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Abstract

Nonlinear System Identification and Control using Dynamic Multi-

Time Scales Neural Networks

In this thesis, on-line identification algorithm and adaptive control design are

proposed for nonlinear singularly perturbed systems which are represented by dynamic

neural network model with multi-time scales. A novel on-line identification law for the

Neural Network weights and linear part matrices of the model has been developed to

minimize the identification errors. Based on the identification results, an adaptive

controller is developed to achieve trajectory tracking. The Lyapunov synthesis method is

used to conduct stability analysis for both identification algorithm and control design. To

further enhance the stability and performance of the control system, an improved

dynamic neural network model is proposed by replacing all the output signals from the

plant with the state variables of the neural network. Accordingly, the updating laws are

modified with a dead-zone function to prevent parameter drifting. By combining

feedback linearization with one of three classical control methods such as direct

compensator, sliding mode controller or energy function compensation scheme, three

different adaptive controllers have been proposed for trajectory tracking. New Lyapunov

function analysis method is applied for the stability analysis of the improved

identification algorithm and three control systems. Extensive simulation results are

provided to support the effectiveness of the proposed identification algorithms and

control systems for both dynamic NN models.
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Chapter 1 Introduction

1.1 Motivation

Numerous systems in the industrial fields demonstrate nonlinearities and uncertainties

which can be considered as partial or total black-box. Dynamic neural networks have

been applied in system identification and control of those systems for many years. Due to

the fast adaptation and superb learning capability, the dynamic neural networks have

transcendent advantages compared to the static ones [14], [15].

A wide class of nonlinear physical systems contains slow and fast dynamic processes

that occur at different moments. Recent research results show that neural networks are

very effective for modeling the complex nonlinear systems with different time-scales

when one has incomplete model information, or even when the plant is considered as a

black-box [14].

Dynamic neural networks with different time-scales can model the dynamics of the

short-term memory of neural activity levels and the long-term memory on dynamics of

unsupervised synaptic modifications [21]. The stability of equilibrium of competitive

neural network with short and long-term memory was analyzed in [22] by a quadratic-

type Lyapunov function. In [23-25], new methods of analyzing the dynamics of a system

with different time scales are presented based on the theory of flow invariance. The K-

monotone system theory was used for analyzing the dynamics of a competitive neural

system with different time scales in [26].

Since system identification and control using dynamic neural networks (NN) was first

introduced systematically in [27], the past decade has witnessed great activities in
I



stability analysis, identification and control with continuous time dynamic neural

networks with or without considering the time scales. In [28], Sandoval et al. developed

new stability conditions by using a Lyapunov function and singularly perturbed

technique. In [29], the passivity-based approach was used to derive stability conditions

for dynamic neural networks with different time-scales. The passivity approach was used

to prove that a gradient descent algorithm for weight adjustment was stable and robust to

any bounded uncertainties, including the optimal network approximation error [8]. Many

dynamic neural networks-based direct and indirect adaptive control algorithms for

regulation and tracking have been published in the literatures [10, 30, and 31]. With

consideration of the uncertainty of dynamic systems, the indirect method that adopts on-

line identification via neural networks followed by controller design is developed and

widely used. Several papers proposed adaptive nonlinear identification and trajectory [9]

or velocity [11] tracking via dynamic neural networks without considering the multiple

time scales. However, the above mentioned research has concentrated on the stability

analysis instead of control for dynamic systems by using dynamic neural networks with

time-scales or developed control scheme based on the neural network without

considering time-scales.

In this thesis, on-line identification for nonlinear system with uncertainties using

multi-time scales dynamic neural network are developed and then various controllers are

designed for trajectory tracking based on the on-line identification results.
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1.2 Literature review

1.2.1 Overview of system identification
Since the modeling and parameter estimation are initiated by the mathematical

statistics and time series analysis, many disciplines like economic, social science and

engineering have participated and contributed to this field. In 1956, Zadeh first

introduced the term-System Identification for the problem of identifying a black box by

its input-output relationship [32]. Since then, a lot of researches have been devoted to

system identification which has become an established branch of control theory. Since

systems with unknown linear parameters or unknown nonlinear characteristics cannot be

controlled optimally, to identify these unknown linear parameters and nonlinear

characteristics is essential in control domain. System identification is a process of

estimating the architecture and parameters of a model from the input and output data.

From different points of view, system identification can be classified as on-line and off-

line identification, or grey box and black box, or linear system and nonlinear system

identification.

a) ' On-line and Off-lime identification

Conducting estimation process after collecting the data from the system are known as

Off-line identification. On the contrary, these two steps are running at the same time for

on-line identification. The main advantages of on-line identification are that the specified

precision can be achieved by recursive process and real time identification for time

varying system. Model reference techniques of the on-line identification problem are

considered by Monopoli for nonlinear non-autonomous plants [34]. Daniel and Robert
3



employed filtered version of the recursive least-squares as identification algorithm [35].

In [36], Kaiman proposed a linear-quadratic estimator called Kaiman filter. The extended

Kaiman filter is used to system identification problems of seismic structural systems in

[37].

b) Black-box and grey box

Depending on the level of prior knowledge, the identification model can be

catalogued into two groups. If absolutely no information about the process is available,

the identification plants are notated as black-box. For the other cases, grey-box refers to

the situations that considerable knowledge of the structure and/or parameters are already

known.

For linear single input single output (SISO) Black-box models, Ljung summarized the

general family structure which can rise to 32 different models [38].

F{q) D(q)
A(q) = ì + aìq~ì+... + annq~"a
B{q) = \ + bxq-i+... + bubq-"b (U)
C(q) = l + a]q~i +... + aiicq~"c
D{q) = \ + a]q'i+... + andq""1
F(q) = l + alq~i +... + aiifq-"'

where u(t) and y(t) are scale input and output signal for a system, q is forward shift

operator defined as qu(t) = u(t + \) and q~[ is backward shift operator defined as

q~\i{t) = u{t-\).

Some special cases are list below:



FIR - Finite Impulse Response (A=C=D=F=I )

ARX- AutoRegressive with Exogenous input (C=D=F=I)

ARMA - AutoRegressive Moving Average (B=D=F=I )

ARMAX - AutoRegressive Moving Average model with Exogenous inputs model

(D=F=I)

ARARX - AutoRegressive AutoRegressive with Exogenous input (C=F=I )

OE- Output Error (A=C=D=I)

BJ - Box-Jenkins (A=I)

Recently the research results show that these methods have been extended for Multi-

input Multi-output (MIMO) system. An identification algorithm using FIR model is

proposed for multi-input, multi-output stochastic systems [49]. New evolutionary

programming method is proposed to identify the ARMAX model for short term load

forecasting [52]. Monin has derived a new identification algorithm for OE and ARMAX

systems with exogenous nonstationary multiple input based on a hereditary computation

[53]. Model identification and diagnostic checking using BJ method are developed for the

control ofprostheses for varied limb function, movement and circumstances [54].

The regressors for nonlinear system identification are similarly selected, hence the

names are inherited with adding "N" representing nonlinear at beginning, like NFIR,

NARX, NARMAX NOE and NBJ. In [55], NFIR Volterra model are utilized for a

subspace approach of blind identification and equalization of nonlinear single-input

multiple-output system. NARX time series are investigated with projections for

estimating its endogenous and exogenous components [5O]. In [51], a new linear and
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nonlinear ARMA identification algorithm is developed based on affine geometry. It is

faster for the new algorithm to obtain the estimation results than the fast orthogonal

search method. Subspace algorithms with a basis function are applied to identify a

Hammerstein model expansion which is followed by modeling Wiener nonlinearity to

build a model for ionospheric dynamics [56].

c) Linear system and nonlinear system identification

Linear systems obviously represent the most vita group of system identification. After

years of extensive development in practice and in the literature, linear system

identification techniques have been systematically presented in text books. Even though,

there are still some improvement which are made for the past few decades. In [43],

Guillaume et. al. discussed and analyzed a mathematical model of the Empirical Transfer

Function Estimate with noisy input signals which is not deterministic and exactly known

for Fourier analysis. Tugnait proposed a frequency-domain solution to the least-squares

equation error identification problem using the power spectrum and the cross-spectrum of

the time-domain input-output data to estimate the parametric input-output infinite

impulse response transfer function [44]. Overschee and Moor find state-space models by

subspace state space system identification algorithms from the input and output data [46] .

Before 1980s, system identification techniques for nonlinear systems have received

scant attention due to their inherent complexity and difficulty. As nonlinear systems are

widely engaged in many different research fields, like control application, artificial

intelligence, pattern recognition, signal processing etc., nonlinear system identification

become more and more important.
6



Compared to linear systems, it is very difficult to obtain the precise physical model

for nonlinear system and more distinct structural models can be chosen. On the other

hand, the models need not to be true and accurate description of the real system. It is just

a description of some of its properties to serve certain purpose [38]. Hence, many

researchers tend to use reduced-order or linear model to represent the system. Transient

response method is used to model the reduced-order transfer functions of power

converters by analyzing the step response [39]. Linear models of Tokamak are created for

control purpose and validating different models from physics principles by frequency

response identification [40]. A continuous-time nonlinear unstable magnetic bearing

systems are successfully identified by using a linear model and frequency response data

[41].

Jean-Marc and René investigated the identification using nonlinear autoregressive

models [47]. Volterra series serves as a generalization of the convolution integral to

model a seventh order nonlinear model of a synchronous generator with saturation effect

[48]. Nonlinear system identification is conducted by Reduced Volterra model with

generalized orthonormal basis functions, which can overcome the huge estimation

process [49]. Singh and Subramanian established a direct correspondence between the

structure of a nonlinear system and the pattern of its frequency response [42].

1.2.2 Development of control strategies for nonlinear systems
Linear control as a mature topic with various effective methods has been systemically

presented in textbook and successfully operated in industrial applications. In early age of

development of control engineering, not a wide range of nonlinear analysis tools are
7



available for researchers and engineers as today. Before 1940, some immature nonlinear

control methods, like Tirrill regulator and the fly-ball governor have been successfully

applied without systematically theoretical analysis [57]. Phase plane method, describing

function method and Tsypkin's method for relay systems as the major nonlinear system

analysis techniques during the two decades since 1940s are also discussed in [57]. Then

the control engineering community boosts attention to Lyapunov's stability theory after

more than 60 years since it is first published in 1892. Lyapunov's direct method has

become the most fundamental and popular nonlinear system analysis tool for the major

nonlinear control system design methods.

1.2.3 NN-based nonlinear system identification and control
When dealing with non-linear systems as well as linear systems with multiple inputs

and multiple outputs, traditional identification methods need specific assumptions

concerning the model structure. It is usually assumed that the system equations are

known except for a number of parameters [45]. Neural networks have been proven to be

effective for nonlinear system identification and control due to highly complexity and

nonlinearity.

a) Static networks and dynamic networks

The architectures of neural networks can be categorized into two fundamental classes:

feedforward (static) networks and recurrent (dynamic) networks. The major difference

between them is that recurrent NN has at least one feedback loop.

In the literature, feedforward NNs are most popularly used for nonlinear system

8



identification and control [4, 5, 6]. A typical example is the multilayer perceptron (MLP),

which is utilized to identify the dynamic characteristics of a nonlinear system. The main

characteristic of MLP—fast convergence makes it prime candidate for adaptive control of

nonlinear systems. In [64], MLP NN is used to realize the position control of a Low Earth

Orbit satellite. RBF neural networks are artificial neural networks with radial basis

functions as activation functions. Similar to feedforward neural networks, RBFs are

widely used in function approximation, time series prediction, control, pattern

recognition and classification. Mark gave a systematic introduction about RBF neural

networks [66]. RBF neural networks were also applied for diagnosis of diabetes mellitus

[67], whose performance is evaluated with MLP neural networks and logistic regression.

After comparing the performances of a multilayer MLP network and a RBF network for

the online identification of a synchronous generator, Jung-wook et. al. claimed that the

RBF network is simpler to implement, needs less computational memory, converges

faster and better even in the changing operating conditions [65].

On the other hand, the recurrent neural networks have received considerable attention

in recent two decades. Due to their strong nonlinear characteristics, dynamic NNs are

more and more widely used for nonlinear system identification and control. On-line

system identification based on modified recurrent neural network NARX model with

three different validation algorithms are presented to serve the predictive controller [68].

Based on a recurrent neural network uncertainty observer, a back-stepping and adaptive

combined controller is designed to perform position control of an induction servomotor

[69]. The recurrent neural networks are trained based on the experimental data from a

9



continuous biotechnological process for system identification and control [70].

Identification result of a class of control affine systems are used to synthesize the

feedback linearization of the system which then can be controlled by a PID controller

[71].

b) Learning algorithm

All the neural network topologies are supported by their corresponding training or

learning algorithms. Years ago, back propagation is the dominating learning algorithms

since it is first introduced by Paul J. Werbos in 1974 [7]. In addition, many efforts have

been made to improve the traditional back propagation approach. New back propagation

algorithm with optimization process for the slope of sigmoid function at each neuron is

presented in [58], which accomplishes faster convergence rate and better accuracy model,

especially for high level nonlinear systems, comparing to traditional back propagation

method for system identification with neural networks. Various improved back

propagation algorithm are presented for recurrent neural networks in [60]. An accelerated

back propagation can remove the delay when the error is back-propagated through the

adjoin model. Predictive back propagation and targeted back propagation with or without

filtering are studied to update the weights of the network. Yue-Seng and Eng-Chong

investigate various aspects like net pruning during training, adaptive learning rates for

individual weights and biases, adaptive momentum, and extending the role of the neuron

in learning and then combing them together to improve the performance of back

propagation for multilayer feed-forward neural networks [61].

Now many new network topologies with the corresponding training algorithm are
10



proposed for system identification and control purpose. Widely discussed recently are

Evolutionary algorithms which can optimize neural network architecture to provide faster

training speed [76]. In [62], evolutionary neural networks are proposed by combining the

immune continuous ant colony algorithm and BP neural network. Structure and weights

of static or recurrent neural networks can be simultaneously acquired by presented

evolutionary programming [63]. In [59], a cascade learning architecture is developed to

provide dynamic activation functions for neural networks. This results in faster learning

speed, smoother process and simpler structure of the networks when it is used for

identifying human control strategy.

c) Applications and experiment

There are numerous reports regarding the successful application and experiment of

NN-based controllers in the real systems. The multi-loop nonlinear neural network

tracking controller is implemented for a single flexible link [72]. Neural network

controller combined with PID controller is tested on a wheeled drive mobile robot based

inverted pendulum to maintain balance as well as track desired trajectories [73]. In [74], a

2-degrees-of-freedom inverted pendulum on an x-y plane is controlled by a decentralized

neural network control scheme. Each axis is controlled by two separate neural network

controllers since the decentralized controller can not only compensate the uncertainties

but also decouple the system. In a word, numerous training processes are fast enough,

which are suitable for real-time control implementation.

11



1.2.4 SVIuIti-time seal© system

Numerous nonlinear physical systems contain slow and fast dynamic processes that

occur at different moments. The following models are used to describe such dynamic

characteristic of the nonlinear systems.

a) Singularly perturbed system

We consider a system of ks+k2 first-order autonomous ordinary differential

equations for k{ +k2 dynamic variables, of which kt are slow variables and k2 are fast

variables. Therefore the vector of slow variables is x, e Rkì and the vector of fast

variables x2 e Rkl . Then the system of equations is

dx
—*¦ = /; (x,, X2)
M (1.2)
at

which is a slow-time system. e > Ois a small parameter. System (1.2) has asymptotic

structure (kx,k2) .

The transformation of time t = e? brings this system to the form of a fast-time

system:

-^ = £/¡(x,,x2)dl ¦ (1.3)
-^ = ZJ(XpX2)
Systems (1.2) and (1.3) are equivalent to each other for finite e , but have different

properties in the limit e -> O+ .

12



A typical example of multi-time scale system is DG servomotor as shown in Figure

1.1 [29]

U
Figure 1-1 DC Servomotor

DC motor modeling can be separated into electrical and mechanical two subsystems.

As we all know, the time constant of electrical system is much smaller then that of the

mechanical system. Hence, the electrical subsystem is the fast subsystem.

Kirchhoffs voltage law is used to derive the electrical system:

L — = -kco -Ri + u
dt

(1.4)

where u is input voltage, i is armature current, R and L are the resistance and inductance

of the armature, K is back EMF constant.

The mechanical subsystem follows

d(o

dt
(1.5)

13



where J is the moment of inertia, k is torque constant of the motor.

Then we apply a transformation of ?G = — ,ir = — , ur = — for ( 1 .4) and (1.5)J Jk Jk

à)r = ir: r (1.6)
ar=-ct>r-ir+ur

Lk2
where e = —- < 1 , / is the fast state.JR2

b) Parametric Embedding

Unlike the DC motor mentioned above, some system equations only consist of

constants with certain values which are measured from experiments. To apply singular

perturbation theorems to these models which do not contain any parameters that can tend

to zero or infinity, we need to introduce the small parameters artificially.

We will call a system ? = F{x;s),x e Rd depending on parameters . a one-parametric

embedding of a system.: ? = f(x),x e Rd , if f(x) = F{x,\) for all ? e R" . Similarly, we

can define an ?-parametric embedding, with right-hand sides in the form

f(x) = F{x,\,...,\) and x = F{x\sl,...,sn),xe. Rd . If an ?-parametric embedding has a

form of a fast-slow system with asymptotic structure^,,..., kn), we call it a (kx,...,kn)-

asymptotic embedding.

We use this procedure to replace a small dimensionless constant a with an artificial

small parameter ea , where«· «1. The replacement«/ constitutes a one-parametric

embedding. There are numerous ways a system can be parametrically embedded, but only

the one in which the qualitative features that we are interested in can be best preserved
14



from the original system is the first choice.

1 .2.5 Identification and control of systems with multi-time scale

The systems which contain fast and slow phenomena can be modeled by singularly

perturbed model. This can decouple the high-order linear or nonlinear system into fast

and slow subsystem that occurs at different moments, which simplifis the complicated

dynamic process for numerical study and control design. In [77], a system identification

strategy with two time scales is proposed for modeling the Tokamak process based on

experiment data of static plasma response. Then two time-scales reduced-order models

are used to test the optimal control scheme. For some cases, the centralized controller

can't stabilize the fast and slow dynamic simultaneously. Then the singular perturbation

theory is applied to separate the model into multiply time scale subsystems.

Decentralized model predictive controller are developed based on the transfer function

matrix of a kind of special systems which is decoupled into two models in different time

scales [78]. Comprehensive discussion about singular perturbation and time scales in

control can be found in [79-81].

Neural network are also applied for multi-time scale problem. In [82], a neural

controller with two time scales is designed for trajectory tracking of robot manipulator.

Only the fast subnet is learning when the linear parameter is changed, which can save the

computation work. In [83], the flexible-link robot arm system is divided into two time

scales to reduce the spillover effect. The optimal control technique is applied to fast

subsystem, while the fuzzy logic controller guarantees the tracking control performance.

The stability analysis of recurrent neural networks by singular perturbation method is
15



presented in [28]. In [29], the passivity analysis of the system identification problem

about multi-time scale neural network is developed for further application in control

purpose.

1.3 Research objectives and main contributions of this thesis
Consider a class of nonlinear systems with different time scales. The overall objective

of this thesis is to develop on-line identification and control strategies to achieve fast and

accurate trajectory tracking performance for such class nonlinear system.

1.3.1 Research objectives

The main research objectives of this thesis are:

1) To develop new updating algorithms and stability analysis for dynamic neural

networks with multi-time scales in the sense of minimizing the identification error

for nonlinear systems with or without multi-time scales.

2) To develop NN-based adaptive controller to achieve fast and accurate trajectory-

tracking based on the on-line identification results.

L3.2 Main contributions

In this research, system identification and control based on dynamic neural networks

with multi-time scales are extensively studied for nonlinear black-box model. The main

contributions are summarized as:

® The Lyapunov function and singularly perturbed techniques are used to develop

the on-line update laws for both dynamic neural networks weights and the linear

part matrices. The learning algorithm of the linear part matrices is applied to

16



provide more flexibility and accuracy of nonlinear system identification [84].

• New stability conditions are determined for identification error by means of

Lyapunov-like analysis with new dead-zone indicators which prevent the weights

of neural network from drifting into infinity [86].

« Various control methods are applied for trajectory tracking based on the on-line

multiple time scales neural networks identification results for the uncertain

nonlinear dynamic systems [85].

• Simulations have been carried out to verify the effectiveness of these

identification and control algorithms.

1.4 Thesis Outline

The thesis is organized as follows:

In Chapter 2, some mathematical preliminaries are introduced along with the

mechanism and structure of dynamic neural network with multi-time scales.

In Chapter 3, the structure of dynamic neural networks with different time scales and

the identification algorithm are discussed. Then the adaptive tracking control method and

the error analysis are stated followed by simulation results.

In Chapter 4, the improved system identification and control schemes for multi-time

scales neural network are presented.

In Chapter 5, conclusion and some possible future work are given.

1.5 Conclusion

In this chapter, first we review the system identification by classifying it into on-line

17



and off-line identification, black-box and grey box and linear and nonlinear identification

problem. After a brief discussion about the nonlinear control, we provide extensive

literature review on NN-base system identification and control. The basic concept of

multi-time scales system is introduced as well. The motivation, research objective and

contribution are presented in the thesis.
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Chapter 2 Mechanism and Structure of Neural Network

Artificial Neural Networks (ANN), commonly referred to as "neural networks", are

mathematical models which are inspired from the structure and functions of the

biological neural systems like human brain [1, 2]. Through the massively parallel

distributed structure and the ability of learning and generalization, NN are

computationally powerful enough to perform some capabilities of the biological neural

networks (BNN), such as knowledge storing, information processing, learning and

justificafionfl, 3]. As a result, the application areas of NN range from signal processing,

patter recognition, data mining, classification, medicine, financial application, to system

identification and control.

As mentioned in Chapter 1 , the architectures of neural networks can be categorized

into feedforward neural networks and recurrent neural networks (Dynamic Neural

Network). In this study, dynamic neural networks are chosen candidates for modeling and

control of nonlinear systems with multi-time scales which contain strong noniinearity and

uncertainty. The architecture of the recurrent neural networks and corresponding

activation functions are introduced in this chapter.

2.1 Feedforward neyra! network

Multilayer feedforward neural network consists of an input layer, at least one hidden

layer and an output layer. The general architecture of a multilayer perceptron (MLP) is

shown in Figure 2-1 .
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Input layer
Hidden
laver

Output
layer

Figure 2-Í Structure of MLP

2.2 Dynamic Neural Network

A large class of dynamic systems can be represented in the form of a system of first-

order differential equations written as follows:

x = F(x(t)) - (2.2)

where F is a vector function, x(t) = [x](t),x2(i)---xy(t)]T is the vector of the state

variables, ? denotes the derivative of state variables with respect to time t. The vector

function F does not depend explicitly on time t, which makes the system (2.2) to be

autonomous. In this paper, we only consider the systems in continuous time domain.
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Recurrent neural network distinguishes itself from other neural networks like

feedforward neural network in that it contains at least one feedback loop, which leads to

fact that the neural network can be represented in the form of (2.2). On the other hand,

the neural network, which is in form of dynamic system (2.2), has feedback loops

congenitally. As a result, many researchers refer "recurrent" and "dynamic" as the same

concept in neural network literature. A common recurrent neural network is show in

Figure 2-2.

Input nodes

Input layer
Hidden
laver

Output
laver

Figure 2-2 Structure of recurrent neural network
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In this thesis, the architecture of the neural network is based on the following

dynamic neural network.

K1=Ax11n +^a(V1X1J + WJ(V2X111MU) (2.3)

where x„„ e R" are state variables of neural networks, Wx eR"xp,W2 e R"*q are the

weight in the output layers, F1 e Rpx" , V2 e Rqx" are the weight matrices describing hidden

layers connection, s^= [s, ([F,x], ,)···s?([^?]??)]G is vector function responsible for

nonlinear state feedback. f e R^ is diagonal matrix:

f = a?a§[f,([?2?\?)-f(?{[???](??)]t . UeR'" is the control input vector and

/(¦):W ->9?" is a differentiable input-output mapping function. A e R"*" is a Hurwitz

matrix for the linear part of neural networks.

As we can see that Hopfield-type neural network is the special case of neural network

(2.3) with A = diag{a,}, where a¡ = -1/R1-CnR1- > 0 andC,. >0. R1- and C,. are the

resistance and capacitance at the ith node of the network respectively.
The three typical activation functions are shown as follows:

1 . Threshold Function. The most common example is illustrated in Fig 2-3.

Í1 if x>0Wx) = L ., n (2·4)0 if x<0
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 2-3 Threshold function

2. Piecewise-Linear Function (Figure 2-4)

?{?)

1 if x>h

0 if x<-h

? + 0.5 if -h<x<h

where h is positive real number.

(2.5)

1.5

0.5

-0.5
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

h=0.5

3. Sigmoid Function (Figure 2-5)

1
9{x) =

1 + exp(-av)
(2.6)
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Figure 2-5 Sigmoid function.

According to many literature results [8, 9, 10, 11], sigmoid function is the most

popular and suitable activation function for dynamic neural network with the structure

like (2.3) due to its flexibility on the range and shape and the smoothness in the entire

domain.

2.3 Multi-Time Scales Neural Networks

A wide class of nonlinear physical systems contains slow and fast dynamic processes

that occur at different moments. In order to identify and control this kind of system we

will utilize the Dynamic Multi-Time Scales Neural Networks (DMTSNN) as the

modeling tool, which is inspired from neural network (2.3) with the perturbation

parameter embedded.

K„ = Ax111, + W,ax (F1 [x, >f) + W2^ (F3 [x, y]T)U ^ ?)
4>„„ = Bym + W3a2(V2[x,y]T) + WJ2(V4[X, yf )U ,

where xm e R", ynn e Rn are the slow and fast state variables of neural networks,

xtR", y e R" are the state variables of the real system. W12 e R"x2" , Wi4eR"x2n are the

weights in the output layers, F1 2 e R2"*2" ,F34 e R2""2" are the weights in the hidden layer
24
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s? = [s? (?, ) · - · (Tk (?p ), s? (?, ) · · · s? ( ?„ )f eR2" (£ = 1,2), are diagonal matrices,

fk=?ag[fl2(xì)¦¦¦f]2(xl),f]2(yJ¦¦¦f¡2(yJ]teR2"^

e /?2" is the control input vector, A e R"*" anàB e R"*" are the unknown matrices for the

linear part of neural networks, the parameter e is a unknown small positive number.

When e is equal to 1, the neural network (2.7) becomes a normal one [12]. The typical

presentations of the activation functions s? and ^kare sigmoid functions.

In order to simplify the theory analysis, we make the hidden layer weight V to be an

identity matrix, which makes DMTSNN (2.7) become a single layer neural network.

*m = Axu„ + Wx s, (?, y) + W2 f, (?, y)U
%„ = By„„ + p?s? (?> y) + wi<f>2 (*, y)u

The structure of the DMTSNN (2.8) is shown in Figure 2.6

(2.8)

A U™

Q-j l.,,,:,rS„„„„:Jp[ ?] .„.:, „,«..,.,„I^^ï x„„ 1

\v //¦

? / \ \ ^ -> —

^, \ V: -.,;¦'¦ :

?2
'I, Yn

A''
SA B

igure 2-6 Structure of dynamic neural network with two time-scales
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We apply the activation function ak and f? in DMTSNN (2.8) as the following

types:

• Hyperbolic Tangent Function

?(?) = tanh(jc) (2.9)

This activation function has the range from -1 to +1. The plot of Hyperbolic Tangent

Function is show in Figure 2-7.

1j ' ; ^. -

0.5: / -
0 ·'' .

-0.5

-1 - -- -¦·-·""

-5 0 5

Figure 2-7 Hyperbolic Tangent Ftinction

The architecture of neural network (2.8) is modified in Chapter 4.

Kn =Ax„„+Wlai(x,„„ylJ + W2r(U)
?,,,, = By,,,, + W1G1 (X111, , ynll ) + w4r(U)

The structure of the DMTSNN (2.10) is shown in Figure 2.8
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Figure 2-8 Structure of modified dynamic neural network with two time-scales

The activation functions defined in (2.4), (2.5), (2.6) and (2.9) range from 0 to +1 . For

the neural networks in Figure 2.8, we use the Logistic Function with multi-parameters

(Figure 2-9). which can range differently and widely.

<? Logistic Function with multi-parameters.

?(?)
a

1 + exp(-èv)
— c (2.11)

1.5

1

0.5

-0.5

-10 0

a=1, b=1, c=0.5
10

Figure 2-9 Logistic Function with multi-parameters
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2.4 Conclusion

In this chapter, the mechanism and structure and the main definitions of the dynamic

neural networks are introduced. An important mathematical preliminary is given for the

further study. The basic mechanism and structure of DMTSNN used in system

identification and control are given.
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Chapter 3 Identification and Control for nonlinear systems with
multi-time scales

Traditional linear control methods cannot deal with the nonlinear systems with

incomplete or none information of dynamics. A common approach to deal with these

problems is to utilize proper modeling and identification techniques in the control

scheme. In this chapter, a dynamic neural network model is proposed for nonlinear

system with multi-time scales and on-line identification algorithm is developed for its

parameters so that the output of the model approaches to the output of the actual plant.

By using the Lyapunov method and singularly perturbed techniques, an adaptive

controller is designed based on the neural network model to control the states of

nonlinear system to track reference trajectories.

3J On-lin® identification

A large number of strategies have been proposed for the identification of dynamic

systems with highly nonlinearities and uncertainties. Dynamic neural networks have been

applied in system identification for those systems for many years. Due to the fast

adaptation and superb learning capability, they have transcendent advantages compared

to the traditional methods [14], [1 5].

3.1.1 WonSinear systems with multi-time scale

Numerous systems in the industrial fields demonstrate nonlinearities and uncertainties

which can be considered as partial or total black-box. A wide class of nonlinear physical

systems contains slow and fast dynamic processes that occur at different moments. In this
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section we consider the problem of identifying this class of singular perturbation

nonlinear systems with two different time scales described by

x = fx(x>y>u>t) (3 n
*y = fy{.x,y,u,t),

where ? e Rp and y ei?' are slow and fast state variables which are totally

measureable, the functions fx and f are partially or totally unknown but continuously

differentiable, UeR' is the control input vector and e > 0 is a small parameter.

3.1.2 Dynamic NN model

In order to identify the nonlinear dynamical system (3.1), we employ the dynamical

neural networks (2.8) with two time-scales:

*«„ = Axnn + Wp1 (x,y) + W^ (x,y)U

As we mentioned in Chapter 2 the slow and fast state variables of the DMTSNN are

x„n e R",y„„ e Rn . Wi2e i?"x2"5 W^ 4 e i?"x2" are the weights in the output layers. We use

the state variables of the neural network to identify the object dynamic model

respectively, where ? = max < p.q > ¦

Generally speaking, when the dynamic neural network (2.8) does not match the given

nonlinear system (3.1) exactly, the nonlinear system can be represented as

? = A'x + W;al(x,y) + W2^i(x,y)U + Afx
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where W* , W2 , W* , W4 are unknown nominal constant matrices, the vector functions

Afx, AfY can be regarded as modeling error and disturbances, and A* , B* are the

unknown nominal constant Hurwitz matrices.

Remark 3.1 : In literature of system identification and control based on neural network

like (2.3) or (2.7) [8 - 11], the authors coherently make a strong assumption that the linear

part matrices A and B were posed as known Hurwitz matrices and such assumption is

sometimes unrealistic for the black-box nonlinear system identification. Here we apply

the on-line identification process to the linear part matrices dynamic to approximate to

their nominal values.

It is assumed that the states in system (3.1) are completely measurable. And the

number of the state variables of the plant is equal to that of the neural networks (2.8). The

identification errors are defined by

Ar = ? — ?
(3.3)

ày = y-yn„.

From (2.8) and (3.2), we can obtain the error dynamics equations

Ar = A*Ax + Ax1111 + Wxa,{x,y) + W^{x,y)U + Afx
eAy = B Ay + By1111 + W2a2 (x, y) + W4<f>2 (?, y)U + Afy ,

where W1=W* - W1 , W2=W2* - W2 , WZ=W¡ - W, , W4=W4' - W4 and A = A* - A, B = B* - B .

3.1.3 Adaptive identification Algorithm
The Lyapunov synthesis method is used to derive the stable adaptive laws. Consider

the Lyapunov function candidate:
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v,=vx+vv

Vx = Ax7PxAx + îr{w7PxWx }+ tr{w¡ PxW2 }+ ??{a ? Px a} (3.5)
?? = AyTPvAy + tr{w¡PvW3 }+ tr{w4T PyW4 }+ tr{ßT Pyß}.
Since the matrices A* , B* are unknown nominal constant Hurwitz matrices, there

definitely exist matrices Px, P1. which can be chosen to satisfy the following equations,

where Qx , Qx are positive definite symmetric matrices:

(3.6)
A7Px^PxA = -Qx
B*TPy+PvB*=-Qy.
Hence, differentiating (3.5) and using (3.4) yield

Vx = -Ax7QxAx + 2Ax7PAx11n + 2Ax7PxW^ (x, y) + 2Ax7PxW2f? (x, y)U
+ 2Ax7PJx + 2tr\ATPxA]+ 2tr\W7PxW, }+ 2tr\w¡ PxW2 } ,

Vv=-(l/s)Ay7QyAy + {l/e)2AyTPvBym + {?/e)2??7?ß:s2(?,?) (3'7)
+ (;i/s)2AyrPrWJ2(x,y)U + {\/ s)2AyTPJy + 2tr)BT'PrBj
+ 2tr^7pß3\+2tr\Wf?ß4\ ,

Theorem 3.1: Consider the identification model (3.2) for (3.1). If the modeling error

and disturbances are assumed Afx = 0, Afv=0, the updating laws

À = Axx7m B = (\/s)Ayyl
W1 = ??s[ (x, y) W3 = {\/s)Aya7 (x, y) (3 . 8)
W2 = Axu7f7 (?, y) W4 = '\/s)Ayu tf[ (?, y),

can guarantee the following stability properties:

?) ??, ??, W1234 ,A, B e Lx and ??, Ay e L2
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2) HmAx = O, HmAy = O and lim ^. = 0,/ = 1,···4.

Proof: Since the neural network's weights are adjusted as (3.8) and the derivatives of

the neural network weights and matrices satisfy the following WL2JA = WL2_3A, A = A,

B = B from (3.7), Vx.,Vx become

Vx =-AxTQxAx + 2AxTPxAfx
Vx = -{\/e)AyTQyAy + (l/ e)lAyT PxAfx

If fx = 0 , fx = 0 , then one obtains

? = HMIo, ^ ? .'? = -0/F4,. - °
K = Vx + ?, < O

where Vx , Vy are positive definite functions and Vx, Vx < O can be achieved by using the

updating laws (3.8) when Afx =0, Afy=0 which implies Ax,Ay,Wì23A,A,B e Lx .

Furthermore, ? =Ax +?. ? , =??+? are also bounded. From the error equations (3.4)," ¡lit ' *¦ 111! ·* -" x v ¦*

we can draw the conclusion that Ax, Av e Lx . Since Vx , Vr are non-increasing function

of the time and bounded from below, the limits of Vx, Vx (HmKx,. = Kvv(co)) exist.

Therefore by integrating Vx , Vy on both sides from 0 to co, we have

G||??|? = [Kv(0)-KT(oo)]<co* a ' (3.10)
|°|?;|2? = 4F1. (O)- K1. (co)] < co
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The above inequalities imply that ??, Ay e L2 . Since ??, Ay e L2 ? Lx and

??,?? e Lx , using Barbalafs Lemma[13] we have HmAx = O5HmAy = 0. Given that the

control input U and s, 2(')>F\ 2(') are bounded, it is concluded that HmPP12 =0,

HmPf3 4=0. The identification scheme is illustrated in Figure 3.1 .

Nonlinear

System

,,'"?"'*.- fi^K' *$&

//
Dynamic

Neural Network

wëients

Updating Law

Linear Parameter

AB

a

Figure 3-1 Identification scheme

Remark 3.2: When e is very close to zero, both W3 and W4 exhibit a high-gain

behavior, causing the instability of identification algorithm. The Lyapunov function (6)

can be multiplied by any positive constant a, i.e., B~r(aPy) + (aPr)B~ =-aQy, the

adaptation gains of W3 and W4 become (]/e)a?? , which turn into small gains if a is

chosen as a very small number.
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Corollary 3.1: For the dynamics of error system equations (3.4), if we define fx , f.

as the inputs, the update laws (3.8) can make (3.4) input-to-state stability (ISS) with the

assumption that there exist positive definite matrixes ? t , ?? such that

KJQ^KJPAAi
KJQy)iKJPA>p>y

2Ax7PxAfx < Ax7PxAxPxAx+AfJAjAfx
{\¡e)2AyTPyAfy < {\/e)??t??A rPyAy + (l/S)AfJ A^Afy

Then equation (3.9) can be represented as

(3.11)

Proof: Using the following matrix inequality:

X7Y + [X7Y)7 < X7A^X + Y7AY (3.12)

where X,YeRjxk are any matrices, ? e RJ*k is any positive definite matrix.

We obtain

(3.13)

Vx = -Ax7QxAx + 2Ax7PxAfx
< -KJQAMf + Ax7PxAxPxAx + AfJAjAfx (3.14)
<-ax(\\Ax¡) + flx(\\Afx¡)

V2 = -{ì/e)AyTQvAy + (l/'e)2Ay7 PvAf
* -(V^Kni„(ö,-)||A>i|2 + {?/e)??G??? , PxAy + {?/e)AfJAjAfy (3. 1 5)
<-ay{\Ay\) + ßy{\Af\)

where

«, (¡??||) = µ„„„ (Q, ) - Kn (^??))|??2 > A (?????) = ?» (*;' )\? If

a? (|??|) = (1/^)(I111n (Q1.)- /W (P1-A^))IM2 , ä.(||/,||) = (V^K1,, (?;')||d/|
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We can select a positive matrix Ax and A1. such that (3.11) is established. Since

ax, ßx, a?, ßy are Kx function, Vx, Vv are ISS-Lyapunov function. Using Theorem 1

in [16], the dynamics of the identification error (3.4) is input to state stability.

Theorem 3.2: If the model errors Afx , Af. , are bounded, then the updating law (3.8)

can make the identification procedure stable [8]: Ax,AyeLx WÌ234,A,B e Lx

4,BeLx.

Proof: The input to state stability means the behavior of neural network identification

should remain bounded when its inputs are bounded [16].

3.1.4 Simulation Results of identification

To illustrate the theoretical results, we give the following two examples.

Example 1 : Let us consider the nonlinear system

X1 = GT1X.+ P1SIgTl(X2) + U1
Sx1 - Ct2X2 + ß2sign(xx ) + U1 ,

where we use the same parameter a, = -5 , Qr2 =-10, ß, =3, ß2=2, X1(O) = -5.

X2(O) = -5 . The given nonlinear system, even simple, is interesting enough, since it has

multiple isolated equilibriums [9]. Using the parameter embedding technique [12], the

model used here is singularly perturbed and the small parameter e is positive and smaller

than 1. The input signals are selected as: U1 is a sinusoidal wave (w, = 8sin(0.05i)) and

u2 is a saw-tooth function with the amplitude 8 and frequency 0.02Hertz.

a) We want to compare our result with that in [9]. For the fair comparison, we choose

exactly the same model and input signal. Only one time scale (e=1) is considered.
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The activation function here we select hyperbolic tangent, s? 2(·) = f? 2(·) = tanh(-).

This left the only difference from [9] are the neural network itself. Under the on-

line adaptive updating algorithm (3.8), the identification process is conducted. The

results are shown in the following Figures (3.2-3.8)

2Ì ?. ?? ?: " :?"~-

100 200 300

t (second)
400 500

Figure 3-2 Idemtifieation result for xj

t (second)
100 500

igMre 3-3 Identification result for Xi in [15]
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Figure 3-4 Identification error for ?]
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Figure 3-5 Identification result for X2
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Figure 3-6 Identification result for X2 in [IS]
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igure 3-7 Identification error for %i
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Figure 3-8 The eigenvalues of the linear parameter matrices

To show the identification performance of the proposed algorithm, the performance

index -Root Mean Square (RMS) for the states error has been adopted for the purpose of

comparison.

RMS = J Ze2O') ?
;=i

where ? is number of the simulation steps, e(i) is the difference between the state

variables in model and system at i'h step. For state variable x,, the RMS value is

0.232782 and RMS for state variable x2 is 0.149096.

The results in Figures 3.2-3.8 demonstrate that the identification performance has been

improved compared to those in [15]. It can be seen that the state variables of dynamic

multi-time scale NN follow those of the nonlinear system more accurately and quickly.

The eigenvalues of the linear parameter matrix are shown in Figure 3.8. The eigenvalues
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for both A and B are universally smaller than zero, which means they are always stable

matrices.

b) Now we consider model (3.16) with multi-time scales. The small parameter e is

selected as 0.2. The sigmoid functions are chosen as

(3.17)
1 + exp(—ox)

The parameters for each sigmoid function in dynamic neural networks are listed in

Table 3-1.

Table 3-1 Sigmoid function parameters

s,(?,?) 2 2 0.5
f,(?,?) (?2 02 ??G
s2(?,?) 2 2 05~
f,(?,?) 02 02 ^??

The results are shown in the following Figures (3.9-3.14).

-3 -
0 100 200 300 400 500

Figure 3-9 identification result for xT
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Figure 3-10 Identification error for Xj
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Figure 3-1 1 Identification result for X2
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igure 3-13 The eigenvalues of the linear part matrices
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Figure 3-14 The learning process of the updating weight matrices

For state, variable Xi, the RMS value is 0.139102 and RMS for state variable X2 is

0.1 16635. The results in Figures 3.9-3.14 demonstrate that the state variables of dynamic

multi-time scale NN follow those of the nonlinear system accurately and quickly. The

eigenvalues of the linear parameter matrices are shown in Figure 3.13 The eigenvalues

for both A and B are universally smaller than zero, which means they are kept as stable

during the identification. Figure 3.14 shows the learning process of the updating weight

matrices of the dynamic NNs.

Example 2: In 1952, Hodgkin & Huxley proposed a system of differential equations

describing the flow of electric current through a surface membrane of a giant nerve fibre.

Later this Hodgkin-Huxley (HH) model of the squid giant axon became one of the most
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important models in computational neuroscience and a prototype of a large family of

mathematical models quantitatively describing electrophysiology of various living cells

and tissues[12][17].

^L = J_(Iext-gKn^V + En.-EK)-gNamih(V + En-ENa)at C,,

-gl(V + EH,-E,))
dn _ nx - ?
dt~ Tn

dm m„ - m

(3.18)

e-

dt T1n
dh _hx- h
dt Th

where time t is measured in ms, variable V is the membrane potential in mV, and n, m

and h are dimensionless gating variables corresponding to K+, Na+ and leakage current

channels respectively, which can vary between [O5I].
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From the electrophysiology point of view, the most important state of the HH system

is the membrane potential V which has multifarious electro-physic phenomena and is also

the core of the numerous former researches.

Instead of using the original HH model, we use the (2, 2) asymptotic embedded

system [12]. We take the modified HH model with the effect of extremely low frequency

(ELF) external electric field En. which serves as the other control input besides the

external applied stimulation current Ie:l .

Since numerous researches have been carried out on applying various stimulations to

HH model, whether the states of NN can still follow those of the HH system with these

different stimulations becomes our first priority. So some classic inputs are applied to the

system.

Iext = \A, (cosœ,t + Y)2 ! ' (3.19)
Ei%. = \AE cos coEt

where ?, E = 2nf¡ E , and all the initial conditions for the HH system are the equilibrium

(quiescent). V0 = 0.00002 , m0 = 0.05293 , A0 = 0.59612 , n0 = 0.3 1768 .

We pick two typical stimulations which can result in significant and classic neuron

excitation:

a) En. =0, A1 = 30 µ?/cm2 , f, =ÌOHz, £ = 0.2.
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Figure 3-15 Identification results

In the plot for state V, n, m, h, the real lines are the real state variables for the HH system

and the dot lines represent the identification state in the NN. The second plot is the

identification error for the membrane potential.
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Figure 3-16 Eigenvalues of the linear matrices A, B

0,AE= \0mV , fE = 1 \5Hz , e = 0.2 .
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Figure 3-17 Identification results
48



In the plot for state V, n, m, h, the real lines are the real state variables for the HH system

and the dot lines represent the identification state in the NN. The second plot is the

identification error for the membrane potential.
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Figure 3-18 Eigenvalues of the linear matrices A, B

In simulation a), System is in 8/1 phase locked oscillation periodic bursting. RMS

value of the state variables are RMSn=0.074642, RMSh=0.083497, RMSV=0.438275,

RMS1n=O.035473. In b), System is in same frequency periodic spiking. RMS value of the

state variables are RMSn=0.05695, RMSh=0.061458, RMSV=0.86327, RMSm=0.060288.

The time scale is considered by putting e = 0.2. From Figures 3.15-3.18, we can see that

the states of NN model can follow those of HH model very closely. The identi fi cation-

performance of the proposed algorithm is very good, especially for the membrane

potential. The eigenvalues of A and B for a) and b) converge to the same steady values

since the nominal linear matrices Ä and B* do not change with different inputs.
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3.2 NN-foased adaptive control design
Traditional nonlinear control techniques have been developed and applied for many

decades, but they are not efficient when facing the plants with incomplete information.

The past decade has witnessed great activities in neural networks based control for the

models with nonlinearity and uncertainty. The tracking problem is investigated based on

the identification results from Section 3.1.

3.2.1 Tracking error analysis ¦
From section 3.1 we know the nonlinear system may be modeled by dynamic neural

networks with the updating laws (3.8):

? = Ax + WxOx (x, y) + W1(J)x (x, y)U + Afx
ay = By + Wzo2 (x, v) + W4fa (x, y)U + ?/? , (3 '20)

where the model error and disturbances Afx , Af. , are still assumed to be constrained as

before. And also Wi234 are bounded as well as other stability properties in Section 3.1 .

The model error in most cases could be zero or negligible, however, even if the

dynamic neural networks have superb learning ability to represent the nonlinear dynamic

process, the model error are sometimes inevitable or even may affect the stability of the

system. The following controller design considers this model error for more general
situations.

Hence, the control goal is to force the system states to track the desired signals, which

are generated by a nonlinear reference model

*<-*f'·»¦;> (3.21)
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The overall structure of the neural networks identification and controller is shown in

Figure 3.19.

;' Referracé'.;-

HÜ

Nontmear

System

Dynamic
Neural Network

*d.yd

x>y

Weights
Updating Law

.Control ;

^??,??

Linea- Parameter ^S-

Ec

0

Figure 3-19 identification and control scheme
We define the state tracking error as

Ex =x-xd
Er =y-y

(3.22)
d-

Then the error dynamic equations become:

Ex = Ax + Wpx (x, y) + W2<f>x (x, y)U + Afx - gx
e?? = By + Wp2 (x, y) + WJ2 (x, y)U + Af. - gy

(3.23)
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Then the control action U is designed as

U = uL +uf, (3.24)

where uL is a compensation for the known nonlinearity and uf are dedicated to deal with

the model errors, which can be left open if it is zero or ignorable. Let uL be

U, =

U1 =

\¥2f?(?, y)
{\/e)WJ2(x,y)

Axd
(Vs)By1

W^(x, y)
(ì/e)W3a2(x,y)

+
g.

(3.25)

The control action uf is to compensate the unknown dynamic modeling error. The

sliding mode control methodology is applied to accomplish the task. So let uf be,

"/ =
WMx,y)
(i/S)Wj2(^y). (3.26)

Uj- =
¦ AEx -kx sgi{Ex)
¦ (?/e)??? - (l/e)ky sgn(£,. (3.27)

fhe modeling error and disturbances are assumed to be bounded. Hence we have

?/?|<??,?/?<??: (3.28)

Theorem 33: Consider nonlinear system- (3.1) and the identification model (3.2).

With the updating laws (3.8) and control strategy (3.24), we can guarantee the following

stability properties:

1) Ax7AyJV1 23A, A, B e Lx and Ax,Ay^L2

2) lim ?? = 0, lim ?? = 0 and lim W. = 0,i=l, — 4.
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3) lim£r =0,lim£y =0

Proof : If we consider the identification and control as a whole process, then we can

apply the strategy to real applications by generating the final Lyapunov function

candidate as V = V1 + Vc .

In section 3.1 , we had already proved V1 < 0 and the stability properties in Theorem

3.1. Now let's consider the Lyapunov function candidate for control purpose

V.=ElEr+ElE„. (3.29)X X V V

First rewrites (3.23) as

Ex
È.

Ax

(Ve)By
+

{y£yv3a2(x,y)
W2^(X, y)
{\/e)p?f2(?,?)_

U.+
¥x
(V*Wr

gx

(Ve)gv (3.30)

Then substituting (3.25) into (3.30) obtains

Ex
E .

AEx
(\/e)???

'WJ1(X, y) [
(l/s)fVJ2(x,y)jUr + (VeWr (3.31)

If the model error and disturbances are zero or negligible which, from the control

point of view, means it won't devastate the stability of the system, uf can be chosen to

be zero which will lead the error dynamics converge to the origin. Proof is quite

straightforward since A and B are stable matrices and e is positive.

Then substituting (3.26) into (3.31) yields

Èx=AEx + u'fa+àfx
Èy=(ì/e)BEy+t/fi + (Ve)Afy.
By using (3.32) and (3.27), we obtain the derivative of (3.29) as
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Vc = 2ETxÈx + 2ETyËv
= 2ETx(AEx+u'fa +fx) + 2ETy({l/e)BEy +u'& +(l/s)Afy)
= -2kx\Ex\\ + 2Elfx -2{lle)ky\\Ey\\ + 2{l/s)àcyTAfy
<-2*,|£j + 2l^|ArJ-2(l/ff)fcf||£rI + 2(l/^j4rJ

. =-2(^-||??||)||^||-2(?/^?^-||?/?||)||£?||
If we choose Icx > àfx,ky > ?/\, , then Vc <0. Hence, we have stability properties 3)

lim£v=0,lim£v=0,and V = V1 +Vc<0.
I—>cc /—>co

With consideration of the modeling error and disturbances, the sliding mode control

logic (3.27) can guarantee the tracking stability without the assumption that A and B are

stable matrices.

The controller involves matrix inversion which can guarantee the non-singularities by

choosing the proper initial values of the parameters in the updating law and the activation

function.

3.2,2 Simulation results of control scheme

We continue the process in Section 3.1 for nonlinear system (3.16). instead of using

input signals sinusoidal wave and saw-tooth function, we implement the control law to

obtain the control signal to the nonlinear system (3.24). It constitutes a feedback

linearization and a sliding mode compensator. The desired trajectories are generated by

the reference model

X" = y" (3.33)

with the initial value xd (0) = 1 , yd (0) = 0 .
54



xd ?

10 20 30 40 50
t (second)

Figure 3-20 Trajectory tracking of ?
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t (second)

Figure 3-21 Trajectory tracking of y

The time scale is considered by putting e = 0.2. From Figures 3.20 and 3.21, we can

see that the states of the nonlinear system can track the desired trajectories in 20 seconds.

For state variable x, the RMS value is 0.5246 and RMS for state variable y is 1.64141 1

Since the small parameter accelerate the state y, it takes relative more time for the state of

the system ? to track the reference signal. The simulation results demonstrate that the
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proposed identification and control algorithm can guarantee the tracking performance of

nonlinear and uncertain dynamic systems.

3.3 Conclusion

In this chapter we propose a new on-line dynamic multi-time scale neural networks

identification algorithm for both dynamic neural networks weights and the linear part

matrices for nonlinear systems with multi-time scales. The proposed algorithms are

applied to identify a second order nonlinear system with multiple equilibriums and the

famous well-studied HH model which has complicated and multifarious system

performance when different inputs applied. Both identification results show the

effectiveness of the proposed identification algorithms.

Furthermore, we propose an adaptive control method based on dynamic multiple time

scales neural networks. The learning algorithm of the linear part matrices is applied to

provide more flexibility and accuracy of nonlinear system identification. The controller

consists of a feedback linearization and a sliding mode-based compensator to deal with

the unknown identification error and disturbance. Simulation results show the

effectiveness of the proposed identification and control algorithms.
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Chapter 4 Improved NN based Adaptive Control Design

In Chapter 3, we introduced an on-line dynamic updating law for a selected multi-

time scale neural networks structure via Lyapunov method and then proposed a control

strategy by combining feedback linearization and sliding mode methods. To further

improve the performance and stability of the controller, we propose a new identification

and control scheme with a modified neural network structure in this chapter.

4.1 Improved system identification
In chapter 3, we use the signals from the actual system in the neuron networks to

identify the nonlinear system (3.1). This may simplifies the identification and control

procedure, but the control law will depend on the actual signals of the nonlinear system.

Also, this may risk the stability of the neural network because it is related to the output of

the real system. In order to conquer this flaw and also simplify the identification scheme,

we replace all the output signals from nonlinear system with the state variables of the

neural networks in the construction of NN identifier and add constraint to the control

signal as well.

Consider the nonlinear system (3.1). In order to identify the system, we employ the

dynamical neural networks with two time-scales:

*„ = Ax„„ + w^ W [*» » y~ Y) +W2Mv3 [?,,,, , y,,,, fmu) (4 j }
^m=Bym^W,a2{V2[xm,yJ)^WA{VXxim.,yJ)Y{U\

where .v„„ e W, vnn e 9?" are the slow and fast state variables of neural networks.

Wx 2 e W>:2",W,A e ?"*2" are the weights in the output layers, V12 e M2"*2" ,V34 e ?2"*2"
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are the weights in the hidden layer and O1= [s( (.r, )· · ·s, (? ),at ( ?, )· · -O1 (?, )]'' e 2" (£ = 1,2)

are diagonal matrices, f?? = diag^x2 (X1 ) · · · f?2 (xx ), f?2 (yx )¦¦¦ f?a()\ )f e ?2""2" ( k = 1 , 2 ) ,

[Z = [H19M2,- í/,,0, — 0]r e<R2" is the control input vector, /(·):9G -> 9?" is a

differentiable input-output mapping function. A e SR"*" and 5 e SR"*" are the unknown

matrices for the linear part of neural networks and the parameter e is a unknown small

positive number. The activation functions ak and f? are still kept as sigmoid function.

In order to simplify the analysis process, we consider the simplest structure this time

which means: ? = q = n Vx = V2 = 7 f(·) = I

*m = Ax1111 + W^x(X1111, yJ + W2HU)
?>„„ = By11n + W3a2 (X11n , yim ) + Wj(U),

4.1.1 Identification with precise structure of UH identifier

In this section, we deal with the situation that the dynamic neural networks can

represent the plant precisely, which means that there exist nominal constant values of the

weight Wx ,W2 ,W¡ ,W¡ and unknown nominal constant Hurwitz matrices A* ,B" such

that the nonlinear system (3.1) can be described by following neural network model:

? = A*x + W;ax(x, v) + W27(U)
sy = B'y + W3"s2 (?, y) + W¡y(U)

Assumption 4.1: The difference of the activation function crk(·), which is

ak =CFk(x,y)-(Tt(xnn,ymi), satisfies generalized Lipshitz condition
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s, ?,s, <

~ T A ~s2 A2CT2 <

Ax

Ay
Ax

ày

D1

A

??

?7
??

= ??G£>,?? + Ay7D1Ay

= ??t D2Ax + Ay7D2Ay
(4.4)

where s1?(?,^)=[s??(??)···s?((?(,),s?£0;?)-s1?(3;|?)]7"e9?2''(? = 1 ,2) D1 = D,r > O

D2=D2 > O are known normalizing matrices.

Assumption 4.2: The nominal values W* , PF2* , W3* , W* are bounded as

p*?\? W*T < Wx
w*k¡w¡t < W2

r« K-\W*T
3 "3w3*a3w3 <w3

w;a-;w;t<w4
(4.5)

where ?,1, A21, A3', A41 are any positive definite symmetric matrices, WÌ,W2,W3,W4 are

prior known matrices bounds.

As we assumed in Chapter 3 that the state variables in system (3.1) are completely

measurable and still the number of the state variables of the plant is equal to that of the

neural networks (4.3). The identification error is defined as:

Ax = x- xm,
&y = y-y„„-

From (4.2) and (4.3), we can obtain the error dynamics

Ax = A*Ax + Axim+W;aì+Wìaì(xim,yJ + W2r(U)
eAy = B*Ay + By1111 +W¡a2+ W3G2 (x,„, , y,„, ) + Wj(U)

(4.6)

(4.7)

where W1=W* - W1 , W2=W* - W2 , W3=W* - W3 , W4=W* - W4 and A = A* - A, B = B* - B .

Lemma 4. 1 [9]: A e 9T" is a Hurwitz matrices, R,Qe Wx" ,R = RT > 0 ,Q = QT > 0

if (A/?1'2) is controllable, (AO1'2) is observable, and
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ATR-'A-Q>-{ATR-x-R~'iÂft(ArR-x -R-1Af

is satisfied, the algebraic Riccati equation A7X + XA + XRX + Q = 0 has a unique

positive definite solution X = XT > 0
Assumption 4.3: The matrices A*, B* are unknown nominal constant Hurwitz

matrices. Define

Rx=Wx Qx= D1 + (I/S)D3 + Qx.
Ry = W3 Qy=D3+sDi+Qyo

If one can select proper Qxo , Qy0 satisfying the conditions in Lemma 1, there exist

matrices Px, PY satisfying the following equations:

A*TP+PA*+PRP+Qr=0x ., , ? , ^ (48)BTPy+PyB + PyRyPy+Qy=0
Theorem 4.1; Consider the nonlinear system (3.1) and identification model (4.2) the

updating laws for the parameters in the model

A = kAhxx]m È = (l/s)kBA}yl
W] =^??s( (x^yj W3 =(l/e)k3AyaT(x„n,y,J (4.9)
W2=k2AxuT^T(xHa,ym) W4=(l/e)k4Ayu^2r(x,M,yfJ,

where kA , ke , k¡ , kj , ki , k4 are positive constants

can guarantee the following stability properties:

1) Ax,Ay,Wi23A,A,BeLx and Ax, Ay e Z2

2) lim Ar = 0,HmAv = O and ImW. = 0,/ = 1,···4.
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Proof: The Lyapunov synthesis method is used to derive the stable adaptive laws.

Consider the Lyapunov function candidate:

Vx = Ax7PxAx + — trffipfy }+ — ?t?? PxW2 }+ — tr\ÂTPxa] (4. 1 0)K1 K2 kA

Vx = AyTPyAy + — tr{ív[PyW3 }+ — tr{íV4TPyW4 }+ — tr$TPfi\
K3 K4 ??

Hence, differentiating (4.10) and using (4.7) yield
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Vx = (Ax7 PxAx + Ax7PxAx) + — Ir)A7PxAj+ — tr\w7PxWx )+ — tr[w¡PxÍ¥2 }kA /Ct /Ct

haxTA*T+x,jAT+a¡W;T + axT(xw„yJWxr + 7[U)7W27 |????
+ AxTPx[A-Ax + Ax11n + W^x + Wxax(xm„ymi) + W27[U))
+ - -U-[A7PxAj+- Ir^V7PxWx }+ — tr\W¡PxW2 j

. =Axr(A* Px+PxA*)Ax
+ xmiTATPx&x + dr[w;T'PxAx + ffìT(xm,ym)WìT PxAx + 7[U)7 W¡ PxAx
+ AxT PxAx111, +Ax7 PxW; s, +??^^,s,^,,,,,;;,,,,) +^^^^)
+ — írprPr2)+ — tr\Wx 7PxWx }+ — ir?7PxW2 jkA Kx K2

V = (Ay7Px Ay + Ay7Px Av) + -Ir]B7PxBl+ -IrW37PxW3 \+—trìw47PyW4kB k3 k4
={i/e)[AyTBtT+y,mTBT+&T2W:T + s72(???, y,m)W7 + Y(U)7 W47\xAy

(ì/s)àyTPv[B*Ay + Byn„ + W3S2 + W3a2(xim, yJ + W47(U)]+ 1

+ l-trfrpj}+ ^-triwIPß, }+~tr\W4TPyW4Kß Ki K

= {l/s)AyT(B* Px. +PrB°)A)¿iV

+ (l/e) yJB 7PxAy + 5¡W;rPvAy + s\ (xmi,ym W37PxAy + ?{?)7 W4PxAy
àyTPvBym, + A/PvW¡a2 + Ay7PxWa2 (xnil,yIHl ) + Ay7PxW47(U)]

+ — tr\B7PxB \+ — trìviPxW3 \+ — tr\wlPxWAkfí r ' j k, l 3 > 3J k4
Since all the terms here are scalar, therefore one has
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Vx = àxT(A'TPx + PxA)Ax + 2AxTPxW*s
+ 2Ax7 PxAx11n + 2Ax7PxW1^(Xn,,, yJ + 2Ax7PxW2HU)

+ j- tr{ATPxl}+ j Ir[^7PxW, }+ j- tr\fJPxW2 }
A t ' 2 (4·12)

Vv =(?/e)??G(?* Pv + PrB*)Ay + {l/s)2Ay7PvW;a2
+ {]/e)2AyTPyBy,,„ + {\/ s)2Ay7?ß,s2 (?, y) + {ì/s)2Ay7PxWJ2 (?, y)
+ ~ tr{ÈTPyB }+ ~ trfepyW3 }+ 1- tr{w47PvW4 }
If we applying the adaptive law as (4.9) and taking the following facts into

consideration:

2kxT PxAx11n =2tr{x„„AxT Px A]
2Ax7PxW^, (x,„, , y„n ) = 2tr[ax (xn„ , ym )Ax7 Pxw}

2Ax7PxW2Y[U) = 2tr{r(U)AxT PxW2 }
2AyT PyBymi =2ti\ymAyTPYB)

2Ay7PyW,o2 (x,y) = 2tr{a2 (x,y)AyTPvW3 }
2 Ay T Py W4 f2 (?, y) = 2?\f2 (?, y)Ay t Pr W4 }
(4. 1 2) becomes
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.*tVx = Ax' (A Px + PxA)Ax + 2??' PxWx s
= Iti-

+ 2tr

_·. ^\
x,,AxT+ — AT PA\ + 2tr

J
PJV)

r(U)AxT +— w¡ PJV-,

Ax7 (A*' Px + Px A")Ax + 2AxTPJV*5
Vy = (ìJs)Ay7(B*TPy+Pì:B*)Ay + (lJs)2AyTPxW3*a2 (4.13)

. \

V
(\Js)2tr\ ymAyT +fB T PyB + (\/s)2tr{ s2 (?, y)AyT + - W37

1B J
PJV,

v3 J

?G e ~ ^
W

= (?/f/ (5^P1. + PxB* )Ay + (l/e)ZAyTPfös2
Using the following matrix inequality:

XTY + (XTY)T < X7A'1 X + Y7AY (4.14)

where X,YeRJ*k are any matrices, AeF* is any positive definite matrix. From

Assumptions 4.1, 4.2, one obtains

2Ax7PxWxGx < Ax7PxWx* A~x Vix PxAx + s?t??s?
< Ax7PJVxPxAx + Ax' Dx Ax + Ay' Dx Ay

2AyTPJV;S2 < Ay7PxW3A^W3'PxAy + s2t?3s2
< Ay7PjT3PxAy + Ax7D2Ax + Ay7D2Ay

Hence, from (4. 1 3), one has

Vx < Ax7[ÂTPx + PxA + PxW1Px +D1+ (IJe)D3 ]Ax
= Ax7U7Px + PxA + PxWxPx +Dx+ [IJe)D3 + QJAx - AxTQxoAx

Vx < (IJs)SxAy7 [B*7Px +PxB* + PxW3Px + D3 + SDx]Ay
= (IJs)SxAy7 [B*7Px +PxB* +PxW3Px +D3 +sDx +QJAy- (ijs)Av7QxoAy
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Then applying the Assumption 4.3, we can get

Vx = -AxTQX0Ax = -|Ar||2 < 0, Vx = -(l/í)??G???? - (?/^|??||2? < 0a Qv (4.17)
v = vx+vY<o

where Vx , Vy are positive definite functions and Vx ,Vx < 0 can be achieved by using the

learning laws (4.9) which implies Ax, Ay, Wi2J4 ,A, B e X00 .

Furthermore, xm -Ax +x,y„„ =??+? are also bounded. From the error dynamics (4.7),

we can draw the conclusion that Ax, Ay e Lx . Since Vx , Vx are non-increasing function

of the time and bounded from below, the limits of Vx, Vx (limKTV = Fvv(oo)) exist.I—>=c

Therefore by integrating Vx , Vx on both sides from 0 to co, we have

G|??||20 =[FT(0)-rT(oo)]<oo^ -' (4.18)
[)\Ay(Qr=s[Vx(0)-Vx(co)]<co

which imply that Ax, ?? e L2 . Since Ax5Ay e L2C]Lx and ??,?? e Lx , using Barbalafs

Lemma [13] we have lim Ax = 0, lim ?? = 0 . Given that the control input U and
l-, ?, ?-, m ~

s\ ¦) ('),F? 7 (") are bounded, it is concluded that Hm W12 = 0, lim W,4 = 0 .

The structure of improved identification scheme is illustrated in Figure 4.1.
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4. 1.2 Identification for nonlinear systems with bounded yn-modefed
dynamics

For more general and realistic situations, we will consider the case where the dynamic

neural network (4.2) does not match the given nonlinear system (3.1) exactly. Then we

can define the modeling error as

?? = f - (a'x + w;o, (x, >¦). + W2Y(U))
A/,. = (\/e)(fy - (b*v + ?;s2 (x, y) + W^(U)))
Now the nonlinear system can be represented as

? = Ax + W;V1 (x, y) + W2 Y(U) - Af
ey = tíy + W¡a2 (x, y) + W¡Y(U) - Af.

(4.19)

(4.20)

where W* ,W2* ,W* ,W* are unknown nominal constant matrices, the vector functions Af
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,Afy can be regarded as modeling error and disturbances which are assumed to be

bounded as ¡?/J < ?£,|d/?|< Af, and A*, B* are unknown nominal constant Hurwitz
matrices.

If we defined the identification error same as in (4.6), the error dynamic equations

become

Ax = A'Ax + Axm + W;&, + W^{x,m,yim) + W2r(U) + Afx
sAy = B' Ay + By1111 + W¡a2 + W3a2 (xm , ynn ) + Wj(U) + Af

(4.21)

where W1=W* - W1 , W2=W2' - W2 , W3=W3' - W3 , W,=W¡ -W4and A = A* - A, B = B* - B .

Assumption 4.4: The matrices A*, B* are unknown nominal constant Hurwitz

matrices. Define

Rx = wi+ ?"' Qx =Di+ (1/f, /Sx )D3 + Qxo
K = W3+ ?;1 Qy = D3 + e(sx/S}, ]d, + QY0

where the function Sx , Sv are defined as

S = I- Hr
Pj Ax

S = l-i
H,.

p¿m

where [ « ]+ =max { · ,0} , and

H =

H =

U), ,? ,^2.KM)H]
AnIn(Or0) (4„(?2)4£+- ?»(?·)

^(/,,)-(???(?4)?/,2+%^?)
AnmiQvo) K*m

(4.22)

(4.23)

If one can select proper Qx0 , Qy0 satisfying the conditions in Lemma 1, there exist
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matrices Px, ?? satisfying the following equations:

A7Px +PxA'+ PxRxPx +O1=O
B*TPv+PvB*+PvRYPr + Qy=Q

(4.24)

Theorem 4.2: Consider the nonlinear system (3.1) and identification model (4.2) the

updating laws for the dynamic neural networks

À = SxkAAxxTm
W^S^Axa^x^yJ
W2 = sxk2Axr(U)T

B = {\/e)SYkBAyyl
W3=(\/s)Syk3AyaT2(xm,yJ
W4=(\/£)Syk4Ayy(U)

(4.23)

where kA , kB , k¡ , k7 , k^ , k4 are positive constants

can guarantee the following stability properties:

1) ??, ??, Wl2,,,A,BeLx and lim Wx 2 = 0,lim W1 4 = 0• ' Í—»CO ; i-»00

2) The identification error satisfies the following tracking performance

' SxAx7Q10Ax + [I/e) [ SyAyTQyoAy < V0+Tl K- (A2)A/,2 + K^w;
KJPr)

2\

+ (1/ e) K~(\w: +>2 , K1n(D3)Hl \?
(4.26)

KJPx)

Proof: The Lyapunov synthesis method is used to derive the stable adaptive laws.

Consider the Lyapunov function candidate:

V = Vx+V,
V = ?µM-H^ µ+- Ir[W7PxW, }+ — tr{w2TPxW2 }+ — ??·{a7??a\ (4.27)

?, ?,, /Cd
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Using Exercise 1 in section 4.2 in [18] and differentiating (4.27) yield

V =2llP1/2Axll-i7 1 ^ **' Pv'2Âx
?.'/???

+ — tr\ATPxA]+- trffxTPxWx }+ — Ir[^27PxW2Jc4 Kx kB

= 2SxAx7PxAx +-Ir)A7PxA]+- ???7PxWx ]+ — Ir[W27PxW2
K4 Kx Kg

2
+ — rr

(4.28)

J^7-P, B]+ — tr\W3TPyW3 ]+ — tr\W4TPxW4IVg K3 K4

2SvAy7PyAy + — tr)BTPyB]+ — tr\W3TPyW3 \+ — tr\W4TPyW4kb K3 ,v4

Since the neural network's weights are adjusted as (4.23), the derivatives of the

neural network weights and matrices satisfy the following W1234 = W1234 , A = A, B = B .

Using error dynamics (4.21), Equation (4.28) becomes

Vx = Sx[Ax7 (A"7 Px + PxA')Ax + 2Ax7PxWxJx +2Ax7 Px Afx]
J/ = Sr{\ls\Ayr{B"TPy+PvB")Ay + 2A}rP}W¡a2+2AyTPyAfy}
Using the matrix inequality (4.14) and Assumptions 4.1, 4.2, one obtains

2AxT PxWxJx < Ax7PxWxATx1WxPxAx + s 7AxJx
< Ax7PxWxPxAx + Ax7Dx Ax + Ay7Dx Ay

2Ay7PvW3*J2< Ay7PyW3'A-3W3*PyAy + J27A3J2
<AyTPyW3PrAy + AxTD2Ax + Ay7D2Ay

and

(4.29)

(4.30)
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2Ax7PxAfx < Ax7PxA~¡PxAx + Afx7A2Afx
2(ì/e)Ay7PyAfy < (\/e^/Py\-¡PyLy + òfTy \Aàfy)
Hence, from (4.29) one has

Vx < SxAx7[A*7Px +PxA* +Px(W1 +A-J)Px +D1]Ax
+ SxAy7D1Ay + SxAfx7A2Afx

Vx < (y£)SyAyT[B*TPy + PxB* +Py (W3 + A~¡ )Py + D3 ]Ay
+ (\/e)SvAxTD3Ax + (l/e)SvAf7A4Afr

(4.31)

(4.32)

a) When the identification errors are both larger than the thresholds (i.e. Sx>0, Sy>0).

One has

Vx < SxAxT[ÄTPx+PxÄ +Px(W1+A-J)Px +D, + (ì/eÌSx/Sx)D3+ QJAx
-SxAx7QnAx + SxAfx7A2Afx

Vx < (ye)SrAyr[B*rPy + P^+Px(W3 + A4V,- +D3 +fa/SJ)D1 +Qyo]Ay (4.33)
- {ì/s)SvAyTQyoày + (IZe)SxAfJA4Afx
Then applying the Assumptions 4.4, one can obtain

V = Vx+Vx

< -Sx (ax7QxoAx - Afx7A2Afx )- (l/s)Sx (Ay7QxoAy - Af7A4Afx )
* -Sx{ÄmJQj\\Ax( -Änm(A 2 )||?/? [|2 )- (V^K. (^min (övo )||??|(2 - Amax (A4 )|a/v f )
* Sx(Ämm(Qj\\Axf -Ämax(A2)Af^-(l/£)Sx(ÄimMyo)M ^434)

? ¦ (Q )min ^J-* xo /

? Kn(Px) ?* CP,)H2 -^#t4.(?2)??2
-0/*? Kn(Qr0)

K^(Py)

Kn(Qx0)

KJPJlNf -j^^KAKWlmin V äs ?? ^

<-S Àmi" {ô>° } (V2AxII2 -//2V (Ue)S ÄmmiQyo)(\\pl/2Avf-H2)<01 ? (P ) U1 ? 'I * ) ^i > y ? (? ) 1,11 y -Il > ;nm\ ?/ max V ?/

b) When the identification error of Y is smaller than the threshold, (Sx>0, Sx=O)
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From (4.32) one has P1!''2 Ay < Hx and Vv = 0

V = VX< SxAx7[A*7Px +Pj +Px(W1+ A^)Px + Dx + (ijsfsy /Sx)d3 + QJAx
-SxAx7QxoAx + SxAfx7A2Afx +SxAy7DxAy (4·35)
Then applying the Assumptions 4, one can obtain

V < -Sx (Ax7Q10UX - AfJA2Afx - Ay7DxAy)
^.(?™?(0,0)?|2 - ?™. (A2 )||?? [J2 - Amax (Z>, )||Ay|2 )<

^-sr 1 ?G? ???a II2 1 /\ \??2 ^max \D\ /¦" y?

min ? j' /

__ o min V-c-.ro /

1 4» W ^(^¦)|MI2-lmax(/>l)
r

Km(QJ
?™ (A2)A/;2 +

2??

< -S . ^"'"^'^ f¡?,^????2 - Hl I < O

(4.36)

c) When the identification error of X is smaller than the threshold (Sx=O, Sy>0)

From (4.32) one has ||???;2??| < Hx and Vx=O

V = Vy<(\/e)SrAyr[BtTPy + PVB* + Px(W3+ A^)Px +D3+ e(Sx /Sx)D1 +QJAy
- (l/s)SxAy7QxoAy + (l/s)SvAf7A4Afx + (l/s)SrAx7D3Ax (4.37)

Then applying the Assumptions 4.4 one can obtain
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V < -{y€)Sv{àyTQvoAy - AfJA4Af. - AxTD3Ax)
* -0/^)s.,.(a*JQ,JlNf - K~ (?4 )|?? f - 4™ (D3 , )||??

<

-(?/*?

-ö/*K

min V«- io / ?,.(^)|?

??* (^)
,2 ?«(^)G

(4.38)

min Vii jo-'
4» (A4)Af; +2^?«(?)^,2 ^^

K*m. ))

PyAy\ -?\ <0

d) When the identification errors are both smaller than the thresholds (Sx=O, Sy=0)

One has |?,?/2??| < Hx \\P!/2Ay\\ < Hv and V = 0 .
Since V=Vx+Vy are positive definite, V = Vx + Vx < 0 can be achieved by using the

update laws (4.23). This implies Ax, Ay^W1 23A, A, B e Z,„ . Furthermore,

xim- Ax +x, yn;¡= Ay+y are also bounded. From the error equations (4.21), with the

assumption that error and disturbances are bounded, we can draw the conclusion

that Ax, Ay e Lr, . Since the control input /(U) and s, 2 (·) are bounded, it is concluded

that lim W1 2 = O, Hm W34=O

In Case a), one has

v < -Sx {axtqxoax - AfJA2Afx)- 0/F,W. QyAy - 4/XA/; ) .
< -SxAx7QJ* + SxA^ (A2)WAfx f - {l/e)SyAyTQyoAy + (!/F?-(?4 )|A/v f

- {l/e? A/QvoAy + (ì/e)Sx

??,(?2)?^ + ^(?)//???,?^?)
(4.39)

???(?4)?/; +2 , Kn(D3)Ht
KJP.)
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In Case b), one has

V < -Sx{axtQxoAx- Afx1A2Afx- Ay7D1Ay)
< -SxAxTQX0Ax + Sx(Aimx(A2)\\Af\f + Amax (Z)1 )\\Ayf ) (4.40)

<-SxAxTQX0Ax + Sx ?,a?(?2)?// +2 . ?-xtfW2 ?

?» (^v)

In Case c), one has

K < ~(l/s)Sy(AyTQV0Ay - ?/,G?4?/? - Ax7D3Ax)
< ^\/e)Sy¿iyTQ„Ay + (ye)sJ^(A4^f +^(?,)|?| (4.41)

(?/^,?/?,?? + ?/F,
2\

max ? 4 / J ? ? /D\

From the analysis above, we can get the conclusion that equation (4.39) can be used

to represent the derivative of Lyapunov function for all the Cases a), b), c), d).

Since 0 < Sx < 1, 0 < Sv < 1 , one infers

V <-SxAxTQX0Ax + \ Ämsx(A2)Af22 . K^WHl
KM

• (?/*&?/ß„?>· + (1/4 ?_ (A4)Af; +%^#2?
(4.42)

Since Vx, Vy are non-increasing function of the time and bounded, Vx(t), V\(0), Vx(t),

Vy(t) are bounded. Therefore by integrating V on both sides from 0 to T, one obtains

VT-V0<-[sxAxTQxoAx + T ?„(?2)?/,+2 , k~wh;2\

Kn(Py)

¦{ye)[syAyTQiVAy + (l/e)T 4,„(?4)?/-/ +2,UAW2\
(4.43)

?™(^)

Hence, the following inequality is held
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{ SxAx7Q„àx + (I/e)f SyAyTQyoAy
<Vo-VT+T\

((

KJMWl + KJPòn\2\

^m + (1/e)?\ AmA\w;+2??2 ?

K*m
(4.44)

<V+T\ 4-,(A2)Af; + 4n»(A)#;2? +o/g/^,,(A4)4r,2+^7(^
nun ? .? / y

?2 \

Remark 4.1 : Sx and Sy are the dead-zone functions which prevent the weights drifting
into infinity when the modeling error presents [19]. This is known as "parameters drift"

[20] phenomenon.

It is noticed that Hx, Hy are thresholds for the identification error. For the case (a),

where Sx>0, Sy>0, i.e. |^?2??| > //t,||?,?/2??| > Hy , smaller thresholds as in (4.34) could
be used, but we extend those to Hx , Hv to unify the thresholds for all the possible Cases

a), b), c), d) during the entire identification process.

4.1.3 Simulation results

To illustrate the theoretical results, we use the same systems in Chapter 3 for

demonstration.

Example 1: Let us consider the nonlinear system (3.16) where we use the same

parameters or, = -5 , a2 = -10 , /?, = 3 , ß2=2, jc, (0) = —5 , Jr2 (0) = -5 , and same input

signals are adopted as where ui is a sinusoidal wave (uj=8sin (0.05t)) and U2 is a saw-

tooth function with the amplitude 8 and frequency 0.02Hertz. The small parameter e is

selected as 0.5.
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The Sigmoid functions s, , (·) are chosen as 1 + exp(-fa) ¦ c and the parameters for each

sigmoid function in dynamic neural networks are listed in Table 4. 1

Table 4-1 Sigmoid function parameters

s,?
s2(·)

0.5
0.5

v.-

Oí

-1-

-2:

100 200 300 400 500
t(second)

Fi· result tor Si

??

0-

-2

100 200 300 400

t(second)

error

500
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Figîire 4-6 The eigenvalues of the linear parameter matrices A, B

The on-line identification results on the system are shown in Figs 4.2-4.6. From these

figures, it can be seen that the state variables of the dynamic multi-time scale NN follow

those of the nonlinear system accurately and quickly. The eigenvalues of the linear

parameter matrix are shown in Fig.4-6. The eigenvalues for both A and B are universally

smaller than zero, which means they are always stable matrices. For state variable X1, the

RMS value is 0.049168 and RMS for state variable X2 is 0.022158. The identification

results are better than those in Chapter 3.

Example 2: We consider the Hodgkin-Huxley system (3.18) with same parameters.

We also focus on membrane potential E and use ELF external electric field En and

stimulation current Iexl in (3.19) as the control inputs.

Case A: Ew= 0, A1= 30µ?/at?2, f,= 10Hz, e = 0.2.
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Figure 4-7 Identification results in Case A

The solid lines are the real state variables (n, h, E. m) for the HH system and the dot lines

represent the identified states of the NN. The forth plot is the identification error for the

membrane potential.
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Figure 4-8 Eigenvalues of the linear matrices A, B in Case A

Case B: W=O, Ae=IOmV, fE=l 15Hz, e = 0.2.
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Figure 4-9 Identification results in Case B

The solid lines are the real state variables (n, h, E, m) for the HH system and the dot lines

represent the identified states of the NN. The forth plot is the identification error for the

membrane potential.
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Figure 4-10 Eigenvalues of the linear matrices A9 B
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The identification results are presented in Figures 7-10 for (2, 2) asymptotic

embedded HH model. In Case A, System is in 8/1 phase locked oscillation periodic

bursting. RMS value of the state variables are RMSn=0.333511, RMSh=0.335092,

RMSV=0.639899, RMSm=0.322476. In Case B, system is in the same frequency periodic

spiking. RMS value of the state variables are RMSn=O. 140449, RMSn=O. 147785,

RMSv=0.784'985, RMSm=0.07245. The time scale is considered by putting e = 0.2. The

flexibility of linear part matrix A and B enhance the identification ability of the neural

identifier. Even the single layer structure is powerful enough to successfully follow the

complicated electro-physic phenomena from HH model.

The simulation results of two nonlinear systems demonstrate the states of dynamic

multi-scale neural networks can track the nonlinear system state variables on-line. The

identification errors approach to the thresholds. The eigenvalues of A and B converge to

the steady values in both system identifications.

4.2 Multiple control methods based on Neural Network
In this section, multiple control methods are applied to accomplish the tracking task.

We will utilize direct compensation, Sliding Mode Control and feedback linearization as

our main control tools. The tracking problem is investigated based on the identification

results from Section 4. 1 .

4.2.1 Tracking Error AnaSysis

As we mentioned before, even if the dynamic neural networks have superb learning

ability to represent the nonlinear dynamic process, the modeling error are sometimes
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inevitable or even may affect the stability of the system. So the nonlinear system can be

represented by dynamic neural networks with the updating laws (4.23):

? = Ax11n + W^, (xm„y,J + W2Y{U) + Afx
ä> = Bym + W3a2(xnn,y,J + W4r(U) + Afy,

where the model error and disturbances Afx , Afy , are still assumed to be constrained as

|A/J<ä/tJa/J<A/v. Also Ax,4yand ^234are bounded as well as other stability
properties in Section 4. 1 .2.

Then we can reform (4.45)

? = Ax + W^{xim,yJ + W2Ï{U) + dx
sy = By + W3a2(xm„yJ + W4r(U) + dv

where dx =Afx + Ax11n -Ax = Afx -AAx,dy =Afy+Bym -By = Afy -BAy. IfAfx, Afy

and Ar, Avare all bounded, dx,dv can summed to be bounded as well, like

y.\\<d..ld..\\<d.. .¦ ' »·¦

The desired time-varying trajectory is defined as (3.21) in Chapter 3 with time-scale

parameter embedded.

As the new structure of neural network consists of the state variables of neural

network itself only, the overall structure of the neural networks identification and

controller is shown in the following figure. The control law is independent on the actual

signals from the real system.
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Figure 4-í 1 New Identificaiiore and control scheme

We define the state tracking error as

E.. = X - Xj

Ev=y-yrr
(4.47)

Then the error dynamic equations become:

Ex = Axm + WxO, (X11n , ym ) + W2Y[U) + dx - gx
sÈy = By„n+W}a2(xm,y,J + W4r(U) + dy-g}.

(4.48)

If we consider the identification and control as a whole process, then we can apply the

strategy to real applications by generating the final Lyapunov function candidate as
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V = Vj +Vc. Since we had already proved V1 < 0 and the stability properties in Theorem

4.2. Now let's consider the stability analysis for tracking purpose.

4.2.2 Improved controller design
Again we the control action U is designed as

U = uL+uf, (4.49)

where uL is a compensation for the known nonlinearity and uf are dedicated to deal with

the model errors, which can be left open if it is zero or ignorable. Let uL be

u, =

u, =-

W2
[\/s)WA

Axd
[XIs)By1 [\ls)w,a2(xnii,yj_

+

Ö/4?v

(4.50)

The control action U1 is to compensate the unknown dynamic modeling error. The

sliding mode control methodology is applied to accomplish the task. So let uf be,

W,

[1Is)W4 U1- =
'W2
[\ls)W, uñ.

(4.51)

First rewrite (4.48) as

Ex Ax„„
+

^s,?-?,,,,,?,,,,)
{\/s)W,a2(x,m,yiJ

+
W,

[\/s)W4
U +

dx
[l/s)dr (4.52)

Then substituting (4.50) into (4.52) obtains

Ex
È..

AEx
[l/s)BEv

W,

[l/s)W4 I/,+
dx

(4.53)
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If the model error and disturbances are zero or negligible which, from the control

point of view, it won't devastate the stability of the system, uf can be chosen to be zero

which will lead the error dynamics converge to the origin. Proof is quite straightforward

since A and B are stable matrices and e is positive.

Then substituting (4.51) into (4.53) yields

Ex = AEx + Ujx + dx
Èy={l/e)BEy+u'Jy + {l/£)dy.

(4.54)

a) Direct Compensation

If the identification process is stabilized as we proofed in Section 4.1.2, the modeling

errors can be calculated asA/T = x-xim,Afy = y-y„„. So if the derivatives of all real

signals are available, we can compensated the dynamic modeling errors with

(\/e)dv
Afx-AAx
(l/€ÌAfy-BAy) (l/^Xv-v,„,- BAv)

(4.55)

Theorem 43: With the control strategy (4.52), we can guarantee the control errors

are globally asymptotically stable as lim Ex = 0, lim Ev = 0 .

Proof: By using (4.54) and (4.55). the error dynamics become

K = AE,
Ex. = {\/e)???

(4.56)

Hence, we have stability properties lim Ex = 0,HmZs, = 0.
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The controller involves matrix inversion which can be guaranteed non-singularities

by choosing the proper initial value of the updating law and the parameter of the

activation function.

b) Sliding Mode Compensation

If the derivatives of real signals are not available, we can compensate the dynamic

modeling errors with sliding mode technique with the assumption that dx,dY are assumed

to be bounded as \\dx\\ < ¿/_v , |pv || < dv .

(4.57)uf =
Ufa
ufy

-kxP;]sgn(Ex)
(l/^r'sgnC^),

Where kx > Àimx (Px )dx , ky > Àmùx (Px )dy , Px , Px are the solutions of (4.58).

Since the matrices A, B are unknown nominal constant Hurwitz matrices, there

definitely exist matrices Px, Px which can be chosen to satisfy the following equations,

where Qx, Qx are positive definite symmetric matrices:

A7Px +PxA= -Qxr ? ? (4.58)
BTPx +P B = -Qx.

Theorem 4.4: With the control strategy (4.56), we can guarantee that the control

errors are globally asymptotically stable as lim Ex = 0,lim Ex = 0 .

Proof: Since we had already proved V1 < 0 and the identification stability properties

in Theorem 4.2. Now let's consider the Lyapunov function candidate for control design

purpose:
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Vc= ETxPßx+ É[PyEy (4.59)
By using (4.54) and (4.57), we obtain the derivative of Lyapunov candidate (4.59) as

Vc = ElPxEx + ElPxEx + ÈlPyEv + ElPyÈy
= (ElAT +u'l + dl)PxEx + ElPx(AEx + u'fx + dx)
+ (I/S)(ElBT + m'l + dDPrEv + (??e)(??, + «"'#· + dr)

= El (ATPX + PxA)Ex + 2ElPy1x + 2ETxPxdx
+ (\/e)El(BTPy + PyB)Ey + 2ETyPyu'fy + 2(\/e)ETyP} dy

= -KQ«ß, - 2K \EX I + 2ETxPxdx - (1/ S)ElQ10E , - 2(\/s)ky \Ev \ + 2(\/s)ElPydy
^-^a0^-2^|K||+2Amax(/>T)||£v|||<.|
- (\/s)ElQyoEy - 2(l/s)ky\\Ey\\ + 2(l/s)Anm (Py)¡Ey¡\dy\\

< -ElQxoEx-2(kx -Xm{Px)dI^Ex\-(\le)ElQiVEy -2{\/s\ky -Ämm (Py)dy )¡Ey\\
<0

Hence, we have stability properties limi', = Calimi?,. = 0 .

c) Energy function Compensation

In this case, we use the assumption that the modeling errors are bounded. Then we

define

-2R^PxEx
f ? (4·60)-2(\/s)R;lPyEy_

where Rx = Rl > 0,Ry = A17" > 0

Assumption 4.5: Since the matrices A, B are Hurwitz matrices. If we define

Rx = A~',i?v = ?~" one can select a proper Qx , Qy satisfying the conditions in Lemma

1 , then there exist matrices Px, Px satisfying the following equations:
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ATP +PxA + PxRxPx +Qx = O
BTPy + PyB + PyRyPy + Qy=0
Theorem 4.5: With the control strategy (4.60) and assumption 4.5, we can guarantee

the following stability properties:

(4.62)
-EJ + "?- ^- ? +limsup- f "Viu Adt

where^V^) = 2E^PxUfa + ??^?,?^,??^) = 2ETYPYu\ + (\^)u'¡.Ryufy are defined as
energy functions.

Proof: Since we had already proved V1 < 0 and the identification stability properties

in Theorem 4.2. Now let's consider the Lyapunov function candidate for control purpose

V=V +v.

Vx=ETxPßx,Vr=E'rPßr
(4.63)

By using (4.54) and (4.60), we obtain the derivatives of Lyapunov candidate (4.63) as

Vx= ElPxEx+ E]PxEx
= (ElAT +u'l + dl)PxEx +ElPx(AEx +u'ß + dx)
= ETx(ATPx+PxA)Ex+2ElPxu'tx + 2ElPxdx

Vy = ÉlPvEy+ElPvÈv
= (\/e)(?t??t + e??'? + dTv)PyEy + (\/e)(??? + e??'& + dy)
= (1/e)??(?t??+ PxB)E „ + 2É['/>'„ + 2(1/ e)?t?????

(4.64)

Using the matrix inequality (4. 14) one obtains

2ETxPxdx < ElPXPxEx +dlAxdx
2(]/£)ElPrdr < (l/eÍETrPXPJEr+dTyAydy) (4.65)
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Hence from (4.64) one obtains

Vx < ETX(ATPX + PxA + PxA-: Px + Qx)Ex - ElQxEx + dTxAxdx + 2ETrPxu'fa
= -ETXQXEX - ulRxu'ß + dlAxdx + 2ETxPxu'fx + UjRxU^
= -ElQxEx - U1JxRy1x + dlAxdx + V(u'ß)

V, < (\/s)El(BTPy + PyB + PyA-¡Py+Qy)Ey-(i/e)ElQyEy+{l/e)dlAyr+2ElPy&
= -HfB)ElQxE, - (Ve)U1IRy6, + (?/^?/,, + 2ETyPyu'¿ + (]/e)ujRyiv
= -(i/e)ElQyEy-(l/£)u'¡Ryjy + (\le)dlAydy + ?(µ^)

(4.66)

We reformulate (4.66) as

ElQxE1 +WJxRyn < dlAxdx+nu'ß)-Vx
(4.6/)

(Ms)ElQyEy + (1/S)U1JRyx < (Ms)dlAydy + ?(?^) - Vy
Then integrating each term from 0 to t, averaging them by t and taking the limit of

these integrals' upper bound, we obtain:

IKIIo +¡Kill -IKÍ +limsup-Í^V^yí + limsupC-- [Vxdt)
— IKI + — !««..? ^-|KII + Hm sup- G ?(??'??? + lim sup(— [VYdt)

IKÊ =limsup- ÍETxQxExdt ¡Ell = limsup- G E\QxE dì
Il U^ 1 F r li li' 1 G rwhere m'A = limsup— ìuLRu'^dt \\u'J\ = limsup— I ii'vRvii \.dt

IMl = H™ sup~ Í d*A*d*dt Wrtv = £^7 Í dïAAdt
Considering the Lyapunov functions Fx, Kv- are always positive, one can have

(4.68)
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lim sup(- - G VxA) = lim sup — Vx (t) + - Vx (O) < lim sup - Vx (0)r—»co 2" "" t—?*? vT T J ?—>cc ? ^-
? , fi ? ? ( \limsupC-- G F A) = Mm sup — Fv(r) + -Py(0) <limsup -K1(O)?—»co ^* «0 t—»co vT" T / ?—>°° I -J*

= 0

0
(4.69)

Hence, we have stability properties (4.62). Then the right sides of (4.62) decide the

threshold of the trajectory tracking errors. Now the task is to minimize the energy

function

'? ? . ??(^) = 2ETxPxu'fa +u'lRju'^u't) = 2ElPyu'fi, + (Ve)u'lRyu
If we chose

u'fa= -2RjPxEx
u'¿.= -2(1/e)R;lPyEy

(4.70)

The energy function stays at zero.

4.2.3 Sssnuiatton result

Following the identification process in Section 4.1 for nonlinear system (3.16), we

implement the developed control laws. It constitutes a feedback linearization with sliding

mode controller. The desired trajectories are generated by the reference model

xd = yd

syd = sin xd ,
(4.70)

with the initial value xd (Q) = 1 , yd (0) = 0 .
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Figure 4-14 Trajectory tracking resalís using energy function compensation

The time scale is considered by putting e = 0.5. From Figures 4.12-4.14, we can see

that the states of the nonlinear system can track the desired trajectories for the three

different control methods. Although the first method needs full information about the

derivative of the real signals, the tracking performance is the best according to our

theoretical analysis, since it directly compensate the modeling errors. The other methods

have extensive disturbance at beginning, but the tracking errors will be adjusted to stable
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or under the threshold. Therefore, we can draw the conclusion that the proposed

identification and control algorithm can guarantee the tracking stability of nonlinear and

uncertain dynamic systems.

To compare three methods, we list the RMS information in the following table.

Table 4-2 RMS for Control Strategies

Direct Compensation

Sliding Mode

Energy Function

0.000895

[.361007

0.997788

Y

0.102215

0.879036

0.678837

4.3 Conclusion

In this chapter we propose a new on-line identification algorithm for both dynamic

neural networks weights and the linear part matrices for nonlinear systems with multi-

time scales. New structure of the dynamic neural network simplifies the identification

and control schemes. Then we propose three different control methods based on dynamic

multiple time scales neural networks. The controller consists of a feedback linearization

and one of three classical control methods such as direct, sliding mode or energy function

compensator to deal with the unknown identification error and disturbance. Simulation

results show the effectiveness of the proposed identification and control algorithms.
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Chapter 5 Conclusion and future work

In this study, an in-depth research has been carried out on the identification algorithm

and controller design for nonlinear singularly perturbed system by using dynamic multi-

time scale neural network.

The main contributions of this research are summarized as:

1) An on-line identification algorithm is proposed for dynamic neural networks

with different time scales. Updating laws are developed for both the linear part

and weights of dynamic neural network.

2) Then tracking problem based on the identification results is investigated.

Feedback linearization method is utilized with additional sliding mode
CT:V.

controller in case of modelling error presented.

3) The dead-zoon functions are design with the updating algorithm to prevent from

parameter drifting. The stability offne on-line identification algorithm is proved

by using Lyapunov function analysis for the modified structure of the dynamic

neural works which result in simplified the identification scheme.

4) The controller design consists of a feedback linearization and one of three

classical control methods such as direct, sliding mode or energy function

compensatorio deal with the unknown identification error and disturbance.

Simulation results are compared with the existing works, which reveals that our

algorithm achieves better identification performance. The eigenvalues for linear part

matrix are all negative which supports the stability of the neural networks. In addition,
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the dynamic neural networks successfully follow the complicated electro-physic

phenomena the singularly perturbed HH system. The simulation results demonstrate the

fast and accurate convergent property of the proposed on-line identification algorithms.

Three control strategies are applied to the system based on the identification results. The

simulation results show that the controller can make the system satisfy the tracking

performance.

Possible future works are list as follows:

1) The vector function of the plant does not depend explicitly on time t, which

makes the system (2.2) to be autonomous. In this paper, we only consider this

kind of system. Future work can focus on dealing with nonautonomous system.

2) For the black-box models in this thesis, all the signals of stated variables are

assumed to be directly observable. If some of them are not available, observer

technique could be used.

3) For system identification, the input singles are also assumed to be available.

How can we identify a nonlinear system that operates in closed-loop and is

stabilized by an unknown regulator?

4) The structure of the neural network is pre-selected for general black box

problem. Evolutionary algorithm could be combined to achieve simpler optimal

structure and faster calculation speed.
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