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- Abstract

Nonlinear System Identification and Centrol using Dynamic Multi-

Time Scales Neural Networks

In this thesis, on-line identification algorithm and adaptive control design are
proposed for nonlinear singularly perturbed systems which are represented by dynamic
neural network model with multi-time scales. A novel on-iine i;lentiﬁcation law for the
Neural Network weights and linear part matrices of the model has been developed to
minimize the identification errors. Basved on the identification results, an adaptive
controller is developed to achieve trajectory tracking. The Lyapunov synthesis method is
used to conduct stability analysis for both identiﬁcation algorithm and control design. To
further enhance the stability and performance of the control system, an improved
~ dynamic neural network model is proposed by replacing all the output signals from the
plant with the state variables of the neural network. Accordingly. the updating laws are
modified with a dead-zone function to prevent parameter drifting. By combining
feedback’ linearization with oné_ of three classical control methods such as direct
compensator, sliding mode controller or energy function compensation scheme, three
different adaptive controllers have been proposed for trajectory tracking. New Lyapunov
function analysis method is applied for the stabi]it.y analysis of the improved
identification algorithm and three con’;rol systems. Extensive simulation results are
provided to support the effectiveness of the proposed identification algoritﬁms and

control systems for both dynamic NN models.
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Chapter 1 Introduction

1.1 Motivation

Numerous systems in the industrial ﬁvelds demonstrate nonlinearities and uncertainties
which can be considered as partial or total black-box. Dynamic neural networks have
been applied in system identification and control of those systems for many years. Due to
the fast adaptation and superb leéming capability, the dynamic neural networks have
transcendent advantages compared to the static ones [14], [15].

A wide class of nonlinear ph&sicéli systems contains slow and fast dynamic processes
that occur at different moments. Récent research results show that neural networks are
very - effective for modeling the complex nonlinear systems with different time-scales
when one has incomplete model information, or even when the plant is considered as a
black-box [14].

Dynamic neural networks with different time-scales can model the dynamics of the
short-term memory of neural activity levels and the long-term memory on dynamics of
unsupervised synaptic modiﬁcation§ [21]. The stability of equilibrium of competitive
neural network with short and ]ong-f,enn memory was analyzed in [22] by a quadratic-
type Lyapunov function. In [23-25], new methods of analyzing the dynamics of a system
with different time scales are presented based on the theory of flow invariance. The K-
monotone system theory was used for analyzing the dynamics of a competitive neural
systemn with different time scales in {26].

Since system identification and control using dynamic neural networks (NN) was first

introduced systematically in [27], the past decade has witnessed great activities in
I



stability analysis, identification and control with continuous time dynamic neural
networks with or without considering the time scales. In [28], Sandoval et al. developed
new stability conditions by using a Lyapunov function and singularly perturbed
 technique. In [29], the passivity-based approach was used to déﬁve stability conditions
for dynamic neural networks with different time-scales. Th e passivity approach was used |
to prove that a gradient descent algorithm for weight adjus'fﬁent was stable and robust to
any bounded uncertainties, including the optimal network approximation error [8]. Many
dynamic neural networks-based direct and indirect adaptivé control algorithms for
regulation and tracking have been published in the literatnreé [10, 30, and 31]. With
consideration of the uncvertainty of dynamic systems, the indirect method that adopts on-
line identification via neural networks followed by controller design is developed and
widely used. Several papers proposed adaptive nonlinear identiﬁcation and trajectory [9]
or velocity [11] tracking via dynamic neural networks without considen’ngi’ihe multiple
time scales. However, the above mentioned research has concentrated on the stability
analysis instead of control for dynamic systems by using dynamic neural networks with
time-scales or developed control scheme based on the neural network without
considering time-scales.

In this thesis, on-line identification for nonlinear systerﬁ with uncertainties using
multi-time scaies dynamic neural network are developed and then various controllers are

designed for trajectory tracking based on the on-line identification results.



1.2 Literature review

1.2.1 Overview of system identification

Since the modeling and parameter estimation are initiated by the mathematical
statistics and time series analysis, many disciplines like economic, social scienge and‘
engineering have participated and contributed to this field. In 1956, Zadeh first
introduced the term--System Identification for the problem of identifying a black box by
its input-output relationship [32]. Since then, a lot of researches have been devoted to
system identification which has Become an established branch of control theorj.‘_Si’née
systems with unknown linear parameters or unknown nonlinear characteristics canﬁdt l;e
controlled optimally, to identify these unknown linear parameters and nonlinear
characteristics is essential in control domain. System identification is a process of
estimating the architecture and parameters of a model from the input and outpuf data.
From different points of view, system identification can be classified as on-line and off-
line identification, or grey box and black box, or linear system and nonlinear system

identification.

a)  On-line and Off-line identification

Conducting estimation process after collecting the data from the system are known as
- Off-line identification. On the contrary, these two steps are running at the same time for
on-line identification. The main advantages of on-line identification are that the specified
precision can be achieved by recursive process and real time identification for time
varying system. Model reference techniques of the on-line identification problem are

considered by Monopoli for nonlinear non-autonomous plants [34]. Daniel and Robert
3



employed filtered version of the recursive least-squares as identification algorithm [35].
In [36], Kalman proposed a linear-quadratic estimator called Kalman filter. The extended
Kalman filter is used to system identification problems of seismic structural systems in

[37].

b) Black-box and grey box

Depending on the level of prior knowledge, the identification model can be
catalogued into two groups. If absolutely no information about the process is available,
the identification plants are notated as black-box. For the other cases, grey-box refers to
the situations that considerable know]edgé of the structure and/or parameters are already |
known.

For linear single input single output (SISO) Black-box models, Ljung summarized the

general family structure which can rise to 32 different models [38].

A@)y(0) =%u(z>+%e@

a

Alg) =1+ a!q_l +..ta,q"
Blg)=1+bg " +...+b,q™" (1.1)

nb't

C

C(g)=1+ alq_] +..+a,q”"

~nd

D(g)=1+a,q" +...+a,,q
F(g)=1 —Hz,q_l +...+a,!qu_’”>

where u(t) and y(t) are scale input and output signal for a system, g is forward shift
operator defined as gqu(r)=u(t+1) and g~ is backward shift operator defined as

g 'u()=u(t-1).

Some special cases are list below:



FIR — Finite Impulse Response (A=C=D=F=1)

ARX- AutoRegressive with Exogenous input (C=D=F=1)

ARMA - AutoRegressive Moving Average (B=D=F=1)

ARMAX — AutoRegressive Moving Average model with Exogenous inputs model
(D=F=1)

ARARX - AutoRegressive AutoRegressive with Exogenous input (C=F=1)

OE- Output Error (A=C=D=1)

BJ — Box-Jenkins (A=1)

Recently the research results show that these methods have been extended for Multi-
input Multi-output (MIMO) system. An identification algorithm using FIR modél 1S
proposed for multi-input, multi-output stochastic systems [49]. New evolutionary
programming method is proposed to identify the ARMAX model for short term load
forecasting [52]. Monin has derived a new identification algorithm for OF and ARMAX
systems with exogenous nonstationary multiple input based on a hereditary computation
[53]. Model identification and diagnostic checking using BJ method are developed for the
control of prostheses for varied limb function, movement and circumstances [54].

The regressors for nonlinear system identification are similarly selected, hence the
names are inherited with adding “N” representing nonlinear at beginning, like NFIR,
NARX, NARMAX NOE and NBJ. In, [55], NFIR Volterra model are utilized for. a
subspace approach of blind identification and equalization of nonlinear single-input
multiple-output system. NARX time series are investigated with projections for
estimating its endogenous and exogenous components [50]. In [S1], a new linear and

5



nonlinear ARMA identification algorithm is developed based on affine geometry. It is
faster for the new algorithm to obtain the estimation results than the fast orthogonal
search metﬁod. Subspace algoritﬁms ‘with a basis function are applied to identify a
Hammerstein model expansion which is followed by modeling Wiener nonlinearity to

build a model for ionospheric dynamics [56].

¢) Linear system and nonlinear system identification

Linear systems obviously represent the most vita group of system identification. After
years of extensive development in practice and in the literature, linear system
identification techniques have been systematically presented in text books. Even though,
there are still some improvement which are made for the past few decades. In [43],
Guillaume et. al. discussed and analyzed a mathematical model of the Empirical Transfer
Function Estimate with noisy input signals which is not deterministic and exactly known
for Fourier analysis. Tugnait proposed a frequency-domain solution to the least-squares
equation error identification problem using the power spectrum and the cross-spectrum of
the time-domain input-output data to estimate the parametric input-output infinite
impulse response transfer function [44]. Overschee and Moor find state-space models by
subspace state space system identification algorithms from the input and output data [46].

Before 1980s, system identification techniques for nonlinear systems have received
scant attention due to their inherent complexity and difficulty. As nonlinear systems are
widely engaged in many different reseafch fields, like control application, artificial
intelligence, pattern recognition, signal processing etc., nonlinear system identification

become more and more important.



Compared to linear systems, it is very difficult to obtain the precise physical model
for nonlinear system and more distinct structural models can be chosen. On the other
hand, the models need not to be true and accurate description of the real system. It is just
a description of some of its properties to serve certain purpose [38]. Hence, many
researchers tend to use reduced-order or linear model to represent the system. Transient
response fnethod is used to model the reduced-order transfer functions of power
converters by analyzing the step response [39]. Linear models of Tokamak are created for
control purpose and validating different models from physics principles by frequency
response identification [40]. A continuous-time nonlinear unstable magnetic bearing
systems are successfully identified by using a linear model and frequency response data
[41].

Jean-Marc and René investigated the identification using nonlinear autoregressive
models [47]. Volterra sen';s serves as a generalization of the convolution integral to
model a seventh order nonlinear model of a synchronous generator with saturation effect
[48]. Nonlinear system identification is conducted by Reduced Volterra model with
generalized orthonormal basis functions, which can overcome the huge estimation
process [49]. Singh and Subramanian established a direct correspondence between the

structure of a nonlinear system and the pattern of its frequency response [42].

1.2.2 Development of control strategies for nonlinear systems

Linear control as a mature topic with various effective methods has been systemically
presented in textbook and successfully operated in industrial applications. In early age of

development of control engineering, not a wide range of nonlinear analysis tools are

7



available for researchers and engineers as today. Before 1940, some immature nonlinear
control methods, like Tirrill regulator and the fly-ball governor have been successfully
applied without systematically theoretical analysis [57]. Phase plane method, describing
function méihod and Tsypkin’s method for relay systems as the major nonlinear system
analysis techniques during the two decades since 1940s are also discussed in [57]. Then
the céﬁtrol eengineering community boosts attention to Lyapunov’s stability theory after
more than 60 years since it is first published in 1892. Lyapunov’s direct method ‘has
becofn_e the most ﬁndalnental and popular nonlinear system analysis tool for thve major

nonlinear control system design methods.

1.2.3 NN-based nonlinear system identification and control

When dealing with non-linear systems as well as linear systems with multiple inputs
and mﬁltiple outputs, traditional identification methods need specific assumptions
concerning the model structure. It is usually assumed that the system equations are
known except for a number of parameters [45]. Neural networks have been proven to be
effective for nonlinear system identification and control due to highly complexity and

nonlinearity.

- a) Static networks and dynamic networks

The architectures of neural networks can be categorized into two fundamental classes:
feedforward (static) networks and recurrent (dynamic) networks. The major difference
between them is that recurrent NN has at least one feedback loop.

In the literature, feedforward NNs are most popularly used for nonlinear system



identification and control [4, 5, 6]. A typical example is the multilayer perceptron (MLP),
which is utilized to identify the dynamic characteristics of a nonlinear system. The main
characteristic of MLP—fast convergence makes it prime candidate for adaptive control of
nonlinear systems. In [64], MLP NN is used to realize the position control of a Low Earth
‘Orbit satellite. RBF neural networks are artificial neural networks with radial basis
functions as activation func’tiéns_. Similar to feedforwérd neural networks, RBFs are
widely used in function approximation, time series prediction, control, pattern
recognition and classiﬁcation_. Mark gave a systematic introduction about RBF neural
networks [66]. RBF neural nétWo;ks were also applied for diagnosis of diabetes mellitus
[67], whose performance is évalﬁated with MLP neural networks and logistic regression.
After comparing the performaﬁces of a multilayer MLP network and a RBF network for
the online identification of a.s_ynchronous generator, Jung-wook et. al. claimed that the
RBF network is simpler. to implement, needs less computational memory, converges
faster and better even in the changing operating conditions [65].

On the other hand, the recurrent neural netwqus have received considerable attention
in recent two decades. Due to their strong nonlinear characteristics, dynamic NNs are
more and more widely used for nonlinear system identification and control. On-line
system identification based on fnodiﬁed recurrent neural network NARX model with
three different validation al gorithms are presented to serve the predictive controller [68].
Based on a recurrent neural network uncertainty observer, a back-stepping and adaptive
combined controller is designed to perform position control of an induction servomotor
[69]. The recurrent neural networks are trained based on the experimental data from a

9



continuous biotechnological process for system identification and control [70].
Identification result of a class of control affine systems are used to synthesize the
feedback linearization of the system which then can be controlled by a PID controller

[71].

b) Learning algorithm

All the neural network topologies are supported By théir corresponding training or
learning algorithms. Years ago, back propagation is the dominating learning aigorithms
since it is first introduced by Paul J. Werbos in 1974 i[7]. In addition, many efforts have
been made to improve the traditional back propagatibn approach. New back propagation
algorithm witﬁ optimization process for the slope of sifgmoidﬁmction at each neuron is
presented in [58], which accomplishes faster convergence rate and better accuracy model,
especially for high level nonlinear systems, comparing to traditional back propagation
method for system identification with neural networks. Various improved baék
propagation algorithm are presented for recurrent neural netvx-/orks in [60]. An accelerated
back propagation can remove the delay when the error is back—pmpagated.through the
adjoin model. Predictive back propagation and targeted béck propagation with or without
filtering are studied to update the weights of the network. Yue-Seng and Eng-Chong
investigate various aspects like net pruning during training, adaptive learning rates for |
individual weights and biases, adaptive momentum, and extending the role of the neuron
in learning and then comEing them together- to improve the perforrhance of back
propagation for multilayer feed-forward neural networks [61].

Now many new network topologies with the corresponding training algorithm are

10



broposed for .system identification and control purpose. Widely discussed recently are
Evolutionary algorithms which can optimize neural network architecture to provide faster
training speed [76]. In [62], evolutionary neural networks are proposed by combining the
immune continuous ant colony algorithm and BP neural network. Structure and weights
of static or recurrent neural networks can be simultaneously acquired bsf presented
evolutionary programming [63]. In [59], a cascade learning architecture is deQeIoped to
provide dynamic activation functions for neural networks. This results in faster learning
speed, smoother process and simpler structure of the networks when it ~'i_s used for

identifying human control strategy.

¢) Applications and experiment

There are numerous reports regarding the successful application and experiment of
NN-based controllers in the real systems. The multi-loop nonlinear neurai' network
tracking controller is implemented for a single flexible link [72]. Neural network
~controller combined with PID controller is tested on a wheeled drive mobile robot based
inverted pendulum to maintain balance as well as track desired trajectories [73]. In [74], a
Z—degrees—of-freedom. inverted pendulum on an x-y plane is controlled by a decen;iralized
neural network control scheme. Each axis is controlled by two separate neural network
controllers since the decentralized controller can not only compensate the uncertainties
but also decouple the system. In a word, numerous training processes are fast enough,

which are suitable for real-time control implementation.

Il



1.2.4 Multi-time scale system

Numerous nonlinear physical systems contain slow and fast dynamic processes that
occur at different moments. The following models are used to describe such dynamic

characteristic of the nonlinear systems.

a) Singularly perturbed system
We consider a system of £, +k, first-order autonomous ordinary differential
equations for k, + k, dynamic variables, of which &, are slow variables and k, are fast

variables. Therefore the vector of slow variables is x, € R"and the vector of fast

variables x, € R". Then the system of equations is

d

gx;' = fi(x,,x;)

e (1.2)
g2 = f,(x,,x,)

dt
which is a slow-time system.& >(is a small parameter. System (1.2) has asymptotic
structure(k,, k,) .

The transformation of time 7=&I" brings this system to the form of a fast-time

system:
2~ () |
p - (1.3)
X
d—Y?; = fi(x,x;)

Systems (1.2) and (1.3) are equivalent to each other for finitee, but have different

properties in the limits — 0"

12



A typical example of multi-time scale system is DC servomotor as shown in Figure

1.1 [29]

=g
e

7

(

Figure 1-1 DC Servomotor

DC motor modeling can be separated into electrical and mechanical two subsystems.
As we all know, the time constant of electrical system is much smaller then that of the
mechanical system. Hence, the electrical subsystem is the fast subsystem.

Kirchhoff’s voltage law is used to derive the electrical system:

L= =—ko-Ri+u : (1.4)
dt |

where u is input voltage, 1 is armature current, R and L are the resistance and inductance
of the armature, K is back EMF constant.

The mechanical subsystem follows

dw
jy gy 1.5
il (1.5)
13



where J is the moment of inertia, k is torque constant of the motor.

w iR u
Then we apply a transformation of @, = —,i =—,u, =— for (1.4) and (1.5
pply =7 T T (1.4) and (1.5)
@, =1,
: . (1.6)
g, =-0,—i, +u,
2 -
where &= <1 ,i,is the fast state.

R?

b) Parametric Embedding

Unlike the DC motor mentioned above, some system equations only consist of
constants with certain values which are measured from experiments. To apply singular
perturbation theorems to these models which do not contain any parameters that can tend

to zero or infinity, we need to introduce the small parameters artificially.

We will call a system x=F(x;¢),xe R"depending on parameter £, a one-parametric
embedding of a system: x = f(x),x€ R?, if f(x)=F(x,1) forall xe R’. Similarly, we
can define an n-parametric embedding, with right-hand sides in the form
f(x)=F(x,,...]) and x=F(x;g,,.,¢,),xeR?. If an n-parametric embedding has a
form of a fast-slow system with asymptotic structure(k,,....k,), we call it a (k,...,k,)-
asymptotic embedding.

We use this procedure to replace a small dimensionless constant ¢ with an artificial
small parametersa, wheres <<1. The replacementéa constitutes a one-parametric

embedding. There are numerous ways a system can be parametrically embedded, but only

the one in which the qualitative features that we are interested in can be best preserved

14



from the original system is the first choice.

1.2.5 Identification and control of systems with multi-time scale

The systems which contain fast and slow phenomena can be modeled by singularly
perturbed model. This can decouple the high-order linear or nonlinear system into fast
and slow subsystem that occurs at different mofnents, which simplifis the complicated
dynamic process for numerical study and control design. In [77], a system identification
strategy with two time scales is proposed for modeling the Tokamak process based on
experiment data of static plasma response. Then two time-scales reduced-order models
are u}sed to test the optimal control scheme. For some cases, the centralized controller
can’t stabilize the fast and slow dynamic simultaneously. Then the singular perturbation
fheory is applied to separate the model into multiply time scale subsystems.
Decentralized model predictive controller are developed based on the transfer function
matn'x‘ of a kind of special systems which is decoupled into two modelé in different time
scales [78]. Comprehensive discussion about singular perturbation and time scales in
control can be found in [79-81}.

Neural network are also applied for multi-time scale problem. In [82], a neural
controller Witil two time scales is designed for trajectory tracking of robot manipulator.
Only the fast subnet is learning when the linear parameter is changed, which can save the
computation work. In [83], the flexible-link robot arm system is divided into two time
scales to reduce the spillover effect. The optimal control technique is applied to fast
subsystem, while the fuzzy logic controller guarantees the tracking control performance.

The stability analysis of recurrent neural networks by singular perturbation method is

15



presented in [28]. In [29], the passivity analysis of the system identification problem

about multi-time scale neural network is developed for further application in control

purpose.

1.3 Research objectives and main contributions of this thesis

- Consider a class of nonlinear systems with different time scales. The overall objective
of this thesis is to develop on-line identification and control strategies to achieve fast and

accurate trajectory tracking performance for such class nonlinear system.

'1.3.1 Research objectives

rvThe main research objectives of this thesis are:

1) To develop new updating algorithms and stability analysis for dynamic neural
networks with multi-time scales in the sense of minimizing the identification error
for nonlinear systems with or without multi-time scales.

2} To develop NN-based adaptive controiler to achieve fast and accurate trajectory

tracking based on the on-line identification results.

1.3.2 Main contributions

In this research, system identification and control based on dynamic neural networks
with multi-time scales are extensively studied for nonlinear black-box model. The main
contributions are summarized as:

e The Lyapunov function and singularly perturbed techniques are used to develop

the on-line update laws for both dynamic neural networks weights and the linear

part matrices. The learning algorithm of the linear part matrices is applied to

16



provide more flexibility and accuracy of nonlinear system identification [84].

e New stability conditions are determined for identification error by means of
Lyapunov-like anglysis with new dead-zone indicators which prevent the weights
of neural network from aﬁfting into infinity [86].

e Various control methods are applied for trajectory tracking based on the on-line
multiple time scales neural networks identification results for the uncertain
nonlinear dynamic systems [85].

¢ Simulations havé' been carried out to verify the effectiveness of these

identification and control algorithms.

1.4 Thesis Outline

The thesis is organized as follows:

In Chapter 2, some ’II'nathematicaI preliminaries are introduced along with the
mechanism and structure of dynamic neural network with multi-time scales.

In Chapter 3, the structure of dynamic neural networks with different time scales and
the identification algorithm are discussed. Then the adaptive tracking control method and
the error analysis are stated followed by simulation results.

In Chapter 4, the improved system identification and control schemes for multi-time
scales neural network are presented.

In Chapter 5, conclusion and some possible future work are given.

1.5 Conclusion

In this chapter, first we review the system identification by classifying it into on-line

17



and off-line identification, black-box and grey box and linear and nonlinear identification
problem. After a brief discussion about the nonlinear control, we provide extensive
literature review on NN-base system identification and control. The basic concept of

“multi-time scales system is introduced as well. The motivation, research objective and

contribution are presented in the thesis.
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Chapter 2 Mechanism and Structure of Neural Network

Artificial Neural Networks (ANN), commonly referred to as “neural networks”, are
mathematical models which are inspired from the structure and fdnctions of the
biological neural systems like human brain [1, 2]. Through the ma'ssively parallel
distributed structure and the ability of leaming and generalization, NN are
computationally pdwerful enough to perform some capabilities of the biological neural
networks (BNN), such as knowledge storing, information processing, | learning and
justification[1, 3]. As a result, the application areaé of NN range from sigﬁal processing,
patter recognition, data mining, classification, medicine, financial application, to system
identification and control.

As mentioned in Chapter 1, the architectures of neural networks can be categorized
into feedforward neural networks and recurreﬁt neural networks (Dyngmic Neural
Network). In this study, dynamic neural networks are chosen candidates for modeling and
control of nonlinear systems with multi-time scales which contain strong noniineaﬁty and
uncertainty. The architecture of the recurrent neural networks and corresponding

activation functions are introduced in this chapter.

2.1 Feedforward neural network

Multilayer feedforward neural network consists of an input layer, at least one hidden
layer and an output layer. The general architecture of a multilayer perceptron (MLP) is

shown in Figure 2-1.
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Hidden Output
faver - layer

Input layer

Figure 2-1 Structure of MLP

2.2 Dynamic Neural Network

A large class of dynamic systems can be represented in the form of a system of first-
order differential equations written as follows:

%= F(x(r)) - (2.2)
where F is a vector function, x(¢)=[x, (t),xz([)---.x:\,(t)]r is the vector of the state

variables, x denotes the derivative of state variables with respect to time t. The vector
function F does not depend explicitly on time t, which makes the system (2.2) to be

autonomous. In this paper, we only consider the systems in continuous time domain.
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Recurrent neural network distinguishes itself from other neural networks like
feedforward neural network in that it contains at least one feedback loop, which leads to
fact that the neural network can be represented in the form of (2.2). On the other hand,
the neural network, which is in form of dynamic system (2.2), has feedback loops
congenitally. As a result, many researchers refer “recurrent” and “dynamic” as the same
concept in neural network literature. A common recurrent neural network is show in

Figure 2-2.

Input nodes

Hidden Output

Input layer layer layer

Figure 2-2 Structure of recurrent neural network



In this thesis, the architecture of the neural network is based on the following

dynamic neural network.

xl”l = Ax

nn

FWVx,,) + Wop(Vyx, )7 (U) 2.3)

where x

“nn

€ R" are state variables of neural networks, W, € R"*,W, € R"™ are the
weight in the output layers, ¥, € R”,V, € R are the weight matrices describing hidden
layers connection. 0“:[a,([V,x],:])-»-Up([V,x]p’])]T is vector function responsible for

nonlinear state feedback. ¢ € R is diagonal matrix:

¢:diag[¢,([V2x],,,)»--¢q([sz]q,l)]r- UeR"™ is the control input vector and

nxn

y(:):R" — R” is a differentiable input-output mapping function. 4 € R is a Hurwitz

matrix for the linear part of neural networks.
As we can see that Hopfield-type neural network is the special case of neural network

(2.3) with 4=diag{a,}, where a,=—-1/RC,R >0 andC. >0. R and C are the

resistance and capacitance at the i™ node of the network respectively.
The three typical activation functions are shown as follows:

1. Threshold Function. The most common example is illustrated in Fig 2-3.

P 1 if x=0 ) 4
(x) = 0 i x<0 (2.4)
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0.5 :

Figure 2-3 Thresheld function
2. Piecewise-Linear Function (Figure 2-4)
1 if x=h
O(x) = El—lgx+0.5 if —h<x<h

0 if x<-h

where h is positive real number.

1.5 e et e e e e+ e
, N
0.5 ye
0.
OB
2 45 4 05 o0 05 1 15 2
h=0.5

Figure 2-4 Piecewise-Linear function.
3. Sigmoid Function (Figure 2-5)

1
Q(X) = m (2.6)
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Figure 2-5 Sigmoid function.
' According to many literature results [§, 9, 10, 11], sigmoid function‘ is the most
-.popular and suitable activation function for dynamic neural network with the structure

like (2.3) due to its flexibility on the range and shape and the smoothness in the entire

domain.

2.3 Multi-Time Scales Neural Networks

. A wide class of nonlinear physical systems contains slow and fast dynamic processes
that occur at different moments. In order to identify and control this kind of system we
will utilize the Dynamic Multi-Time Scales Neural Networks (DMTSNN) as the
modeling tooll, which is inspired from neural network (2.3) with the perturbation

parameter embedded.
nn + VVlo-l (I/] [x7 J;]T) + W2¢] (V; [x7 ))]T )U
((’j;nn = Bynn + VI/SO-Z (VZ[x7 .);]T) + W4¢2 (V4[)C, y]T)UJ

where x, € R",v, €R" are the slow and fast state variables of neural networks,

nn

xl"l = Ax

2.7)

xe R”, v e R" are the state variables of the real system. W, € R™™ W,, e R™" are the
i y 1.2 3.4

2ux2n

weights in the output layers, ¥, € R*""V,, € R are the weights in the hidden layer
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o.=[o,(x) 0, (x,),0,(») 0. (3) eR” (k=1,2), are diagonal matrices,

b, = diagld,,(x) 4, (0, b (0) - B )T € R (k=1,2),U =[ty,t,,+1,0---0]
€ R is the control input vector, 4 € R™ and B € R™" are the unknown matrices for the
linear part of neural networks, the parameter ¢ is a unknown small positive number.
When ¢ is equal to 1, Athe neural network (2.7) becomes a normal one [12]. The typical
presentations of the activation functions o, and ¢, are sigmoid functions.

In order to simplify fhe theory analysis, we make the hidden layer weight V to be an

identity matrix, which makes DMTSNN (2.7) become a single layer neural network.

x = Ax

un “Ynn

gy, = By

~ RH ~

A @3)
+W,o, (x> ¥) + W4¢2 (x, U

The sffucture of the DMTSNN (2.8) is shown in Figure 2.6

Figure 2-6 Structure of dynamic neural network with two time-scales
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We apply the activation function o, and ¢, in DMTSNN (2.8) as the following

types:
e Hyperbolic Tangent Function
6(x) = tanh(x) .. | (2.9)
This activation function has the range frmﬁ -1 to +1. The plot of Hyperbolic Tangent

Function is show in Figure 2-7.

Figure 2-7 Hyperbelic ’E‘iﬂgené Function

The architecture of neural network (2.8) is modified in Chapter 4.

X = Ax”ll + WYIO-] (x

nn

Y, )+ Wy (U}

mi 2

V) TWyU)

;
mi? e nn

2.10
gy =By ( )

<~ nn 0 nn

+W,o,(x

The structure of the DMTSNN (2.10) is shown in Figure 2.8
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Figure 2-8 Structure of modified dynamic neural network with two time-scales

The activation functions defined in (2.4), (2.5), (2.6) and (2.9) range from 0 to +1. For
the neural networks in Figure 2.8, we use the Logistic Function with fnulti-parameters
(Figure 2-9), which can range differently and widely.

e Logistic Function with multi-parameters.

a

M e

2.11)
‘1.5j

0.5

05 -

a0 5 o0 s 10

Figure 2-9 Logistic Function with multi-parameters
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2.4 Concﬁusicn

In this chapter, the mechanism and structure and the main definitions of the dynamic
neural networks are introduced. An important mathematical preliminary is given for the
further study. The basic mechanism and structure of DMTSNN used in system

identification and control are given.
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Chapter 3 Identification and Control for nonlinear systems with

- mulfi-time scales

Traditional linear control methods cannot deal with the nonlinear systems with
incomplete or none information of dynamics. A common approach to deal with these
problems is to utilize proper modeling and identification techniques in the control
scheme. In this chaptér, a dynamic neural network model is proposed for nonlinear
system with multi-time scales and on-line identification algorithm is developed for its
parameters so that the output of the model approaches to the output of the actual plant.
By using the Lyapunov method and singularly perturbed techniques; an adaptive
controller is designed based on the neural network model to control the states of

nonlinear system to track reference trajectories.

3.1 On-line identification

A large number of strategies have been proposed for the identification of dynamic
systems with highly nonlinearities and uncertainties. Dynamic neural networks have been
applied in system identification for those systems }for many years. Due to the fast
adaptation and superb leamning capability, they have transcendent advantages compared

to the traditional methods [14], [15]. -

3.1.1 Nonlinear systems wiﬁh multi-time scale

Numerous systems in the industrial fields demonstrate nonlinearities and uncertainties
which can be considered as partial or total black-box. A wide class of nonlinear physical

systems contains slow and fast dynamic processes that occur at different moments. In this
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section we consider the problem of identifying this class of singular perturbation

nonlinear systems with two different time scales described by

- x= [ (U0

3.1
5= 1 (5 pU0), G-1)

where x€ R’ and y€R’ are slow and fast state variables which are totally

measureable, the functions f and f, are partially or totally unknown but continuously

differentiable, U € R’ is the control input vector and € > 0 is a small parameter.

3.1.2 Dynamic NN modei

In order to identify the nonlinear dynamical system (3.1), we employ the dynamical
neural networks (2.8) with two time-scales:

xnn :A‘xrm +I/Vlo-l(x9y)+nyz¢l (xﬁy)U
(C’j})m = Bynn + I/VSO.'Z (x7y) + W4¢2 (xﬁy)U

As we mentioned in Chapter 2 the slow and fast state variables of the DMTSINN are

x eR"y, €R".W,eR"", W,, e R"" are the weights in the output layers. We use

““un

the state variables of the neural network to identify the object dynamic model
respectively, where »n = max < p,g >.
Generally speaking, when the dynamic neural network (2.8) does not match the given

nonlinear system (3.1) exactly, the nonlinear system can be represented as

x=Ax+ VV,*O" (x,y)+ W;¢, (x, U +Af,

X * (3.2)
g=By+W, Gz(x’y)+W4¢2(x,y)U+A ¥
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where W, , W, ,W, ,W, are unknown nominal constant matrices, the vector functions
Af.,df, can be regarded as modeling error and disturbances, and 4, B" are the

unknown nominal constant Hurwitz matrices.
Remark 3.1: In literature of system identification and control based on neural network
hike (2.3) or (2.7) [8 - 11], the authors coherently make a strongb assumption that the linear

part matrices 4 and B were posed as known Hurwitz matrices and such assumption is

sometimes unrealistic for the black-box nonlinear system ideﬁtiﬁcation. Here we apply
the on-line identification process to the linear part matrices dynamic to approximate to
their nominal values.

It is assumed that the states in system (3.1) are 'completely measurable. And the
number of the state variables of the plant is equal to that of the neural networks (2.8). The

identification errors are defined by

AY =X xnn (3 ")
3
AJ'; = .)/ - ./;7171 -
From (2.8) and (3.2), we can obtain the error dynamics equations
Ak = A Ax+ Zx,m + 1/1710'1 (x,y)+ VIN/2¢1 (x, YU + M, (3.4)

gA)‘/ = B*A)" + E};nn + I%O-Z (x7 J’) + VT//-’J¢2 (x7 _:V)U + A R iR

Where H’Z:VVI‘ - VVI? WZZW; - Wzr”ZZW}* '—.W37 W4=W: - W4 and Z = A* —A, E = B* e B .

3.1.3 Adaptive identification Algorithm

The Lyapunov synthesis method is used to derive the stable adaptive laws. Consider

the Lyapunov function candidate:
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Vl = V\' + V\

V. = AxTP‘Ax+tr{VI~/,TPrVI~/,}+tr{W2TRTVIN/2}+tr{ZTPXZ} (3.5) .
V, = by" Ay + 7] P, Y o P, b4 (BT P B)

~ Since the matrices 4", B~ are unknown nominal constant Hurwitz matrices, there

definitely exist matrices P, P, which can be chosen to satisfy the following equations,

‘where Q_, O, are positive definite symmetric matrices:

AP +PA =-Q,
o . p R ' (3.6)
B"P,+PB =-0,.

Hence, differentiating (3.5) and using (3.4) yield

V.= —A Q. Ax + 20x" PAx,, + 2AxT PW 6, (x, y) + 2Ax” P8, (x, y)U
+2Ax P f, + 2n~{§ "PA }+ 2tf‘{14717ﬂ W, }+ 2n~{ﬁj}§ﬁz } ,

V, ==(1/e)0" 0, Av+ (/e 20y" P.By,, + (1 e RAY PI, 0, (x, ) @7

+{i/e2ty” PW g (x. »)U + (/20 P f, + 2n~{§ 'PB }
T 211'{1/173713_‘.?/173 }+ 2n~{0271?ﬂ74} :
Theorem 3.1: Consider the identification model (3.2) for (3.1). If the modeling error

~ and disturbances are assumed Af, =0, Af, =0, the updating laws

5 T
A - Ax’\nn

W, = Axo) (x,¥)
W, = Axu” ¢ (x,y)

B =(1/=)Awy],
w, =(l/e)Ayo, (x,y) (3.8)
W, =(/e)yu’ 8] (x,5),

can guarantee the following stability properties:

1) Ax,Av,W,,,,,A,BeL_ and Av,Aye L,
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2) hmAr—OhmAv OandllmW 0,i=1,---4.

R S 4= 1—>c

Proof: Since the neural network’s weights are adjusted as (3.8) and the derivatives of

—~

the neural network weights and matrices satisfy the following W, ,,, =W, ,,,, A= 74,
B= ZN? from (3.7), V.A_,VJ__ become

V.= -Mx"Q Ax+2Ax" PAY, 1o

~(1/e)0" 0,y + (I £)28Y" P&, G2

If /=0, f.=0, "then one obtains
V=, <0, 7, =@/l <0

V=V 4V, <0

where V.,

X2

V. are positive definite functions and VX,V"_ <0 can be achieved by using the
updating laws (3.8) when Af, =0, Af, =0 which implies A Av.W,,,,, 4. BeL_.
Furthermore, x,, =Ax +x,y, =Ay+y are also bounded. From the error equations (3.4),

we can draw the conclusion that Ax,Ave L_. Since V_, V. are non-increasing function
T » = 4 X2 )

of the time and bounded from below, the limits of V, ¥V, (ImV _ =V _ (o)) exist.

Therefore by mtegratmgV V on both sides from 0 to «, we have

[, =17.0)-7, o <

(3.10)
I, = e @ -7, <o
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The above inequalities imply that Ax,Ayel,. Since Ax,Ayel,(VL, and

Ax,Ay € L, using Barbalat’s Lemma[13] we have limAx = 0,limAy = 0. Given that the

> t—>x

control input U and o, ,(),4, ,() are bounded, it is concluded that limW,J =0,

1>

limW, , = 0. The identification scheme is illustrated in Figure 3.1.

11—

Figure 3-1 Identification scheme

Remark 3.2: When ¢ is very close to zero; both W,and W, exhibit a high-gain
behavior, causing the instability of identiﬁcatioh algorithm. The Lyapunov function (6)
-can be multiplied by any positive constant a, i.e, B”(aP.)+(aP,)B =-aQ,, the
adaptation gains of W, and W, become (1/¢)aP,, which turn into small gains if a is

chosen as a very small number.
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Corollary 3.1: For the dynamics of error system equations (3.4), if we define f,, f,

as the inputs, the updéte laws (3.8) can make (3.4) input-to-state stability (ISS) with the

assumption that there exist positive definite matrixes A, A, such that

/lmin (Qx) 2 ﬂ’max (PxAxPx )
Z’min (Q)) 2 ﬂ'max (I:ZA}_P) )

(3.11)
Proof: Using the following matrix inequality:
X'Y+(X'V) <X"A'X+YTAY : (3.12)
where X,Y € R”* are any matrices, A € R”* is any positive definite matrix.

We obtain

20 PAS, < A PA PN+ KLY,

- 3.13
(/e2ny" PAf, < (/€)Y PA P.AY +(I/£)Af] KA, G-13)

Then equation (3.9) can be represented as

V'J =—Ax Q@ Ax+ 2A;€R_Aﬂ
< 2 QA + AXTPA P A+ AFTATAY, G
<o (Jax)+ B.(arD

v, =-(1/e)A"0,ay + (/e 200" P A,

< (/&) @I + (/)0  PA Py +(1/)ATATAS, | (3.15)
<-a, (D +B.(a1)

where
‘2

& S 81D = ) aDar |

) BL) = A (AD)

Ax”) = (Amin (Qr) - ﬂ'max (RA\R))

IA.\'

~fx

Af,

a.(

a, (JAv]) = (/&) Ain (0,) = A (P.A P
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We can select a positive matrix A, and A, such that (3.11) is established. Since

a.,p,, a,, B, are K, function, V,, V, are 1SS-Lyapunov function. Using Theorem 1

in [16], the dynamics of the identification error (3.4) is input to state stability.

Theorem 3.2: If the model errors Af , Af , are bounded, then the updating law (3.8)
can make the identification procedure stable [8]: Ax,Ayel, W, ,,,,4,B€lL,

A,BelL,.
Proof: The input to state stability means the behavior of neural network identification

should remain bounded when its inputs are bounded [16].

3.1.4 Simulation Results of identification

To illustrate the theoretical results, we give the following two examples.
Example 1: Let us consider the nonlinear system

X, = o,x, + Bisign(x, )+ (3.16)
gx, = a,x, + [,sign(x}+i,,

where we use the same parameter o, =-5, o, =-10, £, =3, B,=2, x(0)=-5,
x,(0) = =5. The given nonlinear system, even simple, is interesting enough, since it has

multiple isolated equilibriums [9]. Using the parameter embedding technique [12], the
model used here is singularly perturbed and the small parameter ¢ is positive and smaller

than 1. The input signals are selected as: u, is a sinusoidal wave (u, = 8sin(0.057) ) and
u, is a saw-tooth function with the amplitude 8 and frequency 0.02Hertz.

a) We want to compare our result with that in [9]. For the fair comparison, we choose

exactly the same model and input signal. Only one time scale (=1) is considered.
36



The activation function here we select hyperbolic tangent, o, ,(-) =4, ,(-) = tanh(’).

This left the only difference from [9] are the neural network itself. Under the on-
line adaptive updating algorithm (3.8), the identification process is conducted. The

results are shown in the following Figures (3.2-3.8)

o i

o 100 200 300 400 500
t {second)

Figure 3-2 Identification result for x;

. { {second) ,
0 100 200 300 400 500

Figure 3-3 Identification result for x; in [15]
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Figure 3-4 Identification error for x;
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Figure 3-5 Identification result for X3
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Figure 3-6 Identification result for x; in [15]
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Figure 3-7 Identification error for x;
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Figure 3-8 The eigenvalues of the linear parameter matrices

To show the identification performance of the proposed algorithm, the performance
index --Root Mean Square (RMS) for the states error has been adopted for the purpose of

comparison.

RMS = iez(z’} /n

- /

where n is number of the simulation steps, e(i)is the difference between the state

variables in model and system at i step. For state variable x,, the RMS value is

0.232782 and RMS for state variable x, is 0.149096.

The results in Figures 3.2-3.8 demonstrate that the identification performance has been
improved compared to those in [15]. It can be seen that the state variables of dynamic
mu]ti-tvime. scale NN follow those of the nonlinear system more accurately and quickly.

The eigenvalues of the linear parameter matrix are shown in Figure 3.8. The eigenvalues
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for both A and B are universally smaller than zero, which means they are always stable

matrices.

b) Now we consider model (3.16) with multi-time scales. The small parameter € is

selected as 0.2. The sigmoid functions are chosen as

L (3.17)
1+ exp(—bx)

The parameters for each sigmoid function in dynamic neural networks are listed in

Table 3-1.

Table 3-1 Sigmoid function parameters

a b c
o,(x,y) 2 2 0.5
4 (x.v) 0.2 0.2 05
o,(x, ) 2 2 0.5
é,(x,3) 0.2 0.2 -0.5

The results are shown in the following Figures (3.9-3.14).
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Figure 3-9 Identification result for x;
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Figure 3-10 Identification error for X3
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Figure 3-11 Identification result for x;
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Figure 3-12 Identification error for x;
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Figure 3-13 The eigenvalues of the linear part matrices
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Figure 3-14 The learning process of the updating weight matrices

For state variable x;, the RMS value is 0.139102 and RMS for state variable Xx; is
0.116635. The results in Figures 3.9-3.14 demonstrate that the state variables of dynamic
multi-time scale NN follow those of the nonlinear system accurately and quickly. The
eigenvalues of the linear parameter matrices are shown in Figure 3.13 The eigenvalues
for both A and B are universally smaller than zero, which means they are kept as stable
during the identification. Figure 3.1_4 shows the learning process of the updating weight
matrices of the dynamic NNs.

Example 2: In 1952, Hodgkin & Huxley proposed a system of differential equations
describing the flow of electric current through a surface membrane of a giant nerve fibre.

Later this Hodgkin-Huxley (HH) model of the squid giant axon became one of the most

44



important models in computational neuroscience and a prototype of a large family of

mathematical models quantitatively describing electrophysiology of various living cells

and tissues[12][17].
”2_’: - _C—'l—(]ext—é,( W'V +E —E)-g mh(V+E, -E,)
M
~-g,(V+E, ~E))
ﬂ %:nw—n | | (3.18)
T
dm _ m, —m
dt z'I"
dh _h,—h
dt T,

where time t is measured in ms, variable V is the membrane potential in mV, and n, m
and h are dimensionless gating variables correspbnding to K+, Na+ and leakage current

channels respectively, which can vary between [0,1].

n, = = : m, = - " /]’Lw = :
) an+ﬂn ) a.1+ﬂm . O,/’i_*_rﬁh
1 ' 1 . I .
2—n = Zm = Z-/i =
an + n am + /8771 a/l + [))Iz
0.01(10— V) 0.1(25-V) o
&=y %wT sy a,=0.07¢ »
eT —1 eT -1 1
v .F B = 30-F
B, =0.125¢ B, =4€ 1 0 +1
g

Kk = 36mS/cm* g, = 120mS / cm’ g = 0.3mS /cm*

t

« =—12mv E, =115mv E| =10.599mv C,, =1uF/cm?
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From the electrophysiology point of view, the most important state of the HH system
is the membrane potential V which has multifarious electro-physic phenomena and is also
the core of the numerous former researches.

Instead of using the original HH model, we use the (2, 2) asymptotic embedded
system [12]. We take the modiﬁed HH model with the effect of extremely low frequency

(ELF) external electric field E_ which serves as the other control input besides the

external applied stimulation current/ .

Since numerous researches have been carried out on applying various stimulations to
HH model, whether the states of NN can still follow those of the HH system with these
different stimulations becomes our first priority. So some classic inputs are applied to the
system.

Iext=1 A, (cosw,t +1)
o ! (3.19)
E =14, cosopt

where @, , =27f, ., and all the initial conditions for the HH system are the equilibrium
(quiescent). ¥V, =0.00002, m, = 0.05293, h, = 0.59612, n, =0.31768.

We pick two typical stimulations which can result in significant and classic neuron

excitation:

ay E =0, 4, =30pud/cm’, f, =10Hz, £ =0.2.
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Figure 3-15 Identification results

In the plot for state V, n, m, h, the real lines are the real state variables for the HH system

and the dot lines represent the identification state in the NN. The second plot is the

identification error for the membrane potential.
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Figure 3-16 Eigenvalues of the linear matrices A, B

b) I, =0, A, =10mV, f, =115Hz, £=0.2.
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Figure 3-17 Identification results
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In the plot for state V, n, m, h, the real lines are the real state variables for the HH system
and the dot lines represent the identification state in the NN. The second plot is the

identification error for the membrane potential.
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Figure 3-18 Eigenvalues of the linear matrices A, B

In simulation a), System is in 8/1 phase locked oscillation periodic bursting. RMS
value of the state variables are RMS,=0.074642, RMS;=0.083497, RMSy=0.438275,
RMS,]1=0.035473. In b), System is in same frequency periodic spiking. RMS value of the
state variables are RMS,=0.05695, RMS;=0.061458, RMSy=0.86327, RMS,=0.060288.
The time scalei_is considered by putting € = 0.2. From Figures 3.15-3.18, we can see that
the states of NN model can follow those of HH model very closely. The identification
performance of the proposed algorithm is very good, especially for the membrane

potential. The eigenvalues of A and B for a) and b) converge to the same steady values

since the nominal linear matrices 4~ and B~ do not change with different inputs.
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3.2 NN-based adaptive control design

Traditional nonlinear control techniques have been developed and applied for many
decades, but they are not efficient when facing the plants with incomplete information.
The past decade has witnessed great activities in neural networks based control for the
models with nonlinearity and uncéﬂainty. The tracking problem is investigated based on

the identification results from Section 3.1.

3.2.1 Tracking error analysis

From section 3.1 we know the nonlinear system may be modeled by dynamic neural
networks with the updating laws (3.8):

x = Ax+Wo,(x, y) + W,6,(x, VU + Af,

3.20
& = By + W0, (x, )+ Wb, (x, U + &, o

where the model error and disturbances Af. , Af,, are still assumed to be constrained as
before. And also W, ,, , are bounded as well as other stability properties in Section 3.1.

The model error in most cases could be zero or negligible, however, even if the
dynamic neural networks have superb I_eaming ability to represent the nonlinear dynamic
process, the model error are sometimes inevitable or even may affect the stability of the
system. The following controller design considers this model error for more general
situations.

Hence, the control goal is to force the system states to track the desired signals, which

are generated by a nonlinear reference model

'i‘d = g_\‘ (xd7,vdrt)

. (3.21)
Vi =8.(x,,¥,51)
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The overall structure of the neural networks identification and controller is shown in

Figure 3.19.

X4.Yd

vEC

xnm)’nn

Figure 3-19 Identification and contro! scheme

We define the state tracking error as

E =x-x,

3.22
E =y-y,. (3-22)
Then the error dynamic equations become:

EX = Ax+W,0,(x,y) + W, (x,)U +Af — g, (3.23)
¢E, = By+ W,0,(x, ) + W, 8,(x, U + Af, — g . '
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Then the control action U is designed as
U=u, +tu,, (3.24)
where u, is a compensation for the known nonlinearity and u , are dedicated to deal with

the model errors, which can be left open if it is zero or ignorable. Let u, be

_[Wm (x,%) ] ,
uL = uL
(1/5)W4¢2 (an’)

it e Ve ]
’ (I/S)BJ’d (1/5)W3O-2 (x,¥) (l/g)gy

The control action u, is to compensate the unknown dynamic modeling error. The

(3.25)

sliding mode control methodology is applied to accomplish the task. So let u, be,

..W X, . -1
o <|Ti ) J (3.26)
(/s (x. ») | :
o —u;ﬁ_ - AE —k, sgn(E) 3 27)
Y= iy || (Y)BE, — (/e )k, sen(E ), | |

The modeling error and disturbances are assumed to be bounded. Hence we have

I < oF o | < A7 (3.28)

Theorem 3.3: Consider nonlinear system (3.1) and the identification model (3.2).
With the updating laws (3.8) and contro! strategy (3.24), we can guarantee the following
stability properties:

1) Ax, Ay, W, ,,,,A,Be L, and Ax,Ay € L,

2) limAx=0,limAy =0 and imW, =0,i=1,---4.

= w2 >
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3) imE, =0,imE, =0

1-—yoC 1>

Proof : If we consider the identification and control as a whole process, then we can

apply the strategy to real applications by generating the final Lyapunov function
candidateas V =V, + V. | |

In section 3.1, we had already proved V, <0and the stability properties in Theorem
3.1. Now let’}s consider the Lyapunov function candidate for control purpose

V.=EE +ELE, | (3.29)

First rewrites (3.23) as

E|_[ax ] oGy | W@ o 1 (e
L‘] - [(l/s)B};] + [(1 W0 (x, y)} + [ (oW (x,y)]U + [ e f} - [ ( /g)g“} (3.30)

Then substituting (3.25) into (3.30) obtains

E;_ AE, _+ Wa(x.yy | | | (3.31
E | |WeBE | | (eg e |1/, ] ey

If the model error and disturbances are zero or negligible which, from the control

point of view, means it won’t devastate the stability of the system, #, can be chosen to

be zero which will lead the error dynamics converge to the origin. Proof is quite
straightforward since A and B are stable matrices and ¢ is positive.

Then substituting (3.26) into (3.31) yields

E, =AE +u + A,

32
E, =(/e)BE, +u, +(1/£)Af,. (3-32)

By using (3.32) and (3.27), we obtain the derivative of (3.29) as
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V.= 2£ETE +2£7E,
=2ET(AE, +u'y + f,)+2E] (| €)BE, +u'y +(1/£)Af,)

=2k |E |+ 2E] 1, - 20/ )k, |[E, |+ 20/¢)acy" &,
<2k JE |+ 2)E o] - 20/e)k, | E |+ 20/ ) E, |||
=2k, ~|ar.DIE. |- 20/ )k, - |1, lE |

If we choose k, > Afx,k}__' > Af‘ , then ¥V, <0. Hence, we have stability properties 3)

HmE, =0,imE, =0,and V =V, +V, <0.

150 P
With consideration of the modeling error and disturbances, the sliding mode control
logic (3.27) can guarantee the tracking stability without the assumption that A and B are
stable matrices.
The controller involves matrix inversion which can guarantee the non-singularities by
choosing the proper initial values of the parameters in the updating law and the activation

tfunction.

3.2.2 Simulation results of control scheme

We continue the process in Section 3.1 for nonlinear system (3.16). Instead of using
input signals sinusoidal wave and saw-tooth function, we implement the control law to
obtain the control signal to the nonlinear system (3.24). It constitutes a feedback
linearization and a sliding mode compensator. The desired trajectories are generated by

the reference model

K (3:33)
Y, =SInx,,
with the initial value x,(0)=1, y,(0)=0.
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Figure 3-20 Trajectory tracking of x
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Figure 3-21 Trajectory tracking of v
The time scale is considered by putting € = 0.2. From Figures 3.20 and 3.21, we can
see that the states of the nonlinear system can track the desired trajectories in 20 seconds.
For state variable x, the RMS value is 0.5246 and RMS for state variable y is 1.641411
Since the small parameter accelerate the state y, it takes relative more time for the state of

the system x to track the reference signal. The simulation results demonstrate that the
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proposed identification and control algorithm can guarantee the tracking performance of

nonlinear and uncertain dynamic systems.

3.3 Conclusion

In this chapter we propose a new on-line dynamic multi-time scale neural networks
identification algorithm for both dynamic neural networks weights and the linear part
matrices for nonlinear systems with multi-time scales. The proposed algorithms are
applied to identify a second order nonlinear system with multiple equilibriums and the
famous well-studied HH model which has complicated and multifarious system
performance when different inputs applied. Both identification results show the
effectiveness of the proposed identification algorithms.

Furthermore, we propoée an adaptive control method based on dynamic multiple time
scales neural networks. The learning algorithm of the linear part ma‘tﬁces is applied to
provide more flexibility and accuracy of nonlinear system identification. The controller
consists of a feedback linearization and a sliding mode-based compensator to deal with
the unknown identification error and disturbance. Simulation results showl the

effectiveness of the proposed identification and control algorithms.
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Chapter 4 Improved NN based Adaptive Control Design

In Chapter 3, we introduced an on-line dynamic updating law for a selected multi-
time scale neural networks structure via Lyapunov method and then proposed a control
strategy by combining feedback linearization and sliding mode methods. To further
improve the performance and‘ stability of the cbntro]ler, we propose a new identification

and control scheme with a modified neural network structure in this chapter.

4.1 Improved system identification

In chapter 3, we use the signals from the actual system in the neuron networks to
identify the nonlinear system (3.1). This may simplifies the identification and‘control
procedufe, but the control law will depénd on the actual signals of the nonlinear system.
Also, this'may risk the stability of the neural network because it is related to the output of
the real ‘system’. In order to conquer this flaw and also simplify the identification scheme,
we replace ball the output signals from nonlinear system with the state variables of the
neural networks in the construction of NN identifier and add constraint to the control
signal as \véll.

Consider the nonlinear system (3.1). In order to identify the system, we employ the

dynamical neural networks with two time-scales:

.\.' = Ax”)l + n/lo'l (Vl [xllll 2 yllll ]T) + 14/2¢1 (V3 [x)"l ? J;IIII }T )}/(U)

T

. (4.1
6))’!11 = B.ynn + WBO-Z (VZ [xllll 3 -ynn ]T) + W4¢2 (V4[xnn > ynn ]T)}/(U)’

where x e®R",y e ®R" are the slow and fast state variables of neural networks.

>

W, e R W,, e R"?" are the weights in the output layers, V,, € RV, e R
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are the weights in the hidden layer and o,=[c,(x,)---0,(x,),0,(3,)---6,(3 ) € * (k=1,2)
are diagonal matrices, ¢, = diagld,(x,) 6, (5.6, (1)- A, ()T € K™ (k=1,2),
U =[u,,u,,u,0,---0] e R* is the control input vector, y(-):R" >R’ | is a
differentiable input-output mapping function. 4€ R and Be R are the unknown
matﬁces for the linear part of neural networks and the parameter € is a unknown small
positive number. The activation funétions o, and ¢, are still kept as sigmoid function.

In order to simplify the an_aljsis process, we consider the simplest structure this time
whichmeans: p=qg=n V, = Vz =1 ¢()=1

n m ) ,+. W2 7(U)
g‘;. = Bynn + WiO-Z (xllll > yllll) + VI/-/I}/(U)’

-~ Hit

x = Ax + I/I/lo-] (xnn > .y

nn

(4.2)

4.1.1 identification with precise structure of NN identifier

In this section, we deal with the situation that the dynamic neural networks can

represent the plant precisely, which means that there exist nominal constant values of the
weight W', W, W, W, and unknown nominal constant Hurwitz matrices A", B such
that the nonlinear system (3.1) can be described by following neural network model:

= A x+W o (x,y)+ W, yU)

e * 4.3)
=B y+W,o,(xy)+W,yU)

Assumption 4.1: The difference of the activation function o,(), which is

6, =0,(x,y)-0,(x,,,¥,), satisfies generalized Lipshitz condition
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o &) Tax] L, ,

o, Ao, < D, =Ax" D\Ax+ Ay” DAy .
Ay Ay

4.4)

| A [Ax
&, A,G, { ] DZ[ y}zAxTDZAx+AyTD2Ay

where  o(x,) [0 (%)--0,(x,),0,() o )N € R (k=1,2) D/ =D">0
D, =D,” >0are known normalizing matrices.
Assumption 4.2: The nominal values W, , W, W, ,W, are bounded as
WA <, N, s
W, AW, <W, WA W, <W, o :

where A}',A;,A;,A7 are any positive definite symmetric matrices, W, W,,W,,W, are

prior known matrices bounds.

As we assumed in Chapter 3 that the state variables in system (3.1) are completely

measurable and still the number of the state variables of the plant is equal to that of the

neural networks (4.3). The identification error is defined as:

=xX—-X
it (4_6)
Ay = -y - ynn'
From (4.2) and (4.3), we can obtain the error dynamics
A)‘C = AtAx + ann + I/Vlﬁ:gl + n’\/'lo-l(‘xnn’ynn) + V?z}/(U) (4 7)

gAy = B*A)) + E—ynn + VV;&Z + WN/J'}O.Z (xnn ’-ynn) + n’\/;l]/(U)

where W,=W," —W,, W,=W, W, W=W, -W,, W,=W, W, and 4=4"-A4,B=B"-B.

Lemma 4.1[9]: 4 € R is a Hurwitz matrices,R,Qe R ,R=R">0,0=0" >0

if (A4, R")is controllable, (4,0"?) is observable, and
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AR'A-Q> % (4R~ R AR(AR —R4f

is satisfied, the algebraic Riccati equaﬁon A"X + XA+ XRX+(Q =0 has a unique
positive definite solution X = X" >0
Assumption 4.3: The matrices A*, B* are unknown nominal constant Hurwitz

matrices. Define

If one can select proper Oy , O Satisfyin’g the conditions in Lemma 1, there exist

matrices P,, P. satisfying the following equations:

ATP.+PA +PRP +0, =0

T * . (4’8)
B'P.+PB +PRP +0. =0 .

Theorem 4.1: Consider the nonlinear system (3.1) and identification model (4.2) the

updating laws for the parameters in the model

A=k hxx! B =1/ )z,
W'Y = 'I(I AJCO}T (xmi s :Vllli} I/VS = (1/5')[{3 A'yo-ZT (xlm 3 yun) (49)
WZ = '](2 Axu T¢1T (xnn H ynn} W4 = (1/8)](4A)7u T¢2T (xllll s yml )7

where k4, kg, k1. k>, k3, ksare positive constants
can guarantee the following stability properties:

1) Ax, Av, W14243,4’A’B el and Ax, Ay € Lz

2) imAx=0,limAy =0 and limW, =0,i =1,---4.

=y r—>o r—>on
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Proof: The Lyapunov synthesis method is used to derive the stable adaptive laws.
Consider the Lyapunov function candidate:
Vi=V.+V,

V. = AP A+~ 7T P o e P, o L o (T P A (4.10)
I k, k,

3 4 B

Hence, differentiating (4.10) and using (4.7) yield
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V, = (A4 PAx+ A PAY) +k3rr{2%2}+k3rr{ﬁ.’&ﬁ }+7f—tr{ﬁff?ﬁz}
g : 2

4 !
T T ST 0] G ) P

+ AP, [A*Ax +Ax, +W, & +W,o,(x,,,v,)+W, 7(U)]

Hn

+ —kz—tr{ZTP_‘,Z}+ f—tr{VIN/lTRVIN/, }+ %tr{ﬁfﬂl’% }
2

A ]
C=AT (AP +PA)AX
+ xImTZTPxAx + &ITVVIRETP.\‘AX+ O-IT (xnn ;yllrl)V’I\/llT‘PxAx + }/(U)T WZTP.\'AX
+ AT P Ax,, + ARG, + AT P 0,(x,,.,3,,) + AxT P,y (U)

+ itr{ZTPYZ}-F ztr{V’f/fP‘_VIN/, }+ itr{ﬁ']ﬂﬁ/z }
k, ' k, ' k, )

V.=(A)"P.Ay+ Ay P.AY) + 2 zr{fé' "PB }+ itr{V’tZTPJE }+ 3tz~{vr7[1{,vr74}
» ' ‘b kg ) k, ' k, '

= (I/s)[AyTB*’ + v BT+ GIW, 40T (x, v W+ UY W] ]P Ay
+ (]/S)AyTR [B*Ay + E))lm + W;&Z + WZO-Z (xnn ’ynn) + W4}/(U)]
+ 2 tr{grl"_l}}+ 2 tr {W;RWB }+ 2z tr%f}’ﬂz }

kg ' ky 7 k, )
=(/e)" (B P+ P.B" &y (4.11)
- (l/s)[vi,,fﬁ TPAy+ &I P Ay + 0l (5,7, Wi Py +y(U) f’im]
(20 P By, + & PG, + & P,y (5,0 3,) + AT Py (U))

< 1

L2 tr% "PB }+ 2 4 {14737 P, }+ LS {MZT PW, }
k| © T T IR R

Since all the terms here are scalar, therefore one has
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V.=Mx"(A" P+ PA)Ax+ 20 PW, &
+2Mx"PAx, + 20" PW,o,(x,,,7,,) +20x PW,y(U)

+ —g—tr{ZTRZ}Jr 2 tr{VI’;’]TRrW, }-l— —z—ti‘{¥4ZTRVI72 } '
k, ' k, k, S

V,=(1/e)n (B P+ P.B YAy + (/e 20 P, &,
+(/2Ry" BBy, + /228y PI,o,(x, ) + (29" PI i (v, )

2 tr{gTP‘__E }+ 2 tr{}/Z’R.VIZ }+ 2z tr{ﬁ[ﬂ@ }
PRt IR ‘

4

(4.12)

If we applying the adaptive law as (4.9) and taking the following facts into

consideration:

A=-A,B=-BW,,,, =W,
20x" P, Ax,, =20, AxT P, A}

QT PV (%, v,) = 20730, (x,, v, )AXT PV}
285 P,y (U) = 2y (U)Ax" PIV, §
28y" P By,, = 2n«{y”n A" PB }

2897 P, (x, ) = 2070, (v, 1) Ay P, |

2497 P, VIN/4 P, (x, )= 21‘;‘{;252 (x, y)Ay TP‘.W f }

nn

(4.12) becomes



V.= (A" P+ PA )N+ 20 PW, &

= 2tr{[x""AxT + £— ZT )RZ} + 2!}'{(0‘, (x,,, ¥, ) + %1— VI;/IT ]PJ/IN/}
1

4

+ ZII'{[}/(U)AxT + kl W Jg WZ}

2

= AxT(A7 P+ PA)Ax+ 205 PW, &

V, = (1/a)AyT(B”R,. +P B YAy + (l/g)ZAyTR_W;FZ_ (4.13)
(1/8)2tr{[y""AyT + f— BT )RE} + (1/8)2tr{0'2 (x, AT + ki I/IZT jP‘I/IZ}
B o 3
+(1/ E)Ztr{((éz (x, Ay + % Vf-’f )P‘I/INQ}
= (i) (B P, + PB YAy + (/)28 P, G,
Using the following matrix inequality:
(4.14)

XY+XY) <X'AN'X+Y'AY
where X.,Y € R”" are any matrices, A € R”* is any positive definite matrix. From

Assumptions 4.1, 4.2, one obtains

20T PWG, < AXTPW AW PAx+ 8 A5,
< AT PW,P.Ax+ Ax" D,Ax + &y" DAy

280" PW;E, < AT PW, AW, PAY + 5, A5, (#-13)
< AV PW,P.Ay + Ax" D,Ax + Ay" D, Ay

Hence, from (4.13), one has

V.<MT[ATP.+PA +PWP.+D,+(/e)D,)Ax
= AX[ATP.+P A + PWP +D,+(/e)D, + 0, 1Ac— AT Q, Ax
V, <(1/)S, A" [B7 P, + P.B' +PW.P, + D, +¢D,JAy
(1/£)S, A" [B7 P, + P.B + PW,P, + D; +&D, + 0, JAv — (/) O, A

(4.16)
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Then applying the Assumption 4.3, we can get

¥, =0 Ax= A <0V, =—(1/2)0 0, A~ (U)W, <0
T 2 : - = (4.17)
V=V +V, <0

where V_, V., are positive definite functions and V'X,V_r <0 can be achieved by using the

¥

learning laws (4.9) which implies Ax,Ay, W, ,,,,4,B€ L.

Furthermore, x, =Ax +x,y, =Av+y are also bounded. From the error dynamics (4.7),

>"“nn

we can draw the conclusion that Ax,Ay e L_. Since ¥V, V, are non-increasing function

)

of ‘the time and bounded from below, the limits of Ve, V, (hmV_, =V _ (®)) exist.

Ther_éfore by integrating V., V. on both sides from 0 to o, we have

X 1

JIM, =00 @<

[}, = et7, ) -, ()] < 0

(4.18)

which imply that Ax,Ay € L, . Since Ax,Ay € L, (1L, and Ax, Ay e L, using Barbalat’s

Lemma [13] we have limAx=0,limAy=0. Given that the control input U and

[— o I

o, ,(),9, ,() are bounded, it is concluded that lim W,, =0, limW,, =0.

1>

The structure of improved identification scheme is illustrated in Figure 4.1.

65



T . Dy‘lnamic’ Xon. Yon
| NewalNetwork,

y

Figure 4-1 Improved Identification Scheme

4.1.2 Identification for nonlinear systems with bounded un-modeled

dynamics
For more general and realistic situations, we will consider the case where the dynamic
neural network (4.2) does not match the given nonlinear system (3.1) exactly. Then we

can define the modeling error as

Af. =1 - (A*x +W, o, (x”y). + W;}/(U))

e s (4.19)
A, = e f, — (B y+ 170, (x, ) + W, 7 (U))
Now the nonlinear system can be represented as
x=Ax+W o, (x, )+ W, y({U)- A,
L ’ ' (4.20)

g)‘; = B*J/' + W;O’z (‘T,)/') + VV;}’(U) - Af‘

where W, W, ,W, ,W, are unknown nominal constant matrices, the vector functions 4f,
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,Af, can be regarded as modeling error and disturbances which are assumed to be

S Af, and A*, B’ are unknown nominal constant Hurwitz

< Af,

bounded as |

matrices.
If we defined the identification error same as in (4.6), the error dynamic equations
become

A* = A*Ax + Zx"" + mggl + Wlo-l (xll"’yl;") + W;}/(U) + A-/; |

. ~ . ~ ~ 4.21)
SAy = B Ay + Bynn + I/V3: 52 + I/V.’>O-2 (xmz’ylm)+ VV47(U) + Af;
where W =W, —W,, W,=W, —W,,W,=W, - W, W,=W, ~W,and A=4"- 4, B=B"-B.

Assumption 4.4: The matrices 4* B* are unknown nominal constant Hurwitz

matrices. Define

R =W+A] Q. =D +(1/g)(S /S.)D,+0,,
R}, = W; + A__,: Q1 = D3 + 8(5,\'/‘3__\: )DI + Q_\‘o

where the function S_, S, are defined as

I 7 H
H. . '

where [ ]+ =max{e ,0} , and

| A (P) (D)H
H-: max /1 A mn 1
g a5 T @)
Arnax (B, 2 A (Dy)H?
H o= [mm v (3 (A )AF? + LoatZ3/ e
J J}Lmin(Q_l'a)( '"‘“( )f /,{'min(}?\-) )

If one can select proper Oy, , O, satisfying the conditions in Lemma 1, there exist
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matrices P,, P, satisfying the following equations:

A"P+PA +PRP +Q =0

*T * (4’24)
B'P,+PB +PRP +0 =0

Theorem 4.2: Consider the nonlinear system (3.1) and identification model (4.2) the

updating laws for the dynamic neural networks

121 = SxkAAxet-n B = (1/ g)S_}-‘kB Ay:y uTn R
I/i/] = Sxkleo-IT(xnn’ynn) I/V3 = (1/8)S)k3AyO-ZT (xnn7yml) (4'23)
W, =8 k,Axy(U) W, = (1/£)S,k,Ayy(U) '

where ky, kg, k;, k2, k3, kqare positive constants

can guarantee the following stability properties:
1) Ax, Ay, W, ,,., 4,8 L, and lim,, = 0,limW, , = 0

2) The identification error satisfies the following tracking performance
- ;o o A (DA
| sax'0 ax+(ye) [ s.4970 8y <Y, +T{[;Lm (A)AF2 + —[%J

+ (:l/"c;)(/’{llmx (AJ )Aﬁ ’ A“min <R) })

Proof: The Lyapunov synthesis method is used to derive the stable adaptive laws.

Consider the Lyapunov function candidate:

v v+,
v = ﬂ]P_j-”AxI[ - Hx}i + ;{l—zr{ﬁ/ﬁz 7+ kizr{WJQWZ b+ %l—n-{z "p i} (4.27)
1 2 A .
v, = mP_f" Ay - H ]i + kizr{VWP_ﬁQ }+ ki tr{fffP_;.VIZ }+ ker{E TR.E}
3 4 B
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Using Exercise 1 in section 4.2 in [ 18] and differentiating (4.27) yield

(Rreax) e
CCk

+ —2—11'{2TP‘Z}+ 2 tr»{WITPrVIN/I }+ itr{ﬁ’jﬂﬁfz }
k ' k, ' kg )

A

V2u -H,

=28 Ax"P A%+ izr{z TpA }+ En»{ﬁf,fp 7 }+ izr{ﬁ/j};ﬁg }
- ' kA kl - kB

py2 y)7
v, = 2B|P'/2Ay||—H LW—”P‘”A)’

+ itr{grﬂ,§}+ 2 tr{l/ETR,VT/} }+ —2—tr{¥/174TR,V174, }
kg ’ k ‘ k, '

3

=28 Ay P.AY+ in»{z? TPVE}+ itr{VT/;PJZ }+ -—z—tr{[474TR,VIN/4}
Ok Uk : k :

3 4

(4.28)

Since the neural network’s weights are adjusted as (4.23), the derivatives of the
neural network weights and matrices satisfy the following Wm?4 = VYN/I_ZM,, A=A4,B=F.

Using error dynamics (4.21), Equation (4.28) becomes

=S [AT(ATP + PA YA+ 205" PG, +26x P.Af,]

, e T T % T * e T - (4.29)
V.=58 (1/sfay (BT P + P,B )Ay+ 246y  PW, G, + 240 PAf,]
Using the matrix inequality (4.14) and Assumptions 4.1, 4.2; one obtains
20T PW, < AT PW, AW, P.Ax+ 5 A5,
< AX"PW P Ax+Ax" D,Ax+ Ay’ D, Ay
' (4.30)

207" P W, &, < Ay PW, AJW, P Ay + 5, A5,
<N PW,P Ay +Ax" D,Ax+ My’ D, Ay

and

69



2Ax" PAf, < AXT P AP Ax+ AT AL A,
2(1/e)ay" PAS, < (/XA PATP Ay + AfTA A, )

(4.31)
Hence, from (4.29) one has
V,<SA[ATP + P A +P.(W+A;))P,+D]Ax
+ S.\’AyTDl A.y + Sfo,‘\'TAZN,‘\' :
(4.32)

7, <(1/£)S,AV"[BT P, + P.B" +P,(, + A})P, + D, Ay
+(/e)s, A" D,Ax+(1/)S A ALY,

a) When the identification errors are both larger than the thresholds (i.e. Sx>0, S,>0).
One has
V\' S S.tAxT[A*TR' + }?\'A‘ +])\(I/T/l- + A;l )})\' +D] + (l/g)(S\/S\ )D3 + Q.ro]Ax
T S\'AXTQXOAX + S\Af;TAZA.f;‘

v, <(1/£)S, A [B7 P, +PB +P(W,+A})P, + D, +£(S./S, D, + 0, 1Ay (4.33)
~(1/£)S,07 0, v +(i/5)S, AFT ALY,

Then applying the Assumptions 4.4, one can obtain

V=V +V,

X

<-5 (m 0. Ax—AFTA N~ (12)S, (A7 0, Ay = BT B A, )

<8, (i @A ~ Ao AL - (7205, (s A = A A1 [
<5,z m,,,<Qw>nAxﬂ = A (5 )Af) /)5, (2 (@ = i (ADA?)  (439)
- Jel et - =07 |
“/)S;—(z%—))[ AJII%X(A)AJ’J

e (a2 )-re)s, 20 [ - )<

b) When the identification error of Y is smaller than the threshold, (S,>0, S,=0)
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From (4.32) one has ”P_‘?-"’szl <H,and V,=0

V=V, <SATLATP +PA +P(F,+ K)P.+ D, +(2)S, /5.0 + O, Jax
- S A0 Av+S ATAN, +S,89 DAy (4.35)

Then applying the Assumptions 4, one can obtain

V <—8 (A7 0, Ax— AT Ay Af, - Ay DiAY)
< _S.\' (ﬂ‘min (Q.\'a) AX|I2 - ﬂ'max (AZ )”Af:\ i - ﬂ’max (Dl )I|Ay”2 )

< =8| A (@A — A (A )Af_z—w (4.36)
> x{ ““min on | max 2 x /’{«min ( I)y) ] v .
— /’{min (on) 2 _ ﬂv’max (P\') 72 lmax (Dl )H)Zr

- S.\' ﬂmu (P‘,) [;{'max (1)\ )"AX" /1,“;“ (Q_‘.o) (Z'max (AZ )A.f; + ﬂmin (R) Jj

<-S M(

P - H?)<0
T (P)

X

¢) When the identification error of X is smaller than the threshold (Sx=0, S,>0)

- From (4.32) one has '[P“Ax” < H _and K =0

V=V, <(f&)S. AV [B7 P« P.B +P,(,+ N, )P, +D, +5(S./S,)D, + 0, 1Ay
—(1/e)S. A7 0, A +(£)S, AT A A, +(1/ €)S, A Dy (4.37)

Then applying the Assumptions 4.4 one can obtain
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v <~(1/2)S (870, Ay - AT A A, - AXT D,Ax)
<-(1/¢)s, (/1,,1;,,(Q_‘_(,)nAy"2 = A (M|, ”2 — A (D, )||Ax||2)

< _(l/g)S‘r(/lmin (Q_ro) Aynz - /’{‘mnx(Ad)Aj__‘\-z max (D(;[){ ) . (4'38)
/’i‘min (Qro) 2 nnx( ) A (D )H2 ]
=—l/g)S. ———={ A__(PAY| — A ___L“E}___—_
e, 5" ) ( -t x.,,.n(Q,,,)( R W) )
mm(Qm) /2 2
<-(/¢)s, ) (” Pyl - H) <0

d) When the identification errors are both smaller than the thresholds (Sx=0, S,=0)

One has ”PX"/2 Ax” <H, ”P‘?‘QAy” <H, and V=0.

Since V=V,+V, are positive definite, V= V'}r + V‘ <0 can be achieved by using the
update laws (4.23). | This implies Ax,Ay,W,,,,, A,Be L_. Furthermore,

=Ax+x,v, =Ay+y are also bounded. From the error equations (4.21), with the

Illl

assumption that error and disturbances are bounded, we can draw the conclusion

that Av, Ay € L . Since the control input »(U) and o, ,(-) are bounded, it is concluded

that lim Wl , =0, hm W =0

>

In Case a), one has

V <-8 (A0 Ax— AfTA, o, )—(1/5) (&70,. 80— AFTANS)

~S,Ax"Q Ax+8 A 1/£)S,8/70,, Ay +(1/€)S, A,
. A_(D)H?
~S AxXTQ_Ax+ S[ A (AN + 7_%) (4.39)

_(l/s)S},A);TQ‘,OAy+(l/s)S»( Ao (A IAFZ + Lx(%fﬁ]
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In Case b), one has

v <-S (A7Q, Ax— AfTALAf, - AT Dyy)
s _S.tAxTQ.\'oAx + Sx (/’lmax (AZ )llAﬂllz +4 ‘max (D )”Ay” ) (440)

- H2
-S AX"Q Ax+S (ﬂm(/\ )AS? —%—J

In Case c), one has

V <—(1/2)8,(Ay70,. Ay - AFT A A, - Ax D,AX)

< —(l/g)S),AyTQ_mAy + (l/{;‘)S‘ (/1'"2“ (A“)llAﬁ ” + lmax (D31 )"AXHZ) (44 1)
| i _ (I/S)S_,:AyTQ_‘,OAy + (I/E)S ( (A )Af %J

From the analysis above, we can get the conclusion that equation (4.39) can be used
to represent the derivative of Lyapunov function for all the Cases a), b), c¢), d).

Since0 < S, <1,0< S, <1, one infers

/ DH 2\)

l nn\(A ) f 'ﬂ\_’;

k Aol B ) (4.42)
(1/5)5 2" 0, By T(I/s{/’im\(/\ )AF? +&_<€,>TH)

Since V., V, are non-increasing function of the time and bounded, Vi(2), V,(0}, Vi(1),

V\(t) are bounded. Therefore by integrating ¥ on both sides from 0 to 7, one obtains

T m’i\ ])H2
V¥, <[ S.AX QAT Ay (M)A + 220
min( f) (4 43)

+ P (DIH?
A (P)

~(/e)[ 5,70, Ay + (/)T [A (AN +

Hence, the following inequality is held
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foAxTonAx + (1/8)[ S).-AyTQ_roAy

7 A (DDH? . 2
SV;—VT+ ﬂ'n11x(A2)Af;2+ i ( 1) 3 +(1/6‘)T lnm(/\zz)Aﬁrz-"M (4.44)
‘ » /‘{’min ¥ B ’ ﬂmfn (P\' )
A (D)H? . A (D)H?
<V AT A (ADAF2+ 2 3 L (e) A, (ADAf] + T
o [( max( 2)-.fr ‘ ﬂmin(]z_) ] (/8)( max( 4) f“ lm,'n(l?‘)

Remark 4.1: Sy and S, are the dead-zone functions which prevent the weights drifting
into infinity when the mode]irig error presents [19]. This is known as “parameters drift”
[20] phenomenon.

It is noticed that H;, Hy are thresholds for the identification error. For the case (a),

where S,>0, S,>0, i.e. “Pt‘zAx” >H_, le" 2Ay“ > H ., smaller thresholds as in (4.34) could |

be used, but we extend those to H, , H, to uriify the thresholds for all the possible Cases

a), b), ¢), d) during the entire identification process.

4.1.3 Simulation results

To illustrate the theoretical results, we use the same systems in Chapter 3 for

demonstration.

Example 1: Let us consifder the nonlinear system (3.16) where we use the same
parameters a, =5, a, =-10, f,=3, £, =2, x(0)=-5, x, (0) = -5, and same input
signals are adopted as where v, is a sinusoidal wave (u,=8sin (0.05t)) and u, is a saw-
tooth function with the amplitude 8 and frequency 0.02Hertz. The small parameter € 1s

selected as 0.5.
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The Sigmoid functions o, ,(-) are chosen as ]—%}—) - ¢ and the parameters for each
+exp(—bx

sigmoid function in dynamic neural networks are listed in Table 4.1

Table 4-1 Sigmoid function parameters

a b c
o,() 2 2 0.5
o,() 2 2 0.5

3 }

: - X1 ’ . Xnn
2‘ I ;/\\ 7 [N
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Figure 4-2 Identification result for x;
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Figure 4-3 Identification error for x
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Figure 4-6 The eigenvalues of the linear parameter matrices A, B

The on-line identification results on the systém are shown in Figs 4.2-4.6. From these
figures, it can be seen that the state variables of the dynamic multi-time scale NN follow
those of the nonlinear system accurately and quickly. The eigenvalues of the linear
parameter matrix are shown in Fig.4-6. The eigenvalues for both A and B are universally
smaller than zero, which means they are always stable matrices. For state variable xi, the
RMS value is 0.049168 and RMS for state variable x; is 0.022158. The identification
results are better than those in Chapter 3.

Example 2: We consider the Hodgkin-Huxley system (3.18) with same parameters.

We also focus on membrane potential E and use ELF external electric field E and

stimulation current /_, in (3.19) as the control inputs.

Case A: By = 0, A;=30pA/cm?, fi= 10Hz, £ = 0.2.
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Figure 4-7 Identification results in Case A
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The solid lines are the real state variables (n, h, E. m) for the HH svstem ar

represent the identified states of the NN. The forth plot is the identification error for the

Figure 4-8 Eigenvalues of the linear matrices A, B in Case A

membrane potential.
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Case B: Ix=0, A;=10mV, fg=115Hz, £ = 0.2.
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Figure 4-9 Identification resulis in Case B
The solid lines are the real state variables (n, h, E, m) for the HH system and the dot lires

represent the identified states of the NN. The forth plot is the identification error for the

membrane potential.
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Figure 4-10 Eigenvalues of the linear matrices A, B
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The identification results are presented in Figures 7-10 for (2, 2) asymptotic
embedded HH model. In Case A, System is in 8/1 phase locked oscillation periodic
bursting. RMS value of the state variables are RMS,=0.333511, RMS;=0.335092,
RMSy=0.639899, RMS,,=0.322476. In Case B, system is in the same frequency periodic
spiking. RMS value of the state variables are RMS;=0.140449, RMS;=0.147785,
RMSy=0.784985, RMS,;=0.07245. The time scale is considered by putting ¢ = 0.2. The
flexibility of linear part matrix 4 and B enhance the identiﬁcatién ability of the neural
identifier. Even the single layer structure is powerful enough to successfully follow the
complicated electro-physic phenomena from HH model.

The simulation results of two nonlinear systems demonstrate the states of dynamic
multi-scale neural networks can track the nonlinear system state variables on-line. The
identification errors approach to the thresholds. The eigenvalues of A and B converge to

the steady values in both system identifications.

4.2 Multiple control methods based on Neural Network

In this section, multipie control methods are applied to accomplish the tracking task.
We will utilize direct compensation, Sliding Mode Control and feedback linearization as
our main control tools. The tracking problem is investigated based on the identification

results from Section 4.1.

4.2.1 Tracking Error Analysis

As we mentioned before, even if the dynamic neural networks have superb learning

ability to represent the nonlinear dynamic process, the modeling error are sometimes
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inevitable or even may affect the stability of the system. So the nonlinear system can be
represented by dynamic neural networks with the updating laws (4.23):

x=Ax, +Wo,(x

nn

Vi) + Wy (U) + B,

m??2 nn

& = By,, + W,0,(x,,,5,,) +Wy(U) + 4,

< nn s nn

(4.45)

‘where the model error and disturbances Af, , Af,, are still assumed to be constrained as

X

=,

Af."“S A]_”‘ Also Ax,Ayand W,,,; are bounded as well as other stability

properties in Section 4.1.2.
' Then we can reform (4.45)

x = AX + VI/;O_] (xnn > -:VIIII) + I/1/2}/(l]) + d.\'

& = Br+ W0, (x,,,3,,) + Wy (U) +d,

nn < nn

(4.46)

nn

where d =Af +Ax

nn

~Ax=N_ - AAx,d =Af +By, —By=A,—-BAy. I{Af 4,

and Ax,Ayare all bounded, d..d. can summed to be bounded as well, like

o< .Ja | <,

‘The desired time-varying trajectory is defined as (3.21) in Chapter 3 with time-scale
parameter embedded.

.As the new structure of neural network consists of the state variables of neural
network itself only, the overall structure of the neural networks identification and
controller is showﬁ in the following figure. The control law is independent on the actual

signals from the real systém.
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Figure 4-11 New Identification and control scheme

We define the state tracking error as

E =x-x,
' (4.47)
E(r =y-y,-
Then the error dynamic equations become:
EY = Axnn + PI/O— (XHII’J;IIN +W U +d\' - O\‘
. 19} Y+Wy(U)+d, - g (4.48)

gE)‘ = B-«VIIII + W/BO-Z (xnn 2 -ynn) + W;]/(U) + d’r - g.\' .

If we consider the identification and control as a whole process, then we can apply the

strategy to real applications by generating the final Lyapunov function candidate as
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V =V, + V.. Since we had already proved ¥V, <0and the stability properties in Theorem

4.2. Now let’s consider the stability analysis for tracking purpose.

4.2.2 Improved controiler design
Again we the control action U is designed as

U=u, + u,, (4.49)

where u, is a compensation for the known nonlinearity and u , are dedicated to deal with

the model errors, which can be left open if it is zero or ignorable. Let u, be

u, = u .
Colyew )t |
: (4.50)
ll’ _ Axd N VV;O’I (xnu 2 .)';un ) + g\
’ (I/g)Bv(l (1/8)14/30-2 (xm:’yun) (I/g)g\
The control action u, is to compensate the unknown dynamic modeling error. The

sliding mode control methodology is applied to accomplish the task. So let u, be,

U, = y Uy =\, ,
e, ] " [/, 4 1M

First rewrite (4.48) as

e Ml o o i b
.| L0/e)By,, ) (0o, Cony)] (e, | |, | |(fe)g, |

1 E,

| (4.51)

Then substituting (4.50) into (4.52) obtains

E]: {gZY)BE.r}L ﬂf/zs)m }“v" ’ {Z}s)d_l (4.53)
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If the model error and disturbances are zero or negligible which, from the control

point of view, it won’t devastate the stability of the system, u, can be chosen to be zero

which will lead the error dynamics converge to the origin. Proof is quite straightforward
since A and B are stable matrices and ¢ is positive.

Then substituting (4.51) into (4.53) yields

E, =AE +u +d, :
. ' S (4.54)
E =(/e)BE, +u, +(1/e)d,.

a) Direct Compensation

If the identification procéss is stabilized as we proofed in Section 4.1.2, the modeling

errors can be calculated asAf, =x-X,,,Af, =y—y, . So if the derivatives of all real

signals are available, we can compensated the dynamic modeling errors with

T {d_\_ } [af - Adx ) _{_\'-—x,w ~AAx ] 4ss
HrT E_u’.. 1 e, | e )ar, - BAy}_ - ey -y, - BAv) (4:53)

Theorem 4.3: With the control strategy (4.52), we can guarantee the control errors

are globally asymptotically stable as im £ =0,lim £, =0.

1—>C

Proof: By using (4.54) and (4.55). the error dynamics become

X X

E, = AE | (4.56)
E, =(l/¢)BE, -

Hence, we have stability propertieshimE = 0,limE =0.

o
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The controller involves matrix inversion which can be guaranteed non-singularities
by choosing the proper iniﬁal value of the updating law and the parameter of the
activation function. |

b) Sliding Mode Compensation

If the derivatives of real signals are not available, we can compensate the dynamic

modeling errors with sliding mode technique with the assumption that d_,d, are assumed

to be bounded as |4 || < 47.\_,“61.‘. “ <d,.

wy | [-k P sgn(E) |
i I e | 4.57
) {”J [— (/)P sgn(E_,..)J (4.57)

(P)d, k. >2.,(P)d, , P, P are the solutions of (4.58).

max max

Where k> A
Since the matrices A, Bare unknown nominal constant Hurwitz matrices, there
definitely exist matrices P., P. which can be chosen to satisfy the following equations,

where O, O, are positive definite symmetric matrices:

AP +PA=-0,

(4.58)
B'P.+PB=-0.
Theorem 4.4: With the control strategy (4.56), we can guarantee that the control

errors are globally asymptotically stable aslim £, = 0,lim £ =0.

= . o0

Proof: Since we had already proved ‘V, <0 and the identification stability properties
in Theorem 4.2. Now let’s consider the Lyapunov function candidate for control design

purpose:
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V.=E,PE +E.PE, | (4.59)
By using (4.54) and (4.57), we obtain the derivative of Lyapunov candidate (4.59) as

V.=E/PE . +E.PE +E/PE +EPE,
=(E]A" +u'y +d)PE +EP(AE, +u/; +d))
+(/eNE;B" +au] +d])P.E +(/sXBE, +eai, +d,)
=ET(A"P.+ PA)E, +2E! Pu', +2E Pd,
+()/€)E] (B'P,+ P.B)E, +2E Py, +2(/¢)E] Pd,
=-E[Q E, -2k |E|+2E]Pd, -(/e)E]Q,E, - 2(/e)k,|E, |+ 20/2)E] Pd,
< —ETQ, E, ~ 2k JE,|+ 2, (PE .|
~(/)E]Q,E, — 20/ )k |E, |+ 20/2)A,. (P)|E. ||,
<—E1QE, =2k, ~ A, (PYAE |- (/£)E[Q, E, =2/ )k, = Ay, (P |E, |

max
<0

Hence, we have stability propertieslimE_ = 0,limE =0.
>0 -

I—o2
¢} Energy function Compensation
In this case, we use the assumption that the modeling errors are bounded. Then we

define

; u_’ﬁc - zR:]P\'Er . (4 60)
U, = = .
Toluy | | -20/e)RIPE,

whereR =R, >0,R =R] >0

Assumption 4.5: Since the matrices 4, B are Hurwitz matrices. If we define
R =A'R =N\ one can select a proper Q. , 0, satisfying the conditions in Lemma

1, then there exist matrices P;, P, satisfying the following equations:
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A'P.+PA+PRP,+Q, =0
B'P,+PB+PR.P,+Q,=0

(4.61)

Theorem 4.5: With the control strategy (4.60) and assumption 4.5, we can guarantee

the following stability properties:

\ +lim supl [ ¥

.1, el <l

r
A +”uf"lk L

(4.62)
I+l < ”d [ +limsup! g W, Y

whereW(u'y) = 2E] Pu'y +us Ry, W(u'y) = 2E] Pu'y + (/€)' Ry, are defined as
energy functions.

Proof: Since we had already proved ¥, <0and the identification stability properties
in Theorem 4.2. Now let’s consider the Lyapupov function candidate for control purpose

V.=V, +V,
V.=E!PE, V.=

(4.63)
ETPE,

By using (4.54) and (4.60), we obtain the derivatives of Lyapunov candidate (4.63) as

V.=EPE +E!PE,
=(E;A" +u}y +d)P.E +E]P(AE, +u, +d )
=E[(A"P.+ P A)E, +2ETPu +2E'Pd_

4.64
V.=ETPE +E[PE, (69
=(/e(E[B" +eu, +d])PE +(1/e)BE, +eu), +d,)
=(/€)El(B'P,+ P.B)E, +2E  Pu', +2(1/s)E Pd,
Using the matrix inequality (4.14) one obtains
2E[Pd <E/PAN/PE +dAd,
(4.65)

20/e)ETPd, <(/e\ETPA'PE, +dTAd,)
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Hence from (4.64) one obtains

V.<EN(A"P,.+PA+PA!P.+Q)E —E/QE +d A d +2E Pu',
=-E!Q.E, ~u Ru', +d A d +2E Pu +u"R 'y
=—E]Q.E, —u Ru'y +d[A.d, +P(uy)
V,<(/€)El(B'P.+PB+PN,P,+0)E, ~(/e)E/Q.E, +(Je)d[A d, +2E]Pu),
=—(/e)E, Q. E, ~( g Ru', +(1/e)d] A d,+2E Pu'y + (/&) R v,
=—(/8)E,Q.E, — (/e R ufv+(1/£)dTA d, +‘P(u )

(4.66)
We reformulate (4.66) as

EIQE +u{Ruly <d/Ad +¥,)-V,

: (4.67)
(/6)ETQ,E, + () R’y <(£)d A d, +¥ (') -V,

Then integrating each term from 0 to 7, averaging them by t and taking the limit of

these integrals’ upper bound, we obtain:

”EXHZ +;u}v [; <id. 1 +limsup— g‘{’(u Yt + lmeLp(—— g” dr)
1 . - (4.68)
;“Elnzg +; ' ” “d ” +11m nsup— E‘P(u )dt +hm sup(—— EV dt)
[Ex 0. —11_1)fxgsup fE QO E dt ”E “ —hmsup IE Q.E, dr
where “ul/‘”i = !2];1 sup%- .u_'/': R dt ”u = 11_1)1} sup— ‘E’u T Rupdr
[ . 2\ = 11_1)13 sup% ‘[d:Axdxdt ”Af “ = hmsup [a’r/\ d . dt

Considering the Lyapunov functions V,, V) are always positive, one can have
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limsup(— 1 _[ det) =lim sup(— 1 V(t)+ 1 Vx(O)) <lim sup(l Vv, (O)) =0
7—>w T T—>o2 T T T ® z' A
(4.69)

hm sup(—l [Vydt) = limsup(— ! I/;,(r)+iVy (0)) < limsup(l V;(O)) =0
7@ T 7 T T el T
| Hence, we have stability properties (4.62). Then the right sides of (4.62) decide the
threshold of the trajectory tracking errors. Now the task is to minimize the energy
function
Y(u'y) = 2E] Puly +u'i Ru' Y (') = 2E] Py + (1) £)u' R ',

by

If we chose

u', =—2R.'PE,

(4.70)
u'y, =—2(1/€)R,'PE,

The energy function stays at zero.

4.2.3 Simulation result

Following the identification process in Section 4.1 for nonlinear system (3.16), we
implement the developed control laws. It constitutes a feedback linearization with sliding

‘mode controller. The desired trajectories are generated by the reference model

Xy = Ya

&, =sinx,,

(4.70)

with the initial value x,(0) =1, y,(0)=0.
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Figure 4-12 Trajectory tracking results using direct compensation
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Figure 4-14 Trajectory tracking results using energy function compensation

The time scale is considered by putting & = 0.5. From Figures 4.12-4.14, we can see
that the states of the nO{llinear system can track the desired trajectories for the three
different control methods. Although the first method needs full information about the
derivative of the real signals, the tracking performance is the best according to our
theoretical analysis, since it direcﬂy compensate the modeling errors. The other methods

have extensive disturbance at beginning, but the tracking errors will be adjusted to stable
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or under the threshold. Therefore, we can draw the conclusion that the proposed
identification and control algorithm can guarantee the tracking stability of nonlinear and

uncertain dynamic systems.

To compare three methods, we list the RMS information in the following table.

Table 4-2 RMS for Control Strategies

X Y
Direct Compensation 0.000895 0.102215
Sliding Mode 1.361007 0.879036
Energy Function | 0.997788 0.678837

4.3 Conclusion

In this chapter we propose a new on-line identification algqrithm for both dynamic
neural networks weights and the linear part matrices for nonlinear systems with multi-
time scales. New structure of the dynamic neural network simplifies the identification
and control schemes. Then we propose three different control methods based on dynamic
multiple time scales neural networks. The controller consists of a feedback linearization
and one of three classical control methods such as direct, sliding mode or energy function
compensator to deal with the unknown identification error and disturbance.’ Simulation

results show the effectiveness of the proposed identification and control algorithms.
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Chapter 5 Conclusion and future work

In this study, an in-depth research has been carried out on the identification algorithm

and controller design for nonlinear singularly perturbed system by using dynamic multi-

time scale neural network.

The main contributions of this research are summarized as:

1

2)

3)

4)

An on-line identification algorithm is proposed for dynamic neural networks
with different time scales. Updating laws are developed for both the linear part
and weights of dynamic neural network.

Then tracking problem based on the identification results is investigated.
Feedback linearization method is utilized with additional sliding mode
controller in case of modelling error presemed.@w

The dead-zoon functions are design with the updating algorithm to prevent from
parameter drifting. The stability of the on-line identification algorithm is proved
by using Lyapunov function analysis for the modified .stmcmre of the dynamic
neural works which result in simplified the identification scheme.

The controller design consists of a feedback linearization and one of three

classical control methods such as direct, sliding mode or energy function

compensator to deal with the unknown identification error and disturbance.

Simulation results are compared with the existing works, which reveals that our

algorithm achieves better identification performance. The eigenvalues for linear part

matrix are all negative which supports the stability of the neural networks. In addition,
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the dynamic neural networks successfully follow the complicated electro-physic
phenomena the singularly perturbed HH system. The simulation results demonstrate the
fast and accurate convergent property of the proposed on-line identification algorithms.
Three control strategies are applied to the system based on the identification results. The
simulation results show that the controller can make the system satisfy the tracking

performance.

Possible future works are list as follows:

1) The vector function of the plant does not depend explicitly on time t, which
makes the system (2.2) to be autonomous. In this paper, we only consider this
kind of system. Future work can focus on dealing with nonautonomous system.

2) For the black-box models in this thesis, all the signals of stated variables are
assumed to be directly observable. If some of them are not available, observer
technique could be used.

3) For system identification, the input singles are also assumed to be available.
How can we identify a nonlinear system that opefates in closed-loop and is
stabilized by an unknown regulator?

4) The structure of the neural network 1is pre-selécted for general black box
problem. Evolutionary algorithm could be combined to achieve simpler optimal

structure and faster calculation speed.
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