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Abstract 

 

The Pricing Kernel in the Heston and Nandi (2000) and Heston (1993) 

Index Option Pricing Model: An Empirical Puzzle 

 

Qi Sun 

 

This thesis estimates a quadratic pricing kernel developed by Christoffersen, Heston and Jacobs 

(2013) under the Heston-Nandi GARCH pricing model, using both American and Canadian data. 

Initially, we find a misfit of data across different data samples, indicating lack of support in the 

closed-form quadratic pricing kernel. Comparing with the estimation of the continuous-time 

Heston (1993) model from Christoffersen, Jacobs, and Mimouni (2010), this empirical puzzle 

exists in both the Heston-Nandi (2000) GARCH and Heston (1993) stochastic volatility model.  

 

We provide additional tests by comparing the Heston-Nandi and CHJ model with the 

overreaction tests. We find that their empirical performances are not differentiated. Also, we 

introduce the stochastic dominance bounds in order to select the mispriced options. The results 

from filtered data sample indicate the mispricing of options is significantly affecting the 

estimation.  
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1 Introduction 

The merits of the Black-Scholes model have been widely accepted among academics and 

investment professionals. It assumes a complete and perfect market that provides a continuous 

path of the underlying security and a constant variance of the stock return, while the asset price 

follows a geometric Brownian motion. The assumption establishes a unique framework of risk-

neutral probability measure. Also, the idea of pricing kernel is originally implicit in the theory of 

Black and Scholes (1973) since the absence of arbitrage implies a positive stochastic discount 

factor. Motivated by the intuitions from the Black-Scholes model, a voluminous option pricing 

literature has developed on the studies of risk-neutral measurement and pricing kernel. 

 

However, many systematic deviations from the Black-Scholes model remain unexplained. The 

original assumption of lognormal distribution of asset price presented by Black-Scholes has been 

challenged after the 1987-crash. In addition, the variance of returns on assets tends to be unstable 

over time. Furthermore, the realized volatilities are systematically and consistently lower than at-

the-money (ATM) implied volatilities. There have been two directions of modeling such a 

feature of the data. The first one is stochastic volatility. Many option pricing models have been 

focusing on parametric continuous-time models for the underlying asset. The unsatisfactory 

performance of the constant variance geometric Brownian motion leads to a new class of the 

stochastic volatility models. These models assume that volatility is volatile itself and moving 

towards a long-term mean. 

 

Originating with Garman (1976), stochastic volatility (SV) option pricing models have to satisfy 

a fundamental partial differential equation (PDE) of both underlying price and volatility. The 

early SV models have the most general solutions of the PDEs but they are infeasible to compute. 

Both Hull and White (1987) and Stein and Stein (1991) have problems in generating the 

characteristic function of distribution of the average variance. Alternatively, Heston (1993) 

develops a specific stochastic volatility diffusion. He computes the risk-neutral probabilities that 

a call option will expire in-the-money (ITM) by a Fourier transform of a conditional 

characteristic function, which is known in closed form under his assumption that stochastic 
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volatility follows a square-root diffusion. The option price is generated together with index and 

strike prices. Building on this insight, numerous studies have been investigating the Heston-type 

stochastic volatility model. Benzoni (1998) and Eraker, Johannes, and Polson (2003) conclude 

that the SV model provides a much better fit of data than standard one-factor diffusions. In 

particular, the Heston model contains a leverage effect, which allows an arbitrary correlation 

between volatility and asset returns. It is consistent with the negative skewness observed in stock 

returns. Also, the non-zero risk premium for volatility is indispensable to the closed-form 

solution of the option prices; its inclusion is an important step towards the correction of 

mispricing and the hedging errors for out-of-money options. The closed-form pricing model 

from Heston (1993) is very influential. 

 

The Heston model has been generalized to a rich class of affine jump-diffusion (AJD) by Duffie, 

Pan, and Singleton (2000), who present the transform results for general affine models. The Cox, 

Ingersoll, and Ross (CIR) model is also one of AJD models in the term structure literature. The 

AJD approach models the asset price dynamics by means of introducing price-jumps, stochastic 

volatility, and their combination. It is considered to be consistent with the empirical data and 

many other specifications. 

 

An alternative to the stochastic volatility model is the GARCH model. GARCH models have the 

inherent advantage that volatility is observable; they are thus widely adopted. Following the 

work of Engle (1982) and Bollerslev (1986), numerous econometric studies have been developed 

on volatility estimation and forecasting. Bollerslev, Chou, and Kroner (1992) provide a thorough 

overview of the GARCH literature and the empirical applications from a large class of the model. 

 

Motivated by the success of GARCH models in estimating and forecasting volatility, researchers 

have introduced the GARCH model into option valuation. Duan (1995) first proposes a 

NGARCH (1, 1) 1  option valuation model, which assumes a locally risk-neutral valuation 

relationship (LRNVR) to measure the return process by adjusting asset-specific drift terms under 

the risk-neutral distribution. With LRNVR, Duan (1995) characterizes the transition between 

                                                 

1 NGARCH is introduced by Engle and Ng (1993). 
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physical and risk-neutral distributions under the GARCH framework. It implies that the 

variances under both physical and risk-neutral measures are identical, corresponding to a linear 

pricing kernel. After 50,000 Monte Carlo simulations, the model prices indicate that Black–

Scholes model underprices deep out-of-money options and short-maturity options. Duan and 

Simonato (1998) further propose an empirical martingale simulation (EMS) method, which 

ensures that the simulated option price satisfies rational price bounds. The EMS has a significant 

effect on reducing the Monte Carlo errors. 

 

Among most of the GARCH option pricing models, the main technical problem is the derivation 

of the distribution of future asset prices (Stentoft, 2005). Numerical methods have to be applied 

instead. An exception of this is the particular formulation in Heston and Nandi (2000). They 

widely follow the concept of LRNVR and formulate a specific affine GARCH model that yields a 

closed-form solution. The closed form is based on an inversion of the characteristic function 

technique, which is introduced by Heston (1993), under the normal innovations. They also 

provide considerable empirical supports to the Heston-Nandi model. It outperforms the ad-hoc 

implied volatility benchmark model of Dumas, Fleming, and Whaley (1988) that use an 

independent implied volatility for each option to fit the volatility smile. They conclude that the 

improvements provided by their model are largely due to the inclusion of the leverage effect as 

well as the path dependent in volatility. Their empirical results have brought GARCH option 

pricing models to the forefront. 

 

The importance of GARCH option pricing has expanded due to their linkage with stochastic 

volatility models. Nelson (1990) is one of the first papers to examine the continuous-time limits 

of GARCH models. Duan (1997) extends Nelson’s work into a broader class of GARCH models, 

including NGARCH, EGARCH, GJR-GARCH, etc. Heston and Nandi (2000) document how the 

Heston-Nandi model approaches the stochastic volatility model of Heston (1993) in the 

continuous-time limit. The Heston-Nandi model is thus considered as a special case of the 

Heston-type model. Both of them yield closed-form solutions, indicate the leverage effect, and 

take advantage of the Fourier transform of the characteristic function. They also manage to 

contain the volatility dynamics those capture the stylized facts in the option market. Based on all 

the advantages, the Heston and Heston-Nandi models have been the most popular option pricing 
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models over the last two decades. Despite the great success achieved by the Heston and Heston-

Nandi model, they have not been evaluated in the context of the equilibrium theory with an 

analytical pricing kernel.  

 

Several equivalent martingale measures for option pricing models have been proposed and tested 

so far. LRNVR from Duan (1995) is the first theoretical risk-neutralization for GARCH option 

valuation. The conditional Esscher transform2 for option valuation, proposed by Gerber and Shiu 

(1994), is also used for many applications. Building on the Esscher transform, Christoffersen, 

Elkamhi, Feunou, and Jacobs (2010) characterize the Radon-Nikodym derivative for neutralizing 

a class of GARCH models. Monfort and Pegoraro (2012) further propose a second-order Esscher 

transform method. The pricing kernel for Heston and Heston-Nandi model is not developed in a 

recent paper as Christoffersen, Heston, and Jacobs (2013, CHJ hereafter). CHJ (2013) propose a 

closed-form variance-dependent pricing kernel for the Heston (1993) and also the Heston-Nandi 

(2000) model. The pricing kernel accounts for both the equity premium and the variance risk 

premium. The authors claim that the new parameters improve the explanatory power relative to 

from several empirical phenomena. Specifically, in order to provide a unified explanation for the 

empirical puzzles, they develop a conditional U-shaped relation between the conditional pricing 

kernel and the returns, presented by a quadratic function of the market return. Moreover, they 

solve the quantitative mappings between physical parameters and risk-neutral parameters. The 

CHJ pricing kernel successfully models various empirical data, robust across multiple time 

periods. In particular, CHJ introduce three types of stylized facts, including the U-shaped pricing 

kernel, short-sell straddle strategy, and the implied volatility overreaction. The newly developed 

quadratic pricing kernel is successful in capturing such stylized facts (see CHJ for more details).  

 

However, despite the model’s advantages, CHJ (2013) have shown that a core parameter suffers 

a parametric magnitude problem under the GARCH estimation. The risk-aversion parameter is 

problematic and may lead to a failure of the CRRA marginal utility function. This would 

invalidate the model, while the pricing kernel is no longer appropriately estimated.  

 

                                                 

2 Esscher transform is introduced by Esscher (1932). 
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The primary purpose of this paper is to further examine the quadratic pricing kernel under the 

GARCH process and to compare it to the pricing kernel from Heston’s (1993) model. Since the 

estimation is based on a multiple-dimensional joint-likelihood, which is highly sensitive due to 

the information from both the return dynamics and the option prices, we attempt to determine 

whether the misfit of data presented by the quadratic pricing kernel is a general case from 

various option markets. Also, it is of great importance to compare the GARCH model estimation 

with the stochastic volatility model estimation since they share the same pricing kernel. This 

study corroborates these findings as the estimation problem is present in both American and 

Canadian data. Moreover, our analysis suggests the newly developed pricing kernel under both 

GARCH and stochastic volatility dynamics tends to have empirical puzzles. 

 

We attempt to extract the cause of such a misfit of data. In a seminal paper, Jackwerth (2000) 

documents massive changes of the pricing kernel during the 1987 crash. It is the famous “pricing 

kernel puzzle”. A possible reason of the puzzle from Jackwerth is the mispricing of the options 

in the market. Following Jackwerth (2000), it is natural for us to introduce the stochastic 

dominance bounds to remove the mispriced options from our options sample. Intuitively, the 

mispriced options are expected to violate such bounds and thus to provide noisy information with 

respect to the model estimation.  

 

The stochastic dominance bounds for the options prices are initially derived by Perrakis and 

Ryan (1984), who use the Rubinstein (1976) procedure. This methodology is based on the single 

price law and arbitrage arguments, which require the entire distribution. Perrakis (1986) and 

Perrakis (1988) extend the Perrakis-Ryan bounds into a multiperiod context. On the other side, 

the linear programming bounds, derived by Ritchken (1985), show an identical upper bound to 

the Perrakis-Ryan upper bound. The Ryan bounds rely on market equilibrium arguments. It also 

claims the lower bound of linear programming approach is tighter than that of Perrakis-Ryan 

approach. The LP approach is extended to the multiperiod by Ritchken and Kuo (1988). 

 

Following Perrakis and Ryan (1984), Constantinides and Perrakis (2002) derive the bounds with 

intermediate trading of the underlying asset and proportional transaction costs. The derivations 

are based on the multiperiod utility maximization with transaction costs originally from 
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Constantinides (1979). Constantinides, Jackwerth and Perrakis (2009) empirically examine the 

S&P 500 options with the theory from Constantinides and Perrakis (2002). Constantinides and 

Perrakis (2007) further extend the Constantinides-Perrakis bounds to American options.  

 

In our study we identify mispriced 1-month S&P 500 call options using the Constantinides-

Perrakis bounds. In order to select the option data, a non-parametric form is imposed while 

estimating the statistical distribution of the S&P 500 index returns through the kernel density 

estimation. We then estimate the pricing kernels with option data filtered by the stochastic 

dominance bounds. A significant influence from the mispriced options is well documented by 

our empirical results. 

 

The remainder of this paper is organized as follows. Section 2 analyzes the two types of pricing 

kernels we test in the paper. Section 3 details the new methodology for fitting the GARCH 

pricing kernels and presents the estimation results. Section 4 compares the linear and quadratic 

pricing kernels from the implied volatility overreaction tests. Section 5 provides extensions on 

the stochastic dominance bounds. Section 6 analyzes the empirical estimation of the continuous-

time Heston (1993) model and compares it to our discrete-time GARCH estimation. Section 7 

concludes. 
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2 The Pricing Kernel 

2.1  Introduction 

In option pricing, the estimation of time-series volatility models using underlying returns yields 

the physical distribution. On the other hand, the option prices extracted from the available market 

option data lead to the risk-neutral or Q-distribution. The connection between these two 

distributions is regarded as a central issue in options research. The stochastic discount factor or 

pricing kernel, which is estimated by the ratio of risk-neutral to physical distribution, becomes an 

essential component of such researches. 

 

In a seminal paper Merton (1971) introduces a family of hyperbolic absolute risk aversion 

(HARA) utility function, which indicates the risk tolerance as a linear function of the 

consumption. The HARA-type utility functions are widely used in financial economics since 

they include both constant (CRRA)3 and non-constant relative risk aversion. The study derives a 

marginal utility function that corresponds to the optimal portfolio and consumption rules under 

HARA. Rubinstein (1976) works further on the ideas of Merton and replicates the Black-Scholes 

model with a particular pricing kernel by narrowing the type of utility to constant relative risk 

aversion (CRRA): 

𝑈𝑡(𝐶𝑡̃) = 𝜌1𝜌2 … 𝜌𝑡

1

1 − 𝑏
𝐶𝑡̃

1−𝑏
 

where 𝜌𝑡  is a measure of time-preference. Following the CRRA utility function, the marginal 

utility is: 

𝑈𝑡
′(𝐶𝑡̃) = 𝜌1𝜌2 … 𝜌𝑡𝐶𝑡̃

−𝑏
 

 

In standard financial models the pricing kernel is proportional to the marginal utility of a 

representative investor. The asset prices are derived by a single decision problem of the 

representative investor. The investors are assumed to be risk-averse and trade in a complete set 

of markets from the model. As a result, the pricing kernel is a monotone decreasing function of 

                                                 

3 The standard CRRA utility function is given by u(𝑐) = 𝑐1−𝑏 (1 − 𝑏)⁄  with 𝑏 > 0. 𝑏 is the coefficient of 

relative risk aversion and also the elasticity of marginal utility for consumption since 𝑏 = −𝑐u′′(𝑐) u′(𝑐)⁄ . 
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aggregate resources that measures intertemporal marginal rate of substitution. After these early 

studies, a large amount of economic studies focus on the power utility function and the pricing 

kernel under CRRA. They widely follow the risk-aversion and monotone decrease assumptions. 

With some special functional forms of the utility, the risk aversion parameter enters specifically 

into the pricing kernel. Among these studies, Wiggins (1987) first proposes the pricing kernel of 

stochastic volatility model. It follows the CRRA utility function and yields the following closed-

form expression: 

𝐽(𝑊, 𝜎, 𝑡) = 𝑒−𝑟𝑡𝑋(𝜎, 𝑡) 𝑊𝛾 𝛾⁄ , 

where 𝛾 is the CRRA coefficient (𝛾 < 1). If we take the first derivative of the function with 

respect to 𝑊, a generalized stochastic discount factor would be: 

𝐽𝑊 = 𝑒−𝑟𝑡𝑋(𝜎, 𝑡)𝑊𝛾−1, 

𝑋(𝜎, 𝑡) is a non-negative function to be determined.    

 

 

2.2  The Heston-Nandi GARCH Model 

Since the continuous-time stochastic models are difficult to implement, GARCH models have 

obvious advantages in observing the volatilities from the history of underlying asset prices. 

However, most GARCH pricing models are not able to yield closed-form solution for the option 

valuations (Duan, 1995). The first exception is Heston and Nandi (2000) that derive a closed-

form solution for the European options. According to Heston and Nandi (2000), we have the 

following physical return process under GARCH: 

ln(𝑆(𝑡)) = ln(𝑆(𝑡 − 1)) + 𝑟 + (𝜇 −
1

2
) ℎ(𝑡) + √ℎ(𝑡)𝑧(𝑡) 

ℎ(𝑡) = 𝜔 + 𝛽ℎ(𝑡 − 1) + 𝛼 (𝑧(𝑡 − 1) − 𝛾√ℎ(𝑡 − 1))
2

, 

where 𝑟 is the risk-free rate, 𝜇 governs the equity premium, and ℎ(𝑡) is the discrete type of the 

volatility from Heston’s model 𝑣(𝑡). 

  

In order to value the option, we need to have the risk-neutral distribution of the spot price. 

Heston and Nandi (2000) assume the following GARCH process: 

ln(𝑆(𝑡)) = ln(𝑆(𝑡 − 1)) + 𝑟 −
1

2
ℎ∗(𝑡) + √ℎ∗(𝑡)𝑧∗(𝑡) 
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ℎ∗(𝑡) = 𝜔∗ + 𝛽ℎ∗(𝑡 − 1) + 𝛼∗ (𝑧∗(𝑡 − 1) − 𝛾∗√ℎ∗(𝑡 − 1))
2

. 

 

Given the risk-neutral GARCH dynamics in the Heston-Nandi model, they derive the moment-

generating function (MGF) for GARCH (1, 1) option pricing formula and it is applied in CHJ 

(2013). We can have the conditional MGF: 

𝑔𝑡,𝑇
∗ ≡ 𝐸𝑡

∗[𝑒𝑥𝑝(𝜑 ln(𝑆(𝑇)))] = 𝑒𝑥𝑝 (𝜑 ln(𝑆(𝑡)) + 𝐴𝑡,𝑇(𝜑) + 𝐵𝑡,𝑇(𝜑)ℎ∗(𝑡 + 1)). 

 

The MGF is bounded at the terminal condition that  

𝐴𝑇,𝑇(𝜑) = 𝐵𝑇,𝑇(𝜑) = 0. 

 

Both 𝐴𝑡,𝑇(𝜑) and 𝐵𝑡,𝑇(𝜑) are functions of 𝜑 and they could be defined by 

𝐴𝑡,𝑇(𝜑) = 𝐴𝑡+1,𝑇(𝜑) + 𝜑𝑟 + 𝐵𝑡+1,𝑇(𝜑)𝜔∗ −
1

2
ln(1 − 2𝐵𝑡+1,𝑇(𝜑)𝛼∗) 

𝐵𝑡,𝑇(𝜑) = −
1

2
𝜑 + 𝐵𝑡+1,𝑇(𝜑)𝛽 + 𝐵𝑡+1,𝑇(𝜑)𝛼∗(𝛾∗)2

+

1
2 𝜑2 + 2𝐵𝑡+1,𝑇(𝜑)𝛼∗𝛾∗(𝐵𝑡+1,𝑇(𝜑)𝛼∗𝛾∗ − 𝜑)

1 − 2𝐵𝑡+1,𝑇(𝜑)𝛼∗
. 

 

The Heston-Nandi call options are then priced by 

𝐶𝑀𝑘𝑡(𝑆(𝑡), ℎ∗(𝑡 + 1), 𝑋, 𝑇) = 𝑆(𝑡)𝑃1(𝑡) − 𝑋𝑒𝑥𝑝(−𝑟(𝑇 − 𝑡))𝑃2(𝑡), 

where the integrations 𝑃1(𝑡) and 𝑃2(𝑡) can be computed by 

𝑃1(𝑡) =
1

2
+

𝑒𝑥𝑝(−𝑟(𝑇 − 𝑡))

𝜋
∫ 𝑅𝑒 [

𝑋−𝑖𝜑𝑔𝑡,𝑇
∗ (𝑖𝜑 + 1)

𝑖𝜑𝑆(𝑡)
] 𝑑𝜑

∞

0

 

𝑃2(𝑡) =
1

2
+

1

𝜋
∫ 𝑅𝑒 [

𝑋−𝑖𝜑𝑔𝑡,𝑇
∗ (𝑖𝜑)

𝑖𝜑
] 𝑑𝜑

∞

0

. 

 

In the original Heston-Nandi model, 𝛾∗ is the only risk-neutralized parameter. Both 𝛼∗ and 𝜔∗ 

are identical to their counterparts ( 𝛼  and 𝜔 ) under the physical dynamics. Moreover, the 

volatilities under both measurements are same as well (ℎ(𝑡) = ℎ∗(𝑡)) . It indicates a linear 

pricing kernel that corresponds to the Heston-Nandi option pricing model. 
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2.3  GARCH Pricing Kernel 

In GARCH option pricing, many studies have been following the power pricing kernel from 

Rubinstein (1976). Both Duan (1995) and Heston and Nandi (2000) adapt the linear pricing 

kernel, which suggests that the physical volatilities are identical from the risk-neutral volatilities. 

Specifically, Duan (1995) proposes LRNVR as the presumptions to confirm it, while Heston and 

Nandi (2000) do not risk-neutralize the volatility. A problem with the theory is that the 

empirically observed pricing kernels have exhibited some anomalies in explaining the option 

data. As Jackwerth (2000) points out, the pricing kernel would change its shape dramatically (for 

example, during the 1987 crash) instead of staying with the monotonic pattern predicted by the 

existed theories. It is the famous “pricing kernel puzzle”. On the other hand, empirical findings 

suggest that the risk-neutral volatilities are different from their physical counterparts (usually 

higher). It is supported by Bates (2000) and Bates (2003). The success of short straddle strategy 

would also imply the point valid. There exists a conflict between the linear pricing kernel and the 

empirical findings.  

 

With such claims, CHJ (2013) relax the linear pricing kernel assumption and propose a variance-

dependent pricing kernel by discretizing the continuous-time pricing kernel from the Heston 

model. It is equivalent to the pricing kernel from Rubinstein (1976) when the variance is constant: 

𝑀(𝑡) = 𝑀(0) (
𝑆(𝑡)

𝑆(0)
)

𝜙

𝑒𝑥𝑝 (𝛿𝑡 + 𝜂 ∑ ℎ(𝑠)

𝑡

𝑠=1

+ 𝜉(ℎ(𝑡 + 1) − ℎ(1))), 

where 𝛿 and 𝜂 are the time preference parameters in the pricing kernel. The parameter 𝜙 captures 

equity risk aversion and 𝜉 is the variance risk aversion parameter. The discrete-time pricing 

kernel is able to fit into the Heston-Nandi GARCH model flawlessly. It offers a more feasible 

shape together with a nontrivial wedge between the volatilities under the physical and risk-

neutral measures. The CHJ pricing kernel is thus more general compared with the linear pricing 

kernels. Note that it is also a special case of the pricing kernel from Wiggins (1987), simply 

taking the 𝑋(𝜎, 𝑡) in the form of 𝑒𝑥𝑝 (𝛿𝑡 + 𝜂 ∑ ℎ(𝑠)𝑡
𝑠=1 + 𝜉(ℎ(𝑡 + 1) − ℎ(1))). Both models 

introduce the volatility into the marginal utility function and then are successful in pricing the 
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volatility risk. Comparing with the new pricing kernel to the Wiggins’ marginal utility function, 

we could have an important indication that 𝜙 = 𝛾 − 1. Given an appropriate CRRA coefficient 

(𝛾 < 1) , the risk aversion parameter is supposed to be negative (𝜙 < 0) . Intuitively, the 

marginal utility is a decreasing function of the index return.  

 

We can take the GARCH pricing kernel in a lognormal context, namely, 

ln (
𝑀(𝑡)

𝑀(𝑡 − 1)
)

=
𝜉𝛼

ℎ(𝑡)
(𝑅(𝑡) − 𝑟)2 + (𝜙 − 2𝜉𝛼 (𝜇 −

1

2
+ 𝛾)) (𝑅(𝑡) − 𝑟)

+ (𝜂 + 𝜉(𝛽 − 1) + 𝜉𝛼 (𝜇 −
1

2
+ 𝛾)

2

) ℎ(𝑡) + 𝛿 + 𝜉𝜔 + 𝜙𝑟. 

The logarithm of the pricing kernel is a quadratic function of the stock return and thus is U-

shaped when 𝜉 > 0 . Also, the Heston-Nandi model represents the special case without the 

variance premium (𝜉 = 0), while the conditional pricing kernel is a linear function with respect 

to 𝑅(𝑡).  

 

Based on the mathematical properties, the closed-form pricing kernel sets up a strict 

mathematical relation between the parameters and the volatilities from physical and risk-neutral 

density. They differ by the effect of the equity premium parameter 𝜇  and the scaling factor 

(1 − 2𝛼𝜉)−1. It can be shown to be as follows: 

ℎ∗(𝑡) = ℎ(𝑡) (1 − 2𝛼𝜉)⁄  

𝜔∗ = 𝜔 (1 − 2𝛼𝜉)⁄  

𝛼∗ = 𝛼 (1 − 2𝛼𝜉)2⁄  

𝛾∗ = 𝛾 − 𝜙. 

 

From the equations, the risk-neutral dynamics are implied by the kernel parameters 𝜙 and 𝜉, 

which indicate the equity premium and variance premium respectively. The quadratic pricing 

kernel from CHJ (2013) offers quantitative scales towards both risk-neutral parameters and risk-

neutral variance. Comparing with traditional Heston-Nandi model, CHJ (2013) introduce a new 

variance preference parameter (𝜉) into the option pricing model via the mappings of parameters 
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and volatilities. Since we are able to risk-neutralize two more parameters (𝛼∗ , 𝜔∗ ) and the 

volatility (ℎ∗), we can have an augmented Heston-Nandi model with the quadratic pricing kernel. 

 

Also, as implied by the pricing kernel, the risk-aversion parameter 𝜙 is interpreted by the equity 

risk premium 𝜇, the correlation coefficient 𝛾, and the scaling factor (1 − 2𝛼𝜉)−1. In the GARCH 

process, it is shown as: 

𝜙 = − (𝜇 −
1

2
+ 𝛾) (1 − 2𝛼𝜉) + 𝛾 −

1

2
. 

This equation has shown some important implications. We can rewrite the above as 

𝜙 = (𝛾 −
1

2
) (1 −

1

(1 − 2𝛼𝜉)−1
) −

𝜇

(1 − 2𝛼𝜉)−1
, 

where (1 − 2𝛼𝜉)−1 is the scaling factor.  

 

We may consider the special case where the variance premium is zero (𝜉 = 0 and then 
1

1−2𝛼𝜉
=

1), which corresponds to the Heston-Nandi linear pricing kernel. The risk-aversion parameter is 

directly determined by the equity premium (𝜙 = −𝜇) . A positive equity premium (𝜇 > 0) 

would imply a negative risk-aversion parameter (𝜙 < 0), which is expected from the CRRA 

utilities.  

 

However, the quadratic pricing kernel of CHJ (2013) allows a floating scaling factor. This would 

result in a positive risk-aversion parameter (𝜙 = 106.25) based on their estimation results of the 

scaling factor (
1

1−2𝛼𝜉
= 1.26) . It is due to the relatively large value of 𝛾  (𝛾 = 515.57)  as 

suggested by many empirical results related to the Heston-Nandi GARCH process. Such a 

positive risk-aversion parameter (𝜙 > 0) would imply increasing marginal utility with higher 

returns. This result therefore contradicts the law of diminishing marginal utility. The other way 

around, if we have a proper magnitude of the risk-aversion parameter (𝜙 < 0), the scaling factor 

becomes controversial (
1

1−2𝛼𝜉
< 1). This paradox is confirmed by our empirical tests, which 

suggest an inversed U-shape pricing kernel (𝜉 < 0) and higher physical volatilities compared to 

the risk-neutral volatilities. 
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3 Estimation 

3.1  Data 

The estimations include both index and option data. We use different indices and their 

corresponding options from both Canadian and American markets, as represented by S&P TSX 

60 (SXO) and Dow Jones Industrial Average (DJX).  

 

The index sample period extends from Jan. 1, 2005 to Dec. 31, 2013 for SXO and Jan. 1, 1990 to 

Dec. 31, 2010 for DJX. In order to have more weight on the optimization, such long-ranged data 

would guarantee enough information from the index returns. Empirically, the balance between 

the two parts of the estimation is very important, considering the sensitivity of the parameters 

when performing the optimization. Also, the long-track of the index data is able to stabilize the 

equity premium. 

  

Regarding to the option data, we collect the out-of-the-money (OTM) put and call options of 

S&P TSX 60 (SXO) from Jan. 1, 2009 to Dec. 31, 2013 and those of Dow Jones Industrial 

Average (DJX) from Oct. 1, 1997 to Dec. 31, 2010. All the option data are obtained from the 

Montreal Exchange and the Option Metrics. The option value is defined as the midpoint of the 

bid and ask prices. The moneyness is computed by the implied futures price 𝐹 divided by the 

strike price 𝑋. We pick both SXO and DJX options with maturity between 14 days and 180 days. 

We eliminate all the options whose quotes are lower than $3/8, considering the impact of the 

price discreteness. The risk-free rate is fixed at 5 percent. 

 

In both samples, we only use the Wednesday options for our empirical estimations. It would 

allow us to study a long time series of the options. Also, Wednesday is least likely to be a 

holiday, while Monday and Friday are affected by the weekday effect. Early literatures (Dumas, 

Fleming, and Whaley, 1998; Heston and Nandi, 2000) have largely used the option data for 

Wednesdays. We pick 6 options with the highest volume from each available maturity when 

estimating with the Dow Jones options. For the Canadian options, we keep all the available 

options from each maturity. It is mainly because the inactivity of the SXO options would cause 

an imbalance of likelihoods during the estimation.  
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Table 3.1 provides both the returns and options data description for the Dow Jones Industrial 

Average index. We present the return statistics that cover the time periods from both the return 

sample and option sample. The standard deviation of sample returns is close to the average 

option-implied volatility. With regards to the higher moments of the return distribution, the table 

shows a slight negative skewness and significant excess kurtosis. We also present descriptive 

statistics for the option data. The implied volatility is relatively stable across the sample 

moneyness and maturity range. It is notably different from the S&P 500 index (SPX) options 

since they have higher implied volatility from OTM put options. More important, the SPX 

options with longer maturity have significantly larger implied volatilities. The different implied 

volatility patterns from the indices initially provide empirical supports to our overreaction tests 

in the next section. 

  

Table 3.2 presents the statistics of the S&P TSX 60 sample data. Compared to the Dow Jones 

Industrial Average sample, the S&P TSX 60 index and options behave quite differently. First, 

the standard deviation of returns is higher than the average option-implied volatility. We also 

observe stronger negative skewness from the returns. For the option data, the OTM put options 

have the largest implied volatility, which is consistent with the SPX options. Given the 

differentiations between the two samples, it is important for us to test the new pricing kernel’s 

ability to fit both data. 
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Table 3.1  

Dow Jones Industrial Average index and options data description 

 

Panel A: Annualized Return Statistics 

    1990-2010     1997-2010 

Mean 

 

0.0684 

  

0.0284 

Standard Deviation 

 

0.1777 

  

0.2024 

Skewness 

 

-0.1197 

  

-0.0827 

Kurtosis   11.2927     10.1750 

Panel B: Option data by moneyness 

  F/X≤0.94 0.94<F/X≤0.97 0.97<F/X≤1 1<F/X≤1.03 1.03<F/X≤1.06 F/X>1.06 All 

Number of Contracts 2057 2686 4421 4604 3251 5857 22876 

Average IV 0.1935 0.1939 0.1940 0.1934 0.1933 0.1929 0.1934 

Average Price 1.3326 1.7133 2.4447 2.2692 1.7097 1.2528 1.8139 

Panel C: Option data by maturity 

 

DTM≤30 30<DTM≤60 60<DTM≤90 90<DTM≤120 120<DTM≤150 150<DTM≤180 All 

Number of Contracts 2805 9160 5295 1919 2252 1445 22876 

Average IV 0.1931 0.1934 0.1946 0.1876 0.1930 0.1986 0.1934 

Average Price 1.0706 1.5162 1.9777 2.2563 2.5876 2.7507 1.8139 

We present the statistics of  both return and option data. The sample returns date from Jan. 1, 1990 to Dec. 31 2010. The sample options date from 

Oct. 1, 1997 to Dec. 31, 2010 
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Table 3.2  

S&P TSX 60 index and options data description  

 

Panel A: Annualized Return Statistics 

    2005-2013     2009-2013 

Mean 

 

0.0475 

  

0.0742 

Standard Deviation 

 

0.2058 

  

0.1753 

Skewness 

 

-0.6509 

  

-0.2839 

Kurtosis   13.2657     5.7918 

Panel B: Option data by moneyness 

  F/X≤0.94 0.94<F/X≤0.97 0.97<F/X≤1 1<F/X≤1.03 1.03<F/X≤1.06 F/X>1.06 All 

Number of Contracts 79 151 241 207 144 181 1003 

Average IV 0.1308 0.1120 0.1118 0.1753 0.1861 0.2104 0.1549 

Average Price 4.3530 5.7808 13.4961 14.7085 8.7833 6.6760 9.9573 

Panel C: Option data by maturity 

 

DTM≤30 30<DTM≤60 60<DTM≤90 90<DTM≤120 120<DTM≤150 150<DTM≤180 All 

Number of Contracts 305 338 185 66 79 30 1003 

Average IV 0.1496 0.1530 0.1634 0.1679 0.1596 0.1365 0.1549 

Average Price 5.3666 8.3781 11.4138 14.8981 21.0272 25.4192 9.9573 

We present the statistics of both return and option data. The sample returns date from Jan. 1, 2005 to Dec. 31, 2013. The sample options date from 

Jan. 1, 2009 to Dec.31, 2013. 
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3.2  Joint Likelihood Estimation 

The maximum likelihood estimation is first developed by Duan (1995) for derivatives pricing. 

He uses the prices of derivative contracts to calculate the likelihoods obtained from an 

unobservable return process. The parameters are thus obtained from the maximization of 

likelihoods. Empirical performance of the method is consistent with the results from Merton 

(1977) theoretical model that equity volatility is stochastic. Following this methodology, the 

maximum likelihood estimation has been widely applied within the domain of option pricing 

both theoretically and empirically. 

 

In our study the estimation of the quadratic pricing kernel is based on a joint likelihood 

maximization containing both the index returns and the option prices. Since the conditional 

density of the daily return is normal distributed, we have the following return log likelihood: 

ln 𝐿𝑅 ∝ −
1

2
∑ {ln(ℎ(𝑡)) + (𝑅(𝑡) − 𝑟 − 𝜇ℎ(𝑡))

2
ℎ(𝑡)⁄ }

𝑇

𝑡=1

. 

 

With regards to the likelihood from options, CHJ (2013) define a volatility-weighted error based 

on the Black-Scholes Vega (BSV): 

𝜀𝑖 = (𝐶𝑖
𝑀𝑘𝑡 − 𝐶𝑖

𝑀𝑜𝑑) 𝐵𝑆𝑉𝑖
𝑀𝑘𝑡⁄ , 

where 𝐶𝑖
𝑀𝑘𝑡  and 𝐶𝑖

𝑀𝑜𝑑  are market and model prices of the 𝑖𝑡ℎ  option, respectively. The model 

price is computed from the augmented Heston-Nandi model with new parameters from the 

pricing kernel. They further define the option log likelihood with respects to the BSV: 

ln 𝐿𝑜 ∝ −
1

2
∑{ln(𝑠𝜀

2) + 𝜀𝑖
2 𝑠𝜀

2⁄ }

𝑇

𝑡=1

, 

where 𝑠̂𝜀
2 =

1

𝑁
∑ 𝜀𝑖

2𝑁
𝑖=1  for sample estimating. 

 

In order to estimate the pricing kernels, which connect the information from index and options, 

we optimize a joint likelihood 

max
𝛩,𝛩∗

ln 𝐿𝑅 + ln 𝐿𝑜 , 

where 𝛩 = {𝜔, 𝛼, 𝛽, 𝛾, 𝜇} and 𝛩∗ = {𝜔∗, 𝛼∗, 𝛾∗}. All the risk-neutral parameters are linked with 

the physical parameters by the mappings. 
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We estimate three types of pricing kernels. The first one comes with no risk premium. It refers to 

the setting 𝜇 = 𝜉 = 0. It is the most fundamental case that refers to the logarithm of the pricing 

kernel is a constant with respect to the return. The second one is identical to the Heston-Nandi 

(2000) linear pricing kernel, which contains the equity risk only, as specified by 𝜇 ≠ 0 and 𝜉 = 0. 

The last case amounts to the quadratic pricing kernel developed by CHJ (2013). Given two 

preference parameters (𝜙 and 𝜉) in the transformation, the estimation would result in non-zero 𝜇 

and 𝜉 . The first two pricing kernels can be considered as the special cases of the quadratic 

pricing kernel. All of them would be estimated by the joint-likelihood maximizations. 
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Table 3.3  

Joint maximum likelihood estimation with Dow Jones Industrial Average index and 

options 

 

Physical  

Parameters 
No Premia Equity Premium Only 

Equity and Volatility 

Premia 

ω 0 0 0 

α 7.24E-07 7.25E-07 1.23E-06 

β 0.7029 0.7030 0.6724 

γ 630.1274 628.7239 508.1599 

μ 0 1.1824 1.1824 

    Risk-neutral  

Parameters     

1/(1-2αξ) 1 1 0.7457 

ω* 0 0 0 

α* 7.24E-07 7.25E-07 6.83E-07 

β* 0.7029 0.7030 0.6724 

γ* 630.1274 629.9063 682.8595 

    Pricing Kernel  

Parameters     

ϕ 0 -1.1824 -174.6996 

ξ 0 0 -1.39E+05 

    Total Likelihood 52182.2917 52182.4141 52296.8818 

From Returns 17042.0208 17042.2308 17126.7787 

From Options 35140.2709 35140.1833 35170.1030 

We estimate three types of pricing kernels with the Dow Jones index and its corresponding option data. 

The parameters estimations are based on a joint likelihood optimization on both returns and options. The 

first pricing kernel has four parameters: 𝜔, 𝛼, 𝛽, 𝛾. The second one corresponds to the linear pricing 

kernel, which has five parameters: 𝜔, 𝛼, 𝛽, 𝛾, 𝜇. The last one, with both equity and volatility premia, has 

six parameters: 𝜔, 𝛼, 𝛽, 𝛾, 𝜇, 𝜉. We force all the volatility parameters to be positive to avoid the negative 

variance during the estimation. The OTM put prices are converted into call prices using put-call parity. 
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Table 3.4  

Joint maximum likelihood estimation with S&P TSX 60 index and options 

 

Physical  

Parameters 
No Premia Equity Premium Only 

Equity and Volatility 

Premia 

ω 0 0 0 

α 9.29E-07 9.29E-07 1.44E-06 

β 0.8701 0.8704 0.7943 

γ 354.1281 352.1645 366.7981 

μ 0 1.4918 1.4918 

    Risk-neutral  

Parameters     

1/(1-2αξ) 1 1 0.6368 

ω* 0 0 0 

α* 9.29E-07 9.29E-07 5.82E-07 

β* 0.8701 0.8704 0.7943 

γ* 354.1281 353.6563 578.0323 

    Pricing Kernel  

Parameters     

ϕ 0 -1.4918 -211.2342 

ξ 0 0 -1.99E+05 

    Total Likelihood 9238.6134 9238.7339 9322.6211 

From Returns 7127.7375 7128.0082 7180.0521 

From Options 2110.8759 2110.7257 2142.5690 

We estimate three types of pricing kernels with the S&P TSX 60 index and its corresponding option data. 

The parameters estimations are based on a joint likelihood optimization on both returns and options. The 

first pricing kernel has four parameters: 𝜔, 𝛼, 𝛽, 𝛾. The second one corresponds to the linear pricing 

kernel, which has five parameters: 𝜔, 𝛼, 𝛽, 𝛾, 𝜇. The last one, with both equity and volatility premia, has 

six parameters: 𝜔, 𝛼, 𝛽, 𝛾, 𝜇, 𝜉. We force all the volatility parameters to be positive to avoid the negative 

variance during the estimation. The OTM put prices are converted into call prices using put-call parity. 

Although the likelihoods are slightly imbalanced between the returns and the options, we still keep a 

long-track of the index data in order to stabilize the equity premium. The minimum Black-Scholes Vega 

in our options sample is 1.  
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Table 3.5  

Joint maximum likelihood estimation with S&P 500 index and options 

 

Physical  

Parameters 
No Premia Equity Premium Only 

Equity and Volatility 

Premia 

ω 0 0 0 

α 1.410E-06 1.410E-06 8.887E-07 

β 0.755 0.755 0.756 

γ 411.19 409.63 515.57 

μ 0 1.594 1.594 

    Risk-neutral  

Parameters     

1/(1-2αξ) 1 1 1.2638 

ω* 0 0 0 

α* 1.410E-06 1.410E-06 1.419E-06 

β* 0.755 0.755 0.756 

γ* 411.19 411.23 409.32 

    Pricing Kernel  

Parameters     

ϕ 0 -1.594 106.25 

ξ 0 0 1.17E+05 

    Total Likelihood 56403.5 56410.7 56480.9 

From Returns 17673.7 17681.0 17749.2 

From Options 38729.7 38729.8 38731.6 

The estimated parameters in this table are obtained from Christoffersen, Heston, and Jacobs (2013), who 

originally tested the pricing kernel. The parameters estimations are based on a joint likelihood 

optimization on both returns and options. The first pricing kernel has four parameters: 𝜔, 𝛼, 𝛽, 𝛾. The 

second one corresponds to the linear pricing kernel, which has five parameters: 𝜔, 𝛼, 𝛽, 𝛾, 𝜇. The last one, 

with both equity and volatility premia, has six parameters: 𝜔, 𝛼, 𝛽, 𝛾, 𝜇, 𝜉. They use out-of-money S&P 

500 options from Jan. 1, 1996 to Oct. 28, 2009. The index return sample is from Jan. 1, 1990 to Dec. 31, 

2010.  

 

  



 

22 

Table 3.3 and Table 3.4 present the results for the joint likelihood estimation of the parameters, 

using different indices and options data (SXO and DJX respectively). The first column shows the 

estimation results without premia. Column 2 amounts to the linear pricing kernel, which 

corresponds to the Heston-Nandi model. The last column represents the CHJ case that allows 

both equity and variance premium. It stands for the quadratic pricing kernel with an independent 

variance premium. Despite the differences between two samples from the descriptive statistics, 

both tables show that the total likelihoods are very close from the first two cases. Based on the 

likelihood ratio test, which compares the difference between the log-likelihood values following 

the chi-square test, insignificant statistics are implied by the estimation results. The linear pricing 

kernel is not able to provide strong improvements to the model’s empirical performance 

according to the test. It is mainly because we use the constant equity premium during the 

estimation in order to ensure its proper calibration. The two cases are thus not statistically 

differentiated.  

 

Consider the quadratic pricing kernel in Column 3. When adding the independent volatility 

premium (𝜉) to the linear pricing kernel specified in Column 2, the total likelihood function 

improves dramatically (from 52182.4 to 52296.9 in Table 3.3 and from 9238.7 to 9322.6 in 

Table 3.4). As a result, the likelihood ratio test statistics (228.9354 from Table 3.3 and 167.7744 

from Table 3.4) are both significant at the 0.1% level. The quadratic pricing kernel has a great 

improvement in terms of the model performance from this perspective. However, both results 

from DJX and SXO data demonstrate that the scaling factor is less than 1. It would result in a 

negative 𝜉 due to the positive α and thus an inverted U-shaped pricing kernel. On the other hand, 

since the risk-neutral volatility is widely accepted to be higher than the physical volatility, a 

negative volatility premium implied by 𝜉 is also against the empirical findings. We are confident 

to conclude that the new pricing kernel fails to fit the data from both American and Canadian 

market. 

 

Meanwhile, as Table 3.5 presents, the original CHJ estimation has also shown the contradiction. 

Although the scaling factor (1 − 2𝛼𝜉)−1 is correctly estimated by CHJ (2013) with a positive 

variance preference (𝜉 = 1.17E + 05), the risk-aversion parameter is misfit from the newly 

developed GARCH pricing kernel (𝜙 = 106.25). Such a large positive risk-aversion parameter 
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is inconsistent with the CRRA-type utility, which generates decreasing marginal utility with 

higher returns, accordingly leaving a bias against the law of diminishing marginal utility.  

 

In summary, the empirical results are consistent with our previous analysis. The new GARCH 

model with quadratic pricing kernel does not fit the indices and options data properly. The 

magnitude problem raised by the quadratic pricing kernel for the GARCH model tends to be 

unsolvable. A more reasonable explanation is the strict quantitative relations located by the 

parameters and the volatilities. For instance, as a single representative, the pricing kernel 

presented by the corresponding market behavior is irreconcilable. It is also pointed by Jackwerth 

(2000). In recent work, Barone-Adesi, Mancini. and Shefrin (2013) have provided strong 

empirical supports to this viewpoint. They develop a model that nests investors’ sentiment from 

the option and stock prices and estimate the empirical pricing kernels with a weekly rolling 

window. The pricing kernel is U-shaped by 2003 and inverted-U by 2005. The results show that 

investors tend to be overconfident when market is growing with low volatility. They can be also 

underconfident during crisis periods. The observed overconfidence is a main driving force of the 

pricing kernel puzzle. From this perspective, the closed-form U-shape pricing kernel is not a 

good representative of the investors. 
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4 The Overreaction Test 

In our study the pricing kernels are estimated through a joint-likelihood function. Since the 

likelihoods from option data are based on the Vega-weighted pricing errors, it is important to test 

the model’s ability to observe the volatility patterns. An indirect but efficient way is to test the 

consistency between the actual option prices and GARCH model option prices in predicting the 

long-term implied volatility overreaction. 

 

The overreaction phenomenon in the options market is initially tested by Stein (1989) with the 

S&P 100 index options. The study starts with the term structure of implied volatility. We assume 

an instantaneous volatility 𝜎𝑡, which follows a continuous time mean-reverting AR1 process: 

𝑑𝜎𝑡 = −𝛼(𝜎𝑡 − 𝜎) 𝑑𝑡 + 𝛽𝜎𝑡𝑑𝑧. 

 

The expectation of volatility at time 𝑡 + 𝑗 is given by 

𝐸𝑡(𝜎𝑡+𝑗) = 𝜎 + 𝜌𝑗(𝜎𝑡 − 𝜎), 

where 𝜌 = 𝑒𝑥𝑝(−𝛼) is and 𝑗 is measured by the number of weeks. Given an option at time 𝑡 

with 𝑇 remaining until expiration, the implied volatility of it equals to the average expected 

instantaneous volatility: 

𝐼𝑉𝑡(𝑡) =
1

𝑇
∫ [𝜎 + 𝜌𝑗(𝜎𝑡 − 𝜎)]

𝑇

𝑗=0

𝑑𝑗 = 𝜎 +
𝜌𝑇 − 1

𝑇 ln 𝜌
[𝜎𝑡 − 𝜎]. 

Since the instantaneous volatility is unobservable, we can take both a short-term (ST) option and 

a long-term (LT) option in order to test the term structure without the instantaneous volatility: 

(𝐼𝑉𝑡
𝐿𝑇 − 𝜎) =

𝑆𝑇(𝜌𝐿𝑇 − 1)

𝐿𝑇(𝜌𝑆𝑇 − 1)
(𝐼𝑉𝑡

𝑆𝑇 − 𝜎). 

This equation can be exactly approximated when the gap between short-term and long-term is 

one month (𝑗 = 4): 

(𝐼𝑉𝑡
𝐿𝑇 − 𝜎) ≈

(1 + 𝜌4)

2
(𝐼𝑉𝑡

𝑆𝑇 − 𝜎). 

 

Again, we reintroduce the expectation 𝐸𝑡(𝜎𝑡+𝑗) = 𝜎 + 𝜌𝑗(𝜎𝑡 − 𝜎), the above approximation can 

be rewritten in a more general form as  
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(𝐼𝑉𝑡
𝐿𝑇 − 𝜎) =

1

2
(𝐼𝑉𝑡

𝑆𝑇 − 𝜎) +
1

2
𝐸𝑡(𝐼𝑉𝑡+4

𝑆𝑇 − 𝜎), 

which is equivalent to 

𝐸[(𝐼𝑉𝑡+4
𝑆𝑇 − 𝐼𝑉𝑡

𝑆𝑇) − 2(𝐼𝑉𝑡
𝐿𝑇 − 𝐼𝑉𝑡

𝑆𝑇)] = 0. 

 

We can simply take that the expected change in implied volatility is twice the slope of the term 

structure of the implied volatility. The volatility reaction study tests whether the “term structure” 

of implied volatility is consistent with rational expectations. Intuitively, future implied 

volatilities are systematically lower than predictions made by the term structure of volatility. The 

other way around, long-term options tend to overreact to changes in short-term volatility. It 

would be more significant when the term structure of implied volatility is steep. Given the 

expectation, Stein (1989) estimates the following OLS regression to test the overreaction: 

(𝐼𝑉𝑡+4
1𝑀 − 𝐼𝑉𝑡

1𝑀) − 2(𝐼𝑉𝑡
2𝑀 − 𝐼𝑉𝑡

1𝑀) = 𝑎0 + 𝑎1𝐼𝑉𝑡
1𝑀 + 𝑒𝑡+4. 

 

The parameter 𝑎1  is expected to be negative, indicating that the future implied volatility is 

expected to be smaller than the forward forecasts implied by the term structure of volatility. The 

regression is performed with at-the-money option data. 1-month maturity is set as short-term and 

a 2-month maturity is set as long-term. For a given day, we fit a polynomial for the implied 

volatility as a function of the moneyness and maturity. Since the S&P TSX 60 option sample is 

not able to provide enough eligible options in order to fit the polynomials, we only run the 

regressions from the Dow Jones Industrial Average options. 
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Table 4.1  

Long-term volatility overreaction tests 

 

     
Model Prices 

 
Panel A: Market Prices 

 
Panel B: Equity Premium Only 

 

Panel C: Equity and Volatility 

Premia 

Sample Coefficient Std. Error t-Statistic   Coefficient Std. Error t-Statistic   Coefficient Std. Error t-Statistic 

1998 -0.2200 0.1487 -1.4793 
 

-0.1631 0.1154 -1.4128 
 

-0.1535 0.1156 -1.3271 

1999 -0.1650 0.1128 -1.4627 
 

-0.3020 0.1578 -1.9138 
 

-0.2750 0.1574 -1.7472 

2000 -0.3012 0.1487 -2.0258 
 

-1.0843 0.1402 -7.7360 
 

-1.0773 0.1406 -7.6595 

2001 -0.2484 0.1282 -1.9372 
 

-0.4795 0.1296 -3.6999 
 

-0.4747 0.1298 -3.6557 

2002 -0.2066 0.1187 -1.7414 
 

-0.1094 0.1195 -0.9154 
 

-0.1037 0.1194 -0.8688 

2003 0.0860 0.0675 1.2739 
 

0.0592 0.0847 0.6984 
 

0.0813 0.0834 0.9754 

2004 -0.7410 0.1406 -5.2689 
 

-0.5311 0.1291 -4.1129 
 

-0.5121 0.1292 -3.9639 

2005 -0.6311 0.1349 -4.6776 
 

-0.4995 0.1144 -4.3659 
 

-0.4775 0.1138 -4.1971 

2006 0.0896 0.1439 0.6226 
 

0.0808 0.0939 0.8605 
 

0.1045 0.0939 1.1130 

2007 -0.1712 0.0841 -2.0368 
 

0.0125 0.1101 0.1135 
 

0.0351 0.1103 0.3183 

2008 -0.0176 0.0974 -0.1807 
 

-0.0467 0.0768 -0.6079 
 

-0.0483 0.0768 -0.6287 

2009 -0.0961 0.0496 -1.9386 
 

0.0661 0.0393 1.6807 
 

0.0752 0.0390 1.9267 

2010 -0.7267 0.1659 -4.3807   -0.3941 0.1222 -3.2245   -0.3716 0.1219 -3.0477 

We present the estimation results of the long-term overreaction regression (Stein, 1989). The OLS regression is (𝐼𝑉𝑡+4
1𝑀 − 𝐼𝑉𝑡

1𝑀) − 2(𝐼𝑉𝑡
2𝑀 −

𝐼𝑉𝑡
1𝑀) = 𝑎0 + 𝑎1𝐼𝑉𝑡

1𝑀 + 𝑒𝑡+4. The implied volatilities are obtained from the Dow Jones Industrial Average options. We fit a polynomial function 

of the maturity and moneyness on every day in order to compute the at-the-money (ATM) implied volatility. We use one-month maturity as short-

term and two-month maturity as long-term. In Panel A, we presents the results from market option prices; in Panel B, the implied volatilities are 

extracted from the Heston-Nandi model prices, which correspond to the linear pricing kernel; in Panel C, we regress the implied volatilities from 

the augmented Heston-Nandi model prices that allow the quadratic pricing kernel. The model parameters are from Table 3.3.  
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Table 4.1 presents the results from the overreaction tests based on the market, Heston-Nandi 

model, and CHJ model option prices. Within most of our sample range, the overreaction 

phenomenon is observable. As Table 3.1 shows, the DJX implied volatility is relatively stable 

across different maturities. The regression results are thus expected to be insignificant from most 

of the sample years. The two exceptional years are 2003 and 2006; the behavior of long-term 

implied volatilities indicates slight underreactions. In those years, the regression results still 

present consistency between the market and model prices. 

 

However, we also observe inconsistency between the test results in 2007 and 2009. Both the 

Heston-Nandi model and the augmented Heston-Nandi model from CHJ (2013) are not able to 

present overreactions from the market option prices. It is potentially due to the financial crisis, 

while the GARCH dynamics are incapable of modeling the econometrical form of the volatility. 

 

Overall, we can observe the overreaction phenomenon from the DJX options, though it is not as 

significant as CHJ (2013) document. Our results are closer to the original empirical tests from 

Stein (1989), which presents a relative low t-statistic across each sample year. The regression 

parameters are consistent between the market option prices and model option prices, except for 

the 2 years during the financial crisis. More important, the two GARCH models that nest the 

linear and quadratic pricing kernel respectively are not significantly differentiated from the 

overreaction tests. 
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5 Stochastic Dominance Bounds 

5.1  Introduction 

Since the Black-Scholes model is based on a perfect complete market, it establishes a self-

financing dynamic trading between the stock and risk-free accounts. When there are transaction 

costs and the investors cannot continuously hedge their portfolios, the assumption of 

completeness would go down.  

 

Most option pricing models have to face constrains from transaction costs given the non-

arbitrage arguments. From this aspect, the stochastic dominance provides an alternative 

explanation of option pricing and option trading. Due to the presence of transaction costs, the 

market is discrete and the investors are able to trade both the underlying assets and the options. 

The stochastic dominance bounds are determined based on the utility maximization principle. 

We can identify the mispriced options those provide opportunities to adopt the stochastically 

dominating strategies since such violations of upper and lower bounds would bring superior 

returns. A feasible feature of the methodology is that the bounds can be derived from any 

arbitrary distribution of the stock price. They are free from any presumptions about the utility 

function, as in arbitrage. 

 

As motivated by Jackwerth (2000), we apply the stochastic dominance bounds in order to filter 

out the mispriced options from the estimation data sample. According to Constantinides and 

Perrakis (2002), in a single-period economy, the upper bound with transaction costs for a 

European option at any time 𝑡 prior to its expiration is presented as follows: 

𝐶̅ = {(1 + 𝑘1) (1 − 𝑘2)⁄ } 𝐸[(𝑆𝑇 − 𝐾)+|𝑆𝑡] 𝑅𝑆
𝑇−𝑡⁄  

𝑃̅ = 𝐶̅ − (1 − 𝑘2)𝑆(𝑡) (1 + 𝑘1)⁄ + 𝐾 𝑅𝑇−𝑡⁄ , 

where 𝑘 is the transaction cost ratio and 𝑅𝑆 is the expected return on the stock per period. 

 

 

5.2  Estimation 

In order to estimate the distribution of asset returns, we widely follow the methodology from 

Constantinides, Jackwerth, and Perrakis (2009), which impose non-parametric forms on both 
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unconditional and conditional distribution of the index returns. The unconditional distribution is 

extracted from historical returns as the smoothed histograms using the kernel estimator. They 

also estimate conditional densities from a generalized GARCH (1, 1) process and the Black-

Scholes implied volatility (IV). 

 

In our empirical work we use the at-the-money (ATM) S&P 500 call options with moneyness 

from 1 to 1.03. Only upper bound violations are tested since most of the violations are those 

from the upper bounds (Constantinides, Jackwerth, and Perrakis, 2009). We estimate the 

unconditional distribution of the index returns through the kernel estimator. The distribution is 

obtained from post-crash monthly index returns between Jan. 1, 1988 and Dec. 31, 2010. The 

post-crash data would provide relatively stable distribution and also the pricing kernel. The 

monthly return is calculated by 30 calendar day (21 trading day) returns given the historical daily 

prices of the S&P 500 index. We define 512 mesh points from the range of the returns. The 

cumulative densities are calculated by the integrals. We have some numerical problems with the 

extreme probabilities for the beginning and ending states. Following Constantinides, Jackwerth, 

and Perrakis (2009), we eliminate such probabilities and rescale the remaining. 

 

The mean expected return is fixed to a 4% premium over the risk-free rate. Empirically we keep 

the 5% risk-free rate instead of the floating government bond rates, it is mainly because the 

prices of 1-month call options are insensitive to the expected return of the index. We assume the 

proportional transaction costs in a single-period economy and the cost ratio is 0.03. 

 

From the data described above, we could generate a kernel density of the distribution. It is 

formulated as 

𝑓(𝑥) =
1

𝑛ℎ
∑ 𝐾 (

𝑥 − 𝑋𝑖

ℎ
)

𝑛

𝑖=1

, 

where 𝑋𝑖 denotes the 𝑖𝑡ℎ state, 𝐾 is the Gaussian density function, and ℎ is the window width, or 

the smoothing parameter. Given the properties of the kernel estimator, the window width ℎ is a 

key factor when generating the kernel density. For the Gaussian 𝐾(𝑡), the optimal window width 

is 
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ℎ𝑜𝑝𝑡 = (
4

3
)

1 5⁄

𝜎𝑛−1 5⁄ = 1.06𝜎𝑛−1 5⁄ , 

by minimizing the approximate mean integrated square error. 

 

For the S&P 500 index option sample, we have 3533 1-month OTM call options from 1996 to 

2010. It is easy to calculate the upper bound of each option from our data sample. 496 of them 

violate the stochastic dominance bounds. The violation rate is 14.04%. It is a relatively high ratio 

given the fact that we have only filtered all the ATM options. The pricing kernels are tested with 

the filtered option data, while the return sample dates from Jan. 1, 1990 to Dec. 31, 2010. 
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Table 5.1  

Joint maximum likelihood estimation with S&P 500 index and 1-month call options 

 

Physical  

Parameters 
No Premia Equity Premium Only 

Equity and Volatility 

Premia 

ω 0 0 0 

α 1.22E-06 1.22E-06 2.02E-06 

β 0.6949 0.6948 0.6650 

γ 485.8554 484.0931 397.4966 

μ 0 1.7087 1.7087 

    Risk-neutral  

Parameters     

1/(1-2αξ) 1 1 0.6763 

ω* 0 0 0 

α* 1.22E-06 1.22E-06 9.22E-07 

β* 0.6949 0.6948 0.6650 

γ* 485.8554 485.8018 590.0827 

    Pricing Kernel  

Parameters     

ϕ 0 -1.7087 -192.5861 

ξ 0 0 -1.19E+05 

    Total Likelihood 26110.1379 26110.9649 26288.9637 

From Returns 16956.0588 16957.2425 17073.4207 

From Options 9154.0790 9153.7224 9215.5430 

We estimate three types of pricing kernels with the S&P 500 returns and the 1-month SPX call options. 

The parameters estimations are based on a joint likelihood optimization on both returns and options. The 

first pricing kernel has four parameters: 𝜔, 𝛼, 𝛽, 𝛾. The second one corresponds to the linear pricing 

kernel, which has five parameters: 𝜔, 𝛼, 𝛽, 𝛾, 𝜇. The last one, with both equity and volatility premia, has 

six parameters: 𝜔, 𝛼, 𝛽, 𝛾, 𝜇, 𝜉. We force all the volatility parameters to be positive to avoid the negative 

variance during the estimation. The OTM put prices are converted into call prices using put-call parity. 
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Table 5.2  

Joint maximum likelihood estimation with S&P 500 index and 1-month call options filtered 

by the stochastic dominance bounds 

 

Physical  

Parameters 
No Premia Equity Premium Only 

Equity and Volatility 

Premia 

ω 0 0 0 

α 7.77E-06 7.77E-06 1.61E-05 

β 0.7945 0.7945 0.8354 

γ 67.4673 65.7574 39.3279 

μ 0 1.7087 1.7087 

    Risk-neutral  

Parameters     

1/(1-2αξ) 1 1 0.4932 

ω* 0 0 0 

α* 7.77E-06 7.77E-06 3.92E-06 

β* 0.7945 0.7945 0.8354 

γ* 67.4673 67.4661 82.6927 

    Pricing Kernel  

Parameters     

ϕ 0 -1.7087 -43.3648 

ξ 0 0 -3.19E+04 

    Total Likelihood 23379.2170 23380.0923 23898.4959 

From Returns 16570.8108 16571.6558 16998.3110 

From Options 6808.4061 6808.4365 6900.1849 

We estimate three types of pricing kernels with S&P 500 returns and 1-month SPX call options. The 

parameters estimations are based on a joint likelihood optimization on both returns and options. The first 

pricing kernel has four parameters: 𝜔, 𝛼, 𝛽, 𝛾. The second one corresponds to the linear pricing kernel, 

which has five parameters: 𝜔, 𝛼, 𝛽, 𝛾, 𝜇. The last one, with both equity and volatility premia, has six 

parameters: 𝜔, 𝛼, 𝛽, 𝛾, 𝜇, 𝜉. We force all the volatility parameters to be positive to avoid the negative 

variance during the estimation. The OTM put prices are converted into call prices using put-call parity. 

The options with moneyness lower than 1.03 are filtered by the stochastic dominance bounds from 

Constantinides and Perrakis (2002). We use the kernel density to estimate the unconditional distribution 

of the returns.  
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Table 5.1 presents the results for the estimation of the pricing kernels with 1-month S&P 500 call 

options, while Table 5.2 presents the results from identical option data but those filtered by the 

stochastic dominance bounds. Both the estimations indicate that the quadratic pricing kernel is 

not fitting the data properly with the scaling factor (
1

1−2𝛼𝜉
< 1), while the results from the linear 

pricing kernel do not show any magnitude problems as expected.  

 

Comparing the results from the two tables, a number of the results are noteworthy. First, the 

value of γ has changed a lot after the data filtering. γ controls the skewness or the asymmetry of 

the distribution of the log-returns. The leverage effect, which is determined by the parameter, has 

been much lower after we introduce the stochastic dominance bounds to the estimation. Also, the 

estimations with stochastic dominance bounds are closer to the estimation results from asset 

returns data only, in terms of the GARCH model parameters. It indicates the results presented by 

Table 5.2 are more consistent with the physical dynamics, comparing with the results without 

performing the stochastic dominance bounds. Finally, the likelihoods from both returns and 

options have been increasing with regards to the three types of pricing kernels after filtering the 

data. It can be viewed as an improvement of the kernel estimation given a better quality of the 

options sample. 

 

Although the estimations conducted with and without the stochastic dominance bounds are still 

indicating a misfit of the data presented by the kernel estimation, the parameters estimated after 

performing the bounds are better fit in magnitude. The mispriced options, which represent 14.04% 

of the options sample, are strongly affecting the estimation results. 
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6 The Continuous-Time Heston Model 

From previous sections, we observe perverse parameters from both the analytical formulations 

and the empirical estimations under the GARCH framework. Because of the convergence from 

the Heston-Nandi (2000) model to the Heston (1993) model in a continuous-time limit4 and also 

their identical pricing kernel, it is important to test whether such a misfit of data is observable 

from the continuous-time Heston model as well.  

 

In Heston (1993), the price dynamics under stochastic volatility are: 

𝑑𝑆(𝑡) = (𝑟 + 𝜇𝑣(𝑡))𝑆(𝑡)𝑑𝑡 + √𝑣(𝑡)𝑆(𝑡)𝑑𝑧1(𝑡) 

𝑑𝑣(𝑡) = 𝜅(𝜃 − 𝑣(𝑡))𝑑𝑡 + 𝜎√𝑣(𝑡) (𝜌𝑑𝑧1(𝑡) + √1 − 𝜌2𝑑𝑧2(𝑡)), 

where 𝑟  is the risk-free rate, 𝜇  governs the equity premium, while 𝑧1(𝑡)  and 𝑧2(𝑡)  are 

independent Wiener processes. 

 

The pricing kernel under the Heston model is equivalent to the GARCH pricing kernel with the 

summation replaced by an integral: 

𝑀(𝑡) = 𝑀(0) (
𝑆(𝑡)

𝑆(0)
)

𝜙

𝑒𝑥𝑝 (𝛿𝑡 + 𝜂 ∫ 𝑣(𝑠)𝑑𝑠
𝑡

0

+ 𝜉(𝑣(𝑡) − 𝑣(0))). 

 

With the pricing kernel, the physical dynamics of Heston (1993) model are risk-neutralized to  

𝑑𝑆(𝑡) = 𝑟𝑆(𝑡)𝑑𝑡 + √𝑣(𝑡)𝑆(𝑡)𝑑𝑧1
∗(𝑡) 

𝑑𝑣(𝑡) = (𝜅(𝜃 − 𝑣(𝑡)) − 𝜆𝑣(𝑡)) 𝑑𝑡 + 𝜎√𝑣(𝑡) (𝜌𝑑𝑧1
∗(𝑡) + √1 − 𝜌2𝑑𝑧2

∗(𝑡)), 

where 𝑧1
∗(𝑡) and 𝑧2

∗(𝑡) denote two independent Wiener processes under the risk-neutral measure 

Q. Given that the pricing kernel 𝑀(𝑡) is the only arbitrage-free specification that satisfies the 

dynamics under both physical and risk-neutral distribution, CHJ (2013) solve the following 

equations: 

𝜇 = −𝜙 − 𝜉𝜎𝜌 

𝜆 = −𝜌𝜎𝜙 − 𝜎2𝜉 = 𝜌𝜎𝜇 − (1 − 𝜌2)𝜎2𝜉. 
                                                 

4 See more details of the convergence in the appendix. 
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With such relations, we can interpret the equity risk premium 𝜇 and variance risk premium 𝜆 

using the underlying risk-aversion parameter 𝜙 and the variance preference parameter 𝜉.  

 

The equity premium and variance preference parameters (𝜙 and 𝜉) from the GARCH quadratic 

pricing kernel, which are part of the parameter and volatility mappings, are directly involved in 

the joint likelihood estimation. As a result, the two preference parameters from the continuous-

time pricing kernel are implied by the stochastic volatility model parameters: 

𝜉 =
𝜇𝜎𝜌 − 𝜆

𝜎2(1 − 𝜌2)
 

𝜙 =
−𝜇 + 𝜆𝜎−1𝜌

1 − 𝜌2
. 

This results in a major difference between the continuous-time Heston model and the discrete-

time Heston-Nandi model as implied by the identical pricing kernel.  

 

Christoffersen, Jacobs, and Mimouni (2010) have estimated the Heston model with S&P 500 

index and option data. The sample includes 14,828 Wednesday closing OTM options from Jan. 

1, 1996 to Dec. 31, 2004. They use the particle filter algorithm to observe the time-series 

volatilities from the return data and then estimate the parameters by minimizing the implied 

volatility error between the market option prices and the model option prices. The estimation is 

implemented through the nonlinear least squares estimation (NLSIS): 

𝐼𝑉𝑀𝑆𝐸(𝜇, 𝜅, 𝜃, 𝜌, 𝜎, 𝜆) =
1

𝑁𝑇
∑(𝐼𝑉𝑖,𝑡 − 𝐵𝑆−1{𝐶𝑖(𝑉̅𝑡)})

2

𝑡,𝑖

, 

where 𝑁𝑇  is the total number of the sample options (𝑁𝑇 = ∑ 𝑁𝑡
𝑇
𝑡=1 ) . 𝐼𝑉𝑖,𝑡  is the 𝑖𝑡ℎ  option-

implied volatility on a given day 𝑡. 𝐵𝑆−1 denotes the Black-Scholes inversion implied from the 

Heston model option prices. 𝐶𝑖(𝑉̅𝑡) is the Heston model price evaluated at the filtered volatility 

𝑉̅𝑡, which is the average of the smooth resample particles: 

𝑉̅𝑡 =
1

𝑁
∑ 𝑉𝑡

𝑗

𝑁

𝑗=1

. 
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In the NLSIS optimization for the Heston model, the equity premium 𝜇 is fixed, as was the 

GARCH joint likelihoods estimation from previous sections. We simply take their results into 

our analysis: 

 

κ θ σ λ ρ 

2.8791 0.0631 0.5368 -8.69E-05 -0.7042 

 

Implied by the pricing kernel, the empirical results suggest both positive variance premium of 

the volatility (𝜆 < 0) and risk-aversion of the market (𝜙 < 0) from the Heston model. However, 

the variance preference parameter 𝜉 is still misfit from the estimation. Normally, the U.S. equity 

premium 𝜇𝑣(𝑡) is around 8% and the variance is 𝑣(𝑡) is 20%2 . It indicates the value of the 

equity premium 𝜇  should be around 2. 5  Given the magnitude of 𝜇 , 𝜉  can be assured to be 

negative (𝜉 < 0). It is consistent with our empirical results from the GARCH pricing kernel 

estimations with both DJX and SXO data samples. Overall, the CHJ pricing kernel that accounts 

for both the continuous-time Heston and the discrete-time Heston-Nandi model has been 

confronted with the estimation puzzle. 

  

                                                 

5 It is also confirmed by CHJ (2013). Empirically, the equity premium 𝜇 is varying from 0.5 to 

2.5. For the S&P 500 index returns, it is close to 1.6. 
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7 Concluding Remarks 

This study estimates a GARCH option pricing model together with its quadratic pricing kernel 

proposed by CHJ (2013). As motivated by a perverse estimation result from CHJ (2013), we 

replicate the estimation with different data samples from both American and Canadian markets. 

The new pricing kernel is still observed to misfit the data. We further examine the pricing kernel 

under the continuous-time Heston model with the estimation results from Christoffersen, Jacobs, 

and Mimouni (2010). The variance preference parameter is misfit as well. The newly developed 

quadratic pricing kernel is confirmed to have the empirical puzzle. 

 

In addition to the estimations, we compare the empirical performance of the linear pricing kernel 

from the Heston-Nandi model to the quadratic pricing kernel from the CHJ model. Both the 

pricing kernels have a good performance in the overreaction tests. However, the newly 

developed pricing kernel is not able to outperform the linear pricing kernel. 

 

We try to analyze the causes of the parametric magnitude problem. According to the quantitative 

relations posted by the pricing kernel, either the risk-aversion parameter 𝜙 or the scaling factor 

1/(1-2αξ) tends to be misfit. Also, we find the mispricing of the options would have an influence 

on the estimation. There is a notable difference between the estimation results from the options 

filtered by the stochastic dominance bounds and those from the unfiltered options. Part of the 

failure would be contributed to the mispricing of the options. 
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Appendix 

The convergence from the Heston-Nandi (2000) model to the Heston (1993) model 

 

The physical dynamics from Heston and Nandi (2000) are: 

ln(𝑆(𝑡)) = ln(𝑆(𝑡 − 1)) + 𝑟 + 𝜆ℎ(𝑡) + √ℎ(𝑡)𝑧(𝑡) 

ℎ(𝑡) = 𝜔 + 𝛽ℎ(𝑡 − 1) + 𝛼 (𝑧(𝑡 − 1) − 𝛾√ℎ(𝑡 − 1))
2

, 

where 𝜆 = 𝜇 −
1

2
. We have the conditional mean and variance of ℎ(𝑡) given a lag ∆: 

𝐸𝑡−∆[ℎ(𝑡 + ∆)] = 𝜔 + 𝛼 + (𝛽 + 𝛼𝛾2)ℎ(𝑡) 

𝑉𝑎𝑟𝑡−∆[ℎ(𝑡 + ∆)] = 𝛼2(2 + 4𝛾2ℎ(𝑡)). 

The instantaneous variance is defined by 𝑣(𝑡) = ℎ(𝑡)
∆⁄ , while ℎ(𝑡) converges to zero under the 

continuous-time limit. Following the GARCH process, 𝑣(𝑡) follows the dynamics: 

𝑣(𝑡 + ∆) =
𝜔

∆
+ 𝛽𝑣(𝑡) +

𝛼

∆
(𝑧(𝑡) − 𝛾√∆√𝑣(𝑡))

2

. 

 

Assume 𝛼(∆) =
1

4
𝜎2∆2 , 𝛽(∆) = 0 , 𝜔(∆) = (𝜅𝜃 −

1

4
𝜎2) ∆2 , 𝛾(∆) =

2

𝜎∆
−

𝜅

𝜎
, 𝜆(∆) = 𝜆 , the 

following expectations are derived: 

𝐸𝑡−∆[𝑣(𝑡 + ∆) − 𝑣(𝑡)] = 𝜅(𝜃 − 𝑣(𝑡))∆ +
1

4
𝜅2𝑣(𝑡)∆2 

𝑉𝑎𝑟𝑡−∆[𝑣(𝑡 + ∆)] = 𝜎2𝑣(𝑡)∆ + (
𝜎4

8
− 𝜎2𝜅𝑣(𝑡) +

𝜎2𝜅2

4
𝑣(𝑡)∆) ∆2. 

 

Given the expectations, we can have the physical process of the Heston (1993) model: 

𝑑 log 𝑆(𝑡) = (𝑟 + 𝜆𝑣(𝑡))𝑑𝑡 + √𝑣(𝑡)𝑑𝑧(𝑡) 

𝑑𝑣(𝑡) = 𝜅(𝜃 − 𝑣(𝑡))𝑑𝑡 + 𝜎√𝑣(𝑡)𝑑𝑧(𝑡). 
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Meanwhile, Heston and Nandi (2000) provide a proposition that offers the risk-neutralization. As 

under the risk-neutral process, 𝜆 is replaced by −
1

2
 and 𝛾 is replaced by 𝛾∗ = 𝛾 + 𝜆 +

1

2
. Then it 

follows: 

𝛾∗(∆) =
2

𝜎∆
− (

𝜅

𝜎
− 𝜆 −

1

2
). 

 

The risk-neutral conditional mean can be further derived as: 

𝐸𝑡−∆
∗ [𝑣(𝑡 + ∆) − 𝑣(𝑡)] = [𝜅(𝜃 − 𝑣(𝑡)) + 𝜎 (𝜆 +

1

2
) 𝑣(𝑡)] ∆ +

1

4
(𝜅 + 𝜎 (𝜆 +

1

2
))

2

𝑣(𝑡)∆2. 

 

Following the proposition of risk-neutralization and the conditional mean, we have the 

continuous-time risk-neutral process: 

𝑑 log 𝑆(𝑡) = (𝑟 −
𝑣

2
) 𝑑𝑡 + √𝑣(𝑡)𝑑𝑧∗(𝑡) 

𝑑𝑣(𝑡) = (𝜅(𝜃 − 𝑣(𝑡)) − 𝜎 (𝜆 +
1

2
) 𝑣(𝑡)) 𝑑𝑡 + 𝜎√𝑣(𝑡)𝑑𝑧∗(𝑡). 

 

Note that it is not a complete convergence since the Wiener processes under both physical and 

risk-neutral measurements are perfect correlated from the derivation. However, it holds when the 

time interval ∆  shrinks. The empirical performance of the convergence has been verified 

numerically by Heston and Nandi (2000). 

  

 


