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ABSTRACT 

Finite Element Based Interpolation Methods for Spatial and Temporal Resolution 

Enhancement for Image Sequences 

YanWu,Ph.D. 

Concordia University, 2010 

Spatial resolution enhancement is a process for reconstructing a high resolution image 

from a low resolution image, whereas temporal resolution enhancement of encoded video 

aims at interpolating the skipped frames, making use of two successively received 

frames. In this thesis, a new image interpolation model, called the generalized image 

interpolation model, is developed in order to devise new techniques for spatial resolution 

enhancement of images, and temporal resolution enhancement of encoded video 

sequences. The interpolation model is based on the finite element method, and takes into 

account the unknown neighboring pixels, and therefore is capable of interpolating a 

collection of unknown pixels with an arbitrary shape, while providing a spatial continuity 

between the unknown pixels. 

Based on the generalized interpolation model, an edge-preserving iterative 

refinement scheme for spatial resolution enhancement of images is proposed. This 

scheme exploits not only the neighboring pixels whose values are known, but also takes 

into account those with unknown values. It is shown that the edge-preserving iterative 

refinement process maintains the smooth variation along a dominant edge in the up-
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scaled image. Simulation results show that the proposed scheme results in up-scaled 

images with subjective and objective qualities, which are better than those of the existing 

interpolation schemes. Further, the scheme is also shown to be capable of up-scaling an 

image by an arbitrary magnification factor, without resorting to extra steps, or the use of 

any conventional interpolation method. 

Next, error concealment-based MCI schemes are also presented for temporal 

resolution enhancement of encoded video sequences. These schemes are also based on 

the generalized image interpolation model, and need no pixel classification, thus reducing 

substantially the computational complexity. They are shown to be capable of concealing 

the errors in the homogeneous regions as well as in regions containing sharp edges. 

Experiments are carried out showing that the proposed schemes result in reconstructed 

frames having a better visual quality and a lower computational complexity than that 

provided by the existing techniques. 
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Chapter 1 

Introduction 

1.1 General 

Digital video consists of a sequence of digital images. Spatial resolution of the images 

along with the temporal resolution of the image sequence, are amongst the most 

important attributes of a digital video. Spatial resolution of a digital image is decided by 

the number of pixels utilized in the construction of the image. An image with a higher 

spatial resolution is composed of more pixels than those of a lower spatial resolution. 

Temporal resolution of a digital video refers to the frequency at which the frames are 

captured, recorded or displayed. The higher the frequency, the better or the finer the 

temporal resolution is said to be. Although ideally one would like to have a digital video 

with a high spatial resolution as well as a high temporal resolution, it is often not the case 

in real life applications, due to various reasons. For example, due to physical limitations 

and/or cost effectiveness of image sensors, it may not be possible to produce a digital 

image with the desired spatial resolution. Also, due to the limitations of the bandwidth 

and/or storage space, a digital video encoder may not encode all the frames of a video. 

Therefore, to achieve a higher compression ratio, frame dropping or frame skipping is 
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commonly used in the existing video coding techniques. Consequently, the decoded 

video with dropped frames will result in jerky and visually not so pleasant frames. 

Spatial resolution enhancement consists of reconstructing a high resolution image 

from a low resolution image, whereas temporal resolution enhancement of encoded video 

aims at interpolating the skipped frames, making use of two successively received 

frames, so that the decoded video can be played back at the normal frame rate. 

1.2 Spatial Resolution Enhancement of Images 

In broadcast industry, spatial resolution enhancement is an essential step for up-

converting a standard definition video to a high definition video, and plays an important 

role in the present day television station's infrastructure equipment. In the printing 

industry, spatial resolution enhancement technique is applied to produce high quality 

prints for posters, magazines, and commercial catalogs. This technique is also widely 

used in other fields, such as digital photography, medical imaging, remote sensing, and 

surveillance. The basic idea of spatial resolution enhancement is illustrated in Fig. 1.1, in 

which a low resolution image is up-scaled to a high resolution image using spatial 

resolution enhancement with a magnification of two. 

Conventional spatial resolution enhancement techniques include nearest-neighbor 

method, bilinear interpolation method, and various cubic interpolation methods [l]-[3], 

which have the advantage of low computational complexity. These interpolation methods 

are based on the scene-independent model, which cannot spatially adapt the interpolation 

coefficients to match fast changing pixel structures in a certain area of an image, such as 
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(a) (b) 

Figure 1.1: (a) A low resolution image (pixels represented in black dots), (b) The 
up-scaled image from its low resolution version (white dots representing the 
pixels to be interpolated) 

an area around the edges. Therefore, in the up-scaled image, these interpolation 

techniques generate some noticeable artifacts, such as block effects, blurred details, and 

jagged edges. Hence, enhancement of image resolution through interpolation, while at the 

same time reducing these artifacts, is an important topic of interest in image processing. 

Many new interpolation schemes [4]-[21] have been proposed to improve the subjective 

quality of the interpolated images. Some schemes use the projection onto convex sets 

(POCS) model to constrain the edge continuity and then find the appropriate estimation 

for the interpolated pixels [4]-[6]. In wavelet-based interpolation schemes, the similarity 

between different scales of a decomposed image is exploited in a way that the high 

resolution details are estimated from the low resolution data [7]-[9]. Some schemes, 

based on the vector quantization (VQ) and morphological filtering techniques, have also 

been proposed to enhance the spatial resolution of images [10], [11]. Many of the 

recently proposed spatial resolution enhancement schemes are edge-directed, and 

emphasize on the performance in the edge area of an up-scaled image [12]-[21]. In 

general, an edge-directed interpolation scheme imposes a scene-dependent model, 
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focusing on the local structure of a detected edge. As a result, such a scheme is capable of 

adapting the interpolation coefficients so that the interpolated pixels better fit the 

structure in the detected edge areas. 

1.3 Temporal Resolution Enhancement of Encoded Video 
Sequences 

In multimedia applications, such as video telephony, video conferencing and video 

streaming, a video encoder needs to cope with varying transmission bandwidth. In order 

to meet the constraint due to the limitations of the bandwidth, it is a common practice to 

sacrifice the temporal resolution, and use frame dropping or frame skipping to reduce the 

date rate of the encoded video. To playback the encoded video at the normal frame rate, 

the skipped frames have to be interpolated making use of two successively received 

frames, since otherwise, the playback of the decoded video with dropped frames will 

result in motion jerkiness. The basic idea of the temporal resolution enhancement is 

illustrated in Fig. 1.2, in which one out of every two frames in the source video is 

dropped at the transmitter and interpolated at the receiver. 

Temporal resolution enhancement of encoded video sequences has drawn a great 

deal of attention in the development of efficient schemes. Early attempts in frame 

interpolation included frame repetition (FR) and frame averaging (FA) [22]. In an FR 

scheme, the system simply duplicates the previous frame before the next one arrives. In 

the case of an FA scheme, the average pixel values of the previous and current frames are 

taken into consideration for reconstructing the interpolated frame. These FR and FA 
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Figure 1.2: Basic idea of temporal resolution enhancement for encoded video 

techniques are rather straightforward; but, for video sequences containing fast motions, 

they will respectively result in jerky and blurred images. Since the motion between the 

frames is the major cause of these problems, the authors in [22] have used the motion 

information between the transmitted frames to perform the frame interpolation. Since 

then, many motion-compensated interpolation (MCI) schemes have been developed [23]-

[48]. 

Essentially, there are two types of MCI schemes, pixel-based and block-based. In 

the pixel-based schemes [22]-[35], a recursive pixel motion estimation is generally 

required, and the classification of the pixels is based on the moving objects and the static, 

covered and uncovered backgrounds. Obviously, this type of scheme is computationally 

very demanding, and useful only in sophisticated applications such as display-frequency 

conversion, film-to-tape conversion, and video standard conversion. The block-based 

MCI schemes [3 6]-[48] exploit the block motion vectors decoded at the receiver, so that 

the computationally intensive pixel motion estimation can be avoided. Therefore, for the 

purpose of temporal resolution enhancement of encoded video sequences, this scheme 

can be used in the conventional video applications, which employ block-based, motion-

compensated solutions such as H.26X, or MPEG standards. 
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1.4 Motivation and Objectives 

The challenge of any spatial resolution enhancement for an image is to enhance 

the resolution through interpolation, without introducing artifacts, such as block effects, 

blurred details, and jagged edges, while at the same time keeping the computational 

complexity as low as possible. 

Although quite a few edge-directed interpolation schemes have been developed, 

they do not take into account the neighboring unknown pixels when interpolating a pixel 

for an up-scaled image. In the existing interpolation schemes, an unknown pixel is 

interpolated based on the estimation made only with the neighboring known pixels. In a 

natural image, the image textures and edges consist of pixels that are related to one 

another. Hence, including only the neighboring known pixels in the interpolation process 

does not give a very natural looking reconstructed image, especially in areas with fine 

textures. 

All the existing edge-directed interpolation schemes can only be applied when the 

magnification factor is an integer power of two, since each of these schemes is attached 

to a specific interpolation model, which is commonly designed for a magnification factor 

of two. Consequently, these schemes need the use of some conventional interpolation 

methods when magnification factor is not a power of two. Obviously, the advantages 

associated with their schemes cannot be fully realized in such cases in view of the need to 

use conventional interpolation methods as well. 

Since the existing interpolation schemes interpolate unknown pixels based only 

on the estimation made with known pixels, these schemes require more than one step to 

complete the interpolation process even when an image is up-scaled by a magnification 
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factor of two. Obviously, such a scheme needs to be applied n times to up-scale an image 

by a magnification factor of 2" ( n an integer greater than one). Thus, the question as to 

how to complete the interpolation process without multiple interpolation steps still 

remains unanswered. 

Motivated by the challenges and aiming at solving the above mentioned problems, 

this thesis first focuses on developing a more general interpolation model that takes into 

account not only the neighboring known pixels, but also the neighboring pixels with 

unknown values in order to provide a spatial continuity between the unknown pixels as 

well. Using this model, a new technique for spatial resolution enhancement is developed. 

The technique should be general enough so that it is capable of up-scaling an image by an 

arbitrary integer magnification factor and at the same time it needs to be applied only 

once irrespective of the value of the magnification factor. 

As mentioned earlier, the block-based MCI scheme is preferable to the pixel-

based MCI scheme for the temporal resolution enhancement of encoded video sequences. 

However, there are two major problems related to the block-based MCI scheme, namely, 

as to how to deal with overlapped pixels in the interpolated frames, and as to how to 

handle the holes left in the interpolated frames. In existing methods, an averaging 

technique is often used to handle the overlapped pixels, while simple techniques such as 

the pixel averaging or repetition [43], [44], are used to fill the holes. These simple 

techniques result in interpolated frames that suffer from blur and stripe effects. In view of 

this, we intend to develop in this thesis a block-based MCI scheme that can conceal the 

interpolation errors caused by the overlapped pixels and holes at a relatively low 

computational complexity. 
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From the above discussion, it is clear that for spatial resolution enhancement as 

well as temporal resolution enhancement, there is a need to develop a new image 

interpolation technique to meet the challenges mentioned above. Finite element method 

(FEM) is a powerful numerical mathematics tool, which offers the simplicity of 

piecewise approximation of a function given its values at discrete points. It has been 

employed for obtaining the numerical solution to a wide variety of engineering problems, 

such as those in the field of mechanical engineering, aeronautical, biomechanical, and 

automotive industries. In view of this, the FEM is chosen in this thesis to develop an 

image interpolation model, and this model is utilized to design a new interpolation 

algorithm for the enhancement of spatial and temporal resolution. 

1.5 Organizations of the Thesis 

This thesis is organized as follows. In Chapter 2, a review of the background material 

concerning the spatial resolution enhancement for images, focusing on the state of the art 

edge-directed interpolation schemes, is presented. Then, a review on block-based MCI 

schemes for temporal resolution enhancement of encoded video sequences is given. In 

addition, since the FEM is chosen for the development of a new image interpolation 

technique, basic concepts concerning FEM are also presented. In Chapter 3, the 

development of a generalized image interpolation approach based on FEM method is 

presented [47], [48]. In Chapter 4, an iterative refinement interpolation scheme based on 

the generalized image interpolation approach is developed [49], in order to obtain an up-

scaled image from a low resolution image. In Chapter 5, an error concealment-based MCI 

scheme for temporal resolution enhancement of encoded video sequence is developed 
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[48], [50]. Finally, in Chapter 6, the main contributions of the thesis are highlighted, and 

some possible future research directions suggested. 



Chapter 2 

Background and Literature Review 

In this chapter, some basic concepts related to edge-directed spatial resolution 

enhancement, as well as block-based temporal resolution enhancement, are introduced. 

Relevant literature is reviewed, and some state of the art techniques discussed. In 

addition, fundamentals of finite element methods are introduced in this chapter, since it 

will be used in designing a new image interpolation model. 

2.1 Edge-directed Spatial Resolution Enhancement of Images 

2.1.1 Fundamentals for spatial resolution enhancement 

Spatial resolution enhancement can be considered as the process of obtaining a high 

resolution image by up-scaling a low resolution image. This process can be formulated 

as follows. Consider a low resolution image L(i,j) of size (WxH), (i,j)&D, where 

D is given by 

D = (0,\,...,W-\)x(0,\,...,H-\) (2.1) 

To scale L(i,j) by a magnification factor u(u>\), let us form an image H(m,n), 

(m,n)&D", where 
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D"=(0,l,...,uW-i)x(0,l,...,uH-l) (2.2) 

Therefore, at (ui, uj), H(m,n)has known pixels values, which are equal to L(i,j). The 

task is to interpolate the unknown pixels at {m,ri), (m^uior n^uj), based on the 

known pixels at(w/', uj). In Fig. 2.1, we illustrate two simple examples of the image up-

scaling process for u = 2 and u = 3. 
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Figure 2.1: (a) An image of size 5x5 is up-scaled to an image of size 
10x10, with u = 2. (b) An image of size 3x3 is up-scaled to an image of 
size 9X9 with u = 3 . Black dots represent pixels from low resolution 
images, white dots representing the pixels to be interpolated 
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As discussed in the previous chapter, linear interpolation methods are commonly 

used for spatial resolution enhancement of images, but are error prone in regions with 

edges or fine textures. Although statistically these are errors with a small population 

compared to the size of an up-scaled image, their unpleasant effects (such as block 

effects, blurred details, and jagged edges) on the visual quality of the up-scaled image 

could be quite large. This is so due to the fact that the edges are one of the most prevalent 

features of images in human visual system. This also explains as to why most of the 

recent spatial resolution enhancement schemes tend to focus on the performance in the 

edge area of the up-scaled image. 

2.1.2 Edge-directed spatial resolution enhancement techniques 

Many researchers have adopted the approach of edge-guided interpolation in their 

techniques for spatial resolution enhancement. Some of these techniques [12]-[15] 

employ directional interpolation that requires an accurate prediction of the edge 

orientation in the up-scaled high resolution image. In [16], the authors have proposed a 

scheme that employs edge detection and predefined templates, in order to improve the 

visual quality of the up-scaled images. They use a certain number of edge patterns in the 

image interpolator, the parameters of which are adapted based on the detected edges. 

Zhang and Wu [17] have proposed a scheme to interpolate unknown pixels in multiple 

directions, and then apply data fusion to the interpolated results. It is to be noted that the 

prediction of the presence of very thin and well-linked edges in the high resolution image 

is computationally demanding. Moreover, in these approaches, edge orientation is 

quantized into a number of discrete levels, and this affects the accuracy of the 
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interpolation and can cause exaggeration of the edges, since an edge existing in a natural 

image is arbitrarily oriented. 

Based on the assumption that the magnification factor is two, Lin and Orchard 

[18] have proposed a method to estimate the covariance of the up-scaled image from that 

of its low-resolution image and then to interpolate the unknown pixels based on these 

results. This scheme has been considered as one of the best amongst the edge-directed 

interpolation methods. However, the computational complexity can be as high as 1300 

multiplications per pixel. Therefore, the authors in [18] have employed a hybrid 

approach, wherein an activity measure is first used to determine if a pixel is an edge pixel 

or not, and then depending on whether the pixel is an edge pixel or not, different 

interpolation methods are employed. 

Wu and Zhang [19] have proposed a method wherein a global texture orientation 

map is first generated, and then refined by a kernel Fisher discriminant. However, a 

training set needs to be employed to gather prior knowledge of the orientation map before 

the refinement is carried out. This requirement may not be met under all conditions. 

Wang and Ward [20] have proposed an edge-directed image expansion scheme, wherein 

the edge pixels are found in a low resolution image, and then mapped on to the up-scaled 

image. On the up-scaled image, the pixels corresponding to the edge pixels in the low 

resolution image are assigned the average value of all these pixels. Although, as a part of 

the post-processing, edge sharpening is performed, the assignment of the same value to 

several pixels introduces a blur effect in the edge area. Zhang and Wu [21] have 

developed an image interpolation scheme, which is based on adaptive 2-D autoregressive 

modeling and soft-decision estimation. This approach is capable of preserving spatial 
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coherence of the interpolated images, and therefore, presents a good visual quality for the 

up-scaled image. However, the interpolation model is set up specifically for the case 

when the magnification factor is equal to two and hence, this technique cannot be applied 

for an arbitrary magnification factor. In view of this, the authors in [21] have applied 

bicubic interpolation in combination with their proposed scheme to realize the up-scaling 

of an image for a magnification factor of three. 

It is to be noted that these existing edge-directed interpolation schemes do not 

take into account the neighboring unknown pixels when interpolating a pixel for an up-

scaled image. In these schemes, an unknown pixel is interpolated based on the estimation 

made only with the neighboring known pixels. However, in a natural image, the image 

textures and edges consist of pixels that are related to one another. Hence, including only 

the neighboring known pixels in the interpolation process does not give a very 

satisfactory reconstructed image, especially in areas with fine textures. Moreover, these 

schemes require more than one step to complete the interpolation process even when an 

image is up-scaled by a magnification factor of two. When up-scaling an image by a 

magnification factor of 2" (n an integer greater than one), such a scheme needs to be 

applied n times. Another issue with the existing edge-directed interpolation schemes is 

that these have been developed based on the assumption that the magnification factor is 

two. Therefore, these methods have difficulty in handling the case when the 

magnification factor is not an integer power of two. A common practice to go around this 

problem has been to resort to conventional interpolation methods, such as bilinear or 

bicubic interpolation methods as an additional step after up-scaling the image by a power 

of two using one of the methods. Obviously, in such a scheme, the advantages associated 
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with their schemes cannot be fully realized in view of the need to use conventional 

interpolation methods as well. 

From above discussion, it is seen that there is a need for developing an edge-

directed interpolation scheme for temporal resolution enhancement, which needs to be 

applied only once to interpolate all the unknown pixels in the up-scaled image, 

irrespective of the value of the magnification factor. In order to meet this challenge, one 

has to find an appropriate mathematical approach to design a generalized interpolation 

model, and derive a formula for interpolating all the unknown pixels, independent of the 

value of u. 

2.2 Block-based MCI Schemes for Temporal Resolution 
Enhancement of Encoded Video Sequences 

In this section, block-based MCI schemes are first introduced, and then the reasons for 

the occurrence of interpolation errors in such schemes analyzed. Some state of the art 

techniques relating to this topic are reviewed. The difficulty of concealing the 

interpolation errors without employing pixel classification is discussed. The feasibility of 

using a spatial interpolation method to deal with the interpolation errors is also explored. 

2.2.1 Fundamentals for block-based MCI schemes 

A block-based MCI scheme for temporal resolution enhancement exploits the block 

motion vectors available at a decoder, thus avoiding the need for the computationally 

demanding motion estimation. Let FRMt_x and FRM, be successive reconstructed 

frames at the receiving end at times t -1 and t, respectively. Let p denote the position 
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vector of a pixel at point P in a frame, Ft (p) represent the pixel intensity at P inside the 

frame FRM',, and Vi refer to the transmitted motion vector of a block Bj in the frame 

FRMt. Obviously, Vi is assigned to any pixel atP e Bi. Let FRMt_abe the interpolated 

frame at time t-a . Considering a constant-speed motion model, the motion vector 

between FRMt and FRMl_a is given by 

V,a = a • V; 0 < a < 1 (2.3) 

The relationship between these two vectors Vt and V" is shown in Fig. 2.2. For any 

P e B;, the corresponding location Pa in FRMt_a is found by using 

round (2.4) 

where [ • ]rou/K/ represents the rounding operation, which rounds the motion vector to the 

nearest integer within the image dimension. Then, the pixel value at Pa is given by 

F,-aiPa) = Fffi (2.5) 

which we refer to as the backward motion compensation that yields the interpolated 

FRM,_, FRMt_a FRM, 

t-\ t-a t 

Figure 2.2: Relationship between the motion vector Vi and V" 
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frame. This motion compensation process denoted by (2.5) may cause the occurrence of 

overlapped as well as unfilled pixels, and is a result of the mechanism used for the block-

based motion estimation and motion compensation prior to the interpolation. Since for 

each non-overlapped motion block Bi in the frame FRMI, the optimal motion vector Vt 

that points to its matching block in the frame FRM{_X is found based on some measure of 

distortion, and transmitted, some of these matching blocks could be overlapped in the 

frame FRM,_,. If we consider the case of the halfway position of a motion vector in the 

compensated frame FRM,_a (or = 0.5), some of the predicted blocksBi (7 = 1,2,3,4) 

could also be overlapped. In Fig. 2.3 (a), the motions of all the pixels within one motion 

block are represented by one motion vector, which denotes the motion of Bj from 

frame FRM, to FRMt_x. It is normal that different motion blocks have different motion 

vectors, which may make the motions of the pixels along the boundary of two adjacent 

motion blocks not to be consistent. In Fig. 2.3(b), after applying the constant motion 

model, we have the derived motion vector V" of the motion block B,, which represents 

the motion of B, from the frame FRM, to the frame FRMt_a. In FRMt_a, the predicted 

block, B\ (the shaded blocks in Fig. 2.3(c)), can be obtained. Therefore, some regions in 

the compensated frames could experience the problem of overlap or the unavailability of 

the pixel values. That is, some pixels in the compensated frame may be interpolated 

multiple times, or the pixel values at some of the pixel positions may not be available, 

leaving some "holes" between the blocks. In Fig. 2.3(c), we can see the unfilled region 

between B[ and B[, as well as that between the B^ and B[. The values of the overlapped 
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and unfilled pixels cannot be predicted correctly, giving rise to errors that we 
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Figure 2.3: Illustration of the cause to the interpolation errors. 

refer to as the interpolation errors for the interpolated frames. Usually, such interpolation 

errors occur in regions that are sensitive to the human eye within a frame, such as the area 

containing the head and shoulders, where the motion is likely to be relatively high and 

non-uniform. We shall refer to this area as the region of interest (ROI). If the 

interpolation errors are not concealed properly, the interpolated frame has an annoying 

stripe effect in the ROI, leading to an unsatisfactory subjective quality. 

2.2.2 Block-based MCI schemes 

Recent research in block-based MCI schemes for temporal resolution enhancement of 

encoded video sequences can be classified into two categories: MCI schemes based on 

proprietary video codec, and MCI schemes based on conventional video compression 

standards such as H.26X, or MPEG-1 121 A. In the first category, the schemes are based 

on the proprietary codec, which supports special features in the encoder, so that extra 

information is obtained for the use by the MCI scheme at the decoder. The scheme 

developed in [36] considers multiple motion vectors for a single block to achieve a better 
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quality for the interpolated frames. This scheme requires extra motion information 

obtained from the video encoder. In [37], the MCI is performed using the object-based 

interpretation of the video at the encoder, so that the motion and segmentation 

information are available at the decoder for temporal resolution enhancement; obviously, 

it is based on a proprietary codec. In [38], a block-based fast motion-compensated 

interpolation (FMCI) scheme is proposed. In this scheme, there is an add-on module at 

the encoder to adaptively choose a variable number of skipped frames, so that the video 

coding with a variable frame rate is achieved. Due to the use of the add-on module on top 

of an existing video encoder, the standard bitstream syntax must be modified to 

accommodate this. Similarly, in [39], a MCI module is embedded in the encoder loop in 

order to improve the frame interpolation accuracy at the receiver. All these schemes are 

based on the proprietary encoders, which may not be acceptable for many video 

communication systems that are compliant to conventional video compression standards. 

In the second category, the block-based MCI schemes are based on conventional 

video encoding standards, and work solely with the decoded video stream; they do not 

require any extra information to be obtained from the encoder. Therefore, they can be 

applied to most of the existing video communication systems. The basic idea of such a 

scheme is illustrated in Fig. 2.4. As seen from this figure, the motion information is part 

of the encoded bitstream from a standard video encoder, and therefore, the block-based 

motion field can be employed for the frame interpolation at the receiver. 

In [40], pixel classification is implemented, and the pixels are interpolated in 

different ways depending on whether the pixels are unchanged, uncovered or occluded. 

For those pixels that exist in both the current and previous frames, the linear MCI 
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technique is used. As for those pixels that belong to an uncovered region, zero motion 
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Figure 2.4: Block-based MCI scheme based on conventional video encoding 
standards. 

vectors are employed, based on the assumption that the positions of those pixels can only 

be found in the current frame, and cannot be compensated by the pixels in the previous 

frame. Similarly, for those pixels that are in the so-called occluded region, zero vectors 

are applied, based on the assumption that those pixels can only be compensated with the 

pixels in the previous frame. Since time-consuming motion estimation is not required at 

the decoder, this scheme results in significant cost savings. Also, it can provide a 

relatively better subjective quality compared with a non-motion-compensated 

interpolation scheme. However, since the pixels in the interpolated frames have to be 

classified into three classes at the receiver, this process has a high computational 

complexity. 

In [41], to obtain a dense motion vector field, the information carried by the 

transmitted block-based motion vectors is exploited through a mesh-based mapping. 

Besides, to get a higher subjective quality for the interpolated frames, this scheme also 

employs some other techniques such as the foreground/background segmentation and 

image change detection. Obviously, the computational complexity of this scheme is too 

high to be implemented in an inexpensive video decoder. As pointed out in [42], one 
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major difficulty in a block-based MCI scheme is in dealing with the overlapped pixels 

and unfilled holes, which are left after performing the block-based motion compensation 

for the interpolated frame. Spatial interpolation may be used to deal with these holes, but 

it is quite difficult, since the neighborhood of a hole may still contain other holes. In view 

of this, the authors in [42] have proposed a scheme, the deformable block-based frame 

MCI (DB-FMCI) scheme, wherein only those holes that follow some predefined simple 

patterns can be dealt with in conjunction with pixel classification. The computational 

complexity of this scheme prevents it from being implemented in an inexpensive 

decoder. 

In [43], a block-based MCI algorithm called the scaled motion vector field 

(SMVF) algorithm is proposed, and is intended to be used in an inexpensive video 

decoder. In this algorithm, block-based motion vectors are used instead of the pixel-based 

motion vectors, and pixel classification is not carried out. Although its computational 

complexity is relatively low, the visual quality of the interpolated frames is not good 

enough, as blur artifacts appear due to the smoothing technique employed in the 

algorithm to handle the overlapped pixels. In [44], the Inertia-MCI (I-MCI) algorithm, 

which exploits the block-based motion information and employs inertia motion prediction 

at the decoder, is proposed. This algorithm has been claimed to provide better subjective 

and objective qualities for the interpolated frames than that provided by the other 

algorithms. However, the algorithm carries out a pixel classification procedure that 

cannot be performed until the succeeding frame arrives, thus resulting in a significant 

delay in reconstructing the interpolated frame; hence, this procedure is not practical for 

real-time video applications. In addition, some post-processing steps, such as the fine 
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scene-segmentation, are needed, and this would result in an increased computational 

complexity. It is also to be pointed out that in this scheme the unfilled pixels are 

predicted by frame repetition, and this method may produce stripe artifacts. 

In summary, few of the existing block-based MCI algorithms can work without 

pixel classification, which requires a computationally expensive image segmentation 

process. Besides, in view of the difficulty of employing spatial interpolation to deal with 

the holes, some of the existing schemes employ simple techniques, such as the pixel 

averaging or repetition, to fill the holes. An averaging technique is often used to handle 

the overlapped pixels, resulting in images that may suffer from blur or stripe effects. An 

MCI scheme, that can produce a reconstructed frame with a high visual quality at a 

relatively low computational complexity, would thus be desirable. 

As discussed earlier, interpolation errors are due to the overlapped pixels or 

unfilled holes. As for the overlapped pixels, most block-based MCI schemes use an 

averaging algorithm to deal with them. With respect to the unfilled holes, either a frame 

repetition technique or a median filter has been employed to fill these holes [45], [46]. A 

variety of error concealment techniques [51]-[62], making use of spatial interpolation, 

have been widely employed for video communication in an error-prone environment, 

sparse data reconstruction, and image up-conversion. However, none of these error 

concealment schemes is suitable for the problem at hand. It is to be noted there is one 

aspect that is common in all these applications: the shape of the region that needs to be 

interpolated is either known or follows a certain pattern. With respect to the error 

concealment for video communication, spatial interpolation is used to mask the effect of 

missing blocks, having fixed shape and size. As far as sparse data reconstruction and 
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image up-conversion are concerned, once the scale ratio is determined, the position for 

the interpolated pixels has to follow a certain pattern. However, in an MCI scheme, the 

holes can have an arbitrary shape, which is determined by the motion vectors available at 

the receiver, and varies from frame to frame. Furthermore, the spatial neighborhood of a 

hole may still contain other holes. This difficulty has also been pointed out in [42], and as 

a consequence, the authors have taken an approach that is different from that of spatial 

interpolation to resolve the issue. To the best of our knowledge, no MCI scheme 

employing a spatial interpolation technique has been proposed to deal with the 

overlapped or unfilled pixels. Therefore, finding a mathematical approach and deriving a 

formula to conceal the interpolation errors still remains as challenges to block-based MCI 

schemes. 

2.3 Fundamentals of Finite Element Method 

Finite element method (FEM) is a powerful tool for obtaining numerical solutions to a 

wide variety of engineering problems, such as those in mechanical, aeronautical, 

biomechanical, and automotive engineering. The basic idea behind FEM is that a given 

structure is divided into a number of smaller elements having finite dimensions, called 

finite elements. As a result, the original structure can then be considered as a collection of 

these elements, which are connected at a finite number of nodal points, called nodes. The 

properties of the various elements are formulated, and then combined in a certain way, so 

that the properties of the entire structure can be obtained. Thus, instead of solving the 

problem for the entire structure in one operation, the FEM focuses on the formulation of 
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the properties of the constituent elements of the structure. The basic steps involved in the 

FEM are as follows. 

1. Segment the given structure into a number of non-overlapping finite elements of 

simple geometry. 

2. Express the value of any point in an element as a function of the values at its 

nodes, the number of nodes being dependent on the geometry of the elements. 

3. Approximate the response of the structure based on the response of the discrete 

model obtained by connecting or assembling the collection of all the elements in a 

way that continuity is ensured at each node. The necessary boundary conditions 

are imposed and the equations of equilibrium are then solved for the primary 

unknowns. 

To have a better understanding of the basic principles and procedures of the 

method, we apply the FEM to an elementary problem. In the following example, we 

employ FEM to examine the steady state heat conduction in a plane. The two-

dimensional steady-state heat conduction problem can be stated as follows. Consider the 

region R bounded by the curve Cin the (x,y) -plane, as shown in Fig. 2.5. The task is to 

find the temperature function T(x,y) in R , which satisfies the partial differential 

equation 

ViVT(x,y)) = 0 (2.6) 

where V is the two-dimensional vector differential operator 

v(-)=4<-)+;fo) 
ox oy 
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This equation is subject to the boundary conditions on C, which can be divided into two 

parts C, and C2, 

y + 

Figure 2.5: Heat conduction region R for the temperature function T(x, y) 

and 

T(x,y) = g(x,y) on C, 

VT(x,y)-n = 0 on C2 

(2.7) 

(2.8) 

where rcis a unit vector normal to C and directed out of R. Now let us convert (2.6), 

together with (2.7) and (2.8) into a variational formulation. We proceed by multiplying 

the left side of (2.6) by ST and integrating over R , and obtain 

jSTV-{VT(x,y))dR = 0 (2.9) 

Based on vector identity, (2.9) can be written as 

\STV(VT(x,yj)dR= J 
It L 

1 v.(<srvr(x,>o)--£(v:r(x,>o)2 dR (2.10) 

If we use the divergence theorem, and require ST be zero on C,, the above is equivalent 

to 

JST V • (VTXJC,y))dR = - - \s(VT(x,yjf dR (2.11) 
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Therefore, the variational formation of the boundary value problem of (2.6) is 

51 = 0 (2.12) 

where 

I=&UvT(x,y)f dR (2.13) 

Let the region R be divided into N non-overlapping triangles as shown in Fig. 2.6. 

These triangles are finite elements of the region R . In order to seek a solution to (2.6), 

we employ an approach, through the use of which, the temperature function T(x,y) can 

y 

Figure 2.6: Triangular element segmentation of the region R 

be represented by its values at the nodes of the triangles throughout R . Let the nodes of 

the triangles be numbered globally from 1 to n, then the temperature distribution in 

R will be represented by the array 

[T] =[T„T2,T,,-Jn] (2.14) 

A typical triangular element with its nodal coordinates is presented in Fig. 2.7. Let us 

introduce the shape function N.(x,y), i = \, 2, 3 . N*(x,y) is linear in both xand 

y on e, and is zero outside e. Also, N*(x,y) has a value of 1 at node i, and a value 0 at 
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node j , where j * i. Therefore, the temperature function T(x,y) on e can be expressed 

as 

y 4 

1 3 ^ 

(x2,y2) 

X 

Figure 2.7: A typical triangular element with its nodal coordinates 

with 

r(x,y) = T]'
!N:(x,y) + T2

eNe
2(x,y) + T*N;(x,y) 

= [N?(x,y) Ne
2(x,y) Nl(x,y)} T2' 

Nc;(x,y) = 

Ne
2(x,y) = 

27 

27 

Nl{x,y) 
2s 

1 x y 

1 x2 y2 

1 x3 y3 

1 x, yx 

1 x y 

1 x3 y3 

1 x, yx 

1 x2 y2 

\ x y 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

where s denotes the area of element e, that is 
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1 
s - — 

2 

1 xx y, 

1 x2 y2 

1 x3 73 

(2.19) 

Since the region R has been divided into N elements , / can be written in the form 

/ = £ / • (2.20) 

where 

r = Ij[(vr)2]<fl? (2.21) 

It can be shown that [66] 

VTe = 

dN°(x,y) dN'(x,y) dNe
3(x,y) 

3x 3x 3x 
dNc;(x,y) dN"2(x,y) dNe

3(x,y) 

dy dy dy 

n (2.22) 

Let the coefficient matrix be denoted by [Be\, that is, 

\BT\-

SN;(x,y) dN'2(x,y) dN;(x,y) 
3x 3x 3x 

dNf(x,y) dNc;(x,y) dNe
3(x,y) 

dy dy dy 

Then, we have a compact form for (V7C)2 

where [tce\ is defined as 

(vr)2 = [rf [x-c'][r 

kHWH 

(2.23) 

(2.24) 

(2.25) 

and [Te\ is given by 
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[r e]7=[r, e 77 T3
e] (2.26) 

Hence, (2.21) can be expressed in the following form 

r=4rf[*-e][7'e] (2.27) 

Let us assemble all the N elements in region R , assuming the local nodes 1, 2 and 3 of 

the element e correspond to the global nodes I, J and K, 

T*=T,,T*=TnT^TK (2.28) 

We now recall that the region R is divided into N elements with a total of n nodes; 

hence, 

[TJ=[TX - T, - Tj - TK . - Tn] 

If we define an incidence matrix [AeJ by 

kr-

then 

0 •• 

"0 • 

0 • 

0 • 

/ 
• 1 • 
• 0 • 

• 0 • 

• 0 • 

• 1 • 

• 0 • 

K 

• 0 • 

• 0 • 

• 1 • 

n 

• 0 " 

• 0 

• 0 

H=M'>] 
Therefore, (2.26) can be written as 

I'=\[T1[K'][T] 

where 

Then, by substituting (2.32) into (2.20), we have 

I = \[T][K][T] 
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(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 



where [K\ is defined as 

M=Xk] (2.35) 

As a matter of fact, satisfying SI = 0 is equivalent to satisfying — = 0, i = \,---,n . 

Thus, we have 

M[r] = 0 (2.36) 

Hence, through the use of the finite element method, the boundary value problem 

given by (2.6) to (2.8) is converted into a system of algebraic equations, the solutions to 

which can be solved in the interior of R . This example has illustrated how the FEM 

method can be employed to solve complex engineering problems. In Chapter 3, we will 

apply the finite element method to design a generalized image interpolation model, which 

can be utilized for both the spatial resolution enhancement of images and the temporal 

resolution enhancement of encoded video sequences. 

2.4 Summary 

This chapter has introduced some basic concepts related to edge-directed spatial 

resolution enhancement and block-based MCI schemes for temporal resolution 

enhancement of encoded video sequences. A brief literature review regarding the existing 

edge-directed spatial resolution enhancement schemes and block-based MCI schemes, 

along with an analysis of the drawbacks of these schemes has been carried out. This has 

provided the motivation for designing an appropriate interpolation model. Since the finite 

element method is chosen for the development of such an interpolation model with the 
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purpose of devising an image interpolation technique, fundamentals of FEM have been 

introduced. An example of applying FEM to solve the steady state heat conduction 

problem has also been given, in order to present the basic principles and steps of applying 

the finite element method. The advantage of the FEM in providing simplicity of 

piecewise approximation of a function given its values at discrete points, has also been 

highlighted. 
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Chapter 3 

A Generalized Image Interpolation Model 

Based on Finite Element Method 

3.1 Introduction 

As discussed earlier, in the existing edge-directed spatial resolution enhancement 

schemes, an unknown pixel is interpolated based on the estimation made only with the 

neighboring known pixels. Consequently, there are two outstanding issues in such 

schemes. 

1. They are not capable of handling an arbitrary magnification factor 

2. They cannot complete the interpolation process without multiple interpolation 

steps, even when up-scaling an image by a factor of two 

To resolve these issues, we need to develop a new interpolation model, which is not 

restricted to making use of the neighboring pixels with known values, but also takes into 

account the neighboring pixels with unknown values in the interpolation process. As for 

temporal resolution enhancement, an ideal interpolation model is one which is capable of 

handling an area having an arbitrary shape, which may contain overlapped and/or 

unfilled pixels. 
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In view of these requirements for spatial and temporal resolution enhancement, 

there is a need to develop a new interpolation model that is able to interpolate unknown 

pixels under the following three conditions. 

1. The spatial neighborhood of an unknown pixel contains known pixels as well 

as unknown pixels 

2. A collection of the unknown pixels has an arbitrary shape 

3. The interpolation for a certain unknown pixel involves the neighboring pixels 

with both known and unknown values 

To meet the above requirements, a generalized image interpolation model based on FEM 

is presented in this chapter. To have a better understanding of the problem at hand, 

consider the test image Lena with a number of missing pixels, as illustrated in Fig. 3.1(a). 

The holes, which are deliberately generated as collections of unknown pixels, do not have 

a fixed pattern, and are arbitrarily shaped. In Fig. 3.1(b), the discontinuities due to the 

presence of the holes can be seen in the 3D surface plot of the face portion of the image. 

In Fig. 3.2 (a), the original test image Lena and the face portion of the image are shown; 

the 3D surface plot of the face portion sub-image is illustrated in Fig. 3.2(b). Our goal is 

to design an interpolation model, so that each unknown pixel is interpolated by a proper 

value, such that the continuity of the 3D surface plot of the resulting image can be 

restored as close as possible to that shown in Fig. 3.2(b). As pointed out in [42] and [47], 

there are two aspects that make this a difficult task: (i) the holes have arbitrary shapes, 

and (ii) the neighborhood of a hole may still contain other holes. To accomplish this 

difficult task, we develop a FEM-based interpolation model, which can interpolate 

unknown pixels in an image under the conditions mentioned earlier. 
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(a) (b) 

Figure 3.1: (a) Test image Lena manipulated with arbitrarily-shaped holes, (b) A 
sub-image from the face portion of the image in (a), (c) The 3D surface plot of the 
sub-image in (b) 
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(a) (b) 

(c) 
10 10 

0 0 

Figure 3.2: (a) Original test image Lena, (b) A sub-image from the face portion of 
the image in (a), (c) The 3D surface plot of the sub-image in (b) 
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3.2 Finite Element Method-Based Image Interpolation Model 

In order to interpolate unknown pixels in an image, let us apply the FEM [63], [64] to 

construct a continuous luminance function L(x, y). The domain Q of this function is an 

image/ , in which unknown pixels are randomly present as shown in Fig 3.1(a). The 

constraint we set for this function is that an interpolated pixel should fit smoothly with its 

immediate-neighboring pixels, which are either known pixels or themselves interpolated 

pixels. 

3.2.1 Segmentation of the domain into non-overlapping elements 

Let us consider the image / to have (W x H) pixels, and the domain Q to be 

Q = [0 ,PF- l ]x[0 , / / - l ] (3.1) 

We employ triangular segmentation and partition Q into N (N e Z) non-overlapping 

triangular elements ev, ( v = ],...,N ), the nodes of which correspond to the pixel 

locations in / as shown in Fig. 3.3(a). These elements may be classified into two types 

of local triangular elements, Type I and Type II elements, the first, second, and third 

nodes of which are ordered counterclockwise (see Figs. 3.3(b) and 3.3(c)). D is the set 

containing all the nodes in Q, that is D c Q, or 

D = (OX...,W-l)x(0,l,...,H-l) (3.2) 

After the triangular segmentation of Q, the nodes corresponding to the known pixels are 

referred to as the known nodes, whereas the remaining nodes as unknown nodes. Let 

K c D denote the set of known nodes and U <z D the set of unknown nodes; 

U U K = D and U f] K = 0 . Hence, L(x, y) has known values at (x, y) e K , and these 
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2 3 
(b) 

(a) 

Figure 3.3: (a) The triangular elements partitioned in the domain nofZ(x,j>)-

If: (x,y) represents the continuous function for the element ev. (b) Type I local 

triangular element, (c) Type II local triangular element 

values are not altered in the interpolation process. 

3.2.2 Response of each element in terms of the values at its nodes 

By applying the FEM, H: (x,y)can be expressed as a function of the values of the 

response at its nodes in the element ev. This process can be summarized as follows. 

L(x,y) = Le-(x,y) (x,y)eey 

Le- (x, y) = H{ <px (x,y) + If{ q>2 (x,y) + H{ cp3 (x, y) 
(3.3). 

where Le'(x,y) ((x,y)eev) is a continuous function as shown in Fig. 3.3(a), 

L]v =Le"(xi,yj), {i-1,2,3), and ( i , . j ( ) e D , ( x , j , ) being the location of the ith node in 

ev. The shape functions are given by 
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<Pi(*,y) = — 
2s 

1 X 

1 x2 

1 x3 

y 

y2 

y3 

<p2(x,y) 
2s 

1 

1 

1 

X, 

X 

x3 

y* 

y 

y3 

(3.4) 

<p3(x,y) = 
2s 

1 

1 

1 

X, 

x2 

X 

y\ 

y2 

y 

with s denoting the area of the element ev. 

3.2.3 Approximation of the values for the unknown nodes 

To satisfy the requirements set earlier regarding the smooth fit of an interpolated pixel, 

we apply the optimization constraint that the surface represented by L(x, y) has the 

smallest area. Then, we can find suitable luminance values for the unknown nodes to 

minimize the function 

Ih 
(: 

1 + dL(x,y)\ (dL(x,y) 

{ dx + { dy 
dxdy (3.5) 

This is equivalent to finding a set containing L(i,j) at each node (i,j) e U, which 
minimizes 

ill (dlf>(x, 

dx 
y) 

2 f 

+ 
dLe'(x,y) 

dy 
axdy (3.6) 

Let us define a variational function 

a(u(x,y),v(x,y))= \j 
du{x,y) dv(x,y) du(x,y) dv(x,y) 

dx dx 
+ • 

dy dy 
-dxdy (3.7) 
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Then, we have 

^a(Le-(x,y),Le'(x,y)) = ^Jl dl?'(x,y) 

dx + 
dLe'{x,y) 

dy 
\dxdy (3.8) 

where 

a(If- (x,y),If' (x,y)) = U{ L\' a{cpx(x,y),(px(x,y)) + If2L
e{a((p2(x,y),(p2(x,y)) 

+1% 1%a(<p3(x,y),cp3(x,y)) + 2If{ Le{a{(px(x,y),<p2(x,y)) 

+ 21%1% a{q>x (x, y), <p3 (x, y)) + 2Le{ £f3 a((p2 (x, y), q>3 (x, y)) 

From (3.4), the following can be obtained, 

a(<pl(x,y),<pi(x,y)) = -—[(y2-y3)
2 +(x3-x2)2] 

4s 

<*(<Pi(x,y),q>2(x,y)) = — [(y2 -y3)(y3 -y{) + (x3 -x2)(x, -x 3 ) ] 
4s 

a(<Pi(x,y),<p3(x,y)) = —[(y2 - y3)(yx -y2) + (x2 -x , ) (x 3 -x 2 ) ] 
4s 

a(<p2(x,y),(p2(x,y)) = —[(y3-yl)
2+(x]-x3)

2] 
4s 

a(<p2(x,y),<p3(x,y)) = -~[(y3 -yx)(yx -y2) + (xi -x3)(x2 -x,)] 
4s 

a((p3(x,y),<p3(x,y)) = -—[(y,-y2)
2+(x2-xl)

2\ 
4s 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

Hence, for Type I triangular element, we have 

a((px(x,y),<p](x,y)) = -

a((pl(x,y),(p2(x,y)) = 0 

a(<Pl(x,y),(p3(x,y)) = 
1 

a(<p2(x,y),<p2(x,y)) = -

a((p2(x,y),(p3(x,y)) = -

a{(Pi(x,y),(p3{x,y)) = \ 

1 

(3.15) 
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As for Type II triangular element, the following can be obtained. 

faO,(x,.y),PiO,jO) = l 

To minimize (3.8), we set 

a(<p](x,y),<p2(x,y)) = - -

a((pt(x,y),(p3(x,y)) = -: 

a(<p2(x,y),<p2(x,y)) = -

a((p2(x,y),<p3(x,y)) = 0 

2 

2 

a((p3(x,y),(p3(x,y)) = 
1 

(3 

da(Le-(x,y),Le'(x,yy) 

da(I?' 

da(Le' 

3Zf 
(x,y),I? 

dl% 
(x,y),Le 

(x,y)) 

(x,y)) 
dLe: 

= 0 

= 0 

= 0 

(3 

By using (3.3), (3.17) can be expressed as 

2Z, - a(<px(x,y),q>i (x, y)) + 21% a(<pt(x, y), (p2 (x, y)) + 21% a{(py (x, y), <p3 (x, y)) = 0 

2If{ a(<p2 (x, y), (p2 (x, y)) + 2I%~ a{(p^ (x, y), q>2 (x, y)) + 21% a(<p2 (x, y), <p3 (x, y)) = 0 

21% a(<p3(x, y), (p3 (x, y)) + 21% a(<px (x, y), cp3 (x, y)) + 21% a(<p2 (x, y), (p3 (x, y)) = 0 

(3 

Hence, the local nodal equation can be expressed as 

M P P P I ) 0(PI>P 2 ) abPvV^ 
a((p2,<px) a(<p2,<p2) a(q>2,(p3) 

a(q>3,q>i) -a(<p3,<p2) a{(p3,(p3) 

rLer\ (0^ 

0 (3 

From (3.19), (3.15) and (3.16), we have, for Type I element 
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( 1 

0 

v-1 

0 

1 

- 1 

- \ \ 

- 1 

2, 

I?{ = 
(°) 
0 

,o , 
(3.20) 

while for Type II triangular element, we have 

{ 2 

- 1 

, - 1 

- 1 

1 

0 

-r 
0 

I 
15-
/<•',. 

V ^ J 

= 
f0' 
0 

,0, 

(3.21) 

Let us define 

Then, (3.20) and (3.21) can be written in the following form 

HH=o 
where [k"' jis the coefficient matrix for local nodal equations. 

(3.22) 

(3.23) 

After the local nodal equations for each triangular element are derived, we can 

proceed to add up their contributions in order to form the global nodal equations. Let us 

cover all the nodes in the set D in a regular raster scan so that all the n = W x H nodes 

can be ordered as 

[LMA.A.V-..4] (3.24) 

For instance, for the Type I triangular element ev, the luminance value at the local nodes 

1, 2, and 3 are equal to the luminance value at the global nodes I, J, and K respectively. 

That is, 

J-'i ~ '-'l •> ^2 ljJ •> ^3 '-'K (3.25) 
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By considering all the nodes ordered as per (3.24), the local node equation shown in 

(3.20) has a contribution to the global nodal equations as shown below. 

... i ... j ... K 

I 

J 

K 

1 0 

1 

- 1 

V : ~\ f-\ 

0 

IK 

V: J 

0 

0 

\- J 

(3.26) 

It can be seen from (3.26) that the nodes V{ , Le{ , and If: in element ev act as L, ,L, and 

LK respectively in the global nodal equations. At the same time, the coefficient matrices 

from the local equations contribute to the coefficient matrix for the global nodal 

equations. Recalling the incidence matrix defined in (2.30), we can relate the luminance 

values at the local nodes and global nodes as 

H=klw (3.27) 

equation (3.26) can be re-written as 

[^][L] = 0 (3.28) 

where 

[¥«-] = [A*-][*•-] [A'-f (3.29) 

If we continue with this process, the contribution of all the N local elements in Q can be 

added to obtain the overall global nodal equations in the form 

mW=o 

where 

(3.30) 

42 



m=|;[y'-] (3.31) 

The optimal luminance value of an unknown node at (i,j)&U, can be obtained by 

solving (3.30). Hence, the following equation holds for an unknown node at (/,_/) e U, 

L(i,j) = Sv(i,j) + SH(i,j) (3.32) 

with 

Sy0,j) = \ 

sH(Uj) = 

L(i,j + l) 

L(i,j-\) 

ifi = 0 

ifi = H-\ 

ifi^0orH-l 

ifj = W-\ 

-[L(i,j + \) + L(i,j-\)] ifj^0orW-l 

(3.33) 

(3.34) 

To determine the value for an unknown node (/, j)eU, it requires solving a set of linear 

equations, the dimension of which, however, could be large, since it is equal to the total 

number of nodes. Solving these equations directly is not desirable. It can be shown that 

the coefficient matrix of such a set of linear equations is diagonal-dominant and non­

reducible. Therefore, we can employ an iterative method to obtain solutions to such a set 

of linear equations, with a guaranteed convergence [63]. Hence, we derive a flexible 

scheme that is performed in a raster scan order, to obtain the luminance value at the 

unknown node (/, j)eU , using the following equations in an iterative manner. 

-,(*) (*)/ L^(i,j) = S^(i,j) + S^(i,j) (3.35) 
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with 

S?\i,j) = 

1 
L(k\i + \J) 

\L^\i-\J) 

ifi = 0 

ifi = H-\ (k > 0) 

I[^-U) + ^ + U)] ,/^Oortf-l 

(3.36) 

-,<*) S^HJ) = ^ * + l ) ( i , 7 - D 

i [ ^ + , ) ( / , 7 - l ) + Z(A)(/,y + l)] / / y > 0 o / - ^ - l 

ifj = W-\ (k > 0) (3.37) 

It can be shown that convergence is guaranteed [65] with such an iterative refinement 

procedure for any unknown node in D. The procedure will not alter the values of the 

known nodes involved in (3.35), with l}k+])(x,y) = L<-k)(x,y),(x,y) eK, whereas the 

unknown nodes will be refined gradually. When the stop criterion is met, we 

obtain L(i,j), (/, j)&U, as the luminance of a interpolated pixel. When all the unknown 

nodes in Q are assigned such values, we have the image, the unknown pixels of which 

have been successfully interpolated. 

3.2.4 Image block size and selection of the initialization value 

To apply this image interpolation model, an image / with size W x H pixels is 

partitioned into blocks for the purpose of distributing the computational load among 

several blocks. To examine the performance resulting from different block sizes, we 

divide the test image Lena as shown in Fig. 3.1 (256x256 pixels) into non-overlapping 

image blocks of sizes 8x8 pixels, 16x16 pixels, and 32x32 pixels, respectively. Under 

the same initialization condition (initialized with zero), simulation results reveal that a 
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larger block size leads to better qualities; however, the number of basic operations 

(including those of addition, multiplication, and absolute difference) increases. Results 

in terms of the PSNR and computational complexity, are given in Table 3.1. It is seen 

that a higher PSNR value can be obtained at the cost of higher computational 

complexity. This setting provides a tradeoff between the performance and the 

computational complexity, according to the requirements of a given application. 

Table 3.1: Computational complexity and PSNR resulted from different block 
size (with test image Lena) 

Block size (MxNpixels) 

PSNR (dB) 

Basic operations 

8x8 

32.32 

370,613 

16x16 

32.44 

429,990 

32x32 

32.50 

448,273 

The initialization value Is (i,j) does not affect the interpolated image result. It, 

however, has an influence on the speed of convergence. We choose for L{ (i,j) three 

different values, namely, 0, the minimum luminance value and the mean luminance 

value of the known pixels in an image block. Simulation results, given in Table 3.2, 

show that initialization with the mean value of the known pixels results in the smallest 

number of basic operations, leading to a faster convergence. 

Table 3.2: Comparison of computational complexity with different initialization values 
(with image block size 16x16) 

Initialization value 

No. of basic operations 

0 

429,990 

Minimum value of the 
known pixels 

400,848 

Mean value of the known 
pixels 

296,783 
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In order to interpolate the missing pixels in the test image Lena, a simulation has 

been carried out. The image block size selected is 16><16, and the initialization value 

chosen is the mean value of the known pixels. The result of the interpolation is shown in 

Fig. 3.4. In Fig. 3.4(a) and (b), the interpolated image and the face portion of the image 

are presented. Fig. 3.4(c) shows the 3D surface plot of the face portion presented in Fig. 

3.4(b). From these figures, it can be seen that in the regions, where unknown nodes exist, 

the interpolated pixels exhibit a smooth variation between the known pixels and the 

interpolated pixels. The interpolated image has a pleasant and natural-looking result. In 

Fig. 3.4(c), no discontinuity can be observed from the 3D plot of the face portion of the 

interpolated image. 

3.3 Summary 

In this chapter, a new image interpolation model has been developed to meet the 

challenges facing both the spatial resolution enhancement for images and temporal 

resolution enhancement for video sequences. 

This model is based on the finite element method technique, wherein the given 

image is segmented into a number of non-overlapping triangular elements. Each element 

is expressed as a function characterized by the values at its nodes. Then, with all the 

different elements assembled together and the boundary conditions applied, it has been 

shown that the unknown pixels can be interpolated by solving a set of linear equations. 

An iterative method has been used to obtain solutions to such a set of linear equations, 

instead of solving them directly. Simulations have been carried out to study the effect of 

the image block size and that of the initialization values on the interpolation results. 
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(a) (b) 

0 0 

Figure 3.4 : (a) Interpolated image resulting from the application of the generalized 
image interpolation model, (b) A sub-image from the face portion of the image in 
(a), (c) The 3D surface plot of the sub-image in (b) 
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Simulation results have shown that larger block size leads to better interpolation qualities 

at the cost of a higher computational complexity. They have also demonstrated that the 

initialization value does not affect the quality the interpolated image, while initialization 

with the mean value of the known pixels results in the smallest number of basic 

operations, and hence in the fastest convergence. By applying this model to a test image 

Lena, manipulated with arbitrarily shaped holes, the missing pixels have been 

interpolated. It has been shown that the interpolated pixels fit smoothly with the 

neighboring known and/or unknown pixels, and the interpolated image demonstrates a 

natural-looking appearance, with its 3D plot maintaining a continuity among the 

interpolated and known pixels. 

In the following chapters, this image interpolation model is applied to the 

problems of spatial resolution enhancement of images and temporal resolution 

enhancement of encoded video sequences. 
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Chapter 4 

Edge-preserving Iterative Refinement 

Interpolation for Spatial Resolution 

Enhancement of Images 

4.1 Introduction 

Based on the generalized image interpolation model developed in Chapter 3, an iterative 

refinement interpolation for spatial resolution enhancement of images will be proposed in 

this chapter [49]. The generalized image interpolation model will be also utilized and 

extended to support edge-preserving spatial resolution enhancement of images. 

As already defined in Section 2.1, spatial resolution enhancement of images is a 

process of obtaining a high resolution image H(m, n), (m, n) <= D" by up-scaling a low 

resolution image L(i, j), (/, / ) e D . At (ui, uj), H(m, n) has known pixels values, which 

are equal to L(i,j), that is 

H(ui,uj) = L{i,j) (4.1) 

This process can be better understood using Fig. 4.1, where we give an example for the 

case when the magnification factor u = 2. Our task is to interpolate the unknown pixels 
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at (m,n)(m*ui or n^uj) , represented by white dots, based on the known pixels 

H(ui, uj), represented by black dots. 

n 
• 
o 
• 
o 
• 
o 
• 

o 

• 

o 

o 
o 
o 
o 
o 
o 
o 
o 

o 
o 

• 
o 
• 
o 
• 
o 
• 

o 

• 

o 

o 
o 
o 
o 
o 
o 
o 
o 

o 

o 

• 
o 
• 
o 
• 

o 
• 

o 

• 

o 

o 
o 
o 
o 
o 
o 
o 

o 

o 
o 

• 
o 
• 
o 
• 

o 
• 

o 

• 

o 

o 
o 
o 
o 
o 
o 
o 
o 

o 
o 

• 
o 
• 
o 
• 
o 
• 

o 

• 

o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

\m H(m,n) 

Figure 4.1: An example of the image up-scaling process. A 5x5 image is up-scaled 
to an image with 10x10, with u-2 . Black dots represent pixels from low 
resolution images H(ui,uj) = L(J,j), and white dots representing the pixels to be 
interpolated, H(m,n),(m ^ ui or n^ uj) 

4.2 Iterative Refinement Interpolation for Spatial Resolution 
Enhancement 

In order to apply the FEM-based image interpolation model of Chapter 3, we first 

construct a continuous luminance function H{x,y) in the domain O, which is defined as 

follows. 

® = [0,uW -\]x[0,uH -]] (4.2) 

In this domain, we perform triangular segmentation and partition cj> into <p (<p > 1, <p an 

integer) non-overlapping triangular elements ev (v = ],-•-,<p) , the nodes of which 
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correspond to the pixel locations in H(m,n), as shown in Fig. 4.2(a). These elements are 

(a) 

Figure 4.2: (a) Triangular elements partitioned in the domain & of H(x,y) . 

He'(x,y)represents the continuous function for the element^; (b) Type I local 

triangular element; (c) Type II local triangular element 

classified into two types, type I and type II triangular elements, as shown in Fig. 4.2(b) 

and Fig. 4.2(c) respectively. The node at (ui, uj) corresponds to the known pixel with the 

value L(i,j). Such nodes are referred to as the known nodes, and the remaining nodes as 

unknown nodes at(m,n\ (m * ui or n* uj). Let K e D" denote the set of known nodes 

and U c D" the set of unknown nodes; U (J K = Du. Under the condition 

H(x,y) = L(x,y), (x,y)eK (4.3) 

we have 

H(x,y)^He'(x,y) (x,y)eev (4.4) 
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where 

He>{x,y) = {Hx H2 H3) Q)2{x,y) 

Kco3(x,y) 

(4.5) 

As illustrated in Fig. 4.2(a), He'(x,y) , (x,y)eey is a continuous function with 

Ht = H(xi,yj), (/ = 1,2,3), and (x^y^eD", where (x,y()is the location of theith node 

in the triangular element ev. The shape functions are given by 

al(x,y) = — 
2s 

1 X 

1 x2 

1 x3 

y 

y2 

^ 3 

co2(x,y) 
2s x y 

^ 3 

(4.6) 

2s 

1 x, yx 

1 x2 y2 

1 x y 

where s is the area of the triangular element ev. 

In most of the natural images, the change from one pixel value to that of an 

adjacent pixel is not abrupt. An interpolated pixel should fit smoothly with its immediate-

neighboring pixels, which may be known pixels or themselves unknown pixels to be 

interpolated. To meet this requirement, we apply the optimization constraint that the 

surface represented by H(x,y)\\as the smallest area. Thus, we need to find the pixel 

values for the unknown nodes to minimize the function 
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ik 1+ dH(x,yy 
dx + 

dH(x,y) 

. dy , 
dxdy (4.7) 

In view of (4.4), the above problem is equivalent to finding the pixel values of H{m,ri) at 

each node (m,n) e U that minimizes the function 

I 
v=\ ... 

dH'*(x,y) 

dx V 

dHe"(x,y) 

dy 
uxdy (4.8) 

We now recall that (4.8) has the same form as (3.6), and hence, it can be shown that the 

optimal value of an unknown node at (m,n) eU satisfies the equation 

H(m, n) = Cv (m, n) + CH (m, n) (4.9) 

with 

Cv(m,n) = \ 

H{m + \,n) 

H{m-\,n) 

if m = 0 

if m - uH -1 

— [H(m-l,n) + H(m + \,n)] ifm^OoruH-l 

(4.10) 

CH(m,n) = 

1 

1 

H{m,n + \) 

—H(m,n-X) 

ifn = 0 

if n = uW -\ 

— [H(m,n + l) + H(m,n-l)] ifn*0oruW-\ 

(4.11) 

Equation (4.9) is applicable to any node at (m,n) e U . Therefore, determining the pixel 

value for each unknown node (m,n)eU requires solving a set of linear equations. 
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However, as pointed out in Section 3.2.3, the number of such equations being equal to the 

total number of unknown nodes in Du could be very large. Solving these equations 

directly is, therefore, not efficient. Hence, as was done in solving (3.35)-(3.37), we 

employ the following iterative refinement procedure in order to obtain the pixel value at 

an unknown node: 

H{k+l)(m,n) = Clyk\m,ri) + C%\m,n) (4.12) 

with 

C(
v
k\m,n) = 

-H(k)(m + \,n) 
2 

-H{k+l)(m~l,n) 
2 

J_ 
4 

if m = 0 

ifm = uH-\ (*>0)(4.13) 

[H(k+])(m - ! , « ) + H(k\m + \,n)} if m * Oor uH - 1 

0*Xm,n) = 

-H(k\m,n + 1) 
2 

-H{k+])(m,n-l) 

ifn = 0 

ifn = uW-\ (£>0) (4.14) 

-[H{k+]\m,n -1) + H(k\m,n +1)] ifn* Oor uW -1 

Obviously, the above procedure is not applied to the known nodes involved in (4.12), 

with H(k+*)(x,y) = H(k)(x,y),(x,y) e K. When the stop criterion is met, we obtain the 

pixel value for this unknown node. It can be seen that this iterative scheme is independent 

of the magnification factor u. Hence, u can be any positive integer, which is not the case 

with any of the other existing methods. We will discuss this point further in Section 4.3, 

where we compare the proposed scheme with other existing interpolation methods. 
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Based on the above discussion, we now formulate an algorithm for the 

interpolation of the pixel values of the unknown nodes at (m,n) e U . Let H be a vector, 

each component of which corresponds to a value of a pixel at an unknown 

node (m,n)eU . Let H(0) (m,n)be the initial value of such a pixel, and be given by 

H(0\m,n) = L(floor(mlu),floor{nlu)) (m,n)sU (4.15) 

Let MAPD\ •, • ) represent an operator that calculates the maximum of the absolute 

difference of the pixel values and s a pre-specified tolerance. The operation of 

MAPDy •, •) is restricted to integer accuracy so that we can set the tolerance s - 0. This 

procedure starts with the initialization of//(0) with H(0)(m,n), and k = 0. For each node 

at (m,n)eU, (4.12) is used to calculate H(k+X\m,n). If MAPD(H(k+X), H(k))>Q, then 

kis incremented by unity, and H(k+])(m,n) is computed again for each node at (m,n) e U . 

This process is repeated until the value of MAPD(H{k+i), H(k)) becomes zero. Then, the 

value of H(k+l) determined at the last step is assigned to the vector H . The vector 

H obtained from the above algorithm contains all the interpolated pixel values for the 

unknown nodes in D", and the up-scaled image H(m,n) is thus obtained. The flow 

chart of the procedure is shown in Fig. 4.3. 

Since the above scheme can be applied to any sub-image block of H(m,n), we 

partition H(m,n) into a number of sub-image blocks, so that the computational effort 

for interpolation gets distributed among these blocks. At the end of this iterative 

refinement process, the interpolated pixels will exhibit a smooth variation with the known 

pixels H(ui, uj), and the neighboring interpolated pixels as well. In the next section, we 
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C Start J 

j 

Initialize Hm with Hm(m,n) 

at(m,n)eU 

k = 0 

For each node at(m,n) e U 
H"*"(m,n) = ClP(m,n) + C^,(m,n) 

Figure 4.3: Flow chart of the iterative refinement interpolation scheme. 

extend this proposed technique to develop an edge-directed iterative refinement 

interpolation scheme for spatial resolution enhancement of images. 

4.3 Edge-preserving Iterative Refinement Interpolation for 
Spatial Resolution Enhancement 

As discussed in Chapter 2, the edges in a natural image constitute one of the most 

prevalent features for human visual systems. Variations in pixel values always occur, 

where a dominant edge is present. Along the edge direction, the pixel values change more 

slowly than they do across an edge. To address this problem, we apply an edge-
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preserving refinement phase to the up-scaled image H(m,n), obtained from the previous 

iterative refinement process. We first detect the orientation of the dominant sharp edge in 

the 5x5 image block BLK in the original low resolution image L(i, j), as shown in Fig. 

4.4(a). Based on the detected orientation, we apply the equation (4.9) to perform an edge-

preserving refinement phase to the unknown pixels in the corresponding image BLK" (a 

block with a size of 5« x 5w ) in H(m,n). Fig. 4.4(b) shows BLK1' when u=2. 
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Figure 4.4: (a) A 5x5 image block BLK in the original low resolution image 
L(i,j). (b) The corresponding image block BLK" of the up-scaled image H(m,ri) 
with u = 2 , the black dots representing the pixels from L(i, j), and white dots the 
pixels to be interpolated. 

In order to detect the dominant sharp edge in BLK, we need to use a gradient 

estimator [65]. Some estimators, such as the Sobel operator or the Prewitt operator, can 

provide good edge detection, but are computationally expensive. On the other hand, the 

Roberts operator uses a small mask, and is computationally less expensive, but produces 
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weak responses to genuine edges unless they are very sharp. However, since in our case, 

we are interested in detecting only the dominant sharp edges in BLK, we select the 

Roberts operator as the gradient estimator. As will be seen from simulation results in 

Section 4.4, Roberts operator accomplishes this task very well. Through the use of the 

Roberts operator, the angular direction and magnitude the gradient of a pixel at (/, j) in 

the block BLK are determined. For each pixel at(/, j), we first obtain 

gx=L(i,j)-L(i + l,j + l) (4.16) 

gy=L(i,j + l)-L(i + l,j) (4.17) 

The magnitude G(i,j) and the angular direction 6(i,j) of the gradient at (i,j) are given 

by 

G(i,j) = Jg2
x+g2

y (4.18) 

and 

0(i,j) = tan-](gy/gx) (4.19) 

To reduce the computational effort, the gradient magnitude is approximated as the sum of 

the absolute values of gx and gy [65], that is 

G(<"j)=kvl+kl (4-20> 

To carry out the directional classification of the pixels, we use an approach similar to that 

in [53]. Consequently, the angular direction is rounded to the nearest multiple of 22.5° by 

C ( ' - i ) = [W, J)'22-5°\ound -22.5° (4.21) 
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Thus, Oromd(i,j) corresponds to one of the 8 orientations that are equally spaced 

from 0°to 157.5°, and denoted as if/r (r = 0,1,..., 7) 

y/.=r-22.5°(r = 0,1,..., 7) (4.22) 

In order to detect the dominant edge that may exist in the block, we compare G(i, j) to a 

threshold Th, which is locally adapted for a low resolution image L(i,j) [65], 

Th = p-mG O > 0 ) (4.23) 

where mG is the arithmetic mean of the gradient values of all the pixels in L(i,j). If the 

amplitude of the gradient of a pixel is greater than Th, we designate it to be an edge 

pixel. Each edge pixel is then taken into consideration in order to find the dominant edge 

orientation in BLK . Eight registers, RQ through R7 , are associated for the different 

orientations defined in (4.22). If 9mmd (/, j) = y/r , we increment the value of 

Rr (r = 0,1,..., 7) by G(i, j). After all of the edge pixels in the block BLK are taken into 

consideration in this counting process, the register with the largest value, RMax, leads to 

an edge orientation y/D , which usually represents the orientation for the dominant edge. 

However, it is possible that more than one edge orientation is detected in BLK, and the 

values of the corresponding registers are quite comparable. This suggests 

that BLK contains more than one discernible edge, and an interpolation method along 

only a given orientation is not desired. In view of this, the following criterion is 

employed. 

For any Rr * Rmm , if Rr > w • i?max ( w is set to 0.2), then the gradient estimator 

determines that BLK has no dominant edge and therefore, no further action is needed. 
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Otherwise, y/D is considered as the orientation for a dominant edge. Then, the edge-

directed interpolation should be carried out for the unknown pixels in BLK" along y/D. 

If y/D - 0° or y/D = 90° , the interpolation for an unknown pixel in BLK11 is 

carried out in the vertical or horizontal direction, respectively. Based on (4.9), the 

optimal value for an unknown pixel is given by 

H{m,n) = 2-Cv{m,n), i//D=0° 

H(m,n) = 2-CH (m,n), y/D = 90° 

Let us now consider the case when y/D is neither 0° nor 90°. Let the coordinates 

of an unknown pixel A be(m,n) in the original coordinate system (marked as dotted 

lines in Fig. 4.5), and (m',n') in the new coordinate system, which is obtained by rotating 

Figure 4.5: An unknown pixel A in the two coordinate system. 

counter-clockwise the original coordinate system by y/D . An immediate neighbor of 

pixel A in the new coordinate system can be denoted as (m' + l,ri + q), 

(/ = - 1 , 0,1; q = - 1 , 0,1; / * q). Its counterpart in the original coordinate system can be 

obtained from the following equation: 
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fm' + r\ (m\ (I -ffYAx^ 

Kn +qj 
+ 

\nJ 

I - q 

\<1 l J \^yj 
(4.25) 

where 

Ax = arg min{[h • tan(iyD) \omd > o} /z an integer (4.26) 

Aj; = [ A x - t a n ( ^ ) L , (4.27) 

Therefore, the optimal value for an unknown pixel A at (m, n) is derived from (4.10) as 

H(m\ n') = 2 • Cv (m', ri) y/D * 0°, 90° (4.28) 

Equations (4.24) and (4.28) are utilized to obtain the pixel value at the unknown node 

(m,n)eU in an iterative manner, in the same way as (4.12) is used in 

obtainingH(m,n) . The edge-preserving refinement phase is performed in the orientation 

i//D of the detected dominant edge, thus maintaining the smooth variation along that 

direction. When no dominant edge is detected in a BLK , then no edge-preserving 

refinement is performed in the BLK" ; in such a case, the value for each pixel in 

BLK" remains unchanged. As will be shown later in Section 4.4, this process properly 

preserves the dominant edge, thus improving the quality of the up-scaled image. 

4.4 Simulation Results 

To test the performance of edge-preserving iterative refinement interpolation (EPIR) 

scheme developed in Section 4.3 for image up-scaling, we select four interpolation 

methods for comparison. Three of these, namely, the nearest-neighbor, bilinear and 
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bicubic are conventional interpolation methods [l]-[3], and the fourth is the edge-directed 

interpolation method (EDIM) proposed in [18]. Although quite a few edge-directed 

interpolation methods have been proposed, the EDIM method is considered as one of the 

best schemes for up-scaling images with fine textures and edges. Four natural test 

images of size 512x512, Lena, Airplane, Sailboat, and Baboon, are used as the test 

images. In this experiment, we model the low resolution image as a down-scaled version 

of an original test image, by a factor of u .The four interpolation methods chosen for 

comparison, along with the proposed EPIR scheme, are used to up-scale the low 

resolution image by the magnification factor u. We recall that our proposed scheme 

consists of applying the FEM-based iterative refinement interpolation to obtain the up-

scaled image H(m,n), followed by the edge-preserving refinement process. A block size 

of Sux&u is chosen as the interpolation block size for the FEM-based iterative 

refinement, and the edge preserving refinement phase is carried out with a block size of 

5ux5u. The threshold value Th given by (4.23) is chosen to be 2mG in the detection of 

an edge pixel. 

We use PSNR as a metric to evaluate the objective quality of the up-scaled 

images obtained by using the five interpolation methods mentioned above. The PSNR 

values obtained for the four different test images for a magnification factor of two are 

presented in Table 4.1. It is seen from this table that for all the test images, the EDIM 

yields better results than the three conventional interpolation methods do; however, the 

proposed EPIR scheme provides the best performance. 

In order to bring out further the advantage of the proposed scheme, a visual 

comparison is made to evaluate the quality of the up-scaled images. Results using the 
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various interpolation schemes on the test images Lena, Airplane, Sailboat, and Baboon 

are presented in Figs. 4.6-4.9, respectively, wherein we present only certain portions of 

the interpolated frames that contain sharp edges and fine textures. This is done so in order 

to highlight the difference in the quality amongst the interpolated frames for each of the 

test images. 

Table 4.1: PSNR (dB) results of the up-scaled images using various schemes 

Test image 

Lena 

Airplane (F-16) 

Sailboat 

Baboon 

Nearest 

27.92 

25.77 

23.69 

20.16 

Bilinear 

29.48 

27.41 

25.16 

21.54 

Bi-cubic 

32.66 

27.42 

25.34 

22.80 

EDIM 

33.56 

27.53 

25.64 

23.29 

Proposed 

34.48 

27.80 

26.04 

23.76 

It is seen from Fig. 4.6(b) that the nearest-neighbor interpolation method exhibits 

discernible pixelization artifacts. Bilinear interpolation (see Fig. 4.6(c)) presents smooth 

results, but the up-scaled image appears blurred in areas where there should have been 

fine texture and strong edges, such as in the face area and the rim of the hat. Bicubic 

interpolation (Fig. 4.6(d)) produces sharper results in these areas compared to the bilinear 

method, but with increased jaggy effects along the rim of the hat. As seen from Fig. 

4.6(e), the EDIM produces a visually pleasant result with fine texture and edges properly 

reconstructed. However, some small fleck-like interpolation artifacts along the hat rim 

can be observed. Our proposed scheme produces visually pleasant results without 
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Figure 4.7: Visual comparison of different interpolation schemes on test image 
Airplane, (a) Portion of original image, portions of interpolated image by the (b) 
nearest interpolation, (c) bilinear interpolation, (d) bicubic interpolation, (e) EDIM, and 
(f) our proposed EPIR scheme 
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(a) Kb) 

(c) (d) 

(e) (f) 

Figure 4.8: Visual comparison of different interpolation schemes on test image 
Sailboat, (a) Portion of original image, portions of interpolated image by the (b) 
nearest interpolation, (c) bilinear interpolation, (d) bicubic interpolation, (e) EDIM, and 
(f) our proposed EPIR scheme 
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( a )_ " (b)_ 

(e) "" " (f) " 
Figure 4.9: Visual comparison of different interpolation schemes on test image 
Baboon, (a) Portion of original image, portions of interpolated image by the (b) 
nearest interpolation, (c) bilinear interpolation, (d) bicubic interpolation, (e) EDIM, and 
(f) our proposed EPIR scheme 67 



displaying any artifacts such as pixelization, blurred effects, jaggy edges, and also 

presents fine texture and edge details in the up-scaled image, as seen from Fig. 4.6(f). 

Similar results can be observed from Figs. 4.7-4.9 for the other test sequences, 

Airplane, Sailboat, and Baboon, respectively. As expected, the nearest-neighbor 

interpolation method generates pixelization effects, and bilinear interpolation method 

tends to blur the up-scaled images although the images look smooth. Bicubic 

interpolation provides jaggy effects along the edges. The EDIM method presents visually 

pleasant images, but it can be noticed that some small artifacts are present along the 

edges. In contrast, our scheme presents sharper edges and finer textures. This is due to the 

fact that, in order to interpolate an unknown pixel, our interpolation scheme not only 

exploits neighboring known pixels, but also takes into account the neighboring unknown 

pixels through an iterative refinement technique. This provides a spatial continuity 

between the unknown pixels as well, and therefore helps to reconstruct more natural 

results in areas with fine textures. In the presence of a strong dominant edge in a sub-

image block to be interpolated, the edge-preserving iterative refinement process is 

performed along the detected dominant edge, and thus the smooth variation along that 

direction is maintained. 

As for the computational complexity, the proposed EPIR scheme requires very 

much less basic operations than the EDIM does. Table 4.2 shows the total number of 

basic operations needed by using these two schemes to interpolate the various test images 

with u = 2 . 
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Table 4.2: Computational complexity (in number of basic operations) comparison 
between EDIM and the proposed EPIR (u = 2) 

Methods 

EDIM 

Proposed 

Lena 

35,586,048 

5,714,739 

Airplane (F-16) 

34,904,474 

5,400,166 

Sailboat 

28,770,304 

5,223,219 

Baboon 

55,625,408 

6,225,920 

Another advantage of our scheme is reflected by its easy implementation. Since in 

the existing interpolation schemes, the unknown pixels are interpolated based only on the 

estimation made on the known pixels, these schemes require more than one step to 

complete the interpolation process even when u = 2 . Obviously, the number of steps 

increases with the increasing value of the magnification factor u. Moreover, some of the 

proposed schemes have been formulated only when the magnification factor u is two 

[18], [21]; hence, such a scheme needs to be applied ntimes to up-scale an image by a 

magnification factor of u = 2" (n>\ and an integer). Further, when the magnification 

factor u is not an integer power of 2 (for example, u= 3 or 6), neither [18] nor [21] can 

be employed directly. To deal with such a case, the authors in [21 ] have suggested the use 

of a bilinear or bicubic interpolation method as an additional step for interpolation after 

up-scaling by a factor of 2" using their method. For example, in order to up-scale an 

image by a magnification factor u = 3 , the authors first apply their method for u - 2 , and 

then use bicubic interpolation method to scale the image by a factor of 1.5 to achieve an 

overall magnification factor of u = 3 . Even though the authors in [18] have not suggested 

a method as to how to deal when u is not a power of two, one could adapt here also, the 
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procedure suggested in [21], namely the use of bilinear or bicubic method as an 

additional step. Obviously, in such a case the advantages associated with the schemes in 

[18] and [21] cannot be fully realized. In contrast, in our scheme, the algorithm needs to 

be applied only once to interpolate all the unknown pixels in the up-scaled image, 

irrespective of the value of the magnification factor u. 

In order to compare the performance of the proposed EPIR scheme with that of 

the existing schemes for a magnification factor u that is not a power of two, we choose u 

to be three and the EDIM scheme of [18] along with the bicubic method suggested in 

[21]. The EDIM scheme has been chosen, since it has the best performance amongst all 

the existing methods. For this purpose, four natural images (512 x512 pixels), Lena, 

Airplane, Sailboat, and Baboon, are used as the test images. The four test images are first 

cropped to the resolution of 510 x 510, and then down-sampled to 170 x 170 low 

resolution images. The EDIM scheme combined with the bicubic method 

(EDIM+bicubic) and the proposed EPIR scheme are implemented to obtain the 510 x 510 

high resolution images. The PSNR is used as the metric to evaluate the objective quality 

of the up-scaled images. The PSNR values obtained for the four test images for a 

magnification factor of three are presented in Table 4.3. From this table, it is seen that the 

proposed EPIR scheme outperforms the EDIM+bicubic scheme. 

A visual comparison is also made to evaluate the subjective quality of the up-

scaled images, and the results presented in Figs. 4.10 - 4.13. It can be seen that the 

EDIM+bicubic and EPIR schemes produce images of about the same visual quality. The 

EDIM+bicubic scheme reveals some small fleck-like interpolation artifacts along the 
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edges, even though it appears to produce sharper edges. The proposed EPIR scheme 

produces visually pleasant results without displaying any such artifacts. 

Table 4.3: PSNR (dB) results of the up-scaled images by a factor of three using the 
EDIM+bicubic and proposed EPIR schemes 

Test image 

Lena 

Airplane (F-16) 

Sailboat 

Baboon 

EDIM+bicubic scheme 

30.82 

25.10 

23.33 

20.54 

Proposed EPIR scheme 

31.38 

25.28 

23.96 

20.76 

(a) (b) 

Figure 4.10: Portions of test Image Lena up-scaled by w = 3 using (a) the 
EDIM+bicubic scheme, (b) our proposed EPIR scheme 
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(a) 

Figure 4.11: 
EDII 

Portions of test Image Airplane up-scaled by u - 3 using (a) the 

sciieime, (b) our proposed tjriK. scfteme 

Figure 4.12 
EDII 

(a) (b) 

Portions of test Image Sailboat up-scaled by u - 3 using (a) the 

scrieme, (D our 
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(a) (b) 

Figure 4.13: Portions of test Image Baboon up-scaled by w = 3 using (a) the 
EDIM+bicubic scheme, (b) our proposed EPIR scheme 

A comparison of computational complexity of these two methods is also made, 

and the results presented in Table 4.4, which shows the total number of basic operations 

needed to interpolate the various test images with u = 3 .It can be seen that the proposed 

EPIR scheme requires very much less basic operations than the EDIM+bicubic does. 

Table 4.4: Computational complexity (in number of basic operations) of the 
EDIM+bicubic and proposed EPIR schemes for w=3 

Methods 

EDIM+bicubic scheme 

Proposed EPIR scheme 

Lena 

16,559,700 

6,334,880 

Airplane (F-16) 

15,681,140 

5,964,960 

Sailboat 

12,976,100 

5,756,880 

Baboon 

22,744,300 

6,936,000 
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4.5 Summary 

In this chapter, a novel edge-preserving iterative refinement scheme, has been developed 

for image up-scaling using the generalized image interpolation model developed in 

Chapter 3. The interpolation scheme is not restricted to the neighboring pixels with 

known values; it also takes into account the neighboring pixels with unknown values 

through an iterative refinement technique, in order to provide a spatial continuity between 

the unknown pixels as well. Therefore, the proposed method is capable of reconstructing 

natural-looking images in areas with fine textures. The edge-preserving iterative 

refinement process provides a smooth variation along a dominant edge in the up-scaled 

image. Simulation results have shown that the proposed method results in up-scaled 

images with better subjective and objective qualities than that provided by the existing 

interpolation schemes, including the EDIM [18], which has been considered as one of the 

best methods in its category. Compared to the EDIM, the proposed method has a much 

lower computational complexity. Also, it is very general in that it is not only capable of 

up-scaling an image by an arbitrary magnification factor u that is not restricted to be an 

integer power of 2, but also needs to be applied only once irrespective of the integer 

value of the magnification factor. In contrast, the existing methods all require multiple 

steps, to be run several times, and may need the use of conventional interpolation 

methods (such as bicubic or bilinear interpolation) when the magnification factor is not 

an integer power of 2. 

74 



Chapter 5 

Error Concealment-based MCI for 

Temporal Resolution Enhancement of 

Encoded Video Sequences 

5.1 Introduction 

As discussed in Chapter 2, our research study in the temporal resolution enhancement of 

encoded video sequences is focused on block-based MCI schemes. We recall that the task 

of block-based MCI is to interpolate FRMt_a for time t-a, based on the successive 

reconstructed frames FRM,^ and FRM',, at time t — \ and t, respectively. As defined 

in Section 2.2, p denote the position vector of a pixel at point P in a frame, Ft(p) 

represent the pixel intensity at P inside the frame FRM\, and V. refer to the transmitted 

motion vector of a block Bt in the frame FRM\ . Since Vi is assigned to any pixel 

at/7 e Bi the motion vector between FRMt and FRMt_a is equal to V". For a pixel at 

P e Bl in FRM,, the corresponding pixel in FRMt__a is at Pa. Then, the pixel value at Pa 

in FRMt_a is given by Ft_a(pa), which is equal to F,(p). As explained in Section 2.2.1, 
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this motion compensation process can cause the occurrence of overlapped and unfilled 

pixels, due to the mechanism used for the block-based motion estimation and motion 

compensation. These overlapped and unfilled pixels comprise the interpolation errors in 

the interpolated frames. If these interpolation errors are not concealed properly, the 

interpolated frame will display annoying stripe effects, leading to an unsatisfactory 

subjective quality. In this chapter, we develop an error concealment-based MCI scheme 

to conceal the interpolation errors left by the motion compensation process [47], [48], 

[50]. 

5.2 Error Concealment-Based MCI Schemes 

Unlike the existing block-based MCI schemes, which involve computationally expensive 

pixel classification to deal with the interpolation errors, our scheme is based on an error 

concealment technique. In order to develop a proper scheme to conceal the interpolation 

errors, we first make a study of the number of such errors that could occur in an 

interpolated frame. Eight original 30 frames/s test sequences are sub-sampled to 15 

frames/s, by skipping every other frame in a number of different sequences including 

Foreman, Suzie, Miss America, Mother & Daughter, Stefan, Coast Guard, Container, 

and News. All the skipped frames are interpolated by motion compensation, which makes 

use of the sub-sampled test sequences and the motion vector field generated through the 

full search block matching algorithm applied to the sequences at 15 frames/s. The 

average number of interpolation errors in an interpolation frame for each of the sequences 

is calculated and presented in Table 5.1. Similar study is carried out using 10 frames/s 
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test sequences (i.e., 2 out of 3 original frames are skipped), and the result is given in 

Table 5.2. 

Table 5.1: Average number of interpolation errors in an interpolated frame for various 
original test sequences (15 frames/s) 

Sequences (15 frames/s) 

Mother&Daughter 

Miss America 

Suzie 

Foreman 

Container 

News 

Coast Guard 

Stefan 

Format 

QCIF 

QCIF 

QCIF 

QCIF 

CIF 

CIF 

CIF 

CIF 

Image 
size 

25344 

25344 

25344 

25344 

101376 

101376 

101376 

101376 

Number of 
interpolation errors 

232 

252 

1041 

1063 

312 

992 

4118 

6388 

Percentage of 
interpolation 

errors (%) 

0.92% 

0.99% 

4.11% 

4.19% 

0.31% 

0.98% 

4.06% 

6.30% 

Table 5.2: Average number of interpolation errors in an interpolated frame for various 
original test sequences (10 frames/s) 

Sequences (10 frames/s) 

Mother&Daughter 

Miss America 

Suzie 

Foreman 

Container 

News 

Coast Guard 

Stefan 

Format 

QCIF 

QCIF 

QCIF 

QCIF 

CIF 

CIF 

CIF 

CIF 

Image 
size 

25344 

25344 

25344 

25344 

101376 

101376 

101376 

101376 

Number of 
interpolation errors 

243 

264 

1091 

1114 

400 

1120 

5233 

8053 

Percentage of 
interpolation 

errors (%) 

0.96% 

1.04% 

4.30% 

4.40% 

0.39% 

1.10% 

5.16% 

7.94% 
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It can be seen from these tables that the average number of interpolation errors is 

related to how fast the motion is in a certain sequence. We find that the total number of 

pixels caused by interpolation errors is, on the average, only less than 5% of the total 

image size even for a relatively fast test sequence like Foreman. Even for Stefan 

sequence, which has a very high motion, the interpolation errors are less than 8% of the 

total image size. This enables us to apply a suitable interpolation technique to conceal 

these errors. 

Consider a sub-image of an original frame of the sequence Foreman and its 3-D 

surface plot, as shown in Fig. 5.1 (a). In the compensated frame, we locate the positions 

of the overlapped pixels and the unfilled holes, and assign a zero value to these pixels. 

Fig. 5.1(b) shows the sub-image in the compensated frame with the unknown pixels, and 

its 3D surface plot. We shall refer, hereafter, to such overlapped pixels and unfilled holes 

as the unknown pixels. The remaining pixels are referred to as known pixels. From the 

3D surface plot of the sub-image shown in Fig. 5.1(b), it is seen that the surface of the 

compensated frame is not continuous due to the presence of the unknown pixels. Our 

goal is to find a suitable function that can assign a value to each of the unknown pixels, 

such that the 3D surface plot of the sub-image of the interpolated frame has a continuous 

surface similar to that shown in Fig. 5.1(a). Once such a value is assigned to an unknown 

pixel, the resulting pixel will be referred to as a restored pixel and the corresponding 

assigned pixel value as the restored pixel value. Since in typical video images, the 

luminance value does not change abruptly, we can conceal the interpolation errors so that 

the following requirements are satisfied: (a) the restored pixels are smoothly connected 
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with the adjacent pixels, (b) the dominant edges are preserved as much as possible, and 

(c) the values of the known pixels are retained. 

(a) 

(b) 

Figure 5.1: (a) A sub-image of an original frame of the sequence Foreman 
and its 3D surface plot, (b) The corresponding sub-image in the compensated 
frame, with the interpolation errors, and its 3D surface plot 

The proposed interpolation error concealment MCI scheme is shown in Fig. 5.2. It 

consists of a module selector, a generic iterative refinement (GIR) module and an edge-

reuniting iterative refinement (ERIR) module. The module selector is utilized to 

determine as to which specific interpolation module, GIR or ERIR, is to be used for the 

concealment of the interpolation errors. If there is no dominant edge detected, then the 

GIR module, which is capable of presenting a rather smooth reconstruction in the 
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homogeneous area, is employed. If there is a dominant sharp edge detected in the image, 

then the ERIR module is utilized for the error concealment in the direction of the detected 

edge. 

Image with 
interpolation errors 

Generic Iterative 
Refinement Module 

Module selector 
Edge-Reuniting 

Iterative Refinement Module 

Reconstructed image 
• 

Figure 5.2: Proposed interpolation error concealment scheme for MCI. 

5.2.1 Module selector 

The main task of the module selector is to choose the appropriate interpolation method 

according to the result of the gradient estimator. We apply a gradient estimator to the 

FRMl_a. Thus, for an image block BLKk (BLKk &FRMt_a) that has unknown pixels 

inside, we can determine if there is a dominant sharp edge with a certain orientation. 

Either GIR or ERIR is selected based on the results. If BLKk does possess a dominant 

sharp edge, the ERIR is employed to conceal the interpolation errors; otherwise, GIR is 

utilized for the processing. 

In Section 4.3, we used the Roberts operator as the gradient estimator and 

presented a voting mechanism in order to determine if there exists a dominant edge in an 

image block. We now apply the same techniques to the module selector, so as to detect 

the dominant sharp edge in BLKk. With the help of the Roberts operator, the angular 

direction and magnitude of the gradient of a known pixel at (/, j) in the block BLKk of 

the frame FRMl_a are determined. For each known pixel at(/, j), we first obtain 
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gx =Ft_a(i,j)-F,_a(i + lJ + l) (5.1) 

gy=Fl_a(i,j + \)-Fl_a(i + \,j) (5.2) 

Then, the magnitude G(i,j) and the angular direction 0(i,j) of the gradient at (i,j) can 

be calculated by using (4.19) and (4.20). After carrying out the directional classification 

of known pixels, and performing the voting process for each angular direction, we obtain 

the y/D, which is associated with RMax. This register RMax has the largest value as the 

result of the counting process, which increments a certain register Rr by G(i,j) for each 

of the known pixels. Most of the time, y/ D represents the orientation for the dominant 

edge. However, in the case when there are several edge orientations detected in BLKk, 

and the register associated with an orientation has a value quite comparable to another 

register, it just reflects the fact that BLKk contains more than one discernible edge. Thus, 

if the interpolation is performed along only a given orientation, this may lead to 

undesirable results. The module selector determines as to which module to switch to, 

based on the following criterion, similar to that defined in Section 4.3. 

If for any Rr ^ Rmax, and Rr < 0.2 • Rmm , then y/ D is considered as the orientation 

for a dominant edge, and ERIR is carried out along y/D. Otherwise, the module selector 

determines that BLKk has no dominant edge and the GIR module is employed to conceal 

the interpolation errors. 

5.2.2 Generic iterative refinement 

The generic iterative refinement (GIR) module is based on the image interpolation model 

derived in Chapter 3. This module aims at concealing the interpolation errors in 
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homogeneous areas, so that the interpolated pixels are smoothly connected with the 

adjacent pixels. In order to interpolate the unknown pixels in FRMt_a, we construct a 

continuous function Ft
c_a (x,y) , the domain A of this function being a given frame. 

Therefore, for frame of size (W xH) pixels, A is 

A = [0,W-\]x[0,H-\] (5.3) 

where W and H denote the width and height of the video frame. As presented in Section 

3.2.1, we employ triangular segmentation and partition A into TJ (rj e Z) non-overlapping 

triangular elements ev (v = I, ••-,?]), the nodes of which correspond to the pixel locations 

in the frame, as shown in Fig. 5.3(a). These elements are then classified into two types of 

local triangular elements, the first, second, and third nodes of which are ordered 

counterclockwise (see Figs. 5.3(b) and 5.3(c)). Tis the set containing all the nodes in A . 

That is, r c A , 

r = ( 0 , l , . . . , r - l ) x ( 0 , l , . . . , / / - l ) (5.4) 

After the triangular segmentation of the frame FRMt_a, the nodes corresponding to the 

known pixels are referred to as the known nodes, whereas the remaining nodes as 

unknown nodes. Let K (K c T) denote the set of known nodes and U [U c I j the set of 

unknown nodes, U U K = Tand U f] K = 0 . Under the condition 

F,c_a(x,y) - Ft_a{x,y), (x, y)eK (5.5) 

let us express F,°_a(x,y) through the use of the triangular element, so that the function is 

characterized by the element's nodes 
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(a) 

Figure 5.3: (a) The triangular elements partitioned in the domain A of F,c_a(x,y) . 

Shaded area is the restored luminance function in the element ev. (b) Type I 

local triangular element, (c) Type II local triangular element. 

Ka(.x,y) = fe'(x,y) (x,y)eev (5.6) 

where 

/''(*,y) = Ul f2 A) 
K33(x,y) 

(5.7) 

P' (x,y) is a continuous function in ev, as shown in the shaded area of Fig. 5.3(a), with 

f> = F<-a(x„y,% <,x„yi) e T, (/ = 1,2,3) (5.8) 

(*,•,#) being the location of the//Anode in ev. The shape functions are given by 
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%(x,y) 
2s 

1 X 

1 x2 

1 x3 

y 

yt 

yi 

(5.9) 

$2(
x>y) = 2s 

1 x, yx 

\ x y 

1 ^ 3 

(5.10) 

2s 

1 x, 

1 x2 

1 X 

y2 

y 

(5.11) 

with 5 denoting the area of the element ev. To restore the unknown nodes in FRMl_a, 

F/
C_a(x,y) should satisfy the requirements set earlier regarding the smooth fit of a restored 

pixel; hence, we apply the optimization constraint that the surface represented by the 

constructed Ff_a (x, y) has the smallest area. Then, we can find suitable values for the 

unknown nodes so as to minimize the function 

Ih 1 + dF;:a(x,y) 
dx + 

dF;ia(x,y) 

dy 
dxdy (5.12) 

By substituting (5.6) into (5.12), the above process is equivalent to finding a set 

containing Ft
c_a(i,j) at each node (/', j) eU, which minimizes the function 

v=\ £•„ 

-£•,./„ . . \ V {•zsE.-t-- - A V dT-(x,y) 
dx 

+ 
df'^y) 

dy 
dxdy (5.13) 

It is noted that (5.13) has the same form as (3.6), and by using the FEM-based image 

interpolation model developed in Section 3.2, it can be shown that the optimal value of an 

unknown node at (/,_/) e U satisfies the following: 
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FUiJ) = Mi,J) + W,J) (5.14) 

with 

and 

Mhj) = 

-F,c_a(i + l,j) ifi = 0 

!/£,(/-1,/) ifi = H-\ 

^[F,c_a(i-\,j) + F?_a{i + \,j)] ifi*OorH-\ 

PH(iJ) = 

;F,c_a(i,j + l) ifj = 0 

l-F;:a(i,j-l) ifj = W-\ 

[F^iiJ + V + F^liJ-l)] ifj*OorW-l 

It can be seen that (5.14) has the same form as (3.34). Therefore, in order to obtain the 

optimal value for an unknown node (/, j)e.U, a set of linear equations needs to be 

solved. In view of the number of equations being very large, we employ the iterative 

refinement procedure, by using the following equations, which are similar to (3.35). 

F^it+,\Uj) = fik\i,j) + /%\i,j), ( *>0 ) (5.15) 

with 

WVJ)- -F,_a ( i - l , 7 ) 

4L F;Jt+l\i-lJ) + F;_e
{k\i + l,j)\ifi*OorH-l 

and 
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PZ\uj) = \Ka{M\iJ-*) ifj = W-\ 

-[F,-a (hJ~l) + Ft_a 0,7 + 1) ifj*0orW-l 

This iterative refinement procedure is carried out in a raster scan order, and applied to the 

(k+\) (k) 

unknown nodes in A . It is noted that if (x, y)eK, then Ft
c_a (x,y) = Ft

c_a (x,y) , and 

hence, the values of the known nodes involved in (5.15) remain unchanged. When the 

given stop criterion is met, we obtain the luminance value of a restored pixel at (/, j)eU. 

When all the unknown nodes in A are assigned such values, we have the interpolated 

frame FRMt_a. In the regions, where interpolation errors have occurred, the restored 

pixels will exhibit a smooth variation without any discontinuity. 

Let us now formulate the procedure for the GIR, which is applied for the 

concealment of interpolation errors in FRM,_a. Let / be a vector, each component of 

which corresponds to the computed value of an unknown pixel (/, j) e U , and 

F,-a (h j) be the initial value of such a pixel. Let s be a pre-specified tolerance. Then, 

the GIR is carried out as follows. 

(1) Initialize / ( 0 ) withF, c J 0 \ i J ) , and set k = 0. 

(2) For each pixel at (/, j)eU, compute Ft
c_a

 + (/, j) using (5.15). 

(3) If MAPD(f(k+n,f(k)) < s, set / = f(k+l\ and stop. 

(4) Otherwise, increment k and go to step 2. 
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In the above, / represents the vector of restored pixel values. The operation of 

MAPD( y ) is restricted to integer accuracy so that we can set the tolerance e = 0. 

Since the algorithm above can be applied to an image of size 

M xN (M > 1, N > 1), we can partition the compensated frame into non-overlapping 

blocks, BLK,, i = l,2,...,Q, Q = (WXH)/(MXN), SO that the computational effort to 

conceal the interpolation errors gets distributed among the various blocks having 

interpolation errors. 

5.2.3 Edge-reuniting iterative refinement 

When the module selector determines that y/D is the orientation for a dominant edge, the 

ERIR should be carried out along y/D. Based on the fact that along an edge direction, the 

pixel values change more slowly than they do across an edge, the pixel continuity should 

be maintained along the edge by ERIR. Under this condition, the GIR can be adapted to 

the ERIR. Given the fact that y/D\s the orientation of the detected sharp dominant edge in 

BLKk, an unknown pixel at (/,_/) should be restored along the detected edge i//D. Let us 

consider the following different cases. 

If yD = 0°, the interpolation for an unknown pixel in BLKk is carried out in the 

vertical direction. Based on (5.14), we have 

F,c-aOJ) = MUj) (5.16) 

If y/ D = 90°, the interpolation is carried out in the horizontal direction, and 

Ka<!>j) = P„{Uj) (5-17) 
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(*'»./)=* (/ ' , /) 

i 1 i 

Figure 5.4: An unknown pixel in the two coordinate systems 

When ^"Dis neither 0° nor 90°, in order to find the immediate neighbor of an 

unknown pixel along y/D or in a direction perpendicular to y/D, we rotate the coordinate 

system in counter-clockwise direction by y/D . Let (/,_/) and (/ ' , /) represent the 

coordinate of an unknown pixel in the original and new coordinate systems, respectively. 

This is shown in Fig. 5.4, where the dotted lines represent the original coordinate system 

and the solid lines the new coordinate system. 

The immediate neighbor of an unknown pixel in the new coordinate system is 

given by (/' + /, f + q) , (/ = - 1 , 0,1; q = - 1 , 0,1; / * q) . Its counterpart in the original 

coordinate system can be obtained from the following equation, which has the same form 

as(4.25) 

(i' + l) 

J' + Qs 

M (I -qY&c^ 

U vA>V 
(5.18) 

where 

Ax = arg min {[h • tsm(if/D) ]rmmJ > o} han integer 

Ay = [Ax-tan(y/0)J \rouml 

(5.19) 

(5.20) 
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Hence, the optimal value for an unknown pixel A at (/, j) is derived from (5.14) as 

F?_a{i,j) = 2pv{i,j) y/D*0°,9(T (5.21) 

The ERIR is performed in the orientation y/D of a detected dominant edge. Equations 

(5.16), (5.17) and (5.21) can be utilized, in an iterative manner, to interpolate an unknown 

node (/, j)&U. This ERIR module is characterized by its capability to maintain a smooth 

variation along the detected direct ion^. As will be shown in Section 5.3, this module 

can properly reunite a broken edge, which is caused by unknown nodes. 

Hereafter, we refer to the MCI scheme, which utilizes all the 3 modules, as the 

ERIR-MCI scheme. In a situation, where the image is quite smooth or the computational 

complexity is of a greater concern than the reconstructed image quality, the module 

selector and ERIR module can be skipped. Then, the resulting scheme is referred to as the 

GIR-MCI scheme. 

5.3 Simulation Results 

In order to evaluate the schemes that have been developed in the previous section, several 

original 30 frames/s test sequences are sub-sampled to 15 frames/s (every other frame in 

the sequence is skipped) and 10 frames/s (2 out of 3 frames are skipped), respectively. 

Two experiments are carried out to test the performance of the proposed schemes. In the 

first experiment, all the skipped frames are interpolated using the sub-sampled test 

sequences and the motion vector field generated through the full search block matching 

algorithm applied to the sequences at 15 frames/s and 10 frames/s respectively. This is to 

study the performance of the proposed interpolation scheme by excluding the effect of 
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the artifacts in the decoded frames. The second experiment involves simulations carried 

out with H.264/AVC reference software JM15.0 [69]. The test sequences are encoded at 

15frames/s and 10 frames/s, respectively, and the proposed schemes implemented in the 

decoder. All the skipped frames are interpolated using the decoded frames and motion 

vector fields available at the decoder. This is to study as to how our scheme performs, 

when used in a video decoder. In this experiment, the parameters, quantization parameter 

(QP)=24, and P-frame/I-frame (P/I) ratio=T0, of the JM15.0 encoder remain unchanged, 

so that the decoded frames have the same quality across all the different schemes. 

In each experiment, the six schemes, FR, SMVF [43], MCI+FR which predicts 

the unfilled pixels with FR [44], and DB-FMCI [38], along with the proposed ERIR-MCI 

scheme, and the proposed GIR-MCI scheme that conceals the interpolation errors by only 

implementing the generic iterative refinement module. It is to be noted that DB-FMCI 

includes pixel classification, moving objects segmentation, and affine transform, and 

hence, should be considered as a sophisticated MCI scheme with a high computational 

complexity. In spite of this, we implement the sophisticated DB-FMCI in the 

experiments, in order to evaluate the proposed schemes with respect to this scheme in 

terms of both the PSNR and visual performance. The experiments are carried out on a 

Pentium Celeron 2.4 GHz PC, using eight standard video sequences: frames 90 to 180 of 

Foreman (QCIF), frames 20 to 110 of Suzie (QCIF), frames 20 to 110 of Miss America 

(QCIF), frames 40 to 130 of Mother & Daughter (QCIF), frames 1 to 90 of Stefan (CIF), 

frames 20 to 110 of Coast Guard {CIV), frames 10 to 100 of Container (CIF), and frames 

30tol20ofiVews(CIF). 
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In the ERIR-MCI or GIR-MCI method, the predicted frame is partitioned into 

blocks for the purpose of distributing the computational load among several blocks. To 

examine the performance resulting from different block sizes, we divide a QCIF frame 

(176x144 pixels) into non-overlapping image blocks of sizes 8x8 pixels, 16><16 pixels, 

and 48x44 pixels, respectively. Under the same conditions (initialized with zero, 

interpolated with original frames), simulation results reveal that a larger block size leads 

to better performance in terms of both the subjective and objective qualities; however, the 

number of basic operations (including those of addition, multiplication, and absolute 

difference) increases. Results of the GIR-MCI method implemented with the Foreman 

test sequence are shown in Table 5.3. A block size of 16x16 is chosen for the proposed 

schemes, since it coincides with the macro-block size employed in most conventional 

coding schemes of the video coding standards. At the same time, better objective and 

subjective performances are achieved when the block size used is 16x16 rather than a 

block size of 8x8. The initialization value Ft
c_a {i,j) has an influence on the speed of 

convergence. We choose for Ft
c_a (/', j) three different values, namely, 0, the minimum 

luminance value and the mean luminance value of the known pixels in the image block. 

Again, the GIR-MCI method is implemented with the Foreman test sequence to select the 

best initialization value, and the results are given in Table 5.4. The table shows that an 

initialization with the mean value of the known pixels results in the fastest convergence, 

leading to the smallest number of basic operations. Simulation results show that with 

such an initialization value, the average number of iterations needed to reach a stable 

value depends on the sequence under consideration. For example, for fast sequences such 

as the Foreman test sequence, about 6 to 7 iterations on average are needed, whereas for 
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sequences without fast motion, such as Miss America or Mother & Daughter, the average 

number of iterations is about three. 

Table 5.3: Computational complexity and PSNR resulting from the use of 
various block sizes with QCIF Foreman sequence (using GIR-MCI 

scheme) 

Block size (M x N pixels) 

Basic operations 

PSNR (dB) 

8x8 

55339 

29.86 

16x16 

64205 

29.98 

48x44 

66935 

30.05 

Table 5.4: Comparison of computational complexity with different 
initialization values with QCIF Foreman sequence, image block size 

16x16 (using GIR-MCI scheme) 

Initialization value 

No. of basic operations 

0 

64205 

Minimum value of 

known pixels 

49878 

Mean value of known 

pixels 

28407 

Table 5.5 and Table 5.6 present the performance results for the various 

schemes in terms of the average PSNR values, for interpolation with the original 

image sequences and JM15.0 H.264 decoded frames at 15 frames/s, whereas Table 5.7 

and Table 5.8 present the corresponding results when implemented with sequences at 

10 frames/s. The average PSNR is obtained over all the interpolated frames. It is 

observed that MCI+FR, ERIR-MCI and GIR-MCI provide a performance that is better 

than that of the simple temporal interpolation technique such as the FR technique. The 

ERIR-MCI and GIR-MCI schemes exhibit a performance comparable to that of MCI + 

FR scheme, and all the three schemes are superior to the SMVF scheme. Not 
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surprisingly, the sophisticated DB-FMCI scheme presents the best PSNR results 

among all the 6 schemes; however, this is achieved at a very high computational cost, 

and this point will be addressed later in this section. 

Table 5.5: Average PSNR values (dB) using various schemes (tested with 
15 frames/s image sequences, original frames) 

Original frames 
(15 frames/s) 

Mother &Daughter 

Miss America 

Suzie 

Foreman 

Container 

News 

Coast Guard 

Stefan 

FR 

39.11 

38.48 

30.18 

28.62 

37.36 

34.84 

23.78 

19.96 

SMVF 

39.01 

37.93 

30.53 

28.63 

37.54 

34.95 

23.87 

20.8 

MCI+FR 

39.12 

39.54 

32.42 

30.02 

38.32 

35.02 

27.28 

22.8 

GIR-MCI 

39.11 

39.53 

32.56 

29.98 

38.3 

35.08 

27.3 

22.95 

ERIR-
MCI 

39.13 

39.52 

32.6 

30.09 

38.31 

35.1 

27.31 

22.97 

DB-FMCI 

40.07 

40.63 

33.61 

30.93 

39.23 

35.94 

27.97 

23.52 

Table 5.6: Average PSNR values (dB) using various schemes (tested with 
15 frames/s image sequences, decoded frames) 

Decoded frames 
(15 frames/s) 

Mother &Daughter 

Miss America 

Suzie 

Foreman 

Container 

News 

Coast Guard 

Stefan 

FR 

38.53 

37.77 

29.51 

27.96 

34.32 

33.7 

23.65 

19.82 

SMVF 

38.42 

37.21 

29.79 

26.43 

34.93 

33.89 

23.79 

20.65 

MCI+FR 

38.54 

38.84 

31.76 

28.96 

35.37 

34.18 

26.72 

22.55 

GIR-MCI 

38.52 

38.85 

31.88 

28.92 

35.33 

34.23 

26.71 

22.63 

ERIR-
MCI 

38.56 

38.83 

31.95 

29.05 

35.35 

34.25 

26.73 

22.66 

DB-FMCI 

39.29 

39.57 

32.53 

29.57 

35.95 

34.8 

27.21 

23.09 
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Table 5.7: Average PSNR values (dB) using various schemes (tested with 
10 frames/s image sequences, original frames) 

Original frames 
(10 frames/s) 

Mother &Daughter 

Miss America 

Suzie 

Foreman 

Container 

News 

Coast Guard 

Stefan 

FR 

37.15 

37.26 

28.97 

27.19 

33.37 

30.14 

20.87 

19.08 

SMVF 

37.45 

37.17 

29.61 

27.77 

34.46 

32.99 

22.59 

20.69 

MCI+FR 

37.56 

39.14 

31.12 

29.72 

37.9 

34.23 

26.59 

21.21 

GIR-MCI 

37.74 

39.13 

31.26 

29.68 

37.87 

34.35 

26.96 

21.6 

ERIR-
MCI 

37.76 

39.12 

31.3 

29.79 

37.88 

34.39 

26.98 

21.61 

DB-FMCI 

38.63 

40.22 

32.24 

30.59 

38.79 

35.18 

27.6 

22.11 

Table 5.8: Average PSNR values (dB) using various schemes (tested with 10 frames/s 
image sequences, decoded frames) 

Decoded frames 
(10 frames/s) 

Mother &Daughter 

Miss America 

Suzie 

Foreman 

Container 

News 

Coast Guard 

Stefan 

FR 

36.6 

36.26 

28.33 

26.57 

32.15 

29.92 

20.79 

19.07 

SMVF 

36.88 

36.1 

28.6 

25.37 

33.74 

32.44 

22.52 

20.54 

MCI+FR 

36.99 

38.07 

30.49 

28.39 

35.31 

33.47 

26.05 

20.85 

GIR-MCI 

36.97 

38.08 

30.61 

28.35 

35.28 

33.56 

26.57 

21.37 

ERIR-
MCI 

37.01 

38.06 

30.68 

28.48 

35.3 

33.6 

26.4 

21.38 

DB-FMCI 

37.68 

38.75 

31.2 

28.96 

35.86 

34.14 

26.88 

21.76 
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In order to compare the performance of the proposed schemes from the point of 

view of the visual quality, we consider frames 178, 179 and 180 of the video sequence 

Foreman, in which there is a significant motion in the head and shoulder areas of the 

sequence. To highlight the simulation results, we present the results for the face portion 

of the frame 179 interpolated with the original frames and JM15.0 H.264 decoded frames 

in Fig. 5.5 and Fig. 5.6, respectively. As seen from Fig. 5.5, the FA scheme presents the 

worst results and this is due to its simple averaging strategy. It is observed from Fig. 

5.5(c) and 5.5(d) that the SMVF scheme yields some blurred and block artifacts, whereas 

the MCI + FR scheme reveals unpleasant stripe-like artifacts in the interpolated frame. 

Since these annoying artifacts appear in the ROI, the subjective quality of the interpolated 

image severely deteriorates. In order to show how effective the proposed schemes are in 

concealing the interpolation errors, the face portion of the compensated frame with 

interpolation errors is shown in Fig. 5.5(e). The results are presented in Fig. 5.5(f) and 

Fig. 5.5(g), when GIR-MCI and ERIR-MCI schemes are, respectively, employed. It can 

be observed that both these schemes outperform MCI+FR, SMVF, and FA by providing a 

finer texture in the face portion. In Fig. 5.5 (h), the interpolated frame using 

sophisticated DB-FMCI is presented. It also provides good results in the face portion. 

However, by observing the mouth area in Fig. 5.5 (h), a distortion-like artifact can be 

seen. This is due to the fact that DB-FMCI utilizes the affine transform to reproduce the 

pixel-based motion vector from the block-based motion vector, and this could cause 

shape distortion to some degree. Similar observations can be observed from Fig. 5.6, in 

which, not surprisingly, some decoded artifacts can be noticed. 
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(g) (h) 
Figure 5.5: Original and interpolated frames (face portion only) using various schemes 
corresponding to frame 179 of the Foreman sequence. (Simulated with the original 
frames, 15 frames/s) (a) Original, (b) Interpolated frame using FA. (c) Interpolated frame 
using SMVF. (d) Interpolated frame using MCI+FR. (e) Predicted frame with 
interpolation errors, (f) Interpolated frame using GIR-MCI. (g) Interpolated frame using 
ERIR-MCI. (h) Interpolated frame using DB-FMCI 
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Figure 5.6: Interpolated frames (face portion only) using various schemes corresponding to 
frame 179 of the Foreman sequence. (Implemented with the JM15.0 H.264 decoded frames, 
15 frames/s) (a) Interpolated frame using FA. (b) Interpolated frame using SMVF. (c) 
Interpolated frame using MCI+FR. (d) Predicted frame with interpolation errors, (e) 
Interpolated frame using GIR-MCI. (f) Interpolated frame using ERIR-MCI. (g) 
Interpolated frame using DB-FMCI. 
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A similar comparison is now made with an interpolated frame, namely, frame 22 

from Stefan sequence, which has a very high motion. The results on the center portion of 

the interpolated frame are presented in Fig. 5.7 using the original frames. Similar to what 

was observed in Fig. 5.6, some blurred artifacts can be seen from the SMVF scheme in 

Fig. 5.7(c), and some annoying artifacts near the right shoulder area of the player can be 

observed with the MCI+FR scheme. Fig. 5.7(f) and Fig. 5.7(g) present the results for the 

GIR-MCI and ERIR-MCI schemes, respectively. The visual quality of the interpolated 

frame using the GIR-MCI or ERIR-MCI scheme is much better than that provided by 

MCI+FR and SMVF, and quite comparable to that of the DB-FMCI shown in Fig. 5.7 

(h). By looking at the boundary line of the tennis court in the interpolated frame, it can be 

seen that the ERIR-MCI properly reunites the broken sharp edge caused by the 

interpolation errors, whereas the GIR-MCI shows some blurred effects on the edge. We 

discuss this advantage of the ERIR-MCI scheme over the GIR-MCI scheme in detail in 

the next paragraph. In Fig. 5.8 we present the results for interpolation with JM15.0 H.264 

decoded frames. Again, similar conclusions can be drawn for the different schemes from 

this set of test results as well. 

To better appreciate the advantage of the ERIR-MCI scheme in terms of 

maintaining the pixel continuity along the edges, we present in Fig. 5.9 and Fig. 5.10 the 

results on the background part of the interpolated frame 179 of Foreman. Fig. 5.9 shows 

the results obtained when the various schemes are implemented with the original frames, 

whereas Fig. 5.10 presents the results when implemented in the JM15.0 H.264 decoder. 

Both results are obtained with 15 frames/s image sequences. The interpolated frame using 

FA is shown in Fig. 5.9 (b), wherein the blurred effect in the edge area of the background 
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is observed. Some stripe effects may be seen in the edge area in the case of the SMVF 

scheme, as shown in Fig. 5.9(c). The MCI+FR scheme yields a relatively pleasant result 

as seen from Fig. 5.9(d), which is due to the fact that (i) it uses FR to deal with the 

unfilled pixels, and (ii) the similarity in the background part between two consecutive 

frames in the test sequence provides relatively accurate pixel values for the unfilled 

pixels. However, as mentioned above, it results in unpleasant stripe-like artifacts in the 

face portion. Fig. 5.9(e) presents the background part of the compensated frame with 

interpolation errors, and Fig. 5.9(f) the result obtained by the GIR-MCI scheme. We 

observe some blurred effects on the sharp edges with interpolation errors. In contrast, the 

ERIR-MCI scheme reunites the broken edges properly without causing any blurs, as seen 

from Fig. 5.9(g). This is achieved with the help of the module selector, which detects the 

dominant sharp edges in the interpolated frame, and switches to the ERIR mode, when 

necessary (see Fig. 5.2). From Fig. 5.10(f), it can be seen that ERIR-MCI works well 

when implemented in a H.264 decoder. It reunites the edges much better than the SMVF 

(Fig. 5.10(b)) or GIR-MCI (Fig. 5.10(e)) does. 

The various schemes are also applied to the 10 frames/s original image sequences 

and H.264/AVC decoded image sequences respectively. Fig. 5.11 presents the simulation 

results on the face portion of the interpolated frame 179, using original image frames, 

whereas Fig. 5.12 presents the results obtained using H.264/AVC decoded frames. Fig. 

5.13 presents the background part of the interpolated frame, using original frames, 

whereas the results obtained from the decoded frames are shown in Fig. 5.14. A visual 

comparison is also made with an interpolated frame, frame 21 from Stefan sequence 

through the use of 10 frames/s original image sequences and H.264/AVC decoded image 
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(g) . ( h ) . 
Figure 5.7: Original and interpolated frames (center portion) using various schemes 
corresponding to frame 22 of the CIF Stefan sequence. (Simulated with the original 
frames, 15 frames/s) (a) Original, (b) Interpolated frame using FA. (c) Interpolated frame 
using SMVF. (d) Interpolated frame using MCI+FR. (e) Predicted frame with 
interpolation errors, (f) Interpolated frame using GIR-MCI. (g) Interpolated frame using 
ERIR-MCI. (h) Interpolated frame using DB-FMCI. 
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(g) 
Figure 5.8: Interpolated frames (center portion) using various schemes 
corresponding to frame 22 of the CIF Stefan sequence. (Implemented with the 
JM15.0 H.264 decoded frames, 15 frames/s) (a) Interpolated frame using FA. (b) 
Interpolated frame using SMVF. (c) Interpolated frame using MCI+FR. (d) 
Predicted frame with interpolation errors, (e) Interpolated frame using GIR-MCI. (f) 
Interpolated frame using ERIR-MCI. (g) Interpolated frame using DB-FMCI. 
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(a) (b) 

(c) (d) 

(f) 

(g) (h) 

Figure 5.9: Original and interpolated frames (background part only) using various 
schemes corresponding to frame 179 of the Foreman sequence. (Simulated with the 
original frames, 15 frames/s) (a) Original frame, (b) Interpolated frame using FA. (c) 
Interpolated frame using SMVF. (d) Interpolated frame using MCI+FR. (e) Predicted 
frame with interpolation errors, (f) Interpolated frame using GIR-MCI. (g) Interpolated 
frame using ERIR-MCI. (h) Interpolated frame using DB-FMCI 
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it 
(a) (b) 

(c) 

(e) 
(f) 

(g) 
Figure 5.10: Interpolated frames (background part only) using various schemes 
corresponding to frame 179 of the Foreman sequence. (Implemented with the 
JM15.0 H.264 decoded frames, 15 frames/s) (a) Interpolated frame using FA. (b) 
Interpolated frame using SMVF. (c) Interpolated frame using MCI+FR. (d) 
Predicted frame with interpolation errors, (e) Interpolated frame using GIR-MCI. (f) 
Interpolated frame using ERIR-MCI. (g) Interpolated frame using DB-FMCI 
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(g) 
Figure 5.11: Interpolated frames (face portion only) using various schemes 
corresponding to frame 179 of the Foreman sequence. (Simulated with the original 
frames, 10 frames/s) (a) Interpolated frame using FA. (b) Interpolated frame using 
SMVF. (c) Interpolated frame using MCI+FR. (d) Predicted frame with 
interpolation errors, (e) Interpolated frame using GIR-MCI. (f) Interpolated frame 
using ERIR-MCI. (g) Interpolated frame using DB-FMCI 
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Figure 5.12: Interpolated frames (face portion only) using various schemes 
corresponding to frame 179 of the Foreman sequence. (Implemented in the JM15.0 
H.264 decoder, 10 frames/s) (a) Interpolated frame using FA. (b) Interpolated frame 
using SMVF. (c) Interpolated frame using MCI+FR. (d) Predicted frame with 
interpolation errors, (e) Interpolated frame using GIR-MCI. (f) Interpolated frame 
using ERIR-MCI (g) Interpolated frame using DB-FMCI 
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(g) 

Figure 5.13: Interpolated frames (background part only) using various schemes 
corresponding to frame 179 of the Foreman sequence. (Simulated with the original 
frames, 10 frames/s) (a) Interpolated frame using FA. (b) Interpolated frame using 
SMVF. (c) Interpolated frame using MCI+FR. (d) Predicted frame with 
interpolation errors, (e) Interpolated frame using GIR-MCI. (f) Interpolated frame 
using ERIR-MCI (g) Interpolated frame using DB-FMCI 
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(a) (b) 

(c) 

(e) (f) 

(g) 
Figure 5.14: Interpolated frames (background part only) using various schemes 
corresponding to frame 179 of the Foreman sequence. (Implemented in the JM15.0 
H.264 codec, 10 frames/s) (a) Interpolated frame using FA. (b) Interpolated frame 
using SMVF. (c) Interpolated frame using MCI+FR. (d) Predicted frame with 
interpolation errors, (e) Interpolated frame using GIR-MCI. (f) Interpolated frame 
using ERIR-MCI (g) Interpolated frame using DB-FMCI 



(a) 

(c) 

(g) 
Figure 5.15: Original and interpolated frames (center portion) using various 
schemes corresponding to frame 21 of the CIF Stefan sequence. (Simulated with the 
original frames, lOframes/s) (a) Original, (b) Interpolated frame using FA. (c) 
Interpolated frame using SMVF. (d) Interpolated frame using MCI+FR. (e) 
Predicted frame with interpolation errors, (f) Interpolated frame using GIR-MCI. 
(g) Interpolated frame using ERIR-MCI (h) Interpolated frame using DB-FMCI 
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Figure 5.16: ,n,erpo,a,ed frames ( & , portion) using various sehemes 
corresponding to frame 21 of the CIF Stefan sequence. (Implemented in the JM15.0 
H.264 decoder, 10 frames/s) (a) Interpolated frame using FA. (b) Interpolated frame 
using SMVF. (c) Interpolated frame using MCI+FR. (d) Predicted frame with 
interpolation errors, (e) Interpolated frame using GIR-MCI. (f) Interpolated frame 
using ERIR-MCI (g) Interpolated frame using DB-FMCI 
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sequences respectively. The results on the center portion of the interpolated frame are 

presented in Fig. 5.15 and Fig. 5.16 respectively. As is to be expected, the interpolated 

frames do not look as good as those obtained from the 15 frames/s image sequences 

irrespective of the scheme employed. However, as in the case of the 15 frames/s image 

sequences, the proposed GIR-MCI and ERIR-MCI schemes outperform the other ones 

even in the case of the 10 frames/s image sequences. 

Table 5.9 - Table 5.12 show the average number of basic operations needed for 

each of the schemes implemented in our experiments. The results obtained from both the 

15 frames/s and 10 frames/s image sequences are presented. As mentioned earlier, DB-

FMCI includes some additional steps, resulting in a high computational load in its 

implementation. Thus, the computational load of the sophisticated DB-FMCI is much 

higher than that of SMVF, MCI+FR, and our GIR-MCI and ERIR-MCI. GIR-MCI and 

ERIR-MCI schemes have a complexity that is lower than that of MCI+FR, and higher 

than that of SMVF. On average, the number of basic operations in DB-FMCI is about 75 

times higher than that of SMVF, with an average improvement of 2.43dB in the PSNR 

value, while the number of operations of our method is about only 3 times higher than 

that of SMVF, with an average PSNR improvement of 1.71 dB. Thus, our method is 

more cost-effective. In fact, the proposed schemes have a much lower computational 

complexity than that of any other block-based MCI schemes employing pixel 

classification that introduces the operations required for the detection of scene changes 

for each pixel, as well as the analysis of motion vector fields at the decoder. The ERIR-

MCI scheme provides better subjective and objective qualities than the GIR-MCI does, at 

the price of a higher computational complexity. Due to the low computational complexity 

of the Roberts operator, the computational complexity of the ERIR-MCI scheme is still 
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lower than that of the sophisticated MCI schemes, where a pixel-based motion 

compensation needs to be implemented. The ERIR-MCI and GIR-MCI schemes provide 

a tradeoff between performance and computational complexity, according to the 

requirements of a given application. 

Table 5.9: Average number of basic operations in the interpolated frame using 
various schemes (tested with 15 frames/s sequences, original frames) 

Original frames 
(15 frames/s) 

Mother&Daughter 

Miss America 

Suzie 

Foreman 

Container 

News 

Coast Guard 

Stefan 

SMVF 

1,624 

1,764 

7,287 

7,441 

842 

2,678 

11,119 

17,248 

MCI+FR 

27,432 

27,612 

34,713 

34,911 

102,468 

104,848 

115,789 

123,734 

GIR-MCI 

3,795 

3,000 

28,933 

28,407 

1,854 

5,602 

33,828 

55,630 

ERIR-MCI 

4,492 

3,510 

34,230 

33,511 

1,947 

5,882 

35,519 

58,412 

DB-FMCI 

91,488 

91,728 

101,196 

101,460 

307,872 

316,032 

353,544 

380,784 

Table 5.10: Average number of basic operations in the interpolated frame using 
various schemes (tested with 15 frames/s sequences, decoded frames) 

Decoded frames 
(15 frames/s) 

Mother &Daughter 

Miss America 

Suzie 

Foreman 

Container 

News 

Coast Guard 

Stefan 

SMVF 

1,820 

2,002 

8,568 

8,785 

891 

2,865 

11,829 

20,282 

MCI+FR 

27,684 

27,918 

36,360 

36,639 

102,531 

104,559 

116,710 

127,668 

GIR-MCI 

4,290 

3,461 

37,944 

38,830 

1,965 

5,938 

34,979 

60,770 

ERIR-MCI 

5,096 

4,018 

39,841 

40,255 

2,063 

6,235 

36,728 

63,809 

DB-FMCI 

88,704 

92,136 

103,392 

103,764 

308,088 

316,860 

356,700 

394,272 
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Table 5.11: Average number of basic operations in the interpolated frame using 
various schemes (tested with 10 frames/s sequences, original frames) 

Original frames 
(10 frames/s) 

Mother &Daughter 

Miss America 

Suzie 

Foreman 

Container 

News 

Coast Guard 

Stefan 

SMVF 

1,823 

1,980 

8,183 

8,355 

1,080 

3,024 

14,129 

21,743 

MCI+FR 

27,653 

27,852 

35,709 

35,927 

102,776 

105,296 

119,692 

129,562 

GIR-MCI 

4,133 

3,169 

30,547 

31,193 

2,090 

6,594 

36,854 

64,270 

ERIR-MCI 

4,863 

3,697 

36,002 

35,649 

2,195 

6,924 

38,697 

67,484 

DB-FMCI 

91,620 

91,872 

101,796 

102,072 

308,928 

317,568 

366,924 

400,764 

Table 5.12: Average number of basic operations in the interpolated frame using 
various schemes (tested with 10 frames/s sequences, decoded frames) 

Decoded frames 
(10 frames/s) 

Mother &Daughter 

Miss America 

Suzie 

Foreman 

Container 

News 

Coast Guard 

Stefan 

SMVF 

2,033 

2,235 

9,578 

9,818 

1,158 

3,205 

15,088 

24,114 

MCI+FR 

27,919 

28,175 

37,476 

37,780 

102,878 

106,124 

120,934 

132,635 

GIR-MCI 

4,610 

3,580 

40,852 

40,578 

2,215 

6,990 

38,926 

68,945 

ERIR-MCI 

5,424 

4,325 

42,129 

41,887 

2,326 

7,340 

40,872 

72,392 

DB-FMCI 

91,956 

92,280 

104,028 

104,412 

309,276 

318,372 

371,184 

411,300 
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5.4 Summary 

This chapter has presented error concealment-based motion-compensated interpolation 

(MCI) schemes that exploit the block-based motion vector field available at the decoder. 

The generic iterative refinement (GIR) module derived through the use of the finite 

element model has been employed to effectively conceal the interpolation errors caused 

by the unfilled and overlapped pixels in the compensated frames. It provides a fine 

texture in relatively smooth areas for the interpolated frames. Based on the GIR, an edge 

reuniting iterative refinement (ERIR) module has been developed, and this module has 

the capability of maintaining the pixel continuity along the edge, and hence, works well 

in sharp edge regions for the interpolated frames. The GIR module can itself be used as 

an MCI scheme, while the ERIR-MCI scheme is composed of both the GIR and ERIR 

modules, along with a module selector. No pixel classification or motion estimation is 

needed for either of these schemes, thus substantially reducing the computational 

complexity. Two experiments have been carried out to evaluate the performance of the 

schemes developed. The first experiment deals with interpolation using the original 

images from sub-sampled test sequences, and the second involves the implementation of 

the proposed schemes with the JM15.0 H.264 decoded frames. Simulation results from 

these experiments have shown that the proposed schemes result in interpolated frames 

with good visual qualities, at a low computational cost. When compared to the GIR-MCI 

scheme, the ERIR-MCI scheme achieves even better subjective and objective qualities at 

the price of a higher computational complexity. The ERIR-MCI and GIR-MCI schemes 
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provide a tradeoff between the performance and computational complexity, according to 

the requirements of a given application. 
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Chapter 6 

Conclusion and Future Study 

6.1 Concluding Remarks 

Spatial resolution enhancement comprises reconstructing a high resolution image from a 

low resolution image, whereas temporal resolution enhancement of encoded video aims 

at interpolating the skipped frames, making use of two successively received frames. In 

this thesis, new schemes for edge-directed spatial resolution enhancement and block-

based MCI schemes for temporal resolution enhancement of encoded video sequences, 

have been proposed. 

Even though a number of edge-directed interpolation schemes have been 

developed, they do not take into account the neighboring unknown pixels when 

interpolating a pixel for an up-scaled image. Therefore, these schemes do not give a very 

natural looking reconstructed image, especially in areas with fine textures. Also, due to 

the fact that existing edge-directed interpolation schemes are commonly designed for a 

magnification factor of two, these schemes can only be applied when the magnification 

factor is an integer power of two. Consequently, these schemes need the use of some 

conventional interpolation methods when magnification factor is not a power of two. 

Moreover, since the existing schemes interpolate unknown pixels based only on the 

estimation made with known pixels, these schemes require more than one step to 
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complete the interpolation process even when an image is up-scaled by a factor of two. 

Obviously, such a scheme needs to be applied n times to up-scale an image by a factor of 

2", n being an integer greater than one. 

There are two major problems associated with block-based MCI scheme for 

temporal resolution enhancement of encoded video sequences, there are two major 

problems related to this topic, namely, as to how to deal with overlapped pixels in the 

interpolated frames, and as to how to handle the holes left in the interpolated frames. 

Existing methods employ the averaging technique to handle the overlapped pixels, while 

techniques such as the pixel averaging or repetition are used to fill the holes. These 

simple techniques result in interpolated frames that suffer from blur and stripe effects. 

To solve the above problems, a new image interpolation model has been 

developed in this thesis. The finite element method, which offers the simplicity of 

piecewise approximation of a function given its values at discrete points, has been chosen 

and utilized to design such an image interpolation model. Based on this model, an image 

interpolation technique, which takes into account not only the neighboring known pixels, 

but also the neighboring pixels with unknown values so as to provide a spatial continuity 

between the unknown pixels as well, has been proposed. It is very general in that it can 

be used to interpolate a collection of unknown pixels with an arbitrary shape. It should be 

noted that, FEM, a powerful numerical mathematical tool that has been employed for 

obtaining numerical solution to a wide variety of engineering problems, has been applied 

in this thesis for the first time in the spatial and temporal resolution enhancement of 

images. 
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Based on this generalized image interpolation model, an edge-preserving iterative 

refinement (EPIR) scheme has been developed for the application of spatial resolution 

enhancement of images. This scheme is not restricted to the neighboring pixels with 

known values; it also utilizes the neighboring pixels with unknown values through an 

iterative refinement technique. Hence, the proposed scheme is capable of reconstructing 

natural-looking images in areas with fine textures. It has been shown, by using the 

Roberts operator as the gradient estimator, that the edge-preserving iterative refinement 

process provides a smooth variation along a dominant edge in the up-scaled image. 

Through experiments, it has been shown that the proposed scheme results in up-scaled 

images with better subjective and objective qualities than that provided by the other edge-

directed interpolation schemes, including EDIM, one of the best methods in its category. 

Further, it has a much lower computational complexity than EDIM. The scheme is also 

characterized by being capable of up-scaling an image by an arbitrary magnification 

factor u that is not restricted to be an integer power of two. Furthermore, the proposed 

scheme needs to be applied only once irrespective of the value of the magnification 

factor. 

As to the block-based MCI for temporal resolution enhancement of encoded video 

sequences, an error concealment-based MCI scheme that utilizes the block-based motion 

vector field available at the decoder has been developed. This scheme consists of a 

module selector, a generic iterative refinement (GIR) module and an edge-reuniting 

iterative refinement (ERIR) module. The module selector is utilized to determine as to 

which specific interpolation module, GIR or ERIR, is to be used for the concealment of 

the interpolation errors. The GIR module has been developed based on the generalized 
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image interpolation model, and is capable of effectively concealing the interpolation 

errors caused by the overlapped pixels and unfilled pixels in the compensated frames. It 

provides a fine texture in homogeneous areas for the interpolated frames. The GIR 

module can itself be used as an independent MCI scheme. In order to handle the case 

when dominant edges exist in the interpolated frame, an edge reuniting iterative 

refinement (ERIR) module has also been developed, and this module is capable of 

maintaining the pixel continuity along the edge. Therefore, it can perform well in 

dominant edge regions in the interpolated frames. An MCI scheme, termed the ERIR-

MCI scheme consisting of both the GIR and ERIR modules, along with a module selector 

has also been proposed to handle the cases where dominant edges are present in the 

interpolated frames. These two error concealment-based MCI schemes are characterized 

by the fact that no pixel classification or motion estimation is needed for either of these 

schemes, thus substantially reducing the computational complexity. Extensive 

experiments have been carried out to evaluate the performance of the two schemes. The 

first set of experiments deal with interpolation using the original images from sub-

sampled test sequences, whereas the second set involves the implementations of the 

proposed schemes with the JM15.0 H.264 decoded frames. Results from these 

experiments have shown that the proposed schemes result in interpolated frames with 

good visual qualities, at a low computational cost. The ERIR-MCI provides even better 

subjective and objective qualities than the GIR-MCI scheme, at the cost of a higher 

computational complexity. The ERIR-MCI and GIR-MCI schemes can be selected for 

use according to the requirements of a given application. 
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6.2 Suggestions for Future Investigation 

In this thesis, we have employed the gradient estimator and directional classification of 

pixels in order to detect the dominant edge inside an image block. As pointed out in 

Chapter 4, it is normal that an image block contains more than one discernible edge. If an 

interpolation method along only a given orientation is carried out, it may generate a false 

pixel structure. Hence, it would be worthwhile to undertake a study involving 

interpolation along multiple edges within a local block to find a solution to this problem. 

Most MCI schemes have been developed based on a constant-speed motion 

model, which is a reasonable assumption for video sequences without very fast motions. 

However, for an encoder operating at a low bitrate using the frame dropping technique, 

the motion between the coded frames becomes larger than that between two consecutive 

frames at the normal frame rate, and therefore, a more comprehensive motion model 

could be explored to obtain a smoother motion trajectory. 
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