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Abstract

Space-Time Diversity for CDMA Systems over
Frequency-Selective Fading Channels

Ayman M. Assra, PhD
Concordia University, 2010

Supporting the expected high data rates required by wireless Internet and high-
speed multimedia services is one of the basic requirements in broadband mobile wireless
systems. However, the achievable capacity and data rate of wireless communication sys-
tems are limited by the time-varying nature of the channel. Efficient techniques for com-
bating the time-varying effects of wireless channels can be achieved by utilizing different
forms of diversity. In recent years, transmit diversity based on space-time coding (STC)
has received more attention as an effective technique for combating fading. On the other
hand, most existing space-time diversity techniques have been developed for fiat-fading
channels. Given the fact that wireless channels are generally frequency-selective, in this
thesis, we aim to investigate the performance of space-time diversity schemes for wideband
code-division multiple-access (WCDMA) systems over frequency-selective fading channels.
The proposed receiver in this case is a rake-type receiver, which exploits the path diversity
inherent to multipath propagation. Then, a decorrelator detector is used to mitigate the
multiple access interference (MAI) and the known near-far problem. We derive the bit
error rate (BER) expression over frequency-selective fading channels considering both the
fast and slow fading cases. Finally, we show that our proposed receiver achieves the full
system diversity through simulation and analytical results.
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Most of the work conducted in this area considers perfect knowledge of the channel
at the receiver. Hence, channel identification brings significant challenges to multiple-
input multiple-output (MIMO) CDMA systems. In light of this, we propose a chan-
nel estimation and data detection scheme based on the superimposed training-based ap-

proach. The proposed scheme enhances the performance by eliminating the MAI from
both the channel and data estimates by employing two decorrelators; channel and data
decorrelators. The performance of the proposed estimation technique is investigated over
frequency-selective slow fading channels where we derived a closed-form expression for the
BER as a function of the number of users, K, the number resolvable paths, L, and the
number of receive antennas, V. Finally, our proposed scheme is shown to be more robust
to channel estimation errors. Furthermore, both the analytical and simulation results
indicate that the full system diversity is achieved.

Considering that training estimation techniques suffer either from low spectral ef-
ficiency (i.e., conventional training approach) or from high pilot power consumption (i.e.,
superimposed training-based approach), in the last part of the thesis, we present an it-
erative joint detection and estimation (JDE) using the expectation-maximization (EM)
algorithm for MIMO CDMA systems over frequency-selective fading channels. We also
derive a closed-form expression for the optimized weight coefficients of the EM algorithm,
which was shown to provide significant performance enhancement relative to the con-
ventional equal-weight EM-based signal decomposition. Finally, our simulation results
illustrate that the proposed receiver achieves near-optimum performance with modest
complexity using very few training symbols.
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Chapter 1

Introduction

With the rapid growth of mobile communication and mobile computing, wireless
transmission technology has evolved intensively over the last two decades. Recently, there
has been a tremendous growth in the market of mobile communication and Internet ser-
vices. Future wireless systems are expected not only to provide broadband communication
but also to provide a variety of high data rate multimedia services. In addition, they must
operate reliably in different types of environments: urban, suburban, and rural; indoor
and outdoor. In order to achieve the above objectives, very high capacity and more effi-
cient use of the available frequency spectrum are the most dominant factors in the design
of any wireless communication system. However, the physical limitations of the wireless
channel pose a fundamental challenge for a reliable communication. These limitations ,
which take a form of multipath propagation loss, time variation of the channel characteris-
tic, noise, and other interferences, reduce the wireless channel into a 'narrow pipe', which
does not easily accommodate wideband data transmission over traditional single-input
single-output (SISO) wireless communication systems.

Recent research in multiple-input multiple-output (MIMO) systems has provided
significant technical breakthroughs in the feasibility of high data rate wireless systems. To-
gether with intelligent space-time signal processing and detection techniques, MIMO sys-
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terns achieve higher capacity and higher spectral efficiency compared to conventional com-
munication systems. With MIMO technology, the data rates provided by third-generation
(3G) mobile wireless networks can be potentially increased from the current 2Mbit/sec up
to 14.4Mbits/sec and higher [I]. Furthermore, MIMO systems can achieve higher spec-
tral efficiencies of 20 - 40 bits/sec/Hz compared to SISO ones, where only around of 1-5
bits/sec/Hz is achieved [2].

1.1 An Overview of MIMO Systems

A good introduction to MIMO systems can be found in [3]. In short, MIMO
systems achieve enormous gains in spectral efficiency and system capacity by multiple
parallel transmissions of space-time signals using the same frequency band and careful
exploitation of the multipath information, which is induced by the rich scattering MIMO
wireless channels [1],[4]. Furthermore, the effective transmission rate of MIMO systems
is increased linearly proportional to the smaller of the number of transmit and receive
antennas [5], [6].

The original approach to using MIMO was proposed by Foschini et al. and is known
as the Bell Laboratories Layered Space Time Architecture (BLAST) [7]. Together with
Vertical-BLAST (VBLAST) [8], a simplified version of BLAST, such schemes are designed
to maximize the system throughput. Specifically they seek to improve the spectral effi-
ciency by transmitting independent signals from multiple transmit antennas. A BLAST
scheme typically relies on successive interference cancellation (SIC) [7] at the receiver to
detect the signals. In doing so, however, it loses diversity gain due to the interference
cancellation process. Moreover the scheme requires at least the same number of receive
antennas as transmit antennas. This constraint is relaxed by proposing a new approach,

known as space-time coding (STC), that uses multiple transmit antennas and optionally
multiple receive antennas [9] -[1 2]. One form of STC is known as space-time trellis coding
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(STTC) [9] and it is shown to achieve maximum diversity gain at the expense of increased
complexity of optimal decoding at the receiver. To reduce this decoding complexity, sub-
optimal approaches have been developed including multistage decoding [9] and antenna
partitioning [13]. A second class of STC, known as space-time block coding (STBC), has
also been introduced in [10], [12] to overcome the computational complexity of STTC. It
is known that, for the same number of transmit and receive antennas, both STTC and
STBC normally achieve the same spatial diversity. However, despite the low complexity
they offer, STBCs do not offer any coding gain [11], [14].

While code-division multiple-access (CDMA) is considered as one of the generic

multiple-access schemes in the second and third generation wireless systems [15], CDMA
systems have fundamental difficulties when utilized in wideband wireless communications.
As the system bandwidth increases, there are more resolvable paths with different delays.
Hence, the received CDMA signals suffer from interchip interference (ICI), which causes
significant cross-correlation among users signature waveforms. In other words, the multi-
path fading and multi-access interference (MAI) induced by the wideband transmissions
degrades the overall system throughput. Therefore, the integration of CDMA with MIMO
techniques, forming space-time spreading (STS) systems, has become an active area of
research. One of the first STS systems was introduced in [16], where the proposed scheme
is shown to achieve full spatial diversity and maintain high spectral efficiency without
any wastage of system resources. Given these advantages it has become a strong candi-
date for next-generation wireless networks, where it has been considered as part of the
IS-2000 wideband CDMA standard [17]. The success of MIMO CDMA systems is also
dependent on the channel characteristics and in particular the perfect knowledge of the
channel state information (CSI). Furthermore, STC systems are sensitive to the channel
matrix properties. Consequently, current research works in MIMO CDMA are focused on
channel modeling and development of efficient channel estimation techniques.

3



1.2 Motivation

In wireless communications, fading is a major obstacle towards achieving higher
data rates and reliable communications. Diversity is a known technique to combat fading

effects [18] by providing multiple copies of the transmitted signal over several frequency
slots (frequency diversity), different time slots (temporal diversity), or multiple antennas
(spatial diversity). Thus, the probability that all copies simultaneously encounter severe
attenuation is reduced.

In MIMO CDMA systems, the overall system performance is enhanced by achieving
spatial diversity gain. However, considering wideband transmission, the multipath signals
violate the orthogonal property of the codes assigned to different users. Consequently,
the MAI caused by the non-zero cross-correlation among different spreading codes results
in a severe degradation in the diversity gain provided by the MIMO transmission [19].
To that end, multiuser detection techniques have been proposed to eliminate the effect of
MAI, and thus improving the system performance [20]. As the use of optimum maximum
likelihood (ML) detection is impractical due to the large computational complexity, which
grows exponentially with the number of users and antennas, several suboptimal detection
schemes have been developed, e.g., decorrelator and minimum mean-square error (MMSE)
receivers [15]. Most of the works conducted in this area assume perfect channel estimation,
and relatively few researchers have investigated the effect of channel estimation errors and
possible estimation techniques.

In MIMO CDMA systems, channel estimation plays a crucial role on determining
the system performance (e.g., [21]-[25] and references therein). In order to achieve the
promised performance gain of MIMO systems, the channel coefficients must be known
or estimated perfectly at the receiver [5]. Commonly used channel estimation techniques
either reduce the effective data rate as in training-based channel estimation [19], [21], or
increase the computational complexity of the system as in blind-based channel estimation
techniques [26] -[28]. The former channel estimation is performed by periodically inserting
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known training bits among the data frames, where in the latter, channel estimation is
implemented by exploiting the statistical characteristics of the transmitted signals. As a
remedy to the poor spectral efficiency of the conventional training approach, superimposed
training-based techniques [22] have been considered where a distinct training sequence
is added to the data sequence. This estimation technique is known to offer relatively

large bandwidth utilization [29]. Also, as a solution to the complexity problem of blind
systems, one can employ semi-blind channel estimation techniques. In this case, the
channel estimation is carried out not only using unknown data but also through the

observation corresponding to known training sequence [23] .
Recently, there has been an increasing interest in iterative joint channel estima-

tion and data detection techniques [30], [31]. These iterative receivers have shown en-

hanced performance with reasonable convergence rates using very short training sequences.
Among these iterative techniques, the expectation-maximization (EM) [32] has been con-
sidered for its attractive features. The EM algorithm has the advantage of attaining the

ML solution iteratively with reduced complexity [33]. In the past, an extensive effort has
been focused on employing the EM algorithm in joint detection and estimation (JDE)
techniques for SISO systems [34] -[37]. Recently, there has been an interest in applying
the EM algorithm in MIMO systems. For example, Cozzo and Hughes [38] have proposed
a JDE technique based on the EM algorithm in flat fading channels with multiple antennas
at both the transmitter and receiver. Chun and Ching [31] have also proposed an iterative

receiver for a space-time trellis coded system in frequency-selective fading channels, where
channel estimation and data detection are performed using the EM algorithm.

In this thesis, we investigate the performance of MIMO CDMA systems over

frequency-selective fading channels. Given the wideband nature of CDMA, in this thesis,
we present a design for a space-time detection scheme for MIMO CDMA, which is capable
of mitigating the effect of MAI as well as exploiting the diversity gain provided by STC.
In this part, we study the performance of MIMO CDMA in fast fading channels, where
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we assume that the CSI is available at the receiver side. Later, we investigate the effect

of channel estimation error on the system performance. In addition, we devise possible
approaches to the problem of channel estimation in MIMO CDMA systems.

1.3 Thesis Contributions

The contribution of this thesis can be summarized as follows:

1. In Chapter 3, we investigate the performance of direct sequence (DS)-CDMA using
STS over frequency-selective fading channels. Considering fast fading channels, we
show that the received signal quality can be improved by utilizing the spatial and
temporal diversities at the receiver side. We also study the problem of multiuser
interference in asynchronous CDMA systems that employ transmit /receive diversity
using STS. To overcome the effects of interference, a decorrelator detector is used
at the base station. Considering binary phase-shift keying (BPSK) transmission, we
analyze the system performance in terms of its probability of bit error. For the fast
fading channel, both simulations and analytical results show that the full system
diversity is achieved. On the other hand, when considering a slow fading channel,
we show that the scheme reduces to conventional STS schemes where the diversity

order is half of that of fast fading.

2. In Chapter 4, we examine the effect of channel estimation errors on the perfor-
mance of MIMO CDMA systems. We propose a channel estimation and data de-
tection scheme based on the superimposed training technique for STS systems. The
proposed scheme enhances the performance of the STS system by eliminating the
interference effect from both the channel and data estimates using two decolla-

tors. We investigate the performance of the proposed estimation technique consider-
ing an asynchronous CDMA uplink transmission over frequency-selective channels.
Compared with other conventional estimation techniques, our results show that the



proposed estimation technique is more robust to channel estimation errors. Fur-
thermore, both simulations and analytical results are provided, where they indicate
that full system diversity is achieved.

3. In chapter 5, we present an iterative joint channel estimation and data detection
technique based on the EM algorithm for MIMO CDMA systems over frequency-
selective fading channels. We derive a closed-form expression for the optimized
weight coefficients of the EM algorithm, which is shown to provide large performance
improvement relative to the conventional equal weight EM-based signal decomposi-
tion. Our results show that the receiver can achieve near-optimum performance with

modest complexity using very few training symbols. We also show that the proposed
receiver attains the full system diversity through accurate channel estimates.

The above contributions have resulted in the list of publications in [39] -[46].

1.4 Outline of the Thesis

The rest of the thesis is organized as follows: Chapter 2 is an introductory chapter
which provides some of the relevant fundamentals of MIMO CDMA systems. It begins
with a description of the standard STS scheme employed in the thesis. Also, we present
a survey on channel estimation techniques which can be implemented in MIMO CDMA
systems. Finally, we present a literature review of existing works related to channel
estimation and data detection for MIMO systems.

In Chapter 3, we introduce a space-time detection scheme based on the decorrelator
detector of MIMO CDMA systems over frequency-selective fading channels. We analyze
the proposed scheme considering slow and fast fading channels. In our analysis, we obtain
the probability density function (pdf) of the signal to noise ratio (SNR) at the decorrelator
output and after signal combining. This pdf is then used to evaluate the probability of bit
error as a function of the system parameters for the two transmit and V receive antenna
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configuration and a multipath channel with L resolvable paths.
In Chapter 4, we propose a channel estimation and data detection scheme based

on the superimposed training technique for STS systems. We analyze the bit error rate
(BER) performance of the proposed scheme with two transmit and V receive antenna
configuration over frequency-selective channels. Our analytical results, supported by sim-
ulation results, show that the proposed scheme attains the full system diversity. We also
derive an asymptotic form for the average BER in terms of the received signal parameters
to provide further insights on the proposed system performance.

In chapter 5, we introduce an EM-based joint channel estimation and data detection
for MIMO CDMA systems over frequency-selective fading channels. The proposed JDE
receiver structure is derived, where we show that it can bring an optimum balance between
the single-user matched filter detector and the parallel interference cancellation (PIC)
based detector. A closed form of the optimum weight is derived based on MMSE criterion.
We also prove that the estimator is asymptotically efficient where it converges to the
Cramer-Rao lower bound (CRLB) at high SNR.

Chapter 6 provides a brief summary of the work accomplished throughout this
thesis and some important conclusions. Recommendations for future areas of investigation
related to this research are also presented.
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Chapter 2

Literature Review

In our research, we study the performance of MIMO CDMA systems over frequency-
selective fading channels. Our goal is to exploit the temporal and spatial diversity gains
provided by the time-variant multipath fading channels. At the earlier stage of our re-
search, we assumed a perfect knowledge of the channel at the receiver. Later on, we
investigated the effect of imperfect channel estimation on the system performance and
the implementation of joint channel and data estimation techniques for STS systems. Ac-
cordingly, in this chapter, we first discuss the basic concepts of STS systems. Then, we
present a brief description of different channel models and possible channel estimation
techniques. Finally, we present the recent works that are related to the above mentioned
problems, which will be investigated in this thesis. Our objective is to make the reader
aware of many considerations involved, highlight the particular scenarios that we study
throughout the thesis, and encourage future work in the area.
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2.1 Transmit Diversity for Wideband CDMA

(WCDMA) Systems
In [16], a transmit diversity scheme known as STS, inspired by Alamouti scheme

[12], was proposed. Considering a DS-CDMA system with two transmit and one receive
antenna, the STS scheme can be summarized as follows: Assume bi,b2 are data symbols
assigned to each user in two consecutive symbol intervals. Hence, the signal transmitted
from the first antenna, according to Fig. 2.1, is given by

U

?

Figure 2.1: STS scheme [16].

Í! = (1/V2)(bici + O2C2)

and the signal transmitted from the second antenna takes the form

t2 = (I/V2X&2C1 - O1C2)
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where

Cl =
C

Opxi
C2

Opxi

C

and c is a unit-norm spreading sequence with processing gain V. The vector Opx ? rep-
resents a zero vector with ^-dimension. Hence, Ci,c2 are orthogonal 2PxI unit-norm

spreading sequences. The received signals after despreading with Cx and C2 are then given
respectively by

d1 = (1/V^)(Zz1O1 + Zi2O2) + cHn,

d2 = (l/\/2)(-/i2òi + /li 62) + ???,

where hq, q = 1, 2, is the complex channel coefficient between the qth transmit antenna and
the receive antenna, and the superscript H denotes Hermitian transpose, ? represents
the received noise samples. Let d = [di d2}7', then we have

?/2
T-Cb + ?' (2.1)

where

H =
/ìi /?2

-h2 hi
, b

b2

CyU

Let hq denote the qth column of H, then by multiplying the vector d in (2.1) by hqH , we
have

Re{hqHd} = (l/V2)(\h I2 + \h2\2)bq + Re{hqHu'} (2.2)

where Re{} denotes the real part of the enclosed argument. Eq. (2.2) shows a two-fold
diversity gain. This transmit scheme is called STS since each user's data are spread in a
different fashion on each transmit antenna. Recently, STS schemes have attracted research

interests over CDMA systems [47], [48]. For example, the downlink performance of CDMA
systems using the above STS scheme has been investigated in [16], where the channel is
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modeled as either flat or frequency-selective Rayleigh-fading in the absence of multiuser
interference. In [47], the performance of the proposed STS scheme has been investigated
with various detection schemes for the case of independent flat-fading channels. Given

the fact that STS was initially designed for slow fading channels, the system performance
degrades when employed over fast time-variant channels [16]. In light of this, the authors
in [49] introduced a DS-CDMA system that employs a STBC scheme over fast fading
channels. In this scheme, orthogonal spreading codes are employed to exploit the time
diversity introduced by the channel, and hence a two-fold of the diversity order obtained
using the STS scheme in [16]. For the general multiuser case, the performance for both
the decorrelator and the MMSE multiuser detectors was presented in [50], [51].

Most of the work done in STS systems assumes perfect knowledge of the channel at
the receiver. Hence, channel identification brings significant challenges to STS systems.
In what follows, we present a summary of the recent research development on channel
modelling and channel estimation techniques. Then we introduce the research efforts for
employing these techniques in MIMO CDMA systems.

2.2 Channel Modeling

For many real links such as radio, satellite and mobile channels, received signals
experience fading [52], which severely degrades the system performance. In this part, we
discuss the basic concepts of fading channel models.

2.2.1 Multipath Propagation

In a cellular mobile radio environment, the surrounding objects such as houses,

buildings, or trees act as reflectors of radio waves. When a modulated signal is transmitted,
multiple reflected waves of the transmitted signal will arrive at the receiving antenna from
different directions with different propagation delays. These reflected waves are known
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as multipath signals [53]. Due to the different arrival angles and times, the multipath
signals at the receiver site have different phases. Thus, these signals may combine either
in a constructive or a destructive way, depending on the random phases. The sum of

these multipath components forms a spatially varying standing wave field. Hence, the
mobile unit moving through the multipath field will receive a signal which can vary widely
in amplitude and phase. On the other hand, when the mobile unit is stationary, the
amplitude variations in the received signal are due to the movement of surrounding objects
in the radio channel. The amplitude fluctuation of the received signal, known as signal
fading, is caused by the time variant multipath characteristics of the channel [52].

2.2.2 Doppler Shift

Due to the relative motion between the transmitter and the receiver, transmitted

waves are subject to a shift in frequency, a phenomena known as Doppler shift [53].
Consider a transmission of a single tone of frequency /c and an arrival of one wave at the
receiver, which has an incident angle ? with respect to the direction of the vehicle motion.
Then, the Doppler shift of the received signal, denoted by fd, is given by

h = ^COSO, (2.3)
c

where u' is the vehicle speed and c is the speed of light. The Doppler shift in a multipath
propagation environment spreads the bandwidth of the multipath waves within the range
of /c ± fdmax, where fdmax is the maximum Doppler shift, given by fdmax = ^. fdmax is
also referred as the maximum fade rate. As a result, a transmission of single tone gives

rise to a received signal with a spectrum of nonzero width. This phenomenon is known
as frequency dispersion of the channel. Let <&¿(/') denote the Doppler power spectrum of
the channel. The range of /' over which <£d(/') is essentially nonzero is called the Doppler
spread of the channel, Bd = 2fd, and its reciprocal reflects the coherence time of the
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channel, Atc. Clearly, a slowly fading channel has a large Atc or, equivalently, a small Bd.

2.2.3 Fading Channels

Because of the multiplicity of factors involved in propagation in a cellular mobile

environment, it is convenient to apply statistical techniques to describe signal variations.

In a narrowband system, the transmitted signals usually occupy a bandwidth smaller
than the channel coherence bandwidth, which is defined as the frequency range over

which the channel fading process is correlated. That is, all spectral components of the

transmitted signal are subject to the same fading attenuation. This type of fading is
referred to as frequency nonselective or frequency flat fading. On the other hand, if
the transmitted signal bandwidth is greater than the channel coherence bandwidth, the
spectral components of the transmitted signal with a frequency separation larger than the
coherence bandwidth are faded independently. In this case, the received signal spectrum
becomes distorted, since the relationships between various spectral components are not

the same as in the transmitted signal. This phenomenon is known as frequency-selective

fading [52]. In wideband systems, the transmitted signals usually undergo frequency-
selective fading. In this section, we introduce à brief description of the Rayleigh fading
model and frequency-selective fading channels.

Rayleigh Fading

We consider the transmission of a single tone with a constant amplitude. In a

typical land mobile radio channel, we may assume that the direct wave is obstructed and
the mobile unit receives only reflected waves. When the number of reflected waves is large,

according to the central limit theorem, the two quadrature components of the received
signal are uncorrelated Gaussian random processes with a zero mean and variance s\.
As a result, the envelope of the received signal at any time instant follows a Rayleigh
probability distribution and its phase follows a uniform distribution between -p and p
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[53]. The pdf of the Rayleigh distribution is given by

a2

-2e ' - (2.4)
a<0.

The Rayleigh distributed random variable, a, has a mean value ma and a variance s2a,
which are defined as follows

ma w 2-

*Z=(2-¡)a.a: (2-5)
Frequency-Selective Fading

In a multipath fading channel with L paths, the time-variant impulse response at
time t to an impulse applied at time ? - t is expressed as [53]

L

/?(?;t) = ?>??(t-?), (2.6)
1=1

where f/ and /it,z represent the time delay and the complex amplitude of the Ith path
respectively. In (2.6), d{·) represents the delta function. Without loss of generality, we
assume that h(t; r) is wide-sense stationary, which means that the mean value of the chan-
nel random process is independent of time and the autocorrelation of the random process
depends only on the time difference [53]. Then, hu can be modeled by narrowband com-
plex Gaussian processes, which are independent for different paths. The autocorrelation
function of h(t; t) is given by

#, (??; ?, T2) = \e [h*(t, fi)h{t + ??, t,)] , (2.7)
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where At denotes the observation time difference and * denotes complex conjugate. If

we assume At — 0, the resulting autocorrelation function, denoted by f'? (f^fj), is only-
function of the time delays f¿ and T7- . Due to the fact that scattering at two different
paths is uncorrelated in most radio transmissions, we have

F?{?^3) = F?(^ S(fi -fj), (2.8)

where (f>'h (f¿) represents the average channel output power , which is given by f'? (f¿) =
5¿?[/i*(í,fi)/i(í,f¿)]. We can further assume that the L different paths have the same
normalized autocorrelation function, but different average powers. Let us denote the

average power for the Ith path by P'(í¿), then we have P'(f;) = f'?{t?). Let, P'(ñ),l =
1, . . . , L, represent the power delay profile of the channel. The root mean-square (rms)
delay spread of the channel, rrms, is defined as [54]

>rma
T.unñ)ff ?2

Ef=1 P'(ñ)
(2.9)A| EtiP'ft)

In wireless communication environments, the channel power delay profile can be Gaussian,

exponential or two-ray equal-gain [55]. For example, the two-ray equal-gain profile can
be represented by

P'(r) = \ (d(t) + d(t - 2rrm5)) , (2.10)
where 2rrms is the delay difference between the two paths.

2.3 Channel Estimation Techniques

In this section, we present a brief discussion of various channel estimators intro-
duced in the literature. The propagation of signals through wireless channels results in
the transmitted signal arriving at the receiver through multiple paths. This multipath
propagation results in a received signal that is a superposition of several delayed and
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scaled copies of the transmitted signal giving rise to signal fading. At the receiver, after
processing (matched filtering, etc.), the continuous-time received signals are sampled at
the baud (symbol) or higher rate before channel estimation takes place [53] . It is therefore
convenient to work with a baseband-equivalent discrete-time channel model.

Let b[m] denote the mth information symbol, and f[m'] be the received vector which
groups R3 consecutive received samples during the m'th symbol duration (sampling rate
is typically a multiple, Rs, of baud rate). Considering slowly time-varying channel, the
received signal vector f\m!) can be expressed as [56]

f[m'] = S h[m]b[m' - m] + w{m'}, (2.11)
m

where h[m] is (R3 x 1) channel response vector and w[m'} represents the additive noise at
the receiver. In (2.11), m is limited by the number of resolvable paths in the channel.

One of the objectives of receiver design is to minimize the detector error. In gen-
eral, the design of the optimal detector requires the knowledge of the channel [20]. In this
section, we consider four types of channel estimators based on the framework of maximiz-
ing the likelihood function: (i) training-based channel estimation [22]; (ii) blind channel
estimation [24]; (iii) semi-blind channel estimation [23]; and (iv) iterative joint channel
estimation and data detection algorithms [31]. One of the most popular parameter esti-
mation algorithms is the ML method. These ML estimators can be derived in a systematic
way. Consider the Äs-vector channel model given in (2.11) with L multiple paths. As-
suming channel estimation interval of U symbols, then the received signal vector can be
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expressed as

+

b[M-l}IRs b\M-2)IRs

b{0)IRs 6[-I]/*.

w[X - 1]

?[0]

= ü(b)h + w

b[M-L]IRs

b\-L + l]IRa

MO]

h[L - 1]

(2.12)

where O(6) is (???ß ? Ln8) matrix including the data symbols within the estimation
interval. In (2.12), IRs represents R3 x Rs identity matrix, h is the vector of the channel
parameters, and w includes the noise samples within the estimation interval. In what
follows, we describe the above mentioned estimation techniques in more details.

2.3.1 Training-Based Channel Estimation

The training-based channel estimation assumes the availability of the input vector b
(as training symbols) and its corresponding observation vector f . When the noise samples
in w are modeled as Gaussian variables with zero mean and variance s2, then the ML
estimator is defined by [57]

h = arg min \\f - tt(b)h\\2 = fi (b)f,
h

(2.13)

where O* (b) is the pseudo-inverse of the O(?) defined in (2.12) and || ¦ || denotes the EcIu-
dian vector norm. This estimation technique suffers from high computational complexity.

Hence, various adaptive implementations of such estimator are proposed in [57].
In conventional training-based approach, a distinct training sequence, known to
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the receiver, is time-multiplexed with the data sequence before transmission from the
corresponding antenna. This technique is known as pilot-aided channel estimation. Al-
though this channel estimation approach provides accurate channel estimates, it limits
the spectral efficiency of the system, especially when the time variations of the channel
are fast [15]. Recently, a superimposed training-based approach has been explored where
a distinct training sequence is added (superimposed) to the data sequence before modu-
lation and transmission from the corresponding antenna [22]. This estimation technique
is known to offer relatively large bandwidth utilization [29].

2.3.2 Blind Channel Estimation

Suppose that both the input vector b and the channel vector h are unknown. Then,
the simultaneous estimation of b and h appears to be ill-posed. This kind of estimation

problem can be solved using blind channel estimation techniques [23], [24]. The key in
blind channel estimation is the utilization of qualitative information about the channel

and the input. In this case, we consider two different types of ML techniques based on
different models of the input sequence [24].

Stochastic ML Estimation

While 6 is unknown, it may be modeled as a random vector with a known distri-
bution. In such a case, the likelihood function of h can be obtained by

f(r-h) = Jf(r\hh)f(b)db (2.14)
where f(b) is the marginal pdf of b, and f(r\b; h) is the likelihood function when b is known.
The integration limits of b in (2.14) is determined according to its statistical distribution.
Assume, for example, that 6 [to] takes, with equal probability, a finite number of values
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(Ki). Then, the likelihood function of the channel parameter is given by

/(f;£) = £/(f|6;/0/(6 = 6e)
3=1

= cf>p(_E^ME,, (2,5)2s2
s=l ""

where C is constant. Hence, the stochastic ML estimator is defined by

h = arg mm 2^ exp I —-¿ I . \??<0)

In general, the maximization of the likelihood function defined in (2.14) is difficult since
f(f;h) is nonconvex [58]. However, this optimization can be implemented using the EM
algorithm as shown in [33].

Deterministic ML Estimation

The deterministic ML approach assumes no statistical model for b[m]. In other
words, both h and b are parameters to be estimated. The ML estimates can be found in
this case by a nonlinear least-squares optimization [59]

{M} = argmin ||f-Q(6)h||2. (2·17)

The joint minimization of the likelihood function with respect to both the channel and
the source parameters spaces is known to be difficult. Fortunately, the observation vector
f is linear in both the channel and the input parameters spaces individually. In particular,
we have

f=ü{b)h + w = T{h)b + w, (2.18)
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where

Ji[O] ¦¦¦ Ti[L]
T(h) =

Ji[O] ¦¦¦ Ji[L]

is the so-called filtering matrix. We therefore have a separable nonlinear least-squares
problem that can be solved sequentially [60]

{h,b} = arg min {min \\f - O(?)/?||2}
b h

= arg min {min \\f - T[Ji)If). (2.19)
h b

If we are only interested in estimating the channel, the above minimization can be
rewritten as

h = arg min || (7 - T[Ji)T1 [Ji)) ff = arg min \\PrÇh)f\\2, (2.20)
h v ?- ' h

Pr(Jh)

where Pr[Ji) represents the projection transform of f onto the orthogonal complement
of the range space of T(Ji), or the noise subspace of the observation. A discussion of
algorithms of this type can be found in [60].

2.3.3 Semi-blind Channel Estimation

Semi-blind channel estimation has attracted more attention recently due to the

need for fast and robust channel estimation. This technique assumes additional knowl-

edge of the input sequence. Both the stochastic and deterministic ML estimators remain
the same except that the likelihood functions need to be modified to incorporate the
knowledge of the input [26]. Semi-blind channel estimation may offer significant perfor-
mance improvement over both the blind and the training-based methods as demonstrated
in the evaluation of Cramér-Rao lower bound in [27].
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2.3.4 Iterative joint channel estimation and data detection

Recently, iterative joint channel estimation and data detection techniques have
shown significant improvement over conventional estimation techniques [30]. Since the
detected data symbols are iteratively employed to improve the quality of the channel
estimates, the iterative JDE techniques have shown performance enhancement with rea-
sonable convergence rates using very short training sequences [31]. Among these iterative
techniques, the EM algorithm has been considered for its attractive features [32]. The
main feature of the EM algorithm is that it attains the ML solution iteratively with re-
duced complexity [33]. In what follows, we briefly describe some of the relevant details of
the EM algorithm.

EM algorithm

Let B denote a vector-valued parameter to be estimated from a vector-valued ob-
servation y with probability density / (y\B), then the ML estimate of B is given by

ß = arg maxf(y\ß). (2.21)

The EM algorithm provides an iterative scheme to approach the ML estimate in cases
where a direct computation of B is prohibitive. The derivation of the EM algorithm
relies on a complete unobservable data X which, if it could be observed, would ease the
estimation of B. The observed random variable y which is referred to as the incomplete

data within the EM framework, is related to X by a mapping X ^ y (X). Since X is
not observable, at the ith iteration the EM algorithm computes in a first step, called the
expectation step (?-step), the estimate

Q{B\Bi)=E^(X\B)\y,Bi], (2.22)
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of the log-likelihood function F(?\?) = log f{X\B). The conditional expectation in
(2.22) is evaluated given y and the data estimate at the ith iteration, & . In a second
step, called the maximization step (M-step), the parameter vector is updated according
to

£i+1=argmax Q (£!£*). (2.23)

If {jB¿}°!0 is a sequence of estimates generated by the EM algorithm starting from an
initial value B0, then the sequence {F (3^))So is nondecreasing (monotonicity prop-
erty). Provided that the function Q(BlB*) fulfills the mild regularity conditions [33],
{F 0>|ß*)}~0 converges to a fixed point of F (y\B) [33], [61]. It is known that the ability
of the EM algorithm to find a global maximum depends on the initialization B0. Also,
the convergence rate of the EM algorithm is inversely related to the conditional Fisher
information matrix of X given y [61]. This rate is notoriously slow when the dimension
of the complete data is large.

Recently, EM-based JDE techniques have attracted more attention for its ability
to achieve the ML solution iteratively without wasting the system resources [31], [32].
Considering SISO systems, Georghiades and Han [34] proposed a JDE receiver based
on the EM algorithm in time-variant Rayleigh flat fading channels. Naisiri and Khan
applied the EM algorithm for synchronous CDMA systems in additive white Gaussian
noise (AWGN) channels [35]. Motivated by the EM algorithm related to the problem
of parameter estimation of superimposed signals [36], the authors in [37] investigated the
application of the EM algorithm in CDMA systems over flat-fading channels. An iterative
JDE receiver for DS-CDMA in frequency-selective fading channels has also been proposed
in [62].
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2.4 Channel Estimation For MIMO CDMA systems

In MIMO CDMA systems, perfect channel knowledge is essential for efficient de-
tection [25]. Compared with SISO CDMA systems, channel estimation in MIMO systems
becomes even more challenging as the number of simultaneous transmissions and interfer-
ence levels increase. While the majority of the works in MIMO systems assume perfect

channel estimation, relatively few researchers have investigated the effect of channel es-
timation errors and possible estimation techniques [23]. In particular, current research
works are focused on superimposed pilot channel estimation for MIMO systems (e.g., [63]-
[66] and references therein). For example, the authors in [22] examined the performance
of superimposed training for MIMO channel estimation in single-user systems where a
linear MMSE equalizer is introduced. Along the same lines, the authors in [29] have pro-
posed an iterative channel estimation and detection scheme based on the superimposed
training technique for single-input multiple-output (SIMO) systems. In [19], Chong and
Milstein employed the training-based technique on a STS system with dual-transmit and
dual-receive diversity. In their work, the channel estimation was based on employing
distinct pilot spreading codes on STS signals transmitted from different antennas. With
the help of these pilot signals, the channel coefficients are estimated using a conventional
Rake receiver. These channel estimates are then used to combine the received signals in

a Rake-like space-time combiner for final data estimates. It is noted that, both data and
channel estimates suffer from intersymbol interference (ISI) and MAI.

In the literature, the proposed estimation techniques either suffer from low spectral
efficiency (i.e., conventional training approach), from high computational complexity and
slow convergence rate (i.e., blind channel estimation techniques), or from high power
consumption (i.e., superimposed training-based approach). Recently, there has been a
growing interest in EM-based JDE techniques because of its ability to achieve accurate
estimation without wasting the system resources [32]. Therefore, an extensive effort has
been focused on employing the EM algorithm in JDE techniques for MIMO systems [67]-
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[69]. For example, the authors in [70] proposed various EM-based channel estimation
techniques for MIMO systems. Choi [71] has proposed a general framework of EM-based
JDE schemes considering different types of MIMO channels (e.g., Rician or Rayleigh
fading). As well, many research efforts have considered the JDE problem for MIMO
systems considering flat [38] and frequency-selective channels [31].

2.5 Conclusions

In this chapter, we have presented a review of existing works in the literature that
are relevant to our work. We have discussed the transmit diversity schemes for WCDMA

systems based on STS. Moreover, we have described the channel estimation techniques
and the research efforts for employing these techniques in MIMO systems. Throughout
the rest of the thesis, we focus our work on studying the performance of the STS schemes
in MIMO CDMA systems over frequency-selective fading channels considering both the
perfect and imperfect channel estimation cases.
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Chapter 3

Performance Analysis of Space-Time

Diversity in CDMA Systems

3.1 Introduction

In this chapter, we investigate the performance of DS-CDMA using STS system
over frequency-selective fading channels. The underlying transmit diversity scheme, pre-
viously introduced in the literature, is based on two transmit and one receive antenna
[50]. It was shown that when employed in flat fast fading channels, the received signal
quality can be improved by utilizing the spatial and temporal diversities at the receiver
side. In our work, we study the problem of multiuser interference in asynchronous CDMA
systems that employ transmit /receive diversity using STS. At this stage, we assume that
the channel state information is available at the receiver. In [72], an optimum receiver

based on the ML algorithm is proposed for space-time coded asynchronous DS-CDMA
systems. However, it suffers from high computational complexity. Alternatively, we em-
ploy a suboptimum detector at the base station, i.e., decorrelator detector, to overcome
the effects of interference. Considering BPSK transmission, we analyze the system per-

formance in terms of its probability of bit error. In particular, we derive the probability
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of error over frequency-selective Rayleigh fading channels for both fast and slow fading
channels. For the fast fading channel, both simulations and analytical results show that

the full system diversity is achieved. On the other hand, when considering a slow fading
channel, we show that the scheme reduces to conventional STS schemes [16], where the
diversity order is half of that of fast fading.

3.2 Multiuser System Model

Throughout our analysis, we consider an uplink transmission for a DS-CDMA sys-
tem with K users. The system employs two transmit antennas at the transmitter side and
V receive antennas at the receiver side. We consider the STS system proposed in [50].

This scheme can be summarized as follows. Assuming bx and O2 are data symbols assigned

to each user in two consecutive symbol intervals, the space-time coded signals transmitted
during the first transmission period from antenna 1 and 2 are 6|ci + &2c2 and feic2 - O2C1
respectively, where Ci and c2 are the spreading codes. These space-time coded signals
are switched with respect to the antenna order during the second transmission period.
We assume that the channel is fixed for the duration of one symbol period and change

independently from one symbol to another. Later, we consider the case of slow fading
channel where the fading coefficients are fixed for the duration of at least two symbol
periods.

For sake of simplicity, in what follows, we assume each user's signal travels through
a multipath channel with L paths per transmit antenna. The low pass equivalent of the
received signal at the vth receive antenna can be expressed as (see Fig. 3.1)

r"(i) = ¿¿ c*(í - ? - ?)«?„ + 4(t -rk- fi)uk2(v + 4(t -Tb-Tk- ñ)
fc=l í=l

x <„+7i + ck2(t - T6- rk - T1)V^f" + n*(í), (3.1)
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Figure 3.1: Received signal for K-user system considering single receive antenna.
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u
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k,t
U2l,v =

k,t+Tb _
U,? ~~

k,t+Tb __
21,? ~

k,t uk\

%{-hk{üTbbk2 + hk^T<>bkCl

In (3.1), E3 is the received signal energy for the single user, bk and b\ are the even and
odd kth user data symbols, c\{t) and ck(t) are the two spreading codes assigned to the
kth user with processing gain Tb/Tc, where Tb is the bit period, T0 is the chip period, and
Tk represents the transmit delay of the kth user signal, which is assumed to be multiple
of chip periods. f¡ represents the delay of each path during each transmission period,
which is modeled as an integer number of chips assumed to be much smaller than the
symbol period, and hence we can neglect the effect of ISI. The channel coefficients hqfv
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and hkf*T", (q - 1,2) model the fading channel corresponding to the kth user, Ith path
from the qth transmit antenna to the vth receive antenna at time t and t + Tb respectively.
These fading coefficients are modeled as independent complex Gaussian random variables
with zero mean and unity variance. The noise n°(t) is assumed to be complex Gaussian

with zero mean and variance s\ = N0/2 per dimension. As shown in Fig. 3.2, the vth
receiver structure consists of a bank of 2LK filters matched to the delayed versions of

the signature waveforms of each user. Let P denote the space-time-block (ST-block) code
interval (P = 2 symbols in our case). The output of the vth filter bank, sampled at the
chip rate during one ST-block interval is given, in a vector form, by

Yv = RUV + Nv. (3.2)

The 2LPK ? 1 vector Yv, in (3.2), includes the output of the matched filter bank at time

t and t + Tb and is given by

V r t,v t,v I,» alt+Tb,v ,Uv t+Tb,v]T*v— u/i,i,n2/i,2,i> ·· ·>2/?,2,?,> »1,1,1 > ···) 2/??,?,?» ·¦¦' yif,2,¿ J

where the superscript T denotes vector transpose and ^,, y^6'", P= 1,2, represent
the outputs at the vth receive antenna of the filter matched to the Ith path of the pth
sequence for user k at times t and t + Tb respectively. The vector Uv represents the faded
data transmitted to the Vth receive antenna and is given by

Uv = [Ulv, C2i„, ¦ · · , Ukv, . . . , UKv\

where the 2LP x 1 vector UktV, which represents the faded data transmitted by the kth
user to the vth receive antenna over two successive symbols, is defined as

-r„M ^ „kí ,& „k<t+T» i,kJ+T> ..,i#+3ilT.J-T r ?,t ?,? ?,t ?,t ?,?-t-if, ji.itjU k,v — ?^?,? > "21,v> u12,u> ' · ' ' a2L,V> "??,? ' a2\,v ? · · ¦ ' u2L,v J
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Figure 3.2: Multiuser receiver structure in case of single receive antenna.

The 2LPK ? 2LPK cross-correlation matrix R is given by [20]

R =

RlI Rl2 ' · * RlK

Rki Rkk

where Rkw',w' = 1. · · · , K, is 2LP x 2LP matrix with elements [20]

rk+PT
R = 7 ck(t)cUt)dt,

JTk

and Cfc(i) represents all the delayed versions of the two codes assigned to the kth user
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during the two symbol periods, described as

Ck(t) =

<%{t-Tk-Ti)
4(t- Tk-T1)

Ci(t -Tk- Tl)

ck(t-Tb-Tk~ñ)

4{t -Tb-Tk- fL)

The 2LPK ? 1 noise vector Nv, in (3.2), is given by

T YTNv = [Nlv,N{v,...,NitV,...,N^v}

with

k,t k,t k.t k,t+Tb k,t+Tb fc,t+TbiTNk,v = [niity,n2itV,n¿iV,... ,n2Lv, nUv ,n21i„ , . . . , n2Lv J

and each of the elements nkp(v, nkpf¿T" {? = 1, 2 and I = I, . . . , L) are modeled as complex
Gaussian random variables, each with variance s% = N0/2 per dimension. As will be shown
later, this scheme yields to D = 2PVL diversity order in fast fading channels. Note that
the output of the matched filter bank suffers from MAI which can be eliminated using
the decorrelator detector. In this case, the output of the vth matched filter bank, Yv,
is applied to a linear mapper Zv = .R-1Y1, [73], where R~x is the inverse of the cross-
correlation matrix. The 2LPK ? 1 vector Zv represents the output of the vth decorrelator
during two successive symbol periods. It includes the L replicas of the signals from the
two transmit antennas for each user during one ST-block interval, which can be expressed

as follows

Zv — [Z\,v> Z,2,vi ¦ ¦ ¦ ? ^k1V 7T ]T
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where the 2LP ? 1 vector ZkiV is defined by

,7 _ r k,t k,t k,t k,t k,t+Tb k,t+Tb k,t+Tb->T^k1V — lzll,vi Z21,V> Z\2,V> ···! Z2L,V> zU,v ' z1\,v ' · ¦ ¦ ' ¿2L,v J

and zhfv, zkf^T" represent the output of the vth decorrelator corresponding to the Ith path
of the pth sequence for user k at times t and t + T6, respectively. The two transmitted
symbols of the kth user can be extracted by combining the V decorrelators outputs as
follows

? L
Ik V^V^lM k,t* , hk,t* k,t , ? k,t+Tb k,t+Tb* , hk,t+Tb* k,t+Tb (o on0I = Z^ ¿-J hUv ZU,v + n2l,v Z2l,v + n2l,v Zll,v + nll,v Z2l,v \°°)

v=l 1=1

VL
Ik STX^uk,tk,t* hk,t*k,t _ hk,t+Tb* k,t+Tb , ,k,t+Tb k,t+Tb* (oa\b2 = ¿^ /_jh\l,vZ2\,v ~ h2l,vZ\l,v n\l,v Zll,v + a2l,v Z2l,v ¦ \°-V

v=l 1=1

Considering the first symbol of the kth user and defining the variable vk = 2PL(k - 1),
we have

V L
îk V^ V~* /EW I L M |2 , iL*;,* |2 ? |Lfc,t+7(,|2 , I i,k,t+Tb \2\vkvi = I^ L· vE>(\hù,v\ + N1J +IV» I +1%,« I)6I

+ SS ^(H-1JV11)Wu + 4C(R-1Nv)21+V^1
?=1 1=1

+ ftîSr^iA-^^Wo+«*-!.! + hîf:T>* (R-1NvUl+^1. (3.5)

From (3.5), one can easily see that a diversity order of 2LPV is achieved for the single-user
system with no MAI. In the following sections, we derive the probability of bit errors for
the multiuser system when employing the decorrelator detector after signal combining.

3.3 Performance Analysis

In what follows, and for the sack of simplicity, we consider BPSK transmission. To

evaluate the average BER at the decorrelator output, we first obtain the pdf of the output
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SNR of the decorrelator detector. Using this pdf, the probability of error for both the

fast and slow fading channels can be evaluated. Without loss of generality, consider the

case of finding the probability of error for the first symbol of user 1 . To avoid complex
notation, we drop its corresponding superscript from the fading coefficients.

3.3.1 Fast Fading

In this case, we consider the first 2LP elements from each of the V-decorrelator

output vectors (Z?, ? = 1, . . . , V). Assuming fixed fading gains and perfect estimation
of the cross-correlation matrix, the Gaussian approximation [74] can be used to find the

conditional probability of bit error as

Pb(bi = ?^??,?211, ...ih1Ly,h2LV) =

? I SG=1 Ta=\ VË~s{a\l,v + a21,? + «ÍV + 4^/) 1 /g g-.

where Q(-) is the Gaussian Q-function, a\lv = \h\lv\2, a\liV = | Zi2J1J2, a^b = |^G?2>
4?G6 — 1^2/"Jl2) an(^ s1 is tne variance °f tne noise term in (3·5) when k = 1. It is easy
to show that

°l
ÍN \ V L?t SS C^akv + Wkv + CHL+I)-Id^ + C2(L+1)O^ (3.7)V ¿ ' v=l 1=1

where c2i-i, C21 , c2(L+/)-i and c2(L+0 define the following terms H2¡-i,2/-i> R2i^ R2(l+i)-i,2(l+i)-i
and A2-(Z,+;) 2(L+i)' resPectively, and ^v is the ^ diagonal element of the inverse of the
cross-correlation matrix. The variables éqlm and a^ (q = 1,2) are chi-square distributed
with two degrees of freedom and characteristic function [75]

f??) = —*-— . (3.8)??3 ' 1 - j2uj
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Define the variable a as
A

a — —¡=

where
? L

(3.9)

A = SS <? + «k„ + <? + <%?
v=l 1=1

and
V L

B = SS C2(-iaU« + ^i0M1I, + C2(L+í)-l4¡J" + C2(L+0ait^·
v=l 1=1

Hence, the joint characteristic function of A and B is given by [75]

Fa,ß (wi, ?2) = £[exp J(W1Tl + W2S)]

expj SS 0Uu(^i + °2?-???) + a2?,?(?1 + C2/<^2)
?=1 ¡=1

+ 4??(?? + °2{L+i)-i^) + a[??"{?? + C2(L+I)OJi) (3.10)

where ?[·] denotes the expected value of the enclosed argument. Defining y = \ - Ju1
and assuming independent fading channels, one can show that

? 4L 1
M^U2) = W^Ui(y-ic^v' (3'n)

In order to simplify our analysis, we use a partial fraction expansion method of a rational
function with high order poles. For further details regarding this method, the reader is
referred to [76]. Furthermore, we consider the special case where the rational function has
no zeros. Thus, the characteristic function in (3.11) is reduced to
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where

o-fr::,, u=i,...,4i, t/=o,...,v-i
represents the residue terms obtained from the partial fraction expansion [76]. An exact
expression for each of 'Kuv>, (u = 1, . . . , 4L and v' = 0, . . . , V - 1) can also be obtained
in terms of the cross-correlation coefficients between the users' signature waveforms [76].

From (3.12), the joint pdf, fAtB, can be obtained as [75]
-? ??? /»00

?a,ß = T^ / Fa?µ?'"*) exP (-J(^iA + U2B)) ?????247G J-OO J-OO
T-r4L J_ 4L V-I , r/\4VL-V+v'-l , a\

u=l v'=0

where G(·) is the Gamma function and ?„„, = jV^G(?^,)t(??l-v+v'Y 0ne way fc° °btain
the pdf of the SNR in (3.9) is through variable transformation. From (3.9) and by assuming
that W = B, the joint pdf of a and W can be determined through the following relation
[75]

fa,w = fA,B\to(<*,W)\ (3.14)

where |O(a, W)\ = VW is the Jacobian of the transformation. Finally with the substitu-
tion of (3.9) in (3.14), and after some algebraic manipulations, we get

4L 1 4L V-I / ,i/\ 4VL-V+v'-lr-iiL ? 4L v-1 / t?/?

U=I i/=0

x exp — ¦ (3.15)

From (3.15), the pdf of the SNR can be expressed as
?4L 1 4L V-I

u=l TV/^¿^SS?-^ <3·16)
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where

w^-i¡avw-^yL-vw-\xj-a^)dw. (3.17)

Using the binomial series expansion, the integration in (3.17) can be reduced to

4VL-VW-I

? > = V1 uv' / j
d=0

AVL- V + v' - l\ (-1)\WL-VW-l-dad
(AVL-VW-l-d

fcW ./ Ww)Jo
8VL-3-d aVW

exp d.W. (3.18)

In what follows, we denote the integration in (3.18) by lud and use

C2

xne~axdx
a{n + l) á¡{ac2)->e- * M(-,—j- ,OC2)- C^aC1)

_2a.,,n n+ 1
xe 2 M(-,—j-,ac1; (3.19)

where M(k,m,z) represents the WhittakerM function [77]. Using the substitution t =
yfW, we get

^^"V^exp^-fu

xM(

(8VL - 1 - d)a eXP V 4
8VL -2-d 8VL -1-d cua2

CuOL"

)· (3.20)

In terms of the confluent hypergeometric function ([77], Eq.(13.1.32)),

\8VL-l-d2[(XCnY""-. I cualud = „T,r , T exP8VL -1-d
C11OL2 J ^(1-,8VL -d; ^)- (3.21)
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Substituting (3.21) in (3.18), we obtain

I ? \4VL-V+v'-l-d r n2* (~sk-¿-i lF'"; 8KL -* V>- (3·22)
Finally, the probability function of the SNR in (3.16) can be obtained using (3.22).

3.3.2 Slow Fading

For the slow fading channel, the fading coefficients are assumed to be fixed for the
duration of at least two consecutive symbol intervals. Hence (3.6) reduces to

ñ/i ' ill. U A U \ ? { 2?/^S^=?S?^?(a1^ + a2^) I /oooNP6(Oi = l\hilti,h2i,i,...,hiL,v,h2L,v) = Q 7=r yó-¿ó>

where flli,„ = |MJ2 = lO*' 4^ = W21J" = |^?|2, and

«=1 ¡=1

+¦^2(L+í)-l,2(L+()-lJ '

Following the same procedure as in the fast fading case, one can show that the joint
characteristic function in (3.12) reduces to

rj2L _i/ 2L v-i c \fA A^u2) = -^ SSµ _!')-'] ¦ <3-24>
where

^uv'uv y2VL-V+v' '
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Similar to the fast fading channel, it is straightforward to show that

T-[^ 1 IL V-I , RN 2VL-V+J/-1 / . \

u=l t/=0

where Äul/ = jv-v'r(v-l')^v¿-v+v')· Usin§ the transformation in (3.9),
T-f2L _±_ 2L V-I

/<* = 47r2U(2)2LV SS A-'P-' (3·26)
with

2\ 2VL-V+v'-l /„,,t t/ . / ·,,crX ?-^ (2VL- V + ? -1

d=0

/ ? \2VZ,-V+u'-l-<f G ,-.2

3.4 Probability of Bit Error

For the fast fading channel, the probability of error can be obtained by averaging

the conditional bit error in (3.6) over the pdf in (3.16)

Pb = P Q (VW) Jrada, (3.27)
where 7 = %. To simplify the analysis, we use the preferred form of the Gaussian
Q-function [78]

7G

Q(x) = - f 2 exp~Ä ??. (3.28)
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Substituting (3.16) and (3.28) in (3.27), we get

1 ? f°° 7-'= — / / exp 2Sin2e fadadvp J0 J0
r-r4L 1 4L V-I

u=l t,'=0

where
1 ? f°° 7a2

F™' = 7^4vl / / exP 5^ Puv'dadO.
Substituting Puv> from (3.22), we get

? , = 2c4VL+v-v> ? f4V'L v+v MLJi G (3.30)Vu* ^u I^ \ d I 8VL -1 -d
d=0

n2/

where by using ([79], Eq. (7.621.4)),

Gd = H^) p ¡¿¿?)«"- ,F1(SVL- d - IAVL, 8VL - d; -^?-)?? (3.31)
where 7 = E^hql'v} i3 js the average SNR per channel, and 2Fi(., .; .; :) is a special case of
the generalized hypergeometric function ([79], Eq. (9.14.1)). Substituting V = sin29 in
(3.31) and by using the integral in ([79], Eq. (7.512.12)), one can show that

G(1/2)G(?)
d ~ 16VLYVL

x 3p2^ïlL±l^VL-d-lAVL-WL + l,8VL-d-,-=). (3.32)
¿i ?

Finally, by substituting (3.32) in (3.30), we can evaluate the average probability of error
in (29). From (3.32) we can examine the asymptotic BER performance as 7 gets large.
In this case, in the limit, the hypergeometric function 3 F2 (·,·,·) —> 1 and hence

AVL

Pfc(7 -* 00) ? W (I J ,WgK.
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That is, our system achieves the full system diversity of 4VL. The same argument applies
for the slow fading channel discussed below, where the full system diversity of 2VL is
also achieved. The BER for the slow fading channel can be found in a similar way by

averaging the conditional BER in (3.23) over the SNR pdf in (3.26). That is,
2L 1 2L V-Irr=1 ^SS?«>'^'> (3·33)47G3 , , „U=I ?'=0

where

2VL-V+v'-l ,„y* _ y , ../ _ i\ t^VL-V+v'-l-dP ^0r2VL+V-v' V^ (¿VL V+V L)L±1 GhFuv,-2cu I^ I d ) AVL-l-d d
d=0

and

G^n^M^iVL-i-WWL+WL-tJi).
3.5 Numerical and Simulation Results

In this section we examine the BER performance of the space-time system discussed
in the previous sections using both Monte-Carlo simulations and the analytical results in
(3.29) and (3.33). In all cases, we consider a DS-CDMA system with BPSK transmission
where the user data is spread using Gold codes of length 31 chips. The delay between
users, Tk, is assumed to be multiple of chip periods within the symbol interval. To neglect
the effect of ISI, the delay of each path, T1, is taken as a multiple of chip periods of length
less than 10% of the symbol period. In cases where ISI is dominant, one can resort to pulse
shaping/equalization techniques to overcome the degradation in the system performance.
Furthermore, we assume perfect knowledge of the channel coefficients at the receiver.
Also, in all the results, we assume that all the channels are independent. Our results and
analysis are based on two transmit antennas at the user side and V receive antennas at the
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base station. However, one can generalize these results to U > 2 transmit antennas. In

this case to ensure full diversity using simple decoding, one has to search for a spreading
code matrix that satisfies the full rank criterion using orthogonal designs as discussed in

[10].

singte-user(Simulation)
smgle-user(Analysis)
3-user(Simulation)

9 - 3-user{Analysis
5-user(Simulation)
5-ussr(Analysis)
7-user(Simulation)
7-user(Ana!ysis)
9-user(Simu1ation)

- e - 9-user(Analysis)
¦&— 11-user{Simulation)

- ? - 11-user(Analysis)
MRC(I x8)

Eb/No(dB)

Figure 3.3: BER performance for asynchronous DS-CDMA systems with two transmit
and one receive antenna over frequency-selective fast fading channels with L=2 paths.

Fig. 3.3 presents the error performance for different number of users in the frequency-
selective fast fading channel. For reference, we include the BER performance of the
maximal-ratio-combiner (MRC) with eight receive diversity branches. Note that the per-
formance of the MRC is merely used for diversity order comparisons, and the SNR gap
is due to the fixed transmit power constraint and noise enhancement of the decorrelator.
The results in Fig. 3.3 demonstrate the accuracy of the derived BER expression in (3.29)
when compared with simulation results. Furthermore, it is evident that a diversity order
of eight is achieved for different number of users. This diversity is delivered by the U=2
transmit antennas, L=2 paths, V=I receive antenna, and P = 2 length of the ST-block
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interval.
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3-user,2paths(Analysis)
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*— MRC(1x8)
B— MRC(1x12)

EWNo(dB)

Figure 3.4: BER performance for a 3-user system as a function of the number of paths,
L=2,3, over frequency-selective fast fading channels.

Fig. 3.4 shows the BER performance of the STS scheme for a 3-user system consid-
ering two and three paths per transmit antenna. The results clearly show the multipath
diversity gain delivered by the RAKE receiver when the number of resolvable paths in-
creases for 2 ? 1 antenna configuration. In this case, the transmit diversity scheme with
L = 3 paths achieves diversity order ULP =12 when compared with the MRC with the
same number of diversity branches.

Fig. 3.5 examines the BER performance for 2 ? 2 antenna configuration, where
we consider transmission over frequency-selective fast fading channel with two resolvable
paths. The accuracy of the derived BER as function of the number of users (K), the
number of resolvable paths (L) and the number of receive antennas ( V) is evident for
different number of users. It should also be noticed that the diversity gain is improved

when doubling the number of receive antennas
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Figure 3.5: BER performance for a multiuser system with two transmit and two receive
antennas over frequency-selective fast fading channels with L=2 paths.

Finally, Fig. 3.6 shows both the simulations and analytical results as a function
of the number of users for the slow fading channel. The results show that the proposed
system is able to deliver the same diversity order as the MRC with four diversity branches.
Note that the diversity order of four is due to the {7=2 transmit antennas and L = I paths.

3.6 Conclusions

The performance of transmit diversity using STS in DS-CDMA systems has been
examined through simulations and mathematical analysis. Our results show that the full
system diversity can be maintained when a decorrelator detector is employed at the base
station. With perfect CSI at the receiver side, these results are valid for both fast and
slow fading channels, where the resulting SNR loss from the optimal single-user system
is only a function of the number of active users. Throughout our work, we assumed a
perfect channel state information at the receiver side. In the subsequent chapters, we
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Figure 3.6: BER performance for asynchronous DS-CDMA systems with two transmit
and one receive antenna over frequency-selective slow fading channels with L = 2 paths.

investigate the effect of imperfect channel estimation and possible estimation techniques
for STS systems.
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Chapter 4

A Channel Estimation and Data

Detection Scheme for Multiuser

????-CDMA Systems in Fading

Channels

4.1 Introduction

In this chapter, we examine the effect of channel estimation errors on the per-
formance of MIMO CDMA systems. Channel estimation based on training techniques
has been widely considered throughout the literature. However, employing these training
techniques in ????-CDMA systems degrades the system performance due to multiuser
interference. This degradation is clear as the diversity advantage of the MIMO system di-
minishes with the increased level of interference. As a remedy to this problem, we propose

a channel estimation and data detection scheme based on the superimposed training tech-

nique for STS systems. The proposed scheme enhances the performance of the space-time
system by eliminating the interference effect from both the channel and data estimates
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using two decorrelators; channel and data decorrelators. We investigate the performance
of the proposed estimation technique considering an asynchronous CDMA uplink trans-
mission over frequency-selective slow fading channels. In particular, we analyze the BER
performance of the multiuser system with two transmit and V receive antenna config-
uration over Rayleigh fading channels. Compared with other conventional estimation
techniques, our results show that the proposed estimation technique is more robust to
channel estimation errors. Furthermore, both simulations and analytical results indicate

that full system diversity is achieved.

4.2 System Model

Pilot Seq. 1
PM

Channel EstimatorM>Ua

Channel ChanneSpace4me

Spreading

Channel
Matched DecollatorDespreader

Filter Bank

Received
Pilot SignalsPilot Seq. 2

I2C)

DecorrelatorDespreader
Data Matched

Filtei Bank

(?

STS
Detector

ñ

Figure 4.1: Block diagram of pilot-sequence-assisted STS transmission system correspond-
ing to a single receive antenna.

The transmit diversity scheme considered in our work consists of two transmit
antennas at the mobile station and V receive antennas at the base station. The system

block diagram for the kth transmitting user is shown in Fig. 4.1, where real valued data
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symbols using BPSK baseband modulation and real valued spreading are assumed [48].
We consider the original STS scheme proposed in [16] with two spreading codes per user.
As seen in Fig. 4.1, following the STS, two pilot spreading codes are assigned to each
user for the purpose of channel estimation. Each pilot sequence is added (superimposed)
on the STS signal before transmission from the corresponding antenna. We also consider
an uplink asynchronous transmission from K users over frequency-selective slow-fading
channel (see Fig. 4.2), where the fading coefficients are fixed for the duration of M-symbol

. data block but change independently from one block to another. Given the space-time
scheme in [16], the duration of the space-time codeword is T3 = 2T6, where T6 is the bit
duration. The received complex low-pass equivalent signal at the vth receive antenna is
given by

? Estimation interval *·,

— User 1
1" path

21"1 path

User 2
G piiih

L™ pati

User K

I. path

I I Current Symbol
Following Symbol
Previous Symbol

0 T, T1 (L-I)T, T1 + (L - *l)Tr

Figure 4.2: Asynchronous transmission of K code sequences, each has a period T3 = 2N
chips, over frequency selective fading channel with L resolvable paths. The estimation
interval is T3 + t? + (L — 1)TC.
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K L M-X

'%Pkl(t - mTs -?- ñ) + Jf (bkl[m}ckl(t - mTs^) = SSS^
+ /I9,

k=\ 1=1 m=0

- Tfc - f¡) + bk2[m\ck2(t - mTs - rk - T1)) '-Piatt - mTs - Tfc - f¡)

+ nv(t), (4.1)

where pp and pd represent the pilot and data signal-to-noise ratios (SNRs), respectively.
The data bits, bki[m] and ^2 M > represent the odd and even data streams of the kth
user within the mth codeword interval. In (4.1), cki(t) and ck2(t) are the kth user data
spreading sequences with processing gain 2N, where iV = Tb/Tc represents the number
of chips per bit, and Tc is the chip duration. The two pilot spreading sequences, Pk\(t)
and Pk2{t), assigned to the kth user have a period of 2T6. In our analysis, we assume that
the pilot and data spreading sequences assigned to the K users are mutually orthogonal
at the transmitter side. However due to asynchronous transmission, this orthogonality
condition between codes is no longer valid at the receiver side. rk represents the transmit

delay of the kth user signal which is assumed to be multiple of chip periods within T3. T1
is the Ith path delay ( f, = ITC), hkq¡", q = 1,2, is the channel coefficient corresponding to
the kth user, lih path from the qth transmit antenna to vth receive antenna, and L is the
total number of resolvable paths. These fading coefficients are modelled as independent
complex Gaussian random variables with zero mean and variance s\ = \. We also consider
a time-invariant channel over the duration of an M-symbol data block. The noise nv(t)

is Gaussian with zero mean and unit variance. At the receiver, the received signal is

first sent to a channel estimator, where the path gain estimates {W^'v, W^) of the Ith
path between transmit antenna <?=1,2, and receive antenna ? are obtained. Then, the
STS signals are detected using the estimated path gains. The receiver structure is further
illustrated in the following sections.
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4.3 Channel Estimation

At the receiver side, the received signal at each receive antenna is chip-matched
filtered, sampled at a rate 1/TC, and accumulated over an observation interval of (2JV +
Tmax + L-I) chips corresponding to the first symbol of the received data block for the
K-user system. The {rmax + L- 1) samples are due to the maximum multipath delay (i.e.,
delay of the Lth path) corresponding to the user with the maximum transmit delay, rmax.
We have chosen to employ the first symbol observation interval in channel estimation since
it is the symbol with the least MAI and ISI contributions.

Fig. 4.2 shows a block diagram of the asynchronous transmission of K users code
sequences, each with a period of Ts = 2JV chips over frequency-selective fading channel
with L resolvable paths. As shown, the estimation interval corresponding to the mth
STS symbol interval (m = 0, 1, . . . , M - 1) starts from the first path of the first user
corresponding to the mth transmission period (i.e., t? represents the minimum user delay
(T1=O)) to the end of the Lth path of the Kth user's mth symbol (rK is the maximum user
delay {rK=Tmax)). Assuming perfect knowledge of the users' delays, one can construct the
code matrices corresponding to the current, following or previous symbol transmissions
within the observation interval.

Let y"[0J denote the observation vector at the vth receive antenna containing all
samples related to the STS symbols transmitted by the K users within the observation
interval. Then

y"[0] - C[O]ITb[O] + C[I]ITb[I] + n"[0] (4.2)

where C[O] = [Ci[O]1C2[O], ...,Cx[O]] represents the code matrix corresponding to the
current received symbols, b[0], within the observation interval. The sub-matrix Ck[O],
(k = 1, 2, ..., K) is a [(27V + L-I + Tmax) x 4L] matrix containing the pilot and data
sequences of user k associated with the L resolvable paths. In the same way, C[I] =
[C1[I], C2[I], ··., C^[I]] represents the code matrix of the following received symbols, b[l],
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within the observation interval. Cfc[l], {k = 1,2, ..., K) is a [(2/V+£-l+rmoi)x4Z,] matrix
consisting of the pilot and data code sequences of user k associated with the following
STS symbol within the current observation window. The definition of theses matrices is
given in Appendix A.l. The second term in the right-hand side of (4.2) represents the
interference due to the following symbols, b[l], of the K-user system. In (4.2), ?? is the
channel impulse response of the if-user system at the vth receive antenna, and is defined
by

W = (Ha9[W1,^,.. .,WK}

where

Wk = [Hf(I), Hf (2), ..., Hf (L)Y , fc = 1, 2, ...K,

and Hf/). (l = 1>2, ···,£) is determined according to the STS scheme in [16]. Here, Hf/)
is modified to include the effect of pilot transmission as follows

HfO

,k,v
'1Il 0

,k,v
hi

0

0

k,v

0

0

k,vo o h\f h2l
0 0 -?*·? /lî;"

The transmitted data vector from the K users during the mth symbol duration, b[m], is
given by

b[m] = [bfH,b^H,...,b^Hp m = 0,l,...,M- 1

where

bfc[m] = ?VfVf'»m. Vf^H ? = 1,2, ...,K

Finally, in (4.2), n^O] is a [(27V + L-I+ rmax) ? 1] vector representing the AWGN
samples at the vth receive antenna, each with zero mean and unit variance. From (4.2),
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the received signal can be represented in a more compact form as

y"[0] = CpH^b + n"[0] (4.3)

where

Cp= [C[O], C[I]], ?£ = ?2®?», b = [b[0]T,b[l]Tf,
and <g> denotes Kronecker product operation [57]. After sampling and despearding of the
received signal, y"[0], with the pilot and data code matrix Cp, the output is given by

y»[0] = R,ECb + N^[O] (4.4)

where R7, = C^Cp, is the pilot and data cross-correlation matrix, N^[O] is modelled as
Nc(0,Rp) (zero mean complex Gaussian vector with covariance Rp). In order to estimate
the covariance matrix R7,, we assume that the channel delays are known at the receiver
and the channel coefficients are constant within a data block of M symbols, i.e., quasi-

static fading channel. Note that, the authors in [19] have based their channel estimation
on the channel despreader output, y£[0]. That is the channel estimation in [19] treats
the multiuser interference and ISI as background noise. Hence, the error signal in the
channel estimates are affected by the presence of ISI, MAI and thermal noise. The self
interference between the two pilot signals of each user was also neglected in [19]. Here, we
consider an asynchronous uplink channel where multiuser interference can limit the system
performance. However to overcome the effects of multiuser interference resulting from the
asynchronous transmission, we employ, after the despreader, a decorrelator detector at
each receive antenna for channel estimation. This will show to improve the reliability of

the estimation process. In this case, the output of the vth channel decorrelator is given by

yS[0] = H£b + N^[O] (4-5)
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where N^[O] is Nc(0,R~H). Note that the cross-correlation matrix inversion is based
on the pseudo-inverse or the Moore-Penrose generalized inverse [80] which can be calcu-
lated using the singular value decomposition in 0(L3K3) operations [81]. Since this is
implemented at each receive antenna, the total number of arithmetic operations needed
by the overall removal operation is 0(VL3K3). For more details on the generalization
of the decorrelator detector when Up is rank deficient, the reader is referred to [[20] p.
241-242]. From (4.5), the first ALK elements are then chosen from the vth decorrelator
output vector, y¿[0], for estimating the channel coefficients at the vth receive antenna,
yielding to

Wk;v = B'hk? + wk?,
Wk¿v = B'hk2f + wk2Ív, k = 1,2,..., K;l = 1,2,..., L (4.6)

where B' = J^f, wki" and wkf represent the errors in the channel estimates corresponding
to the Ith path between the qth transmit antenna (q=l,2) and the vth receive antenna. From
(4.6), we obtain the corresponding channel estimates as

h*? = hv +4?> k = l,2,...,K;l = l,2,...,L (4.7)
k,v

where ehq¡v = -gr, (q = 1, 2).

4.4 Data Detection

Having obtained the channel estimates as discussed in the previous section, and
prior to data detection, the effect of the pilot sequences at each receive antenna is elimi-
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nated from the received signal defined in (4.1) as

K L M-I

^w = EE S *«'"
k=\ 1=1 m=0

-Tk- Tl)) + kk.v

A' {bkl[m]cki(t - mTs - rk - ñ) + bk2[m]ck2(t - mTs

Ä(bk2[m}cki(t - mTs - ? - f¡) - bkl[m]ck2(t - mTs - rk

B'e\fPkX (t - mTs -rk- T1) - B'ek2fPk2(t - mTs - rk - T1) + nv(t) (4.8)ñ))

where A' = y/?. In (4.8), the terms corresponding to the received pilot sequences are due
to the errors in the channel estimates. Then, similar to the channel estimation procedure,

rv'(t) is filtered, sampled at a rate 1/TC, and accumulated over an observation interval of
(2N + Tmax + L-I) chips for the mth data symbol of the received data block.

Using vector notation and with the help of Fig. 4.2, the data chip-matched filter
output at the vth receive antenna, gv[m}, can be expressed as

g"[0] = C[O]ITV[O] + C[I]ITV[I] - P[O]E"' - P[I]E"' + n"[0], (4.9)
g"[m] = C[O]IFVH + C[-l]H"V[m - 1] + C[l]ITV[m + 1]

- P[O]E"' - Pt-I]E"' - P[I]E"' + nw[m], m = 1,..., A/ -2 (4.10)
g"[M - 1] = C[0]H"V[Af - 1] + C[-l]H"'b'[M - 2] - P[O]E"'

-P[-l]E"'+n"[M-l], (4.11)

where C[O], C'[l], and C'[-l] include the data sequences corresponding to the current,
following and previous STS symbols of the K-usev system within the observation interval
respectively, each has a dimension of (2N + L - 1 + Tmax) x 2LK (see Appendix A.l).
Similarly, P[O], P[I] and P[-l] have the same definitions of C[O], C[I], and C[-l]
except that the data sequences are replaced by the pilot sequences. In (4.9)-(4.11), the
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channel impulse response of the K users, W\ is defined by

??' = ?a<7{??'?,...,?£}

where

Ht = [Hf(l),Hf(2), ...,af(L)}T, k = l,2, ...K,

H£' (I), (I = 1, . . . , L) is defined according to the employed STS scheme in [16] as

H^' (0
? k,v ik,v
nU a2l

ik,v ik,v
a1l 'hi

In (4.9), ?"' represents the channel estimation error vector of the K users which is given
by

where

EY ell ; e21 > e12 ? · · · ? elL ' e2L ,k=l,2,...,K.

Finally, in (4.10), b'[m], (m = 0, . . . , M - 1) is given by

b'[m] = [b'1T[m],b'2 [m},...,b'K [m]]T,

where

bfc'H = [A'òfel[m],^'òfc2[m]]T,fc = 1,2,. . .,?,t? = 0, . . . ,M - 1.

From (4.9)-(4.11), the received signal can be represented in a more compact form as

gV] = CdH^bd - B'PPEV + nv{m}, m = 1, ..., M - 2 (4.12)
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where

Cd = [C'[0],C'[-l],C'[l]], (4.13)

Pp = PP[O]1Pt-I]1P[I]], (4.14)

HS = ISeH"', (4.15)

Ev = [EV'T ,??'? ,??'?}t , (4.16)

bd = [b'[m)T, b'[m - if, b'[m + l]r]T. (4.17)

Note that in the case of m = 0, one can exclude from (4.13)-(4.17), the effect of previous

STS symbols on the data chip-matched filter output, g"[m]. Also, when m - M - 1,
the effect of following symbols are excluded. After sampling the received signal, the data
matched filter output, g"[m] {v = 1, . . . , V), is correlated with the data code matrix, Cd,
as follows

g[m] = RdHCb1, - S'C^PpE" + NSJm] (4.18)

where R<¡ = CfCd represents the data cross-correlation matrix, and NSJm] is modelled
as 7VJO1Rd). It is clear from (4.18) that the data correlator output, gjm], suffers from
MAI and ISI. Afterwards, the output of the data correlator (despreader) at each receive
antenna is applied to a linear mapper defined by the inverse of the cross-correlation matrix,
RJ1, corresponding to the data code sequences to give

gSM = HSbd - B'QdEv + NSJm] (4^)

where Qd = R^C#PP, and NSJm] is modeled as Nc(0,R¿H). Finally, the first 2LK
elements of each decorrelator output vector, gS[m] (v = l,...,V), are combined with the
corresponding channel estimates defined in (4.7) for final data estimates. Without loss of
generality, we consider the first user as the desired user. Thus the decision variables for
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the odd and even data bits are given by

*"M = EEM^sZH)B-M - ^r(gsM)2u} > (4-20)
D= 1 ¿=1

¿12M = EE^Í^ÍtíH)«-!.! +Ä!r(gSH)a.i} (4.21)
«= 1 /=1

where (g^m])^ (C = 1, 2, ..., 2L), is the Çh element of the vth decorrelator output vector.
In the above analysis, we have considered the case of two transmit antennas. How-

ever, the estimation technique can be generalized to the case of U > 2 transmit antennas
as follows. The transmitted data is first serial-to-parallel converted to U parallel sub-
streams. As in the two transmit antenna case, the U parallel bits are spread using the
STS scheme in [8]. Following the STS, the U parallel data bits are superimposed by U
distinct pilot spreading codes, where each pilot sequence is assigned to a different an-
tenna. Upon reception, the received signal is sampled at the chip rate and accumulated
over an estimation interval ?? UN + L-I + rmax. Following the same procedure as in the
two-antenna case, the received signal after sampling, is de-spread using Cp for channel es-
timation or Cd for data detection. Subsequently, decorrelation is implemented to remove
the effect of MAI and ISI from both channel and data estimates.

4.5 Performance Analysis

In this section, we evaluate the performance of the proposed estimation technique
in terms of its probability of bit error. We start by finding the decision variables cor-
responding to the data estimates at the decorrelator output and after signal combining.
Then, we obtain the pdf of these decision variables which will facilitate the evaluation of
the average probability of error.
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4.5.1 BER Analysis

Prom (4.19), (g¿[m])2i_u and (gS[m])a,i in (4.20) and (4.21) are given by,

(&5NWu = A'htfbnH + A'hlfb12[m} - £'(QdE>-U + (N^)2Í_U, (4.22)

(SdMW = -A'h^buH + A'h\fbì2[m} - 5'(QdEO21,! + (N^)21,! (4-23)

where (QdEv)2i-i,i and (QdE")2¡,i are defined in terms of the channel estimation errors
corresponding to the K users at the vth receive antenna. By partitioning Qd into three
groups: Qdi, Qd2 and Qd3 where each group has the same dimensions of 6LK ? 2LK,
QdE" is defined as Qd5E"' where Qds = Qdl + Qd2 + Qd3· Consequently, (QdE")2i_i,i and
(QdE^)2;,! are derived as

(QdE^)21-I1I = X^-iE"', (4.24)

(QdE")2Iil = X21E' (4-25)

where ?? (? = 21 - 1, 2/), is a [1 x 2LX] vector consisting of the elements of the £th raw
of Qd5. Using (4.7) and (4.22)-(4.25), (4.20) can be written as

bu[m] = £¿ Re{(A'\h\n2 + A'\h^\2 + A'elrhtf + A'e1^ h^)bn[m) + (A'
x e\rW - A'e^*h]iv)b12[m} - B'h\?*X2l^W' - S'e^X«-^' + ?%?*
? X2ÍE"' + B'eiï'XvE* + /1^(^)^-1,1 + eJn^Wu - />2G WähiA

-e2r (Na1W }· (4-26)

Now consider the case of O11 [m] = +1, then the probability of error is given by

Pb = \h{bu{m] < 0\b12[m] = +1) + ^?(&??? < 0|612[m] = -1). (4.27)
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Let the estimate bu[m} equivalent to, Z1 when 612 [m] = +1, and Z2 when 612[m] = — 1.
Then (4.27) can be written as

P6 = Ip6(Z1 < 0) + ^P0(Z2 < 0). (4.28)

Given the complex variables ? and y, we have

Re{xf) = \{xy* + yx*)- (4-29)
Then Zx and Z2 can be expressed as a sum of independent symmetric quadratic forms as
follows:

? ?

Z1 = Y1 X^S1X" = Y Zlv, (4.30)
?=1 V=I

V V

Z2 = YXVHS2X" = YZ2V, (4.31)
v=l V=I

where

x» = [^/4i^î2V-·.^^
,(N^)2L_1,ll(N^)2L,1]T! (4.32)

It should be noted that Xv is a [4L + 2LiC] complex normal vector with zero mean and
covariance matrix R1 (the derivation of R1 is done in Appendix A.2). In (4.30)-(4.31),
Si and S2 are coefficient matrices of the quadratic forms Zlv and Z2v respectively , which
are defined in Appendix A.3. The vectors ?? {? = 1, . . . , V), are statistically independent
with the same covariance matrix Rx. Also, the coefficient matrices, S1 and S2 are identical
for each receive antenna.

From (4.30), we can find the characteristic function of the decision statistic Z1 as
[82], [83]
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F??{?) = E[Q^[JuZ1]]= E
/ V N

exp I ju^ Z1n

where

<f>Zlv(u) = E{exp[juZlv)}

(4.33)

(4.34)

Note that the characteristic function of the quadratic form in (4.34) can be derived in

terms of the eigenvalues of the matrix SiRx as [83]

N' 1
(4.35)

where An, ? = 1, ... , N', are the N' eigenvalues of the SiR1 matrix. Based on the matrix
structure of Rx and Si (see Appendix A.2 and A.3), both Si and Rx are symmetric
matrices. Also, we can notice that Rx is positive definite while Si is generally singular
matrix. Accordingly, the eigenvalues, An, ? = ?,.,.,?', are real valued but may be
positive or negative. Substituting (4.35) in (4.33), the characteristic function F??{?) is
given by

From (4.36), we can find the pdf of Z1, fZl, [75]. Using this pdf, one can evaluate the
probability P0[Z1 < 0) as follows [84]:

Pb[Z1 < 0) ÎZ^dZ1
0 poo

2p /_ F?? [?) exp[—JuZ1JdUdZ1
OO ./-OO

= 1_-1G[p L_2 2p y_œ |1=1 (1 - JuXn [ju) ^ du. (4.37)
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The remaining integral in (4.37) can be evaluated using contour integration, where
we consider the integral along an indented contour C oriented in the positive direction as
shown in Fig. 4.3. The contour integral is then given by

£/(^=£[?(?^£(l-JzK? (jzrdz (4.38)

Note that the integrand in (4.38) has singularities at ? = 0 and ? = -j/Xi, ¦ ¦ · , -j/^N>-
Imfz}

-. C

¦7-1

Re(Zj

Figure 4.3: The indented contour C.

Since the contour C is located in the upper half-plane, the poles bounded by this contour
are based on the negative eigenvalues (i.e., {?„} < 0). Using the residue theorem [85],
the contour integral defined in (4.38) is given by,

(4.39)/ f(z)dz = jnRes(f(z), ? = 0) + j2n JT Res (f{z), ?JO r=\ ^

where Res{f(z),z0) denotes the residue of f(z) at the pole ? = Z0 and Ti1 represents the
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number of negative eigenvalues of the matrix SiR1. In order to evaluate the residues, we
use the partial fraction expansion method of a rational function with high order poles.
For further details regarding this method, the reader is referred to [76]. In (4.39), for all
values of V, we have

Res(f{z),z = 0) = -j. (4.40)

For the remaining distinct poles, the residues are found for different values of V according
to [76]. For instance, for V = 1,2,3 receive antennas, we have respectively

Case 1 (V=I): Res ( f(z),z = -y
JV'

? (4.41)

Case 2 (^=2): Res [ f(z),z = -J-) = j\r ? ß ??V ??/ ?=1,?„#0
JV'

p
Z=I1A ,f?t (K1 - K1)2

N'

S ?"1 - ?-1 , (4.42)

Case 3 (V=3): Res f(z), ? = -

N'

?
/= 1,? /^A7-

jK
XrJ 2

1
(?;.1 - ?,-1)3

JV'

* p *.-
JV'

\2+ S

+ ?G
JV'

S ?"1 - ?;:1

r

I

(?1 - ??

(4.43)

Now using the obtained residues, we can evaluate the contour integral in (4.39). Note
that the contour C can be split into a straight part (real part) and curved part. Let
f'(z) = P'(z)/Q'(z) where the degree of P'(z) and Q'(z) are u and s, respectively, then
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the integration over the curved path tends to zero for large \z\ (\z\ -» oo) when s > u + 2
[[85], theorem (19.5)]. Given this fact, and considering the limit as e goes to infinity, the
integration defined in (4.39) can be evaluated as

G f(ze)dze = ^Res(f(z),z = 0) + j2nJ^Res (f(z),z
J—oo r=l ^

(4.44)

where e represents the radius of the contour C, and ze denotes the real part of the complex
variable z. Substituting (4.44) in (4.37), we get P0(Z1 < 0) for the cases V=l,2, and 3
antennas respectively as follows,

N'

Case 1 (V=I): P0(Z1 < 0) = I J] A"1 x^(Ar
Vn=I1An^O / r=l

\N'

? 1

I1A7Z5EA7- \K' r
(4.45)

N'

Case 2 (V=2): Pt(Z1 < 0) = J] ^ ?S K ?
\n=l,\„¿0

N'

r =1,? ?f\t (K' - K1)2
N'

S
r' = l,A /#Ar

1 _ \-1?-,1 - ? (4.46)
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N' ni

Case 3 (V=3): Pt(Z1 < O) = ? ?;3 ? £ Aj- p
1

„=l,WO / r=l \ 2 r' =¿%Ar (?G#1 ^ 1)3
"' 3 /

?'+, S (?-? _ ?-1)2 + (^? =1,? /5¿Ar

W

- S, ? / — ?_
(4.47)

Following the same procedure, we can evaluate the probability, Pb[Z2 < 0), by replacing
K by ß? and ?? by n2, where /On, ? = 1, . . . , N, are the eigenvalues of S2R1 and n2 is the
number of the corresponding negative eigenvalues. Finally, the average BER in (4.28) is
obtained.

In the above analysis, we considered a uniform multipath intensity profile (MIP).
However, this analysis can be generalized to the exponential MIP in the same manner
where the subscript I is added to the corresponding variance of each multipath component,
i.e., s\ is replaced by a2hl, I = 1, . . . , L where o2hl is defined by [86]

^^expf-^2), l = l,-,L, (4.48)

s20 is the average power of the initial path, and ? is the normalized decay factor. To keep
the total fading power equal unity at each transmit antenna, we have

exp(-g)-l
exp(— ?) — 1 (4.49)

Thus, the covariance of the channel vector h", Rh-h, is defined by a diagonal matrix with
elements s2?, s\2, . . . , a2hL (see Appendix A. 2). Based on these assumptions, and following
the same procedure as above, the closed forms of the average BER will have the same
expressions as in (4.45)-(4.47), regardless the channel power delay profile.
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4.5.2 Asymptotic Performance and Diversity

One way to prove that our system can deliver the full system diversity is through
a comparison with the corresponding MRC with the same number of diversity branches.
In that, we show that the slope of the BER performance for the two systems at high
SNR is identical, indicating equal diversity orders. This approach is investigated in more
details in the following section. On the other hand, if the eigenvalues of the matrix S1Rx
of each receive antenna can be evaluated in terms of the received signal parameters, then

expressions ((4.45)-(4.47)) can also be used to provide further insight into the proposed
system performance. Unfortunately, a straightforward application of this approach proved
to be difficult as the dimension of the corresponding matrix is (4L + 2LK) x (4L + 2LK).

In [87], Russ and Varanasi have encountered a similar problem when dealing with
noncoherent multiuser detection over Rayleigh fading channels. Similarly Brehler and

Varanasi [88] have noticed the same problem in analyzing the performance of quadratic
receivers in fading channels. In these works, the authors have presented the BER perfor-
mance of their receivers as a function of the eigenvalues of some parametric matrices. A
remedy to this problem was proposed in [87] and [88], where the authors examined the
asymptotic behavior of the corresponding eigenvalues as the SNR increases (pd —> oo).
Using empirical results, the authors in [88] observed that half of the nonzero eigenvalues
asymptotically approach -1 while the other half are positive and linearly proportional
to pd- As a result, they concluded that such a structure of eigenvalues is sufficient to
prove the full system diversity is equal to the number of asymptotic positive (negative)
eigenvalues.

In the previous section, we have shown that SiR1 is defined for any vth receive
antenna, ? = 1, · · · ,V (see Appendix A. 2 and A.3). Therefore, the estimated eigenvalues
of this matrix are equivalent to the eigenvalues of a STS system with two transmit and
one receive antenna assuming L resolvable paths per transmit antenna (equivalent to a
system with 2L diversity order).
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Following the same approach as in [87] and [88], we have noticed that half of the
nonzero eigenvalues are asymptotically equal to e, (e —» O- as the SNR pd —> oo), where
O- denotes a very small negative value. The remaining half of the nonzero asymptotic
eigenvalues is positive and linearly proportional to pd. It should be noted, however, that
this result did not turn out to be identical to the result obtained in [88] since we consider

a different system configuration. Similarly, the structure of these eigenvalues show that
the number of asymptotic positive (negative) eigenvalues is equivalent to the full diversity
of a STS system with IL diversity order.

Fig. 4.4 shows a sample of our results where we consider the proposed system
with five users, two transmit and one receive antenna, for L = 2,3 resolvable paths. This
system produces a group of 8 nonzero eigenvalues for the first case (L = 2), and a group
of 12 nonzero eigenvalues for the second case (L = 3). For each group, half of the nonzero
eigenvalues is positive and the other is negative. This confirms that the number of positive
eigenvalues represents the full system diversity, where the number of positive eigenvalues
of each group (four and six respectively) is equal to the full system diversity of each case.

By utilizing this asymptotic behavior of eigenvalues, we are able to study the behav-
ior of the BER as pd -> oo. Note that the first term in the right-hand side of (4.45)-(4.47)
takes the form ??=?,??5?? KV where V=I,2 and 3 receive antennas. In the asymptotic
case, this term is proportional to pd2LV ¦ The remaining terms which belong to the right-
hand side of these equations include a common factor in the form

/ N' 1 ?' ?? \

Taking the limit of this term as pd -* oo, and substituting with the positive and negative
asymptotic eigenvalues, one can easily show that the limit of this term has a constant
value independent of SNR, pd. Consequently, the BER expressions in (4.45)-(4.47) show
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Figure 4.4: Asymptotic nonzero eigenvalues of 5-user STS system with L=2,3 paths, two
antennas at the transmitter and one antenna at the receiver side.

that the proposed system achieves a diversity order of 2LV.

4.6 Simulation Results

In this section, we examine the BER performance of the STS system employing the
proposed channel and data estimation technique. Both Monte-Carlo simulations and the
analytical results are presented for different system configurations. In all cases, we consider
a DS-CDMA system with two transmit and V = 1, 2, 3 receive antennas. We also consider
an uplink asynchronous transmission of a data block of thousand symbols (M=IOOO) over
a frequency-selective slow-fading channel. Throughout the simulations, we consider a
multiuser system where all users are assigned Walsh code sequences of length 64 chips for
the pilot and data sequences. The delay among user signals, (rfe, k E {1,2,.. .,K}), are
assumed to be multiple of chip periods within Ts. Without loss of generality, we assume
that the users' delays satisfy the condition T1 = 0 < . . . < rk < . . . < rK < Ts [73]. The
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path delay is also assumed to be multiple of chip intervals, f¡ = IT0, I = 1, 2, . . . , L. Since
we assume that the channel coefficients are constant during the transmission of the data

block, we consider in all our simulations that the pilot sequence is superimposed to the STS

signal during the first symbol period of each data block. This estimation interval includes
sufficient information about the channel in order to implement the estimation process;

the multipath channel coefficients and the delayed versions of the pilot sequences assigned

to the K users. This enables us to implement the despreading and the decorrelation

successively in order to get the channel estimates. In this case, the average pilot signal
to noise ratio among the frame, PNR = lOlogpd - 10 log M. Along our simulations, we

compare the BER performance of the STS system versus different data signal to noise

ratios, pd-

LU

126 ß

Figure 4.5: Comparison between different channel estimation and data detection tech-
niques for the 5-user STS system with L=2 paths, PNR=OdB, two antennas at the
transmitter and one antenna at the receiver side.

Fig. 4.5 shows the BER performance for different channel estimation and data
detection techniques: (i) perfect knowledge of the channel at the receiver (reference case);
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(ii) conventional channel estimation and data detection [19] (no MAI removal from both
the channel and data estimates); (iii) conventional channel estimation followed by decor-

relating data detection (only interference removal from the data estimates); and (iv) the
proposed decorrelating channel and data estimation technique. Confirmed by simulations,
our analytical results prove that the proposed scheme achieves a performance very close
to the perfect channel estimation case for PNR=OdB. Examining the results in Fig. 4.5,
one can see the effect of interference removal from both channel and data estimates on

the system performance. Note that the third system renders a slight improvement over
the conventional technique [19], due to the MAI removal from the data estimates but still
affected by the imperfect channel estimation. With MAI removal from both the channel
and data estimates, the proposed receiver outperforms the other estimation techniques.
For reference, we included the BER performance of the MRC with four diversity branches.
We can notice that the proposed scheme is able to deliver the full system diversity (2VL)
at the prescribed PNR.

Fig. 4.6 shows the performance of the proposed system with the same antenna
configuration as a function of PNR. Compared with the perfect channel estimation case,
the proposed receiver achieves accurate estimates for PNR greater than 0 dB. Fig. 4.7
also shows the performance of the proposed scheme when the number of resolvable paths
is increased to L = 3 per transmit antenna. The proposed receiver is shown to offer
accurate channel estimates even when the number of resolvable paths increases. Also

note that the system in this case offers a diversity order of six (2VL = 6), as evident from
the comparison with the equivalent MRC with same number of diversity branches. In Fig.
4.8, the BER performance of our system is examined for 2 ? 3 MIMO systems with two
resolvable paths per transmit antenna and different number of users. The results conclude
that the effect of increased interference only appears as a SNR loss and no diversity loss
is incurred.

In Fig. 4.9 we investigate the performance of our proposed system considering
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Figure 4.6: Effect of different PNR values on the BER performance of the proposed esti-
mation technique for a 5-user STS system with L=2 paths, two antennas at the transmitter
and one antenna at the receiver side.

different channel power delay profiles, namely uniform MIP with unity total fade power
(s2 = i/£) and exponential MIP with unity total fade power (see equation (4.48)). The
results show that the realistic channel assumptions are interpreted as SNR loss without

affecting the full system diversity.
In all the results, our analytical results are shown to be in excellent agreement with

the simulated ones, and the full system diversity is maintained.

4.7 Conclusions

We have proposed a channel estimation and data detection technique based on the
superimposed training approach for STS systems. In particular, we have shown that the
proposed scheme is robust to channel interference caused by the multiple-access transmis-
sion in asynchronous CDMA uplinks. Furthermore, this scheme achieves accurate channel
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Figure 4.7: BER performance of the proposed estimation technique for a 5-user STS
system with L=3 paths and PNR=5dB, two antennas at the transmitter and one antenna
at the receiver side.

estimates and offers high spectral efficiency. However, there is a power penalty since a

portion of the transmitted power is assigned to the training sequences. In addition, each
user is assigned four spreading codes. This wastes the system resources. Therefore, in the
following chapter, we provide another JDE technique based on the EM algorithm. This
technique has the advantage of achieving the ML solution iteratively without wasting the
system resources at the expense of some additional computational resources.
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Figure 4.8: BER performance of the proposed estimation technique for the multiuser STS
system with L=2 paths and PNR=5dB. The STS system employs two transmit antennas
and V =3 antennas at the receiver side.

- Exponentiortai MIP (?=3)
—? Exponentional MIP í»c=S)

Figure 4.9: BER performance of the proposed system considering different channel delay
profiles. The STS system employs two transmit and one receive antenna with L= 2 paths
and PNR=OdB.

71



Chapter 5

EM-Based Joint Channel Estimation

and Data Detection for

????-CDMA Systems

5.1 Introduction

In this chapter, we present an iterative joint channel estimation and data detection
technique for MIMO CDMA systems over frequency-selective fading channels. The pro-
posed receiver performs the channel estimation and data detection using the expectation-
maximization (EM) algorithm. We derive a closed-form expression for the optimized
weight coefficients of the EM algorithm, which is shown to provide large performance
improvement relative to the conventional equal-weight EM-based signal decomposition.
Our results show that the receiver can achieve near-optimum performance with modest

complexity using very few training symbols.
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5.2 System Model

Throughout our work, we consider a transmit diversity scheme with U=2 transmit
antennas at the mobile user and V multiple receive antennas at the base station. We also

consider the original STS scheme proposed in [16] for an asynchronous if-user system over
a slow frequency-selective fading channel with L resolvable paths. The channel coefficients

are, therefore, considered fixed within a block of M codewords, where each codeword has
a period of T3 = 2T6 and Tb denotes the bit period. The received complex low-pass
equivalent signal at the vth receive antenna is given by

K L M-I r

bki[m\ckl(t - mTs - rk - T1) + bk2[m]ck2(t - mTs - rk-^) = SSS^
k=l I=I m=0

-?) + ti. bk2[m}ckl(t - mTs - rk - ñ) - bkl[m\ck2(t - mTs - rfc - T1) + nv(t),

(5.1)

where òfcl[m] and bk2[m] are the odd and even data streams of the kth user within the
mth codeword interval. The codes ckl(t) and ck2{t) represent the kth user's spreading
sequences with processing gain 2N, where N = Tb/Tc is the number of chips per bit, and
Tc is the chip duration. In (5.1), hkq?, q = 1, 2, is the attenuation coefficient corresponding
to the kth user, Zihpath from the qth transmit antenna to the vth receive antenna, where
/jY = JHk0Pf1 ohf is the corresponding fading channel coefficient and Ek is the kth
user transmit energy. These attenuation coefficients are modeled as independent complex
Gaussian random variables with zero mean and variance s\, where s\ = ?s%, and s\ = \.
The noise nv(t) is Gaussian with zero mean and variance N0. At the receiver side, the
received signal at each receive antenna is chip-matched filtered, sampled at a rate 1/TC, and
accumulated over an observation interval of (2N + Tmax + L- 1) chips corresponding to the

mth symbol of the received data block for the K-usev system. The (rmax + L-I) samples
are due to the maximum multipath delay (i.e., delay of the Ith path) corresponding to the
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user with the maximum transmit delay, Tmax. Let yv[m] denote the observation vector at
the vth receive antenna containing all samples related to the STS symbols transmitted by
the K users within the observation interval. Then, we have

yv[m] = (C[0]B(m) + C[-l]B(m - 1) + C[l]B(m + I)) h" + nv[m},
m = l,...,Af-2, (5.2)

where C[O], C[— 1], and C[I] include the code sequences corresponding to the current,
previous and following STS symbols of the K-user system within the observation interval
respectively, each has a dimension of (2N + L-I + rmax) ? 2LK (see Appendix A.l). In
(5.2), B(m), m — 0, . . . , M - 1, represents the users data matrix within the mth period,
defined as

B(m) = diag{Bi(m),B2(m), . . . , BK(m)},

where

Bfc(m) = IL <g> bfc(m), bk(m) =
bki[m} bk2[m]
bk2[m} -bkl[m]

,k=l,...,K;m = 0,...,M -1,

and 1L is an identity matrix of L-dimension. Also, h" is (2LK ? 1) channel coefficients
vector defined as

h" = [hf,hf,...,h^T]r,

where h£ = [Zi^, ^, . . . , hk2'l)T . Finally, in (5.2), n"[m] is a \{2N + L-I + rmax) ? 1]
vector representing the AWGN samples at the vth receive antenna, each with zero mean
and variance N0. Note that in the case of m = 0, one can exclude from (5.2) the effect
of previous STS symbols on the data chip-matched filter output, yv[m]. Also, when
m = M - 1, the effect of following symbols are excluded. After sampling the received
signal, the matched filter output at the vth receive antenna , yv[m], is correlated with the
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code matrix, C[O], as follows

yvc[m] = (R[0]B(m) + R[-l]B(m - 1) + R[l]B(m + I)) h" + <[m],
m= 1,...,M- 2, (5.3)

where R[O] = C" [O]C[O], R[-l] = Cff[0]C[-l], and R[I]' = C[O]C[I]. Also, we can
notice that R[I] = R[-1]T (see Appendix A.l). In (5.3), nvc[m] is modelled as Nc (0, R[O]).
Similar to [20], let

R[O] = F[OfF[O] + F[1]TF[1], (5.4)

and

R[-l]= F[OpF[I], (5.5)

where F[O] is a lower triangular matrix, and F[I] is an upper right triangular matrix with
zero diagonal. If yvc[m] is passed through a filter with impulse response (F[O] + F[l]z)~
[20], then

?

vlH = S F[Am]B (m - Am) h" + <[m], (5.6)
Am=O

where nvw[m) is a complex Gaussian vector with zero mean and covariance matrix N0I2LK,
and I2LK is an identity matrix of dimension 2LK. Note that both yvc[m] and yvw[m) have
the same information about the transmitted data. Due to the whitening noise property

of (5.6), our subsequent analysis will be based on y£[m].

5.3 EM-Based ST Receiver

In [37], the EM algorithm is proposed as a JDE technique for SISO CDMA systems.
Here, we extend this work to MIMO CDMA systems. Our subsequent analysis is based on
the approach proposed in [36] for the estimation problem of superimposed signals. Using
this approach, the observed data is decomposed into their signal components. Then, the
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parameters of each signal component are estimated separately and iteratively using the
EM algorithm. Accordingly, we decompose the whitening filter output, y£,[m], into a sum
of K statistically independent components, i.e.,

?

Jc=I

where g£(m) - EL=oFfc[AmlBfc(m ~ Am)hl + *CtM> Ft(Aml is 2LK x 2L matrbc
including the 2L columns corresponding to the kth user in the matrix F[Am], n^fc[m] is
a complex Gaussian vector with zero mean and covariance matrix PlN0I2LK and ß"k is a
non-negative value satisfying the constraint S%=\ ßt ~ *· ®m Soal is to obtain the users'
data estimates using the EM algorithm. First, we define the EM algorithm parameters:

1. Observed data, yw, which includes the outputs of the V whitening matched filters
within a frame of M codes is given by

jw [yU) ' y w > * · ¦ ' Jw J

where

yi = (yi[o]T,yï,[i]r,-..,yï,[Af-i]r]r,« = i,...,v.'

2. Parameters to be estimated, b, includes the transmitted data bits from the K users

within the frame period

b = \6[,b\,...,bTK\T,

where

bfc = [M0]T, bfc[l]7, . . . , bk[M - 1]T]T, k = l,...,K,

and bk[m) = [bki[m],bk2[m]]J',m = 0,...,M- 1.

3. Complete data, G: we employ the complete data definition in [37], where the un-
known channel coefficient vectors are included as a part of the complete data as
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follows:

G = [GiT,G2T,...1GkT]t,
where

G" = [(g;, hj), (ElM),..., (Sh h"K)],v = l,...,V,

and

el = [gk(o),Evk(i),---,el(M-i)],k = i,...,K.

Since the components of G given b are statistically independent, the complete

log-likelihood function is given by

*(G|b) = èé*(gï,hï|bfc), (5.8)
D=I fc=l

where

f(e??\^) = ?e?\??) + ??\^). (5.9)

The second summand in (5.9) is neglected as it is independent of b. Therefore, (5.9) is
reduced to

M-I / ? \H<S>(gl,K\bk) CX-J] sl(m) - S Ffc[Am]Bfc(m - Am)K
m=0 \ Am=O

1

x Sk(m) - S Fk[Am}Bk(m - Am)K · (5-10)
Am=O
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By neglecting the terms in (5.10) which are independent of b, the conditional likelihood
in (5.10) can be simplified to

M-I

F(6?, h£|bfc) oc S 2ñe{h^Bfc(m)Ffc[0]rg^(m) + hvkHBk(m)Fk{l}Tgvk(m + 1)
m=0

- htHBk(m)Rkk[-l]Bk(m - l)h% - KHBk(m + l)Rfcfc[-l]
? Bk(m)hl} - hlHBk(m)Kkk{0}Bk(m)hl (5.11)

where Rfcfc[-1] = Ffc[0]TFfc[l], and R*fc[0] = F*[0]TFfc[0]+Ffe[l]TFfc[l]. At thez'" iteration,
the ?-step of the EM algorithm is implemented by taking the expectation of the complete
log-likelihood function defined in (5.8) with respect to the observed data vector, yw, and
the current EM data estimates, b\ i.e.,

?

Q(b|b!) = S QMW), (5.12)
fc=l

where
?

QMV) = J2E^(gl,hl\bk)\yw,W] (5.13)

From (5.11), the expectation of the individual log-likelihood function is reduced to

V M-I

Qk{bk\W) = SS2??€ iE HH^(m)Fk[0}Tgl(m) + KHBk(m)Fk[l}T
xg£(m + 1) - hJ[ffBfc(m)Rfcfc[-l]Bfc(m - l)h£ - hvkHBk(m + l)Rfcfc[-l]

XBtMhJIy10, b*] } - E [h^Bfc(m)Rfe*[0]Bfe(m)h£|ytl), b¿] . (5.14)

To find the joint conditional expectation in (5.14), we evaluate E [gk(ms)\yw, b\ h], ms €
{m, m + 1}, where h = [h1, h2, . . . , hv]. Then the subsequent expression is used to find
E[f(K)\ywihi}> where f(K) denotes the resultant function in hvk. By noting that the

78



conditional probability density function, Pc {gl(ms)\yw, b\ h) is Gaussian with mean [36]

E[gt(ms)\yw,b\h] = ¿ Fk[Am}Bk(ms- AmYhI+ ßvk(yv(ms)Am=O ^
K 1 ?

- Y^ Y^ Fj[Am]B^m, - AmYh]Lm3 G {m,m + 1}, (5.15)
j= 1 Am=O '

The conditional expectation of the likelihood function in (5.14), after some algebraic
manipulations, can be expressed as (see Appendix B.l)

VM (LL, ,

v=l m=l ( ;=i /'=1 \ ^

Am(O)) - pfr,m(-l) - ^11n(I)) (!¿¡¡? ft?)1 + ((I - ßt)
(Ämi-l) + Äm(l) + Ä',m(0)) - P^,m(-1) " ¿&.J\)) (^

X (^)' + ((I - ßl) (p^,m(-l) + Äm(l) + Ä,n,(0)) - P3^,m(-l)
-P^,m(l)) (^)" (^u")* + (i1 - ^) (4(-l) + Äm(l) + Ä',m(0))
-*,m(-D - P^,m(l)) (#)" (^ - S S P^,m(0)(hìff (h*)'' l=\ l'=l,t'>l

+ßl(hl)iHBk(m)(ylk[m}- ¿ (^[-I]Bj (m - 1)¿ + Rjyf-lfB^m + 1)¿
+Ry[O]B^m)*) (hp^j, (5.16)

where pîj,m(mp),p^,im(mp),^;\m(mp), and ?$,????) , mp € {-1,0,1}, are defined
in terms of the cross-correlation coefficients between the Ith path of the kth user's code
sequences during the transmission of the mth STS symbol and the Vth path of the same
user's code sequences during the transmission of the (m + mp)t/l STS symbol, and the
kth user's current and next data estimates. The index i when excluded from the previous
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defined parameters means that the effect of current data estimates are not considered (see
Appendix B.l). Also, y"*^] is a (2 L ? 1) vector including the outputs corresponding to
the kth user at the despreader output, defined as yvc¡k[m] = Ffc[0]Ty^[m] + Ffc[l]ry^[m+ 1]
[89]. In (5.16), the conditional expectation of the attenuation coefficients given y„, and bl
is given by

(H^Y = E [^y11nW 2L(k-l)+q+2(l-l) (hv
2L(k-\)+q+2(l-\)

(^G^?'? = (^)'* (^i'"')1 + (Whh)2L(k-l)+q+2(l~l),2LU-l)+q' +2(l'-l),

(5.17)

(5.18)

where ?, ?' € {1,2}, 1,1' € {1, . . . ,L}, k,j G {!,...,AT} and

whh = e (hv-(hvY)(hv-(hv)T\yw,b (5.19)

In Appendix B.3, we prove that the conditional distribution of the channel vector, h",
given yw and b* is Gaussian with mean

M-I

(h")' = S B(mY (R[O]B(Tn)* + R[-l]B(m - I)1 + R[l]B(m + 1)<)
m=0

-1 M-I

+ N0Vu) x^BHVlW, (5.20)
OT=O

and covariance

M-I

nih = N0(J2 B(mY (R[0]B(m)¿ + R[-l]B(m - I)* + R[l]B(m + 1)*)
^ m=0

+ N0Z^ , (5.21)
where S? = diag{Ehl,Zh2, . . . ,ZhK}, Ehk = <%L2L. From (5.12), the M-step of the
EM algorithm is performed by maximizing the individual likelihood functions Qjfc(bfc|b*),
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k = 1, . . . , K, as

b^+1 = arg maxQfc(bfc|bl). (5.22)bfc

In order to give further insight into the system performance, we consider a synchronous
transmission over single path channel (L=I). In this case, (5.16) is reduced to

M-I

Qfc(bfc|b¿) = S âfcibfcHlb'), (5.23)
m=0

where

Qfc(bfcH|b*) = ¿> {(i - ßl) tei,m(o)| (???")' G + p2fc,n,m(o) (ftf)*"
? (F)* + PÎM,mW (^f (h^y + pSlim(o)| (?*!")' Ia) + ßl (Kf

xBt(m)(y:,H- ¿ Rw[O]BjM* (h?)* H (5.24)^ J = I ,&k J J

From the likelihood function in (5.24), we notice that the EM-based ST receiver can be
interpreted as follows: the channel coefficients of the K users are estimated based on the
observed data, yw, and the previous data estimates b\ The data bits of each user are
then detected from (5.24) based on the balancing weight, ßvk, between the ST parallel
interference cancelation receiver and the ST single-user coherent detector. We can also
notice that by using the EM-algorithm, the if-user optimization problem is converted into
K parallel single-user optimization problems leading to low computational complexity. A
block diagram of the proposed ST EM-JDE receiver is shown in Fig. 5.1.

5.4 EM Optimized Weights and Initialization
In this section, we derive the optimized weights of the EM algorithm to ensure

optimum performance. Also the conditions on the EM initialization are derived and
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Figure 5.1: ST JDE receiver based on the EM algorithm,

discussed in detail.

5.4.1 Optimized Weights (/?£)
As discussed before, the decoupling of the received superimposed signal involved in

the EM algorithm depends heavily on the choice of the balancing weight at each iteration,
ßl. Here we obtain an optimized weight that, as will be shown later, brings the perfor-
mance of the EM receiver close to the single-user bound. In [37], the authors derived a
closed-form expression of the optimized weights for SISO CDMA systems for flat fading
channels, using the so-called optimization via complete data technique. In this technique,
the optimum weights are derived based on the MMSE criterion. A shortcoming of this
method is that it does not take into account the effect of cross-correlations between the

signature waveforms. Therefore, the authors in [90] proposed another technique, called
optimization via projected complete data, where the effect of cross-correlation is taken
into consideration. This optimization technique shows performance enhancement com-
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pared to the first technique especially for frequency-selective channels [91]. Throughout
our work, we consider the first technique for the flat fading channels, while we employ the

second technique for the frequency-selective fading channels.

In (5.16), we notice that C?fc(bfc|r/) is a sum of V statistically independent terms

given b and its EM estimate b\ which are related to the V receive antennas. Since the
spatial channels corresponding to the links between transmit and receive antennas are

considered independent, ßk can be separately optimized.
In this case, we choose the weight coefficients to minimize the linear mean-square

error between the true signal vector, gk(ms), and its estimate (gvk(ms)Y
= E [gt(ms)\yWi b1}, ma € {m, m+1}, after being projected on Ffc[0] and Ffe[l] respectively
as

/^argminSOl^U2], (5.25)
"k

where

E9 = F,[0]T (gj;(m) - gvk(mY) + Ffc[lf (g£(m + 1) - g£(m + 1)') , (5.26)

and I · || denotes the vector norm. Taking the expectation of (5.15) with respect to h",
we have

E[gl(ms)\ywM}= ¿ Fk[Am}Bk(ms-AmY(KT + ßVk(yl^s)Am=O ^
K * ?

- S S Fj[Am]B^m8 - Am)* (hj)* \,ms e{m,m + 1} (5.27)
j=l Am=O '

In order to simplify our analysis, we assume that M —> co, i.e. the random channel
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coefficients are assumed to be known to the receiver (see Appendix B.4). It follows that

E[gl(ms)\yw,V} = S Fk[Am}Bk(ms- AmYhI +ßl(yl(ms)
Am=O

K 1

- J2 S Fj[Am]Bj(Tn6. - Arnfh] J , ms € {m, m + 1} (5.28)
J = I ?t?=0 '

Substituting gfc(ms) and {zvk{ms))\ ms £ {m, m + 1}, in (5.26), we have

E9 = Rfcfc[0] (Bfc(m) - Bt(Tn)*) K + Kkk{-1] (Bk(m - 1) - Bk(m - If) hvk
+ Rfcfc[-1]T (Bk(m + 1) - Bk(m + 1)*) hvk + Ffc[0]T<fc[m] + F,[l]r<fc[m + 1]

- PlYlkH + Pl (S Ry[O]Bj(Tn)*^ + Rfcj[-l]Bj(m - l)'hj + Rfcj[-lfS=I

x Bj(Tn + l)*hV J (5.29)

where Rfcj[-1] = Ffc[0]TFj[l], and Ry[O] = Ffc[0]rFj[0] + F*[l]TFj[l]. Substituting
YlkH = Ef=i Rfcj[0]Bj(m)hJ + Rfcj[-l]Bj(m - l)hj + Rfcj[-l]TBj(Tn + l)hj + <fc[m],
where nvck[m} is (2L ? 1) vector including the noise samples corresponding to the kth user
at the vth despreader output, and y/ffinvCik[m} = ^k[OfKM +Fk[l}Tnvwk[m + 1} , in
(5.29), we have

E9 = Rfcfc[0] (Bfc(m) - Bk(mY) hvk + Rkk[-i] (Bfc(m - 1) - Bk(m - 1)¿) h¡;
+ Rfc,[-1]T {Bk(m + 1) - Bk(m + if) h% + V^<t[m] - # ¿^[0]

Vj=I

? (Bj(Tn) - Bj(Tn)*) h? + Rfcj[-1] (Bj(m - 1) - Bj(m - 1)*) h? + R*j[-1]T
? (Bj(m + 1) - Bj(rn + 1)*) h? + n»fc[ro]) (5.30)

Now, we can find the value of || E9 ||2 as follows. By neglecting the terms independent of
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ßk, we have

E9 II2= 2^ß»ReihvkH ((Bk(m) - Bk(mY)T Rkk[0}T + (Bt(m - 1)
-Bfc(m - lyf Rfcfc[-1]T + (Bfc(m + 1) - Bk{m + 1)¿)T Rfefc[-1])

x Kk[m]\ - 2ßvkRe(hlH ((Bfc(m) - Bfc(m)¿)T Rfc,[0]r + (B*(m - 1)
-Bfc(m - 1)¿)T RuI-If + (Bfc(m + 1) - Bfc(m + 1)¿)T ?**[-1])
/ K

? I J] (Rfcj[0] (?,·(t?) - Bj(m)¿) + R^-I] (Bj(m - 1) - B,-(m - 1)*)
S= I

+Rfcj-[-l]r {Bjim + 1) - Bj(m + l)4)) h* + <ife[m]) } - 2ß»ky/ß%
? /feinem]" (¿ (Ry[O] (Bj(m) - B,(m)¿) + Rfcj[-1] (Bj(m - 1)

J = I

-B,-(ro - 1)¿) + Rkj[-l)T [Bj(Tn + 1) - Bj(m + 1)¿)) hj + <fc[m]J j + $2
? ? S (1W0I (B¿M - BjW) + ^t-1I (B¿(m - ?) - B^m - 1W

j=l

+Rfci[-lf (Bj-trn + 1) - B^m + 1)')) hj + <fc[m] f +/3>^[m]"<fc[m]. (5.31)

In our system model, we assume that the noise samples, nvck[m}, and the channel coeffi-
cients, h£, are mutually independent, as well as

E • k,v* ,j,v
lql 'V'' = <

°k, j = k,q = q',l = l'
0, otherwise

(5.32)

KkH"11IkH] = No (¿Wl [0] + Äfcfc,22[0] + · · · + Äfcfc,2L2L[0]) , (5.33)
where #**,«[()] (C = 1,2, ..., 2L), represents the ?"1 diagonal element of Rm[O]. Therefore,
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taking the expectation of (5.31) is reduced to (see Appendix B.2)

ßvk = argmin ¡N0 fe - 2ß°J + ßf) (Äfcfc,n[0] + ^22[O] + . . . + RkkflLiM)
L

-?s\ß? S (rkkfi(2l - 1,2/ - 1) + rfcM(2Z,2/)) ((l - E [bkl[rn}bkl[mY])
Z=I

+ (1 - E [bk2[m]bk2[mY])) + (^1 (2/ - 1,2/ - 1) + rkk^ (21, 2I))
? ((I -E [bkl[m - I]Oh [m - If]) + {l - E [bk2[m - l]bk2[m - 1]<]))
+ (rkk,i(2l -1,2Z-I) + rfcM(2Z,2Z)) ((l - E [bkl[m + l]bkl{m + If])

K L

+ (1-E [bk2[m + l}bk2[m + lf])) + 2ßf ]G s) J^ (^,o(2/ - 1, 2Z - 1)
j=i /=i

+r^,0(2Z,2Z)) ((? - ^ [VMM^f]) + (? - e [M*K]))
+ (G?·,_?(2? -1,2Z-I) + riA_i(2Z,2Z)) ((l - JS [^i [m - I]Oj1 [m - Ip])
+ (1 - E [bj2[m - l}bj2[m - lf])) + (^1 (2Z - 1,2/ - 1) + rÍAi(2Z,2Z))

? ((I - E [Oj1[Tn + I]Oj1[Tn + 1]¿]) + (l - E [bj2[m + ì}bj2[m + l]4]))} (5.34)

where ^,„,„(C, C),j = l,...,K,C = l,...,2L,mpe {-1, 0, 1}, represents the <t/l diagonal
element of Kjj[mp]TRjj[mp]. We notice that

(1 - E [bjq[m + mp}bjq[m + t???]) = 2P¡^,j = 1, . . . , k,q = 1,2,
mp = -1,0,1, (5.35)

where the probability of error, P6^ = / (¿>jq(m + mp) f bjq(m + t??)t) , j = 1, . . . , k,
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q = l,2,mp = -1,0,1. Using (5.35), (5.34) can be expressed as

ßl = arg min { N0 (ßvk - 2ßf> + ßf) (R^11[O] + /?fcfc,22[0] + . . . + Rkk,2L2L[0])
L

- &4ßk {PZ + PZ) S (r^.°(2/ - 1. 2/ - 1) + rfcfci0(2Z, 21)
1=1

+rkk¡^[2l - 1, 21 - 1) + ?^_!(2/, 21) + rfcM(2/ - 1, 21 - 1) + rfcfcil(2i, 2Z))
K L

+ Aßf S s) (??? + PÏ'S) S ^rn^21 - 1,2Z - 1) + G,,,0(2/, 2Z)
j=l 1=1

+rJjW(2/ -1,21- 1) +r#,_?(2?,2?) + rjjA(2l -1,21-1) + rJjtl(2l,2l)) J. (5.36)
Assume that ak = ÄfcMi[0] + ñfcfc,22[0] + . . . + Rkk,2L2L{0}, and ?{ = rjjfi(2l - 1, 21 - 1) +
rjji0(2/,2/) + r^_!(2Z - 1,2/ - 1) + rJ-i,_1(2Z,2Z) + ^1 (2Z - 1,2/ - 1) + riA1(2Z,2Z). By
differentiating (5.36) with respect to ßvk and substituting ? = v//3£, we have

Í2N0ak + 8 ¿ s| (Pe^ + ?#) ¿ 0?) ?2 + (-3N0ak) ?V J=I ?=? J

+ ÍN0ak - So* [PZ + PZ) S ?? = °- (5·37)
Solving(5.37) with respect to ? results in two possible solutions for ßvk. Assuming that the
performance of the EM-based ST receiver with V=I receive antenna will converge to the
single-user (SU) bound with perfect CSI assuming transmission over frequency-selective
fading channels. Then the probability of error of the odd and even data bits are defined
as [16]

Pei = IQ [Re[G(I,!) + 0(1,2)}/2*\ l"v ' ' "v> "V 0(1,1)

+ \q{ Re[G[I, I)- 0(1,W^1J J, (5-38)
87



Pe2 = IQ \Re{G(2,2) + 0(2,1)}/2^ \ l"v ' ' "v ' n V 0(2,2)

+ ^(Äe{ö(2,2)-ö(2,l)Ü^y j, (5.39)
where

£ = [(SiCh1 - S2Ch2) (S2Ch1 + S1Ch2)]^ . [(S1Ch1 - s2ch2) (S2Ch1 + SiCh2)] , (5.40)

and S1 and S2 include the multipath versions of the two code assigned for every user, and

chq, q — 1,2, include the multipath channel coefficients from the qth transmit antenna
to the receive antenna. Also, the Gaussian Q-function, Q(x), is defined as, Q(x) =

1/\/2tt f^° e~x2/2dx. Substituting with the EM channel estimates defined in (5.20) in
the single-user bound, Pei and P62, we obtain an approximation for P6^, and Pe"¿. The
importance of the optimized weight coefficients arises from the fact that it determines
the best balance between the single-user matched filter detector and the ST PIC based
detector. In the literature, the partial PIC has proven to be near-far resistant, where

it achieves a performance close to the ML detector [92]. To explain how the weight
coefficients control the performance of the EM receiver, consider the scenario of 2-user

STS system with two transmit and one receive antenna assuming transmission over AWGN
channel. In Fig. 5.2, we show the relation between the weight coefficients and the MAI
level. As shown in the figure below, for extremely high MAI energy case, i.e., 72 —> co,

where -yk,k = 1,2, represents the kth user SNR, ß? -> 1, and the detection of user one
data is completely based on the output of ST PIC detector. On the other hand, ß? -> 1
for very low MAI energy, i.e., 72 -» 0. Consequently, the performance of the EM-based
ST receiver is close to that of single-user matched filter detector, which is the optimum
detector in this case. For cases falling between these two extreme cases, the weights are



optimized in such a way to compensate for both the MAI interference and noise. In the

case of equal power, the optimized weight coefficients of different users have equal values,

i.e., P1 = P2 = \-

1a- — O- ¦¦- 1S^ ir^r~~-& —? ——<?- > -?; 4> „

Jl

V
..I.;.//.

-----, P1(Y1=^dB)
- ¦+¦ -¦ P2(Y1 =-3dB)6-P1(Y1 = SdB)

- S- - P2(Y, = 3dB)
—<=>— P1(Y1=BdB)
-O- P2(Y1=BdB)

¦ is».

,<!>- -<^ ^ --. —A r O'
-IO -5 O

Y2/Y,(dB)

Figure 5.2: The behavior of the optimized weight coefficients for 2-user STS system as-
suming AWGN channel.

5.4.2 EM Initialization

Since the EM algorithm is sensitive to the initialization of the parameters to be
estimated [67], as well as due to the high computational complexity of the joint estimation
and detection in MIMO systems, our proposed EM-based ST receiver is initialized by
reliable estimates, where we employ the ST MMSE separate detection and estimation
(ST MMSE-SDE) technique. This will guarantee that the performance of our proposed
receiver converges to the global maximum of the likelihood function with a fast rate.
Furthermore, this will also ease the maximization of the individual likelihood functions
Qfc(bA:|bi) in (5.22). Since the estimation of the current codeword (&fciMA2M) is



based on the knowledge of previous {bki[m - l],6fc2[m - I]) and following codewords
(òfci[m + l],6fc2[m + l]), the Viterbi algorithm can be used to evaluate (5.22) [20]. However,
this will increase the complexity of the proposed receiver. Alternatively, for the first
iteration, we assume that the ST MMSE-SDE estimates provide reliable estimation for

the previous and following codewords, bkq[m-l] = bkq[m-l\°, and bkq[m+l} = bkq[m+l}°,
q G {1,2}, while for the subsequent iterations, we assume that bkq[m- 1] = bkq[m — \}\ and
bkq[m + 1] = bkq[m + l]i_1. Consequently, the maximization of (5.22) is performed over 4
possibilities for the current kth user data bits, bki[m} and bk2[m], (i.e, {(1,1), (1,-1), (-1,1),(-
1,-1)}) considering BPSK transmission. The MMSE-SDE receiver was first proposed in
[37] for SISO systems. Here, we extend this work to MIMO CDMA systems as follows. In
order to estimate the channel, we assume that each user transmits p' training codewords

known at the receiver, i.e., each user transmits 2p' bits. Let zvp, includes the output of the
vth matched filter bank within a frame of p' codewords. Based on z£,, we can estimate the
channel vector at each receive antenna, hvmmse [93]. Then, following the same procedure,
the MMSE data estimate is obtained based on zv while assuming h = hTOmse [94], where

zv represents the output of the V matched filter banks within a frame of M codewords

5.5 Cramer-Rao Lower Bound (CRLB) on Channel
Estimates

In search for minimum variance unbiased estimators (MVUE), the CRLB is com-

monly used in estimation theory to assess the accuracy of the estimator in terms of its
error variance. Throughout our derivation, we consider synchronous transmission, i.e.,
Tk = 0,k=l,...,K, over flat fading channel, i.e., L = I. In this case, (5.2) is reduced to

yV[m} = C[0}B(m)hv + nv[m}, m = 0, . . . ,M - 1;? = 1, - . . ,V. (5.41)
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Let

y=[y(0),y(l),...,y(M-l)], (5.42)

where

y(m) - [yl(m)y(m), ..., yv(m)}, m = O, . . . , M - 1. (5.43)

Then, the log-likelihood function

'M-X ?

<E>(y|h, b) oc ~ ( ¿ S (y"H - C[0]B(m)h")" (y>] - C[0]B(m)h") . (5.44)W0 im=0 u=l

Neglecting the terms independent of the channel vector h, we have

'M-X V

<ï>(r|h,b) = ~ I ¿ S-2?e{?????(t?)??{t?]} + hv"B(m)HK[0]B(m)hv . (5.45)N0 .,TTl=O U = I

Focusing on the channel estimates, we assume that the data vector, b, is known a priori
or has been correctly detected. The CRLB provides a lower bound on the mean-square

error (MSE) of the channel estimates as follows

E (L k.v \ L.k,V >-L V L =U-,g = l,2;fc = l,.
^ápWO

, K (5.46)

To evaluate -ttÊ
9h' (*)' , we replace B(m)¿ by B(m) and substitute (5.2) in (5.20),

yielding to
E m Fhv,

where T = E (S^?1 B(m)R[0]B(m) + NQY¿) ~" E^o B(m)R[0]B(m)
(5.47)

Consider

the asymptotic case when the average SNR of each user increases, ^ -> oo for k =
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1, . . . , K. In this case, T becomes a unitary matrix, and

h", (5.48)

which proves that the EM estimates are asymptotically unbiased. Consequently, (5.46) is
reduced to

E (#)' V >

^¿^(y|h)
(5.49)

It is convenient to split the channel estimates into their real and imaginary components,

Ki = KZr +jKÙ- Then' the CRLB can be comPuted 8^

E- (C)* - k,v >
-1 -1

{^*(y|h)}+E{^*(y|h)}' (5.50)

k,vBy computing the second derivatives of (5.45) with respect to hq'^r and h^it and express-
ing the channel variables as Ki = ??a?'?^ we obtain the following bound for the MSE
of the EM channel estimates

E ( fc.uN k,v >
Nn

EkM (5.51)

In (5.51), it is noted that the power of the estimation error is inversely proportional to
both the SNR and the length of the observation window.

5.6 Simulation Results

In this section, we examine the BER performance of the proposed EM-JDE receiver
in MIMO CDMA systems. In all cases, we consider a system with two transmit and
V = 1,2 receive antennas. We also consider an uplink asynchronous transmission of a
data block of 40 codewords (M=40) over a frequency-selective fading channel. Without
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loss of generality, we consider a 5-user system, where all users are assigned Gold codes of
length 31 chips. We assume the first user as the desired one. A training codeword of eight

training bits is used for the initialization of the EM receiver. Without loss of generality,

??-

? O

io"2

aG
UJ
co

io"5

10-

O S 10 15
Y1 = ^=Y5CdB)

Figure 5.3: BER performance of the first user considering ST EM-JDE receiver with two
transmit and one receive antenna over frequency-selective fading channels. The channel
coefficients are assumed unknown at the receiver (M-AQ, p'=8, L — 2, 2-iteration).

throughout all our simulation results, we only consider the average BER of the first user,
BERi, assuming different scenarios. As a reference, we include the BER performance
of the ST MMSE-SDE receiver with perfect channel estimation. Fig. 5.3 presents the

BER performance of the proposed ST EM-JDE and ST MMSE-SDE receivers using 2 ? 1
antenna configuration. The results are also compared with the BER performance of the
SU system assuming unknown channel. In order to show that our proposed receiver attains
the full system diversity, we compare our results with a MRC with the same number of
diversity branches assuming perfect channel estimation. The MRC represents an optimal
combiner for a receive diversity scheme of one transmit and multiple receive antennas [53].
Considering the STS system with two transmit and one receive antenna, it is clear that
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the EM based ST receiver attains the full system diversity, i.e., same as MRC with four

diversity branches.

10°

io_,c

ST 10"1
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1 ?-
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'"? 1 234 56 7 8 9 IO
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Figure 5.4: BER performance of the first user considering ST EM-JDE receiver with V=2
receive antennas, M = 40, p' = 8, L = 2, 2 iterations.

In Fig. 5.4, we examine the BER performance for 2 ? 2 antenna configuration. The
results show that the full system diversity is attained when comparing the results with
MRC with eight diversity branches.

In Fig. 5.5 we examine the near-far effect property of the proposed receiver for
V = I receive antenna. We fix the received SNR of the first user 71 at 15 dB, while

the interfering users have equal SNR ratios relative to 71, varying from -10 to 60 dB.
We also compare the performance of the ST EM-JDE receiver considering optimum ß°k
values (5.37) and equal ßvk values ( ßvk = I /K). The results show that the EM receiver
with optimum ßvk is near-far resistant. Also when the interference level is high, a reliable
estimate of the MAI is obtained and consequently the MAI removal is performed efficiently.
On the other hand, the performance of the MMSE-SDE receiver degrades due to the
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noise enhancement. We can notice the effect of ß"k on the performance of the ST EM-
JDE receiver. That is, compared with the case of equal ß"k, the optimum weights, /?£,

achieve the best balance between the ST single-user coherent detector and the ST parallel

interference cancelation receiver (5.16). The same conclusion also follows from Fig. 5.6.

ST MMSE-SDE
ST EM-JOE(3-it»ration), ß =1/K
ST EM-JDE(I -iteration), ß optimu
ST EM-JDEÍ3—iteration), B. optimum
ST EM-JDE.Single

e> -<?-

_, j j , , ? IO IO 20 30 40 50 60

Figure 5.5: BER behavior of the first user as a function of the MAI level with V=I receive
antenna over frequency-selective fading channels, M = 40, p' = 8, L = 2, 7!=15dB.

Finally, in Fig. 5.7 we assess the accuracy and the asymptotic performance of the channel
estimates based on the EM algorithm for a system with V=2 receive antennas. We also
assume synchronous transmission over flat fading channel, i.e., L=I. In this figure, we
simulate the MSE of the channel estimate, hJi1, averaged over 105 channel realizations at
different SNRs. The results show that the channel estimates are asymptotically efficient

where the average MSE of h\f estimate converges to the CRLB at high SNR, confirming
our analytical results presented in Sec. 5.5.
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Figure 5.6: BER behavior of the first user as a function of the MAI level for V=2 receive
antennas over fiat fading channels, M = 20, p' = 1,L = l,7i=8dB.

5.7 Conclusions

We have developed an iterative joint detection and estimation receiver based on
the EM algorithm for STS systems. Using Monte-Carlo simulations, we examined the
performance of our proposed receiver in frequency-selective fading channels. It was shown
that with few training bits, the receiver can achieve performance close to the single-user
bound in few iterations. We have also shown that the proposed receiver attains the full

system diversity through accurate channel estimates.
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Figure 5.7: MSE of channel estimates in MIMO CDMA system with V=2 receive antennas
considering flat fading channel, M = 20, p' = 1,2 iterations.
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Chapter 6

Conclusions and Future Works

6.1 Summary and Conclusions

This section briefly summarizes the accomplished work and the major contributions
in this thesis.

In Chapter 1,2, the essential background of the space-time processing techniques for
the MIMO systems was provided. Given the importance of CDMA as a generic multiple-
access scheme, we revised the standard transmit diversity scheme for WCDMA systems,
known as STS. This scheme has the advantage of achieving the full system diversity

without wasting the system resources. Since the detection process of MIMO CDMA
systems is based on the perfect knowledge of the channel at the receiver side, a brief
description of different channel models and possible channel estimation techniques were
presented.

In Chapter 3, we investigated the performance of MIMO CDMA system over
frequency-selective fast fading channels, where perfect CSI was assumed at the receiver
side. We proposed a space-time receiver which utilizes the spatial and temporal diver-
sity gains provided by the time-variant multipath fading channels. In our work, we also
studied the effect of asynchronous transmissions on system performance. To mitigate the
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effect of MAI, a decorrelator detector was employed at the receiver side. We derived the

BER expression over frequency-selective fading channels considering both fast and slow
fading cases. Finally, our proposed receiver was shown to achieve the full system diversity

through simulation and analytical results.

In Chapter 4, the effect of channel estimation errors on the performance of MIMO
CDMA systems was examined. It was shown that channel estimation based on training

techniques degraded the performance of MIMO CDMA systems due to the increased level
of interference. As a remedy to this problem, we proposed a channel estimation and

data detection technique based on the superimposed training approach for MIMO CDMA

systems. In our proposed technique, the interference effect was eliminated from both
the channel and data estimates using two decorrlators; channel and data decorrelators.

The performance of the proposed estimation technique was investigated over frequency-
selective slow fading channels, where we derived a closed-form expression for the BER
of the prescribed system. Finally, our proposed scheme was shown to be more robust to
channel estimation errors. Furthermore, both analytical and simulation results indicated

that the full system diversity was achieved.

Considering that training estimation techniques suffer either from low spectral ef-
ficiency (i.e., conventional training approach) or from high pilot power consumption (i.e.,
superimposed training-based approach), in Chapter 5, we presented an iterative JDE us-
ing the EM algorithm for MIMO CDMA systems over frequency-selective fading channels.
We also derived a closed-form expression for the optimized weight coefficients of the EM

algorithm, which was shown to provide significant performance enhancement relative to
the conventional equal-weight EM-based signal decomposition. Finally, our simulation
results illustrated that the proposed receiver achieved near-optimum performance with
modest complexity using very few training symbols.
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6.2 Future Works

In what follows we address some topics of interest for the future extension of this
research.

• In this work, the users' delays and the channel impulse responses are assumed to

occur at multiples of the chip period. Furthermore, the users' delays are assumed to
be known at the receiver side. However, the effect of imperfect synchronization on

the performance of STS systems as well as possible synchronization techniques are

practical issues which have not been addressed in the proposed scheme throughout
the thesis. Addressing these problems is an interesting research direction.

• Throughout this dissertation, the fading correlation in the MIMO CDMA channel

was neglected. Recent research in [95] has shown the possible utilization of the
channel correlation information to bring further advantages to the MIMO systems

if the channel knowledge is available at the transmitter. Future works should focus
on the effect of correlation on MIMO CDMA systems.

• Adaptive rate application in MIMO CDMA systems considering frequency-selective
fading channels is a promising and practical problem that should be considered in
the future research.
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Appendix A

A.l Definition of Pilot and Data Code Matrices

In this section, we drive the pilot and data code matrices corresponding to the

current, following and previous STS symbols of the K-user system within the observation
interval respectively, with the aid of Fig. 4.2. In (4.2), the nonzero elements in C[O]
include the periods of the transmitted sequences with blank background in Fig. 4.2.

Therefore Ck[O] is defined by

Ct|0] :
32W-1 2N-1 !W-I

0

P0

°&Tfcx4

„2N-Í+1

„2N-L+2

0rtx4

<>?t??4

where 0 represents a zero matrix, and Ark = rmax - rk. From Fig. 4.2, the nonzero
elements in C[I] include the periods of the transmitted sequences with downward diagonal
background. Hence, Cfc[l], (k = 1,2, ..K) is given by
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Cj1[I] =

U(2N + Tfc)x4
P0

P1

u(2JV + Tfe)x4
O O

pO pO

n&Tk + L-2 0&Tk + L~2 &Tk + L-2 ?t^ + L-Ï Dirfc + L-3

Similarly, during the data detection, C'[0], is defined by

c' [o] = [c;[o], Cjo],. ..,c'K[

°(2« + Tt)x4
O

O

with

and

Cl[O] =

Orfcx2

u*l

-Al

-fcl -fc2

°TfcX2
0

4!
-fc2

CA:2

„2W-1 JW-I J2W-2 „2??-2
-hi

0

0

ufc2

0

0

^i "fc2

„2N-1 „2W-I
^l -fc2

0 0 0 0

0Arfcx2 0ATfcx2

°rfcx2
0

0

0

Cfcl

u/cl

0

0

0

cfc2

„2W-L „2W-L
L-k2

„2N-L+1 „2N-L+1
4:1 42

„2W-L+2 J2N-L+2
41 42

2W- 1
4:1

0Arfcx2

J2W-1
42

C[I] = [Cl[I]1C^l]1.. .,C^[I]],
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where

cL[i]

O (2N+Tk)x2

4l

4l

-kl

4l

-fc2

"k.2

-fc2

Lk2

0(2N+rfc)x2
O

eli
cl

4ï2

-k2

-k2

cL~242

J\Tk+L-2
-kl

Ark+L-2 Ark+L-3 Ark + L-3
-k.2 ^fcl 42

>(2N+Tk)x2

O

O

O

4l

„?t^-?
4l

O

O

O

ck2.

r^rk-lLk2

In (4.9)-(4.11), C'[-l] is [(2N + L-I + rmax) x 2LK] data code matrix which includes
the data sequences corresponding to the K users of the previous STS symbols within the
current observation interval. Prom Fig. 4.2, the nonzero elements in C'[-l] includes the
periods of the transmitted sequences with small grid background,

c'[-i] = [c;[-i],c;[-i],...,cK[-i]],

where

cl[-i] =

Ckl

Ckl

„2JV-I
-kl

0

0

„2JV-T*
Lk2

2N-Tk + l 2N-Tk + l
4:2

0(2N+Ak)x2

„2JV-I
-k2

0

0

2JV-Tfc-1 2 JV-T*- 1
ckl Cl"

„2JV-rfc
4l

„2JV-2
-kl

„2JV-1
-kl

t-fc2

r2N-Tk4:2

„2JV-2
"fc2

„2JV-1
-k2

0 0 0

0(2JV+Afc)x2

2/V-rjt-L+l
42

2N-Tk-L+2
Lk2

„2JV-L
42

„2JV-L+142
„2JV-L+2
42

2JV- 1
42

0(2¿V+Afc)x2
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A. 2 Covariance Matrix of X.v

In this section, we drive the covariance matrix of X" at the vth receive antenna,
whose elements are defined in (4.32). The covariance matrix of ?? is defined as

R-//-// ®2Lx2LK ®2Lx2L

Û2LKX2L R-B-JS ®2LKx2L

®2Lx2L ®2Lx2LK RjV-JV

where R//_//, Re-e and Rjv-jv represent the cross-correlation matrices corresponding to
the channel coefficients of the first user, the channel estimation errors corresponding to

the K-user system, and the noise samples at the data decorrelator output of the first user,
respectively.

Let

h V fi l,xr ? 1,1) I 1,1) ? I1DlT— [?? , ?21 ) "12 > · · · ) n2LÌ ?

& ~~ FlI ) e21 i · · · ) e2L ) ' · · ' e2L J

and

N" = [(N^)M, (N^)2il, . . . , (N»d)2L_M, (N^)2L,1]r

Then,

RH-H = E[hvhvH] =
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R1 - E[XvXvli] =

ot

Ol

0 0

0

0
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,'H,RÊ_E = ?[????'
(Rp )l,l

(R;h)2,i

B/2

(Rp^; 1,2 (r;h) 1,5

(Rp//)2,2 (R-p )2,5

(Rp )4i-2,l

(Rp )l,4LA'-2
(Rp )ïALK-2

(RpW)4L-2,2 (Rp//)4L-2,5 "- (Rp )4L-2,4LA:-2

(RpW)4ZJf-2,l (Rp//)4Z,K-2,2 (Rp//)4Z,K-2,5 ··· (Rp )4LK-2,4L/C-2

and

RN_jv = £?[N"N"H]
(Rj")l,l (RjH)l.2 ··· (R^)l,2L
(Rj")2,i (RJ*)2,2 ··¦ (RJh)2,2l

(Rj^L.l (R¡'//)2¿,2 ··· (RJ )2L,2L

A.3 Coefficient Matrices Si and S2

In this section, we construct the coefficient matrices Si and S2 of the quadratic form
defined in (4.30) and (4.31). Si is a square matrix of dimension [4L + 2LK], consisting
of the coefficients corresponding to the elements of Xv in (4.30), and is given by

Si =

>H-H &H-E &H-N

SJí-e Se-e &E-N
Sh-n Se-n °2Lx2l
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where

ìH-H(2Lx2L)

A1 O ··· O

O A' ··· O

"? -E (2Lx2LK)

O O

-.?'??(1)+?' -B'Xi(2)-yt'
2 2

?'?2(1)+?' ?'?2(2)+?'
2 2

-B7X3(I)
2

5'X2Z-(I)
2

-?'?3(2)

B'X2l(2)
2

A'

-?'??(3)
2

5'?2(3)
2

-¦?'?3(3) +?'
2

Sh- N(2Lx2L)

2 "

? -?

O O

-B'~X.i{2LK)
2

B'X.2(2LK)

-B'X3(2LK)
2

B'X2L(2LK)
2

ìE-N(2LKx2L)
O O

O O

O O
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Finally, the square matrix, S£_ß(2L/ix2LK), is given by

-B'Xi(l)
B'X2(l)-B'Xi(2)

2

-B'X3(l)-B'Xi(3)
2

-B'Xi(2) + B'X2(l)
2

B'X2{2)
-B'X3(2) + B'X2(3)

2

B'X2Í,(l)-B'Xi(2¿) B'X2L (2) + B'X2(2¿)
2 2

-B'Xi(2L+l)
2

-B'X1(2L/C)
2

B'X2(2L+1)
2

B/X2(2LJ<)
2

-B,X1(2L) + B'X2L(1)
2

B'X2(2L)+B'X2L(2)

-B'X3(2¿)+B'X2¿(3)
2

B'X2l(2L)
B'X2L(2¿+1)

2

B'X2L(2LK)
2

Similarly, one can find the coefficient matrix S2.
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Appendix B

B.l Estimation of Qfc(bfc|b2)
In this section, we drive a closed-form expression of Q^b* |bl) , which is defined in

(5.14). After some mathematical manipulations, (5.14) can be expressed as
V M-I

QMV) = ¿ ¿ 2Re [E [AkS(m) + Ak/{m) - A? (m) - ¿f(m)|ytü,b¿] }
v=l m=0

-E [Af(Tn)Iy11,,^], (Bl)
where

Ak'v(m) = hfBk(m)Fk[0}Tgl(m), (B2)
Ak>v(m) = hfBk(m)Fk[l}Tgvk(m + 1), (B3)
Ak>v(m) = htHBk(m)Rkk[-l}Bk(m - IJhJJ, (B4)
Ak4'v(m) = hfBk(m)Rkk[-l}TBk(m + l)h£, (B5)
¿f(m) - hlHBk(m)Rkk[0}Bk(m)hvk. (B6)
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krv ? tk,v ?Starting with A{v(jn) and A^ [m), and using (5.15), A1'V{m)+A%v(m) can be represented
as

A\'v{m) + Ak2'v(m) = hlHBk(m)Rkk{-l}Bk(m - I)Ui^ + h^Bfc(m)
? Rfcfc[-ljTBfc(m + I)X + hlHBk(m)Rkk[0}Bk(myK + ft (hfBfc(m)y^[m]

?

- J2KH^k(m)Rkj[-l}Bj(m - 1)^ + h^B^mJRt^-fB^m + l)¿h*

+ hrBfcímJRytOjB.-H'hJ 1 . (B7)

Consider the first term of the right-hand side of (B7). By taking the expectation of this

term with respect to yw and b\ we obtain

E [h^Bfc(m)Rfcfc[-l]Bt(m - lYK\yw,W] ^^^,J-1) ftu^l?)
1=1 /' = 1

^,m(-i) {wtây + Ä,m(-i) {WW)* + ps&,™(-i) O'f^y . (Bg)+,

where

Äm(-l) = 0C'(-l)&*iK
+ (^'(-l)iiiK

Ä.m(-i) = (pff,«'(-i)&*iK
- (pÎ2.«'(-l)^iK

Ä.m(-1) = (&'(-1)&*2?
+ (Ä'(-i)M™

+ ^,«'(-!^[mDÔMlm-l]*, (?9)

+ ^Ui'(-l)í»fc2M) ^wIm-I]*
+ ^,«'(-!?^?) M™ - 1]\ (BIO)

-ftt«'(-1)ò«H)^h-i]i
- ^(-l)6nH) M™ - I]', (BH)
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ÄJ-1) - {PnA-^bk2[m} - f%,u,(-l)bkl[m\) bk2[m - if
- {p%Á-^kM\ - &'(-l)&fciM) hi[m - 1]\ (BU)

where píir(-l), q, q' E {1,2}, 1,1' € {1, . . . ,L) represents the cross-correlation between
the Ith path of the qth code of the kth user which is corresponding to the current STS
symbol interval and the l'th path of the q'th code of the same user during the previous
STS symbol interval. Similarly, we evaluate the conditional expectation of the second and

third terms of (B7) by considering the cross-correlation between the multipath versions
of the kth user code sequences during the current STS symbol interval with the multipath

versions of the code sequences of the same user during the following and current symbol

intervals respectively, as well as replacing the iterative estimates of the kth user's previous
data bits (bk\[m. - lf,bk2[m - if) in (B9)-(B12) by the corresponding iterative estimates
of the kth user's following (bki[m + if, bk2[m + if) and current data bits {bkl[mf, bk2[mf)
respectively. Also, we can evaluate the conditional expectation of the sum term in (B7)
as follows. Considering the first term in this sum, we have

LL .

E [???,(p?)?,?-1}??(t? - I)^y10, bl] = S??',™^ (^Mi')
(=1 ?' = 1

+ ÄJ-D (¿r^y + 'SU-D o^y + ä.j-1)
x(/^V>)\ (B13)

where

PÎlJ-1) = (?'(-?)?? + Är(-l)MH) bß[m - Vf
+ (pÍÍ«>(-l)b*iH + P2U-IK2M) bj2[m - IP, (BH)
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bj2[m - if
Oj1[Tn -if, (B15)

??[p? -??

bj2{m - if, (B16)

6,-2[Wi-I]*

Oj1[Tn-If, (B17)

where /oJjv/,(-l), q,q' € {1, 2}, I, G G {1, . . . , L], k, j € {1, ... , K] represents the cross-
correlation between the Ith path of the qth code of the kth user which is corresponding to
the current STS symbol interval and the l'th path of the q'th code of the jth user during the
previous STS symbol interval. Similarly, we find the conditional expectation of the second
and third terms of the sum term in (B7) by considering the cross-correlation between the

multipath versions of the kth user code sequences during the current STS symbol interval
with the multipath versions of the code sequences of the jth user during the following and
current symbol intervals respectively, as well as replacing the iterative estimates of the
jth user's previous data bits (Oj1[Tn - if, bj2[m - if) in (B14)-(B17) by the corresponding
iterative estimates of the jth user's following (£>¿i[m + if ,òj2[m + if) and current data

P2Ï',m(-l) = (pî{i;'(-l)^iH + 4{„,(-l)o,2[m!
- (éip(-1)6«H + /4i'(-1)JaH

Ä,m(-1) = (Pu,iA-l)bk2[m] - pk2{tll,(-l)bkl[m_
+ (/$,H'(-l)Mm] - Pká,u>i-l)bki[m]

Pg'/',m(-1) = (/>ÎÎ.«'(-1)MH - P2Í«'(-l)&*iK
- (pÎ2,h'(-1)M™] -&.(-i)i*iH
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bits (òjiHS&^H*) respectively. Finally, E \Ak¡v(m) + A^(Ui)Iy111M is reduced to

L L

E Ak{v(m) + Ak'v(m)\yw, b* = ££ 4(-l) + ^,„,(1) + 4(0)I=I /' = 1 V '

+ (4(-1J + 4W + 4(°)) (^"*^)i + (4(-i) + Cm(i)
+ O)) (^?^? + ßt ((Kf^Árn)ylk[m} - ¿¿¿ (pg, m(-l)

' \ J = I (=1 /' = 1

+4w + Ä™(o)) (^'MiY)* + (pg;,,m(-i) + 4w + ^11n(O))
? (*#·/#)' + (pg;,m(-i) + 4w + ??) (*#*>$)'

+ (Ä.J-1) + 4(1) + P&,m(0)) (?£!"*?#)4) · (B18)
From (B4), we find the conditional expectation of Ak'v(m) given ?? and bl as follows. By
replacing the iterative estimates of the previous data matrix, Bfc(m- 1)1, with its accurate
value, Bfc(m- 1), in (B8), we obtain a similar expression for E A3'v(m)\yw, bl . The same
argument is also applied for Ak'v(m). Finally, after some mathematical manipulations, we
evaluate the conditional expectation of A\'v(m) given y„ and b* as follows

E Ak5'v(m)\yv •b<]=E S 2Re {P&.m(0) (^X?)' + 4(0)I=I l'=W>l ^

h^h^y + p^,m(o) (Whtt)' + ^11n(O) (äst*#)*} . (BW)
where

4(°) = (??2*,«<(°) +Ä'(°))M™]Mm], (B20)
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Pk2%;m(0) = (pfí,«'(°) - ftt«'(°)) hi[m}bk2[m}, (B21)

P3*r,m(0) = (pîf,u'(0) - PlIw(O)) bkl[m}bk2[m], (B22)

P^r,m(0) = (-&'(0) - P^.«'(0)) feH&i2[m). (B23)

Now, using the conditional expectation of (B2)-(B6) given yw and b\ we evaluate Qfc(bfc|bl)
as

VM (LL

Qfcibfclb') = S S M SS ( Äm(-l) + Äm(l) + PÎS'.m(0)v=l rri=l t ¡=1 ¿' = 1 \

-^(-i) - PÎ5r.m(l)) (??G'?*^)* + (pS,m(-i) + Äm(i) + PkS,m(o)

-p&,m(-i) - $«·,«(!)) (aS"*^)' + (Ä,m(-i) + Äm(i) + Ä,m(o)

- SSS (Ä.J-1) + ^,míD + Am(O))^MiO' + (^i-1)
j= l Z=I /' = 1

+ÄJ1) + Ä,m(0)) (hìr^y + (P5¿,m(-1) + p5Í'.»(1) + Am(O))

S S Ä'.m(o) Or/4")¿ + *,J) (^e*^)' + ^'."(0)
? (*#*/#)' + dfu,,m(0) (^?^)1} (?24)

/=1 ¿'=1,?'>?

Considering a large frame M, the second summand in the right-hand side of (5.18) can
be neglected (see Appendix B. 4). Thus (B24) is reduced to (5.16).
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B. 2 Derivation of E || E9 ||
In this section, we derive a closed-form expression of the error between the true sig-

nal vector and its estimate according to (5.26). After some mathematical manipulations,

(5.31) can be expressed as

E9 ||2- D1-D2-D^D4 + D5, (B25)

where

D1 = 2^0¡Re {hvkH (<Bfc(-m) - Bfc(my)TRfcfc[Cf + (Bk(m - 1)
-Bfc(m - I)')7" Kkk{-l]T + (Bfc(m + 1) - Bk(m + 1)*)? Rfcfc[-1])

x<fc[m]}, (B26)

D2 = 2ßvkRe [hlH ((Bfc(m) - ??(t??)? Kkk[Ç>\T + {Bk(m - 1) - Bfc(m - 1)¿)T
/ KxRfcfc[-l]T + (Bfc(m + 1) - Bfc(m + 1)¿)T Rfcfc[-1]) ( S (1W0I (Bj(m)

-B^m)1) + Rfcj-[-l] (Bj(Tn - 1) - B^m - I)1) + Rfcj[-1]T (B^m + 1)
-B,(m+lY))hvj + nlk[m^Y (B27)

?

D3 = 2fty/ftRe nlk[m]H £ (Ry[O] (?,-(p?) - B^m)*) + Ry [-1]
J = I

? (B7-Cm - 1) - Bj{m - If) + Rfcj[-lf (B¿m + 1) - B^m + 1)*)) hj

+n^lro])}, (B28)
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K

A = ßf Il S (Ry[O] (Bj(Tn) - ?,-(t?)1) + Rfcj- [-1] (Bj (m - 1)
J = I

-Bj(m - 1)¿) + Rjy[-1]T (B;(m + 1) - B^m + 1)')) hj + <fc[m] ||2, (B29)

A = «J™]V>] (B30)

In our system model we assume that the noise samples and the channel coefficients are
mutually independent. Using (5.32)-(5.33), we can find the expectation of A, D3, and

A as follows

£ [A] = O,

E[D3] = 2ß°kiak,
E[D5} = ßvkak.

(B31)

(B32)

(B33)

From (B27), and using (5.32)-(5.33), the expectation of D2 is reduced to

E [D2) = 2ßvkRe ¡E hvkH ((Bt(m) - ?*(™)')'G Rfcfc[0]T + (Bk(m - 1)
-Bk(m - I)Y Rfcfc[-l]r + (Bfc(m + 1) - Bfc(m + lf)T R**[-l]) (Ru[O]
? (Bfc(m) - Bk(Tn)') + R**[-l] (Bfc(m - 1) - Bk(m - 1)') + R**[-l]r

?(?,(t? + 1)-?,(t?+1)'))^|, (B34)
Starting with the first term in the expectation form of (B34), E[hvkH (Bk(m)
- Bk(m)l)TRkk{0}TRkk[0} (Bfc(m) - BA(m)¿)h£], and using (5.32), this term is reduced
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to

E K" (Bfc(m) - Bk(m)iy Ru[0]rRfcfc[0] (Bk(m) - Bfc(m)') h£ = 2s\
L

x S (W2/ - 1,2/ - .1) + rfcfc,o(2/,2Z)) ((I - E [hMhxM])
;=i

+ (l-E[bk2[m}bk2[mf})), (B35)

Similarly, we can evaluate E[hf {Bk(m - 1) - Bfc(m - l)¿)TR^[-l]TRfcfc[-l]
? (Bfc(m - 1) - Bt(m - 1)¿) h£] and E[hf (Bk(m + 1) - Bfc(m + 1)¿)T Rfc*[-1]
? RfcA:[-l]T (Bfc(m + 1) - Bfc(m + 1)¿) h£] as follows

ß h£" (Bfc(m - 1) - Bfc(m - 1)<)T Rfefc[-l]TRfcA[-l]
? (Bfc(m- I)-Bk(Tn-I)^hJ;

L

= 2s<: ^ (G?,_!<2? - 1, 21 - 1) + rkk^(2l, 2I)) ((I - E [6fcl[m - l]6fcl[m - 1]*] )
+ (1 - E [bk2[m - l}bk2[m - if})) , (B36)

Z=I

E hvkH (Bfc(m + 1) - Bk(m + Iff Rkk[-l]Rkk[-l\T
x(Bk(m + l)-Bk(m + lY)hl

L

= 2s\ S (W2¿ - 1, 2/ - 1) + rfcfcil(2Z,20) ((l - E [bkl[m + l}bkl{m + 1]'])
¡=i

+ (l-E[ofe2[m + l]6,2[m + l]¿])), (B37)

In (B34), the rest of terms take the form, E[hvkH (B* (m + mp) - Bk(m + mp)¿)
? Rfefc[mp]rRfcfc[mp/] (Bfc(m + ny ) - B*(m + "V)*) hfc] . 77V 77V € i"1- °. 1I- mP ^ 77K'
where Rtfc[l] = ?**[-1]G, and Rfcfe[l]Rfcfc[-l]T = 0 (see Appendix A.l). After some
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mathematical manipulations, we find

E hvkH (Bk{m + mp) - Bfc(m + mPY)T Rkk[mp}TRkk[mp/] (Bfc(m + ny)

-Bk(m + mp-)') h£
L

= s*S (r^,m,mp,(2/ - 1,2/ - 1) + rfcfc,mpTV(2Z,2Z))
/ = 1

? E [(bki[m - nip} - bkX{m - mp]%) (bkx[m - mp·] - bki[m - mp<}1)
+ (bk2[m - mp\ - bk2[m - mpf) (bk2[m - mp>] - bk2[m - mp.\1)]

+ (rkktmpnip,{2l,2l - 1) + rfcfc,mpnv(2Z - 1, 2/)) E [(bk2[m - mp) - bk2[m - mpf)
? (bki[m - mpl) - bkl[m - mp]1) + (bki[m - t??] - bkl[m - mPY)

x {bk2[m - p??>] - bk2[m - m^]1)] , mp f mm>p, (B38)

where rfcfc,mpmp/(C,C').C,C' 6 {1, . . . ,2L},mp,mp, G {-1,0,1}, mp f mmp, represent
the elements of Rkk[Tnp]TRkk[mp*}. We found experimentally that rfcfe,mpm¡)/(C,C').C>C' €
{1, . . . , 2L}, t??, tp?> € {-1, 0, 1}, either have zero values or cancel each other in the same
bracket. Therefore, we assume the expectation in (B38) has a zero value. Using (B35)-
(B38), we can evaluate D2 as follows

L

E [D2] = ?s2f? S (W2¿ -1,21-1) + rkkfl(2l, 2I)) ((l - E [bkl[m]bkl[mY])
1=1

+ {I -E [bk2[m\bk2[m\])) + (rfcfc,_x(2/ - 1,2/ - 1) + rfcfc,_i(2Z, 2/))
? ((I - E [bkl[m - l]bkl[m - 1]']) + (l - E [bk2{m - l]6fc2[m - 1]*]))
+ (rfcfe,i(2¿ - 1,2/ - 1) + rfcM(2/,2/)) ((I - E [bkl[m + l]bkl[m + if])

+ {1-E[bk2[m + I}bk2[m + 1Y])), (B39)
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In (B29), following the same procedure, we can evaluate E [D4] as follows

,K L

E [D4] = 2/%2 ( S s) S (G«.?(2/ - 1. 2i - 1) + G,-,·,0(2?, 2/)) ((I - £ [Oj1H
?6;,?']) + (1 - E [6J2HOj2H4])) + {rJh^(2l - I1 21 - 1) + ^,_i(2Z, 2I))

? ((I -E [Oj1[TTi - I]Oj1H - I]']) + (1 - E [bj2[m - l}bj2[m - Ip]))
+ (rjjtl(2l - 1,21 - 1) + ^(2/,2Z)) ((I - E [bn[m + I]O01[Tn+ If])

+ (l-E[bj2[m + l]bj2[m + lY]))+akj (B40)
Finally, substituting (B31)-(B33), (B39), and (B40), in the expectation of (B25), we get
E[\\ E9 ?.

B.3 Distribution of h^y^b*:
In this section, we derive the pdf of the channel vector at the vth receive antenna

conditioned on the observed data vector, yw, and the current data estimates,b\ Let

r 1 2 Vi

where

< = K[I], <[2],... X[M]].

Then, the distribution of yjh, bl is given by

?

/(yu;|h,bi) = n/(y^l^1b¿), (B41)
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where

f(v«\h* W\ - I pTC(Sm=o(yS.M-Ekm=of,[AHB(m-Am)'h«),r)

? e ^(yï,[m]-Ekm=o F[Am]B(Tn-Am)^h")

7T2W^(detE^)M
1 ^({E^o1y^HHyï,H}-{E^01yïMiiB(mr}h")

xei(i>'e{ESBW'y?W})
W h" Ì EÏÏBW'tHIOlBW'+Hl-lIBfm-llHRillBIm+ir) >h")x e V I J /, (?42)

where y™ [m] = P[0]Ty^[m] + Ffc[i]y£,[m + 1], S?? = N0I2LK, and det denotes matrix
determinant. The channel vector h has a multivariate Gaussian distribution defined as

?

/(h) = J] /(h"), (B43)

where

? = 1

1 „-h"" Er1V'<"'>- ¡ròsT^· (B44)
Using (B41) and (B43), the joint distribution

?

/(y„)h|bi) = n/ÜCh,;lbl)' (B45)
v=l

where

1 =X (T M~} VVJm]" v".f

? eiNô'Œ^ yiM^m^h'+Af.-'h»" (E^=O1 B(m)'yc"[m]}}
? g-íh^í^o"1 ???G?1 BM^RlOlBM'+RhllBCm-ir+RlllB^+l)·)+!:-,,1}^}^

(B46)
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In (B45), we can notice that the pairs (yJJ,, h^b1) ,v = 1, . . . , V, are mutually independent.
Therefore, we will subsequently focus on the individual joint distribution of each pair,

/(y^h^b*). The second and third exponential term in the right-hand side of (B46)
can be reformed to take the form of the exponential term of the standard multivariate

Gaussian distribution by multiplying (B46) with -— » _t , where

(m— ?

N-1 S B(mY (R[0]B(m)1 + R[-l]B(m - If + R[l]B(m + 1)¿)
m=0

+ ?-? , (B47)

M-I

mh = ( S B(m)¿ (R[°lB(m)1 + R[-l]B(m - 1)¿ + R[l]B(m + 1)*)
i=0

x-1 M-I

+ 7V0E-M x^B(m)V^H. (B48)

By integrating (B46) with respect to hv, we obtain,

^ > «2MLK (deíVw¡)V detJihh
Finally, using (B46) and (B49), we can estimate the conditional distribution of (h"|y^, bl)
as

f(hv vv IbM

1

n2LKdetEh
-(h"-mX)wE^l(h»-mX)S)-Ei*(h»-mj;)) (B50)

120



which represents a Gaussian distribution with mean

¦ M-I(JVl — 1

S B(m)' (R[0]B(m)¿ + R[-l]B(m - If + R[I]
m—Ci

v-1 M-I

xB(m + I)*) + ?0S? x S B{m)Yc[m], (B51)
m=0

m=0

and covariance

E (hv - (h")*)^ - (hO^ly^b* = S? = Af0-1 S B(mY (R-[O]B(Tn)-
M-I

m=0

+R[-l]B(m - I/ + R[l]B(m + 1)¿) + S^1) . (?52)

B.4 Consistency of Channel Estimates

In this part, we show that the channel estimate (hv)1 is consistent. First, we prove
that the estimate (hvY is asymptotically unbiased. In other words,

lim E
?—>oo (hTlh.b' h". (B53)

We start by the expectation of (5.20) given hv and b\ we have

¦ M-I(IVl — L

S B(Tn)* (R[O]B(Tn)* + R[-l]B(m - I)* + R[I]
¦m-O

x-1 M-I

:B(ro + If) + ?0?^ ) . ? S B(m)lE [y>]lh"> b¿] , (B54)
¦ m=0

?]
m=0
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Substituting (5.3) in (B54) and inserting the factor M l, we obtain

E
(ivi — I

S M-1B(TnY (R[0]B(m)¿ + R[-l]B(m - I)* + R[I]
m=0

x-1 Ai- 1

xB(m + 1)') + M-1N0EU J M'1 J^ B(mY (R[O]B(Oi)* + R[-l]B(m - I)*
' m—?

+R[l]B(m+l)*)hu, (B55)

Invoking the strong law of large numbers, M"1 S™=? B(m)*R[mp]B(m + mp)\
mp E {-1, 0, 1}, converges to £[B(m)*R[mp]B(m + mp)% as M -> oo. Since £[B(m)*
? R[mp]B(m-t-mp)*] is only defined in terms of the cross-correlation values in R[mp], i.e.
independent of M, (B53) is proven. Finally, we show that the error covariance matrix of
the channel estimates ü[h, in (5.21), converges to 0 as M -> oo, i.e.,

Um^ = O. (B56)M—<oo

Starting from (5.21), we have

M-I

MWhh = ( M-1N0 S B(TUf (R[O]B(Tn)* + R[-l]B(m - I)* + R[l]B(m + 1)*)
m=0

+ M-1Vu) ¦ (B57)
Employing the same argument as above, it is easy to show that MQ,%hh converges to a
matrix with constant elements as M -> oo. Consequently, Vtxhh converges to 0 with rate

jf, hence proving (B56).
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