
Modeling and Compensation of Rate-Dependent 
Asymmetric Hysteresis Nonlinearities of 

Magnetostrictive Actuators  

Omar Farhan Aljanaideh 

A Thesis 

in 

The Department 

of 

Mechanical and Industrial Engineering 

Presented in Partial Fulfillment of the Requirements 
For the Degree of Doctor of Philosophy (Mechanical Engineering) at 

Concordia University 
Montreal, Quebec, Canada 

December 2013 

© Omar Farhan Aljanaideh, 2013



CONCORDIA UNIVERSITY 
SCHOOL OF GRADUATE STUDIES 

This is to certify that the thesis prepared 

By: Omar Farhan Aljanaideh 

Entitled: Modeling and Compensation of Rate-Dependent Asymmetric 
Hysteresis Nonlinearities of Magnetostrictive Actuators 

and submitted in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY (Mechanical Engineering) 

complies with the regulations of the University and meets the accepted standards with 
respect to originality and quality. 
Signed by the final examining committee: 

Chair 
1 Dr. D. Qiu 

 External Examiner 
Dr. D. Zhang 

 External to Program 
Dr. A. Aghdam 

 Examiner 
Dr. Y. Zhang 

 Examiner 
Dr. R. Sedaghati 

Thesis Co-Supervisor 
Dr. S. Rakheja 

Thesis Co-Supervisor 
Dr. C.Y. Su 

Approved by 
 Dr. A. Dolatabadi, Graduate Program Director  

February 11, 2014 
Dr. C. Trueman, Interim Dean 
Faculty of Engineering and Computer Science 

ii 



ABSTRACT 

 

Omar Farhan Aljanaideh  
Concordia University, 2013  
 

Smart material actuators are increasingly being explored for various micropositioning 

applications. Magnetostrictive actuators, in particular, are considered attractive for micro/nano 

positioning and high speed precision machining due to their high energy density, resolution 

and force capacity. The magnetostrictive actuators, similar to other smart material actuators, 

however, exhibit considerable hysteresis and output saturation nonlinearities that tend to 

become far more significant under high rates of input. Such nonlinearities cause response 

oscillations and errors in the positioning tasks. Reliable compensation of such nonlinearities is 

thus highly desirable to enhance micro/nano positioning performance of the actuator over a 

wide range of operating conditions. 

This dissertation research is concerned with characterization of output-input nonlinearities 

of a magnetostrictive actuator and control of hysteresis nonlinearities under a wide range of 

inputs. A comprehensive experimental study was performed to characterize output-input 

characteristics of a magnetostrictive actuator under a wide range of excitation conditions 

include amplitude, frequency, and bias of the input and the mechanical loading of the actuator. 

The measured data were analyzed to characterize output-input properties and to formulate a 

hysteresis model, to describe the hysteresis properties of these actuators. A Prandtl-Ishlinskii 

model was considered due to its continuous nature and thereby the invertability to seek 

hysteresis compensation. A rate-dependent threshold function was proposed to describe 

hysteresis properties of the actuator over a wide range of input frequencies. The inverse of the 
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proposed rate-dependent hysteresis model was subsequently formulated for compensation of 

rate-dependent symmetric hysteresis nonlinearities. The effectiveness of the inverse model was 

investigated through simulations and hardware-in-the-loop test methods considering a 100 µm 

magnetostrictive actuator acquired from Etrema Inc.  The results clearly illustrated effective 

compensation of symmetric hysteresis nonlinearities under low magnitude excitation currents 

over the entire frequency range. The method, however, revealed substantial errors under 

medium to high amplitude excitation, which was attributed to output saturation and 

asymmetry. The concept of a stop-operator based Prandtl-Ishlinskii model was proposed to 

achieve compensation of hysteresis nonlinearities described by the play-operator based 

hysteresis model on the basis of the initial loading curve, it was shown that the complementary 

properties of stop operators can be effectively applied for compensation of actuator hysteresis 

described by the Prandtl-Ishlinskii model.  

The inverse rate-dependent Prandtl-Ishlinskii model and the stop-operator based Prandtl-

Ishlinskii model, however, are applicable only for compensation rate-dependent symmetric 

hysteresis and rate-independent hysteresis nonlinearities, respectively. The proposed rate-

Prandtl-Ishlinskii model was refined to describe the rate-dependent asymmetric hysteresis 

nonlinearities together with output saturation by integrating a memoryless function to the rate-

dependent Prandtl-Ishlinskii model. The resulting integrated model could accurately describe 

the asymmetric hysteresis nonlinearities and output saturation of the magnetostrictive actuator. 

The inverse of the integrated model was obtained by integrating the inverse of the rate-

dependent Prandtl-Ishlinskii model with that of the memoryless function. The effectiveness of 

the integrated inverse model in compensating for hysteresis nonlinearities was investigated 

through simulations and experimentally using hardware-in-the-loop test method. The results 
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suggested that the proposed integrated model and its inverse could effectively characterize and 

compensate for rate-dependent asymmetric hysteresis nonlinearities of magnetostrictive 

actuator. Both the experimental and simulation results showed that the peak hysteresis 

observed under high magnitude excitation could be reduced from 49.1 % to 3.7 % in the 1-250 

Hz range when the integrated model inverse is applied.  
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available inverse-model based compensation methods lack adequate considerations of strong 

effects of the input rate on the hysteresis nonlinearities of smart actuators. The hysteresis 

nonlinearities of magnetostrictive actuators, similar to the other smart material actuators, 

invariably, increase with increasing excitation frequency of the applied input [7-9], which limits 

the application of these models to a narrow range of excitation frequency. Furthermore, unlike the 

other smart material actuators, the magnetostrictive actuators exhibit substantial asymmetry in the 

output and output saturation.  

The proposed dissertation research concerns the characterization and compensation of 

hysteresis of magnetostrictive actuators that invariably exhibit symmetric as well as asymmetric 

input-output properties with output saturation nonlinearity. Since the hysteresis properties of 

magnetostrictive actuators are strongly dependent upon the rate of applied input current, a rate-

dependent Prandtl-Ishlinskii model is proposed to characterize the symmetric output-input 

hysteresis as a function of the input rate. The suggested model is subsequently enhanced by 

integrating a memoryless function of deadband operators to describe asymmetric output-input 

hysteresis nonlinearities. The model parameters are identified on the basis of comprehensive 

measured data acquired for a Terfenol-D magnetostrictive actuator under a wide range of operating 

conditions, involving various current amplitude, rate of input, input bias and mechanical load. An 

inverse of the rate-dependent Prandtl-Ishlinskii model is subsequently formulated and 

implemented in a feedforward manner to seek compensation for rate-dependent hysteresis and 

output saturation nonlinearities. The validity of the rate-dependent hysteresis model is 

demonstrated on the basis of the measured data. The inverse model is implemented in the 

laboratory with a Terfenol-D magnetostrictive actuator in a hardware-in-the-loop configuration to 

illustrate effectiveness of the model based hysteresis compensator. 
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Furthermore, the displacement responses of the magnetostrictive actuators invariably reveal 

significant saturation nonlinearity under large amplitude excitations. Stuebner et al. [13] 

investigated the hysteresis properties of a magnetostrictive actuator under identical current 

amplitudes but different bias levels in the magnetic field. The experiment considered a sinusoidal 

magnetic field of amplitude 12.5 kA/m, applied with three different bias fields (25.0, 50.0, 75.0 

kA/m). The peak displacement responses under inputs with 50.0 and 75.0 kA/m bias were 50% 

and 75% lower, respectively, compared to that measured under lower bias of 25 kA/m. In an 

attempt to investigate the effect of input rate, Tan and Baras [7] characterized the hysteresis of a 

magnetostrictive actuator under inputs over the 10-300 Hz frequency range. The actuator 

employed a Terfenol-D rod of length of 51.3 mm and coil factor of 1.54 × 104/m. As in the previous 

studies, the output displacement of the driving rod was measured using an LVDT, which typically 

showed a drift and affected the accuracy of measurements under higher operating frequencies. The 

results demonstrated hysteresis nonlinearities that are strongly rate-dependent beyond the 

excitation frequency of 10 Hz, and relatively rate-independent at frequencies below 10 Hz. 

The studies reporting the measured output-input characteristics of magnetostrictive actuators 

have generally shown consistent effects of different operating factors, which are summarized 

below [1,7,10,11,13,14,15,17]: 

 The instantaneous displacement response of the actuator depends on the value of the 
instantaneous input current in addition to the displacement at the previous instant; 
 

 The displacement amplitude response of the actuator increases and tends to saturate as the 
input current increases, and decreases as the input current decreases [11,17]; 
   

 The major hysteresis loop can be formed by decreasing and increasing the input current 
between the extreme minimum and maximum amplitudes of the input current (magnetic 
field) [16]; 
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 The minor hysteresis loops in the output-input characteristics of the magnetostrictive 
actuators, generated at identical amplitudes of harmonic inputs and different bias levels, 
showed notable differences in the displacement response. Moreover, regardless of the 
output level, the minor loops generated under same input level were non-congruent [1]; 
 

 The hysteresis loops were relatively rate-independent at low frequencies (for example: 1, 
5, 10 Hz), but effect of the input rate increased significantly at frequencies above 10 Hz 
[18]. 

 

Figure 1.1 illustrates the measured output-input characteristics of magnetostrictive 

actuators reported in the some of the above-mentioned studies. The majority of the reported studies 

have focused on synthesizing a rate-independent model and a compensator on the basis of the 

experimental results attained under limited ranges of operating conditions, while the influences of 

both the frequency and amplitude of excitation current have been generally ignored.  

2.2.2 Rate-independent hysteresis models 

A large number of analytical models have been proposed to characterize the hysteresis 

properties of smart actuators. The primary goal of these models is to predict the hysteresis 

behaviour of materials and smart actuators in order to study the effects of hysteresis on the system 

output response and facilitate the design of controllers and hysteresis compensation. These models 

may be generally classified into physics-based models [1,14,19,20,21] and phenomenological 

models [8,22,23,24,25]. The phenomenological models can be further classified into differential 

equation-based models such as Duhem model [24] and Bouc-Wen model [24], and the operator-

based hysteresis models such as Preisach model [1,22,23], Prandtl-Ishlinskii model [26] and 

Kransnosel’skii-Pokrovskii model [1,28,29]. The differential equation-based models comprise 

nonlinear differential equations for describing the input-output relations. These models, however, 
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exhibit several limitations for control system design applications, and pose considerable challenges 

in parameters identification. Moreover, these models are not invertible and cannot be applied for 

model-based hysteresis compensation [1,17,21,27].  

   

 
 

\ 

Figure 1.1: Measured hysteresis properties of magnetostrictive actuators reported in different 
studies: (a) Major and minor hysteresis loops [12]; (b) Saturation in output displacement [17]; (c) 
Minor loops at identical amplitude but different bias levels [13]; and (d) Influence of rate of input 
[7]. 

The phenomenological models such as Preisach, Krasnosel’skii-Pokrovskii and Prandtl-

Ishlinskii models have been widely employed to characterize hysteresis behaviour of smart 

(a) (b) 

(c) 
 

(d) 
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material actuators. These models are described below in details together with their implementation 

for smart material actuators.  

2.2.3 Preisach model  

The hysteresis in magnetic materials was first studied by James A. Ewing in 1881, where 

hysteresis loops between the magnetic field H and the magnetic flux density B in soft-iron ring 

were observed. The first attempt to characterize this phenomenon, however, was carried out nearly 

60 years later by Ferenc Preisach, where it was suggested to use an aggregate of superposition of 

weighted blocks "relays" to represent the H-B hysteresis in an iron compound material 

[1,22,30,31]. The Preisach model exhibits flexibility and desirable mathematical properties to 

quantify hysteresis nonlinearities in several hysteretic systems. Consequently, this model has been 

extensively used for modeling hysteresis of electromagnetic materials and smart actuators. 

Mayergoyz in [22] assigned the congruency and the wiping out properties as the necessary 

conditions for any hysteretic systems to be described by the Preisach model. These properties have 

been validated in for piezoceramic and shape memory alloy (SMA) actuators [32]. The Preisach 

model employs an infinite set of relay operators PPβαγ , while the output of the model is derived 

from a superposition of a set of the weighted relay operators. For a given input v(t) in each interval 

[tj-1, tj] of a partition C[0, T], the output )]([ tv
PPβαγ of the relay operator is given by: 
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In [22], Mayergoyz defined two essential properties of the Preisach model: (i) the wiping 

out property; and (ii) the congruent minor loop property. These are the necessary and sufficient 

conditions for the existence of a Preisach model. The wiping out property states that the extrema 

of the input can remove the effects of a previous extrema, essentially, the memory of the model 

will be wiped out. The congruent minor-loop property states that, at any point on the minor loop, 

the output variation will be identical under two inputs and the minor loops will thus have the same 

shape. Furthermore, the result two minor loops are considered to be equivalent only if they are 

generated by identical monotonically varying inputs. These two properties have also been verified 

by Hughes and Wen [32] for piezoceramic and SMA actuators. Furthermore, the Preisach model 

has been applied in the same study to characterize hysteresis properties of the piezoceramic and 

SMA actuators by integrating the classical relay operator and a density function in the form of a 

second-order polynomial in thresholds. Several studies have proposed different modified Preisach 

models for characterizing hysteresis in various materials and smart actuators such as piezoceramic 

[33], magnetostrictive [16,18] and SMA actuators [34,35,36]. Ge and Jouaneh [33] modified the 

classical relay operator with the output threshold of either ‘-1’ or ‘+1’ to an alternate Preisach 

operator with a threshold or switching values of ‘0’ or ‘+1’, considering the unidirectional dipole 

polarization of the piezoceramic materials. Subsequently, a model was formulated to characterize 

hysteresis of a piezoceramic actuator subject to inputs at 0.5 Hz. Modifying the output switching 

values to ‘0’ and ‘+1’ instead of ‘-1’ and ‘+1’ does not, however, address the asymmetric hysteresis 

loops observed in magnetostrictive actuators, which could be achieved by employing a density 

function with different weights for the increasing and decreasing inputs. Such an approach has 

been applied to characterize hysteresis of magnetostrictive actuators in [7,8,16,38]. 
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Hughes and Wen [32] measured the hysteresis properties of piezoceramic patches and 

SMA wires coupled with a cantilever beam. Since the Preisach model is characterized by two 

properties, wiping out and minor loops congruency, the study was performed to validate the 

applicability of the Preisach model to describe the hysteresis nonlinearities of these actuators. 

Consequently, the measurements were performed in order to characterize the congruency of minor 

hysteresis loops and the wiping out property of the beam coupled with the selected actuator, while 

the deflections of the beam were measured using strain gauges. The piezoceramic patches showed 

a high degree of congruency in the comparable minor loops and the wiping out property was 

largely satisfied. The effects of different preloads on the actuators’ hysteresis were also 

investigated by applying a high magnitude static force to the tip of the beam. 

 The modeling of magnetic field (H)-magnetic induction (B) hysteresis in magnetic 

materials is a classic problem that goes back to 1935 [1], when Ferenc Preisach suggested 

analytical mathematical formulas, referred to as the "Preisach model", to characterize H-B 

hysteresis loops in a magnetic material. Since magnetic materials exhibit similar hysteresis 

behaviour, several studies have employed Preisach model to characterize H-B hysteretic curves in 

various magnetic materials such as cobalt and iron compounds [8,29,37]. The application of 

Preisach model to characterize magnetic field (H)-magnetization (M) curves observed in 

magnetostrictive materials began in the early 1990s [38], where a variation of magnetic field H 

due to an input current was applied to attain an elongation (magnetostriction) λ  of a Terfenol-D 

specimen due to change in the magnetization M. 

 The Preisach model has been used in numerous studies to describe hysteresis nonlinearities 

of magnetostrictive actuators employing Terfenol-D rods along with permanent magnetic field that 

provides constant bias level in the magnetic field (Hbias) [7,8,16,37]. The classic Preisach model 
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was employed by Natale et al. [10] to characterize rate-independent hysteresis of a 

magnetostrictive actuator. A Preisach density function identified using a fuzzy-logic algorithm and 

the model showed good agreements with the experimental data acquired under an excitation at 5 

Hz. Preisach model was also applied in an attempt to characterize the hysteresis nonlinearities of 

a magnetostrictive actuator from Etrema Inc. that provided 50 µm output stroke [16]. The study 

employed the classic relay operator with a density function identified based on the least square 

optimization method to characterize major hysteresis loops measured at a frequency of 1 Hz.  

 Cavallo et al. [37] tested the performance of a magnetostrictive actuator from Energen 

Company that was designed with variable prestress level on the Terfenol-D rod using a 

compression bolt. The output displacement of the actuator was measured under different prestress 

levels (80, 160 N), using an eddy current proximity sensor. The actuator showed relatively higher 

displacement under the higher prestress. The results were employed to formulate a Preisach model 

to account for the prestress level effect, which showed good agreement with the experimental data 

acquired at an excitation frequency of 2 Hz.  

2.2.4 Krasnosel’skii-Pokrovskii model  

  The Krasnosel’skii-Pokrovskii (KP) model employs hysteresis operator derived from the 

Preisach operator [1,28,29]. This operator is constructed from two different functions bounded by 

two piecewise Lipschitz continuous functions. A ridge function, δKP(v), is used to formulate the 

Krasnosel’skii-Pokrovskii operator, expressed as: 
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where aKP is a positive constant for a given input ∈)(tv C[0, T]. The output of the Krasnosel’skii-

Pokrovskii operator )]([ tvM KP for input v(t) in each interval [tj-1, tj] of a partition C[0, T] is 

expressed as (Figure 1.3): 
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 (1.4) 

for ∈t  [tj-1, tj], where αP and βP are constant thresholds of the Preisach relay operator, as shown in 

Figure 1.3.  

 
Figure 1.3: The input-output relationship of the KP operator [1]. 

The KP operator is Lipschitz continuous, the input-output curve exhibits a finite slope. The output 

of the Krasnosel’skii-Pokrovskii model is derived upon integration of the weighted KP operators 

as [28,29]:  

PPKPPPKPKP ddtvMtv
PP

βαβαρ
βα

)]([),()]([ ∫∫
≥

=Ψ  (1.5) 

where ΨKP(t) is the output and ρKP(αP, βP) is a density function.  

A few studies have also employed the KP operator in the Preisach model to characterize 

hysteresis of smart actuators. Banks et al. [39] investigated the properties of the Krasnosel’skii-

v 

MKP 
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Pokrovskii model for characterizing hysteresis nonlinearities in smart actuators, particularly the 

SMA actuators. Galinaitis [28] employed Krasnosel’skii-Pokrovskii operator, instead of the 

Preisach relay operator, in the Preisach model to characterize hysteresis nonlinearities of a 

piezoceramic actuator at an excitation frequency of 0.01 Hz. In a similar manner, Smith [1] 

suggested this model for characterization of hysteresis nonlinearities in magnetostrictive actuators.  

2.2.5 Prandtl-Ishlinskii model 

The Prandtl-Ishlinskii model is a subclass of the Preisach model that quantifies hysteresis 

nonlinearities by summation of weighted play or stop operators [26]. The one dimensional play 

and stop operators provide continuity, and are characterized by the input v(t) and the threshold s. 

Figures 1.3 and 1.4 depict the input-output characteristics of the stop and play operators, 

respectively. The attributes of the stop operator match the linear stress-strain relationship described 

by the Hooke's law, when the stress is below the yield threshold stress s. As the stress approaches 

the yield value of s, the stress remains constant under further increase in the strain. The output of 

the stop operator Es[v](t) for an input v(t) in each interval [tj-1, tj] of a partition C[0, T] can be 

expressed as [26]: 

})},]([)()(,max{min{)]([ 11 stvEtvtvstvE jsjs −− +−−=  (1.6) 

for t ∈[tj-1, tj].  
Es 
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Figure 1.4: The input-output relationship of the stop operator [26]. 

The output of the stop operator-based Prandtl-Ishlinskii (SPI) model )]([ tvΨ  is obtained 

from summation of the weighted operators in a similar manner: 

∫=Ψ
S

ss drtvEswtv
0

)]([)()]([  (1.7) 

where )(sws  is the density function. The output of the SPI model may be numerically expressed 

as [26]:  
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where ns is a positive integer that represents the number of stop operators used and the weights

)( is sw are defined as: 

])[()( 1 iiisis ssswsw −= +  (1.9) 

Figure 1.5 illustrates the input-output characteristics of the play operator which is characterized by 

the threshold r and the input v(t). Analytically, for an input v(t) in each interval [tj-1, tj] of a partition 

AC[0, T], the output of the play operator Fr[v](t) can be expressed as [26]: 
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)}}]([,)(min{,)(max{)]([ 1−+−= jrr tvFrtvrtvtvF  (1.10) 

for t ∈[tj-1, tj]. 

The output of the classical Prandtl-Ishlinskii model )]([ tvΦ employing the play operators rF and 

the density function )(rpr  can be expressed as [26]:  

∫=Φ
R

rr drtvFrptv
0

)]([)()]([  (1.11) 

where q is a positive constant. The output of the play operator-based Prandtl-Ishlinskii (PPI) model 

can also be numerically expressed as [26]:  
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where np is a positive integer representing the number of the play operators considered and )( ir rp  

are the weights, expressed as: 

])[()( 1 iiirir rrrprp −= +  (1.13) 
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Figure 1.5: Input-output relationship of the play operator [26].  

The classical Prandtl-Ishlinskii model cannot accurately characterize the hysteresis 

properties of magnetic materials and smart actuators, which invariably exhibit nonlinear output 

saturation and asymmetry in the output-input characteristics. However, the model can effectively 

describe the hysteresis properties of piezoceramic actuators subjected to excitations at low 

frequencies (below 5 Hz), which are known to be symmetric [25,33,42,40]. Consequently, the 

model has been employed to characterize hysteresis in actuators that show symmetric, unsaturated 

hysteresis nonlinearities such as piezoceramic actuators. Janocha and Kuhnen [41] employed 

classic play operators to characterize hysteresis in a piezoceramic actuator subjected to triangular 

input at a frequency of 0.5 Hz. Due to the continuous nature, the use of only 10 play operators 

resulted in accurate characterization of the hysteresis nonlinearities of the actuator. In a similar 

manner, Krejci and Kuhnen [42] proposed the classical play operator to characterize hysteresis 

nonlinearities of a piezoceramic actuator subjected to harmonic inputs applied at a low frequency, 

while the output displacement was measured using high-precision laser interferometer. 
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2.2.6 Modified and generalized Prandtl-Ishlinskii models 

The continuity in time and space makes the play operator-based Prandtl-Ishlinskii (PPI) 

model an attractive choice for generating input-output hysteresis loops using only a few play 

operators, which reduces the computational demand compared to the Preisach and KP models. 

However, the classic PPI model shows unsaturated and symmetric hysteresis loops, and is thus 

limited to characterization of hysteresis nonlinearities of piezoceramic actuators, which show 

unsaturated and symmetric hysteresis loops [9,42]. Consequently, a few modifications have been 

proposed to relax the symmetry of the model in order to utilize its attractive continuity property to 

characterize hysteresis of range of smart actuators. These modifications may be grouped into two 

method-based categories, namely: (i) those based on integration of a deadzone operator together 

with the PPI model, and (ii) those employing dissimilar envelope functions under increasing and 

decreasing inputs to formulate generalized play operators.  

The modified Prandtl-Ishlinskii model employs the classic Prandtl-Ishlinskii model 

coupled with a summation of weighted deadband operators, which are nonlinear and memoryless 

operators. This approach can relax the symmetry of the classical model and provide saturation of 

the output, as observed in magnetostrictive actuators. Figure 1.6 illustrates the output-input 

characteristics of the deadzone operator Jd [v](t), as a function of the threshold d and the input v(t). 

The input-output characteristics of the deadzone operator have been related to physical phenomena 

in motors, attributed to frictional torques [43]. The Prandtl-Ishlinskii model coupled with the 

deadband operators can be employed to characterize both asymmetric as well as saturated 

hysteresis nonlinearities [44]. The output of the resulting modified Prandtl-Ishlinskii model Z[v](t) 

is a composition of the deadband operators output, Λ, and the classical Prandtl-Ishlinskii model 

output, Φ, as [44]:  
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)]()[()]([ tvtvZ ΦΛ=   (1.14) 

For an input v(t), the output of the deadband memoryless function, Λ[v](t) is obtained from 

weighted summation of the deadband operators, idJ : 
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where 
idg  defines the weights and nQ is a positive integer representing the number of deadzone 

operators. The deadband operator, described in Figure 1.6, can be expressed as: 









<−Φ
=Φ
>−Φ

=Φ
.0}0,)(min{
,0)(
,0}0,)(max{

)]([

ii

i

ii

d

dfordt
dfort
dfordt

tJ
i

 (1.16) 

 

 

Figure 1.6: Input-output relationship of a deadzone operator for input v(t) [12]. 

Since the relay operator of the Preisach model yields either +1 or -1, it does not relax the 

symmetry of the model without using a density function with different weights for increasing and 

decreasing inputs. Alternatively, a generalized play operator has been defined to yield either 

v 
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increasing or decreasing output Sr[v](t) with increasing or decreasing inputs, in an asymmetric 

manner along the continuous envelope curves lγ  and rγ , as shown in Figure 1.7 [26]. The output 

of the generalized play operator for any input v(t) in each interval t ∈ [tj-1, tj] of a partition ],0[ TC  

is analytically defined as:  

( ))]([,))((min(,))((max)]([ 1−+−= jrjrjljr tvSrtvrtvtvS γγ  (1.17) 

In the above formulation, r refers to the threshold value of the classical play operator. Unlike the 

classical play operator, the generalized play operator yields zero output, Sr[v](t)=0, at two different 

threshold values, ζ1 and ζ2, of the increasing and decreasing input v(t), as shown in Figure 1.7. The 

difference in the magnitudes of constants ζ1 and ζ2 allows for describing asymmetric hysteresis 

loops. These constants, corresponding to increasing and decreasing inputs, have been related to 

the envelope functions and the threshold in the following manner [45]: 

)(1
1 rl

−= γζ for 0)( >tv
 

)(1
2 rr −= −γζ for 0)( <tv  

(1.18) 

 

Figure 1.7: Output-input characteristics of a generalized play operator [26].  
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The output of generalized Prandtl-Ishlinskii model is subsequently formulated upon integrating 

the generalized play operator and the density function as [61]: 

∫=Φ
R

rGG drtvSrptv
0

)]([)()]([  (1.19) 

where GΦ [v](t) is the output of generalized Prandtl-Ishlinskii model, and )(rpG  is the density 

function.  

This model integrates the generalized play operator with appropriate envelope and density 

functions to describe minor and major hysteresis loops of smart actuators and materials with 

asymmetry and saturation properties. The output of the generalized play operator-based Prandtl-

Ishlinskii (GPPI) model can be numerically expressed as [26]: 

∑
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)]([)()]([  (1.20) 

Kuhnen [12] characterized asymmetric hysteresis nonlinearity of a magnetostrictive 

actuator using the rate-independent Prandtl-Ishlinskii model coupled with a superposition of 

weighted deadband operators. In another study, Kuhnen and Krejci [44] proposed a play operator 

with deadzone operator in order to characterize and compensate for complex hysteresis and creep 

effects in a piezoceramic stack-actuated system, with an extended operating range. A recent study 

has proposed a generalized Prandtl-Ishlinskii model to characterize asymmetric hysteresis 

nonlinearities observed in several smart material actuators [45]. The proposed method showed 

effectiveness of the model for describing both asymmetric and saturated hysteresis loops of 

magnetostrictive and SMA actuators using a few generalized play operators. 
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effectiveness of the dynamic density function for characterizing hysteresis under higher rate of 

inputs, however, has not been demonstrated. 

Alternatively, Tan and Baras [7], in an attempt to characterize rate-dependent hysteresis 

nonlinearities in a magnetostrictive actuator, assumed a second order linear differential equation 

coupled with the classical Preisach model to describe major hysteresis loops under excitations in the 

10 and 300 Hz range. The model, however, showed greater characterization error at excitation 

frequencies beyond 50 Hz. For example, the maximum characterization error between the output 

of the model and the measured displacement at an excitation frequency of 150 Hz was greater than 

25%. Moreover, the proposed model could not be employed to characterize hysteresis 

nonlinearities acquired at frequencies below 5 Hz, where the hysteresis of the magnetostrictive 

actuator is rate-independent. Ang et al. [46] proposed a density function in conjunction with the 

Prandtl-Ishlinskii model and deadzone operators to characterize rate-dependent hysteresis in a 

piezoceramic actuator. The validity of this model was demonstrated under sinusoidal inputs in the 

1 and 19 Hz frequency range. The proposed dynamic model resulted in substantially lower, 

hysteresis error, nearly 50 % lower, compared to that attained from the rate-independent hysteresis 

model. 

Rate-dependent play operators together with a rate-dependent density function have been 

proposed and integrated to the Prandtl-Ishlinskii model to describe rate-dependent hysteresis 

behaviour of a piezoceramic actuator [9,45]. This model employed a density function formulated 

as a nonlinear function of the rate of input. The model was observed to be very effective in 

characterizing hysteresis nonlinearities of a piezoceramic actuator under different inputs in the 

frequency range of 5 to 500 Hz. 
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2.3.2 Differential equation-based hysteresis models 

Differential equation-based hysteresis models such as Duhem and the Bouc–Wen models 

have been widely used for characterizing hysteresis nonlinearities in different materials and 

actuators. The Bouc–Wen model is a differential equation-based model, which originates from the 

Bouc model presented in [24,48]. This model has been extensively used to describe hysteretic 

behaviour between the applied displacement and the output force in a wide range of mechanical 

systems. The relationship between the output of the model z(t) and the input v(t) is expressed by 

the following differential equation: 

BWBW n
BW

n
BWBWBW tztvtztztvtvtz )()()()()()()( 1

__  γβα ++= −

 (1.21) 

where nBW is a positive integer. The positive constants, α_BW, β_BW and γ_BW, govern the shape of 

the hysteresis loops. Different forms of Bouc-Wen model have been proposed to suit hysteresis 

properties of different systems, materials, and actuators [48,49]. Hysteretic systems, piezoceramic 

actuators [50], polyurethane foams and magneto-rheological fluid dampers [51] are some of the 

examples. The major limitations of the Bouc-Wen model are associated with parameter 

identification necessary to formulate the model. Moreover, the model, as an equation-based 

hysteresis model, is not invertible and thus cannot be applied to inverse model-based hysteresis 

compensation methods.  

Hodgdon and Coleman [52] proposed the Duhem model for describing relationship 

between the input magnetic field H(t) and the output flux density B(t) and thereby the hysteresis 

in ferromagnetic materials. The model is described by the following differential equation: 
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associated with modelling inaccuracies of the numerical inverse. In general, the physics-based 

hysteresis models [1,19] are not invertible, and control of hysteresis employing such models 

necessitates design of complex nonlinear controllers in a closed-loop manner, inherently 

dependent on initial conditions, which requires adaptive or more robust control techniques [1]. 

The inverse model-based hysteresis compensation methods employ the inverse of the 

hysteresis model as a feedforward compensator in a cascade arrangement of the hysteresis model 

and its inverse. These methods are considered to be effective and convenient for real-time 

compensation and control [16,34,35, 42,57]. The inverse model-based compensation, however, 

necessitates the formulation of the hysteresis inverse model, which is often a challenging task. An 

open-loop inverse model-based compensation method, shown in Figure 1.8, has been widely 

proposed in the literature to reduce the effects of the rate-independent hysteresis nonlinearities. In 

this figure, ψ-1 is the inverse hysteresis model, ψ represents the hysteresis model and v*(t) is the 

desired output. This method was suggested by Tao and Kokotovic [27], and involves the 

formulation of the inverse model of the hysteretic system. Their study developed a control 

algorithm to compensate for the hysteresis nonlinearities of a system comprising a linear plant 

proceeded by a hysteresis block representing a hysteretic actuator. 

 

 Hysteresis Model Inverse Hysteresis Model 
 

ψ-1 ψ 
u(t) v(t) 
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Figure 1.8: Open-loop hysteresis compensation using inverse hysteresis model.  

 The implementation of an inverse model-based compensation method, however, involves 

complexities associated with formulation of the inverse of the proposed model. The Preisach and 

Krasnosel’skii-Pokrovskii models are not analytically invertible. Consequently, different 

numerical methods have been developed to obtain inversions of these models. Schafer and Janocha 

[58] proposed a numerical method to compensate for rate-independent hysteresis nonlinearities of 

magnetostrictive actuators represented by the classic Preisach model. In another study, Ge and 

Jouaneh [57] employed inverse Preisach model, derived based on a numerical algorithm, as a 

feedforward compensator coupled with a PID feedback control system to reduce the hysteresis 

nonlinearities in a piezoceramic actuator. A numerical inverse of the Krasnosel’skii-Pokrovskii 

model was also applied by Galinaitis [28] in an open-loop manner to compensate for hysteresis of 

a piezoceramic actuator. In this study, the compensation of the hysteresis nonlinearities was 

demonstrated for three different sinusoidal inputs at a frequency of 0.01 Hz. With regards to 

magnetostrictive actuators, Iyer and Tan [16] proposed two different methods to seek 

compensation of major hysteresis loops. Both the methods have been employed to derive an 

inverse for the Preisach model for characterizing hysteresis nonlinearities of the actuator. Both the 

methods, however, revealed certain errors that could be attributed to two primary factors: 

 Modeling inaccuracies and uncertainty of the Preisach density function; the Preisach plane 
requires many refinements to formulate hysteresis model to describe the hysteresis 
properties more accurately [16]. 
 

 The second source of error is attributed to the discontinuity of the relay operator, which 
permits for evaluation of only a numerical inversion of the model. 
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Tan and Baras [7] applied the inverse Preisach model in an adaptive control system to 

compensate for hysteresis nonlinearities of a magnetostrictive actuator. The classic Preisach model 

was coupled with a second order system to quantify the rate-dependent hysteresis nonlinearities, 

which implied the same two sources of errors described in the rate-independent case [16]. 

Moreover, the proposed compensator would be effective under low frequency inputs and could 

not be applied for inputs at different frequencies. The compensation of rate-dependent hysteresis 

effects using the inverse rate-independent hysteresis models could thus yield high compensation 

errors at higher excitation frequencies since hysteresis effects increased with the excitation 

frequency. 

Aljanaideh et al. [59] proposed hysteresis compensation for a piezoceramic actuator using 

a stop operator based Prandtl-Ishlinskii (SPI) model. The proposed compensator was derived based 

on the principle of employing an inverse of the play operator-based Prandtl-Ishlinskii (PPI) model 

in a feedforward manner to compensate for hysteresis nonlinearities of the actuator. The 

application of the proposed model as a feedforward compensator resulted in significant reduction 

in the positioning error due to hysteresis of the actuator.  

 Unlike the Preisach and Krasnosel’skii-Pokrovskii models, the Prandtl-Ishlinskii model 

offers a unique advantage, as its inverse can be obtained analytically. Krejci and Kuhnen [42] 

derived and applied the analytical inverse of the Prandtl-Ishlinskii model for compensation of 

hysteresis nonlinearities of a piezoceramic actuator. The analytical inverse, however, is applicable 

only for rate-independent symmetric hysteresis nonlinearities that are observed in piezoceramic 

actuators. Kuhnen [12] compensated the rate-independent asymmetric hysteresis nonlinearity of a 

magnetostrictive actuator using inverses of a free memory function and a rate-independent Prandtl-

Ishlinskii model. In another study, Kuhnen and Krejci [44] employed a play operator of a deadzone 
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function in order to characterize and compensate for complex hysteresis and creep effects in a 

piezoceramic actuated system designed with extended operating range. A numerical inverse was 

derived and applied in order to compensate for hysteresis nonlinearities of the actuator, which 

showed an error of only 4.4% in the input-output compensation.  

A generalized Prandtl-Ishlinskii model and its analytical inverse has been suggested in [60] 

to compensate for asymmetric hysteresis nonlinearities of magnetostrictive and SMA actuators. 

The study proposed envelope functions for the classic play operator based Prandtl-Ishlinskii model 

for characterization of asymmetric hysteresis nonlinearities. The analytical inverse of the play 

operator-based Prandtl-Ishlinskii model together with the inverse of the envelope functions were 

formulated for compensation of rate-independent asymmetric hysteresis nonlinearities of the 

proposed model. However, the suggested method could not be applied for compensation of rate-

dependent asymmetric hysteresis, which is mainly attributed to the discontinuity in the envelope 

functions that might be observed under high rates of input.  

The Prandtl-Ishlinskii model based on play operators offers attractive properties attributed 

to continuity of the play operators which permits the formulation of an analytical inverse for real-

time implementations [42]. The classic Prandtl-Ishlinskii model, however, is limited to 

characterization of smart material actuators that exhibit rate-independent symmetric input-output 

characteristics, such as those observed for piezoceramic actuators. A few studies have reported 

alternate Prandtl-Ishlinskii models to describe asymmetry and saturation of the output. For 

example, a Prandtl-Ishlinskii model cascaded with a memoryless hyperbolic tangent function was 

proposed in [31] to formulate a hysteresis model for describing saturated hysteresis nonlinearities 

of a superconductor. A generalized Prandtl-Ishlinskii has been recently reported for 

characterization of asymmetric hysteresis nonlinearities by employing a generalized play operator 
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instead of the classic play operator [45]. The suggested play operator employed different loading 

and unloading hyperbolic tangent envelope functions, which relaxes the symmetry in the output of 

the Prandtl-Ishlinskii model. In [61], the generalized model reported in [60] was applied for 

characterizing the butterfly-shaped hysteresis nonlinearity of a Terfenol-D magnetostrictive 

actuator considering identical envelope functions of the play operators. Kuhnen [12], characterized 

asymmetric hysteresis nonlinearity of a magnetostrictive actuator using the rate-independent 

Prandtl-Ishlinskii model coupled with a superposition of weighted deadband operators.  

Although the above studies have proposed a number of alternate Prandtl-Ishlinskii models 

to describe asymmetric hysteresis nonlinearities, the strong effects of the input rate on the 

hysteresis nonlinearities have been mostly ignored. The hysteresis nonlinearities of 

magnetostrictive actuators, similar to the other smart material actuators, invariably, increase with 

increasing excitation frequency of the applied input [7,62], which limits the application of these 

models to a narrow range of excitation frequency. Moreover, the applications of the inverse of 

these models would yield considerable compensation errors under excitations at higher 

frequencies.  

A recent study [63] developed an analytical inverse of the rate-dependent play operator-

based Prandtl-Ishlinskii model for compensation of rate-dependent hysteresis nonlinearities. 

According to this study, an analytical inverse of the rate-dependent Prandtl-Ishlinskii model Π can 

be obtained under the threshold dilation condition, which implies that the difference between two 

consecutive dynamic thresholds ))((1 tvri +  and ))(( tvri   does not decrease in time, such that ∀ i = 1, 

…, n-1:  
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hysteresis nonlinearities under a wide range of inputs through effective model development and 

formulations of model inverse for compensation of rate-dependent and asymmetric hysteresis 

nonlinearities.  

Owing to the continuous nature of the play operators, a rate-dependent Prandtl-Ishlinskii 

model could be formulated for characterizing the rate-dependent hysteresis nonlinearities of a 

magnetostrictive actuator. This model could also be applied in a cascade configuration with a 

memoryless function of weighted deadband operators to describe asymmetry in the output together 

with output saturation under inputs over a wide frequency range. The resulting may provide 

accurate predicts of minor as well as major rate-dependent hysteresis loops under a wide range of 

inputs. Furthermore, such a model could also be applied to describe rate-independent as well as 

rate-dependent asymmetric hysteresis nonlinearities of magnetostrictive actuators provided that 

the threshold dilation condition is satisfied. A stop-operator based Prandtl-Ishlinskii model may 

also be considered to seek compensation of hysteresis effects using the cascade arrangement of the 

play and stop-operator based models. 

2.5.1 Objectives of the dissertation research 

The proposed dissertation research aims at characterization and compensation of hysteresis 

nonlinearities of smart material actuators for enhancement of their micro-positioning and tracking 

performance. The primary objective is to develop methodologies for characterization and 

compensation of rate-dependent and asymmetric hysteresis of smart material actuators over a wide 

range of input rates and amplitudes in an open-loop feedforward manner. The specific objectives 

of the dissertation research are summarized below:  
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1. Develop an analytical method for compensation of rate-independent symmetric hysteresis 
nonlinearities described by a play-operator based Prandtl-Ishlinskii model through 
formulation and application of a stop-operator based Prandtl-Ishlinskii model. Investigate 
the effectiveness of the compensator through simulations as well as hardware-in-the-loop 
experiments on a smart material actuator. 
 

2. Characterize the output-input properties of a Terfenol-D type magnetostrictive actuator in 
the laboratory under a wide range of input amplitudes, rates, and magnetic bias levels, as 
well as under the effect of a mechanical load. 
 

3. Develop a methodology, based on the experimental observations, for describing rate-
dependent symmetric hysteresis nonlinearities of a magnetostrictive actuator through 
formulation of a rate-dependent Prandtl-Ishlinskii model.  

 

4. Formulate an inverse rate-dependent Prandtl-Ishlinskii model for open-loop compensation 
of rate-dependent symmetric hysteresis nonlinearities of a magnetostrictive actuator over 
a wide range of input frequency, and investigate the effectiveness of the compensator 
through simulations and as well as experimentally. 

 

5. Formulate an integrated Prandtl-Ishlinskii model, based on the experimental observations, 
that employs a rate-dependent Prandtl-Ishlinskii model along with a superposition of 
deadband operators, for describing rate-dependent asymmetric hysteresis nonlinearities of 
magnetostrictive actuator at different levels of input amplitudes applied over a wide 
frequency range. 

 

6. Develop an integrated inverse rate-dependent Prandtl-Ishlinskii model for compensation 
of rate-dependent asymmetric hysteresis nonlinearities of the magnetostrictive actuator, 
and explore its effectiveness through simulations and as well as through hardware-in-the 
loops laboratory tests. 

 

2.5.2 Organization of the manuscript-based thesis 

This dissertation has been written according to the manuscript-based format, as described in 

“Thesis Preparation and Thesis Examination Regulation” booklet of the School of Graduate 

Studies of Concordia University. This dissertation research is organized into 7 chapters, including 

a literature review chapter (Chapter 1) summarizing the state-of-the-art review of reported studies 
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relevant to modeling and compensation of hysteresis in smart material actuators. Chapter 2 

presents a detailed description of experiment design and methods used to characterize output-input 

characteristics of a magnetostrictive actuator under wide ranges of inputs. These included different 

levels of excitation amplitudes and frequencies, magnetic bias and mechanical loading.  

 Chapter 3 presents a primary study on modeling and compensation of rate-independent 

symmetric hysteresis nonlinearities. This chapter presents the theory of stop operator-based 

Prandtl-Ishlinskii model as a compensator for the rate-independent symmetric hysteresis 

nonlinearities represented by the play operator-based Prandtl-Ishlinskii model. The results 

obtained have been published in the following article:  

“Compensation of Play Operator-based Prandtl-Ishlinskii Model Using Stop Operator with 
Application to Piezoceramic Actuators”, International Journal of Advanced Mechatronic 
Systems, vol. 4, no. 1, 2012.  

 
This article presents a new methodology for compensation of rate-independent symmetric 

hysteresis nonlinearities of smart material actuators. The initial loading curves of the play operator-

based Prandtl-Ishlinskii (PPI) and the stop operator-based Prandtl-Ishlinskii (SPI) models were 

first used to explore the hysteresis properties of both the PPI and SPI models. The results illustrate 

that the PPI model exhibits convex counter-clockwise hysteresis loops while that of the SPI model 

were concave clockwise hysteresis loops. An SPI model could thus be utilized for compensation 

of rate-independent symmetric hysteresis nonlinearities described by the PPI model. The 

thresholds and the weights of the SPI model were analytically derived based on known parameters 

of the PPI model. The effectiveness of the compensator was demonstrated through experimental 

results attained with a piezoceramic micro-positioning stage. The experimental results showed that 

the SPI model can serve as an effective feedforward compensator for the rate-independent 

hysteresis nonlinearities of a piezoceramic actuator. 
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In Chapter 4, a comprehensive experimental study on the characterization and modeling of 

hysteresis nonlinearities of magnetostrictive actuator is presented. The experimental 

measurements, model and the simulation results have been published in the Journal of Smart 

Materials and Structures.  

“Experimental Characterization and Modeling of Asymmetric and Saturated Hysteresis of 
Magnetostrictive Actuators”, Smart Materials and Structures, vol. 23, no. 3, 2014.    

In this paper, hysteresis nonlinearities of a magnetostrictive actuator were characterized 

under different amplitudes of simple and complex harmonic excitations over a wide range of 

frequencies (10-200 Hz) and magnetic bias levels (35-75 kA/m), as described in details in Chapter 

2. The measured data revealed asymmetric output-input characteristics and strong dependence on 

the magnetic bias, amplitude and frequency of the input. Output saturation was also observed under 

moderate to high amplitude excitations. The area bounded by the hysteresis loop showed a 

nonlinear dependence on the amplitude of the input, while this dependence was linear on the 

excitation frequency of the applied input, irrespective to the input amplitude. A rate-dependent 

model employing a rate-dependent Prandtl-Ishlinskii model integrating a memoryless function was 

proposed for the characterization of rate-dependent asymmetric hysteresis nonlinearities of the 

actuator. Following the experimental observations, a linear rate-dependent threshold function was 

employed to formulate the rate-dependent Prandtl-Ishlinskii model, while an asymmetric 

deadband function was incorporated to add asymmetry to the symmetric output of the rate-

dependent Prandtl-Ishlinskii model. Comparisons of the integrated Prandtl-Ishlinskii model 

responses with the measured data suggested that the proposed model could effectively describe the 

nonlinear hysteresis properties of the magnetostrictive actuator over a broad range of excitation 

amplitudes and frequencies.  
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  The relative significance of the proposed rate-dependent and asymmetric integrated model 

was explored by evaluating its performance in relation to the Prandtl-Ishlinskii models suggested 

in the literature for characterization of hysteresis nonlinearities of magnetostrictive actuators. The 

results revealed that neglecting either the rate effect in the threshold of the Prandtl-Ishlinskii model 

or the asymmetry attributed to the memoryless function yields significant errors in the 

displacement responses of the magnetostrictive actuator model. 

  In an attempt to design a compensator for the rate-dependent symmetric hysteresis 

nonlinearities of smart actuators, the data obtained under simple and complex harmonic excitations 

over a wide range of frequencies (10-200 Hz) were employed to define a rate-dependent Prandtl-

Ishlinskii model. The inverse rate-dependent model was subsequently formulated and applied for 

compensation of rate-dependent symmetric hysteresis of the magnetostrictive actuator. The results 

of this segment of the study have been published in the following article, which is presented in 

Chapter 5. 

“Compensation of Rate-Dependent Hysteresis Nonlinearities in a Magnetostrictive Actuator 
Using Inverse Prandtl-Ishlinskii Model”, Smart Materials and Structures, vol. 22, no. 2, 2012.    

This chapter suggests a new inverse rate-dependent compensator for compensation of rate-

dependent symmetric hysteresis nonlinearities of magnetostrictive actuator in an open-loop 

manner. The hysteresis nonlinearities of the magnetostrictive actuators were first explored under 

an input amplitude of 2.3 A applied over a wide frequency range up to 200 Hz. A rate-dependent 

threshold, as a linear function of the rate of input, was employed to formulate a symmetric rate-

dependent Prandtl-Ishlinskii model considering the threshold dilation condition that ensures the 

analytical invertability of the model. The inverse rate-dependent Prandtl-Ishlinskii model was then 

formulated on the basis of the rate-dependent Prandtl-Ishlinskii model. The effectiveness of the 

inverse model compensator for mitigating the rate-dependent hysteresis nonlinearities was 
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demonstrated through simulation results and hardware-in-the-loop laboratory measurements with 

a magnetostrictive actuator. Both the simulation and experimental results revealed reduction in the 

peak hysteresis from 4.7 µm to 0.645 µm, when the proposed inverse rate-dependent model was 

applied as a feedforward hysteresis compensator. The peak error occurred only under excitations 

at the lowest frequency of 1 Hz. The results suggested that the inverse Prandtl-Ishlinskii model 

could provide hysteresis compensation under different rates of inputs in a simple and effective 

manner. 

Employing the inverse model suggested in Chapter 5 for compensation of rate-dependent 

hysteresis nonlinearities of magnetostrictive actuator at high input current amplitudes (e.g., 5 and 

6 A) resulted in substantial errors in the output. This was attributed to significant output asymmetry 

observed under medium to high inputs. Consequently, Chapter 6 describes a methodology for 

compensation of rate-dependent asymmetric hysteresis nonlinearities of smart material actuators. 

An integrated Prandtl-Ishlinskii model and its inverse model are presented. The model and its 

inverse together with the simulation and experimental results have been submitted to the Sensors 

and Actuators: A Physical.  

“Feedforward Compensation of Asymmetric Rate-Dependent Hysteresis Nonlinearities of a 
Magnetostrictive Actuator”, under review, Sensors & Actuators A: Physical (Submitted, Nov. 
2013). 

 

In this chapter, an inverse model is formulated to seek real-time compensation of rate-

dependent and asymmetric hysteresis nonlinearities of a Terfenol-D magnetostrictive actuator. The 

inverse model was formulated by integrating the inverse of the rate-dependent Prandtl-Ishlinskii 

model, satisfying the threshold dilation condition, together with the inverse of the deadband 

function. The integrated inverse model was subsequently applied to the nonlinear hysteresis model 
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 Magnetostriction was first observed by James Joule in 1842. It concerns coupling between 

the magnetic and mechanical properties of some ferromagnetic materials, where strain is generated 

in response to an applied magnetic field. The strain in the ferromagnetic materials is a result of the 

rotations of small magnetic domains within the material, which cause internal expansion, ΔL. For 

a ferromagnetic material of length Lo, the magnetostriction is defined in terms of strain, as [1]: 

oL
L∆

=λ  (2.1) 

 The magnetostriction in ferromagnetic materials arises from the rotation of magnetic 

domains under a magnetic field H. Each of these domains represents a region of uniform 

magnetization, when the applied magnetic field forces the domains boundaries (also called domain 

walls) resulting in shifting and motion of the domain walls. Both the rotation of the magnetic 

domains and the shift of domain walls yield changes in the magnetostrictive material shape and 

dimension (Figure 2.1), which is referred to as the magnetostriction that can be used for actuation 

purposes.  
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Figure 2.1: Magnetic domain orientations: (a) in the absence of a magnetic field, H=0 [1]; and (b) 
in the presence of a magnetic field [1].  

Magnetostrictive actuators are built using a smart magnetostrictive material, such as 

“Terfenol-D”, which consists of Terbium (Ter), Iron (Fe) and Dysprosium (D) [40]. This material 

is known to exhibit highest magnetostriction among the various known magnetostrictive alloys at 

room temperature [1]. Furthermore, the Terfenol-D possesses high energy density. A small size 

material could convert magnetic field intensity into mechanical energy at a high speed leading to 

a high magnitude force over a broad frequency band up to 15 kHz [1]. Such actuator designs do 

not contain moving parts and thus are not expected to encounter mechanical failures related to 

mechanical fatigue. Unlike piezoceramic materials, Terfenol-D materials are also known to be 

thermally robust. The smart materials in general tend to lose their properties when heated beyond 

the Curie temperature, the magnetostrictive materials, however, regain their properties when 

cooled [1,40]. These properties make Terfenol-D actuators attractive for numerous applications 

including all micropositioning tasks in environments where thermal and mechanical robustness are 

necessary. The main components of a typical Terfenol-D actuator include the following: 

- Terfenol-D rod is the key component of a magnetostrictive actuator, which provides the 
actuation when exposed to a magnetic field. The rod yields predominantly axial deformations 
with minimal shear and radial stresses. 
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surrounding the Terfenol-D rods, which are preloaded by a compression bolt and a spring washer. 

The Terfenol rods serve as the active component, which provide the output displacement when 

excited by a magnetic field. The coil factor of the coil encapsulating the drive rod of the actuator 

was specified the manufacturer as 5.09×103/m. The actuator, within the recommended operating 

range, provided a 100 µm stroke under 7.07 A recommended peak excitation current over a 

frequency range up to 1250 Hz.  

The reported experimental studies on characterization of output-input properties of a 

magnetostrictive actuators have generally employed an LVDT for measurement of the actuator 

displacement [e.g.,11,65]. In [65], the author observed a lack of repeatability of measurement, 

which was believed to be caused by a drift either in the LVDT sensor fixture or in the material. In 

this study, a capacitive non-contacting position sensor (Lion Precision-model C23-C 250 µm 

range) was acquired for accurate measurement of the actuator displacement. The sensitivity of the 

sensor was 80 mV/µm with bandwidth of 15000 Hz and resolution of 35.53 nm. The sensor was 

calibrated considering 250 µm static gap with respect to the actuator head, where 125 µm was 

considered as the near gap and 375 µm as the far gap. The default output voltage of the sensor 

within the calibrated range was ± 10 VDC corresponding to the extreme near and far positions, 

while the output corresponding to the static position of 250 µm was 0 V.  

A fixture was designed to ensure adequately aligned actuator and the sensor. Figure 2.2 

illustrates pictorial views of the fixture designed to facilitate measurement of output displacement 

of the actuator. The capacitive displacement sensor is installed within a fixed block (3), while the 

actuator is supported on two pillow blocks (2). All these components were fixed to a flat aluminum 

plate (1), as illustrated in Figure 2.2. A power amplifier (model LVC 2016, AETECHRON) was 

employed to generate the desired input currents of various amplitudes and frequencies. The 
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excitation signal was synthesized in the ControlDesk platform and applied to the power amplifier 

in order to generate the desired excitation current to the drive coil of the actuator (Figure 2.3). The 

actuator displacement response and the applied input current were acquired in the ControlDesk 

platform at a sampling frequency of 50,000 Hz to evaluate output displacement-input current 

characteristics of the actuator.  

3.3.2 Experiment design 

An experiment was designed to study the effects of main factors on the hysteresis properties 

of the actuator, including the mechanical load, input bias, excitation frequency and magnitude, and 

type of excitation current. The experiment design involved four series of measurements with an 

objective to study: (i) the effects of input amplitude; (ii) the effects of magnetic bias; (iii) the 

influence of the input waveform; and (iv) the effect of mechanical load on the output-input 

characteristics. The experiment was designed to characterize the effects of these input parameters 

over a range of input frequencies up to 250 Hz. Inputs at higher frequencies up to 3,200 Hz were 

also applied to study the frequency response characteristics of the actuator and the effects of a 

mechanical load. Under a harmonic input current, the magnetic field is directly related to the 

applied current I such that: 

PMbiasoo HIftπIktH ++2⋅= ))sin(()(  (2.2) 

where Io is amplitude of input current, f is frequency of the input, ok =nc/Lo, is the coil factor and 

Ibias is the bias in the input current, when considered. HPM in the above equation is the magnetic 

field bias attributed to permanent magnets used in the actuator design. For the selected actuator, 

HPM  was estimated experimentally as 44.1 kA/m. 

  A complex harmonic waveform was also synthesized upon superposition of two harmonic 

signals, to study the major and minor hysteresis loops, such that: 
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biasoACoAC ItfπItfπItI +6+2= 21 )()sin()(  (2.3) 

where IAC1 is the amplitude of the harmonic input at the chosen fundamental frequency fo, and IAC2 

is the amplitude corresponding to the frequency 3 times the fundamental frequency. Both the 

applied input current and output displacement data were acquired for subsequent analysis to fully 

characterize the minor and major hysteresis loops under different inputs. As an example, Figure 

2.4 shows the measured output-input properties of the magnetostrictive actuator under an input 

current of 7 A amplitude at an excitation frequency of 10 Hz and 44.1 kA/m magnetic field bias. 

The results clearly show strong presence for asymmetric hysteresis nonlinearity as well as output 

displacement saturation. The hysteresis loops will be quantified either by the peak percent 

hysteresis, the peak hysteresis magnitude HP normalized by peak-to-peak displacement MP (Figure 

2.4), or by the area bounded by the hysteresis loop. 
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Figure 2.2: Pictorial views of the magnetostrictive actuator and sensor support fixture. 

  

 

Figure 2.3: Experimental platform. 

   3 1 2 
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at a constant frequency of 10 Hz. The figure also shows the time-history of the actuator 

displacement. 

 
Figure 2.5: Measured output-input characteristics of the magnetostrictive actuator under a 
harmonic current excitation with linearly increasing current (f=10 Hz). 
 
 

  

Figure 2.6: Time histories of: (a) Excitation current; and (b) Actuator displacement (f=10 Hz). 
 

The output-input characteristics of the actuator were subsequently acquired under different 

constant amplitude currents (1, 2, 3, 4, 5, 6, 7, and 8 A) at a frequency 10 Hz and a magnetic bias 
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of 44.1 kA/m (Hbias=HPM). The results are presented in Figure 2.7. Asymmetry of the hysteresis 

loops and output saturation are evident under excitations exceeding 2 A. The output asymmetry 

becomes significant at amplitudes exceeding 5 A. The time histories of the output displacement 

are also illustrated in Figure 2.8 over 1 complete cycle under different amplitudes of the input 

current.  

Subsequent measurements were performed under harmonic inputs at different discrete 

frequencies in the 10 to 250 Hz frequency range. The output-input characteristics of the actuator 

subject to 5 different input amplitudes (2, 4, 5, 6 and 8 A) in the 10 to 250 Hz frequency range are 

illustrated in Figure 2.9. The results are presented for the constant magnetic bias of 44.1 kA/m, 

and different discrete excitation frequencies, namely, 10, 25, 50, 100, 200 and 250 Hz. The results 

show that the actuator hysteresis increases with increase in the excitation frequency of the applied 

input current, which has also been reported in other studies [7,8]. The responses within the 

frequency range considered in the measurements illustrate symmetric output-input loops under 

current amplitude of 2 A, while the output exhibits significant asymmetry at current of 4 A or 

greater. 

The measurements acquired under the two extreme amplitudes, 2 A and 8 A, were selected 

to study the effects of the input rate on the hysteresis nonlinearities of the actuator. The area 

bounded by the hysteresis loops corresponding to these two amplitudes applied in the 10 to 250 

Hz frequency range are evaluated and presented in Figures 2.10 (a) and 2.10 (b), as a function of 

the input frequency. Although, the output-input characteristics under the higher amplitude of 8 A 

are highly asymmetric, the area bounded the hysteresis loops shows nearly linear relation with the 

excitation frequency. Davino et al. [66] has also shown nearly linear energy loss of the actuator 

with the excitation frequency. 
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Figure 2.7: Measured hysteresis loops illustrating output asymmetry and saturation nonlinearities 
of the magnetostrictive actuator under different current amplitudes ranging from 1 to 9 A. 
 

  
 
 

Figure 2.8: Time histories of output displacement measured under different amplitudes of applied 
current at frequency of 10 Hz (Hbias=44.1 kA/m). 
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Figure 2.9: Measured hysteresis loops relating output displacement response of the 
magnetostrictive actuator to the harmonic input current at different frequencies in the 10 to 250 
Hz range: (a) Io=2 A; (b) Io = 4 A; (c) Io = 5 A; (d) Io = 6; and (e) Io = 8 A (HBias=44.1 kA/m). 

  
Figure 2.10: Area bounded by the hysteresis loops of the magnetostrictive actuator under harmonic 
excitations at different frequencies in the 10 to 250 Hz range: (a) Io =2 A; and (b) Io = 8 A 
(Bias=44.1 kA/m). 
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input current under both the complex harmonic waveforms. The results show substantial 

differences in the peak-peak displacement amplitudes of the minor loops under the two excitations, 

which is attributed to the output saturation.  

 

Figure 2.11: Measured output-input characteristics under the complex harmonic input current of 
the form, I(t) = 4 sin(2πfot) + 3 sin(6πfot), illustrating major and minor hysteresis loops.  
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input characteristics of the actuator subject to three different complex harmonic currents with fo= 

100 Hz. The results clearly show significantly greater widths of the minor hysteresis loops 

compared to those observed under inputs with fo= 20 Hz. The results thus suggest increase in the 
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simple harmonic inputs (Figure 2.9).  

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
-50

-40

-30

-20

-10

0

10

20

30

40

50

I  C  (A)

 
 

 

 

26 µm

18 µm

Minor Hysteresis
Loops

D
is

pl
ac

em
en

t (
µm

) 

Input Current (A) 
 

4.25 A 

4.25 A 

 

52 
  



 

  

Figure 2.12: Output-input characteristics of the magnetostrictive actuator illustrating different 
minor hysteresis loops under three different complex harmonic inputs of the form: I(t)= 
IAC1sin(2πfot)+ IAC2 sin(6πfot), with (IAC1, IAC2 = 3, 4 A), (IAC1, IAC2 = 5, 2 A) and (IAC1, IAC2 = 4, 3 
A). 
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peak hysteresis of the minor loops, however, differs for different fundamental frequencies of the 

input. The peak percent hysteresis for each hysteresis loop was evaluated as illustrated in Figure 

2.14 (b), as a function the fundamental input frequency fo. The results show that the peak percent 

hysteresis corresponding to the minor loops increases nearly linearly with the excitation frequency 

for a given input amplitude, as it was observed for the major hysteresis loops (Figure 2.9).   

  
 
Figure 2.13: Measured hysteresis loops relating output displacement response of a 
magnetostrictive actuator with the complex harmonic input current, I (t)=IAC1 sin(2π fo t)+ IAC2 
sin(6πfot), with three different amplitudes, (IAC1, IAC2)=(5, 2), (4, 3),  and (3, 4), and fundamental 
frequency fo=20 Hz. 
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Figure 2.14: (a) Measured output-input characteristics of the actuator under complex harmonic 
input at different fundamental frequencies (fo=20, 50 and 100 Hz) illustrating two sets of minor 
hysteresis loops ‘A’ and ‘B’; and (b) The peak percent hysteresis of the minor hysteresis loops as 
a function of the fundamental frequency, fo (    -set A;    - set B). 
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PMbiasoo HIftIktH += ))2sin(()( π  (2.4) 
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The experiments were conducting considering three different levels of total magnetic bias, 

Hbias=30, 45 and 60 kA/m and four different excitation frequencies=10, 50, 100 and 150 Hz. The 

selected bias levels also include the bias of 44.1 kA/m due to permanent magnets.   

 The output-input characteristics of the actuator subject to different combinations of bias 

and excitation frequencies are illustrates in Figure 2.15(a), (b) and (c). The results show that peak-

peak displacement and the output asymmetry are strongly affected by the magnetic bias. Increasing 

the magnetic bias limits the peak actuator displacement and yields greater output saturation, as 

seen in Figure 2.15(d). Both the peak displacement and the asymmetry, however, are not affected 

by variations in the input rate, which tends to yield greater hysteresis, as seen in Figure 2.16. The 

results suggest that increasing the bias can help reduce the hysteresis of the actuator. Selection of 

input bias would thus involve a compromise between the peak hysteresis and actuator 

displacement.  

3.4.4 Mechanical load effect  

The output-input properties of a magnetostrictive actuator have been invariably characterized in 

the absence of a mechanical load. In this study, an experiment is designed to study the effect of 

actuator load on the output-input characteristics. A compact loading fixture (mass=3.7 kg) was 

designed with four guiding rods, placed between two aluminum plates. The loading fixture could 

be easily fixed to the main fixture to facilitate measurement of output displacement of the actuator 

under the influence of different mechanical loads. For this purpose, the actuator fixture was 

oriented vertically, as shown in Figure 2.17. The figure shows the load-support fixture attached to 

the main fixture. The figure also shows an accelerometer attached to the load for measurement of 

acceleration.  
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Figure 2.15: Influence of variations in the excitation frequency f on the output-input characteristics 
of the magnetostrictive actuator under different levels of magnetic bias (Hbias): (a) 30 kA/m; (b) 45 
kA/m; (c) 60 kA/m; and (d) Comparison of the measured responses under three bias levels.  
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Figure 2.16: Variations in peak percent hysteresis in the displacement responses as a function of 
frequency of the applied input at three different levels of magnetic bias.  
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vertical motion of the loaded actuator. In order to investigate the effective stiffness, the actuator 

was loaded with three different lead blocks weighting 5.5, 11 and 16.5 kg, while the static position 

of the actuator was measured with load-support fixture fastened to the drive rod of the actuator. 

The static stiffness of the actuator was subsequently obtained from the static load-deflection 

characteristics, shown in Figure 2.18. The measured data shows linear stiffness of 33.597 MN/m 

of the actuator. Considering the Terfenol-D rods mass of 112.2 g (specified by the manufacturer), 

the natural frequency of the actuator was obtained as 2756.2 Hz. 
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Figure 2.17: A pictorial view of magnetostrictive actuator with the mechanical loads. 
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Figure 2.18: Static load-deflection characteristic of the magnetostrictive actuator. 

The effective damping ratio of the actuator was also estimated through measurements of 

its response to a step change in the current. The measured displacement responses revealed nearly 

exponential decay, as seen in Figure 2.19 under a 1 A step input. The effective damping was 

subsequently, estimated using the logarithmic decrement method [67]. It should be noted that the 

measurement were initially performed with unloaded actuator, although the actuator rod was 

coupled to an aluminum head (11 g) with a nut (39 g). The effective damping ratio of the unloaded 

actuator was estimated as, ζ=0.12, while the measured data revealed an oscillation frequency of 

14.362 kHz. The actuator natural frequency was subsequently obtained as 2,300 Hz. This 

frequency would correspond to Terfenol-D rods mass 112.45, which is quiet close to that specified 

by the manufacturer (111.2 g). The measurements were repeated under 0.5, 0.75 and 1.5 A step 

inputs. The analysis of the measured data revealed very similar values of damping coefficients and 

natural frequency.      
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Figure 2.19: Time history of the displacement response of the unloaded actuator to 1 A step current. 

  The displacement responses of the unloaded as well as loaded actuator were measured under 

different amplitudes of harmonic currents. The measurements were performed over a wide 

frequency range, up to 3,100 Hz in order to characterize frequency response of the actuator with 

and without the mechanical loads. Figure 2.20 illustrates the output-input characteristics of the 

unloaded actuator as well as loaded actuator under 1.0 A harmonic current at different frequencies. 

The results are presented for the actuator without the load, where the effective mass on the actuator 

is due to Terfenol-D rods, the head and the nut (162 g), as shown in Figure 2.20 (a). Figure 2.20 

(b), (c) and (d) illustrate the output-input properties under additional mechanical loads of 3.7, 9.2 

and 14.7 kg, respectively. The results clearly show higher displacement amplitude at higher 

frequencies for all the load conditions. Furthermore, the area bounded by the output-input loops 

increases with the frequency and tends to be substantially high at higher frequencies. The peak 

displacement response also tends to be higher with increasing mass. 
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 From the results, it is evident that the output-input characteristics of the actuator are most 

substantially affected by the actuator load. This is attributable to dynamic properties of the 

actuator. Increasing the mass reduces the actuator natural frequency and alters its dynamic 

response, as seen from the measured frequency responses of the unloaded as well as the loaded 

actuators in Figure 2.21. The figures show the variation in the peak displacement response, 

normalized with respect to that measured at a low frequency of 40 Hz, with the excitation 

frequency. The output-input loops in Figure 2.20 show substantial rotations of the loops, at higher 

frequencies, which are attributed to the phase between the displacement response and the 

excitation current.  

  The effects observed in Figure 2.20 cannot be attributed to hysteresis of the Terfenol-D rod 

actuator but to the inertia. These results suggest that output-input relations of the actuator need to 

be characterized considering the inertia effect apart from the material hysteresis. This would also 

hold for an unloaded actuator, where the effective mass of the rod also contributes to the perceived 

hysteresis.      
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Figure 2.20: The output-input characteristics of the unloaded and the loaded actuator under 1.0 A 
harmonic current at different frequencies. 

  

 

 

  
Figure 2.21: The normalized output displacement of the unloaded and loaded actuator under 1.0 A 
harmonic current at different frequencies.  
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for compensating the hysteresis effect. The majority of the reported approaches are inversion based 

compensation approaches [57,42].  

There are several models available for describing hysteresis behaviour, such as the Preisach 

model, the Prandtl-Ishlinskii (PI) model, the Bouc-Wen model and the Duhem model. Among 

them, the PI model is attractive due to its simplicity and suitability to construct feedforward 

compensator for the purpose of mitigating the hysteresis effect. A PI model could be constructed 

through superposition of two different operators. One is the stop operator-based Prandtl-Ishlinskii 

(SPI) model, and another is the play operator-based Prandtl-Ishlinskii (PPI) model. The SPI model, 

which was formulated for describing elastoplasticity hysteresis behavior of materials [26], yields 

concave clockwise hysteresis loops. However, the PPI model yields convex counterclockwise 

hysteresis loops. Thus, it makes the SPI model a potential feedforward compensator if proper 

weights and thresholds can be analytically derived. Kuhnen and Janocha [74] attempted a SPI 

model to compensate for hysteresis described by a PPI model, where the thresholds and weights 

of the SPI model were calculated in an adaptive manner based on an error function. In this paper, 

the PPI model is utilized to describe the hysteresis behavior of the piezoceramic actuator. The 

thresholds and the weights of the SPI model are subsequently analytically derived for the first time 

in the literature, which constitutes the main contribution of the paper. The effectiveness of the SPI 

model in compensating the hysteresis non-linearity is investigated in the laboratory by 

implementing the SPI model with a piezo micro-positioning stage in a feedforward manner. It 

should be noted that because the inverse of the PPI model and the derived SPI model serve the 

same role as a compensator of the PPI model, the derived SPI model can be thought as an 

alternative to the inverse compensation. 
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where np is the number of the play operators of thresholds, Rrrr n =<<<= ...0 10 , and p(ri) are the 

weights of  the density function, defined as:  
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Figure 3.1: Input-output relationship of the play hysteresis operator. 

 

4.2.2 The SPI model 

The Prandtl-Ishlinskii model has also be constructed using the stop operators for describing 

hysteresis nonlinearity in materials [26]. Unlike the PPI model, the stop operator-based Prandtl-

Ishlinskii (SPI) model exhibits clockwise hysteresis loops, attribute to the properties of the stop 

operator. Similar to the play operator, the output of a stop operator is a function of its threshold s 

and the input v. The input-output relationship of a stop operator is illustrated in Figure 3.2. The 

output of the stop operator for the input v(t)ϵC [0, T] can be expressed as:  
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for 1+≤< ii ttt ; 10 +≤≤ li , with: 

)),max(,min( vsses −=  (3.8) 

where Tttt l =<<<= ...0 10  is a partition of [0,T] such that the function ],0[)( TCtv ∈ , ],0[ TC  denotes 

the space of continuous function on [0, T], is monotone on each of the subintervals [ti, ti+1]. 

Some of the essential properties of the stop operator can be described as follows: 

• Clockwise operator: The stop operator yields clockwise input-output curves, while the play 
operator results in counter-clockwise input-output curves; 

 

• Monotonicity: The stop operator sE is a monotone operator. For a given input v(t)ϵC[0, T], the 
following property holds [16] : 

0))0()())(0]([)]([( ≥−− vTvvETvE ss  (3.9) 

• Lipschitz-continuity: For a given input v(t)ϵC[0, T], the stop operator is Lipschitz continuous 
[26]. 

 

Figure 3.2: Input-output relationship of the play hysteresis operator. 
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loops generated by the Prandtl-Ishlinskii model. The initial loading curve of the PPI model can be 

expressed as: 

 where r ϵ [r0, pnr ], and r0=0, pn is the number of the play operator. The function pφ : R+ → R+ is 

convex and increasing function. In order to obtain the parameters of the compensator, the initial 

loading curve sφ  of the stop-operator based Prandtl-Ishlinskii model is defined as:  

∑
=

=
sn

i
iis wssr

0

),min()(φ  (3.15) 

where sφ : R+ → R+ is concave and increasing function, and ns is the number of the stop operator. 

s ϵ[0, s0], s0 is set to be a large positive real number, satisfying s0> max(v(t)), to ensure strict 

monotonicity of the SPI model.  

 

As shown in Figure 3.5 (a) and (b), the initial loading curve of the SPI model sφ  is concave, 

while the initial loading curve of the PPI model rφ  is convex. Owing to the convex initial loading 

curve the hysteresis loops resulting from the PPI model would be counter clockwise loops. On the 

other hand, hysteresis loops resulting from the SPI model is clockwise loops. This denotes that a 

composition between the SPI and PPI models could yield identity in input-output curves with 

proper thresholds and weights and the initial loading curve of them should be also symmetric about 

the line y = x, shown in Figure 3.5 (c). 

Figure 3.6 shows the relationship of the initial loading curves between the SPI model and the PPI 

model. In order to obtain the proper weights and thresholds of the SPI model which can effectively 

∑
=

−=
pn

i
iip prrr

0

),0max()(φ  (3.14) 
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mitigate the hysteresis non-linearity described by the PPI model, the thresholds and the initial 

loading curve of the SPI model must satisfy: 

)( iri rs φ=  (3.16) 

iis rs =)(φ  (3.17) 

                   

                                        (a)                            (b) 

 
 

 

Figure 3.5: (a) Initial loading curve of the stop operator based Prandtl-Ishlinskii (SPI) model SPI, 
(b) Initial loading curves of the stop operator based Prandtl-Ishlinskii (PPI) model, (c) 
Composition of the initial loading curves of the SPI and PPI models to achieve perfect 
compensation.  
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Figure 3.6: The initial loading curves of the SPI and PPI models. 

According to equations (3.16) and (3.17) for any point B(rk, rφ ) on the initial loading curve of 

the PPI, it can always find a point C(sk, sφ ) on the initial loading curve of the SPI model. 

Furthermore, points C and B are symmetric about the line y=x, and OA=CD and AB=OD. The 

thresholds of the SPI model may be related to those of the PPI model in the following manner: 

011 prs =   

021122 )( prprrs +−=  

032231133 )()( prprrprrs +−+−=  

             02211 ...)()( prprrprrs nnnn ++−+−=  

(3.18) 

Then the weights if the SPI model wi can be calculated according to (3.17) as: 

11131211101 ...... rwswswswswsws nk =+++++++   

22232221102 ...... rwswswswswsws nk =+++++++  
 

 

33333221103 ...... rwswswswswsws nk =+++++++
 

 



 
knkkkk rwswswswswsws =+++++++ ......3322110
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nnnkkn rwswswswswsws =+++++++ ......3322110

 
 

Equation set (3.19) includes n +1 unknown variable, while the number of equations is n. In order 

to solve Equation (3.19) and to obtain the weights wn, the weight w0 should be solved first. For this 

purpose, an additional point is taken on the initial loading curve of the SPI model as (sn+1, sφ (sn+1)). 

By letting sn+1= ρ  + sn with ρ  being a positive real number, it can be shown thatξ = sφ  (sn+1).  

According to (3.16) and (3.17):  

ρξξξξ +=−++−++−+ nnnkk sprprprp )(...)(...)( 110  (3.20) 

ξρ =++++++ nnkkn wswswsws ......)( 110  (3.21) 

Equations (3.19) and (3.21): 

nrw −= ξρ 0  (3.22) 

Equation (3.20) can be expressed as: 

ρξξξξ +=−+−+−++−+−++− nnnkknknnnnn sprprrprprrprprpr )()()(...)()()( 11100  
 

(3.23) 

Then it can be concluded from (3.22) and (3.23) yields w0:  

nk pppp
w

......
1

10
0 ++++
=

 
(3.24) 

Then weights wi of the SPI model can be easily obtained by solving Equation (3.19).  

Remark: It should be noted that an inverse Prandtl-Ishlinskii model formulation was proposed in 

[12] on the basis of the initial loading curve. The proposed stop-based model is comparable with 

the inverse model. Considering that the inverse and SPI models serve as compensators to cancel 

the effect of hysteresis, the initial loading curve of the SPI model must be same as that of the 
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Figure 3.7: The experimental platform. 

The measurements of the actuator displacement response were performed under two different 

excitations. These included: 

1. A harmonic excitation at a low frequency of 1 Hz, v(t) = 30sin(2πt) + 40 

2. A complex harmonic excitation, v(t) = 4.16sin(πt) + 29.11sin(2πt) + 37.9. 

The measured signals were analysed to characterise the hysteresis effects of the actuator, where 

the first excitation was selected to identify the major loop input-output property of the actuator, 

while the complex harmonic excitation was chosen to measure the major as well as minor 

hysteresis loops. 

4.4.2 Hysteresis modeling  

The hysteresis non-linearity of the piezoceramic actuator can be described by the PPI model. The 

model is formulated using the threshold and density function of the following forms: 

iri σ=  (3.25) 

i
i erp βα −=)(

 
(3.26) 
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where βα ,  and σ  are positive constants. Ten play operators (np = 10) were chosen to formulate 

the PPI model. The model parameters, X = { βα , , σ , p0}, were identified through minimization 

of an error sum-squared function by using MATLAB optimization toolbox, subject to the 

following constrains:  

βα , , σ , p0>0 (3.27) 

The identified parameters of the PPI model by using the input-output data of the piezoceramic 

actuator were found to be: σ = 3.548, α = 0.0383, β = 0.1206 and p0 = 0.2567. The validity of the 

PPI model is investigated by comparing the model responses and the laboratory-measured data of 

the piezoceramic actuator. These comparisons under the chosen input voltages are shown in Figure 

3.8 (a) and (b). The results clearly show that the PPI model can effectively characterize the minor 

as well as major hysteresis loops of the piezoceramic actuator. 

4.4.3 Compensation of hysteresis nonlinearity using SPI model  

In this section, the SPI model is utilised as a feedforward compensator to compensate for the 

hysteresis non-linearity. The parameters of the SPI model are derived based on the obtained 

thresholds (3.25) and weights (3.26) of the PPI model that were presented in the previous section. 

The weights ai and the thresholds si of the SPI model are obtained using (3.18) and (3.19), , and 

(3.24) as: 2.146, 0.4544, 0.3230, 0.2397, 0.1831, 0.1444, 0.1156, 0.0941, 0.0774, 0.0642, 0.0543 

and 100, 0.9108, 1.9418, 3.0797, 4.3122, 5.6285, 7.0194, 8.4762, 9.9915, 11.5587, 13.1716. 

Figure 3.9 (a) and Figure 3.9 (b) show the outputs of the SPI model applied to the input amplifier 

of the piezoceramic actuator through the output board and D/A converter. It should be noted that 

this output is further amplified by the voltage amplifier (gain = 10). The measured input-output 

characteristics of the piezoceramic actuator with the SPI model are illustrated in Figure 3.10 for 
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the two selected inputs. The figures show inputs in terms of the desired input displacement, v, as 

seen in Figure 3.3. The experimental results illustrate that the SPI model can serve as an effective 

feedforward hysteresis compensator for the piezoceramic actuator.  

 

 
(a) 

 
(b) 

Figure 3.8: Comparisons between the measured displacement responses with the results derived 
from the PPI model under two selected inputs, (a) sinusoidal excitation (b) complex harmonic 
excitation. 

 
(a) 

 
(b) 

Figure 3.9: The outputs of the SPI model under two selected inputs, (a) sinusoidal excitation (b) 
complex harmonic excitation. 
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nonlinearities further depend upon the excitation bias, amplitude and frequency in a highly 

complex manner.  

The presence of hysteresis nonlinearities poses challenges in realizing precise micro/nano 

positioning performance for such actuators. The oscillations in the actuators’ responses and thus 

the positioning errors, and potential instabilities of the closed-loop actuation systems have been 

widely attributed to the hysteresis nonlinearity [5]. The characterization of output-input properties 

of smart actuators is thus considered vital for enhancing the understanding of hysteresis 

nonlinearities and for developing effective model-based hysteresis compensation methods [5,78]. 

The response properties of the magnetostrictive actuators have been characterized in a few studies 

under different inputs. These have shown that the hysteresis and output-input properties of such 

actuators are strongly dependent upon amplitude, bias and frequency of the input.  

The output-input properties of magnetostrictive actuators tend to be asymmetric, and 

exhibit greater hysteresis and output saturation under moderate to high amplitude excitations 

[11,12,79,80]. For example, Calkins et al. [11] characterized the hysteresis nonlinearities of a 

magnetostrictive actuator comprising a 115 mm long and 12.7 mm diameter Terfenol-D rod, 

subject to different magnetic fields up to 5.6 kA/m. The results of the study revealed significant 

output saturation nonlinearity under large amplitude excitations compared to that observed under 

low amplitude excitations. Studies reporting measured output-input characteristics of 

magnetostrictive actuators have shown that hysteresis nonlinearities are strongly dependent on the 

rate of input beyond 5-10 Hz [7,8]. Tan and Baras [7] characterized the hysteresis of a 

magnetostrictive actuator comprising a 51.3 mm long Terfenol-D rod and permanent magnets, 

causing a bias of 1.54×104 A/m, under inputs in the 10-300 Hz frequency range. The measured 
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data obtained under harmonic excitations (amplitude = 0.8A; bias = -0.1A) revealed asymmetry in 

the output about the input and increase in hysteresis with increasing rate of the applied input.  

Stuebner et al. [13] measured the effect of the input bias on the hysteresis properties of a 

magnetostrictive actuator by applying inputs of identical amplitude (12.5 kA/m) but three different 

bias levels (25, 50 and 75 kA/m). The amplitudes of output displacement were observed to be 50% 

and 75% lower, respectively, in the presence of 50 and 75 kA/m bias compared to that measured 

under the lower bias of 25 kA/m. The measured data revealed not only substantially lower output 

displacement in the presence of input bias but also lower hysteresis and higher asymmetry in the 

output-input characteristics with increasing bias. The reported studies suggest coupled effects of 

input bias, amplitude and frequency on the hysteresis and output saturation nonlinearities of the 

magnetostrictive actuators, although most of the reported studies have mostly investigated the 

effects of only one of the factors, namely, the input amplitude [5,12,64], bias [13] or frequency 

[7,8]. A study of the output-input properties of the magnetostrictive actuator under varying 

amplitude, bias and frequency of the input may provide a better understanding of the hysteresis 

and saturation nonlinearities of the actuator. 

A thorough characterization of the hysteresis and saturation nonlinearities is vital for 

developing hysteresis models that may be applied for compensation of the nonlinear effects so as 

to achieve enhanced micro-positioning and tracking performance of the actuation system. A 

number of hysteresis models have been proposed to characterize hysteresis of smart material 

actuators, which could be classified into physics-based and phenomenological hysteresis models. 

The physics-based models employ fundamental stress-strain and energy principles to describe 

hysteresis behavior of piezoceramic and magnetostrictive actuators [17,79,81,82,83]. The 

phenomenological models such as Preisach and Prandtl-Ishlinskii models employ a summation of 
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weighted hysteresis operators to describe hysteresis of smart materials and actuators. The classical 

Preisach and Prandtl-Ishlinskii models, however, ignore the effects of input bias and rate on the 

hysteresis [89,84,83]. A number of such operator based models, however, have evolved over the 

past two decades that can effectively account for both rate-dependency and asymmetry effects in 

hysteresis. The dependence of the hysteresis on the rate of input has been widely characterized 

through formulations and application of dynamic density functions in the classical Preisach and 

Prandtl-Ishlinskii models. For instance, Mayergoyz [30] and Ben Mrad et al. [47] proposed 

Preisach models with dynamic density functions to describe rate-dependent hysteresis of 

magnetostrictive materials and piezoceramic actuators. Davino et al. [8] and Tan and Baras [7] 

proposed different linear time-invariant dynamic systems coupled with the classical Preisach 

model to describe the rate-dependent hysteresis properties of magnetostrictive actuators as well as 

asymmetric output-input characteristics of the actuator.  

Output saturation and asymmetry effects are widely observed in magnetostrictive actuators 

under moderate and high amplitude inputs or under inputs with a bias. Smith [64] employed a 

Preisach model to describe saturation and hysteresis nonlinearities observed in a magnetostrictive 

actuator mounted on a cantilever beam. In [5], Visone characterized the output saturation and 

asymmetry effects of a magnetostrictive actuator using the Preisach model under a complex 

harmonic input. A modified Prandtl-Ishlinskii model was suggested by Kuhnen [12] to describe 

asymmetric major and minor hysteresis loops of a magnetostrictive actuator by applying a complex 

harmonic input current.  

A few studies have proposed generalized Prandtl-Ishlinskii models to describe symmetric 

as well as asymmetric rate-independent and rate-dependent hysteresis of different smart material 

actuators. Drinčić et al. [61] employed an alternate envelope function in the play operators to 
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formulate a generalized Prandtl-Ishlinskii model to account for saturated symmetric hysteresis 

nonlinearity of a magnetostrictive actuator. Al Janaideh et al. [9,85] proposed a rate-dependent 

play operator and a dynamic density function for the Prandtl-Ishlinskii model to describe the input 

rate effect on the hysteresis nonlinearity of a piezoceramic actuator. Dissimilar envelope functions 

of the play operators during increasing and decreasing inputs were further proposed to describe 

output asymmetry and saturation nonlinearities of a magnetostrictive actuator [86]. The 

implementation of two different envelope functions corresponding to increasing and decreasing 

inputs, however, could cause a discontinuity in the output. Unlike the Preisach model, the Prandtl-

Ishlinskii model is analytically invertible due to continuity of the play operators. The Prandtl-

Ishlinskii model is thus considered meritorious for formulating an analytical inverse model that 

could be applied to achieve real-time hysteresis compensation in an efficient manner [63]. 

The primary aim of this study is to develop a Prandtl-Ishlinskii model capable of describing 

the hysteresis nonlinearities under a broad range of excitation amplitudes and frequencies. A 

laboratory experiment was thus designed to characterize the output-input characteristics of a 

magnetostrictive actuator under simple and complex harmonic inputs of different amplitudes over 

a wide range of frequencies. A memoryless function is proposed and integrated to a rate-dependent 

Prandtl-Ishlinskii model in order to describe the output asymmetry and saturation nonlinearities 

together with rate-dependent hysteresis. The effectiveness of the proposed model in predicting the 

asymmetric output-input properties of the actuator together with output saturation and hysteresis 

is demonstrated through comparisons with the measured data under a wide range of inputs. The 

output of the suggested model is continuous in time and permits the formulation of an analytical 

inverse model that could be applied for compensation of rate-dependent asymmetric hysteresis 

nonlinearities. 
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amplitudes exceeding the recommended peak current of 7.07 A were used so as to capture the 

actuator properties under extreme inputs. 
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Figure 4.1: Schematic of the (a) Terfenol-D magnetostrictive actuator used in the study; and (b) 
experimental setup. 
 

The second series considered 6 magnetic bias levels in the 25 to 75 kA/m range together 

with 2.965 A harmonic excitation at the above-stated input frequencies. The selected range of the 

bias corresponds to -3.96 to 5.89 A bias in the current excitation. In the final series, a complex 

harmonic input of the form, I(t)=A1 sin(2πn1fot)+A2 sin(2πn2fot), was applied for characterizing the 

major- and minor-loop hysteresis, where fo is the fundamental frequency, A1 = 2 A and A2 = 3 A 

are the magnitudes of the two harmonic components, and n1=2.5 and n2=1 are the respective 

frequency factors. The measured data were analyzed to study the effects of each input factor on 

the peak-peak output displacement, output saturation and the hysteresis.  

5.2.2  Influence of input amplitude  

The output-input characteristics of the actuator corresponding to different amplitudes of input 

current are illustrated in Figure 4.2. The results are presented for excitations at a constant frequency 

of 10 Hz, and a constant magnetic bias of 44.1 kA/m. Asymmetry of the hysteresis loops and 

output saturation are evident under excitations exceeding 2 A. The actuator responses to 

excitations exceeding 3 A show substantial degree of asymmetry and output saturation. While the 

displacement response is nearly symmetric under increasing and decreasing inputs up to 2 A, the 

peak displacement under increasing input tends to be lower than that under decreasing input at 

current inputs exceeding 2 A. The results suggest that the asymmetry in the output increases with 

the excitation magnitude. The difference between the peak displacement under increasing and 

decreasing inputs with respect to peak-peak output displacement is near 6.4 % at 3 A and it 

increases to 17.31 % at 9 A. The results also show greater degree of output saturation under higher 
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excitation current. A few reported experimental studies on magnetostrictive actuators and 

transducers, have also shown output asymmetry and saturation under moderate to high inputs 

[5,12,79,78]. 

 
Figure 4.2: Variations in the actuator displacement response under different amplitudes of 
harmonic current excitation: (a) 1, 2 and 3 A; (b) 4, 5 and 6 A; and (c) 7, 8 and 9 A (f= 10 Hz; 
magnetic bias= 44.1 kA/m). 

 

The measured data were further analyzed to study the influence of the input amplitude on 

the output-input characteristics in terms of peak-to-peak output displacement and the area bounded 

by the hysteresis loop, as shown in Figure 4.3 (a) and (b). Figure 4.3 (a) also illustrates the rate of 

change of peak-peak displacement with respect to the peak-peak input current, which defines the 

mean displacement sensitivity of the actuator. The results suggest nearly linear increase in the 
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displacement with current in the 3 to 6 A range. The displacement sensitivity, however, is lower 

at currents exceeding 5 A, which can be mostly attributed to the output saturation of the actuator. 

Low current excitations also yield lower sensitivity that is attributed to lower permeability of the 

Terfenol-D material at these levels [1,66,76]. Similar trend is also evident in variations the area of 

the hysteresis loop with increasing current, as shown in Figure 4.3 (b), which relates to the energy 

loss attributed to hysteresis of the magnetostrictive material [76]. The results suggest increasing 

hysteresis with increasing current amplitudes, as it is also seen in Figure 4.2. 

 
Amplitude (A) 

(a) 

 
         Amplitude (A) 

       (b) 

Figure 4.3: Influence of variations in the applied current amplitude on: (a) peak-peak output 
displacement and rate of change of the peak-peak displacement with respect to peak-peak current; 
and (b) the area bounded by the hysteresis loop (f=10 Hz).  

 

5.2.3 Influence of rate of input   

The output-input characteristics of the actuator corresponding to two different input amplitudes 

(3 A and 7 A) in the 10 to 200 Hz frequency range are illustrated in Figure 4.4 (a) and (b), 

respectively. The results are presented for the constant magnetic bias of 44.1 kA/m and different 

discrete excitation frequencies, namely, 10, 25, 50, 100, 150 and 200 Hz. The results show 
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increasing hysteresis with increasing excitation frequency for both the input amplitudes, which has 

also been reported in other studies [7,12]. The responses to 3 A excitation show relatively lower 

output asymmetry and saturation, while those under 7 A excitation show significantly greater 

asymmetry and saturation. The peak displacement amplitude in each excitation case, however, 

remains nearly constant, irrespective of the excitation frequency, as seen in Figure 4.5(a).   

  
Figure 4.4: Measured hysteresis loops relating output displacement response of the 
magnetostrictive actuator under harmonic excitations at different frequencies in the 10-200 Hz 
range: (a) input current=3 A; and (b) input current = 7 A (Bias=44.1 kA/m). 
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Figure 4.5: Effects of excitation frequency on: (a) the peak-peak displacement response; and (b) 
the area bounded by the hysteresis loop.  

 

The results in Figure 4.3 and Figure 4.4  suggest that for the given bias level, the output asymmetry 

and saturation are mostly affected by the input amplitude, while the effect of input frequency is 

nearly negligible. The hysteresis of the material, however, is strongly dependent upon the 

excitation frequency, as seen from the variations in the area of the hysteresis loop in Figure 4.5 

(b), apart from the input amplitude. Unlike the input amplitude effect, the hysteresis loop area 

increases nearly linearly with the excitation frequency (r2=0.99) for a given input amplitude, while 

it tends to be higher under the higher input current. These suggest strong dependence of the 

hysteresis on both the excitation magnitude and the frequency.  

5.2.4 Influence of input bias 

The effect of input bias on the actuator response is investigated by applying biased input currents, 

such that Ib(t)=Io  sin(2πft)+Ibias, where Ibias is the input bias. The bias levels are selected by 

considering the bias in the magnetic field strength H applied to the actuator coils, which is related 

to the applied current in the following manner [7]:  
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PMbo HtIktH += )()(  (4.1) 

where ko=5.09×103 m-1 is the coil factor and HPM =44.1 kA/m is the magnetic field bias attributed 

to permanent magnets used in the actuator design. Application of the biased current permits 

variations in the magnetic field bias, such that:   

biasoo HftIktH += )2sin()( π  (4.2) 

In the above PMbiasobias HIkH += , where koIbias relates to the additional magnetic bias applied to the 

actuator. The range of total bias used in the experiment (25 to 75 kA/m) range, which correspond 

to Ibias in the -3.75 to 6.07 A range. The input current amplitude Io of 2.95 A at a frequency of 25 

Hz was considered in this series of experiments, which corresponds to field strength koIo of 15 

kA/m. 

 Figure 4.6 (a) illustrates the output-input characteristics of the actuator subject to different 

input bias. Variations in the peak-peak displacement response and the area of the hysteresis loops 

with varying Hbias are presented in Figure 4.6 (b) and (c), respectively. It is evident that a magnetic 

bias tends to shift the equilibrium position of the actuator in the direction of bias, while the 

magnitude of the shift is nonlinearly dependent upon the Hbias. Increasing the Hbias yields relatively 

lower shift compared to that observed under the lower bias, which is again attributable to saturation 

under higher current. Decreasing the Hbias also yields greater displacement amplitude and 

hysteresis, as shown in Figure 4.6 (b) and (c), receptively. The permanent magnets bias (HPM) in 

the actuator designs is generally chosen to achieve a compromise between greater displacement 

and lower hysteresis [1,2]. The results also suggest that the hysteresis characteristics of a 

magnetostrictive actuator are dependent on the Hbias apart from the input current amplitude and the 

frequency. 
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change in the rate of applied input, however, produces a notable effect on the minor loops 

hysteresis.   

   
           

  
        Time (s) 

       (b) 
Figure 4.7: (a) The output-input characteristics of the actuator illustrating minor as well as major 
hysteresis loops (fo=20 Hz; magnetic bias = 44.1 kA/m); and (b) time history of the complex 
harmonic input, I(t)=2 sin(2.5×2πfot)+ 3 sin(2πfot) applied to characterize minor hysteresis loops. 
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tangent envelop functions has been proposed, in conjunction with a rate-dependent Prandtl-

Ishlinskii model, to describe asymmetric hysteresis nonlinearities of a magnetostrictive actuator 

under increasing and decreasing inputs [87]. The proposed hyperbolic tangent functions could 

effectively describe asymmetric hysteresis and saturation effects in smart material actuators, a 

discontinuity in the output, however, may occur near input peaks due to lack of convergence of 

the envelope functions. This was observed particularly under high frequency inputs and would 

impede the formulation of an analytical inverse of the model. Alternatively, Kuhnen [12] proposed 

a memoryless function, a superposition of an array of deadband operators, to describe rate-

independent asymmetric hysteresis nonlinearity of a magnetostrictive actuator.  

The memoryless function proposed in [5,12,88] could be applied in conjunction with a 

rate-dependent Prandtl-Ishlinskii model to describe rate-dependent saturated and asymmetric 

hysteresis nonlinearities, which were evident from the measured data. Figure 4.9 (a) illustrates a 

cascade arrangement of the rate-dependent Prandtl-Ishlinskii model Π and the memoryless 

functionΛ . Analytically, the integrated Prandtl-Ishlinskii hysteresis model Ω is expressed as a 

composition of Π and Λ, such that:  

)]())[(()]()[()]([)( tvtvtvt ΠΛ=ΠΛ=Ω= ρ  (4.3) 

where ρ(t) is the output of the integrated hysteresis model Ω. 

In the above formulation, the Prandtl-Ishlinskii model Π is formulated considering superposition 

of rate-dependent play operators ))((Γ tvri 
, which are real and continuous over the interval (0,T). For 

an input v(t)∈AC(0,T), where AC represents real absolute continuous functions, the output δ(t) of 

the model Π(t), which is symmetric about the input, is expressed as [63]: 
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( )∑
=

Γ+=Π=
n

i
tvri tvatvatvt

i
1

)(0 )]([)()]([)(


δ  (4.4) 

where ai are weighting constants. The input function v(t) is considered monotone over each sub-

interval ],[ 1 jj tt − , and Tttt l =<<<= ...0 10  define the intervals. The model employs rate-

dependent play operators to characterize the rate-dependent hysteresis. The output of the rate-

dependent play operator over the interval t ∈ ],[ 1 jj tt −  may be expressed as: 

( ) ( ) )}}]([,)()(min{,)()(max{)]([ 1−Γ+−=Γ jjijjijj tvtvrtvtvrtvtv   (4.5) 

where i = 0, 1, 2, … , n, and n ∈N is an integer, and ))(( tvri  ∈AC(0,T) is the rate-dependent 

threshold function defined such that: ))((...))(())(())((0 210 tvrtvrtvrtvr n  ≤≤≤≤≤ . 

The memoryless functionΛ in (4.3) is formulated as a summation of weighted deadzone 

operators 
idJ  of different threshold di and weighting constants gi, as shown in Figure 4.9 (b) [12]. 

The weightings provide a varying slope character of the resulting function so as to characterize the 

asymmetric outputs during loading and unloading inputs together with output saturation. The 

composition of symmetric output δ(t) of the rate-dependent Prandtl-Ishlinskii model, which is 

monotone over each of the interval ],[ 1 jj tt − , with the memoryless function Λ yields the output 

ρ(t), as:     

)]([)]([)( tJctt
id

m

mi
i δδρ ∑

−=

=Λ=  (4.6) 

where 
idJ  (i=-k,…0,…k) are the deadzone operators, described as [12]: 

99 
  











<−
=
>−

=
.0}0,)(min{
,0)(
,0}0,)(max{

)]([

ii

i

ii

d

dfordt
dfort
dfordt

tJ
i

δ
δ
δ

δ  (4.7) 

Formulating a memoryless function from a large number of deadzone operators with 

different thresholds di and weightings gi provides greater flexibility in describing asymmetry in 

the outputs between the ascending and descending inputs, as well as output saturation. The 

integrated hysteresis model Ω would reduce to rate-dependent Prandtl-Ishlinskii model Π with 

symmetric rate-dependent hysteresis loops, when di =0 and gi =1.  

 

 

 

(a) 

 
(b) 

Figure 4.9: (a) A memoryless function Λd introduced to the output of the rate-dependent Prandtl-
Ishlinskii Π model to observe saturation and asymmetry effects; and (b) structure of the 
memoryless function Λd, as a superposition of weighted deadband operators. 
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5.4.1  Parameters identification  

The effectiveness of the integrated hysteresis model Ω in describing major and minor rate-

dependent hysteresis loops with asymmetry and saturation of the output is investigated considering 

simple and complex harmonic current inputs in the (10-200) Hz range. For this purpose, the 

parameters of the rate-dependent Prandtl-Ishlinskii model Π and the memoryless function Λ are 

identified on the basis of the laboratory-measured data. The measured data revealed that the area 

bounded by the output displacement-input current hysteresis loop of the magnetostrictive actuator 

is nearly linearly dependent on the excitation frequency of the applied input current [66], as 

illustrated in Figure 4.5 (b). Consequently, the play operator with a threshold function that is 

linearly related to the rate of input current would be appropriate for describing rate-dependent 

hysteresis nonlinearity, such that: 

( ) itvtvri αγ += )()(  ;   i = 1, 2,.., n (4.8) 

where γ and α are positive constants. The constant α relates to the rate-independent hysteresis effect 

that is observed at low excitations frequencies. The above threshold function has been 

implemented with a Prandtl-Ishlinskii model (4.4) to describe rate-dependent symmetric hysteresis 

nonlinearities of a magnetostrictive actuator.  

The parameter vector, X  = {di, gi, ai, α, γ}, of the integrated Prandtl-Ishlinskii model Ω is 

identified from the measured data through minimization of the sum-squared error functionΘ : 

( )∑∑∑
===

−Ω=Θ
M

m
cobob

B

b

C

c
IfmtYIfmtX

1

2

11
),,,(),,,()(



 (4.9) 

where ),,,( cob IfmtΩ  is the displacement response of the model under a given excitation 

frequency bf  and input current coI  and ),,,( cob IfmtY is the measured output displacement of 
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the magnetostrictive actuator under identical input current. The index m (m = 1, …,M) in the error 

function refers to the number of discrete data points considered in computing the error over one 

complete hysteresis loop, while indices B  and L denote the number of discrete frequencies and 

current amplitudes considered. The error minimization problem was solved considering 200 data 

points for each hysteresis loop (M=200), and two input amplitudes ( coI = 3 and 7 A) applied at 

three different excitations of frequencies ( bf  = 10, 100 and 200 Hz). The solution of the 

optimization problem was solved considering n=10 rate-dependent play operators and 17 

deadband operators.  

At first, the error minimization problem was solved considering different numbers of rate-

dependent play operators (n ranging from 2 to 15) and different starting values of the parameter 

vector. For each chosen n, different starting values of the parameters converged to similar model 

parameters. The sum-squared error, however, decreased with increasing value of n but saturated 

for n ≥8, as shown in Figure 4.10. Consequently, the model parameters were obtained using n =10. 

The validity of the resulting model was subsequently examined by comparing the model results 

with the measured data obtained under different inputs. Figure 4.11 compares the model results 

with the measured data obtained under Io= 3 A and 7 A at different frequencies (10, 100 and 200 

Hz). The model results under current of 3, 5 and 7 A, at 10 Hz are compared with the measured 

data in Figure 4.12 (a). The model response to the complex harmonic input current (fo=20 Hz) is 

also compared with the corresponding measured data in Figure 4.12 (b) to examine the model 

ability to describe minor loop hysteresis.  

102 
  



 

Figure 4.10: Variations in the norm of error with the number of the rate-dependent play operators 
(n).  

The comparisons suggest that the proposed rate-dependent asymmetric Prandtl-Ishlinskii 

model can effectively characterize the hysteresis of the magnetostrictive actuator over a wide range 

of input amplitudes and frequencies. The model effectively describes the asymmetry and saturation 

tendencies of the actuator output under input current exceeding 2 A (Figure 4.12(a)), as it was 

observed from the measured data (Figure 4.2). 
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                       Input Current (A) 
                                   (d) 

     
      Input Current (A) 

   (e) 

 
         Input Current (A) 

    (f) 
Figure 4.11: Comparisons of measured responses of the magnetostrictive actuator with those of 
the integrated Prandtl-Ishlinskii model Ω under: (a) Io=3 A at 10 Hz; (b) Io=3 A at 100; (c) Io=3 
A at 200 Hz; (d) Io=7 A at 10 Hz; (e) Io=7 A at 100 Hz; and (f) Io=7 A at 200 Hz  

 
     Input Current (A) 

      (a) 

 
 Input Current (A) 

      (b) 
Figure 4.12: Comparisons of measured responses of the magnetostrictive actuator with those of 
the integrated Prandtl-Ishlinskii model under: (a) current of 3, 5 and 7 A at 10 Hz excitation 
frequency; and (b) complex harmonic input I(t)=2 sin(2.5×2πfot)+3 sin(2πfot) (fo=20 Hz; magnetic 
bias = 44.1 kA/m). 

The model also illustrates the effect of rate of input current on major hysteresis loops, irrespective 

of the current amplitude (Figure 4.11), although some errors between the model responses and 

measured data are evident under higher current excitations. The area bounded by the major 

hysteresis loop is further derived from the model response and compared with the measured data 

under Io = 7 A at different excitation frequencies. The percent error between the area obtained from 

the model and the measured data ranged from a low of 0.12% at 10 Hz to maximum of 0.96% at 
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200 Hz. The peak percent error between the displacement response of the model and the measured 

displacement over the entire frequency range was 3.72%, which occurred at 200 Hz.  

5.4.2 Relative significance of the proposed integrated hysteresis model 

The relative significance of the proposed rate-dependent and asymmetric integrated model is 

explored by evaluating its performance in relation to: (i) the rate-independent and asymmetric 

hysteresis model proposed in [12]; and (ii) the rate-dependent Prandtl-Ishlinskii model alone. 

Consequently, the error minimization problem Figure 4.9 was solved for each model in order to 

identify the corresponding parameters. The output-input characteristics of the resulting models are 

compared in Figure 4.13 with those of the measured data obtained for the magnetostrictive actuator 

under 5 and 7 A excitations at 10, 50 and 200 Hz. The percent peak displacement error of each 

model is also obtained under 5 and 7 A inputs, as shown in Figure 4.14 (a) and (b), respectively. 

The results clearly show that the rate-independent asymmetric hysteresis model with the 

memoryless function, proposed in [12], yields substantial errors at high excitation frequencies. The 

peak error exceeds 13.5 % at 200 Hz excitation frequency. The rate-dependent Prandtl-Ishlinskii 

model, on the other hand, yields only symmetric hysteresis loops, while the peak displacement 

errors approach 9.6 % under inputs at 200 Hz.  

 Neglecting either the rate effect in the threshold of the Prandtl-Ishlinskii model or the asymmetry 

attributed to the memoryless function yields significant errors in the displacement responses of the 

magnetostrictive actuator model. It is clearly evident that implementation of the memoryless 

function to the rate-dependent Prandtl-Ishlinskii model enhances its ability to describe rate 

dependence of the asymmetric hysteresis effects in addition to the output saturation. 
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   Input Current (A) 
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         Input Current (A) 

     (e) 

 
       Input Current (A) 
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      Input Current (A) 

   (h) 

 
     Input Current (A) 

   (i) 
Figure 4.13: Measured responses at amplitudes of 5 and 7 A under 10, 50 and 200 Hz compared 
with those predicted from the: (a)-(c) rate-dependent symmetric Prandtl-Ishlinskii model, (d)-(f) 
asymmetric rate-independent Prandtl-Ishlinskii model [12]; and (g)-(i) the integrated Prandtl-
Ishlinskii model Ω.    

  
Figure 4.14: Comparisons of percent peak displacement error between the measured response from 
the actuator and the observed from the rate-dependent symmetric model Π, rate-independent 
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displacement [e.g.,1,7,8]. The hysteresis nonlinearities tend to be far more significant under high 

rates of inputs, which are known to cause inaccuracies and oscillations in the actuator’s response, 

poor tracking performance and potential instabilities of the closed-loop system [5,7,8]. It is 

generally agreed that the tracking performance of such actuators could be significantly enhanced 

through compensation of hysteresis effects. Consequently, considerable efforts have been made 

towards accurate characterizations of hysteresis nonlinearities of different smart material-based 

actuators such as piezoceramic, magnetostrictive and shape memory alloys [8,45,85,89] and design 

of controllers for compensation of the hysteresis effects [5,7,35,42,49,90-93].  

Different controller designs have been proposed to achieve effective compensation of 

hysteresis in smart material actuators including the magnetostrictive actuators. The size together 

with limited accuracy of the feedback devices, however, may pose challenges in realizing desirable 

micro-and nano-positioning precision, particularly under higher rates of inputs [85]. From a 

practical point of view, it has been suggested that hysteresis compensation of smart material-based 

actuators without a feedback device would be highly desirable [5,6]. A number of studies have 

proposed open-loop compensation of hysteresis nonlinearities of different smart material-based 

actuators [42,89]. Compensations of hysteresis effects of smart material actuators, particularly the 

piezoceramic and magnetostrictive have been attempted through applications of inverse hysteresis 

models or stop-operator based models as feedforward compensators [e.g.,12,44,94]. Such methods 

generally do not account for the strong dependence of the hysteresis nonlinearities on the rate of 

the applied input.  The magnetostrictive actuators, similar to other smart material-based actuators, 

invariably, show increasing hysteresis with increasing excitation frequency [7,31,95]. The 

applications of inverse rate-independent hysteresis models would thus yield considerable 
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dependent threshold function and positive weighting coefficients for characterizing hysteresis 

nonlinearities in smart actuators [9]. The model formulations have been described in [42,63] 

together with the condition that ensures analytic invertability of the rate-dependent Prandtl-

Ishlinskii model. The rate-dependent Prandtl-Ishlinskii model is subsequently applied to formulate 

its inverse, which is applied to seek compensation of the rate-dependent hysteresis nonlinearity of 

a magnetostrictive actuator. 

The rate-dependent Prandtl-Ishlinskii model is formulated considering rate-dependent play 

operators, which are real and continuous functions over the interval (0,T). The space of such 

functions is denoted by AC(0,T). For an input v(t) ∈ AC(0,T), the thresholds of the play operators 

are defined such that:  

))((...))(())(())((0 210 tvrtvrtvrtvr n  ≤≤≤≤≤  (5.1) 

where ))(( tvri  ∈ AC(0,T) is the rate-dependent threshold function; i = 0, 1, 2, … , n, and n ∈ N is 

an integer. 

The output )(th  of the rate-dependent play operator, Γ[v](t), is given by: 

)]([)( ))(( tvth tvri i 
Γ=  (5.2) 

For any input v(t) ∈ AC(0,T), the function v is considered monotone over each sub-interval [tj-1,tj], 

and 0 = t0 < t1 < … < tl = T define the intervals. The output of the rate-dependent play operator 

may thus be expressed over a discrete interval, t∈(tj-1,tj], as: 

( ) ( ) )}}(,)()(min{,)()(max{)( 1−+−= jijijjijji thtvrtvtvrtvth   (5.3) 

with initial condition: 
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( ) ( ) }}0,)0()0(min{,)0()0(max{)0( vrvvrvh iii  +−=  (5.4) 

The rate-dependent Prandtl-Ishlinskii model is constructed as a superposition of weighted rate-

dependent play operators. The output Π[v](t) of this model can be expressed as: 

( )∑
=

Γ+=Π
n

i
tvri tvatvatv

i
1

)(0 )]([)()]([


 (5.5) 

where a0 and ai are the positive weights. 

 The open-loop compensation employs the model inverse and the model in a cascade 

manner, as shown in Figure 5.1, so as to obtain an identity mapping between the input v(t) and the 

output u(t). The output of the inverse rate-dependent Prandtl-Ishlinskii model Π-1[v](t) is applied 

as a feedforward compensator of the rate-dependent Prandtl-Ishlinskii model Π[v](t), such that the 

compensator and model yield identity transformation starting from the initial states, Π-1(0) and 

Π(0). The output of the compensation can thus be expressed as: 

)()]([1 tutv =ΠΠ −
  (5.6) 

The formulation of the inverse model Π-1[v](t), however, holds under the condition that the 

differences between consecutive dynamic thresholds, ))((1 tvri +  and ))(( tvri  , do not decrease in time 

[63]. Analytically for∀ i = 1, …, n-1: 

( ) 0))(( ≥∆ tvr
dt
d

i   (5.7) 

where ))(( tvri ∆ is the difference between two consecutive thresholds.  
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Three permanent magnets are installed along the Terfenol-D rods to provide a magnetic field with 

a bias. Figure 5.2 illustrates the primary components of the actuator. The actuator provides a peak-

to-peak output displacement of 100 µm under excitations at frequencies up to 1250 Hz. A 

capacitive sensor (Lion Precision; model C23−C250) with sensitivity of 80 mV/µm, bandwidth of 

15 KHz, and a resolution of 35.53 nm was used to capture the output displacement of the actuator 

with respect to the static position. The excitation signals, v0(t), of different magnitudes and 

frequencies were synthesized in the ControlDesk platform and applied to a power amplifier (AE 

TECHRON; model LVC 2016). The current output of the power amplifier was subsequently 

applied to the actuator, as shown in Figure 5.3. The actuator displacement response, measured by 

the capacitive sensor, was also acquired in the dSpace ControlDesk together with the applied input 

signal v(t) in order to generate the output-input hysteresis loops.  

                          

Figure 5.2: Construction of a Terfenol-D magnetostrictive actuator. 
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Figure 5.3: Experimental setup for characterization of hysteresis nonlinearities of a 
magnetostrictive actuator.  

 

The response characteristics of the actuator were measured to characterize hysteresis loops 

at different discrete frequencies in the 1-200 Hz frequency range. The measurements were carried 

out under a harmonic input current of 2.3 A amplitude at different frequencies (1, 50, 100, 150, 

and 200 Hz). The major and minor hysteresis loops were also characterized under a complex 

harmonic input of the form: v(t) = 1.0 sin(100πft)+1.3 sin(90πft). Figure 5.4(a) displays the output-

input properties of the actuator under excitations at 1, 50 and 200 Hz. The figure illustrates 

considerably higher hysteresis at a higher frequency. The output-input characteristics under the 

complex harmonic input are illustrated in Figure 5.4 (b), which show the major as well as minor 

hysteresis loops. The data were further analyzed to derive peak normalized hysteresis, ratio of 

maximum difference in the outputs under decreasing and increasing input and the peak-to-peak 

output, as a function of the input frequency. Figure 5.5 depicts variations in percent peak 

normalized hysteresis as a function of the frequency of the applied input current. The results 

suggest nearly linear increase in the normalized hysteresis with the frequency (r2= 0.9993) over 

the frequency range considered in the study.   

Magnetostrictive Actuator 
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(a) 

 
(b) 

Figure 5.4: Measured hysteresis nonlinearities of the magnetostrictive actuator under different inputs: (a) 
v(t) = 2.3 sin(2πf t),  f=1 Hz, 50 Hz and 200 Hz; and (b) v(t) = 1.0sin(100πt) + 1.3 sin(90πt) A. 

 

Figure 5.5: Percent peak normalized hysteresis of current-to-displacement loops of the 
magnetostrictive actuator at different excitation frequencies. 

 

6.3.1 Model parameters identification 

The laboratory-measured data suggests that a threshold function that is linearly related to the rate 
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magnetostrictive actuator considered in the study. The measured responses suggest that a rate-

dependent threshold as a linear function of the rate of input may thus be considered: 

( ) )()( tvitvri  γα +=  (5.11) 

where α and γ are positive constants. The difference between the two consecutive thresholds,

))(( tvri ∆ , is thus a positive constant:  

α=∆ ))(( tvri   (5.12) 

and 

( ) 0))(( =∆ tvr
dt
d

i   (5.13) 

The above satisfies the condition for inverse rate-dependent Prandtl-Ishlinskii model. Furthermore, 

the threshold function can be approximated as ( ) itvri α≅)(  at low excitation frequencies, 

suggesting that the Prandtl-Ishlinskii model can also characterize the rate-independent hysteresis 

nonlinearities. The parameter vector, X = {α, γ, a0, a1, a2, …, an} of the rate-dependent Prandtl-

Ishlinskii model Π, was identified through minimization of the error function Θ
 
over the range 

excitation frequencies, given by: 

( )∑∑
==

−Π=Θ
M

m
bbp

B

b

fmtYfmtvAX
1

2

1

),,()),,(()(  (5.14) 

where Π(v(t,m, pf )) is the displacement response of the rate-dependent Prandtl-Ishlinskii model 

under a given excitation frequency pf  and Y(t,m, pf ) is the measured displacement under the same 

excitation frequency. The index m (m = 1, …, M) refers to the number of data points considered in 

computing the error function for one complete hysteresis loop. The error minimization problem in 

this study was formulated considering M = 400 for each measured hysteresis loop. The index b  (
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b  = 1, 2, 3, and B ) denotes the number of discrete frequencies considered in the error function 

over the 1 to 200 Hz frequency range. Owing to the higher hysteresis at higher excitation 

frequencies, a weighting constant bA  was introduced to emphasize the error minimization at 

higher excitation frequencies. The weighting at a frequency bf  was taken as the ratio of peak 

normalized hysteresis at bf  to that under excitation at a low frequency, e.g., 1 Hz. The error 

minimization problem (5.14) was solved using the MATLAB constrained optimization toolbox, 

subject to following constraints: 

{α, γ, a0, a1, . . ., an } > 0 

The solutions were obtained considering different number of operators, ranging from 4 to 35. In 

each case, the repeated solutions of the minimization problem were obtained using different values 

of the starting vector, which converged to very similar model parameter vector.  

The validity of the resulting models was examined by comparing the model responses with 

the measured data in terms of output-input loops and peak normalized hysteresis over the entire 

frequency range. The results revealed that model with as few as 4 play operators (n=4) could yield 

reasonably accurate characterization of the hysteresis nonlinearities. The error minimization 

considering only 4 operators resulted in parameter vector: α = 0.309, γ= 2.73×10-4, a0 = 0.4870, a1 

= 0.4261, a2 = 0.0134, a3 =0.0638 and a4 = 0.1996. As an example, Figure 5.6 (a) to (c) compare 

the output-input hysteresis predicted from the model comprising only 4 operators with the 

measured data under harmonic excitations at 1, 50 and 200 Hz, respectively. The minor and major 

hysteresis loops obtained from the model under the complex harmonic excitation, considered in 

experimental characterization, are also compared with the measured data in Figure 5.6 (d). The 

118 
  



percent peak normalized hysteresis, derived from the predicted responses, is also compared with 

the measured data in Figure 5.7 which suggests very close agreement in the entire frequency range. 

The responses of model comprising 25 play operators are also compared with the measured 

data in Figure 5.8 under same excitations. The results in Figure 5.6 and Figure 5.8, suggest that 

the model with only 4 operators would provide sufficiently accurate characterization of hysteresis 

of the actuator considered in the study under inputs up to 200 Hz in a highly efficient manner. 

Moreover, the model with fewer operators would be beneficial in formulating the model inverse 

with only fewer model parameters and facilitate its hardware implementation.  
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 (c) 

 
(d) 

Figure 5.6: Comparisons of measured responses of the magnetostrictive actuator with those of the 
Prandtl-Ishlinskii model Π, formulated using 4 rate-dependent play operators, under 2.3 A harmonic 
input at different frequencies: (a) 1 Hz, (b) 50 Hz, (c) 200 Hz; and (d) the complex harmonic input, v(t) 
= 1.0 sin(100πt) +1.3 sin(90πt) A.  

 
Figure 5.7: Comparisons of the percent peak normalized hysteresis obtained from the Prandtl-
Ishlinskii model, formulated using 4 rate-dependent play operators, with the measured data under 
harmonic excitations at different frequencies.  
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         (d) 

Figure 5.8: Comparisons of measured responses of the magnetostrictive actuator with those of the 
Prandtl-Ishlinskii model Π, formulated using 25 rate-dependent play operators, under 2.3 A harmonic 
input at different frequencies: (a) 1 Hz, (b) 50 Hz, (c) 200 Hz; and (d) the complex harmonic input, v(t) 
=1.0 sin(100πt)+1.3 sin(90πt) A.  

6.4.1 Simulation results 

  The simulations were performed to obtain the outputs of the cascade arrangement of the 

inverse rate-dependent Prandtl-Ishlinskii model and the Prandtl-Ishlinskii model. The 

magnetostrictive actuator gain of 0.1803 A/µm is applied to the inverse model output, which serves 

as input v(t) to the Prandtl-Ishlinskii model. The outputs of the two models, Π-1 and Π, together 

with the compensated output u=Π Π-1[v] under harmonic inputs at different frequencies (1, 50 

and 200 Hz) are illustrated in Figure 5.10 (a) to 10(c). The results clearly show effective mitigation 

of the hysteresis effects by the inverse model-based feedforward compensator, irrespective of the 

excitation frequency within the range considered. The effectiveness of the rate-dependent 

feedforward compensator in compensating for the minor hysteresis loops is also evident from the 

results attained under the complex harmonic input, shown in Figure 5.10(d). Since the rate-

dependent Prandtl-Ishlinskii model Π satisfies the necessary condition (5.7) in rate-dependent 
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thresholds for the inverse rate-dependent Prandtl-Ishlinskii model to be exact [63] the error in the 

compensated output u=Π Π-1 is zero. This is particularly true in the simulation results where the 

characterization errors of the model are absent.  

 
                                        (a) 

 
                                           (b) 

Figure 5.9: The output-input characteristics of the inverse Prandtl-Ishlinskii model, formulated using 4 rate-
dependent play operators, under harmonic and complex harmonic inputs: (a) v(t) = 2.3 sin(2 πft), f = 1, 50 and 
200 Hz ; and (b) v(t) = 1.0sin(100πt) +1.3 sin(90π t). 
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          (b)  

                  
        (c)  

                   
        

      (d) 
Figure 5.10: Output-input characteristics of the inverse rate-dependent Prandtl-Ishlinskii model Π-

1, rate-dependent Prandtl-Ishlinskii model Π, and the compensated output u=Π Π-1, where v(t) 
=2.3sin(2πft), (a) f =1 Hz, (b) f =50 Hz, and (c) f =200 Hz, and (d) v(t)=1.0 sin(100πt)+1.3 
sin(90πt).  
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6.4.2 Experimental results 

The effectiveness of the inverse rate-dependent Prandtl-Ishlinskii model as a feedforward 

hysteresis compensator is further investigated in the laboratory. A hardware-in-the-loop 

experiment was designed, where the inverse model was used as the feedforward hysteresis 

compensator in the ControlDesk platform. The inverse rate-dependent model based on only 4 rate-

dependent play operators was applied in the experiment so as to assess its effectiveness in a simple 

and efficient manner. Harmonic inputs at different frequencies were applied to the compensator, 

and the output together with the actuator gain (0.1803 A/µm) was applied to the magnetostrictive 

actuator through the power amplifier. The measured actuator displacement response was 

subsequently acquired in the ControlDesk. The variations in measured actuator displacement with 

the input current applied to the feedforward compensator are illustrated in Figure 5.11(a) for 

different excitation frequencies. Figure 5.11(b) shows the response under the complex harmonic 

input. The results show that the inverse rate-dependent model can effectively compensate for the 

hysteresis effects, major as well as minor loops, of the actuator at different excitation frequencies 

in the 1-200 Hz range. Some deviations, however, are evident in the compensated output, which 

are mostly attributed to the characterization errors and prediction errors of the rate-dependent 

Prandtl-Ishlinskii model.   

The peak hysteresis error was further computed from the measured data corresponding to 

each excitation frequency. As an example, Figure 5.12 (a) illustrates the time-history of the error 

under the harmonic excitation at 100 Hz, which suggests peak error of nearly 0.621 µm (4.77% of 

the peak displacement). The peak error is significantly lower than that obtained without the 

compensator (nearly 25.7%). The peak errors, expressed in percent of the peak displacement, under 

inputs at different frequencies are further summarized in Figure 5.12 (b). The results suggest 
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comparable error at frequencies above 75 Hz but slightly large error, in the order of 4.96%, at very 

low frequencies. The results suggest that the inverse rate-dependent Prandtl-Ishlinskii model can 

effectively compensate for positioning error due to hysteresis in the entire frequency range 

considered in the study. The slightly higher error at low frequencies is attributable to rate 

dependency of the threshold function employed in the Prandtl-Ishlinskii model.  

 
                  (a) 

 
)b(  

Figure 5.11: The output-input characteristics of the magnetostrictive actuator employing the inverse rate-
dependent Prandtl-Ishlinskii model as a feedforward compensator under different inputs: (a) 
v(t)=2.3sin(2πft) A, f =1, 25, 50, 75, 100, 125, 150, 175 and 200 Hz; and (b) v(t)=1.0 sin(100π t)+1.3 
sin(90πt) A.  
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     (a) 

 
    (b) 

Figure 5.12: (a) The time-history of the error with the inverse rate-dependent Prandtl-Ishlinskii 
model under the harmonic excitation at 100 Hz, (b) Percent peak normalized hysteresis of current-
to-displacement loops of the magnetostrictive actuator with the inverse rate-dependent Prandtl-
Ishlinskii model at different excitation frequencies. 
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greater tracking inaccuracies and oscillatory responses under inputs of high magnitudes and higher 

frequencies [1,2,5,6].  

The realization of accurate positioning performance of magnetostrictive actuators under 

different rates and magnitudes of inputs thus requires designs of additional controllers to 

compensate for the effects of hysteresis nonlinearity as well as the output-input asymmetry. 

Several studies have reported different controller synthesis for systems with hysteresis [e.g., 90, 

98,99,100]. Alternatively, hysteresis compensation methods, employing inverse hysteresis models 

in a cascade arrangement with the hysteresis model of the actuator, have also been proposed for 

effective real-time compensation. A number of inverse model based compensators have been 

reported for compensation of rate-independent hysteresis effects of different smart material 

actuators [5,7,12,44,57,101]. These have employed different phenomenological hysteresis models 

such as Preisach and Prandtl-Ishlinskii models. The majority of the reported methods, however, 

are limited to compensation of symmetric hysteresis effects, such as those observed for 

piezoceramic actuators [e.g.,42,49,57,78,102,103]. Furthermore, the vast majority of these do not 

consider the strong dependence of hysteresis nonlinearity on the rate of the applied input. Only a 

few studies have proposed input rate-dependent inverse models for compensation of hysteresis 

effects under inputs at different frequencies [102]. The Terfenol-D material of magnetostrictive 

actuators, invariably, exhibits output-input hysteresis together with output saturation and 

asymmetry with respect to the input that strongly depend upon the rate and magnitude of the input 

[5,7,62,90,98,101,104]. The applications of reported inverse compensation models to 

magnetostrictive actuators would thus yield substantial tracking errors.  

A few studies have reported alternate Prandtl-Ishlinskii models to describe output asymmetry 

and output saturation. Visone and Sjostrom [89] proposed a Prandtl-Ishlinskii model coupled with 
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a memoryless hyperbolic tangent function to formulate a Preisach-like hysteresis model for 

describing saturated hysteresis nonlinearities of a superconductor, while the input rate effect on 

the hysteresis was not considered. Al Janaideh et al. [60] constructed a Prandtl-Ishlinskii model 

using generalized play operators with dissimilar envelope functions to characterize asymmetric 

hysteresis nonlinearities of magnetostrictive actuators and shape memory alloys. Drinčić et al. [61] 

applied the generalized model reported in [60] for characterizing the butterfly-shaped hysteresis 

nonlinearity of a Terfenol-D magnetostrictive actuator considering identical envelop functions of 

the operators. Kuhnen [12] characterized asymmetric hysteresis nonlinearity of a magnetostrictive 

actuator using the rate-independent Prandtl-Ishlinskii model coupled with a superposition of 

weighted dead-band operators.  

The above-stated hysteresis models do not consider the effect of rate of input on the hysteresis. 

Formulation of an accurate hysteresis model and its inverse considering a broad range of input 

magnitudes and rates is vital for achieving effective compensation of hysteresis nonlinearities of a 

magnetostrictive actuator. Among the reported phenomenological hysteresis models, the Prandtl-

Ishlinskii model may be preferred since it is analytically invertible owing to continuous nature of 

the play operators [42,63]. The effectiveness of the inverse Prandtl-Ishlinskii model for 

compensating symmetric as well as asymmetric rate-independent hysteresis effects has been 

illustrated in a few studies [5,6,12].  

In this study, the asymmetric hysteresis characterization and compensation potentials of a 

symmetric rate-dependent Prandtl-Ishlinskii model coupled with a deadband function and their 

inverse are explored. The inverse model feed-forward compensator is applied for compensation of 

asymmetric and rate-dependent hysteresis nonlinearity of a magnetostrictive actuator. The 
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T], as described in [63,85]. The output δ(t) of the rate-dependent Prandtl-Ishlinskii model Π[v](t) 

can also be expressed in the discrete form, as: 

( ) ,)]([)()]([)(
1

)(0 ∑
=

Γ+=Π=
n

i
tvri tvatvatvt

i 
δ  (6.2) 

where a0 and ai are the weights.  

Each rate-dependent play operator ))(( tvri Γ is defined using the input v(t) ∈ AC(0,T), and a rate-

dependent threshold function ))(( tvri  ∈ AC(0,T), i = 0, 1, 2, … , n, where n ∈ N is an integer. The 

threshold function is defined, such that: 

))((...))(())(())((0 210 tvrtvrtvrtvr n  ≤≤≤≤=  (6.3) 

The input v(t) is considered monotone over each sub-interval [tj-1, tj], and 0 = t0 < t1 < … < tl = T 

define the intervals. The output of the rate-dependent play operator Γ[v](t) over an interval, t∈[tj-

1,tj), can be expressed as 

( ) ( ) )}}.(,)()(min{,)()(max{)]([ 1))(( −Γ+−=Γ jijijjijtvr ttvrtvtvrtvtv
i





 (6.4) 

   The integrated rate-dependent Prandtl-Ishlinskii model is subsequently formulated using 

the deadband function Λ so as to describe asymmetric output-input characteristics and output 

saturation. The output of the integrated model Ω can be expressed as [104]: 

),]]([[)]]([[)]([ tvJgtvtv
id

k

ki
i Π=ΠΛ=Ω ∑

−=

 (6.5) 

where function Λ is a summation of weighted deadband operators 
idJ , di (i=-k, -k+1,…,k-1, k) are 

the thresholds of the deadband operators, k is a positive integer, and gi are the weighting constants 

[12]. The output of the deadband operator 
idJ is given by:  

133 
  



     








<−
=
>−

=
.0}0,)(min{
,0)(
,0}0,)(max{

)]([

ii

i

ii

d

dfordt
dfort
dfordt

tJ
i

δ
δ
δ

δ  (6.6) 

 

 

Figure 6.1: Feedforward Compensation using the cascade arrangement of inverse model 1−Ω and 
the hysteresis modelΩ . 

 

7.2.1 Inverse of the integrated Prandtl-Ishlinskii model  

The inverse of the integrated Prandtl-Ishlinskii model Ω-1 is obtained from the inverses of both the 

rate-dependent Prandtl-Ishlinskii model Π-1 and the deadband function Λ-1. An identity mapping 

between the applied input v(t) and the compensated output )(tu  can be achieved by applying the 

resulting inverse model as a feed-forward compensator together with the integrated Prandtl-

Ishlinskii model Ω. The output )]([1 tv−ΩΩ   yields identity mapping between the input v(t) and the 

output )(tu . 

The inverse model of the integrated Prandtl-Ishlinskii model Ω-1 can be expressed as: 

).])([()]([ 111 tvtv −−− ΓΠ=Ω  (6.7) 

The inverse of rate-dependent Prandtl-Ishlinskii model Π-1 can be formulated on the basis of the 

model Π itself. The formulation of Π-1, however, holds under the threshold dilation condition, 

which implies that the differences between two consecutive dynamic thresholds ))((1 tvri +  and 

))(( tvri   of Π do not decrease in time ∀ i = 1, …, n-1, [63], such that:  

( ) 0))(( ≥∆ tvr
dt
d

i   (6.8) 

v(t) 

 Ω-1
   Ω 

)(tu  
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where  

))(())(())(( 1 tvrtvrtvr iii  −=∆ + . 

 The rate-dependent thresholds ( ))(ˆ tvri   of the inverse rate-dependent Prandtl-Ishlinskii model 

1−Π  are related to those of the model itself, ( ))(tvri  , in the following manner [63]: 

( ) ( ),)()(ˆ 101 tvratvr  =  

( ) ( ) ( ) ( )( ).)()()(ˆ)(ˆ 1
0

1 tvrtvratvrtvr ii

i

j
jii  −+= +

=
+ ∑

 

(6.9) 

The output of the inverse rate-dependent Prandtl-Ishlinskii model Π-1 can be derived from the rate-

dependent thresholds ( ))(ˆ tvri   and weights iâ , as: 

( ) .)]([ˆ)(ˆ)]([
1

)(ˆ0
1 ∑

=

− Γ+=Π
n

i
tvri tvatvatv

i


 (6.10) 

The inverse model of the deadband function Λ-1 is also formulated using a superposition of 

weighted deadband operators
idJ ˆ  [12]: 

),]([ˆ)]([ ˆ
1 tvJgtv

id

k

ki
i∑

−=

− =Λ  (6.11) 

where iĝ  are constant weights and id̂  are the thresholds of the inverse deadband function, which 

are related to those of Λ.  

 The weights of the inverse model naaa ˆ...,,ˆ,ˆ 10  are also related to those of the Prandtl-

Ishlinskii model Π, as [42,63] 
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 The constants iĝ  and thresholds id̂  of the inverse deadband function corresponding to positive 

and negatives solutions of the deadband operators are related to thresholds id̂  and constants iĝ , 

respectively. The thresholds and weights of the inverse corresponding to positive solutions are 

obtained from [12]: 
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Similarly, the thresholds and weights of the inverse leading to negative solutions are obtained from 

[12] for j=-k, …, -1 as: 

,)(ˆ
0

∑
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−=
ji

ijij ddgg  (6.15) 
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Figure 6.2: Experimental setup for characterization of hysteresis nonlinearities of a 
magnetostrictive actuator. 
 

Figure 6.3, as an example, illustrates the measured output displacement-input current 

characteristics of the actuator under 6 A harmonic excitations at different frequencies, and both 

the complex harmonic excitations. The results clearly show an increase in hysteresis loop width 

with the excitation frequency for both the harmonic and complex harmonic excitations. The results 

revealed nearly linear increase in peak hysteresis with increasing excitation frequency, suggesting 

strong input rate dependence of the hysteresis. The area bounded by the hysteresis loop also 

increased nearly linearly with the excitation frequency, as seen in Figure 6.4 (r2=0.99), which 

further suggests linear dependence of hysteresis on the excitation frequency. A similar linear 

relationship between the excitation frequency and the hysteresis loss of a magnetostrictive actuator 

has been illustrated by Davino et al. [66]. Furthermore, at low excitation amplitudes, the 

magnetostrictive actuators revealed nearly symmetric hysteresis loops with only minimal output 

saturation. However, at moderate and high excitation amplitudes, the outputs were observed to be 

highly asymmetric and saturated, irrespective of the excitation frequency.            

Positioner Sensor 
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      Input Current (A) 

      (a) 

Figure 6.3: Output displacement-input current of the magnetostrictive actuator under different inputs: 
(a) v(t) = 6.0 sin(2πf t), f=10, 50, 150 and 250 Hz; and v(t)=1.0 sin(2π×50fot)+ 5.0 sin(2π×100fot) A, 
(b) fo=1 and, (c) fo=2. 
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Figure 6.4: Area bounded by hysteresis of displacement-to-current loops of the magnetostrictive 
actuator under 6 A harmonic excitation at different frequencies. 

 

The laboratory-measured data were employed to identify parameters of the integrated rate-

dependent Prandtl-Ishlinskii model Ω (6.5), which was subsequently applied to formulate its 

inverse Ω-1. Owing to the linear dependence of the hysteresis on the rate of input, the threshold 

function was defined as a linear function of the input frequency, such that: 

( ) ,)()( itvtvri αγ +=   (6.18) 

where α and γ are positive constants. The above formulation yields, α=∆ ))(( tvri  , which satisfies 

the threshold dilation condition for inversion of the rate-dependent Prandtl-Ishlinskii model, as 

described in (6.8). The above threshold function can also describe rate-independent hysteresis 

nonlinearity at low excitation frequencies [7], where it can be approximated as ri ( ) itv α≅)( . The 

output asymmetry and saturation effects, on the other hand, are described by the deadband function

Λ .  

The weighting constants of the Prandtl-Ishlinskii model were chosen using the following function: 

i
oi

oea βα −=  (6.19) 

The thresholds and the weighting functions corresponding to positive solutions of the deadband 

function are selected for i = 0, 1, …, k as:  

,idd pi =  (6.20) 

and 

.1
1

i
i eg βα −−=  (6.21) 
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In a similar manner, the thresholds and weighting functions corresponding to negative solutions 

are selected for i = -k, -k+1, …, -1 as:  

,idd ni =  (6.22) 

and 

i
i eg 2

2
βα= .    (6.23) 

where dn, dp, α1, α2, β 1, β2 and a0 (i=0) are constants. 

The parameters vector, X  = {α, γ, q0, αo, βo, g0, α1, β1, α2, β2, dp, and dn}, of the integrated 

rate-dependent Prandtl-Ishlinskii model Ω, was identified through minimization of the error 

function Θ under different excitation amplitudes and frequencies, given by:  

( ) ,),,,()),,,(()(
1

2

11
∑∑∑
===

−Ω=Θ
M

m
cobolp

f

f

C

c
IfmtYIfmtvX

B

b

 (6.24) 

where Ω(v(t,m, bf , coI )) is the response of the integrated rate-dependent Prandtl-Ishlinskii model 

under a given excitation frequency bf  (b =1, 2, …, B ) and amplitude coI  ( c =1, ..., C ), and 

Y(t,m, pf , coI ) is the measured output displacement under the same input. The index m (m = 

1,…,M) refers to the number of data points considered in computing the error function for one 

complete hysteresis loop. The error minimization problem in this study was formulated 

considering M=300 data points for each measured hysteresis loop, five frequencies ( B  = 5; bf  

=10, 50, 100, 150 and 250 Hz) and two excitation amplitudes ( C =2; Iol coI = 3 A and 6 A), subject 

to following constrains 

α, γ, ao, bo, g0, α1, α2, dp, dn, β1 and β2 ≥ 0. 
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The error minimization problem was solved considering different combinations of rate-dependent 

play operators (n = 4, 8, 12 and 16) and deadband operators (k=4 and k=8). Moreover, the error 

minimization problem was solved using different initial values of the parameters. The solutions 

converged to nearly similar parameter values for the different starting values considered. From the 

results, it was concluded that the integrated model with 12 play operators and 17 deadband 

operators would yield good agreements between the model results and the measured data.  

The validity of the integrated rate-dependent Prandtl-Ishlinskii model was thus 

subsequently examined under different input amplitudes and frequencies considering 12 rate-

dependent play operators and 17 deadband operators. Figure 6.5 and Figure 6.6, as examples, 

illustrate comparisons of the output-input responses of the model with the measured data 

corresponding to selected inputs, including: (i) simple harmonic current excitations of 3, 5 and 6 

A amplitude at different frequencies (10, 150 and 250 Hz); and (ii) two complex harmonic inputs, 

v(t)= sin(100πt)+5 sin(100πt) A and v(t)= sin(200πt)+5 sin(400πt) A. The results clearly suggest 

that the model can effectively predict the major as well as minor hysteresis loops and asymmetric 

output properties of the magnetostrictive actuator under a wide range of harmonic inputs. The 

effectiveness of the integrated rate-dependent Prandtl-Ishlinskii model is further illustrated 

through comparisons of the area bounded by the hysteresis loops predicted by the model with those 

of the measured data obtained under 3 and 6 A excitations at different frequencies in the 1-250 Hz 

range, as shown in Figure 6.7. The comparisons in Figure 6.5 and Figure 6.6, and Figure 6.7 

suggest that the proposed rate-dependent Prandtl-Ishlinskii model integrating the deadband 

operators can effectively describe the rate-dependent asymmetric hysteresis nonlinearities of the 

magnetostrictive actuator under the range of inputs considered in the study.  
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Figure 6.5: Comparisons of measured responses of the magnetostrictive actuator with those of the 
integrated rate-dependent Prandtl-Ishlinskii model Ω formulated using 12 rate-dependent play 
operators and 17 deadband operators, at different frequencies 10, 150 and 250 Hz applied under 
amplitudes of : (a) 3 A, (b) 5 A, and (c) 6 A. 
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Figure 6.6: Comparisons of measured responses of the magnetostrictive actuator with those of the 
integrated rate-dependent Prandtl-Ishlinskii model Ω formulated using 12 rate-dependent play 
operators and 17 deadband operators, under the complex harmonic inputs: (a) 1.0 sin(100πt) +5.0 
sin(200πt) A, and (b) 1.0 sin(200πt) +5.0 sin(400πt).  

 

 
Frequency (Hz) 

Figure 6.7: Comparisons of the area bounded by the hysteresis loops obtained from the integrated rate-
dependent Prandtl-Ishlinskii model, with the measured data under 3 and 6 A harmonic excitations at 
different frequencies.  
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desirable for hardware implementations. Consequently, the model with 12 rate-dependent play 

operators and 17 deadband operators was considered adequate for deriving model inverse and for 

hardware implementations, as described in the subsequent sections.  
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Figure 6.8: Comparisons of measured responses of the magnetostrictive actuator with those of the 
integrated rate-dependent Prandtl-Ishlinskii model Ω formulated using 36 rate-dependent play 
operators and 17 deadband operators: 6 A harmonic input at different frequencies-(a) 10 Hz, (b) 
150 Hz and (c) 250 Hz; 3 A harmonic input at different frequencies-(d) 10 Hz, (e) 150 Hz, (f) 250 
Hz; (g) sin(100πt) +5 sin(200πt) A; and (h) sin(200πt) +5 sin(400πt).  

 

-50

-35

-20

-5

10

25

40

-7 -3.5 0 3.5 7

Measured
Model

-50

-35

-20

-5

10

25

40

-7 -3.5 0 3.5 7

Measured
Model

-50

-35

-20

-5

10

25

40

-7 -3.5 0 3.5 7

Measured
Model

-30

-20

-10

0

10

20

30

-4 -2 0 2 4

Measured
Model

-30

-20

-10

0

10

20

30

-4 -2 0 2 4

Measured
Model

-30

-20

-10

0

10

20

30

-4 -2 0 2 4

Measured
Model

-50

-35

-20

-5

10

25

40

-7 -3.5 0 3.5 7

Measured
Model

-50

-35

-20

-5

10

25

40

-7 -3.5 0 3.5 7

Measured
Model

D
is

pl
ac

em
en

t (
µm

) 

D
is

pl
ac

em
en

t (
µm

) 
D

is
pl

ac
em

en
t (

µm
) 

145 
  





   

   

 
Input 

 
Input 

 
Input 

Figure 6.9: Output-input characteristics of the inverse of the integrated rate-dependent Prandtl-
Ishlinskii model Π-1 formulated using 12 rate-dependent play operators and 17 deadband operators, 
the integrated rate-dependent Prandtl-Ishlinskii model Ω, and the composition )( 1−ΩΩ= u , under 
3 A excitation at different frequencies (10, 150, 250 Hz). 
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Figure 6.10: Output-input characteristics of the inverse of the integrated rate-dependent Prandtl-
Ishlinskii model Ω-1 formulated using 12 rate-dependent play operators and 17 deadband operators, 
the integrated rate-dependent Prandtl-Ishlinskii model Ω, and the composition 1−ΩΩ= u , under 6 A 
excitation at different frequencies (10, 150, 250 Hz). 
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Figure 6.11: Output-input characteristics of the inverse of the integrated rate-dependent Prandtl-
Ishlinskii model Ω-1 formulated using 12 rate-dependent play operators and 17 deadband operators, 
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the integrated rate-dependent Prandtl-Ishlinskii model Ω, and the composition 1−ΩΩ= u , under 
complex harmonic excitations: (a) v(t) = sin(100πt)+5 sin(200πt) A; and (b) v(t) = sin(200πt)+5 
sin(400πt). 
 

7.4.2 Hardware-in-the-loop implementation of the inverse compensator  

The effectiveness of the inverse of the integrated rate-dependent Prandtl-Ishlinskii model Ω-1 in 

compensating output asymmetry and rate-dependent hysteresis effects of was further investigated 

through laboratory implementations on a magnetostrictive actuator. For this purpose, a hardware-

in-the-loop experiment was designed, where the inverse model Ω-1, formulated using 

MATLAB/SIMULINK, was employed as a feedforward compensator together with the 

magnetostrictive actuator in the ControlDesk platform. The experiments were conducted under 

different amplitudes of harmonic currents at different frequencies in the 1-250 Hz range and the 

complex harmonic inputs used in the simulation results. The selected inputs were applied directly 

to the inverse compensator, while the output of the compensator was applied to the 

magnetostrictive actuator through D/A output board and the power amplifier. The magnetostrictive 

actuator displacement, measured using the capacitive position sensor, together with the applied 

input current were analyzed to assess the effectiveness of the inverse compensator under different 

inputs.    

As examples, Figure 6.12 illustrates variations in the measured displacement responses of the 

actuator under different current inputs: (a) 6 A harmonic current  at different excitations 

frequencies (1, 10, 50, 150 and 250 Hz); (b) complex harmonic input, v(t)= sin(100πt)+5 sin(100πt) 

A; and (c) complex harmonic input, v(t)= sin(200π t)+5 sin(400πt) A. Nearly identity mapping 

between the applied input u(t) and the compensated output v(t) of the actuator is evident under the 

excitations considered in the example results. Similar mappings were also obtained under different 
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inputs considered in the laboratory experiments. From the results it can be concluded that the 

inverse of the rate-dependent Prandtl-Ishlinskii model integrating the deadband function can not 

only mitigate the rate-dependent hysteresis effects but also the output asymmetry and saturation 

effects. Some deviations, however, are evident in the compensated output, which can be partly 

attributed to error associated with experimental characterization of the magnetostrictive actuator 

and in-part to prediction errors of the integrated model with limited number of rate-dependent play 

operators and deadband operators.  

The peak deviation between the applied input and the actuator response was evaluated from 

the respective time-histories. As an example, Figure 6.13(a) compares the time histories of the 

desired output under the reference complex harmonic input v(t)= sin(100πt)+5 sin(100πt) A and 

the measured displacement response of the magnetostrictive actuator. The time-history of the error 

between the two is further shown in Figure 6.13 (b), which suggests peak positioning error of the 

83.1 µm stroke actuator in the order of 3.1 µm, when the proposed inverse compensator is 

implemented. The peak percent hysteresis error was further computed from the output-input 

characteristics of the actuator under different inputs. Figure 6.13 (c) compares the variations in the 

peak percent hysteresis response of the magnetostrictive actuator with and without the inverse 

compensator with the excitation frequency under the 6 A harmonic current input. The peak percent 

hysteresis of the actuator was 18.2% at the low frequency input of 1 Hz, which increased with 

input frequency and approached 49.1% corresponding to the 250 Hz input. Application of the 

inverse compensator, however, resulted in nearly steady peak hysteresis error in the entire 

frequency range, as seen in Figure 6.13 (c). The peak hysteresis error of the compensated actuator 

is 3.7%, which is attained under the input at 250 Hz. The experimental results thus further confirm 

that the inverse of the rate-dependent Prandtl-Ishlinskii model together with that of the deadband 
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function, Π-1, can effectively mitigate the rate-dependent and asymmetric hysteresis nonlinearities 

of the magnetostrictive actuator, as observed from the simulation results.  

 

  
                                 Input Current (A) 

                                              (a) 
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   Input Current (A) 

      (c) 
Figure 6.12: The output-input characteristics of the magnetostrictive actuator with the inverse of the 
integrated rate-dependent Prandtl-Ishlinskii model Ω-1 under different inputs: (a) v(t)=6.0 sin(2πft) A, 
f =1, 10, 50, 150, and 250 Hz; (b) v(t)=1.0 sin(100π t)+5.0 sin(100πt) A; and (c) v(t)=1.0 sin(200π 
t)+5.0 sin(400πt) A. 
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Figure 6.13: (a) The time-history of desired output and the achieved output displacement of the 
magnetostrictive actuator with the inverse model Ω-1 under the harmonic input v(t)=1.0 
sin(100πt)+5.0 sin(100πt) A; (b) The time-history of error between the desired and the achieved 
output displacement under the harmonic input v(t)=1.0 sin(100πt)+5.0 sin(100πt) A; and (c) 
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• The initial loading curves could be employed to build an analytical stop operator-based 
Prandtl-Ishlinskii (SPI) model to obtain compensation of hysteresis nonlinearities described by 
the PPI model. The effectiveness of the SPI model in real-time was demonstrated through 
laboratory measurements on a piezoceramic micropositioning stage. 

• Magnetostrictive actuators show strong input rate-dependent hysteresis nonlinearities under 
high rates of inputs, which are nearly symmetric at low magnitudes but asymmetric under 
moderate and high inputs. The hysteresis of these actuators is also strongly dependent upon 
the rate of input, as well, on the input magnetic bias and the mechanical loads. 

• The area bounded by the hysteresis loop and the peak hysteresis percentage increased 
nonlinearly with the input amplitude but nearly linearly with the excitation frequency up to 
250 H range. The variations in the magnetic field bias as well as input amplitude showed 
substantial effects on output asymmetry and saturation, peak-to-peak displacement response 
and the area bounded by the hysteresis loop.    

• An inverse rate-dependent Prandtl-Ishlinskii model could be obtained under any rate-
dependent threshold functions satisfying the dilation condition.  

• The inverse rate-dependent Prandtl-Ishlinskii model could provide effective compensation of 
rate-dependent symmetric hysteresis under inputs over a wide frequency range. The simulation 
results revealed near perfect compensation of the hysteresis nonlinearities under different 
simple and complex harmonic inputs. The experiments conducted on the magnetostrictive 
actuator further showed that the inverse model could suppress the hysteresis errors effectively 
in a highly efficient manner.  

• The proposed rate-dependent Prandtl-Ishlinskii model integrating a function of deadband 
operators could effectively describe the rate-dependent and asymmetric hysteresis properties 
of the magnetostrictive actuator together with output saturation over wide ranges of inputs. 
The peak error between the model displacement response and the measured data was observed 
in the order of 3.72 %, which occurred under the extreme excitation frequency of 200 Hz.  

• The inverse of the integrated Prandtl-Ishlinskii model could be formulated using the inverses 
of the rate-dependent Prandtl-Ishlinskii model and the deadband function, which would serve 
as an effective feedforward compensator of rate-dependent and asymmetric hysteresis 
nonlinearities. The simulation results revealed that the proposed inverse model could mostly 
eliminate the hysteresis nonlinearities characterized by the integrated model over a wide range 
of excitation amplitudes and frequencies.  

• The laboratory experiments with the magnetostrictive actuator confirmed that the integrated 
inverse model can effectively compensate for the rate-dependent and asymmetric hysteresis 
nonlinearities under inputs in the 1-250 Hz frequency range. The peak percent positioning error 
was reduced to nearly 3.7 % under the 6 A excitation over the 1-250 Hz frequency range, which 
was observed in the 18.2 to 49.1 % range in the absence of the compensator. The error in the 
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• Further efforts are also desirable for compensation of hysteresis nonlinearities of 
magnetostrictive actuators using the inverse generalized Prandtl-Ishlinskii model as a 
feedforward compensator. 

• Further efforts are desirable for modeling hysteresis nonlinearities of magnetostrictive 
actuators subjected to mechanical loads with adaptive robust control methods. 
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