
VIRTUAL BACKBONE FORMATION IN WIRELESS AD
HOC NETWORKS

Hossein Kassaei

A THESIS

IN

The Department

OF

Computer Science And Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

April 2010

© Hossein Kassaei, 2010

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre référence
ISBN: 978-0-494-67117-7
Our file Notre référence
ISBN: 978-0-494-671 1 7-7

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

AVIS:

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

Abstract

Virtual Backbone Formation in Wireless Ad Hoc Networks

Hossein Kassaei

We study the problem of virtual backbone formation in wireless ad hoc networks.

A virtual backbone provides a hierarchical infrastructure that can be used to ad-

dress important challenges in ad hoc networking such as efficient routing, multicast-

ing/broadcasting, activity-scheduling, and energy efficiency. Given a wireless ad hoc

network with symmetric links represented by a unit disk graph G = (V, E), one way

to construct this backbone is by finding a Connected Dominating Set (CDS) in G,

which is a subset V Ç V such that for every node u, u is either in V or has a neighbor

in V and the subgraph induced by V is connected. In a wireless ad hoc network

with asymmetric links represented by a directed graph G = (V, E), finding such a

backbone translates to constructing a Strongly Connected Dominating and Absorbent

Set (SCDAS) in G. An SCDAS is a subset of nodes V CV such that every node u is

either in V or has an outgoing and an incoming neighbor in V , and the subgraph in-

duced by V is strongly connected. Based on most of its applications, minimizing the

size of the virtual backbone is an important objective. Therefore, we are interested

in constructing CDSs and SCDASs of minimal size.

We give efficient distributed algorithms with linear time and message complexi-

ties for the construction of the CDS in ad hoc networks with symmetric links. Since

iii

topology changes are quite frequent in most ad hoc networks, we propose schemes

to locally maintain the CDS in the face of such changes. We also give a distributed

algorithm for the construction of the SCDAS in ad hoc networks with asymmet-

ric links. Extensive simulations show that our algorithms outperform all previously

known algorithms in terms of the size of the constructed sets.

IV

Acknowledgments

I would like to thank all those who made this thesis possible with their perpetual

support and encouragement

I owe my deepest gratitude to my supervisor, Dr. Lata Narayanan, for her in-

valuable guidance and insightful comments that helped me shape the direction of

my research. She led many stimulating and thought-provoking discussions that were

indispensable to the completion of my thesis.

I would like to express my sincere gratitude to Prof. Opatrny for his great contri-

butions to this thesis. It was a great opportunity for me to interact with him during

the course of my research and learn from his invaluable feedback and insightful re-

views.

I wish to thank my good friend and colleague Mona Mehrandish for her close

collaboration in the development of parts of the results in this thesis.

Finally, I would like to note that most of the results presented in Chapter 3 have

been published in [27].

?

Contents

List of Figures viii

1 Introduction 1
1.1 Backbone formation in Wireless Ad Hoc Networks 4
1.2 Problem Statement 8

1.3 Summary of Contributions 13
1.4 Outline of Thesis 13

2 Related Work 15

2.1 Undirected Graphs 17
2.1.1 Centralized Algorithms 17
2.1.2 Distributed Algorithms 19

2.1.2.1 Greedy Algorithms 20
2.1.2.2 MIS-Based Algorithms 22
2.1.2.3 Pruning-Based Algorithms 33

2.2 Directed Graphs 37
2.2.1 Wu's distributed Algorithm 37
2.2.2 Park's centralized Algorithms 39

3 Algorithms for Networks with Symmetric Links 42
3.1 Definitions and preliminaries 43
3.2 Centralized Description 44
3.3 Distributed Implementation 46

3.3.1 k-Hop Extension of the Algorithm 50
3.3.2 Example 50
3.3.3 Performance Analysis 55

Vl

3.3.4 Competitive Ratio 56
3.4 Maintenance of The Backbone 58

3.4.1 Node Addition 60
3.4.2 Node Removal 62

3.5 Local Implementation 72
3.6 Experimental Results 73

3.6.1 Performance comparison of distributed algorithms 75
3.6.2 Performance comparison of local algorithms 81

4 Algorithms for Networks with Asymmetric Links 83
4.1 Definitions and preliminaries 84
4.2 Centralized Description 86
4.3 Distributed Implementation 86

4.3.1 Performance Analysis 90
4.4 Experimental Results 92

4.4.1 Impact of Transmission Range on The Percentage of Unidirec-
tional Links 93

4.4.2 Impact of Locality on The Size of The SCDAS Constructed by
Our Algorithm 95

4.4.3 Impact of Node Density 98
4.4.4 Impact of Unidirectional Links 103

5 Conclusions and Future Work 108

Bibliography 112

VIl

List of Figures

1 A disk graph representing a wireless network of nodes with different
transmission ranges 10

2 Dominating and absorbent neighbors of node w 11
3 A tile divided into 12 hexagons of unit diameter. The bold edges belong

to hexagon 1 31
4 CDS construction by our algorithm (the set of black nodes constitutes

the CDS) 53
5 Considering larger neighborhood in the connectivity test 55
6 An example showing the worst-case performance of the algorithm . . 57
7 CDS maintenance when a new node is added to the network 61

8 Paths P\ and P2 may have the same or different endpoints 64
9 There exists a path between V and W consisting of all neighbors of u.

Note that all the nodes in V and W are neighbors of u 65
10 A non-CDS node Xi which is left un-dominated when its only dominator

u is removed, is either two hops away from another dominator ? or is
adjacent to another such node Xj 68

1 1 The maintenance procedure restores the CDS by reconnecting Ci and
C2 70

12 Percentage of nodes in the CDS for different distributed algorithms. . 76
13 Average shortest path in the CDS for different distributed algorithms 78
14 Comparison of the CDSs constructed by different distributed algorithms 80
15 Percentage of nodes in the CDS for different local algorithms 82
16 Average shortest path in the CDS for different local algorithms 82
17 Dominating and absorbent neighbor sets of node u 85
18 Relationship between maximum-to-minimum transmission range ratio

and percentage of unidirectional links 94

vin

19 Impact of the locality of connectivity test on the size of the SCDAS
when transmission ranges vary between 10 m and 50 m 96

20 Impact of the locality of connectivity test on the size of the SCDAS
when transmission ranges vary between 20 m and 50 m 96

21 Impact of the locality of connectivity test on the size of the SCDAS
when transmission ranges vary between 30 m and 50 m 97

22 Impact of the node density - number of nodes =50 100
23 Impact of the node density - number of nodes =100 100
24 Impact of the node density - number of nodes =150 . . 101
25 Impact of the node density - number of nodes =200 101
26 Impact of the node density - number of nodes =250 102
27 Impact of the node density - number of nodes =300 102
28 Impact of the percentage of unidirectional links - [rmin, rmax] = [10, 50] 105
29 Impact of the percentage of unidirectional links - [rmin, rmax) — [20, 50] 106
30 Impact of the percentage of unidirectional links - [rmin, rmax] = [30, 50] 106
31 Impact of the percentage of unidirectional links - [rminirmax] = [40, 50] 107
32 Impact of the percentage of unidirectional links - [rmin, rmax] = [50, 50] 107

IX

Chapter 1

Introduction

An ad hoc wireless network is an infrastructureless, peer-to-peer network of wireless

nodes communicating with each other via multiple hops. By definition, an ad hoc

network comes together when the need arises and achieves a goal without relying

on any established infrastructure. It operates as a stand-alone network that maj^

communicate with other networks or the Internet, but does not depend on them to

accomplish its tasks. The devices participating in such a network may be of the same

type or may be of different types as long as they all have the capability to wirelessly
connect to other devices in the network. If two nodes are within the transmission

range of each other, they can communicate directly; otherwise, a set of nodes between

the two endpoints should forward their packets so they can communicate. This means

that in an ad hoc network, any node must be able to play the role of a router in a

conventional network. Although mobility is not explicitly part of the definition of a

wireless ad hoc network, man}' appealing applications of ad hoc networking call for

1

the need to accommodate mobility. Thus, prominent classes of ad hoc networks, such

as Mobile Ad Hoc Networks (MANETs) and Vehicular Ad Hoc Networks (VANETs)

have emerged in which mobility is considered a key characteristic of the network.

Another important characteristic of ad hoc networks is their resource constraints

(bandwidth, computing power, battery lifetime, etc.) compared to traditional wired
networks. The wide variety of envisioned applications as well as the highly challenging

nature of this type of networking have resulted in a surge of interest in this field among

researchers.

The numerous possible applications of ad hoc networks are expected to make

them an indispensable part of our lives in the future. These applications include con-

ferencing, home networking, emergency services, personal area networks, embedded

computing, and sensor dust among others [41]. While some of these applications are

predicted to emerge in the near future, others are thought to take much longer to

become viable due to the large number of challenging issues that need to be addressed.

The challenges facing ad hoc networks have a very wide range, varying from reg-

ulations regarding the use of radio spectrum currently in place to scalability, routing,

energy efficiency, security and privacy. In other words, there are various issues to

be addressed across all the layers of the protocol stack as well as new regulations to

be made and approved in order for ad hoc networking to emerge as an influential

technology. Furthermore, appropriate interfaces should be developed to make it pos-

sible for ad hoc networks to interact with other networks or the Internet where and

when necessary. Therefore, compatibility and interoperability are other key issues

2

that may need to be considered in the development of ad hoc networks depending on

the application.

While many of the aforementioned challenges are inherently different and need

to be addressed separately, there are issues which are closely interdependent and the

best solutions for such problems are the ones that take into account those common

aspects. One such group of crucial problems are the intertwined issues of efficient

routing, scalability and energy conservation. Suppose in a proposed proactive routing

scheme, all the nodes in the network should act as routers and forward other nodes'

packets. This implies that every node should maintain a routing table and be ready

to receive and forward packets at all times. Since all the nodes are supposed to act

as routers, the size of the routing tables grow linearly with the network size. Given

the limited computing resources of the wireless nodes, this forces a limit on how large

the network size can grow. Moreover, the fact that the nodes should keep their radio

interfaces on at all times means they get depleted faster, which, in turn, results in

decreased network lifetime. However, if an efficient hierarchical approach is adopted

in which only a small subset of nodes act as routers, the size of the routing tables

shrink considerably. Furthermore, by periodically changing the membership of nodes

in that subset, they are not depleted as quickly. Clearly, the second approach is more

scalable and more energy efficient.

As briefly mentioned above, adopting a hierarchical infrastructure in an inherently

flat ad hoc network can provide a very good solution to several problems. Indeed,

creating this hierarchy, which can be used by many other protocols as an underlying

3

infrastructure, is the main focus of this thesis.

1.1 Backbone formation in Wireless Ad Hoc Net-

works

Many conceivable applications of wireless ad hoc networks imply very large-scale de-

ployments of nodes, possibly in the hundreds or thousands. Wireless Sensor Networks

(WSNs), as a very important class of ad hoc networks which are expected to revo-

lutionize information gathering and processing in the near future, have even more

demanding design requirements. In addition to very large-scale deployment, sensor

nodes might be deployed in environments that preclude physical access to them such

as disaster recovery or other inhospitable terrain. Due to such characteristics, in

many applications discussed for sensor networks, replacing batteries of depleted sen-

sor nodes is not an option and a node is considered dead forever once it runs out

of power. Such strict requirements call for the design of very efficient, scalable and

robust protocols.

The key to scalability and efficiency in traditional networks is the hierarchical

organization of the network infrastructure. However, due to the lack of such an

infrastructure, ad hoc networks are inherently flat. In order to achieve the desired

scalability and efficiency in such a flat architecture, a lot of algorithms and protocols

have been designed to rely on a virtual infrastructure, which organizes nodes into a

hierarchy. One of the most popular of such hierarchical schemes is to form a virtual

4

backbone. For many practical purposes, this backbone should be at most one hop

away from all the nodes in the network as well as being connected, which translates

to the concept of a Connected Dominating Set (CDS) in graph theory. The complete
definition of a CDS and relevant explanations will be given in the following section,

however, we would like to first have a look at some of the applications of virtual
backbones in the remainder of this section.

A virtual backbone in ad hoc networks is used as an underlying infrastructure

by many protocols for a wide range of key networking functions such as unicast,
multicast, and broadcast routing as well as activity-scheduling and topology control.

One of the most significant applications of a virtual backbone is efficient routing.

In general, the overhead for flat routing algorithms can grow faster than linearly as
the network size increases, and in very large ad hoc networks, may result in serious

scalability problems. The virtual backbone can efficiently narrow down the search

space for a route to the nodes in the backbone and routing tables will be maintained

only by those nodes, which will result in a significant reduction in message overhead

associated with routing updates. The use of this approach has been extensively

studied in several papers in the literature such as [7], [15], [16], [17], [42], [46], [48],

and [50].

In position-based routing, messages are forwarded based on the geographical co-

ordinates of the nodes. Intermediate nodes are selected based on their proximity to

the message's destination. Using such a scheme, it is possible for a message to get

stuck by reaching a local maximum; i.e. it might reach a node whose neighbors are

5

all farther from the destination than itself. In this case, the routing algorithm must

use a recovery procedure in which it backtracks to find another route. The authors

in [18] propose that if messages are forwarded to the nodes in the dominating set, the

recovery phase can be performed more efficiently.

A great challenge in multicast/broadcast routing and flooding is that many inter-

mediate nodes unnecessarily forward a message. This redundancy which results in

increased contention and collision in the network is referred to as the broadcast storm

problem [38]. However, by using a virtual backbone, a large percentage of such redun-

dant broadcasts can be eliminated. This approach has been investigated in several

papers such as [7], [30], [31], [34], [44], [47], [51], and [52]. In [31], it is shown that

the minimum cost flooding tree problem is similar to the MCDS (Minimum CDS)

problem.

Nodes in wireless ad hoc networks are often battery-powered and thus have a

limited energy supply. In many conceivable applications of ad hoc sensor networks,

it is not even possible to replace batteries. Such restrictions necessitate the use

of energy-aware protocols that minimize energy consumption and prolong network

lifetime. CDSs play an important role in power management. They have been used

to increase the number of nodes that can switch to sleep mode while preserving

the connectivity of the network so that it can perform key functions such as routing.

Several papers including [8], [19], [51], [52], and [56] have investigated this application

of CDSs.

In very dense WSNs, a virtual backbone that includes the sink(s) can be used for

6

data gathering and dissemination as well as routing, activity-scheduling and topology

information extraction. Additionally, in-network processing or data aggregation has

been proposed as a way of conserving energy by reducing the volume of exchanged

messages in sensor networks [35]. CDS nodes are ideal candidates to be used as data

aggregation points in sensor networks.

Finally, the virtual backbone formed by the CDS can be used to propagate "link

quality" information for route selection to provide quality of service in ad hoc networks

[43]. In their work, this backbone is referred to as the core and the core extraction
relies on CDS formation.

AU these applications imply that in many cases the fundamental problem of con-

structing a backbone should be solved before anything else can be accomplished by

the nodes in the network. However, the best algorithms proposed so far for CDS

construction suffer from at least one of the following two problems: (i) poor scalabil-

ity, and (ii) large size of the constructed CDS. This observation has formed the basic

motivation of this thesis.

7

1.2 Problem Statement

In wireless networks, a wireless node A can directly communicate with another wire-

less node BHB lies in the transmission range of A. If the wireless nodes use omnidi-

rectional antennas, then the network can be modeled as a disk graph in which nodes

are the wireless devices. In this model, the disks represents the transmission range

of nodes and there exists an edge from node u to node ? if node ? lies in the disk

centered at node u.

If the wireless devices are homogeneous; i.e. have the same transmission range,

the graph becomes a Unit Disk Graph (UDG). In such a context, the virtual backbone

discussed above can be created by finding a Connected Dominating Set (CDS) in the

underlying graph. Given an undirected graph G = ('V, E), a subset V C V is a CDS

of G if for every node u G V, u is either in V or there exists a node ? such that

(u, v) e E and the graph induced by V is connected. In other words, we need to find

a subset S of the nodes in a graph such that every node in the graph is either in S or

has a neighbor in S and the graph induced by S is connected. It is always desirable

to minimize the size of the CDS. For example, in routing applications, a smaller

sized CDS translates to lower routing information overhead. Similarly, in activity

scheduling applications, this results in enabling more nodes to switch to sleep mode

and conserve energy.

In reality, nodes in a network may not necessarily have the same transmission

range. This might simply occur when the network consists of various kinds of wireless

8

devices with different powers and different functionalities. Even when the network

consists of similar nodes, these nodes may need to adjust their transmission ranges

for many reasons. For example, in many power control schemes, nodes adjust their

transmission power to save energy, reduce collisions and so on. Similarly, in a topology

control scheme, nodes adjust their transmission ranges in order to maintain a certain

number of neighbors with the goal of improving spatial reuse. All of these scenarios

result in introducing asymmetric links in the network. In such cases, the wireless

network can be modeled as a Disk Graph (DG) rather then a UDG. In a disk graph

G = (V, E) a node Vi € V has a transmission range r¿ G [rmi„,rmax]. If d(vi,Vj)

denotes the Euclidean distance between the two nodes t>¿ and u¿, then there exists a

directed edge (vi:Vj) G E iff d(vi,Vj) < r¿. In other words, there is a directed link

from Vi to Vj only if Vj lies in the disk centered at Vi. An edge (ví,Vj) is unidirectional

if {vi,Vj) e E, but (vj,Vi) £ E. If ((vi,Vj) € E and also (%,f¿)) £ E, then the

edge (vi,Vj) is bidirectional. Figure 1 illustrates an example of a DG representing

such a wireless network in which both unidirectional and bidirectional links exist.

The dotted circles represent the transmission range of nodes, directed edges indicate

unidirectional links, and undirected edges represent bidirectional links.

9

Figure 1: A disk graph representing a wireless network of nodes with different trans-
mission ranges

Wu [46] extended the concept of dominating set in a UDG to a Dominating and

Absorbent Set (DAS) in a DG for the first time. In a directed graph G = (V, E),

node it is a dominating neighbor of node w if (u, w) e E, and node ? is an absorbent

neighbor of node w if (w, v) E E. Node ? both dominates and absorbs node ? if

(x, v) is a bidirectional edge in E. A set V C V is a dominating set of G if every

vertex ? e V — V is dominated by at least a vertex u G V. Also, a set V C V is

an absorbent set if every vertex ? e V — V is absorbed by at least a vertex u e V .

A set is a DAS if it is both a dominating and an absorbent set. Figure 2 gives an

example of the above definitions.

10

dominating neighbor ?. / Absorbent neighbor

X

Dominating and
absorbent neighbor

Figure 2: Dominating and absorbent neighbors of node w

Following the above definitions, backbone formation in DG involves finding a DAS

which is strongly connected. A directed graph G is strongly connected if for any pair

of vertices (u,v), there exists a path from uto ? and also from ? to u. Therefore, for

directed graphs, we are interested in constructing a Strongly Connected Dominating

and Absorbent Set (SCDAS). In other words, our goal is to generate a set S € V such

that every node in the graph is either in S or has at least one dominator and one

absorbent in 5, and the subgraph induced by S is strongly connected. Also, just like

in UDGs, we seek to minimize the size of this set.

Although minimizing the size of the backbone is our primary goal, it is not the

only one. As mentioned earlier, ad hoc networks are known to have stringent require-

ments with respect to several protocol design criteria. First and foremost, the lack of

centralized administration and the large scale deployments in many applications pro-

hibit the use of centralized algorithms. Therefore, it is preferable to use a distributed

11

model in which nodes run a distributed algorithm autonomously and do not rely on a

centralized coordinator. However, the decisions made by a node may depend on other

nodes in the network. In addition, scalability requirements call for distributed algo-

rithms with low time and message complexities. Furthermore, due to high frequency

of topological changes, either induced by node mobility or node failure, algorithms

that rely only on local information and are more robust to such changes are preferable.

A local algorithm is a distributed algorithm in which a node makes decisions based on

the information obtained through communication with nodes located no more than a

constant (independent of the size of the network) number of hops away from it. This

is different from a (non-local) distributed algorithm in that in the latter, the decisions

made by a node may depend on the nodes that are arbitrarily far away from that

node and therefore the size of the network may affect the way individual nodes make

their decisions.

In summary, we are interested in designing efficient distributed/local algorithms

that construct small-sized CDSs (SCDASs) in networks with symmetric (asymmetric)

links and we want these algorithms to have low time and message complexities while

exhibiting the required robustness in dealing with topological changes.

12

1.3 Summary of Contributions

Having discussed the problem statement in the previous section, we give a summary

of our results in this section. They will be discussed in detail in chapters 3 and 4.

1. We give an efficient distributed algorithm with linear time and message com-

plexity for the construction of CDS in wireless networks with symmetric links.

2. We give a local implementation of our algorithm for the construction of CDS in

location-aware wireless networks with symmetric links.

3. We propose schemes to locally maintain the CDS in the face of topological

changes, even in the absence of geographical location.

4. We extend our algorithm to construct SCDASs in wireless networks with asym-

metric links.

Also, in each section, we present the main results of our extensive experimental

work conducted to verify the efficiency of our algorithms in comparison with several

classical algorithms in this area.

1.4 Outline of Thesis

In Chapter 2, we present a literature review on the connected dominating set (CDS)

problem in networks with symmetric links and the strongly connected dominating

and absorbent set (SCDAS) problem in networks with asymmetric links. In Chapter

13

3, we propose our algorithms for CDS construction in networks with symmetric links

and analyze their performance and complexities, we extend our work to construct

SCDASs in networks with asymmetric links in Chapter 4. Finally, Chapter 5 wraps

up this thesis by some concluding remarks and pointing out possible directions for

future work.

14

Chapter 2

Related Work

In most of the applications of CDS/SCDAS in ad hoc networks outlined in the intro-

duction, it is desirable that the cardinality of the generated CDS/SCDAS be mini-

mum. However, it has been proved in [23] that MDS and MCDS are NP-hard problems

in general graphs. In [13], it has been proved that these problems remain NP-hard in

UDGs. As a result, extensive research has been focused on designing approximation

algorithms for these problems.

It has been proved in [21] that Chvátal's greedy algorithm's approximation ratio

of In ? [11] is a tight bound for the computation of DS in general graphs. However, in

the case of UDGs, although MDS and MCDS problems remain NP-hard, the authors

in [36], [1], and [7] showed that a constant approximation ratio is achievable.

For the MDS problem, the first algorithm running in polylogarithmic time with

a non-trivial expected approximation ratio of O(logA) and an approximation ratio

of O(logn) with high probability was proposed by the authors of [26]. Nieberg and

15

Hurink [39] presented a polynomial-time approximation scheme (PTAS) for the MDS

problem in UDGs. Their approach does not assume a geometric representation of the

graph as the input. Given any graph as the input, their algorithm recognizes whether

or not the input graph is a UDG. If so, it returns a dominating set with the approx-

imation ratio of 1 + e. Otherwise, it returns a certificate indicating that the input

graph is not a UDG. However, since the time complexity of their algorithm is 0(nc)

with c = 0(\ log -), e cannot be arbitrarily small in practice. Kuhn and Wattenhofer

[29] gave a distributed algorithm using LP relaxation techniques to compute a dorn-
2

inating set of expected approximation ratio of 0(kA* logA) with time complexity

0(k2), where k is an arbitrary constant and ? is the maximum node degree.

A PTAS for computing MCDS in UDGs was proposed in [10]. One of the greatest

contributions of this work is that it shows an MCDS in UDGs can be approximated to

any degree given sufficient computing time. In the remainder of this chapter, we will

study the general trends in the formation of CDS/SCDAS used by the state-of-the-art

algorithms and will take a look at the algorithms and heuristics that are most relevant

to our proposed algorithms. These algorithms, many of which have been simulated

for performance comparison in this thesis, are among the most efficient algorithms in

the literature.

16

2.1 Undirected Graphs

We have classified CDS formation algorithms into centralized and distributed. We first

review the centralized algorithms in the following section and then discuss distributed

algorithms in section 2.1.2.

2.1.1 Centralized Algorithms

Many algorithms designed in the literature are inspired by the seminal work of Guha

and Khuller [24], which proposes two greedy heuristics with bounded approximation

ratios for the construction of the CDS. The first algorithm grows a tree from the

vertex with maximum degree using a greedy heuristic. The second algorithm grows

separate components that form a dominating set and then connects them together

using a Steiner tree. These two approaches later served as major techniques in CDS

construction and were used in a number of distributed algorithms which will be ex-

plained in section 2.1.2.

The first algorithm initially marks all nodes white. It then starts to grow a tree T

rooted at the node with the maximum degree (maximum number of white neighbors) .

The root is colored black and all its neighbors are colored gray. Then, the algorithm

"scans" the gray nodes and their white neighbors iteratively, and selects the gray node

or the pair of gray and white node with the maximum number of white neighbors.

The selected node(s) are marked black and their neighbors are marked gray. The

algorithm terminates when all the nodes have been marked either black or gray. At

17

termination, the set of black nodes forms a CDS with an approximation ratio of

2(1 + H(A)), where H is the harmonic function, and ? is the maximum node degree.

The second algorithm, which has two phases, adopts a completely different ap-

proach. In the first phase, all nodes are initially colored white. Whenever a node

in included in the dominating set, it is colored black and all its dominatees (its 1-

hop neighbors) are colored gray. A piece is defined to be either a connected black

component or a white node. At each step of the first phase, a node which causes the

maximum number of reduction in the number of pieces is selected to be colored black.

This phase terminates when no white nodes are left. In the second phase, pairs of

black components are recursively connected up by choosing a chain of two gray nodes

until there is one connected black component. This black component forms a CDS of

size at most (In(A) + 3).\OPT\, where OPT is the minimum CDS.

The distributed implementations of both these algorithms, which we will review

in section 2.1.2.1, were proposed in [16].

The authors in [37] proposed to use a Steiner tree with minimum number of Steiner

nodes (ST-MSN) [9], [20], [32] to make the process of connecting MIS nodes more effi-

cient. Their algorithm consists of two phases. In the first phase, an MIS is constructed

which satisfies the following property: every subset of the maximal independent set

is two hops away from its complement. AU the nodes in the MIS are colored black

and the rest of the nodes are colored gray. Since ST-MSN in the Euclidean plane is

NP-hard [32], they use a 3-approximation algorithm to interconnect the MIS in the

second phase. In this phase, a gray node that is adjacent to at least three black nodes

18

is colored black. If no such node exists, a gray node that is adjacent to at least two

black components is colored black. At the end, the set of black nodes forms a CDS

with an approximation ratio of 6.8 in UDGs.

While most of existing algorithms for the MCDS problem are based on selecting

nodes to be part of the connected dominating set, the authors in [6] used the op-

posite method. Their algorithm assumes all the nodes are initially in the connected

dominating set C. Also, all the nodes in C are initially marked as non-fixed. The

effective degree of a node is defined to be the number of its non-fixed neighbors in C

at any given time. At each step, a non-fixed node u with minimum effective degree is

selected from C. If removing u from C makes the graph induced by C disconnected,

then u is fixed; Otherwise, u is removed from C. Meanwhile, if u has no fixed neighbor

in C, its neighbor with maximum effective degree is fixed. The algorithm terminates

when there are no non-fixed nodes left in C. This algorithm does not provide a bound,

but simulations show that the size of the generated CDS is desirably small.

2.1.2 Distributed Algorithms

In the context of ad hoc networks, centralized algorithms are usually not practical

due to the lack of centralized administration and the large scale of these networks.

Therefore, a lot of the research in this area has been focused on the development

of distributed protocols, some of which are indeed the distributed implementations

of centralized algorithms existing in the literature. In this section , we will briefly

review some of the most relevant distributed algorithms that follow the typical trends

19

in CDS construction and attempt to do so as efficiently as possible.

In our review, we will focus on a number of key performance criteria such as time

and message complexity, approximation ratio (if any), and the degree of locality in

the algorithm; i.e. the size of the neighborhood of which a node need to be aware of

in order to make its decisions. Some of the algorithms and heuristics discussed below

have been proposed in the context of UDGs. Note that they work well for general

graphs too, however, the performance analysis and bounds will not be applicable any

more.

Topological changes in ad hoc networks, especially Mobile Ad Hoc Networks

(MANETs) and WSNs, are quite frequent. These changes may occur as a result

of nodes switching on or off, node mobility, node failure, and so on. Thus, a robust

algorithm should accommodate such changes in network topology and provide the

flexibility to deal with them as efficiently as possible. Among the algorithms that we

will review, some have incorporated a maintenance phase to address such changes,

while others have suggested the recalculation of the CDS. Therefore, in each case,

we will also discuss how the algorithm deals with the issue of maintenance after the

formation of CDS.

2.1.2.1 Greedy Algorithms

In a series of routing algorithms proposed by Das et al. in [16], [17], and [42], MCDS

has been used as a virtual backbone or spine to provide for hierarchical routing. In

order to form this virtual backbone, they propose the distributed implementations of

20

the two greedy algorithms of Guha and Khuller [24] discussed in section 2.1.1.

The first distributed algorithm finds a dominating set S in the first stage. In

order to do so, an unmarked node u compares its effective degree 6(u), the number of

unmarked neighbors, with the effective degree of all its two-hop neighbors (N2[U)).

Node u is added to S if 5(u) > ô(u) for all ? ? u in N2 (u). Minimum node IDs are

used to break ties. Once a node is added to S, it is marked. In the second stage,

the algorithm connects all the components formed by (u,dom(u)) edges in a greedy

manner. Before connecting components, all the edges that connect two nodes inside

a component are discarded and the rest of the edges are assigned weights equal to

the number of endpoints not in S. When connecting the components, edges of smaller

weights are selected in order to minimize the number of connectors. At the end, the

interior nodes in the resulting spanning tree form the CDS. This algorithm has a

performance ratio of 2H(A) + 1 derived from its centralized version in [24]. Its time

and message complexity are 0((n + |C|)A) and 0(n|C| + m + ? log ?) respectively,

where C is the generated CDS and m is the cardinality of the edge set.

The second algorithm adopts a different approach by growing a connected dom-

inating set C from a node with maximum degree. An extension to a fragment is

defined to be either a one-edged or two-edged path consisting of one node in the frag-

ment and one or two nodes, respectively, not in the fragment. The effective combined

degree of an extension is defined to be the number of unmarked nodes adjacent to

the non-fragment nodes in the extension. The extension with the highest effective

combined degree is considered the best extension. The algorithm iteratively adds the

21

best extension in a greedy manner to form the final set C. This algorithm approxi-

mates C with a performance ratio of 2H(A) in 0(\C\(A + \C\)) time, using 0(n\C\)

messages.

In order to maintain the CDS in face of node mobility, Das et al. classify node

movement into single-node movement and multiple-node movement. They propose

a method to locally update the CDS in the case single-node movements. Multiple-

node movements can also be treated as several single-node movement as long as the

neighborhoods affected by those movements do not overlap. However, if the affected

neighborhoods overlap, the CDS needs to be recalculated.

2.1.2.2 MIS-Based Algorithms

Maximal Independent Set (MIS) based CDS construction is perhaps the most popular

method used in various forms in the literature. MIS-based algorithms, like the ones

proposed in [1], [2], [14], [22], [25], and [57] might follow slightly or completely differ-

ent approaches in how they build the MIS or later connect it up to form the CDS,

but they all take advantage of the property that any MIS in UDGs has a constant

approximation ratio. They use this property to guarantee constant approximation

bounds for the generated CDSs.

Alzoubi et al. proposed a classical MIS-based algorithm in their seminal work in

2002 [I]. In this algorithm, an arbitrary rooted spanning tree T is first constructed.

This spanning tree can be constructed through a leader election algorithm, such as

the one presented in [12]. The tree T helps give rise to a global ordering through the

22

unique ranks assigned to nodes in the tree. The rank of a node is the ordered pair

of its level (hop distance from the root of the tree) and its ID. Once the tree T has

been constructed and the ranks assigned to nodes, all nodes are marked white and

the root is marked black. Then, starting from the root and spreading out following

the ranks, each node is marked black unless it already has black neighbors, in which

case it will be marked gray. The marking process terminates when it reaches the leaf

nodes. At this point in the algorithm, the set of black nodes forms an MIS, which

is also a DS of the underlying graph. During the final phase, starting from the root,

black nodes start joining the CDS and send an INVITE message to their two-hop

neighborhood. At each iteration, a black node and the gray node through which it

received the INVITE message for the first time will be added to the CDS until all

black nodes have joined the CDS. The resulting CDS has a constant approximation

ratio of 8, which is based on the following lemma bounding the size of an independent

set in UDGs:

Lemma 1 [1] The size of any independent set in a unit disk graph G = (V, E) is at

most 4 ? \OPT\ + 1, where OPT denotes the minimum CDS.

The algorithm has a time complexity of 0(n), and a message complexity of

O(nlogn) dominated by the leader election phase. The creation of the required in-

frastructure (spanning tree) and the consequent formation of the dominating tree are

serialized schemes which will not allow for locality of maintenance in this algorithm.

As a result, a single change in the network topology necessitates the recalculation of

the CDS. Its high message complexity is potential drawback of this algorithm.

23

To address the problems of the above algorithm, namely high message overhead,

serial nature of the algorithm, and inability to provide local maintenance, Alzoubi et

al. proposed a message optimal algorithm in [2]. Like the algorithm in [1], it first

builds an MIS; however, in doing so, it does not use a spanning tree. Instead, the

MIS is created through the following marking process. Any node with the smallest

ID among its one-hop neighbors is marked black and sends a dominator message to

its one-hop neighbors. Any node that receives a dominator message is marked gray

and sends a dominatee message to all its one-hop neighbors. A node that receives

a dominatee message form all of its neighbors is also marked black and sends a

dominator message to its one-hop neighbors. Once all the nodes have changed their

color, the set of black nodes forms a DS. In the second phase each dominator is

connected to all dominatore within three-hop distance. The nodes connecting any

pair of dominators are referred to as connectors. The final CDS is the set of all

dominators and connectors in the graph.

Alzoubi et al. presented another important lemma in [2]:

Lemma 2 [2] Let S be any MIS of the UDG G and u be an arbitrary node in S.

• The number of nodes in S that are exactly two hops away from u is at most 23.

• The number of nodes in S that are exactly three hops away from u is at most

47.

Using Lemmas 1 and 2, they prove that the above algorithm has an approximation

24

ratio of 192 ? \???\ + 48, which is much larger than their first algorithm. Experi-

mental results from [5] and [25] also show that the average size of the generated CDS

by the second algorithm is much larger than that of the first one as this algorithm

generates a mesh-like CDS by connecting all two-hop and three-hop away dominators.

The algorithm in [2] provides local maintenance in face of topological changes. The

key idea is to maintain the MIS and connectivity between all MIS nodes. Therefore,

whenever a new dominator appears in a new vicinity, it must connect to all the

dominators within three-hop distance. A connector maintains its status as long as it

connects at least two dominators; otherwise, it will change its status to dominatee.

This algorithm has linear time and message complexity. It should be noted that

the algorithm in [1] is an example of a class of distributed algorithms which are some-

times referred to as single leader algorithms in the literature, whereas the algorithm

in [2] is an example of multiple leader algorithms. Typically, multiple leader algo-

rithms exhibit higher degree of parallelism, have lower message overhead, and in the

context of CDS formation, they can deal with topological changes locally.

Later, it was shown in [53] that the approximation factor of the algorithm in [1],

can be improved to 7.8. In fact, Wu et al. [53], [54] showed that the bound on the

size of the MIS in unit disk graphs can be improved from what was stated in lemma

1. Their main contribution is the following lemma:

Lemma 3 [53] For any unit disk graph G, the size of a maximal independent set is

at most 3.8 ? \OPT\ + 1.2 where OPT is the minimum CDS.

This result was later used by several MIS based algorithms in the establishment

25

of bounds for the generated CDSs, as we will see in the rest of this section. However,

Funke et al. [22] further improved this bound in 2006. Their main contribution was

the following lemma:

Lemma 4 [22] The size of any independent set in a unit disk graph G is at most

3.453 ? \OPT\ + 8.291.

Therefore, all those algorithms whose approximation ratios are based on Lemma

3 can have improved approximation ratios using Lemma 4.

Basagni [4] proposed an algorithm that adopts the same MIS based approach in

constructing a CDS. In this algorithm MIS nodes are called clusterheads. Their Dis-

tributed Clustering Algorithm (DCA) makes use of a generic weight assigned to nodes

to give rise to a local ordering for the execution of the algorithm. The idea is that

a node decides whether to become a clusterhead or not when all its neighbors with

bigger weights have made their decisions. This weight can be adjusted to select clus-

terheads that have desirable properties based on a given application. Once an MIS is

constructed using this cluster-based scheme, clusterheads that are at most three hops

apart are connected up via intermediate nodes (gateways) to form a connected back-

bone. This algorithm has linear time and message complexity. Although no explicit

approximation bound has been given for this algorithm, a constant approximation

ratio like the one calculated in [2] is easily conceivable for this algorithm as well.

Extensive simulations were conducted in [5] to compare the performance of algo-

rithms proposed in [2], [4], and [50] (explained later in section 2.1.2.1). It is shown

26

that DCA generates CDSs that are larger than those constructed by Wu and Li's

algorithm [50] for relatively sparse networks and only a little smaller for more dense

networks while it consistently generated larger CDSs that [I]. So they introduce

sparsification rules in [5] to reduce the size of the backbone. The idea is to sparsify

the CDS and generate a sparsified CDS that they call DCA-S, by breaking cycles of

size 3 and 4, namely DCA-S(3), and DCA-S(4). The sparsification phase does not

add much to the complexity of the algorithm, but does reduce the size of the CDS

particularly as network density increases. DCA-S strikes a good compromise between

[1] and [50].

In [25], Han presents a zone-based distributed algorithm that combines the zone

and level concepts used by other algorithms in the literature to reduce the size of the

CDS. In this algorithm, the network is first partitioned into different zones. Then a

dominating tree is constructed in each zone. Finally adjacent zones are connected up

by inserting bridges at zone borders to generate the final CDS.

In the following, the three phases of this zone-based algorithm are briefly ex-

plained. During the first phase, zones are formed and are assigned unique IDs. First,

a node with the highest rank (rank could be ID or degree) among its one-hop neigh-

bors becomes a dominator and sends a DOMINATOR message to all its neighbors.

Any node receiving a DOMINATOR message for the first time marks itself as DOMI-

NATEE and broadcasts a DOMINATEE message to all its neighbors. This procedure

continues until all nodes become either dominator or dominatee. In this process, a

node may become a dominator because it has the absolute highest rank among its

27

neighbors. Such a node is called a seed dominator. Or, it may become a dominator

because its higher-rank neighbors have already become dominatees. Such a node is

called a non-seed dominator. In the partitioning phase, the ID of a seed dominator

automatically becomes the zone ID and is sent to all the nodes in the DOMINATOR

message sent by the seed dominator. A dominatee also includes this information in

the DOMINATEE message that it broadcasts. Using these messages, the non-seed

dominator can also understand what zone they belong to. In case of receiving differ-

ent zone IDs from their neighbors, non-seed dominators can select which zone to join.

Once the zone partitioning phase is over, the second phase can begin. Note that by

the end of this phase, the set of seed and non-seed dominators form an MIS.

Since the main goal of this algorithm is to reduce the size of the CDS, instead

of building a dominating tree for the whole graph, it adopts a hierarchical approach

in connecting the MIS. In the second phase, dominating trees rooted at the seed-

dominators are formed inside zones. To build this tree inside each zone, a level,

which is the hop distance from the root of the tree, is assigned to every node. Then

every dominator broadcasts a ONE-HOP-DOMINATOR message containing the node

IDs, zone IDs and levels of all its one-hop away dominators. By doing this, every

dominator will know its two-hop away dominators and every dominator connects to

exactly one such dominator in its zone by choosing the path that contains dominatees

of the highest rank, thereby making them connectors.

In the third phase, zones need to be connected. A border dominatee is defined to

be a dominatee which has a neighbor with a different zone ID. A border dominator is a

28

dominator that has a two-hop or three-hop away dominator with a different zone ID.

In order for the dominators to decide if they are border dominator, border dominatees

broadcast a TWO-HOP-DOMINATOR message including the node and zone IDs

of their two-hop away dominators. Using this information, border dominators can

connect to neighboring zones by connecting to their two or three-hp away dominators

from a neighboring zone. The dominatees on the paths connecting two zones will

become connectors. At the end of this final phase, the set of all dominators and

connectors forms a CDS.

This algorithm has linear time and message complexity and produces a CDS of

size at most 163.4 ? \OPT\ + 43. Also, extensive simulations were conducted that

showed their algorithm outperforms the algorithms in [2] in terms of the size of the

resulting CDS. For the maintenance of the CDS, Han suggests techniques similar to

what is proposed in [2] to deal with topology changes.

In [57], an energy-aware MIS-based CDS construction algorithm is proposed. In

this algorithm, every node is assigned a weight, which is a function of its degree and

remaining battery power. As with all MIS-based algorithms, they first build an MIS

through an iterative marking process which begins with an initiator. The marking

process is basically similar to what is proposed in other algorithms in this category

such as [1] with a slight modification. Unmarked nodes that receive a DOMINATEE

message compete to become a dominator instead of having all nodes receiving a

DOMINATEE message for the first time immediately becoming dominator. By doing

so, they slightly reduce the size of the MIS and the resulting CDS compared to [I].

29

In the second phase, they use a greedy scheme in connecting up the MIS using the

property that in the generated MIS, every MIS node has at least one two-hop away

MIS node. The greedy scheme is to have every MIS node select a non-MIS neighbor of

the highest weight as a connector. The set of the MIS nodes and connectors forms a

CDS with an approximation ratio of 7.6. In establishing this bound, they argue that

the number of connectors in the second phase does not exceed the size of the MIS and

using Lemma 3, the resulting CDS has an approximation ratio of 7.6 ? \OPT\ + 2.4.

They also conduct simulations which show their algorithm produces slightly smaller

CDSs than [1] and is also more energy-efficient.

The authors claim that the time and message complexity of this algorithm is 0(n),

however, this analysis holds only under the assumption that the initiator in the first

phase is designated beforehand and the need for a leader election phase is obviated.

Otherwise, the message complexity would be dominated by the complexity of the

leader election phase which is 0(n\ogn). As a serialized algorithm, it will not be

able to handle topological changes locally and a recalculation of the solution should

be performed.

The first local algorithms with constant approximation ratios for both the domi-

nating set and connected dominating set were proposed in [14]. In their algorithms,

they assume nodes are aware of their geographical coordinates. Using this information

and a tiling scheme, they impose an ordering on the local execution of the algorithm

that enforces a constant bound on the time complexity of the algorithm. In the tiling

scheme, the plane is divided into tiles of twelve hexagons of diameter one as depicted

30

in Figure 3.

Figure 3: A tile divided into 12 hexagons of unit diameter. The bold edges belong to
hexagon 1.

The arrangement of tiles in the plane is such that any two nodes of the same

class number are either adjacent or at distance greater than two. This guarantees

that the selection of a dominator in one hexagon does not influence the selection of a

dominator in another hexagon of the same class number.

Initially, nodes calculate their class numbers using their coordinates and the tiling

information and communicate this information with their neighbors. The selection of

dominatore starts with nodes of class number 1 and proceeds in an ascending order

of class numbers until nodes of class number 12 finish executing the algorithm. The

way in which this is implemented is that nodes can only start running the algorithm

once all their lower class neighbors have terminated the algorithm and sent them

the results. At each round, the set of nodes in a given hexagon that have not yet

been dominated form a candidate set. The node which is closest to the center of the

31

hexagon among the candidates is designated as the dominator and the result is sent to

all higher class neighbors waiting for it. Note that since a node in a hexagon dominates

all other nodes in that hexagon, at most one node is selected in each hexagon for the

dominating set. Clearly, a hexagon whose nodes have all been already dominated will

not contain any dominator. At the end of the last round, the set of dominators forms

a DS, which is also an independent set of the underlying graph, with a competitive

ratio of 5.

It is important to note that the selection of a dominator in a given hexagon

depends only on the information received from nodes of lower class number. This

implies that the longest chain of dependency would be 11 (nodes of class number 12

depend on the information received from 11 hops away). In other words, the algorithm

terminates in constant time, regardless of the number of nodes in the network.

Once the MIS is computed, the next step is to connect it using nodes called bridges

in [14]. At the beginning of this step, a coordinator is elected in each non-empty

hexagon by the nodes in that hexagon using some leader election algorithm. Then

the coordinators find bridges in a greedy manner to connect the dominators. A bridge

could be a vertex or an edge that connects two different connected components. Note

that these components are separate from the standpoint of the coordinator (by looking

at its k-hop neighborhood), and might not be necessarily two separate components

from a global perspective. The greedy algorithm first tries to connect the components

using vertices (bridges of size 1), and then by using bridges of size 2 if necessary. The

order of execution follows the class numbers in an ascending order, just as in the DS

32

algorithm. Finally, the set of dominators and bridges forms a CDS with a competitive

ratio of 7.453 + e, where e could be arbitrarily small. Clearly, as a local algorithm,

it can maintain the CDS locally in face of topological changes as a result of node

mobility or nodes switching on/off.

More recently, in [45], a local PTAS for the minimum dominating and the con-

nected dominating set problems in location aware UDGs was presented. The locality

distance of their algorithm for the connected dominating set is smaller than that of

[14], but their dominating set algorithm has a much larger locality distance. For

example, in order to achieve the same approximation ratio of 5 as in [14], they use

a locality distance of almost 917 times larger. Furthermore, construction of the con-

nected dominating set is entirely dependent on the dominating set in that it uses the

latter as an input. In summary, they show that, theoretically, a 1 + e approximation

ratio for the construction of DS and CDS is feasible. However, it is not a practical

algorithm.

2.1.2.3 Pruning-Based Algorithms

Wu et al. proposed a simple localized algorithm in [50] for the construction of CDS

in general graphs. Initially, all nodes are unmarked. Also, nodes exchange their

neighborhood information with all their one-hop neighbors. As a result, each node

knows all its two-hop neighbors. The algorithm is based on a marking rule: every node

with two unconnected neighbors marks itself as a dominator. The set of dominators

(marked nodes) forms a CDS which usually contains a large number of redundant

33

nodes. To address this problem, they propose two pruning rules to reduce the size

of the set returned by their algorithm. These two rules are applied to the nodes in

the CDS. The first rule removes a node u if it has a neighbor ? with a higher ID in

the CDS that covers all neighbors of u. The second rule states that a node u can be

pruned from the CDS if it has two connected neighbors ? and w with higher IDs such

that ? and w cover all of w's neighbors. Note that the role of IDs in these two rules

is to avoid the simultaneous removal of neighboring nodes in the CDS. This scalable

algorithm is very simple and has a low message complexity that gives it particular

practical merits, but can generate a CDS that is quite large. Its approximation
Tl

factor is - as shown in [I]. The time and message complexity of this algorithm are

0(A3) and ?(t?), respectively, where ? is the maximum node degree and m is the

number of edges in the graph. One major advantage of this algorithm is its locality

of maintenance in which only the neighbors of a node need to update their status in

case that node switches on/off or moves.

In [15], Dai and Wu proposed a generalization of the two existing rules referred

to as Rule K, in which a node u unmarks itself if it has K connected neighbors with

higher IDs that cover all of w's neighbors. Since Rule K needs global information,

they restricted Rule K to only consider immediate neighbors.

Wu et al. extended the work in [15] to calculate a power-aware CDS that intends

to prolong the average life span of a host while reducing the size of the resulting CDS

in the pruning phase [49]. They achieve this goal by replacing energy level as a new

parameter instead of ID in the pruning rules described above. IDs will only be used

34

to break ties between nodes that have the same energy level.

Butenko et al. proposed a purely pruning-based greedy heuristic in [6] for the

construction of CDS in general graphs. The centralized description of the algorithm

was explained in section 2.1.1. They also give a distributed version of that algorithm in

[6]. Initially all the node are in the CDS. The algorithm starts from the node with the

lowest degree in the graph. This node can be selected using a leader election algorithm

such as [12] modified with the property that the leader should have the minimum

number of neighbors. Let node u be the node currently running the algorithm. If

the removal of node u results in disconnectivity in the graph (can be verified by

running distributed BFS/DFS), the node u marks itself black and selects its neighbor

with minimum effective degree (number of non-black neighbors) to run the algorithm.

On the other hand, if node u is allowed to remove itself from the set, then its black

neighbor ? will select its neighbor with minimum effective degree to run the algorithm.

If u does not have a black neighbor, then it selects a non-black neighbor with minimum

effective degree to run the algorithm. Once all the last node terminated the algorithm,

the set of black nodes forms the final CDS. Note that in this algorithm, there exists a

CDS from the very beginning and at each round, it possibly becomes smaller until the

final CDS is formed by the set of black nodes.This algorithm has a time complexity

of 0(n log3 n) and a message complexity of 0(nm + n2 log3 n). Clearly, its time and

message complexities make it an unlikely option in the context of ad hoc networks.

Moreover, it cannot handle topological changes locally as it needs to run a distributed

BFS/DFS to determine the connectivity of the whole graph. Finally, they conduct

35

simulations that show that their algorithm outperforms the algorithm proposed in [1]

in terms of the size of constructed CDS.

In [28], a new constant-approximation local algorithm for location-aware UDGs

was proposed. The network model and the tiling used in this algorithm to enforce lo-

cality is similar to the algorithm proposed in [14], which was discussed in the category

of MIS-based algorithms. However, the key difference between the two algorithms is

in how they construct the CDS. While [14] follows the MIS based approach in con-

structing the CDS, the algorithm in [28] starts with a connected CDS and maintains

connectivity throughout the execution. It then uses an efficient pruning test to prune

away the redundant nodes in the CDS.

This algorithm uses a local approximation of minimum spanning tree (MST) as a

guideline in constructing the CDS. Nodes run the algorithm in the exact same order

as described in [14]. Initially, a coordinator is elected locally in each hexagon (using

a leader election algorithm). The nodes in hexagon i proceed as described in the

following. The set of nodes with an edge in the spanner to a higher class number

hexagon form a local CDS candidate set. The coordinator selects node(s) from this

set based on some heuristic. The four proposed heuristics all attempt to minimize the

number of nodes selected from this set based on some criteria such as node degree,

proximity to the center and so on. Once the nodes from the candidate set have been

selected by the coordinator, they send a message to their neighbor(s) in the higher

class number hexagon asking them to select a dominator among themselves as the

other end of the edge. This is done to ensure connectivity between hexagons. Once

36

the nodes of class number 12 (hexagon 12) finish running the algorithm, the set of all

selected nodes in all hexagons forms a CDS.

To reduce the size of the resulting CDS, a pruning test is performed at every CDS

node: node u can remove itself from the CDS if (i) all its dominatees have at least

one other dominator and (H) the subgraph induced by those neighbors of u that are

in the CDS is connected.

Extensive simulations conducted in [28] show it outperforms its MIS-based coun-

terpart in [14] in terms of the size of the resulting CDS and it can handle the main-

tenance of the CDS locally.

2.2 Directed Graphs

In an ad hoc wireless networks, some links may be unidirectional for several rea-

sons. Node in the network may have different powers and transmission ranges due

to different functionalities or they may adjust their transmission range for topology

control purposes and so on. The hidden terminal problem can be another reason for

the (temporary) existence of unidirectional links in the network. In such cases, the

network is modeled as a disk graph (DG) rather than a UDG.

2.2.1 Wu's distributed Algorithm

Wu [46] extended the concept of a dominating set in undirected graphs to a dominating

and absorbent set in directed graphs. Wu gave a simple local algorithm for the

37

computation of strongly connected dominating and absorbent set (SCDAS) in directed
graphs. Initially all the nodes are unmarked. A node u is marked if there exists a node

? in its dominating set and a node w in its absorbent set, but ? does not dominate w.

In other words, a node is marked only if it lies on the shortest path from one neighbor

to another. Just as in the marking algorithm of [50], this marking rule generates a

large SCDAS with a lot of redundant nodes. Therefore, Wu proposed two rules to

reduce the size of the constructed SCDAS. These two rules are indeed the extended

forms of the rules proposed in [50] that are applied to the nodes in the SCDAS. The

first rule allows a node u to be removed from the SCDAS if its dominating (absorbent)

neighbor set is covered by the dominating (absorbent) neighbor set of node ? with

a higher ID. The second rule allows a node u to be removed from the SCDAS if

its dominating (absorbent) neighbor set is covered by the union of the dominating

(absorbent) sets of the two connected nodes ? and w provided that the ID of node u

is the smallest among the three nodes.

Furthermore, two implementations of the two pruning rules are proposed. The

first implementation, called restricted implementation requires two-hop information.

This implementation requires u and ? to be bidirectionally connected in the first

rule and ? and w to be neighbors of node u in the second rule. However, a general

implementation that does not require nodes w, ? and w to be neighbors requires three-

hop information. This algorithm does not provide a constant approximation ratio and

its time and message complexities are 9(m) and 0(?3) respectively. Finally local

maintenance procedures were proposed by Wu to deal with topological changes.

38

2.2.2 Park's centralized Algorithms

In [40], Park et al. propose a centralized constant approximation algorithm for the

construction of a Minimum SCDAS (MSCDAS) in wireless ad hoc networks with

different transmission ranges. In their work, it is assumed that the ratio of the

maximum to the minimum transmission range is bounded. They also present two

heuristics and evaluate their performance through simulations. The heuristics are

indeed the counterpart of Guha and Khuller's algorithm [24] for undirected graphs.

In the constant approximation algorithm, an outgoing spanning tree and incoming

spanning tree rooted at an arbitrary node u are constructed. The non-leaf nodes of

the two trees form a SCDAS. The also give the following important lemma:

Lemma 5 [40] In a directed graph G = (V, E), the size of any Independent Subset

(IS) is upperbounded by

2A{k+l)2x\OPT\+3.7(k + h2
where k = max and OPT is the minimum SCDAS.

'min

Using Lemma 5, they prove that the approximation ratio of the algorithm de-
1 1

scribed above is 9.6(A; + -)2 ? |OPT¡ + 14.8(A; H- -)2. In other words, they show that

the size of the SCDAS generated by this algorithm is at most four times the size of

any IS in the directed graph.

Park et al. also present two centralized heuristics for the construction of SCDAS

in directed graphs. Both of these heuristics rely on a DAS as the input. Therefore, we

first discuss how they form the DAS. The algorithm that constructs the DAS consists

39

of two stages: construction of a DS and an AS. The union of the two sets then forms

the final DAS. In finding the DAS, initially all nodes are marked as uncolored. Then,
at each iteration, a node u is colored black and all its uncolored neighbors with an

incoming edge from u (its dominatees) become gray. This process terminates when no

uncolored node is left. The selection of the node to be marked black at each iteration

can be based on two different criteria: (i) random selection, and (ii)highest degree
selection, where the degree of a node is defined to be the sum of the number of its

incoming and outgoing edges. At the end of this stage, the set of black nodes forms

a DS. Before proceeding to the construction of AS, a preprocessing step is performed

whose goal is to reduce the number of nodes selected as AS by checking if any gray

node (a dominated node) is also absorbed by a black node.If there exist such node(s),
they are colored white.

Once the preprocessing phase is finished, nodes in the graph are either black, gray
or white. Since white nodes are already absorbed, the construction of AS is equivalent

to finding an absorbent node for every gray node. In doing so, a greedy approach

is adopted: at each iteration, a gray node that absorbs the highest number of gray

nodes is marked black and its absorbed gray nodes are marked white. This stage
terminates when no gray node is left, at which time the set of black nodes forms a

DAS.

Then two heuristics are proposed to make the above DAS connected. The first one,
called greedy spider contraction algorithm (G-SCA), uses a greedy approach to find

an approximation for the directed Sterner tree with minimum Sterner nodes (DSMSN)

40

problem to minimize the number of white nodes required to connect the black nodes.

Let S denote the set of black nodes (DAS) returned by the above algorithm and r be

an arbitrary node. The idea is to build an in-connected tree to r from every node in

S and an out-connected tree the node r to every node in S. The union of the nodes

in the two trees forms an SCDAS.

The second heuristic, called greedy strongly connected component merging algo-

rithm (G-CMA), iteratively finds two Strongly connected Components (SCC) which
can be merged at minimum cost among all the pairs of SCCs, and merges them by

coloring the white nodes on the two directed paths between the two SCCs black. The

algorithm terminates when there is only one SCC left. The set of black nodes forms

a SCDAS. They conduct simulations that show G-CMA consistently outperforms G-

SCA in terms of the size of the resulting set. No time or message complexity analysis

is given for the algorithms, but distributed implementations of these algorithms seem

too expensive to be practical in the context of ad hoc wireless networks.

41

Chapter 3

Algorithms for Networks with

Symmetric Links

In this chapter, we propose our algorithms for networks with symmetric links. In

other words, it is assumed that if there exists an edge from node u to node v, then

there also exists an edge from node ? to node u. It should be noted that although

in all the descriptions and explanations given in this section, it is assumed that the

underlying graph is a UDG, the proposed algorithm is applicable to a larger class of

graphs called Disk Graph with Bidirectional links (DGB). In DGBs, nodes are not

required to have the same transmission range. They may have different transmission

ranges, but unidirectional (asymmetric) links are ignored.

We first describe our algorithm in a centralized manner in order to provide a

better understanding of how it generates a connected dominating set. Then, we

present both a distributed and a local implementation of the algorithm. Finally, we

42

present simulation results that compare the performance of our proposed algorithm

with its competitors in each category. In all the simulations, it is assumed that the

underlying graphs are UDGs.

3.1 Definitions and preliminaries

We consider a wireless network of homogeneous nodes where all nodes have the same

transmission range. Node u is a neighbor of node ? if and only if they are adjacent

in the graph. We use Nu to denote the set of neighbors of node u, referred to as

neighborhood of u. Every node u has a rank (6(u),id(u)) which is an ordered pair

of its effective degree and id, where the effective degree of node u is the number of

it's neighbors in CDS, i.e ò(u) = \{v\v G Nn Av e CDS}\. Since the membership

of nodes in the CDS changes during the algorithm, so does the effective degree of a

node. By assigning a unique id to every node, it is ensured that when comparing

nodes' ranks, ties are broken.

It should be noted that the definition of a node's rank can be generalized to a

generic weight function which is an ordered pair of a node's weight and its id. This

weight can be defined based on the goal function. Since we intend to minimize the

size of the generated set in this thesis, a node's weight is defined as its effective degree.

As another example, if it is intended to generate an energy-aware CDS that prolongs

the network lifetime, then the weight can be defined as the remaining energy level

(battery power) of a node. Finally, note that the definition of the weight function

43

changes the order in which nodes run the algorithm and consequently the set of nodes

in the resulting CDS.

3.2 Centralized Description

The CDS is the set of nodes with either in or pending status. Initially, all the nodes

have a pending status. At each step, we select the node u with the lowest rank among

the nodes with pending status. Node u, then determines whether or not it remains

in the CDS, by running a local test. This local test consists of two sub-tests; the

domination test, and the connectivity test.

Node u passes the domination test if all its neighbors have at least one other dom-

inator. Node u passes the connectivity test if the subgraph induced by its neighbors

that are marked as belonging to the CDS is connected. It is clear that both these

conditions can be evaluated locally by node u using information obtained from its

neighbors.

If a node passes both tests, its status changes to out; otherwise, its status changes

to in. The algorithm terminates when there are no pending nodes left. The formal

description of this algorithm is given in Algorithm 3.

It is easy to see that after the elimination of a node u that passes both the

domination and connectivity tests, the set of nodes with in or pending status is still

a CDS. Furthermore, since a node is removed from the set of pending nodes at every

step of the algorithm, the algorithm terminates in ? steps.

44

Algorithm 1 Centralized Connected Dominating Set (CDS) Algorithm

P*-V
while P f 0 do

u <— argmin{(ô(v),id(v))\v G ?}
P <- P- {«}
dominationTest <— true
for all ? e JVU do

if ((_V„ ? CP>S) - {«} = 0) then
dominationTest <— false

end if
end for
if dominationTest then

if Gf(TV1, ? CDS) - {w}] is connected then
CDS <- CDS - {u}
for all (v e Nu A ? e CDS) do

d(?) <- d(?) - 1
end for

end if
end if

end while
Return CDS

Also note that since at any time during the execution of the algorithm, the set

of nodes with in or pending status forms a CDS and all the nodes are initially in

pending state, there always exists a feasible solution at any time during the compu-

tation of the CDS. This might be particularly useful in applications where protocol

setup time is crucial.

45

3.3 Distributed Implementation

In order to convert the above algorithm into a distributed algorithm, every node needs

to perform an initial setup which provides the essential information for the execution

of the algorithm. First, every node u exchanges its rank with all its neighbors and

stores the set of its neighbors in NU}Cds, a variable holding the set of neighbors in

CDS. Additionally, it maintains a list of its lower rank neighbors in Lower„Ranku.

During the algorithm execution, nodes exchange information about their domi-

nators using Dominator.Query and Dominator„Reply messages which will be ex-

plained later. Initially, every node sets a local flag ReplyJn.Transit to false in-

dicating that no Dominator„Reply message that has been sent by it in response to

a Dominator.Query message is currently in transit. Also, every node maintains a

Dominator Query queue (DQQ) to store the incoming Dominator„Query messages

to be able to reply to them in a first-in-first-out order. Initially, this queue is empty.

Moreover, every node sets its status to pending. As in the centralized algorithm, each

node has one of the three possible statuses, in, out, or pending; initially all nodes

have pending status. When a node runs Algorithm 2, it changes its status to either

in or out depending on whether it stays in the CDS or not. At any stage in the course

of the execution of the algorithm, the set of nodes with pending or in status form a

CDS. However, in the end, the set of nodes with in status form the final CDS since

no node with pending status will be left when the algorithm terminates.

After the initial setup, every node u runs Algorithm 2. A node with the lowest rank

46

Algorithm 2 Distributed Connected Dominating Set Algorithm, executed by node
u

when Lower_Ranku — 0
dominationTest <— true
Send Dominator„Query to Nu
for all (? E Nu) do

Wait for DominatorJïeply(v,Dv)
if (Dv - {u} = 0) then

dominationTest <— false
end if

end for
if dominationTest then

if G[Nu¡cds — {u}} is connected then
Statusu <— out
Send FinishedJAsg(out) to Nu

else
Statusu <— in
Send FinishedJasg{in) to iVu

end if
else

Statusu <— in
Send FinishedJvIsg(u, in) to iVu

end if

Upon receiving Dominator_Query_Msg from v:
if ¡(ReplyJnJTransit) then

ReplyJnJTransit <— ¿rue
Send DominatorJteply(u, Du) to t>

else Enqueue Dominator-Query(v) in Z)QQ
end if

Upon receiving Finished_Msg(status) from ?:
if status = owi then

¿(u) <- ¿(u) - 1
Nu,cds = NUycDS ~{v}

end if

if (Rank(v) < Rank(u)) then
Lower_Ranku = LowerJi.anku — {v}

end if

if DQQ f 0 then
? <— Dequeue DQQ
Send DominatorJieply(u, Du) to ?

else ReplyJnSTransit <— false
end if

47

among its neighbors becomes an initiator and runs the domination and connectivity

tests. The assignment of unique ranks to nodes ensures that there is at least one such

node. In order to run the domination test, node u sends a Dominator_Query message

to all its neighbors ? and asks them to send back a list of their current dominators

Dv included in the message Dominator_Reply(v, Dv). The set of dominators of node

v, Dv, is its neighbors with either in or pending status.

A node receiving a DominatorJQuery message only sends a Dominator-Reply

message if it does not have a previous Dominator-Reply message in transit. For ex-

ample, we assume, without loss of generality, that node u receives a DominatorjQuery

message from its neighbor ? and then from another neighbor w which is running the

algorithm at the same time. We also assume that node u has no Dominator-Reply

message in transit. It first sends a Dominator_Reply message to node ? and enqueues

the incoming message from node w in DQQ. Once it receives the Finished_Msg from

node v, it dequeues tu's query and sends a reply to it. This order ensures that simul-

taneous dropout of two dominators in the neighborhood of a node is ruled out.

Once all the Dominator_Reply messages are received, node u proceeds to the

connectivity test if all its neighbors have at least one other dominator. Otherwise, it

changes its status to in and stays in the CDS (Statusu <— in).

The connectivity test at node u examines if the subgraph induced by Nu.cds,

its neighbors with either in or pending status, is connected. If so, node u drops

out of the CDS {Status^ <— out). Otherwise, it stays in the CDS (Statusu <—

48

in). Note that the connectivity test does not require any additional message ex-

change because nodes send their list of dominators during the domination test in the

Dominator_Reply(v, Dn) message. Therefore, connectivity test is performed locally

by comparing the list of neighbors and their dominators.

Node u sends a Finished_Msg(status) to its neighbors when it changes its status

to in or out. Upon receiving a Finished_Msg(status), any node u removes the sender

from its lower rank neighbors if the sender has a lower rank. If the status is out, node

u removes the sender from its set of CDS neighbors, NUtCDS, and updates its effective

degree. It also attends to the next pending Dominator„Query message in DQQ if

there exists such a message; otherwise it resets the ReplyJ?„Transit flag. The details

of this algorithm are shown in Algorithm 2.

Another conceivable distributed implementation is to have nodes elect a leader

which starts the algorithm (which we refer to as single initiator as opposed to multiple

initiators in Algorithm 2). Despite exhibiting a lower degree of parallelism, this

implementation is more appropriate in scenarios where the leader is pre-determined

due to its special functionalities and there is no need to run an expensive leader

election algorithm. An example of such a scenario is a sink node in an ad hoc sensor

network that can be the initiator to run Algorithm 2 to form a backbone that is used

for data gathring/dissemination.

49

3.3.1 k-Hop Extension of the Algorithm

In Algorithm 2, the connectivity test can be extended to check whether the subgraph

induced by the /c-hop neighbors in CDS is connected. In order to do this, a node u

needs to exchange its ranks with its fc-hop neighbors and adjusts its local variables

NUícds, an(i Lower_Ranku accordingly. Furthermore, when a node finishes running

the domination and connectivity tests, it sends a Finished_Msg to its fc-hop neighbors

instead of immediate neighbors only. Obviously, this extension will result in a smaller-

sized CDS as k increases, but at the expense of message overhead. Experimental

results investigating the effect of using a larger neighborhood show that k = 4 is

a good compromise and significantly reduces the size of the final CDS while not

imposing a considerable overhead on the algorithm.

Note that there are two possible ways to implement the A;-hop extension. In the

first one, all nodes initially set their A;-hop parameter to the desired locality level and

run the algorithm. The other approach is to have all nodes run the algorithm with

regard to their immediate neighborhood (k = 1), and then the nodes selected in the

first round as CDS nodes will run the algorithm for higher values of k. The latter is

more efficient in terms of message overhead, thus we used the second implementation

in our simulations.

3.3.2 Example

In this section Ave illustrate how our proposed algorithm constructs the CDS through

an example. The example, shown in Figure 4, was generated by randomly scattering

50

15 nodes with the transmission range of 20 meters in a square area whose side length is

60 meters. The nodes' IDs are labeled beside the nodes (IDs start from 0). Initially all

the nodes have pending status and are marked black. Note that at each point during

the computation of the final CDS, the set of black nodes yields a feasible solution. At

each round, when a node runs the algorithm, it either stays in the CDS and remains

black, or drops out and becomes white. The nodes run the algorithm according to the

following execution scenario. Note that we have divided the execution into distinctly

separate rounds to simplify the process of explaining the flow of execution, however,

nodes in a given round may not run the tests in the exact same order as described

here.

• Nodes exchange their information with all their one-neighbors. Nodes 2, 3, 5,

and 13, which have the minimum rank among their neighbors, initiate the algo-

rithm. Let's look at what happens when node 2 runs the algorithm. It passes

the domination test because all its neighbors (nodes 0, 8, 9, and 10) are domi-

nated by at least one other node. So node 2 proceeds to the connectivity test.

Since its current neighbors in CDS are 0, 8, 9, and 10 and the subgraph induced

by these nodes is connected, node 2 passes the connectivity test and therefore

drops out of CDS. Nodes 3, 5, and 13 similarly drop out of the CDS when they

run the tests. So at the end of the first round, all the four initiators leave the

CDS as they are redundant nodes. These nodes send a FinishedJbI sg (out) to

all their neighbors.

51

• When the one-hop neighbors of the initiators receive the Finished_Msg(out)

messages from the initiators, they update their lower-rank neighbor lists and

the second round begins. At this point, nodes 1, 7, and 8 have the lowest ranks

among their neighbors with pending status, and run the tests depicted in Figure

4-c. Node 1 passes the domination test and proceeds to the connectivity test.

It has two neighbors in the CDS (nodes 6 and 12). From the local view of node

1, these two nodes are not connected and leaving the CDS renders the resulting

set disconnected, so node 1 stays in the CDS and sends a Finished_Msg(in)

message to all its neighbors. Nodes 7 and 8, on the other hand, both drop out

since they pass both tests.

• In the third round, nodes 6, 10, and 11 run the algorithm since they have

no lower-rank neighbor with pending status at this point. Node 6 passes the

domination test but fails the connectivity test. So node 6 changes its status to

in. Nodes 10 and 11 both drop out since they pass both tests. This round is

illustrated in Figure 4-d.

• As depicted in Figure 4-e, in the fourth round, nodes 0 and 12 run the tests.

Node 0 drops out since all its neighbors are also dominated by node 9, which is its

only neighbor in the CDS. Therefore it passes both domination and connectivity

tests and drops out. Node 12, on the other hand, remains in the CDS because

it fails the connectivity test. So at the end of this round, only three nodes (4,

9, and 14 are still pending.)

52

(a) All nodes are initially in the CDS

8

(b) Round 1: Initiators run the tests

(c) Round 2: Nodes 1,7,8 run the tests (d) Round 3: Nodes 6,10,11 run the tests

13 3

(e) Round 4: Nodes 0,12 run the tests (f) Rounds 5,6,7: Nodes 9,14,4 run the tests
(Final CDS constructed)

Figure 4: CDS construction by our algorithm (the set of black nodes constitutes the
CDS)

• Among nodes 4, 9, and 14, node 9 has the lowest rank. Thus, it runs the tests

before the other two nodes and stays in because it fails the domination test.

Then node 14 runs the tests and stays in the CDS for the same reason. Finally,
the last node which is node 4 runs the tests. Node 4 passes the domination test

because all its neighbors are dominated by at least one other node. However,

the subgraph induced by its neighbors that are in the CDS (nodes 6, 9, 12, and

14) is not connected from its local view. Therefore, it stays in the CDS and the

algorithm terminates as no node with pending status is left. The final CDS is

formed by the set of black nodes in Figure 4-f (CDS = 1, 4, 6, 9, 12, 14).

In the above scenario, nodes ran the connectivity test with regard to their one-hop
neighborhood. In other words, we assumed that k = 1. As discussed in section 3.3.1,

nodes can make more informed decisions if they look at a larger neighborhood while

running the connectivity test. Although choosing very large neighborhoods while

running the test implies significant message overhead and is not viable in the context

of energy-constrained ad hoc networks, considering small neighborhoods such as 2

or 3 hops away does not seem to be very expensive in many applications. In our

algorithm, this extension can be very useful.

In the example depicted in Figure 4, if we set k = 2, and have the nodes, which

were selected to remain in the CDS, run the connectivity test with regard to their
two-hop neighborhood, the size of the set can be further reduced. As illustrated in

Figure 5, by looking at two-hop neighborhood, node 1 is enabled to see from its local

view that nodes 6 and 12 are indeed connected via node 4 and that it can safely opt
54

out of the CDS. This decision reduces the CDS to nodes 4, 6, 9, 12, 14. The other

CDS nodes also run the connectivity test with regard to their two-hop neighborhood

in the order imposed by the algorithm, but no further change results.

8

9 11

10 14

1

13 3

Figure 5: Considering larger neighborhood in the connectivity test

3.3.3 Performance Analysis

In order to calculate the message complexity, we should compute the number of mes-

sages sent by each node during the execution of Algorithm 2. In the setup phase, each

node u sends a constant number of messages to its fc-hop neighbors. Assuming ? is

the maximum degree in the network, the size of it's fc-hop neighborhood is bounded by

Ak. So, the message complexity of this phase is 0(nAk). While executing the algo-

rithm, a node sends 0(A) messages to its immediate neighbors during the domination

test, and no message passing is required for the connectivity test if implemented as

described in Algorithm 2. The connectivity test is done using the locally-stored infor-

mation maintained and updated when a node receives FinishedJ\Jsg messages from

55

nodes in its fc-hop neighborhood. Finally, every node sends a constant number of mes-

sages (FinishedJasg) to its k-hop neighbors when it finishes running the algorithm,

which amounts to 0(nAk) messages. Therefore, the overall message complexity of

the Algorithm 2 is 0(nAk).

The execution time of Algorithm 2 is equal to the length of the longest dependency

chain where each node in the chain has to wait for the next node to finish running

the algorithm. This dependency chain can be linear in the number of nodes in the

network as can be seen by the example of a line graph. In a line graph, the two end

nodes become the initiators as they have the lowest effective degree and then their

adjacent nodes run the tests and this continues until the two chains of execution that

ripple inwards meet in the middle. Therefore the worst-case time complexity of the

algorithm is 0(n).

3.3.4 Competitive Ratio

In spite of the fact that our algorithm exhibits a very good performance for net-

works with uniform random distribution and yields results that are desirably close

to optimal, it is possible to conceive of certain examples in which it has a very poor

performance. As an example, suppose the network consists of nodes with transmis-

sion range of r arranged in two concentric circles with radii r and 2r respectively.

This setting is illustrated in Figure 6. Note that all the edges between the nodes that

lie on the same circle have been eliminated to enhance clarity of the figure. In this

example, regardless of the number of the nodes in the network, no node can drop out

56

of the CDS when it runs the connectivity test with k = 1, and the final CDS consists

of all the nodes in the network, whereas the optimal CDS consists of a constant num-

ber of nodes. However, if k is increased to 2, then a large percentage of nodes drop

out because they become able to see the connectivity of the neighboring nodes with

regard to their two-hop neighborhood.

\

Figure 6: An example showing the worst-case performance of the algorithm

This example shows that there are certain configurations in which it is not possible

to compute a constant ratio between the size of the CDS constructed by our algorithm

and that of the optimal solution. More specifically, if the locality of the connectivity

test is not well-adjusted based on the network, our algorithm may produce a CDS as

large as the size network in the worst case. However, extensive simulations presented

in section 3.6 show that such poor performance occurs in very special configurations,

and that for random distributions, the performance is quite satisfactory.

57

3.4 Maintenance of The Backbone

Topological changes are frequent in ad hoc networks. In MANETs, nodes may switch

on/off or move from one location to another location in the network. There might

be also nodes that join or leave the network at different intervals. In the context

of sensor networks, although there is typically no node mobility, topological changes

may occur due to node depletion. Additionally, new sensors might be deployed to

patch up those areas in which sufficient coverage is no longer available due to the

depletion of a considerable number of nodes. All these scenarios imply topological

changes in the network. Such unique characteristics of ad hoc networks bring about

new challenges in the design of robust protocols. More specifically, a protocol must

provide appropriate mechanisms to handle such changes as efficiently as possible.

In the context of CDS formation algorithms, there are generally two kinds of

mechanisms to handle topological changes: periodic reconstruction and on-demand

update [2], [50]. While periodic reconstruction forces all the nodes in the network to

re-run the algorithm, on-demand update typically involves nodes in a small neigh-

borhood affected by the change to cooperate to reshape the CDS locally. Clearly, the

second approach is more desirable since it is more energy-efficient and incurs much

less message overhead. Therefore, in order to best maintain the CDS, it is important

to use local updates as much as possible and recalculate the CDS only as a last resort.

The distributed algorithms that have been proposed for CDS construction fall into

58

one of the two categories: (i) serialized and (ii) parallel. Serialized distributed algo-

rithms need to perform a global function that is sequential in nature, such as building

a tree, selecting a leader that initiates forming an MIS and so forth. Local updates for

such algorithms need to be specified and analyzed in a completely different fashion

than the original algorithm for CDS construction. In addition, the approximation

bounds due to the original algorithm might be affected as a result of the additional

update procedures. However, parallel distributed algorithms such as Algorithm 2,

despite their distributed nature, have the potential to deal with local changes locally.

This advantage makes parallel distributed algorithms better candidates than their

serialized rivals for ad hoc networks in terms of maintenance.

In this section, we discuss the maintenance strategies that we accommodated

into our algorithm in order to use local updates to handle topological changes as

much as possible. We will show that these techniques are often efficient in avoiding

recalculation of the whole solution. However, there will be scenarios which cannot be

addressed using these strategies and therefore recalculation becomes inevitable.

We generalize the topological changes to two types: node addition and node re-

moval. Basically node addition is a generalization of scenarios such as when a node

switches on, a mobile node joins a network, or a new sensor node is deployed. Node

removal, on the other hand, may include scenarios such as when a node switches off,

a mobile node leaves the network, or a sensor node dies.

59

3.4.1 Node Addition

When a new node is added to the network, it sends a message to its neighbors and

checks to see if there already exists a dominator among its neighbors. If so, it does

not need to take any further step as it is dominated. However, if none of its neighbors

is a dominator, it switches to pending status and sends a message to all its neighbors

requesting them to revert to pending status. Then all the nodes with the pending

status run the algorithm to determine the new node that needs to be added to the

CDS.

The selection of a new node as a result of the above procedure may make it possible

to locally prune away some nodes. Therefore, as an optimization phase, when a new

node is added to the CDS, its neighbors which are in the CDS run the connectivity

test to check if they have become redundant as a result of this change in the formation

of CDS. If so, they drop out of the CDS.

60

(a) Network topology before change (b) Node 15 is added to the network - Nodes
1,3,13 revert to pending status

(c) Nodes 1,3,13, and 15 run the algorithm (u) Nodes 6 and 12 run the algorithm (k=2)

Figure 7: CDS maintenance when a new node is added to the network

In the example illustrated in Figure 7, the initial topology shown in part (a) is

the same topology discussed in Figure 5 in section 3.3.2. As depicted in Figure 7-

b, node 15 is added to the network. When this node joins the network, it sends a

message to its neighbors (nodes 1, 3. 13) to see if there already exists a dominator

in its neighborhood. In this example, none of its neighboring nodes are in the CDS.

61

Therefore, it sends them a message asking them to switch to pending status. Then

nodes 1, 3, 13, and 15 run the algorithm (with k = 1). When they finish, node 1

remains in the CDS and nodes 3, 13, and 15 drop out as depicted in Figure 7-c. Finally

nodes 6 and 12 run the algorithm to decide whether they have become redundant as

a result of the recent change. If they run the connectivity test with k = 1, there will

be no change in the status of the CDS. However, if they run this test with k = 2,

then node 6 drops out of the CDS, as illustrated in 7-d. To achieve consistency, the

value of k can be agreed upon by all the nodes before running the algorithm and used

later in the maintenance as well.

3.4.2 Node Removal

Before discussing the procedures that deal with node removal, note that we assume

that the elimination of a node does not disconnect the underlying graph. If a non-

CDS node ? is removed, its dominator u updates its neighbor list. If node ? was its

only dominatee and node u is a leaf dominator, then node u drops out of the CDS

and becomes a non-CDS node. However, if it has other dominatees or it is non-leaf

CDS node, then it takes no further action after updating its neighbor list.

Indeed, it is the elimination of a CDS node that needs to be handled carefully

because the CDS may need to be reconstructed. We will show that as long as the

underlying graph remains connected, in the face of single node failures, we can recal-

culate the CDS locally. But before explaining the maintenance procedure, we need

to discuss the following important properties of the CDS built by Algorithm 2.

62

For ease of exposition, we start with k = 1, where k is the size of the neighborhood

used by a node to run the connectivity test in Algorithm 2. We also start by assuming

that the removal of a CDS node u breaks the CDS into two components.

Lemma 6 Consider the subgraph G' = (V, E') induced by the nodes in the CDS

constructed in the graph G = (V, E) using Algorithm 2 (k = I). Assume that the

removal of node u splits G'_u into two components Cx, C2 such that G_u is still

connected. Then there must be a path in G_u between C1 and C2 consisting of only

neighbors of u.

Proof. We denote the set of neighbors of node u in component C1 by V and the set of

its neighbors in C2 by W. Since the graph G_u is connected, consider a shortest path

P1 between the two components of the CDS C1 and C2. Since it is a shortest path

we can assume that only the endpoints say U1 and W1 are CDS nodes and all interior

nodes are non-CDS nodes. All of these interior nodes were initially in the CDS, but

eventually they all dropped out of the CDS. Each such node that drops out of the

CDS, only does so because it passes the connectivity test; the subgraph induced by
its neighbors is connected. In particular, when such a node drops out, it is assured of

another path that is currently in the CDS between the two components C1 and C2.

The same is true of any nodes that drop out of this new path, ad nauseam.

We claim that as these nodes drop out of the CDS, we must eventually come to

a node that has u as its neighbor. More formally, let X1 be the first node in P1 to

have dropped out of the CDS. When X1 dropped out, it detected the presence in its

63

one-hop neighborhood of a CDS path between its two neighbors in P1. This implies

that at the moment X1 dropped out, there was a CDS path between V1 and W1 that

contained at least three consecutive neighbors of X1. If this path includes the node

u, we have found the node we are looking for. If not, consider the shortest sub-path

of this path that connects Ci and C2; call this path P2 and call its endpoints in C1

and C2 as V2 and W2 respectively. As illustrated in Figure 8, the nodes V1 and V2 may

or may not be the same node. Likewise, nodes W1 and W2 may or may not be two

distinct nodes.

\ ¿jL Va
(v y^Uj
\ C1)

(a)
Pl=(Vt1Xl1X2,. .,Xn.Wl)
P2= (v1,x',,...x'i„X2-.,x„,w,)

• CDS node

O non-CDS node

Figure 8: Paths P1 and P2 may have the same or different endpoints.

Now, consider P2 and let the first node that dropped out be called X2. Once

again, if x2 is a neighbor of it, we are done, otherwise, we consider the next path P3

defined as above. We know that when the process ended, the only paths between the

components C1 and C2 were of the form (v,u,w) with ? e V and w e W. Therefore,

there has to have been a node x¿ that dropped out because it detected in its one-hop

neighborhood a path that went through u between its two neighbors on the path Pi

(b)
P1=(V11X11X2,. ..,Xn1W1)
P2= (V2,X'1,...x'k,X2... ,Xb1W1)

64

with endpoints in C\ and C2.

UU

t WV W

S1 Xi t1

S, T1

(a) The two sub-paths S1 and T, (b) How T1 evolves into T2 and eventually ?

• CDS node
O non-CDS node

Figure 9: There exists a path between V and W consisting of all neighbors of u. Note
that all the nodes in V and W are neighbors of u

As depicted in Figure 9- a, denote by S1 (T1) the sub-path from C1 to u (u to

C2). If Xi is directly connected to both V and W, we are done. If x¿ is connected

directly only to V (W), we consider T1 (Si). Otherwise, we will consider both, but

the arguments for both are exactly the same.

We consider what happens to the nodes on T1. We claim that there is a path

consisting of non-CDS nodes T = (i1; t2, ¦ ¦ ¦ , tj) such that each tk (for 1 < k < j) is

connected to u. Further, tj is also connected to a node in W.

Let ii be the neighbor of m in T1. As illustrated in Figure 9-b, we show how to

derive the rest of the path T. Observe that ^1 is connected to X1 and to u. If t\ is

connected to a node in W, we are done with j = 1. Otherwise, we consider the time

that ii dropped out of the CDS. At this time, T1 has possibly e\'olved to a different

65

path between ¿? and W, which we will call T[. Now tx decides to drop out because

its two immediate neighbors on T[(one of which is u) are connected via a path in

fi's one-hop neighborhood. We therefore have a new path between u and w, called

T2. Call the neighbor of u on this path t2. Clearly, t2 is a neighbor of both t\ and u

as needed. Once again, if t2 is a neighbor of a node in W which is a neighbor of u,

we are done, otherwise we continue. This process has to end with a node that is a

neighbor of both u and a node in W since the only paths in the final CDS between u

and C2 were the edges (u,w) with w 6 W.

By using a symmetric argument for the sub-path S1, we have a path between the

two components that consists of only neighbors of u. ?

We go on to consider the case where the removal of node u splits G'_u into multiple

components. Clearly, since the graph C_u is connected, there is a path in Gu between

every pair of components in G'_u. We call C¿ and Cj adjacent if there exists a path P

in G_u between C¿ and Cj such that (a) P consists of only non-CDS nodes except for

endpoints in C1- and Cj and (b) as P evolves into other paths, as described in the proof

of Lemma 6, due to the dropping out of non-CDS nodes, no CDS node from some

other component is ever encountered. We call such a path a direct path. Otherwise

d and Cj are non-adjacent. It is straightforward to see the following extension of

Lemma 6 to the case of adjacent components.

Lemma 7 Consider the subgraph G' = (V7 E') induced by the nodes in the CDS

constructed in the graph G = (V, E) by using Algorithm 2. Assume that the removal

of node u splits G'_u into multiple components C1, C2, C¿ such that G_u is still

66

connected. If C¿ and Cj are two adjacent components, then there must be a path in

G_u between Ci and Cj consisting of only neighbors of u.

Proof. Start with a direct path between components Q and Cj and continue as in

Lemma 6. D

We claim that non-adjacent components are always connected via adjacent com-

ponents.

Lemma 8 For every pair of components C and C, there is a path in G_u which

consists of juxtapositions of direct paths and CDS paths.

Proof. If C and C" are adjacent, there is a direct path between them by definition,

and we are done. If C and C are not adjacent, consider any path between C and C",

and say it goes through components Q1, Ci2, Q3, . . . , Qfe. It suffices to argue that the

claim holds true for a pair of consecutive (not necessarily adjacent) components Q

and Cj. If Q and Q are adjacent, we are done. Otherwise, take the sub-path between

Ci and Cj that is free of CDS nodes. Obviously it is not a direct path. Therefore, as

this path evolves, it must go through some other component C. We now recursively

look at the sub-path between Q and C and the sub-path between C and C3. This

process can only end with a direct path between two components. ?

This implies that if adjacent components can be reconnected, then the entire

CDS will be reconnected. In the following, we describe a maintenance procedure that

reconnects adjacent components using the neighbors of u.

67

Theorem 1 Consider the subgraph G = (V, E') induced by the nodes in the CDS

constructed in the graph G = (V, E). Ifk=l in the connectivity test in Algorithm 2,

and the elimination of a node u results in G'_u not being a CDS any more, G"_u can
be restored using a simple local procedure as long as G remains connected.

Proof. The elimination of a CDS node can have three possible consequences:

1. One or more nodes will be left un-dominated.

2. CDS will become disconnected.

3. The combination of the above two conditions.

We use two important properties to propose our local maintenance scheme. The first

one holds for any CDS: if the underlying graph remains connected, a non-CDS node

Xi that is left un-dominated as a result of the elimination of its only dominator u, is
either two hops away from some other CDS node ? or is adjacent to another non-CDS

node which has been left un-dominated by the elimination of u. Figure 10 gives an
example of this property of a CDS.

CDS
u

j

X¡

• CDS node

O non-CDS node

Figure 10: A non-CDS node x¿ which is left un-dominated when its only dominator
u is removed, is either two hops away from another dominator ? or is adjacent to
another such node Xj

68

The second important property is that of the path(s) that connect any two adja-

cent components in G_u in Algorithm 2, as proved in lemma 7: there is at least one

such path that only consists of neighbors of u. We use these two key properties to

propose the following procedure to locally fix the CDS.

Maintenance procedure A non-CDS node that notices the failure of its only

dominator sends a DOMINATION WARNING message to its 1-hop neighbors and

reverts to pending status. A CDS node that notices the failure of a neighboring CDS

node sends a CONNECTIVITY WARNING message to its 1-hop neighbors. Any

node that receives a DOMINATION/CONNECTIVITY WARNING message reverts

to pending status. All the nodes with the pending status run Algorithm 2.

If the failure of a CDS node u does not disconnect G'_u and only leaves some

nodes un-dominated, sending the DOMINATION WARNING message to one-hop

neighbors guarantees that at least a node with a neighbor in the CDS re-runs the

algorithm. Thus, not only do the un-dominated nodes become dominated again, they

also get reconnected to the CDS.

If the failure of node u disconnects G'_u into multiple components while the un-

derlying graph is connected, as proved earlier, there exists a path between any two

adjacent components consisting of only neighbors of u. These neighbors include at

least two CDS nodes as endpoints. As shown in Figure 11, nodes X1 and Xn revert to

pending status due to the CONNECTIVITY WARNING message they receive from

? and w and any intermediate node X1 reverts to pending status because it loses its

69

only dominator (u). When all the nodes with pending status re-run the algorithm,

the two adjacent components get reconnected. It follows from Lemma 8 that when

all the adjacent components are reconnected, the CDS will be restored.

• CDS node

O non-CDS node

Figure 11: The maintenance procedure restores the CDS by reconnecting C\ and C^-

D

The discussion above assumed that nodes run the connectivity test in Algorithm 2

with regard to their one-hop neighborhood (k = 1). However, the following corollary

of Lemma 7 is straightforward to see.

Corollary 1 Consider the subgraph G' = (V', E') induced by the nodes in the CDS

constructed in the graph G = (V, E) when the connectivity test is run with regard to

k-hop neighborhood in Algorithm 2. Assume that the removal of node u splits G'_u

into multiple components C\, C^ :- - - .C¿ such that (?__„ is still connected. Then there

must be a path in GLU between any two adjacent components which only consists of

nodes in u:s k-hop neighborhood.

The procedure given in the proof of Theorem 1 can be modified by sending the

CONNECTIVITY WARNING message to fc-hop neighbors. Thus, we showed that

70

the in the face of single node failures, the CDS can be restored locally for any arbitrary

k as long as the underlying graph remains connected.

3.5 Local Implementation

A local algorithm is a distributed algorithm in which a node makes decisions based on

the information obtained through communication with nodes located no more than

a constant (independent of the size of the network) number of hops away from it. It

has been shown in [33] that any local algorithm has a constant time complexity.

Unlike the non-local distributed algorithm presented in Section 3.3, we assume

that nodes are aware of their geographic locations in the local implementation. This

information is used in a tiling scheme first proposed in [14] to break potential symme-

tries and prevent a message to propagate beyond a constant neighborhood and thus

bring about the desired locality of the algorithm.

In the tiling scheme proposed in [14], the plane is divided into tiles of twelve

hexagons of diameter one and each hexagon is assigned a class number from 1 to

12. Since every hexagon has diameter one, any two nodes within one hexagon are

adjacent. A node is assigned a class number corresponding to the class number of the

hexagon containing it. This approach guarantees that two nodes of the same class

number are either adjacent or at Euclidean distance greater than two, which is used

to ensure the locality of our algorithm.

We redefine the rank of node u to be an ordered 3-tuple (Class„number(u), S(u), id(u))

where Class„number (u) is the class number of the hexagon containing u and S(u) is

its effective degree (number of neighbors in the CDS). Using this new rank, each node

runs Algorithm 2. This 3-tuple rank ensures that the execution of the algorithm by

72

any node depends on the nodes with lower class numbers and thus information can

propagate up to eleven hops away, given that there are a maximum of twelve class

numbers in the tiling used. This implies constant time complexity. The analysis of

the message complexity is similar to what was discussed for the distributed imple-

mentation and thus the local implementation has also the same message complexity

of 0(nAk).

Extending this local algorithm to A;-hop neighborhood is restricted by the mini-

mum distance between two distinct hexagons of same class number. Since in the tiling

scheme described above, the distance between any two distinct hexagons of same class

number is greater than two, we can increase k up to two without violating the locality

of the algorithm. Further increasing k can result in smaller CDS provided that the

tiling scheme is modified such that any two nodes with the same class number are

either adjacent or have distance greater than k.

3.6 Experimental Results

We conducted extensive simulations to compare the performance of our distributed

algorithm, both in its non-local and local form with their state-of-the-art competitors

in each category. We evaluated the CDS size generated by the algorithm as the

main criterion. We also considered average route length on the CDS generated by

the algorithm as a measure of its quality. In the category of distributed algorithms,
we compared our distributed implementation, hereafter referred to as PlnOutJDfc

73

(after the name of the three statuses that the nodes can have) with BCOP [6], Zone-

Based [25] ,WAF [1], and ECDS [57] since these algorithms produce the smallest-sized

CDSs in the literature. In the category of local algorithms, we compared our local

implementation, hereafter referred to as PInOut_LA; with TBC [14], WuLLKR [15],

TBLSJVlD [28], and WuLi [50]. To the best of our knowledge, these are the only

practical local CDS construction algorithms in the literature.

We used Java Platform (JDK 6 update 10) in all our simulations. Given that

the transmission range of nodes and the area of the network are fixed, we varied

the density of the network by assigning different values to n. In our simulations, we

assigned the values 50, 100, 150, 200, 250, and 300 to ? to start with a sparse network

of average node degree of 3.53 and end with a dense network of average node degree

of 21.2. The nodes are randomly distributed in a geographic area of 200 m by 200 m.

Since the transmission range of nodes in our network model is 30 meters, two nodes

are adjacent if and only if their Euclidean distance is less than or equal to 30 meters.

For each value of n, we generated as many random graphs as required until we had

1000 connected graphs. The connected graphs were stored in a file and used across

all simulations for the same value of n. We categorized the simulation results into

two groups based on the type of algorithms (distributed and local) being compared.

The results are presented in the following two sections.

74

3.6.1 Performance comparison of distributed algorithms

As mentioned earlier, nodes can look farther while running the connectivity test when

k increases, thereby increasing the possibility of breaking longer loops that would be

otherwise undetectable when looking at the immediate neighborhood. As a result,

the CDS size decreases by breaking these loops. Our experiments showed that when k

is increased to 2, 3, and 4, the CDS size is reduced by up to 12.7%, 19.7%, and 22.8%

respectively. The gain by increasing Ar beyond 4 is not significant. Thus, we chose k —

1 and k = 4 for PInOut_D in the comparison of our algorithm with those distributed

CDS formation algorithms in the literature that generate the smallest-sized sets.

These algorithms, which were discussed in chapter 2, are BCOP [6], Zone_based [25],

WAF [1], and ECDS [57]. Although BCOP is not a practical algorithm due to its

significantly high complexity, it was merely selected as a benchmark since it generates

the smallest CDS size prior to our work. WAF, ECDS, and Zone.based are cluster-

based algorithms that all construct an MIS and evolve it into a CDS by adding

connectors. While WAF has a high complexity, ECDS and ZoneJbased have linear

message complexities.

75

70

60

to
Q
U
e 50
??
0)

"U
O
c 40

a»
?
£ 30
e

?

(U
°· 20

10

-e-PinOut_Dl
-o-PinOut_D4
— BCOP

-*-WAF

-*-Zone_based
-ECDS

50 100 150 200

Number of nodes in graph

250 300

Figure 12: Percentage of nodes in the CDS for different distributed algorithms.

As shown in Figure 12, PInOutJD4 consistently generates the smallest-sized CDS

and PInOutJDl is the next to the best in dense networks. For sparse networks

(n = 50), all the algorithms generate CDSs larger than 50% of the nodes in the

network with PInOut_D4 being the best at 52.72%. As the density increases, the

difference between the group of algorithms that generate CDSs directly (PInOutJDl,

PInOutJD4, and BCOP) and those that start with an MIS (WAF, ECDS, Zone_based)

become more noticeable. For average densities (n = 150), the CDS generated by

BCOP, ECDS, WAF, and Zoneimsed is 11.08%, 49.23%, 53.67%, and 78.86% larger

than that constructed by PInOutJD4, respectively. This difference is increased to

76

26.68%, 68.17%, 97.34%, and 135.19%, respectively for dense networks (n = 300).

The results clearly confirm the efficiency of PInOutJD in terms of CDS size when

compared with its competitors.

We also compared the average shortest path length (ASPL) on the backbone gen-

erated by PInOutJD 1 and PInOut_D4 against all the other algorithms mentioned

above. It is among the most significant qualitative metrics and shows how well a

CDS performs as a backbone for routing or data gathering/dissemination protocols.

It also affects the network's lifetime; a higher value of ASPL implies more nodes are

involved in forwarding messages. As illustrated in Figure 13, ASPL on the CDS pro-

duced by Zone_based is constantly the closest to that of the original graph. This is due

to its relatively large size compared to the other five algorithms. While PInOutJDl

produces reasonably small-sized CDS, especially as the graph grows denser, it al-

ways gives the next best ASPL compared to that of the original graph. ECDS and

PInOut_D4 produce a moderate backbone in terms of ASPL, but BCOP has an ASPL

of up to 2.25 times larger than that of the original graph.

77

CuO
C
F

p?
a.

f
¦M
?-
?
?:
in

F
ÖO
ro

f
>
<

11

IO

O

¦¦¦+¦¦¦ PlnOut_Dl
···»·¦ Pln0ut_D4
-fr- BCOP

-? WAF

-*-Zone_based
?-ECDS

— -&'

-?-Graph •

¦ -A

50 100 150 200

Number of nodes in the graph

250 300

Figure 13: Average shortest path in the CDS for different distributed algorithms

In order to provide some insight into some of the reasons why our algorithm

outperforms all its MIS-based competitors in terms of the size of the constructed

CDS, we provided a graphical sample of our simulation results in Figure 14. In this

sample network, 300 nodes of equal transmission range of 30m are scattered in an

area of 200m by 200m. The CDSs constructed by the distributed algorithms that we

used in our simulations are depicted in parts (a) through (f).

As illustrated in the figure, the most conspicuous differences are the existence

78

of short cycles and selection of quite a few nodes (with typically low degrees) along

the borders of the network in the MIS-based algorithms (Figure 14-(c)[l],(d)[25] and

(e)[57]), both of which can be attributed to the construction of MIS. These algorithms

first build a DS by constructing an MIS which involves pushing the nodes in the set as

far away as possible to ensure no two nodes are adjacent. This approach leads to the

selection of low-degree nodes in the graph, especially along the borders, which would

have otherwise been unnecessary. And what makes the CDS even larger is that many

of these nodes introduce additional connectors into the CDS. Figure 14-a shows that

a lot of these nodes are not selected by our algorithm. The zone-based algorithm [25]

breaks the network into zones and uses the MIS strategy to build a dominating tree

in each zone and then connects the zones. Clearly, this approach further increases

the size of the set.

79

(a) PlnOut_D1 - |CDS| = 39

(C) WAF - |CDS| = 69

(b)PlnOut_D4- |CDS| = 34

(d) Zone-based - |CDS| = 78

(e) ECDS - |CDS| = 57 (f) BCOP - |CDS| = 44

Figure 14: Comparison of the CDSs constructed by different distributed algorithms
80

3.6.2 Performance comparison of local algorithms

As discussed in Section 3.5, given the tiling scheme we used in the implementation

of PInOutJL, the increase of k is restricted to 2. Our simulation results show that

even the CDS generated by PInOut_L2 (k = 2), for moderate and dense networks,

is comparable to TBSL_MD which generates the smallest CDS among all the other

local algorithms.

As shown in Figure 15, while for sparse networks TBLSJMD outperforms all other

algorithms, as the density increases PInOutJL (1,2) quickly catch up and outperform

WuLi, WuLiJKR and TBC. For networks of moderate density (n = 150,200) and

dense networks (n = 250, 300), PInOut_L(l, 2) has a very good performance which is

comparable with that of TBLSJMD. Although WuLiJKR is a very good improvement

over WuLi, they both generate the largest CDSs among all competitors. However,

we should keep in mind that, unlike TBC, TBLSJMD, and PInOut_L(l, 2), WuLi and

WuLiJKR do not require information about the location of the nodes which is a big

advantage when nodes are not equipped with positioning systems. Figure 16 depicts

the ASPL metric for all the local algorithms compared in this section. As expected,

ASPL has an inverse proportional relation with the size of the CDS.

81

80

70

Q
U 60
e

50

eu
?
O
C

O
cu
bo

2 40
C
cu
U

f
a.

30

20

10

«-TBLS MD

WuLi KR

?- PlnOut Ll

PlnOut L2

50 100 150 200 250 300

Number of nodes ¡? graph

Figure 15: Percentage of nodes in the CDS for different local algorithms

7.5

6.5

ft 5.5
>
<

4.5

50 100 150 200

Number of nodes in the graph

— PlnOut_Ll
--¦- PlnOut_L2
^-TBLSJVID
^< TBC

* WuU

--·· WuLi_KR
»Graph

250 300

Figure 16: Average shortest path in the CDS for different local algorithms

82

Chapter 4

Algorithms for Networks with

Asymmetric Links

In Chapter 3, we modeled the wireless network as a UDG and proposed our algorithm

based on this model. However, as discussed in Chapter 1, nodes in the network may

not necessarily have the same transmission range; therefore, in this chapter, we extend

our algorithm to construct SCDASs in networks with asymmetric links, modeled as

a Disk Graph (DG).

In a disk graph G = (V, E) , a node Vi G V has a transmission range r¿ G

[fmin,rmax]. If d(vi,Vj) denotes the Euclidean distance between. the two nodes t\

and Vj, then there exists a directed edge (vi, Vj) G E iff d(vi,Vj) < r¿. In other words,

there is a directed link from t>, to Vj only if Vj lies in the disk centered at i>¿. An

edge (vi,Vj) is unidirectional if (ví,Vj) G E, but (?^,?,·) ^ E. If ((ví,Vj) G E and also

(vj. Vi)) G E, then the edge (u¿, Vj) is bidirectional.

83

Note that a disk graph in which the transmission range of each node is selected at

random from [rmin, rmax] is not the same as the well-known Quasi Unit Disk Graph

(QUDG) model with parameters r and R, introduced in [3] for the first time. In

the QUDG model, for two nodes u and ? with Euclidian distance \uv\: if \uv\ < r,
then u and ? have an edge in the graph; if \uv\ > R, then u and ? do not have an

edge in the graph and if r < \uv\ < R then u and ? may or may not have an edge.

To further clarify their difference, it should be noted that in the DG model, once

a node u has selected its transmission radius r¿, it has a link to every node whose

distance to u is smaller than T1. However, in the QUDG model, a link exists with

a certain 'probability' between two nodes whose Euclidian distance is greater than r

but smaller than R.

4.1 Definitions and preliminaries

In our algorithm, we use Nd(u) to denote the dominating neighbor set of node u, i.e.

Nd{u) = {v\(v,u) e E}. A node ? € Nd(u) is also referred to as an incoming or

ingress neighbor of node u in the literature. Likewise, Na{u) is used to denote the

absorbent neighbor set of node u: i.e Na{u) = {v\(u,v) G E). A node ? e Na(u) is
also referred to as an outgoing or egress neighbor of u in the literature. Figure 17
illustrates the dominating and absorbent neighbor sets of a node. Note that these

two sets may overlap. In other words, a bidirectional neighbor of node u is both a

dominator and an absorbent of node u. We define the degree of a node as the sum of

84

the number of its dominators and absorbents.

? /' \ w

dominating neighbor set \^ / Absorbent neighbor set
Nd(u) · Na(u)

U

Figure 17: Dominating and absorbent neighbor sets of node u

Every node « has a rank {S(u), id{u)) which is an ordered pair of its effective degree

and id, where the effective degree of node u is the number of -u's neighbors in SCDAS,

i.e ò(u) = \{?\? E Na{u) Av e SCDAS}\ + \{v\v G Nd(u) Av e SCDAS}\. Since
the membership of nodes in the SCDAS changes during the algorithm, so does the

effective degree of a node. Assigning a unique id to every node, provides a mechanism

to break ties.

As explained in Chapter 3, the rank of a node in our algorithm is defined based

on the goal function. Since we intend to minimize the size of the constructed SCDAS,

we use a node's effective degree in the definition of its rank.

85

4.2 Centralized Description

We extend the centralized description of our algorithm described in chapter 3 as

follows. Node u passes the Domination and Absorbency Test (DAT) if:

(a) all the nodes that are dominated by u have at least one other dominator.

(b) all the nodes that are absorbed by u have at least one other absorbent.

Node u passes the connectivity test if the subgraph induced by its dominators and

absorbents is strongly connected. The formal description of this extended algorithm

is given in Algorithm 3.

4.3 Distributed Implementation

In order to present the distributed implementation of the above centralized description

of our algorithm, we use most of the same details described in Chapter 3. Therefore,

we will not explain all those details again. Instead, we just focus on the modifications

and extensions that we need in order to adapt that implementation for directed

graphs.

Initially, every node u exchanges its rank with all its neighbors (incoming and

outgoing) and stores the set of its neighbors in Nu,scdas, a variable holding the set

of neighbors in SCDAS. Also, it maintains the list of its lower rank neighbors in

Lower_Ranku. Again note that in this section, whenever we talk about neighbors

in general, we mean both incoming and outgoing neighbors. Four messages are used

in conjunction with the domination test. Dominator.Query and Dominator.Reply

86

messages are used to verify if the nodes dominated by u have other dominators or

not. Likewise, AbsorbentjQuery and Absorbent-Reply message are used to verify if

the nodes absorbed by u have other absorbents. An outgoing neighboring node ?

includes the list of its dominators, Dv, in Dominator_Reply(v, Dv) and an incoming

neighbor ? includes the list of its absorbents, A11, in Absorbent_Reply {?, Av). The

same mechanism as described in chapter 3 is used to avoid simultaneous drop-out of

nodes while performing this test.

The connectivity test at node u examines if the subgraph induced by Nuscdas is

strongly connected. If so, node u drops out of the SCDAS. The rest of the actions

taken by nodes, such as sending the Finished_Msg(status) when they finish running

the algorithm or how they update their effective degree when they receive a Fin-

ished-Msg(status) from a neighbor are the same as before. The formal description of

this algorithm is given in Algorithm 4.

87

Algorithm 3 Centralized Strongly Connected Dominating and Absorbent Set (SC-
DAS) Algorithm

SCDAS <- V ~
P^V
while P f 0 do

tí <— argmin{(S(v),id(v))\v G P]
P <- P- {U}
DAT «- true
I /For every node ? dominated by u, check if there is some other node
/ /that dominates ?
for all ? G Na(u) do

if {{Nd(v) ? SCDAS) - {u} = 0) then
DAT <- false

end if
end for
//For every node ? absorbed by u, check if there is some other node
/ /that absorbs ?
for all ? e Nd(u) do

if ((Na{v) ? SCDAS) - {u} = 0) then
DAT «- false

end if
end for
if DAT then

if G[({Na(v) U Nd{v)) ? SCDAS) - {u}] is strongly connected then
SCDAS *- SCDAS - {u}
for all (v E Na(u) A ? e SCDAS) do

5(v) <- d{?) - 1
end for
for all (v e Nd(u) Ave SCDAS) do

d(?) i- d{?) - 1
end for

end if
end if

end while
Return SCDAS

Algorithm 4 Distributed Connected Dominating and Absorbent Set Algorithm, ex-
ecuted by node u

when Lower_Ranku = 0
DAT <- true
Send Dominator_Query to Na(u) and Absorbent„Query to N¿(u)
for all (v e (Na{u) U Nd(u))) do

Wait for Dominator_Reply{v , Dv) and Absorbent.Reply'(v, Av)
if ((A, - {u} = 0)?t(?; - M = 0)) then

£>?G <- false
end if

end for
if DAT then

if G[NUiscDAS — {u}] is strongly connected then
Statusu <— owi
Send Finished„Msg(out) to (7Va(u)uArd(tt))

else
Statusu <— in
Send Finished„Msg(in) to (Aí„(m)UÍV¿(íí))

end if
else

Statusu <— in
Send Finished„Msg(in) to (Na(u) U Nd(u))

end if

Upon receiving (Dominator/Absorbent)„.Query„Msg from i>:

if \{ReplyJn„Transit) then
ReplyJ?„Transit <— irne
Send [Dominator/Absorbent) „Reply(u,Du/Au) to ?

else Enqueue {Dominator/Absorbent) jQuery (y) in Z)QQ
end if

89

Upon receiving Finished-Msg(status) from ?:

if status = out then
if ((v G Na(u))k(v G Nd(u))) then

S(u) *- 6(u) - 2
else

S(u) <- 5(u) - 1
end if
NU,SCDAS = NUìsCDAS ~ {?}

end if
if (Rank(v) < Rank(u)) then

Lower_Ranku = LowerJRankn — {v}
end if
if DQQ t¿ 0 then

f <— Dequeue DQQ
Send Dominator/AbsorbentJReply(u, Dn(An) to ?

else ReplyJ ?.Transit <— /a/se
end if

Before proceeding to the experimental results, we explain how a node's effective

degree is computed and updated in the above algorithm. Initially, every node u sets

it effective degree to 0 (S(u) = 0). Then it increments S(u) for each incoming or

outgoing neighbor v. If node u has a bidirectional link to node v; i.e. node ? is both

in Na(u) and Nd(u), then node ? causes S(u) to be incremented by 2. That is why we

decrease 6(u) by 2 during the execution of the algorithm if a bidirectional neighbor ?

drops out of SCDAS in Algorithm 4.

4.3.1 Performance Analysis

The analysis of time and message complexities of Algorithm 4 for the computation

of an SCDAS is not as straightforward as that of Algorithm 2 in Chapter 3 for the

90

computation of a CDS. The existence of unidirectional links in the network causes a

special challenge: If node u has a unidirectional link to node v, then ? can directly

receive packets from u and is therefore aware of the existence of its incoming neighbor

(dominator); however, node u cannot directly hear from node ? and thus is not aware

of its existence. In other words, the main issue is that a node cannot identify its out-

going (absorbent) neighbor(s). One solution is to have each node in the network emit

a beacon, with its ID appended to it, at regular intervals. Any node that receives a

beacon appends its own ID and forwards it. Since we assume the underlying graph is

strongly connected, every node will eventually hear from its absorbent neighbors and

can detect them using the chain of IDs appended by forwarding nodes. Using this

solution, the message complexity incurred when a node wants to identify the set of its

absorbents, or when it inquires them about their other dominators during the dom-

ination and absorbency test, is not necessarily restricted to a certain neighborhood.

The reply messages from an absorbent node ? to a dominator u may be forwarded

along a path containing O(n) nodes. Therefore, using the same analysis as the one

explained for Algorithm 2 in Chapter 3, the time and message complexities of the

Algorithm 4 are 0(n2) and 0(n2Ak). respectively.

However, for practical reasons, we are interested in networks in which there is a

bound on the maximum length of the directed reverse path between any pair of nodes

with a directed edge. We call a directed graph a-reciprocal if for every directed edge

(u, v) G E, there exists a directed path from ? to u of length at most a. Under this

assumption, the bound for the time and message complexities of Algorithm 4 would

91

be 0(an) and 0(anAk), respectively.

4.4 Experimental Results

We conducted extensive simulations to evaluate the performance of our algorithm

in networks with asymmetric links. To study the impact of various percentages of

unidirectional links (PUL) as well as different node densities on the size of the con-

structed SCDAS, we extended our simulations described in chapter 3 as explained in

the following. The nodes are randomly distributed in a geographic area of 200m by

200m. Each node is assigned a transmission range randomly selected from the range

[rjmin,rjmax\.

We present the results in the four following sections. In Section 4.4.1, we look at
the relationship between the ratio of the maximum to minimum transmission range

on the percentage of unidirectional links in the input graphs. In Section 4.4.2, we

investigate the impact of the degree of locality with which nodes run the connectivity

test in Algorithm 4 on the size of the constructed SCDASs. Then, we will compare

the performance of our algorithm with that of its competitors in Sections 4.4.3 and
4.4.4 under varying node densities and percentages of unidirectional links.

92

4.4.1 Impact of Transmission Range on The Percentage of

Unidirectional Links

Clearly, the [rjnin, rjmax] range affects the percentage of unidirectional links in the

network in that the latter is proportional to the relative difference between rsnin

and rjraax. Therefore, we created five different scenarios in which we experimented

with different ranges to generate different PULs. The transmission ranges in the first

four scenarios were selected from [10m, 50m], [20m, 50m], [30m, 50m], and [40m, 50m]

respectively. In the last set, all the nodes were assigned the fixed transmission range

of 50m to make it possible to also compare differences between UDGs and DGs as

input graphs. In each of the above five scenarios, we also varied the number of nodes ?

in the network form 50 to 300 with increments of 50 to investigate the impact of node

density. For each value of ? in each scenario, we generated as many random graphs as

required until we had 1000 strongly connected graphs. The graphs were stored in files

and used across different simulations using different algorithms. Before proceeding to

present the results, it is useful to first have a look at the input graphs to investigate

the relationship between the ratio of the maximum to minimum transmission range

and the percentage of unidirectional links in the graphs.

93

C

?5
C
O

?
?
L-

'c
3

a»
CuD
TO
+-<
C
f
?

?
Q.

80

70

60

50

40

30

20

10

0

50

Min-Max transmission range :

100 150 200 250

Number of nodes

-^- 10-50
— 20-50

-* -30-50
•••••40-50

-50

300

Figure 18: Relationship between maximum-to-minimum transmission range ratio and
percentage of unidirectional links

As illustrated in Figure 18, it can be generally seen that the percentage of uni-

directional links in the network is a function of the ratio of maximum to minimum

transmission range and is almost independent of the node density in the network. For

example, in our simulations, when transmission range varies between 40m and 50m;
T TTtCLX

i.e. —: = 1.25, the percentage of unidirectional links varies between 11.2% torjmin
T JXTX(XX

12% for different values of n. When the — ratio is increased to 1.67, 2.5 and 5,
TJTIlTi

the percentage of unidirectional links rises to 25%, 40% and 52%, respectively. The

94

only cases in which graphs exhibit slightly unpredictable behavior is when the ratio
vjmcix

of maximum to minimum transmission range is high (= 5) and the network is
r_min

very sparse (n = 50, 100). Finally, as expected, when all the nodes have the identical

transmission range of 50m, there are no unidirectional links in the network.

4.4.2 Impact of Locality on The Size of The SCDAS Con-

structed by Our Algorithm

We also investigated the effect of the degree of locality k with which the connectivity

test is run on the size of the generated SCDAS. Our goal was to experimentally

determine the best tradeoff between the degree of locality in this test and the number

of nodes that can be pruned. As depicted in Figures 19 and 20 , the curves gradually

flatten out beyond k = 5 in relatively sparse (n = 50, 100) networks and in networks

of moderate density (n = 150) and there is no considerable reduction in the number

of SCDAS nodes by further increasing A;. However, in relatively dense (n = 200) to

very dense networks (n = 200, 250), the curves typically become flat faster, at k = 3.

As the ratio of maximum to minimum transmission range decreases, increasing k

becomes less helpful.

95

<
Q
?

e
(/>
(U
?
O
C

70

60

50

40

30

20

10

-?- Num_of_nodes: 50
-*¦ Num_of_nodes: 100
-* -Num_of_nodes: 150
-*- Num_of_nodes: 200
-»-Num_of_Nodes: 250
¦¦*¦¦ Num of nodes: 300

^._

3 4 5 6 7

Locality of the connectivity test (k)

10

Figure 19: Impact of the locality of connectivity test on the size of the SCDAS when
transmission ranges vary between 10 m and 50 m

<
a
?

(U
"D
O
C

70

60

50

40

30

20

10

-«- Num_of_nodes: 50
-¦- Num_of_nodes: 100
-* -Num_of_nodes: 150
-?- Num_of_nodes: 200
-»-Num_of_Nodes: 250
¦•«¦¦Num of nodes: 300

3 4 5 6 7

Locality of the connectivity test {k)

10

Figure 20: Impact of the locality of connectivity test on the size of the SCDAS when
transmission ranges vary between 20 m and 50 m

96

Another interesting observation is that in very dense networks, especially when

the ratio of maximum to minimum transmission range is not more than 2.5, running

the connectivity test in the immediate neighborhood yields results that are almost

as good as running it for very large values of k, possibly even the diameter of the

network. This can be seen in Figures 20 and 21, when the number of nodes is more

than 200.

<
Q
U
to

(U
"U
O

70

60

50

40

30

20

10

-«- Num_of_nodes: 50
-¦- Num_of_nodes: 100
-* -Num_of_nodes: 150
-«- Num_of_nodes: 200
-»-Num_of_Nodes: 250
·-*- Num of nodes: 300

3 4 5 6 7

Locality of the connectivity test {k)

10

Figure 21: Impact of the locality of connectivity test on the size of the SCDAS when
transmission ranges vary between 30 m and 50 m

Since the general trends exhibit more or less the same behavior for scenarios in

which the transmission range varies between 40m and 50m, or when all the nodes

have the same transmission range of 50m, the corresponding graphs are not shown.

From the above observations, it seems that k = 4 can strike a good compromise

between the locality of the algorithm and the size of SCDAS for average networks.

97

Therefore, in comparing our algorithm with its competitors, we selected two instances

of our distributed implementation; namely PInOut^Unidirectional Distributed (k — 1)

(PlnoutJJDl) and PlnOut-Unidirectional Distributed (k — A) (PIn0uLUD4).

The only algorithms proposed in the literature to construct an SCDAS in net-

works with different transmission ranges are the ones in [40] and [46], which were

discussed in detail in chapter 2. Thus, we compared the performance of our pro-

posed algorithm with the localized marking algorithm in [46], hereafter referred to

as Wu after the name the author and the two centralized algorithms in [40], namely

Dominating-Absorbent Spanning Tree (DAST) and Greedy Strongly Connected Com-

ponent Merging Algorithm (G-CMA). In our performance comparison, we focused on

the impact of node density and the percentage of unidirectional links on the size of

the SCDAS constructed by the four algorithms.

4.4.3 Impact of Node Density

In this section we will investigate the impact of node density on the performance

of the four selected SCDAS construction algorithms. Figures 22 through 27 show

six different node densities, in ascending order, in the presence of different PULs in

the network. As it can be seen in Figure 22, Wu performs better than DAST in

sparse networks, especially when PUL is higher. However, as PUL drops below 12%

and the underlying graph tends to a UDG, DAST catches up and outperforms Wu.

PInOutJJDl and PInOutJJD4 consistently outperform the other three algorithms

while G_CMA is closer to PInOutJJDl. standing in the middle. As the number of

98

nodes increases to 100 and 150 (moderate densities), DAST consistently outperforms

Wu, and the gap between DAST and Wu as one group and GXMA, PInOutJJDl
and PInOut_UD4 as the other group widens, especially in the presence of PULs of

12% and higher. Another noticeable trend is that DAST almost maintains the same

distance from the algorithms in the second group up to PLUs of around 12%, but

then considerably narrows down the gap as PUL tends to zero. As the number of
nodes increases to 200, 250, and 300 (extremely dense networks), PInOutJJDl and

PInOut_UD4 take the lead more conspicuously and PInOutJJDl increases its dis-

tance from G_CMA. On average, PInOutJJDl and PInOutJJD4 construct SCDASs

which are 24% and 35% smaller than those constructed by G_CMA respectively. The

efficiency of our schemes become even more noticeable when we take into account

the very high complexity of GJJMA and the fact that it is a centralized algorithm.

Finally, the last consistent trend that can be seen from the figures is that as the node

density increases, the difference between PInOutJJDl and PInOutJJD4 decreases

and in very dense networks, they perform almost equally well, especially for PULs of

40% and lower.

99

CO
<
Q
U
co
C

90

80

70

i= 60
??
?
¦o
o
e

*o
<u
bO
2 30
c
f
U

?)
a.

50

40

20

10

-?-DAST

-¦ -G_CMA
-*·· Wu

-*-PlnOut_UDl
-*-PlnOut UD4

o
in

o O O

?

Min-Max transmission range

Figure 22: Impact of the node density - number of nodes =50

CO
<
O

CO
C
to
?

O
C

M—
O
cu
dû
to

4-»
C
a>
?-
a)

80

70

60

50

40

30

20

10

0

-?- DAST

-¦ -G_CMA
··*¦· Wu

-*-PlnOut_UDl
-*¦ PlnOut UD4

o
G?

O

Min-Max transmission range

Figure 23: Impact of the node density - number of nodes =100

100

I/)
<
Q
?

OJ
-?
?
C

·*-
O
a>
bo
(TJ

+-»
e
(U
O
?-
a»
Q.

80

70

60

50

40

30

20

10

-«- DAST

-» -G_CMA
•*»Wu

-*-PlnOut_UDl
-*- PlnOut UD4

» _

o O
in

o O
m

?
"?-

?

Min-Max transmission range

Figure 24: Impact of the node density - number of nodes =150

1/1
<
Q
(J

c
in
OJ
¦s
O
C

a?

a?

(X

70

60

50

40

30

20

10

-?- DAST

-· -G_CMA
-i-Wu

-*-PlnOut_UDl
-*¦ PlnOut UD4

o
rsi

O
in
?
m

o
in

?
M-

o
m

Min-Max transmission range

Figure 25: Impact of the node density - number of nodes =200

101

<
Q
U
to

(?
?
-a
o
e

?
?
03

+-»
C
Ol
?

CD
a.

<
Q
U
uo
C
io
O)

XJ
O
C

M—
O
CU
QO
?3

+-*
C
OJ
U
?_
a>
o.

70

60

50

40

30

20

10

O

-?- DAST

-» -G_CMA
··*·· Wu

-*-PlnOut_UDl
-*-PlnOut UD4

N^.

o
LO
O
(N

O
lo
ò
m

o
LO
?

o
LO

Min-Max transmission range

Figure 26: Impact of the node density - number of nodes =250

70

60

50

40

30

20

10

0

-«- DAST

— -G_CMA
·¦*-¦ Wu

-*-PlnOut_UDl
-*-PlnOut UD4

o
lo

o

o

O
LO
O

Min-Max transmission range

Figure 27: Impact of the node density - number of nodes =300

102

4.4.4 Impact of Unidirectional Links

In order to better analyze the impact of PUL on the performance of algorithms which

we simulated in our experiments, we give a different presentation of our results in

this section. We rearranged our results such that studying the behavior of each

algorithm for a given range of \rmin,rmax] becomes easier. Figures 28 through 31

show four different [rmin, rmax) ranges and the size of the SCDAS constructed by each

algorithm under varying number of nodes. As we discussed earlier in this chapter,

each [rmin,rmax} range corresponds to an almost fixed PUL. More specifically, if we

ignore the slightly different trends in very sparse networks in the presence of high

PULs and round up the average PULs for different [rmin,rmax] transmission ranges,

the transmission ranges [10,50], [20,50], [30,50], and [40,50] correspond to PULs of

52%, 40%, 25%, and 12% respectively. As depicted in Figure 32, we also considered

the scenario in which PUL is zero to make it possible to more accurately predict the

trends as PUL drops below 12% and tends to zero.

As illustrated in Figure 28, although Wu initially outperforms DAST when ? — 50,

it does not improve much as the node density grows in the presence of high PULs. In

other words, when the ratio of maximum to minimum transmission range is very high

in the network, Wu cannot take advantage of the increase in node density whereas the

other algorithms all benefit from increased node density and reduce the relative size

of the SCDAS which they construct. The reason for Wu's inability to use increased

density in its favor is that its pruning rules (Rules 1 k 2) are not efficient when PUL

is high.

103

By comparing Figures 28 through 31 with Figure 32, it can be seen that the

existence of unidirectional links in the network adversely affects the performance of

DAST. As can be seen in Figure 32, when there are no unidirectional links, DAST's

performance is closest to G_CMA; it constructs SCDASs which are 128% larger than

those generated by G_CMA on average. However, in the presence of unidirectional

links, DAST's performance degrades as link density increases. The size of the SCDAS

built by DAST is 153%, 175%, 189% and 191% larger than that of G_CMA when the

minimum transmission range is 10, 20, 30, and 40 respectively. This shows that

DAST is more sensitive to link density compared to G_CMA, PlnOutJJDl, and

PInOut_UD4.

The last interesting observation is about the relationship between the locality of

the connectivity test (k) in our algorithm and the PUL. As shown in the figures, as

the PUL decreases, so does the improvement in the SCDAS size as a result of increas-

ing k. The reason is that detecting strong connectivity is more difficult in smaller

neighborhoods (e.g. k = 1,2) when a large percentage of links are unidirectional.

In other words, the lower the PUL, the smaller the neighborhood required to detect

strong connectivity in the graph.

Our simulations show that when PUL is around 52% (transmission range =

[10,50]), there is an average reduction of 21% in the size of the SCDAS as k is

increased from 1 to 4. However, this gain is reduced to 17%, 13%, and 9% when

PUL is 40%, 25% and 12% respectively. As seen in Figure 32, when there are no

unidirectional links in the network, and the network is extremely dense, this gain is

104

only around 3%. In summary, using a larger neighborhood in the connectivity test is

helpful when PUL is relatively high. For lower PULs, it helps when the network is

not very dense.

OO
<
Q
U
oo

_c
IO
?
ts
o
e

4-
O
(U
ß?
(U

+-»
C
?
?
?_
<?

CL

90

80

70

60

50

40

30

20

10

0

-?-DAST

- -G_CMA
·*·· Wu

-*-PlnOut_UDl
-*-PlnOut UD4

¦ ?·

50 100 150 200 250

Number of nodes

300

Figure 28: Impact of the percentage of unidirectional links i,rmax] = [10,50]

105

io
<
Q
t_>
wo
E
to

¦s
?
e

?—
O
(?

(U
+-»
C
(U
?
?_
F
O-

90

80

70

60

50

40

30

20

10

0

Ar-.

-*- DAST

-¦ -G_CMA
•4 -Wu

-+-PlnOut_UDl
-*-PlnOut UD4

50 100 300150 200 250

Number of nodes

Figure 29: Impact of the percentage of unidirectional links - \rmin,rmax\ = [20,50]

<
Q
<_>
to

Vi
F

T3
O
C

F
bu
(D

f

f
Q-

80

70

60

50

40

30

20

10

-?- DAST

-¦ G_CMA
¦-4--WU

-<-PlnOut_UDl
-*-PlnOut UD4

50 100 150 200 250

Number of nodes

300

Figure 30: Impact of the percentage of unidirectional links - [rm¿„,rmax] = [30,50]

106

OO
<
O

OO

QJ

?
C

?—
O
<?
tuo
to
+-»
e
O)
U

a>

70

60

50

40

30

20

10

\ "?·.

-?- DAST

-¦ -G_CMA
·¦*·· Wu

-+-PlnOut_UDl
-*-PlnOut UD4

50 100 150 200 250

Number of nodes

300

Figure 31: Impact of the percentage of unidirectional links - [rminjrmax] = [40, 50]

OO
<
Q
CJ
oo
C

to
QJ

TJ
O
C

(U

+-»

<u
?
?-.
??

Q-

50

45

40

35

30

25

20

15

10

5

0

-?- DAST

-¦ -G_CMA
.*-Wu

-t-PlnOut_UDl
-*-PlnOut UD4

50 100 150 200

Number of nodes

250 300

Figure 32: Impact of the percentage of unidirectional links - [rm¿n, rmax] = [50, 50]

107

Chapter 5

Conclusions and Future Work

In this thesis, we discussed the significance of providing a hierarchal infrastructure,

also referred to as a virtual backbone, in wireless ad hoc networks in order to per-

form several key functions such as routing, activity scheduling, and topology control.

Indeed, many of the defined objectives for ad hoc networks are not easily achievable

without first addressing the problem of constructing such an infrastructure in an ef-

ficient manner. We then proposed efficient distributed algorithms with linear time

and message complexities for the construction of such a backbone in both networks

with symmetric and asymmetric links. We also gave a local implementation of our

algorithm in location-aware UDGs. Extensive simulations show that our proposed al-

gorithms outperform several classical CDS (SCDAS) construction algorithms in terms

of the size of the generated sets. The general ranking scheme defined in our algo-

rithm makes it possible to construct CDSs (SCDASs) based on other goal functions

such as energy efficiency. Also, by choosing an appropriate degree of locality when

108

running the connectivity test, our algorithms provide the desired flexibility to adjust

the trade-off between the size and the cost of the constructed set.

The virtual backbones (CDSs/SCDASs) constructed in this thesis only guarantee

1-domination and 1-connectivity. Although in practice, a node may be dominated

by more than one CDS (SCDAS) node or there might be more than one path on

the CDS (SCDAS) between two nodes in the graph, this is not guaranteed- In fact,

our algorithm attempts to eliminate such redundancies to reduce the size of the

constructed sets as much as possible. In order to deal with the lack of such redundancy

which proves to be desirable when nodes fail, we proposed schemes to locally update

the CDS (SCDAS) in case of node failures. Recently, another approach for achieving

such robustness was proposed in [55]. In their approach, the authors use the concept of

fcm-CDS in which the constructed CDS guarantees m-domination and A;- connectivity

in the underlying graph provided such a CDS exists. By ensuring that every node is

dominated by at least m neighboring nodes in the CDS and that there exists at least

k different paths between any pair of nodes in the CDS, the desired level of robustness

and fault tolerance can be achieved as a built-in feature of the resulting CDS. Indeed,

our approach in dealing with node failures has a reactive nature whereas constructing

a fcm-CDS is a proactive scheme in providing such fault tolerance.

Two algorithms were proposed in [55] to construct a km-CDS. The first one is a

centralized algorithm which first constructs an m-dominating set and then augments

it to ensure fc-connectivity. The second one is a distributed algorithm Avhich constructs

a 1-dominating set m times followed by making this m-dominating set /e-connected.

109

Based on the observations provided in chapters 3 and 4, algorithms that construct

a CDS in different phases tend to perform rather poorly in terms of the size of the

resulting CDS since they often add unnecessary nodes to the set. The fact that

such a scheme is used iteratively in the algorithms proposed in [55] may aggravate

the situation. Therefore, one promising direction for future work is to adapt our

algorithm for the construction of fcm-CDS in networks with symmetrical links. We

predict that our adapted algorithm will be able to generate fcm-CDSs of much smaller

sizes than those generated by algorithms in [55]. To the best of our knowledge, no

work has investigated the use of such a scheme in networks with asymmetrical links.

Thus, adapting our algorithm in Chapter 4 to construct a /cm-SCDAS can be of

special interest.

Additionally, well-defined and extensive experiments should be conducted to eval-

uate and compare the efficiency of the two reactive and proactive approaches described

above to verify which one provides the desired level of fault tolerance more efficiently

while minimizing the control overhead and maximizing network lifetime. Due to the

wide variety of applications and flavors conceived for ad hoc networks and the sub-

sequent need to address issues of possibly completely different nature, it will not be

surprising if no "one-size-fits-all" solution can be proposed. Therefore, it is of great

importance to investigate the relevance of each approach to a given application.

Finally, another important direction for future work is the design and development

of full-fledged protocols which use the algorithms proposed in this thesis at their core.

Although some critical implementation issues were discussed in Chapter 3, many other

110

significant implementation details that are beyond the scope of this thesis remain to

be worked out. These include message synchronization, size and format among others.

Once all the protocol specifications are carefully defined, it will be possible to conduct

experiments in order to investigate other important metrics such as protocol duration,

byte overhead, energy consumption and resilience to node failures.

Ill

Bibliography

[1] K. Alzoubi, R-J. Wan, and O. Frieder. New- distributed algorithm for connected
dominating set in wireless ad hoc networks. In Proceedings of the 35th Hawaii
International Conference on System Sciences, pages 3849-3855, Jan. 2002.

[2] K. M. Alzoubi, R-J. Wan, and O. Frieder. Message-optimal connected domi-
nating sets in mobile ad hoc networks. In MobiHoc '02: Proceedings of the 3rd
ACM international symposium on Mobile ad hoc networking & computing, pages
157-164, 2002.

[3] L. Barrire, P. Fraigniaud, L. Narayanan, and J. Opatrny. Robust position-based
routing in wireless ad hoc networks with unstable transmission ranges, 2001.

[4] S. Basagni. Distributed clustering for ad hoc networks. In ISPAN '99: Pro-
ceedings of the 1999 IEEE International Symposium on Parallel Architectures,
Algorithms and Networks, pages 310-315, 1999.

[5] S. Basagni, M. Mastrogiovanni, and C. Petrioli. A performance comparison of
protocols for clustering and backbone formation in large scale ad hoc network.
In Proceedings of The 1st IEEE International Conference on Mobile Ad Hoc and
Sensor Systems, MASS 2004, pages 70-79, October 25-27 2004:

[6] S. Butenko, X. Cheng, C. A. Obviera, and P. Pardalos. A new heuristic for
the minimum connected dominating set problem on ad hoc wireless networks.
In Recent Developments in Cooperative control and optimization, pages 61-73,
2004.

[7] M. Cardei, X. Cheng, X. Cheng, and D. zhu Du. Connected domination in multi-
hop ad hoc wireless networks. In Proceedings of the 6th International Conference
on Computer Science and Informatics, 2002.

112

[8] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An energy-efficient
coordination algorithm for topology maintenance in ad hoc wireless networks. In
ACM Wireless Networks, pages 85-96, 2002.

[9] D. Chen, D.-Z. Du, X.-D. Hu, G.-H. Lin, L. Wang, and G. Xue. Approximations
for Steiner trees with minimum number of Steiner points. Journal of Global
Optimization, 18(l):17-33, 2000.

[10] X. Cheng, X. Huang, D. Li, and D. zhu Du. Polynomial-time approximation
scheme for minimum connected dominating set in ad hoc wireless networks. Net-
works, 42(4):202-208, 2003.

[11] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of
Operations Research, 4(3):233-235, 1979.

[12] I. Cidon and O. Mokryn. Propagation and leader election in a multihop broad-
cast environment. In 12th International Symposium on Distributed Computing
(DISC98), volume LNCS 1499, pages 104-118, 1998.

[13] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete
Math., 86(1-3):165-177, 1990.

[14] J. Czyzowicz, S. Dobrev, T. Fevens, H. González-Aguilar, E. Kranakis, J. Opa-
trny, and J. Urrutia. Local algorithms for dominating and connected dominating
sets of unit disk graphs with location aware nodes. In Proc. of the 8th Latin
American Symposium on Theoretical Informatics (LATIN'08), volume LNCS
4957, pages 158-169, 2008.

[15] F. Dai and J. Wu. An extended localized algorithm for connected dominating
set formation in ad hoc wireless networks. IEEE Trans. Parallel Distrib. Syst.,
15(10):908-920, 2004.

[16] B. Das and V. Bharghavan. Routing in ad-hoc networks using minimum con-
nected dominating sets. In International Conference on Communications, pages
376-380, 1997.

[17] B. Das, R. Sivakumar, and V. Bharghavan. Routing in ad hoc networks using a
spine. In International Conference on Computers and Communication Networks,
pages 34-39, 1997.

113

[18] S. Datta, I. Stojmenovic, and J. Wu. Internai node and shortcut based routing
with guaranteed delivery in wireless networks. In Cluster Computing, pages 169-
178, 2002.

[19] M. Ding, X. Cheng, and G. Xue. Aggregation tree construction in sensor net-
works. In Vehicular Technology Conference (VTC 2003-Fall), pages 2168-2172,
2003.

[20] D.-Z. Du, L. Wang, and B. Xu. The euclidean bottleneck Steiner tree and Steiner
tree with minimum number of Steiner points. In COCOON'01, pages 509-518,
2001.

[21] U. Feige. A threshold of In ? for approximating set cover. J. ACM, 45(4):634-652,
July 1998.

[22] S. Funke, A. Kesselman, U. Meyer, and M. Segal. A simple improved dis-
tributed algorithm for minimum cds in unit disk graphs. ACM Trans. Sen.
Netw., 2(3):444-453, 2006.

[23] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1978.

[24] S. Guha and S. Khuller. Approximation algorithms for connected dominating
sets. Algoritmica, 20(4):374-387, 1998.

[25] B. Han. Zone-based virtual backbone formation in wireless ad hoc networks. Ad
Hoc Netw., 7(l):183-200, 2009.

[26] L. Jia, R. Rajaraman, and T. Suel. An efficient distributed algorithm for con-
structing small dominating sets. Distrib. Comput., 15(4):193-205, December
2002.

[27] H. Kassaei, M. Mehrandish. L. Narayanan, and J. Opatrny. Efficient algorithms
for connected dominating sets in ad hoc networks. In Proceedings of the IEEE
Wireless Communications and Networking Conference(WCNC) , to appear. 2010.

114

[28] H. Kassaei, M. Mehrandish, L. Narayanan, and J. Opatrny. A new local algo-
rithm for backbone formation in ad hoc networks. In PE- WASUN '09: Proceed-

ings of the 6th ACM symposium on Performance evaluation of wireless ad hoc,
sensor, and ubiquitous networks, pages 49-57, 2009.

[29] F. Kuhn and R. Wattenhofer. Constant-time distributed dominating set approx-
imation. Distrib. Comput, 17(4):303-310, 2005.

[30] H. Lim and C. Kim. Multicast tree construction and flooding in wireless ad hoc
networks. In MSWIM '00: Proceedings of the 3rd ACM international workshop
on Modeling, analysis and simulation of wireless and mobile systems, pages 61-
68, 2000.

[31] H. Lim and C. Kim. Flooding in wireless ad hoc netwroks. Computer Commu-
nications Journal, 24:353-363, 2001.

[32] G.-H. Lin and G. Xue. Steiner tree problem with minimum number of Steiner
points and bounded edge-length. Information Processing Letters, 69(2):53-57,
1999.

[33] N. Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193-
201, 1992.

[34] W. Lou and J. Wu. On reducing broadcast redundancy in ad hoc wireless net-
works. IEEE Transactions on Mobile Computing, 1:111-123, 2002.

[35] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: a tiny aggre-
gation service for ad-hoc sensor networks. SIGOPS Operating Systems Review,
36(Special Issue):131-146, 2002.

[36] M. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz. Simple
heuristics for unit disk graphs. Networks, 25:59-68, 1995.

[37] M. Min, H. Du, X. Jia, C. X. Huang, S. C.-H. Huang, and W. Wu. Improving
construction for connected dominating set with Steiner tree in wireless sensor
networks. Journal of Global Optimization, 35(1):111-119, 2006.

[38] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. The broadcast storm problem
in a mobile ad hoc network. In MobiCom '99: Proceedings of the 5th annual

115

A CM/IEEE international conference on Mobile computing and networking, pages
151-162, 1999.

[39] T. Nieberg and J. Hurink. A PTAS for the minimum dominating set problem in
unit disk graphs. Approximation and Online Algorithms, pages 296-306, 2006.

[40] M. A. Park, J. Willson, C. Wang, M. Thai, W. Wu, and A. Farago. A dominat-
ing and absorbent set in a wireless ad-hoc network with different transmission
ranges. In Proceedings of the 8th ACM international symposium on Mobile ad
hoc networking and computing (MobiHoc ?7), pages 22-31, 2007.

[41] C. E. Perkins. Ad Hoc Networking. Addison-Wesley, 2001.

[42] R. Sivakumar, B. Das, and V. Bharghavan. An improved spine-based infrastruc-
ture for routing in ad hoc networks. In International Symposium on Computers
and Communications (ISCC'98), 1998.

[43] R. Sivakumar, P. Sinha, and V. Bharghavan. Cedar: a core-extraction distributed
ad hoc routing algorithm. IEEE Journal on Selected Areas in Communications,
17:1454-1465, 1999.

[44] I. Stojmenovic, M. Seddigh, and J. Zunic. Dominating sets and neighbor
elimination-based broadcasting algorithms in wireless networks. IEEE Trans-
actions on Parallel and Distributed Systems, 13:14-25, 2001.

[45] A. Wiese and E. Kranakis. Local PTAS for dominating and connected domi-
nating set in location aware unit disk graphs, pages 227-240. Springer-Verlag,
2009.

[46] J. Wu. Extended dominating-set-based routing in ad hoc wireless networks with
unidirectional links. IEEE Trans. Parallel Distrib. Syst., 13(9):866-881, 2002.

[47] J. Wu and F. Dai. Broadcasting in ad hoc networks based on self-pruning. In
IEEE INFOCOM, pages 29-39, 2003.

[48] J. Wu, F. Dai, M. Gao, and I. Stojmenovic. On calculating power-aware
connected dominating sets for efficient routing in ad hoc wireless networks.
IEEE/KICS Journal of Communications and Networks, 4:59-70, 2002.

116

[49] J. Wu, M. Gao, and I. Stojmenovic. On calculating power-aware connected
dominating sets for efficient routing in ad hoc wireless networks. In International
Conference on Parallel Processing (ICPP), pages 346-356, 2001.

[50] J. Wu and H. Li. On calculating connected dominating set for efficient routing
in ad hoc wireless networks. In DIALM '99: Proceedings of the 3rd interna-
tional workshop on Discrete algorithms and methods for mobile computing and
communications, pages 7-14, 1999.

[51] J. Wu and B. Wu. A transmission range reduction scheme for power-aware
broadcasting in ad hoc networks using connected dominating sets. In Vehicular
Technology Conference (VTC2003-Fall), volume 5, pages 2906- 2909, 2003.

[52] J. Wu, B. Wu, and I. Stojmenovic. Power-aware broadcasting and activity
scheduling in ad hoc wireless networks using connected dominating sets. Wire-
less Communications and Mobile Computing, a special issue on Research in Ad
Hoc Networking, Smart Sensing and Pervasive Computing, 3(4):425-438, 2003.

[53] W. Wu, H. Du, X. Jia, Y. Li, and D. D.-z. Huang, Scott C-H. Maximal inde-
pendent set minimum connected dominating set in unit disk graphs. Technical
Report TR04-047, Depañment of Computer Science and Engineering, University
of Minnesota, December 2004.

[54] W. Wu, H. Du, X. Jia, Y. Li, and S. C-H. Huang. Minimum connected dominat-
ing sets and maximal independent sets in unit disk graphs. Theoretical Computer
Science, 352(l):l-7, 2006.

[55] Y. Wu, F. Wang, M. T. Thai, and Y. Li. Constructing k-connected m-dominating
sets in wireless sensor networks. In Military Communications Conference, 2007.
MILCOM 2007. IEEE, pages 1-7, 2007.

[56] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy conservation
for ad hoc routing. In MobiCom Ol: Proceedings of the 7th annual international
conference on Mobile computing and networking, pages 70-84, 2001.

117

[57] Z. Yuanyuan, X. Jia, and H. Yanxiang. Energy efficient distributed connected
dominating sets construction in wireless sensor networks. In IWCMC '06: Pro-
ceedings of the 2006 ACM international conference on Wireless communications
and mobile computing, pages 797-802, 2006.

118

