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ABSTRACT

Local Torsion on Elliptic Curves

Colin Grabowski

Let E be an elliptic curve over Q. Let ? be a prime of good reduction for E.
We say that ? is a local torsion prime if E has p-torsion over Qp, and more
generally, we say that ? is a local torsion prime of degree d if E has p-torsion
over an extension of degree d of Qp.
We study in this thesis local torsion primes by presenting numerical evidence,
and by computing estimates for the number of local torsion primes on aver-
age over all elliptic curves over Q.
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Chapter 1

Introduction

Let E be an elliptic curve over Q. In [4], the authors present the following
conjecture.

Conjecture 1 Assume that E does not have complex multiplication. Fix

d > 1. Then there are finitely many primes ? such that there exists an

extension K/Qp of degree at most d with E(K)\p] F 0.

In [4] the authors showed that Conjecture 1 holds on average. They also
gathered numerical data that was supportive of the conjecture in the case

where d = 1, with E having conductor of at most 1000. A key result to do

this was a criterion for distinguishing when an elliptic curve has p-torsion

over an extension K/Qp. The criterion involves the p-rank"of elliptic curves
over the ring of Witt vectors for which K is the field of fractions. By counting

the number of lifts to this ring of Witt vectors, of an elliptic curve over an

extension of degree d over Fp with p-torsion. David and Weston were able to
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show that Conjecture 1 holds on average.

In this thesis, we extend the work of [4] by looking at computational and
theoretical aspects of the questions raised in their paper. We first extend

their numerical evidence by gathering numerical data for d = 2 where E has

conductor up to 5000. This is performed with the MAGMA Computational

Algebra System.

We also investigate the properties of the primes ? such that E has p-

torsion over an extension of degree d of Qp, where d is at most ? — 1. In this

case, the size of d is allowed to grow with p, unlike the case of Conjecture

1 where d is uniformly bounded. We remark that it is trivial that E has

a p-torsion point of degree at most p2 for each prime ? of good reduction
by adjoining a root of the division polynomial f?. Then letting Ea¿ '¦ y2 =
?3 + ax + b such that a, b € Z we show that

Theorem 2 Let A,B> x2+e for some e > 0. Then

¿E%W = loglogx + 0(l).
\b\<B

In view of Theorem 2, it is not clear what to expect for the asymptotic be-

haviour of -k'e (x) for a fixed elliptic curve E over Q, and this raises interesting
avenues for future research.
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The structure of this thesis is as follows: in Chapters 2 and 3, we develop
the background material needed to state the criterion of [4] which allows to
recognize when E has torsion over some extension K/Qp. In Chapter 4, we
use this criterion (Lemma 56 of Chapter 4) to gather numerical data for the
cases d = 1 and d = 2. In Chapter 5, we investigate p'?{?) on average over
all E/Q and present the proof of Theorem 2.
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Chapter 2

Backgound

2.1 p-adic Fields

As we will later be looking at elliptic curves over p-adic fields we first need

to look at the theory of p-adic fields. To do this we first look at valuations.

Definition 3 Fix a prime ? e Z. The p-adic valuation on Z is defined by

the function

i/p : Z - {0} -> M

which for each ? G Z — {0} is defined as follows, let up(x) be the unique
non-negative integer satisfying

x = pv"^x' with ? { x'.
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One extends vv to Q in the following way. If ? = a/b G Qx , with a, b G Z
such that gcd (a, b) = 1, then vp{x) = vp{a) - vp{b). It is also convention to
set fp(0) = oo. This valuation has the following property.

Lemma 4 For all x, y G Q

i) Vp{xy) = i,„(x) + i/p(y)
MJ i/p(x + y) > mm{i/p(x), fp{y)}

Proof, i) Denote ? = a/b, y = c/d where ? \ b, ? \ d. Then a = pe ]T¿ P¡\ b =
J7¿Pj',c = P9UiPf > ^ — FL ??* where p¿ are primes not equal to ?, and
e, e¿, /i, 5, p¿, hi G Z. Then

í/p(xy) = vP(-¿¿)
= Vp(ac) — Vp(bd)

but as p\ b, and p\ d, up{bd) = G. So consider vp(ac).

ac = ^]JpT+"i

= Pe+9l[p?+9i
i

= pvn^+Si
i



So u(xy) = v{x) + v{y)-

ii)Let ? = pe|, and y = ?^-? such that p\ a,b,c,d with a, 6, e, d,e,f e Z.
Now if e = / then

„,a c.
x + y = ?e(- + -)

_ e (ad + be)
P bd

so i/p(x + y) > e as p\bd. Now let e ^ y and let f > e. Then

e(ad + ;/-efrc)
P bd

Then as / — e > 0 and ? j ad, one has that vp(x + y) = e = min{i/p(x), fp(y)}·
Note that by the convention for ??{?) the case where are least one of ? or y
is zero is trivial.

Definition 5 An absolute value on a field K is a function

I I : K -)· K

that satisfies the following properties:

i) \x\ = 0 if and only if ? = 0

6



H) \xy\ = \x\\y\ for all x,y £ K
iii) \x + y\< \x\ + \y\ for allx,y e K
If an absolute value on K satisfies the following additional condition then we
say that it in non-archimedean:

iv) \x + y\ < max{\x\, \y\} for all x.y G K
otherwise we say that the absolute value is archimedean.

Note that the trivial absolute value is defined as |x| = 1 for all ? f 0. We
now use the above valuation to define the p-adic absolute value.

Definition 6 For any i£ Q, define the p-adic absolute value of ? by

\X\p = p-M*)

if ? ? O7 and set \0\p = 0.

Definition 7 A metric on a set X is a function d : X ? X —» M. For all

x.y, ? € X this function must satisfy the following conditions,

i) d(x, y) = 0 if and only if ? = y, d(x, y) > 0
U) d{x,y) = d(y,x)
iii) d(x, z) < d(x, y) -+- d(y, z).
In addition a metric is called non-archimedean if it satisfies
iv) d(x, z) < max{d{x, y), d(y, z)).

7



One notes that by the Lemma above the function | \p is a non-archimedean
absolute value on Q

Definition 8 Let K be a field and \ \ and absolute value on K. We then
define the distance between two elements x.y G K by d(x, y) == \x — y\.

This distance function d(x, y) is called the metric induced by the absolute

value. Then as all metrics define a topology, we now have a topology on K .

But first we note that if | | is a non-archimedean absolute value, then for any

x,y,z G K, d(x,y) < max {d(x,z),d(z,y)}.

Definition 9 Let K be a field with absolute value \ \. Let a G K, r G M+.
Then define the open ball of radius r and center a to be the set

B(a, r) = {x G K \ d(x, a) < r}.

Define the closed ball of radius r and center a to be the set

~B{a,r) = {x G K\ d(x, a) < r}.

These sets define a topology on the field K . The topology defined has

the following property.

Proposition 10 If\\ is a non-archimedean absolute value then the set B(a, r)

is both open and closed.
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Proof. All that needs to be shown here is that B(a, r) is closed as it has
been defined to be an open set. So let ? be in the boundary of B(a,r).
Choose a number s such that 0 < s < r, and consider B(x, s). As ? is
in the boundary B[^r)]J B{x,s) ± 0. So let y € B(a,r){jB(x,s). This
implies that \y - a\ < r and \y — x\ < s < r. But then as we are using a
non-archimedean absolute value, we get that

\x-a\ < max{|x-y|,|î/-a|}

< max{s,r}

< r.

So ? e B(a, r), and all boundary points of B(a,r) are elements of B(a, r). m

Note that similarly if r f 0 then the set B{a, r) is also both open and
closed.

Definition 11 Two absolute values \ \? and \\2 on a field k are said to be
equivalent if they define the same topology on k.

Definition 12 Define the absolute value \ I00 on Q by \x\ — ? if ? > 0 or
\x\ — —x if ? < 0.

Theorem 13 (Ostrowski) Every non-trivial absolute value on Q is equiva-
lent to one of the absolute values \ \p, where ? is either a prime or ? = oo.

9



Proof. See [5] Gouvea 3.1.3 ¦

In order to define the p-adic numbers we will first need to define and look

at the properties of Cauchy Sequences.

Definition 14 A sequence (x„) in a field with \ \, is as Cauchy Sequence if
for every positive real number e, there is a positive integer N, such that for

any m,n> N

Lemma 15 A sequence (xn) of rational numbers is a Cauchy sequence with

respect to a non-arcimedean absolute value \ \ if and only if

Hmn^00 ¡?„_? - .-¿„I = 0.

Proof. Let m = ? + r, for r > 0. Then

\%m 3-711 — \%m ~~ 3-n+r— 1 ? %?+t— 1 &n+r— 2 T ¦-· T Xn+1 %n\

< max{|xm - Xn+r_i\, \xn+r-l - Xn+r-2\, ···, kn+1 ~ Xn\}-

So the result follows. ¦

Let I ( be a non-archimedean absolute \'alue on Q. Then we define CS to

be the set of all Cauchy sequences of Q with respect to | |, and NS to be the

10



set of all sequences (x„) in Q such that Hmn^00IxnI = 0. Then we can note
that NS Ç CiS. Also we can add and multiply elements of CS as follows,

(x„) + {yn) = (xn + Vn)

(xn) ? (yn) = (xny„).

Proposition 16 With addition and multiplication defined as above CS is a

commutative ring.

Proof. It is easy to see CS has zero element Ocs = (0), and identity element

les = (1)· Now consider (xnyn)- We have that

\xn+\yn+i - xnyn\ = \xn+iyn+i — xn+\yn + xn+iyn - xnyn\

< max{|xn+iyn+J - xn+iyn\, \xn+iyn - xnyn\}

= max{ |xn+i I |yn+1 - yn\, |yn||xn+1 - x„|}.

As well we have that

\(Xn+l + Vn+l) - (in + Vn)I = \(Xn+l ~ Xn) + {yn+1 ~ Vn)\

< max{ |xn+1 - xn)|, |(yn+1 - yn)|}.

So the sequences (xn + yn) and (xnyn) are elements of CS. The rest of the

commutative ring properties follow. ¦

Lemma 17 NS is a maximal ideal of CS.
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Proof. First we will show that TVS is a ideal of CS. To see this let (xn) G NS

and (Vn) € CS, and consider (xny„). As (yn) is a Cauchy sequence its terms
are bounded, hence as (xn) —>· 0, then also (xnyn) —>¦ 0. So (xnyn) € NS1
and in the same way one sees that (ynxn) G NS, and thus IVS is an ideal.

Now we need to show that NS is maximal. Let (xn) G CS be a sequence
such that lim \xn\ = a f 0. Then there exist 6 > 0 and an integer TV such

that |x„| > 6 > 0 for ? > TV. Now define a sequence (yn) by letting yn = 0 if
? < TV, and y„ = ¦£- for ? > TV. As
\yn+i - yn\ = 1^7 - ¿-I < Xn+¡fXn -> 0. Now consider (x„yn), it is zero for
? < TV, and 1 for ? > TV. So (1) — (xnyn) tends to zero, and is thus in TVS'.
So (1) can be seen as a multiple of (xn) plus an element of TVS, and is thus an

element of the ideal generated by (xn) and NS. So TVS is a maximal ideal. ¦

Now that we have considered Cauchy sequences and their properties we

are ready to define the p-adic numbers and to consider their properties.

Definition 18 We define the field of p-adic numbers to be the quotient of

the ring CS by the ideal NS, Qp = CS/NS.

We notice that two different constant sequences never differ by an element

of TVS. Thus we have an inclusion Q <-» Qp, by sending x. G Q to the
equivalence class of (x).

12



Lemma 19 Let (xn) G CS, (xn) fi NS. Then the sequence \xn\ is eventually
stationary.

Proof. As (xn) fi NS then there exists a > 0 and TV1 such that for n> N1,
\xn\ > a. But as (xn) is a Gauchy sequence we know that there exists an
interger TV2 for which if n, m > N2 then \xn — xm\ < a. Then replacing
N1, and /V2 with max{7Vi,A^2}, we have that for n.m > N, \xn — xm\ <
max{|arn|, |xm|}. But this implies that |xm| = \xn + xm - xn\ = |xn| as our
absolute value is non-archimedean. ¦

Definition 20 If a E Qp, and (xn) is a Cauchy sequence representing a,
then define \a\ = UnIn^00Ixn].

Note that this is well-defined as if there are 2 Cauchy sequences, (xn) and

(yn), representing a, then they differ by an element of NS, so Umn^00Xn =
Umn^00 yn, which implies

Hmn^00IxnI = Umn^00IynI

We will now look at extensions of the p-adic numbers, as later we will be
looking at elliptic curves over these extensions.

Claim 21 For each ? > 1 there exists an extension of Qp which has degree
? and is generated by the ? roots of the irreducible polynomial which generate

the unique extension of degree ? of ¥p

13



Proof. The claim follows directly from the three claims and corollary that
follows.

¦

Claim 22 Suppose f(x) G Zp[x] factors in Qp. in a non-trivial way, such
that f(x) = g(x)h(x) with g(x), h{x) G Qp[x] and non-constant Then there
exists non-constant go{x), ho(x) G Zp[x] such that f(x) = go(x)ho{x).

Proof. If k(x) = OnXn + ... + a? + a? G Qp[x] is any polynomial define
u(k(x)) = mino>¿>n^p(a¿). Then for a G Qp one has that u{ak{x)) = vp(a) +
w(Jfe(x)). As well /c(x) G Zp[x] iff u{k(x)) > 0. ¦

Claim 23 7/ Claim 22 is true for?(/(?)) = 0 i/ien it is true for ui(f(x)) > 0.

Proof. By the definition of ? there exists a G Qp such that u/(/(x)) = — vp{a)
by letting a be the inverse of the coefficient with the smallest valuation.

Then as f(x) G Zp[x], a-1 G Zp, and from above ?(a(/(?))) = 0. Set
/(x) = a/(x), g{x) = ag(x). Then J{x) = g(x)h{x) with ?(/(?)) = 0. Then
by the assumption of the Claim f{x) = Gq{x)Hq{x) where Go(x),-Ho(x) G

Zp[x]. This implies that f(x) = a_1/(x) = a_1Go(x)jf/o(^)· As a-1 G Zp,
5o(x) = O-1Go(^) is in Zp[x] and f(x) factors into f(x) = go(x)Ho(x) as
desired. ¦

Claim 24 CZazm £2 is ¿rue for ?(/(?)) = 0.

Proof. Assume u(f(x)) = 0. Then as above there exists ?, c G Qp such that
?(?<?(?)) = 0 and cj(c/i(x)) = 0. Let c/(x) = bg(x), h(x) = ch(x) and /(.t) =

14



bcf(x) = 7j(x)h(x). Let g~(x), h(x) and f(x) be the reduction of g(?), h(x) and
f(x) modulo ? respectively. Then g(x),h(x) e Fp[x] are non-zero and hence
f(x) is non-zero. Thus ui(f(x)) = 0 the above implies up(bc) = 0, giving the
fact that be is a p-adic unit.And so let f(x) = (bc)-1/^) = {bc)~1'g{x)h(x) .
Letting G(x) = (be) ~ 1^x) gives the desired result. ¦

Corollary 25 Iff(x) € Zp[:r] is a monic polynomial whose reduction modulo
? is irreducible in ¥p[x]. Then f(x) is irreducible overQp

Proof. If f{x) factors over Qp then it factors over Zp. Then reducing the
factorization modulo ? gives a factorization over Fp.

2.2 Witt Vectors

As well as looking at elliptic curves over p-adic fields we will also be con-

cerned with elliptic curves over Witt vectors. Thus we will now define and

consider the properties of Witt vectors.

Let ? be aprirne and (X0, X1, ...Xn, ...) a sequence of indeterminates, and
define the following to be Witt polynomials,

15



W0(X)

W1(X)

W2(X)

Wn(X) = S?'?G-
i

Now consider the ring Zip'1], then the X¿ can be expressed as polynomials
in the Wi where the coefficients are elements of TL\p~x\. For example, Xo =
Wq, X\ = P-1W1 — p~1Wq. Now let (Y0, ...,Yn, ...) be another sequence of
indeterminates.

Theorem 26 For every F G Z[X1Y], there exists a unique sequence
(f?, ..., ??,---) of elements of Z[X0, ..., Xn, ...;Y0, ...,Yn, ...] suchthat;

Wn(<po, ..., ??, ..·) = HWn(X0, ...), Wn(Y0, ...)),

for ? = 0,1, ....

Proof. See [9] Serre ¦
We now use the above theorem to define "addition polynomials" S0, ---Sn, ...

which are the polynomials ?0, ..., ??, ... associated with the polynomial

F(?, I') = X + y We can also define a product by Po, ...Pn, ¦¦¦ which are the

polynomials f0, ¦¦¦-,??, ··- associated with the polynomial F(?,?) = X ? Y

= Xo

= Xl ^pX1

= xf+pXÏ+p2X2

16



Now let A be a commutative ring, and let a = (a0, ...,an, ...),
b = (bo, ..., bn, ...) be elements of An. Set

a + b= (S0(a,b),...,Sn(a,b),...),
axb=(P0(a,b),...,Pn(a,b),...)

Theorem 27 The laws of composition above make An into a commutative
unitary ring (called the ring of Witt vectors with coefficients in A and denoted

W(A)).

Proof. Define a map

W* :W(A)-*AN

by assigning to a Witt vector a = (ao, ..., an, ...) the element of the product
ring AN having Wn(a) as the nth coordinate. Then from the definitions
of the polynomials S and P we see that W* is a homomorphism. W* is

an isomorphism if ? is invertible in A, and hence in this case W(A) is a
commutative ring with unit 1 = (1, 0, ..., 0, ...). Then if the theorem is proved

for a ring A, it is also true for every subring and quotient ring. As it is true

for every polynomial ring Z[p~ 1J[T0], where Ta is a family of indeterminates
, it is true for Z[Ta] and thus for all rings. ¦

Example 28 So first 3 addition polynomials are as follows.

So(a. 6) = O0 + òo

S1(a..b) = a1+b1 + (aP°+%-{pao+bo)P)
17



C^ ?? / , L , (pa;+K+«g2+^2-"°+^)p2+P(°l+frl+(°g+Î>S"p°0+60)P))%ò2(a, oj = («2 + »2 -H ? )

Now let Wn(;4) be the set of vectors (do, ..., an-i) with ? elements. As the
polynomials ? only deal with variables of index < i we see that MZ71(^) forms
a ring, which is a quotient of VV (.4), and is called the ring of Witt vectors of

length n. Then W(A) is the projective limit of the rings VVn(,4) as ? tends
towards infinity.

Definition 29 Let A be a commutative ring with identity equipped with a

topology defined by a decreasing sequence

...?3 D ?2 D a?.

of ideals such that anam. = an+m- Then we say that A is a p-ring if the

following conditions hold

i) The residue ring k = Aja\ is a perfect ring of characteristic ?

it) The ring A is Hausdorff and complete with respect to its topology

If in addition the topology on A is defined by the p-adic filtration an = pn A

and ? is not a zero divisor of A we say that A is a strict p-ring.

Theorem 30 Ifk is a perfect ring of characteristic ?, W(k) is a strict p-ring

with residue ring k.

Proof. See [9] Serre ¦

18



Note that Zp is a strict p-ring with residue ring Fp, so as a direct corollary
of the above theorem we have that W (Fp) = Zp and that Wn (Fp) = Z/pnZ.

19



Chapter 3

Elliptic Curves

In order to get the results we desire, we will need to consider elliptic curves

over various fields and rings. In order to do this we will now look at the

theory of elliptic curves in various situations.

3.1 Elliptic Curves

We begin our exploration of elliptic curves by defining and considering the

basic properties of elliptic curves.

Definition 31 An elliptic curve is an abelian variety of dimension 1. Any

20



such curve E, defined over a field K, has a plane cubic model of the form

y + a\xy + a$y = x3 + a2x2 + a4x + aß, (3.1)

where ? and y are coordinates in the affine plane and the coefficients ai are
in the ground field K.

Note that we call the above equation a Weierstrass equation as in char-

acteristic f 2, 3 then we can replace x, and y by

p = x + 12 , ? = 2y + a-iX + a3, ¦

and so (3.1) becomes a curve of the form

(p'Y = 4/>3 - gap - 93·

The curve (3.1) has a unique point at infinity in the projective plane, that
we call 0 = (0 : 1 : 0). Given a curve defined by an equation in the form

(3.1) we make the following definitions
fa = a\ + Aa2
64 = a? 03 + 2a4

be = al + 4aß
68 = face - O1O3O4 + a2a\ — a\
c4 = b22- 2464'(= I2g2)
? = -b¡b8 - 8&t - 276¡ + 9b2b4b6{= g\ - 275f )

r3
7 = -±J ?

21



Definition 32 The quantity ? from above is called the discriminant of the

Weierstrass equation, j is called the j-invariant of the elliptic curve E.

Definition 33 We say that an elliptic is singular if ? = 0, it has a node if

A = 0 and Ca f 0, it has a cusp if ? = C4 = 0.

One might wonder if the Weierstass equation is unique given an elliptic

curve. If we assume that the line at infinity intersects E at only (0:1:0),
then the only change of variables that fixes infinity and keeps the Weierstrass

form of the equation is

? = u2x' + r,

y — v?y' + u2sx' + I,

with u, r, s,t, 6 K, u f 0. If the elliptic curve is in the form (p')2 = 4p3 —
g2p — #3 then the only change of variables is even simpler, it is

2 /
X = UX ,

y = u3y';

for some u G K .

Definition 34 (Group Law) Let E be an elliptic curve given by a Weier-
strass equation

E : y2 + a\xy + a^y = x3 + a^x2 + a^x + a§.

22



i) Let P0 = (x0, yo) € E. Then -P0 = (x0, -y0 — a\x0 - a3).
TVow Zei F1 + P2 = P3 twíA P¿ = (x¿, y¿) G E.

U) If .Tj = x2 and y\ + y2 + aix2 + a3 = 0, f/ien Pi + P2 = 0.
Otherwise let

? = |^ ^ = 20Sf 3/^z2;
\ _ 3af+2a2Xi+a4-oiyi _ —zf+04x1 +2a6- 033/1 j-
? ~ 2yj+aixi+a3 ' ^ ~ 23/1+01x1+03 " ^1 ~~ X2'

Hi) P3 = Pi + P2 ¿s given by

X3 = ?2 + a\\ — a2 — Xi — X2,
2/3 = -(A + ai)x3 - ? - a3.

Definition 35 Let ??, E2 be elliptic curves over a field K . A morphism

from E\ to P2 is a rational map which is regular at every point of E\ .

Theorem 36 Let E/K be an elliptic curve. Then the above equations giving

the group law on E define morphisms.

+ : P ? P -> E, and - : E -»· E

(P1, P2) -> Pi +P2 P-* -P

Proof. Let us first consider the subtraction map,

(x, y) -> (x, -y - ?? ? - a3).
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We see that it as a rational map, and as E is smooth, it follows that it is a

morphism.

Now we fix a Q f 0 and look at the "translation by Q" map,

t: E^ E

r(F)=P + Q.

From the group law above we see again that it is a rational map, and thus

as E is smooth, it is a morphism. We also see that as it has an inverse,

P —> P — Q, it is an isomorphism.

Finally we deal with the general addition map + : E ? E —>¦ E. By

inspection we see that it is a morphism, except possibly for points of the

form (P, P), (P, -P), (P, Q), (0, P), since it is for these points that the rational
funtions

? - X2-X1 > V - X2-X1 ü ?? ? ?2,

are not well-defined. To see that we still have a morphism we let Ti and

T2 by translation maps defined above for the points Qi and Q2 respectively.

Consider the composition of maps

f : E ? ETl-^~ E ? E -^- E -^- E ^> E.

As the group law on E is both associative and commutative, the effect of
these maps is as follows:
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(Pi, P2) (Fi + Q1, P2 + Q2) —- Pi + Q1 + P2 + Q2

--------------P1+P2 + Q2 -P1 + P2-

Now as the t[s are isomorphisms, we see that f is a morphism except possibly
at points of the form (P - Q1, P - Q2), (P - Q1, -P - Q2), (P-Q1, -Q2),
(-Qi. P — Q2). But as Q1, and Q2 were chosen arbitrarily, by varying Q1
and Q2 we get a set of rational maps

F?,f2,-,f? : E ? E-ì E

such that

(a) 0i is the addition map defined above.
(b) For each (P1, P2) e E ? E, some f? is defined at (P1, P2). (c) If f? and
0j are both defined at (P1, P2) then ^(P1, P2) = fJ(P1, P2).
It follows that addition is defined on all of E x E, and so is a morphism. ¦

We now consider the relationship between two elliptic curves.

Definition 37 Let E1 and E2 be elliptic curves. An isogeny between E1 and
E2 is a morphism

f: E1^E2

such that f(0) = 0. Then E1 and E2 are isogenous if there exists an isogeny
between them with f(?1) F {0}.
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Now as elliptic curves are groups the maps between them form groups.
Hence we can let

Uom(Ei,E2) = { isogenies f : E\ —> £2}

Then the above addition law implies that Hom(2?i , E2) is a group under

the addition law,

(f + ?){?)=f(?) + ?{?).

Then if E\ = E^ we can compose isogenies. So for an elliptic curve E we let

End(£) = HOm(B, E)

be the ring with multiplication defined by composition

(ff)(?) = f(-f(?))

Then for m G Z we can define the multiplication by m isogeny,

[m]:E-l· E,

in the obvious way. For m > O then

M(P) = P + P + ... 4- P (m terms).

If m < O then we let \m)(P) = [-m](-P), and for m = O we have [O](P) = 0.

Definition 38 Let E(K) be an elliptic curve over a field K and m G TL,

m f 0. The m-torsion subgroup of E(K) , denoted by E[m], is the set of
points of order m in E(K),
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E[m] = {? € E(K) : [m]P = 0}

The torsion subgroup of E(K), is the set of points in E(K) which have finite
order, and is denoted Etors ¦

Definition 39 Suppose that char(K) = 0, then if End(E) is strictly larger
then Z we say that E has complex multiplication.

3.2 Elliptic Curves over Local Fields

We now start to look at elliptic curves in more specific situations that we

will need later. We start with looking at elliptic curves over local fields. To
start we must first consider local fields.

Definition 40 A local field is a field that is complete with respect to a dis-

crete valuation, and which has a finite residue class field.

Examples of local fields include finite extensions of the fields Qp. When
working a local field K which is complete with respect to the valuation ? one

uses the following notation.

i) R the ring of integers of K, R = {x € K\v(x) > 0}
ii) R* the unit group of R, R* = {x G K\u(x) = 0}
iii) M the maximal ideal of R, M = {x € K\v(x) > 0}
iv) p a uniformizer for R (M = nR)
v) k the residue field of R, k = R/M

27



Note: this notation will be used throughout this section.

In the case where K — Qp, the ring of integers is Zp — {x G QpIiOr) > 0},
the unit group is Z* = {i e QpIK3O = 0}> the maximal ideal is pZp = {x G
Qp\v(x) > 0}, the uniformizer .is p = ? , and the residue field of Zp is
k = Z/pZ.

Now that we have defined local fields and considered their properties we

may start to look at elliptic curves over them.

Let E/K be an elliptic curve with a Weierstrass equation

y + a\xy + a^y = ? + a^x + a^x + ae

By replacing (x, y) by (u~2x: u~Zy) , each o,¿ becomes ulOj, so by choosing
a u that is divisible by a large power of p, we can find a Weierstrass equation

with all a¿ G R. Then as the discriminant ? has ^(?) > 0, and as u is

discrete, we can find a equation with ? [A) minimized.

Definition 41 Let E/K be an elliptic curve. A Weierstrass equation is

called a minimal Weierstrass equation for E at ? ifu(A) is minimized, with

all ai G R. Then the value u(A) is called the valuation of the minimal

discriminant of E at v.

If we have a Weierstrass equation we can find out if it is a minimal equa-

tion as we know the a^s have to be elements of R, thus ? G R. So if our
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equation is not minimal then there is a change of coordinates which gives

a new equation with discriminant ?' = U-12A G R. So ? (A) can only be
changed by multiples of 12. Thus an Weierstrass equation is minimal if all

a, e R and ?/(?) < 12.

As was said above ? is discrete so one can always find a Weierstrass equa-

tion with all a¿ G R, such that ?/(?) < 12. So every elliptic curve over K has
a minimal Weierstrass equation.

We will now consider the relationship between an elliptic curve over a

local field, and it's residue field.

Now let us consider reduction modulo p, which we will denote by a tilde.

Given a minimal Weierstrass equation for the elliptic curve E/K, we can
reduce the coefficients modulo p. By doing this we get a curve over k,

E : y2 + a~\xy + S^y = xs + a^x2 + a^x + ¿é- E is called the reduction
of E modulo p. Then if P e E(K) we can find homogeneous coordinates
P = (xo : 2/0 : Zq), where xo, 2/o, ^o € R and at least one of the coordinates is

in R*. Then the reduction of P, P = (xq : yo : ??) is in E(k). So we have a
reduction map

E(K) -> E(Jb)
P^P.
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Definition 42 Let E be a curve given by a Weierstrass equation. A point

P = (?0? y0) satisfying the Weierstrass equation f(x,y) is a singular point
on E iffa(P) = jL{P) = 0· The non-singular part of E, denoted Ens, is the
set of non-singular points of E.

Proposition 43 Let E be a curve given by a Weierstrass equation with dis-

criminant ? = 0 (E has a singular point). Then the group law on elliptic
curves makes Ens into an abelian group.

Proof, see [10} Silverman section III prop 2.5 ¦

Thus for all elliptic curves Ens is a group, as if E is given by a Weierstrass

equation with discriminant ? f 0, the Ens contains all points of E. So for

the curve E/k,we see that Ens(k), is a group, and we make the following
definition.

Definition 44 We define the set ofpoints of non-singular reduction, Eq[K) =
{P G E(K)]P € Ens(k)}. We also define the kernel of reduction, Ei(K) =
{P e E(K)\P = ô}.

These sets of points are related in a quite nice way, as below shows.

Proposition 45 There is an exact sequence of abelian groups

O^ E1(K) ->¦ E0(K) -* Ens(k) -? 0,.

where the right-hand map is reduction modulo p.
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Proof. First we will let us look at E(K) and Ens(k), the group laws for
these groups are defined by taking the intersection of the curve with line in

P2 (where P2 is projective 2-space). As the reduction map F2(K) -> P2(Ar)
takes lines to lines, hence it follows that E0(K) is a group, and that the map
E0(K) —> Ens(k) is a homomorphism. Then from the definition of Ei(K) we
have exactness at the left and center.

Let E have a minimal Weierstrass equation

/O^ y) =y2 + aixy + a3y - x3 - a2x2 - a4x - a6 = 0,

with f(x,y) the corresponding polynomial with coefficients reduced modulo
7G, and P = (a, ß) € Ens(k) any point. As P is non-singular, it follows that
either %(P) f 0 or J(P) f 0. Wlog we will assume %(P) f 0. Then let
y0 E R such that y0 = ß, and consider the equation f(x. y0) = 0. When it
is reduced modulo -n is has a as a simple root, as ||(a, ¿/?) f 0.. Thus by
HensePs lemma, the root a can be lifted to an x0 G R such that x0 = a and

/(ar0, yo) = 0 Thus the point P = (ar0, yo) € £O(/f) reduces to P, and we
have exactness of our sequence. ¦

3.3 Elliptic Curve Over Finite Fields

We will now consider what happens when we have an elliptic curve over a
finite field. We want to know the number of points that the elliptic curve
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could have over a finite field, to do this we must first look at isogenies be-

tween elliptic curves.

Definition 46 Let E1, E2 be elliptic curve defined over a field K , let K(E)
be the function field of E/K, and let f : E\ —> E2 be a map of curves. A

non-constant f induces an injection of function fields fixing K,

f* : K[E2) -> K(E1).

If f in not constant, then f is said to be finite, and we define its degree

by

?e?f = [K(E1) : f* K(E2))

We say that f is separable if the extension K(E1)/f*K (E2) is separable, and

denote the separable degree of the extension deg$

Lemma 47 Let E1 , E2 be elliptic curves, and let f : E1 —» E2 be a non-

constant isogeny. Then for every Q G E2, ff"1 = deg^. As well assuming
f is separable, then #&er</> = degf.

Proof. Let Q, Q' G E2. Then let us choose a S G E1 such that f(?) = Q'-Q.
Now as f is a homomorphism, there is a one-to-one correspondence

F-HQ) -+ F-???
P^P + S
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Thus M-\Q) =deg50.
Now consider if f is seperable, as we just saw #</>-1(Q) = degs</>, so by setting
Q = 0 we have #ker^> = deg<j> m

For the following let q = pn for a prime ?, ?" be a finite field with q

elements and let EfK be an elliptic curve.

Proposition 48 Let E be defined over ¥q, let f : E -> E be the qth -power
Frobenious endomorphism, and let m,n € Z. Then the map

m + ?f : E ->· E

is separable if and only if p\ m. In particular the map 1 — f is separable.

Proof. Let ? be an invariant differential on E. A map f : E —> E is

inseparable if and only if f*? = 0. Then we compute that (m + ?f)*? =

p?? + ?f*?, and as f*?? = d(xQ) = 0 we have that f*? = 0. So

(m + ?f)*? = t??.

As t?? = 0 if and only if p\m, which gives the result. ¦

Definition 49 Let ? be a prime. Let ap{E) be the integer such that f?{¥?) =
?+ l-a„(E).
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We now have enough background to estimate the number of points an

elliptic curve can have over a finite field.

Theorem 50 Let E/K be an elliptic curve defined over the field with q
elements. Then

\#E{K)-q-\\<2y/q.

Proof. Fix a Weierstrass equation for E with coeffiencients in K, and con-

sider the q^-power Frobenius morphism, defined by

f: E^E

(re, y) -?(*«, y*).'

Now the Galois group G^/K is topologically generated by the qth-powev map
on K, so we see that for a point P e E(JK), P E E(K) if and only if

f(?) = P. Thus

E(K) = ker(l - f),

which implies that fE(K) = #ker(l - f) = deg(l - f) as 1 - f is separable.
The degree map on End(E) is a positive definite form, and deg<£ = q. So
consider the following version of the Cauchy-Schwarz inequality.

Lemma 51 Let A be an abelian group and d : A —>¦ Z a positive definite
quadratic form. Then for all a, ß G A,

\d(a - ß) - d(a) - d(ß) I < 2y/d{a)d(ß).
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By applying this inequality to deg(l — f) we get the desired result. ¦

Now if we let Ei , E2 be elliptic curves, let f : E\ —>· E2 be an isogeny

with dual f and let m = degçè. Then by the definition of the dual isogeny

f ? f = [m] on Ei.

Proposition 52 Let E/K be and elliptic curve. Then either

E\pe] =* {0} for all e = 1, 2, 3, ...; or
E\pe] 9i Z/peZ /or oil e = 1, 2, 3, ....

Proof. Let f the the pt,l-power Frobenious morphism. Then

#E\pe] = degs[pe]

= (?ß^(f?f)?

= (deg^r

where the last equality coming from the fact that f is purely inseparable.

Then as degç!> = degçi» = ?, there are two cases.. If f is inseparable, then

degs<^> = 1, thus #E\pe] = 1 for all e. The other case is if f is separable, then
degs<¿ = ?, thus #£[pe] = pe for all e. Which implies that E\pe] = Z/peZ. m

3.4 Elliptic Curves over Rings

Not only will we need to consider elliptic curves over fields, but we will also

need to look at elliptic curves over rings. We will follow Lenstra's paper [6]
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for our definitions in this case. As rings have less structure then fields, there
are more requirements for defining elliptic curves over rings.

Let ? > 0 be a positive integer. Consider the set of all triples (x, y, z) €
(Z/nZ)3 for which x, y, ? generate the unit ideal of Z/nZ. Then the group
of units (Z/nZ)* acts on this set by u(x,y,z) = (ux,uy,uz). Denote by
(x:y:z) the orbit of (x. y, z). and denote by P2(Z/nZ) the set of all orbits.

For a, b G Z/nZ consider the curve E = Ea¿ defined over ZfnZ by the
equation y2 = x3 + ax + b. The set of points E(ZfnZ) of a curve over Z/nZ
is defined by

E(Z/nZ) = {(x:y:z)e ?2(?/??) : y2z =.x3 + axz2 + bz3}.

If 6(4a3 + 2762) G [ZfnZ)* then E is called an elliptic curve over Z/nZ.
Note that if 2|n or 3|n then 6(4a3 + 27b2) <£ (Z/nZ)*, and thus the following
does not apply in these cases. Note that this was not the case when we were

dealing with fields.

Now before we define an addition algorithm we need to define the "point
at infinity::. Denote by 0 the point (0 : 1 : 0) G P2(Z/nZ). Then let the
subset Vn of P2(Z/nZ) be the set of "finite" points together with 0.

Vn = {(.x:î/:l):i,î/G(Z/nZ)}U{0}

For P EVn and a prime ? such that p\n denote by Pp the point of P2(Fp)
obtained by reducing the coordinates of P modulo p. Note that Pp = 0p if
and only if P = 0.
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We now define an algorithm which we will use to add points on our curves.

Given ? > 0, an integer, a G Z/nZ and P, Q G Vn, the following algorithm

will either calculate a non-trivial divisor d of n, or determines a point R G Vn

with the following property, if ? is any prime dividing ? for which there exists

6 G Fp such that

6(4O3 + 27b2) f 0 for a = (a mod p),
PPeEä,b(¥p), QPeEn,b{Fp),

Then Rp = Pp + Qp in the group En¿{Fp).
The algorithm is as follows, if P = 0 put R = Q and stop. If P f 0,

Q = 0 put R = P and stop. Lastly if P = (Xl , yi , 1) f 0, Q = (x2, 3/2, 1) ^ 0,

then we use the Euclidean algorithm to calculate gcd(xi — x2, n). If the

gcd(xi — X2, n) = d and d is neither 1 or ? then stop. If gcd(xi — x2, n) — 1

then the Euclidean algorithm also gives {x\ — X2)'1 ¦ Then we set

? = (yi -y2)(xi -X2)"1,
X3 = A2 - X1 - X2,

2/3 = A(X1 - X3) - yi,

Ä = (.X3 : y3 : I),

and stop. If the gcd(xi — X2, n) = n, we then calculate gcd(yi + y2, n). If this
equals a d not equal to 1 or ? then stop. If d = ? then we have that xi = X2,

and y? = y2 and so we put R = O and stop. Finally if gcd(yi + y2,n) = 1
then we set
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X=(Sx¡ + a)(y1+y2)-1,
xz = ?2 - X1 — X2,

2/3 = A(X1 -X3)- Vi,
R = (x3- yz ·¦ 1),

and stop. If the algorithm computes a point R, then we say that the operation
defined On Vn in this way is called addition and denote it P + Q. If there
exists b € Z/nZ such that

6(4a3 + 27b2) E (Z/nZ)*, P E £a,6(Z/nZ), Q e £a,6(Z/nZ),

then P + Q is defined. So we have addition and as the only multiplication
we do is kP for k E Z and a point P, addition is all we need.
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Chapter 4

Local torsion primes of a fixed

degree d (including numerical

data)

We now start using the background that we have developed to gather some

numerical data with regards to Conjecture 1.

4.1 Local torsion primes of a fixed degree

Conjecture 53 Assume that E does not have complex multiplication. Fix

d > 1. Then there are finitely many primes ? such that there exists an

extension K/Qp of degree at most d with E(K)\p] f 0.
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We remark that the conjecture is false for d large enough when E has

complex multiplication as showed in [4].

Definition 54 We will call a prime ? a local torsion prime for E if E pos-

sesses a point of order ? over Qp. We will say that ? is a local torsion prime

of degree d if there is a finite extension of degree d, K/Qp with E(K) [?] f 0.

Thus a local torsion prime is a local torsion prime of degree 1. So in

looking at the conjecture one is looking local torsion primes of finite degree,

which leaves the problem of finding these primes.

Lemma 55 Let E be an elliptic curve over Q. Then E has a point of order

? over Qp if and only if E has a point of order ? over Z/pnZ for all ? GN

Proof. =>¦ ]

In order to reduce a point P G E(Qp)\p] mod p"Z we find homogeneous
coordinates P — (x0 : yo : ¿o)> with at least one of Xo, J/?,-?? G Z*. Then

the reduced point P = (x0 '¦ Vo '¦ 2"o) is in E(Z/pnZ). As at least one of

£?,2/??·?? £ Zp, P f 0. Now as x0,y0,zo G Zp they can be written .xo =
Em=06™P"\ ??) = SG=0^?™. Z0 = Em=oV' fol" bm-Cm, dm G Z/pZ. So
^o = YZ,=obmPm\ m = Em=O WN ¿o = ELo^P™· So p(x0 : yo ¦ Z0) = 0
in E(Z/pnZ) because of how addition is defined. Note that the point at in-
finity reduces to itself.
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Conversely if for every ? € N, E has a point of order ? in in E(Z/pnZ)
then it can be written in the form (xn : yn : zn) where xn = S„\=0 bmPm,
yn — S„\=0 bmpm, zn = Y^n=Q bmpm. Then as there exists a set of these points
so that they are consistent with respect to reduction. That is if Pn = (xn : yn :

zn) is a point of order ? in E(Z/pnZ) then Pn mod pra_1 = Pn-I-, where Fn_i
is a point of order ? in ?(?/??_1?) in our set. So there exists X00, y^00, Z00 E Zp
such that X00 = YZ=obrnPm, 2/00 = Em=o M™. ^00 = Em=o bmP"\ where
-Poo = (^00 : 2/00 : Z00) such that pPoo = 0 in E(QP) and P00 is consistent with
respect to reduction. ¦

More generally let [K : Qp] = d, with residue field k. We now state a
criterion to detect local torsion prime of degree d by looking at W^(A;). This

is Lemma 3.1 of [4].

Lemma 56 Let k be a finite extension of ¥p of degree d. Let W be the

ring of Witt vectors over k, and K be the field of fractions of W . Then if

E is an elliptic curve over W then rankpEÇW^) = d if E(K)\p] = 0. else
rankpE(W2) = d + 1 if E(K)\p] f 0. Also the following diagram commutes.

0 0 E(KM E(k)\p] (Z/p)d

0 —- (ZIpY — E(W2)Ip] —- E(k)\p] —- (z/pY
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Proof. See [4] David and Weston, Lemma 3.1 ¦
Prom this lemma we have a condition on the p-rank of E(W2) which corre-
sponds to the elliptic curve having a local torsion prime at p. So we will use

the above diagram to find when this condition is satisfied.

In the case d = 1, the following exact row is obtained from the above

diagram:

0 (Z/pZ) E(Z/p2Z)\p°°] >- £(Fp)[p°°] —^ 0

Exactness in the third arrow is a consequence of the following two lemmas.

Lemma 57 Let ? f 2. 3 and let E be an elliptic curve over Q. If Q =

(xo,yo) G E(Fp) then there are exactly ? lifts Q = (x0 + pxi,yo + pyi) £
E(Z/p2Z).

Proof. Let Q = (x0. i/o) G E(FP), and x0 +pxi, be a lift of the x-coodinate,
then we will see what are the possible lifts yo -f pyx for y0. We must have

y2 = x3 + ax + b mod p2
(yo + pyi)2 = (xo + pxi)3 + a(x0 + Px1) + b mod p2

Vo + 2pyoyi ? Xq + 3pxpX] + a?? + a??? -I- b mod ?2
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Now as yl = Xq + a?? + b mod ?, ? divides y% — Xq — a?? — b, and so we
have,

Vn — Xn — CLXq — b . ? ?
----------------------- = — 2i/0yi + OX0Xi + a?? mod ?

Then by our restrictions on ? there is only one choice for y\ provided

t/o f 0. So let us now consider the case when yo = 0. Suppose py\ is a lift

of the y-coordinate, then we shall see what the possible lifts xq + px\ for xo-
We must have

y2 = xs + ax + b mod p2

(pyif = (xo + pxi)3 + a(xo + pxi) + bmod p2

0 = X0 + 3px0xi + axo + apx\ + b mod ?

Then as 0 = Xq + axo + b mod ?, ? divides — x0 — axo — b, and so we have,

-xl - a,XQ-b 2— = Ox0Xi + a?? mod ?
P

= Xi (3xq + a) mod ?
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So there is only one choice for X1 m

Lemma 58 Let ? f 2, 3 and let E be an elliptic curve over Q. IfQ = (O:
1 : 0) G E(Fp) then there are exactly ? lifts Q = (pxx : 1 : 0) G E(Z/p2Z).

Proof. As we are looking at the point at infinity it must satisfy the equation
y2z = x3 + axz + bz3. So suppose that Q = (??? : 1+pyi : Pz1) is a lift of Q.
Then we have

y ? = ?3 + axz + bz3 mod p2

(1 + pyi)2pzi = p3£? + a(pxi)(j)Zi) + bp3z3 mod p2
pz\ -V 2pyi = 0 mod p2

Thus z\ = 0 and yx = 0, and there are ? possible values for X1. Thus
there are ? possible lifts Q = (^x1 : 1 : 0) of Q = (0 : 1 : 0).
¦

Exactness in the 4th place comes because we are looking p°° torsion.

The algorithm for the case d = 1 is as follows. Let E be an elliptic curve
over Q. If ? = 2, 3 then we use the division polynomials as shown below. Let

? be a prime > 5. A necessary condition for E to have p-torsion over Qp is
that E has ? torsion over Fp which is equivalent to p\#E(Fp) = p+ 1 - ap(E)
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which is equivalent to ap(E) = 1 mod p. By the Hasse bound, this means
Op(JB) = 1. Then we have that E{¥p) = E(¥p)\p] = E[¥p)\p°°] and we have
the exact sequence

O (Z/pZ) ?{?/?2?) [p°°] — (Z/pZ) O .

This gives two possible cases

-E[ZfP2Z)Ip00] = Z/pZ ? ZfpZ
In this case rankpZ?(Z/p2Z) = 2 by definition of rank, and thus ? is a local
torsion prime for E

-E[Z/p2Z)\p°°] ^ Z/p2Z
In this case rankp£J(Z/p2Z) = 1 and thus ? is a not local torsion prime for E

So then after checking the condition on ap we must find a point of order

? in E[FP), say Q, which is not the point at infinity. As all points in E[¥p)
have order ? this comes down to finding a point that is not infinity. Now

that we have our point Q we must lift it to Q 6 E[Zfp2Z). We will use
Hensel's lemma to do the lifting in the case d = 1. To do this we let either

x, or y stay the same and lift the other. To decide which of the variables to

lift we denote our elliptic curve by f[x. y) and consider the partial deriva-

tives. If gì evaluated at the point Q = [xq, yo) is not divisible by ? then
\f[xo,yo)\ < |g(xo, yo)2 1- So we lift x, with the lift of Z0, x' = X0 - §gg-
Else we lift y, with the lift of yo, y' = yo~ ¿&,?>\ · Then a11 that is left to see
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is if our new point Q has order p, which is done by checking if (p— I)Q = — Q-

If Q has order ? then ? is a local torsion prime and if Q has order not equal

to ? then ? is not a local torsion prime.

This works in the cases where ? > 5, but in the other cases as the ad-

dition formulas don't work as we are dealing with elliptic curves over rings.

For these cases we need to know about division polynomials. Division poly-

nomials ipm G Z [?, y, A, B] are inductively defined as follows with x,y, A, and
B free variables

^0 = O

F? = 1

?2 = 2y

f3 = 4y(x6 + 5Ac4 + 20ßx3 - hA2?2 - AABx - 8B2 - As)

¦hm = 7p(VW2^Li - Vm-2^+i)for m > 3
These division polynomials xpm vanish precisely on the m-torsion points.

Thus by finding the roots of these polynomials one can see if E^L/p2"L) has
m torsion simply by seeing if any of the roots lie on E(Z/p2Z).

46



Definition 66 Let ? be an order, and let K be the field of fractions of ? .

Then a fractional ideal of K is a finitely generated ?-submodule af§ of K.

Then let ?(?) denote the group of proper fractional ?-ideals.

Definition 67 The fractional principal ideals (a) = a?, a € K* , form a
subgroup of the group of ideals ?(?), which we will denote P(U)- The quotient

group Cl(U) = J(d)/P(u) is called the ideal class group of order ?.

When ? = ?? the maximal order, then ?(??) and P{ß?) will be denoted
Ik and ?? respectively.

Definition 68 Let ?? be the maximal order, then h(ux) = (Ik '¦ Pk) is the

class number of ??

Theorem 69 Let ?? be the discriminant of the maximal order ??- Let ? be

the order of conductor f in an imaginary quadratic field K . Then

m = M^JJ(I _(*£)!). (5-1)?? -¦ 0*] 1J P P

where (—) is the Legrendre symbol for primes not equal to two, and the

Kronecker symbol for ? = 2. Also ??(?) is always a integer multiple of h($K)

Proof. See [1] Cox Thm 7.24 ¦

Definition 70 Now by letting ? be an order in an imaginary quadratic field
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K, the Hurwitz class number is the weighted sum of class numbers

HW = S ¿W- (5-2)

We also write ?(?) as //(?), where ? is the discriminant of ?.

Lemma 71 With the definitions above \H(a2 - Ap)\ < y/piog2(p).

Proof. See [2] Davenport ¦

Theorem 72 (Deuring's Theorem) Let ? > 3 be prime, and let N = p+ 1 — r

be an integer, where —2y/p < r < 2^/p. Then the number of elliptic curves
E over ¥p which have IE(Fp)I = N = ? + 1 — r is

V-^H{S-Ap),
where H is the weighted Hurwitz class number.

Proof. See [1] Cox, Thm 14.18 ¦

In [3], the authors showed that the Lang-Trotter conjecture was true on
average by using the fact that the value of ap(E) depends only on E over
Fp and using Deuring's Theorem. We saw in Chapter 4 that local torsion

primes of degree d can be detected by looking at E over H^(A;), where k is an

extension of degree d of ¥p (Lemma 56) . We now want to count the number
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of E over Z/p2Z such that E has a local torsion prime of degree d. This is
achieved by the next proposition from [4].

Proposition 73 Let ?a$ be an ordinary elliptic curve over Fp such that
j{Ea,b) F 0, 1728. Let k be an extension of¥p of degree d such that E(k)\p] F
0; set W2 = W/p2 with W the ring of Witt vectors of k. Then there are ex-
actly ? distinct pairs (Ai, Bi) G ?/?2 ? Z/p2 such that (Ai, Bi) = (a, b) mod ?
and rankpEAiBiÇWi) = d + 1

We first show how to use Proposition 73 to show that on average, there

are only finitely many local torsion primes.

Definition 74 Let KEa<b(x) = #{p < ? :p is a local torsion prime of Ea,b}-

Definition 75 Let up(d) be the number of pairs (a,b) G ?/?2 ? Z/p2 such
that Eaù is an elliptic curve with rankpEa.t,(W2) .= d+ 1. Let v'p(d) (resp.
v¿(p), resp. v¿728(p) be the number of pairs (a,b) G ?/?2 ? Z/p2 such that
rankpEatb(W2) = d+1 and Eaj, does not have j -invariant 0 or 1728 (resp.
has j -invariant 0, resp. has j -invariant 1728).

Definition 76 Let Sa,b be the set of elliptic curves Ea¿ with a,b G Z and

\a\ < A, \b\ < B.

Note that #Sa,b = 4.4B(I + o(l)) as A, B -> 00.

We now can look at what happens as an average for local torsion primes

in the case d = 1. This is a special case of the results of [4].
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Theorem 77 Let A,B> x7/4+c for some e > 0. Then

TB S p£..»(?) < °°·AAB ,
|fc|<B

Proof. We will begin by considering the sum

S>|<?7G£a?>(?),
\b\<B

2_\ p?a^(?) = y^ #{?O? ^ A 1*1 < B : ? is a, local torsion prime of
\a\<A p<x
\b\<B

then by Lemma 56 (considering the 0(1) 's as A, B —> oo)

9 4 OR

= £W + 0(l))(-2- + <9(l))#{£/Z/p2Z : rank^^Z/^Z) =
IA 2R

= S(-? + Oim-Y + 0(l))#{/?/Z/p2Z : G&?^£a,6(?/?2?) =
p<x P P
f{Eafi) f 0, 1728}

IA 2B
+ S(— + 0(1))(— + 0(1))#{E/Z/p2Z : rankp£a,6(Z/p2Z) =

j~(Ea,b) = 0, 1728}

60



Let us now separate our sum, and work from there. Let

2/4 IR
Si = D-T + 0WX- +0(l))#{£;/Z/p2Z:rankp£;a,b(Z/p2Z) = 2,

p<x P "
J[EaJ1) f 0, 1728} ¦ -

and let

IA 2/?
52 = S(— + 0(1))(— + 0(l))#{£/Z/p2Z : rankp£;Qi6(Z/p2Z) = 2 ,

p<X " "
J(EaJ1) = 0, 1728}.

Now let us consider Si , from Proposition 73, we get

IA IR
Si = S(— +O(l))(-^- + O(l))p#{£;/Fp:Eo,6(Fp)b]^0,

j(£a,6) ^ 0, 1728}

IA IR
??,-? + 0(1))(— + 0(1))?#{?ß? : j(Ea,b) f 0, 1728 mod p,
p<x " "

ap = 1}
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then by Deuring's Theorem we have that,

p<x \ p<x

Y.W -4P)^Ip + E W -4P)^p).
p<x p<x /

+ 2B

Note that we get H(I- Ap) from the condition that ap = 1. Then by
Lemma 71

. « ???S^^ + 0 (µS V^lOg2P + 2?S V^lOg2P
p<x \ p<x P<^

+ jy/MogO.
So now looking at averages we get that

S1
AAB < AAB

?><? \ î><x

+ 2ß£y^log2P + ]>>^log2p]]
p<x p<x / /

^-^ ?2 V 2ßp<x r \
?3/2 J 2 ?7/2 j 2 ?

+ h
2A AAB
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The last three terms of the above equation converge because of our con-

dition on A and B. We can see this as A > x7'i+t > x3/2, B > x7/4+t > x3/2,
and AB > X1I2+1 > x7!2. Thus S1 converges on average, so all we need
to consider now is S2- In their paper [4] David and Weston showed that

S?<?^(?) « dx7'2, S?<? »ï™(p) « dx7'2 where *g(p) (resp. ^728) is the
number of pairs (a, b) G Z/p2Z ? Z/p2Z such that E(W2) has p-rank d + 1
and Ea,b has j-invariant 0 (resp. 1728). So in our case with d = 1, as S% is
bounded by ^4, B, and x, where as the sums that David and Weston were

looking at were only bounded by ? we can see that S2 must also converge. So

Tab S|a?<? I6|<ß p?a?(?) converges and leads to the conjecture in the d — 1
case.

¦

The proof for the general d case is exactly the same, which led David and

Weston to their conjecture. We will now look at a slightly different question,

what happens when we do not fixd.

Lemma 78 A necessary condition for an elliptic curve E over Q to have an

point of p-torsion over ?^ is that ap{E)d = 1 mod p.

Proof. For E to have an point of p-torsion over ¥pd it is necessary for
? to divide #E(Fpd). This is because of the properties of abelian groups
and by Lagrange's Theorem. Now from the Weil conjectures one has that
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#E(Fpd) — pd + 1 - (ap + cfy, where ap and ap come from the zeta function

(1 - apT)(l - ???)Z(E-T) (1- ?)(1-?G)

The numerator of this zeta function is (1 — apT)(l —?^?) = 1 — a??+??2
where ap(E) = ap + ap is the trace of the Frobenius. Then by the binomial
theorem we have

(ap + apr .= ¿Qoj-V
f.— 1 V /fc=l

Note that as ap ? öp = ?, ?)^~? (^)ap_fcö^fc is divisible by p, so set it equal
to pL. Also note that we know that L is an integer, as by the symmetry of

the binomial theorem J2^l\ fya'pi~kctp~k can be written so that each term is
either, mps, or npt(ap+'a^), for integers m, n, s, t. u with 5, t, and u positive.
Then as (ap + ap) G Z for u € Z+, we have that L must be an integer. So by
putting pL in our equation for the numbers of points on the elliptic curve we

get that #E(Fpd) — pd - pL + 1 - ap. As ? must divide this, ap = 1 mod p.

We now investigate the number of primes ? such that E has p-torsion over

an extension of Qp of degree d at most ? — 1 on average over all elliptic curves
over Q. Again, this average result is based on the fact that the condition
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that E has a local torsion prime of degree d depends on the reduction of E

over Z/jo2Z.

Definition 79 Let p?a?){?) = #{p < ? : ? is a local torsion prime of Ea¿
of degree d, for some d<p — 1}.

Theorem 80 Let A, B > x2+t for some e > 0. Then

\a\<A
\b\<B

Proof. Let us first look at

/ j p'?a b(x) = 2_^ #{lal < A N < B '¦ Ea,b has a local torsion prime
\a\<A p<x
\b\<B

of degree d,d< p — 1}

= S?" + 0(1))(4 + 0(l))#{£/Z/p2Z :
rankp£(W2) = d+ 1, d < ? - 1},
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by Lemma 56. Once again let us separate our sum into two terms Si and

S2, let

2/4 2R

p<x " "
Ta,nkpEatb{Z/p2Z) = d + l,d<p-l, j[Ea,b) f 0, 1728}

and let

2/4 Ifí
52 = S(~? +0(1))(— + 0(1))#{E/ZfP2Z:

p<x "
rankp£a,&(Z/p2Z) =d+l,d<p-l, j{Eafi) = 0, 1728}.

By Proposition 73 we have that

2/4 2R
Si = S(— + 0(1))(— + 0(l))#p{Ea,b/¥p :

E(k)\p) f 0 for some k,j f 0, 1728}

where k is an extension of_Fp of degree less then ? — 1. Then as J5(fc)[p] 7^ 0
if and only if ap(E)d = 1 mod p, by Deuring's Theorem we have that

66



5I = S (24 + 0(I))(^ + 0(l))pH(r2 - 4p)^Ü + ET
rd=l(p)
d<p-l

Note that Deuring's theorem does not mention elliptic curves with j-
invariant O or 1728, so the error term, above comes from subtracting the
curves with these j-invariants so that they do not get counted twice. Let us
look at the above sum without the error term.

S'i = S (^ +0(D)A + 0(l))PH(r> -4P)<PZÌ>P<x P P Z
rd=l(p)
d<p-l

67



= 4^ S ^-Ap)^ + O 2? S V* _4?)<^
?<?

\r\<2y/p
? ?<*
\ \A<2JV

\
+ 2? S ""(G2 - 4p)^a + V p//(r2 - 4p)2 ?,(?- 1)

kl<2VP
p<i

\ ?><* ^ ?<2^

+ 2B S ; S ^2 - ^^A + S?? w - *>)2 „_>-l)
p<x * \r\<2y/p P<x \r\<2jp

Now the inner sum in each of the above terms is the number of elliptic curves
over Fp because of the condition on r. Since the number of elliptic curves
over Fp is p2 - ? (see for example [6]), applying this to the above sum gives

4^S^+°?2^ + ^)S^ + S^2-^
p<x pr

p<x
P

p<x
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Let us now consider averages. We have that

1 \^ t2A ?!?\\(2? ?/?\ Ui 2 ???~1)S (^ + 0(I))(^r +0(l))pH(r2-4p)AAB ¿-'?2 ??<? G r
rd=ï(p)
d<p-l

- ?^+?(4^??-^+^S?(^>)?<? \ ?<? r ?<? /

By our condition on A and B the last two terms converge. To see this let us
look at each term individually, starting with the second term. We have that

?? S?<? 2^r < t + ? and A B - ?2+'' so tne second term converges. As
for the third term we have that -^n S?<??{?2-?) « |g, and as AB > x4+£,
so the third term converges. So let. us consider the first term.

S^ - (S?«)p<x

loglog;r + 0(l)
TT /L-^ ?p<x p<x

We now look back at the error term of 5.3. We have that

ET_ Y#{E/Fp:j = 0,1728} ^ _ y ¿
?<? G p<x r

which converges. Similarly looking at S2, we can see that it will also converge.
Thus ^5 J2w\<a p'? b(x) = log log ? + 0(1) which proves the theorem.

u
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