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ABSTRACT 

The effects of the allocation of attention on rapid scene categorization  

John O. Brand, Ph.D.  
Concordia University, 2014 

 It is well documented that observers are able to accurately extract the semantic 

information from natural scenes in 120 msec (Thorpe, Fize, & Merlot, 1996). This rapid 

categorization ability is often cited as evidence that the information that is required to categorize 

a scene originates from low-level visual information.  Information related to an image’s spatial 

scales (Oliva & Schyns, 1997; Schyns & Oliva, 1994), phase (Joubert, Rousselet, Fabre-Thorpe, 

& Fize, 2009; Loschky et al., 2007, 2010; Loschky & Larson, 2008), overall summary statistics 

(Evans & Treisman, 2005), and colour (Castelhano & Henderson, 2008; 2005; Loschky & 

Simons, 2004; Oliva & Schyns, 2000) have all been shown to provide information that can be 

used to categorize a briefly presented image. The experiments reported in this dissertation were 

designed to address the overarching question of how the visual system selects diagnostic scene 

information? It addressed this question by examining the hypothesis that visual attention 

facilitates the selection of information that underpins rapid scene categorization.  In order to 

investigate this hypothesis, the present work was divided into two main manuscripts.  Manuscript 

1 is presented in Chapter 2 and includes four experiments that were designed to investigate if 

attending to global and local levels of a scene facilitate categorization based on a scene’s coarse 

and fine information, respectively. This hypothesis was explored by asking observers to classify 

hybrid images. A hybrid image combines the coarse information (conveyed by an image’s low 

spatial frequencies) of one image (e.g., a city) and the fine information (conveyed by an image’s 

high spatial frequencies) of a second image (e.g., a highway). Experiments 1 and 2 showed that 
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although observers could classify hybrid images based on both fine and coarse information (i.e., 

as either a city or a highway scene; Experiment 1), observers preferred to base categorization on 

coarse content (Experiment 2).  Experiment 3 demonstrated that categorization based on coarse 

content was facilitated when observers were prompted to attend globally to scenes compared to 

when they were prompted to attend locally.  Experiment 4 demonstrated that this global 

facilitation effect was due, in part, to the facilitation of a hybrid’s low spatial frequencies.  

 Manuscript 2 is presented in Chapter 3 and contains four experiments that investigated 

the hypothesis that distributed attention facilitates the extraction of a scene’s overall summary 

statistics, which in turn, facilitates the ability to rapidly categorize scenes (Evans & Treisman, 

2005). This hypothesis was investigated by examining whether manipulations of attention 

affected scene categorization in the same fashion as the extraction of overall summary statistics. 

Experiment 1 replicated the result that extraction of a scene’s summary statistics is more 

compatible with distributed attention than focused attention (Chong & Treisman, 2005). 

Experiments 2 and 4 extended this finding by demonstrating that superordinate level 

categorization of both animals (e.g., detect the presence [or absence] of an animal, Experiment 

2), and natural scenes (e.g., was the scene natural? Experiment 4), were more compatible with 

distributed than focused attention. However, Experiment 3 showed that there was no difference 

between the effects of distributed and focused attention on basic level categorization (e.g., was 

this a beach scene?).  

 Together, the findings of this thesis demonstrate that visual attention is important in the 

rapid categorization of a natural scene, by facilitating the selection of scene information that is 

necessary to classify a scene category.  
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Chapter 1: General Introduction 

  

  



 

 
2"

 At any given second, the human retina is capable of transmitting approximately 

10 million bits of information to the visual areas of the brain (i.e., roughly the equivalent 

of the transmission speed of a modern Ethernet connection; Koch, McLean, Segev, Freed, 

Berry II, Balasubramanian, & Sterling, 2006). However, rather than process this vast 

amount of information, the visual system evolved to select only a relevant subset for 

further processing. Classical theories of visual perception posit that only attended 

information will reach conscious awareness whereas unattended information, although 

still processed, will not be consciously perceived (Treisman & Gelade, 1980). 

Consequently, it is suggested that attention mediates visual perception by breaking it 

down into two distinct stages: a pre-attentive stage and an attentive stage (e.g., Feature 

Integration Theory of Attention, Treisman & Gelade, 1980; Guided Search Theory of 

Visual Search, Wolfe, Cave, & Franzel, 1989). The pre-attentive stage is rapid (less than 

200 msec) and processes visual information in parallel across the entire visual field. 

During this stage, salient separable features (e.g., colour, size, and orientation) are 

automatically encoded onto separate feature maps that determine their location in visual 

space. In contrast to the pre-attentive stage, the attentive stage is slower – typically over 

200 msec  - and is responsible for binding together the features encoded in the pre-

attentive stage. For example, each attended location in feature space results in the binding 

of separable features that appear at that location, resulting in the perception of a 

consciously experienced whole (e.g., attention is required in order to bind the features red 

and vertical into the perception of a red vertical item; see, e.g., Block, 2005; Koch & 

Tsuchiya, 2007; Lamme, 2003; O’Regan & Noë, 2001; Posner, 1994). 

 Although this conceptualization of visual attention is successful in describing 
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experimental results related to basic geometric shapes (e.g., visual search; Wolfe et al., 

1989), it is less successful in describing research related to complex stimuli (Braun, 

2003). Observers are able to extract both statistical and semantic information from sets of 

similar objects and natural scenes, respectively, without the need to encode individual 

elements, suggesting that attention is not needed to bind features together. For example, 

observers can extract the average size of a set of circles (Ariely 2001, Chong & Treisman 

2003; 2005), average direction of a set of randomly moving blots (Watamaniuk, Sekuler, 

& Williams, 1989), and average emotion or identity in a set of similar faces (de Fockert 

& Wolfenstein, 2009; Haberman, & Whitney, 2007, 2009; Haberman, Harp, & Whitney, 

2009), without having a good representation of the individual items that comprise the set. 

Additionally, observers are able to extract semantic information from scenes presented 

within the time period thought to coincide with pre-attentive processing. Within 120 

msec, observers are able categorize a natural scene according to either its basic (e.g., 

beach and desert) or superordinate (e.g., indoor and outdoor) level (Greene & Oliva, 

2009; Joubert, Rousselet, Fize & Fabre-Thorpe, 2007), suggesting that initial scene 

comprehension occurs prior to this time point. 

 Findings related to the rapid extraction of statistical and semantic information are 

influential in forming contemporary theories about scene perception. Specifically, 

researchers have focused on explaining how some higher-level scene related behaviours 

could occur in the absence of attention (i.e., in the pre-attentive stage).  In their influential 

work, Evans and Treisman (2005; see also Chong & Treisman, 2005; Treisman, 2006) 

suggested that the automatic and pre-attentive extraction of semantic and statistical 

information is facilitated by different attentional distributions. The theory is that there are 
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different types of attention, and that each type is associated with the extraction of a 

different type of information.  According to Evans and Treisman, the perception of our 

environment is organized hierarchically. For any given complex scene (e.g., a beach) 

attention can be directed globally, locally, or distributed over a set of similar items. When 

attention is focused locally on a particular object (e.g., a palm tree), attention acts to bind 

its separable features together, enabling object identification (see, e.g., Feature 

Integration Theory of Attention, Treisman & Gelade, 1980). In contrast, when attention is 

distributed over a set of similar items (e.g., a group of beach pebbles), the visual system 

automatically computes summary statistics related to the set (e.g., the average pebble 

size) without having a good representation of any individual set member.  Finally, when 

attention is set globally to the scene as a whole, the visual system extracts multiple 

summary representations that act as a set of disjunctive features that can be used to 

extract a scene’s meaning (e.g., a beach on a sunny day) without the need for focused 

attention (see Evans & Chong, 2011 for a review).   

  Similar to Evans and Treisman (2005), Oliva and Schyns (1997) proposed that 

different scene information is associated with different attentional distributions. However, 

whereas Evans and Treisman suggested that distributed attention facilitates the extraction 

of a scene’s summary statistics, Oliva and Schyns argued that attending locally and 

globally facilitates the selection of a scene’s fine and coarse scale information. Their 

hypothesis is that natural images are encoded by the visual system via different spatial 

frequency channels, and that each spatial frequency is associated with a different level of 

information. Consider, for example, the images presented in Figure 1.1. The leftmost and 

rightmost images have been filtered so that only their low, and high spatial frequencies 
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remain. The image located in the centre is a full broadband image and contains all its 

spatial frequencies. As is evident in the figure, low spatial frequencies convey 

information related to an image’s global properties (e.g., overall shape, such as general 

orientation), whereas high spatial frequencies convey information related to an image’s 

local properties (e.g., configural and fine details). According to Oliva and Schyns, 

attention can be directed to either the local, or the global level; the attended level 

determines the information to be used as the basis for categorization.   

  



 

 

 

  

Figure 1.1. An example of a low-pass filtered image, a broadband image, and a high-pass 

filtered image. The leftmost and rightmost images have been filtered, such that only their 

low, and high-spatial frequencies remain. The image in the centre has not been filtered 

and contains all spatial frequencies.   
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 The overarching goal of the present dissertation is to address how attending 

locally and globally affects the selection of information used for rapid scene 

categorization. Whereas both Evans and Treisman (2005) and Oliva and Schyns (1997) 

argued that the rapid extraction of semantic meaning is dependent on the deployment of 

attention, they differ with respect to both the type of attention that is required, and the 

associated information that is used as the basis for categorization. Consequently, the 

present work is broken down into two main chapters. Chapter 2 addresses of how 

attention to local and global levels facilitates rapid scene categorization based on fine and 

coarse information, respectively (Oliva & Schyns, 1997), using filtered images. Chapter 3 

addresses how adopting a distributed attention distribution facilitates the rapid extraction 

of summary statistics that can be used as the basis for rapid scene categorization (Evans 

& Treisman, 2005). In pursuit of the answers to these questions, both Chapters 2 and 3 

present the results of four experiments, with each experiment being related to the 

overarching question of each chapter. Nevertheless, before explaining these experiments 

it is beneficial to first describe the research on which they are based. Thus, the questions 

that motivate each respective chapter are described in section 1.5 of the present 

introduction. The primary goal of the following sections is to describe the most relevant 

research as it pertains to the current investigations. Particular emphasis is placed on 

research examining the effects of attention on scene categorization, and how the results 

contribute to the development of each respective theory. Furthermore, a secondary goal 

of the introduction is to provide the necessary background in order to explain how the 

two theories potentially integrate. This integration is discussed in section 1.4.3.   

 



 

 
8"

1.1 Rapid scene categorization  

 In their seminal work, Potter and Levy (1969) addressed what contextual scene 

information is available at very brief presentation durations. They asked their observers to 

complete two phases: a scene memorization phase and a scene test phase. In the 

memorization phase, observers were asked to memorize a series of target images 

presented at 123 msec/image. Immediately following the memorization phase, observers 

subsequently completed the test phase in which they were asked to the identify the 

presence of target images either presented alone, or embedded in a rapid serial visual 

presentation stream (RSVP stream; 123, or 250 msec presentation duration for each 

image). When images were presented in isolation, recognition accuracy was high; 

however, when targets were embedded in an RSVP stream, target recognition regressed 

to chance performance, at both presentation durations.  In attempt to better understand 

these findings, Potter (1976) conducted a follow-up experiment in which she replicated 

her original design with the following exception: rather than including a memorization 

phase, Potter cued the target category using either a visual, or verbal prime prior to the 

start of the RSVP stream (e.g., for the target category "beach', the target cue was either a 

picture of a beach scene, or the word beach). In contrast to her original report, target 

identification (collapsed over cue conditions) was above 60% and 80%, respectively, for 

presentation durations of 123 and 250 msec. Taken together, these two seminal papers 

suggest that although the processing of new images can interfere with the recognition of 

previously learned images (Potter & Levy, 1969), the ability to comprehend the semantic 

meaning of a scene occurs in as little as 120 msec, and that this information can be 

represented either by visual, or verbal description (see also, Intraub, 1999; Potter, 1999). 
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 Along the same lines, Biederman (1972) investigated the effects of context on 

perceptual scene recognition. In his task, observers were presented with natural images 

(e.g., a street scene presented for 300, 500, or 700 msec) and were asked to identity the 

presence of a target object at a cued location (e.g., a bike). In the pre-cued condition, an 

arrow preceded presentation of the image and identified the location of the target. In the 

post-cued condition, the cueing arrow was presented after image offset. The scenes were 

constructed such that they were either coherent, or jumbled (i.e., the image was cut into 

six equal segments and rearranged, so that its context was ambiguous) and some 

observers were provided with target foreknowledge, whereas others were not. Biederman 

reported that target identification accuracy was lower for jumbled scenes compared to 

coherent scenes, irrespective of cue type, target knowledge, and presentation duration. As 

such, Biederman concluded that image coherency facilitated object detection by 

activating a scene schema, corroborating Potter and colleagues results that contextual 

scene information appears to be available pre-attentively.   

1.2 The time course of rapid scene categorization   

 The investigations undertaken by Potter (1976) and Biederman (1972) were 

influential in suggesting that scene context is processed rapidly, and without attention.  

Inspired by these findings, Thorpe, Fize, and Marlot (1996) were the first to estimate the 

time course of rapid scene categorization. They asked their participants to indicate the 

presence (or absence) of an animal in briefly presented (20 msec) natural scenes 

(unmasked), while simultaneously recording electroencephalography (EEG) activity. 

Thorpe and colleagues reported that although observers were able to respond within 300 

msec of stimulus onset, EEG activity began to differ between target absent and target 
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present trials at approximately 120 msec after stimuli onset. This finding is important 

because it suggests that the information used to categorize the presence of an animal was 

available prior to this time point. However, because the authors did not mask the images, 

it is possible that later processing contributed to the ability to differentiate between target 

present and target absent displays. Nevertheless, subsequent studies showed that rapid 

scene categorization cannot be sped up by training (Fabre-Thorpe, Delorme, Marlot, & 

Thorpe, 2001) and extends to basic (e.g., beach and forest), superordinate (e.g., natural 

and urban), and non-evolutionary important categories (e.g., vehicles) (Greene & Oliva, 

2009; Joubert, Rousselet, Fize, & Fabre-Thorpe, 2007; VanRullen & Thorpe, 2002).   

However, superordinate level categorization has been shown to occur faster than basic 

level categorization (Loschky & Larson, 2010; Joubert et al., 2007; Rousselet, Joubert, & 

Fabre-Thorpe, 2005; Larson & Loschky, 2009). 

1.3 Does rapid scene categorization require attention?   

 The rapid nature of scene categorization suggests that the extraction of semantic 

information occurs automatically and without the need for attentional resources. Thus, 

much recent research focuses on whether scene perception satisfies the requirements in 

order to be considered an automatic process. Brown, Gore, and Carr (2002) outlined that 

in order for a process to be considered automatic in must satisfy the following three 

conditions: 1) it must be computed rapidly; 2) without intention; and 3) be immune to 

interference from concurrent processes.  Because of the robust finding that scene 

categorization occurs in as little as 120 msec, it is widely accepted that it meets the first 

requirement. However, conflicting findings question whether scene perception satisfies 

the remaining two criteria. In sections 1.3.1 and 1.3.2, I describe these conflicting sets of 
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findings.  

 1.3.1 Is semantic scene related information extracted without intention?  

 Inattentional blindness is the perpetual phenomenon in which a fully visible object 

goes unnoticed when attention is engaged in completing a task.  In a typical task (e.g., 

Mack & Rock, 1998), observers are presented with a masked presentation of a centrally 

located fixation cross consisting of a long and short line, displayed for less than 200 

msec. The task of the observer is to indicate whether the vertical or horizontal line of the 

cross is longer. On some trials, the cross is presented alone, whereas on others, a critical 

stimulus (usually a small square) is presented simultaneously in the periphery. For trials 

on which a critical stimulus is present, observers are asked to indicate whether a stimulus 

other than the cross is present. Despite the fact that observers are continually probed to 

report the addition of a second stimulus throughout the experiment (thereby increasing 

the chances of an erroneous positive response, or false alarm), observers fail to report the 

critical stimulus, suggesting that without attention significant changes go unnoticed.   

   Mack and Rock (1998), however, reported that natural scene perception is 

immune to inattentional blindness.  Mack and Rock modified their original design by 

replacing the critical stimulus with a large image (e.g., an indoor or outdoor scene) on 

which the central cross was located. In contrast to the typical finding, observers were able 

to report the semantic meaning of the scene when probed. Although several researchers 

(Cohen, Alvarez, & Nakayama, 2013; Lamme, 2003) have cited this finding as evidence 

that the extraction of semantic information does not require attentional resources, Mack 

and Rock attributed this result to the fact that the large image size attracted attention. In 

support of this hypothesis, Mack and Clarke (2012) showed that when the critical natural 
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image was both smaller and presented in the periphery, observers failed to notice its 

presence, corroborating Mack and Rock’s original claim.   

 Closely related to Mack and Rock’s (1998) finding is the observation that scene 

perception is immune to change blindness; the perceptual phenomenon in which an 

observer fails to notice a significant change to a stimulus when visual attention is diverted 

elsewhere (Simons & Chabris, 1999). One way in which change blindness is typically 

studied is using the flicker paradigm. This paradigm involves the continuous alternation 

between two images, the second image being a copy of the first with either a large, or 

small change to a critical stimulus. The task of the observer is to identify the change as 

quickly and as accurately as possible. Typically, changes between the images can go 

unnoticed for several minutes, suggesting that attention to the object, or area undergoing 

the change, is needed in order to detect it.  

 Amid all this research, however, Rensink, O’Regan, and Clark (1997) noted that 

changes that alter the meaning of a scene are detected faster than changes that do not. In 

their study, Rensink and coworkers manipulated the image change, such that the object 

removed was either central, or marginal to the scene’s understanding. When a central 

interest object was removed, change detection rates were statistically significantly faster 

than when a marginal object was removed. Simons and Levin (1997) cited this result as 

evidence that the automatic and pre-attentive extraction of semantic meaning guides 

attention to objects that are central to a scene’s meaning. Marginal changes thus go 

unnoticed because they do not contribute to overall understanding of the scene.  

 Further evidence that scene categorization occurs automatically is provided by 

Greene and Fei-Fei (2014), who used a modified Stroop paradigm (Stroop, 1935). The 
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Stroop paradigm involves presenting observers with coloured words that are either 

congruent (e.g., “blue” printed in blue) or incongruent (e.g., “blue” printed in red).  The 

classical finding is that naming the colour of a colour word printed in an incongruent ink 

colour is more difficult than naming the colour of a colour word printed in a congruent 

ink colour because in the former case, the output of two automatic processes (i.e., colour 

naming and word reading) yields conflicting results, whereas no such conflict is present 

(or even possible) in the latter. The Stroop paradigm is thus an effective task for 

addressing the question of whether a particular process can be considered automatic. 

Greene and Fei-Fei presented their observers with either an object (e.g., a guitar) or scene 

(e.g., a lobby) word that was superimposed onto images that were either congruent (e.g., 

a picture of a guitar, or lobby), or incongruent (e.g., a picture of a barbeque, or cafeteria). 

The task of the observer was to as quickly and as accurately as possible identify whether 

the word corresponded to an object, or scene name. Greene and Fe-Fei reported that 

discriminating between object and scene names was faster on congruent than incongruent 

trials, replicating the standard stroop effect. They interpreted this finding as suggesting 

that the automatic extraction of a scene’s meaning interfered with the word-naming task.  

However, this effect was only observed for basic level scene categories (e.g., beach and 

river); there was no evidence of stroop interference when scene categories were defined 

based on the superordinate level (e.g., natural and outdoor), suggesting that not all rapid 

categorizations are automatic and pre-attentively processed. 

 1.3.2 Is scene perception immune to interference from concurrent processing?  

 Investigations addressing whether scene perception is immune from concurrent 

processing have typically focused on examining whether scene perception performance 



 

 
14"

differs between single and dual-task conditions. In these studies, observers are asked to 

compete two concurrent tasks: an attentionally demanding primary task and secondary 

scene categorization task. In theory, the primary task will deplete attentional resources, 

thereby allowing no resources to be allocated to the scene stimuli. Evidence of pre-

attentive scene categorization is thus present if scene categorization performance does not 

differ between single and dual task conditions. However, and similar to above, these 

studies have produced mixed results: whereas some studies have documented a cost of 

dividing attention on scene categorization performance, others have not. In the following 

section, I review these conflicting sets of findings.  

  Li, VanRullen, Koch, and Perona (2002) provided the seminal investigation 

demonstrating that scene categorization is not impaired under dual-task conditions.  On 

each trial in their experiment, observers were simultaneously presented with a central 

letter discrimination task (e.g., search for an “L” among rotated “T”s; presented until 

response at the centre of the screen) and a peripheral scene categorization task (e.g., 

indicate the presence of an animal, or vehicle; presented for 27 msec at a random location 

in the periphery).  On single-task central trials, observers were instructed to respond as 

quickly and as accurately as possible to only the attentionally demanding central task; on 

single-task peripheral trials, observers were instructed to respond to only the peripheral 

scene categorization task. On dual task trials, observers were asked to answer both tasks 

as quickly and as accurately as possible. Critically, in the latter condition, observers were 

instructed to respond to the peripheral task before the central task. Results indicated that 

scene categorization performance did not statistically significantly differ between the 

single task conditions (i.e., completion of the central or peripheral tasks only) and the 
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dual task condition. Li and colleagues interpreted this finding as evidence that some high-

level representations of a visual scene (e.g., semantic information) are available pre-

attentively.  

 In contrast to the claim that scene categorization is attention free, Walker, 

Stafford, and Davis (2008) demonstrated an associated cost to scene categorization 

performance when completed concurrently with an attentionally demanding primary task. 

Walker and colleagues presented their observers with a natural image (170 msec) 

superimposed with four letters, arranged in square, located centrally. On single task trials, 

observers were asked to indicate if the image contained an animal (or not). On dual task 

trials, observers were instructed to first indicate if the four letters contained a vowel 

before completing the categorization task.  Critically, and in contrast to Li and colleagues 

(2002), the images used in this study contained from one to four distractor objects that 

were not animals. The authors reported that scene categorization performance was worse 

on dual task trials than on single task trials, suggesting that attention is required for the 

rapid categorization of complex visual scenes (i.e., scenes that contain more than one 

object). Furthermore, this decrease in performance was also present (although attenuated) 

for trials on which an image contained only one distractor item, suggesting that some 

attentional resources are required to rapidly categorize simple visual scenes, as used by Li 

et al. (2002). Taken together, Walker and colleagues concluded that scene categorization 

is not pre-attentive.   

 According to Walker and colleagues (2008), the discrepancy between their 

findings and those reported by Li and colleagues (2002) is due to the fact that their 

attention task was more attentionally demanding (e.g., the authors reported a 68% 
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accuracy rate compared to the titrated accuracy rate of 80% reported by Li et al., 2002).   

Consistent with this interpretation, Cohen and coworkers (2011) showed that scene 

categorization is susceptible to inattentional blindness if the primary attention task is 

sufficiently difficult enough to engage attention (c.f. Mack & Rock, 1998). In Experiment 

1, Cohen and coworkers modified the inattentional blindness paradigm to include a 

concurrent task. They asked observers to complete a motion object-tracking task that 

required the tracking of 4 of 8 discs on a checkered background. The discs moved under 

either low (track 4 of 8 discs moving at 4.5° per second) or high (track 4 of 8 discs 

moving at 10.5° per second) attention demands. On critical trials, the checkered 

background was replaced with a natural scene (e.g., beach, building, highway, mountain, 

or indoor scene). In a control condition, observers were instructed not to track any discs. 

Similar to previous inattentional paradigms, observers on critical trials were probed to 

indicate the presence of any additional stimuli. Although there was no statistically 

significant difference in scene categorization detection performance between control and 

dual task conditions when tracking speed was slow, scene categorization detection 

performance was impaired under dual-task conditions when tracking speed was fast. As 

such, this finding corroborates Mack and Clarke’s (2012) finding that scene perception is 

susceptible to inattentional blindness under the right conditions.  

 In a follow-up experiment, Cohen and colleagues (2011) further modified the 

inattentional blindness paradigm to demonstrate that scene perception in an RSVP stream 

is impaired when attention is engaged in completing a concurrent task (c.f. Potter, 1976). 

Cohen and coworkers presented their observers with a stream of masked letters and 

digits, appearing one at a time at a presentation rate of 100 msec/letter or digit. The task 
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of the observer was to count the number of digits that appeared in the stream. On critical 

trials, the second-to-last mask was replaced with an image. In a scene category condition, 

the image corresponded to one of five possible scene categories: a mountain, beach, 

highway, indoor, or building scene. In an animal/vehicle condition, the image contained 

either an animal, or a vehicle. Observers were subsequently probed to identify either the 

scene category, or to indicate whether an animal, or vehicle was present.  In a single task 

condition, observers were instructed to passively view the RSVP stream. Compared to the 

single task condition, detection rates for both the scene categorization task and the 

animal/vehicle tasks were lower under dual-task conditions, corroborating the results 

from their motion tracking experiment. However, Cohen and coworkers also reported that 

the cost of dividing attention was greater for the animal detection task, suggesting that 

animal detection might rely on a different mechanism than scene categorization.  

1.4 Scene categorization theories  

 Although scene categorization occurs rapidly, manipulations of attention affect 

scene categorization performance. A challenge for researchers is to thus establish a scene 

categorization theory that explains its rapid nature, while also acknowledging a potential 

role for attention. Although there is still considerable debate regarding the role of 

attention, there is general agreement that the basis for rapid scene categorization occurs at 

early stages of visual input. However, researchers disagree with respect to the type of 

low-level information that subserves rapid scene perception. Whereas Evans and 

Treisman (2005) suggested that the extraction of summary statistics underpins rapid 

scene categorization, Oliva and Schyns (1997) suggested that categorization is based on 

fine and coarse scale information. In the following sections, I elaborate on the evidence 
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for these two respective theories and in section 1.4.3, I discuss how these two theories 

potentially integrate.  

 1.4.1 Summary statistics and scene categorization. 

  Evans and Treisman (2005; see also Chong & Treisman, 2005; Treisman, 2006) 

suggested that the automatic extraction of a scene's statistical properties underpins rapid 

scene categorization. This hypothesis is largely based on the existence of an automatic 

averaging mechanism that extracts statistical properties (e.g., mean, range, and variance) 

from sets of similar objects. This averaging mechanism appears to be general in its 

operation, applying to both low-level features (e.g., average size and orientation, Ariely, 

2001; Chong & Treisman, 2003, 2005a, Parkes, Lund, Angelucci, & Solomon, 2001) and 

higher-level properties (e.g., average emotion of a set of faces; Brand, Oriet, & Sykes-

Totteham, 2013; de Fockert & Wolfenstein, 2009; Haberman & Whitney, 2007, 2009). 

Typically, this type of perceptual averaging is studied using a mean discrimination task, 

or a member identification task. During these tasks, observers are asked to indicate 

whether a test probe is a set member of a previously displayed set of items (the member 

identification task), or to judge whether some characteristic of the test probe (e.g., size) 

corresponds to the average of that characteristic in the previously displayed set (e.g., the 

set's overall average size of items; the mean discrimination task). The classical finding is 

that whereas mean discrimination performance is generally very good, member 

identification performance is directly related to the statistical association between the test 

probe and the set of items; the closer the test probe is to average characteristic of the set, 

the greater the likelihood that the test probe will be identified as a set member, regardless 

of whether it was or not (Ariely, 2001). On the basis of such findings, it is argued that 
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when observers are presented with a set of similar objects, they automatically extract 

overall statistical properties, while having a poor representation of individual items 

(Ariely, 2001; Chong & Treisman, 2003, 2005).  

 Perceptual averaging occurs in as little as 50 msec (Chong & Treisman, 2003), 

suggesting that it does not require attentional resources (Alvarez & Oliva, 2008; Chong & 

Treisman, 2003), and is based on information established by early visual processes before 

conscious awareness of individual objects (Choo & Franconeri, 2010; Corbett & Oriet, 

2011; Haberman & Whitney, 2011; but see Jacoby, Kamke, & Mattingley, 2013; Myczek 

& Simons, 2008). Consequently, Chong and Treisman (2005) proposed that the rapid 

extraction of statistical information allows for an economical description of a scene, 

which in turn, provides the basis for rapid scene categorization. The hypothesis is that 

although statistical information varies from category to category (e.g., the statistical 

information relating to beaches is different from forests), it is typically consistent within 

categories (e.g., all beaches have roughly the same statistical information), allowing for 

rapid categorization without the need for attention to bind features together.  

 1.4.2 Scene categorization and spatial scale processing.  

 According to Schyns and Oliva (1994; see also Oliva & Schyns, 1997) rapid 

scene perception is based on information encoded by the different spatial frequency 

channels of the visual system. Their hypothesis is largely based on classical findings from 

the psychophysical literature. Campbell and Robson (1968), for example, showed that 

detection of square-wave gratings could be predicted by their individual spatial 

frequencies, suggesting that the visual system encoded the stimuli via different spatial 

frequency filters.  Subsequent studies showed that visual input is initially filtered into 
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between four to six different spatial frequency channels (Ginsburg, 1986; Wilson & 

Bergen, 1979), and that this filtering precedes stereopsis (Legge & Gu, 1989), motion 

perception (Morgan, 1992), depth perception (Marshall, Burbeck, Ariely, Rolland, & 

Maritn, 1996), and saccade programing (Findlay, Brogan, & Wenban-smith, 1993). Thus, 

Oliva and Schyns (1994; see also, Morrison & Schyns, 2001) suggested that spatial 

frequency information is the foundation for visual categorization in which the early 

filtering of visual information precedes the processing of higher-level scene information. 

More specifically, Schyns and Oliva argued that spatial frequency information could be 

broadly classified into relatively low and high spatial frequencies. Whereas low spatial 

frequencies convey information related to an image’s global features, high spatial 

frequencies convey information related to an image’s fine details (see Figure 1.1). 

Attending to fine and global information will facilitate categorization based on each 

respective source of information (Oliva & Schyns, 1997). 

 1.4.3 Summary statistics, spatial scale processing, and scene categorization.  

 Perceptual averaging, spatial scale processing, and rapid scene categorization are 

mostly investigated independently, with little or no discussion regarding their integration. 

This is interesting given that it is hypothesized that the extraction of summary statistics 

contributes to the information found in spatial scales that have been argued to underpin 

rapid scene categorization (Oliva & Torralba, 2001; Greene & Oliva, 2009). Consider, for 

example, the Spatial Envelope Theory of scene perception in which rapid scene 

categorization is based on orthogonal global features that are represented within an 

image’s spatial scales (Oliva & Torralba, 2001).  In their original description, Oliva and 

Torralba (2001) identified an image’s ‘‘naturalness’’, ‘‘openness’’, ‘‘roughness’’, 
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‘‘expansion’’, and ‘‘ruggedness’’ as the original global properties that can be used as the 

basis for categorization. In support of their hypothesis, Oliva and Torralba created a set of 

filters based on each global property by computing the Fourier spectra of images that 

independent observers rated as displaying each respective global property. The Fourier 

spectrum plots an image’s spatial frequency information along the cardinal orientations, 

horizontal, vertical, and oblique. Different categories typically convey different spectral 

information. For example, the Fourier spectrum of a beach scene contains low spatial 

frequencies along the vertical axis that corresponds to its horizon. Conversely, the Fourier 

spectrum of a city scene typically has a wide range of spatial frequencies located on the 

horizontal axis that represents its skyline.  

 Oliva and Torralba (2001) constructed a computational model that classified 

images into different scene categories, based on the responses of the different global 

filters. Results of their simulation showed that global properties could successfully 

categorize scenes based on superordinate (e.g., natural and manmade) and basic (e.g., 

beach and forest) levels. For example, scenes that produced a high value on the 

“naturalness” filter (e.g., a “natural” scene) tended to have lower spatial frequencies on 

the horizontal axis. Conversely, scenes that produced a low value on the “naturalness” 

filter (e.g., a “manmade" scene) tended to have more middle and higher spatial 

frequencies along the horizontal axis.  Thus, Oliva and Torralba argued that superordinate 

level categorization precedes basic level categorization because it can be accomplished 

on the basis of a single global feature. In contrast, basic level categorization takes longer 

because it requires the integration of several global features (e.g., a forest scene is both 

“natural” and “closed”), a conclusion recently corroborated by Greene and Oliva (2009) 
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and consistent with previous suggestions that superordinate categorization occurs before 

basic level categorization (Loschky & Larson, 2010; Joubert et al., 2007; Rousselet, 

Joubert, & Fabre-Thorpe, 2005; Larson & Loschky, 2009).   

 Although the Fourier amplitude spectrum is able to convey that a natural scene 

contains low spatial frequencies at a horizontal orientation, it is not able to convey where 

in the image that information is located (e.g., the middle, top-right corner, left-bottom 

hand corner, etc...). Information related to the location of an image’s spatial frequencies 

is conveyed by an image’s Fourier phase spectrum. Oliva and Torralba (2001) showed 

that when an image’s Fourier phase is randomized (and only contributes unlocalized 

spatial frequency information related to a scene) their model is able to accomplish scene 

categorization at an 85% accuracy rate. This is compared to the 92% accuracy rate when 

an image's Fourier phase was unchanged (i.e., the Fourier phase spectrum conveys 

localized spatial frequency information), suggesting that the most useful spatial frequency 

information was unlocalized. However, subsequent behavioural studies showed that 

randomizing an image’s phase impairs both basic (Loschky et al., 2007) and 

superordinate level categorization (Loschky & Larson, 2008), suggesting a discrepancy 

between simulation and behavioural data.   

1.5 The present studies  

 As evident in the above discussion, current research is focused on whether 

attention is needed in order to extract semantic meaning. These studies, however, have 

led to conflicting results: evidence for pre-attentive scene perception on the one hand, and 

evidence of impaired scene perception without attention on the other. Together, these 

conflicting sets of findings suggest that attention is required for rapid scene 
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categorization; however, the exact role of attention is still largely unknown. Thus, the 

purpose of the present set of studies is to investigate potential roles for attention. This 

investigation is undertaken by addressing the hypothesis that one of the roles of attention 

is to facilitate scene categorization.  As mentioned in the introduction to this chapter, this 

investigation is broken down into two main chapters, with each chapter focusing on 

examining the effects of a different type of attention on scene categorization ability. In 

the following sections, I describe the rationale for the studies reported in Chapters 2 and 

3, but first describe the different types of attention that will be examined in this thesis. 

 The terms global and local attention and distributed and focused attention are 

often used interchangeably in the scene perception literature.  However, there are key 

differences between these types of attention that makes this comparison unwarranted. 

First, the terms global and local refers to how attention may be deployed in a hierarchical 

fashion. For example, for any natural scene, there is both a global and local structure and 

it is possible to attend to each level; each attended level yielding a different type of 

information (as described in the opening section of this introduction). Conversely, 

distributed and focused attention refers to how attention may be allocated over groups, or 

individual objects, without regard to a hierarchy. Similar to global and local attention, 

focused and distributed attention is associated with a different type of scene information 

(as described in the summary statistics section above). Whereas local and focused types 

of attention are associated with fine, detailed information, global and distributed types of 

attention are associated with the ability to rapidly categorize a briefly presented scene. As 

such, the present work is a first attempt to investigate how these different types of 

attention affect scene categorization ability. The effects of global and local attention on 
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rapid scene categorization are investigated in Chapter 2. The effects of distributed and 

focused attention on rapid scene categorization are investigated in Chapter 3.  

" 1.5.1 Chapter 2 

 The studies in Chapter 2 tested Oliva and Schyns (1997) hypothesis that attending 

to local and global levels facilitates rapid scene categorization based on fine and coarse 

information, respectively. The experiments used hybrid images that contain a low spatial 

frequency version of one image (e.g., a city scene) and a high spatial frequency version of 

another (e.g., a highway scene). The low spatial frequency image conveys information 

relating to a hybrid’s coarse content whereas the high spatial frequency image conveys 

information relating to a hybrid’s fine content (Schyns & Oliva, 1994). Therefore, hybrid 

images are ideal for investing spatial scale preference because basing categorization on 

fine and coarse information, respectively, results in different answers.  Although hybrid 

images have been used to examine spatial scale preference (Schyns & Oliva, 1994; Oliva 

& Schyns, 1997), there is nevertheless a lack of empirical evidence demonstrating the 

preferred spatial scale, irrespective of any experimental manipulation, used for scene 

categorization. For example, although low spatial frequencies are suggested to be the 

default spatial scale used for scene categorization (Schyns & Oliva, 1994), high spatial 

frequencies can also be used to classify a natural scene (Oliva & Schyns, 1997) Thus, 

Experiments 1 and 2 addressed the following question: when given the choice between 

fine and coarse information, what information does an observer prefer to use as the basis 

for rapid scene categorization?  The results from these two experiments provided the 

baseline for Experiments 3 and 4, which investigated how attending locally and globally 

affected the subsequent selection of spatial scale scene information used to categorize 
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hybrid images.  Attention to local and global levels was manipulated by asking observers 

to complete global and local Navon tasks (Navon, 1972). The processing of local and 

global Navon stimuli is analogous to the processing of fine and coarse information within 

a scene (Badcock, Whitworth, Badcock, & Lovegrove, 1990; Shulman & Wilson, 1987). 

Thus, Navon stimuli are the ideal stimuli with which to prime observers to select fine and 

coarse information in subsequently presented hybrid images.  

 1.5.2 Chapter 3  

 The four experiments in Chapter 3 were designed to examine Evans and 

Treisman’s (2005) suggestion that the extraction of summary statistics provides the 

foundation for rapid scene categorization. To date, research related to this question has 

been limited to two types of investigations: 1) studies that examined the effects of 

distributed and focused attention on the extraction of summary statistics (Chong & 

Treisman, 2005); and 2) inferences made from the results of studies designed to address 

other issues (e.g., the effects of dividing attention on scene categorization performance; 

Robitille & Harris, 2011). The experiments reported in Chapter 3 adopted a novel 

approach to answering this question. They examined whether manipulations of attention 

known to affect the extraction of summary statistics also affect rapid scene categorization 

in the same fashion.   

 The purpose of Experiment 1 was two-fold: 1) to replicate the finding that 

distributed, rather than focused attention, facilitates the extraction of summary statistics; 

and 2) to index the effects of perceptual averaging using reaction time so that the results 

could be easily compared with Experiments 2 – 4 that used the same measure to index 

scene categorization performance. Experiment 2 addressed the question of whether 
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distributed or focused attention was compatible with the detection of an animal.  The 

decision to use an animal detection task was based on previous research that used this 

task to measure scene categorization ability (Li et al., 2002; Rousselet et al., 2002; 

Thorpe et al., 1996; Walker et al., 2008). Whereas early scene categorization studies used 

animal detection tasks, more recent investigations used natural scenes in order to 

determine if scene categorization behaviour differed between simple and complex 

stimuli. Specifically, the majority of ongoing research asks observers to classify scenes 

based on either their basic (e.g., beach or forest) or superordinate (e.g., natural or 

manmade) level.  The robust finding is that superordinate level categorization is faster 

than basic level categorization (Loschky & Larson, 2010; Larson & Loschky, 2009; 

Joubert et al., 2007; Rousselet, Joubert, & Fabre-Thorpe, 2005), suggesting that 

superordinate level information is available earlier than basic level information. In turn, 

this suggests that information related to superordinate categorization is potentially 

available pre-attentively and is thus more likely to be influenced by distributed attention. 

Experiments 3 and 4 directly tested this hypothesis by examining the effects of 

distributed and focused attention on basic (Experiment 3) and superordinate (Experiment 

4) level categorization.  
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Chapter 2: Attention to local and global levels of hierarchical Navon figures affects 

rapid scene categorization  

 

Brand, J., Johnson, P. A. (2014). Attention to hierarchical Navon figures affects rapid 
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2.1 Abstract 

In four experiments, we investigated how attention to local and global levels of 

hierarchical Navon figures affected the selection of spatial scale information used in 

scene categorization. We explored this issue by asking observers to classify hybrid 

images (i.e., images that contain low spatial frequency content of one image, and high 

spatial frequency content from a second image) immediately following global and local 

Navon tasks. Hybrid images can be classified according to either their low, or high spatial 

frequency content; thus, making them ideal for investigating spatial scale preference. 

Although observers were sensitive to both spatial scales (Experiment 1), they 

overwhelmingly preferred to classify hybrids based on low spatial frequency content 

(Experiment 2).  In Experiment 3, we demonstrated that low spatial frequency based 

hybrid categorization was faster following global Navon tasks, suggesting that low spatial 

frequency processing associated with global Navon tasks primed the selection of low 

spatial frequencies in hybrid images. In Experiment 4, replicating Experiment 3 but 

suppressing the low spatial frequency information in Navon letters by contrast balancing 

the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to 

classify hybrids based on low spatial frequency content; however and in contrast, low 

spatial frequency based hybrid categorization was slower following global than local 

Navon tasks.   
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2.2 Introduction  

The ability to perceive a scene under increased attentional load is often cited as 

evidence of pre-attentive scene perception. This evidence is typically indexed using dual-

task paradigms in which a secondary scene categorization task is unaffected by a 

concurrent, cognitively demanding primary task. Researchers argue that scene perception 

is pre-attentive as it is immune to inattentional blindness (Mack & Rock, 1998), 

unimpaired under dual task conditions (Li, VanRullen, Koch, & Perona, 2002; Rousselet, 

Fabre-Thorpe, & Thorpe, 2002), susceptible to stroop interference (Greene & Fei-Fei, 

2014), and impervious to change blindness if the object’s removal does not change the 

meaning of the scene (Rensink, O’Regan, & Clark, 1997; Simons & Levin, 1997).  

 However, other researchers question the evidence in support of the automaticity 

of scene perception.  Cohen, Alvarez, and Nakayama (2011) argued that previous studies 

falsely demonstrated pre-attentive scene perception because they failed to use sufficiently 

demanding primary tasks, thereby allowing attentional resources to be allocated to the 

scene stimuli. By increasing the primary task difficulty, Cohen and colleagues 

demonstrated that concurrently completing multiple-object tracking and serial 

representation visual presentation (RSVP) tasks impairs scene categorization.  Together 

with previous research in which deficits in scene perception were indexed using 

attentional blink (Marois, Yi, & Chun, 2004; Slagter, Johnstone, Beets, & Davidson, 

2010; Evans & Treisman, 2005), inattentional blindness (Mack & Clarke, 2012), and dual 

task (Walker, Stafford, & Davis, 2008) paradigms, Cohen and colleagues concluded that 

conscious scene perception requires attention.    

 Although concluding that attention is necessary for a scene to reach conscious 
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awareness, Cohen and colleagues (2011) acknowledged that some higher-level aspects of 

scene processing occur in the absence of attention. One of the strongest findings in 

support of this hypothesis is the presence of scene-related behaviours that occur so rapid 

that attention is thought to play little or no role. Kirchner and Thorpe’s (2006; see also, 

Crouzet, Kirchner, & Thorpe, 2010) study illustrates this point. They showed that when 

two natural images are presented concurrently, observers are able to make an ultra-rapid 

saccade to the image that contained an animal in as little as 120-130 msec. Consistent 

with this view, Thorpe, Fize, and Marlot (1996; see also, Fabre-Thorpe, Delorme, Marlot, 

& Thorpe, 2001) showed that observers are able to remove their finger from a button box 

within 300 msec in response to the presence of an animal. Critically, simultaneous event-

related potentials revealed a differential frontal lobe activity between target and non-

target displays approximately 150 msec after stimulus onset. This suggests that scene 

categorization is made prior to this time point. Researchers (VanRullen & Thorpe, 2002) 

cite such results as evidence that scene categorization is accomplished, in part, by an 

automatic feed-forward mechanism, a conclusion corroborated by simulation evidence 

(Serre, Oliva, & Poggio, 2007). 

 The rapid ability to categorize scenes suggests that a scene’s semantic content is 

based on information originating from early visual processes. Consistent with this idea, 

Schyns and Oliva (1994) suggested that rapid scene categorization is based on a scene’s 

global layout. Highways, for example, tend to have fewer vertical straight lines compared 

to city landscapes that have many dense, vertical orientations.  Although these global 

image properties can vary from one scene to another (e.g., some cities are less dense than 

others), the consistency of spatial organization across different scenes is thought to 
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activate a scene schema that can be used for rapid scene categorization.  Schyns and 

Oliva tested this hypothesis by introducing a new type of scene stimuli, termed a hybrid 

image. A hybrid image contains information from two separate sources at different spatial 

frequencies. For example, an image that contains the low spatial frequency content of one 

picture (e.g., a city scene), and the high spatial frequency content of a second picture 

(e.g., a highway scene). Of particular importance to Schyns and Oliva was not spatial 

frequency per se, but rather the information that each spatial scale conveyed for scene 

recognition. Converging evidence from neurophysiological and psychophysical studies 

suggest that visual information is organized into spatial frequency channels in which 

global information is conveyed by low-spatial frequencies (LSFs) and finer information is 

conveyed by high-spatial frequencies (HSFs; for a review, see Morrison & Schyns, 

2001). Consequently, the authors reasoned that if scene recognition is based on coarse 

information, then observers should prefer to categorize hybrid images based on LSF 

content.  

 To test their hypothesis, Schyns and Oliva (1994) asked observers to indicate 

whether a briefly presented (30 msec or 150 msec) sample image matched a subsequent 

target image. The sample image was either a hybrid, low-pass filtered (i.e., contained 

only LSFs), high-pass filtered (i.e., contained only HSFs), or a full broadband spatial 

frequency scene (i.e., an unaltered original image). The target image was always a 

broadband image. Of critical importance here was the association between hybrid 

samples and target images. On LSF-hybrid trials, the hybrid’s LSF content matched the 

target scene. On HSF-hybrid trials, the hybrid’s HSF content matched the target scene. 

When presentation duration was short, LSF-hybrid trials were more accurate than HSF-
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hybrid trials; conversely, when presentation duration was long, HSF-hybrid trials were 

more accurate than LSF-hybrid trials. Critically, categorization performance was high for 

all control conditions, suggesting that differences in spatial frequency availability cannot 

account for the differential processing of hybrid images. Schyns and Oliva attributed this 

result to a coarse-to-fine processing bias in which the early availability of a scene’s 

global layout activates a scene schema from memory. Finer details emerge later and fill in 

the details of the scene’s content (e.g., object recognition).  

 Oliva and Schyns (1997) modified the coarse-to-fine hypothesis to reflect the fact 

that either global, or fine scale information can be used for scene recognition. They asked 

observers to first complete a sensitization phase during which they were briefly presented 

natural images that were meaningful at only one spatial frequency (e.g., a LSF version of 

a highway scene with HSF structured noise). A test phase immediately followed in which 

observers were asked to classify hybrid images. Observers were more likely to categorize 

hybrids based on LSF and HSF content, respectively, if they were first sensitized to the 

same frequencies during the sensitization phase. Interestingly, observers claimed to be 

aware of only a single spatial scale within the hybrid images, suggesting that scale 

selection was based on the scale that was previously the most informative.   

 To explain this flexibility in spatial scale selection, Oliva and Schyns (1997) 

suggested that attention is driven to spatial frequencies in which recognition is based on 

scale specific cues of a scene category (e.g., natural landscapes contain low spatial 

frequencies at a horizontal orientation that correspond to the horizon). This idea dovetails 

with Chong and Treisman’s (2005) notion that different distributions of attention 

facilitate the extraction of different types of information within a scene. According to 
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Chong and Treisman, a scene’s layout is organized hierarchically and attention can be 

deployed either locally, globally, or distributed over a set of similar items. When 

attention is focused locally, features are bound together resulting in the identification of 

an object. In contrast, when attention is distributed globally, the gist or semantic meaning 

of a scene is extracted based on its global layout. Finally, when attention is distributed 

over a set of similar items, summary representations of set properties are automatically 

extracted (e.g., average size; Ariely, 2001).  

 Global and local distributions of attention are typically studied using hierarchical 

Navon stimuli (e.g., a large “A” comprised of smaller “Cs”). Navon (1977) reported a 

global precedence effect that is characterized by two robust findings. First, global letters 

are identified faster than local letters; and second, global recognition interferes with local 

recognition but not vice versa.  Several researchers (Badcock, Whitworth, Badcock, & 

Lovegrove, 1990; Shulman & Wilson, 1987) explained the global precedence effect using 

the coarse-to-fine processing framework. Similar to the identification of coarse and fine 

information, the hypothesis is that the identification of global and local information is 

based on LSF and HSF information, respectively. In addition, Flevaris, Bentin, and 

Robertson (2011) showed that adopting different attentional distributions facilitates the 

selection of different spatial scales. They asked participants to classify the orientation of 

either the LSF or HSF component of a compound sine-wave grating immediately 

following global, or local Navon tasks. When discriminating the orientation of the LSF 

component, observers were faster following global Navon tasks; conversely, when asked 

to discriminate the orientation of the HSF component, observers were faster following 

local Navon tasks. 
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 Flevaris and coworkers’ (2011) result suggests that attending to global and local 

levels should differentially affect scene categorization by facilitating the selection of 

LSFs and HSFs, respectively. In the present research, we tested this hypothesis by asking 

participants to categorize briefly presented hybrid images following global, or local 

Navon tasks. However, because hybrid images contain competing sources of 

categorization content, it was important that we first demonstrated the ability of our 

observers to extract both sources of information. Additionally, it was also important that 

we understood the spatial frequency that our observers preferred to use for categorization, 

irrespective of any attention manipulation. Thus, in Experiment 1 we assessed spatial 

scale sensitivity and in Experiment 2 we assessed spatial scale preference.  

 Experiment 1 was a probe design similar to Schyns and Oliva (1994) in which 

observers were asked to indicate whether a probe word matched a briefly presented (32 

msec or 150 msec) hybrid image. The probe word matched either the hybrid’s LSF, or 

HSF content. In a control condition, the probe word matched neither spatial frequency. 

The measure, d prime (d’) was computed to measure observers’ sensitivity to both LSFs, 

and HSFs.  d’ values were above 1.5 in each condition, suggesting that both LSFs and 

HSFs are available in our hybrid images, at both short and long durations. Experiment 2 

was a replication of Experiment 1, with the exception that we used an all-alternative 

forced choice paradigm in which observers were asked to choose the image category 

from a list of all possible target categories. Critically, this design allowed us to compute 

an objective measure of preferred spatial scale. Results indicated that observers preferred 

to categorize hybrid images based on LSF content, at both short and long durations. 

Together with the results of Experiment 1, Experiment 2 demonstrated that our observers 
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preferred to base categorization on LSF content, despite the fact that both LSFs, and 

HSFs were perceptually available.  

  The fact that our observers prefered to base hybrid categorization on LSF content 

suggests that attending globally facilitates scene categorization. A consequence of this 

prediction is that LSF-based hybrid categorization should be faster following global 

compared to local Navon tasks. In Experiment 3, we directly tested this hypothesis by 

asking observers to classify hybrid images immediately following global and local Navon 

tasks. Similar to Experiment 2, observers preferred to categorize hybrid images based on 

LSF content, following both local and global Navon tasks.  Furthermore, and consistent 

with our hypothesis, LSF-based hybrid image categorization was faster following global 

Navon tasks. In Experiment 4, we directly tested whether this facilitation effect was the 

result of processing LSFs associated with a Navon figure's global structure. We thus 

replicated Experiment 3 with the exception that we contrast balanced the Navon stimuli 

in order to suppress their LSFs (see Appendix 2.1). Similar to Experiment 3, observers 

preferred to classify hybrid images based on LSF content, irrespective of the Navon task 

completed; however, and in contrast to Experiment 3, LSF-based hybrid image 

categorization was slower following global than local Navon tasks.  
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2.3 Experiment 1 

 The goal of Experiment 1 was to demonstrate the availability of both spatial 

frequencies in our hybrid images.  Similar to Schyns and Oliva’s (1994) study, we asked 

observers to complete a classification task in which they were required to indicate 

whether a cue word corresponded to a previously presented low-pass, high-pass, 

broadband, or hybrid image.  

 2.3.1 Method 

2.3.1.1 Observers.  Eight undergraduate students from Concordia University 

participated in this study in return for partial course credit.  All observers self-reported 

normal or corrected-to-normal vision. The University Human Research Ethics Committee 

at Concordia University approved all experiments reported in this article and all 

observers provided written consent.  

2.3.1.2 Stimuli and apparatus. Stimuli were presented on a 21-in. Viewsonic 

225fb CRT monitor (1024 X 768 resolution; 100 Hz refresh rate) controlled by a Dell 

Precision T3400 core2 quad processor running Microsoft Windows 7.  Experiment 

Builder (SR Research, Ottawa, Ontario) was used to display the stimuli and record the 

responses. All participants were seated 60 cm away from the screen, and their head 

position was controlled using a table-mounted chinrest. 

Stimuli were 128 natural images (32 unique images of highways, cities, living 

rooms, and valleys, respectively) taken from the Sun image database (Zoo, Xiao, Hays, 

Ehinger, Oliva, & Torralba, 2010).  All images were equalized for mean luminance and 

RMS contrast (as described in Appendix B of Loschky et al., 2007) and were presented 

on a gray background (RBG values = [128 128 128]; luminance of 52 cd/m2). These 
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images were the same categories used by Schyns and Oliva (1994), who showed that their 

overall contrast was similar (i.e., the Fourier amplitude spectra of the images are highly 

correlated with one another).  Images were broadband, low-pass (below 2 cycles deg-1 of 

visual angle), high-pass (above 6 cycles deg-1 of visual angle), or hybrid images. Hybrids 

were constructed by combining the low frequency components of one scene (e.g., a city) 

with the high frequency components of another scene (e.g., highway). Mathwork Matlab 

(ver. 2011b) was used to create the images. A total of 32,768 possible hybrid images 

were constructed by taking every possible combination of the four scene categories. All 

images were gray scaled, located in the centre of the screen, and were 256 X 256 pixels.    

2.3.1.3 Procedure. A trial schematic is presented in Figure 2.1. Each trial began 

with a fixation cross located in the centre of the screen presented for 250 msec, followed 

by a single image presented for either 32, or 150 msec. A white noise mask (amplitude 

spectrum slope = 0; orientation magnitude = 0) immediately followed offset of the image 

and was presented for 64 msec. The image was a broadband, low-pass, high-pass, or a 

hybrid image. Immediately following offset of the mask, observers were presented with a 

display screen in which they were asked to indicate whether a probe word (e.g., highway, 

city, living room, or valley) corresponded to the category of the previously presented 

image. On 50% of trials, the cue word corresponded to the image category. Of those 50% 

of trials on which the image was a hybrid, the probe word matched the hybrid’s LSF and 

HSF content 25% of the time, respectively. We instructed observers to press “1” on the 

keyboard number pad if they believed the probe word matched the previously presented 

image and the “2” key if they believed that it did not. The probe word was displayed in 
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the centre of the screen and stayed visible until a response was made. Trial-to-trial 

feedback was not provided.    

Observers completed 16 blocks of 48 trials for a total of 768 trials. Image type 

and presentation duration varied from trial-to-trial within a block, and the order of images 

and presentation duration was chosen at random by the program. Observers completed 32 

practice trials prior to beginning the experiment. The scene categories used during the 

practice trials were not used in the experimental trials (e.g., forest and barn scenes) and 

practice trials were not analyzed.  

  



 

 

 

Figure 2.1. An example of a trial sequence in Experiment 1.  
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2.3.2 Results 

 2.3.2.1 Sensitivity. The sensitivity measure, d’ was calculated for each condition. 

Condition varied according to image type (broadband, low-pass, high-pass, and hybrid) 

and presentation duration (32 msec and 150 msec). Because hybrid images contained 

both low and HSF content, we further separated these trials into those on which the probe 

word matched the hybrid’s low (Hybrid-LSF) and HSF content (Hybrid-HSF). As can be 

seen in Figure 2.2A, d’ values were high (d’ > 1.5) in all conditions, suggesting that 

observers were sensitive to all image types at both presentation durations. We entered d’ 

values into a 5 (image type) X 2 (presentation duration) repeated measures Analysis of 

Variance (ANOVA). There were significant main effects of image type, F(4, 28) = 8.09, 

p < .001, η2 = .54, and presentation duration, F(1, 7) = 34.47, p < .001, η2 = .83. The 

image type X presentation duration interaction was also significant, F(4, 28) = 4.65, p < 

.001, η2 = .39.   

 Because experiment 1 was designed to determine the availability of spatial 

frequencies in our hybrid images, we were particularly interested in comparisons between 

Hybrid-LSF and Hybrid-HSF trial types. However, we first compared performance 

between control images (low-pass, high-pass, and broadband) in order to ensure that any 

observed difference between hybrid trial types cannot be accounted for by processing 

biases in spatial frequency information. We first computed the planned comparison 

comparing d’ values using a 3 (image type) X 2 (presentation duration) planned contrast. 

This contrast was not significant, suggesting that there was no statistical difference in 

spatial frequency processing as a function of presentation duration, F(1, 7) = 1.38, p > 

.279, η2  < .01. We then compared sensitivity between control images using a series of 
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contrast comparisons. Specifically, we computed contrasts comparing d' values between 

broadband images and high-pass (Ψ1) and low-pass (Ψ2) filtered images, respectively. d' 

statistics and the results of these contrasts are displayed in Table 2.1. Observers were 

more sensitive to broadband images (M = 3.55; SD = 0.45) than both high-pass (M = 

2.88; SD = 0.62) and low-pass filtered images (M = 2.33; SD = 0.40). Observers were 

equally sensitive to low-pass and high-pass filtered images (Ψ3). The effect size measures 

in Experiment 1 paralleled the significance results. The largest effect sizes were between 

broadband images and low-pass (η2 = .76) and high-pass (η2 = .47) filtered images. The 

effect size between low-pass and high-pass filtered images was relatively smaller in 

comparison (η2 = .26).   

 Following the control image type analysis, we computed the contrast comparing 

hybrid trial types (Hybrid – LSF and Hybrid – HSF) as a function of presentation 

duration. This was not statistically significant, F(1, 7) = .137, p > .722, η2 < .01. We 

followed up this analysis by comparing sensitivity between hybrid trial types using a 

planned contrast, collapsing over presentation duration (Ψ4). Observers were more 

sensitive to hybrid-HSF image types (M = 2.71; SD = 0.49) than hybrid-LSF image types 

(M = 2.14; SD = 0.26).  Furthermore, the associated effect size (η2 = .66) was similar to 

the effect sizes reported for the significant control contrasts, suggesting that observers 

were in fact more sensitive to HSFs than LSFs in the hybrid images.   

  



 

 

 

  

  

Table 2.1. d prime statistics for each image type at each presentation duration in 
 
  Experiment 1. d prime mean difference contrasts in Experiment 1  

Ψ1: d' comparison between broadband images and high-pass filtered images. 
Ψ2: d' comparison between broadband images and low-pass filtered images.  
Ψ3: d' comparison between low-pass filtered and high-passed filtered images. 
Ψ4: d' comparison between Hybrid – LSF and Hybrid – HSF image types. 
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 2.3.2.2 Reaction time. We calculated mean reaction time (RT) measures for each 

trial type as a function of presentation duration. These means are displayed in Figure 

2.2B.  We entered these means into a 4 (image type) X 2 (presentation duration) repeated 

measures ANOVA. Unlike the calculation of d’ statistics, hybrid images were not 

separated further because target absent trials are the same between Hybrid – LSF and 

Hybrid – HSF trial types. The main effect of image type was significant, F(3, 21) = 3.29, 

p < .04, η2  = .32. However, the main effect of presentation duration and the image type X 

presentation duration interaction were not: F(1, 7) = .368, p > .563, η2  < .05 and F(3, 21) 

= .009, > .899, η2  < .001.  

 Similar to the sensitivity analysis, we were primarily interested in differences 

between Hybrid-HSF and Hybrid-LSF image types, but first report the results related to 

the control images. Specifically, we computed contrasts that paralleled the sensitivity 

comparisons. Reaction time statistics and mean difference contrasts are displayed in 

Table 2.2. Observers were faster to respond to broadband images (M = 950.04; SD = 

58.18) than both high-pass (M = 1005.26; SD = 36.67) (Ψ1) and low-pass filtered images 

(M = 1007.03; SD = 48.75) (Ψ2).  There was no RT difference between low-pass and 

high-pass filtered images (Ψ3). Consistent with the sensitivity analysis, the largest effect 

size was between broadband images and low-pass filtered images (η2  = .52) followed by 

the effect size for the difference between broadband images and high-pass filtered images 

(η2  = .38). The effect size between low-pass and high-pass filtered images was negligible 

(η2  < .01).  

 Reaction times on target present trials were compared between Hybrid – LSF and 

Hybrid – HSF image types and are displayed in Figure 2.2C. We entered these means into 
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a 2 (hybrid trial) X 2 (presentation duration) planned contrast. Consistent with the 

sensitivity analysis, this contrast was not significant, suggesting that RTs did not differ 

between hybrid image types as a function of presentation duration, F(1, 7) = .617, p > 

.458, η2  < .08. We then compared RTs between hybrid – LSF and hybrid – HSF image 

types, collapsing over presentation duration. This contrast was significant, F(1, 7) = 7.58, 

p < .028, η2  = .52. Observers were faster to respond to Hybrid – LSF image types (M = 

1013.81; SD = 16.37) than Hybrid – HSF image types (M = 1068.62; SD = 41.90).  This 

was a difference of approximately 54.81 msec (SD =52.65; 95% CI [11.91, 97.71]). It is 

interesting to note that the associated effect size was similar to the effect size reported in 

the parallel sensitivity analysis (η2  = .66), suggesting that the effect of hybrid trial type is 

robust across dependent variables.  

  



 

 

 
  

Table 2.2. Reaction time statistics for each image type at each presentation  
 

 duration in Experiment 1. Reaction time mean difference contrasts in  Experiment 1.  

Ψ1: RT comparison between broadband images and high-pass filtered images. 
Ψ2: RT comparison between broadband images and low-pass filtered images.  
Ψ3: RT comparison between low-pass filtered and high-passed filtered images 
* Reaction time calculation is based on target present trials only.   



 

 

  

Figure 2.2 The results of Experiment 1. A) Mean d prime values for each image type at each 

presentation duration. B) Mean scene categorization reaction times for each image type at 

each presentation duration; C) Mean reaction times for hybrid LSF and hybrid- HSF trial 

types at each presentation duration.  The error bars represented here are the 95% within 

-subject confidence intervals described by Loftus and Masson (1994).  
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2.3.3 Discussion 

 The critical result from Experiment 1 is that we corroborated Oliva and Schyns 

(1997) finding that both spatial scales are available to form the basis for hybrid image 

categorization. Observers in our study were sensitive to both sources of spatial frequency 

content and there was no significant interaction with presentation duration, although 

observers were overall more sensitive to HSFs than LSFs in the hybrid images. An 

interesting finding from Experiment 1 is that d’ values were overall high, which is 

suggestive of weak masking effects. The most likely explanation for this result is that we 

constructed our masks so that their amplitude spectrum slope (i.e., the slope that conveys 

amplitude and orientation information in an image) would have a value of 0. Hansen and 

Loschky (2013) found that white noise masks with this property are the least effective at 

masking natural scene stimuli, whereas white noise masks whose amplitude spectrum 

slope most closely resembled that of a natural scene (e.g., ~ alpha = 1; Hansen, Haun, & 

Essock, 2008) are the most effective.  This suggestion is consistent with previous studies 

that showed that the most effective mask for a particular spatial frequency is one whose 

amplitude spectrum information is most similar to the target stimuli (Losada & Mullen, 

1995; Mullen & Losada, 1999; Stromeyer & Julsez, 1972).   
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2.4 Experiment 2 

 Experiment 2 is an extension of Experiment 1. Whereas Experiment 1 assessed 

the availability of spatial scale information, Experiment 2 assessed spatial scale 

preference between competing sources of LSF and HSF information. Thus, Experiment 2 

is a replication of Experiment 1, with the exception that we assessed scene categorization 

using an all-alternative forced choice paradigm. We asked observers to choose which of 

all possible target categories corresponded to the previously presented hybrid image. 

Because a hybrid image’s LSFs and HSFs convey information related to different 

categories, forcing observers to choose between all possible target categories indexes 

their preferred spatial scale.  

 2.4.1 Method 

2.4.1.1 Observers.  Ten undergraduate students from Concordia University 

participated in this study in return for partial course credit.  All observers self-reported 

normal or corrected-to-normal vision.   

2.4.1.2 Stimuli, apparatus, and procedure. An example of a trial sequence in 

Experiment 2 is presented in Figure 2.3. Stimuli, apparatus, and procedure were the same 

as in Experiment 1 with the following exception. Categorization performance was 

measured using a 4-alternative forced choice task. Immediately following offset of the 

mask, we presented observers with a list of 4 probe words with an associated number 

(city = 1, highway = 2, living room = 3, and valley = 4) listed vertically in the centre of 

the screen. The task of the observer was to as quickly and as accurately as possible 

indicate the category of the previous image by pressing the corresponding key on the 

keyboard number pad.  



 

 

 
 

Figure 2.3. An example of a trial sequence in Experiment 2.  
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2.4.2 Results 

 2.4.2.1 Sensitivity. As in Experiment 1, d' was computed for each condition. 

These means are displayed in Figure 2.4A.  Similar to Experiment 1, d' values were 

above 1.5 in each condition, suggesting that observers were sensitive to all image types. 

We entered these means into a 2 (presentation duration) X 4 (image type) repeated 

measures ANOVA. There were significant main effects of image type, F(3, 27) = 10.91, 

p < .001, η2 = .55, and presentation duration, F(1, 9) = 56.83, p < .001, η2 = .86. The 

image type X presentation duration interaction was not significant, F(3, 27) = 1.29, p > 

.299, η2 = .13.  Observers were more sensitive at long (M = 3.05; SD = 0.29) than short 

(M = 2.32; SD = 0.13) durations, a difference of 0.73 (SD = 0.29; 95% CI [0.52, 0.94]). 

Although sensitivity was high in all conditions, the significant image type main effect 

appears to be driven by the fact that observers were less sensitive to hybrid images (M = 

2.04; SD = 0.18) than the other image types (M = 2.89; SD = 0.21). This contrast (Ψ1) 

was statistically significant. Furthermore, the contrast comparing sensitivity between 

broadband images (M = 3.09; SD = 0.47) and low-pass and high-pass filtered images (M 

= 2.79; SD = 0.14) was not significant, corroborating our conclusion (Ψ2). Consistent 

with this conclusion, the effect size for Ψ1 (η2 = .85) was higher than Ψ2 (η2 = .31). d' 

statistics and contrast analyses are displayed in Table 2.3.  

 In order to examine spatial scale preference, we separated hybrid trials into those 

on which categorization was based on low and HSF content, respectively. As can be seen 

in Figure 2.4B, observers preferred to categorize hybrid images based on LSF content at 

both short and long presentation durations. High spatial frequency based hybrid 

categorization did not exceed chance at long durations (M = .20; SD = .07), t(9) = 1.87, p 
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> .095 and was worse than chance at short durations (M = .15; SD = .03), t(9) = 8.64, p < 

.001. As a result, we concentrated our analysis on trials on which hybrid categorization 

was based on LSF content. LSF-based hybrid categorization did not statistically 

significantly differ between short (M = .73; SD = .08) and long (M = .69; SD = .09) 

durations, t(9) = 1.78, p > .111, Cohen’s d = .55, a difference of .04 (SD = 0.06; 95% CI 

[-.01, 0.09]).  

  



 

 

 

Table 2.3. d prime statistics for each trial type at each presentation duration in 
 
  Experiment 2. d prime mean difference contrasts in Experiment 2.  

Ψ1: d' comparison between hybrid image types and the other image types. 
Ψ2: d' comparison between broadband images and low-pass and high pass filtered images.  



 

 
53"

 2.4.2.2 Reaction time. Reaction times were computed as described in the 

sensitivity analysis and are displayed in Figure 2.4C. We entered RTs into a 2 

(presentation duration) X 4 (image type) repeated measures ANOVA. There was a 

significant main effect of image type, F(3, 27) = 15.44, p < .001, η2 = .63. The main 

effect of presentation duration and the image type X presentation duration interaction 

were not significant, F(1, 9) = .033, p > .860, η2  = .01 and F(1, 9) = 1.77, p > .176, η2  = 

.16. Looking at Figure 2.4C, it is clear that observers were overall slower to respond to 

hybrid images (M = 1078.79; SD = 131.27) than any other image type (M = 838.87; SD = 

43.76). This contrast was statistically significant (Ψ1). Furthermore, observers were faster 

to respond to broadband images (M = 795.27; SD = 41.91) than low-pass and high-pass 

filtered images (M = 860.66; SD = 49.58) (Ψ2). There was no significant difference in 

RTs between low-pass (M = 890.67; SD = 89.6) and high-pass filtered (M = 830.65; SD = 

29.25) images (Ψ3). Similar to the previous experiments, effect size comparisons 

paralleled the significance results.  The effect size associated with the non-significant 

difference between low-pass and high-pass filtered images was the smallest (η2  = .31), 

whereas the largest effect sizes were between broadband images and low-pass and high 

pass filtered images (η2  = .75) and between hybrid images and the other image types (η2  

= .72). Reaction time statistics and contrast analyses are displayed in Table 2.4.  

 As with the sensitivity analysis, our main goal was to index differences relating to 

hybrid images. However, because HSF-based categorization was no better (or worse) 

than chance, we restricted our hybrid RT analysis to trials on which hybrid categorization 

was based on LSF content (Figure 2.4D). LSF-based hybrid categorization was 

statistically significantly faster at short than long durations, t(9) = 2.98, p < . 016, 
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Cohen’s d = .94, a difference of 108.21 msec (SD = 109.12; 95% CI [30.15, 186.28]).  

 
  



 

 

 

Table 2.4. Reaction time statistics for each trial type at each presentation duration in 
 
  Experiment 2. Reaction time mean difference contrasts in Experiment 2.  

Ψ1: RT comparison between hybrid images and the other image types. 
Ψ2: RT comparison between broadband images and high-pass and low-pass filtered images.  
Ψ3: RT comparison between high-pass and low pass filtered images. 



 

 

 

 

 Figure 2.4. The results of Experiment 2. A) Mean d prime values for each image type at 

each presentation duration; B) Percentage of low- and HSF-based hybrid categorization at 

each presentation duration; C) Mean scene categorization reaction times for each image 

type at each presentation duration; D) Mean reaction times for LSF-based hybrid  

categorization at each presentation duration. The error bars represented here are the 95% 

within subject confidence intervals described by Loftus and Masson (1994). 
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2.4.3 Discussion 

 Experiment 2 showed that observers preferred to categorize hybrid images based 

on LSF content, at both short and long durations. However, an interesting finding is that 

observers were significantly slower at categorizing hybrid images compared to the other 

image types. The most likely explanation for this result is that although the probability of 

a correct answer was greatest for hybrid images (50% versus 25%) their categorization 

nevertheless led to greater interference effects because they contained competing sources 

of information.  Together with the fact that HSF-based hybrid categorization did not 

exceed chance performance, and these results corroborate the finding that although 

observers process information at multiple spatial scales, they nevertheless use a single 

spatial scale as the basis for categorization (Oliva & Schyns, 1997).  Along the same 

lines, observers in the current study were less sensitive to hybrid images than the other 

image types. Similar to above, the most parsimonious explanation for this result is that 

hybrid images differed from control images with respect to the probability of a correct 

answer. Because observers had a 50% chance at guessing the category of a hybrid image, 

this essentially reduced the 4-alternative forced choice task to a 2-alternative forced 

choice task. Thus, although accuracy was comparable between the different image types, 

sensitivity was nonetheless lower for hybrid images.  

 The critical finding from Experiment 2 is that observers overwhelmingly 

preferred to base hybrid image categorization on LSF content, despite the fact that both 

LSFs and HSFs were perceptually available (Experiment 1). The results of Experiments 1 

and 2 thus serve as a baseline for Experiment 3 in which we examined whether we can 

bias spatial selection by directing attention to either global, or local levels of hierarchical 
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Navon figures.  
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2.5 Experiment 3  

 Experiment 3 was a replication of Experiment 2 with the exception that we asked 

observers to complete global and local Navon tasks prior to classifying hybrid images. 

Similar to Experiments 1 and 2, we included control images in order to properly 

understand how attending locally and globally affected the processing of LSFs and HSFs. 

Because observers preferred to base hybrid categorization on LSF content, we predicted 

that LSF-based hybrid categorization would be facilitated following global Navon tasks; 

that is, LSF-based hybrid categorization would be faster following global Navon tasks 

than local Navon tasks.  Also, because there was no interaction between presentation 

duration and categorization performance in Experiments 1 and 2, we simplified our 

design by presenting images at only 32 msec. 

 2.5.1 Method 

2.5.1.1 Observers.  Fourteen naïve undergraduate students from Concordia 

University participated in this study in return for partial course credit.  All observers self-

reported normal or corrected-to-normal vision.   

2.5.1.2 Stimuli and apparatus. Stimuli and apparatus were the same as in 

Experiment 1 with the following exceptions.  

 2.5.1.2.1 Navon task. Stimuli used in the Navon task were white Navon 

letters (RBG values, [255 255 255]; luminance of 102 cd/m2) presented on a gray 

background (RBG values, [128 128 128]; luminance of 52 cd/m2). The display consisted 

of two Navon letters, one in the left and one in the right visual field, located 1° from a 

centrally located fixation cross.  The global and local features of the Navon stimuli were 

either consistent (e.g., a large C comprised of copies of smaller Cs) or conflicting (e.g., a 
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large T comprised of copies of smaller Cs).  The letters used were C, E, H, and T, in all 

their global and local combinations.  Each local letter subtended 0.7˚ X 0.7˚ of visual 

angle whereas the global letter subtended 5.7˚ X 4˚ of visual angle.   

 2.5.1.2.2 Scene categorization task. Stimuli in the scene categorization 

task were the same as in Experiment 1.  

 2.5.1.3 Procedure.    

 2.5.1.3.1 Navon task. Trials began with a fixation cross located at the 

centre of the screen, presented for 250 msec, immediately followed by the presentation of 

the Navon letters, presented for 100 msec. The task of the participant was to indicate 

whether the local (local phase) or the global (global phase) configurations of the Navon 

letters matched. We instructed observers to press the “1” key on the keyboard number 

pad if they believed that the two Navon letters matched; we instructed observers to press 

the “2” key if they believed that they did not. Responses were speeded, and no trial-by-

trial feedback was provided.   

 2.5.1.3.2 Scene categorization task.  Each trial began with a fixation cross 

located in the centre of the screen presented for 250 msec, followed by a single natural 

image presented for a display-to-mask SOA of 32 msec. A mask (the same white noise 

mask used in the previous experiments) followed image offset and was presented for 64 

msec. The image was a broadband, low-pass, high-pass, or a hybrid image. Immediately 

following offset of the mask, observers were presented with a display screen in which 

they were asked to indicate the category of the image presented (e.g., city = 1, highway = 

2, living room = 3, or valley = 4) by pressing the corresponding number of the category. 
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The options were presented in the centre of the screen and stayed visible until a response 

was made. Trial-to-trial feedback was not provided.    

2.5.1.4 Design.  Observers completed two phases: a local phase and a global 

phase.  In both phases, observers completed both the Navon task and the scene 

categorization task on each experimental trial (e.g., Navon task – scene categorization 

task – Navon task – scene categorization task; Martin, Slessor, Allen, Philips, & Darling, 

2012). The only difference between the phases was whether observers were asked to 

indicate whether the local (local phase) or the global (global phase) configurations of the 

Navon letters matched. An example of a trial type is presented in Figure 2.5.  There were 

an equal number of consistent and inconsistent Navon letters presented. The order in 

which observers completed the phases was counterbalanced across observers. There was 

a minimum of 30 minutes and a maximum of 60 minutes between phases. This was done 

to minimize any potential for interference between the different Navon tasks. Before the 

start of each phase, observers completed 30 practice trials in order to familiarize 

themselves with the task. Scene categories used during the practice trials were not used in 

the experimental trials (e.g., forests and barn scenes) and were not analyzed. Each phase 

consisted of 16 blocks of 48 trials for a grand total 768 trials.  

To ensure that observers were primed to the appropriate attention level from the 

beginning of both the local and the global phases, observers first completed a respective 

block (48 trials) of either the global, or local Navon task. Similar to the practice trials, the 

main purpose of this priming block was to minimize any interference effects from the 

previous block. Trials in this phase were not analyzed.  

  



 

 

 
 

Figure 2.5. An example of a trial sequence in Experiment 3.  
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2.5.2 Results 

 2.5.2.1 Scene categorization results. The primary objective of Experiment 3 was 

to understand how attending to local and global levels of Navon figures affected the 

subsequent selection of spatial scale information in subsequently presented hybrid 

images. However, and similar to Experiments 1 and 2, it was necessary that we first 

understood how attention to hierarchical level affected the processing of low and HSFs 

within our scenes. Accordingly, we first analyzed sensitivity and RT data between the 

control images. 

  2.5.2.1.1 Sensitivity. Mean d' values were computed for each trial type. 

Trial type varied according to image type and Navon processing. These means are 

displayed in Figure 2.6A and were entered into a 2 (Navon) X 4 (image type) repeated 

measures ANOVA. There was a significant main effect of image type, F(3, 39) = 40.15, p 

< .001, η2 = .75, but neither the main effect of Navon nor the image type X Navon 

interaction were significant, F(1, 13) = .851, p > .373, η2 = .06 and F(3, 39) = .027, p > 

.994, η2 = .02. Similar to Experiment 2, observers were less sensitive to hybrid images (M 

= 1.46; SD = 0.27) than the other image types (M = 2.44; SD = 0.11) (Ψ1). Furthermore, 

observers were more sensitive to broadband images (M = 2.90; SD = 0.42) than low-pass 

and high-pass filtered images (M = 2.21; SD = 0.22) (Ψ2).  There was no difference in 

sensitivity between low-pass and high-pass filtered images (Ψ3).  As in Experiment 2, the 

effect sizes associated with Ψ1 (η2 = .88) and Ψ2  (η2 = .73) were similar, replicating the 

result that observers were most sensitive to broadband images and least sensitive to 

hybrid images. The effect size between low-pass and high-pass filtered images was 

relatively smaller (η2 = .07). d' statistics and contrast analyses are displayed in Table 2.5. 
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 The proportion of low- and HSF-based hybrid categorization is displayed in 

Figure 2.6B.  As in Experiment 2, observers preferred to classify hybrid images based on 

LSF content in both local and global conditions. Furthermore, HSF-based hybrid 

categorization was no better than chance in the global condition (M = .22; SD = 0.02), 

t(13) = 1.61, p > .133, Cohen’s d = .14, and worse than chance in the local condition (M = 

M = .17; SD = .04), t(13) = 3.83, p < .001, Cohen’s d = .51. Thus, we restricted our 

analysis to trials on which hybrid categorization was based on LSF content. LSF-based 

hybrid categorization was higher following global (M = .69; SD = 0.11) than local Navon 

tasks (M = .62; SD = 0.11), t(13) = 4.29, p < .001, Cohen’s d = 1.14, a difference of  .07 

(SD = .06; 95% CI [.04, .10]).  

  



 

 

 

  

 d'  
  Local  Global 
Trial Type   M SD 95% CI  M SD 95% CI 
Broadband  2.84 0.52 [2.56, 3.14]  2.95 0.56 [2.63, 3.27] 
Low-pass   2.18 0.37 [1.97, 2.38]  2.25 0.22 [2.12, 2.37] 
High-pass  2.19 0.36 [1.98, 2.39]  2.25 0.21 [2.11, 2.36] 
Hybrid   1.41 0.29 [1.24, 1.58]  1.49 0.28 [1.34, 1.66] 

Contrasts 
Contrast   df F p MD SE (MD) 95% CI  (MD) η2 
Ψ1  (1, 13) 94.06 < .001 0.98 0.09 [0.62, 1.36] .88 
Ψ2  (1, 13)  17.27 < .001 0.69 0.16 [0.09, 1.28] .73 
Ψ3  (1, 13)  1.01 > .336 < 0.01 0.01 [-0.01, 0.03] .07 

Table 2.5. d prime statistics for each trial type in local and global conditions in Experiment 
 

  3. d prime mean difference contrasts in Experiment 3.  

Ψ1: d' comparison between hybrid images and the other image types.  
Ψ2: d' comparison between broadband images and high-pass and low-pass filtered images.  
Ψ3: d' comparison between low-pass and high-pass filtered images.  
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! ! 2.5.2.1.2 Reaction time.  Mean RTs were computed as in the sensitivity 

analysis and are displayed in Figure 2.6C. We entered these means into a 2 (Navon) X 4 

(image type) repeated measures ANOVA. There were significant main effects of image 

type, F(3, 39) = 16.15, p < .001, η2 = .55, and Navon, F(1, 13) = 98.55, p < .001, η2 = .88.  

The Navon X image type interaction was not significant, F(3, 39) = 2.07, p > .121, η2 = 

.14. Reaction times were overall faster following global (M = 555.41; SD = 59.94) than 

local Navon tasks (M = 860.22; SD = 94.38), a difference of 304.81 msec (SD = 110.70; 

95% CI [211.31, 398.31]).  !

 As in Experiment 2, the significant image type main effect appears to be due to 

the fact that RTs were slower in response to hybrid images. The contrast comparing RTs 

between hybrid image types (M = 835.87; SD = 67.77) and the other image types (M = 

665.14; SD = 33.88) was significant (Ψ1).  Furthermore, RTs were faster for broadband 

images (M = 622.15; SD = 78.86) than low and high-pass filtered images (M = 686.63; 

SD = 34.33), corroborating the result from Experiment 2 (Ψ2).  There was no significant 

difference between low-pass (M = 685.89; SD = 50.01) and high-pass filtered images (M 

= 687.37; SD = 82.49) (Ψ3).  As in the previous experiments, the associated effect sizes 

mirrored the statistical significance results. The largest effect sizes were for Ψ1 (η2 = .81) 

and Ψ2 (η2 = .35), corroborating the finding that observers were overall fastest to respond 

to broadband images and slowest to respond to hybrid images. Furthermore, and similar 

to the sensitivity analysis, the effect size for the comparison between low-pass and high 

pass filtered images was small (η2 < .01), corroborating the finding that there were no 

meaningful differences between these image types. Reaction time statistics and contrast 

analyses are displayed in Table 2.6. 
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 As in Experiment 2, we compared RTs between trials on which hybrids were 

classified according their LSF content (Figure 2.6D). LSF-based hybrid categorization 

was faster following global compared to local Navon tasks, t(13) = 6.71, p < .001, 

Cohen’s d = 1.79, a difference of 322.32 msec (SD = 173.12; 95% CI [222.38, 422.26]).  

 
 
  



 

 

 
  

 Reaction Time (msec)  
  Local  Global 
Trial Type   M SD 95% CI  M SD 95% CI 

Broadband  751.40 80.49 [704.93, 797.86]  492.89 110.74 [428.96, 556.83] 

Low-pass   830.50 78.04 [785.45, 875.59]  541.29 59.45 [506.96, 575.61] 
High-pass  847.93 136.12 [769.34, 926.51]  526.81 72.29 [485.08, 568.54] 
Hybrid   1011.06 150.13 [924.39, 1097.74]  660.65 70.20 [620.12, 701.18] 
Hybrid - LSF  902.86 86.55 [852.89, 952.82]  580.53 86.55 [530.56, 630.49] 

Contrasts  
Contrast   df F p MD SE (MD) 95% CI (MD) η2 
Ψ1  (1, 13) 55.61 < .001 170.71 101.65 [112.04, 282.79] .81 
Ψ2  (1, 13)  7.02 < .021 64.48 23.44 [13.83, 115.13] .35 
Ψ3  (1, 13) .002 > .965 1.47 117.89 [-66.58, 69.53] < .01 

Table 2.6. Reaction time statistics for each image type in local and global conditions in 
  
 Experiment 3. Reaction time mean difference contrasts in Experiment 3 

Ψ1: RT comparison between hybrid images and the other trial types.  
Ψ2: RT comparison between broadband images and high-pass and low-pass filtered images. 
Ψ3: RT comparison between high-pass and low-pass filtered images. 



 

 

  

 

Figure 2.6. The results of Experiment 3. A) Mean d prime values for each image type in  

local and global conditions; B) Percentage of low- and HSF-based hybrid 

categorization in local and global conditions; C) Mean scene categorization reaction 

times for each image type in local and global conditions; D) Mean reaction time for LSF- 

based hybrid categorization following local and global Navon tasks. The error bars 

represented here are the 95% within subject confidence intervals described by Loftus and 

Masson (1994). 
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2.5.2.2 Navon results 

  2.5.2.2.1 Accuracy. Mean accuracy was computed for the trial types 

described above (Figure 2.7A). Overall, accuracy was above 90% in all conditions. We 

entered mean accuracy into a 2 (Navon) X 4 (image type) repeated measures ANOVA. 

The main effects of image type and Navon were not statistically significant, F(3, 39) = 

2.25, p > .098, η2 = .15, and F(1, 13) = .126, p > .728, η2 = .01. Furthermore, the Navon X 

image type interaction was also not significant, F(3, 39) = 1.19, p > .326, η2 = .09.  

  2.5.2.2.2 Reaction time. Mean RTs were computed as in the accuracy 

analysis and are displayed in Figure 2.7B. We entered these means into a 2 (Navon) X 4 

(image type) repeated measures ANOVA. There was a significant main effect of image 

type, F(3,39) = 6.88, p < .001, η2 = .35, and Navon, F(1, 13) = 56.28, p < .001, η2 = .81. 

The Navon X image type interaction was not significant, F(3, 39) = .449, p > .719, η2 = 

.03. Overall, global Navon tasks (M = 379.74; SD = 140.10) were completed faster than 

local Navon tasks (M = 567.07; SD = 146.40), This difference was approximately 187.34 

msec (SD = 90.03; 95% CI [111.29, 263.38]) and corroborated the robust finding of the 

global precedence effect (Navon, 1977). The main effect of image type appears to be 

driven by the fact that Navon RTs were overall slowest when completed in conjunction 

with low-pass filtered images. A significant contrast comparing Navon RTs between low-

pass filtered image trials (M = 505.42; SD = 148.53) and the other image trials (M = 

562.73, SD = 132.82) confirmed this interpretation, F(1, 13) = 59.14, p < .001, η2 = .42. 

This difference was approximately 57.31 msec (SD = 25.99; 95% CI [41.52, 73.09]). The 

contrast comparing Navon RTs between broadband image trials (M = 445.04, SD = 

130.62) and the combined mean of high-pass filtered image trials and hybrid image trials 
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(M = 471.58; SD = 136.61) was not significant, corroborating this conclusion, F(1, 13) = 

4.17, p > .071, η2 = .24. This difference was approximately 26.54 msec (SD = 46.85; 95% 

CI [-0.05, 53.58]).  



 

 

 
 

Figure 2.7 Navon results in Experiment 3. A) Mean Navon accuracy for each image type 

in local and global conditions; B) Mean Navon reaction times for each image type in 

local and global conditions.  The error bars represented here are the 95% within subject 

confidence intervals described by Loftus and Masson (1994). 
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2.5.3 Discussion 

 Global Navon tasks were completed faster than local Navon tasks in Experiment 3, 

corroborating the global precedence effect (Navon, 1977). A critical result from 

Experiment 3 is that when given the choice between differing sources of information, 

observers preferred to categorize hybrids based on LSF content, irrespective of the Navon 

task completed. Similar to Experiment 2, HSF-based categorization was no better than 

chance. Consistent with our hypothesis, LSF-based hybrid image categorization was 

statistically significantly faster following global than local Navon tasks. These results can 

be interpreted to suggest that we replicated Flevaris and coworkers’ (2011) finding that 

attending globally facilitated the selection LSFs in our hybrid images.  However, this 

interpretation is inconsistent with the finding that both low-pass and high-pass filtered 

images were categorized faster following global Navon tasks. If attending locally and 

globally facilitated HSF and LSF processing, respectively, then high-pass filtered images 

should have been identified faster following local Navon tasks. According to Flevaris and 

colleagues, however, the selection of spatial frequencies is relative. Thus, although low-

pass and high-pass filtered images have HSFs and LSFs removed there are nevertheless 

still LSFs and HSFs within both image types. Thus, it is possible that the processing of 

LSFs associated with global Navon tasks facilitated the relatively lower spatial 

frequencies in both low-pass and high-pass filtered images. This explanation seems likely 

given that observers preferred to categorize hybrid images based on LSF content.  A 

prediction of this account is that removing a Navon’s LSFs should eliminate the benefit 

associated with categorization following global Navon tasks. In Experiment 4, we 

directly tested this hypothesis by replicating Experiment 3 with the exception that we 
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used contrast balanced Navon stimuli.   
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2.6 Experiment 4 

Experiment 4 was a replication of Experiment 3 with the exception that Navon 

stimuli were contrast balanced to suppress LSF information and encourage observers to 

use HSFs to accomplish both local and global Navon tasks. We confirmed that LSFs were 

reduced in the stimuli used in Experiment 4, by calculating the log-power spectra and 

rotationally averaged log amplitude spectra of both the contrast balanced and original 

Navon stimuli. These analyses are described in Appendix 2.1.  We predicted that forcing 

observers to use HSFs to complete Navon tasks, irrespective of attended level, would 

eliminate the global advantage associated with scene categorization observed in 

Experiment 3.  

 2.6.1 Method 

2.6.1.1 Observers.  Fifteen naïve undergraduate students from Concordia 

University participated in this study in return for partial course credit.  All observers self-

reported normal or corrected-to-normal vision.  

2.6.1.2 Stimuli, apparatus, and procedure. Stimuli, apparatus, and procedure 

were the same as in Experiment 3, expect that Navon stimuli were contrast balanced, 

such that darker lines surrounded the white lines of the local letters. An example of a trial 

sequence and a contrast balanced Navon stimulus is displayed in Figure 2.8.  

  

  



 

 

 
 
 
Figure 2.8. An example of a trial sequence in Experiment 4.   
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2.6.2 Results 

 2.6.2.1 Scene categorization results 

  2.6.2.1.1 Sensitivity. d' values were computed as in Experiment 3 and are 

displayed in Figure 2.9A. Overall sensitivity was high, replicating performance in the 

previous experiments. We entered d' means into a 2 (Navon) X 4 (image type) repeated 

measures ANOVA. There was a significant main effect of image type, F(3, 42) = 15.41, p 

< .001, η2 = .52, but neither the main effect of Navon nor the image type X Navon 

interaction was significant, F(1, 14) = 1,14, p > .304, η2 = .08 and F(3, 42) = .196, p > 

.898, η2 = .14. Similar to previous experiments, observers were less sensitive to hybrid 

images (M = 1.75; SD = 0.29) than the other image types (M = 2.53; SD = 0.14) (Ψ1).  

Furthermore, there was no difference in sensitivity between broadband images (M = 2.64; 

SD = 0.13) and low-pass and high-pass filtered images (M = 2.47; SD = 0.11) (Ψ2). 

Furthermore, the effect size measures mirrored the statistical significance results. The 

effect size for Ψ1 (η2 = .79) was larger than the effect size for Ψ2 (η2 = .09), corroborating 

the finding that observers were less sensitive to hybrid images and equally sensitive to all 

other image types in Experiment 4. d' statistics and contrast analyses are displayed in 

Table 2.7.  

 Similar to the previous experiments, observers preferred to categorize hybrid 

images based on LSF content in both local and global conditions (Figure 2.9B). 

Furthermore, HSF-based hybrid categorization was worse than chance following both 

local and global Navon tasks, t(14) = 12.43, p < .001; and t(14) = 6.14, p < .001.  In 

contrast to experiment 3, LSF-based hybrid categorization was higher following local 

than global Navon tasks, t(13) = 3.93, p < .001, Cohen’s d = 1.07, a difference of .06 (SD 
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= .06, 95% CI = [.01, .11]). It is interesting to note that the effect size was consistent with 

the value reported in Experiment 3 (Cohen's d = 1.14), but is in the opposite direction, 

suggesting a complete reversal of the effect.  

  

  



 

 

 

Table 2.7. d prime statistics for each image type in local and global conditions in 
 
  Experiment 4. d prime mean difference contrasts in Experiment 4.  

Ψ1: d' comparison between hybrid images and the other image types.  
Ψ2: d' comparison between broadband images and high-pass and low pass filtered images. 

 d' 
  Local   Global 

Trial Type   M SD 95% CI  M SD 95% CI 

Broadband  2.77 0.79 [2.41, 3.13]  2.51 0.62 [2.23, 2.79] 
Low-pass   2.59 0.51 [2.36, 2.82]  2.44 0.19 [2.35, 2.53] 
High-pass  2.50 0.44 [2.31, 2.71]  2.34 0.46 [2.13, 2.55] 
Hybrid  1.85 0.49 [1.62, 2.08]  1.66 0.39 [1.49, 1.84] 

Contrasts 
Contrast   df F p MD SE (MD) 95% CI(MD) η2 
Ψ1  (1, 14) 50.35 < .001 0.77 0.11 [0.58, 0.95] .79 
Ψ2  (1, 14) 1.13 > .269 0.17 0.14 [-0.08, 0.42] .09 
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  2.6.2.1.2 Reaction time. Mean reaction time was computed as in 

Experiment 3 and is displayed in Figure 2.9C. Mean RTs were entered into a 2 (Navon) 

X 4 (image type) repeated measures ANONA. There were significant main effects of 

image type and Navon, F(3, 42)  = 23.56, p < .001, η2 = .63 and F(1, 14)  = 20.99, p < 

.001, η2 = .60. The Navon X image type interaction was not statistically significant, 

F(3,42)  = .942, p > .429, η2 = .06. In contrast to Experiment 3, RTs were overall faster 

following local (M = 543.14; SD = 100.37) than global (M = 788.98; SD = 100.08) Navon 

tasks, a difference of 245.84 msec (SD = 200.74; 95% CI [104.89, 386.77]).  As in the 

previous experiments, observers were slower to respond to hybrid image types (M = 

796.71; SD = 86.81) than the other image types (M = 622.52; SD = 28.93) (Ψ1).  

Observers were also faster to respond to broadband images (M = 588.69; SD = 56.34) 

than low-pass and high-pass filtered images (M = 639.42; SD = 34.67) (Ψ2). In contrast to 

previous experiments, observers were faster to respond to high-pass filtered images (M = 

606.22; SD = 49.23) than low-pass filtered images (M = 672.63; SD = 52.12) (Ψ3). 

The largest effect size in Experiment 4 was for Ψ1 (η2 = .80), corroborating 

previous experiments that observers are slowest to respond to hybrid images. 

Furthermore, the effect size for Ψ2  (η2 = .36) was similar to the previous experiments, 

corroborating the finding that observers were fastest to respond to broadband images. 

However an interesting finding is that the effect size for Ψ3 (η2 = .59) was relatively 

higher than those reported in previous experiments, suggesting that whereas there was no 

difference in RTs between low-pass and high-pass filtered images in Experiments 1 - 3, 

observers took longer to respond to high-pass filtered images than low-pass filtered 
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images in Experiment 4. Reaction time statistics and contrast analyses are displayed in 

Table 2.8. 

 As in previous experiments, we compared LSF-based hybrid categorization RTs 

between local and global conditions (Figure 2.9D). In contrast to Experiment 3, LSF-

based hybrid categorization was statistically significantly faster following local than 

global Navon tasks, t(14) = 3.21, p < .006, Cohen’s d =.91, a difference of 229.62 (SD = 

250.69, 95% CI [84.90, 374.34]). Furthermore, the associated effect size was relatively 

smaller than in Experiment 3 (Cohen's d = 1.79), suggesting that although the effect in 

Experiment 4 reversed direction, its magnitude is smaller.   

  



 

 

 

Table 2.8. Reaction time statistics for each image type in local and global conditions in 
 

 Experiment 4. Reaction time mean difference contrasts in Experiment 4.  

Ψ1: Reaction time comparison between hybrid images and the other image types.  
Ψ2: Reaction time comparison between broadband images and low-pass and high-pass filtered images. 
Ψ3: Reaction time comparison between low-pass and high-pass filtered images.  

 Reaction time (msec) 
  Local   Global 
Trial Type   M SD 95% CI  M SD 95% CI 
Broadband  460.32 111.15 [384.66, 535.98]  717.07 110.99 [641.78, 792.36] 
Low-pass   554.38 116.30 [475.49, 633.27]  790.88 115.28 [712.68, 869.07] 
High-pass  496.61 87.15 [437.50, 555.72]  715.83 121.62 [633.33, 798.33] 
Hybrid - LSF  592.35 125.35 [528.09, 656.39]  821.97 115.91 [758.83, 885.13] 
Hybrid  661.26 160.27 [552.55, 769.98]  932.15 155.22 [826.85, 1037.43] 

Contrasts  

Contrast   df F p MD SE (MD) 95% CI (MD) η2 
Ψ1  (1, 14) 54.99 < .001 174.19 36.60 [95.68, 252.69] .80 
Ψ2  (1, 14) 7.83 < .014 50.73 21.45 [4.71, 96.74] .36 
Ψ3  (1, 14) 20.64 < .001 66.41 23.39 [16.23, 116.59] .59 



 

 

 

 

Figure 2.9. The results of Experiment 4. Mean d prime values for each image type in 

local and global conditions; B) Percentage of low- and HSF-based hybrid categorization in 

local and global conditions; C) Mean scene categorization reaction times in local and 

global conditions; D) Reaction times for LSF-based hybrid categorization following local 

and global Navon tasks. The error bars represented here are the 95% within subject 

confidence intervals described by Loftus and Masson (1994). 
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2.6.2.2 Navon results  

  2.6.2.2.1 Accuracy. Mean accuracy was computed as in Experiment 3 

(Figure 2.10A) and replicated the overall high accuracy observed in the previous 

experiment (> 90%). We compared accuracy by computing a 2 (Navon) X 4 (image type) 

repeated measures ANOVA.  The main effects of Navon and image type were not 

significant, F(1, 14) = .736, p > .405, η2 = .05 and F(3,42) = .628, p > .601, η2 = .04. The 

Navon X image type interaction was also not significant, F(3,42) = .301, p > .825, η2 = 

.02. 

  2.6.2.2.2 Reaction time. Mean RTs were computed as in the accuracy 

analysis and are displayed in Figure 2.10B. We entered group mean RTs into a 2 (Navon) 

X 4 (image type) repeated measures ANONA. The main effects of Navon and image type 

were not significant, F(3,42) = 1.15, p > .226, η2 = .1 and F(1,14) = .924, p > .353, η2 = 

.06. Further, the Navon X image type interaction was not significant, F(3,42) = 1.52, p > 

.223, η2 = .10.   



 

 

 
Figure 2.10. Navon results in Experiment 4. A) Mean Navon accuracy for each image 

type in local and global conditions; B) Mean Navon reaction times for each image type in 

local and global conditions. The error bars represented here are the 95% within 

subject confidence intervals described by Loftus and Masson (1994). 
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2.6.3 Discussion 
 
 Experiment 4 was a replication of Experiment 3 with the exception that Navon 

stimuli were contrast balanced. There was no RT difference between Navon tasks, 

corroborating the previous finding that contrast balancing Navon stimuli eliminates the 

global precedence effect (Lamb & Yund, 1993). This forced observers to complete both 

local and global Navon tasks using HSFs. This afforded the opportunity to determine 

whether the observed global advantage in Experiment 3 was due to LSF processing 

associated with global Navon tasks.   

 An interesting result in Experiment 4 is that observers were faster to respond to 

high-pass filtered images than low-pass filtered images. One explanation for this result is 

that suppressing LSFs in Navon stimuli forced observers to complete Navon tasks using 

HSFs, which in turn, primed the selection of HSFs in high-pass filtered images. As in 

Experiment 3, observers preferred to categorize hybrid images based on LSF content, 

following both global and local Navon tasks. However, and in contrast, LSF-based hybrid 

categorization was slower following global than local Navon tasks. Thus, our prediction 

that contrast balancing Navon stimuli would eliminate the observed advantage for LSF-

based hybrid image categorization following global Navon tasks in Experiment 3 was 

supported, although we did not predict a complete reversal of the effect. Furthermore, 

control images were all classified faster following local Navon tasks, suggesting that the 

global scene categorization advantage in Experiment 3 was due, in part, to the LSFs 

present in Navon stimuli.  
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2.7 General Discussion  

 The four experiments reported in this article investigated how attending to local 

and global levels of hierarchical Navon figures affected the selection of the spatial scale 

used for scene categorization. We explored this issue by asking observers to categorize 

hybrid images immediately following global and local Navon tasks. The composition of 

hybrid images allows observers to base categorization on either coarse (conveyed by a 

hybrid’s LSFs) or fine (conveyed by a hybrid’s HSFs) content. We showed that although 

observers were sensitive to both types of information (Experiment 1) they overwhelming 

preferred to base hybrid image categorization on LSF content (Experiments 2 - 4). When 

hybrid image categorization was not based on LSF content, HSF-based hybrid image 

categorization was no better (and often worse) than chance. In Experiment 3, we directly 

examined how attending to global and local levels of hierarchical Navon figures affected 

LSF-based hybrid categorization, and found that LSF- based hybrid image categorization 

was faster following global Navon tasks. This corroborates Flevaris and colleagues’ 

(2011) suggestion that attention to the global level of a hierarchical figure facilitates the 

selection of LSFs. However, inconsistent with Flevaris and colleagues, control images 

were all categorized faster following global Navon tasks, suggesting that it was not the 

priming of absolute spatial frequency per se that facilitated LSF-based hybrid image 

categorization. In Experiment 4, we explored this possibility by replicating Experiment 3 

but we forced observers to complete Navon tasks using HSFs, irrespective of the attended 

level. Similar to Experiment 3, observers preferred to categorize hybrid images based on 

LSF content. However, and in contrast, LSF-based hybrid image categorization was 

faster following local Navon tasks, suggesting that LSFs associated with Navon figures 
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were responsible for the scene categorization advantage following global Navon tasks in 

Experiment 3.   

 An interesting finding from the present set of studies is that our observers 

preferred to categorize hybrid images based LSF information in Experiments 2 - 4, 

despite the fact that they were sensitive to both spatial frequencies in Experiment 1. One 

possible explanation is that our masking procedure weakened the signal from HSFs more 

than the signal from LSFs. Such an explanation suggests that our observers preferred to 

base hybrid image categorization on the spatial frequency with the strongest signal. 

Consistent with this hypothesis, Losada and Mullen (1995) showed that white noise 

masks are more effective at masking HSFs than LSFs. Nevertheless, we regard this 

possibility as unlikely for two main reasons. First, our observers were more sensitive to a 

hybrid image's HSFs than LSFs in Experiment 1; and second, as mentioned in the 

discussion of Experiment 1, our masking effects were particularly weak, suggesting that 

neither the HSF signal nor the LSF signal were strongly affected by our masking 

procedure. Our preferred interpretation of these apparent conflicting results is that they 

corroborate previous research that has shown a critical role for LSFs in rapid scene 

categorization (Loschky & Simons, 2004; McCotter, Gosselin, Sowden, & Schyns, 2005; 

Schyns & Oliva, 1994; Oliva & Schyns, 1997). The present results provide further 

evidence for this hypothesis by demonstrating a preference to use LSF information, 

despite the fact that HSF information is more salient.  

 A comparison between the present work and the apparent automaticity of scene 

perception under dual task conditions is particularly relevant.  Cohen and colleagues 

(2011) suggested that attention task difficulty is the reason some studies have 
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documented impaired scene perception (Walker, Stafford, & Davis, 2008) whereas others 

have not (Li, VanRullen, Koch, & Perona, 2002; Rousselet, Fabre-Thorpe, & Thorpe, 

2002). The present work suggests an alternative explanation. Specifically, that impaired 

scene perception under dual task conditions could be a function of the type of attentional 

distribution needed to complete the attention task.  For example, it seems more likely that 

a cost of dividing attention would emerge in situations in which the tasks are similar, 

because the potential for interference from completing the two tasks should be greater. 

Given that scene categorization was facilitated following global Navon tasks in the 

present study (at least with unaltered stimuli), suggests the completion of simultaneous 

attention tasks that require global attention would be more likely to interfere with scene 

categorization than those that require local attention. Brand, Johnson, and Von Grünau 

(2012) provided support for this hypothesis by demonstrating that the completion of a 

concurrent task that requires global attention interferes with scene categorization, but a 

concurrent task that requires local attention does not.  

 One issue the present study was unable to resolve is why scene categorization was 

faster following local Navon tasks in Experiment 4.  This is particularly true for hybrid 

images, as it is unclear how attending locally would facilitate categorization based on 

LSF content.  If LSFs associated with global Navon tasks facilitated LSF-based hybrid 

categorization in Experiment 3, then removing that information should have eliminated 

the global benefit, but should not have resulted in a benefit following local Navon tasks. 

The fact that it did suggests that observers were using different types of information 

within a hybrid image’s LSF content as the basis for categorization in Experiments 3 and 

4, respectively. This conclusion is consistent with Oliva and Schyns' (1997) suggestion 
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that coarse-to-fine information is orthogonal to global-to-local information; that is, there 

is both coarse and fine information at each spatial scale, and it is possible to direct 

attention to either level. Consider, for example, the low-pass filtered Navon stimulus in 

Figure 2.11. The small “c” represents the image’s local features, and the large “T” 

represents the image’s global feature. According to the global-to-local hypothesis, the 

fine information in the image (i.e., the small c's) should be unrecognizable because the 

HSFs that convey that information have been removed. Nevertheless, it is evident in the 

figure that even though HSFs have been removed, that local information remains. Thus, 

although observers preferred to categorize hybrids based on LSF information in both 

Experiments 3 and 4, the selection of a Navon’s LSFs (Experiment 3) and HSFs 

(Experiment 4) facilitated the selection of different information within a hybrid image’s 

LSF content. Alternatively, this result can be attributed to a switch cost between the 

Navon task and the scene categorization task. It is possible that slower responses 

following local processing in Experiment 4 is due to the fact that the switch from HSF 

information to LSF information is very time consuming. Conversely, there was no 

switching in Experiment 3 because observers relied on LSF information for both global 

and local Navon tasks. Unfortunately, the present study was not designed to identify these 

differing sources of information.  
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Figure 2.11. An example of a low-pass filtered Navon stimulus.  
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 Another interesting question arising from the present results is whether a hybrid 

image’s HSFs were encoded in Experiments 2 - 4. Although observers preferred to 

categorize hybrids based on LSFs in Experiments 2 - 4, the results of Experiment 1 

suggest that both spatial scales were perceptually available. This suggestion is consistent 

with Oliva & Schyns (1997, Experiments 3 and 4) who showed that when a hybrid 

image's LSF content is the preferred spatial scale, observers nevertheless still process a 

hybrid image's HSF information implicitly.  Along the same lines, de Gardelle and 

Kouider (2009) found that the non-preferred spatial scale information could facilitate 

scene categorization. de Gardelle and Kouider asked observers to determine whether a 

full broadband face presented below conscious awareness was of a famous person. A 

hybrid face preceded the target face and it was constructed such that either its LSFs, or 

HSFs corresponded with target identify. The critical point here is that face identification 

is typically based on the relatively higher spatial frequencies of a hybrid face. Thus, only 

HSF-hybrid image primes should have facilitated target identification. In contrast, de 

Gardelle and Kouider reported that both LSF- and HSF-hybrid image primes facilitated 

target identification. What’s more, whereas the effect HSF-hybrid image primes 

increased significantly with exposure duration, the effect of LSF-hybrid image primes did 

not. Thus, although LSF information was not preferred, it nevertheless played a small 

role in categorization, most likely restricted to unconscious processing.  

 The question relating to the role of attention in scene categorization is currently a 

major source of debate in psychology. Traditionally, this question is addressed by 

examining the automaticity of scene perception, and whether or not conscious scene 

perception can occur in the absence of attention. The present article addressed this 
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question from a different angle. It examined how attention facilitates the selection of 

information used in scene categorization. Along the same lines, Larson, Freeman, Ringer, 

and Loschky (2014) showed that manipulations of spatial attention influence the selection 

of scene information.  Similar to the global processing bias in the present study, Larson 

and colleagues reported that scene categorization is initially based on information 

originating from central vision, with contributions from peripheral vision emerging later 

on (i.e., a central-to-peripheral processing bias). Larson and colleagues reported that this 

central processing bias is reduced when the spatial distribution of attention is manipulated 

so that it emphasizes information in the periphery. Thus, although Larson et al. did not 

investigate the interaction between attention and spatial scale processing, their results 

nevertheless converge with the present results to suggest that one role of attention in 

scene categorization is to select scene information. 

 The primary purpose of the present experiments was to address how attention to 

local and global levels of Navon figures affects the selection of spatial scale information 

used in scene categorization. This investigation was largely based on the connection 

between the Navon task spatial scale and the spatial scale used for scene categorization. 

As such, it is reasonable to assume that the categorization of different scene types could 

also differentially affect the completion of the Navon task. The results of Experiments 3 

and 4 allude to this possibility. Whereas Navon processing was slowest when completed 

in conjunction with low-pass filtered images in Experiment 3, there was no difference in 

Navon task RTs as a function of scene type in Experiment 4. Although we can only 

speculate as to the reason for this difference, it appears to be related to the amount of 

LSFs in the Navon stimuli. Navon stimuli in Experiment 4 were contrast balanced, such 
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that their LSF content was suppressed compared to the Navon stimuli used in Experiment 

3. Combined with the fact that LSFs were the preferred spatial scale in all experiments, 

this suggests that the observed Navon slowing in Experiment 3 following low-pass scene 

categorization was due, in part, to an increased use of LSFs in Experiment 3 compared to 

Experiment 4.  

 In conclusion, the present set of experiments demonstrates that attending locally 

and globally affects the selection of spatial scale information used for rapid scene 

categorization. The present results also converge with previous research in suggesting 

that LSF information is important in rapid scene categorization (Loschky & Simons, 

2004; McCotter, Gosselin, Sowden, & Schyns, 2005; Schyns & Oliva, 1994; Oliva & 

Schyns, 1997) and extends these findings by demonstrating that the selection of LSF 

information is affected by manipulations of attention. Thus, although the present results 

do not conclusively demonstrate that scene perception requires attention, they 

nevertheless suggest that attention plays a role in facilitating the selection of scene 

information.  
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Appendix 2.1 Chapter 2: Reduction of Low Spatial Frequency Content in Contrast 

Balanced Navon Stimuli. 
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 Previous researchers used contrast balanced Navon stimuli to suppress (Lamb & 

Yund, 1993) the low spatial frequencies contained within Navon stimuli. Implementing 

contrast balanced Navon stimuli encourages observers to use only the remaining high 

spatial frequencies to accomplish both the local and global Navon letter tasks. To verify 

that the low spatial frequency content was reduced in the stimuli used for Experiment 4, 

we calculated the log-power spectra and rotationally averaged log amplitude spectra of 

both the contrast balanced and original Navon stimuli.   

 As can be seen in supplementary Figure 2.1, the balancing of contrast across the 

edges of local elements of the Navon stimuli has the effect of reducing the overall 

amplitude at the low spatial frequencies, while increasing the amplitude at the high 

spatial frequencies. Therefore, the addition of the borders to the contrast balanced Navon 

stimuli is not causing a masking effect of the higher spatial frequencies on the lower 

spatial frequencies, as there is a physical reduction in the low spatial frequency content.  

 One possible explanation for this reduction in low spatial frequency content is due 

to the Fourier analysis introducing an artifact into the stimuli. To exclude this possibility, 

we convolved the stimuli with a bank of log Gabor filters in the spatial domain. Log 

Gabor filters were created in Mathworks Matlab (ver. 2013b), using a starting minimum 

wavelength of the filter to be 16 pixels (or 46.9 cpi). Each filter was rendered at 6 

possible orientations (0-150° in 30° increments), with the final response at each spatial 

frequency being created by averaging across all orientations. Each subsequently lower 

spatial frequency filter doubled the wavelength, creating a total of four spatial frequencies 

(46.9, 23.4, 11.7, 5.9 cpi). As can be seen in supplementary Figure 2.2, at the highest 

spatial frequency (46.9 cpi), the contrast balanced Navon stimuli show a stronger 



 

 
97"

response relative to the original Navon stimuli. However at lower spatial frequencies 

(23.4, 11.7, and 5.9 cpi), the contrast balanced Navon stimuli show a weaker response in 

comparison to the original Navon stimuli. We therefore conclude that the reduction of the 

low spatial frequency component introduced by the contrast balanced Navon is not an 

artifact, but instead represents a quantifiable reduction in low spatial frequency content.    
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Supplementary Figure 2.1. Top) Log-power spectra for the original and contrast 

balanced Navon stimuli (averaged over 16 stimuli used in Experiments 3 & 4). In Fourier 

space, low spatial frequencies are located toward the center of the image, with increasing 

spatial frequency content towards the image edge. Bottom) Log amplitude spectra for 

stimuli, averaged across orientation, with 95% confidence intervals.   
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Supplementary Figure 2.2: Example of the original and contrast-balanced Navon 

stimuli convolved with a bank of log Gabor stimuli of different spatial frequency 

wavelength (l, in pixels), with corresponding cycles per image (cpi). Colour bars 

represent response of the filter at each spatial frequency, with red depicting a strong 

response.  
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3.1 Abstract 
 

It is argued that distributed attention facilitates the rapid extraction of summary statistics, 

which in turn, underpins rapid scene categorization (Evans & Treisman, 2005).  In the 

present set of studies, we directly examined this hypothesis by investigating whether 

distributed, or focused attention is more compatible with the extraction of both summary 

statistics (Experiment 1) and semantic scene information (Experiments 2 – 4). 

Experiment 1 replicated Chong and Treisman’s (2005) result that mean circle size 

judgments are more compatible with a distributed attention task than a focused attention 

task. Experiment 2 investigated whether this finding extends to simple scene 

categorization by replacing the averaging task with an animal detection task. Consistent 

with Experiment 1, the ability to detect the presence of an animal was more compatible 

with a distributed attention task than a focused attention task. Experiments 3 and 4 

addressed whether distributed attention influences more complex scene categorization 

tasks in the same fashion. When observers were asked to classify scenes based on their 

basic level (e.g., beach or forest; Experiment 3), there was no statistically significant 

difference between focused and distributed attention task conditions; however, 

superordinate level categorization (e.g., natural or manmade; Experiment 4) was faster 

when combined with a task requiring distributed attention compared to a task requiring 

focused attention.       
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3.2 Introduction  

Scene perception captures the interest of researchers because of the paradox 

between the ease of everyday vision, and the severe attentional limitations observed in 

laboratory studies (Braun, 2003). Although converging evidence from inattentional 

blindness (Simons & Chabris, 1999), change blindness (Simons & Levin, 1997), and 

attentional blink (Raymond, Shapiro, & Arnell, 1992) studies demonstrate that significant 

changes go unnoticed without visual attention, the processing of everyday scenes 

operates uninterrupted (e.g., the right half of a room does not disappear if you focus on 

the left; Braun, 2003; Block, 1995; Wolfe, 1999).  How is this apparent incongruity 

reconciled? One commonly cited solution is that conscious scene perception does not 

require attentional resources (Li, VanRullen, Koch, & Perona, 2002; Rousselet, Fabre-

Thorpe, & Thorpe, 2002).  

 For a process to be considered automatic it is argued that it must be completed 

rapidly, without intention, and be immune to interference caused by concurrent 

processing (Brown, Gore, & Carr, 2002).  Scene categorization occurs in as little as 120 

msec (Thorpe, Fize, & Marlot, 1996; Fabre-Thorpe, Delorme, Marlot, & Thorpe, 2001) 

and is suggested to occur below the level of conscious awareness (Koch & Tsuchiya, 

2007; Tonomi & Koch, 2008). Together, these two findings suggest that scene perception 

satisfies the first two automaticity requirements. Yet a discrepancy between two sets of 

research findings questions whether scene perception is immune to congruent processing: 

evidence for impaired scene perception under dual task conditions on the one hand 

(Walker, Stafford, & Davis, 2008; Cohen, Alvarez, & Nakayama, 2011), and no evidence 

of scene categorization impairment when attention resources are allocated to a 
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simultaneous attention task on the other (Li, VanRullen, Koch, & Perona, 2002; 

Rousselet, Fabre-Thorpe, & Thorpe, 2002).  

Li and coworkers (2002) were among the first to demonstrate scene perception in 

the absence of attention. They asked subjects to compete a dual task in which an animal 

detection task (e.g., detect the presence of an animal) was presented in the periphery, 53 

msec after onset of a centrally presented letter discrimination task (e.g., search for an “L” 

among rotated “T”s).  Li and coworkers instructed their observers to answer both tasks as 

quickly and as accurately as possible, but to respond first to the scene categorization task, 

followed by the central task. In a control condition, observers were only asked to respond 

to the scene categorization task. Li and coworkers reasoned that if scene categorization 

occurred without the need for attentional resources, then performance should not differ 

between single (i.e., when attention is available to be allocated to the scene task), and 

dual task (i.e., when attention is spilt between the two tasks) conditions. Although scene 

categorization performance was better when completed alone, this difference was not 

statistically significant, suggesting that scene categorization occurs in the near absence of 

attention.   

According to Evans and Treisman (2005; see also Treisman, 2006; Evans & 

Chong, 2011), animal detection in the absence of attention is evidence that scene 

categorization is accomplished by the parallel detection of unbound features (e.g., 

feathers, wings, and beaks) that define a target category (e.g., a bird). The theory is that 

basing categorization on a number of unbound features avoids the need for attention to 

bind them together in order to perceive an experienced whole (see e.g., Feature 

Integration of Theory of Attention; Treisman & Gelade, 1980).  An assumption of this 
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theory is that although observers are able to categorize a briefly presented image (e.g., 

yes it was an animal), they do not have a full representation of the scene (e.g., it was a 

bird in the upper left hand corner). Evans and Treisman directly tested this hypothesis 

using a rapid serial visual presentation (RSVP) paradigm. They asked participants to 

detect both the presence and location of an animal when either presented alone, or in the 

presence of a human distractor. Although observers were accurate at identifying the 

presence of an animal when presented alone, they were nevertheless poor at identifying 

its location. Furthermore, animal detection was impaired in the presence of a human 

distractor, suggesting that the presence of shared features among humans and animals 

reduced animal detection sensitivity.  

Consistent with Evans and Treisman (2005), research also suggests that the 

extraction of shared scene features interferes with target detection.  Li, Iyer, Koch, and 

Perona (2007), for example, reported that observers require longer presentation durations 

to report the identity of an animal species, compared to when they are asked to indicate 

the presence of an animal. When viewed within Evans and Treisman’s framework, this 

suggests that whereas the presence of an animal requires the identification of a single 

feature, the identification of a specific species requires the integration of several features 

(e.g., a beak identifies a bird). Similarly, Thorpe and Fabre-Thorpe (2002) found that the 

ability to detect the presence of an animal decreased as the number of scenes presented 

increased. When observers were asked to determine the presence of an animal in a 

display consisting of four simultaneously presented scenes, performance was 

significantly worsened compared to when three or fewer scenes were presented. Finally, 

Walker, Stafford, and Davis (2008) demonstrated impaired scene categorization under 
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dual task conditions. In one of their studies (Experiment 2a), they briefly presented (170 

msec) observers natural images that were superimposed with four centrally located 

letters, arranged in a square. On single task trials, they asked observers to indicate if the 

image contained an animal. On dual task trials, they asked observers to first indicate if the 

four letters contained a vowel before completing the animal detection task.  Critically, 

and in contrast to Li and colleagues (2002), the images used in this study contained one to 

four objects. The authors found that scene categorization performance was worse on dual 

task trials than on single task trials when scenes contained four different objects. 

However, this effect, although still present, was greatly reduced for trials on which the 

image contained a single object.  

In order to explain how disjunctive features contribute to rapid scene 

categorization, Evans and Treisman (2005) proposed that there are different types of 

attention, and that each type facilitates the selection of a different type of information (see 

also, Chong & Treisman, 2005). For example, focused attention is required in order to 

perceive whole objects, whereas distributed attention is responsible for the extraction of 

whole set statistical descriptors that underpins the formation of disjunctive features. The 

theory is that when attention is distributed over a set of similar items (e.g., a set of beach 

pebbles), the visual system automatically extracts statistical properties of the set (e.g., 

average size and texture) that can be used to make rapid decisions (e.g., this is a beach 

scene). This automatic averaging mechanism appears to be general in its operation 

applying to both low-level features and high-level properties.  Within 200 msec, 

observers can extract the average size of a set of circles (Ariely, 2001; Chong & 

Treisman, 2003; 2005), average direction of a set of randomly moving dots (Watamaniuk, 
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Sekuler, & Williams, 1989), and average emotion or identity in a set of similar faces (de 

Fockert & Wolfenstein, 2009; Haberman, & Whitney, 2007, 2009; Haberman, Harp, & 

Whitney, 2009).  Extracting statistical values (e.g., the mean, range and variance) on a 

number of dimensions facilitates the formation of disjunctive features that can be used in 

rapid decision-making; thereby allowing for an economical description of a scene, 

without the need for focused attention (for a review, see Treisman, 2006; Evans & 

Chong, 2011).  

Chong and Treisman (2005) provided support for this hypothesis by 

demonstrating that the extraction of average circle size was more easily achieved when 

combined with a distributed attention task compared to a focused attention task. They 

asked observers to indicate which of two test circles corresponded to the average size of a 

preceding set of circles. This mean discrimination task was completed in conjunction 

with an attention task that required either focused (e.g., indicate the orientation of a small 

rectangular frame located in the centre of the set) or distributed (e.g., indicate the 

orientation of a large rectangular frame encompassing the display) attention. The 

dependent variable was the diameter difference needed between the two test circles to 

achieve 75% correct performance. The mean diameter difference was smaller when 

observers completed the distributed attention task compared to the focused attention task, 

suggesting that the computation of mean circle size was more compatible with tasks 

requiring distributed rather than focused attention. 

If distributed attention facilitates the extraction of statistical properties that can be 

used as the basis for rapid categorization, then it should also facilitate scene 

categorization directly.  In the present set of studies, we explored this hypothesis by using 
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Chong and Treisman’s (2005) paradigm in conjunction with scene categorization tasks. 

In Experiment 1, we replicated Chong and Treisman’s original task. However, and in 

contrast to their original design, we concentrated on reaction time (RT) measures - rather 

than threshold differences - so that we could easily compare the results with scene 

categorization performance. Observers were asked to complete a mean discrimination 

task while determining the orientation of either a large (distributed attention), or small 

(focused attention) rectangle. Mean discrimination RTs were faster when observers 

completed a distributed attention task than a focused attention task, replicating Chong and 

Treisman’s finding. Experiment 2 was a replication of Experiment 1 with the exception 

that we replaced the mean discrimination task with an animal detection task, which 

previous studies had used to measure scene categorization ability (see, e.g., Li et al., 

2002; Rousselet et al., 2002; Thorpe et al., 1996). Similar to Experiment 1, RTs in 

response to the presence of animal were faster when combined with a distributed 

attention task compared to a focused attention task. In Experiments 3 and 4, we 

investigated whether this effect extends to more complex scenes by replacing the animal 

detection task with natural scene categorization tasks. In Experiment 3, observers 

classified natural images based on their basic level (e.g., beach) and in Experiment 4 

observers classified natural images based on their superordinate level (e.g., natural). 

Whereas there was no difference between the effects of distributed and focused attention 

tasks on basic level categorization, superordinate level categorization was faster when 

combined with a distributed attention task compared to a focused attention task.  
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3.3 Experiment 1 

 The purpose of Experiment 1 was to replicate Chong and Treisman’s (2005) 

finding that judgments about mean circle size are more compatible with a distributed 

attention task compared to a focused attention task. In contrast to their original 

investigation, we modified our design to concentrate on RT measures so that we could 

obtain a baseline pattern of results to which the results of Experiments 2 – 4 could be 

compared.  

 3.3.1 Method 

3.3.1.1 Observers.  Observers were 15 Concordia undergraduate students who 

received partial course credit for their participation, or $10 in monetary compensation.  

All observers self-reported normal or corrected-to-normal vision. Data from a single 

observer was discarded because they failed to follow task instructions. The University 

Human Research Ethics Committee at Concordia University approved all experiments 

reported in this article and participants provided informed consent. 

 3.3.1.2 Stimuli and apparatus. Stimuli were presented on a 21-in. Viewsonic 

225fb CRT monitor (1024 X 768 resolution; 100 Hz refresh rate) controlled by a Dell 

Precision T3400 core2 quad processor running Microsoft Windows 7.  Experiment 

Builder (ver. 1.10.1025; SR Research, Ottawa, Ontario) was used to display the stimuli 

and record the responses. The stimuli used in the present study were the same stimuli 

used in Brand, Oriet, and Sykes-Tottenham (2012). They were green circles presented on 

a white background.  The diameters of the circles ranged from 4 to 96 pixels in 4-pixel 

increments. When viewed from a distance of 54 cm, the minimum and maximum sizes of 

the circles subtended 0.2° and 4.1° of visual angle, respectively. Critically, Teghtsoonian 
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(1965) reported that a power function with the exponent of .76 best described the 

relationship between the actual and perceived size of circles. Thus, sets were carefully 

constructed to ensure that all circles differed from one another by at least one step on this 

power function.  

 3.3.1.3 Procedure. Each trial began with a fixation cross located at the centre of 

the screen presented for 500 msec, immediately followed by the presentation of 12 

uniquely-sized circles, presented for 200 msec. On each trial a small rectangle was 

always present in the middle of the display and a large rectangle bordered the outside. 

Similar to Chong and Treisman’s (2005) study, the sizes of the rectangles were 

constructed in order to ensure that the aspect ratios of each rectangle orientation (vertical 

and horizontal) were the same between the small and large rectangle. The size of the 

large rectangle was 442 X 642 pixels. The size of the small rectangle was determined by 

dividing the dimensions of the large rectangle by 6. Thus, the small rectangle measured 

74 X 107 pixels. When viewed from a distance of 54 cm, the large rectangle was either 

26.0° X 18.0° or 18.0° X 26.0° and the size of the small rectangle was either 3.02° X 4.43 

° or 4.43° X 3.02°.  

 Immediately following offset of the display, we presented observers with two test 

circles, which were presented until the participant made a response. The circles appeared 

directly to the right and to the left of the fixation cross, with the edge of the circles 

approximately 1° away from fixation. The diameter of one of the test circles always 

corresponded to the mean diameter size of the preceding set of circles, whereas the other 

was either smaller or larger. Chong and Treisman (2005) showed that in order for 

observers to achieve 75% accuracy on the mean discrimination task, they needed at least 
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a 31% diameter difference between the test probes when discriminating the orientation of 

the large box, and 37% diameter difference when discriminating the orientation of the 

small box.  Thus, the foil in our study was always at least 37% larger, or smaller than the 

mean size test probe. We asked observers to as quickly and as accurately as possible to 

indicate whether the left, or right test probe corresponded to the average size of the 

preceding set of circles. Observers pressed “1” on the keyboard number pad to indicate 

the left circle corresponded to the mean circle size, and “2” to indicate the right circle. 

The location of each test circle was chosen at random on a trial-to-trial basis.   

Immediately following this response, observers were prompted to indicate the orientation 

of either the large (distributed attention condition) or small (focused attention condition) 

rectangle. Observers pressed “1” to indicate the rectangle was vertically oriented and “2” 

to indicate that it was horizontally oriented.  

 Observers completed 2 blocks of 300 trials. Each block corresponded to an 

attention condition (distributed or focused) and the order of blocks was randomized.  

Prior to each block, observers completed 20 practice trials to familiarize themselves with 

the task. Practice trials were not analyzed. An example of a trial sequence for Experiment 

1 is displayed in Figure 3.1. 
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Figure 3.1. An example of a trial sequence in Experiment 1.  
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 3.3.2 Results 

 3.3.2.1 Attention task accuracy. Mean accuracy for the attention task is displayed 

in Figure 3.2. Overall, accuracy was high (~ 87%), replicating the approximately 85% 

accuracy rate reported by Chong and Treisman (2005). There was no significant 

difference between distributed (M = .88; SD = 0.11) and focused (M = .85; SD = 0.09) 

attention conditions, suggesting that both tasks were equally difficult, t(13) = 1.77, p > 

.101, Cohen’s d = .48, a mean difference of .03 (SD = .07; 95% CI [-.01, .07]).    

 3.3.2.2 Mean discrimination task. Mean accuracy for the mean discrimination 

task is displayed in Figure 3.3a.  Similar to the attention task, there was no statistically 

significant difference between groups, suggesting that the computation of mean size was 

equally difficult between distributed (M = .69; SD = .09) and focused attention conditions 

(M = .68; SD = 0.09), t(13) = .281, p > .783, Cohen’s d = .07. This difference was less 

than .01 (SD = .08; 95% CI [-.04, .05]).  Critically, performance in this task averaged 

68% +- 7%. Given that we purposely manipulated the size of the test circles to replicate 

the 75% accuracy rate achieved by Chong and Treisman (2005), we were relatively close 

in obtaining our desired effect. 

 Mean RTs for each trial type are displayed in Figure 3.3b. Mean discrimination 

RTs were statistically significantly faster when completed concurrently with a distributed 

attention task (M = 1986.30; SD = 85.26) compared to a focused attention task (M = 

2093.63; SD = 85.06), t(13) = 2.27, p < .041, Cohen’s d = .61. The difference between 

these groups was approximately 107.33 msec (SD = 170.53; 95% CI [9.57, 205.09]).    



 

 

 

Figure 3.2. Mean accuracy for distributed and focused attention tasks in Experiment 1. 

The error bars represented here are the 95% within subject confidence intervals described 

by Loftus and Masson (1994). 

 

  



 

 

 
Figure 3.3. Mean discrimination results in Experiment 1. a) Mean discrimination task 

accuracy in distributed and focused attention conditions; b) Mean discrimination reaction 

times in distributed and focused attention conditions. The error bars represented here are 

the 95% within subject confidence intervals described by Loftus and Masson (1994);.  
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 3.3.3 Discussion  
 
 The purpose of Experiment 1 was to replicate the previous finding that judgments 

about mean circle size are more easily combined with a distributed attention task 

compared to a focused attention task. Whereas Chong and Treisman (2005) indexed 

computation of mean circle size using threshold differences, we concentrated our analysis 

on RTs in order to obtain a baseline pattern of results with which the results of scene 

categorization performance in Experiments 2 - 4 could be compared.  Critically, there 

was no statistically significant difference in accuracy between distributed and focused 

attention tasks, replicating Chong and Treisman’s result that both tasks are equally 

difficult.  Similarly, there was no difference in mean discrimination accuracy between 

attention conditions; an expected result given that we purposely made the diameter 

difference between the two test probes large enough to achieve 75% performance. The 

critical finding from Experiment 1 is that our observers were faster at judging mean circle 

size when they judged the orientation of a large bordering rectangle, corroborating Chong 

and Treisman’s finding that the extraction of mean circle size is more easily combined 

with distributed rather than focused attention.  
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3.4 Experiment 2  

 Experiment 2 was designed to address which distribution of attention was more 

easily combined with the ability to detect the presence of an animal. The decision to 

index scene categorization using an animal detection task was based on previous studies 

that have used similar stimuli (Li et al., 2002; Rousselet et al., 2002; Thorpe et al., 1996; 

Walker et al., 2008).  Experiment 2 was thus a replication of Experiment 1, with the 

exception that we replaced the mean discrimination task with an animal detection task. 

Furthermore, because the addition of secondary attention tasks affects animal detection 

sensitivity (Cohen et al., 2011), we wanted to obtain a baseline measure of performance; 

therefore, a control condition was included in which observers completed only the animal 

detection task.  

 3.4.1 Method 

3.4.1.1 Observers. Ten naïve Concordia undergraduate students received partial 

course credit for their participation, or were paid $10 in monetary compensation. None of 

the observers participated in any of the other studies reported in this article, and all self-

reported normal or corrected-to-normal vision.  

 3.4.1.2 Stimuli and apparatus. Stimuli and apparatus were the same as in 

Experiment 1 with the following exceptions. Stimuli were 1000 pictures downloaded 

from the Corel image database (Corel, 1996) organized into a target present and target 

absent categories1. Images were gray scaled and were presented on a gray background 

(RBG values [128 128 128]; luminance of 52 cd/m2). The target category contained 

""""""""""""""""""""""""""""""""""""""""""""""""""""""""
1 For image examples please see the Corel stock photo library (copyright 1996 by Corel). 
Permission for reprints is granted for published articles only.  

""
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images of animals that included birds, insects, reptiles, mammals, and fish.  The 

distractor category contained images of foods, fruits, plants and vehicles.  The stimuli 

were 256 X 256 pixels. When viewed at a distance of 54 cm the images subtended a 

visual angle of 10.5° X 10.5°.   

 3.4.1.3 Procedure. Each trial began with a fixation cross located in the middle of 

the screen presented for 500 msec. The primary purpose of the present study was to 

examine how different attentional distributions affected concurrent rapid scene 

categorization behaviour. Thus, we were particularly concerned with ensuring that our 

observers were able to perceive our scene stimuli, while also limiting processing time. 

Immediately following presentation of the images, we therefore presented a white noise 

mask (amplitude spectrum = 0) for a period of 64 msec.  Hansen and Loschky (2013) 

showed that masks constructed in this way result in approximately 80% scene 

categorization performance.  As in Experiment 1, a large rectangle bordered the image 

and a small rectangle was located at the centre of the image. On 50% of trials, the image 

contained an animal; the image was a distractor on the other 50% of trials.  We instructed 

observers to as quickly and as accurately as possible to indicate whether the image 

presented contained an animal (or not).  Observers pressed the “1” key on the keyboard 

number pad to indicate the presence of an animal, and the “2” key to indicate the absence 

of an animal.  Immediately following this response, observers were prompted to indicate 

the orientation of either the large (distributed attention condition), or small (focused 

attention condition) rectangle. Observers pressed the “1” key to indicate that the rectangle 

was vertically oriented and the “2” key to indicate that it was horizontally oriented.  In a 

control condition, observers completed only the animal detection task. If observers did 
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not respond to the animal detection task within 4000 msec, then the trial was discarded.  

This removed less than 1% of total trials.   

 Observers completed 3 blocks of 300 trials. Each block corresponded to a 

different experimental condition (distributed, focused, or control) and the order of blocks 

was chosen at random. Prior to the start of each block, observers completed 20 practice 

trials in order to familiarize themselves with the task. Practice trials were not analyzed. 

An example of a trial sequence for Experiment 2 is displayed in Figure 3.4. 
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Figure 3.4 An example of a trial sequence in Experiment 2.  
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 3.4.2 Results 
 
 3.4.2.1 Attention task accuracy. Mean accuracy for the attention task is displayed 

in Figure 3.5.  As in Experiment 1, accuracy was overall high (~ 90%) and there was no 

significant difference between distributed (M = .93; SD = 0.04) and focused (M = .89; SD 

= 0.03) attention tasks, t(9) = 1.93, p > .09, Cohen’s d = .06. This difference was 

approximately .04 (SD = .05; 95% CI [-.01, .09]).  It is interesting to note that both the 

mean difference and effect size were similar to those reported in Experiment 1, 

suggesting that attention task difficulty is similar between experiments.  

 3.4.2.2 Animal detection sensitivity. We compared animal detection performance 

using the sensitivity measure, d prime (d'; Figure 3.6a).  Overall, d' values were high (d' 

= 3.32; hit rate = .95%; false alarm rate = .09%). We entered these means into a one-way 

repeated measures ANOVA. There was no statistically significant main effect, suggesting 

that the addition of both distributed and focused attention tasks did not affect sensitivity 

to the presence of an animal, F(2, 18) = 2.22, p > .138, η2 = .31. d' statistics are displayed 

in Table 3.1.  

 3.4.2.3 Animal detection task RTs. As in Experiment 1, we computed group mean 

RTs for each trial type. Trial type varied according to condition and whether the target 

was present, or absent. These group means are displayed in Figure 3.6b. We entered these 

means into a 2 (target present or absent) X 3 (experiment condition: distributed, focused, 

or control) repeated measures ANOVA. There were significant main effects of target, 

F(1,9) = 9.14, p < .013, η2 = .51, and condition, F(2, 18) = 51.84, p < .001, η2 = .001, η2 

= .86.  The target X condition interaction was also significant, F(2,18) = 3.72, p < .044, 

η2 = .29. Looking at the figure, it appears that the main effects were driven by the fact 
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that RTs were fastest on single task trials and on target present displays. We confirmed 

this interpretation by computing 1) the contrast comparing RTs between single task trials 

(M = 736.19; SD = 105.75) and dual task trials (M = 1200.14; SD = 55.46) (Ψ1); and 2) 

the contrast comparing RTs between target present trials (M = 1023.40; SD = 20.65) and 

target absent trials (M = 1067.72; SD = 21.67) (Ψ2). Both these contrasts were statistically 

significant.  

 Because Experiment 2 was designed to assess which attentional distribution was 

more easily combined with the detection of an animal, we were primarily interested in the 

planned contrasts comparing performance between distributed and focused attention 

conditions for both target present (Ψ3) and target absent (Ψ4) trials. Consistent with the 

significant target X condition interaction, animal detection was faster when combined 

with a distributed attention task (M = 1104.71; SD = 71.26) compared to a focused 

attention task (M = 1218.47; SD = 109.20) on target present trials. There was no 

significant difference between distributed (M = 1202.71; SD = 68.8) and focused 

attention tasks (M = 1275.34; SD = 104.49) on target absent trials. Corroborating this 

result, the effect size for target present (η2 = .43) was larger than the effect size for target 

absent displays (η2 = .23), although this difference is relatively small. Reaction time 

statistics and contrast analyses are displayed in Table 3.2. 



 

 

 

Figure 3.5. Mean accuracy for distributed and focused attention tasks in Experiment 2. 

The error bars represented here are the 95% within subject confidence intervals described 

by Loftus and Masson (1994). 

  



 

 

 Condition 

  Control  Focused   Distributed 

Statistic  M SD 95% CI  M SD 95% CI  M SD 95% CI 

d prime   3.56 0.55 [3.17, 3.96]  3.35 0.82 [2.76, 3.94]  3.04 .68 [2.55, 3.53] 

Hit rate   0.97 0.03 [.94, .99]  0.96 0.03 [.93, .98]  0.94 .04 [.92, .97] 

False alarm rate  0.07 0.06 [.03, .12]  0.11 0.11 [.03, .19]  0.09 .05 [.07, .13] 

Table 3.1. d prime statistics for each condition in Experiment 2.  



 

 

  

Figure 3.6. Animal detection results in Experiment 2. a) Mean d prime values in each 

condition; b) Animal detection reaction times in each condition on target present and 

target absent displays.  The error bars represented here are the 95% within subject 

confidence intervals described by Loftus and Masson (1994).

 

  



 

 

 

  Target Present  Target Absent 
Condition   M SD 95% CI  M SD 95% CI 
Control  747.28 117.28 [663.12, 831.45]  725.10 125.10 [635.29, 814.93] 

Focused   1218.47 109.20 [1140.35, 1296.59]  1275.34 104.49 [1200.64, 1350.04] 

Distributed  1104.44 71.26 [1050.97, 1157.90]  1202.72 68.80 [1151.09, 1254.33] 
Contrasts  

Contrast   df F p MD SE (MD) 95% CI (MD) η2 

Ψ1  (1, 9) 70.01 < .001 464.05 52.61 [345.03, 583.06] .88 
Ψ2  (1, 9) 9.41 < .013 44.31 13.57 [13.32, 75.31] .51 
Ψ3  (1, 9) 6.83 < .028 114.03 41.40 [20.38, 207.68] .43 
Ψ4  (1, 9) 2.28 > .143 72.62 42.92 [-24.46, 169.71] .23 

Table 3.2. Reaction time (msec) statistics for each condition in Experiment 2. Reaction 
 

  time mean difference contrasts in Experiment 2  

Ψ1: RT comparison between single and dual-task trials.  
Ψ2: RT comparison between target present and target absent trials. 
Ψ3: RT comparison between distributed and focused attention conditions on target present displays.  
Ψ4: RT comparison between distributed and focused attention conditions on target absent displays.  
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3.4.3 Discussion  
 
 The aim of Experiment 2 was to examine whether distributed or focused attention 

was more compatible with the rapid detection of an animal. Overall, attention task 

performance replicated the results of Experiment 1, suggesting that the difficulty between 

distributed and focused attention tasks was approximately equal. Furthermore, animal 

detection sensitivity was high, suggesting a weak effect of masking. Nevertheless, this 

result is not completely unexpected given that Hansen and Loschky (2013) reported an 

80% scene categorization detection rate using the same mask. Furthermore, this high 

animal detection performance is consistent with previous studies that reported 90% 

animal detection rates, although with unmasked presentations (see, e.g., Walker et al., 

2008).  

 The addition of a simultaneous attention task slowed animal detection responses, 

replicating the finding that the addition of a secondary task slows responses to a primary 

scene categorization task (Walther & Fei Fei, 2007).  However, this slowing did not have 

an effect on animal detection sensitivity. Furthermore, although RTs were slower on dual 

task trials, observers were faster to respond to the presence of an animal when 

simultaneously completing a distributed attention task, compared to a focused attention 

task. The present results are thus consistent with both Experiment 1 and Evans and 

Treisman's (2005) suggestion that distributed attention facilitates the rapid extraction of a 

scene’s summary statistics that can be used to categorize a scene. However, because 

Experiment 2 used an animal detection task, the present results are limited to 

comparisons with previous studies that have used similar paradigms (Li et al., 2002; 

2005; Rousselet et al., 2002; Walker et al., 2010; Thorpe et al., 1996).  Thus, in 
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Experiment 3, we examined whether the results of Experiments 1 and 2 extend to the 

categorization of more complex scenes.    
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3.5 Experiment 3   

 Experiment 3 was designed to investigate whether the results of Experiment 2 

extend to more complex natural scene categorization tasks. Whereas scene categorization 

performance was measured using an animal detection task in Experiment 2, observers 

classified natural scenes according to their basic level in Experiment 3. 

 3.5.1 Method 

 3.5.1.1 Observers. Twenty-two Concordia university undergraduate students 

participated in this experiment in return for partial course credit.  None of the observers 

participated in the other studies reported in this article, and self-reported normal or 

corrected-to-normal vision. Data from two participants was discarded because they failed 

to achieve chance performance in any of the conditions.  

 3.5.1.2 Stimuli, apparatus, and procedure. Stimuli, apparatus, and procedure 

were the same as in Experiment 2 with the following exceptions. Scenes were over 500 

images of beaches, rivers, mountains, forests, and deserts taken from the Corel image 

database (Corel, 1996) and the Sun image database (Xiao, Hayes, Ehinger, Oliva, & 

Torralba, 2010). All images were gray scaled. All scenes were the same size as 

Experiment 2 and presented on the same gray background. Mathwork’s Matlab (ver. 

2011b) with the Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997; Kleiner 

et al, 2007) controlled all timing and data recording operations.  

 Each trial began with a fixation cross presented in the middle of the screen 

presented for 500 msec, immediately followed by the presentation of a scene for 32 msec. 

As in Experiment 1, a white noise masked presented for 64 msec was used to mask the 

scene. As in Experiments 1 and 2, a large rectangle bordered the image and a small 
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rectangle was located centrally. Immediately following offset of the mask, observers were 

presented with a cue word in the middle of the screen presented until response. On 50% 

of trials, the cue word matched the target category; on the other 50% of trials, the cue 

word matched a distractor category chosen at random.  We instructed observers to 

indicate whether the cue word matched the previously presented image as quickly and as 

accurately as possible.  Observers pressed the “1” key on the keyboard number pad to 

indicate that the cue matched the image and the “2” key to indicate that it did not. 

Immediately following this response, we then prompted observers to indicate the 

orientation of either the large (distributed attention condition), or small (focused attention 

condition) rectangle. Similar to Experiments 1 and 2, observers pressed the “1” key to 

indicate that the rectangle was vertically oriented and the “2” key to indicate that it was 

horizontally oriented.  In a control condition, observers completed only the scene 

categorization task. If observers did not respond to the cue word within 4000 msec, then 

the trial was discarded.  This eliminated less than 1% of total trials.  

 Similar to Experiment 2, observers completed 3 blocks (distributed, focused, and 

control) of 300 trials and the order of the blocks was chosen at random. The target 

category and the probe word varied from trial-to-trial.  Prior to start of each block, 

observers complete 20 practice trials.  Practice trials were not analyzed. An example of a 

trial sequence in Experiment 3 is displayed in Figure 3.7. 



 

 

 

Figure 3.7. An example of a trial sequence in Experiment 3.  

  

  



 

 
131"

 3.5.2 Results 

 3.5.2.1 Attention task accuracy. Mean accuracy is displayed in Figure 3.8.  

Overall, accuracy was high (82%), replicating the high performance in the previous 

experiments.   Similar to Experiments 1 and 2, there was no statistically significant 

difference in accuracy between distributed (M = .82; SD = 0.11) and focused attention 

tasks (M = .83; SD = 0.16), t(19) = .727, p > .354, Cohen’s d = .08. This difference was 

approximately .01 (SD = .13; 95% CI [-.05, .07]). Both the mean difference and effect 

size were similar to Experiments 1 and 2, corroborating our previous suggestion that 

attention task difficulty is approximately equal between experiments.  

 3.5.2.2 Scene categorization sensitivity. As in Experiment 2, scene categorization 

accuracy was measured using the sensitivity measure, d' (Figure 3.9a) and analyzed using 

a one-way repeated measures ANOVA. Overall, sensitivity was high (d' = 1.88; hit rate = 

.86%; false alarm rate = .22%). Consistent with Experiments 1 and 2, there was no 

statistically significant main effect, suggesting that the addition of simultaneous 

distributed and focused attention tasks did not affect scene categorization sensitivity, 

F(2,38) = 2.19, p > .126, η2 = .26. Furthermore, the effect size was similar to the η2 = .31 

value reported in Experiment 2, suggesting that the effects of simultaneous attention tasks 

on scene sensitivity were the same between animal detection and basic level 

categorization tasks. d' statistics are displayed in Table 3.3.  

 3.5.2.2 Scene categorization RTs. Scene categorization results are displayed in 

Figure 3.9b. Similar to the previous experiments, we entered mean RTs into a 2 (target: 

present or absent) X 3 (condition: distributed, focused, or control) repeated measures 

ANOVA. There were significant main effects of target, F(1,19) = 39.41, p < .001, η2 = 
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.68, and condition, F(2,38) = 47.46, p < .001, η2 = .71.  The target X condition interaction 

was not significant, F(2, 38) = 2.28, p > .118, η2 = .11. Similar to Experiment 2, the main 

effects were driven by the fact that target absent trials (M = 1178.64; SD = 72.01) were 

slower than target present trials (M = 970.87; SD = 72.13) (Ψ1), and by the fact that single 

task trials (M = 825.96; SD = 142.73) were faster than dual task trials (M = 1199.14; SD = 

71.36) (Ψ2). Furthermore, the effect sizes associated with the compassions between target 

present and target absent trials (η2 = .68) and between single and dual task trials (η2 = .76) 

were consistent with the effect sizes reported in Experiment 2 (η2 = .51 and η2 = .88), 

suggesting that the size of the effects are approximately equal between experiments.    

 As in Experiment 2, we were particularly interested in the planned contrast 

comparing RTs between focused and distributed attention conditions for both target 

present and target absent displays (Ψ3). However, because there was no significant 

interaction between condition and target presence, we collapsed across target present and 

target absent trials. There was no statistically significant difference between focused (M = 

1172.17; SD = 90.31) and distributed attention conditions (M = 1226.12; SD = 96.06) 

(Ψ3).  What's more, the associated effect size (η2 = .17) was relatively smaller than the 

reported effect sizes for both target present (η2 = .51) and target absent trials (η2 = .43) in 

Experiment 2. This suggests that the effects of distributed attention were greater on the 

animal detection task in Experiment 2 compared to the basic level scene categorization 

task in Experiment 3. Reaction time statistics and contrast analyses are displayed in Table 

3.4.  

  



 

 

 

Figure 3.8. Mean accuracy for distributed and focused attention tasks in Experiment 3. 

The error bars represented here are the 95% within subject confidence intervals described 

by Loftus and Masson (1994). 

 

  



 

 

 
Figure 3.9. Basic level scene categorization results in Experiment 3. a) Mean d prime 

values for each condition; b) Scene categorization reaction times for each condition on 

target present and target absent trials. The error bars represented here are the 95% within 

subject confidence intervals described by Loftus and Masson (1994).



 

 

 
 

 Condition 
  Control  Focused   Distributed 
Statistic  M SD 95% CI  M SD 95% CI  M SD 95% CI 
d prime   2.03 0.26 [1.20, 2.86]  1.84 0.03 [0.95, 2.73]  1.76 0.41 [0.65, 2.86] 
Hit rate   .83 0.12 [.72, .95]  .87 0.08 [.81, .93]  .86 0.09 [.82, .90] 
False alarm rate  .21 0.12 [-.03, .46]  .21 0.08 [.06, .36]  .23 0.06 [.13, .34] 

Table 3.3. d prime statistics for each condition in Experiment 3.  



 

 

  Target Present  Target Absent 

Condition   M SD 95% CI  M SD 95% CI 
Control  743.02 175.06 [661.08, 824.95]  908.89 145.09 [840.99, 976.81] 
Focused   1040.77 123.11 [983.16, 1098.39]  1303.57 168.69 [1224.61, 1382.52] 

Distributed  1128.81 117.68 [1073.74, 1183.89]  1323.43 135.18 [1260.18, 1386.71] 
Contrasts  

Contrast   df F p MD SE (MD) 95% CI(MD) η2  
Ψ1  (1, 19) 39.41 < .001 207.77 32.26 [140.25, 275.29] .68 
Ψ2  (1, 19) 57.73 < .001 373.18 47.87 [272.99, 473.39] .76 
Ψ3   (1, 19) 3.84 > .072 53.95 26.82 [-2.19, 110.10] .17 

Table 3.4. Reaction time (msec) statistics in Experiment 3. Reaction time mean difference  
  
 contrasts in Experiment 3 

Ψ1: RT comparison between target present and target absent trials.  
Ψ2: RT comparison between single and dual-task trials.  
Ψ3: RT comparison between distributed and focused attention conditions.  
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3.5.3 Discussion  
 
 The purpose of Experiment 3 was to examine the effects of focused and 

distributed attention on basic level scene categorization.  Similar to Experiments 1 and 2, 

attention task performance did not differ statistically between distributed and focused 

attention tasks, suggesting that they were equally difficult. Consistent with Experiment 2, 

the presence of simultaneous attention tasks did not affect sensitivity to scene 

categorization, but did slow responses. In contrast, however, whereas responses to the 

presence of an animal were faster when combined with a distributed attention task in 

Experiment 2, there was no difference in RTs between distributed and focused attention 

conditions in response to the basic level of a scene in the present experiment.  

One explanation for this discrepancy is that we failed to replicate Chong and 

Treisman’s result in Experiment 3; however, this is unlikely as we successfully replicated 

their study in Experiments 1 and 2. An alternative explanation is that our animal detection 

task demands differed from our scene categorization task demands.  Our animal detection 

task required observers to report the presence of a target that remained constant 

throughout the entire experiment.  In contrast, the target scenes in our basic level scene 

categorization task varied from trial-to-trial, and could have been any one of a possible 

five scenes (e.g., beaches, rivers, mountains, forests, or deserts). Evans, Horowitz, and 

Wolfe (2011) provided evidence to suggest that when the target category is unknown, 

interference effects are more likely to emerge than when it is known. Evans and 

colleagues (Experiment 1) asked participants to indicate whether a target image was 

present in RSVP stream. The target category varied from trial-to-trial and could have 

been any one of nine different categories. In one block of trials, the target category was 
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pre-cued. In another block of trials, the target category was post-cued. Although d' values 

were above 1.5 in both conditions, they were higher in the pre-cued condition than in the 

post-cued condition, suggesting that there was a cost associated with holding more than 

one target category in memory.  

 In Experiment 4, we directly tested this hypothesis by modifying the scene 

categorization task in Experiment 3, such that the task demands were similar to the task 

demands associated with the animal detection task in Experiment 2. Specifically, 

observers were asked to complete a scene categorization task based on the superordinate 

natural/manmade distinction. Thus, similar to the animal detection task, observers were 

asked to base classification on the superordinate level, and were required to hold only a 

single target category in memory.  
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3.6 Experiment 4 

 3.6.1 Method 

 3.6.1.1 Observers. Ten Concordia University undergraduate students participated 

in this experiment in return for partial course credit, or were paid $10 in monetary 

compensation. None of the observers participated in the other studies reported in this 

article, and self-reported normal or corrected-to-normal vision.  

 3.6.1.2 Stimulus, apparatus, and procedure. Stimuli, apparatus, and procedure 

were the same as in Experiments 2 and 3 with the following exceptions. Natural scene 

stimuli consisted of over 500 each of beach, desert, forest, and mountain scenes. 

Manmade stimuli consisted of over 500 each of city, highway, and living room scenes. 

Both manmade and natural scenes were taken from the Corel (Corel, 1996) image 

database. The attention task was completed as described in the previous experiments.  

The scene categorization task was completed as follows. We instructed observers to 

indicate whether the image presented corresponded to a natural image. Observers pressed 

the “1” key on the keyboard number pad to indicate that the image corresponded to a 

natural image, and the “2” key to indicate that it did not.  Similar to the previous 

experiments, observers completed 3 blocks of 300 trials, each block corresponding to a 

different experimental condition.  Less than 1% of trials were removed because of a 

failure to respond within 4000 msec. An example of a trial sequence in Experiment 4 is 

displayed in Figure 3.10. 

  



 

 

 
 
Figure 3.10. An example of a trial sequence in Experiment 4.  
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3.6.2 Results  

 3.6.2.1 Attention task accuracy. Attention task results are displayed in Figure 

3.11. As in the previous experiments, accuracy was overall high (~ 92%). However, and 

in contrast to the previous experiments, performance on the distributed attention task (M 

= .94; SD = 0.03) was statistically significantly higher than the focused attention task (M 

= .90; SD = 0.04), t(9) = 4.25, p < . 002, Cohen’s d = 1.3. This was a difference of 

approximately .04 (SD = .03; 95% CI [.03, .05]). It is interesting to note that although the 

absolute difference between distributed and focused attention tasks was similar to the 

previous experiments, the effect size was relatively higher than Experiments 1 - 3, 

suggesting that difference in accuracy between distributed and focused attention tasks is 

greatest in Experiment 4.  

 3.6.2.2 Scene categorization sensitivity. The d' values for the scene categorization 

task are displayed in Figure 3.12a.  As in previous experiments, sensitivity was overall 

high (d' = 2.93; hit rate = .90%; false alarm rate = .09%). We entered these d prime 

values into a one-way repeated measures ANOVA. Consistent with the previous 

experiments, this analysis was not statistically significant, F(2,18) = 2,54, p > .107, η2 = 

.22. Furthermore, the effect size in Experiment 4 was relatively small and similar to the 

values reported in previous experiments, corroborating the finding that the addition of 

simultaneous attention tasks does not affect sensitivity to scene categorization tasks.  d' 

statistics are displayed in Table 3.5.  

 3.6.2.3 Scene categorization RTs. Mean scene categorization RTs are displayed 

in Figure 3.12b.  As with previous experiments we analyzed these means using a 2 

(target: present or absent) X 3 (condition: distributed, focused, or control) repeated 
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measures ANOVA. There was a significant main effect of condition, F(2,18) = 36.55, p < 

.001, η2 = .81.  Neither the main effect of target nor the condition X target interaction was 

significant, F(1,9) = .06, p > .814, η2  <  01, and F(2, 38) = 1.58, p > .201, η2 = .16. In 

contrast to previous experiments, there was no statistically significant difference between 

target present (M = 939.51; SD = 59.88) and target absent trials (M = 949.20; SD = 59.01) 

a difference of 9.69 msec (SD = 119.76; 95% CI [-77.64, 97.02]).  

 As in Experiments 2 and 3, we computed the planned contrast comparing RTs 

between 1) single and dual task trials (Ψ1), and 2) between focused and distributed 

attention trials, collapsing across target presence (Ψ2). Single task trials (M = 635.71; SD 

= 121.23) were statistically significantly faster than dual-task trials (M = 1098.89; SD = 

60.61). In addition, the effect size (η2 = .87) was similar to Experiments 2 than 3, 

corroborating our suggestion that the effect of adding a secondary task on scene 

categorization performance is equal between experiments.  Furthermore, observers were 

faster to respond on distributed attention trials (M = 973.04; SD = 110.15) than focused 

attention trials (M = 1224.33; SD = 127.02) corroborating the result from Experiment 2. 

Consistent with this result, the reported effect size (η2 = .61) was more consistent with the 

effect size in Experiment 2 (η2 = .43; target absent η2 = .23) than 3 (η2 = .17). This 

suggests that the effects of distributed attention on superordinate level scene 

categorization are more similar with the effects on distributed attention on animal 

detection (on target present trials) than the effects of distributed attention on basic level 

categorization. Reaction time statistics and contrast analyses are displayed in Table 3.6.  

 



 

 

 

Figure 3.11. Mean accuracy for distributed and focused attention tasks in Experiment 4. 

The error bars represented here are the 95% within subject confidence intervals described 

by Loftus and Masson (1994). 

 

  



 

 

 
Figure 3.12. Superordinate level categorization results in Experiment 4. A) Mean d prime 

values in each condition; b) Scene categorization reaction times for each condition on 

target present and target absent displays. The error bars represented here are the 95% 

within subject confidence intervals described by Loftus and Masson (1994). 

 

 
 



 

 

 

 Condition 
  Control  Focused   Distributed 
Statistic  M SD 95% CI  M SD 95% CI  M SD 95% CI 

d prime   3.22 0.64 [2.81, 3.63]  2.64 0.82 [2.41, 2.86]  2.92 0.49 [2.56, 3.27] 

Hit rate   .92 .06 [.87, .96]  .89 .02 [.88, .90]  .88 .06 [.84, .93] 

False alarm rate  .05 .09 [-.02, .11]  .13 .06 [.09, .18]  .11 .06 [.06, .15] 

Table 3.5. d prime statistics for each condition in Experiment 4.  



 

 

 
 

Table 3.6. Reaction Time (msec) statistics in Experiment 4. Reaction time mean difference  
  
 contrasts in Experiment 4 

Ψ1: RT comparison between single and dual task trials. 
Ψ2: RT comparison between distributed and focused attention conditions.  

  Target Present  Target Absent 

Condition   M SD 95% CI  M SD 95% CI 

Control  664.23 120.29 [576.51, 751.95]  607.19 132.41 [510.63, 703.75] 
Focused   1184.13 166.25 [1062.89, 1305.36]  1264.53 206.99 [1113.58, 1415.47] 

Distributed  970.19 129.28 [875.92, 1064.46]  975.89 111.78 [894.39, 1057.41] 

Contrasts  
Contrast   df F p MD SE (MD) 95% CI (MD) η2 
Ψ1  (1, 9) 58.34 < .001 462.98 57.50 [330.37, 595.58] .87 
Ψ2  (1, 9) 13.58 < .005 251.29 64.68 [102.13, 400.45] .61 
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3.6.3 Discussion  

 Experiment 4 investigated whether distributed or focused attention was more 

compatible with superordinate level scene categorization. In contrast to previous 

experiments, accuracy on the distributed attention task was statistically significantly 

higher compared to the focused attention task. However, given that performance 

exceeded 90% in both conditions, it is unlikely that this difference affected scene 

categorization performance in a meaningful way. Consistent with the previous 

experiments, the addition of a simultaneous attention task did not affect scene 

categorization sensitivity, but did slow categorization RTs. In contrast to Experiment 3, 

and consistent with the results of Experiments 1 and 2, superordinate level categorization 

was faster when combined with a distributed attention task, compared to a focused 

attention task. However, whereas animal detection was faster when combined with a 

distributed attention task on target present trials (Experiment 2), superordinate level 

categorization was faster when combined with a distributed attention task on both target 

present and target absent trials.  
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3.7 General Discussion 

 Evans and Treisman (2005) suggested that distributed attention facilitates the 

extraction of summary statistics, which in turn, can be used to categorize a scene 

information. However, empirical investigations in support of this hypothesis have been 

limited to studies investigating the effects of attention on perceptual averaging (e.g., 

mean size of a set of circles; Chong & Treisman, 2005). The present studies endeavored 

to directly investigate whether distributed, or focused attention was more easily combined 

with scene categorization. In Experiment 1, we demonstrated that judgments relating to 

mean circle size were faster when combined with a distributed attention task compared to 

a focused attention task. In Experiment 2, we extended this finding by showing that 

although the addition of a simultaneous attention task slowed responses, the ability to 

detect an animal was more easily combined with tasks requiring distributed rather than 

focused attention. In Experiments 3 and 4, we investigated whether this distributed 

advantage would extend to more complex natural scenes. When observers were asked to 

classify natural scenes based on their basic level, there was no statistically significant 

difference between distributed and focused attention task conditions (Experiment 3). 

However, when asked to categorize scenes based on the superordinate level, responses 

were faster when combined with a distributed attention task compared to a focused 

attention task (Experiment 4).  

 An interesting question is how exactly the extraction of a scene's summary 

statistics contributes to rapid scene categorization? One possibility that is consistent with 

the present results is that a scene's summary statistics contributes to the formation of a 

low-resolution global scene structure that allows for both superordinate and basic level 
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categorization. It is argued that a scene’s summary statistics contributes to the creation of 

a set of orthogonal global features that defines a scene’s overall shape, such as its "degree 

of openness", "mean depth", and "navigability" (see e.g., Spatial Envelope Theory; Oliva 

& Torralba, 2001).  Greene and Oliva (2009) suggested that whereas basic level 

categorization requires the integration of several global features (e.g., a forest is both 

"natural" and "closed"), superordinate level categorization (e.g., natural/manmade 

distinction) can be based on a single global feature (e.g., "naturalness"). Consistent with 

this suggestion, the "naturalness" global property hypothesized to differentiate between 

manmade and natural scenes correlates with low-level features that are distributed 

homogeneously over an image (Torralba & Oliva, 2003). Combined with the finding that 

superordinate level categorization occurs before basic level categorization (Loschky & 

Larson, 2010; Joubert et al., 2007; Rousselet, Joubert, & Fabre-Thorpe, 2005; Greeen & 

Oliva, 2009), these findings suggest that superordinate level information is available 

earlier than basic level information because there is no need to integrate global features. 

The present results provide further support for this hypothesis by demonstrating that 

distributed attention facilitates superordinate categorization of both natural scenes and 

objects, but not basic level categorization of natural scenes.  

 A related question to the one above is why basic level categorization is not 

facilitated by distributed attention? As previously mentioned, our preferred explanation is 

that there is an unequal amount of global features needed to classify superordinate and 

basic level categories (Greene & Oliva, 2009; Gosselin & Schyns, 2001). The potential 

for interference caused by conflicting global features is greater in basic level 

categorization compared to superordinate level categorization, because of the need to 
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combine different source of information.  Consistent with this idea, Greene and Oliva 

(2009) demonstrated that when observers are asked to categorize scenes at the basic level, 

the false alarm rate is greater when a distractor image shares global properties with the 

target category than when a distractor image does not (e.g., for the target category, forest, 

a distractor image that contained close space was more likely to produce a false alarm 

than a open space distractor image). This finding is consistent with studies investigating 

the perceptual averaging phenomenon, which is hypothesized to underpin the 

construction of global properties. Specifically, the presence of an irrelevant set of items 

influences mean judgments related to a relevant set, suggesting that the computation of 

the irrelevant set’s mean interferes with response behaviour (Oriet & Brand, 2013). 

Similarly, observers are able to compute summary statistics of two sets of interspersed 

objects concurrently, but doing so incurs a cost of dividing attention across the two sets 

(Brand, Oriet, & Sykes-Tottenham, 2012; Emmanouil & Treisman, 2008). These results 

thus provide converging evidence that several summary descriptors of a scene are 

computed independently, but nevertheless interact causing interference effects to emerge 

during certain scene related judgments. Thus, it is possible that basic level categorization 

does not benefit from distributed attention because interference effects resulting from the 

integration of global features neutralize any benefits that result from adopting a 

distributed attention strategy.   

 An alternative explanation for the differing effects of distributed attention on 

basic and superordinate level categorization could be that there were different task 

demands between the experiments. As previously mentioned, there were more possible 

target scenes in our basic level scene categorization task, compared to our animal 
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detection task and our superordinate level categorization task. Thus, we cannot conclude 

for certain that distributed attention facilitates only superordinate categorization. Such a 

claim would require the replication of Experiment 3 while controlling for the number of 

possible target categories. Nevertheless, we see the present results as converging with 

previous research in suggesting that both animal detection and superordinate level 

categorization occur earlier than basic level categorization because of their evolutionary 

importance (Loschky & Larson, 2010; Fei Fei et al., 2007). Fei Fei et al. (2007) reported 

that the earliest categorical distinction made between scenes is the superordinate 

indoor/outdoor distinction. Loschky and Larson (2010) subsequently suggested that the 

availability of superordinate level information is arranged into a hierarchy in which more 

primate distinctions (e.g., indoor/outdoor) are made prior to less primitive distinctions 

(manmade/natural).  It would thus be interesting to determine whether distributed 

attention facilitates the indoor/outdoor distinction more than the natural/manmade 

distinction. Along the same lines, the superordinate animal/no animal distinction is 

argued to have significant evolution priority (Li et al., 2002). A similar interesting 

question would be to determine whether distributed attention influences evolutionary 

important object categories in the same fashion as non-evolutionary important categories 

(e.g., vehicle/no vehicle distinction).   

 A question the present studies were unable to address was why distributed 

attention facilitated superordinate scene categorization on both target present and target 

absent displays, but only animal detection on target present displays. Given that both 

tasks required superordinate level categorization, there should have been no difference 

between the tasks. However, this finding is consistent with emerging research showing 
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that animal detection performance differs from scene categorization performance within 

the same task. Cohen and coworkers (2011) found that when observers were asked to 

complete an attentionally demanding task concurrently with a scene categorization task, 

the ability to detect the presence of animal was more susceptible to the costs of dividing 

attention than basic level scene categorization. Nevertheless, the animal detection results 

in Experiment 2 are consistent with our previous suggestion that the ability to detect an 

animal is an important evolutionary adaption. For example, it is more important to detect 

the presence of animal (target present displays) than to detect the absence of an animal 

(target absent displays), as indexed by the fact that there was no significant difference 

between distributed and focused attention tasks on target absent trials.  A critical next 

step in advancing our understanding of scene categorization behaviour will be to 

investigate the distinction between rapid object categorization and more complex scene 

categorization.  

  Despite its rapid nature, manipulations of attention affect scene categorization 

performance. Thus, a challenge for scene perception researchers is to establish a theory of 

scene perception that includes attention, while also acknowledging its rapid nature. The 

present study provides a first step in addressing this issue by motivating observers to use 

focused, or distributed attention strategies and measuring the subsequent effects on scene 

categorization behaviour. Specifically, the present work examined whether the effects of 

distributed attention on scene categorization performance were the same as the effects of 

distributed attention on perceptual averaging, a mechanism hypothesized to contribute to 

rapid scene perception. As suggested by the present results, further research investigating 

the effects of attentional distribution on scene categorization performance could enrich 
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our understanding of both mechanisms involved and the type of information that allows 

for rapid responses to scene stimuli.    
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4. Conclusions and Summary 
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 A scene's semantic information facilitates target localization  (Eckstein, Drescher, 

& Shimozaki, 2006; Torralba, Oliva, Castelhano, & Henderson, 2006), influences object 

recognition (Boyce & Pollatsek, 1992), and speeds up recall for previously memorized 

scenes (Brewer & Treyens, 1981; Pezdek, Whetstone, Reynolds, Askari, & Dougherty, 

1989). On the basis of such evidence, it has been argued that the rapid extraction of a 

scene’s meaning is the earliest meaningful stage of scene perception (Oliva, 2005). 

Accordingly, a large majority of researchers have focused on understanding scene 

perception by identifying the sources of information that underpin rapid scene 

categorization.  Information related to an image’s spatial frequencies (Oliva & Schyns, 

1997; Schyns & Oliva, 1994), color (Castelhano & Henderson, 2008; 2005; Loschky & 

Simons, 2004; Oliva & Schyns, 2000), phase (Joubert, Rousselet, Fabre-Thorpe, & Fize, 

2009; Loschky et al., 2007, 2010; Loschky & Larson, 2008), summary statistics (Evans & 

Treisman, 2005), and central and peripheral regions (Larson & Loschky, 2009) have all 

been suggested to contribute to the ability to rapidly categorize a scene. The purpose of 

the present dissertation was to build upon these findings by addressing how the 

information that is required to perform scene categorization is selected. 

 This question was investigated by evaluating the hypothesis that one of the 

mechanisms responsible for selecting scene information is attention (Oliva & Schyns, 

1997; Treisman, 2006). Consequently, the experiments reported in this work departed 

from the traditional methodologies used to study the role of attention in scene 

categorization. Previous researchers relied on the use of dual task paradigms to 

investigate whether attention to scene stimuli is needed to extract semantic scene related 

information (as reviewed in the General Introduction of Chapter 1). Whereas some of 
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these studies documented a cost of dividing attention (Cohen et al., 2011; Walker et al., 

2008), others did not (Li et al., 2002; 2005). These two sets of conflicting findings have 

been particularly influential because they suggest that attention affects the ability to 

detect a scene, but only under specific circumstances (e.g., only under high attentional 

load). The present work sought to investigate how adopting different attentional 

orientations affected scene categorization. Specifically, it tested the hypothesis that one 

role of attention is to select scene information that is used to make rapid scene-related 

decisions. The experiments reported in this work tested this hypothesis by using novel 

experimental paradigms that combined experimental tasks from different cognitive 

domains.  Whereas the paradigm in Chapter 2 combined hierarchical figure perception 

with scene categorization tasks, the paradigm in Chapter 3 combined a perceptual 

averaging task with scene categorization tasks. Although both chapters were based on 

different theories and relied on different methodologies, they nevertheless converged in 

suggesting that scene perception requires attention, and that one of its roles is to facilitate 

the extraction of information that is used to rapidly categorize scenes. A further benefit of 

Chapter 3 is that its design allowed for a discussion relating to the hypothesis that the 

information conveyed in overall summary statistics contributes to the formation of 

information in an image's spatial scales (e.g., The Spatial Envelope Theory discussed in 

section 1.4.3 of the General Introduction in Chapter 1; see also, Oliva & Torralba, 2001).  

In the following sections, I elaborate on the results of each of the experiments reported in 

Chapters 2 and 3, with particular emphasis on the significance of their findings and 

potential limitations that constrain their conclusions.  
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4.1 Review and significance of main findings  

  4.1.1 Chapter 2. Chapter 2 investigated Oliva and Schyn's (1997) hypothesis that 

attending locally and globally facilitates categorization based on an image’s fine and 

coarse information, respectively. This hypothesis was investigated by priming observers 

to perceive scenes in either a global, or local fashion, by asking them to complete local 

and global Navon tasks (Navon, 1972). Overall, the results not only converged with 

pervious research in demonstrating that scene perception requires attention (Walker et al., 

2008; Cohen et al., 2011; Evans & Treisman, 2005), but also suggested a novel role for 

attention. Specifically, that attention facilitates the selection of scene information. This 

conclusion was based on the collective findings of four experiments that measured spatial 

scale selection using hybrid images (i.e., a low-pass filtered image of one scene combined 

with a high-pass filtered image of a different scene). Although researchers showed that 

observers were able use both fine (conveyed by an images high spatial frequencies 

[HSFs]) and coarse (conveyed by an image’s low spatial frequencies [LSFs]) information 

as the basis for hybrid image categorization (Schyns & Oliva, 1994; Oliva & Schyns, 

1997), it was nevertheless unknown whether there was a preferred spatial scale. Low 

spatial frequencies were argued to form the basis of scene categorization because they are 

available earlier in the visual system than HSFs (Schyns & Oliva, 1994; Morrison & 

Schyns, 2001). However, HSFs have been shown to be the preferred spatial scale under 

certain task constraints (Oliva & Schyns, 1997); suggesting that differences in LSF- and 

HSF-based hybrid categorization is a function of task demands. Thus, Experiments 1 and 

2 were designed to address whether LSFs or HSFs are the preferred spatial scale, 

irrespective of any experimental manipulation. Experiment 1 assessed spatial scale 
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sensitivity by asking observers to indicate whether a cue word corresponded to the 

category of the previously presented image. The results of Experiment 1 replicated the 

finding that observers are sensitive to both LSF and HSF information (Oliva & Schyns, 

1997; Schyns & Oliva, 1994). Experiment 2 extended this result by investigating spatial 

scale preference by asking observers to identify the category of the previously presented 

scene by choosing from a list of all possible target categories. The results of Experiment 

2 demonstrated that observers overwhelmingly selected the target category that 

corresponded to LSF information, despite the fact that observers were more sensitive to a 

hybrid's HSFs (Experiment 1). These results corroborate previous research that suggested 

a critical role for LSFs in rapid scene categorization  (Loschky & Simons, 2004; 

McCotter, Gosselin, Sowden, & Schyns, 2005; Schyns & Oliva, 1994; Oliva & Schyns, 

1997), and extended these findings by demonstrating a preference to use LSF information 

despite the fact that HSF information is more salient.  

 The results of Experiments 1 and 2 provided a baseline pattern of performance 

that could be used to answer the central question of chapter 2: does attention to local and 

global levels of a scene bias the selection of spatial scale?  This question was addressed 

in Experiment 3 by asking observers to complete either global or local Navon tasks prior 

to categorizing hybrid images. Because observers preferred to categorize hybrids based 

on LSF content, it was hypothesized that LSF-based hybrid categorization would be 

facilitated following global, but not local Navon tasks. Consistent with this hypothesis, 

observers preferred to base hybrid categorization on LSF content, and LSF-based hybrid 

categorization was faster following global Navon tasks compared to local Navon tasks. 

Thus, the contributions of Experiment 3 to the scene categorization literature have been 
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two-fold. First, the results provide empirical evidence that can help elucidate the debate 

regarding whether attention is needed in order to consciously perceive a scene. 

Specifically, the results corroborate previous studies in suggesting that scene 

categorization can benefit from attention (Cohen et al., 2011; Evans & Treisman, 2005; 

Walker et al., 2008). Second, the results of Experiment 3 suggest a novel role for 

attention; particularly, that one role of attention is to facilitate the selection of scene 

information. This finding dovetails with Larson and colleagues (2014), who showed that 

manipulations of selective attention affect the selection of central and peripheral scene 

information.  

 A limitation to the conclusions of Experiment 3 is that the analogy between local 

and global processing and fine and coarse processing is confounded by the fact that both 

are associated with HSFs, and LSFs, respectively. Thus, it is unclear whether the 

observed LSF-based hybrid categorization facilitation effect following global processing 

was due to the priming of a hybrid’s LSFs, or the priming of a hybrid’s coarse 

information.  To address this issue, Experiment 4 replicated Experiment 3; however LSFs 

were suppressed in the Navon figures by contrast balancing the Navon stimuli. Similar to 

Experiment 3, observers preferred to base hybrid categorization on LSF information; 

however and in contrast, LSF-based hybrid categorization was faster following local 

Navon tasks. One interpretation of this result is that the removal of a Navon’s LSFs 

primed the selection of different information within the LSF content of scenes. This 

interpretation is consistent with Oliva and Schyns (1997), who claimed that fine and 

coarse information is orthogonal to local and global information; that is, there is more 

than one type of information at both local and global scales and it is possible to direct 
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attention to these differing sources of information. Thus, Experiment 4 not only 

corroborates the finding that observers prefer to use a single spatial scale as the basis for 

scene categorization (Experiments 2 and 3; Oliva & Schyns, 1997), but it is also the first 

set of results to empirically support Oliva and Schyns' claim that there is more than one 

source of information at each spatial scale.   

 Although Chapter 2 provides a significant contribution to the scene perception 

literature, it nevertheless has a number of limitations. One limitation is that the spread of 

attention potentially differed between local and global conditions in Experiments 2 and 3. 

It is possible that attending to the global level of a Navon figure results in a wider spread 

of attention compared to the more narrowed spread of attention that results from 

attending to the local level. A consequence of this possibility is that stimulus size, and not 

attention to hierarchical level, is the critical dimension affecting scene categorization 

performance. However, this possibility is unlikely for two main reasons. First, Navon 

stimuli were purposely presented in the periphery and observers were instructed to make 

same/different judgments, prompting a scan across the entire visual field. Second, 

Flevaris and colleagues (2011) ruled out this possibility in their investigation on how 

attention to hierarchical level affected spatial scale selection in sine wave gratings (see 

the Introduction to Chapter 2). Flevaris and colleagues conducted a control experiment in 

which they replaced the Navon letters with single letters that were the size of the global 

Navon letters, or the size of the local Navon letters. There was no statistically significant 

difference on observers’ ability to detect both low, and HSFs between local- and global-

sized letter conditions, suggesting that attention to hierarchical level was required to 

facilitate the selection of LSFs and HSFs, respectively.   
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 A second limitation of the experiments in Chapter 2 is that natural images have on 

average more power (i.e., more energy) in the low spatial frequencies than in the high 

spatial frequencies (Hansen, Haun, & Essock, 2008). This dichotomy was not controlled 

for in these studies. Thus, it is possible that observers preferred to categorize hybrids 

based on LSFs because they contained more power than HSFs. However, given that this 

LSF/HSF dichotomy is a natural phenomenon, I was hesitant to alter the scene stimuli for 

fear of manipulating the appearance of the scenes. Manipulations of the amplitude spectra 

slope in artificial images does not appear to affect the perception of images; however, in 

natural images, Johnson, Richard, Hansen, and Ellemberg (2011) showed that artificial 

manipulations of the amplitude spectra slope results in the images looking unnatural. 

Specifically, changes that cause an overrepresentation of the LSF contrast energy (i.e., a 

steeper amplitude spectrum slope) cause images to be perceived as more blurred. 

Conversely, changes that cause an increased representation of the HSF contrast energy 

(i.e., a shallower amplitude spectrum slope) result in a “whitened” image perception.  

 A third limitation of Chapter 2 (and Chapter 3) is that the use of white noise 

masks (amplitude spectrum slope = 0; maximum orientation = 0) produced weak 

backward masking effects. A potential consequence of weak backward masking effects is 

that the effects of attention on scene categorization were not strictly related to early visual 

processes, which have been hypothesized to contribute to rapid scene categorization. A 

white noise mask was chosen in order to obtain an approximate 80% scene categorization 

accuracy rate, as reported by Hansen and Loschky (2013). However, accuracy in the 

present set of studies exceeded this level. A review of the literature suggests that a more 

effective way to determine a specific level of performance would be to pilot test the 
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target/mask duration ratio in order to establish a wide range of useful performance 

measures. This technique has been successfully employed in previous research examining 

scene categorization performance (see e.g., Figure 10 in Loschky et al., 2007).  

Furthermore, the present set of studies varied the presentation duration of scene images 

while holding the mask duration constant. Breitmeyer and Ogmen (2000) suggested that a 

more effective masking paradigm is to hold both the target image and the mask duration 

constant and vary the interstimulus interval between target and mask.  

 4.1.2 Chapter 3. Similar to Chapter 2, Chapter 3 addressed the hypothesis that 

attention facilitates the selection of scene information. However, whereas Chapter 2 

addressed this question with respect to the selection of spatial scale, Chapter 3 addressed 

this question with respect to the extraction of overall summary statistics.  Specifically, it 

was designed to address Evans and Treisman’s (2005) claim that distributed attention 

facilitates that rapid extraction of summary statistics that underpins rapid scene 

categorization. Four experiments investigated whether manipulations of attention known 

to affect the extraction of summary statistics also affected rapid scene categorization in 

the same fashion. The results were overall consistent with Chapter 2 in suggesting that 

one role of attention is to facilitate the selection of information that is used to make rapid 

scene categorizations. Although it is suggested that summary statistics provide 

information used in rapid scene categorization, the majority of this evidence is based on 

indirect observations. For example, the two phenomena have been linked because both 

are computed rapidly and appear to provide overall global properties that are extracted 

without the need for attention (Evans & Treisman, 2005; Greene & Oliva, 2009). The 

lack of direct empirical evidence is due, in part, to the fact that the paradigms used to 
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study each respective phenomenon are not easily comparable. For example, they often 

use different dependent variables. Thus, the purpose of Experiment 1 was to two-fold: 1) 

to replicate Chong and Treisman’s (2005) claim that adopting a distributed attention 

mode facilitates the extraction of statistical properties from a set of similar items; and 2) 

to modify their original design so that the results could be more easily compared to scene 

categorization studies. In pursuit of these goals, Experiment 1 used a modified version of 

Chong and Treisman’s original task in order to focus on RT measures rather than 

threshold differences.  Consistent with Chong and Treisman’s original report, observers 

were faster at judging which of two test dots corresponded to the mean size of a 

preceding set of dots when combined with a task requiring distributed attention compared 

to a task requiring focused attention. Thus, the results of Experiment 1 not only 

corroborate Chong and Treisman’s original result, but also establish a baseline pattern of 

results to which the effects of attention on scene categorization could be compared.  The 

logic behind this comparison is that if distributed attention facilitates the extraction of 

summary statistics, which in turn, facilitates rapid scene categorization, then the effects of 

distributed attention on scene categorization should be the same as the effects of 

distributed attention on summary statistics. Experiment 2 was designed to test this 

hypothesis by replicating Experiment 1 with the exception that the perceptual averaging 

task was replaced with an animal detection task, which had been previously used as a 

measure of scene categorization behaviour (e.g., Li et al., 2002; 2005; Rousselet et al., 

2002). Consistent with Experiment 1, the ability to detect the presence of an animal was 

faster when combined with a distributed attention task, in comparison to a focused 

attention task.  To my knowledge, this is the first empirical demonstration examining 
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summary statistics in conjunction with scene categorization.  

 Early investigations into the effects of attention on scene categorization have 

focused on the ability to detect the presence of an animal. However, as scene perception 

studies have evolved, researchers have used more complex scene stimuli. This is done to 

investigate if the results obtained using simple animal stimuli (e.g., Fei Fei et al., 2002; 

2005) would extend to more complex natural scenes. Thus, the purpose of Experiments 3 

and 4 was to investigate whether distributed attention facilitates natural scene 

categorization in the same fashion as Experiments 1 and 2.  Observers in Experiments 3 

and 4 were asked to complete concurrent distributed and focused attention tasks with 

scene categorization tasks that required either basic (Experiment 3) or superordinate 

(Experiment 4) level categorization. When observers categorized images based on their 

basic level (e.g., beach and forest), there was no statistically significant difference 

between the effects of focused and distributed attention tasks; however, superordinate 

level categorization was faster when combined with a distributed attention task than a 

focused attention task. Together, the results of Experiments 3 and 4 suggest that attention 

facilitates the selection of information used for superordinate, but not basic level 

categorization. This finding corroborates previous research that suggests superordinate 

categorization occurs before basic level categorization (Joubert et al., 2007; Rousselet, 

Joubert, & Fabre-Thorpe, 2005; Larson & Loschky, 2009), and extends these findings by 

suggesting that attention is more likely to influence the selection of superordinate level 

information since it is available earlier than basic level information.  

 The design of Chapter 3 also allowed for a discussion about the association 

between summary statistics and the information contained in spatial scales, as discussed 
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in Chapter 2. Similar to Evans and Treisman’s (2005) suggestion that summary statistics 

contributes to the formation of disjunctive features, Oliva and Torralba (2006) and 

Greene and Oliva (2009) suggested that a scene’s summary statistics contributes to the 

formation of global features that are carried in an image’s spatial scales. Evidence in 

favour of this hypothesis has been limited to simulation studies (e.g., Spatial Envelope 

Model; Oliva and Torralba, 2001) and to correlational evidence that has shown that the 

Fourier spectra associated with various global properties correlates with low-level 

features that are distributed homogeneously over an image (Torralba & Oliva, 2003).  

The experiments described in Chapter 3 provide behavioural evidence for this hypothesis 

by providing data that supports certain predictions based on the Spatial Envelope Model. 

For example, the Spatial Envelope Model predicts that a scene's summary statistics 

contributes to the formation of global features, which suggests that distributed attention 

should not only facilitate perceptual averaging, but also scene categorization. Chapter 3 

provides direct evidence for this prediction by demonstrating that the effects of 

completing a concurrent distributed attention task are the same between scene 

categorization tasks and perceptual averaging tasks (at least for superordinate level 

categorization).  

 Another prediction of the Spatial Envelope Model is that a single global feature is 

sufficient for superordinate, but not basic level categorization. Consistent with this 

prediction, several researchers have shown that superordinate level information is 

available before basic level information (Joubert et al., 2007; Rousselet, Joubert, & 

Fabre-Thorpe, 2005; Larson & Loschky, 2009), suggesting that only superordinate level 

information is available pre-attentively. If distributed attention facilitates the processing 
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of pre-attentive information as hypothesized by Evans and Treisman (2005), then 

distributed attention should only facilitate superordinate categorization. This logic is 

based on the premise that the time required to integrate global features associated with 

basic level categorization would extend pass the time thought to be pre-attentive. In 

support of this hypothesis, the results of Chapter 3 Experiments 2 and 3 demonstrated that 

distributed attention facilitates superordinate level categorization of both animals and 

natural scenes, but not basic level categorization of natural scenes.   

 Similar to Chapter 2, there are several limitations that must be considered when 

evaluating the conclusions of Chapter 3.  One limitation is that the difficulty of the 

attention task was not standardized across participants. This is problematic because the 

difficulty of a secondary attention task is a critical factor affecting scene categorization 

performance (Cohen et al., 2011; Walker et al., 2008). This is particularly concerning in 

Experiment 4 because performance on the distributed attention task was statistically 

significantly higher than performance on the focused attention task. However, there are 

two main reasons why differences in attention task difficulty were unlikely to have 

significantly affected scene categorization performance in Chapter 3. First, attention task 

accuracy was high in all experiments and there were no significant differences between 

distributed and focused attention tasks in Experiments 1 - 3, suggesting that both tasks 

were equally difficult. Second, although distributed attention task accuracy was 

statistically significantly higher than focused attention task accuracy in Experiment 4, 

accuracy was greater than 90% for both tasks. The fact that accuracy was high for both 

attention tasks suggests that any differences between the two had limited effects on scene 

categorization performance. 
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 In order to control for attention task difficulty, Chong and Treisman (2005) 

titrated the ratio of both the small and large rectangles in order to maintain a standard 

level of correct performance. This ensured that any observed difference on the mean 

discrimination task between distributed and focused attention conditions was not a 

function of attention task difficulty. The primary reason why a similar staircase method 

was not used in the present studies is that changing the aspect ratio of the rectangles 

would potentially, and unnecessarily, direct attentional resources to the attention task. 

This is worrisome because the addition of secondary attention task affects scene 

categorization performance, with larger effects associated with increased task difficulty 

(Cohen et al., 2011; Walker et al., 2008). As such, I wanted to ensure that both attention 

tasks were relatively easy, without drawing attention to the attention tasks. Early pilot 

testing indicated that attention task performance was greater than 85% for both focused 

and distributed attention tasks, so the decision was made not to titrate the aspect ratios of 

the rectangles. Nevertheless, attention task accuracy varied between the experiments 

reported in Chapter 3. Therefore, it is likely that some of the observed scene 

categorization differences found between the experiments can be attributed to differences 

in attention task difficulty. Similar to the masking problem in Chapter 2, a solution to this 

problem would be to pilot test a combination of rectangle ratios for each scene 

categorization task. This would not only ensure that attention task accuracy would be 

equal between distributed and focused conditions, but also that the association between 

attention task difficulty and scene categorization difficulty would be consistent between 

experiments. Similarly, observers could undergo baseline testing prior to the experiment 

in order to determine their individual thresholds for the distributed and focused attention 
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tasks (e.g., determine the aspect ratio for each individual that corresponds to 75% 

accuracy). However, research being conducted in Concordia's vision laboratory has 

shown that this procedure is time consuming, and that individual thresholds vary from 

time to time (and day to day). "

 A second limitation of Chapter 3 is that perceptual averaging RTs in Experiment 1 

were overall much slower than scene categorization RTs in Experiments 2 - 4. This 

finding is most likely caused by methodological differences. Whereas Experiment 1 

required observers to make a comparison between two test probes, Experiments 2 – 4 

required the evaluation of a single cue word.  Thus, the extra time needed to evaluate a 

second probe item may have caused the increased RTs observed in Experiment 1. Future 

research that investigates similarities between perceptual averaging and scene 

categorization paradigms should take such task demands into consideration. With respect 

to the present study, a more comparable perceptual averaging paradigm would have been 

to index mean size extraction using a single test probe. In his seminal investigation, 

Ariely (2001) used a single probe design in which he asked his observers to indicate 

whether a test dot was smaller, or larger than the average size of a preceding set of dots.  

Despite this limitation, the primary objective of the Chapter 3 was to demonstrate that 

distributed attention affected perceptual averaging in the same fashion as rapid scene 

categorization. As such, the most relevant comparison is the pattern of results between 

experiments, and not absolute time.  

4.3 Future directions.   

 The experiments reported in this dissertation corroborate previous research that 

scene categorization can benefit from attention (Cohen et al., 2011; Walker et al., 2008; 
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Evans & Treisman, 2005) and extend these finding by providing evidence that one role of 

attention is to select scene information. This investigation examined the effects of 

attention on the selection of a scene’s spatial scales and overall summary statistics; 

however there are other additional features hypothesized to contribute to scene 

categorization. Thus, future research should investigate how attention affects the 

selection of other features not investigated here. Recent evidence suggests that such 

investigations can be beneficial in elucidating attention’s role in scene categorization. For 

example, Larson and colleagues (2014) found that manipulations of selective attention 

affect the selection of central and peripheral scene information.  The authors subsequently 

argued that understating how attention affects the processing and selection of such scene 

information is crucial in developing computational models of scene perception that can 

lead to a fuller understanding of the efficiency with which humans accomplish rapid 

scene categorization.   

 One particular area of interest is the selection of scene colours. Studies that have 

investigated scene categorization (including the present body of work) have typically 

used gray-scaled images in order to control for the mediating effects of colour on scene 

recognition (Oliva & Schyns, 2000).  However, this technique is shortsighted given that 

colour provides information that can be used to categorize natural scenes (e.g., 

Castelhano & Henderson, 2008; Goffaux et al., 2005; Loschky & Simons, 2004; Oliva & 

Schyns, 2000).  The finding most relevant to the present discussion is the suggestion that 

colour information contributes to the formation of coarse information that Chapter 2 

demonstrated to be the preferred spatial scale. Sanocki and Epstein (1997) suggested that 

a scene’s global layout is due, in part, to the organization of coloured blobs within an 
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image’s coarse scale. For example, an image of a beach can be identified based on the 

fact that the sky and the ground can be differentiated on coloured blobs. On the basis of 

this evidence, Oliva and Schyns (2000) suggested that colour information rapidly 

facilitates the segmentation of an image, which in turn, activates a scene schema that can 

be used as the basis for categorization.  Combined with the fact that endogenous attention 

affects the perception of saturation (Fuller & Carrasco, 2006), and there is good evidence 

that attention could modulate how colour information is used in scene categorization.  

 Another source of information argued to be important for scene categorization is 

an image’s phase (i.e., the distribution of spatial frequencies and orientations in an image 

with respect to their location; Joubert, Rousselet, Fabre-Thorpe, & Fize, 2009; Loschky et 

al., 2007, 2010; Loschky & Larson, 2008).  However, to date, only a single study 

investigated the effects of attention on the processing of phase information (Kihara & 

Takeda, 2012). Similar to the majority of research looking at the effects of attention on 

scene categorization, Kihara and Takeda (2012) showed that phase information is 

processed pre-attentively; nevertheless, and as demonstrated by the present set of studies, 

this finding does not preclude the possibility that attention can facilitate the selection of 

phase information.  

 One of the most interesting findings from the present work is the differing effect 

of attending globally on LSF-based hybrid categorization seen between Experiments 3 

and 4 in Chapter 2. Whereas LSF-based hybrid categorization was faster following global 

Navon tasks in Experiment 3, it was slower following global Navon tasks in Experiment 

4. As previously mentioned, this finding can be interpreted to suggest that the processing 

of a Navon’s LSFs in Experiment 3 had a significant impact on the selection of spatial 
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scale. The present studies were not designed to investigate this issue. One technique that 

has been successfully shown to elucidate the processing of spatial frequencies in 

hierarchical figures is event-related brain potentials (ERPs). Flevaris, Martinez, and 

Hillyard (2014) reported that ERP activity elicited by spatial frequency gratings differed 

as a function of attended Navon level. Specifically, attending to global levels facilitated 

the processing of LSF gratings with ERPs differing between global and local Navon tasks 

at approximately 196–236 msec after stimuli onset. Furthermore, this difference was 

concentrated over the right occipital scalp. In contrast, attending to local levels of Navon 

stimuli facilitated the processing of HSF gratings with differences in ERPs between 

global and local Navon tasks occurring at approximately 250–290 msec after stimulus 

onset. In contrast to the LSF gratings, these differences were distributed over the entire 

occipital scalp. Thus, a possible way to elucidate how the processing of a Navon’s LSFs 

affected the subsequent categorization of hybrid images would be to investigate the 

differential processing of ERPs elicited by contrast balanced Navon stimuli and full 

broadband Navon stimuli.  

4.4 Concluding remarks   

 Hierarchical structure is a common occurrence in our visual environment. At the 

top of the hierarchy is a global structure (e.g., a forest), which is comprised of a local 

structure (e.g., tress), which in turn, is comprised of an even more local structure (e.g., 

leaves), and so on. As we navigate through our environment, we are constantly switching 

our focus of attention extracting information from each attended level with effortless 

ease. At any given point, we are able to focus our attention on a particular object, such as 

a tree, or adopt a global spread of attention to see the forest. An important question for 
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psychologists has been to determine what level of information is available during the very 

first glimpse of a scene. Over the past 40 years, findings from psychophysics, 

psychophysiological, and simulation studies have converged on the conclusion that the 

first meaningful stage of natural scene perception is the extraction of a scene’s global 

meaning (e.g., you do see the forest before the trees). At the same time, these studies have 

suggested that the information that underpins the ability to rapidly categorize a scene 

originates from early visual processes. The present dissertation was a first attempt to 

investigate how attending locally and globally to a scene affected the selection of low-

level visual scene information.  Although the results did not provide conclusive evidence 

that attention is needed in order to extract global semantic content, they nevertheless 

demonstrated that one of the primary roles of attention is to facilitate the selection of 

scene information that can be used to extract semantic meaning.   
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Appendix A: Example stimuli used in Chapter 2 
  



 

 
 

 
 
 
Figure A.1. Examples of hybrid city stimuli. A) A low-pass filtered city scene combined 

with a high-pass filtered valley, highway, and living room scene, respectively; B) A high-

pass filtered city scene combined with a low-pass filtered valley, highway, and living 

room scene, respectively. 

  



 

 

 
Figure A.2. Examples of hybrid valley stimuli. A) A low-pass filtered valley scene 

combined with a high-pass filtered city, highway, and living room scene, respectively; B) 

A high-pass filtered valley scene combined with a low-pass filtered city, highway, and 

living room scene, respectively. 

  



 

 

Figure A.3. Examples of hybrid highway stimuli. A) A low-pass filtered highway scene 

combined with a high-pass filtered city, valley, and living room scene, respectively; B) A 

high-pass filtered highway scene combined with a low-pass filtered city, valley, and 

living room scene, respectively. 

  



 

 

 
Figure A.4. Examples of hybrid living room stimuli. A) A low-pass filtered living room 

scene combined with a high-pass filtered city, valley, and highway scene, respectively; B) 

A high-pass filtered living room scene combined with a low-pass filtered city, valley, and 

highway scene, respectively. 

  



 

 

 

Figure A.5. Examples of congruent and incongruent Navon stimuli used in Experiment 3 

and contrast balanced Navon stimuli used in Experiment 4.  
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