a single-section QD MLL. We 
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approximate the GVD term by first-order Taylor series expansion and then the modified 

model can be solved directly by finite-difference method. In section 4.3, pulse evolution 

as a function of GVD is analyzed, with comparison to experimental results. The second-

order Taylor expansion is further applied to the modified model and compared with the 

first-order expansion. The effects of GVD and SPM are also compared. The chirp and 

TBP value are then given. In section 4.4, nonlinear effects and the effect of the equivalent 

SA are discussed. In section 4.5, a conclusion is drawn. 

4.2 Modified TDTW model including GVD and SPM 

4.2.1 Device structure 

The grown structure of the InAs/InP QD laser used in the simulation is shown in Fig. 4.1. 

Lattice matched InGaAsP cladding layer is grown on the substrate InP with width of 155 

nm. The photoluminescence (PL) peak of this layer appears at 1.15 μm at 300 K (referred 

as 1.15Q layer). The InAs QDs are directly grown on the 1.15Q or a thin GaP layer to 

control the centre emission wavelength [142]. Multiple layers of QD are repeated with 9 

nm InGaAsP spacer layers between each two layers.  

 

Fig. 4.1. Schematic diagram of the simulated InAs/InP QD laser. The triangles in the figure 
represent QDs. 
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The active region usually consists of 5 to 10 layers of QDs. And in the growth, the 

InAs dots are directly deposited on the InGaAsP barrier (dot-in-a-barrier structure) and 

only GS (no ES) is observed in the 300 K PL curve of our InAs/InP QD lasers. The 

energy diagram is simply plotted in Fig. 4.2.  

The inhomogeneous gain bandwidth is about 60-70 nm (FWHM), corresponding to 

31.4 and 36.6 meV in energy.  

 

Fig. 4.2. Energy diagram of the InAs/InP QD laser used in the simulation. Only GS is 
observed in the PL peak. The emission centre is at about 1.54 μm. 

4.2.2 GVD and SPM expression in the TDTW model 

The propagation constant β can be expanded by Taylor series as 

 
22

0 1 0 0= ...,
2

n
c

 (4.1) 

where 
0

0,1,2...
m

m m

d m
d

 

The parameters 1and 2  are referred as group velocity and GVD parameter. They 

are related to the refractive index n and its derivatives as 



76 
 

 1
1 1g

g

n dnn
v c c d

 (4.2) 
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1= 2
2

gdnd dn d n
d c d c d d

 (4.3) 

where gn  is the group index, and gv is the group velocity. The envelope of pulse moves at 

the speed of gv during which the pulse is broadened because of GVD. The cubic and 

higher-order terms , 2m m  in the Taylor expansion are usually negligible. When lower-

order terms are close to zero, high-order terms need to be included, which can also lead to 

pulse distortion in the propagation. By the Fourier-transform, the term 22
02

 is 

replaced by the second-order differential operator 
22

22 t  in the time domain, 

which represents the GVD effect in the TDTW model. 

The SPM is a nonlinear effect leading to the intensity dependence of the refractive 

index in the cavity. It can induce optical spectral broadening and frequency chirp. The 

intensity dependent nonlinear phase shift by SPM is 2
2 0NL n k L E , where n2 is the 

nonlinear refractive index, 0 2 /k , L is the interaction length and E is the electric 

field. The SPM effect in the TDTW equations are 2 22 0

eff

nE E
cA

, where effA  is the 

effective area in m2, 2E  is optical power, and is the Kerr-nonlinear coefficient.  

The gain and refractive index both change with carrier densities and the two 

quantities are related via the LEF parameter. According to the expressions in Eq. (2.16), 

carrier dynamics lead to the dynamics of gain and refractive index in the cavity. The 
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nonlinear refractive index leads to therefore the variation of the carrier frequency with 

time along the pulse envelope, which is usually referred as carrier dynamics induced 

SPM. Carrier dynamics induced SPM is already included in the model but n2 induced 

SPM needs to be additionally considered in the following. 

4.2.3 Modified TDTW model 

The details of TDTW model were given in section 2.4.2. The laser system can be 

described by forward and backward propagation equations, two boundary conditions, one 

rate equation for the WL and N rate equations for the GS. Note that for our considered 

lasers, WL and GS are only considered. And the equations are given as follows: 

WL:  
1 1

1 ,
N N

W W i iGS
i W iW i

r ci i e

dN N G NJ zW N f
dt e

   (4.4a) 

GS:  
* * * *

1

,

iGS i iGS iGS
W i i

ec s

i i i i
i

dN G N NN f
dt

j z E p E p E p E p
i

E pE pE p
   (4.4b) 

The definition of parameters can be found in section 2.4.2. 

When the GVD and SPM effects are included, Eq. (2.9) is modified into            

 
2

22
2

1 , , ,
2 2

i

g

E E Ej E j E E jP z t F z t
z v t t

  (4.5) 

where the SPM effect is included by 2j E E  and the GVD effect is included by 

2 2
2 2j E t . 2 eff2 n A  is the Kerr-coefficient, where 2n  is the nonlinear 

refractive index and effA  is the effective cross-sectional area. 2  is the dispersion 

coefficient of laser waveguide given by 2 2
2 2 gc dn d and g gv c n is the 
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group velocity. To obtain the solution of Eq. (4.5), the effect of SPM can be included in 

the simulation by considering the phase change of 
2Ej E ze in each time step. However, 

when the effect of GVD, represented by a second-order derivative in Eq. (4.3), is 

included, it is difficult to deduce Eq. (4.5) into an analytical expression as Eq. (2.22) by 

using the inverse Fourier transform. The following method is proposed to solve Eq. (4.5). 

Converting Eq. (4.5) into the frequency domain, we get 
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A term containing ω2 (the 3rd term) appears at the left side of the equation. Take the 

forward electric field as an example in deriving the following equations. The backward 

propagation field can be obtained in the same way. We rearrange the terms of Eq. (4.6), 
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where 0, 2 2 ,i gz j cn z, . Eq. (4.7) is a non-homogeneous equation. 

By taking a small step of z , the solution can be written as 
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 (4.8) 
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The GVD operator was Fourier transformed to 
2

2 2j ze  in the frequency domain. 

Due to existence of this term, we cannot get a time-domain expression analytically by 

directly using the inverse Fourier transform. This is the main difference between the 

models with and without the GVD effect. To get the solution, the Taylor expansion 

approximation is used in the following derivations. 

4.2.4 Numerical methods 
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Fig. 4.3. The Gaussian distribution of QD growth/size probability. The y-axis shows relative 
values. 

To ensure the accuracy of the approximation, several quantities should be estimated. For 

our considered QD MLL, the FWHM of the inhomogeneous gain broadening is ~60 nm 

(47.66 THz). And the Gaussian distribution of QDs is shown in Fig. 4.3, where the centre 

is assumed at around 1540 nm. At 12
max 72.25 10 Hz , the Gaussian distribution is 

close to zero, and beyond that the QD growth probability is almost zero. The value of 2  

is given by 2 2 24 2 -1
2 2 2.139 10 s mgc dn d , where 

5 -15.1 10 mgdn d  is taken from [134]. If the simulation time step is set 10 fst



80 
 

and thus 78.3904 10 mg gz v t c n t , then the estimated maximum value of 

the GVD operator is 
2

2 2 0.0047

max

j z je e , which is a very small quantity. Therefore, 

the first-order Taylor expansion of 
2

2 2 2
21 2j ze j z is used. Taking this 

approximation into Eq. (4.8), we can get 
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 (4.9) 

The first two terms on the right side of Eq. (4.9) are the same as the ones in the 

TDTW model without GVD, which can be converted back to the time-domain directly. 

The third item requires further approximation. It can be written as 
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Eq. (4.10) can be transformed into the time-domain as 

2 2 +
22 2

2 2

,
2

,
1

2 2
iE z t t P z t t

j z z
t t t t

z  

Using the above expression, Eq. (4.9) can be converted into the time-domain as 
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 (4.11) 

where the central difference approximation was adopted with 

2 2 2, 2 , ,E t E z t t E z t E z t t t . The item 

2 2 2
2 2 ,z P z t t  was omitted due to the small quantity of 2z . Eq. (4.11) is 

the final solution we derive for the modified TDTW model that includes GVD. The 

backward propagation optical field can be acquired in the same way, given by 
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 (4.12) 

For the model without GVD, ,E z z t t  can be directly calculated from Eq. 

(2.22) with given ,E z t . However, in Eqs. (4.11) and (4.12), ,E z t t  is also pre-

required for calculating ,E z z t t  in addition to ,E z t . Thus, iterations are 

used to calculate ,E z t t at each time step. The steps for the iterations are 
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 (1) At time t, we have all the values of , , 0,1...LE z t z ;  

 (2) At time t t , the initial values are calculated without considering the GVD. That is 

to say, we can get the initial values ini
, , 0,1...LE z t t z by Eqs. (2.22) and (2.12); 

 (3) Take the initial value ini
,E z t t  from step 2 into Eqs. (4.11) and (4.12). 

Sweeping z, then all the values of , , 0,1...LE z t t z can be renewed, given by 

1
, , 0,1...LE z t t z ;  

 (4) Take 1
, , 0,1...LE z t t z into Eqs. (4.11) and (4.12), then we can get 

2
,E z t t ;  

 (5) Compare 1
,E z t t  and 2

,E z t t  to check if converged or not; if not 

converged, take 2
,E z t t  into Eqs. (4.11) and (4.12) again, then we can get 

3
,E z t t ;  

 (6) Repeat the above steps until the solutions are converged. 

4.3 Simulation results and discussions 

4.3.1 Equivalent saturable absorber 

The modified model is applied to a single-section InAs/InP QD MLL previously 

demonstrated by our group [68]. The ridge width is 2.5 μm, and the cavity length is 456 

μm. The parameters used in the simulation are listed in Table 4.1. One facet of the 

waveguide is highly coated and the other is cleaved. The QD active core consists of five 

stacked layers of self-assembled InAs QDs in an InGaAsP matrix on a n-type InP 

substrate and covered by a p-type InP top layer. The QD growth probability is 
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approximately expressed by a Gaussian distribution as shown in Fig. 4.3. The gain center 

is at 1540 nm. 

As stated in the prior publications [57, 58, 68], FWM and Kerr-lens effect are 

considered the possible mechanisms leading to mode-locking in single-section QD MLLs. 

To realize mode-locking, these two effects should also be considered in our model. 

Recently, the random population model was used to explain the mode-locking in single-

section QD MLLs, where part of the QD medium is considered absorptive [77]. Since the 

mechanisms of both Kerr-lens mode-locking and the random population distribution 

induced mode-locking are equivalent to a SA, we simply take the expression of a SA in 

our modeling [3]: 

 0 ,
1 sat

ss t
I t I

 (4.13) 

where 0s is the unsaturated loss, I t is the laser intensity and satI  is the saturation 

intensity of the saturable absorber.  

Table 4.1 Laser parameters used in the simulation 
 

Parameters values 

Cavity length L (μm) 456 

Ridge width W (μm) 2.5 

Refractive index n 3.5755 

Number of QD layers N 5 

QD surface density ND (m-2) 3×1014 

Number of QD groups 15 

State degeneracy 2 

Homogeneous linewidth (meV) 8 

FWHM of the inhomogeneous broadening (meV) 36.6 
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Waveguide loss α (m-1) 1700 

Energy separation between groups (meV) 5.7 

Interband recombination time of the WL W
r  (ps) 500 

Spontaneous emission time of GS s  (ns) 1.2 

Capture time from WL to GS c  (ps) 2 

QD height (nm) 1 

Facet refractivity 99%, 33% 

Simulation center wavelength (nm) 1540 

WL energy (meV) 1.0789 

GS center energy (meV) 0.8056 
 

According to Eq. (4.13), this self-focusing effect can be included into the TDTW 

model as:  

 0
2, 1- ( , ),

,
1

sat

sE L t E L t
L t

I
E

 (4.14) 

where ,E L t  is the amplitude of the forward electrical field at the facet.  

The unsaturated loss s0 is related to the nonlinear refractive index n2, the confinement 

factor and the pulse peak intensity, etc. And Isat is related to the dipole moment of the 

transitions, the carrier lifetime and the confinement factor, etc [147]. In the simulation, s0 

and Isat are fitting parameters. If s0 is fixed at 0.35, stable mode-locked pulses can be 

obtained for Isat from 0.01 to about 0.14 W, and the pulse width decreases from about 230 

to 190 fs (with GVD and SPM considered which will be discussed in the following 

section). Further change of (increase or decrease) Isat results in unstable locking or 

unlocked state. If Isat is fixed at 0.08 W, stable mode-locked pulses can be obtained for s0 

from 0.34 to 0.375. The pulse width is 197 fs at s0=0.34 and at 185 fs at s0=0.375. 
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Unstable mode-locking is observed for s0 decreased to be less than 0.34, and unlocked 

state is observed for s0 below 0.32. No lasing occurs for s0 larger than 0.375. In addition, 

the pulse width is found to increase with the decrease of s0. The 0s  and satI  values within 

the range of leading to mode-locked state do not affect the prediction of the pulse 

evolution. Therefore s0=0.35 and Isat=0.08 W are used in the simulation. 

4.3.2 GVD and SPM effects on the pulse evolution 

In the following, we will concentrate on the GVD and SPM effects on the pulse 

evolution. The simulated time-domain pulse trains for the cases with and without the 

GVD and SPM effects are shown in Fig. 4.4. Pulse trains with repetition rate of 92 GHz 

are successfully simulated at current density of 2J 850 A/cm in the two cases as shown 

in Fig. 4.4. Without the GVD ( 2 0 ) and SPM effects, the pulse width is ~104.8 fs as 

plotted in black. With the GVD ( 24 2
2 2.139 10 s m ) and SPM effects included, 

~192.1 fs pulse width is obtained as shown in red. For the SPM effect, the Kerr 

coefficient -1 -114.8018W m  was used by taking 18 2
2 7.8 10 m Wn  and 

12 22.15 10 meffA  [148]. It is seen that the pulses are broadened by the GVD and SPM 

effects. The optical spectra are shown in Fig. 4.5. It is obvious that the optical spectrum is 

narrowed with the two effects included. The 3-dB bandwidths are ~30.5 and ~20.3 nm, 

respectively.  

    To further demonstrate the effect of dispersion, pulse widths at various values of β2 

are evaluated. The intensities and widths of the pulses for different β2 are shown in Fig. 

4.6. It is seen that pulse peak decreases and pulse width broadens with the increase of β2. 

And the FWHM of pulses are compared in Fig. 4.6 (b). 
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Fig. 4.4. Mode-locking pulse trains with and without GVD and SPM effects. 

 

Fig. 4.5. Optical spectra without and with GVD and SPM effects. The center is at 1540 nm. 
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Fig. 4.6. Pulse shape at different β2 values indicated in the figures. (a) Intensity normalized 
to the value of pulse peak at β2=0. (b) All pulse peaks are normalized to 1. 
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4.3.3 Second-order Taylor expansion 

To verify the accuracy of the first-order expansion, we extend the Taylor series to 

second-order. The second-order expansion of the exponential term in the frequency 

domain is 

2 2 2
2 42 22 11 .

2 2 2
j z

e j z z  

Then Eq. (4.9) becomes 
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By converting Eq. (4.15) into the time-domain, the third term of Eq. (4.9) is changed to 
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where 
4

4 4

, 4 , 6 , 4 , 2 , 3E z t t E z t E z t t E z t t E z t tE
t t

 

is applied. 

With the second-order approximation, the pulse widths for various β2 are also 

simulated for comparison with the previous results. The first-order solution becomes 

unstable when β2 is increased to a certain value. But by applying the second-order Taylor 
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expansion, we are able to get stable results at large β2 values. The simulated pulse widths 

in the two approximations are shown in Fig. 4.7. They are matched very well. The 3-dB 

bandwidth of the optical spectra as a function of β2 is also shown in Fig. 4.7. The 

bandwidth becomes narrower with the increase of dispersion in the cavity. 
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Fig. 4.7. Comparison of pulse width at different β2 values using 1st- and 2nd-order 
approximations (left axis) and the 3-dB optical bandwidth as a function of β2 values (right 
axis).  

We have recently found that the dispersion of group index gdn d  may be up to 

58 10 / m  in our QD lasers, corresponding to β2 of 24 23.4224 10 s m . If taking the 

value of 24 2
2 =3.4224 10 s m , the pulses are broadened to 256 fs, and the 3-dB 

bandwidth is narrowed to 16.7 nm. In comparison, experimentally [68] for this laser they 

are 312-fs pulse width and 11.6-nm 3-dB bandwidth. Therefore, the simulation results are 

in reasonable agreement with the experimental data. The broader pulses from the 

experiments are mainly due to the following reasons: we used about 1 m standard single-

mode fiber pigtail and EDFA at the output of the QD laser and before the optical auto-

correlator, both of which definitely broaden the pulses, particularly for pulses with 

hundreds of fs width.  
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4.3.4 Contributions of GVD and SPM 

In the following, we will analyze the contributions of the GVD and SPM effects in the 

laser cavity. When both the two effects are included, either GVD or SPM may be 

dominant, depending on the initial pulse width T0 and peak power P0. Two length scales 

are employed [149], the dispersion length LD and the nonlinear length LNL. They can 

measure dispersion and nonlinear effects on pulse evolution. They are given by 

2
0 2 0and 1D NLL T L P . In our case, T0 (pulse width) equals to ~105 fs for the 

case of without GVD and SPM and 0 0.1 WP , then 0.0052 mDL  and 

0.6756 mNLL . The ratio 2 0.0077 1D NLN L L 1. N2 governs the importance of the 

SPM effect over GVD effect on the pulse evolution. If 2 1N 1, the GVD dominates; if 

2 1N 1, the SPM effect dominates; and if 1N 1, they are of equal importance [149]. In 

our case, 2 1N 1, the GVD is the dominant effect on pulse evolution and broadening. 

We have simulated pulse evolution including GVD but no SPM. It is found that the pulse 

width is slightly decreased from 192.109 fs to 191.706 fs when β2 equals to 

24 2 -12.139 10 s m , indicating the dominant effect of GVD in the QD cavity.  

4.3.5 Chirp in the pulses 

As indicated before, chirp in the pulses can be described by the parameter TBP. The TBP 

is defined as the product of pulse width (FWHM) and 3 dB bandwidth of the optical 

spectrum. From Fig. 4.7, we can calculate TBP as a function of β2 and the results are 

plotted in Fig. 4.8. 
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Fig. 4.8. Calculated TBP as a function GVD parameter β2. 

As shown in Fig. 4.8, the TBP increases from about 0.4 to 0.58 with the rise of β2. 

The TBP value is about 0.44 for unchirped Gaussian-shaped pulses and 0.315 for 

unchirped sech2-shaped pulses. It is seen in Fig. 4.8 that when β2=0, the TBP is larger 

than 0.4. This means the output pulses are not completely Gaussian and also chirped. 

Thus the pulses are not transform-limited. According to our measurements, the measured 

TBP is about 0.457, which is within the range of our simulated results as shown in Fig. 

4.8. 

The chirp is determined by many factors, such as the GVD, SPM, the behaviour of 

the SA, and the interplay between the gain and absorber sections [116], etc. Considering 

the SA for example in [116], the TBP decreases with the increased reverse bias on the 

absorber. The explanation given in [116] is that the gain window is reduced as the 

increase of the reverse bias, while the spectral width is relatively independent of the 

reverse bias. Another important factor in QD lasers should be mentioned is the SPM 

induced by the dynamics of ES population [103]. The dynamics of ES population 
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significantly influences the refractive index at the lasing wavelength, leading to a non-

zero chirp [61].  

For the single-section QD (QD and QDash) MLLs, the pulse duration and the chirp 

are relatively low [52, 69, 70, 150]. This is possibly due to the specific locking 

mechanism of single-section QD MLLs. In our QD MLL, there is only the GS, and 

therefore no chirp induced by the dynamics of ES population. This could be one of the 

reasons that our QD MLL shows low chirp.  

Even for the original TW-QD model without GVD and SPM, the pulses also exhibit 

chirps (Fig. 7 in [61]). The simulated pulse duration is 11.6 ps at 6V and 8 ps at 10 V. 

This is because the effects of the carrier dynamics in the gain and absorber are included 

in the rate equations. 

As stated above, the pulse chirp is a combined effect of the above mentioned factors. 

Actually, not only the chirp, other characteristics of mode-locked pulses, such as pulse 

shape, pulse width, and power are all related to these factors. Therefore, to predict the 

behaviour of the pulses, besides the GVD and SPM, all the related factors should be 

included in the TW model. Especially, when the pulse power is high, carrier heating (CH) 

caused by two-photon absorption (TPA) and free carrier absorption (FCA) should also be 

considered which will be discussed in the following. 

4.4 Discussions 

4.4.1 Physical mechanisms for mode-locking in single-section QD MLLs 

Currently, Kerr-lens and FWM effects are reported to be the possible mechanisms 

leading to the mode-locking in single-section QD MLLs, both of which are related to the 

third-order susceptibility χ(3) and nonlinear refractive index n2. χ(3) is responsible for 
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nonlinear phenomena as SPM, XPM, FWM, and Kerr-lens, etc. The nonlinear index n2 is 

related to χ(3)
 as [149] 

 3
2

3 Re ,
8 xxxxn
n

 (4.17) 

where 3
xxxx  is one component of χ(3) by assuming linearly polarized optical field. 

 

Fig. 4.9. Illustration of the cause of the nonlinear index coefficient (Kerr coefficient) n2. The 
nonlinearity n2 has two parts: 21n  from the semiconductor material and 22n  from the 
subbands. 

Two factors contribute to χ(3): the material itself and the confined energy states 

(intraband and interband) as illustrated in ! . It is believed that the 

first nonlinearity is counted in the current TDTW model for calculating 2j E E . 

However, the second nonlinearity could be more important in the mode-locking, although 

it is complicated and has not been well investigated yet. 

Enhanced optical nonlinearities are found in QDs [151]. The FWM conversion 

efficiency and conversion symmetry is also greatly improved in QDs compared to those 

in bulk SOAs [92]. The wavelength conversion is compared in QD and QW optical 

amplifiers, where more efficient FWM is found in the QD device [152]. The increased  

χ(3) is one of the factors leading to enhanced Kerr-lens and FWM effect in QDs [153]. 

With large nonlinearity in QDs, the two effects could have large influence on the laser 
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output. But until now, nearly no effort has been made to clarify the role of the two effects 

in leading to mode-locking in single-section QD lasers.  

As circumstantial evidences, large nonlinearity is also reported in mode-locked 

quantum cascade lasers (QCLs) without SAs. The intersubband high nonlinearity has 

been confirmed in such lasers. Both Kerr-lens and FWM have been presented to be the 

possible mechanism leading to mode-locking. The Kerr-induced mode-locking was 

discussed in a mid-infrared QCL [147]. Ps pulses with repetition frequency of about 13 

GHz were generated based on intersubband transitions. The transitions have 

characteristics of huge optical nonlinearities and fast carrier relaxation. The locking is 

attributed to Kerr-lens effect, where the intensity-dependent refractive index leads to a 

decrease of the optical losses with increased optical intensity. The emission spectrum is 

very broad and up to 1.5 THz for a range of biased current. The shape of the optical 

spectrum, the nonlinear index, the thickness of the dielectric blocking layers, and the far-

field beam profiles were analyzed in the work as evidences of self-mode-locking by Kerr-

lensing. In particular, the calculated nonlinear index n2 is about 10-9 cm2/W which is 

significantly greater than that in bulk material. For the FWM-induced mode-locking, the 

mechanism was identified as FWM between longitudinal modes, where large optical 

nonlinearities and low flat GVD are the key properties in the device [154]. The frequency 

comb covers 308 nm range in the spectrum with centre at 7 μm. The strong third-order 

susceptibility χ(3) between the ES and the empty lower states allows the occurrence of 

FWM process. In addition, high FWM conversion efficiency of above -40 dB for over 3 

THz detuning range was observed [155] in a QCL. The observations in these experiments 



94 
 

indicate that Kerr-lens and FWM could be responsible for the locking, although there is 

still lack of rigorous proofs.  

To include the above possible locking mechanisms induced by the large nonlinearity 

(n22) from the confined energy levels, an equivalent SA is applied in our simulation, and 

the parameters of which are fitted based on experimental results.  

 In the following sections, the effect of the equivalent SA and nonlinear effects based 

on the material n21 will be discussed. It is found that the contribution of the equivalent SA 

to the mode-locking is probably more than 90%. More efforts are required in the future 

for full consideration of the nonlinearity in the model. 

4.4.2 SPM, XPM and FWM caused by the Kerr coefficient n21 

In this part, laser outputs only with the effect of n21, i.e. without the SA, are simulated 

and presented. Before reaching the locking state, the nonlinear coefficient δ 

( 2 0 effn cA ) induced nonlinearity 2j E E  in Eq. (4.5) actually has three parts: 

SPM, XPM and FWM. Taking two electric fields as an example, the nonlinear coupling 

is:  

2 *
1 2 1 2 1 2

* *
1 2 1 2 1 2

2 2 2 2 2 * 2 *
1 1 2 2 1 2 2 1 1 2 2 12 2

j E E j E E E E E E

j E E E E E E

j E E E E E E E E E E E E

 (4.18) 

where the 1st two terms are SPM, the next two are XPM and the last two are FWM 

induced coupling, respectively. The FWM terms have generated new frequencies at 

1 22  and 2 12 . The effect of the nonlinear wave mixing on the output field is 

also included by the coefficient. The time-domain waveform shows no locking pulse train 
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in Fig. 4.10. With increased current in Fig. 4.11, the output intensity is higher; the 

extinction ratio of the self-pulsed waveform increases slightly; the spectrum is marginally 

expanded; but no mode-locked pulse train is formed. The nonlinear effects caused by n21 

can hardly lead to mode-locking in single section QD MLLs. 

 

Fig. 4.10. The nonlinear coupling on the change of optical output in the time and frequency 
domains at the current density of 850 A/cm2. 

 

Fig. 4.11. The nonlinear coupling on the change of optical output in the time and frequency 
domains at the current density of 17000 A/cm2. 

4.4.3 Effect of the equivalent saturable absorber 

In the simulation, the equivalent SA is responsible for the n22. To study the importance of 

the equivalent SA, the laser outputs with and without the equivalent SA are compared. 
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The parameters used are the same as in section 4.2 except 0 0s . The time-domain 

waveform as a function of simulation time and the corresponding optical spectrum is 

plotted in Fig. 4.12. The whole time-domain output is also shown in the inset. It is seen 

that without the equivalent SA, the output time-domain waveform is almost cw and the 

corresponding optical spectrum is also very narrow where the centre mode is about 20 dB 

higher than the neighbour side modes. The cw output is mainly due to the central 

longitudinal modes. With the equivalent SA, the laser emits a train of mode-locked pulses 

at steady state and the corresponding occupation probability as a function of time is 

shown in Fig. 4.13. When the leading edge of the pulse enters the QD cavity, the QD 

occupation of the GS decreases and then it recovers with the trailing edge of the pulse 

leaving the cavity. In the figure, the change of the occupation probabilities for all QD 

groups are synchronized and repeated at the period of pulse circulation time in the cavity. 

There are totally 15 groups in the simulation, where group 8 corresponds to the emission 

centre. The QD groups closer to the emission centre have more intense stimulated 

emission. For a clear view, the occupation probability of QDs in eight groups is plotted in 

Fig. 4.13. For group 7, the probability is decreased from almost 100% to about 80% 

while the change is only 2% for group 1. The tendency of occupation probability as a 

function of time is the same as in two-section QD MLLs [156]. 

Without the equivalent SA, the probability is totally different where almost constant 

value versus time is observed in Fig. 4.14. As seen from the spectrum in Fig. 4.12, 

stimulated emission occurs mainly in the centre modes, corresponding to occupation 

variation of the group 8 in the inset of Fig. 4.14. There are also slight variations for the 

occupation in groups 7 and 9 but they change in an opposite way. By taking group 8 as 
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the symmetrical centre, the probability at its two sides show opposite tendency versus 

time whereas all groups exhibit the same tendency in a MLL as simulated with the 

equivalent SA. 

 

Fig. 4.12. (a). Time-domain waveform without the equivalent SA in the simulation at the 
current density of 850 A/cm2. It is the zoom-in of the inset. The inset shows the waveform 
from 0 to 25 ns, where the output is not stable until about 8 ns. (b). Optical spectrum 
without the equivalent SA in the simulation. The frequency centre is at 1540 nm. 

 

Fig. 4.13. Occupation probability versus time for 8 groups of QDs with the equivalent SA at 
the current density of 850 A/cm2. 
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Fig. 4.14. Occupation probability versus time for 8 different groups of QDs without the 
equivalent SA at the current density of 850 A/cm2. The insets show the enlarged plots for 
groups 7, 8, and 9. 

Many parameters are also varied to check the outputs without the SA, which include 

the injection current, homogeneous gain bandwidth, number of QD groups, frequency 

separation of QD groups and gain parameters, etc. However, no clear mode-locked pulse 

train is observed in the simulation. Only self-pulsation is observed in the time domain by 

optimizing the parameters. For example, at the current density of 17000 A/cm2, the time-

domain self-pulsation is shown in Fig. 4.15. The contrast ratio given by the peak to 

bottom intensity of the pulse is about 6.89%. The self-pulsation is the result of beating 

between longitudinal modes in the frequency domain, indicating some phase correlation 

between the modes. The beating rate is the same as the ML frequency of 92 GHz. The 

beating might be caused by the CDP between longitudinal modes and the phase is 

partially correlated by the FWM.  

The occupation probability of the eight QD groups is shown in Fig. 4.16. The 
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over simulation time is observed and enlarged in the inset. In the inset of Fig. 4.16, the 

occupation probability for groups 7, 8 and 9 have similar variation tendency versus time. 

This is different from the previous case in Fig. 4.14, indicating some correlation among 

the groups involved in the stimulated emission probably as a result of self-pulsation. 

 

Fig. 4.15. Time-domain waveform without the equivalent SA in the simulation at the current 
density of 17000 A/cm2. It is the zoom-in of the inset. The inset shows the waveform from 0 to 
70 ns, where the waveform is not stable until about 30 ns. 

 

Fig. 4.16. Occupation probability versus time without the equivalent SA at the current 
density of 17000 A/cm2. The inset shows the enlarged plot for groups 7, 8 and 9. 
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Without the equivalent SA, pulse train is not observed in the time-domain. Only self-

pulsation occurs by adjusting some simulation parameters. The occupation probability 

also shows different tendency in all QD groups with and without the equivalent SA. 

4.4.4 Other effects 

Three effects might be important in our QD lasers: carrier density pulsation (CDP), 

spectral hole burning (SHB) and CH. The last term in Eq. (4.4b) representing the 

stimulated emission and the CDP is inherently included by this term [157, 158]. The SHB 

is also inherently included in the multi-level rate equations where more than one state is 

considered [159]. CH has three parts: FCA, TPA and stimulated transitions. The first two 

effects can create high energetic carriers in both the conduction and valence bands. And 

the hot carriers can heat up the distribution through carrier-carrier scattering. Stimulated 

emission can remove below-the-average-energy carriers (cool carriers), and thus leave 

above-the-average-energy carriers (hot carriers). Stimulated absorption does the same 

thing by creating hot carriers. The probability of stimulated transitions is higher than the 

FCA but the energy changed by each FCA event is orders of magnitude larger than the 

stimulated transitions [160]. The FCA caused heating often dominates in bulk and QWs. 

While in QDs, FCA is suppressed probably due to lower carrier density inversion 

required in the GS for lasing. In QDs, no significant CH is found and CH plays a minor 

role in the gain recovery of QD devices. As for TPA, it is considered important in gain 

compression especially at high peak powers. It is one of the major factors that cause CH 

no matter in bulk, QW or QD materials. The hot carriers induced by TPA affect the 

carrier distribution and then influence the gain, leading to the spectral distortions. For a 

comprehensive model suitable for broader range, the TPA should be included, 
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particularly when the pulse width reduces to several hundreds of fs. In the current form of 

our simulation, the TPA effect is not included, which is mainly due to the relative weak 

power in the simulated QD lasers. 

To evaluate the TPA effect in our QD lasers, let’s recall several quantities of the 

pulses in the references. (1) in Fig. 8 of [161], the TPA effect is significant for the pulse 

of 3.5 pJ and 450 fs (peak power of ~7.78 W); (2) in Fig. 2 of [162], the relation between 

TPA and pulse energy is shown. The net CH occurs at pulse of ~0.2-0.3 pJ and 170 fs 

(peak power of ~1.18 W); (3) in Figs. 2 and 5 of [87] (QD), the TPA affects the gain 

strongly when the pulse energy is greater than 0.27 pJ (pulse width of 150 fs, peak power 

of 1.8 W). And at 0.27 pJ, the TPA effect is still a small contribution of -0.5 dB. 

Therefore, the TPA effect is important for strong pulses only [87, 161, 162].  

In our QD lasers, the energy of the pulse is ~0.09 pJ and the peak power is ~0.3 W 

[68], which are relatively lower than the above values. Even taking the facet reflection 

(30%) into consideration, the peak power in the laser cavity is ~0.43 W, which is still low. 

Thus, the TPA contribution to the pulse shape is considered small (<-0.5 dB). This could 

also be the reason that we didn’t observe perceptible distortion in the measured spectrum 

[68]. 

4.5 Conclusion 

We have successfully established an improved TDTW model that includes both GVD and 

SPM effects on the pulse generation and evolution in a single-section InAs/InP QD MLL. 

The solution of the improved model is solved by applying the 1st-order Taylor 

approximation on the GVD term. The 2nd-order approximation is also applied to verify 

the accuracy of the 1st-order approximation. The GVD and SPM effects on the pulse 
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evolution are investigated based on the improved TDTW model. The calculated pulse is 

in reasonable agreement with our previous experimental results. The contributions to the 

pulse broadening from GVD and SPM are discussed, and it is found that the GVD is the 

dominant broadening factor in our considered QD MLL. 

Kerr-lens effect, FWM, and the random population are used to explain the 

mechanisms of mode-locking in single-section QD MLLs. According to these 

mechanisms, an equivalent SA is used in this paper. In the future, we will focus on these 

mechanisms and figure out their physical essence in mode-locking. Then their effects on 

the pulses can be further investigated. Moreover, the nonlinear effects such as TPA and 

FCA will also be included in our model at the presence of high-power pulses. 

At last, it is worth noting that the proposed method of inclusion of GVD and SPM in 

the TDTW model is relatively independent to the other effects mentioned above. Also, 

this method is compatible with other effects and can be easily integrated in the general 

equations of the TW model. Therefore, this method should be useful in a broad range. 

With this method, as long as the lasers and amplifiers can be described by the TDTW 

model, the GVD and SPM effects on pulses can be successfully predicted.  
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Chapter 5 Ultra-High Repetition Rate Pulse Generation using 

External-Cavity Coupled InAs/InP QD MLLs 

5.1 Introduction 

Generation of optical pulse trains with a high repetition rate is desirable for the 

applications of high bit rate optical transmissions and high-speed digital information 

processing. High repetition-rate optical pulses can be generated in many methods [163-

166] and the use of semiconductor MLLs is considered promising because of their 

compact size, electrical pumping, high efficiency, and easy operation. In particular, the 

use of QD semiconductor MLLs has attracted much more attention recently [24, 29, 58, 

68], thanks to their inherent properties, such as fast carrier dynamics and broadband gain. 

Because the repetition rate of the pulse train is inversely proportional to QD waveguide 

length, the repetition rate of generated pulses is usually limited to be less than 100 GHz. 

Using high gain QDashes, an MLL emitting a pulse train with repetition rate of up to 346 

GHz was demonstrated [70]. A pulse train with repetition rate of up to 238 GHz was also 

achieved using the harmonic mode-locking method [32].  

In this chapter, we present experimental investigations on high repetition rate pulse 

generation from QD MLLs with external cavities. In section 5.2, high repetition rate and 

short duration pulse trains of 10 to 100 GHz from monolithic single-section QD MLLs 

will be reported. Then in sections 5.3-5.5, ultra-high repetition rates of 403 GHz, 437 

GHz, 394 GHz and 1.01 THz will be successfully demonstrated from QD cavity 

combined with external cavity structure. The whole cavity consists of an InAs/InP QD 

cavity and external cavities of eight or three FBGs. In this MLL, the InAs/InP QDs 

provide gain and nonlinearities, and the FBGs are used to select and enhance desired 
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longitudinal modes. Different drive currents, couplers, QD lasers, and FBGs are 

combined in the experimental setup. FWM side bands are observed on the spectrum, 

indicating phase correlation between the FBG selected modes. Pulse train in the time-

domain is also obtained through the autocorrelator, demonstrating fully or partially phase 

locking between these enhanced longitudinal modes. Finally, a summary is given in 

section 5.6. 

5.2 High repetition rate InAs/InP monolithic QD MLLs 

We have designed, grown and fabricated single-section InAs/InP QD MLLs of different 

cavity lengths, where the repetition rates range from 10 GHz to 100 GHz in C or L band. 

With the active cavity lengths of 4300 μm and 430 μm, repetition rates of 10 GHz and 

100 GHz are obtained. There corresponding optical spectra are shown in Fig. 5.1 (a) and 

(b), respectively. 

  

Fig. 5.1. Typical optical spectrum from the developed InAs/InP QD MLLs with the 
repetition rate of 10 GHz and 100 GHz, respectively. 

The QD MLLs at repetition rates of 92 GHz and 46 GHz at C and L band have also 

been demonstrated from 456- and 930-μm-long cavities, respectively [68, 69]. The 3-dB 

bandwidths are 11.62 and 13 nm, respectively. Short pulse widths of 312 and 445 fs have 
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been achieved. Assuming Gaussian shape pulses, the TBPs are calculated to be 0.457 and 

0.69, respectively, indicating some residual chirp in the pulses. 

Besides, dual-wavelength self-mode-locked laser at 92.5 GHz is also successfully 

generated from single-section InAs/InP QD MLLs for the first time [58]. With increased 

bias current, the spectrum is broadened and split into a two-peak structure. Both peaks are 

self-locked but dependent. At the current of 60 mA, the centers of the two bands are at 

1543.7 nm and 1571.7 nm and pulse widths are of 657 fs and 955 fs, respectively. It is 

found that the higher the biased current, the wider the splitting peaks. Thus the two-band 

phenomenon is different from GS/ES lasing structures as reported in other dual-peak QD 

lasers. Rabi splitting might have caused the two-band phenomenon. 

These promising results, largely attributed to the unique properties of QD gain 

materials, open a breakthrough direction to design high performance fs pulse sources and 

low timing jitter components for ultra-high-bit-rate optical communications and signal 

processing. 

5.3 403 GHz repetition rate pulse generation using a 856-μm-long QD laser 

and eight FBGs 

5.3.1 Experimental setup 

The experimental setup for the QD MLL, for generating the high repetition-rate pulses, is 

shown in Fig. 5.2. The InAs/InP QD waveguide was grown by CBE and fabricated to an 

Fabry-Perot laser with a ridge width of 3 μm and cavity length of 850 μm [68]. One facet 

has a high-reflectivity coating and the other is cleaved. 
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Fig. 5.2. Schematic diagram of the QD-MLL for generating the 403 GHz repetition-rate 
pulse train. PC: polarization controller, and FBG: fiber Bragg grating. 

The threshold of the QD Fabry-Perot laser is 41 mA. In the experiment, the QD 

Fabry-Perot laser is biased above the threshold and the temperature is stabilized at 18ºC. 

Above the threshold, the QD Fabry-Perot laser emits hundreds of longitudinal modes 

with the free spectral range (FSR) of 50.25 GHz (i.e. mode spacing), as shown in the 

inset of Fig. 5.3 (a) at the biased current of 112 mA. The external cavities include eight 

FBGs with central wavelengths at 1531.78, 1534.86 (3.08), 1538.06 (3.20), 1541.26 

(3.19), 1544.45 (3.19), 1547.45 (3.01), 1550.96 (3.5), and 1553.97 nm (3.02), where the 

values in the brackets indicate the frequency spacing in nm with respect to the previous 

FBG. The spacing in frequency and wavelength scales are both shown in Table 5.1. The 

eight FBGs were written in series in a single piece of fiber to form eight external fiber 

cavities. The reflectivity of each FBG is approximately 95% and the FWHM of the 

reflecting band is about 0.15 nm. The transmission optical spectrum of the eight FBGs is 

shown in Fig. 5.3 (a), measured by a broadband optical source. 
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The QD Fabry-Perot laser is connected with the eight FBGs by a 90/10% optical 

coupler through a lensed fiber and a polarization controller. The lensed fiber provides 

high coupling efficiency from 3-μm waveguide ridge to the fiber pigtail. The optical 

spectrum from the QD Fabry-Perot laser is illustrated in Fig. 5.3 (a) inset, showing 

hundreds of longitudinal modes in the C band. The 90% port of the coupler is connected 

to a polarization controller while the 10% port is used for measurement. Reflected lights 

by the FBGs are transmitted forth and back into the QD Fabry-Perot laser through the 90% 

port of the optical coupler. All the passive elements in the cavity have meter-long fiber 

pigtails and are connected through angle-polished connectors, avoiding light reflection at 

the connectors. The external cavity length is estimated to be 8.8 m, obtained by the fact 

that there are 17 modes within the frequency band of 200 MHz, observed by an electrical 

spectrum analyzer. The polarization controller is used to control the light polarization 

between the external cavities and the QD Fabry-Perot laser. Two optical terminators are 

connected to FC/APC connectors at the fiber ends to avoid any back reflection. The 

optical spectrum is observed by an OSA and the time-domain pulse is measured by an 

autocorrelator. Optical light entering the autocorrelator is separated into two parallel arms 

Table 5.1 List of the grating parameters in the external cavity. 

Number of 
grating 

Grating reflection 
wavelength (nm) 

Spacing in 
wavelength (nm) 

Spacing in 
frequency (GHz) 

1 1531.78 -- -- 
2 1534.86 3.08 393.80 
3 1538.06 3.20 408.27 
4 1541.26 3.19 404.79 
5 1544.45 3.19 402.61 
6 1547.45 3.01 378.32 
7 1550.96 3.5 438.74 
8 1553.97 3.02 376.39 
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where one of them has a variable delay line. Then the two beams are focused into a 

nonlinear crystal to generate second-order harmonic. The output signal is proportional to 

the product of the intensity of the two beams and a function of the delay time. The result 

is observed on an oscilloscope and the autocorrelation width of a pulse is proportional to 

the real pulse width. For a Gaussian pulse, the autocorrelation width is 2 times longer 

than the real pulse width and for a sech2 shape pulse, it is 1.54 times longer. Only pulse 

width can be measured in this way but not the pulse phase.  

5.3.2 Experimental results and discussions 

As shown in the inset of Fig. 5.3 (a), there are hundreds of longitudinal modes emitting 

from the QD Fabry-Perot laser. However, because the eight FBGs are connected to the 

QD Fabry-Perot laser for the external cavities, only the longitudinal modes, whose 

wavelengths are within the reflecting bands of the FBGs, can be transmitted forth and 

back, and thus are enhanced by QD waveguide gain and the external cavities. The 

alignment between the FBG reflecting bands and QD Fabry-Perot laser modes can be 

optimized by tuning the biased current that shifts the wavelengths of the longitudinal 

modes. Fig. 5.3 (b) shows the measured optical spectrum from the QD Fabry-Perot laser 

with the external cavities when the biased current is 112 mA, and the optical spectrum is 

located in the C band with the central wavelength around 1540 nm. It is seen that there 

are several strong light peaks created, which are separated by 403 GHz in frequency, 

determined by the frequency separation of the FBGs, in addition to the original hundreds 

of weak longitudinal modes with the mode separation of 50.25 GHz in frequency. These 

strong light peaks are referred to the modes, supported by the external cavities. It can be 

further observed that there are eight light peaks or modes corresponding to the reflecting 
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bands of the FBGs, even though the two peaks at 1550.96 and 1553.97 nm (i.e. two 

longest wavelengths) are weak compared with the other six peaks. This is because the 

external cavity supported modes strongly depend on the alignment of the QD Fabry-Perot 

laser modes and the reflecting bands of the FBGs. When the frequency spacing between 

the FBGs does not equal to multiples of the FSR of the QD Fabry-Perot laser, the 

external cavities hardly enhance any modes. Nevertheless, we have obtained five strong 

peaks at 1531.70, 1534.85, 1538, 1541.17 and 1544.36 nm. In addition, note that there 

are three spurious light peaks at 1522.35, 1525.46 and 1528.57 nm as shown in Fig. 5.3 

(b), where there are no reflecting bands of the FBGs (the light peak at 1522.35 nm is very 

small). It is clearly shown that almost equal frequency separation between all the light 

peaks (including the spurious light peaks) is obtained. This suggests that FWM between 

the five strong light peaks occurs inside the QD waveguide. In other words, the three 

spurious light peaks are generated by FWM between these strong light peaks. Thus, due 

to the FWM that is phase sensitive, all the strong light peaks are phase correlated. 

Consequently, the phase locking between these strong light peaks is achieved. 

Furthermore, the observed FWM effect is much more evident and clear than that in the 

previous reports [29, 58, 68, 70].  

To further verify the above observations, we decrease the bias current to 110 mA and 

tune the polarization, seven strong light peaks corresponding to the reflecting bands of 

the FBGs are observed as shown in Fig. 5.3 (c), and one strong light peak is created at 

1553.97 nm, which is not strong enough in Fig. 5.3 (b). It is seen that there are three 

spurious light peaks generated in the shorter wavelengths (1522.34, 1525.43 and 1528.55 

nm) and two spurious light peaks generated in the longer wavelengths (1557.26 and 
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1560.53 nm). This further verifies the FWM occurrence inside the QD waveguide. It is 

also further suggested that the FWM process in InAs/InP QD waveguide is broadband, i.e. 

covering the C-band for our case. 
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Fig. 5.3. (a) Transmission optical spectrum of the FBGs. Inset: optical spectrum of the QD 
Fabry-Perot laser at the biased current of 112 mA. (b) Measured optical spectrum of the QD-
MLL with the external cavities of eight FBGs, at the biased current of 112 mA. (c) The same 
as in (b) but at the biased current of 110 mA. Optical resolution used is 10 pm. 

To show the mode locking, the pulse train is measured using the intensity 

autocorrelator. For the case at the biased current of 112 mA as shown in Fig. 5.3 (b), a 

pulse train with a period of 2.48 ps is exhibited as shown in Fig. 5.4 (a), corresponding to 
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a 403 GHz repetition rate. The period is determined by the frequency spacing of the 

strong light peaks as shown in Fig. 5.3 (b). The formation of the pulse train demonstrates 

the successful mode-locking in the C-band QD Fabry-Perot laser with the external 

cavities. By assuming a Gaussian pulse shape, the FWHM of the pulse is approximately 

563 fs.  

For the case at the biased current of 110 mA in Fig. 5.3 (c), a 403 GHz repetition-rate 

pulse train is also generated successfully although there are side lobes between the pulses 

as shown in Fig. 5.4 (b). Excluding the side lobes, the FWHM of the pulse is about 268 fs 

by Gaussian fitting. The narrower FWHM in Fig. 5.4 (b) can be explained as follows: 

seven strong light peaks, which occupy more optical bandwidth as shown in Fig. 5.3 (c), 

involve in the FWM process that leads to mode-locking, rather than the five strong light 

peaks that occupy less optical bandwidth as shown in Fig. 5.3 (b). In addition, because 

the light peak at 1550.96 nm is weak, the optical spectrum in Fig. 5.3 (c) is equivalent to 

dual emission bands. The light peaks above 1550.96 nm are considered one band and the 

rest is considered the other band. It was found that dual emission bands lead to narrower 

pulse width [42]. Therefore, the narrower pulse width in Fig. 5.4 (b) is attributed to two 

reasons: broader optical spectrum and dual emission bands. 

It is assumed that all the light peaks contributing to the 403 GHz pulse generation in 

the spectrum have equal phase and negligible amplitude noise and phase noise. The 

calculated pulse train by Fourier synthesis is shown in Fig. 5.5 (a) and (b) corresponding 

to Fig. 5.4 (a) and (b). The narrowing effect and side lobes between pulses are clearly 

shown in Fig. 5.5 (b). 
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Fig. 5.4. Measured autocorrelations of the pulse train indicating the period of 2.48 ps, which 
corresponds to a repetition rate of 403 GHz at the biased current of (a) 112 mA and (b) 110 
mA. The red line indicates noise level of the autocorrelator. The intensity autocorrelation is 
measured based on second harmonic generation with a time resolution of 10 fs. 
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Fig. 5.5. Calculated pulse trains using Fourier synthesis for the spectra in Fig. 2 (b) and (c) 
by only taking all the light peaks reflected by the FBGs and generated by FWM. 

High conversion efficiency of FWM effect in QDs has been found [92, 167]. The 

FWM effect is dependent on phase-matching that is related to linear chromatic dispersion 

of the QD waveguide and materials and nonlinear effect of the QD materials. As shown 
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in Fig. 5.3 (b) and (c), the FWM occurs over the C-band in InAs/InP QDs. This suggests 

that a small and flat linear chromatic dispersion over the C-band is compensated by the 

nonlinear effect of InAs/InP QDs. As a result, FWM between the strong light peaks 

indicates phase locking and mode locking, as explained in [29, 58, 68, 70, 165]. 

We have successfully generated 268 and 563 fs pulse trains with a repetition rate of 

403 GHz using a C-band InAs/InP QD Fabry-Perot laser and FBG external cavities, i.e. a 

C-band InAs/InP QD MLL. It is much more evident that FWM process inside QD 

waveguide is the key in achieving mode-locking.  

5.4. 437 and 394 GHz repetition rate pulse generation using a 1-mm-long 

QD laser and eight FBGs 
The same FBGs are then applied to another InAs/InP QD laser as the external cavity. The 

QD laser is similar to the previous one except for the cavity length, which is 1 mm in this 

case. The threshold current of the 1 mm QD laser is about 36 mA. And in the experiment, 

the temperature is also stabilized at 18ºC. The experimental setup is the same as the one 

in Fig. 5.2 except for the coupler ratio. The coupler used here is a 50/50% one, where half 

of the light is transmitted to the external cavity and the other half is sent to OSA and 

autocorrelator for observation. The optical spectrum at the DC current of 100 mA is 

shown in Fig. 5.6. The centre of the spectrum is at about 1542 nm and the FSR between 

the longitudinal modes is about 43.11 GHz.  
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Fig. 5.6. Optical spectrum of a 1 mm InAs/InP QD laser at the current of 100 mA. 

Fig. 5.7 (a) shows the measured optical spectrum with the external cavity. 

Longitudinal modes marked by B are generated by the stimulated emission in the Fabry-

Perot cavity with QDs due to the uncoated facets with reflectivity of approximately 33%. 

Eight high peaks with optical power from -40 dBm to -10 dBm and almost equal spacing 

in the C band are clearly observed in the spectrum, marked as A in Fig. 5.7 (a). They 

were selected by the gratings in the external cavities, and then amplified and phase 

correlated in the QD Fabry-Perot cavity. The spacing of the gratings does not exactly 

equal to multiples of the FSR of the QD cavity, and eight longitudinal modes cannot be 

all selected at the same time by the eight gratings. Therefore, only four longitudinal 

modes within the reflection bands of the gratings at the current of 100 mA were highly 

reflected. Two FWM sidebands at about 1529 nm and 1557 nm marked as C are also 

observed in Fig. 5.7 (a). The optical light from one port of the 50/50% coupler was 

amplified to 10 mW and then measured with the intensity autocorrelator. A pulse train 

with a period of 2.29 ps was exhibited on the oscilloscope, corresponding to a 437 GHz 
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repetition rate as shown in Fig. 5.7 (b). The extinction ratio of the measured 

autocorrelation pulse train is 50% and the bottom of the pulses does not reach zero.  
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Fig. 5.7. (a) Measured optical spectrum of the MLL with eight gratings as external cavities 
and QDs as the gain medium. Longitudinal modes marked by A, B and C are generated by 
external cavities, the QD cavity, and FWM, respectively. Inset: eight transmission bands of 
the FBGs in the external cavity. (b) Autocorrelation of the pulse train with the periodic time 
of 2.29 ps, which corresponds to the repetition rate of 437 GHz. 

The performance of the external cavity laser is also measured at the current of 42 mA, 

just above the threshold, as shown in Fig. 5.8. Besides hundreds of longitudinal modes 

with frequency spacing of 43.11 GHz, six high light peaks are observed in the spectrum 

corresponding to six external FBGs. Two FBGs with reflection bands of 1538.06 and 

1553.97 nm does not reflect any longitudinal modes at this current due to the 

misalignment. No FWM side bands are observed perhaps due to the low power at the 

current of just above threshold. But the pulses are also obtained on the autocorrelator, 

indicating phase correlation between the high light peaks. The repetition rate is 2.54 ps, 

corresponding to the repetition frequency of 394 GHz. 
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Fig. 5.8. (a) Optical spectrum and (b) time-domain pulses at the biased current of 42 mA 
with the external cavity structure. 

The performance of the external cavity structure is also measured at a higher current 

of 154 mA as shown in Fig. 5.9. It is seen from the optical spectrum in Fig. 5.9 (a) that 

relatively high intensity longitudinal modes appear around each FBG reflected mode. 

This is because that the light intensity in the QD cavity itself is already very high at 154 

mA and cannot be well suppressed by the external cavity. The beating of the FBG 

selected modes results in the generation of pulse train at 431 GHz as shown in Fig. 5.9 

(b). And the envelope of the pulse train is modulated at 43.11 GHz due to beating of the 

unsuppressed longitudinal modes.  
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Fig. 5.9. (a) Optical spectrum and (b) time-domain pulses at the biased current of 154 mA 
with the external cavity structure. 

Note that the slight difference in the repetition rate in the external cavity structure 

could be due to the reason that the frequency spacings between the FBGs are not exactly 

the same as given in Table 5.1, and the reflection bandwidth of the FBGs in the external 

cavity is about 0.15 nm, broader than the FWHM of the QD longitudinal modes. 

It is seen that the performance is better using the 850-μm QD cavity as the gain 

material than that using the 1-mm QD cavity. The alignment between the two cavities is 

very crucial in generating high quality and high repetition rate pulses. It is expected that 

eight higher peaks in the spectrum and shorter pulse width can be obtained if the 

wavelength spacing of the gratings exactly equals to multiples of the FSR of the QD 

cavity. 

5.5 THz repetition rate pulse generation using a 1-mm-long QD laser and 

three FBGs 

Higher repetition rate could be reached with wider frequency separation between gratings. 

The frequency spacing between gratings needs to be multiples of FSR of the QD cavity. 
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By using this scheme, even higher repetition rate of up to the THz range has been 

demonstrated. The experimental setup is the same as before except the number of FBGs 

and spacing between the FBGs in the external cavity. The optical transmission spectrum 

of the three FBGs in series is shown in Fig. 5.12 (a). Their central Bragg wavelengths are 

1531.868 nm, 1539.656 nm, and 1547.506 nm, with peak reflectivity of 96% and FWHM 

of 0.080 nm. The inter-FBG frequency spacing is approximately 1.01 THz.  

The QD cavity in use is 1 mm long with ridge width of 3 μm. One facet of the QD 

laser is highly coated with 95% reflectivity and the other facet is as cleaved giving a 31% 

reflectivity. The coupler ratio is 90/10%, where the 90% port is connected with the 

external cavity and the 10% port is used for observation. And the temperature is 

controlled at 18 C for the QD laser. 

The working principle is the same as the previous QD coupled external cavity with 

eight FBGs. These external fiber cavities only reflect longitudinal modes (of the QD 

Fabry-Perot cavity) within the reflecting bands of the FBGs to the QD gain medium, and 

the rest are transmitted. The selected modes could be optimized in terms of amplitude and 

wavelength by adjusting the QD laser bias current or temperature to shift the frequency 

comb of the QD Fabry-Perot laser. Due to the reduction in optical loss of the whole 

system at the FBG back-reflection wavelengths, the coupled-cavity laser can lase at a bias 

current below that of the bare QD Fabry-Perot device, 48 mA.  

The optical spectra of the external cavity structure from 32 to 40 mA, below the 

threshold of the QD Fabry-Perot laser, are shown in Fig. 5.10. At the current of 32 mA, 

two small modes at the wavelengths of 1539.57 and 1547.524 nm, corresponding to the 

second and third FBGs, start to appear in the spectrum. Then the mode at 1547.524 nm 
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gets enhanced to about -28 dBm at the current of 34 mA while the intensity of the other 

one is still very low, about -50 dBm. With further increasing the current, the mode at 

1539.566 nm gets amplified to -23 dBm at 37 mA and the third mode at 1531.768 nm is 

observed at the current of 40 mA. With the external cavity, not only lasing occurs below 

the original threshold of the QD Fabry-Perot laser, but also the pulse train is observed in 

the time-domain. The measured pulse trains at the currents of 37 mA and 40 mA by the 

autocorrelator are show in Fig. 5.11, corresponding to the optical spectra in Fig. 5.10 (c) 

and (d), respectively. At 37 mA, two sets of pulse trains are observed, the lower 

repetition rate is about 43.57 GHz and the higher one is about 989.02 GHz, generated by 

the original QD cavity modes and the FBG selected modes, respectively. At 40 mA, the 

original cavity modes are further suppressed and the FBG selected modes are further 

amplified, where only one set of pulse train with repetition rate of 999.3 GHz is observed 

in Fig. 5.11 (b). 

The beating indicates the two FBG selected modes start to establish phase correlation 

even at very low current. The pulse quality is improved with increased bias current by 

comparing Fig. 5.11 (a) and (b). 
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Fig. 5.10. Optical spectra change with the increase of the biased current in the QD coupled 
external cavity structure. From (a) to (d), the FBG selected modes appear and get enhanced 
with the current. The wavelengths of the selected modes are indicted in the figure. 
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Fig. 5.11. Time-domain pulse train in the external cavity structure at the current of (a) 37 
mA and (b) 40 mA. 

 

Fig. 5.12. (a) Transmission spectrum of the three FBGs. (b) Lasing spectrum of the coupled-
cavity QD laser at a bias current of 45 mA. (c) Pulse train indicating the repetition rate of 
1.01 THz. 
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Then at the current of 45 mA, all the three FBG selected modes are amplified and can 

be clearly observed from the spectrum in Fig. 5.12 (b). The spectrum is dominated by 

three lasing modes at 1531.827 nm, 1539.655 nm and 1547.548 nm. These correspond to 

the reflection bands of the FBGs. The resulting pulse train, with a pulse period of about 

1.0 ps as shown in Fig. 5.12 (c), was measured and averaged over 64 times with an 

intensity autocorrelator. Its repetition rate and pulse duration are 1.01 THz and 0.5 ps, 

respectively. Due to the intensity or amplitude difference of the three lasing modes, the 

cw background of the laser pulses is high so that the pulse contrast is poor. The above 

results indicate that the external fiber cavities are controlling the lasing spectrum at low 

bias current, and that the three lasing modes are phase-correlated. This correlation is 

likely mediated through the strong FWM observed in QD gain media [91, 168]. 

The FWM is examined more carefully at the current of 47 mA. By tuning the 

temperature, the coupled-cavity laser could be made to operate on only two of the FBG-

selected modes (the other FBG peak was mismatched from any longitudinal mode of the 

QD Fabry-Perot laser). FWM Stokes and anti-Stokes signals, labeled by the arrows in Fig. 

5.13, were clearly observed at the wavelengths of 1547.5 nm and 1524.1 nm. By 

changing the frequency spacing and the number of FBG sets, laser pulses with different 

repetition-rates, bandwidth, and pulse duration could be produced, independent of the 

original QD Fabry-Perot cavity length [168]. The physical limitations on the high pulse 

repetition rate are whether the QD gain medium exhibits carrier dynamics fast enough to 

sustain successive pulse emission, and the efficiency of the FWM process. 
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Fig. 5.13. Four wave mixing signals observed at a bias current of 47 mA. 
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Fig. 5.14. Optical spectra of (a) the QD Fabry-Perot laser and (b) the external cavity 
coupled QD Fabry-Perot laser at the current of 130 mA. 

Next we consider the lasing behavior of the coupled-cavity QD laser at high bias 

current. At this current regime the laser itself is lasing with tens of longitudinal modes 

simultaneously, three of which are enhanced by the feedback from the FBGs. Take the 

optical spectrum at the current of 130 mA for example. The original optical spectrum 

without the external cavity has hundreds of longitudinal modes centred at about 1545 nm 

as shown in Fig. 5.14 (a). With the external cavity, the longitudinal modes are suppressed 

and the FBG-selected modes are highly amplified in Fig. 5.14 (b). Two FWM side bands 

of about -43 dBm at 1524.082 nm and 1555.656 nm are also observed at this current. 

This results in a comb of modes with 43.8 GHz mode spacing and three dominant modes 
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with a 1.01 THz spacing. This is shown in Fig. 5.15 (b). Consequently, the envelope of 

1.01 THz pulse train is modulated at a frequency of 43.8 GHz, with the modulation 

depths dependent on the weighting of the lasing modes. As the bias current is increased 

the modulation depth is also increased, as shown in Fig. 5.15. When the coupled-cavity 

laser is biased at a current of 175 mA the pulse train is dominated by pulses with a 

duration of less than 0.5 ps at a repetition rate of 43.8 GHz. A residual modulation at 1.01 

THz could still be observed. Since at higher drive currents more lasing modes participate 

in the Fourier synthesis of the pulse trains [3], the cw background is significantly 

decreased and the pulse contrast is higher. Notice that the pulse duration for the 43.8 GHz 

pulse train shown in Fig. 5.15 (c) could be narrowed due to the modulation at a THz 

frequency [42].  

Coupling a QD Fabry-Perot laser to external FBGs separated by 1.01 THz has 

allowed us to generate a 1.01 THz repetition-rate pulse train. The external cavity coupled 

laser starts to lase at the drive current of as low as 34 mA. At high drive current the 

repetition-rate becomes dominated by the cavity length of the QD Fabry-Perot laser, 

switching to a train of 0.5 ps pulses at 43.8 GHz.  
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Fig. 5.15. Autocorrelation traces of the QD coupled-cavity laser biased at (a) 107 mA, (b) 
130 mA, and (c) 175 mA, respectively. Inset in (c): the corresponding optical spectrum at 
175 mA.  

5.6 Conclusion 

High repetition rate pulses of 403 GHz, 437 GHz, 394 GHz and 1.01 THz have been 

generated successfully from external cavity coupled QD lasers. To the best of our 

knowledge, the 1.01 THz is the highest repetition rate ever achieved using a QD 

semiconductor Fabry-Perot laser. The external cavity structure provides a new approach 

in generating ultra-high repetition rate pulses using QD lasers. It utilizes a QD gain 

medium as the potential source to provide extremely high repetition rate lasers, whose 

pulse rate, bandwidth, and even pulse duration can be readily tuned through spectrally 
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tailored optical feedback. The repetition rate is not limited by the QD cavity length, being 

controlled through the properties of the FBGs. FWM side bands are observed in the 

spectra, demonstrating phase correlation between the enhanced longitudinal modes. 
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Chapter 6 Tunable Terahertz Beat Signal Generation using an 

External-Cavity Coupled InAs/InP QD MLL 

6.1 Introduction 

Terahertz generation has attracted lots of interests in the applications of biomedical 

imaging and optical sensors. Terahertz beating can be generated by using two individual 

single-mode lasers [169, 170] with a wavelength difference tuned to a desired beat 

frequency, which can be then converted to THz radiation via a photomixer. The 

drawback of the method is the phase of the generated THz beating signal is uncorrelated. 

The use of a dual-mode laser diode offers a solution to the problem, where distributed 

Bragg reflectors [171, 172], Fabry-Perot filters [173], variable-bandwidth spectrum 

shapers [174], and V-structured end mirrors [175-177] have been used as external 

cavities for two wavelengths emission.  

Previously reported dual-mode THz beating was based on bulk and QW materials, 

while no THz beating based on QD gain material has been reported and investigated yet. 

Two-color emission with a frequency difference of 8 THz has been reported by using a 

QD DFB laser with external optical feedback [178]. However, the frequency difference is 

fixed by the energy separation between the GS and ES. 

In this chapter, we propose and demonstrate a C-band InAs/InP QD MLL combined 

with an external cavity, emitting a tunable THz beat signal. The external cavity includes 

two FBGs, where one has a fixed reflecting wavelength and the other is tunable. With the 

tunable FBG, beating frequencies from 1 to 2.21 THz in multiples of FSR of the QD 

MLL are demonstrated.  
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6.2 Experimental setup 

The experimental setup for the tunable THz beat signal generation using a single-section 

QD MLL laser [58, 68] is shown in Fig. 6.1. The InAs/InP QD waveguide is grown by 

CBE and fabricated to an Fabry-Perot laser with a ridge width of 3 μm and cavity length 

of 850 μm [122]. One facet has a high-reflectivity coating and the other is cleaved. The 

threshold of the QD MLL is 41 mA. In the experiment, the QD MLL laser is biased 

above the threshold and the temperature is stabilized at 18ºC. Above the threshold, the 

QD laser is mode-locked at 50.25 GHz, which is determined by the cavity length. The 

optical spectrum of the QD MLL at the current of 100 mA is shown in Fig. 6.2, which 

emits hundreds of longitudinal modes centered at C-band with the mode separation of 

50.25 GHz. 

The external cavity includes an FBG with a reflecting wavelength at 1552.54 nm and 

a tunable FBG with reflecting wavelengths from 1525 to 1545 nm. The reflectivity of the 

two FBGs is about 95%. The FWHM of the reflecting band of the fixed FBG and the 

tunable FBG are about 0.5 nm. 

The QD MLL is connected with the two FBGs by the two ports of a 50/50% optical 

coupler through a lensed fiber. Polarization controllers are used to optimize the reflected 

light between the FBGs and the QD MLL. An OSA is used to observe the spectra in the 

frequency domain. An autocorrelator with an EDFA at its input is used to obtain the pulse 

trains in the time domain. 
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Fig. 6.1. Experimental setup for THz beat signal generation from an InAs/InP QD MLL. FBG: fiber 
Bragg grating, PC: polarization controller. Numbers 1-4 specify the four ports of the coupler. 
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Fig. 6.2. Optical spectrum of the InAs/InP QD MLL used in the experiment at the current 
of 100 mA. 

6.3 Experimental results and discussions 

The optical spectrum after the EDFA and measured pulse train at the repetition rate of 

50.25 GHz are shown in Fig. 6.3 (a), and (b), respectively. The output power is 11.5 mW 

before the lensed fiber.  
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Fig. 6.3. (a) Amplified optical spectrum and (b) measured pulse train of the QD Fabry-Perot 
laser at a biased current of 100 mA and temperature controlled at 18°C. 

Fig. 6.3 (b) suggests that most longitudinal modes with high power are mode-locked, 

which means that they must be phase-correlated. By tuning the biased current, the 

wavelengths of the QD MLL modes can be shifted. The longitudinal modes within the 

reflecting bands of the two FBGs are transmitted forth and back, and thus are enhanced 

by QD waveguide gain and the FBG cavities. Each FBG can reflect one longitudinal 

mode, and two modes can be selected in the optical spectrum by the two FBGs. By 

adjusting the reflecting wavelength of the tunable FBG, different longitudinal modes of 

the QD MLL within the tuning range can be reflected and amplified, thus the tunability of 

mode separation and the beating frequency can be realized. The mode separation must be 

multiples of 50.25 GHz.  

Now we consider the QD MLL with external cavity as shown in Fig. 6.1. The biased 

current is adjusted to 120 mA and the temperature is maintained at 18°C. As some 

examples, the reflecting wavelength of the tunable FBG is set to 1544.5, 1540.51, 

1535.77 and 1534.96 nm. The reflecting wavelength of the fixed FBG is at 1552.53 nm 
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and thus the corresponding dual-mode separations between the two FBG reflected modes 

are 8.03, 12.02, 16.77 and 17.56 nm, respectively. The output power at port 3 is about 

200 μW before the EDFA. Fig. 6.4 shows the optical spectrum for the above four cases, 

where one mode is fixed and the other is changed by the tunable FBG. Two high light 

peaks with the above mode separation, i.e. enhanced longitudinal modes reflected by the 

two FBGs, are observed in the optical spectrum. Other longitudinal modes of the QD 

MLL in the optical spectrum are highly suppressed.  

Sinusoidal modulation due to mode beating between the two light peaks is necessary 

for photomixing. Measured optical sinusoidal signal using an autocorrelator is shown in 

Fig. 6.5. Corresponding to Fig. 6.4, the repetition frequency of the sinusoidal signal is the 

mode beat frequency of 1, 1.51, 2.11 and 2.21 THz. The corresponding pulse widths 

without considering the DC background are 315, 192, 158 and 169 fs. 
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Fig. 6.4. Tunable dual-mode spectra (a) before and (b) after EDFA from 1 to 2.21 THz at 
the biased current of 120 mA. The temperature is controlled at 18ºC. The mode separations 
are indicated in the spectrum.  

Because the two modes share a common QD cavity and they are partially phase-

locked by intracavity FWM processes [179] in the QD waveguide, it is believed that the 
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two modes are phase-correlated and thus the generated THz wave has much less phase 

noise. But it is difficult to measure the linewidth of THz beating signal based on the 

current availability of optoelectronic devices. However, to show the modes that are phase 

correlated even after adding the external cavities, we conduct the following verification. 

We connect two FBGs in series to the port 2 of the coupler, where one is the tunable FBG 

and the reflecting wavelength of the other one is at 1548.58 nm with FWHM of 0.33 nm 

and reflectivity of ~95%. Port 4 of the coupler is left unconnected to observe the optical 

spectrum. The reflecting wavelength of the tunable FBG is firstly set to 1540.5 nm. In Fig. 

6.6 (a), two high peaks at 1540.5 nm and 1548.49 nm are the two modes reflected by the 

two FBGs. The frequency difference between them is 1 THz (8 nm). Besides the two 

high peaks, two small peaks at the wavelengths of 1532.61 and 1556.58 nm on the two 

sides of the high peaks have been also observed. It is clearly seen that the four peaks are 

equally spaced (~1 THz), which means that the two small peaks are generated by the 

FWM effect. This suggests that the FWM still occurs even after adding the external 

cavities. In other words, phase-locking is still partially retained after adding the external 

cavities. Therefore, the two high peaks are phase-correlated. To further verify the phase 

correlation, we increase the frequency separation of the two modes to 1.76 THz (13.92 

nm) by tuning the reflecting wavelength of the tunable FBG to 1534.57 nm. Newly 

generated wave by FWM appears at 1521.14 nm as shown in Fig. 6.6 (b). And the 

spacing between the newly generated peak and the peak at 1534.57 nm is 1.73 THz, 

almost equaling to the frequency separation between the two high peaks. This shows that 

the FWM effect exists even with the frequency separation of 1.76 THz at C-band. This 

further verifies FWM occurrence in the QD waveguide plus external cavities. 
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Furthermore, it is indicated that the successful beat signal generation of up to 2.21 THz 

between the dual modes is attributed to strong intracavity FWM and fast dynamics in QD 

waveguides. 
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Fig. 6.5. Tunable beating frequencies from 1 to 2.21 THz in the time domain corresponding to the 
four mode-separations in Fig. 6.4. 
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Fig. 6.6. Optical spectra of QD MLL with two FBGs of separations of (a) 1 THz at the biased current 
of 120 mA and (b) 1.76 THz at the biased current of 134 mA. The two FBGs are connected to port 2 
of the coupler in series. The output power at port 4 is about 1.4 mW. 

As shown in Fig. 6.5, the contrast ratio of the pulse trains is decreased with the 

increase of the dual-mode separation. Obviously, linear phase mismatch due to chromatic 

dispersion of the external cavities and QD waveguide is increased with the increase of 

beating frequency, thus intra-cavity FWM effect is reduced [149]. Consequently, the 

phase correlation may be reduced with the increase of THz signal. On the other hand, the 

beating signal is proportional to 2cos in power, -total phase mismatch. 

Therefore, the contrast ratio is decreased with the increase of the dual-mode separation. 

This also indicates that the tuning range might be limited by the phase mismatch. 

By tuning the current, two other different cases are observed as shown in Fig. 6.7. At 

134 mA, two neighbor longitudinal modes are enhanced at the same time by the fixed 

FBG at 1552.54 nm and at 130 mA, two neighbor longitudinal modes are selected and 

amplified by each of the two FBGs. Due to the FWHM of the FBG reflecting band, when 
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it is positioned between two neighbor modes, both of them get amplified at the same time. 

Then correspondingly, the time-domain pulse is modulated by the beating of the two 

neighbor modes at 50.25 GHz. 
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Fig. 6.7. Optical spectra and time-domain beating for two other different cases in the 
external cavity coupled QD laser. 

6.4 Conclusion 

The first generation of tunable dual-mode beat signal from 1 to 2.21 THz have been 

successfully demonstrated by using a C-band InAs/InP QD MLL and an external cavity 

of two FBGs. The beat frequencies can be tuned quasi-continuously in multiples of the 

fundamental repetition rate of QD MLL. Thanks to the use of one QD MLL, and 
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intracavity FWM effect, the dual modes are phase-correlated and therefore the generated 

THz will have much less phase noise.  

The highest repetition rates reported in semiconductor MLLs by using QD and QW 

materials are 1.01 THz [122] and 1.5 THz [180], respectively. It is found that QD 

materials are promising for high-repetition-rate operation of up to 1 THz due to their 

ultrafast carrier dynamics [83]. This work shows that up to 2.21 THz beat signal can be 

generated using QD MLL and external cavities.   
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Chapter 7 Conclusions 

The single-section InAs/InP QD MLLs are investigated comprehensively in this thesis. 

The following conclusions are drawn: 

1. The LEF of our QD materials is found to be smaller than QW materials. We have 

measured the LEF parameter using two experimental methods. The measured LEF is 

around 1, and thus this material is considered suitable for making QD lasers and QD 

MLLs for the optical communication systems. 

2. The improved TDTW model is established to simulate the single-section QD MLLs. 

Compared to the original TDTW model, an equivalent SA is proposed and the GVD 

and SPM terms are included. The importance of the proposed SA in mode-locking is 

verified by comparing the simulation results with and without the SA. The GVD and 

SPM effects on the pulse evolution are successfully predicted. With the two effects 

included, 1st-order and 2nd-order Taylor expansions are used to deduce an analytical 

expression for the electric field. The pulse duration and chirp as a function of the 

GVD parameter are obtained. The GVD effect is found to be the dominant one 

compared to SPM. The simulated results are in reasonable agreement with the 

experimental data. The role of the equivalent SA, FWM and SPM in the pulse 

evolution are also analyzed and discussed. 

3. Ultra-high repetition rate pulses are successfully generated from a QD laser coupled 

with external cavity structure. The structure can overcome the limitation of repetition 

rates by the QD cavity, which is usually less than 100 GHz. The QD cavity provides 

gain and the external cavity selects amplified modes. High repetition rates from ~400 

GHz to 1.01 THz have been obtained depends on the QD cavity and external-cavity 
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FBGs. The phase correlation between the FBG selected modes is demonstrated by the 

observations of the FWM sidebands on the optical spectra. 

4. Furthermore, tunable THz beating of up to 2.01 THz is obtained using a similar 

configuration. Two longitudinal modes generated by the QD cavity are selected and 

amplified by the external FBGs. The phase correlation is also proved by FWM 

sidebands in the spectra. The two modes are from the same cavity, and thus less phase 

noise is expected. The beating signal may find potential applications in microwave 

photonics systems.  

Future work can be focused on further improving locking performance of the QD 

MLLs, including pulse duration, peak power, phase noise, repetition rate, etc. For the 

generation of high repetition rate pulses using the external cavity structure, the external 

cavity can be controlled to improve the pulse quality. It can be temperature stabilized to 

reduce the wavelength shift of the longitudinal modes. The external cavity is fiber based 

FBGs in the experiment, the pigtails of which are of several meters long. The long 

external cavity can increase the total dispersion and lead to pulse broadening. It can be 

shortened to reduce phase noise and pulse duration. In using two FBG based external 

cavity to generate THz beating signal, the external cavity can also be temperature 

controlled and length shortened to improve the phase correlation of the two selected 

modes. For reducing the phase noise, injection locking and external feedback techniques 

can be applied. The injected light or feedback intensity/phase need to be optimized. 

The mode-locking mechanisms in the single-section QD MLLs can be further 

explored. Both theoretical and experimental investigation are further required. To check 

the Kerr-lens effect, the far-field beam profile could be compared under cw and pulsed 
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state. Under pulsed condition, the profile should be broader than that of cw, undergoing 

self-focusing in the waveguide. The thickness of the dielectric blocking layer can be 

altered for different saturable loss [147]. For the FWM effect, we can design QD cavities 

with different FWM efficiencies in the cavity and observe the mode-locking strength at 

the same time. Besides, the GVD is proved to affect pulse durations in our QD MLLs. It 

can be decreased or compensated by waveguide design and facet coatings to get short and 

chirp-free pulses. 
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