
REPAIRING WEB SERVICE COMPOSITIONS BASED ON

PLANNING GRAPH .

Ludeng Zhao

A THESIS

IN

The Department

of

Computer Science Sz Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science (Software

Engineering)
Concordia University

Montréal, Québec, Canada

April 2010

© Ludeng Zhao, 2010

?F? Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre référence
ISBN: 978-0-494-67211-2
Our file Notre référence
ISBN: 978-0-494-6721 1 -2

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

AVIS:

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Ludeng Zhao
Entitled: Repairing Web Service Compositions Based on Planning

Graph
and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards
with respect to originality and quality.

Signed by the final examining commitee:

___ Chair
___ Examiner
___ Examiner
___ Examiner

___ Supervisor
_______________________________________: Co-supervisor

Approved
Chair of Department or Graduate Program Director

_______________ 20 .

Robin Drew, Dean
Faculty of Engineering and Computer Science

Abstract

Repairing Web Service Compositions Based on Planning Graph

Ludeng Zhao

With the increasing acceptance of service-oriented computing, a growing area of
study is the way to reuse the loosely coupled Web services, distributed throughout
the Internet, to fulfill business goals in an automated fashion. When the goals cannot
be satisfied by a single Web service, a chain of Web services can work together as
a "composition" to satisfy the needs. The problem of finding composition plans to
satisfy given requests is referred to as the Web service composition problem. In
recent years, many studies have been done in this area, and various approaches have
been proposed. However, most existing proposals endorse a static viewpoint over
Web service composition; while in the real world, change is the rule rather than an
exception. Web services may appear and disappear at any time in a non-predictable
way. Therefore, valid composition plans may suddenly become invalid due to the
environment changes in the business world. In this thesis, techniques to support
reparation for an existing plan as a reaction to environment changes are proposed.
Approaches of repair are compared to ones of re-planning, with particular attention
to the time and quality of both approaches. It will be argued that the approach
advocated in this thesis is a viable solution to improve the adaptation of automated
Web service composition processes in the context of the real world.

m

Acknowledgments

I would like to express my deepest gratitude to my supervisor Dr. Yuhong Yan for
all her help, support and supervision during the production of this thesis. Without
her brilliant ideas and thoughtful advises this thesis would not have been possible. I
appreciate Professor Pascal Poizat from University of Evry Val d'Essonne, France for
his discussion and support of this work. I also express many thanks to Jamie Johnson
for his help during the process of proofreading this thesis. Finally, I would like to
thank all my family and friends for their selfless help and support.

I claim that this thesis is from the collaborative research with Dr. Yuhong Yan and
Dr. Pascal Poizat. The formalization part in this thesis is from Dr. Yuhong Yan and
Dr. Pascal Poizat's work; the algorithm implementation and experiment results in
this thesis are developed by me.

IV

Contents

List of Figures viii

List of Tables xi

1 Introduction 1

1 . 1 Problem and Motivation of Repairing a Web Service Composition . . 1
1.2 Organization of the Thesis 3

2 Background 4
2.1 Web Services 4

2.1.1 Simple Object Access Protocol (SOAP) 5
2.1.2 Web Service Definition Language (WSDL) 6
2.1.3 Business Process Execution Language (BPEL) 7
2.1.4 Web Service Ontology (OWL) and Semantic Extension for WSDL 8

2.2 Formalization for Service Models and Web Service Composition ... 10
2.2.1 Semantic Models 10

2.2.2 The Problem of Service Composition 13
2.2.3 Web Service Composition as an AI Planning Problem 16

2.3 Automatic Composition Algorithm Evaluation Criteria 17
2.4 Existing Web Service Composition Algorithms 19

2.4.1 BFStar 19

2.4.2 Composition Algorithm Based on Planning Graph 21

3 Planning Graph Repair for Adapting Changes 27
3.1 Introduction 27

3.2 (Re)Planning Algorithm Based on the Planning Graph 28

?

3.2.1 Main Idea 29
3.2.2 Backward Search for Extracting Plan 29

3.3 Repairing versus Re-planning by Example 31
3.4 The Repairing Algorithms Based on Heuristic Search 31

3.4.1 Motivations 31
3.4.2 Main Idea 33
3.4.3 Heuristic Function 37

3.4.4 Indexing for Repairing Algorithm 41

4 Implementation 44
4.1 Implement the Web Service Composition Test Bed . . 44
4.2 Concepts. Things, Services and Parameters 44
4.3 Experiment Setup · 45

4.3.1 Dataset Generation 45

4.3.2 Algorithms Invocation Procedures 47
4.4 Building Models — 49
4.5 Implementation Details 49

4.5.1 Indexing the Data . . . 49
4.5.2 Flatten the Semantic Relationships 50

4.6 Planning Graph Construction 52
4.7 Backward Search Implementation 53
4.8 Repairing Algorithm Implementation 55

4.8.1 Plan Validator 56

4.8.2 Removing Services from Existing Plans 56
4.8.3 Heuristic Evaluator 57

4.8.4 Repairing Based on Heuristic Search 57

5 Experiments 60
5.1 Datasets Used in Experiments 60
5.2 Planning Quality Experiments 61

5.2.1 Experiment Method 61
5.2.2 Composition Result 61

5.3 Repairing versus Re-planning Experiments 63
5.3.1 Experiment Method 63

Vl

5.3.2 Experiment 1: Remove Web Services from Sendee Repository 63
5.3.3 Experiment 2: Remove Web Services from Existing Plan ... 65

5.4 Indexed Repairing versus Re-planning Experiments 67
5.4.1 Experiment Method 67
5.4.2 Fixing Solution 1 WSC Dataset 68
5.4.3 Fixing Solution 2 WSC Dataset 71

6 Conclusion 74

A Online Source Code Repository 80

B Planning Graph Algorithm 81

C Backward Search Algorithm for Extracting Planning Graph 84

D Heuristic Evaluator 90

E Repairing Algorithm — 92

F Sample Execution Log of Composition Process using Planning Graph
Algorithms 99

vn

List of Figures

1 Web Service Architecture[WiklOd] 5
2 Layered Structure of SOAP Message [Wikl Oc] 6
3 Layered Structure of WSDL[WiklOe] 7
4 A Flight Ticket Purchase Service Using BPEL 9
5 Semantic Extension for WSDL[BIeIO] 10
6 An Example of OWL in RDF Graph[OWL10] 11
7 Logic Syntax for Pizza OWL Example[OWL10] 12
8 A Web Service Composition Example: Finding Restaurant 13
9 The Composite Web Service for the "Finding Restaurant" Example . 14
10 BFStar Example Lattice[OOLL05] 19
11 Travel example - Planning graph[YPZ10a] 23
12 Planning Graph. (Left): original; (Right): after removal of C2E and D2E 32
13 Planning Graph. (Left): by re-planning; (Right): grown by our repair

algorithm 32
14 Insert a new level in partial Planning Graph using "Create new levels

at the bottom approach" (a) original (b) Insert A to fix BPm, (c) Insert
A' to fix £Pm_i 35

15 Insert a new level in partial Planning Graph using "Create new levels
on the top approach" (a) original (b) A can be satisfied by P7n-I, (c)
add a new level for A 36

16 Example of Heuristic Functions 40
17 Example of Indexing Approach 42
18 Challenge Client (Left) and Data Set Generator GUI (Middle) and

Date Set Files Generated (Right) 46
19 The procedure of the Web Service Challenge [BIeIO] 48
20 Class Diagram for Model Objects 50

Vili

21 Semantic Relationship Beüveen Web Service I/O parameters 52
22 An Example of the Smallest Set 53
23 Repair time with dataset 1 (left) and dataset 2 (middle) and dataset

3 (right) (repair - thick line, re-planning - thin line) 64
24 Number of services in the solutions with dataset 1 (left) and dataset

2 (middle) and dataset 3 (right) (repair - thick line, re-planning - thin
line) 64

25 Number of levels in the solutions with dataset 1 (left) and dataset 2
(middle) and dataset 3 (right) (repair - thick line, re-planning - thin
line) 65

26 Plan distance to the original solution with dataset 1 (left) and dataset
2 (middle) and dataset 3 (right) (repair - thick line, re-planning - thin
line) 65

27 Repair time with dataset 1 (left) and dataset 2 (middle) and dataset
3 (right) (repair - thick line, re-planning - thin line) 65

28 Number of services in the solutions with dataset 1 (left) and dataset
2 (middle) and dataset 3 (right) (repair - thick line, re-planning - thin
line) 66

29 Number of levels the solutions with dataset 1 (left) and dataset 2 (mid-
dle) and dataset 3 (right) (repair - thick line, re-planning - thin line) . 66

30 Plan distance to the original plan with dataset 1 (left) and dataset 2
(middle) and dataset 3 (right) (repair - thick line, re-planning - thin
line) 66

31 Repair time for fixing solution 1 "non-replaceable situation" (left), "re-
placeable situation" (right) 69

32 Numbers of services in solutions for fixing solution 1 "non-replaceable
situation" (left), "replaceable situation" (right) 70

33 Number of levels in solutions for fixing solution 1 "non-replaceable
situation" (left), "replaceable situation" (right) 70

34 Plan distance to the original solution (solution 1) "non-replaceable
situation" (left), "replaceable situation" (right) 71

35 Repair time for fixing solution 2 "non-replaceable situation" (left), "re-
placeable situation" (right) - . . . 72

IX

36 Numbers of services of solutions for fixing solution 2 "non-replaceable
situation" (left), "replaceable situation" (right) 72

37 Number of levels for fixing solution 2 "non-replaceable situation" (left) ,
"replaceable situation" (right) 73

38 Plan distance to the original solution (solution 2) "non-replaceable
situation" (left), "replaceable situation" (right) 73

?

List of Tables

1 Index Table of Replacement Web Services 42
2 Example of Reverse Index Table 51
3 The Originated Web Services for Subgoals . 53
4 Data Sets Used in Experiments 61
5 Planning Experiment Results 62

Xl

Chapter 1

Introduction

1.1 Problem and Motivation of Repairing a Web
Service Composition

Web services are the techniques that are being widely used in today's IT industry.
They support machine-to-machine communication, irrelevant to platforms, by ex-
changing data (in XML format) via the industry standard HTTP protocol [W3C10a]
[W3C10f]. Traditional applications can be easily wrapped as Web services to com-
municate with each other [CFFT06]. Also, the SOA (Service Oriented Architec-
ture) [WiklOb] makes Web services more useful by using them as its basic "building
blocks" to form highly scalable and loosely coupled solutions for enterprise appli-
cations. In addition, Web services are the ideal technologies for building Semantic
Web [W3Cl0e] due to the nature of their interoperability. However, sometimes a
single Web service cannot fulfill given requests completely, and therefore, it needs to
cooperate with other Web services to accomplish the requests together. The technique
of composing a chain of services to satisfy a given request is commonly known as the
Web service composition problem or WSC Problem (Refer to Section 2.2.2). A large
amount of research has been done in this area during the past few years, and many al-
gorithms have been proposed. For instance, one of the algorithms we studied is named
BFStar[OOLL05]. It applies the well-known A* algorithm from the AI domain to the
Web services composition problem. However, most composition algorithms endorse
a static viewpoint over Web service composition; while in the real world, change is
the rule rather than an exception [YPZlOa]. Web services may appear and disappear

1

at any time in a non-predictable way. For example, due to user mobility or network
failure, the available services change, causing previously valid composition become
invalid. Also, users' needs (goals) may also change opportunistically, e.g., when at an
airport, a traveler realizes that duty-free shopping is available.

In this thesis, techniques supporting adaptation of a plan as a reaction to business
environment changes (e.g. available services or composition requirement changes) are
proposed. In essence, this may be achieved in two distinct ways. The first one is to
perform a comprehensive re-planning from the current execution state of a plan. Re-
planning is effectively the same process as planning, but with the addition of taking
the updated parameters into account. Another way is trying to repair the plan in
response to changes, reusing most of the existing plan whenever possible. We believe
plan repair is a valuable solution to the WSC Problem in a changing world because:

1. It makes it possible to retain the effects of a partially executed plan, which is
far more time and cost efficient than throwing everything away and rolling back
its effects; "~

2. Even if, in theory, modifying an existing plan is no more efficient than a com-
prehensive re-planning in the worst case [vdKdW05], it is expected that plan
repair is, in practice, often more efficient than re-planning, since a large part of
an original plan is usually still valid after a change has occurred;

3. Commitment to the unexecuted services can be kept as much as possible, which
can be mandatory for business/security reasons;

4. Finally, the end-users typically prefer to use a repaired plan that resembles the
original rather than a very different plan for business/security reasons.

Our study is based on planning graphs [KPL97]. Planning graphs enable a com-
pact representation of relations between Web services, and model the whole problem
world. Even with some changes, part of a planning graph is still valid. Therefore,
we believe that the use of planning graphs can be more beneficial than other tech-
niques in solving problems of plan adaptation. In our approach, we first identify the
new composition problem with the new set of available Web services and new goals.
The disappeared (or damaged) Web services are removed from the original planning
graph and new goals are added to the goals level. This yields a partial planning

2

graph. The repairing algorithm "regrows" this partial planning graph wherever the
heuristic function tells that the unimplemented goals and broken preconditions can be
satisfied. Its objective is not to build a full planning graph, but to quickly search for
a feasible solution, while maximally reusing whatever is in the partial graph. Com-
pared to re-planning, the repair algorithm constructs only a portion of a full planning
graph until a solution is found. It can be faster than re-planning, especially when
the composition problem does not change too much and a large part of the original
planning graph is still valid. In our experiments, we have demonstrated this. Our
experiments also show that the solutions from repairs have the similar quality as
those from re-planning. However, in some cases, our repairing algorithm may not
find existing solutions while re-planning would, which is the trade off of the speed.

As far as Web services are concerned, we take into consideration their WSDL in-
terfaces extended with semantic information for inputs and outputs of operations. We
suppose Web services are stateless, which means a Web service does not distinguish
users nor maintain states between requests. A Web service can be considered as a
function that accepts a set of data and output a set of data, therefore we do not con-
sider the internal behaviour of Web services. Accordingly, composition requirements
are data-oriented and not based on some required conversation. These choices are
consistent with many approaches for WSC Problem; e.g. [OLK07], [OOLL05] and
[HM07]. More importantly, it suits the Web Service Challenge [BIeIO] which enables
us to evaluate our proposal on large-scale data sets.

1.2 Organization of the Thesis
The remaining of this thesis is structured as follows: in Chapter 2 we briefly introduce
necessary background information as well as previous works that have been done in
this domain. Later in the chapter, we present our formalization approach for Web
service composition problems. Based on the formal models, we propose our algorithms
for both re-planning and repairing Web services in Chapter 3. Chapter 4 covers the
details related to algorithm implementation, and Chapter 5 shows the experiment
results of our works. Finally, we conclude our works in Chapter 6.

3

Chapter 2

Background

2.1 Web Services

Given the definition by the World Wide Web Consortium (W3C) [W3Cl0g], "a Web
service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable
format (specifically WSDL). Other systems interact with Web services in a manner
prescribed by its description using SOAP messages, typically conveyed using HTTP
with an XML serialization in conjunction with other Web-related standards" . In to-
day's real world, Web services are frequently just a set of application programming
interfaces (API) or web APIs that can be accessed over networks, such as the In-
ternet [WiklOd]. Depending on the specification of how it is applied, a Web service
can be categorized into either "Traditional Web Service" as it is defined by W3C or
"Representational State Transfer (RESTful) Web Service" [WiklOa] which uses the
standard HTTP methods including "PUT", "GET" and "DELETE" that are sup-
ported by today's Internet. In this thesis, we focus on the Web services standard
that is defined by W3C. The term "Web service" discussed in this thesis means Web
services that follow the WSDL and SOAP specifications.

Figure 1 shows the basic architecture of Web services. Web services, depending
on their roles, can be referred to as either "service requesters" or "service providers".

4

Service
Broker

WSDL

UDDl II

WSDLn
JL

Service
Requester SOAP

rH Service
Provider

Figure 1: Web Service Architecture[WiklOd]

Each "service provider" is associated with a WSDL document which contains in-
formation related to the services it contains and the way to invoke those services.
"Service provider" publishes its own WSDL to a "service broker" using UDDI spec-
ification [OASlOb] to allow "service requester" to locate the services that they want
to use. After the "service requester" locates the service, it communicates with the
"service provider" via SOAP protocol with the address that is specified in WSDL
document. The details of related specification are discussed in following sections.

2.1.1 Simple Object Access Protocol (SOAP)
SOAP [W3C10Í] is a protocol specification for exchanging structured information
(such as XML) between Web services. It is usually built upon HTTP which is a
standard protocol in today's Internet infrastructure. Therefore, a SOAP message
can be carried as the payload of an HTTP message. Due to the nature of using
these widely accepted technologies, there are some obvious benefits to use SOAP to
exchange data:

Platform independent and language independent: instead of encoding infor-
mation into platform relevant binary format, SOAP uses XML as its infor-
mation carrier. Almost every platform and programming language is able to
operate XML files without interpreting. However, one thing worth noticing is
that SOAP has more overhead compared to binary format, which might lower
the efficiency in some cases.

5

Firewall transparency: most firewalls allow the transmission via HTTP ports. To
the firewall, SOAP is a branch of XML data traveling through HTTP and thus
is "transparent".

SOAP-ENV: Envelope

SOAP-ENV: Header

SOAP-ENV: BODY

Figure 2: Layered Structure of SOAP Message[WiklOc]

As Figure 2 shows, a SOAP message contains three components: "Envelope",
"Header" and "Body" . An "Envelope" is just a pair of XML tags that mark the
beginning and ending of a SOAP message. The "Header" contains the important
information for delivering the message, such as routing policy, security policy and
QoS policy. The "Header" is sometimes optional. The "Body" is where the real data
resides.

2.1.2 Web Service Definition Language (WSDL)
Web Service Definition Language or WDSL [W3C10h] is an XML based language
providing a mechanism to describe Web services. Every Web service is associated
with one WSDL document so that other Web services or applications can use it to
understand what services that Web service provides and the way to invoke those
services. WSDL defines Web service as a collection of "ports" (WSDL 1.1) or "end-
points" (WSDL 2.0) (see Figure 3). Each "port" is associated with a network address
with reusable bindings. And each "port" has a corresponding "port type" (WSDL

6

WSDL 1.1 WSDL 2.0
definitions

portType
erationration

¡öüTput

!binding binding

endpoint

Figure 3: Layered Structure of WSDL[WiklOe]

1.1) or "interface" (WSDL 2.0), in which it defines supported operations of one Web
service. Each "operation" can have one "input message" and one "output message" .
The format of these messages is defined at "message" sections and the data types
used are defined in the "types" sections.

2.1.3 Business Process Execution Language (BPEL)
Business Process Execution Language or BPEL [OASlOa] is a language for describing
business process activities as Web services, defining how they can be composed to
accomplish specific tasks. A business process is a set of coordinated tasks and activ-
ities that will lead to the accomplishment of a specific organization goal. In BPEL,
tasks and activities can be represented as Web services. Web services provide a ba-
sic stateless transaction model based on message exchange. However, Web services
themselves are not suitable to describe today's complex business interactions since
they have no knowledge about who they are interacting with. To address this issue,
BPEL extends the Web service specification by providing a mechanism to support
stateful and long-running business processes. The participated Web services in a
BPEL process are named "Partners" and have "Partner Links" which describe the
roles of participated Web services in business processes. Alongside this, BPEL also

7

introduces many programming language-like syntax such as "ifelse", "while", "for"
and "switch" to manage the logic flows of business processes. And, it allows users to
create, copy and use variables for storing the information related to business processes
and thus can support complex processes. Figure 4 shows a simple BPEL process rep-
resenting a flight ticket purchase service. In order to purchase a ticket, the user needs
to send his/her "username" , "password" and "desired flight" to the purchase service.
The purchase service then interacts with two external Web services named: "Login
Service" and "Search Flight Service" to validate the users' login information as well as
the availability of the desired flights. If both services return "true" then the purchase
service records the purchase and returns "purchase successful" to users. Otherwise,
it will return "false" .

2.1.4 Web Service Ontology (OWL) and Semantic Extension
for WSDL

By default, a Web service defined in WSDL does not support the semantic invocation
processes. For example, a Web service defined in WSDL does not know the two
parameters "First Name" and "Given Name" have the same meaning since it only
checks the syntax difference of the given parameters. Also, the Web service has no
such knowledge to tell that both "ISBN-8" and "ISBN-16" are "ISBN". In order to
facilitate the automatic Web sendee composition process in the real world context,
we have to extend the current WSDL specification by adding semantic extensions
as is suggested in [BIeIO]. By doing this, we can associate the syntax parameter
defined in a WSDL to its semantic meaning defined in an OWL (Web Ontology
Language [W3C10b]) file. Therefore, a Web service can check the semantic meaning
of its parameters as well as their relationship by checking the OWL file. As Figure 5
shows, a section named "semExtension" is added to the end of WSDL file, in which it
points the parameter named "price" to the semantic definition "Bookprice" located
in an OWL file.

Figure 6 shows an OWL example represented in an RDF (Resource Description
Framework [W3Cl0c]) graph. It represents the logics shown in Figure 7. We propose
an approach in Section 2.2 for converting semantic problems into syntactic problems
in order to facilitate our algorithm.

8

PurchaseService ¡? BPEL

ReceivePurchaselnfo

AssignLoginlnfo

InvokeLoginCheck

logtnyvalid

AssignFlightldPurchaseService

purchase

¦ login invalid ¦

AssignFalse

H2)— flight unavailable ¦
flight available

AssignTrue AssignFalse

Reply

LoginService

SearchServiceInvokeFlightCheck

search

validate

Figure 4: A Flight Ticket Purchase Service Using BPEL

<mece:semExtension>
<!-- Semantic Extension for the message with ID "getPriceRequest" ->
<mece:semMessageExt id="BookShopARequestMessage">

<!-- Smantic Annotation for the xsd:element with ID "price" -->
<mece:semExt id="price">

<!-- Ontology reference for the semantic individual for this element -->
<mece:ontologyRef>

http://www.owl-ontologies.eom/Ontology.owl#Bookprice
</mece:ontologyRef>

</mece:semExt>
</mece:semMessageExt>
<!-- Arbitrary amount of message annotations -->
<mece:semMessageExt id="BookShopAResponseMessage"/>

<mece:semMessageExt .../>

</mece:semExtension>

Figure 5: Semantic Extension for WSDL[BIeIO]

2.2 Formalization for Service Models and Web Ser-

vice Composition
In this Section we present first our formal models for services and user needs (or
requirements) as we discussed in other papers: [YPZlOa] and [YPZlOb]. Different
approaches have been followed to address Web service composition. We adopted an
AI planning point of view, which has been demonstrated as being very efficient for
automatic Web service composition. This will have an impact on our formal models,
and accordingly, on the composition algorithm we present in the sequel of this thesis.

2.2.1 Semantic Models

In order to enable automatic service discovery and composition from user needs,
some forms of semantics have to be associated to services. Basically, the names
of the services' provided operations could be used (i.e. operation name such as
afindHotelByName"), but one can hardly imagine and, further, achieve interoper-
ability at this level in a context where services are designed by different third parties.

10

http://www.w3.Org/2002/07/owl#equivalentClass
Jt

http://example.eom/pizza.owl#NonVegetarianPizza

http://www.w3.Org/2002/07/owl#intersectionOf http://www.w3.Org/2002/07/owl#complementOf
http://www.w3.Org/1999/02/22-rdf-syntax-ns#rest

http://www.w3.Org/1999/02/22-rdf-syntax-ns#rest
T

http://www.w3.org gyntax-•ns#rest

http://www.w3.Org/1999/02/22-rdf-syntax-ns#nil
http://www.w3.Org/1999/02/22-rdf-syntax-ns#first

J
http://example.eom/pizza.owl#Pizza

http://www.w3.Org/2002/07/owl#disjointWith

http://www.w3.org/2000/01 /rdf-schema#subClaspQl-
http://example.eom/pizza.owl#PizzaBase

http://www.w3.Org/2002/07/owi#someValuesFrom
http://www.w3.Org/2002/07/owl#onProperty

http://example.eom/pizza.owl#hasBase
http://www.w3.Org/1999/02/22-rdf-syntax-ns#type

i
http://www.w3.Org/2002/07/owl#Restriction

J http://www.w3.Org/2002/07/owl#ObjectProperty

http://www.w3.Org/1999/02/22-rdf-syntax-ns#1ype
____________________________I

http://example.eom/pizza.owl#singredientOf

http://www.w3.Org/2002/07/owl#inverseOf |
?. http://www.w3.0rg/1 999/02/22-rdf-syntax-ns#type

http://example.eom/pizza.owl#hasingredient

http://www.w3.Org/2002/07/owl#TransitiveProperty

Figure 6: An Example of OWL in RDF Graph[OWL10]

11

PIZZA Ç 3 hasBase.PIZZABASE
PIZZA ? PIZZA BASE ? _L

NONVEGETARIANPIZZA = PIZZA ?-VEGETARIAPIZZA
Tr(isIngredientOf)

isIngredientOf ? haslngredient~

Figure 7: Logic Syntax for Pizza OWL Example[OWL10]

Adaptation approaches [HBM08] [SEG08], have proposed to rely on so-called adap-
tation contracts that must be given (totally or partly) manually. To avoid putting
this burden on the user, semantics based on shared ontologies may be used instead
to provide fully-automatic compositions. Services may indeed convey two kinds of
semantic information. The first one is related to data that is transmitted along
with messages. For example, a Web service providing hotel registration can be se-
mantically described as receiving semantic information "/ioielname", "usernamé" ,
"arrivaldate" , "leftdate" as the inputs and providing a "hotelregistration" as the
output. The second way to associate semantic information to services is related to
functionalities, or capacities, that are fulfilled by services. Provided each service has
a single capacity, this can be treated as a specific output in our algorithms, e.g.,
the above mentioned service could be described with an additional semantic output,
" hotelbookingcapacity" , or we can even suppose its capacity is self-contained in its
outputs (here, "hotelregistration") .

In our approach, semantic information is supported with a structure called Data
Semantic Structure [BP08] (Definition 1)

Definition 1 A Data Semantic Structure (DSS) is a couple (D, RD) where D is a
set of concepts that represent the semantics of some data, and RD = {Rf : 2D <— 2 }
is a set of relations between concepts.

The members of RD define how, given some data, other data can be produced.
Given two sets, Di, D2 Q D, we say that D2 can be obtained from D1, and we write
D1 -> rdD2 or simply Di -^ D2, when 3Rf G RD,Rf{D{) = D2. Some instances
of the Rf relations - representing composition, decomposition and casting - together
with implementation rules -are presented in [BP08]. Here we propose a generalization
of these as presented in [YPZlOa].

12

The interface (operations and types of exchanged messages) of a Web service is de-
scribed in a WSDL [W3C10h] file. DSSs are a subclass of what can be described using
OWL [W3Cl0b], a very expressive language for describing super(sub)-classes, func-
tion domains and rages, equivalence and transition relations, etc. We can extend OWL
for other relations as well, e.g., a parameter can correspond to the (de)composition of
a set of parameters according to some functions. WSDL can be extended to reference
OWL semantic annotations [BIeIO]. The SAWSDL standard [W3Cl0d] can also be
used for this.

2.2.2 The Problem of Service Composition

An Example of Web Service Composition Problems and Solutions

ice^/
Food

Preference

Current
Location

T^
Request: "Could you show

me the way to a good
Chinese restaurant

nearby?

IPPPS!

Service Repository

Restaurant
Name

Current
Location

Target
Location

Current
Location

Locate
Restaurant

Service

Routing
Service

Food
Preference

Service

Restaurant
Location

Route
Instruction

Restaurant
Name

Figure 8: A Web Service Composition Example: Finding Restaurant

13

Consider such a scenario (see Figure 8): A Web service developer would like to
develop a Web service which can guide users to the best restaurant nearby that has
his/her favourite food style. An example of such query might be "Could you show me
the way to a good Chinese restaurant nearby?" So the developer looks up a service
repository which is publicly available, he finds that no single service in the repository
can fully satisfy such a request. However, there exist three Web services which can
be used together as a whole to satisfy the request. So he decides to build a composite
Web service that uses those three Web services (shown in Figure 9).

f Composition Web Service

Food
Preference

Current
Location

Route
Instruction

Food
Preference

Service

Locate
Restaurant

Service

Routing
Service

Restaurant
Name

Restaurant
Location

Figure 9: The Composite Web Service for the "Finding Restaurant" Example

Although the Web service composition solution can be designed manually by de-
velopers, in this paper we mainly focus on an automated way for designing composi-
tion Web services. W^hen users submit their queries to a "Web service composition
engine" the automated algorithm should find a composition plan and return the re-
quest information to users. This approach gives the possibility of doing Web service
compositions on large-scale service repositories (e.g. the Internet). Additionally, we
also make following assumptions about Web services:

1. We suppose that Web services are stateless and do not feature a behavioural

14

description specifying in which ordering operations are to be called. Hence,
without loss of generality, we have supposed each Web service has only one
operation. Whenever a Web service has more than one, we can use indexing,
e.g., service w with operations O1 and O2 becomes services W-O1 and w.o2;

2. Some Web service input parameters are informatics (i.e. non-consumable),
and can be therefore used without limitation. However, other Web service
input parameters are consumable, meaning that they can be used only once.
For example, given an order processing service, orders are consumable: once
processed, orders cannot be used by other services. OWL's rdf:property can be
extended to describe parameters' consumability properties.

Model of the Service Composition Problem

Definition 2 Being given a DSS(D, RD), a Web service w is a tuple (in, out) where
in C D denotes the input parameters ofw and out C D denotes the output parameters
of w. We denote in~ C in the set of input parameters that are consumed by the
service.

A Web service can be considered for composition as a function that takes input (s)
and return output(s) (Definition 2). We abstract these input(s) and output(s) associ-
ated to the Web service operations as semantic data, called parameters. An example
of this is where relations are defined between WSDL message types and service model
parameters through the use of XPath can be found in [MPM08].

DSS supports data transformation using relations in RP . This enables service
compositions where mismatch would usually prevent it. For the sake of uniformity,
being given a DSS(D, RD), for each Rf in RD, for each D1 ~^rd D2, we define a data
adaptation service wRi = (D1, D2). Such a service can be automatically implemented,
either as a service or as a reusable standalone piece of code in any implementation
language supporting XPath and assignment such as WS-BPEL.

If the output parameters of a set of services can produce at least one of the input
parameters of another service, we say they can be connected (Definition 3) .

Definition 3 Assume every parameter in the parameter set Dw = {d1,d2, -..,¿4}
is an output parameter of one of the Web services in a set W = {wi,W2, ...,wm},

15

i.e., W - {wi\3dj G Dw, dj G out(wi),i = l,...,m}. If {di,d2,...,dk} ~» {dn}, and
dn G in(wn), then every service in W can be connected to Wn, annotated as wt > Wn.

Finally, the last input for any WSC algorithm is the description of the composition
requirements corresponding to the user needs (Definition 4).

Definition 4 Being given a DSS(D, RD), a composition requirement is a couple
(Dp, Dfjut) where Dp C D is the set of provided (or input) parameters and D™1 C D
is the set of required (or output) parameters.

The objective of a WSC algorithm may now be formally described. Given a set of
available Web services, a structure (DSS) describing the semantic information that is
associated to the services, and a composition requirement, service composition is to
generate a connected subset of the services that satisfies the composition requirement
(Definition 5).

Definition 5 A composition requirement (??™, D™1) is satisfied by a set of connected
Web services W = {wi, ..., wn} iff, Vz G {1, ...,n):

• \/d G in(wi), D1Jj U out(wi) U ... U out(wi-i) -^ d and

• Vd G Dff*, Dp U OUt(W1) U ... U out(wn) ~* d

A composition requirement is satisfied iff there is at least one set of connected services
satisfying it.

2.2.3 Web Service Composition as an AI Planning Problem
AI planning has been successfully applied to solve the WSC problem through its
encoding as a planning problem [Pee05] [MP09]. The following definitions in this
section are modified from [GNT04].

Definition 6 A planning problem is a triple P = ((S,A,^),So,g), where

• S is a set of states, with a state s being a subset of a finite set of proposition
symbols L, where L = Jp1, ...,pn}.

16

• A is a set of actions, with an action a being a triple (precond, effects' ,effects+)
where precond(a) denotes the preconditions of a, and effects" (a) and effects+ (a),
with effects" (a) ? effects" (a) — 0, denote respectively the negative and the
positive effects of a.

• 7 is a state transition function such that, for any state s where precond(a) Ç
s, -y(s, a) = (s - effects~(a)) U effects+ (a).

• S0 € S is the initial state.

• g C L is a set of propositions called goal propositions (or simply goal).

• A plan is any sequence of actions p =< O1, ..., a^ >, where k > O.

The WSC problem can be mapped to a planning problem as follows:

• Each service, w, is mapped to an action with the same name, w. The input
parameters of the service, in(w), are mapped to the action's preconditions,
precond(w), and its output parameters, out(w), are mapped to the action's
positive effects, effect+(w). Consumable parameters, in~{w) are also mapped
to negative effects, effects~(w).

• The input parameters of the composition requirement, Dlff, are mapped to the
initial state, sq

• The output parameters of the composition requirement, D™1, are mapped to
the goal, g.

2.3 Automatic Composition Algorithm Evaluation
Criteria

For those who aim to design algorithms for a Web service composition system there
are several objectives [YPZlOa]:

The composition time

The composition time should be as short as possible. Composition time is the time
period from the start of the composition process to the end of the composition process.

17

It represents the time cost needed for a Web service composition system in response
to the users' requests. In practical terms, the composition solution might be void if
the composition time is too long, because the environment is likely changed during
that period.

The number of Web services

The number of Web services in the composition solution should be as few as possible
because more Web services usually mean more costs. In the real world, the cost could
be the cost of money, labour and resources.

The number of levels

The number of levels in the composition solution should be as few as possible. Usually
few levels mean lower cost in terms of execution time. This is because some services
can be executed in parallel without waiting for other Web services to complete.

The redundancy rate

It is possible that a composition solution can have redundant Web services that if
these Web services are removed, the composition solution is still valid and satisfies
the goals. The redundancy rate is the percentage of redundant Web services in the
composition solution and should be keep as low as possible.

The plan distance

Plan distance is defined in Definition 7 as in [FGLS06]:

Definition 7 Given an original plan, p0, and a new plan p?, the difference between
7T0 and p?; ??(p0, p?), is the number of actions that appear in p? and not in p0 plus
the number of actions that appear in p? and not in p? .

We are interested in achieving low plan distance because we prefer that the new plan
is similar to the original one. In the Web service composition context, this means
that we can keep our promise to the business partners in the original plan.

18

2.4 Existing Web Service Composition Algorithms
2.4.1 BFStar

The BFStar algorithm was first proposed by Seog-Chan Oh in [OOLL05]. It divides
the Web service composition problem into two separate sub-problems: (I)A fast and
efficient way for doing membership checking (i.e. what Web services can be invoked
based on currently known information). The Bloom filter [Blo70] is applied for the
membership checking to minimize the cost of finding candidate Web services in each
execution step. Although a false positive is possible, false negatives are not. (2) A
fast and efficient search algorithm based on AI technology. The BFStar algorithm
(Algorithm 1) with different heuristic functions is used for finding the goal parameters.
The main idea of the BFStar algorithm is letting the searching algorithm use heuristic
functions to evaluate each of its candidates. The one with the highest heuristic score
will be added into the solution.

....... -H-i--^-? out stratum 3

Figure 10: BFStar Example Lattice[OOLL05]

As is shown in Figure 10, starting from rin, one has 4 choices to make in sequential
mode. Then, BFStar will suggest only 1 out of 4 as a next web service to visit based
on heuristics. Suppose d was visited. Then, from d, again all possible next choices are
computed and one of them is suggested. However, in this case, there is no available
next choice to make, thus one has to backtrack to the previous state. Then, another
one, say x, out of 4 is suggested as a next move, and so on. When next move is the
goal state, i.e., roui, the search is successful.

19

Due to the nature of being forward-searching, the quality of the composition
result solely depends on its heuristic function. Several varieties that have slightly
different heuristic functions are also proposed along with BFStar Algorithm. For
instance, consider one such variety, named "BFStar Lookahead"; when evaluating
one candidate, it performs a "lookahead" by evaluating the children candidates of
that candidate. The final heuristic score of the candidate is equal to the candidate's
own score plus the best score of its children. This approach increases the accuracy of
selecting candidates in some cases (e.g. all candidates in current level have the same
scores while their children have different scores). However, the trade-off is that the
composition time is significantly increased by performing "lookahead" .

Algorithm 1 BF* Algorithm
Input: All Web services W

Output: A path: rin =4> ... => rw
1: O -f— 0 and S <— rin;

print rin,"=4-"
while S 2 Tout do

d <- {w\w ew,w& n,win c ?}
wmin <_ w(£ ¿) with MIN(/(to));
O *- O U wmin

print wmin, "=^"
print T0111

Heuristic functions for standard BF* Algorithm:

h(n) = l/\(rmit/E)nnmit\ (1)

g(n) = |O| (2)
Where the rout is the set of goals from the composition query; S is the set of currently
known parameters; nout is the outputs of the given Web service ? and O is the set of
Web services added in the plan.

20

Heuristic functions for lookahead BF* Algorithm:

h[n) = 1/1 (rout/S) ? (?<?? U c(n)out)\ (3)

Where C[U)0Ut is the child of U0111 with the maximum contribution in that:

C[Ti)0Ut = MAX{w € d''Kr0Ut /(S Un„,)n W0114)} (4)
Í = ?«; € W, tu ^ O, W4nC(EU Ti0Ui)) (5)

The strength of BFStar is that it is able to get the composition results in a
reasonable time due to the benefits from using the heuristic function and the Bloom
filter. However, almost as significant as its strength, it inherits the drawbacks from
using an A* search algorithm: the composition result is in sequential order instead of
parallel. It can only invoke one Web service at each execution step even though some
Web services can be invoked in parallel; this lowers its execution efficiency, especially
when the number of services need to be invoked is large.

2.4.2 Composition Algorithm Based on Planning Graph
Different planning algorithms have been proposed to solve planning problems, e.g.,
depending on whether they are building the graph structure underlying a planning
problem in a forward (from initial state) or backward (from goal) manner. As was
proposed by Xiangrong Zheng and Yuhong Yan in their works [ZY08] and [YZ08] , the
planning graph can be applied to the WSC Problem. In this thesis, we carried on their
works and applied the same formalization methods to model the service composition
problem. Therefore, it is important to introduce the planning graph here.

Definition 8 In a planning graph, a layered plan is a sequence of sets of actions
< 7G?,p2, ...7T„ >, in which each 7r¿(z = ?,.,.,?) is independent (see Definition 9). p\
is applicable to S0. 7Tj ¿s applicable to 7(sj_2,vtj_i) when i = 2, ...,?.
g Ç7(---(7(7(so, TT1), TT2). ..7Tn)

A planning graph iteratively expands itself one level at a time. The process of
graph expansion continues until either it reaches a level where the proposition set
contains all goal propositions or a fixed point level. The goal cannot be attained if
the latter happens first. Definition 9 defines the independence of two actions. Two

21

actions can also exclude each other due to the conflicts of their effects. We can add

both independent and dependant actions in one action layer in the planning graph.
However, two exclusive actions cannot appear in the same plan. The planning graph
searches backwardly from the last level of the graph for a solution. It is known that
a planning graph can be constructed in polynomial time.

Definition 9 In a planning graph, two actions a and b are independent iff they
satisfy effect" (a) ? \precond{b) U effect+(b)} = 0, and effects~{b) ? \precond(a) U
effects+{a)} = 0. A set of actions is independent when its actions are pairwise
independent

Notice that although we can model negative effects we do not consider the situa-
tions of negative effects in the rest of this thesis.

In order to demonstrate the use of planning graph for the Web service composition
problem, we give a simple travelling example as it shows below:

An Example of using Planning Graph for WSC

First we introduce the DSS for our example. The concepts we use correspond to:

• users: "uinfo"(made up of "uname" and "ucity"),

• departure and return dates: "fromdate" and "todate" ,

• departure and return cities (resp. countries): "depcity" and "depcountry" (resp.
"destcity" and "destcountry")

• travelling alerts: "travelalert"

• flight request: "flightreq"

• registration information for planes and hotels, "planereg" and "hotelreg"

Additionally, different relations exist between these concepts:

• subsumption: from "ucity" to "depcity" and from "travelcity" to "destcity",

• decomposition: from "uinfo" to "uname" and "ucity"

• composition: from "depcity", "destcity", "fromdate" and "todate" to "flightreq"

22

>-depcity Scorni>cast1
urtarne?deci ?uname
travelcitytravelcity >-cast2 travelcity
destc?fromdate destcity
travelalerttodate fromdate
destcou

lodate

fromdat

todate

uínfo

ucily
depcity

>flightreq »-plane-
uname

travelcity

destcity
travelalert
destcountry

------- hotelreg
fromdate

todate

uinfo

ucity

depcity

»planereg
tlighlreq
úname

travelcity

destcity
" Iravelalert

destcountry

' -hotelreg
fromdate

todate

Figure 11: Travel example - Planning graph [YPZ 10a]

As explained before, these four relations will be supported by data adaptation
services (respectively casti, cast2, deci and compi) that can automatically be imple-
mented. The repository of available services contains the following services:

• infoi ({destcity}, {travelalert}),

• info2({destcountry},{travelalert}),

• c2C ({destcity}, {destcountry}),

• plane({flightreq,uname}, {planereg}),

• hotel({travelcity, fromdate, todate, uname}, {hotelreg}).

Finally, the user request is: ({uinfo, travelcity, fromdate, todate}, {planereg,
hotelreg, travelalert}).

We can build a planning graph as in Figure 1 1 . Identity links (when some data is
kept for the next data layer) are not represented for clarity, but for required param-
eters (dashed lines).

From this planning graph, backtracking from the required data (in bold), we can
compute two solutions (plans) as is shown below:

Solution 1: (deci | cast2); (casti | infoi | hotel); comi; plane

Solution 2: (descl | cast2); (casti | c2C | hotel); (comi | info2); plane

23

We use ";" to represent the sequence of service calls and "|" to represent service
calls in parallel (i.e. "flow" in BPEL). One may notice that without the adaptation
enabled by DSS relations (casti, cast2, deci and compi), no composition would be
possible at all.

Main Idea of Planning Graph Algorithm

As is introduced in [GNT04], the planning graph algorithm performs a procedure close
to iterative deepening, discovering a new part of the search space at each iteration. It
iteratively expands the planning graph by one level, then it searches backward from
the last level of this graph for a solution (Section 3.2). Algorithm 2 shows the forward
expanding process expands the planning graph by creating a new action level Ai and
a new proposition level P1. Then, as is shown in Algorithm 3, the expanding process
adds all Web services whose preconditions are satisfied to Ai and adds their outputs
to Pi. The expanding proceeds to a level P¿ in which all of the goal propositions
are included or when P1 = P¿_i, named "fixedpoint" [ZY08]. The works of [ZY08]
and [YZ08] extends the expanding process with a set of predefines rules, named
"strategies" , in order to keep redundant Web services from being included during the
process. Backward search is used to extract the solution from the planning graph
constructed by the expanding process. The details of backward search are discussed
in Section 3.2.

24

Algorithm 2 Compose(A, So,g)
Notes about the algorithm: G =< P0, Ax, Pi, ···, A, P¿ > is a simplified planning

graph
1: repeat
2: G <— StandardExpand{G)
3: ¿ = ¿ + 1

4: until 5 Ç Pj V Fixedpoint{G)
5: if <7 C Pj then
6: Output(< Ai, A2,.. .,A3 >)
7: else

8: Output^)
9: if Fixedpoint(G) then

10: print("Reach fixed point")

Algorithm 3 StandardExpand{< Pq, Ai, ...,Ai, P1 >)

1: i¡ ^- {a G v4|precond(a) Ç Pj_j}
2: Pj «- {p|3a e Af. ? e effects(a)}
3: for each a G Ai do
4: link a with precondition arcs to precond(a) in P¿_i
5: link a with to each of its effects(a) in Pj
6: return < Po, A, ...,Ai, Pi >

Algorithm 4 Fixedpoint(< P0, Ai,..., A1, Pi >)

if Pj = Pi^i then
return true

else

return false

25

Algorithm 5 ExpandWithStrategies{< Pq, A1, ...,Ai, Pi >)
Notes about the algorithm: valid(a): action a can be used in the algorithm;

invalid(a): action a can not be used in the algorithm again
for a £ A do

if precond(a) €E P¿ ? valid(a) then
Ai+1 <- Ai+1 U a
invalid(a)

Pi+\ <— -P¿
for a € j4ì+1 do

if effect(a) £ P¿+i then
Pi+i <- Pi+i U effects(a)

else

mvaZzd(a)
if 5 Ç Pf+ 1 then

discard all the other actions in Ai+1 break
for a in Ai do

if effects(a) ? precond(a) | a G yl¿+1 = 0 then
? «- ?/a

26

Chapter 3

Planning Graph Repair for
Adapting Changes

3.1 Introduction

WSC problem should be considered in the open world. An open world is always
changing. The changes would be categorized into (as is discussed in [YPZlOa]):

Environment Changes: Web services appear and disappear due to various factors
(e.g., network failures, location changes, business changes, etc.). New Web services
may be better than the old ones used in the original plans. Therefore, we may consider
the use of new Web services and replace the older ones. We model this change as:

W' = W - Wdisappear + ^appear (6)

Goal Changes: During the execution of the process, business goals may change
due to shifting business interests. We assume the removed goals and the new goals
are given. We model this change as:

9 = 9 9removed ~T" 9new \ ')

Fault Caused Changes: A faulty Web service w may also cause the changes. This
could be: (1) The faulty Web service has entirely stopped functioning. In this case,
it has to be removed from the original plan. (2) The exceptions are due to format

27

errors. In this case, we can use another Web service to do the format conversion.
(3) The exceptions only happen due to certain parameters; the remaining parts of its
outputs are still valid. In this case, if we can identify those faulty parameters p, we
may project the function of w on the rest of its outputs (i.e. remove ? from out(w)):

out'(w) — out(w) — {p} (8)

We generally can solve the adaptation problem in two ways: either re-planning
or repair. By re-planning, we mean that we try to solve a newly constructed
planning problem P' = ((S',A',j'),s0,g'), where A' is an updated set of available
Web services, g' is a updated set of goals, with S' and 7' changed accordingly, from
scratch. By repair, we mean that we try to fix the existing, but broken, plans. We
consider that a planning graph is a good candidate for adaptation, because a planning
graph models the whole problem world. If the problem changes, part of the planning
graph is still valid. In this thesis, we present two repair algorithms (Algorithm 7
and 8) that can grow the partially valid planning graph until a solution is found. It is_
worth to notice that, although changes can be more Web services available (Wappear in
Equation 6) or fewer goals needed to be satisfied (gremoved in Equation 7) , the original
planning graph can still give a solution. Therefore, we focus on the cases when Web
services are removed or more goals are added, in which cases, the original planning
graph becomes only partially valid.

The following sections in this chapter are organized as follows: in Section 3.2,
we present a modified composition approach from the previous work [ZY08] (Sec-
tion 2.4.2) based on a planning graph which represents the re-planning approach to
fix broken plan. -Next in Section 3.4, we present our repairing approach and its varia-
tions. We believe that the repairing approach is better than re-planning in most cases
since it can be much faster then the re-planning approach while keeping the similar
quality.

3.2 (Re)Planning Algorithm Based on the Plan-
ning Graph

As is mentioned in Section- 2.4.2, previous work [YZ08] has been done for Web services
composition algorithms using planning graphs. Here we apply a backward search

28

approach to extract solution from a given planning graph. This approach can produce
very high quality composition plans in a satisfactory time. The ideas and algorithms
can be found in following sections, the implementation can be found at Section 4.6
and the experiments can be found in Section 5.2.

3.2.1 Main Idea

There are mainly two steps in our composition algorithm. The first step is to compose
a planning graph from given parameters to goal parameters using the standard plan-
ning approach (Algorithm 2 and 3). At each level, the algorithm process invokes all
invocable Web services (whose preconditions are satisfied) based on currently known
parameters. It stops the expending process when it meets the "Fixedpoint" (Algo-
rithm 4) or all goals are found. Therefore, we can get a planning graph satisfying the
given request after this step. The second step is about "extracting" a solution from
the constructed planning graph by removing redundant Web services using backward
search. This step will give us a lean solution (Definition 10) which has no redundant
Web services in it. The details of this process will be discussed in Section 3.2.2.

Definition 10 Given a solution plan, for any Web service in the plan, if the plan
is not valid (Definition 5) after removing a service, we can say the plan is a lean
solution. Otherwise, the plan is a non-lean solution.

3.2.2 Backward Search for Extracting Plan

After a planning graph is generated using the standard planning approach we men-
tioned in previous section (Algorithm 2, 3, and 4), all possible solution paths are
contained in the planning graph. We need to "extract" one solution from the planning
graph which can have as few services/levels as possible (refer to Section 2.3). Our
Backward search provides an approach to extract the optimized solution. The detail
of the approach is introduced as follows:

As is shown in Algorithm 6, at each level, the algorithm first calculates a set of
subgoals that Web services in the current action level need to fulfill. Next, in line 11,
the algorithm calculates a "smallest set" of Web services that can satisfy the subgoals
and then substitutes the current action level with the "smallest set" (line 13-15). We
use a set named "deferredGoalSet" to maintain the deferred subgoals. This is because

29

the search process starts backwardly, it's possible that a sub-goal parameter is already
produced by a Web service in lower level, and therefore, it is not mandatory for Web
services in the current level to satisfy that goal.

As the result, an optimized solution is extracted from the planning graph, which
contains only the fewest number of Web services that can satisfy the goals. However,
there exists a small chance that the backward search can not find the best optimized
solution since it does not compute and compare all possible paths that existed in a
given planning graph. It is possible that there exists more than one "smallest set" in
a level. The algorithm will pick-up the first one it found and discard the rest. The
method to calculate the "smallest set" at each level is discussed in Section 4.7.

Algorithm 6 Backward Search for Extracting Plan
-input: a valid solution plan G < Po, Ai, ...Ai, Pi >

-input: a set of input parameters D™
-input: a set of goal parameters Dv
-output: a optimized lean solution

•¡out

1:

2

3

4

5

6

7:

8

9

10:

11

12

13

14:

15

16

17

18:

i = lastLevel

subGoalSet = D0J1
deferredGoalSet = 0
repeat

subGoalSet *— deferredGoalSet
deferredGoalSet = 0
for g in subGoalSet do

compute a subset of services within Ai that can produce g
if no services can produce g then

deferredGoalSet <— g
subGoalSet = subGoalS'et /deferredGoalSet
G = calculateSmallestServiceSet(subGoalSet,i,G)
A1 = T
Pi = ^(Out{a)\aeAi)
subGoalSet <- S(??(a)\a <? Ai)
i

until i > 0

return G<P0,A-í,...Ai,Pi>

30

3.3 Repairing versus Re-planning by Example
Let us start with a comparative example. The request is (a,e) and we have nine
Web services: A2BC: a^b,c, A2D: a-td, C2E: c^e, D2E:d->e, D2F:d->f, F2G:f-^g,
F2H:f->h, G2E:g->e and H2I: h->i. The resulting planning graph is shown in Fig-
ure 12a and solutions (plans) are A2BC;C2E and A2D;D2E. Let us suppose we commit
to the second one. This is the plan we need to repair if anything is broken. We prefer
to reuse as much of the original Web services as possible in the new composition,
because they are commitments we need to hold. If we remove both C2E and D2E,
the graph is broken, because e is no longer produced by any service. This yields a
partial planning graph Figure 12b.

If we use re-planning, we simply run the planning algorithm again with a new set
of available Web services and a set of updated goals. We then get a new planning
graph Figure 13a, from which we can get two new solutions: A2D;D2F;F2G:G2E and
A2D;D2F;F2H;H2I. If we instead use the repair algorithm we defined below (Sec-
tion 3.4), we obtain another graph, Figure 13b, and solution A2D;D2F;F2G;G2E.
Our approach is not to build an entire planning graph again, but to rapidly "grow"
the partial planning graph in order to obtain a feasible solution. During the grow-
ing process, we heuristically search for a direction that can satisfy the broken goals
and preconditions, as well as making use of the existing partial graph. We believe
repair can be faster than re-planning in most cases, as the partial planning graph is
largely valid. Using the repair approach, we can also potentially generate a simpler
graph than with re-planning, which means a faster composition time. In addition,
the solution we get from repair is of the same quality than with re-planning.

3.4 The Repairing Algorithms Based on Heuristic
Search

3.4.1 Motivations

Although the re-planning approach provides a straightforward approach to fix the
broken plan when the environment changes, it has several drawbacks:

31

a, b, c, d, e, Ia, b, c, d. e. I

A2BC J J A2D JA2D J J C2E J J D2E

a. b. c. da, b, c, d

A2BC J J A2D

Figure 12: Planning Graph. (Left): original; (Right): after removal of C2E and D2E

_a, b, c, d, f, g, h, e, i

I A2BC Q~Â2D J J D2F | [??? 1G~?2? J
<Zß, b, c, d, I, s, n_j>

I A2BC [TÄ2D [J D2F | J~F2G~"^ F2H~
b, c, d. f

a, b, c, d

~7ryI A2BC I I A2D

a, b, c, d, f, g, e

G2E

a, b, c, d, t, g
"

F̂2G

CT a, b, c, d, fZ^^r—"*
I A2BC [-[a2D J

~^yI A2BC I J A2D
a, b, c, d

Figure 13: Planning Graph. (Left): by re-planning; (Right): grown by our repair
algorithm

• Time consuming. Re-planning usually requires similar time costs as the orig-
inal planning process needed. Thus, it is not very efficient in many cases. For
example: if there is only one service in the whole plan that becomes unavailable,
re-planning will still need as much time as the original planning process takes.

• High plan distance (Definition 7). The re-planning process actually first
abandons the whole existing plan. There is no consideration of reusing the ex-
isting parts of the plan during its re-planning process. Therefore, the resulting

32

plan can be "very different" (evaluated by plan distance) from its predeces-
sor. This result will not be acceptable in the real open world sometimes since
users already sign contracts with those Web services providers according to its
original plan. Changing the entire plan means abandoning all existing business
contracts.

Therefore, we need a more efficient mechanism in terms of time and plan distance.
Here we propose a heuristic approach based on Greedy search to repair the broken
plan. The sections below explain our approach in detail.

3.4.2 Main Idea

When the environment changes, some Web services in the plan might become un-
available and thus need to be removed from the existing plan. Their effects (output
parameters) are also removed. This will cause some other Web services which are
using those removed parameters as their inputs become "non-invocable" . Thus, the
first step of our repairing approach is to locate the "broken preconditions" (Defini-
tion 11, "BP" for short) in the existing plan. Then, we can evaluate Web services
in the updated repository by using our heuristic functions (Section 3.4.3) and insert
the best one into the broken position. Notice that when we insert a Web service into
broken position to fix BPs the Web service itself may introduce new BPs (i.e. the
preconditions of the newly added Web services might not be satisfied by its lower
proposition level). Therefore, we need to continue this insertion process until all BPs
in the plan have been fixed (i.e. the plan is successfully fixed) or no Web services can
fix the BPs (i.e. repairing failed).

Definition 11 Given a planning graph G and a service w in action level i. in(w) is
the preconditions of w. Ifin(w) % Pi~\; we say w has broken preconditions and
the broken preconditions = in(w)/Pi-\.

There are two ways to insert Web services into the broken solutions to fix the BPs:

Create New Levels at the Bottom [YPZlOa]

As is shown in Algorithm 7, the repairing process starts from the highest action level.
While g f § (line 2). the repairing process uses the heuristic functions (Equation 9

33

and 10) to select a candidate Web service w from the Web services repository (line
3). If the w does not exist, the repairing process reports fail (line 4). Otherwise,
it adds w to action level ? and out(w) to proposition level ? (line 5-6). The fixed
goals are removed from g (line 7) and the newly introduced broken preconditions are
added to BP (line 8). When all g have been fixed, the repairing process moves to
lower level (starting from m = ? — 1, line 10), and continue the insertion process
(line 10-18). If BPs still exist after inserting new Web services into the initial action
level, the repair algorithm create a new empty action level and insert it right below
the previous initial level (line 19-20). The empty action level created will allow the
repairing process continue until all BPs are fixed or there exists a BP that no services
can fix. Finally, backwardsearch is used to extract the solution from the repaired
PG (line 29). The heuristic functions are shown in Section 3.4.3. The implementation
details are discussed in Section 4.8.

In order to analysis the algorithm complexity, we assume that the processes of
adding/removing Web services into action levels costs constant time O (I). Let \(g)\
be the size of g, \W\ be the size of available Web services W and \BPau\ be all BPs
that are required to be fixed. Because the heuristic evaluation process (line 3) checks
all Web services in W, and therefore has a complexity of 0(|W|), we can deduce that
line 1-9 has the complexity of 0(\g\ * \W\) (worst cases). For line 10-28, the worst
cases is the repairing process need to insert \BPau\ Web services to fix all BPs (if
one Web service only fix one BP), thus it has the complexity of 0(\BPau\ * \W\).
Therefore, the overall complexity (worst case) for above algorithm is 0(\g\ * \W\) +
0(\BPau\ * \W\) + 0(backwardSearch).

The example is shown in Figure 14. In the example, BP7n is the set containing
all BPs existed in level m; the repairing process is trying to fix BPs in BP7n. By
applying the heuristic functions, the repairing process selects a Web service "A" and
insert it to the action level m (Figure 14b). After the insertion, if BP7n = 0, the
repairing process moves to the lower level. If it reaches the initial level (assume level
m — 1 = 0 in Figure 14b) and 5Pm_i f 0, the repairing process creates an empty
action level below current level (as is shown in Figure 14c). So the repairing process
can continue to insert a Web service Á to fix ??'_?.

34

PL=Pm + (OUt(A))

Pln = Pm + (out{A)) BP'
New level

ifm-1 = Oand BP^1 f\

(b) (e)

Figure 14: Insert a new level in partial Planning Graph using "Create new levels at
the bottom approach" (a) original (b) Insert A to fix BP7n, (c) Insert A' to fix BPm_i

Create New Levels on the Top [YPZlOb]

As is shown in Algorithm 8, the repairing process starts from the highest action level
m where the BPs or BGs exists (line 2-5). During the while loop (starting from line
3), we are looking for a set of services A to satisfy BP7n. If there does not exist a
set to satisfy BPi, the algorithm reports fail. To look for the set A, we check a set
w containing all the services that can produce at least one BP (line 8). From the
set w, we apply our heuristic function (Equation 9 and 10) to select one best service
to satisfy BP7n (line 9-13). When a service w is added, it can satisfy some of BP7n
(line 12). At the same time, we record in C its preconditions that not satisfied by
Pm-\ (line 13). If Pm-\ can provide all the inputs of the newly added services A
(i.e. C = 0), the new services are added into A7n level (line 28-29). If not, we need
to create a new level m + 1 (line 15-26). The new action level A7n+1 can use all the
propositions at proposition level P7n. When created, P7n+1 and BP7n+I are assigned as
P7n and BP171 respectively. We need to search for a new set A to satisfy BPm+\ (line

35

BRt? m

New level

Pm+I =Pm + [OUt[A)) BP7n+1 = 0Am

BRmm

\BP BP? ?

a
A

¦y- \

0Pm + [OUt[A)) BP.m m

???-???} ÇjÎpZ^)BR tn mm m m

? V BP' = BPm + [in[A) - [Pm - BPn))

AA mm

BP BP,BP,? m-1

(b) (e)

Figure 15: Insert a new level in partial Planning Graph using "Create new levels on
the top approach" (a) original (b) A can be satisfied by Pm-\ , (c) add a new level for
A

18-21). If we succeed, we can update Pm+i, Am+i and BP7n (line 23-25), otherwise fail
(line 22). Notice that the unsatisfied precondition of A is added to BPm. We repeat
this process until all BPi become empty. If all BPi are empty, we succeed to repair
the planning graph. The repaired planning graph is not a "full" planning graph, but
contains at least one solution. The backwardsearch(G) is a regular backward search
function as in graph planning technique to get the final plan. For graph planning,
the backward search is the most expensive step. As we construct a smaller graph for
this search than a "full" planning graph generated from re-planning. It is expected
that we will get a solution faster.

Similar to the algorithm complexity we discussed in above section for Algorithm 7,
we assume that the processes of adding/removing Web services into action levels costs

36

constant time 0(1). Let \(g)\ be the size oî g, \W\ be the size of available Web services
W and |ßPa;;| be all BPs that are required to be fixed. The heuristic evaluation
process only checks a subset V of all Web services W such that every Web service in
V can produce at least one broken precondition in BP, and therefore has a complexity
of 0(\V\). For line 2-3. the worst case is g f 0, and therefore it has the complexity
of 0{\~g\ * \V\). For line 6-28, the worst case is it need to loop \BPall\ times to fix
all BPs, and therefore it has the complexity of 0(\BPaU\ * |V|). Hence, the overall
complexity for the algorithm isp(|<j|*|V|) + 0{\BPaU\ *\V\) + O {backwardsearch).

The example is shown in Figure 15. It shows two situations after using the heuris-
tic function to select a Web service "A": (1) If the preconditions of Web service "A"
can be completely satisfied by Fm_i, the repairing process will insert "A" to current
action level as is shown in Figure 15b; (2) If the preconditions of Web service "A"
cannot be completely satisfied by Pm-i, the repairing process will create a new level
right below current level (i.e. level m + 1) by cloning current level (as is shown in
Figure 15c) and then insert "A" to the newly created action level.

The detail algorithm is shown in Algorithm 8. The heuristic functions are shown
in Section 3.4.3. The implementation details are discussed in Section 4.8.

3.4.3 Heuristic Function

There are two heuristic functions we used in the algorithm. The first one is for
inserting a service into the highest action level, in which case there are no broken
preconditions only the broken goals. The second one is for inserting a service into
any action level lower than the highest one. The equations are as follows: Assume:

• w: a service whose inputs are in(w) and outputs are out(w)

• G: a partial planning graph

• g: a set of unimplemented goals

• BP: a set of unsatisfied preconditions of some services in G

If we want to add an action w to the highest action level n, the evaluation function
is:

37

Algorithm 7 Search for a repair plan (create new levels at the bottom): Repairl(W, G', BP, g)
-Input: available service set W

-Input: partial planning graph G
-Input: set of broken precondition BP
-Input: set of unimplemented goals g
-Output: either a plan for fail

result = fail
while g f 0 do

select an action w with the best /(G, w) according to Equation 9
if w does not exist then break

add u; to G at action level An and out(w) at proposition level Pn
remove g G) out(w) from g
add in(w) — P„_i to BP

if g f 0 then return result
for m ==-n — 1; m > 0; m do

while BP ? Pm f 0 do
select an action w with the best f(G, w) according to Equation 10
if w does not exist then break

add w to G at action level Am and out(w) at proposition level Pm
remove Pm ? BP ? out(w) from BP
add in(w) — Pm-\ to BP

if BP C\Pm f F then return result
while BP f 0 do

insert an empty proposition level Pi and empty action level A\
P1=P0- BP
select an action w with the best /(G, w) according to Equation 10
if w does not exist then break

add w to G at action level Pi and out(w) at proposition level Pi
remove Pi D BP ? out(w) from BP
add in{w) - P0 to BP

if BP f 0 then return result
result = backwardsearch(G)
return result

38

Algorithm 8 Search for repair plan (create new levels on the top): Repair2(W, G, BP, g)
-Input: available sendee set W

-Input: partial planning graph G
-Input: set of broken precondition BP
-Input: set of unimplemented goals g
-Output: either a plan for fail

result = fail
if g f 0 then

m = ?, BP7n <— g
else

m = max{ï), where JB P¿ f 0, i G [1 : ?]
while BPm f 0 do

A = §,B = BPm,C = 0
V = {w\w e W, oui!» n Bpm F 0}
while BPm f 0 do

select an action w EV with the best /(G, w) according to Equation 10
if w does not exist then break

BPm = BP7n - out(w), A = A + {w}
C = C + in{w) - (P771-, - BP7n-!)

if BP7n f 0 then break
if C f 0 then

insert a new action level m+\ with A7n+I = 0, Pm+i = imi and BPm+i = -B-Pm =

A = 0
while £PTO / 0 do

select an action ?£^ with the best f(G, w) according to Equation 10
if w does not exist then break

BP7n = BP7n - out(w), A = A + {w}
if BP7n f 0 then break
BPm+X = 0
Pm+I = Pm - B + ¿2{0Ut{w)\Vw € A}
£Pm = 0
^m = A7n + A

m = max(i), where BPi f 0, i G [1 : ?]
if -BPm ,e 0 then return result
result = backwardsearch(G)
return result

39

Equation for broken goals

f(G,w) = |5nouí(tü)|*10 + |P„_i nin(w)\- \in(w) - P„_i| - e(w , G) (9)

Where \gfiout(w)\ is the number of unimplemented goals that can be implemented
by w and the coefficient 10 is the weight of this term. It shows that it is more
important to satisfy the goals than the other needs represented by the following
terms; |Pn_i D in(w) | is the number of inputs of w that can be provided by the known
parameters at the level P„_i; \in(w) — Pn- 1\ is the number of inputs of u; that cannot
be provided by the known parameters at level Pn- 1. This set needs to be added into
BP, if w is added. Finally, e(w, G) is the number of the actions in G that are exclusive
to w.

If we want to add an action w to action level to, and m is not the goal level, the
evaluation function is:

Equation for broken preconditions

f{G,w) = (\gDout(w)\ + \^2 (-BPinoiíí(u;))|)*10+|Pm_inm(iü)|-|¿n(u7)-Pm_i|-e(ü;,Gí)
í>m

(10)
Compared to Equation 4, the above equation added term | X]¿>m (PP¿ (? out(w))\

which is the number of broken propositions in and above level m that can be satisfied
by the outputs of w.

A, B, C, D, E1Jd, F BP={E}

BP=(B, C}

Repository

C2E AG2E

F2E A2BC

A2BD

Figure 16: Example of Heuristic Functions

40

Example

As is shown in Figure 16, the partial planning graph has BP = {E} for P2 and
BP = {B, C] for Pi, E is the goal. Using the repairing algorithm 7 for example, the
repairing process starts from the highest action level A2. In order to fix BP = {E}, it
first searches the service repository and selects all Web services that can produce E as
the candidate Web services, in this case it gets a candidate list {C2E, AG2E, F2E}.
Then, it uses the heuristic function (Equation 9) to evaluate each of the candidate
Web services, and it gets: ¡(G,wC2e) = U,f(G,wAG2E) = 10 and f(G,wF2E) = 9.
C2E has the highest heuristic and therefore is inserted to A2. Next, in order to fix
the BP = {B,C} for Pi, the repairing process repeats the process. It first selects a
list of candidate Web services that can produce at least one of BP: {A2BC, A2BD}.
Then, it uses the heuristic function (Equation 10) to evaluate each of the candidate
Web services, it gets: f(G,wA2BC) = 21 and J{G,wA2Bd) = H- Therefore, A2BC is
inserted to ?? to fix the BP.

3.4.4 Indexing for Repairing Algorithm
There are two situations when an exiting solution breaks: (1) each broken Web ser-
vices in the solution can be fixed by a replacement service that is still available. We
call this "replaceable situation" ; (2) there exists a broken Web services that doesn't
have any replacement Web services, or all of its replacement Web services are unavail-
able (e.g. broken as well). In this case, the preconditions of some other Web services
which depend on the outputs of this broken Web services will never be satisfied by
any other Web services (note: the discussion here is based on the WSC dataset, in
which solutions are independent to each other (i.e. two solutions do not share any
of Web services). We call this "non-replaceable situation". The heuristic repairing
algorithm will likely become trapped in this situation since it tries to fix some BPs
that are not fixable. In order to avoid this kind of trap, we propose an indexing
approach which shows as follows:

41

A, B, C, D, g, Ft-
A3 wh

........... TTSv' Constructed P£— ¦—· ~ ">—¦
P2 d A· B· C> D¿9· ï

A1

Po

Figure 17: Example of Indexing Approach

Before Solution Breaks (Indexing):

1. Generate a Planning Graph (PG) which may contain multiple solutions (in-
cluding the current solution). We name the resulted Planning Graph as "Con-
structed PG". As the example shown in Figure 17, the "Constructed PG" con-
tains a solution < W1, VK3 > and parts of another solution < W2, W4, W5 >.

2. Index the existing solution that is extracted from the "Constructed PG" by
backward search. In the example, we index the existing solution < Wi, W3 >.

3. For each service in the existing solution, index their replacement Web services
(Definition 12). As is shown in Table 1, W1 has three replacement Web services:
WiI) W\2, W13 and W3 does not have any replacement Web services.

Services Replacements
W1 Wn, W12, W13
W3

Table 1: Index Table of Replacement Web Services

42

After Solution Breaks (Repairing):

1. For each of broken Web services, check their indexes of replacement Web ser-
vices. If there is an available replacement service (i.e. not broken), use it to
replace the broken Web services. For example, if VV1 breaks, we can simple use
W11 to replace it by looking up the index table. If there exists a broken Web
services that doesn't have any replacement Web services or all of its replacement
Web services are unavailable, remove all Web services in the current solution
as well as their replacement Web services from the indexed "Constructed PG" .
For example, if W3 breaks, we have to remove all {M/],VK3} as well as their
replacements { Wn, W12, Wi3) from the indexed "Constructed PG".

2. Use heuristic repairing algorithms (Algorithm 7 and 8) to fix all BPs and BGs
in the "Constructed PG". In this example, when we completely removed the
Web services of solution 1 ((VK1, W3, Wn, W12, W13)), we have broken goal g
need to be fixed. By applying our repairing algorithms, it finds a Web service
W5 that can produce g and therefore fix the partial planning graph.

3. If the fixing process succeeds, use "backward search algorithm" to extract one
solution. In this example, we get the solution: < VV2, W4, VV5 >.

Definition 12 Given a lean solution: PG =< P0, A1, P1, A2, P2-Ai, Pi > and a ser-
vice al € Am. We define a function usedOutputs(al) = output(al)C\\J{input(Am+1) ,
...,input(An)). which represents the subset of service al 's outputs that is used by Web
services in its higher levels as their inputs. If there exists another service a2 while in-
put(a2) C input(al) and output(a2) D usedOutputs(al), we say o2 is an replacement
service to al for the solution PG.

The indexing approach mentioned above allows repairing processes to identify
whether we are facing a "replaceable" or "non-replaceable" situation in an extremely
short time. If replacement Web services cannot be found we need to remove all
necessary Web services to prevent our heuristic algorithm getting trapped. Also,
because this approach lets the repairing process repair BPs on the "Constructed
PG", it ensures the reuse of the existing solution parts. Repairing process reuses
those solution parts and "grows" the remaining parts using heuristics. Experiments
for this indexing approach can be found in Section 5.4.

43

Chapter 4

Implementation

4.1 Implement the Web Service Composition Test
Bed

We have implemented the algorithms discussed in Chapter 3 in Java. We also use
the platform which is initially developed for the Web Service Challenge 2009 compe-
tition to generate dataseis and perform evaluation (the platform will be introduced
in detail in Section 4.3.1). In this section, we are going to discuss the details of our
implementation, (also cf. Appendix A)

4.2 Concepts, Things, Services and Parameters
Before we discuss about the implementation detail, it is very important to understand
the following terms which will be used extensively throughout this chapter [BIeIO].

• Concept - Defined in OWL (Web Ontology Language). Concept stands for a
group of "things" that share common characteristics (or attributes). A concept
can be subsumed by the other concept, e.g., a concept "ISBN" subsumes "ISBN-
8" and "ISBN-16".

• Thing - Defined in OWL (Web Ontology Language). Things are concrete in-
stances of concepts. Things belong to the same concept which shares the same

44

set of attributes but might have different value for those attributes, e.g., "HlL
235" and "HlL 236" are two instances of the concept "Post Code".

• Params - Parameters are message parts defined in WSDL (Web Service Def-
inition Language). A parameter can be associated with a semantic concept
defined in OWL. It accepts all instances of the associated concepts as well as
all instances of the concepts that are subsumed by its associated concepts.

• Services - Services represent Web services defined in WSDL documents. In the
dataseis generated from WSC (Web Services Challenge) 2009, each service has
exactly one port type and each port type has one input message and one output
message.

4.3 Experiment Setup

4.3.1 Dataset Generation

We use the Web Service Challenge 2009 platform and its tools in our experiments
[BIeIO]. This platform contains a challenge client, a dataset generator (Figure 18)
and a solution checker. The client can invoke the user-implemented composition
algorithm as a Web service and evaluate its composition time. The solution checker
can be used to check the correctness of given composition solution. The data generator
generates Web service composition problem in WSDL documents as well as ontology
concepts in OWL documents and a set of Web services interfaces in which Web service
parameters are associated with semantic concepts in OWL files. To generate a dataset,
user needs to specify the number of services the dataset will have, the number of
solutions and their length (in steps). Given those parameters, the generator randomly
generates a set of given concepts and goal concepts first. Then according to those
generated concepts as well as the given parameters, it generates a number of paths
to form the solutions. Each step of a generated solution contains a set of necessary
inputs and a set of desired outputs as well as a set of Web services, each of which
can independently provides those inputs/outputs. Then, based on the solutions, the
dataset generator generates the complete ontology and Web service interface set by
padding new concepts and services which are-not used in the solutions.

45

. WSCtf» **tl ?*??«ß Uit-Ü ¦¦

¦ CumpoiitiÄ-iSyi;»!

ti Îtrvur Oil cip*·

WSfIi Qu«* (>i .

!rsput-Pftfonnattons

NumberotCorK... f?> iOOOO

Number of Servi... í?s : 4000

: 5oivaW«!> : L»
Sûîutiorrst?) : ì0

Solution- D. m :

(~"Ï4à 'S

Output-Informations -

SPÊt-Fiie-Name Solution

; OWl File Mame: ??????p

Task.W5DL-fi!e-Näme: Oialisnrie

Services-WSDi.-file-N Servire*

WSLA-Fite-Name: ceiewelagreeinenw

Ourptit-foí ..

; EroA-se ;

Generate Intermediate-Fit .

{ Wo ')

Name

[J Challenge.wsdl
:f check.xml
:?: probîem.xml
[j Services.wsdl
*[services, KmI
[J Soiutîon.bpe!
[J Taxonomy.owl
% taxonomy.xml

Figure 18: Challenge Client (Left) and Data Set Generator GUI (Middle) and Date
Set Files Generated (Right)

As Figure 18 shown, the generated dataset contains several files including "Ser-
vices.wsdl" , "Taxonomy.owl", "Challenge.wsdl" and "Solution. bpel". They are the
essential files that are necessary to run our experiments:

• "Services.wsdl" - It is a big file containing services description of all Web services
generated (in WSDL). A "Services.wsdl" generated in one of our experiments
contains more than 4000 Web services. Our algorithms will parse these WSDL
documents to create the service repositories which can be used in composition
processes. Notice that each Web service in "Services.wsdl" has exactly one
"port type" and each "port type" has one "input message" and one "output
message" .

• "Taxonomy.owl" - This file contains all semantic "concepts" (classes) and "things"
(instances) that are associated to input and output parameters of generated Web

46

services. Concept stands for a group of "things" that share common character-
istics (or attributes). A concept can be subsumed by the other concept. For
example, a concept "ISBN" subsumes "ISBN-8" and "ISBN-16". "Thing" are
concrete instances of concepts. Things belong to the same concept which shares
the same set of attributes but might have different values for those attributes.
For example, "HlL 235" and "HlL 236" are two instances of the concept "Post
Code" . Our algorithm will parse this file to understand the semantic relation-
ship between Web service message parameters.

• "Challenge.wsdl" - This file represents a desired composite Web service. The
input parameters of this service are given as known parameters. The output
parameters of the service are desired parameters that our algorithm should
give. For example, the input parameters could be "current address" and "food
preference" and the desired parameter could be "Nearest Restaurant that has
the preferred food" .

• "Solution.bpel" - This file contains all possible "lean solutions" that exists in
the generated dataset. It can be used to validate the correctness of the solutions
given by our algorithm and compare their quality.

4.3.2 Algorithms Invocation Procedures
As is mentioned in Section 4.3.1, we use the platform and tools provided by Web
Service Challenge 2009 to test the performance of our algorithms. We also follow
the competition rules that are specified by the Challenge: As Figure 19 shows, the
composition system contains two parts: the client (Right) and the server(Left). Our
algorithm resides in the server part as a Web service. The client is also a Web service
so that it can communicate with the server. In order to run our algorithms:

1. Use the dataset generator provided by WSC to generate a dataset using specified
parameters (number of services, solution depths, etc..) and upload the dataset
to the client.

2. Once the client has the dataset, we can click the "Initialize" button to ask
the client to send two hyperlinks which point to "Services,wsdl" and "Taxon-
omy.owl" to the server.

47

?
WSDL

file

"N
OWL

file

Challenge Service Side Challenge Client Side

Parse WSDL Evaluation
Service Descriptions

WSDL
of required

Service

Parse OWL
Ontology

WSBPEL
file

Compute Service
Composition

Generate
WSBPEL

Interface
Package

Figure 19: The procedure of the Web Service Challenge [BIeIO]

3. The server then parses the above two files to perform necessary initialization
processes (parsing, modelling, indexing, etc...)· The server will send a message
to notify the client once the process is completed.

4. Once the initialization is over, we can click "Query" button in the client GUI
to send out composition queries to the server (in form of "Challenge.wsdl") and
start the timer.

5. The server parses queries, performs calculation using our algorithm, and sends
the solution back to the client (in the form of BPEL document).

6. Upon the receive of BPEL document from server, the client stops the timer
and validates the correctness of the given solution by the server. The validation
result as well as composition time then show up on the client.

48

4.4 Building Models
Since we use Ja\'a programming language for our implementation, we would like to
take its benefits by modelling the composition problem in Object-Oriented way. As
Figure 20 shows, we have modelled the problem using six objects. At the top, there
is an abstract object, named "UniNameObject" , which represents an object with
unique name. It also contains many useful methods such as sorting, comparing,
etc... which can be inherited by its sub-classes. "Concept", "Service", "Thing" and
"Param" inherit "UniNameObject". Besides the common attributes and methods
they inherited, they are also built in with index tables which will help to expedite
the composition process (Indexing details refer to Section 4.5.1). For example, in
each "Concept" object, it maintains a set of services which accepts this concept as
inputs. Also, it maintains a set of concepts that subsumes this concept and a set of
concepts which is subsumed by this concept. The object "PlanningGraph" represents
a Planning Graph which contains an action level array (storing services invoked at
each level) and a proposition level array (storing concepts generated at each level).
The implementations of all algorithms discussed in this thesis are based on these
model objects.

4.5 Implementation Details

4.5.1 Indexing the Data
We apply several indexing techniques for expediting composition processes. We first
parse the given WSDL file and OWL file into our model objects mentioned above. By
doing this, all necessary information for running the algorithm stays in the memory.
So it does not need to search though XML file every time. Second, for each concept,
we index its super classes and sub classes. Therefore, the algorithm does not need
to re-compute this every time when checking semantic subsumption. Third, for each
service, we use a hash table to index all concepts (defined in a OWL document) that
the service takes as inputs or outputs. The subsumption hierarchy is "flattened"
in this step so we do not need to consider semantic subsumption during the plan-
ning processes (Section 4.5.2). Last, we also use a hash table to store the mapping
relationships between each semantic concept and all services that can accept that

49

UniNameObject

<fWW^^m

Concept Service Thing Param

PlanningGraph

Figure 20: Class Diagram for Model Objects

concept as one of their inputs (see Table 2). This is similar to the "reverse indexing
approach" introduced in [YXG08]. It allows us to search the invokable Web services
from the concepts quickly - a simple join operation among related rows of the index
table instead of checking the precondition of each service in the repository. Table 2
shows an example of the reversed index table. For example, if we currently know
{"concepii", "concept2"}, we can get currently invokable services by looking up the
reversed index table and join their associated services sets. In this case, it would be
the intersection of {serviceA, serviceB} and {serviceC, serviceD, serviceE} .

4.5.2 Flatten the Semantic Relationships

As Figure 21 shown, the semantic relationships among things and concepts are defined
in the OWL document. We need to check these relationships to know whether a
parameter can be accepted by a Web service as its input. In this example, we have
four concepts. At the top level, we have a concept, named "Machine" , which subsumes

50

Concept Services that accept this concept
conceptl serviceA, serviceB
concept2 serviceC, serviceD, serviceE
concept3
concept4 serviceF

Table 2: Example of Reverse Index Table

the concept "Vehicle" , and concept "Vehicle" subsumes two concepts named "Car"
and "Motorcycle" . We also see two Web services named "A" and "B" . Web service
A has an output "Ford 1986 Red" which is an instance of "Car" and Web service B
accepts an input "An old Vehicle" which is an instance of "Vehicle". By checking
the semantic relationships, we can know that the output of Web service A can be
accepted by Web service B because "Car" is also one kind of "Vehicle" .

In order to composite the planning graph, we need to get a list of currently invok-
able Web services as candidates based on currently known parameters at each le\'el.
Without knowing the semantic relationship between their I/O parameters in advance,
we have to check the relationship map in OWL every time, which is extremely time
consuming. In order to expedite this process, we apply an approach to flatten the
semantic relationships by converting them into syntactic problems. For a Web service:

• For each of its output parameters, we calculate its directly associated concepts
as well as all concepts that subsumes the concept. We index the resulted concept
set as all concepts that Web services can produce. For example, Web service A
can produce "Car" , "Vehicle" and "Machine" .

• For each of its input parameters, we only calculate its directly associated con-
cepts. We then index the resulted concept set as all concepts that the Web
service can accept. In above example, the acceptable concept set of Web ser-
vice B is "Vehicle".

• By comparing the I/O concept set of Web services A and B, we clearly see
Web service B is invokable after we invoke Web service A because "Vehicle"

will be provide by invoking Web service A. No semantic relationship checking

51

Web Service B

Input: A old Vehicle -^.Output: \ ^

Web Service A

Input:
Output: Ford 1986 Red_

Mechine

vehicle

Motocyclevehicle

GM 1995
Blue

Yamaha
2002

Concept

Figure 21: Semantic Relationship Between Web Service I/O parameters

using OWL is necessary in this approach. Thus, the efficiency of the whole
composition process improves.

4.6 Planning Graph Construction
As is Section 3.2 introduced, the planning algorithm generates a Planning Graph
from given known parameters (which means "concept" in our implementation since
we already "flatten" the semantic relationship) to find desired goal parameters. It
maintains a set of currently known concepts and, based on which it continues to
invoke all possible Web services whose preconditions are satisfied by currently known
concepts. The loop continues until it reaches the "Fixedpoint" [GNT04] or all goals

52

have been found. "Fixedpoint" is a state that if the algorithm continues to expend
the planning graph by invoking services, the proposition will not change. Appendix B
shows the complete Java source code for this algorithm implementation.

4.7 Backward Search Implementation
The most crucial part of the backward search process implementation is to implement
the "smallest sets" of Web services that could satisfy subgoals at each level. By
calculating the "smallest set" at each level, we can extract a optimized solution from
the planning graph. The details of the approach is discussed as follows:

Calculating Smallest Sets of Web Services to Satisfy Subgoals
Given a set of Web services W and a set of subgoals G, the "smallest set" of W to
satisfy G is the smallest subset of W such that every subgoal in G can be produced by
at least one Web service in W. Our backward search process continues to calculate
the "smallest sets" of Web services in each action level which can satisfy the subgoals.
In order to illustrate the concept, we present an example here as is shown in Figure 22.

proposition level ?

action level ?

proposition level n-1

subgoal set = {g1 , g2, g3, g4}

smallest set = {A, C}

Figure 22: An Example of the Smallest Set

Subgoals subgoal gl subgoal g2 subgoal g3 subgoal g4
Web services A, B C, B A, C A

Table 3: The Originated Web Services for Subgoals

53

In this example, We have three Web services "A", "B" and "C". As is shown in
the figure, Web service "A" has the outputs {gl, g2, g3, ...}; Web service "B" has the
outputs {gl, g2, ...} and Web service "C" has the outputs {g2, g3, ...}. Therefore, we
can have the Table 3 which shows the set of originated Web services for each subgoal
in the proposition level n. From the table, we can easily see that only two sets of
Web services, {A, B, C} and {A, C}, can satisfy the condition "every subgoal in G
can be produced by at least one Web service in VK" that we mentioned above. The
set {A, C} has fewer number of Web services and therefore is the "smallest set" that
can satisfy the subgoals. The detail approach to calculate the "smallest set" is shown
as follows:

1 . We need to calculate a set of subgoals that are required to be satisfied by Web
services in the current action level. As is shown in the the example, the resulted
subgoal set is {gl,g2,g3,g4} in the current level;

2. We build the "subgoal-to-origins" relationships as is shown in Table 3. In the ex-
ample, we have a subgoal-to-origins relationships {gl : {^4, B), g2: {C, B),g3 :
{A,C),g4:{A}};

3. With "subgoal-to-origins" relationship built, we then let the algorithm calculate
all subsets of Web services in the current action level. In the example, the
current action level contains Web services {A, B, C), so we can get 8 subsets
{A}, {B}, {C}, {A, B), {B, C), {A, C), {A, B, C) and 0.

4. For each subsets, we try to remove it from the "subgoal-to-origins" relationships
(i.e. {gl : {A,B),g2 : {C,B),g3 : {A,C),gA : {A}}) and check if all subgoals
can still be produced by at least one Web service. If yes, we add the subset to
the "smallest set" candidate list.

5. We compare the size of all candidate subsets and pick up the one has the smallest
size. That set is the "smallest set" to satisfy the subgoals in current level. Note
that it is possible that there are more than one "smallest set" existed in one
level. In that case, our algorithm will pick up the one it first found.

Appendix C shows the main part of the backward search algorithm implemen-
tation. The sample execution log can be found in Appendix F. Also, the complete
source code is available for checkout online, cf. Appendix C

54

4.8 Repairing Algorithm Implementation
As is Section 3.4 introduced, when an existing plan is damaged, we have two options
to fix it: first one is re-planning which discards the whole plan and re-compose the
whole plan. If the damaged part is relatively small (e.g. only one service in the whole
plan become unavailable) using re-planning approach might not be very efficient.
Therefore, we propose a repairing approach which can locate the damage part and
fix it very quickly. There are mainly four parts of the implementation:

Removing broken Web services: as the precondition of the repairing process, a
set of removed Web services is generated (depends on different experiments).
Therefore, we need to first remo\^e them from the given solution plan and mark
the broken preconditions of removed Web services;

Repairing broken plan: according to our repairing algorithms (Algorithm 7 and
8) the repairing process repeatedly use the heuristic functions (Equation 9 and
10) to evaluate candidate Web services and insert them into the plan. In our
implementation, in order to improve the performance, we select the Web services
which can produce at least one goal as the candidates. Therefore, the repairing
process does not need to apply heuristic functions to all available Web services
in the repository;

Extracting solution: after repairing process succeed, we have a repaired solution.
However, the solution might not be lean solution. Therefore, we use our back-
ward search algorithm (Algorithm 6) to extract the optimized solution from the
solution PG;

Validating solution: a solution validator (Section 4.8.1) is implemented to validate
the correctness of resulted plan and calculate the plan distance (Definition 7)
from its original solution plan.

As an example, the Appendix E shows the Java code of one repairing algorithm
(Algorithm 7).

55

4.8.1 Plan Validator

Validating the correctness of our algorithm results is the essential part of our exper-
iments. The results of our experiments represent by planning graphs, and therefore
we need a plan validator which can tell whether a given planning graph is valid or not
(Definition 5). The aspects checked by our planning validator are shown as follows:

Aspects Checked by the Plan Validator

1. The initial proposition level. It will check whether the initial proposition level
only contains the initial given concepts.

2. The last proposition level. It will check whether the last proposition level con-
tains all desired goal concepts.

3. Invocable services. It will loop through each action level in the plan (start from
level 1) to check if its previous proposition level satisfies the precondition of
each service in the current action level.

4. Proposition level correctness. It will loop through each proposition level in the
plan (start from level 1) to check if the concepts in this proposition level is
exactly equal to the intersection of current known concepts set and all concept
produced by its corresponding action level.

Notice that the plan validator we developed is different from the "solution checker"
that is provided by WSC2009 Platform. The "solution checker" checks the composi-
tion results in BPEL format while our plan validator checks the composition results in
planning graphs. It is possible that we convert our experiment results from planning
graphs to BPEL-documents, and then use the "solution checker" to do the double-
check.

4.8.2 Removing Services from Existing Plans
The precondition of this removing process is that we have a list of services that
become unavailable. Then removing process uses the list to check whether there are
any services affected in the given plan first. If there is no service affected then it
will return the plan since no removing or repairing is necessary. However, if there

56

are some services affected by the change, it will first try to remove these affected
services as well as the concepts they produced from the plan (if these concepts does
not produced by any other service). Then, it will use plan validator to check if the
plan is still valid after such removal, if yes it goes to repairing process otherwise it
just return the resulted plan.

4.8.3 Heuristic Evaluator

Heuristic Evaluator is able to calculate the heuristic score of a given service according
to the heuristic function. We implement several heuristic functions as is Section 3.4.3
mentioned, they can be used in different context. For example, a simple heuristic
function implementation for backward repairing process is showed in Appendix D.
Notice that we apply a weight (10) to each of the goal concept that the service can
produce, so that the evaluation can be more accurate.

4.8.4 Repairing Based on Heuristic Search ~~
We implemented both varieties of the repairing algorithms (Algorithm 7 and 8) shown
in Section 3.4. Here we use the Algorithm 7 as an example to illustrate our repairing
algorithm implementation:

As the Algorithm 7 shown, there are mainly two phases for the repairing
process:

Step 1: starting from last action level, backwardly, the repairing process continue to
insert Web services to fix broken preconditions at each existing level;

Step 2: when the repairing process reaches the initial action (i.e. action level 1), if
there are still broken preconditions needed to fix, the algorithm needs to create
and insert a new empty action level and its corresponding preposition level to
level 1, so that the repairing process (i.e. Step 1) can continue until the plan is
fixed or repair failed.

57

The detail steps from the implementation perspective are described as
follows:

Start from the highest Action Level (n = highestlevel) . While level counter is greater
than 0 and the BPs (broken preconditions) list is not empty, continue the loop:

1. Compute a "current sub-goal set" which contains all BPs that need to be satis-
fied right in current propositional level (level n). Initially, this set will contains
all unsatisfied goals only;

2. Select all Web services that are not already in the current action level and could
produce at least one sub-goal in "current sub-goal set" as candidates. Compute
heuristic score of all candidates based on the heuristic function;

3. Insert the Web service that has the highest score in candidate list to current
action level. Add its outputs to the proposition level ? and its inputs (i.e.
preconditions) to the proposition level n— 1. Check if level ? still has unsatisfied
subgoals. if yes, repeat step 1 unless no candidate can be found, in which case,
it should return "repair failed" ;

4. Check if all BPs haven been fixed, if so, return PG;

5. Decrease level counter by 1 (i.e. ? = ? — 1)

6. If it reaches the initial level (i.e. ? = 0), insert a new empty action level and
its corresponding propositional level below the current level. Set level counter
? = 1. Continue the repair process.

The repairing process will report failure if no candidate services can fix the re-
maining broken preconditions. Appendix E shows the repairing implementation in
Java source code.

It is worth to notice that, the Algorithm 8 we discussed in Section 3.4 has the
similar implementation as the one we illustrate above (Algorithm 7). The main
difference is, before moving the level counter to a lower level (i.e. ? = ? — 1), the
repairing processes of the Algorithm 8 make sure there are no BPs exist in its current
level and the levels above (i.e. BPs = 0 for levels >= n), while the repairing
processes of the Algorithm 7 will move to lower level regardless of whether or not
BPs exists in its higher levels. It is expected that the Algorithm 8 can have better

58

performance in terms of time since it reuse the existing parts of the plan during its
repairing processes.

59

Chapter 5

Experiments

5.1 Datasets Used in Experiments
In order to compare the results in different experiments , we pre-generated three
datasets as is shown in Table 4. All our experiments in this section are based on
these three datasets. The dataset 1 has relatively small number of Web sendees.
It contains solutions in four different depths (i.e. solutions can be found in 9, 18,
19 or 27 levels). The dataset 2 has relatively large number of Web services and its
solutions have 3 different depths. The dataset 3 has similar number of Web services
as dataset 2 but its solutions only have one depth. In addition, The best solutions
for each dataset are also known from the WSC Dataset Generator; for example, the
best solution of dataset 1 contains 10 Web services and 9 levels.

As a naming convention we use in this section, the solutions that have the same
depth in a dataset are referred to as "solution n" . For example, we can simply say
that in dataset 1 there are 4 solutions, solution 1 has 9 levels, solution 2 has 18 levels,
solution 3 has 19 levels and solution 4 has 27 levels.

There is one very significant characteristic of the generated datasets needed to
be mentioned here: each dataset can have solutions in different depths. Solutions in
different depths do not share any common Web services and concepts (i.e. they are
not overlap with each other). For example, dataset 1 has four sets of solutions in
which the solution 1 has 10 Web services in 9 levels and the solution 2 has 21 Web

60

Data Set

Concepts
Things
Params

Services

Solution Depths
Known solutions

Best solution

1

3081

6209

2891

351

9, 18, 19, 27
7023327247800

10 services/9 levels

3093

6275

45057

4131

6, 13, 9
3463760

13 services/6 levels

3081

6222

44720

4036

6

7776

10 services/6 levels

Table 4: Data Sets Used in Experiments

services in 18 levels. The solution 1 and the solution 2 do not share any common Web
services. In another word, the intersection of the 10 Web services in the solution 1
and the 21 Web services in the solutions 2 yields 0. Also, none of concepts which are
produced from Web services in solution 1 can contribute in finding any Web services
involved in solution 2.

5.2 Planning Quality Experiments

5.2.1 Experiment Method
The purpose of this experiment is to test the performance of the planning algorithm
that we developed in Section 4.6 and the quality of solutions that the algorithm pro-
duces. First, the planning algorithm generates a planning graph to tell user whether
the solution is existed (Algorithm 3). Second, if the solution existed, it uses backward
search process to get the solution (Algorithm 6).

5.2.2 Composition Result

We experiment our planning algorithm on the three datasets we generated in Sec-
tion 5.1. We record the composition time, its time cost for both planning process
and backward search process as well as their composition quality. As is shown in
Table 5, "PG Composition Time (ms)" shows the time used by planning processes to
construct the planning graphs; "PG Constructed" shows the number of services and

61

the number of levels in each constructed planning graph; "Total Composition Time"
shows the total time of the planning process and corresponding backward search pro-
cess for each dataset; "Extracted Solution" shows the optimized solution extracted
by the backward search process for each dataset; "Best solution Existed" shows the
best solution existed in each dataset. As we can see:

Data Set

Time to construct PG (ms)
PG Constructed (services/levels)
Total Composition Time (ms)
Extracted Solution (services/levels)
Best solution Existed (services/levels) 10s/91

1

101 (ms)
125S/91
494 (ms)
10s/91

217 (ms)
187s/61
416 (ms)
13s/61
13s/61

154 (ms)
57s/61
4364 (ms)
10s/61
10s/61

Table 5: Planning Experiment Results

1. Planning process is much faster than backward search process. In dataset 3, for
example, planning process only takes 3% of the total time to finish. This shows
the complexity of our composition algorithm is mainly resides on the backward
search process. If no solution exists, the backward search process is unnecessary.

2. The number of action levels in the planning graph generated is equal to the
lowest solution depth. It is because the construction of planning graph stops
when all the goals are reached.

3. Planning Graph returned by planning process contains multiple lean solutions.
This is because, in our generated datasets, Web services are highly replaceable.
For each concept, it might exist more than one Web service which can produce
it.

4. Backward search process is able to return the optimized solution that exists
in a dataset. This pnwes that the composition quality of our algorithm is
satisfied. However, one thing we need to notice here is, although it shows in
all the three results that our algorithm finds all the best solutions, it does not
mean the backward search algorithm always returns the best solution. The
backward search process tries to invoke only the necessary Web services at each

62

level by calculating the "smallest sets" of Web services to satisfy subgoals. It's
possible that there are more than one "smallest set" in one level. In such case,
our backward search only picks up the first one it finds and discard the rest.
Therefore it exists a small chance that the final composition result it not the
best one in the dataset (but is still an optimized one).

5.3 Repairing versus Re-planning Experiments

5.3.1 Experiment Method
The purpose of this experiment is to compare our repairing (Algorithm 7 and 6) with
the re-planning (Algorithm 3 and 6). For re-planning, we use the same planning
algorithm that we used in previous planning quality experiments (Section 5.2) but
with the updated parameters. The re-planning serves as a baseline algorithm. We
want to check whether repairing algorithm can be better than re-planning and, if so,
under which conditions. We conduct two experiments. In Experiment 1, a certain
percentage of available Web services, from 3% to 24%, are randomly removed from
W. W is the set of available Web services in the Web service repository. When n%
Web services are removed from W, all remaining Web services can be candidates to
be added into the planning graph. In Experiment 2, a number of Web services are
randomly removed from a lean solution. For example, dataset 1 has a lean solution
containing 10 services, and therefore in the experiment we remove Web services from
the 10 services to break the solution.

5.3.2 Experiment 1: Remove Web Services from Service Repos-
itory

The following comparison of performance is recorded in the cases that both repair
(Algorithm 7 and 6) and re-planning (Algorithm 3 and 6) can find solutions. Each
data point is obtained from the average of five independent runs when both repair
and re-planning find a solution.

Fig 23 to Fig 26 show the results from Experiment 1. From Fig 23, we can see that
the re-planning composition time is slightly decreasing when more Web services are
removed. It is because the problem is smaller when less Web services are available.

63

However, it is more difficult to repair the plan. Therefore, the repair composition
time increases in such a case. However, after a certain percentage (around 20%),
the repair composition time decreases. This is because the problem becomes simpler
to solve and also because we are less committed to the original composition. Please
notice that repair may not find existing solutions. For example, when removing 21%
Web services, we observed 4 failures on 9 runs. One thing we need to notice is, for
the repairing time of re-planning in dataset 3, we see the curve decrease dramatically.
This is because the dataset 3 only contains 1 solution. When we remove a number
of services from that only solution, the amount of time required by backward search
decrease dramatically.

¦pair Time (ms)
3500 ? \
3000 [
2500 ; \
3000 J \
1500 \ \
1000 : '¦ · . *..

Figure 23: Repair time with dataset 1 (left) and dataset 2 (middle) and dataset 3
(right) (repair - thick line, re-planning - thin line)

? of services in the solution U oí services in (he soluiion
20

1
/15 10>/0

Removal f
10 205 0 15 20

Figure 24: Number of services in the solutions with dataset 1 (left) and dataset 2
(middle) and dataset 3 (right) (repair - thick line, re-planning - thin line)

Fig 24 and Fig 25 show the number of Web services and the number of levels in a
composed plan. The plot for repair is rather flat. Our explanation is that our repair
algorithm does not work well when the number of levels are over 10. This is because
it is a greedy search algorithm and the successful rate is lower in more level cases. As
we do not count unsuccessful cases, we end up showing the cases where the levels are
below 10 and very flat. Fig 24 and Fig 25 show that when repair finds a solution, the
quality of the solution is pretty good.

Repair Time (ms) Repair Time (ms)

50 400\
S

V X 300
100

00

50
00

Removal * 20105 10 15

64

Hot Ii vols inüie« II of levéis ?a lht Mttuu

5 IO 15 20 5 IO 15 20 5 IO IS 20

Figure 25: Number of levels in the solutions with dataset 1 (left) and dataset 2
(middle) and dataset 3 (right) (repair - thick line, re-planning - thin line)

Plan Di starter

----- Removal *.

Figure 26: Plan distance to the original solution with dataset 1 (left) and dataset 2
(middle) and dataset 3 (right) (repair - thick line, re-planning - thin line)

Finally, Fig 26 shows that the solution computed with the repair algorithm can
be more similar to the original plan than the solution computed with the re-planning
algorithm.

5.3.3 Experiment 2: Remove Web Services from Existing
Plan

Repair Time (mi)

Figure 27: Repair time with dataset 1 (left) and dataset 2 (middle) and dataset 3
(right) (repair - thick line, re-planning - thin line)

Fig 27 to Fig 30 shows the results of the Experiment 2. In this experiment. Web
services are removed from the solution instead of from the sendee repository. As is

65

O of servici» if) the solution

-----¦- O of Remováis

Figure 28: Number of services in the solutions with dataset 1 (left) and dataset 2
(middle) and dataset 3 (right) (repair - thick line, re-planning - thin line)

noflevds mihcsolutioi U of levels in (he solution

p of Remováis

Figure 29: Number of levels the solutions with dataset 1 (left) and dataset 2 (middle)
and dataset 3 (right) (repair - thick line, re-planning - thin line)

5 6 7

Figure 30: Plan distance to the original plan with dataset 1 (left) and dataset 2
(middle) and dataset 3 (right) (repair - thick line, re-planning - thin line)

shown in Fig 27 left and middle, the curves of re-plaining processes are relatively
"stable". However, in Fig 27 right (dataset 3), we observe the curve has a signifi-
cant decreasing trend. This might because dataset 3 only has one possible solution
while dataset 1 and 2 have multiple solutions, when the Web services are removed
from the only solution in dataset 3, the required steps of backward search decreased
dramatically.

On the other hand, the curves of repairing process have clear increasing trends.
This is because when the "critical" Web services are removed from the solutions,
there are more BPs in the PG, and therefore become more "difficult" to repair. Also,
we observe that, for all three dataseis, the curves of repairing process can be lower

66

than the curves of re-planning when the number of removed Web services is low.
the comparison of solution quality and distance to original solution is similar as in
Experiment 1 and is omitted due to length limitation.

5.4 Indexed Repairing versus Re-planning Exper-
iments

5.4.1 Experiment Method
Due to the limitation of the repairing algorithm (Algorithm 7) that we found in pre-
vious experiments (i.e. the repairing process can be trapped by some BPs that is
not fixable although other solutions are exist), we made a modification by allowing
indexing current solution and replacements of all Web services in the solution (Sec-
tion 3.4.4). When solution is damaged, the process check the index first to see if
it is fixable ("replaceable situation"). If not, it first removes all Web services that
might trap the repairing process and then invoke the heuristic repairing algorithm to
search a repair plan. Besides, in order to further improve the performance, in this
experiment we let the repairing algorithm fix BPs so that the repairing algorithm
(Algorithm 8) is able to reuse existing parts of other solutions in the "full PG" .

We also redesigned our experiments for comparing our repairing (Algorithm 8 and
6) with the re-planning (Algorithm 3 and 6). The experiments changes including:

1. For each experiment run, instead of giving independent lists of randomly se-
lected Web services to each algorithm, we now given them the same list of
randomly selected Web services.

2. For each experiments, we future divide it into two categories: "replaceable situ-
ation" and "non-replaceable situation" . In "replaceable situation" experiment,
we only remove those Web services who have a least one replacement service.
While in "non-replaceable situation" experiment, we allow remove every service
existed in current solution.

3. In experiment 2, we completely remove the whole solution 1. Therefore, both
repair and re-planning can go to the solution 2 which has more Web services

67

and levels in the solutions. The trend of curves can be more precisely shown in
this case.

5.4.2 Fixing Solution 1 WSC Dataset
Experiment Method Dataset 1 has 4 solutions. Solution 1 has 9 levels and 10 Web
services. Solution 2 has 18 levels and 28 Web services. Solution 3 has 19 levels and
20 Web services and Solution 4 has 27 levels and 40 Web services. In this experiment
we let our algorithm fix base on one of the lean solutions we get from solution 1
by doing the planning and backward search (Algorithm 3 and 6). "non-replaceable
situation" experiments randomly select a given number of Web services from all the
10 existing Web services in that lean solution, "replaceable situation" experiments
only randomly select a given number of Web services from all existing Web services
in that lean solution if those Web services have replacement Web services. In our
case, the number of Web services in existing lean solution that have replacement Web
services is 7 (out of 10). Once the list of removed Web services is selected, re-planning
algorithm and our repairing algorithm (Algorithm 8) also remove the same list of Web
services and then perform fixing. Notice that, for "non-replaceable situation" removal,
non-indexed repairing frequently fails because of the trapped issues discussed above.
Therefore, it's not in the figure

• Thin line: re-planning (Algorithm 3 and 6)

• Thick line(dark): indexed repairing (Algorithm 8 and 6)

• Thick line(light): non-indexed repairing (Algorithm 8 and 6)

As Figure 31 right ("replaceable situation") shown, when the replacements of the
removed Web services exist, the indexed-repairing process works very fast due to
indexing. The average composition time is about 1ms, because it only needs to check
whether all removed Web services still have replacements and picks up one from them
to replace the Web service. In contrast, the repairing time of non-indexed repairing
processes has increasing trend and sometimes "jump up" . This is because when the
number of removed Web services increase the number of heuristic calculations needed
also increases. Due to the heuristics, it is possible that the "non-indexed repairing"
switches to different solution (solution 3 in this case) which has more levels and thus

68

Repair Time (ms)

600

Repair Ti
300

250

200

150

100

50

tt of Removals
1 2 3

tt of Removals

Figure 31: Repair time for fixing solution 1 "non-replaceable situation" (left), "re-
placeable situation" (right)

dramatically increases the repairing time. Repairing is relatively stable, the average
time is 170ms which is always higher than indexed repairing process.

As Figure 31 left ("non-replaceable situation") shown, when the number of re-
moved Web services is low, "indexed repairing" benefits from its index of replace-
ment Web services. Therefore, the curve starts from about 1ms. When the number
of removed Web services increases, repairing works but it still benefits from reusing
existing parts from PG, which is faster than repairing it from sketch. Also, it is not
trapped in solution 1 because it excludes the solution 1 completely when replacement
Web services in the solution do not exist. For re-planning here, the time mainly
depends on current Web services repository states (usually, more Web services and
more levels mean more time to finish because the number of steps in backward search
increases dramatically) when the number of removed Web services is low, it is very
likely that the replacement Web services exist, it still return the solution 1 (which is
relatively simple to solve). When the removed scope increases, re-planning returns
solution 2 (which is relatively more complex) if the replacement Web service cannot
be found, and therefore the curve of composition time "jumps up" at point 2 and
then stays stable.

As Figure 32 and Figure 33 right ("replaceable situation") shown, when every
removed Web service has replacement Web services, "indexed repairing" and re-
planning only need to replace those removed Web services by using their replacement
Web services. Thus, their solution has the same quality. "Non-indexed repairing"
is depending on its heuristic and therefore can jumps to different solutions in some

69

Ö of Services in the solution

25

20

15

10

5

O of services
20

tt of Removals
1 2 3 4 5 6 7

O of Removals

Figure 32: Numbers of services in solutions for fixing solution 1 "non-replaceable
situation" (left), "replaceable situation" (right)

tt of levels in the solution U of levels in lhc solution

r"
tt of Removals

12 3 4 5 6 7
8 of Removals

Figure 33: Number of levels in solutions for fixing solution 1 "non-replaceable situa-
tion" (left), "replaceable situation" (right)

cases. Note:

1. In Figure 32 left, the curve of re-planning is higher than the curve of repairing
because re-planning goes to solution 2, which has 18 levels and 28 Web services;
repairing goes to solution 3, 19 levels that has 20 Web services. Therefore, in
terms of the number of Web services, the curve of re-planning is higher than
the curve of repairing.

2. In Figure 33 left, the curve of re-planning is lower than the curve of repairing
because re-planning goes to solution 2, which has 18 levels that has 28 Web
services, repairing goes to solution 3, which has 19 levels that has 20 Web
services. Therefore, In terms of the number of levels, the curve re-planning is
lower than the curve of repairing.

70

Plan Distance

35 - /

30 . ^y/

10 - /

2 4 6 8

Figure 34: Plan distance to the original solution (solution 1) "non-replaceable situa-
tion" (left), "replaceable situation" (right)

For plan distance shown in Figure 34 left, re-planning and repairing are differ-
ent because they goes to different solutions. Re-planning's solution has more Web
services, and therefore has higher plan distance.

5.4.3 Fixing Solution 2 WSC Dataset
Experiment Method We first removed all Web services in solution 1 (both the
Web services currently in solution and their replacement Web services) from Web
service repository. The rest experiment method is the same as "fix solution 1 experi-
ment" (Section 5.4.2)

• Thin line: re-planning: (Algorithm 3 and 6)

• Thick line(dark): indexed repairing (Algorithm 8 and 6)

• Thick line(light): non-indexed repairing (Algorithm 8 and 6)

As Figure 35 left ("non-replaceable situation") shown, the curve of repairing al-
gorithm starts from about 10ms because replacement Web services can be found by
looking up the index. When the number of removed Web services increases, the repair-
ing algorithm returns solution 3 instead if the replacement Web services of solution
2 cannot be found. This is because we do not remove any Web services in solution
3, the curve is therefore fiat since solution 3 is not damaged. For re-planning, the
curve starts at about 600ms, and then it "switches up and downs" several times. It
becomes stable after point 6. This shows when solution 2 has not been fully damaged.

XX of Removals

Plan D

\
XX of Removals

71

Repair Time (ms)

î
500

400

30OJ7 i \i
200 ^
100

Repair Time (ms)

?

Ö of Removals

400

300

200

100

/ V \ /\
? \

V V

10 !2 14
tt of Removals

Figure 35: Repair time for fixing solution 2 "non-replaceable situation" (left), "re-
placeable situation" (right)

re-planning still needs to calculate and return solution 2. However, when solution 2
is damaged (the number of removed Web services is increased), it always returns so-
lution 3. The time difference due to different steps required in backward search (due
to our approach to calculate "smallest set" of Web service (Section 4.7), solution 3 is
"preferred" by the re-planning than solution 2).

As Figure 35 right ("replaceable situation") shown, the "indexed repairing" is
always the fastest one. The "non-indexed repairing" in this case always can find
solution and it requires more time than "indexed repairing" and it has increasing
trend. Re-planning always stays in solution 2 in this case therefore there is no any
"switch up and down" , and as the number of removed Web services increases actually
it has slightly decreasing trend.

H of services in the solution

\¿X.

tt of services in the solution

50

40

30

20

10

15 20 25
tt of Removals

2 4 6 10 12 14
-~- U of Removals

Figure 36: Numbers of services of solutions for fixing solution 2 "non-replaceable
situation" (left), "replaceable situation" (right)

72

As Figure 36 and Figure 37 left ("non-replaceable situation") shown, re-planning
and the indexed repairing almost have the same quality except at point 6, repairing
algorithm returns solution 3 which contains 19 levels and 20 Web services. However,
re-planning algorithm finds it not necessary to switch to different solutions, it stays
in solution 2 that contains 18 levels and 28 Web services instead.

At right ("replaceable situation"), it shows re-planning and "indexed repairing"
has the same quality while "non-indexed repairing" sometime switch to different so-
lutions.

As Figure 38 right ("replaceable situation") shown, re-planning has higher distance
than indexed repairing approaches, although they are based on the same solution.

XX of levels in the solution tî of levels in the solution

20 L

10 15 20 25
Ct of Removals

2 4 6 10 12 14
tt of Removals

Figure 37: Number of levels for fixing solution 2 "non-replaceable situation" (left) ,
"replaceable situation" (right)

tt of Removals

Plan Distance

10 12 14
tt of Removals

Figure 38: Plan distance to the original solution (solution 2) "non-replaceable situa-
tion" (left), "replaceable situation" (right)

73

scope is relatively small to the whole plan.
The results of our work show that plan repair is an attractive, as well as feasible,

direction to improve the adaptation of Web service compositions in a changing world.

75

Chapter 6

Conclusion

This thesis begins with the introduction and brief discussion of various approaches
in the Web service composition research domain, as well as their pros and cons. We
carry on with one previous work [ZY08] on composition algorithms based on planning
graphs, and then go one step further by putting it on a real, open-world context in
which the environment changes all the time. We implement the planning graph
algorithm in [GNT04] and a backward search process to extract the solution. We
use them as our re-planning approach (Section 3.2) to fix the broken plan when
the environment changes. We compare the re-planning approach with our repairing
approaches proposed in this thesis (Section 5.3 and 5.4), which can fix the broken
plan in a shorter time period while keeping the similar quality. More importantly,
the plans repaired by our repair approaches have lower plan distance than the re-
planning approach, which might be a critical consideration for real world businesses.
Additionally, in order to further increase the success rate of our repairing approaches,
we propose an index-based method which automatically removes certain broken Web
services to prevent them from trapping the heuristic-based repairing processes.

For testing the performance of our algorithms, we implement all our algorithms
using the popular object-oriented programming language Java. We use the platform
and tools provided by Web Service Challenge 2009 [BIeIO] to generate dataseis that
simulate the large-scale Web service composition context and validate our composition
results. The experiment results show that our repairing algorithms can be better than
re-planning in terms of repairing-time, quality and plan-distance when the damaged

74

[HBM08] Rachid Hamadi, Boualem Benatallah, and Brahim Medjahed. Self-
adapting recovery nets for policy-driven exception handling in business
processes. Distributed and Parallel Databases, 23(1): 1-44, 2008.

[HM07] Seyyed Vahid Hashemian and Farhad Mavaddat. Automatic Composi-
tion of Stateless Components: A Logical Reasoning Approach. In Farhad
Arbab and Marjan Sirjani, editors, FSEN, volume 4767 of Lecture Notes
in Computer Science, pages 175-190. Springer, 2007.

[KPL97] Subbarao Kambhampati, Eric Parker, and Eric Lambrecht. Understand-
ing and Extending Graphplan. In Sam Steel and Rachid Alami, editors,
ECP, volume 1348 of Lecture Notes in Computer Science, pages 260-272.
Springer, 1997.

[MP09] Annapaola Marconi and Marco Pistore. Synthesis and Composition of
Web Services. In Marco Bernardo, Luca Padovani, and Gianluigi Zavat-
taro, editors, SFM, volume 5569 of Lecture Notes in Computer Science,
pages 89-157. Springer, 2009.

[MPM08] Tarek Melliti, Pascal Poizat, and Sonia Ben Mokhtar. Distributed Be-
havioural Adaptation for the Automatic Composition of Semantic Ser-
vices. In José Luiz Fiadeiro and Paola Inverardi, editors, FASE, volume
4961 of Lecture Notes in Computer Science, pages 146-162. Springer,
2008.

[OASlOa] OASIS. Business Process Execution Language. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel, March-18th
2010.

[OASlOb] OASIS. Universal Description, Discovery and Integration (UDDI).
http://www.oasis-open.org/committees/uddi-spec/faq.php, March-18th
2010.

[OLK07] Seog-Chan Oh, Dongwon Lee, and Soundar R. T. Kumara. Web Service
Planner (WSPR): An Effective and Scalable Web Service Composition
Algorithm. Int. J. Web Service Res., 4(l):l-22, 2007.

77

[OOLL05] Seog-Chan Oh, Byung-Won On, Eric J. Larson, and Dongwon Lee. BF*:
Web Services Discovery and Composition as Graph Search Problem. In
EEE, pages 784-786. IEEE Computer Society, 2005.

[OWLlO] OWL Pizza Example. http://www.obitko.com/tutorials/ontologies-
semantic-web/owl-example-with-rdf-graph.html, March-18th 2010.

[Pee05] J. Peer. Web service composition as AI planning - a survey, technical
report. Technical report, University of St.Gallen, 2005.

[SEG08] R. Seguel, R. Eshuis, and P. Grefen. An Overview on Protocol Adaptors
for Service Component Integration. BETA Working Paper Series WP
265, Eindhoven University of Technology, 2008.

[vdKdW05] Roman van der Krogt and Mathijs de Weerdt. Plan Repair as an Ex-
tension of Planning. In Susanne Biundo, Karen L. Myers, and Kanna
Rajan, editors, ICAPS, pages 161-170. AAAI, 2005.

[W3Cl0a] W3C. Hypertext Transfer Protocol (HTTP).
http://www.w3.org/Protocols/, March-18th 2010.

[W3Cl0b] W3C. OWL web ontology language overview.
http://www.w3.org/TR/owl-features/, March-18th 2010.

[W3C10c] W3C. Resource Description Framework (RDF).
http://www.w3.org/TR/rdf-primer/, March-18th 2010.

[W3C10d] W3C. Semantic Annotations for WSDL and XML Schema (SAWSDL).
http://www.w3.org/TR/sawsdl/, March-18th 2010.

[W3Cl0e] W3C. Semantic Web. http://www.w3.org/2001/sw/, March-18th 2010.

[W3C10Í] W3C. Simple Object Access Protocol (SOAP).
http://www.w3.org/TR/soap/, March-18th 2010.

[W3Cl0g] W3C. Web service. http://www.w3.org/TR/ws-arch/, March-18th 2010.

[W3Cl0h] W3C. Web Service Description Language (WSDL) version 2.0.
http://www.w3.org/TR/wsdl20/, March- 18th 2010.

78

[WiklOa] Wikipedia. RESTful Web Service, http://en.wikipedia.org/wiki/ Rep-
resentationaLState.Transfer, March-18th 2010.

[WiklOb] Wikipedia. Service Oriented Architecture (SOA).
http://en.wikipedia.org/wiki/Service-oriented-architecture, March-
18th 2010.

[WiklOc] Wikipedia. Simple Object Access Protocol (SOAP).
http://en.wikipedia.org/wiki/SOAP, March-18th 2010.

[WiklOd] Wikipedia. Web service. http://en.wikipedia.org/wiki/Web_Service,
March-18th 2010.

[WiklOe] Wikipedia. Web Services Description Language (WSDL).
http://en.wikipedia.org/wiki/Web_Services_Description_Language,
March-18th 2010.

[YPZlOa] Yuhong Yan, Pascal Poizat, and Ludeng Zhao. Repairing Service Com-
positions in a Changing World. In SERA, 2010.

[YPZlOb] Yuhong Yan, Pascal Poizat, and Ludeng Zhao. Self-Adaptive Service
Composition through Graphplan Repair (Submitted). In ICWS, 2010.

[YXG08] Yixin Yan, Bin Xu, and Zhifeng Gu. Automatic Service Composition
Using AND/OR Graph. In CEC/EEE [DBL08], pages 335-338.

[YZ08] Yuhong Yan and Xianrong Zheng. A Planning Graph Based Algorithm
for Semantic Web Service Composition. In CEC/EEE [DBL08], pages
339-342.

[ZY08] Xianrong Zheng and Yuhong Yan. An Efficient Syntactic Web Service
Composition Algorithm Based on the Planning Graph Model. In ICWS,
pages 691-699. IEEE Computer Society, 2008.

79

Appendix A

Online Source Code Repository

All source code of our experiments and datasets can be download from Github at
following address:
http://github.com/HappyHackingGeek/WSC09-Composition-System-
Implementation

If you prefer to checkout, you will need to have Git installed in your operating
system. You can use the following command to checkout a copy:
git clone git://github.com/HappyHackingGeek/WSC09-Composition-
System-Implementation.git

You can find more usage about git at:
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html

80

Appendix B

Planning Graph Algorithm

package ca . concordia . pga . algorithm ;

import java.util.HashSet;
import java. util. Set;

import ca . concordia . pga . models . Concept ;
import ca. concordia. pga. models. PlanningGraph;
import ca . concordia . pga . models . Service ;

public class PGAlgorithm {

public static boolean generatePG(Set<Concept> knownConceptSet,
Set<Service> currlnvokableServiceSet ,

Set<Service> currNonlnvokableServiceSet ,

Set<Service> invokedServiceSet , PlanningGraph pg) {
int currentLevel = 0;

do {
/**

* point knownConceptSet to pg's current PLevel
*/

knownConceptSet . addAll (pg . getPLevel (currentLevel)) ;
currlnvokableServiceSet = new HashSet<Service>() ;

81

currNonlnvokableServiceSet = new HashSet<Service>() ;
Set<Concept> pLevel = new HashSet<Concept>() ;

/**
* fetch all possible candidates
*/

for (Concept c : pg.getPLevel(currentLevel)) {
currlnvokableServiceSet.addAll(c.getServicesIndexO) ;
}
/**

* remove those who have already been invoked
*/

currlnvokableServiceSet.removeAll(invokedServiceSet) ;
/**

* remove those whose invocation condition have not been satisfied

*/
for (Service s : currlnvokableServiceSet) {

if (!pg.getPLevel(currentLevel) . containsAlK
s.getlnputConceptSetO)) {
currNonlnvokableServiceSet . add(s) ;
}
>
currlnvokableServiceSet .removeAll (currNonlnvokableServiceSet) ;
if (currlnvokableServiceSet . size () <= 0) {
break;

}
/**

* invoke the services

*/
invokedServiceSet . addAll (currlnvokableServiceSet) ;
pg.addALevel (currlnvokableServiceSet) ;
/**

* generate PLevel

82

*/

for (Service s : currlnvokableServiceSet) {
knownConceptSet . addAll (s . getOutputConceptSet O) ;
}
pLevel . addAll (knownConceptSet) ;
pg . addPLevel (pLevel) ;
/**

* increase the level and print out newly invoked services
*/

currentLevel++ ;

System. out. println("\n*********Action Level " + currentLevel
+ " *#*****") ·

for (Service s : pg.getALevel(currentLevel)) {
System. out. print (s + "I");
}

System. out. println () ;

} while (! knownConceptSet. containsAlKpg.getGoalSet ())
& ! currlnvokableServiceSet . isEmptyO) ;

return knownConceptSet . containsAlKpg.getGoalSet O) ;
}

}

83

Appendix C

Backward Search Algorithm for
Extracting Planning Graph

package ca . concordia . pga . algorithm ;

import java. util. ArrayList;
import j ava . ut i 1 . HashMap ;
import java. util. HashSet;
import java. util. Iterator;
import j ava. util. List ;
import java. ut il. Map;
import java. util. Set;
import java. util. Vector;

import ca . concordia . pga . algorithm .utils . Combinat ionHelper ;
import ca. concordia. pga. models. Concept;
import ca . concordia . pga . models . PlanningGraph ;
import ca . concordia . pga . models . Service ;

/**

* ©author Ludeng Zhao (Eric)

84

*/

public class BackwardSearchAlgorithm {

/**

* Backward search based on PG to prune redundant web services
*

* Sparam pg
* ©return routeCouters

*/

public static Vector<Integer> ref ineSolution(PlanningGraph pg) {

int currLevel = pg.getALevelsO .size O - 1;

Set<Service> minimumServiceSet;

Set<Concept> subGoalSet = new HashSet<Concept>() ;
subGoalSet . addAll (pg . getGoalSet O) ;

Set<Concept> leftGoalSet = new HashSet<Concept>() ;
Set<Set<Service» routes = new HashSet<Set<Service»() ;

Vector<Integer> routeCounters = new Vector<Integer>() ; // debug purpose,
Map<Integer, Set<Service» solutionMap = new HashMap<Integer, Set<Service»() ;

do {
/**

* compute services that each concept is origin from
*/

Set<Service> actionSet = pg. getALevel (currLevel) ;
subGoalSet. addAll (leftGoalSet) ;

subGoalSet . removeAll (pg . getGivenConceptSet ()) ;
leftGoalSet . clear () ;
for (Concept g : subGoalSet) {
for (Service s : actionSet) {

85

if (s.getOutputConceptSetO . contains (g)) {
g.addServiceToOrigin(s) ;
}
>

* check if the goal can be produced by current action level
*/

if (g.getOriginServiceSetO .sizeO == 0) {
leftGoalSet.add(g) ;
}
}
/**

* defer the goals that cannot be produced in current action level
*/

subGoalSet . removeAll (leftGoalSet) ;

/**

* compute all alternative routes that current level has
*/

// computeRoutes_01d(subGoalSet, routes);
computeRoutesCsubGoalSet, routes) ;

/**

* get the route with minimum web services to invoke
*/

minimumServiceSet = new HashSet<Service>() ;
Iterator<Set<Service» itr = routes. iterator () ;
while (itr.hasNextO) {
Set<Service> candidate = itr.nextO;
if (minimumServiceSet. s ize() == 0) {
minimumServiceSet = candidate;

} else if (minimumServiceSet. size () > candidate. size O) {
minimumServiceSet = candidate;

86

}
}

/**
* overwrite selected route into pg's ALevel (temperate
* implementation! in order to keep pg's information)
*/

pg . setALevel (currLevel , minimumServiceSet) ;
solutionMap. put (currLevel, minimumServiceSet) ;

/**

* get the inputs of invoked web services as subGoals
*/

subGoalSet. clear () ;
for (Service s : minimumServiceSet) {

subGoalSet . addAll (s . getlnputConceptSet ()) ;
}

/**
* reset routes

*/

routeCounters. add (routes. sizeQ) ;
routes. clear () ;
currLevel— ;

} while (currLevel > 0) ;

/**

* remove invalid concepts after pruning services
*/

int currentLevel = 1;

do-C

Set<Concept> knownConceptSet = new HashSet<Concept>() ;
knownConceptSet . addAll (pg . getPLevel (currentLevel-1)) ;

87

forCService s : pg.getALevel(currentLevel)){
knownConceptSet . addAll (s . getOutputConceptSet ()) ;
}

pg.getPLevel(currentLevel) .clearO ;
pg.getPLevel(currentLevel) .addAll (knownConceptSet) ;
currentLevel++ ;

}while(currentLevel < pg.getALevelsO .sizeO) ;

/**
* debug checking if solution is valid
*/

if (leftGoalSet.sizeO != 0) {

System. out. printlnO'Solution is NOT VALID!");
}

removeEmptyLevels(pg) ;

return routeCounters;

}

/**

* compute removable service set from the given goal concept set
*

* @param conceptSet
* ©return

*/

private static Set<Service> getRemovableServiceSet(Set<Concept> conceptSet) {

}

/**

* Implementation for computing all alternative routes that can produce
* given concepts

88

*

* @param conceptSet
* @param routes
*/

@SuppressWarnings("unchecked")
private static void computeRoutes(Set<Concept> conceptSet,
Set<Set<Service» routes) {

}

/**

* remove empty levels from given pg
* ©param pg
*/

private static void removeEmptyLevels (PlanningGraph pg){

}

>

89

Appendix D

Heuristic Evaluator

/**

* Calculate the repairing heuristic score for one action
* @param g
* Oparam ?
* Oparam a
* ©return repairing heuristic score
*/

public static int evaluate (Set<Concept> g, Set<Concept> p, Service a){

int score = 0;

Set<Concept> t = new HashSet<Concept>() ;

/**

* calculate g join aOut
*/

t . addAll (g) ;
t . retainAll (a . getOutputConceptSet O) ;
score += t.sizeO * 10;

/**

* calculate ? join aln
*/

90

t. clear () ;

t.addAll(p);
t . retainAll (a . getlnputConceptSet O) ;
score += t. size () ;

/**
* calculate aln not in ?
*/

t. clear () ;
t. addAll (a. getlnputConceptSet O) ;
t.removeAll(p) ;
score -= t. size () ;

return score;

}

91

Appendix E

Repairing Algorithm

* repair given PG using backward approach
*

* Oparam pg
* Oparam serviceMap
* @param conceptMap
* ©param thingMap
* ©param paramMap
* ©return

*/

public static boolean repair (PlanningGraph pg,
Map<String, Service> serviceMap, Map<String, Concept> conceptMap,
Map<String, Thing> thingMap, Map<String, Param> paramMap) {

Set<Concept> subGoalSet = new HashSet<Concept>() ;
Set<Service> candidates = new HashSet<Service>() ;

/**
* compute subGoalSet
*/

subGoalSet = getSubGoalSet(pg) ;

92

int currentLevel = pg.getPLevelsO .size() - 1;
while (currentLevel > 0 & subGoalSet .size O != 0) {

Set<Service> aLevel = pg. getALevel (currentLevel) ;
Set<Concept> pLevel = pg. getPLevel (currentLevel) ;
List<Service> sortedCandidates = new LinkedList<Service>() ;
Set<Concept> currentSubGoalSet = new HashSet<Concept>() ;

do {
/**

* 1. compute currentSubGoalSet which contains all broken
* preconditions and unstatisf ied goals that need to be
* statisfied right in current PLevel (level n) . Initially, this
* set will contains all unstatisf ied goals only.
*/

/**

* compute broken preconditions in current level
*/

if (currentLevel == pg.getPLevelsO .size () - 1) {
/**

* initially currentSubGoalSet only contains broken goals
*/

currentSubGoalSet . clear () ;
currentSubGoalSet . addAll (pg . getGoalSet O) ;
currentSubGoalSet . removeAll (pg . getPLevel (pg . getPLevels ()
.sizeO - I)) ;

> else {

/**

* compute currentSubGoalSet

93

*/
currentSubGoalSet . clear () ;
for (Service s : pg.getALeveKcurrentLevel + I)) {¦
currentSubGoalSet . addAll (s . getlnputConceptSet ()) ;
>
currentSubGoalSet . removeAll (pLevel) ;
}

/**
* skip to next level if no subgoals need to be satisfied for
* current level

*/
if (currentSubGoalSet. size () == 0) {
break;

}

/**

* 2. Select all services that not already in current ALevel and
* could produces at least one subgoal in currentSubGoalSet as
* candidates, compute their heuristic score based on heuristic
* function. Sort from highest to lowest.
*/

/**

* compute candidate services (services not in current ALevel)
*/

candidates. clear () ;

for (String key : serviceMap.keySetO) {
candidates . add(serviceMap . get (key)) ;
}

candidates . removeAll (pg . getALevel (currentLevel)) ;
Set<Service> removableCandidates = new HashSet<Service>() ;
for (Service s : candidates) {

94

Set<Concept> outputs = new HashSet<Concept>() ;
outputs . addAll (s . getOutputConceptSet O) ;
outputs. retainAll(currentSubGoalSet) ;
if (outputs. size () == O) .{
removableCandidates . add(s) ;
}
}
candidates . removeAll (removableCandidates) ;

/**

* compute heuristic score for each of candidate service
*/

sortedCandidates . clear () ;
for (Service s : candidates) {
int score = RepairingEvaluator. evaluate (currentSubGoalSet,
pg.getPLeveKcurrentLevel - 1), s) ;
s . setScore (score) ;
sortedCandidates. add (s) ;
}
Collections . sort (sortedCandidates , serviceScoreComparator) ;

/**
* 3. Insert first service in candidate list to current ALevel.

* Add its outputs to PLevel(n). Check if PLevel(n) still has
* unstatisfied subgoals. if yes, repeat step 1 unless
* candidates list become empty then return unrepairable.
*/

if (sortedCandidates. size () == 0) {
return false;

}
Service candidate = sortedCandidates. get (0) ;
sortedCandidates. remove (0) ;
aLevel. add (candidate) ;

95

pLevel . addAll (candidate . getOutputConceptSet ()) ;
// pg.getPLevel(currentLevel-l) .addAll (candidate. getlnputConceptSetO) ;
System. out. printlnC'CurrentSubGoalSet size: "
+ currentSubGoalSet.sizeO) ;

currentSubGoalSet . removeAll (pg . getPLevel (currentLevel)) ;

System. out. printlnCAdded: " + candidate + "("
+ candidate. getScore () + ")" + " at: " + currentLevel);
System. out. printlnC'sortedCandidates size: "
+ sortedCandidates.sizeO) ;

// System. out. printlnC'CurrentSubGoalSet size: " +
// currentSubGoalSet . size ()) ;

> while (currentSubGoalSet.sizeO != 0
& sortedCandidates.sizeO > 0);

/**
* if currentSubGoalSet cannot be satisfied, return unrepairable
*/

if (currentSubGoalSet.sizeO != 0) {
return false;

}

/**

* 4. compute subGoalSet which contains all broken preconditions and
* unsatisfied goals based on current PG status, if empty return PG
*/

/**

* compute subGoalSet based on current PG status
*/

subGoalSet = getSubGoalSet(pg) ;

96

if (subGoalSet.sizeO == 0) {
return true;

>

System, out. printIn ("subGoalSet size: " + subGoalSet.sizeO);
/**

* 5. decrease level count by 1
*/

currentLevel— ;

/**
* 6. if level == 0, insert a new PLevel which contains only the
* given concepts to Level 0 (all current Plevel number increased by
* 1) , increse level count by 1 .
*/ __

if (currentLevel == 0) {

pg . insertPLevel (0 , new HashSet<Concept> O) ;
pg.getPLevel(O) .addAll(pg.getGivenConceptSetO) ;
pg.insertALeveKO, new HashSet<Service>0) ;
currentLevel++ ;

>

}

/**

* Upon success: Start from level 1 while level < levels. size O 1.
* select each service in current ALevel, removed all its duplicate in
* higher ALevel. 2. increse level count by 1
*/

currentLevel = 1 ;

while (currentLevel < pg.getALevelsO .sizeO) {
for (Service s : pg.getALevel (currentLevel)) {

97

int higherLevel = currentLevel + 1 ;
while (higherLevel < pg.getALevelsO . size O) {
Set<Service> duplicates = new HashSet<Service>() ;
for (Service hs : pg. getALevel (higherLevel)) {
if (s. equals (hs)) {
duplicates. add(hs) ;
}
}

if (pg. getALevel (higherLevel) .removeAll (duplicates)) {
System. out. printlnC'duplicates removed! ") ;
}

higherLevel++;
}
}
currentLevel++ ;

>

return true;

}

98

Appendix F

Sample Execution Log of
Composition Process using
Planning Graph Algorithms

Initializing Time 2851
Concepts size 3081
Things size 6209
Param size 2891

Services size 351

Given Concepts
con649167057 I
con2034534667

conl629000785

conl518811543

conl935404941

conl272418610 I con440870358 | con2056039516 I
con605130906 I conll31301455 I conl451017854
conl494027552 I con736419041 I conl531919743
conl754553008 I conl064121911 | con97600426 I
con243633175 I conl08659942 | conll46866387 |

conl990498516

I con369185398
I con731911495
conl636783251

conl498535060

Goal Concepts:
con510302591 I

*********Action Level 1 *******

99

serv783934155 I serv296269980 | serv365702213 I servl056747493 | serv926075671 I
serv856643438 | servl058386037 I servl818863550 I serv853366388 I serv233391847 |
serv91250331 I servl751069823 I servl546050174 I serv302824080 I serv21818098 I
serv364063707 I serv995507904 I servl688191690 I serv714501922 I servl63959614 I
servl618759457 i serv988953804 1

*********Action Level 2 *******

servl757623923 I servl064940137 I servl820502056 I servl476617941 I servl888295783 I
servi 126179726 1 serv433495940 1

*********Action Level 3 *******

servl265044192 1 servl896488389 1 servi 19561 1959 1 serv441688546 1 serv435134446 1
serv572360406 I servll27818270 | serv372256313 I serv641792639 I servl334476425 I
serv2027160249 1 serv502928173 1 servl60682564| servl957728016 1 servi 134372370 1
servl827056156|servl615482407| __

*********Ac-t;i0I1 Level 4 *******

serv51 1120779 1 serv922798621 i serv2096592482 1 servl203804603 I serv2035352855 1
servl273236836 1 serv649985245 1 serv580553012 1 servi 197250503 1 servl889934289 1
serv230114797 I servl342669069 I servl684914640 | servl965920622 I serv992230854 |

*********Action Level 5 *******

serv26733692 | serv299547030 I servl8541048 | servl266682736 I serv96165925 I
serv504566679 1 serv71 1224872 1 servl412101302 1 serv2104785088 1 serv719417478 1
serv788849711 I servl959366522 I servl481533535 I servl403908658 I servl473340891 I

*********ACtion Level 6 *******

serv368979263 I servll31095320 I serv507843729 I servl550965768 I servl893211339 I
servl200527553 I serv438411496 I serv2028798755 I servl823779106 I servl336114969 |
serv573998912 I servl061663087 I servl542773124 I serv87973281 I serv858281944 I
serv780657105 I servl754346873 I servl65598158 I

*********Ac-tion Level 7-*******

100

servl269959786 1 serv2098230988 1 serv643431145 1 servl962643572 1 serv712863378 I
serv2032075805 1 servl620398001 1 servl405547202 1 serv850089338 1 serv577275962 |

*********Action Level 8 *******

serv235030391 1 servl339392019 1 serv927714177 I serv304462624 1 servl612205357 1
serv20179592 1 servl474979435 1 servl689830234 1 serv997146410 1 servl57405514 1

*********Action Level 9 *******

servl408824252 1 servl681637590 1 servl759262467 1 serv646708195 1 serv919521571 1
serv782295611 I servl544411668 I serv2101508038 I servl066578643 I serv226837747 |
serv89611825|

=========Goal Found=========

PG Composition Time: 101ms
Execution Length: 9
Services Invoked: 125

After Pruning:

*********Action Level 1 (alternative routes: 3) *******
servl056747493

*********Action Level 2 (alternative routes: 3) *******
servll26179726

*********Action Level 3 (alternative routes: 7) *******
servll95611959

serv502928173

*********Action Level 4 (alternative routes:!) *******

101

serv2096592482

*********Action Level 5 (alternative routes: 4) *******
servl8541048

*********Action Level 6 (alternative routes: 3) *******
serv87973281

*********Action Level 7 (alternative routes :1) *******
serv850089338

*********Action Level 8 (alternative routes: 2) *******
servl612205357

*********Action Level 9 (alternative routes: 3) *******
serv919521571

=================Status=================

Total (including PG) Composition Time: 494ms
Execution Length: 9
Services Invoked: 10

==================End===================

102

