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ABSTRACT

Measures and Adjustments of Pattern Frequency Distributions

Tongyuan Wang
Concordia University, 2010

Frequent paftern mining over large databases is fundamental to many data mining
| applications, where pattern frequency distribution plays a central role. Various
approaches have been proposed for pattern mining with respectable computational
performance. However, the appropriate evaluation of the pattern frequentness and the
refinement of the mining result set are somewhat ignored. This has created a set of
problems in conventional mining approaches which are identified in this thesis. Most
conventional mining approaches evaluate pattern frequentness with an ill formed
“support” measure, and generate patterns with full enumeration mode which produces
excessive number of patterns in an application. Consequently, the mining result sets
exhibit among other issues those of overfitting and underfitting, probability anomaly and
bias for generated against original observations. Even worse, these results are delivered
to users without any refinement. Overcoming these drawbacks is‘challenging, since these
problems are rather philosophical than computational and hence their resolution demands
a well established theory to reform the mining foundations and to pursue graceful

knowledge degeneration.
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Based on the problems identified, this thesis first proposes a reformulation of the
frequentness measure, which effectively resolves the probability anomaly and other
related issues. To deal with the profound full enumeration mode, we first explore a set of
properties governing raw pattern frequency distributions, such that a number of important
mining parameters can be predetermined. Based on these explorations, an approach to
adjust the raw pattern frequency distributions is established and its theoretical merits are
justified. This refinement theory shows that unconditional pattern reduction is achievable
before domain coﬁstraints are imposed. The thesis then presents a maximum likelihood

pattern sampling model and strategies to realize the adjustment.

Findings presented in this thesis are based on known set theory, combinatorics, and
probability theory, and they are theoretically fundamental and applicable to every item
based or key words based pattern mining and the improvement of mining effectiveness.
We expect that these findings would pave a way to replace the full enumeration pattern
generation with selective generation mode, which would then radically change the state

of the art of pattern mining.
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Chapter 1. Introduction

Frequent pattern mining over large databases is fundamental to other mining especially
the association rule mining, correlation mining and causation mining. Starting from the
work by Agrawal [1, 5], extensive research to date has been reported on frequent pattern
mining. Most of the research is focused on the computation efficiencies, including
scalability and memory optimization [2]. Efficiency is certainly important in dealing
with large datasets, but the most important yet least studied issue is how to refine the
mining result set to improve the mining reliability and hence usability. We notice this
importance in the mining domain in our earlier attempted causation mining over
traditional Chinese medicine (TCM); this issue formed the starting point of our current

research.
Research background

Mining causation relations from TCM is not only industrially important but also
technically significant because of the complications of the TCM data sources, which calls
for effective mining solution. Among other difficulties, the typical data issues in TCM

mining include:

1. Synonymous entries — different literals used in the TCM data source referring to the
same thing or similar thing.
2. Multiple valued states (MVS) — a data cell may contain a set of values of an attribute,

which violates the “first order normal form” (INF) requirement of the relational



database theory; e.g., a medicine may have different origins and hence characteristics.

3. Complex domains: the values of an attribute may not be exclusive to one another,
while conventional database deals with simple domains. A simple domain X means:

Ui x; = X, and x; N xx = @, where x; and x; are values of X, j # k, and @ is the

empty set.

The attribute “origin” is an example of complex domain that, a herb may grow in
province A or B, while another herb may grow in Mount M that stretches over but

only partially covers A and B.

4. Layered values: This is related to the above issue but more concerned with the scope
of the denotations or connotation of the values. For instance, the scope of the
“origin”: some herbs might grow throughout a country, but some others might grow
in a small area of a province only.

5. Data reliability: Due to the long historical evolution of TCM and due to the imprecise
records, data reliability issue is the primary concern for reliable mining results, even
though we have managed to ensure the database to be filled with as accurate as
possible data drawn from the data source [52].

The above five issues mostly emerge together among most of the attributes of the TCM

database we have constructed. We have used the “origin” attribute as a commonly

understandable example of the data complications for non-medical readers. For other
more important attributes of TCM, such as the “efficacy”, the difficulties engendered by
the above five issues cannot be overlooked. In short, data complication is the first

challenge for us to propose an effective mining approach. However, reported data



mining approaches as summarized in [2] are unable to deal with the above introduced
data complications together, though some of them have concerned with individual data

characteristics.

Taking all of these issues into consideration, we have designed and implemented a fuzzy
“Hyper Knowledge Discovery System” (HKDS) to deal with TCM data mining. The
first set of functionalities of the HKDS is on fuzzy information retrieval, pattern mining

and association rule mining, as summarized in [52].

What we want to point out here is that, after many efforts in dealing with the data
complications as described above, we found that there are even more profound issues
preventing us from pursuing convincing mining results over many datasets including the
TCM data. Such issues include overfitting and underfitting, probability anomaly, bias for
generated against original observations, etc. as summarized in Chapter 2. These issues are
generally incurred but not well addressed by conventional pattern mining approaches. It
is these issues that led us from our original efforts to mine TCM data to concentrating on
the current research topic towards refining mining concepts and theories. This work has

culminated in the following contributions:
Our contributions

Our main contribution is in investigation and reformulation of some concepts and
theories underlying the conventional pattern mining approaches, such that the state of the
art of pattern mining would be radically changed. The contribution can be described in

. the following aspects:



a)

b)

c)

d)

The investigation and identification of the fundamental drawbacks embodied in
conventional mining approaches. This is a contribution because detecting a
problem is of first importance in a research, then is its solution, and because the

problems revealed in this thesis are fundamental to an effective pattern mining.

The reformulation of frequentness measure. The change is simple but effective

especially in the resolution of probability anomaly and overfitting issues.

The explorations of a set of laws governing raw pattern frequency distributions,
and hence lays a foundation for frequency adjustments. These laws can be used in

data property analysis and can serve as checkpoints to validate mining algorithms.

A theory on the adjustment of the raw pattern frequency distributions, which
forms an unconditional pattern refinement framework and promises a

development of selective pattern generation mode. -

An optimization model and the related strategies to adjust individual pattern’s

frequentness based on the above adjustment framework.

These contributions are embodied in the following context.

Structure of this thesis

In the second chapter, we present a brief literature review on frequent pattern mining and |

the profound issues and drawbacks that conventional mining approaches unintentionally

embrace, including overfitting and underfitting, probability anomaly, bias for generated

against original observations, and bias for shorter against longer patterns. Chapter 3



proposes a new measure to gauge the pattern frequentness and radically resolve the
probability anomaly. issue. Chapter 4 analyzes the properties underlying the raw pattern
frequenéy distributions based on full enumeration pattern generation regime. Chapter 5
then points out the need and presents a theory to reduce the number of excessively
generated patterns and adjust their frequency distributions in a collective mode. The
adjustment theory is established on a set of mathematical properties, such that the merits
of the full enumeration mode could be maintained while its drawbacks are handled
effectively. In other words, dimension reduction and noise diminishment are naturally
- embodied in the adjustment functions. Chapter 6 presents empirical verifications of the
theories and properties presented in the previous two chapters. Finally, Chapter 7
proposes a maximum likelihood model to optimize the pattern sampling and realize the

proposed adjustment theorys; this is followed by our conclusion.



Chapter 2. Related work and open issues

Frequent pattern mining is a broad area. According to the data types, it can be divided

into qualitative or quantitative mining [53, 54]. This thesis focuses on the former one

concerning non-continuous data sources. However, the principles discussed herein could

be applicable to the latter one as well. According to the application domains, pattern

mining has developed from the early days’ market-basket itemset mining to today’s

temporal pattern mining, spatial pattern mining, sequential pattern mining, medical data

mining, genomic pattern mining, and so on. Nevertheless, the fundamental problem is

the same in all of these tasks. Below is a running example to illustrate the basic problem.

2.1 The problem and terminology

Table 1 represents a database DBo of u rows and two
columns. Column TID represents the key attribute and
VID represents an application domain ) of n distinct
elements. Each row is a tuple, where T; (i =1, 2, ..., u)
is a tupl¢ ID; and each cell of column VID contains a
value V (or a set of values) of that domain. For

example, in a market-basket problem, a TID could

represent a transaction ID, and a value of VID, Vi i=1,

2, .., n), is an “item” from the domain ) of
merchandise. Particularly, a combination of k distinct

Vs is termed as a pattern Zi = (V;V;. V) of length k, or

Table 1. A Database (DBo)

TID VID

T, Vi, V4, V5

Ty | V2, V4, V7, Vg
Ts | V2, Vs

Ty Vi, Vg, Vg

Ts | Vi, V2, V3, V4, V7, Vi
Te Vs

T7 | V4, V4

Ts | Vs

Ty |V, V2

Tio | V1, V2, V3, Vg




k-itemset in market-basket problem [1, 5]. A formation of such a pattern is termed a
pattern generation. By convention, the number of occurrences or absolute frequency S of
a pattern Z is termed as its (absolute) support S, over the database. The relative support
is a ratio s, [2]:

s, =s(Z)=count(Z) / IDBol = S(Z)/u= S,/ u, (2-1)

where u = IDBol is the total number of tuples, i.e., the cardinality u of DBo. The
multiple notations of the above support measure are used for convenience in the later part
of this thesis.
Obviously, (2-1) comes from classical frequency based probability concept, and s,
should be taken as the first link between probability theory and pattern mining. In
statistics terminology, the dataset DBo is a sample of the real world application at hand.
The cardinality u of DBo is the sample size; and a record (tuple) is a realized event of the
sampling [16], and hence a subset of Q). In data mining language, we term each original
tuple (event) an original pattern; or an original observation. A TID can be taken as a
sample label or trial ID, and the column VID refers to the set of events [6]. Based on

these notations, the fundamental data mining problem can be stated as follows:

Problem 2-1 (conventional problem 2-1): Given a dataset DBo as shown in Table 1
involving the universe Q of n distinct elements of domain VID, output all patterns of the
elements in any length, such that the s, of a pattern Z satisfies s, > Syin, Where spp is a

user predefined minimum support; such satisfactory patterns are termed as qualified

patterns.



Problem 2-1 itself is not too difficult to comprehend. A main issue for most of the
research is the computation complexity, since there are up to the power set (2") of
possible patterns over the n-element domain €2. Note that, in this thesis we do not take
the empty set (@) as a pattern, and F(@) = 0 in case its frequency needs to be considered.
Then the largest number of possible patterns is 2" — 1. The power set complexity
demands not only a great amount of computation timé but also large memory space to
store the candidate patterns and other information. The next section briefly summarizes

how researchers have attemptied to handle this problem.

2.2 Related work

There have been many proposals for pattern mining, and they are quite often embodied in
association rule mining. Examples of these proposals include the early days Apriori
algorithm [2, 5], the FP-growth method [7], their variations and extensions, and many

other approaches.

To understand the pursuance of these proposals, let us look at the primitive mining
approach over Table 1, where eight elements are involved, which means there will be 28
— 1 = 255 possible combinations (patterns). The primitive approach is then enumerating
each of the possible patterns and counting how many tuples support that pattern from
Table 1. This would be the best understanding of the origin of the notation “support”.
For instance, we can get S(V;) =4, S(ViVy) =3, ..., S(V1Vs) =0, and so on. This
approach is simple, complete, but inefficient in a couple of aspects. Firstly, notice the
dataset involved is normally too large to be fully loaded into the main memory to carry

out the required enumeration-counting processes. This then demands multiple 1Os,

8



which is expensive. Seéondly, each turn of pattern enumeration — database access —
querying and counting is again costly. Thirdly, there could be zero occurrences of many
combinations, and enumerating them entails a (computation) resource waste. For
instance, in Table 1, more than 70% of the 255 combinations are of zero frequency (refer
to Table 2 in next section). Fourthly, similar waste can occur when enumerating those
combinations whose occurrences are under Sp,. Lastly but not least, the enumeration

demands large memory space for storing these patterns.

It is because of these inefficiencies of the primitive approach, most mining proposals

concentrate on efficient generation of patterns and the determination of their frequencies.

An easiest way to eliminate the third waste listed above is by replacing the full pattern
enumeration from the whole element space € by full enumeration from each data tuple.
This is the origin of the “pattern generation”. This approach, however, introduces a side
effect and complication that, for each tuple, one needs to check whether a combination of
the elements of that tuple has already been enumerated or not. As can be imagined, such
checking is expensive. Accordingly, strategies for pattern search are introduced,
including “breadth first” and “depth first” search methods. In breadth first search the
patterns are generated and examined from each record of (Ti: {V;}) in horizontal data
format [2]. In depth first search, the original dataset DBo are transformed into a “vertical”

dataset (V;: {Tx}), then patterns and their related frequencies are determined [9, 10].

Many proposals have been made to reduce the fourth waste. For instance, the Apriori

algorithm [5) features pruning infrequent itemset as early as possible to achieve



computation efficiency. The pruning strategy is based on the intuition that any super
pattern of an infrequent pattern cannot be frequent. This intuition is proved (as can be
seen in Chapter 4) to be true against conventional mining conception and now referred to
as “anti-monotonicity” or “downward closure” property [2]. The Apriori is a level-wise
mining approach. The algorithm starts from k = 1, and for each loop k, enumerate
(generate) all the patterns of length k (candidate patterns) to determine their frequencies;
prune away those Zyx with s(Zx) < smin. The retained {Z} are the qualified patterns of
length k, and use the retained {Zy} as the seeds to generate patterns of length k + 1, since
the super patterns of those pruned patterns could not be frequent based on the downward
closure property. Repeat these operations until no more patterns could be generated and

counted [5].

The Apriori approach, however, requires large memory space to generate and store a
bundle of candidate patterns at each level of the pattern length, and it needs to repeatedly
scén the database to obtain the candidate pattern frequencies. As a result, a number of
variations and extensions of the Apriori approach have been proposed to improve the
shoﬁcomings. For instance, the “incremental mining” [43], the “dynarnical.itemset
counting” [44], the “parallel and distributed mining” [45], the “hash-based” [46] and the
“partitioning” [47] algorithms, are a few example proposals, which we do not summarize

in depth here to save space.

Unlike the Apriori approach, the frequent pattern growth (FP-growth) approach [7] tries
to avoid candidate pattern generation and hence reduce memory space requirement and

10 cost. We do not present a complete explanation of this approach here due to space

10



required to adequately cover the terminologies and the techniques used in the paper. In
short, this approach involves two database accesses and two types of trees to build. The
first database access counts the frequeﬂcies of all the individual elements that are then
listed in a descending order. The second database access is to build a FP-tree, starting
from the most frequent elements obtained in the first step. The FP-tree is a prefix tree
and acts as a compression of the original database, such that a data tuple is embodied in a
branch of the tree. Then pattern mining from the original database is converted to mining
from the FP-tree. The mining starts from length-1 patterns as initial suffix of other
patterns, by constructing “conditior'lall trees” from the FP-tree. A conditional tree
represents a sub database, called “conditional base”, consisﬁng of the prefix paths of the

patterns that are co-occurring with the suffix.

The advantage of the FP tree is that, once the tree is built, it can be repeatedly used by
later mining activities without further database access and hence improve mining
efficiency. However, the cost to build the tree is substantial, and more importantly, the
FP tree is not guaranteed to fit completely into the main memory, and hence the mining
efficiency will be compromised. To overcome these drawbacks, many extensions and
variations of this approach have also been reported, for example, the “hyper structure
mining” approach [48], the “bottom up and top down” tree building approach [49, 50},

the array based data structure to implement the prefix tree [51], and the like.

There is also a proposal to avoid multiple I0s and to reduce the candidate pattern
generations by statistical estimation over database scanning [8]. The basic idea is to

randomly sample the original dataset and use it to mine the patterns against a lower Spy;n;

11



the resulting pattern set is the final mining result set, which can be verified by the rest of
the dataset. The paper claims that, in normal case, one pass of sampling and hence just
one set of IOs could produce the whole result set, and if not, the missed patterns can be
found in at most another pass of sampling. Nevertheless, as the paper admitted, this

approach could not guarantee to output the qualified patterns precisely and completely.

The above are just a few examples that researchers have attempted for mining patterns
efficiently. We would not summarize many other proposals here because of space
limitation; furthermore, efficiency is not the main focus of this thesis. Rather, we are
more concerned with the refinement of the mining results and on how to reduce the
number of meaningless patterns that conventional mining approaches produce. In this
regard, we have not found many articles on mining refinement to reduce the meaningless
patterns, although a lot of research has been done on how to present the mining result set

in a reduced form, such as follows.

The “constrained” pattern mining [27] reduces the mining result set size by user
constraints. For instance, a user may want to mine patterns with V; and V; only, or with
other constraint(s), from Table 1. A number of categories of constraints and the related
mining approaches have been studied. One of them is the “monotonic” (or anti-
monotonic) constraint, which features, if C is a constraint, then any of its superset S 5 C
is also a constraint. This property can be seen as a mirror to the “downward closure”
property used in the Apriori approach, and it then can be used in a mining algorithm in a
similar way as the Apriori approach to prune patterns that do not meet these constraints

{23]. Similarly, others, such as the ‘“succinct” constraint [23], the “convertible”

12



constraint [26], and the “block” constraint [11], have been studied. We do not discuss
these constraints further here, while the purpose of these studies is the same as that for
“monotonic” constraint, namely, how to adopt the properties of these constraints into the

related mining strategies and algorithms.

Another school of reduction approaches is the “concise” (“condensed” [4], or
“compressed” [2]) representation of the patterns, which means they use a small subset of
the frequent patterns to represent the whole mining result set. For example, the “free
sets” [29] or “generators” [30] are concise sets to represent the whole result set in an
application, where a generator can be understood as a set of elements G, such that there is
no G’ < G with support(G’)‘ = support(G) . The generator possesses the anti-monotonic
property as well, that is, if G is not a generator, then G < G is'neither. From here, we
see the anti-monotonic property has been widely used in pattern mining. Similarly, other
concise sets, e.g., “disjunction-free” [31], or “non-derivable” sets [28], have been
proposed, while the “closed” [13], and the “maximél” [14] (or “hybrid clique” [15])
approaches have attracted more attentions. A pattern is closed if néne of its proper super-
pattern takes the same frequency [2, 13]. A pattern is maximal if none of its proper
super-pattern 1s frequent‘against a Smin [2, 14]. The “closed set” representation is a
lossless compression of the results set, in the sense that all of the patterns and their
supports can be derived from the closed set; while the “maximal” expression is a lossy

compressioh [2].
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Similar to a lossy compression, there are approximation approaches to represent the
mining results, for instance, the “top-k most frequent closed” [32], and the “pattern

profile” [33] approaches.

The former proposes to mine desired number k of top frequent closed itemsets of length
no less than a predefined min_l. The related mining algorithm TFP is developed from the
FP growth approach. This approach does not take the spmi, threshold into consideration,
since it is not easy for a user to define a sy, This is a notable point, but on the other
hand, this approach [32] faces the same problem, namely, how to determine the number k
and min_l, and by whom? The paper [32] did not touch this problem, and we could only

surmise, similar to Sy, that k and min_1 can only be defined ad hoc in an application.

The latter approach (pattern profile [33]) is based on an observation that, rather than
efficiency, how to interpret the result patterns in an application is the main issue of
pattern mining. The paper [33] then proposes a statistical model to summarize the large
number of patterns with a small set of k representative patterns. The paper presents
algorithms to seek an optimized k such that the frequent patterns can be recovered from
the representative set including their supports with a small error. The authors claim that
the summarization solves the interpretability problem, but it is not clear from the paper as
to how. Similar to other concise or approximation approaches, the pattern profile
summarization is still a compressed representation approach by using a small set of

patterns to recover (or represent) but not to (semantically) interpret the whole pattern set.

The above approaches demonstrate the efforts that researchers have made in dealing with

the big number of patterns in an application, yet from the above introductions, it is easy
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to see that the representation approaches do not touch on the issues of refinement and
hence on how to improve the meaningfulness of the mining result set. At least, these
approaches did not claim, for instance, whether patterns within the concise set would all
be meaningful. Additionally, these approaches did not address other more fundamental

issues as presented in the next section.

2.3 The open fundamental issues

In this section, we examine some fundamental mining problems from shallow phenomena
to deeper theoretic issues, so that we could identify the problems clearly and develop our

solution rationally.

. 2.3.1 Meaningless but overwhelming number of resulted patterns

The first goal of pattern mining should be on the meaningfulness of the mined results.
However, this is a far reaching issue. A few years ago, people noticed that, in an
application especially if spn is low, thousands or millions of frequent patterns may be
produced from a fairly large database [12], but many of them are meaningless, some of
them being even “counter intuitive” [S5]. These problems essentially remain unchanged
today, though notably many thoughtful resolutions have been proposed, for instance, the
“concise representation” pattern mining approaches summarized above. - These
approaches try to use a small set of patterns to represent the whole result pattern set, but
no article has claimed that its approach reduces the number of meaningless patterns.
Furthermore, no article has claimed the related concise or representative sets contain

none or fewer meaningless patterns.
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2.3.2 Overfitting issues

The above mentioned issue of huge number but meaningless frequent patterns is
theoretically an “overfitting” problem. Overfitting here simply means spurious patterns
falsely taken to be significant ones. Conversely, a true frequent pattern but falsely taken
to be infrequent is termed as underfitting. In our study, the overfitting problem is
dominant and widely incurred in previously proposed pattern mining approaches. The
overfitting or underfitting problem is important since it determines the reliability of the

mined results.

Reliability is a widely used and discussed criterion in data mining community. Article
[56] is an example wherein the problem of enhancing data mining reliability is addressed.
However, formal and concise definition of data mining reliability is not readily available.
In general, data mining reliability is determinedv by the effectiveness of a mining
approach, in addition to other factors, such as the data quality, data size, and data
complexity. Deriving reliability matrix is still an open issue, but criteria used in classic
statistical tests can be availed of, including the stability of the mined results against data
size change or data source change, and more importantly the degree of closeness of the
mined results to the real values or structures embodied in the real world. For an unknown
world, the said closeness can only depend on the soundness of the mining technology.
The minimum requirement of the soundness shoﬁld be the compliance of mining results
with commonsense; a higher requirement should be the conformability of the mining

principles with other related established theories.
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Overfitting or underfitting certainly deviates a mining result set from the real structure,
and causes instability of the mining results as we would soon see. Unfortunately, we have
not found, from data mining literature, a substantial and generally accepted criterion to
measure the degree of overfitting embodied in a mining result set. The absence of such
measurement on one hand reflects the difficulty of the overfitting problem, and on the
other hand reflects the lack of known “right” mining solution to compare with. In other
words, researchers have not found a proper answer to the cause and mechanism of the
overfitting problem. The following subsection reveals some of the sources of the

overfitting issue.

2.3.3 Probability anomaly

As we know, pattern mining is a probability and statistics based technology, and some
people even take it to belong to the area of statistics [18]. However, under our
investigation, the radical problem of pattern mining — the overfitting issue — 1s exactly
rooted from its improperly designated probabilistic criterion, the use of “support” s, as
defined in (2-1). It is obvious to see in today’s data mining literature that s, ts indeed
used to mean the frequentness (relative frequency) of a pattern, whether it is called
“support” or not. Note that the “frequentness” is a synonym to ““probability” in frequency
based probability theory. Then, the accumulative frequentness of all the patterns in a
question must be equal to 1. However, the use of s, directly leads to a common problem
in pattern mining that the accumulated probability (the sum of s,) of the mining results is
much larger than 1, which seriously violates the fundamental probability concept. We

term this issue a “probability anomaly”.
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Table 2. “Statistics’ from the data of Table 1 and formula (2-1)

K | Example patterns Zx #of [YS, |Xs, |# freq Zy | XS, | Y s, | # freq. Zx
Zx (Smin =20%) (Smin =20%)

AT B |D |E F D |E |F

1| Ve Va o Vs 8 |24 |256]| 7 28 |28 | 8

2 | ViVa . VoV 19 [30 [333 | 10 36 |36 | 13

3 [ ViVaVs . VaViVs 21 [26 |29 | 5 30 (30 |9

4 | ViVaVaVa, ..., VaVaViVs 15 |16 |18 | 1 17 |17 |2

5 | VIV,V3V4Vs.., V, V3V, Vs 6 6 0.67 0 6 0.6 0

6 | VivaViVaVyVs 1 |1 011 [ O 1 (01 |0

5 69 [103 | 114 | 23 118 [ 11.8 |32

Note, the last 3 columns are resulted from the whole Table 1, columns B, D, E and F are from its first 9
tuples. :

Example 2-1: A concrete example is given in Table 2 based on Table 1, where column
D, E, and F represent statistics derived from the first 9 tuples of Table 1, while column
D’, E’, and F’ show corresponding results from the whole 10 tuples. Column B is the
subtotal of the patterns of same length; co}umn D is the accumulated frequency (subtotal
of occurrences) of the patterns of same length; column E is the accumulated relative
supports and hence accumulated probability of patterns of same length, from which we
see that the grand accumulated probability >'s, = 11.4 >>1. Column F is the number of
frequent patterns of same length with a not-low threshold spi, = 20%, in total of 23. In a
common sense, it is difficult to believe so many frequent patterns can be derived from
such a small dataset (of 9 tuples). Even worse, if a new record Tio = { Vi, V2, V3, Vg} is
added to Table 1, then as shown in the last column of Table 2, the total number of

frequent patterns increases from 23 to 32, for a 40% increase at Syin = 20%. This
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illustrates that the result set is very unstable. The large number of frequent patterns and
the instability of the result set are the typical symptoms of overfitting. The cause of the
probability anomaly is the definition of s, that legalizes overfitiing in current data mining
methods, since s, is generally used in the proposed pattern mining approaches to date. In
this sense, we can safely conclude that overfitting is naturally presented in available
pattern mining approaches. Even worse, the degree of overfitting and the probability
anomaly are increasing exponentially to the typical tuple size (length) of the dataset in
question. This is because, by combinatorics: a tuple of x items will generate 2* (to be
more precise, 2* — 1) combinations (patterns), and hence one such tuple added to the

database will increase the accumulative frequency w by 2*.

2.3.4 A further insight into the summation issue of the supports

It might be argued that the “supports” s, should not be summed together as described in
previous subsection. A typical argument is that, for instance, pattern A and B may not be
disjoint, and hence, s(A) and s(B) are not directly additive at all. We will discuss this
joint-disjoint issue in the next chapter further. Here we can simply answer that, if s(A)
and s(B) are not directly additive, then it means they are not directly comparable either.
In this sense, s, is disqualified to prop;arly compare the frequentness of different patterns

again.

The reason we consider all s, to be additive is based on the fact that conventional mining
approaches generate all the patterns from every data tuple based on uniform distribution
assumption. This is analogous to the classical event based probability theory, where all

events can be drawn from a universe based on uniform distribution assumption, and the
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probabilities of all the drawn events are additive and accumulated to 1. Secondly, in real
applications, we need the s, summations. For instance in the running example, suppose
there are two milk-based products: yogurt represented by Vi, and bottled milk by V.
Then a question could naturally be asked: what is the total percentage (total support) of
the milk-based product patterns? If those supports are not additive, then what should the
solution be? On the other hand, if they are additive, as can be quickly seen from Table 1,
the sum of their supports is certainly larger than 1. This is another dilemma due to the

use of conventional “support”.

Another typical argument can be put like this: It is not wrong to use either s, or s’;, but
just a viewpoint difference, since s, represents the probability that a randomly selected
data tuple contains the pattern Z, while s’, measures the probability of Z that is selected
randomly from a randomly selected tuple of the DBo (all are based on random selection
and uniform probability distribution assumption over the data tuples). We notice that,
the basic task of pattern mining is the comparison of the frequentness (probabilities) of
different patterns, but not the probability of the data tuple (transaction) itself. At the
same time, even if we wanted to accept the argument, it still does not avoid the problem
of probability anomaly. Take the ﬁrst data tuple T; = {V), V4, V;} of Table 1 as an
example again, and notice that, from Table 1, s(V) = 5/10 = 0.5, s(V4) = 4/10 = 0.4, and
s(V;) = 0.4, then it is easy to see their summation is already larger than 1, let alone other

generated patterns’ supports!

The answers to the above two arguments will become much clearer in the next chapter.
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2.3.5 Other drawbacks of using s,

In addition to being the source of probability anomaly, another related issue of the use of
s is the inability to compare the frequentness of the mined results of similar mining tasks
against different data sources. This is because, as stated above, the frequentness of a
pattern generated from a database of larger tuple size in general would be much larger
than that from a database of smaller tuple size, if the two databases have the same
number of tuples. For instance, in a market-basket mining problem, the frequentness
(support) of most of the patterns generated from a database of a supermarket could be
very likely much larger than that from a database of a grocery store, if the supermarket
and the grocery store sell the same set of items, and if the numbers of records of the two
databases are the same. This is based on the observation that normally the number of
items included in a transaction in a supermarket would be much larger than that in a

grocery store.

Another big problem to be addressed is the objectiveness in determining the threshold,
Smin, t0 mean if a pattern is frequent or not. The value of sy, is assumed to be set up by
the user in most of studies, and there has been no formal proposal to establish the
threshold s, This assumption is somewhat absurd. As [32] has noticed, it is hard for a
user to decide the sy, but the problem is much beyond that. From a more industrial
practice point of view, it is the miner, not the user, to tell at what grade based on what
standard a mined material is rich of something. Secondly, if the user takes the role and
set an arbitrary Sp,, it could results in an anomalous situation. For instance, with the

same dataset, a pattern could be frequent for a user with a low sy, but infrequent for
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another user with a high sp;». This is certainly not objective or theoretically sound for
serious data mining. There is a need of generally accepted indicator to be the
frequentness threshold, or the spi,. A user defined smin can only be taken as the threshold

the user wants to look at from the mining result.

2.3.6 The absolute support S, is no better a choice than the relative s,

The question that remains is whether the absolute S, is a better measure of the pattern
freqﬁentness. The answer is no, even though S, has been used as the “support” measure
in more than few research papers, e.g., [24 and 42]. Firstly, s, is obtained from S,, thus
issues of s, are applicable to S, but harder to be identified since S, does not present the
“symptom” of probability anbmaly. Instead, the symptom could easily be interpreted as a
result of the use of too big dataset, since too many patterns (hence overfitting) could pass
a fixed S, when the data size becomes large. Such interpretation is counter to common
sense that, with bigger dataset, more realistic mining results should be obtained.
Consequently, there is an issue of what and how an absolute Sy, could be set up to
determine if a pattern is frequent or not; and, should the absolute Sy, be changed if the
data size changes or if the dataset changes? If yes, how? These are just a few questions

among others to be answered formally.

Finally, either the absolute or the relative support is stiff, in the sense that S, or s, of a
pattern Z is unable to reflect any change of other patterns’ frequencies or their
accumulative frequency. This is then another big problem to use either S, or s, to

compare and to reflect frequentness of different patterns.
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In summary, the use of s, is a main source of the problems listed from 1.3.1 to 1.3.3.
There is another reason — the full enumeration pattern generation methodology
fundamentally used in conventional mining approaches that reinforces these problems.
At the same time, this generation mode causes other problems too. Following

subsections discuss the drawbacks induced by this mode.

2.3.7 Full enumeration mode and overfitting and underfitting

As its term implies, the full enumeration approach generates every possible combination
including unrealistic patterns, resulting in an excessive number of patterns. This results in
the previously mentioned exponential increase of accumulative frequency against typical
data tuple size. As has stated before, a tuple of length x added to the database will
increase the accumulative frequency w by 2%; at the same time, a number of infrequent
patterns and false patterns could be promoted to frequent ones. This is how the number
of frequent patterns can increase non-linearly with data size increasing, and how
“overfitting” problem could occur even without the use of conventional s,. On the other
hand, since the accumulative pattern frequency w increases @:xponentially to the size of
every added data tuple under the full enumeration regime, this inflated w then causes true
frequent patterns to become less frequent (this can be seen more clearly by measure (3-

8a) in next Chapter), giving rise to underfitting.

Note that, most of the mining approaches including the concise representations,
constrained mining, and the use of pattern pruning strategies, work over the full
enumeration foundation, and hence they are generally prone to both overerfitting and

underfitting problems.
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2.3.8 The bias for generated patterns against the original ones

The full enumeration approach is unable to weight the frequentness of the original
patterns and the generated ones differently, since no measure has been reported to
differentiate the original from the generated patterns. For instance, the length-one
patterns V; and Vs in DBo of Table 1. In conventional pattern mining approaches, V, is
taken to be of absolute support 5 while Vs is of 2, meaning V, is more frequent than Vs.
However, Vs is an originally observed pattern and randomly sampled twice, but V| is just
a “possible” pattern “generated” from longer patterns. This raises a question: could we
really take the generated combination to be more likely a pattern than the observed one?
This is a simple explanation on how the full enumeration approach is biased towards

generated patterns.

2.3.9 The bias for shorter patterns

In conventional mining approaches -due to the “downward closure” property [2], the
longer (original) patterns are potentially less frequent than their sub-patterns and hence
more likely to be excluded from the mining result set and only their sub patterns are kept
against a given Spy,. This is a drawback since it is unable to properly maintain the
common observation that, only when sufficient necessary elements arise simultaneously
c-an certain event take place. Take the pattern V, as an example in Table 1 it is evaluated
to be frequent at s, = 20%, but a question is, could it really appear frequently without
other elements such as V, or V3? In real world, it is common that compounds (patterns)
are more frequently seen than single elements. For instance in chemistry, pure copper

(Cu) is much less frequently found than its compounds, e.g., copper oxide (CuQO) , but in
24



conventional mining approaches we can only conclude that individual elements are more
frequent than their combinations (patterns). This illustrates the previous problem again:
the frequentness determination in pattern mining is not properly designed. At the same
time, the “downward closure” property needs to be re-examined, which as can be seen
later, is only valid in the conventional mining theory and the full enumeration pattern

generation regime.

2.3.10 The mixture of pattern mining and element mining

This issue is related to the above problem, and it is common in conventional mining
approaches that, individual elements are taken to be patterns and they are the most
frequent ones compared with their super patterns (of length > 1). In some applications,
such as spatial or sequential pattern mining, an individual element may form a pattern
under certain structural or ordering (temporal) constraints, but in a pure fréquentness
based pattern mining, individual elements may not be very suitably termed as patterns but

just complicate mining.

Theoretically, a single element could not be excluded as a pattern. However, if and only
if such an element behaves independently, could we consider it a pattern. Otherwise
pattern mining would be equal to (or at least, mixed with) “element mining”. Similarly, a
shorter combination (termed as “sub” patterns in literature) generated from longer
pattern(s) (known as “super” pattern(s)) might be a true pattern, or might be a component

(but not a pattern) of the longer pattern, depending on their behavior.
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2.3.11 The ultimate question: What is a pattern and what is pattern mining?

There are myriads of papers about data mining in general, but we have not found a formal
definition of the very basic object — the pattern — for the mining. There have been some
definitions of pattern mining, e.g., by [13], but they are more on the mining computation
issue, and the “patterns” are taken as “given”. What we can conclude from the related
literature about pattern is that:

A pattern is a combination whose frequentness is no less than a threshold $pin.

However, the above is a posterior assertion after the fact; secondly the above “definition”
conflicts with a widely used term “infrequent pattern”, whose frequentness is low (< Smin)

but still considered as a pattern.

This might be the most critical problem — with the “pattern” being not well defined, a
user then could be presented with whatever is mined as a pattern, ending up with a huge
number of patterns — this in fact is the starting point of our present discussion as stated in
subsection 2.3.1. Similarly, there has been no formal definition of the meaningfulness or
meaningless of a pattern in the literature. One reason for this could be due to its

dependence on the domain of application.

Neither are we ready to provide a formal definition bf pattern and its meaningfulness,
which we would have presented in the beginning of this section, since there is no other
reference except the frequentness to define a pattern. Nevertheless, for a more formal
discussion, we have the following remarks without referring to a specific domain:

Remark 2-1: A pattern is a configuration of the same elements significantly appearing

in a dataset.
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Remark 2-2: If a pattern is generated but should not have been under certain

configuration rules, it is deemed to be “meaningless” or “redundant”.

Note that, configuration implies semanticsb. A pattern is firstly a combination of some
element(s), but not every arbitrary combination of elements .could be a meéningful
configuration and hence a pattern. The above remarks can be easily extended to more
specific pattern mining problems. For instance, a sequential pattern is a significant
presence of the same elements in certain ordering, wherein the ordering characterizes the
configuration and semantics of the patterns; in spatial pattern mining, the conﬁguraﬁon of
a pattern is its spatial structure that reflects its semantics. For pure frequentness based
pattern mining, focused on in this thesis, the semantics of frequent patterns can be
generally described as follows: length-1 patterns demonstrate the individuality or strength
of independency of individual elements behaving in a question; length-2 patterns
manifest the ability of coexistence or partnership between two concerned elements;
similarly, length-3 patterns exhibit this ability among three related elements, and so on.
Although we could not generally describe the configuration of a pattern in pure
frequentness based pattern mining, in many applications the configuration can be easily

identified. These can be demonstrated more clearly in Example 2-2 and 2-3 below.

The second note is that “meaningfulness” might be taken as a synonym of
“interestingness” used in association rules mining [40, 42}, since the adaptation of
intefestingness also means to reduce the number of patterns, and the objective measure of
interestingness is mainly on the pattern frequentness, or the significant presence of the

patterns. In our understanding, interestingness implies more subjective connotations than
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meaningfulness. However, this thesis is not focused on association rules mining, and we

do not further discuss the difference between these two notations.

The third note is that the “redundant” or “redundancy” used in the above remarks is
different from that used in the literature. For instance, the concise approaches refer to
those patterns that can be represented (or recovered) by the concise subset as redundant

without an association with the “meaningfulness”.

2.3.12 Other examples

To understand the above listed drawbacks intuitively, let us look at the following
concrete examples.

Example 2-2: Suppose Vi, Va, ..., Vg are dancers having participated in a dance contest
of different styles, solo, “pas de deux”, etc., and Table 1 is their performance records,
where each T; represents a performance, and the corresponding VID records the
necessary dancers in that performance. Now, consider the following questions:

Question 1: Who are the active dancers? This is equal to a query of frequent element
mining, and the raw frequentness works. For instance, V;, Vj, V4, V5, Vg, would be
entered into the answer set because of their higher raw frequentness than that of other
elements (this can be referred from Table 8 in Chapter 4).

Question 2: Who could be the active solo dancers? This is equal to asking the frequent
length-1 pattern. Indeed “solo” can be taken as a pattern in this case; and similarly *“pas
de deux” is another pattern. In conventional mining approaches, Vi, V,, Va4, V5, Vg,
would still be the priori answer than other elements simply because of their higher (raw)

frequentness. However, this answer is contradictory to common sense: element Vs, who
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has played solo twice in this record while none of others has done so, should be the first
answer! In other words, Vs is underfitted but V is overfitted at least to some degree. In
this regard, one may argue, even though, for instance, there is no record for V; as solo,
s/he might be a good solo dancer since s/he has been so active and performed much more
different styles than Vs in the contest. We do not fully have objection to this argument,
but at least it is only an assumption that V; could be an active solo dancer; one is good at
multiple person dance is not necessarily good at solo, and using their raw frequentness to
mean V; is more likely than Vs to be an active solo dancer is certainly not reasonable or
convincing. Similarly, determining the active “pas de deux” dancers would have similar

confusions.

Below is another similar example to see how the conventional mining approach could be
misleading.

Example 2-3: Assume Table 1 is a criminal record of same sort (e.g., burglars) kept in a
police station, and Vy, Va, ..., Vg are the criminals who were involved in cases T; (i = 1,
2, ...u). Now, suppose an unsolved case is reported and the case was done by a single
person among those criminals. The immediate action of the police is then to use pattern
mining software to search from Table 1 to see who could be the most probable suspect(s).
Again, this applies for length-1 pattern mining rather than an element mining, and by
conventional approaches, Vi, V,, V4, V7, V3, would be the priori answer because of their
higher (raw) frequentness. If so, the police officers would be very likely misled and
overlooking the more possible suspect Vs. Similarly, the police officers would be fooled

by the mining software in search cliques of other number of members. For instance, to
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decide which combination, Vo,V and V,V3, could be more likely a pattern (criminal
conspirers), the police offers would get a crystal clear answer, V2V3, from convention
mining approach, since F(V,V3) > F(V2Ve). However, the answer would not be obvious:
V, V¢ is observed once but not V,V3, although F(V,V3) is larger than F(V,Ve). More

convincing answer can only be obtained after the raw frequencies have been adjusted.

The above examples illustrate that the configuration and semantics of a pattern is
application dependent, for instance, in the dancer example, the correspondence between a
length-1 pattern and a solo dancer. In these examples, length-1 patterns are meaningful
~ but the related mining approach should be different from that mining frequent elements.
In other applications, individual elements may not be meaningfully taken as (length-1)
patterns. For example, in the known market-basket problem, it would be hard to identify
an individual commodity as a pattern in a business sense. Then, in this case, frequent
element mining could be meaningful but length-1 pattern mining may not. In other
words, conventional mining approaches work for frequent element mining but not
properly for length-1 pattern mining. These examples also illustrate the inapplicability of
full repeatable (re)sampling and hence the full enumeration pattern generation regime.
For example, V| might be a pattern with V,, or with V3, but s/he may not be a pattern
with other agent(s) at the same time drawn from a tuple in either the dance or the criminal

casc.

The above examples have illustrated the following: the difference between element
mining and pattern mining; the mixture of the two in the conventional mining

approaches; overfitting or underfittin; bias towards generated patterns; why the reliability
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of mining result by conventional approaches is questionable; and hence how important it

is to adjust the raw frequentness in an application.

2.4 Challenges and motivations

We now have investigated the most fundamental issues affecting proper pattern rni_ning in
general. These issues exhibit in various aspects, but they can be traced into two main
approaches: the use of the conventional frequentness measure support, and the full
enumeration generations mode. These issues and their roots, however, have not been
well addressed in the conventional mining approaches such as those reviewed in the first
part of this chapter. Most of the‘ conventional approaches pay attention to mining
efficiency but less attention on proper measure of the frequentness measure and the

refinement of the mining results.

The open problem is ‘to resolve the addressed problems effectively. As the problems and
their roots have been identified clearly, our first goal is to reformulate s, the frequentness
measure; this is presented in Chapter 3. Our second goal is to resolve problems raised by
full enumeration pattern generation regime. This is a much intricate task, and we deal

with it in the remaining chapters.

We notice that, resolving the identified problems is a challenge, since the problems as
studied above are more philosophical than computational. Furthermore, the challenges
are not only from the philosophical problem itself, but also from the fact that there are no
ready test rules, tools, or testimonies to guide our work. We have seen tests and
comparisons of relative mining efficiency from most of the research proposals, for

instance, the benchmarks of FIMI (Frequent Itemset Mining Implementations) [25] and
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of [57]. However, we rarely see the testimonies or benchmarks for mining correctness,
especially of semantic correctness. Without proper verifications and comparisons, a
research proposal would not be accepted or utilized by domain users. This is why data
mining in general is still far from a mature technology such that it could be confidently
used in knowledge system or in business decisions. However, the lack of benchmark or

testimony means the lack of well established underlying theory!

At the same time, even in terms of mining efficiency, the efforts made are hard to fully
comprehend, since there are too many proposals, the correct choice is overwhelming for
many users. Researchers have noticed this problem, and there is an appeal for a unified
theory over the numerous and ad hoc.proposed approaches based on a poll of more than
ten data mining experts [19]. However, our emphasis is not on the unification of the
proposed approaches, but more on the reinvestigation of the theoretical foundations of
pattern mining.  The issues listed above, especially the refinement of the patterns
generated, have not been addressed, to our knowledge, by conventional mining
approaches, and our purpose is to provide an insight into the issues and their resolutions.
We aim to describe the mentioned philosophical problems and their resolutions over solid
mathematical basis, so that findings presented in this thesis could serve as references,
criteria for reliable benchmark and test tool buildups. From delivery point of view, our
proposal would lay a refinement foundation such that the number of meaningless patterns
could be substantially reduced without imposing domain constraint before the results
being delivered to the user, who then may or may not refine the result set further

depending on the application requirement.
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Chapter 3. Resolution of probability anomaly and s,

In this chapter, we present a primary resolution of the probability anomaly through a
reformulation of the measure s,. The first reason to reformulate s, is its drawbacks
analyzed in the previous chapter. The other reason is that, a (frequent) pattern mining, as
its name implies, can be simply defined as a “frequentness based mining”. It differs from
other data mining, such as classification or clustering that uses other characteristics of the
elements in question for the mining. Since frequentness is the only criterion, a proper

definition of frequentness measure is therefore of fundamental significance.

To resolve the probability anomaly and to reformulate s,, we first need to see the
theoretical justification of the use of s,. In this regards, the relevant theories are the

classic probability theory and the multivariate probability theory.

3.1 The classic probability theory and s

The classic frequericy, based probability space [16, 22] is defined to be a triple (Q2, w, P):

1. The sample space Q, is a nonempty set whose distinct elements Vi V, ..., V; G =1, 2,
..., n), as stored in the second column of DBo (Table 1), are known as outcomes or
states of the domain in question [16, 17]. The total number of elements of Q is noted
as 1Ql=n.

2. The event set , is a power set (2") of  in general, or a subset of such power set in a
particular application. An event Z is a combination of any number of elements in Q.

Data stored in Table 1 are examples of the events labelled with T;.

3 Formally, w is an ¢-algebra, which is not discussed in this thesis.
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3. The probability measure P is a function from © to the real numbers in [0, 1] that
assigns each event Z a probability between 0 and 1. The probability function P (Z)

satisfies the probability axioms:

) P(Z)=0, (3-1)

2) P(w)=1, ' (3-2)

3 P(U= Y P(Z) : (3-3)
j j )

if { Z } € w is a countable collection of pairwise disjoint sets.

Compared with the above theory, the concept of pattern in pattern mining is exactly the
same as that of an event. Then it is natural to expect the theory of pattern mining to be
established on the classic probability theory. The related problem is how to determine
the probability of every event (pattern) involved in an application. For simplicity, we
use an example of two elements A and B only, and an experiment (sample) given in
Table 3. In the classic approach, we follow the following conventions:

1. Each data tuple records one observed event. In relational database theory, this
corresponds to the first normal form (INF) requiring each cell of a domain to store
an atomic value only.

2. Each observation is used once and only once in frequency count.

3. Consequently, the accumulative frequency w is equal to the sample size (data
s1ze) u.

4. The probability of an event is taken to be its frequentness — the relative frequency

f(Z)/w or f(Z)/u, per se the experiment output given. That is,
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p(2) = {(Z)Iw = f(Z)/u. (3-3)

Example 3-1, From Table 3, we can get, p(A) = f(A)/u = 2/5 = 0.4, p(AB) = f(AB)/lu =

2/5=04, and p(B) = {(B)lu=1/5=0.2.

Obviously, the above probabilities are additive and they sum to 1. As we can see, in this
case, there is no joint or disjoint issue involved in the related probability determinations,
simply because the events and their frequencies are all from observations. Note that,

although AB is a combination of A and B, but AB itself is an event different from A or B.

However, the above observation does not prevent one from analyzing the joint relation
between two events, for instance A and B. This is done using the conditional probability
theory,

p(B/A) =p’(AB) /p’(A).
Note that the denominator p’(A), called “absolute probability” of A [16], is different from

p(A) given above, and,

| Table 3.
p’(Z) = counts(Z) / v, (3-4) Original sample
which means: TID VID
T1 A
p(Z)=S(Z)/u=5(Z). (3-5)
T2 AB
Note that, the absolute probability p’(Z) cannot be compared with
T3 AB
one another and hence not additive directly with one another, and so 7 <
cannot be s(Z), as seen in following example. T5

Example 3-2, From Table 3, we can get, p’(A) = S(A)u=4/5=0.8, p’(B) = S(B)/u =
3/5 = 0.6, and p(AB) = S(ABY/u = 2/5 = 0.4.
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From the above we see, p’(A) and p’(B) are increased from p(A) and p(B) in Example 3-
1. The reason is that Example 3-1 corresponds to three events, A, B and AB, while
Example 3-2 corresponds to two events A and B only. In this case, we only know
p’(A) + p’(B) —p’(AB) = 1. From this only condition we could not know exactly what
the respective “net” probabilities of these two events are, and p’(A) and p’(B) are
certainly not comparable. This incomparability will become even clearer in the next

section.

At the same time, the joint relation can be and should be applied to event A and AB:
P((AB)/A) = p(AN(AB)) / p’(A) =p(AB)/p’(A) = p(B/A).
That is, the ‘joint relation between B and A is the same as that between AB and A. This is
very rational and understandable. It implies then, the full enumeration based pattern
" generation of B (or A) from AB is questionable, since the relations between B and A and

between AB and A are the same. |

From (3-4) and (3-5), we see that the support s(Z) defined in (2-1) and used in pattern
mining finds its equivalence in classic probability theory, s(Z) = p’(Z). And, it is in this
property that one indicates that the supports cannot be additive as mentioned in Section
2.3.4. However, if s(Z) is not additive, two other issues arise:
1) s(Z) cannot be used as the frequentness measure, simply because, for instance,
p’(A) and p’(B) cannot be compared with each other.
2) Consequently the comparable measures we can use are p(A) and p(B), which,
however, lead us to go back to the results of the original problem as seen in

Example 3-1; at the same time, it implies no pattern generation to render.
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We assume that the above two consequences are not what conventional pattern mining
approaches wanted. To understand these two issues and to see the comparability between
s(Z) and p’(Z) further, let us look at them alternatively through multivariate joint

probability distribution theory, presented in the next section.

3.2 The multivariate probability theory and s;

The “bitmap indexing” method used in some articles [41] could be seen as a link between

pattern mining and the multivariate probability theory.

Under the multivariate probability theory paradigm and in bitmap indexing, an element in
Table 3 is taken to be a variable of two random values only: 1, if the element is present in
a tuple, or O otherwise. Then, Table 3 is transformed into Table 4. From this table, we

can get the corresponding joint probability distribution contingency table (Table 5).

Example 3-3: In Table 5, the middle two columns and rows represent the joint

probability distribution of the two variables. For instance p(A =1, B = 0) = 2/5 = 0.4,

which is equal to p(A) in Example 3-1. Table 4.

Bitmap indexing

The last column and the last row in Table 4 present marginal 7D [ A |B

probability P, and P respectively, where the expression | Tl 1 0

PA(A = 1, @) reads the marginal probability of A when A is valued T2 1 1

at 1, and the dot indicates that the other variables can be valued at 13 1 1
) T4 1 0

any value. That is:
TS5 0 1

pa(A=1,9) =counts(A=1, ®)/u. (3-6)
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That is, to get the marginal probability Po(A = 1, ®), it counts whenever A = 1. This
means exactly the same as that to derive s(A) defined in (2-1). Then from the results of
Example 3-2 and the marginal probabilities from table 5, the following relations hold:
pP'(A) =pa(A=1, ®) =s(A), and
p'(B)=psB =1, ¢) =s(B).
That is, the measure support s(Z) used in pattern mining is exactly equal to the marginal
probability of Z with Z positive. Note that, marginal probability is a synonym of absolute

probability [16].

A side effect here is that the equality between s(A) and Pa(A = 1, @) provides the
simplest way to prove the downward closure property numerically. This property is
mentioned in Section 2.2, meaning the frequentness of a pattern B is no less than its
supper pattern AB for instance. That is: s(B) > s(AB). This is because:

s(B)=pa(B=1, ®) and

s(AB)=pasg(A=1,B=1,9).

Since the former is less constrained than the latter, it is then obvious that s(B) > s(AB).

Table 5. The contingency table
A B 0 1 Pa
0 0 1/5 PA(A=0, ®)=1/5
1 2/5 2/5 Pa(A=1, ®)=4/5=5(A)
Pg Ps(B=0, ¢)=2/5 | Pg(B=1, ®)=3/5=5s(B)

However, a very important observation here is that, the above proof is only numerical; it

violates the comparison rule embodied in the probability theory! It is so, since

38



S(Z) = pz(Z = 1, ®) , then s(Z) should keep the same properties of the marginal
probability pz(Z = 1, ). However, as known, marginal probabilities can only be
comparable within the same marginal distribution. That is, Pg(B = 1, ®) can only be
compared with Pg(B = 0, ®). Meanwhile, such comparison is trivial in the bitmap index
situation, since,
Ps(B=0,¢)=1-Pg(B =1, )

It follows that, the measure support s(B) cannot be compared with s(A), or with s(AB),
etc., but can only be compared with s(—B). Such comparison, however, is not only
trivial, but also meaningless in two aspects. Firstly, s(—B) is not independent of s(B).
Secondly, the original dataset does not produce s(—B) at all, simply because a database
(e.g., Table 3) does not record unobserved objects. Similarly, in the joint probability
distribution, Table 5 gives p(A = 0, B =0) , but Table 3 does not produce its equivalence

p(—~A—~B).

The above means that the Bitmap indexing is not a lossless transformation of the original
data mining problem. Indeed, there is a question whether the transformation is
appropriate, since the elements A or B presented in the original problem and Table 3 are
values of a domain (a variable) VID, but the transformation makes each element (value)
as a variable! However, we do not discuss further the pros and cons of this indeking

approach, since it is not the focus of this thesis.

What we can see from the above example is that, for instance, s(B) is mistakenly taken
to be the frequentness measure might have been because of some concept confusions and

notation illusions, for instance between P(B) and P’(B). Furthermore, in marginal
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probability terminology, s(B) is exactly to mean s(B =1, ). However, the dot is easy to
be ignored since it means the values of other variables than B do not matter; meanwhile,
B =1 is simplified as B only, then s(B = 1, *) is simplified as s(B), which then falls into

misunderstanding again.

Now, we can conclude from the above, the measure support s(Z) in pattern mining can
find its equivalence in either the classic or the multivariate probability theory, but neither
of the theories justifies its use as the pattern frequentness measure. This creates a serious
dilemma for the conventional pattern mining approaches: If s(Z) is not taken to be the
frequentness measure, then frequentness based pattern mining would become baseless,
since there is no other frequentness measure established yet.  On the other hand, if s(Z)
is taken to be the measure of pattern frequentness, then s(Z) must be comparable with
one another and hence additive, but in this case the probability anomaly arises, which

cannot be ignorable.

The above described dilemma reveals a theoretical fallacy of pattern mining. How to fix
this fallacy becomes important in pursuing effective pattern mining. We suggest that
any remedy should satisfy the following requirements:

1. Allow pattern generations from the original dataset.

2. Maintain the occurrences of a pattern as the base of its frequentness.

3. Pursue conformability of the pattern frequentness measure with the recognized

theories, particularly the classic and the multivariate probability theory.
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The first two terms above attempts to recognize the mining operations already exercised
to avoid discontinuity; the third attempts to correct the identified inappropriateness to

approach theoretical soundness of the mining operations.

3.3 The multi valued state viewpoint and the resolution of s,

The previous two sections have demonstrat'ed that s, cannot be justified by either classic
or multivariate probability theory. Here we look further into why and how this problem
arises. The problem is indeed induced from pattern generations from each data tuple.
Such generation violates the conventions listed in Section 3.1, wherein each data tuple
contains one event only and is used only oﬁce in frequency calculations and the
accumulative frequency w is equal to the data size u. In other words, if we consider the
elements of each tupie in DBo (Table 1 or 3) as an assembly, i.e., a single pattern, then
the column VID is “single value stated”, and we term such patterns as “oﬁginal patterns”.
From this point of view, the accumulative frequency w of the patterns is the same as the
cardinality u of the DBo, and the probability anomaly issue does not arise. However,
when other patterns are “generated” or ‘“enumerated” from the same tuple, the
interpretation of the values of the column VID (of Table 1, for instance) has changed.
That is, in the miner eyes, each cell does not hold only one but multiple values in
database language, multi events in probability theory, or multi patterns in data mining

terminology. Let us look at the operation of pattern generation again.

Assume Vi, V4, and V; stands for Bread, Coffee, and Milk respectively in a market
transaction T; of Table 1, and the customer who made this transaction indeed wanted to

combine Bread with Milk as one menu (one pattern), and Coffee with Milk as another
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pattern. Then T, is truly composed of at least two patterns. The purpose of pattern
generation is then to recover those patterns merged in a tuple. It is in this interpretation
that the generation is justifiable (however, the full enumeration generation over every

tuple may not be justifiable. This will be clarified in section 5.1).

The above interpretation can be adopted to the primitive mining approach too (refer to
Section 2.2), which enumerate patterns from the element space €, but such enumeration
is equivalent to the enumeration from each data tuple. Then, based on classic probability
theory, one observation describes one event (or pattern); then multiple patterns
correspond to multiple observations. That is, the primitive mining approach assumes that
a single data tuple of the original dataset to embody multiple observations (tuples) of

single patterns.

Table 6. DB
The above would be the most favorable explanation of the legality anle v

TID’ | Patterns
of the pattern generation approach.  From this point of view,

9] Vi
column VID of Table 1 is “multi value stated”. It is this multi value v

7] 4

stated problem that breaks the conventions listed in Section

3.1established for applications of classic probability theory, and t V ViV;

hence s, defined in (2-1) is no longer compliant with the classic

approach and leads to probability anomaly. Based on the |

: . t ViV
understanding of these problems, it is then natural to expect a | ° P2

resolution of s, by probability measures over multi valued state

Tiis | ViV2aVeVg

situations. However, there has been no such multi-value state
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probability theory available. Instead, the above analysis has already signified a resolution

based on classical probability theory.

In classical statistics and probability theory terminology, a pattern generation is equal to a
“re-sampling” over a data tuple of the original dataset, since an event stored in a tuple is a
subset of the sample space () according to the classic probability theory [16] (refer to
section 3.1). Then, the full enumeration pattern generation approach means to re-sample
(enumerate) every possible pattern from every tuple contained in the DBo based on
uniform distribution assumption. We now put all the re-sampled patterns into a (virtual)
pattern database, DBv, as shown in Table 6. Then the Sample size w can be defined as:
w = IDBvI. 3-7
We note here that to get w is not much harder than to obtain the dataset size u. We

present the solution for w in Chapter 4.

Now the definition of the probabilities of the patterns becomes straightforward. If we
continue the use of the support, we can keep it in its similar format as defined in (2-1) but
the denominator u must be changed into the cardinality of DBv, w. That is:

S’,=S,w, (3-8)

where, S, is the occurrences or “raw frequency” F of Z.
In other words:

S, = F(Z)Iw = p(2), (3-8a)

where p(Z) is the probability of pattern Z as defined in the classic case (3-3).
The above reformulation can be intuitively further understood from the following

problem.
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Problem 3-1: Given a database of u tuples, from which a total of m patterns have been
generated with their accumulative frequency w. Suppose an individual pattern Z has an
absolute (raw) frequency S,, then how should its frequentness or relative frequency be

expressed?

The answer to Problem 3-1 would be unarguably S,/w (using 3-8) but not S,/u (2-1).
With the above resolution, problem 2-1 can be simpliﬁed as a typical sampling or
probability problem as seen in most text books, and can be reformulated as:

Problem 3-2 (revised mining problem): Given a universe €2 of n distinct elements Vy, Vs,
..., Vp, and a pattern sample of size w from Q as stored in DBv, output all of the frequent

patterns Z, such that s, > Syp.

With the reformulation of s,, the probability anomaly issue is automatically eliminated.
And, as can be seen in next two sections, the two typical symptoms of overfitting,
namely, too many frequent patterns and unstable mining result set, will be greatly_

corrected.

3.4 Primary overfitting / underfitting quantifications

The above has described not only how s, defined in (2-1) is reshaped, but also how the
probability anomaiy issue is primarily eliminated. Here, we present how the degree of
overfitting or underfitting of conventional pattern mining approaches could be quantified
against the reformulated s,. We term this quantification as the primary overfitting or

underfitting ratio r5, depending on whether r; > 1 or r; < 1, where,

I, =58,/5"; 3-9
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We then get:

rs=58,/8,=(SzMh)/(Sz /w)=w/u=A], (3-10)

where A is the average raw frequency per tuple of the DBo.
This reflects the observation that more patterns will be generated from longer data tuples,
which then causes pattern frequency to increase faster and consequently overfitting
increases. That is why r; is proportional to . As a result, it validates the assertion made
in 2.3.5 that pattern frequency over datasets of longer data tuples will be highef and

hence the overfitting issue will be severer than that over datasets of shorter data tuples.

Since A can be very large if the length of the data tuples is large, then r, can be very large.
We noticed in the running example and Table 2 (as well as Table 7 in next sections) that,
for such a small dataset with average tuple length around 3, the overfitting ratio is over

10 against the raw probability distribution.

The above explains why so many frequent but meaningless patterns result in
conventional mining approaches, and justifies our assertion that overfitting is naturally
embodied in previously proposed mining approaches. This is a significant finding, which

strongly disqualify the extensively used conventional “support” indicator s,.

3.5 Numerical comparisons

For a more intuitive understanding of the difference of the evaluation of the pattern
frequentness in conventional and the proposed reformulated s,, we give the related
comparisons in Table 7 based on the data given in Table 1. In Table 7, the numbers and

their semantics of column A, B, E, and E’ are copied from Table 2. That is, column E
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shows the accumulated conventional “frequentness” of patterns of same length, as well as

the overfitting ratios against the reformulated s,, based on the first 9 tuples of Table 1.

Column E’ shows the same but based on all 10 tuples of Table 1. Column Ea and Ea’

present the accumulative reformulated frequentness )'s’, of patterns of same length k,

where the probability anomaly is eliminated. The other columns starting from column T

until the last show some example patterns and their related raw frequencies and raw

frequentness obtained from the conventional and the reformulated support measures

respectively, where column X, y, and z are the results from the first 9 tuples, while

column x’, y’, and z’ are the results after the last tuple (V, V2, V3, Vi) has been added

into Table 1.

Table 7. Comparisons of the resulted parameters based on data of Table 1

k {#Zk | s, | D872 |28 |2s’, | Example S.1s; s’ S, 18, |8,
A|B E Ea E Ea’ T x |y z x|y z
1 |8 2.56 0.33 2.8 0.24 A\ 4 1 .45 .039 5 S | .042
V, 4 45 .039 5 S5 ] .042
Vi 4 1.45 .039 4 4 | .034
V; 4 145 .039 4 4 | .034
2 |18 3.33 0.36 3.6 0.31 V4V, 4 |.45 039 4 4 | .034
V,V, 2 22 019 3 3 1.025
ViV 2 1.22 019 3 3 1.025
3 121 2.9 0.22 3.0 0.25 \A'AL) 2 1.22 .019 2 2 | .017
V,V,V; 1 11 010 2 2 | .017
4 115 1.8 0.08 1.7 0.14 V,V4V,Vg 2 22 019 2 .2 | .017
V,V,V,Vy 1 |11 {010 |2 {2 ].017
516 0.67 0.01 0.6 0.05 WA AL i 11 010 1 .1 | .009
6 |1 0.11 0.01 0.1 0.01 V,V,V;V,V,Vg 1 .11 .010 1 1 .009
Y 169 11.4 1.00 11.8 1.00
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We note that, with the reformulated s,, the number of frequent patterns has been greatly
reduced. With sy, = 20%, there is no frequent pattern in the reformulated case against 23
patterns in the conventional case. More strikingly, with spin = 10%, there is still no
frequent pattern in the reformulated case, but all of the 69 patterns are frequent in the
conventional case (examples are shown in columns T and y). Obviously, the
reformulated case reflects reality that we could not mine a big portion of frequent patterns
from a small dataset DBo. At the same time, the results illustrate how the two overfitting
symptoms, unstable mining result set and rapid pattern frequentness growth, have been
remedied with thé reformulation of s,. Using s’,, the more frequent a pattern is, the more
stable is its frequentness as the dataset size changes, as shown in column z and z’. This is
what is normally to be expected, with increasing data size, the frequentness of every
pattern approaches asymptotically to its natural degree. The conventional s, in general

increases faster than s’,.

- The above observations can be formalized as follows: against a data size increase, s’
increases slower than s,, if the added accumulated frequency produced from the added
data tuple is over the average accumulated frequency per tuple. Secondly, as long as the
added data tuple contains Z, s, can always increase, while s’, may not, and it can even

decrease. Thirdly, a larger s’, will increase slower than a smaller s’, .

Proof: 1initial u, w, s, and s’, for a given pattern Z and its raw frequency F,. Now
suppose one data tuple added into the dataset, that is, Au = 1, which could cause F, to

increase at most by 1, since one data tuple can generate a particular pattern once, while w
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will be increased by Aw (= 2* — 1) > 1 unless x < 1, as have been stated in Chapter 2,

where x is the length of the added tuple. Then:

and

As, /s, = A(F,/u)/ (F,/u)
= ((uAF; — F, Au)/ w) /(F,/u)=1/F,- 1/, (3-11)
As’, 18, =AF, Iw) /! (F,/w)

= ((WAF, — F, Aw)/w?) / (F,/w) = /F,— Aw/w.

Considering w = Au, where ) is the average accumulated frequency per tuple (refer to (3-

10)), the above can be reformulated as:

AS’, /8, =1/ F,— Aw/ (\n) = 1/ F, — (1 /u) (AW/}). (3-12)

The above formulae (3-11) and (3-12) state that:

1)

2)

3)

As’, /s, < As, I s, as long as Aw > A, which then proves the first conclusion. At the
same time, it implies importantly, to keep As’, / s’, comparable with As, / s, the data

tuple length will ultimately decline toward 1.

(3-11) tells As, / s, > 0 always hold, since F; < u (if F, = u, Z can be fully removed
from the dataset, since every data tuple holds Z). However, (3-12) indicates that
As’, / s’, can be either positive or negative, even if an added tuple makes F, increased
(by 1). It then proves the second conclusion. Meanwhile, it brings another important
implication: the data tuple length matters much in a mining problem: a fairly long
tuple added in can cause all patterns’ frequentness decrease, and lead to underfitting,

since a long data duple can cause w dramatically increased.

Notice that, a smaller s’, means a smaller F,, and hence (3-12) proves the third

conclusion as well.
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Although the above added only one data tuple in the proof, the proof can be easily

generalized to additions of multiple tuples.

From the above, we see that, the s, resolution not only revaluates pattern frequentness,

but more importantly, it reveals a number of interesting and intrinsic properties

underlying pattern frequentness measure and the mining effectiveness in whole.

3.6 The significance and impacts of the resolution

The following summarize the proposed resolution:

1.

We explain why the conventional widely used support s, is not a qualified
frequentness measure, and how the probability anomaly occurs.
Based on this, we have provided a resolution. This -resolution while simple 1is
effective, since it radically resolves the issues addressed in sections 2.3.1 through
2.3.6, especially the probability anomaly. At the same time, the resolution fulfills the
requirements stated at the end of Section 3.2.
Consequently, the resolution would have the following impacts on pattern mining in
general:
a) Because of the equalization of the pattern frequentness and the probability
measure of events, there is no longer any need to use a dedicative “support”
concept to mean pattern frequentness. For instance, we can use 3% or 5% to be
the frequentness threshold without bothering user to define spin. Such thresholds
are often used in various research and applications, though they are not formally

defined or required {58].
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b) Under the proposed s’, regime and because of the unification of accumulative
frequentness to 1, if the total number of patterns is large, the individual pattern
frequentness would be much decreased from that of conventional results. The
degree of decrease is described by the overfitting ratio r,. In this sense, one
cannot expect many individual patterns’ frequentness to be over 5%, for instance.
In a case of large number of pafterns, their probability distribution is more
analogous to the (continuous) probability density distribution rather than the
(discrete) mass probability distribution in classic probability theory. When use a
3% threshold for infrequent patterns under s’, regime, it refers to all those patterns
whose cumulated frequentness is less than 3%. Similarly, when we refer to the
top 10% frequent patterns, it means all those patterns whose accumulated
probability is equal to or larger than 10%. These statements with s’, are consistent
with the conventional probability theory and notations, while s, regime does not
maintain these conventions.

c) The above impacts will propagate to other mining applications based on pattern
mining, for example, association rules mining, causation mining, and the like.

4. The above insights would also correct a viewpoint on pattern mining or data mining
in general. The phrase “knowledge discover from database (KDD)” usually gives us
an impression that the mining is fact based, since what a database contains are all
observed facts or experimental results. However, from the above analysis we can see
it not to be so. Although we can accept what a database holds are facts, the patterns
generated are largely subjective, especially by the uniformly used full enumeration

generation mode without justifications. Take the first tuple T; = {V), V4, V5} from
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Table 1 as an example, in terms of fact, we can only see T, proves V,V4V; in whole,
but T, itself does not state its support forV; V4 or V,V; or the like separately and
equally. To take that T; supports all of those separated patterns is a very subjective
assessment! In this sense, pattern mining or data mining in general is at most a
mixture of fact based and assumption based, and in many cases, the latter plays a
bigger role than the former, since the generated patterns could be much more than the
observed ones. The issue addressed in section 2.3.8 on the bias towards generated
patterns against the observed ones is indeed a bias for subjective against objective.
Then a big task in pattern mining is to reduce the subjective involvement as much as
possible and improve the mining objectiveness.

The proposed s’,, resolves the probability anomaly and covers other related
drawbacks addressed in Section 2.3, for example, the stiffness in reflecting reference
pattern frequency changes. However, we notice it is not a complete or a final
resolution for those addressed issues, including the overfitting/underfitting problems,
since these issues are also caused or reinforced by the full enumeration pattern
generation mode. This then goes back to the same issue addressed in point 4 above.
Only after the number of unrealistic patterns has been reduced or their frequentness
been reduced, could the s’, of a realistic pattern approach closer to its true value. In
this sense, the first requirement of the resolution stated at the end of section 3.2
should be modified as “allow pattern generations while minimizing the unnecessary
(meaningless) generations”. The remaining chapters present our efforts toward this

objective.
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Chapter 4. Fundamentals of raw pattern frequency distributions

To see _how to modify the full enumeration pattern generation mode, we need first to
know what the properties of the mode are. In this chapter, we explore these properties by
" following the convention and generate all possible combinations from every tuple, and
we do not distinguish the connotations of patterns and combinations to simplify the
elaboration. We term each generated pattern as a “raw” pattern, and its absolute
occurrences S, as “raw” frequency F(Z). The relative frequentness P(Z) of an individual

pattern follows formula (3-8a):
P(Z) = F(Z)Iw = S,/w ' (4-1)

Below we first introduce a dualism to facilitate our study; then we derive and prove a set

of properties governing raw pattern frequency distributions.

4.1 A dual problem

Dualism is quite often used when an original problem is not easy to tackle, e.g., a profit
maximization problem could be studied with its dual problem of cost minimization.
Here, we use the dualism to introduce and prove some basic concepts, based on which,

further mathematical properties of pattern frequency distributions are derived.

Dual transformation: we first transform the original database DBo to its dual database

DBd by a translation t:
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DBo(TID - VID) = DBA(VID - TID) 4-2)

That is, T exchanges the roles of TID and VID such that VID
Table 8. The DBd

in DBd acts as the key attribute, each V; 1 =1, 2, ..., n)

VID TID

representing a set of Tjs that holds the same V; in the original V: | Ty, Ts. Ts. Ts. Tro

database DBo, as seen in Table 8. For example, in DBo, V, Vs T,, T, Ts, To, Ty

is referred by Ty, T4, Ts, To and Tyo. So, in DBd, V, refers to | V3 Ts, Tio

these Tjs in turn.  In other words, if U; means the universe Va Ty, T2, Ts, Ty

of the elements Tj (j = 1, 2, ..., u), then V; refers a subset of Vs | ToTs

Ve | T3 T4
U,ie., V; c U,

Vs, | Ty, Ty, Ts, Ty

Vs | Tp, T4, Ts, Tio

The concept of dual transformation is obvious and we do not

present an algorithm for it; and we note that the transformation is similar to that used by

vertical search approaches [9, 10].

The correspondences of the DBo and DBd are:

(DBol =u, IU,I=1Q | =n, 4-3)
[DBd| = n, IU,l = u, 4-4)
Yoo Tl = YpBa IVil, (4-5)

where 1X| means the number of elements (the cardinality) of X; U, means the

universes of the domain VID in DBo and U, is the universe of TID in DBd.

Furthermore, there are two other important dual concepts between DBo and DBd: the
patterns and their frequencies. In the original problem, a pattern Zy = (V,V,..Vy), is
generated within a cell of VID of DBo. In the dual problem, the same pattern Zy is a
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combination of the Vs vertically selected from different cells of the column VID of DBd.
Since a V; in DBA is taken to be a subset (of U,), a combination of Vs then exactly
represents a new subset — the intersection of the Vs. These concept conversions lead to

the dualism of the “frequency”, as given below:

Definition 4-1: The elements T; (i € [1, u]) held by a combination of number k of Vs,
Zy = (VpVg..Vy), in DBd are the “intersected content(s)” (IC) of those held by each

individual V, involved in Z, denoted by 1.(Zy).

For instance, in DBd (Table 8) the elements held by V, is {T, T4, Ts, Ty, Tio}, held by
Vais {Ty, Ty, Ts, T7}. Then the elements held by the combination (intersection) V,V, is
their “intersected contents”, I.(V,V4) = {Ti, Ts}; and, IIC(V1V4)I‘ = 2. The duality of a

pattern’s frequency is stated as follows:

Proposition 4-1: The “raw frequency" F of a pattern Zx = (V,V,..V;) in the original
Problem 3-1 equals to the cardinality of the “intersected contents” of the combination Zy
in the dual problem:

F(Zy) =IVpV. .Vl = IL(Z)\. (4-6)

The concepts expressed in definition 4.1 and Proposition 4-1 can be traced to the formal
concept analysis theory [59] and are similar to those used in vertical search approaches

as in [9, 10]. However, here we are not interested in what the intersected contents are,
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but only in the number of such elements. Obviously, for a pattern of length-1 in

DBd (Z = V), F(Vy) = IL(V)l = IVil.

To determine the frequency distribution, we present the dual problem below:
Problem 4-1 (dual problem): Given a database DBd as in Table 8, for every combination
Zx = (ViV;..Vy) of length k, determine the number of its intersected contents (the

frequency), [I.(Zy)l.

The following sections describe various concepts and solutions for the above problem,

and we use “frequency” and “intersected contents” or I interchangeably later on.

4.2 The inclusion-exclusion principle

To study problem 4-1, we start with patterns of length one and refer to DBd (Table 8)
where the universe U, = {T;, Ty, ...Ty}, and u = |U,l. We notice that the length-1 patterns
Vi1, V,, ..., V, are a (overlapped) partition of U, in the dual problem, since each V; (i=1,
2, ..., n) represents a subset of U. e.g. V4 = {T,, Tp, Ts, T} (refer to Table 8). By set

theory, if n and u are finite, we have:
U=Jvi=ViU V2. U V,, 4-7)
i=1

and, U = u. (4-8)
Expand (4-7) and (4-8), and start from a very basic set operation (n = 2):
IV, U Vol= IVl + IVl = IV Val,

where V|V,is a shorthand for V| N Vs,.
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In general, if n and u are finite, for U, =V; U V; ... U Vi, combining (4-7) and (4-8), we
have:
Ud = (Vi + Vol + .o+ 1VD = (IViVad +IVIV3l + .0+ 1V VD) + (IViV Vsl + L
+ 1Vaa Vi Vi) — . 21V (V2 LV

=Y Vil = Yiji<j IViVil + Yijmi<j<m ViViVil — ... 21V Vo Vil

=u, (4-8a)

where, each Y represents a sum of the raw frequencies of a “collective” of
patterns of the same length, YIV,V,,...,Vi. Again, IV,Vy Vil is not the length of
(VpVq...V;) but the number of its intersected elements (Ic), which equals the frequency as

stated in Proposition 4-1.

Formula (4-8a) is referred as “inclusion-exclusion principle” [20], since the alternating
signs presented in the formula imply the compensations of possible excessive inclusionvor
exclusion of the elements involved in every (V,V,. V) during the calculation. This
principle has been used, for instance, in concise representation study [4, 30], and in
estimation of upper bounds of candidate patterns [24]. In this thesis, we use this principle
as starting point to explore more general laws governing pattern frequency distributions

under the full enumeration regime.

4.3 The raw collective frequencies

Now, to simplify expression (4-8a), we use Ly to mean a collective of patterns of length k,
H; to mean the “raw collective frequency” of L, and C; to mean the number of patterns
of the collective L, More formally:

Definition 4-2: The “raw collective of patterns of the same length k’”:
56



Le={Z))}), wherej=1,2, ..., Ci (4-9)
and Z; is the j™ pattern® within L.

Definition 4-2a: The “raw collective frequency” of Ly:

H,= Zp, QoS P<G<...<S leVq...Vs|
=2, ZDV =%, FZD- (4-10)

Then, (4-8a) can be reformulated as:
10 = i((-nk"zL F(Z)= Y (D"'H, =u. (4-11)
k=1 k k=1

The “inclusion-exclusion principle” then becomes easy to express by (4-11). An
important point to note here is that, (4-8a) and hence (4-11) is originally motivated for the
frequencies of patterns of length-1 Vj, but ends up with the involvement of frequencies of

patterns of all longer lengths.

The above concept and formulae are fundamental for the rest of this thesis, and we shall
explore a number of their interesting properties. To avoid confusion, we summarize the
concepts below:
A pattern Zy is a subset of k elements of Q, Zy = (VpVg... V) in the original problem,
and k is termed as the length of Zx. In the dual problem, the combination V, V...V
becomes a label of a subset of Uy, and IV, V...Vl means the number of elements of
U, held by such subset, and termed as II.(VpV,... Vi)l or [I(Zy)l, which is equal to the

raw frequency of Zx, or l[.(Z)l = F(Zx). Lk is a collective (not a union) of all patterns

4 j is for enumeration in (4-9) and (4-10) —j is a cardinal but not an ordinal number.
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of the same length k. The total number of patterns within an L; is C;, and the

- collective raw frequency of Ly is H.

4.4 Fundamental propositions

As mentioned, the known “anti-monotonic” or “downward closure” property [2, 5], was
originally taken as an intuition in [S]. Here we see how this property can be formally

proved using dualism.

Propoéition 4-2: The frequency of a pattern Zy = (V,Vq ... V;Vy) is no greater than that

of any of its sub-pattern, say, Zq = (VpVq ... V), where 0 <d <k. Thatis, F(Zx) < F(Zy).

It is not very straightforward td prove the above proposition from the original problem.
However, it could be much easier examined with the dual problem, the I. notation and
formula (4-6). The above proposition could be restated as:

Proposition 4-2’: in the dual problem (4-1), II.(Zy)l < I.(Zg)l, where Zy is the intersection
of k Vs, (Vp, Vg, ...,Vy, V), such that Zy = (V, Vg ... V;Vy), and Z4 is the intersection of d

Vs, (Vp, Vg, ..., V) involved in Zy, (0 <d <k).

Proof: As given, Zx = Zy N V;, and hence Zy < Zg, then, I(Z) < 1(Zg), and I(Zy) <
II.(Zg)l. By Proposition 4-1 and formula (4-6), it means, F(Zy) < F(Zg). Proposition 4-2’

and hence 4-2 is then fully proved.

Proposition 4-2 has been proved, for instance in [10] based on Galois lattice theory and
[59], which, however, may be a bit difficult to comprehend for many readers. Here we

proved it with basic set theory and dualism.
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Additionally, as reader might have noticed, the above property is “monotonic”, since by
[21]:

If a measure m is monotonic, and if X < Y, then, m(X) <m (Y).

The proof of Proposition 4-2’ (or 4-2) is then conformable with the above definition, and
Proposition 4-2should be reflected as a monotonic property. However, conventionally it

has been referred as anti-monotonic! This is another mirror effect of dualism.

Following is another proposition that has not been explicitly addressed in other research.
Proposition 4-3: Given a pattern A and its sub-pattern B, the necessary and sufficient
condition for the raw frequencies of A and B to be the same is that they are generated (re-

sampled) from the same tuple(s) of the original dataset.

This might not be easy to prove by the original Problem 3-1, but again it becomes rather
simple using the dual problem and the I. notation. The proposition can be stated

mathematically in the dual problem as:

Proposition 4-3’: Given combinations A, B, and AcB (or BcA), then, |Al = IBI, iff

I(A) = 1«(B).

The proof is obvious: if I.(A) = I.(B), then Al = [Bl. On the other hand, if |Al = IBl, and

because A C B (similarly to BC A), only if I.(A) = I.(B).

Proposition 4-3 is important and lays the foundation for pattern de-sampling to be seen in

the remaining of this thesis. On the other hand, we need to address that, though proved as
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above the three propositions are all based on the “full enumeration” pattern generation
rule. This rule is very primitive, and when the rule is changed such that only partial but
not full number of patterns is generated from a tuple, these propositions shall not be

generally held any more.

Based on the above concepts, propositions and notations, we can now perform the
calculations of the fundamental measures in pattern frequency distribution theory, the

accumulative frequency w and each of the collective frequencies, Hy as defined in (4-10).

4.5 Formulae for w and Hy

During a scan of a database to obtain the total number of records u, it is easy to determine
the length b; of each record. The accumulative raw frequency w of all patterns then can
be obtained precisely before the pattern generation as follows:

ju =b;

W= 2.C,= 22 -D=22"-u (4-12)

i =

Jj= =
where b; = [T}, is the number of elements held by a tuple T; in the original dataset

DBo. And, u = IDBol.

Now, define g.3s the number of tuples holding a number of k elements in the original

datasets DBo, and hence:

2. 8, =u (4-13)

k=

(4-12) then can be further simplified as:

J=u i=b/ k=ax i=k

w=33C, =2 (g, 2CD

j= =l J k=1
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-5 e - okg, 19
where, T, = 2% —1, (4-15)

which represents the number of patterns and hence the sum of their frequencies
enumerated from a tuple of length k.
The simplification of (4-12) to (4-14) reduces the number of exponent operations from u
to a, and as we know, commonly, a << u. Furthermore, we can completely avoid the

exponent operations, starting by reformulating (4-14):

k=ar i=k ; k=a  i=a X
W= ; (gkgc;)zg ;gicf' (4-16)

(4-14) and (4-16) produce the same w, but they represent different pattern generation
strategies. (4-14) describes the case that, in a loop k, patterns of different lengths <k are
generated from tuples of same length k, but (4-16) states that, in a loop k, patterns of
same length k are generated from all tuples of length > k., and the result is then the H;.

That is:

H, = zgl_c' , (4-17)

k=a v kx
and  w= » > g.C = H. (4-18)

(4-17) and (4-18) can also be in vector and matrix expressions. Firstly, we define:

61



G=(g-8.>8) (4-19)
as a “gathering vector” of dimension (o —k + 1);

k k k
®k=(Ck’ Ck+1""’ Ca) (4'20)

as a “setup vector” of dimension (oo — k + 1). In particular, when k = 1, @, is

termed as “initial setup vector”’, and
0,=(1,2,..,0). (4-21)

In addition, we define a “product vector” Ey, each element e; of it being the product

g,C G=kk+1,.,a). Thatis,

Ex= (e eirts €0 =(g, Cr> &, Cra 8, Co)- (4-22)

o

Then, (4-17) can be expressed as:

i=a k

Ho=3 g,C =Gye Oy (4-23)
i=k !

o, Hi=Y gl.Cf' =By * Es, (4-24)
i=k !

where, By is termed as a “base vector’” of dimension (o — k + 1), with all elements

being 1:

By=(1,1,...1). | (4-25)
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In the following matrix expression, we use non-bold Gy and ®y to mean the

corresponding matrixes:
i=a k
Hy = Z}; g,C =Gk 6 (4-26)

where, Gy is an 1 * (o — k + 1) “gathering matrix”, starting from g.: Gy = (gk

g g ); Ogisan (e —k+1)* 1 “setup matrix”, and O = (C: CiH C,;)T~

In particular, when k = 1, ®; is an a * 1 “initial setup matrix”, and ®; = (1, 2, ..., a)T; Iy is
an (o —k + 1) * (o — k + 1) idempotent matrix, with all elements of the main diagonal

being 1 while the rest being 0.

Among other significances, a use of the above vector and matrix formulae is its facility to

obtain H;s recursively without involving any exponent operation.

Using (4-17), we can directly get:

i=a | k+1
Hppr= Z ng 4-27
i=k+1 !
Since C{‘“: ;_kl C%(from the combinatorics), (4-28)
! + i

then (4-27) becomes:

4 i—k k

Hivr= ZV_G: ginH = — & C,.

i=k+1 i k+191
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LI < “
i 2 h8.C

i=k+1

1
=—— Dye E’ 4-29
e O E (4-29)

Where E’ is a vector of all the elements of Ex except the first element being cut

off, for instance, if Ex = (2, 3, 5), then E’x = (3, 5); Dx is a “deductive vector”, each of
its element dlk being (i — k), and Dx = (1, 2, ..., 0—k). In fact, Dk can be seen as the

first section of the @ vector (4-21) up to element o ~ k. The properties of Dy and E’x

make the H; computation pretty easy as would be seen soon.

To process the recursive operations on all Hy s, we only need to know Ey, and the initial

vector E4. According to (4-24), we have:
Hip1= By ® Egy, (4-29a)

Since By4 is a base vector, comparing (4-29) and (4-29a), we can easily see that, any

element eik+1 of Ex,1 1s the computation result from (4-29):

i 1 ; P
Ek+12{ek+]=k—+i*1*e'k,1=k+1,k+2,...,(x} (4-30)

where, i is the value of the i element of Dy and ' is the i™ element of E’L.
€

In addition, it is easy to see from (4-22):

E = G] s 0, (4-31)
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where G is the vector of the whole series ofgk ,and @ =(1,2,...,0).

(4-31) and (4-30) form the recursive computation of Ey.

Table 9 is an example which uses the above formulae to compute all H;s recursively and
w over dataset DBo shown in Table 1. The first row of Table 9 lists the element of @y,

which is just an enumeration from 1 to o (here a = 6); and the second row lists the

elements of G (the series g ). These two lists are the only inputs. The bold numbers are

the elemental results of (4-29), and they together form an upper triangular matrix, each
row of it forms an Ex (k =1, 2, ..., a). For instance, Row 3 is the results of E, (refer to 4-

31) and hence H;, by multiplying the corresponding elements of Gy and @;. In row

4, to compute E; and H,, right shift @; by one column and get D;; or similarly but left
shift E; by one column and we get E’;. Then according to (4-30), the first element of E,,

e = (1 *4)=2.

Indeed, the main diagonal elements are just a copy of the G; (the second row)! The

remaining computations and the results would be easy to follow.

The above clearly demonstrated the programming and computation advantages of using
formulae (4-29) to (4-31). Table 9 also shows the potential ifnprovement of the
computation efficiency. Furthermore, all the intermediate results are fully reused, and,
compared with the initial formula (4-12), where the computation complexity of w is more

than linear (to the data size u), here the computation cost is (nearly) constant for a
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relatively large data size. This is
Table 9. The recursive computation of

because, when the data size becomes Hys
large, the maximum pattern length o 0, Lz |3 |4 > |6
' G |2 3 2 2 0 1 H

would be relatively stable, and hence K\l : ¢

1 2 6 |6 8 0 6 |28
the numbers of columns and rows of

2 3 6 12 | 0 |15 |36
Table 9 become stable, and the

3 2 8 0 (20 |30
computation cost becomes constant. 2 0 |15 |17
In other words, our approach realizes | 5 0 6 6
a full scalability of the calculation of | 6 1 1
H, and w. It would be even more | & T, 2 |9 {14130 10 |63 Yl;
significant if this approach could

develop a way to reach the scalability of pattern mining in general, which is recognized
as a critical issue in pattern mining [25]. Furthermore, when data size changes, for

instance, some data tuples added in or deleted, Table 9 can be updated with only those
columns and rows affected by the changed g, (this becomes clearer with Corollary 4.3
stated in next subsection). Finally, the tabular approach also eliminates the exponent
operations required in 7", (see 3-15), and Table 9 presents the relationship between

formulae (4-14) and (4-17), where the vertical (column) summation represents the

mechanism of (4-14), while the horizontal (row) summation represents that of (4-17).
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4.6 The odd and even length pattern frequencies

Additionally, there are interesting relations between the summations of the frequencies of
odd length and even length patterns. Manipulating (4-11) such that all negative signed

terms are moved to the right hand side:

nl/2
H, = ZHZk +u, (4-32)
k=1

k=1
where, the upper bound “n/2” of the left hand side should be replaced by (n+1)/2
if n is odd. We use H,4s and H.,,., to mean the raw frequencies of patterns of odd lengths

and even lengths respectively:

n/2 nl2

Houa = Zsz_l , and Hepen = Zsz . (4'33)
k=1 k=1

Then, (4-32) becomes:

Hodd = Heyen + U. _ (4-34)
Adding H,4, to both sides of (4-34), and noting Hygg + Heven = w, we get:

2H 40 = Hypga + Hoyen +u=w + 1.
That is, for the sum of frequencies of all odd length patterns:

Hoga = (W + /2. (4-35)
And similarly, for the sum of frequencies of all even length patterns:

Heven = (W —u)/2. : (4-36)

As measures of frequencies, H,yy and H,.., each must be an integer. We have a

proposition that guarantees it:
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Proposition 4-4: w + u or w — u is always even numbered; and w is even or odd follows

u is even or odd.

J=u
Proof: Using (4-12), and let y =Z 2bf . Since b; = ITjl > 0, it follows that y is always

J=
even. Then,w+u=y—-u+u=y,andw-u=y—-u-u=y-—2u In both cases, the
results are even, and the first part of Proposition 4-4 is proved. At the same time, it is
easy to see that, if u is even (or odd), w is then even (or odd); and the second part of the

proposition is proved.

The above results can be seen from Table 9.

Following, we introduce significant laws governing all of the H distributions.

4.7 The Hy-curve and its properties

If we plot the H distribution (k, H) and link all of the H; value points together as shown
in Fig. 1, we get a curve of “raw collective frequency distribution” (or “Hj-curve”, see
Fig. 1). Interestingly, the curve can be expressed as a relation between every adjacent Hy

and H,.,; as what follows:

Theorem 4-1: in pattern mining problem, the Hy-curve can be expressed as:

Hio1 =Ry a—k H, O<k<o<n) 4-37)
k+1
and, H;=0, (k<1l,ork>a) , (4-37a)

where, o is the maximum length of the patterns; R; is a “collective frequency
reducer”, or abbreviated as “reducer”:

O0<Ri<l1, (O<k<w. (4-38)
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To be more understandable, we prove the theorem qualitatively starting with a
preliminary case where all the u subsample spaces (T;) of Q) stored in the dataset DBo are

of same size a, such that every collective frequency is multiplied by u:
He=u*C". (4-39)

According to (4-28), Cl:l = -6;%11( CI; , we then have: Hpy; =C]:—;]lc H,. (4-40)

In this case, H, possesses properties identical to Ca. For instance, H; 1s symmetric since

a—k k . . . . .
Ca =Ca; when a is an even number, H, is strictly quasi-concave and reaches its

. a . . .
maximum value at k :3 ; when a is an odd number, H, gets its two maximum values at k

-1 +1 .
= az and k = aT . The preliminary H, model (4-40) is seen as the dashed curve in
Fig. 1.

JPE S In reality, where many re-
Hi 4 >+ Preliminary H,

sampling subspaces are smaller

\
.

Hq B than o, the simplified model (4-

\QJUTVG | 40) must be tuned using the

P | \ following factors:
h¢curve . : _

i). Different frequencies of

individual patterns within a

v

0 1 2 a af2 a k' collective. Since we are

Fig. 1. The H; and h curves interested in L; as a collection
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rather than its individual patterns, we consider H; as a whole. In this way, the individual
frequency differences within a collective do not matter.

ii). Inter-collective frequency reduction. Based on the Proposition 4-2, on average,
the frequency of a pattern of length k + 1 will be less than its sub pattern of length k. We
use R; to mean such frequency reduction to adjust (4-40), and Ry has the following

properties:

O0<R<1, (1<k<w)

which explains how (4-38) comes, and note obviously, Ry # 0 fork € [1, a].

iii). Pattern contraction. This reflects the fact that, many subsample spaces are
smaller than a, which means that not every pattern of length k will extend to pattern of
length k+1. However, this phenomenon is the cause of point ii) above: a longer (super)
pattern’s frequency is less than that of its sub pattern, because a shorter pattern does not
always extend to be a longer one. Hence, this observation reinforces that Ry < 1, but has

no more effect on (4-40).

In summary, R, defined in point ii) fully captures the tuning mechanism for (4-40). And,
since Ry is a model of the proved Proposition 4-2, Ry is thus well established such that:

a—k

He =R Tl H,, as declared in the theorem.
+

The above delivers a qualitative proof of (4-37 and 4-38). To be more convincing, we

prove (4-38) qualitatively below:

i=a k
Following (4-26), H; = Z g iC - =Gy Ik O, we have
i=k ! '

70



Hiy = Z g; C —Gk+l Ik+1 Okste (4-41)

i=k+1

On the other hand, by (4-28),

Hii= ¥ g,C" ZngC

i=k+1 i=k+1

k

(2 kigi—ka

k+1 i=k+1 a_k

a k
——— Gis1 Ak Oy v (4-42)
T k+1

where, ®’y is a sub-matrix of ®, without the first row (and first column); similarly

Gy, is a copy of Gy without the first element. Ay, is a diagonal matrix of dimension (a-

k) * (a-k), and termed an “adoptive matrix”. Its main diagonal elements a;; =
for alli, (k <i<a).

Now, we define a diagonal matrix A’y of dimension (a-k+1) * (a-k+1), with its first
element a; ; = 0, while its sub matrix of dimension (a-k) * (a-k) being exactly the same as
Agsi. To be more understandable, following are examples of the matrixes related to the

running example with k = 3 (G and @ can be referred from Table 9), then:

1 0
1/3
1/3

2/3 , A =
l} A, 2/3

IK= 1 )Ak+l=

With the above results, (4-42) can be reformulated as:
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a—k a—k
His) =——— Gis1 Ax1 O = —— Gy A’k Ok (4-43)
k+1 k+1

Now (4-26) and (4-43) becomes comparable. Since ever element (except the last one) of
A’y is less than that of I, and if not all of the(other elements except the last one of Gy 18
zero (note if the last element of Gy is zero, then the longest pattern length will be less

than o!), then,
0 < Gk A’k Ok < Gk 1; Ox. (4-44)
Or, O0<GyAxOx=R*GylxOr=R;* Hy (4—44a)>
where 0 < R, < 1 must be held to satisfy (4-44), énd finally from (4-44a and 3-43),

a—k o—k
Hy, = — G A «O=R
k+1 k+1 k k Yk kk+1

H;,

which proves (4-37).

Now, an interesting question: is there any case where R; = 1 would hold? The answer is

yes, but the case is rare, and we have the following:

Corollary 4-1: the necessary and sufficient condition for Ry = 1 is that every element

except the last one of Gi equals to zero.
Corollary 4-2: If R, =1, then all R, = 1, where k <s < a (note Ry series is ended at R,.;).

The two corollaries above are easy to derive from the above proof and from (4-26) and

(4-44a). If and only if the condition of Corollary 4-1 holds, both GyA’x ©¢ and Gyl

degrade to a scalar value g sz and the corollary becomes true. In fact, Corollary 4-2
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comes directly from Corollary 4-1; and it can be simply noted as, if there are m zeros in

the g distribution from i = a — 1 backwardly, then there are m ones in the right section

of Ry series.
(4-38) is now formally proved. At the same time we see from these two corollaries, when
R; = 1, which means all of the original data tuples are of same length o, and we get the

preliminary case depicted in (4-40). This is where our qualitative and quantitative proofs

converge.

After seeing the above interesting results, we have another property of Ry:

Corollary 4-3: The distribution of original data tuples of lengths less than k, g (g <k,
J

does not have effect on R; (s > k).
Proof: It can be easily seen from (4-43) and A’y.

This corollary converges again with the qualitative proof referred in the former part
where Ry is tuned because not all (shorter) data tuples extend to longer ones, which is
equal to say shorter data tuples have no effect on the frequencies of longer patterns as

stated by corollary 4-3. This corollary can be stated alternatively that Ry is determined by

all and only the g (G>k),
J

The above now has fully proved (4-38) and (4-37), as well as other R properties, and
hence Theorem 4-1 is fully proved. As follows, Theorem 4-2 below presents an

important property of the Hy-curve.
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Theorem 4-2 (H, quasi-concavity theorem): If Ry is non-decreasing, then, the Hy-curve
expressed in (4-37) is strictly quasi-concave downward over 0 < k < a, and it reaches its

apex value at k = q <a /2 (refer to Fig. 1).

“Quasi concavity” is used in real valued function study [22]. If a function f(Z) is strictly
quasi concave within a domain E, theﬁ there exists a Z* (Z* € E) such that f(Z) is
increasing for Z < Z* and f(Z) is decreasing for Z > Z* [22], where Z can be a vector of
multidimensional variables. We use this concept not only for better understanding but
also for formal applications of the properties of the Hy distributions. The only difference

here is that the “quasi-concavity” property applies to discrete Hy values only.

If Ry = 1, the concerned problem is trivial according to corollaries 4-2 and 4-3, so we
prove the quasi concavity property for R; <1 only.
Let us first look at the slope of the Hy-curve, AH;. /Ak, with Ak = 1 which is the
smallest interval:

AH. /Ak = (Hys)— Hp )/ Ak = Hyyp — Hy

a—k
k+1

= (Rx - 1) Hi. (4-45)

a—k

Since Hy. > 0, the sign of the slope A Hy. /Ak is determined by R, il 1. We notice
+

that,

0 is a strictly decreasing function of k, since:
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a+1

- <0 (4-46)
(k+1)(k +2)

A(a__E)/Ak -
k+1

i1). Without the effect of Ry, (%”—I;— 1) will be positive initially and cause Hj to
+

. . . o . .
increase and reach its maximum value at k =5 if a is even, or, k = and k =

a+l

if a is odd, as stated in the proof of Theorem 4-1 such that (%—_—lk—— 1) = 0. After
+ :

that (Z——IIC_ 1) becomes negative and leads to a decrease of H;.
) +

iii). With the effect of Ry, , at the early stage (k << n), c;—l;
+

could dominate and

a—k

keep R« P > 1. That means H; will be increasing with k but at a reduced rate because
+

R; < 1. Consequently (R a—k
k+1

-1) > 0 at a point q such that H; reaches its apex value

H,, but g would be no larger than% due to the reduction effect of Ry; and the H, itself

would become much smaller than that without the effect of R, (as seen in Fig. 1). The
condition that R; is not decreasing as given in the theorem guarantee H; is always
increasing until q, although the increase rate is diminishing. Once the H, has been

reached, the slop factor (R a-k
k+1

— 1) becomes negative and keeps decreasing with k
increasing, this is because, although Ry is increasing (or not decreasing), the decreasing

a—k. . . . .
Tl is more dominant. H, thus keeps decreasing until k = «, and there is no
+

rate of

chance for Hy to get another apex value H, regardless of a being odd or even.
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In summary, H; has one and only one apex at q, and H is strictly increasing for k < q but
strictly decreasing for k > q, with the given condition of the theorem. H is thus strictly

quasi-concave, and the theorem is fully proved.

Note, when a is not very large, H; might take the maximum value at k = 1, but this does
not affect the soundness of the theorem. Another point to note is that, theorem 4-2 stated
a sufficient condition of R, to keep an Hj curve quasi concave, while following are the
more precise description of R, against this condition:

Corollary 4-4: If the R, series is not decreasing, and q is the apex point of the H; curve,

then:
K1 Re<ifor0<k<q<a2, (4-47)
a-k

and, —2 <R, <lforg<k<a. (4-47a)
a-qg+1

Proof: Both formulae are based on the fact of non decrease of Ry and its upper boundary
defined in (4-38). The former formulae can be derived from (4-37) directly; the latter one
is obtained by applying k = q — 1 into (4-47) and taking R,.; as the base of comparison
with other R, (with k > q). These two formulae can also be verified from the data of Table

9.

Quasi concavity is a nice property for an H, curve. At this point, a question may arise:
could this property be typical? Or, would the condition of no-decreasing Ry hold in most

frequent pattern mining applications? The following theorem answers it.
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Theorem 4-3: For an ordinary gk distribution, the Ry series is no decreasing, and, the

smaller the k relative to a, the stronger the condition Ri,; > Ry.

The implication of this theorem is that, once a Ry;; < Ry happens, it would reflect an

abnormal g, distribution such that either, at the right tail of the distribution a nearly

longest transaction (referring g, for k 2 «) is more frequent than a shorter one, or, at the

left tail, there is a jump (a sharp increase or decrease) from g.tog “(J > k). Note that
J

the requirement of “ordinary” g, distribution means the distribution is denser around the

middle of a, diminishing towards the two ends. However, this requirement is easy to

meet. It does not require the classic N(u, o) normal distribution or B distribution. It even

does not require the distribution of a single mode, and a scattered g, distribution is

allowed, as long as the extra mode does not appear in the right tail of the distribution.
This theorem can be proved through any of the basic H; expression (4-17), the vector
expression (4-23), or the matrix expression (4-26). However, in any expression mode, a

fully formal proof of this theorem would be lengthy. Here below we present the

framework of the proof through the basic expression (4-17).

. i=a k
Starting from (4-17), Hy .= Zglc , then,
i=k ¢

i=a k+l i=a i—k
Hgr= Zglc, = Zk+lg,Cf

i=k+] i=k+1
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| B k
_k—ﬁ Z(z——k)gici ,

i=k+1

R~ w2 & (—k)i-k=D
e Hk”_,-;zgicf —,;,H;z e 8:C

o Q- k 2 i—-k k
S ik e f%gHﬁZ g C

. —_ i — |~ —k©Oi !
Then, Ry = k+1 H.,/Hy= ':k“? k = a i=k+2 & .
- k
o ;gin g tk+hg + .gzgici
k+1 |
+
__a-kSum X (4-48)
l 2
gk+(k+1)gk+1+Yk+2
a '_k x
here, X, = D - . (4-482)
where, X, i;Za_kgiC,
. 1 a X
and, Y,,=>. 8.C:- (4-48b)
i=k+2
k+2
Risr = — 1 Hiy2/ Hyy g
a i—k-1 ‘ a i—k-1 A
i—k . i—k .
- iggz(l )a’—k—lgic’ _ i;:z( )a_k_lgicl
Y i-bg k+ g +> (- g C
i=k+1 i=k+2
2
€ (4-49)

(k+1)gk+l+Yi+2’
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« k-1
where X, = (z—k);—:ﬁ g.C (4-492)

i=k+2

and, Y= G-k g.C: (4-49b)

i=k+2
Then, the general condition of R, < Ry, is substituted by the following inequality:

ﬂ g + Xl 2
+ +2
o — k k+l k < Xk+2 (4_50)

gk+(k+1)gk+l+Y:‘+2 (k+1)gk+l+Yi+2’

For simplicity, the following proof uses X and Y without superscripts and subscripts to

mean either (4-48a, b) or (4-49a, b), since these Xs and Ys are linear combinations of the

same Q@ Cf series.
1

The advantage of (4-50) is that it simplifies the problem and involves three terms only,

8. 8. and the remains g (i >k + 1) which are wrapped into the respective X and

Y.
Note in the above formulae, the following always hold:

i<oa,k<oa-1,k<i-1,and hencein general,i-k<a-k; i-k-1<a-k-1;

and

i—k S 1—k—1; (4s1)
a-k a—-k-1

i i 2 2
Xk+2< Yk+2’ and Xk+2< Yk+2’ (4-513)

79



and, XL+2 < X;z’ and Y:(+2 < Y:+2' (4-51b)

(4-48), (4-49) and (4-51a) above explain again why Ry and Ri,; < 1. In (4-51), the
difference of the two sides is not large in general. Furthermore, given k, the difference
gets its maximum at the smallest possible i then diminishing with i increasing. For

instance, let @ = 6 as given in the running example, and suppose k = 2, then,

i~k - i—k-1 li=4=1/6, i~k -~ i—k-1 li—s = 1/12; and in general, for any feasible
a—k a-k-1 a-k a-k-1
. i-k—1 ) i—k
k, lim; saT———= lim; sa— = 1. Consequently, for any k < o — 2, we have:
oa—k— -k
1 1 2 2
Xk+2/Yk+2 > Xk+2/Yk+2’ (4-51c)
and  limig a2 X,,= Vio2nd X,0= Vi (4-51d)
. 2 2 1 1
lim i o2 Xk+2/ Yi= Xk+2/Yk+2 =1 : (4-51e)
k+1 1
a _ k k+1 + Xk+2 .
Now, look back (4-50). R, = can be taken as an expansion of

XZ+2
(k+1)gk+|+Yi+2

Xi<+2/Yi<+2 ,and Ryy; = an expansion of XZ+2 /Yi+2 )

Comparing (4-50) and (4-51c), we see the expansions should reverse the relation of (4-
51c). According to Theorem 4-3, this reversion is dominant in most of the applications.
Following are the analysis on what the forces are to maintain or reverse the inequality

Ri <Ry
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Unlike (4-51), the “greater than” relation of (4-51c) is not monotonic against k but

depends on the distribution of giinvolved in the two ratios X;z / Yi+2 and
X;Hz / Y;Hz. If k is relatively large and close to a, then only few gs would be

involved and a relatively large g.could cause a significant difference of the two ratios,
13

which may lead to Ry,; < R;. This is one reason why Ry.; < Ry would be more sensitive

at the right tail of the distribution. The other possible reason for R,; < R is the relative

effect of gkand g.. expressed in (4-50). In general, if gkand g, e significantly
smaller (e.g., zero valued) than the remaining g s, then the relation of (4-51¢) may be

maintained. In particular, if gk+1 > gk and the two X/Y ratios do not differ much, which

! could be large for a large k. In

would lead Ry,; < Ri. This is because the effect of p
, a—

summary, as k approaches a, if Ri.; 1s less than Ry, then g would be greater than gk @a

> k). This means that in the right tail longer transactions occur more frequently than

shorter ones, and reflects an abnormal g distribution.

For a smaller k, the number of gs involved in X and Y is increased, stretching from the
right to the left tail of the distribution. Then, a single g could significantly influence the

X/Y ratios only if g is comparatively very large and i is smallest possible (e.g.,i=k +

2). Secondly, the factor k+1
a—k

is decreasing quickly when k decreases compared with
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the relatively small decrease from X;Hz / Y;Hz to X;z / Y;z. Thirdly, notice that,
from (4-51b), le < X;z . These are the forces to support (4-50). In other words, to

reverse the relation of (4-50) such that Ry,; < R holds, one possibility is g.>g, (j>k,
J
and typically g.>> 8. ), and reflects the other type of “abnormal” g.distribution at

the left tail of the g distributions as mentioned before. The theorem is then proved.

Table 10 demonstrates the above conclusions and hence Theorem 4-3. Here the second
row refers to the original data of Table 1, which gives an increasing Ry series and a quasi

concave H; curve. Column 1 of the table indicates the value of k, for which the relation

Ry < R, would occur. Column 2 lists the g distributions, and the bold numbers are the
minimum gs that would cause an Ry ,; < Ry, which illustrates clearly that the smaller the

1, the more significant g is required. Column 3 lists the Ry series and the bold numbers

are those in the inequalities of Ry .; < R,. Column 4 gives the two ratios of X/Y
corresponding to those R and Ri.;, and this column demonstrates the properties given

from (4-51a) to (4-51e); meanwhile, row 3 shows the case of R; ,; < R, mainly due to

X ../ Y., being significantly larger than X ./ ¥,,, while row 2 and 4 show the
cases that R, .5 < R i‘s caused mainly by an abnormally large gk  over gk , when the

two X/Y ratios do not differ much (less than 3% in these examples). Column 5 is the
corresponding H; series, from which we can see how resilient the quasi concavity

property is. Except the last row, all of the other cases result in strict quasi concave H;s.
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A basic reason for the observation is that the related Ry fluctuation (Ryy; < Ry) is not

significant, as just noted that the abnormal g is the minimum (to alternate the relation

Riv; > Ry into Ry ;) < Ry). Only when such a g becomes even larger, and Ry, becomes

significantly smaller than Ry, could the corresponding Hj curve becomes non quasi

concave. The last row of Table 10 provides a case of no quasi concave H curve for a =

10, from which we notice the extreme g distribution. Interested reader can verify that in

this case, Ry fluctuates greatly.

Table 10. Demonstrations of the H; and R), properties

k gs Ry series X/Y ratios H, series
2,3,2,2 0,1 (0514, 0.625, 0.756, 28,36, 30,17, 6, 1
0.882, 1
1/2,50, 2,2 0,1 '0.272, 0271, 0.756, | X wo/Y'is2 = 0.642 |78, 61, 30,17, 6, 1
0.882, 1 X Yo = 0.656
112, 3, 12, 2, 0,1 |0.4551, 0.4545, 0,567, | X'1o/Y 2 = 0.494 | 58, 66,40, 17,6, 1
0.882, 1 X Yisa = 0.455
312, 3,2, 2,3, 10614, 0682, 0.711, | X'1ofY k42 = 1143,66,60,32,9,1
0.703, 0.667 X/ Yo =1
50, 100, 300, 0, 1234, 1351, 1164,
0,0,0,0,6,3 1386, 1506, 1134,
576, 189, 36, 3

In conclusion, we observe from Table 10 that R, distribution is much less scattered than

its underlying g.distn'bution. In other words, R, function would mostly transform a

rather scattered g.distribution into a nice monotonic R; series. At the same time, we
!

notice that a single data tuple can be seen as the simplest preliminary case (of u = 1),
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which produces a quasi concave curve of frequencies of patterns of different lengths.
Then the H; curve is an aggregation of these individual quasi concave curves. In general,
a summation of a set of quasi concave curves is not necessarily quasi concave, and how
to organize such set of quasi concave curves into a single quasi concave curve is an

interesting topic in many applications [22]. In this sense, Ry, is a nice solution.

Finally, we see that the quasi concavity property of H; is more resilient than the

monoitonicity of Ry, and would not be affected by some minor fluctuations or decreasing

of R, over a given g distribution. It means then, the monotonic condition of R, as stated

in (4-38) is stronger than required, and the deeper reason for it is that the effect of

1 is more dominant than Ry in (4-37). Considering all of these aspects together,
+

quasi concavity property for H is very typical.

From the above quasi concavity theorem and its proof, we see that the different lengths of
data tuples do not degrade but indeed improve the quasi-concavity of the left section of
the Hj curve compared with the preliminary case (4-40). The reason is that, the shorter
data tuples slow down the rapid frequency increase with k increasing in the preliminary
case, which then causes the H, curve to become more rounded. Then a natural question
would arise: is it possible for an H; curve to become not just quasi but genuine concave?

The answer is given in the following theorem.

Theorem 4-4: An H-curve can be strictly concave downward within an interval E = [a,

b], if the following condition holds:
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a-k a-k-1_p @k o, (4-52)

Res R
TR k+2 k+1

- where a is the maximum length of all the patterns, and,

the minimum a = 1, the maximum b = 1 * (a+2 + (a+2)"). (4-53)

We prove the theorem starting from the definition of “concavity”: if a function f(z) is
strictly concave over an interval E, then for any three points zi, Z3, z3 within E, such that
Z> =Mz + (1- M)z3, where A € (0, 1), and z can be a vector of multidimensional variables,

then the following relation holds [22]:
M(zy) + (1- Mf(z3) < {(z3). (4-54)

Alternatively, set A = Y2, the necessary and sufficient condition for f(z) to be strictly

concave is [22]:
V2 (f(z1) + 1(z3)) < f(z2). (4-54a)
where z; is in the middle of z; and z3: z; = Y2(z1 + 73).

To facilitate the proof, we use (4-54a) and choose any three consecutive points k, k+1
and k+2 of the domain of the Hi-curve and check whether they satisfy (4-54a). In this
case, b = ¥2, and k+1 = V2 (k + (k+3)). Then the related H, values must satisfy: V2 (Hy +

Hiss) < Hyes. By (4-37), it means:

a—k-1 a-k
%(Hk+Rk+]WHk+l) < Ry 1

Hy,
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—k a—k- —k
Or, 1/2(Hk+Rk+1Rka ka-k lHk)<Rka

H,.
k+1 k+2 k+1

Manipulating the above and removing H; since Hy > 0, we get the condition for Hj

concavity:

oa—-k a—-k—1 o~k
R..; R -2R +1<0, 4-52
I k42 (, Tk +1 | (4-52)

which is the necessary and sufficient condition specified in Theorem 4-4.

Now, we look at the maximal interval E = [a, b] over which (4-54a) could hold.
According to the rationale that the first section of the H; curve can be augmented to
concavity is due to the effect of shorter data tuples such that Ry is less than 1 and the
growth of Hj slows down before Hk reaches its apex value. After that, to maximally
maintain the concavity section, R, should keep as large as possible to prevent Hj from
decreasing quickly. It means then that the right end of the concave interval will be the
same in the preliminary case where all dafa tuples are of same length o, and Ry is in its
maximum 1. We then first solve (4-52) in the preliminary case, where (4-52) becomes:

a—-k a-k-1 _ o-k

+1<0. (4-56)
k+1 k+2 k+1

Solution (of k) to the above inequality is:
s [=ceiling (V2 * (0-2 — (a+2)")] < k < [floor (V2 * (a=2 + (a+2)*)] =1,  (4-57)

where ceiling(y) is a minimum integer s > y; and floor(y) is a maximum integer t

<vy. Here, s is the left end but ¢ is not the ultimate right end of the concavity section of
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H; curve in the preliminary case, since, based on the above formulations, if k = tis a
solution to (4-56), then k+1 and k+2 will be included in the concave interval as well. That

is:
b=t+2="%% (0-2 + (a+2)") + 2 = V2 * (0+2 + (0+2)"%), (4-57a)

which is then the ultimate right end of the concave interval as declared in the
second part of (4-53) of Theorem 4-4, since after that, there is no force to entail R, > 1 to
slowdown the decrease of the Hy curve and augment its right quasi concave tail into

genuine concavity.

It is easy to find out from (4-57) and (4-57a), the two end points, s and b, are symmetric
against o/2 (the middle of the gidistribution), as we have introduced before, the
preliminary Hy curve is symmetrical. This means that, in the preliminary case, only the
‘middle section of the H, curve is concave, but (for a > 4) its right and left “tails” are
quasi-concave only. Since s or b is an increasing function of a, then a larger a implies
longer quasi-concave tails, but the middle concave interval decreases relatively against a.
This is because, (b —s) / a = ((0t+2)l/2 + 2) / o decreases against a. If o is large, for

instance, a = 100, then in the preliminary case, (b — s)/a = 12%, a small portion.

Now, in a general case where the uniformed data tuple length is no longer held, and R,

can be as small as possible in the left section of the g distribution (as long as Ry > 0

holds). In other words, the left end of the interval can be stretched as left as possible, and

ultimately s = 1. This then proves the first part of (4-53).
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Continuing the above example (where o = 100) in the general case, the concave interval
could be increased from [s, b] to as large as [1, b]; and the percentage of the whole

concavity section [1, b] is increased to (b — 1)/a = 56%, a big increase! A more concrete
example is given here with a = 10, andg_distributions =1{2,3,52,10, 8, 6, 5, 3, 2, 3}.

In this case, the related H; curve gets its maximum concavity interval [1, 7], against [3, 7]

in the preliminary case.

Theorem 4-4 and its implications have now been fully proved. However, an important
notice here is that the maximum concave interval is only possible and may not be seen

often in empirical cases. This is because, as implied above, the left extended concavity
interval corresponds to a left skewed g. distribution. At the same time, the concavity
interval can otherwise be smaller than that in the preliminary case. How large the
concavity interval could be obtained from an application is determined by the

underlying g'distributions. The value of Theorem 4-4 and the previous ones is in that

they formally describe the properties of the raw frequency distributions, the shapes of the

H, curves, and their relations with the underlying g distributions.
?

In this chapter, we have introduced and proved the H; concave and quasi-concave laws,
and also delivered a number of accompanied interesting implications and properties
embodied in the corollaries. Hereafter we will not distinguish quasi concavity and
concavity unless required, since a concavity implies quasi concavity, though not vice

versa. The H; quasi concavity property would be applied to many pattern mining
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applications, just as those quasi-concave functions are widely used in modern economics,
operation research and other related domains. For instance, if an H; is known, then H;
and H;,; could be predicted as well, according to the H; expressions. This property and
other properties, such as the relation between odd and even length pattern frequencies,
could be taken as check pdints of the correctness of a mining algorithm. They can also be
used as a reference for the determination of the boundaries of supports or frequentness of
patterns in concise representations [4, 28, 34, 35], or for the estimates of the number of
patterns of different levels {24]. However, our emphasis is not on the application of the
raw pattern based studies. The more significant use of the H; concavity property is on
how to refine the raw pattern frequency distributions. For this, we present below a prime
property of the quasi-concave function. Other properties of it and their applications shall

be studied in future work.

The prime property of a quasi-concave curve f(Z) is that, in the real value situation, the
domain of Z covered by f(Z) is a convex upper contour set, where Z can be a vector of
multidimensional variables [22]. Here, we can imagine that the domain Z as a hyper
polyhedron; and the convex domain means the polyhedron is dense — without internal
hole and the surfaces of it are convex. Intuitively, given a straight line between two
separate points Z; and Z; (i #j) within the convex polyhedron, all of the points of the line
will be within the polyhedron [22]. Since each Z; is a multidimensional hyper point, we
term this domain density as “dense by point”. The domain covered by a quasi-concave
Hj curve is the integer k, from 1 to «; and this domain is dense meaning no integer m (1 <

m < o) is not been covered by the H; curve. This is an easy but superficial understanding
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of the prime property of the H; concavity. There are two important things to note.
Firstly, it is not appropriate to consider the discrete integer domain density the same as
the continuous density as in the real value situation. This is because, theoretically, for a
given domain (interval) [a, b], the ‘number of points within it is infinitive in the
continuous case but finite in the integer case; and intuitively, the discrete integers within
the domain could not form a ;:ontinuous line. Secondly and more importantly, if we took
k as a one-dimension integer only, then we totally ignored the semantics of k. Under the
H, regime, each k value represents a collective of patterns of length k. That is the insight,
and k implies a function to collect all of such length patterns:
k =k(Z).

Then, H;=H(k) = Hk(Z)) = {(Z).

In this case, since each k represents a collective of hyper points Z, then reasonably we
can take k as a “hyper plane”, and the domain density under the concave H; curve can be
termed as “dense by (hyper) plane” or “dense by collective”, compared with the “dense
by point” in the conventional real valued case. To understand the “dense by plane”, we
take a simple example of a pattern domain Z of elements (values) A, B, C, which can be
illustrated as a 3-D polyhedron graphically as plotted in Fig. 2, where each of the three
values is a hyper point represented by a unit vector in the polyhedron. And, the patterns
generated from them can also be plotted as vertices (points) of the polyhedron. Then,
connecting the patterns of same lengths k forms (hyper) planes L;, L;, and L;
respectively, where L3 shrinks into a (hyper) point in this simple example. In this way,
the concept of hyper plane in this space corresponds to a collection of patterns. Thus we

can analogue “dense by plane” to “dense by point”: for a given straight line connecting
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two non-adjacent hyper planes, L; and Ls,
A AC L3 =ABC

for instance, the line must pierce through all A\

the hyper planes (here only L;) sandwiched AEB
between these two planes (L; and L3). This . :

then gives the semantics of the quasi- N
Y BC
concavity of H; curve, under which no more )

patterns could be enclosed into the domain B

Fig. 2. A convex domain of H;
covered by the H, curve. On the other hand,
such domain can be too dense in an application. For instance, when a new data tuple is
added, then the hyper planes in Fig. 2 could overlap. This corresponds to the already
mentioned case where the full enumeration based pattern generation produces excessive
number of patterns. Considering these phenomena together, we term the domain

convexity (density) a saturation property in lieu of Hy concavity for the full enumeration

pattern generation regime.

In the following chapter, we will see how the quasi convexity (saturation) property could

be used and maintained in pattern frequency adjustment.
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Chapter 5. The adjusted pattern frequency distributions

The previous chapter has introduced a set of interesting properties governing raw pattern
frequency distributions under full enumeration regime. A merit of complete enumeration
approach is the fullness of patterns produced, which is reflected by the saturation
(concavity) property of the associated Hy curve. However, as discussed in section 2.3,
the full enumeration means meaningless patterns will be generated with other drawbacks,
notably the overfitting and underfitting issues, bias for generated vs. original patterns,
and favoring shorter against longer patterns. Ideally, we want to overcome these
drawbacks and at the same time keep the advantage of the full enumeration approach. To
do so, we first look at why full enumeration mode has been used by conventional mining

approaches, and then we present the theory on how to adjust this approach.

5.1 The assumptions underlying the full enumeration mode

In a sense, the drawbacks induced by full enumeration mode and examined in Section 2.3
are the surface problems, and one may ask, why the full enumeration mode is used, since
it has so many drawbacks? We can trace these problems to the following underlying
assumptions that researchers have adopted but not formally reported in the relevant
literature:

1) The assumption of full repeatable random sampling. From statistical point of
view, the concerned pattern generation is exactly a re-sampling over every
original data tuple. The full enumeration then exactly corresponds to the full
repeatability assumption of (re)sampling, as explained below.

2) The assumption of uniform probability distribution of the patterns to be generated.
92



3) The assumption of every generated pattern is effective, or in other words, no

pattern generated is meaningless or a “random walk”.

Only with the identification of the above assumptions could we explain why and how a
miner generates the patterns. That is because: the miner could not consider an original
tu’pie as a pattern. For instance, without prior knowledge, a miner could not assume that
the first tuple of the DBo in Table 1, (V;V4V7), is a true pattern, but can only postulate
that combinations of the three elements are equally possibly patterns. Here the miner
does not only take the uniform probability distribution assumption, but also assume the
elements can be rlepetitively drawn to form different patterns with each other. In this

sense, the full repeatability is the base of full enumeration.

The question is then whether this full repeatability assumption would hold. In a sense,
this assumption could be justified for the original data tuples. For instance, in a market-
basket problem, every element can be drawn repeatedly by customers to form
transactions (data tuples), since every element (product) can be always refilled by the
supplier. ‘Such transactions are the originally sampled events. In other words, if each
original tuple is taken to be a single observation, then we can take it as an outcome of
pattern generation based on full repetition (or full replacement) assumption. Regarding a
sampled event (tuple), e.g. V1V4V,, the full repeatability of re-sampling may not be
justifiable: After V; and V4 had beén drawn to form a pattern, for instance, would V, be
used again to form another pattern with or without other element(s) together from that
tuple, since V, is already used? There is no predetermined answer regarding a single data

tuple, since in pattern mining, only the presence of an item matters, not its quantity.
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At this point, a question may arise, since we have stated in Section 2.2 that the full
enumeration mode over every single tuple is equivalent to the full enumeration from the
whole element space,; but here we do not suppose full enumeration of pattern over a
single tuple is justifiable, is it a contradiction in the context? The answer is, although
full repeatability is the base of full enumeration, it does not necessarily imply that the
repeatable draws will produce every possible combination of the elements, let alone
every possible patterﬁ. This can be verified practically, even in a market-basket problem,
the number of patterns is normally far less than the power set. That is, the above
paragraphs do not mean full pattern enumeration from the whole element space is a
natural consequence of the assumed full replacement sampling mode. The logic is clear
then, full pattern enumeration from a single data tuple is not justifiable, but it 1s

fundamentally exercised by conventional mining approaches.

It is because of the full repetitive (re)sampling assumption and because of the
equalization of this assufnption with the full pattern enumeration, the drawbacks of 2.3.7
through 2.3.9 listed in section 2.3 take place. Since, for instance, according to
combinatorics described in Chapter 4, the frequencies of shorter patterns will certainly be

larger than the longer ones, and hence causes drawback 2.3.9.

Similarly, the third assumption is reflected from the fact that the occurrence S, of a
pattern Z is incremented by every generation of Z without any deduction or adjustment in
conventional pattern mining approaches. The deeper reason for this is that, with the

absence of domain knowledge, a miner could not assume a single data tuple is a random
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walk over the whole dataset, or an element is a random walk towards a single data tuple.
Subsequently, the patterns are generated from that tuple and they can only be taken to be
equally meaningful. From this we notice how a contradictory consequence is created in
pattern mining: in the generating process every pattern is meaningful but the process ends

up with too many meaningless pattéms and hence an overfitting!

Now, a question may arise: whether approaches, such as the constrained, the concise
representation approaches, including the “closed” and the “maximal” approaches, would
solve the above full enumeration related problems, since, as reported, they produce a set
of greatly reduced number of patterns [2, 25]? Our answer is negative. Basically, the
mission of these approaches is not to address and resolve these problems. Respectively,
the constrained approach is mechanical and ad hoc, since it does not exactly “reduce” the
mining result set but rather, “take over” only a subset of the result satisfying the
constraints, and the constraints are application/user determined. Here the takeover means
that, even though the delivered result set is smaller, the listed problems are delivered
without a radical remedy. The concise representation approaches, as the name implied,
do not exactly reduce the mining result set either, but just use a subset to “represent” the
whole result set. The only reduction is the memory space to store a subset of the result
instead of the whole. The computation cost can be reduced and mining efficiency be
improved [34, 35, 36], but post work is needed to get an' exact pattern and its
frequentness. A more subtle issue is that, since the concise approaches do not necessary
deliver the substantiated patterns [35] té the user but just wait and answer the user’s

query as to a pattern is frequent through the mining program, the user may not be alerted
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of some surprising patterns! In general, this mode may not be very plausible to the user,
who expects to get full knowledge of the mining results from the miner instead of
querying the patterns that the user may not know yet. Finally, a common evidence of no
pattern reduction from these approaches is that the pattern frequentness, S;/u, as defined
in (2-1), is commonly used by all of the approaches mentioned above, and it does not
matter how small the result set is delivered, the included individual pattern frequentness

is the same as that in the complete result set.

5.2 The principle of pattern frequency adjustment

The above section reveals a methodological Weaknéss of the full enumeration based
pattern generation — it is single data tuple based, since the resulted pattern set is just a
simple collection of the separated generations over every original data tuples. Such tuple
based generation could only follow those underlying assumptions listed in section 5.1
even though they are not very plausible, since no better assumptions coﬁld be adopted.
This methodological weakness then leads to a contradictory consequence of the
generation, in the sense that every combination generated from each data tuple is equally
taken to produce an effective pattern, but their assemble eids up with too many
meaningless patterns. What we need then is how to organically adjust the tuple based
pattern generation with the information embodied in the dataset in whole, such that the
drawbacks identified in section 2.3 could be resolved, and a reduction of the meaningless
patterns could be pursued before domain specific constraints have been imposed. We
term this kind of reduction an “unconditional pattern de-sampling”, and the reduction is

realizable based on the following two observations.
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Observation 5-1: For a given set T; of m (m > 1) elements over the original dataset (e.g.,
the DBo of Table 1), if T; in whole is not a pattern, then at least one of its elements is a
random walk to Tj;.

Observation 5-2: For the same T; in observation 5-1, if T; in whole is a pattern, then at
least one of its immediate proper sub patterns (of m — 1 elements) must be redundant, and

hence meaningless to generate.

Observation 5-1 is philosophically unarguable; note that an element is a random walk to a
single data tuple does not necessarily mean it is a random walk towards the whole
dataset. Observation 5-2 is also unarguable based on remark 2-1. For instance, if T; = {A,
B, C} is a pattern that means the three elements present steadily in the dataset, and if AB
and AC also present steadily, then BC must present steadily and hence be a pattern
without a generation. Indeed, in this particular example if we know any one of the
length-2 combinations is a pattern, then we know the other two are. That is, two of them
are redundant. This is why the phrase “at least” is used in observation 5-2. Furthermore,
the first observation is even stronger than the second one in the implication that we can
safely de-sample at least one immediate sub pattern from an original element set T;.

The problem is, regarding a single T; = {A, B, C}, we do not know which of the three
length-2 patterns is (are) meaningless to generate and should be de-sampled. Following

elaborates our approach.

Since a reduction of pattern generation (a pattern de-sampling) means a decrement of the

sum of the pattern frequencies, our approach to realize the pattern de-sampling is then
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through the adjustment of the frequency distribution based on a principle as manifested
from the above observations:

Principle of pattern frequency adjustment: the accumulated frequency of the
immediate proper sub-patterns generated from a set T; of m elements should be safely

reduced by the frequency of T;.

Since T; represents m elements, where m is any feasible number (1 < m < a), repeatedly
applying this adjustment principle to all pattern levels from a to 1, it is easy to see the
frequency of patterns of length k should be affected by that of all of their super patterns.
This is well consistent with the spirit of the inclusion-exclusion principle stated in
Section 4.3, where we have noticed that the determination of the total frequency of

length-1 patterns involves that of patterns of length > 1:
Z(—I)HH,{ =u, (referto4-11)
k=1

This inclusion-exclusion principle then can be naturally extended to represent the above

adjustment principle in whole from level 1 to o, formalized as the following proposition:

Proposition 5-1: Extended implications of the “inclusion-exclusion principle”:

i). The raw frequencies of patterns of length / must be adjusted (reduced) by that '
of their super-patterns of length > [.

ii). Some patterns might be de-sampled.

iii). The degree of pattern de-sampling and frequency reduction are defined
implicitly by (4-11).

iv). The adjustments are to be done in an alternating mode.
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Elaboration of the above proposition is as follows:

Recall that the frequency of a pattern is equal to the number of intersected element “I.”
held by a pattern (refer to Proposition 4-1), then I; counted by a super pattern should not
be recounted by its sub-patterns. This is the essence of the proposition as manifested in
parti). Partii) is a corollary of part i). When a sub-pattern Z and its super-pattern hold
the same I, then by reduction, Z’s frequency will become zero, which means Z get de-
sampled. This is an important mechanism, and it allows the expected de-sampling. Part
iii) states that the pattern de-sampling and frequency reduction must be done properly,
neither less nor more than the formula requires. We will see what is exactly required

soon. The reason for part iv) is the same as given in section 4.2.

The next section introduces the mathematical model to adjust the collective pattern

frequencies based on the above adjustment principle and proposition 5-1.

5.3 The adjusted Hy, hx

Definition 4-1: The “adjusted collective frequency” (of all patterns of length k) is:

hi=Hy — i(-l)“‘"ﬂj , (ke[l,a)) (5-1)

J=k+1
which can be simplified to:
he=Hy — hiso, (k e[l,a]) (5-2)

with  /=0. k<l,ork>a) (5-3)
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To be a measure of frequency, A must be nonnegative. In fact, we have the following

theorem to guarantee it:

Theorem 5-1: If the underlying H;—curve is strictly quasi concave, then /; defined in (5-
1, or 5-2) is always positive; and it fits the boundary conditions at k = 1 and k = «

seamlessly.

Following we prove the theorem by induction. Since Hy is strictly quasi-concave, we
examine the problem in two intervals, [1, q] and (q, o] respectively, where q is the

maximum point of Hy and a. is the longest pattern length.

Fork € [1, q], take the initial case k = 1, we see (5-1) is exactly (4-11) itself, thus

hy=u. (5-4)

It means the theorem holds at k = 1, since ;> 0. At the same time, (5-4) tells that (5-1)
or (5-2) automatically fits the boundary condition atk = 1.

Atk = 2 and by (5-2);

h=H;—h;=H;-u>0, (5-5)

which is obvious, since H; =Y, ITi§ >u (unless IT;1 <1(G =1, 2, ...u), butitis
too trivial a case, and more importantly the Hy curve shrinks into a point H; only in this

case) ; where T; is the i"" tuple of DBo.

Now, suppose the theorém holds at k=t (1 <t < q), such that A, > 0, we check if iy >0

would still hold.
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Since the theorem holds at k = t, it thus holds at k =t — 1 as well, that is, &,.; > 0; and
notice H, — H,.; > 0 for t € [1, q] (because of the H; concavity as given). Then, by (5-2),

it means:

hyyj=H, —h,=H, —(H.; = h.))=(H,— H.)) + hey >0, (5-6)

and the theorem is proved fork € [1, q].

For k € (g, a], we start at k = o as the initial case and prove the theorem in a reverse
direction. In this case, note that there is no pattern of length k > a. Thus, &, = H, = F(D)

=0 (for t > a, and @ is the empty set). It thus méans,

h,=H,—hav;=H;>0. (5-7)

It again demonstrates how (5-1) or (5-2) nicely fit the boundary condition at k = a, and /7
> 0 at the initial case k = a, such that the theorem holds.

Atk = -1, and notice that by (4-37),

1 k+1
Ha-I:(—

Hi) k=01 =(a/Ry) H,, then:
R ok

hoj=Hyj—he=Hq;~H, = (o [ Ry.1—1)H, >0, (5'8)

which results froma > 1; 0 < R,;<1;and H,>0.
Now, suppose the theorem holds at k = t (q < t < &), such that i, > 0, we check if h,.; >0
would still hold.
Since the theorem holds at k = t, it thus holds at k =t + 1 as well, that is, A,,; > 0; and
notice that H,; — H, >0 for t € (q, a]. Then, by (5-2), it means:

hoy=H.) —h=H. —(H—hyp)=H —H)+hyy >0. (5-9)
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That is, the theorem holds for k € (q, a] as well, hence the theorem 1s fully proved.

Theorem 5-1 justifies the necessary conditions for 7 to be a frequency function. The
following points justify the sufficient conditions for A to be the expected adjustments
cbvering the issues more than that addressed in from subsection 2.3.7 through 2.3.9:

a) hy is truly succinct, thus overfitting is suppressed. This can be seen clearly from
(5-2) which indicates that the sum of frequencies of shorter patterns is subtracted
by that of longer patterns, anci hence there is no double counted inter-collective
frequencies in the accumulative frequency.

b) h; well addresses the combinational effects in pattern formation, and it takes care
of longer patterns that should not be less weighted. In particular, as shown by (5-
7), the longest patterns’ raw frequencies would not be reduced.

¢) hy also takes care of those original patterns from the original datasets as well,
since the longer or especially the longest patterns are the original ones. This is a
noticeable point that all the original patterns could be maintained in the final
results set. Contrarily, they cannot all be recovered from conventional mining
result set.

d) On the average, the adjustment is relatively evenly distributed over different
collectives. That is, the collectives of larger number of frequencies would be
adjusted more than those of smaller frequencies.

e) More importantly, the adjustment would not excessively de-sample the patterns

generated from the full enumeration, since the adjustment maintains the quasi
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concavity property. Below we prove this assertion first and the other statements

will become clearer.

5.4 The hx-curve and its properties

Similar to the H,-curve, by connecting all of the A, values together, we get an h-curve,

and its quasi-concavity property can be presented by a theorem below:

Theorem 5-2 (h; quasi-concavity theorem): If Y, ITil > 2u, wheré T; is the i tuple of the |
original database DBo, then if the corresponding Hi-curve is strictly quasi-concave
downward, then the h-curve i_s strictly quasi concave downward as well, and it reaches
its apex value at k = q’, where q” = q or q+1; and q is the apex point of the corresponding

Hj-curve.

Note the condition of Y, IT;l > 2u, or equally average ITil > 2, is symbolic only, since any
complex mining problem would satisfy it. Another implication of this condition is the
maximum pattern length o = max(/Til) > 3.

To prove the above theorem, we first look at the following relations:

hiv1 — b = (Hiar — ha2) — (He — hisr),
or, (hrr — hi) + (Mie2 ~ hiys) = Hewr— Hy, (5-10)
or, hxs2 — hi = Hyoy— Hi. (5-10a)

On the other hand, we have:

hewr — b= Hy — h) — (Hip — hea)s

or, her — hiep = Hy— Hy. (5-11)
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We notice that, for k € {1, q), based on theorem 4-2, Hy— Hy.; > 0, (5-10a) and (5-11) are

consistent and we get:

his2 > hy, (from (5-10a) (Case I)

and, hye; > heg, (from (5-11) (Case II)

and refer to (5-5), and notice H; =), ITil > 2u, we have:

hy > hy, (5-53)

Since k can be any number within [1, q), the only way to have (5-5a) and both cases I and

II to always hold within this interval is:

hiv2 > hiwr > B > hey. (5-12)

Similarly, for k € (q, a], Hr+s — Hi <0, (5-10a) and (5-11) are consistent; shifting back k

by 1, we get:
hisr < g, (Case I')
and, hk < hk.z, (Case H’)

and, refer to (5-8): hy.; =Hy; — hy,=(0/ R, ;— 1) h,; and notice 0.> 3, 0 < R,.; < 1, then:

ho-1 > hg, ' (5-8a)

That is, within (q, a], the only way to always maintain (5-8a) and the cases I’ and II’ is:

hk+1 < ]’lk < hk.] < s (5—123)

However, at point q, (5-10a) and (5-11) represent things differently as follows:

hge2 < hg, (from (5-10a) (5-13)
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and, hg.; > hyy. (from (5-11) (5-13a)

Then, the relation between A, and A, is not fixed and can only be case determined. In
other words, the apex value of A in an application can be reached at either q or q+1, and
we simply refer to it as q°. Here, we do not examine whether h; = h,,; would happen,
since, no other integer exists between q and g+1, then even if h, = hg,; takes place, it

does not affect the quasi concavity property.

We can now conclude that, h-curve reaches its apex value at q’, and it is strictly
increasing within [1, q’] (based on (5-12)) and strictly decreasing within [q’, a] (based on

(5-12a)), ly-curve is thus strictly quasi-concave, and the theorem is fully proved.

Since Mh-curve keeps the quasi concavity property, it means under the proposed
adjustment regime, sufficient number of patterns is still maintained. However, the degree
of quasi concavity has been reduced from that of the Hy-curve. Accordingly, we use

sufficiency instead of “saturation” to mean the A, concavity.

The hy-curve is shown in Fig. 1, which depicts how h; compresses Hy, as Ay curve is fully
underneath the H; curve.
From the above proofs, and assuming the condition of theorem 5-2 holds, we can induce

other implications as follows:

The calculus function of /;: From equation (5-10):

(hir1 = M) + (Mia2 = hies ) = Hiws— Hy,
or, A+ Ahk+1 = AH, (5—10b)
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or, Ahk/AHk + Ahk+1/AHk =1.. (S-IOC)

(5-10c) is taken to be the calculus function of h over Hy.

Corollary 5-1: If an Hi-curve gets its apex value at k = 1, then the related h;-curve will
definitely reaches its apex value atk = 2.

This is obvious, since h; > k; is always true (refer to (5-5a)) and q° = q + 1 applies.

Corollary 5-2: The difference function between the Hi-curve and the hi-curve is also

quasi-concave.

In general, a difference of two quasi-concave functions may not necessarily be quasi-
concave. Corollary 5-2 then represents a special “quasi-concavity invariant” property of
the difference function between the H; and the h; curves. Indeed, the proof of tﬁis
corollary is rather straightforward: the difference function is the shifted A -curve itself,

since from (5-2):

Hk - hk = hk+1 . (5'14)

This corollary and (5-14) indicates that the la;ger the H;, the larger the adjustment. In
other words, the adjustments are relatively evenly distributed over different collectives
and correspond to point d) claimed in the end of subsection 5.2. At the same time, it
reflects point b) that the adjustments correct the bias for shorter patterns. In this regard,

following corollary depicts more precisely.

Corollary 5-3: The adjustments correct and redistribute the frequencies from shorter

patterns towards longer ones, such that:
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<Y H,, ke [l,q) (5-15)
he>Y% Hy, ke (q,al (5-15b)
and, hy=%H, (5-15¢)

Proof: According to the h quasi-concavity property and for k € [1, Q’), i < hi4y, then by
(5-14), Hy = hy + hyyy, it means Hy > 2h;. (5-15) is then proved. Similarly we can prove

(5-15b). And (5-15c) is a natural consequence of the former two.

In addition to the above, in the case of @ = q + 1, the redistribution toward longer
patterns is even obvious because of the shifted apex point from H; to k. Even without
the apex point shifting, the relation hg.; > hy.; as seen in (5-13a) is generally held, which

is another sign of the redistribution and a characteristic of the A -curve.

Corollary 5-3 then formally demonstrates that A, realizes the desired correction of under
evaluation of longer patterns than that of shorter ones by conventional mining
approaches, and Ay thus takes care of combinational effects in pattefn formation as
addressed in subsection 2.3 and the end of subsection 5.2. Corollary 5-3 also implies that
about half of the raw frequencies would be squeezed accumulatively. This is to be seen

formally in the next subsection.,

5.5 The aggregative relations between the Hx and the hx measures

From (5-2) to (5-6), we have:
h[ = H] - I’lg

hz =H2 —]’l3
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hey=Hg 1 — h,
h, =H,

and, —u-= —h; (refer to (5-4))

Summarize the above equations together, we get:

th“uz ZHk_ th ,
k=1 k=1 k=1

a

or, 2ihk —u= Y H,. (5-16)
k=1 k=1

a fn
Note that H, = h, = 0 for k > a, thus: ZHk = ZH" = w (the raw accumulative

k=1 =
frequency).
Set the “adjusted accumulative frequency” as w,, then from (5-16) we get:

wa= Y By = (w+u)/2, (5-17)
k=1

which is a coincidence with (4-35), and hence:

Waz= O hy = Hoy (5-18)
k=1

(5-17) tells how the adjustment compresses the number of accumulated raw frequencies.

Since normally u << w, (5-17) implies w, ~ w/2. We term it a “law of half”.

Meanwhile, since every increment of frequency of a pattern implies a generation of that

pattern from a data tuple, then the number of patterns deducted from the adjustment
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process would be proportional to the number of frequencies reduced if such a reduction
leads a pattern de-sampled. That is, the estimate of the lower boundary of the total
number of patterns after the adjustment process would follow the law of half. This is

another important implication in an application.

The above relations thus enable the adjusted accumulative frequency to be easily
predetermined. This is what many approaches pursue but no final finding has been

reported to our knowledge.

5.6 The concavity of hi-curve

Similar to the Hj-curve, after we have proved the h; quasi concavity and other

accompanied properties, we have the & genuine concavity property as well.

Theorem 5-3: If an H;-curve is strict concave downward over an interval E = {a, b], then
the corresponding Ai-curve would maintain the concavity over the interval [a;, by],

subject to the only condition of:
(Hi-1 + Hy) > 2(hit + hya 1), (5-19)
where a; and b;can be either greater or less than a, b respectively.

Proof: According to the definition of concavity (refer to the proof of Theorem 4-4 and
formula 4-54a), if an A, distribution curve is strictly concave over an interval E, then for

any three consecutive integers k-1, k, k+1 € E, the following relation must hold:

Rz + gz = e > V2 (hcg + hes ).
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The above can be expressed as: Xy = 2hx — (b + hier) > 0. (5-20)

Our task is then to prove how (5-20) could hold over the interval [a;, b;] stated in the

theorem.
- Because of the strict .concavity of Hi-curve as given by the theorem, then there exists:
Hy %2 (Hip + Hiyp) > 0.
O, A = 2H, — (Hy.;+ Hi 1) > 0. (5-21)
From the dgfinition of hy, we know Hy = hy + hiy g, then (5-21) becomes:
A =2H; — (Hi;+ Hyy 1)
=20 + haas) = (s + i) + (it + Bia2))
= (2 — (s + hia 1)) + Chgry — (i + hia2)
= Xk + Xk+1 >0, (5-21a)
where, X1 = 2Ry — (he + s 2). (5-20a)

Note that, Xy, is a forwardly shifted Xy over triple (k, k+1, k+2), which can be always
feasible for a > 5, since max(k) = b — 1 < a — 2 from the boundary of the concavity

interval of an H, curve stated in (4-57) of Theorem 4-4.

From (5-21a), A = Xy + Xy, > 0, we see it is not possible for both Xy < 0 and Xy,; <0to
hold. On the other hand, if both X > 0 and Xy, > 0 hold, it means conditions of (5-20)

and (5-20a) are both satisfied and the concavity maintenance of hy is fulfilled. Because
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of the similarity of Xy and Xy, in their formulation, we take Xj as the target to discuss

the condition to keep its positivity. This can be done by the following manipulation:
Xk =2k — (s + e 1) = (e — hie) + (hie — hier)
= ((Hit = bier) = b)) + (Hi = biad) = hiar) = (Hier = 2her) + (Hie = 2hie )
= (Hi - + He) = 2(hey + hii 1) > 0,

which is the condition (5-19) stated in the theorem; and if Xy > O for every k

within (a, b) is maintained, then A; maintains the concavity.

On the other hand, from the above context, we see the definition of Xy does not restricted
to (a, b), so the interval of A concavity can be either larger or smaller than [a, b], while it
is harder to entail the concavity before than after the apex point q of the H; curve. This

can be seen from (5-19) again, which is reformulated as:
Xy = (Hy .1 — 2 p) + (Hi = 2Ry ) > 0. (5-19a)

According to Corollary 5-3, we know Hi.; > 2hy.; for k < q, which support the above
inequality. For the second term, although Hy — 2h is ensured, but Hy — 2h;,; > 0 is not,
because hy is increasing against k before q. Therefore, the ultimate sign of the left hand

side of (5-19a) is not predetermined.

However, for k > q, although H;.; — 2k, becomes negative (refer to Corollary 5-3), Hy —
2hi+; would be most likely positive and compensate the loss of Hy.; — 2hy.;, because Ay is
decreasing against k after q, and (Hy — 2hy4;) > (Hi — 2hi ) > (Hy.; — 2hy.p) could hold and
(5-19a) to be reached. Additionally, as we can see from (5-21a), if k =b - 1, and if both
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Xy > 0 and Xyy; > 0 hold, it means the right end of the A, concavity interval will be

extended from b to b + 1. That is, b; > b takes place.

Theorem 5-3 is now fully proved. As have done in proof of Theorem 4-4, we continue

the example given there with o = 10, and g_distributions ={2,3,52,10,8,6,5, 3,2, 3},

the maximum H, concavity interval is {1, 7]. Here we can find the corresponding /i
maintains this concavity interval without a change. In next chapter, we will see the cases

that a, or/and b, differ from a or/and b in empirical datasets.

As mentioned before, the concavity and quasi concavity of A-curve is very important. It
lays a theoretical foundation for the reduction of the number of raw patterns generated
from full enumération, and at the same time the sufficiency property is maintained, which
ensures non-excessive reduction to happen. The concavity and quasi concavity are
essential features of our theory, and a justification of the apprbpriateness of the proposed

adjustment functions.

5.7 Further semantic justification of the adjustment of Hx to hx

Having presented the above A, properties, we now prove that the A adjustment exactly
represents the principle of pattern de—sampling and the semantics of the two observations

- stated in section 5.2.

Theorem 5-4 (the equivalence theorem): The adjustment of Hy to Ay is effectually

equivalent to an alternated pattern generation (combination) by a reduced order. That is,
i=a &
m i e = .
compared with H; ;glci ,
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Proof: Notice that Hy and h; both are summations of combination operations over
individual tuples of the underlying dataset. Theoretically, there is no restriction of the
data size to the use of H; and /. For simplicity, we prove the theorem assuming u = 1,

i.e., only one tuple contained in the dataset; and the length of the tuple is m. That is, for

H, = Cl; , we only need to prove

k—1

h = C,.- (5-22a)
We prove (5-22a) in induction again.
Starting from k = m (the highest level):

hw=Ha= C=1= C'. = C... which satisfy (5-22).
Fork=m-1:

et =Hpt —hw = Cr ' —1= m-1

(m=~1)~1 k-1

=C,.=C,. =C
which means (5-22a) holds.
Fork=m-2:
hmo2=Hpy— hy g
= C:_z —(m -D=%@m*(m-1))-(m-1) =% (m- 1)(m-2)

(m~-1)-2 (m—-2)-1

2 k-1
= Cm—l = Cm—l = Cm—l = Cm—l °
which means (5-22a) holds again.

Now, suppose k =t + 1 (0 < t < m) the formula (5-22a) holds, that is
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b =C. - (5-22b)

Then, for k =t,

= bt = Cl - Cl

_ m! B (m-1! (m-D'(m—-(m—1))
T m—-1)! tm—-t-1)! t(m—1)!
_t*m=D!_ (m-1)

t-1
= Cm-—l ’

tm—1)!  (—Dm—1)!

Note that the formula C; - C:n_l = C::l can be found from many mathematic

textbooks.

In conclusion, when k = t, (5-22a) still holds, and it is fully proved.

Now, for the general case with g_distribution and u > 1, as already known,

. i=a k
H, = Z ng _; and note Ay, is a weighted (by g ) summation of (5-22b), such that:
i=k ! ! ‘

i=a k
hivr = Z giC‘—l , then

i=k+1

Ay =Hk—hk+1=§gicf "iia: gin_l =(§glc,k + gk)_,iia: giC:l

i=k+1 i=k+1

i=a

>.8C-C)+8, = glgiC:l + g C. (5-22¢)

i=k+1

i=a k-1

2.8C.,

i=k

which is (5-22), and hence Theorem 5-4 is fully proved.
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Additionally, follows are other implications of Theorem 5-4.

Firstly, setk’ =k -1, and i’ =1 - 1, then (5-22) becomes:
i=a got  i=acl .

=28 C = 2 g1C, (5-22d)

which paves a way to prove the & quasi concavity property as done for theorem
5-2.
Since the h; equivalence (5-22d) shown above has the same formulation as Hy, i should
possess the same properties as Hy, and hence the concavity. We did not use this approach
to prove theorem' 5-2 is because it would be harder to derive other properties and

corollaries presented in section 5.3.

Secondly, notice C: =1, where n > 0. Then at k = 1, in a general case, (5-22) becomes:

i=a

h;= iglc:' |k=1=2gict)_l=ligi =, (5-23)

which means the conformity with formula (5-4) on one hand; on the other hand, it
notifies us of attention to the details in calculation of w and w,. When we calculate w, the
accumulated H,s, according to (4-12), k starts from 1 to a, for w,, the accumulated h;s
(by 5-22d or 5-23), k starts from O to o. -1. For instance in the particular case (5-22a), o. =

m and u =1, then
w=>C,=2"-1
k=1
= k m-1 m
and, w,= sz_l =2" = (2™ =1+ D2 = (w+u)/2.
k=0

" This is another method that can be used to prove the “law of half”.
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Now, what can we infer from the above equivalence theorem? The inference is that, for a
given tuple of m elements in DBo, different from the full enumeration regime (H,) that
generates patterns from the m elements, ki takes (m — 1) elements as the generation base.
Meanwhile, notice that the original tuple of m elements is kept as it is, as shown in the
above proof. Considering these two aspects together, we can see that the adjustment Ay
means that, either the m elements in whole (the original tuple) is a pattern, or (an
inclusive or), at least one element is a “random walk”, and hence the patterns can only be
embodied in its subset of (m — 1) elements, which reflects exactly the semantics of
observation 5-1 and 5-2, and hence well represent the principle of pattern frequency
adjustment and proposition 5-1 presented in section 5-2. The above interpretation then
illustrates that the proposed adjustment /; is philosophically sound in three senses: It
reduces meaningless pattern; it is safe; and it is rational. In other words, Theorem 5-4
presents a perfect semantic justification of the 4 adjustment, and it lays a foundation for
dimension reduction and noise diminishment in pattern generation, in addition to what

have been stated in the end of subsection 5-3.

Finally, we present the approach to calculate hs. Although it is the most efficient way to
get s from H;s if they are available,‘ there would be a need to know ;s before H;s or
H;s could not bé precisely obtained. Because of the similar formulation of Hy and hy
equivalence, /i can be calculated without knowing H;s by the tabular approach used in
Table 9. Table 11 gives an example. The only differences between Table 11 and 9 are:
because of the reduced order combinations, each value of k is decreased by 1 (Table 11

keeps the original k values in the brackets to refer to the subscript of A;); and according to
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(5-23) the elements of the third row Table 11. The recursive computation of

hkS

(k = 0(1)) would be the same as that

e 1 2 3 4 5 6
of the second row (the G; series).

K\Ql 2 (3 |2 |2 [0 |1 |[Mh
Starting from row 4 (k = 1(2)), ©, ORE 3 12 3 0 RN
(first row) should be right shifted 1(2) 3 4 6 0 5 |18
by 1 column. The remaining |2 (3) 2 6 0 (10 |18
operations are the same as the ones 34) 2 0 (10 |12
described for Table 9 (see Section 4- 40) 0 5 >

5(6 1 1
5) ()

2 6 8 16 {0 32 | w, =
64

The purpose of the above example is

to show how to obtain the /s in an equivalent way, but their inner compositions (the
elements of the bold triangular matrix of Table 11) may not necessary be kept the same

under the de-sampling policies (e.g. the solution to the model presented in chapter 7).

The above presents an insight into the understanding and obtaining the /s based on the
equivalence theorem. The application of the theorem can be further extended, as shown

below.

5.8 Higher order reductions

As can be implied from the previous subsection and from the principle of pattern
frequency adjustment, there would still be some meaningless patterns retained after the hy

adjustment, since the reduction is at the “least”. In other words, there is a need to further
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reduce the number of patterns, or, further adjust the pattern frequencies. Indeed, the

approaches proposed in previous subsections can be rightly extended to feed the needs.

Since h; has similar formulation as Hy, the reduction operations can be applied to A as
well. For this we term Ay, as the first order reduction of H,. The second order reduction is
noted as hzk, and

W= b= W, | (5-24)

which is analogous to (5-2).

The first order reduction is to diminish redundancy of pattern generation in general; the
second order reduction reinforces the effect of the first order, and at the same time can
effectually remove all génerated length-one patterns (except those original tuples of one
element only). This effect may be desired in some applications. As we have addressed in
chapter 2, length-1 pattern could be meaningful, for instance, in spatial or sequential
pattern mining, but may be less interested in some pure frequency based pattern mining
applications. Following is how the length-1 patterns can be naturally de-sampled based

on the equivalence Theorem 5-4 and (5-24).

i=a k
Comparing the formulation of (5-22¢), hyy; = Z g iC L we can get,

i=k+1

2 4 k-t . . . . . .
horw) = Z gl.C , this can be verified by its conformity with (5-24), which
-2

i=k+]

2 i=a k-2
results: A% = ;gici_z )

i=a 0 i=a
Then, for k =2, i, = Z;, gici—Z ) Zz: 8
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From (5-23):
h1=§gi =;gi+ g

Then, h’;=h;—h;= ggi+ 8- Zz:gfgl,

which concludes that, at k = 1,the reduction of the number of frequencies is equal
to that of all those generated but original length-one patterns. At the same time, this
helps understand further why the apex point q’ of & curve may right shift one position
from that of the corresponding H, curve, such that g’ = q + 1 as stated in Theorem 5-2,
which is because the one-order adjustment reduces relatively more of the frequencies of
shorter patterns and hence relatively increases that of longer patterns and leads an apex

shifting.

" Again, due to formulation similarity, if g is not very large compared with other g.s R

will possess all of the properties of /; and the law of half becomes:

wy =Y K= (w, + g (5-23a)

where w; is defined as the accumulative frequency of all patterns after the second

order reduction.

For completeness, we affirm that the reduction can be extended to higher orders, W, h4k,
..., h% , as defined below:

k-m

2<m<k<i<aq, (5-24a)

m __ ym-1 m _i=a
h"x=h k—hk+,-;gic

. b
t=m

and A" = g, O<k<m. (5-24b)
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(5-24a) starts from k = m is because its right hand side does not exist for k < m. Similar
to the second order reduction, (5-24a) can be obtained directly from the original dataset

by the tabular approach as given in Table 10 with some modifications.

The above formulae means, each higher order (m > 1) reduction (adjustment) will remove

equally a whole level of (m — 1) generated but the original patterns. For instance B will

remove all of the generated length-two patterns effectually and end at W, = g, In this

sense, the proposed adjustment approach is an inverse operation of the pattern generation,
and we term it pattern ‘“degeneration”, a synonym of pattern de-sampling. The
degeneration implies at least two applications. Firstly, it provides a way to recover the
original dataset from the generated data. Such ability to recovery is an added feature of
our approach: data recovery has many applications. Secondly, since full enumeration
based pattern generation is excessive, the degeneration is rightly a correction, as long as it

is not excessively corrected. In this regard, theoretically, the smaller the m (of H™), the

lower risk towards over correction, since smaller m means the recovered gs will be
1

within the left section of the #™/ « series, and that section is more likely to maintain the
concavity (refer to Theorem 5-4). However, a reduction of higher than the second order
requires some cautious: This is because the quasi concavity property is not guaranteed to
hold, because (5-24a) starts from k = m > 1, and the law of half needs to be reformulated,

similar to what has been done on k% (refer to (5-23a)).

In short, for normal mining applications, the first order adjustment is generally

applicable; the second order can be optional depending on the mining objectives. Higher
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order reductions are not generally recommended in this thesis for pattern frequentness
adjustment, but they can be used in other application purposes, for instance, data
recovery, etc.. However, it could be a very interesting topic on how to determine up to
what order the reduction can be safely and effectively rendered in an application. In this
regard, we hypothesize that:

The order m of pattern reduction rises with the increase of sample size u:

m o< u, ' (5-25)
which implies u = o, m 2 . (5-25a)

That is, if a sample size is infinitively large, there is no need of pattern generation at all!

This hypothesis is based on the known “law of large number” in classic probability and
statistics theory that, when the sample size is infinitively large, a measure obtained from
the sample reaches the true value of the whole populatibn in question [67 16]. In this
sense, whether the above hypothesis holds or not is converted into the question whether
the large number theorem would hold in pattern miniﬁg problems. If the hypothesis
holds, then its practical significance is obvious: when the dataset in question is
sufficiently large, frequent patterns can be obtained from the dataset (the original patterns
themselves) directly without pattern generation or with light generation only. As a result,
the complexity of pattern mining problem will be greatly reduced. We would discuss

these issues in a future work.

Finally, corresponding to the adjusted accumulative frequency wy, (m = a, 2, 3, ..., a), the

relative frequentness of a pattern after the adjustment is given by:
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P(Z) = F.(Z)/wp. (5-26)
where F,,(Z) is the frequency of pattern Z after adjustment up to order m.

Meanwhile, the primary overfitting /underfitting ratio r; proposed in Chapter 2 shall be

modified with F,, and we get the corresponding adjusted overfitting/underfitting ratio r,.
1.(2) =s(Z) IP(Z) = (F(Z)/ w) !/ (Fu(Z)IWr)
=F(Z)! F(Z) * Wy / u.
=FZ)! Fp(Z) * W/ W *w/u
=F(Z) ! Fo(Z) * Wl W * 1(2) , (5-27)
where r(Z) = w / u is the corresponding primary overfitting/underfitting ratio.
Notice that F(Z) > F,(Z), and w,, < w. The above formula presents following properties:

1) If F(Z) ! F(Z) > wn / w, then 1,(Z) > 15(Z); otherwise 1,(Z) < 1;(Z) would hold.
Particularly, if a pattern’s frequency is not changed after the refinement, i.e., F(Z)

= F,u(Z), then 1,(Z) < 1(Z).

2) Since wy, decreases with m increasing, then r,(Z) is monotonic decreasing against
m as well. Its implication is obvious: more generation leads to more severe
overfitting problem (note lower m means less degeneration and hence more
generation). In other words, to reduce the overfitting problem, generate as small a

number of patterns as possible. This is very understandable, and it then justifies
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the designation of the two indicators, r;(Z) and r,(Z), since they properly describe

the mining phenomena.

5.9 Summary

In this chapter, we have presented a theory over a set of properties to reduce the number
of meaninglessly generated patterns via pattern frequency distribution adjustments. The
theory lays a foundation for dimensional reduction and noise reduction in pattern
generation. The theory and the adjustment functions resolve the drawbacks of
conventional full enumeration based pattern mining approaches, including, the bias for
generated patterns vs. original ones, the bias for shorter patterns vs. longer ones, the
mixed element mining, and in overall the reduction of meahingless patterns and hence
overfitting and underfitting issues. A practical significance» of the theory is its potential
compliance with the traditional (mineral) mining, wherein the mined materials are
required to be refined before delivering to the end user. Conventional pattern mining
approaches do not take this refining process and that is why users complain against the
too many meaningless patterns delivered. Our proposal léys a theoretical foundation for

reduction of meaningless patterns in more than one order to beconic possible.

At this stage, the adjustment functions are in terms of different collectives (of same
pattern length k). Chapter 6 presents empirical verifications of the properties revealed in
Chapter 4 and 5; Chapter 7 introduces a model to apply these collective based functions

to individual pattern frequentness adjustments.
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Chapter 6. Empirical verification

The properties revealed in the previous chapters have been theoretically proved. In
Table 12, we present empirical verifications of these properties by 7 datasets. These
datasets® have been used in a number of research articles, and as benchmarks used in

FIMI 2003/04 [25, 39]. These datasets represent different types of data sources. For
instance, the g. distributions include two preliminary cases that all data tuples keep the
same length, three datasets in ordinary distributions, and two not very ordinary (the
“Accident” and the “Pummsb*” have 17 and 48 consecutive zeros in the left end of their

respective g_distributions). The datasets are empirically collected, except the last two

which are generated ones. More info about these datasets can be found in [39].

Despite the dataset variations, the results from them well demonstrate the conformability
with the theories developed in the previous two chapters. For instance, in H; related
properties, we see from Table 12 that, all H, curves keep strict quasi concave property;
while in the preliminary case (mushroom dataset) H, has two adjacent apex values
because of its odd u (refer to the proof of Theorem 4-1). And, the results show precisely
that all the corresponding apex points satisfy q < o/2; pérticularly, for the datasets

Accident, Pumsb* and T1014D100k, their q values are significantly smaller than a/2, a

reflection of their left skewed g,distributions (this can be seen from the comparison
t

between the last two datasets). The results also show the intervals of the genuine

3 We express our sincere thanks to the dataset providers.
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concavity of the H; curves as depicted in Theorem 4-4 in both preliminary and ordinary

cases. In the preliminary cases, the intervals obtained from forrhula (4-57 and 4-57a)

Table 12. Empirical results

Item DBs Mushroom | pumsb Retail Accident | Pumsb* T40110D100k | T1014D100k
u (tuples) 8124 49046 88162 340183 49046 100000 100000
n (elements) 120 7117 16470 469 7117 1000 1000
o (max length) 23 74 76 51 63 77 29
distributi Preliminar | Preliminar | Ordinary, | 17 zeros | 48 zeros | Some zeros Ordinary;
g i istribution y case y case 1 zero in in the in the in the left left skewed
the right | left left section, and 2 | c.p. wt the
characteristics section section in the right left db
Quasiconca. | True True True True True True True
q(£a/2?) 11,12 37 38 21 28 38 11
Concv intvl | [8, 15] [32,42] [33, 43] [21, 30} [27, 36] [34, 43] [11,18]
(theoretical)
H, .
Concv intvl | [8, 15] [32, 42] [33, 43] [16, 25] [23,33] [33,43] {7, 15]
(actual)
Concavity Same Same Same Left Left Left extended | Left shifted
comparisons shifted shifted by 1
O0<R,<1? |Allls All 1s O0<R <1 |O0<Ri< |O0<R< |O<R <1 O<R <1
1 1
Monotonic True True True Decrease | Decrease | True True
Ry bt [1, 11] | bt[l, 16]
but rate but rate
< 1% <1%
Coro. 4-1 True True True True True True True
Coro. 4-2 True True True True True True True
Coro. 4-4 True True True True True True True
W (accumulative 68149043 | 9.265E+26 | 1.0816E2 | 5.967E1 | 4.055E2 | 4.3158E23 6556956652
frequency) 268 3 6 0
H,u 34074525 | 4.632E+26 | 5.4080E2 | 2.983El | 2.027E2 | 2.1579E23 3278528326
696 2 6 0
Heyen 34074517 | 4.632E+26 | 5.4080E2 | 2.983E1 | 2.027E2 | 2.1579E23 3278428326
572 2 6 0
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Table 12. Empirical results (continued)

Item DBs Mushroom | pumsb Retail Accident | Pumsb* | T40110D100k | T1014D100k
Quasi-concv True True True True True True True
q’ ={q, q+1} 12 37,38 38 21 28 38 12
hge1 > hyy ? True True True True True True True
Corollary 5-3 | True True True True True True ' True
Error (%) b.t. | 4.16 2.63 1.08 0.098 0.024 2.20 1.13
hy and V2H,

L Law of half True True True True True True True

k
Concave intvl | [9, 15] [33, 42] [33, 43] [17,26] [24, 33} {33, 43] [8, 16]
(actual)
Compared aj=a+1l ay=a+l Same a=a+ a=a+ Same ay=a+l>
with H, >a >a 1>a; 1>a; a;
concavity by=b + b=b+1>
1>b b

are exactly the same as that numerically computed from the datasets. For those datasets
in ordinary cases, the theoretical and actual concave intervals also conform to the

conclusion of Theorem 4-4.

The R, properties are verified too. For instance, R; keeps 1 for all k in the two

preliminary case datasets; and the number of 1s of the Ry series are equal to the number

of Os in the right tails of the g.distributions of other datasets (refer to Appendix A), as
stated in Corollaries 3-1, 3-2 and 3-4. As a reflection of the consecutive zeroed gs of

the left section of g_distributions in the two datasets stated above, the related Rs are

decreasing but at a slight rate (less than 1%), while R;s are always monotonic increase in

other cases.
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The only parameters that cannot be fully precisely listed in this table are the w, Hyqq and
H.,., due to their large values, except for the first and the last datasets from which we can

see their relations.

On the Iy related series and their properties, Table 12 also presents a full conformity with
the theorems and corollaries presented in previous chapter. For instance, the quasi
concavity is well maintained in all the cases, and it is not affected by the slight
fluctuations of the Rs stated above. The results also precisely demonstrates the apex
point q’ of every hy series compared with that of H; series, such that g’ equals qor q + 1.
And interestingly, there is a case (for the “Pumsb*” dataset) that two adjacent apex
values at ¢ = q and q° = q" + 1 are reached, as have been mentioned in the proof of
Theorem 5-2. The results verified Corollary 5-3 that before q°, Ay > Y2 b, and after it, the
relation is reversed, and the closeness of & and 2 H; at the apex point q°. The genuine
concave hy intervals and their relation with that of H, are also presented in the last two

rows of Table 12.

Details of the resuits are given in Appendix A.
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Chapter 7. The optimized sampling model

In this chapter, we present an optimization model for the first order individual pattern

frequency adjustment.

7.1 The model

The first order individual pattern frequency adjustment is the realization of the Ay
function and the rational improvement of overall pattern generation, such that true
frequent patterns would be kept frequent, false frequent ones be corrected, and random
walks be de-sampled. Mathematically, these together mean an optimized sampling such
that a “maximum likelihood” of the whole set of sampled patterns Z would be reached.
That is, suppose the probability of an individual pattern Z' is p(Z") = f,{Z')/w,, where
f(Z" is the adjusted frequency of pattern 7 and w, is the adjusted accumulative

frequency, then the sampling leads to:

H p(Z) > max (7-1)
V4
Subject to: he, k=1, 2, ..0), (7-1a)
and: 0 < p(Z') < F(Z)IW,, (7-1b)

where F(Z') is the raw frequency of pattern Z.

(7-1) is a very neat optimization model but it captures the spirit of all the sampling

optimization mechanisms addressed above.
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Unlike most other likelihood maximization problems typically concerning resolving only
one or a fewv given parameters, it is challenging to solve (7-1) because of the need of
identifying a huge number of patterns and their frequencies in an application. However,
the solution can be reachable with the following strategies:

1. Pursue as few patterns as possible. This is based on the fact that every p(Zi) <
1 (unless the number of patterns i = 1, but it is too trivial), and the adjusted

* accumulative frequency w, is fixed by ﬁk function. This strategy implies
pattern de-sampling. At the same time, because of the constraint of Ay,
excessive de-sampling will be controlled.

2. For those patterns which could not be de-sampled but their collective
frequency is larger than that required by an /i, keep those concerned patterns’
frequencies as close as possible while maintaining their frequentﬁess orders.
We term this a “trim” of frequency, which leads a correction (reduction) of the
frequencies of overfitted patterns.

3. Localize the operation as much as possible, and ideally render the éperation
within every two adjacent levels (collectives). This is because, the
maximization of the objective function (7-1) can be rearranged as:

. k= : k= ,
Max([ ] pZ)) = max([ [ ([ [ p@) = [ max([[pZ'0), st (7-2)
z k= L k= L

where L, is the collective of patterns of length k (refer to section 4.3), and
the above formula indicates that global optimization is the product of local

optimizations of different levels (collectives).
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Though the A functions are level-wise defined, the de-sampling at level k
must be done by referring the super patterns and their frequencies in level

k+1. This implies the localization should minimally refer two levels.

Pursuing the largest p(Zi) can also be a strategy, and is embodied in the first strategy.
_This is because, firstly, each raw frequency F (Z") already has a maximum value since it
resulted from full enumeration as discussed in previous chapters. Secondly, since the
adjusted accumulative frequency w, is fixed and decreased from w,- and since the number
of retained patterns after the de-sampling is reduced to its minimum, any p(Z') equals
F (Zi)/wa automatically reaches its maximum value as shown in (7-1b). At the same time,

we see how the optimization alters the frequentness of the resulted pattern via (7-1b).

The above presents the essential features of our approach, and the strategies are
guidelines to pattern de-sampling and frequency distribution adjustments. How to apply
these strategies to form an operable solution of the optimization model (7-1) would be a
challenge. What we are thinking includes, for example, the adaptation of the known
linear programfning (LP) technology or mixed integer linear programming in partiéular
[37, 38] to solve the model, since the constraint (7-1a) of the model are in integer
domain, and the object function of the model can be translated into linearity by a
logarithm transformation:

% = In(p(Z’)). | (7-3)

However, this transformation would cause, for instance, a transformation of (7-1a), which

would complicate the transformation. We are also considering other more effective
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approach to solve the problem, and following is our trial solution for the running example

(Table 1).

7.2 A sample solution

To apply the above three solution strategies to model (7-1), we use the following rules:
Rule 7.1: The de-sampling rule: if F(Z\) < f,(Zyn1) and Z'y < Ziy,1, then Z'y can be a
candidate pattern to be de-sampled, where f,, is the adjusted frequency (of pattern ij+|,

which stays in the result set).

The above rule says if a sub pattern Z' is not more frequent than its super pattern Zyar,
then it can be de-sampled, where the superscripts i and j are respective enumerators. This
rule is based on Proposition 4-3 and the frequency adjustment principle (stated in Section
5-2). Proposition 4-3 says, if Zy < Zy., and if F(Z') = F(Z).1), then they must be
generated from the same data tuples. Since ij+1 18 already in the result set, and since Zik
is not more frequent than Zya1 generated from the same data tuples, then it means Zik

does not bear more information than ij+| and hence can be de-sampled.

Rule 7.2: The competition and tie-resolution rule: when a competition takes place, that is,
F(Z%) = F(ZY) < F(Zy+1), where Z°,C Zs; and Z'\ C D, then if there is a case that
F (Zsk_m) > F(Z'.m), where Z'y.mc Z% and Z'v.,< Z'k, 0 < m <k, then Z°% should be de-

sampled. In case of a tie, a random draw is used to break the tie.

The above rule says if two or more sub patterris of ij;] are of equal frequency and hence
equally good to be de-sampled, then the sub pattern Z' that has stronger (more frequent)

descendent/s (sub pattern/s) should be de-sampled. Note that, according to the downward
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closure property and the frequency adjustment principle stated in 5-2, there is at most one

sub pattern that can be de-sampled against a pattern ij+1.

The above rule is based on the rationale that, although Z’ and 7' are equally frequent at
level k, Z’ is indeed relatively weaker than 7', since Z%’s sub pattern/s (at level k — m)
is stronger than that of the other. The rule also implies that, when m is reached, the
comparison stops. Finally, the second part of the rule refers to a tie case where no
stronger sub pattern of Z’ is found than that of 7' and vice versa until k = 1. In this case
the miner can arbitrarily choose Z°% or Z to be de-sampled. We can prove that, in this
case, a draw would not affect the output of next level. However, the proof is not given
here. This no side effect propagation is a merit of the maximization model and the above

defined solution rules.

Based on the above, we define adjusted pattern frequency below:

Definition 7.1: The “adjusted pattern frequency” fu@) (k=1,2, ...a-1) is defined as:

@) =0, (de-sampled case) (7-4)
or, fuZy) =F(ZY)-Fs (trimmed case) (7-5)
or, fuZy)=F@, (unchanged case) (7-6)

where, F; > 0 is the frequency to be reduced, and it is determined in the following

conceptual algorithm.

The above definition and the following algorithm can be simply understood as that,

during the adjustment course, a pattern is de-sampled (if it is not more frequent than its
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antecedent (super pattern), and if it is the least frequent one compared with its siblings),
or its frequency is reduced (trimmed). If a pattern got no antecedent to compare with in a

step, then its frequency is not affected (the unchanged case).

Algorithm 7-1:
For (k = a-1, a-2, ..., 2, 1) do:
For each Z',4, lety =fw(Zik+1) >0,
If there are sub-patterns, Z, such that F(Z}) < y, do
While (F(Z) £ y)
If there is only one such ij,
then de-sample it (set f,{Z) = 0), and let y =y - F(Z}})
If more than one such ij exists,
then resolve the competition and tie case with rule 7-2.
End while
Endif ... do
If there is no such sub-pattern Z\ that F(Z)) <y, then
For each Z in the sub patters set { 2%}, reset its frequency
ful2\) = F(Z) - Fa,

where F, is determined by the following steps:

Set: Fs=5F(Z°), Zve {Z°%) (7-7)
Fy=round (y * F(Z\) / Fs). (7-8)
Then, fulZ\) =FZ\) - Fq (7-9)

end for each.

end for ... do.

The above algorithm features the following: it is a top-down approach since the Ay

constraints are defined top-down; and each time the operations are localized in two
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adjacent levels, k and k+1. This localization greatly
simplifies the solution. However, if a competition or a tie
occurs, its resolution may require multiple level searches

and comparisons as stated in rule 7-2.

Now, we use the running example (Table 1) to -demonstrate
the solution of the optimization model using algorithm 7.1.
In Table 1, we notice a “mutual pattern”. A “mutuval
pattern” Zj is a pattern whose k compositional elements
always occur simultaneously in the original dataset. We
define the elements of a mutual pattern as “mutual

6

elements’®. In_table 1, V4 and V5, are mutual elements and

Table 13. A mutual
element free dataset

TID VID

Ti | Vi, Vo

Tr | V2, Vo, Vg

T; | V2, Ve

Ty Vi, Vg, Vg

Ts | Vi, V2, V3, Vg, Vs

Ts Vs

T, Vo

Tg Vs

To |V, V2

Tio | Vi, V2, V3, Vg

they form a mutual pattern in this example. Discovering a mutual pattern is certainly

interesting, not only because it can be seen as a true pattern in any sense, but also because

it has a big impact on pattern mining, particularly in the refinement solutions — it will

cause a de-sampling tie as can be imagined. This tie causation can also be formally

proved, since the frequencies of all sub patterns of a mutual pattern are the same! Since a

tie could greatly complicate the resolution process as we have mentioned, it is desired to

eliminate it by merging the mutual elements as a single (composite) element only. This

resolution does not only reduce the tie complication, but also reduce the mining

dimension.

® Finding mutual pattern itself is a data mining problem!
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Table 14. The raw patterns from Table 1

k | C. | He Raw Patterns

A{B |C | E. Xy

118 28 0.237 | V1(.042)/5, V,(.042)/5, V3(.017)/2, V4(.034)/4, Vs(.017)/2,
V6(.017)/2, V7(.034)/4, V3(.034)/4

2 (18 |36 0.305 | V47(.034)/4, V1(.025)/3,  Vi3(.025)/3,  V(.025)/3,
Vi3(.017)/2, Vi (017)/2, V70172,  V3(.017)/2,
Voa(017)/2,  Vou((01T7)/2,  V3(.017)/2,  V4(.017)/2,
V23(.017)/2, V16(.009), V26(.009), V34(.009), V37(.009),
Ve3(.009)

3121 130 0.254 | V123(.017)/2, Vi(.017)/2, Vi38(.017)/2, Vi47(.017)/2,
Vaig(.017)/2,  Vaur7(.017)/2, Vous(.017)/2, Va5(.017)/2,
Va73(.017)/2, V124(.009), V127(.009), V37(.009), V145(.009),
Vi6s(.009), Vi73(.009), V134(.009), V234(.009), V237(.009),
V347(.009), V345(.009), V375(.009)

4 {15 17 0.144 | Vi235(.017)/2,  Vo473(.017)/2,  V1234(.009), V237(.009),
Vi1247(.009),  V1245(.009), V1278(.009), V1347(.009),
V1348(.009),  V1373(.009), V1478(.009),  V2347(.009),
V2348(.009), V2375(.009), V3475(.009)

56 |6 0.051 | Vi2347(.009),  Vi2343(.009), V12378(.009),  Vi2475(.009),
V13478(.009), V23473(.009)

6|1 1 0.009 | Vi23475(.009)

S [69 [ 118 | 1.00

Notes: the terns in X; (i = 1, 2, 3), e.g, V123(.017)/2 means: pattern V;V,V3(probability
s’ )/frequency. If frequency not specified, it is 1.

Merging V4 and V7 into Vj gives the data set shown in Table 13, wherein the longest
pattern length a is reduced from 6 to 5, and the related Hy series becomes {24, 25, 16, 6,
1}. The reduction certainly simplifies the problem. For instance, the total number of
patterns generated from the reduced case (Table 13) is 37, and the accumulative
frequency w = 72, compared with the 69 patterns and their accumulative frequency 118
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in the original problem (seen in Table 14). The raw patterns generated from Table 13 are

presented in Table 15.

Table 15. The raw patterns from Table 13 after merging V4 and V;

k | C | H 35S’ Raw Patterns

AlB |C E X

117 24 0.333 | Vo(.056)/4, V1(.069)/5, V2(.069)/5, V3(.028)/2, Vs(.028)/2,
V6(.028)/2, V5(.056)/4

2 113 |25 0.347 VOI(.OQS)/Z, V2(.028)/2, V3(.028)/2, V3(.014), V3(.028)/2,
V3(.028)/2,  V33(.028)/2,  Vi2(.042)/3,  V5(.042)/3,
V25(.042)/3, V16(.014), V26(.014), Ve3(.014)

3 (11 |16 0.222 | V12(.014), V13(.014), V01gv(.014), Vo23(.014), V3(.028)/2,
Voss(.014),  V123(.028)/2, V23(.028)/12,  V33(.028)/2,
V238(.028)/2, V63(.014)

415 6 0.083 | Vpi123(.014), Voi1258(.014), Vo13s(.014), Vo233(.014),
Vi1238(.028)/2

511 1 0.014 | Vi238(.014)

S 137 [72 | 1.00

Notes: the terns in the column X, e.g, Vi23(.028)/2 means: pattern V,V,;V;3(probability
s’,)/frequency. If frequency not specified, it is 1.

Applying Algorithm 7-1 and starting from k = & — 1 = 4, there is only one pattern at k =
5, Voizsg with frequency y = 1. We see its sub patterns listed in k = 4 of Table 15 are of
same frequency 1 except Vius. It means then there is a competition to resolve.
According to algorithm 7-1, we go down to k = 3, and find that Vgj28 and Vgp3s have
equal number of stronger sub patterns than other ones. Then we keep looking into level k
= 2 and find that V.5 has a stronger sub pattern (Vg) than that of Vg;33. Vo125 is then de-

sampled. That is, at k = 4, the refined pattern set is { V123(.014), V133(.014), V238(.014),
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V1238(.028)/2} as shown in Table 16. In this example, from k = 4 to k = 2, the main

refinement operation is pattern de-sampling, and the refined pattern set is seen in Table

16.

At k = 1, frequency trimming defined in algorithm 7-1 plays the major role, since the

frequencies of all the sub patterns at k = 1 are larger than that of their respective super

patterns at k = 2. Notice that at k = 2 in Table 16 and k = 1 in Table 15, there are

following correspondences:

Voi(2) €2 {Vo@), Vi(5)}, Vos(2) €> {Vod), Vs(D)}, Vas(2) € {Va(5), Vs(d)),

Vi2(3) €2 {Vi(5), Va(5)}, Vis(3) €2 {Vo@), Vi(5)}, Vai(2) € {Vo(4), Vi(5)),

Voi(2) €2 {Vo(4), Vi(5)},

Table 16. The refined patterns from Table 15

k | C | i 5s’, Raw Patterns

A|B C E X

117 10 0.244 | V0,(.049)/2, V(.024), V,(.049)/2, V3(.049)/2, Vs(.049)/2,
Ve(.028)

217 14 0341 | Vpi(.049)/2, Ve(.049)2, V5(.042)/3, V,5(.042)/3,
V25(.049)/2, V26(.024), V3(.024)

317 11 0.268 | Voi3(.024),  V0s(.049)/2,  V3s(.024),  V23(.049)/2,
Vi38(.049)/2, V235(.049)/2, V65(.024)

4 (5 5 0.122 | Vp123(.024), V138(.024), V235(.024), Vlzgg(.049)/2

511 1 0.024 | Voi1233(.024)

3127 |41 1.00

Notes: the terns in the column X, e.g, V;23(.049)/2 means: pattern VV,V3(probability
s’,)/frequency. If frequency not specified, it is 1.
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where the left hand side of €-> is the adjusted frequency f,, of a pattern at k = 2,
and the right hand side is the corresponding two sub patterns at k = 1 and their raw

frequencies which are noted in the round brackets.

Applying formulae (7-7) to (7-9) to the above, we get:

FiVo)=4%*2/9+1%2/2 =19 >2
FaV)=5*%2/9+1%3/2+5*3/9=43 >4
Fo(V2)=5%2/9 +1*3/2+2/7=3 2>3
FiVe)=2/7+2/6=0.6 2>1

Fs(Vg)=1/2+4%2/9 +4*3/9+4/6=4 >4
That is, based on formula (7-5) the refined patterns and their frequencies obtained from

Table 16 atk = 1 are: {V¢(2), Vi(1), Va(2), Vi(2), Vs5(2), Vs(1)}.

This completes the refinement process, and the refined patterns and their adjusted
frequencies are seen in Table 16. However, for a conceptual consistency in pattern
length, we need to slightly reorganize the result set, since Vj is not really a single
element. For example, Vg, stored in k ‘= 2 of Table 16 should be moved to k = 3, since it
is exactly a length-3 pattern V,47. The rearranged result set is presented in Table 17,
wherein we substituted the element number Vg4 in lieu of Vy to avoid confusions. At the
same time, we note that there is no need to split V47 into V4 and V5 again and put their
separate combinations with other elements into the result set, for instance, Vi4 Or Va3,
This is simply because V4 and V; always occur together. If one sees a V4 then it is

exactly V47! This is an important significance of finding a mutual pattern, not only
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because of the pattern itself, but also because of the reduction of the pattern generation

and the reduction of the mining dimension, as illustrated in the above example.

Table 17. The reorganized refined patterns

k | C | h 5s’, Raw Patterns

A|B |C E X

15 8 0.195 | V;(.024), V5(.049)/2, V3(.049)/2, V5(.049)/2, V(.028)

27 [12 0.293 | V47(.049)/2, V15(.049)/2, V,6(.024), Ves(.024), V2(.073)/3,
V1s(.73)/3

316 11 0.268 | V123(.049)/2,  Vi33(.049)/2,  V233(.049)/2,  Vi6(.024),
V147(.049)/2, V4753(.049)/2

4 14 6 0.146 | V1235(.049)/2, V1347(.024), V2478(.049)/2, V3475(.024)

513 3 0.073 | V12347(.024), V13478(.024), V13478(.024),

6 |1 1 0.024 | Vi23475(.024)

S 27 |41 [ 1.00

Notes: the terns in the column X, e.g, V23(.049)/2 means: pattern V,;V,Vs(probability
s’ /frequency. If frequency not specified, it is 1.

The result set demonstrate the essences of the adjustment model. For instance, the
number of patterns is reduced (from 37 in Table 15 to 27 in Table 17, about 30%
decrease; compared with that in Table 14, the reduction is from 69 to 27, a 60%
decrease); the frequentness of most retained patterns (in Table 17) is enhanced compared
that in Table 15. For instance, in Table 17, the probabilities of all the patterns are
between 0.024 and 0.073; and there are more than 50% of the patterns that their
probabilities are no less than 0.049. However, in Table 15, the probabilities of all the
patterns are between 0.014 and 0.069; and there are less than 20% of the patterns that

their probabilities are over 0.042. This enhancement is even more striking compared with
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that in Table 14. Consequently, the maximization objective of the optimization model is

then reached.

The results also reflect what we have argued in previous chapters. For instance, recall
that we have interpreted the dataset Table 1 (equally Table 13 above) as the dancer
example (refer to Example 2-2 in Chapter 2); there we discussed the problem of an
entertainment company which wants to find out the most possible potential solo dancer/s.
In conventional mining approaches (refer to Table 14, at k = 1), the answer would be
V1(5) ,Va(5), Va(4d) , V4(4) , and Vg(4) , while Vs(2) is almost impossible, since it is one
of the least frequent elements. We have argued that the result is counter commonsense,
since Vs is observed as a solo dancer twice, while all the rest are generated patterns,
although their raw frequencies are much higher than that of Vs. Our argument is now
justified, and from the result set {V (1), V2(2), V3(2), Vs(2), Ve(1)}, as shown in the
row k = 1, Table 17, the entertainment company will find that V, is weaker than Vs, a
reverse conclusion from the conventional mining approaches. Similarly, V, becomes only
comparable with Vs from a much stronger position in the conventional case. More
strikingly, Vg gets fully out of the scene after the refinement, but it is rather stronger than
Vs in the conventional case. At the same time, V3 can be seen as a surprising pattern,
since its raw frequentness is one of the lowest compared with other elements, but it
becomes comparable with Vs and V; in the refined case. Finally, it is also very
understandable that V4 and V5 are not in the answer set, because V4 and V; are mutual
elements, they act always together and could not be individual players! However, in

conventional mining approaches, the answer is reversed.
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7.3 Significance and implications

From the above sample solution, we see that, the results from the refinement model are at
least more interpretable and more coherent with commonsense rather than counter
intuition exhibited in the result set of conventional mining approaches. The results from
the solution also indicate that, although the optimization model aims at maximization of
the probabilities in whole, it does not exclude those less frequent but potentially
interesting patterns. The results support a Viéion that the adjustment model provides a
mechanism to retain and discover surprising patterns. Using conventional approaches, we
would be unable to get the above insights into the solo dancer situation. One of the
reasons for these noticeable points can be seen from the adjustment algorithm: every
pattern’s frequency will be examined and compared as long as it has an antecedent.
Furthermore, the comparisons are rendered both vertically and laterally. That is, the
comparison must be done between a parent and its children, and among the siblings. This
is the essence of mining. Conventional approaches do not implement these comparisons.
It should also be noticed that the freqﬁency comparisons are done “locally” with
relevance. The comparisons are not extended to patterns of no relation. This is the basic
reason for the less frequent patterns to be retained in the result set which is another
significant difference from conventional approaches that compare pattern frequencies
globally and absolutely without consideration of relevance. It then implies the inability
of cdnventional frequent pattern mining approaches to discover and retain less frequent

but meaningful patterns, or surprising patterns.
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Having discussed the main characteristics of the optimization model, we notice that the
merits of the model and its solutions, such as the ability to discover surprising patterns,
are theoretical only at this moment. Furthermore, the example is very small, and the
solution only demonstrates that the optimization model is solvable. The solution
complexity could increase rapidly with the increase of the number of elements involved
and the data size. A specific complexity could be due to the existence of mutual
pattern(s), which is indeed a mining problem itself. More general complexities would
mostly originate from decision making problems. In the above sample solution, we have
set up some rules to resolve competition and tie problems, but these may not be the only
ones required. In general, to solve a realistic refinement problem, it is imperative to

address the following:

o Investigate and identify in what and how many situations we will face a decision

making problem, and the nature of each decision making problem.

e What rule(s) to be used to make a decision; the justification of the rule and the
consequences of the decision to be made, especially, whether alternative decisions

would lead to substantially differeht final result sets.

All of these are research: problems and only after these problems have been resolved,
could we design and implement the appropriate algorithm(s) to solve the refinement

model for practical pattern mining.

As stated earlier, the nature of the refinement is a reduction of the number of
meaninglessly generated patterns, in other words, a correction of the full enumeration

generation, which implies an inception of “selective pattern generation” mode. The
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above proposed refinement model can be seen as an indirect selective pattern generation
approach, since the selectivity is equivalent to selection of patterns from the fully
generated pattern set. Our expectation is that, after the refinement strategies and the
related decision making complexities elaborated above have been fully studied, they can
be applied to develop a direct selective pattern generation approach. Thus, patterns could
be generated directly to fit to the target refined result set without involving the use of full
enumeration. This is analogous to obtaining the refined accumulative frequency w, and
s directly without knowing the raw w and H;s as presented in Section 5.6. In short, the
refinement model and the development of a selective pattern generation regime could

herald a radical change of pattern mining methodologies.
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Chapter 8. Conclusions, contributions and future work

Pattern mining is fundamental to many data mining tasks, especially association rule
mining, causation mining and the like, of which pattern frequency distribution and
frequentness determination play essential roles. Conventional pattern mining approaches
focus on mining efficiency but largely ignore the importance of appropriate measure of
pattern frequentness and the refinement of the mining results sets. Even worse, such
unrefined results are taken to be final and delivered to the users. This thesis reveals
theoretical pitfalls underlying and subsequently the drawbacks imposed by conventional
mining approaches, and then proposes their corresponding resolutions with theoretical

proofs. This is the general contribution of our work.

Problems, such as overfitting and huge number of meaningless patterns resulted from
mining have been noticed for some years, but no substantial investigation has been
reported. This could be because of the difficulty of the problems that are not only
computational but philosophical as well. We noticed such difficulties, and we are aware
that revealing and resolving philosophical problems could not be so exciting or as easy to
be recognized as developing an efficient algorithm. However, we believe the first

important thing in research is the unearthing and identifying the problems.

Our study has identified that the overfitting problem is dominantly existent in previously
proposed approaches, wherein overfitting implies meaningless combinations of elements
are falsely taken to be meaningful patterns, or less frequent ones be frequent patterns.

The overfitting and other drawbacks revealed in the second chapter of this thesis are
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rooted mainly from two sources. One is the probability anomaly caused by the
conventional defined and widely used “support” s,; another is the full enumeration

pattern generation regime. These discoveries are the first contribution of our work.

Based on the problem investigations, we have presented our primary reformulation of s,,
which forms our second contribution. The reformulation is simple but effective: it
automatically resolves the probability anomaly and covers other issues addressed in from
subsection 2.3.1 through 2.3.6; it also fulfills the requirements raised at the end of section
3.2. Along with the resolution, the degree of overfitting embodied in the conventional
mining approaches can also be quantified. = We have numerically illustrated the
effectiveness and the striking differences of the mining result set of our proposed

reformulation compared with the one obtained by conventional mining approaches.

Compared with the frequentness measure issue, it demands much more intellections in
understanding and resolving the full enumeration pattern generation related drawbacks.
This thesis provides an insight into the problems, and proposes a refining framework
based on our third contribution in explorations of a set of intrinsic properties governing
pattern frequency distributions, such that the merit of the full enumeration generation is

maintained while the related drawbacks addressed in Section 2.3 are corrected.

Findings presented in this thesis are well derived from set theory and combinatiorics, and
we believe they could be well exploited in applications of pattern mining. These
findings, particularly the H, and / curves and their properties, could form a set of
reliable indicators and check points to test and guide pattern mining. For example, if an

H; curve derived from a dataset is not quasi concave, then .there must be some
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characteristics embodied in the related data source, or the mining approach might have
not been correctly implemented. More importantly, the Hy and h curves and their quasi
concavity properties theoretically prove the possibility to obtain a succinct mining result
set while maintaining sufficiency. The succinctness means the overfitting and
underfitting problems will be controlled, and the sufficiency property is to ensure only
meaningless patterns to be reduced without an excessive cut-off. A salient feature of our
proposal is the promise of substantial reduction of the number of meaninglessly generated
patterns before domain specific constraints are imposed. Moreover, our proposed
reduction can be done in more than one order, complying with the real industrial mining
practice that the mined raw materials should be refined more than once before delivering
to the user. In short, this thesis presents a refinement theory for dimension reduction in
pattern generation and for noise reduction, so that graceful degeneration of knowledge

acquisition is achievable. This is the fourth contribution of our work.

Our fifth contribution is the maximum likelihood model developed in the last chapter to
realize the proposed refining theory. We have analyzed and suggested a number of
strategies to solve the optimized sampling model. In the end, we have presented a sample
solution to demonstrate that the optimization model is solvable. At the same time the
solution supports what we have addressed on the drawbacks of the conventional

approaches and their expected resolutions.

The conventional support measure, the full enumeration pattern generation mode and the
“downward closure” property based on it, are the foundations of conventional mining

approaches. A modification of these foundations would indicate a radical change of the
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state of the art of pattern mining. This is because, our proposal means an overpass of the
full enumeration pattern generation mode adopted by the conventional mining
approaches. In other words, findings and the refinement model presented in this thesis
would lead to a development of selective pattern generation regime. Under this regime,
the downward closure property is no longer to hold, and the widely used pattern pruning
and the like strategies will become invalid. Accordingly, the focus of data mining will be
shifted from conventionally on how to efficiently produce all possible frequent
combinations (patterns) into how to obtain meaningful patterns. This is the principle

significance of our work.

The above has summarized our main contributions and the possible impacts. These
impacts will certainly extend to other mining tasks based on pattern mining, for instance,

association rule mining, causation mining.

Our future work can be divided into two stages. In the first stage, we will try to find the
fully ﬂedged operationél approaches and algorithms to solve the proposed optimized
refinement model over real datasets, which corresponds to an indirect selective pattern
generation approach. The model optimally selects patterns from the fully generated
pattern set. This proposed future work would mainly focus on the investigation and
identification of various decision making problems, for instance, to decide which
pattern(s) to be retained or degenerated, or to decide to what degree a pattern’s frequency
may be reduced, and so on. The next stage work will be on how to develop a direct
selective pattern generation mode, such that patterns would be generated directly to fit to

the target refined pattern set without the involvement of full enumeration.
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APPENDIX A: THE OUTPUT OF EMPIRICAL DATASETS

The databases used as follows are original from the source [39] without any change,
except the format of the files has been changed from html to txt to read into computer

easily. The computation is programmed with C#.

Output for mushroom_dat.txt

Total number of elements n = 120
Total number of tuples u = 8124

Longest pattern length Alpha = 23

The Gk distnbutions:

00000000000000000000008124

The Hk Series:

(1) 186852 (2) 2055372 (3) 14387604 (4) 71938020 (5) 273364476 (6) 820093428 (7) 1991655468 (8)
3983310936 (9) 6638851560 (10) 9294392184 (11) 10984281672 (12) 10984281672 (13) 9294392184
(14) 6638851560 (15) 3983310936 (16) 1991655468 (17) 820093428 (18) 273364476 (19) 71938020 (20)
14387604 (21) 2055372 (22) 186852 (23) 8124

The Hk Quasi Concavity: + Increase, - decrease, = equality.

1<> 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12= 13- 14- 15- 16- 17- 18- 19- 20- 21- 22- 23-

The Hk Genuine Concavity: Hk:(Hk - (Hk-1 + Hk+1)/2 >= 07); theoretic concavity domain = [8, 15];
exact = [8, 15].

Detailed as below:

l<> 2:(-5231856) 3:(-22609092) 4:(-71938020) 5:(-172651248) 6:(-312416544) 7:(-410046714) 8:(-
331942578) 9:(0) 10:(482825568) 11:(844944744) 12:(844944744) 13:(482825568) 14:(0) 15:(-
331942578) 16:(-410046714) 17:(-312416544) 18:(-172651248) 19:(-71938020) 20:(-22609092) 21:(-
5231856) 22:(-844896)
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The Rk Series:

111111111111 1111111111

The Rk Monotonic: + Increase, - decrease, = equality.

.= 14 2=3=4=5=6=7=8=9=10= 11= 12= 13= 14= 15=16= 17= 18= 19= 20= 21=22=

The accumulative frequency w = 68149043268
The sum of odd length pattern frequencies H_odd = 34074525696

The sum of even length pattern frequencies H_even = 34074517572

The hk Series:

(1) 8124 (2) 178728 (3) 1876644 (4) 12510960 (5) 59427060 (6) 213937416 (7) 606156012 (8)
1385499456 (9) 2597811480 (10) 4041040080 (11) 5253352104 (12) 5730929568 (13) 5253352104 (14)
4041040080 (15) 2597811480 (16) 1385499456 (17) 606156012 (18) 213937416 (19) 59427060 (20)
12510960 (21) 1876644 (22) 178728 (23) 8124

The hk Quasi Concavity: + Increase, - decrease, = equality.

1<> 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+ 13- 14- 15- 16- 17- 18- 19- 20- 21- 22- 23-

The hk Genuine Concavity: hk:(hk -(hk-1 + hk+1)/2 >= 07); Concavity domain = [9, 15].
Detailed as below:

l<> 2:(-763656) 3:(-4468200) 4:(-18140892) 5:(-53797128) 6:(-118854120) 7:(-193562424) 8:(-
216484290) 9:(-115458288) 10:(115458288) 11:(367367280) 12:(477577464) 13:(367367280)
14:(115458288) 15:(-115458288) 16:(-216484290) 17:(-193562424) 18:(-118854120) 19:(-53797128)
20:(-18140892) 21:(-4468200) 22:(-763656)

Output for pumsb_dat.txt

Total number of elements n = 7117

Total number of tuples u = 49046
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Longest pattern length Alpha = 74

The Gk distributions:

000000000000000000000000000000000000000000000000000000000
000000000000000 049046 '

The Hk Series:

(1) 3629404 (2) 132473246 (3) 3179357904 (4) 56433602796 (5) 790070439144 (6) 9085810050156 (7)
88262154772944 (8) 739195546223406 (9) 5.42076733897164E+15 (10) 3.52349877033157E+16 (11)
2.05003564819291E+17 (12)  1.07626871530128E+18  (13)  5.13297387297533E+18  (14)
2.23651004465354E+19  (15)  8.94604017861415E+19  (16)  3.29885231586397E+20  (17)
1.1254907901 1829E+21 (18)  3.56405416870793E+21 (19)  1.05045807077708E+22  (20)
2.88875969463696E+22  (21)  7.42823921478075E+22  (22)  1.78953035628809E+23 " (23)
4.04589471856437E+23 (24)  8.59752627694929E+23  (25)  1.71950525538986E+24  (26)
3.24060605823473E+24  (27) 5.76107743686175E+24  (28)  9.67037998330365E+24  (29)
1.5339223421792E+25 (30) 2.3008835132688E+25 3 3.26577014786539E+25 (32)
4.38837863619412E+25  (33)  5.58520917333797E+25 (34)  6.73510517961344E+25  (35)
7.69726306241536E+25 (36)  8.33870165094997E+25  (37)  8.56407196584051E+25  (38)
8.33870165094997E+25 (39)  7.69726306241536E+25 (40)  6.73510517961344E+25  (41)
5.58520917333797E+25 (42)  4.38837863619412E+25 (43).  3.26577014786539E+25  (44)
2.3008835132688E+25 (45) 1.5339223421792E+25 (46) 9.67037998330365E+24 “n
5.76107743686175E+24  (48)  3.24060605823473E+24  (49) -~ 1.71950525538986E+24  (50)
8.59752627694929E+23 (51)  4.04589471856437E+23 (52)  1.78953035628809E+23  (53)
7.42823921478074E+22  (54)  2.88875969463696E+22  (55)  1.05045807077707E+22  (56)
3.56405416870793E+21 (57)  1.12549079011829E+21 (58)  3.29885231586397E+20  (59)
8.94604017861415E+19  (60)  2.23651004465354E+19  (61)  5.13297387297533E+18  (62)
1.07626871530128E+18  (63)  2.05003564819291E+17  (64)  3.52349877033157E+16  (65)
5.42076733897164E+15 (66) 739195546223406 (67) 88262154772944 (68) 9085810050156 (69)
790070439144 (70) 56433602796 (71) 3179357904 (72) 132473246 (73) 3629404 (74) 49046

The Hk Quasi Concavity: + Increase, - decrease, = equality.

1<> 24 3+ 44 5+ 6+ 7+ 8+ 94 10+ 11+ 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+ 26+
27+ 28+ 29+ 30+ 31+ 32+ 33+ 34+ 35+ 36+ 37+ 38- 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50- 51-
52- 53- 54- 55- 56- 57- 58- 59- 60- 61- 62- 63- 64- 65- 66- 67- 68- 69- 70- 71- 72-73- 74-

The Hk Genuine Concavity: Hk:(Hk - (Hk-1 + Hk+1)/2 >= (?); theoretic concavity domain = [32, 42];
exact = {32, 42].

Detailed as below:

1<> 2:(-1459020408) 3:(-25103680117) 4:(-340191295728) 5:(-3781051387332) 6:(-35440302555888)
7:(-285878523363837) 8:(-2.01531920064889E+15) 9:(-1.25663242857979E+16) 10:(-
6.99771783758158E+16) 11:(-3.50748286683006E+17) 12:(-1.59272000359603E+18) 13:(-
6.58771070794299E+18) 14:(-2.4931587383023E+19) 15:(-8.66647642303246E+19) 16:(-
2.77590364365821E+20) 17:(-8.2147891002887E+20) 18:(-2.25098158023659E+21) 19:(-
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5.721244849768E+21) 20:(-1.35058894814195E+22) 21:(-2.96379241397818E+22) 22:(-
6.04828963733135E+22) 23:(-1.14763359805432E+23) 24:(-2.02294735928219E+23) 25:(-
3.30674087574973E+23) 26:(-4.9968528789107E+23) 27:(-6.94415583907443E+23) 28:(-
8.79770446023222E+23) 29:(-1.00038413620383E+24) 30:(-9.89627317534964E+23) 31:(-

7.88609268660678E+23) 32:(-3.71110244075615E+23) 33:(2.34672654341932E+23)
34:(9.38690617367726E+23) 35:(1.60359647133653E+24) 36:(2.08034136822037E+24)
37:(2.2537031489054E+24) 38:(2.08034136822037E+24) 39:(1.60359647133653E+24)

40:(9.38690617367726E+23)  41:(2.34672654341932E+23)  42:(-3.71110244075615E+23)  43:(-
7.88609268660673E+23) 44:(-9.89627317534968E+23) 45:(-1.00038413620383E+24) 46:(-
8.79770446023222E+23) 47:(-6.94415583907443E+23) 48:(-4.9968528789107E+23) 49:(-
3.30674087574973E+23) 50:(-2.02294735928219E+23) 51:(-1.14763359805432E+23) 52:(-
6.04828963733135E+22) 53:(-2.96379241397817E+22) 54:(-1.35058894814195E+22) 55:(-
5.721244849768E+21) 56:(-2.25098158023659E+21) 57:(-8.2147891002887E+20) 58:(-
2.7759036436582 1 E+20) 59:(-8.66647642303245E+19) 60:(-2.4931587383023E+19) 61:(-
6.58771070794299E+18) 62:(-1.59272000359603E+18) 63:(-3.50748286683006E+17) 64:(-
6.99771783758158E+16) 65:(-1.25663242857979E+16) 66:(-2.01531920064889E+15) 67:(-
285878523363837) 68:(-35440302555888) 69:(-3781051387332) 70:(-340191295728) 71:(-25103680117)
72:(-1459020408) 73:(-62631742)

The Rk Series:

Ti1yyty1rretrrrrbbrlbLELLEILILILLLILIILEEIEIITIIIITIIILILEITT1
11111111111 11111

The Rk Monotonic: + Increase, - decrease, = equality.

= 1+ 2= 3= 4= 5= 6= 7= 8= 9= 10- 11+ 12= 13+ 14- 15= 16= 17= 18+ 19- 20+ 21- 22- 23+ 24= 25+ 26-
27= 28- 29+ 30- 31+ 32= 33= 34= 35= 36= 37= 38= 39= 40= 41= 42= 43- 44- 45+ 46= 47= 48- 49+ 50+
51=52- 53= 54= 55= 56= 57= 58= 59= 60+ 61- 62+ 63- 64= 65= 66= 67= 68= 69="T0=T1- 72+ 73=

The accumulative frequency w = 9.26452746075298E+26
The sum of odd length pattern frequencies H_odd = 4.63226373037649E+26

The sum of even length pattern frequencies H_even = 4.63226373037649E+26

The hk Series:

(1) 49046 (2) 3580358 (3) 128892888 (4) 3050465016 (5) 53383137780 (6) 736687301364 (7)
8349122748792 (8) 79913032024152 (9) 659282514199254 (10) 4.76148482477239E+15 (11)
3.04735028785433E+16  (12)  1.74530061940748E+17  (13)  9.01738653360531E+17 (14)
4.2312352196148E+18 (15) 1.81338652269206E+19 (16)  7.13265365592209E+19 a7
2.58558695027176E+20  (18)  8.66932095091119E+20  (19)  2.69712207361681E+21 (20)
7.80745863415393E+21 (21)  2.10801383122156E+22  (22)  5.32022538355918E+22 (23)
1.25750781793217E+23 (24)  2.7883869006322E+23 (25)  5.80913937631709E+23 (26)
1.13859131775815E+24  (27)  2.10201474047658E+24  (28)  3.65906269638516E+24  (29)
6.01131728691848E+24  (30)  9.32790613487351E+24  (31)  1.36809289978145E+25 (32)
1.89767724808394E+25 - (33)  2.49070138811018E+25  (34)  3.09450778522779E+25 (35)
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3.64059739438564E+25  (36)  4.05666566802971E+25  (37)  4.28203598292025E+25 (38)
4.28203598292025E+25  (39)  4.05666566802971E+25  (40)  3.64059739438564E+25 (41)
3.09450778522779E+25  (42)  2.49070138811018E+25  (43)  1.89767724808394E+25 (44)
1.36809289978145E+25  (45)  9.32790613487351E+24  (46)  6.01131728691848E+24  (47)
3.65906269638516E+24  (48)  2.10201474047658E+24  (49)  1.13859131775815E+24  (50)
5.80913937631709E+23 (51 2.7883869006322E+23 (52) 1.25750781793217E+23 (53)
5.32022538355918E+22  (54)  2.10801383122156E+22  (55)  7.80745863415394E+21 (56)
2.69712207361681E+21 (57)  8.66932095091119E+20  (58)  2.58558695027176E+20  (59)
7.13265365592209E+19 (60) 1.81338652269206E+19 (61)  4.2312352196148E+18 (62)
9.01738653360531E+17  (63)  1.74530061940748E+17  (64)  3.04735028785433E+16  (65)
4.76148482477239E+15 (66) 659282514199254 (67) 79913032024152 (68) 8349122748792 (69)

736687301364 (70) 53383137780 (71) 3050465016 (72) 128892888 (73) 3580358 (74) 49046

The hk Quasi Concavity: + Increase, - decrease, = equality.

1<> 24 3+ 4+ 54 6+ 74 8+ 9+ 10+ 114 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+ 26+
27+ 28+ 29+ 30+ 31+ 32+ 33+ 34+ 35+ 36+ 37+ 38= 39-40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50- 51-
52- 53-54- 55- 56- 57- 58- 59- 60- 61- 62- 63- 64- 65- 66- 67- 68- 69-70- 71- 72- 73~ 74-

The hk Genuine Concavity: hk:(hk -(hk-1 + hk+1)/2 >= 0?); Concavity domain = [33, 42].
Detailed as below:

1<> 2:(-60890609) 3:(-1398129799) 4:(-23705550318) 5:(-316485745410) 6:(-3464565641922) 7:(-
31975736913966) 8:(-253902786449871) 9:(-1.76141641419902E+15) 10:(-1.08049078715989E+16)

11:(-5.91722705042169E+16)  12:(-2.91576016178789E+17)  13:(-1.30114398741724E+18)  14:(-
5.28656672052575E+18) 15:(-1.96450206624973E+19) 16:(-6.70197435678273E+19) 17:(-
2.10570620797994E+20) 18:(-6.10908289230876E+20) 19:(-1.64007329100571E+21) 20:(-
4.08117155876228E+21) 21:(-9.42471792265725E+21) 22:(-2.02132062171245E+22) 23:(-
4.02696901561891E+22) 24:(-7.44936696492427E+22) 25:(-1.27801066278976E+23) 26:(-
2.02873021295997E+23) 27:(-2.96812266595073E+23) 28:(-3.97603317312369E+23) 29:(-
4.82167128710853E+23) 30:(-5.18217007492973E+23) 31:(-4.71410310041995E+23) 32:(-

3.17198958618682E+23)
35:(6.50106677568863E+23)
38:(1.1268515744527E+24)
41:(2.88583939798859E+23)
4.71410310041995E+23)
3.97603317312369E+23)
1.27801066278976E+23)
2.02132062171245E+22)
1.64007329100571E+21)
6.70197435678273E+19)
1.30114398741724E+18)

33:(-5.39112854569321E+22)

36:(9.5348979376767E+23)

39:(9.534897937676TE+23)
42:(-5.39112854569321E+22)

45:(-5.18217007492973E+23)
48:(-2.96812266595073E+23)
51:(-7.44936696492427E+22)
54:(-9.42471792265725E+21)
57:(-6.10908289230876E+20)
60:(-1.96450206624973E+19)
63:(-2.91576016178789E+17)

34:(2.88583939798859E+23)

43:(-3.17198958618682E+23)
46:(-4.82167128710853E+23)
49:(-2.02873021295997E+23)

52:(-4.0269690156189E+22)
55:(-4.08117155876229E+21)
58:(-2.10570620797994E+20)
61:(-5.28656672052575E+18)
64:(-5.91722705042169E+16)

37:(1.1268515744527E+24)
40:(6.50106677568863E+23)

44:(-
47:.(-
50:(-
53:(-
56:(-
59:(-
62:(-
65:(-

1.08049078715989E+16) 66:(-1.76141641419902E+15) 67:(-253902786449871) 68:(-31975736913966)
69:(-3464565641922) 70:(-316485745410) 71:(-23705550318) 72:(-1398129799) 73:(-60890609)

Output for retail_dat.txt
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Total number of elements n = 16470
Total number of tuples u = 88162

Longest pattern length Alpha =76

The Gk distributions:

3016 5516 6919 7210 6814 6163 5746 5143 4660 4086 3751 3285 2866 2620 2310 2115 1874 1645 1469
1290 1205 981 887 819 684 586 582 472 480 355 310 303 272 234 194 136 153 123 11511276 66 71 60
504437373322242121101110911497452253300101101

The Hk Series:

(1) 908576 (2) 7164335 (3) 52502539 (4) 366817927 (5) 2447321444 (6) 15534598332 (7) 93307736462
(8) 527550301625 (9) 2796416534241 (10) 13863139450195 (11) 64204046715896 (12)
277757200264229 (13) 1.12312584494064E+15 (14) 4.24904654295735E+15 (15)
1.5058885990449E+16 (16) 5.00625023811958E+16  (17) 1.56327472119759E+17 (18)
4.59121121980175E+17  (19) 1.26976301242088E+18  (20)  3.31067777753649E+18  (21)
8.14636975894685E+18 (22) 1.8935525717633E+19 (23) 4.16131440789675E+19 24)
8.65288386954046E+19  (25) 1.70361679656958E+20  (26)  3.17787016348576E+20  (27)
5.61949830792223E4+20  (28) 9.4248316680112E+20  (29) 1.49988185541216E+21 (30)
2.26577690430042E+21 3n 3.2501290738274E+21 (32) 4.42825143223911E+21 (33)
5.73212226482143E+21 (34)  7.05069716806149E+21 (35) 8.24219004470137E+21 (36)
9.15769085268638E+21 37)  9.67116815427317E+21 (38)  9.70768639718059E+21 39
9.26120299243453E+21 (40)  8.39616377302037E+21 (41)  7.23232941850291E+21 (42)
5.91772992838759E+21 (43)  4.59811839985694E+21 (44)  3.39150713519183E+21 (45)
2.37356853011541E+21 (46) 1.57537354482505E+21 (47)  9.91013257283473E+20  (48)
5.9046404820075E+20 (49) 3.32957641309953E+20  (50) 1.77535631861495E+20 51
8.94240979386786E+19  (52)  4.25025368313273E+19  (53) 1.90382440924376E+19  (54)
8.0257650807726E+18 (55) 3.17919252128806E+18 (56) 1.18129875755773E+18 37
4.10926627354641E+17  (58) 1.33528383786941E+17  (59)  4.04304582589712E+16  (60)
1.13749193542012E+16 (61) 2.96417842579272E+15 (62) 712836643924391 (63) 157536096738717
(64) 31838940145963 (65) 5851270021055 (66) 971240578752 (67) 144437457258 (68 19056211553
(69) 2203389079 (70) 219831833 (71) 18542293 (72) 1285749 (73) 70375 (74) 2851 (75) 76 (76) 1

The Hk Quasi Concavity: + Increase, - decrease, = equality.

1<> 2+ 34+ 4+ 5+ 6+ 7+ 8+ 94 10+ 11+ 12+ 13+ 144 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+ 26+
27+ 28+ 29+ 30+ 31+ 32+ 33+ 34+ 35+ 36+ 37+ 38+ 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50- 51-
52- 53-54- 55- 56- 57- 58- 59- 60- 61- 62- 63- 64- 65- 66- 67- 68- 69- 70- 71- 72- 73- 74-75- 76-

The Hk Genuine Concavity: Hk:(Hk - (Hk-1 + Hk+1)/2 >= 07?); theoretic concavity domain = [33, 43];
exact =[33, 43].

Detailed as below:
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1<> 2:(-19541222.5) 3:(-134488592) 4:(-883094064.5) 5:(-5503386685.5) 6:(-32342930621) T7:(-
178234713516.5)  8:(-917311833726.5)  9:(-4398928341669) 10:(-19637092174873.5) 11:(-
81606123141316) 12:(-315907745564039) 13:(-1.14027602667015E+15) 14:(-3.84195937473746E+15)
15:(-1.20968884716276E+16)  16:(-3.56306766739083E+16)  17:(-9.8264340060926E+16) 18:(-
2.53924120290146E+17) 19:(-6.15136437337449E+17) 20:(-1.39738860814738E+18) 2):(-
2.97673198863789E+18) 22:(-5.94423120132421E+18) 23:(-1.11190381275513E+19) 24:(-
1.94585731725583E+19) 25:(-3.1796247865032E+19) 26:(-4.83687388760149E+19) 27:(-
6.81852607826247E+19) 28:(-8.84326763010704E+19) 29:(-1.04248180138614E+20) 30:(-
1.09228560319354E+20) 31:(-9.68850944423698E+19) 32:(-6.28742370853074E+19) 33:(-

7.35203532886717E+18) 34:(6.35410133000913E+19) 35:(1.37996034327435E+20)
36:(2.01011753199109E+20) 37:(2.38479529339683E+20) 38:(2.41500823826744E+20)
39:(2.09277907334049E+20) 40:(1.49397567551648E+20) 41:(7.53825677989307E+19)

42:(2.50601920766935E+18)  43:(-5.65001319327722E+19)  44:(-9.43363297943486E+19)  45:(-
1.09871809893028E+20) 46:(-1.06917348874388E+20) 47:(-9.19055392294298E+19) 48:(-
7.1521401095963E+19) 49:(-5.10421987211691E+19) 50:(-3.36552377628212E+19) S1:(- .
2.05949864077324E+19) 52:(-1.17286341842308E+19) 53:(-6.22590686361234E+18) 54:(-
3.08295322609023E+18) 55:(-1.4243393978771E+18) 56:(-6.13760816763625E+17) 57:(-
2.46486943317692E+17) 58:(-9.21501590198654E+16) 59:(-3.20211933115998E+16) 60:(-
1.03223989881807E+16) 61:(-3.07969957327008E+15) 62:(-848020617341325) 63:(-214801695296460)
64:(-49854743233923)  65:(-10553820341302.5) 66:(-2026613160404.5) 67:(-350710938044.5) 68:(-
54264211315.5) 69:(-7434632764) 70:(-891133853) 71:(-92016498) 72:(-8020585) 73:(-573925) 74:(-
32374.5) 75:(-1350)

The Rk Series:

0.210272925251529 0.297094051410328 0.382831246282321 0.463316718039126 0.536416236147605
0.600644667263741 0.65552176787858 0.701570924935985 0.739920275015639 0.771879594163558
0.798676329287781 0.82134661868907 0.840718401553246 0.857434446016042 0.871986691039956
0.884749696089944 0.896009184273812 0.905984998255989 0.914848923844976 0.922738141516824
0.929765099200748 0.936024549137197 0.941598411268332 0.94655903067817 0.950971295213339
0.954893979352975 0.958380588604126 0.961479900011198 0.964236331011297 0.96669022077285
0.968878073679284 0.970832791317424 0.972583904574083 0.974157808823637 0.975578000710482
0.976865313167724 0.978038144975912 0.979112681618661 0.980103104973037 0.981021790211479
0.981879489047814 0.98268549907259 0.983447819379726 0.984173293000019 0.984867736850611
0.985536060009938 0.98618237115967 0.986810076020608 0.987421965565713 0.988020295733908
0.988606859302998 0.989183050515657 0.989749922993555 0.990308241423762 0.990858527459561
0.991401100244955 0.991936111947395 0.992463578665651 0.992983407067619 0.993495417104725
0.993999361143785 0.994494939852474 0.994981815169571 0.995459620685058 0.995927969747206
0.996386461603664 0.996834685870954 0.997272225611996 0.997698659284314 0.998113561803096
0.99851650494359 0.998907057287231 0.999284783895796 0.999649245878639 1

The Rk Monotonic: + Increase, - decrease, = equality.

= 14 24 34 4+ 54+ 6+ 7+ 8+ O+ 10+ 11+ 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 244 25+
26+ 27+ 28+ 29+ 30+ 31+ 32+ 33+ 34+ 35+ 36+ 37+ 38+ 39+ 40+ 41+ 42+ 43+ 44+ 45+ 46+ 47+ 48+
49+ 50+ 51+ 52+ 53+ 54+ 55+ 56+ 57+ 58+ 59+ 60+ 61+ 62+ 63+ 64+ 65+ 66+ 67+ 68+ 69+ 70+ 71+
72+ 73+ 74+ 75+

The accumulative frequency w = 1.08160582031538E+23
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The sum of odd length pattern frequencies H_odd = 5.4080291015769E+22

The sum of even length pattern frequencies H_even = 5.4080291015769E+22

The hk Series:

(1) 88162 (2) 820414 (3) 6343921 (4) 46158618 (5) 320659309 (6) 2126662135 (7) 13407936197 (8)
79899800265 (9) 447650501360 (10) 2348766032881 (11) 11514373417314 (12) 52689673298582 (13)
225067526965647 (14) 898058317974992 (15) 3.35098822498236E+15 (16) 1.17078977654666E+16
(17) 3.83546046157292E+16 (18) 1.1797286750403E+17 (19) 3.41148254476145E+17 (20)
9.28614757944738E+17 (21)  2.38206301959175E+18 (22)  5.7643067393551E+18°  (23)
1.31712189782779E+19 (24)  2.84419251006897E+19 (25)  5.8086913594715E+19 (26)
1.12274766062243E+20  (27)  2.05512250286333E+20  (28)  3.56437580505891E+20  (29)
5.86045586295229E+20  (30)  9.13836269116928E+20  (31)  1.35194063518349E+21  (32)
1.8981884386439E+21 (33)  2.53006299359521E+21 (34)  3.20205927122623E+21 (35)
3.84863789683527E+21 (36)  4.3935521478661E+21 (37)  4.76413870482027E+21 38)
4.90702944945289E+21 (39) 4.80065694772769E+21 (40)  4.46054604470683E+21 (41)
3.93561772831354E+21 (42)  3.29671169018937E+21 (43)  2.62101823819822E+21 (44)
1.97710016165872E+21 (45) 1.41440697353311E+21 (46)  9.59161556582305E+20  (47)
6.1621198824275E+20 (48)  3.74801269040722E+20 (49)  2.15662779160028E+20 (50)
1.17294862149926E+20  (51)  6.02407697115692E+19  (52)  2.91833282271095E+19  (53)
1.33192086042178E+19  (54)  5.71903548821977E+18  (55)  2.30672959255284E+18  (56)
8.72462928735225E+17  (57)  3.08835828822501E+17 (58)  1.02090798532141E+17  (59)
3.14375852548001E+16  (60)  8.99287300417102E+15 (61)  2.38204635003018E+15  (62)
582132075762540 (63) 130704568161851 (64) 26831528576866 (65) 5007411569097 (66) 843858451958
(67) 127382126794 (68) 17055330464 (69) 2000881389 (70) 202507690 (71) 17324143 (72) 1218150 (73)
67599 (74) 2776 (75) 75 (76) 1

The hk Quasi Concavity: + Increase, - decrease, = equality.

1<> 24 3+ 4+ 54 6+ 7+ 8+ 9+ 10+ 11+ 124 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+ 26+
27+ 284 29+ 30+ 31+ 32+ 33+ 34+ 35+ 36+ 37+ 38+ 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50- 51-
52- 53-54- 55- 56- 57- 58- 59- 60- 61- 62- 63- 64- 65- 66- 67- 68-69-70- 71- 72-73- 74-75- 76-

The hk Genuine Concavity: hk:(hk -(hk-1 + hk+1)/2 >=07); Concavity domain = [33, 43].
Detailed as below:

1<> 2:(-2395627.5) 3:(-17145595) 4:(-117342997) 5:(-765751067.5) 6:(-4737635618) 7:(-27605295003)
8:(-150629418513.5)  9:(-766682415213)  10:(-3632245926456)  11:(-16004846248417.5)  12:(-
65601276892898.5) 13:(-250306468671140) 14:(-889969557999009) 15:(-2.95198981673845E+15) 16:(-
9.14489865488914E+15) 17:(-2.64857780190192E+16) 18:(-7.17785620419068E+16) 19:(-
1.8214555824824E+17) 20:(-4.3299087908921E+17) 21:(-9.64397729058168E+17) 22:(-
2.01233425957972E+18) 23:(-3.93189694174449E+18) 24:(-7.18714118580676E+18) 25:(-
1.22714319867515E+19) 26:(-1.95248158782805E+19) 27:(-2.88439229977343E+19) 28:(-
3.93413377848903E+19) 29:(-4.90913385161801E+19) 30:(-5.51568416224334E+19) 31:(-

5.407171869692E+19) 32:(-4.28133757454501E+19) 33:(-2.00608613398568E+19)
34:(1.27088260109896E+19) 35:(5.08321872891022E+19) 36:(8.71638470383339E+19)
37:(1.13847906160774E+20) 38:(1.2463162317891E+20) 39:(1.16869200647833E+20)

40:(9.24087066862158E+19) 41:(5.69888608654323E+19) 42:(1.83937069334968E+19) 43:(-
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1.5887687725827E+19) 44:(-4.06124442069455E+19) 45:(-5.37238855874031E+19) 46:(-
5.6147924305625E+19) 47:(-5.07694245687632E+19) 48:(-4.11361146606667E+19) 49:(-
3.03852864352963E+19) 50:(-2.06569122858727E+19) 51:(-1.29983254769484E+19) 52:(-
7.59666093078404E+18) 53:(-4.13197325344678E+18) 54:(-2.09393361016557E+18) 55:(-
9.8901961592466E+17) 56:(-4.35319781952443E+17) 57:(-1.78441034811182E+17) = 58:(-
6.80459085065098E+16) 59:(-2.41042505133557E+16) 60:(-7.91694279824414E+15) 61:(-
2.40545618993661E+15) 62:(-674243383333473) 63:(-173777234007852) 64:(-41024461288608) 65:(-
8830281945315) 66:(-1723538395987.5) 67:(-303074764417) 68:(-47636173627.5) 69:(-6628037688)
70:(-806595076) 71:(-84538777) 72:(-7477721) 73:(-542864) 74:(-31061) 75:(-1313.5)

Output for accident_dat.txt

Total number of elements n = 469
Total number of tuples u = 340183

Longest pattern length Alpha = 51

The Gk distributions:

0000000000000000022882472 173338 847 2126 5424 13454 25037 29434 35640 42540
45977 42977 35957 25896 16093 9187 4689 2322 1069 486 225 10240198421

The Hk Series:

(1) 11500870 (2) 190126271 (3) 2048535348 (4) 16178712662 (5) 99868593350 (6) 501747368618 (7)
2109641396806 (8) 7575707412975 (9) 23596557346745 (10) 64532436426248 (11) 156494619826759
(12) 339292670918357 (13) 662267155920527 (14) 1.17088896993161E+15 (15) 1.8852993348772E+15
(16) 2.77836082215053E+15 (17) 3.76507207472581E+15 (18) 4.71292018449639E+15 (19)
5.47335759367226E+15  (20) 5.92316179314867E+15 (21)  5.9984917558589E+15 (22)
5.70812727877794E+15  (23)  5.12307216430698E+15 (24)  4.35034034688795E+15  (25)
3.50335749197144E+15  (26)  2.67904254984003E+15 27y  1.94572268328735E+15  (28)
1.34084120169436E+15 (29) 875055956580332 (30) 539379672531933 (31) 313012776894420 (32)
170412248731500 (33) 86712999547974 (34) 41079409043847 (35) 18045666283976 (36)
7319881053213 (37) 2729465391540 (38) 931089778543 (39) 289014188456 (40) 81138980458 (41)
20459031625 (42) 4595198520 (43) 910273047 (44) 157094976 (45) 23255333 (46) 2893313 (47) 294207
(48) 23479 (49) 1379 (50) 53 (51) 1

The Hk Quasi Concavity: + Increase, - decrease, = equality.

1<> 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22- 23- 24- 25- 26-
27- 28- 29- 30- 31- 32- 33- 34- 35- 36- 37- 38- 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50- 51-
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The Hk Genuine Concavity: Hk:(Hk - (Hk-1 + Hk+1)/2 >= 0?); theoretic concavity domain = [21, 30];
exact = [16, 25].

Detailed as below:

l<> 2:(-839891838) 3:(-6135884118.5) 4:(-34779851687) 5:(-159094447290) 6:(-603007626460) 7:(-
1929085993990.5)  8:(-5277391958800.5)  9:(-12457514572866.5)  10:(-25513152160504)  11:(-
45417933845543.5) 12:(-70088216955286) 13:(-92823664504456.5) 14:(-102894275467252) 15:(-
89325561163873) 16:(-46824882650971) 17:(19431571402343.5) 18:(93705350297363)
19:(155316604849722)  20:(187237118383095)  21:(182847219895598) 22:(147345318694995)
23:(93838351474037) 24:(37125518748737) 25:(-11333956392545.5) 26:(-45497537789368) 27:(-
64219192479843.5)  28:(-69548118239482)  29:(-65054480532814) 30:(-54654694205443)  31:(-
41883183737296.5)  32:(-29450639489697)  33:(-19032829339699.5)  34:(-11299923872128) 35:(-
6153978764554) 36:(-3067684784545) 37:(-1396020024338) 38:(-578150011455) 39:(-217100191044.5)
40:(-73597629582.5) 41:(-22408057864) 42:(-6089453816) 43:(-1465873701) 44:(-309669214) 45:(-
56738811.5) 46:(-8881457) 47:(-1164189) 48:(-124314) 49:(-10387) 50:(-637)

The Rk Series:

0.661258743034223 0.659669654543449 0.658141465063295 0.656685031958284 0.655314215959906

- 0.654047156055942 0.652907811677863 0.651927808078982 0.651148622656721 0.650624147205726

0.650423646437093 0.650635093421442 0.651368776120728 0.65276090286432 0.654976644410335
0.658211589674931 0.662689941194264 0.668657005852476 0.676362919352789 0.686034681672803
0.69783541843641 0.711814225724103 0.727856847392233 0.745654195061704 0.764707157627939
0.784377425463368 0.803976203159195 0.822865095523693 0.840537944733476 0.856662762258845
0.871081368229159 0.88377912861112 0.894842061853888 0.90441520981245 0.912669674289271
0.919780150823181 0.925911606151859 0.931212634215335 0.935813115744347 0.939824362739502
0.943340532325904 0.946440576340251 0.949190323549149 0.951644496165901 0.953848578875793
0.955840519155722 0.95765226524182 0.959311157488252 0.960841189267585 0.962264150943396

The Rk Monotonic: + Increase, - decrease, = equality.

=142-3-4-5-6-7-8-9-10- 11- 124 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+ 26+ 27+
28+ 29+ 30+ 31+ 32+ 334 34+ 35+ 36+ 37+ 38+ 39+ 40+ 41+ 42+ 43+ 44+ 45+ 46+ 47+ 48+ 49+ 50+

The accumulative frequency w = 5.96696205467851E+16
The sum of odd length pattern frequencies H_odd = 2.98348102735626E+16

The sum of even length pattern frequencies H_even = 2.98348102732224E+16

The hk Series:

(1) 340183 (2) 11160687 (3) 178965584 (4) 1869569764 (5) 14309142898 (6) 85559450452 (7)
416187918166 (8) 1693453478640 (9) 5882253934335 (10) 17714303412410 (11) 46818133013838 (12)
109676486812921 (13) 229616184105436 (14) 432650971815091 (15) 738237998116519 (16)
1.14706133676068E+15  (17) 1.63129948538985E+15  (18)  2.13377258933595E+15  (19)
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2.57914759516044E+15  (20)  2.89420999851182E+15  (21)  3.02895179463686E+15  (22)
2.96953996122204E+15  (23)  2.73858731755589E+15  (24)  2.38448484675109E+15  (25)
1.96585550013686E+15  (26) 1.53750199183458E+15  (27) 1.14154055800545E+15  (28)
804182125281904 (29) 536659076412455 (30) 338396880167877 (31) 200982792364056 (32)
112029984530364 (33) 58382264201136 (34) 28330735346838 (35) 12748673697009 (36)
5296992586967 (37) 2022888466246 (38) 706576925294 (39) 224512853249 (40) 64501335207 (41)
16637645251 (42) 3821386374 (43) 773812146 (44) 136460901 (45) 20634075 (46) 2621258 (47) 272055
(48) 22152 (49) 1327 (50) 52 (51) 1

The hk Quasi Concavity: + Increase, - decrease, = equality.

1<> 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 114 12+ 13+ 144 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22- 23- 24- 25- 26~
27-28- 29- 30- 31- 32- 33- 34- 35- 36- 37- 38- 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50- 51-

The hk Genuine Concavity: hk:(hk -(hk-1 + hk+1)/2 >= 0?); Concavity domain = [17, 26].
Detailed as below:

1<> 2:(-78492196.5) 3:(-761399641.5) 4:(-5374484477) 5:(-29405367210) 6:(-129689080080) 7:(-
473318546380) 8:(-1455767447610.5) 9:(-3821624511190) 10:(-8635890061676.5) 11:(-
16877262098827.5)  12:(-28540671746716)  13:(-41547545208570)  14:(-51276119295886.5) 15:(-
51618156171365.5) 16:(-37707404992507.5) 17:(-9117477658463.5) 18:(28549049060807)
19:(65156301236556) 20:(90160303613166) 21:(97076814769928.5) 22:(85770405125669.5)
23:(61574913569325.5) 24:(32263437904711.5) 25:(4862080844025.5) 26:(-16196037236571) 27:(-
29301500552797) 28:(-34917691927046.5) 29:(-34630426312435.5) 30:(-30424054220378.5) 31:(-
24230639985064.5) - 32:(-17652543752232)  33:(-11798095737465)  34:(-7234733602234.5)  35:(-
4065190269893.5)  36:(-2088788494660.5)  37:(-978896289884.5)  38:(-417123734453.5)  39:(-
161026277001.5) 40:(-56073914043) 41:(-17523715539.5) 42:(-4884342324.5) 43:(-1205111491.5) 44:(-
260762209.5) 45:(-48907004.5) 46:(-7831807) 47:(-1049650) 48:(-114539) 49:(-9775) 50:(-612)

Output for pumsb_star_dat.txt

Total number of elements n=7117
Total number of tuples u = 49046

Longest pattern length Alpha = 63

The Gk distributions:

000000000000000000000000000000000000000000000000229359873 3818
4765 2609 2069 1598 840 3371225018921 :

The Hk Series:
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(1) 2475947 (2) 61354029 (3) 994833553 (4) 11871905109 (5) 111195816937 (6) 851319404422 (7)
5478723572673 (8) 30249595410859 (9) 145536526875785 (10) 617668265835985 (11)
2.33540366924541E+15  (12)  7.93100064889181E+15  (13)  2.43565338674182E+16  (14)
6.80363124277246E+16  (15)  1.73726669682348E+17  (16)  4.07257800899788E+17  (17)
8.79814160690642E+17 (18) 1.7574197680144E+18  (19) 3.25536545673323E+18  (20)
5.60654354176194E+18  (21)  8.99841235384127E+18  (22) 1.34865978950395E+19  (23)
1.89100778445261E+19  (24)  2.48447602743104E+19  (25)  3.06294523332462E+19  (26)
3.5476672516081E+19 27 3.86467885423445E+19  (28) 3.96329973373586E+19  (29)
3.82934583427739E+19  (30)  3.48833924491648E+19  (31)  2.99776520013333E+19  (32)
2.43152661257564E+19  (33) 1.86226459072274E+19  (34) 1.3471702716558E+19  (35)
9.20693786834402E+18  (36)  5.94511230350647E+18  (37)  3.62689357357827E+18  (38)
2.08997787870144E+18  (39)  1.13708536219218E+18  (40)  5.83709528649578E+17  (41)
2.82450446058859E+17  (42)  1.28673318925082E+17  (43)  5.51003443981372E+16  (44)
2.21365926396406E+16  (45) 8.32482138536006E+15  (46) 2.9228275554106E+15  (47)
955173953763785 (48) 289545255456520 (49) 81096958191925 (50) 20893465857031 (51)
4926251959547 (52) 1056719242649 (53) 204804664373 (54) 35570797824 (55) 5481629787 (56)
740386627 (57) 86293143 (58) 8503379 (59) 688905 (60) 44060 (61) 2086 (62) 65 (63) 1

The Hk Quasi Concavity: + Increase, - decrease, = equality.

1<> 24 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 124 134 144 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+ 26+
274 28+ 29- 30- 31- 32- 33- 34- 35- 36- 37- 38- 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50- 51- 52- 53-
54- 55- 56- 57- 58- 59- 60- 61- 62- 63-

The Hk Genuine Concavity: Hk:(Hk - (Hk-1 + Hk+1)/2 >= 0?); theoretic concavity domain = [27, 36];
exact = [23, 33].

Detailed as below:

1<> 2:(-437300721) 3:(-4971796016) 4:(-44223420136) 5:(-320399837828.5) 6:(-1943640290383) 7:(-
10071733834967.5)  8:(-45258029813370)  9:(-178422403747637)  10:(-622801832224613)  11:(-
1.93893078811849E+15) 12:(-5.41496811944001E+15) 13:(-1.362712267089E+16) 14:(-
3.10052893471588E+16) 15:(-6.39203869814079E+16) 16:(-1.19512614286707E+17) 17:(-
2.02524623766451E+17) 18:(-3.10170040697539E+17) 19:(-4.26616198154934E+17) 20:(-
5.20345363525314E+17) 21:(-5.4815836455947TE+17) 22:(-4.67647204144157E+17) 23:(-

2.55601240148853E+17) 24:(7.49951854242324E+16) 25:(4.68735938U50552E+17)
26:(8.38552078285578E+17) 27:(1.09195361562472E+18) 28:(1.16287389479943E+18)
29:(1.03526344951221E+18) 30:(7.47837277111153E+17) 31:(3.78322713872712E+17)

32:(1.51171714760417E+16) 33:(-2.7083851392974E+17)  34:(-4.43089171227771E+17) 35:(-
5.01469641688197E+17) 36:(-4.71803417454677E+17) 37:(-3.90651517525681E+17) 38:(-
2.92011589183787E+17) 39:(-1.99758341483328E+17) 40:(-1.26058375475942E+17) 41:(-
7.37409777284711E+16) 42:(-4.01020763034159E+16) 43:(-2.03046113842242E+16) 44:(-
9.57599025210805E+15) 45:(-4.20488871216552E+15) 46:(-1.71717011415133E+15) 47:(-
651012451669773)  48:(-228590200521335)  49:(-74122402464850.5)  50:(-22118139218705) S1:(-
6048840590293) 52:(-1508809069311) 53:(-341340355863.5) 54:(-69572349256) 55:(-12673962438.5)
56:(-2043574838) 57:(-288151860) 58:(-34987645) 59:(-3584814.5) 60:(-301435.5) 61:(-19976.5) 62:(-
978.5)

The Rk Series:
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0.799355650911127 0.797441359743064 0.795570614012051 0.793754180999234 0.792003935231445
0.790332862627539 0.788755029462367 0.787285506161521 0.785940235398599 0.784735834312018
0.78368932235445 0.782817769858833 0.782137868362556 0.781665432451595 0.781414854427055
0.781398546973771 0.781626423970857 0.78210548344993 0.782839566398919 0.78382936695266
0.785072759884749 0.786565487599363 0.788302210448135 0.790277873459113 0.792489284825161
0.794936744564861 0.797625514522334 0.800566891621507 0.803778641516764 0.807284573837009
0.811113096004816 0.815294672530897 0.819858242566212 0.824826809129727 0.830212599248142
0.836012380588156 0.842203663140048 0.84874255517094 0.855563924013948 0.862584207594161
0.869706763894576 0.876829133362802 0.88385116897483 0.890682796103732 0.897250265368588
0.903500120543403 0.909400599698905 0.914940670244909 0.920127247453258 0.92498130812786
0.929533599935222 0.933820517630707 0.937880535278096 0.941751401362476 0.94546815279118
0.949061895815607 0.952559235596893 0.955982204250804 0.959348531364992 0.962672113784234
0.965963566634708 0.969230769230769

The Rk Monotonic: + Increase, - decrease, = equality.

=1+ 2- 3-4-5- 6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 16- 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+ 26+ 27+
28+ 29+ 30+ 31+ 32+ 33+ 34+ 35+ 36+ 37+ 38+ 39+ 40+ 41+ 424 43+ 44+ 45+ 46+ 47+ 48+ 49+ 50+
514 52+ 53+ 54+ 55+ 56+ 57+ 58+ 59+ 60+ 61+ 62+ :

The accumulative frequency w = 4.05464141001747E+20
The sum of odd length pattern frequencies H_odd = 2.02732070500873E+20

The sum of even length pattern frequencies H_even = 2.02732070500873E+20

The hk Series:

(1) 49046 (2) 2426901 (3) 58927128 (4) 935906425 (5) 10935998684 (6) 100259818253 (7)
751059586169 (8) 4727663986504 (9) 25521931424355 (10) 120014595451430 (11) 497653670384555
(12)  1.83774999886086E+15 (13) 6.09325065003095E+15 (14) 1.82632832173873E+16 (15)
4.97730292103373E+16  (16)  1.23953640472011E+17  (17)  2.83304160427777E+17  (18)
5.96510000262865E+17  (19)  1.16090976775153E+18  (20)  2.0944556889817E+18  (21)
3.51208785278024E+18  (22)  5.48632450106103E+18  (23)  8.00027239397851E+18  (24)
1.09098044505476E+19  (25)  1.39349558237628E+19  (26)  1.66944965094834E+19  (27)
1.87821760065975E+19  (28)  1.9864612535747E+19  .(29)  1.97683848016116E+19  (30)
1.85250735411623E+19  (31)  1.63583189080025E+19  (32)  1.36193330933308E+19  (33)
1.06959330324256E+19  (34)  7.92671287480185E+18  (35)  5.54498984175611E+18  (36)
3.6619480265879E+18  (37)  2.28316427691856E+18  (38)  1.34372929665971E+18  (39)
746248582041731E+17  (40)  3.9083678015045E+17  (41)  1.92872748499128E+17  (42)
8.95776975597307E+16  (43)  3.90956213653515E+16  (44)  1.60047230327857E+16  (45)
6.13186960685486E+15 (46) 2.1929517785052E+15 (47) 729875776905397 (48) 225298176858388 (49)
64247078598132 (50) 16849879593793 (51) 4043586263238 (52) 882665696309 (53) 174053546340 (54)
30751118033 (55) 4819679791 (56) 661949996 (57) 78436631 (58) 7856512 (59) 646867 (60) 42038 (61)
2022 (62) 64 (63) 1

The hk Quasi Concavity: + Increase, - decrease, = equality.
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1<> 2+ 3+ 44 5+ 6+ 7+ 8+ 9+ 10+ 11+ 124 13+ 14+ 15+ 16+ 17+ 18+ 194+ 20+ 21+ 22+ 23+ 24+ 25+ 26+
27+ 28+ 29- 30- 31- 32- 33- 34- 35- 36- 37- 38- 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50- 51- 52- 53-
54- 55- 56- 57- 58- 59- 60- 61- 62- 63-

The hk Genuine Concavity: hk:(hk -(hk-1 + hk+1)/2 >= 0?); Concavity domain = [24, 33].
Detailed as below:

l<> 2:(-27061186) 3:(-410239535) 4:(-4561556481) 5:(-39661863655) 6:(-280737974173.5) T:(-
1662902316209.5) 8:(-8408831518758)  9:(-36849198294612) 10:(-141573205453025) 11:(-
481228626771588) 12:(-1.4577021613469E+15) 13:(-3.95726595809311E+15) 14:(-
9.66985671279687E+15) 15:(-2.13354326343619E+16) 16:(-4.2584954347046E+16) 17:(-
7.69276599396608E+16) 18:(-1.25596963826791E+17) 19:(-1.84573076870748E+17) 20:(-
2.42043121284186E+17) 21:(-2.78302242241128E+17) 22:(-2.69856122318343E+17) 23:(-

1.97791081825811E+17) 24:(-5.78101583230403E+16) 25:(1.32805343747271E+17)
26:(3.35930594303277E+17) 27:(5.02621483982299E+17) 28:(5.89332131642434E+17)
29:(5.73541763156984E+17) 30:(4.61721686355218E+17) 31:(2.8611559075594E+17)

32:(9.22071231167693E+16)  33:(-7.70899516407296E+16)  34:(-1.93748562289009E+17)  35:(-
2.49340608938763E+17) 36:(-2.52129032749433E+17) 37:(-2.19674384705243E+17) 38:(-
1.70977132820439E+17) 39:(-1.21034456363348E+17) 40:(-7.872388511998E+16) 41:(-
4.7334490355962E+16) 42:(-2.64064873725092E+16) 43:(-1.36955889309067E+16) 44:(-
6.60902245331746E+15) 45:(-2.96696779879059E+15) 46:(-1.23792091337493E+15) 47:(-
479249200776396) 48:(-171763250893376)  49:(-56826949627958.5)  50:(-17295452836892) 51:(-
4822686381813) 52:(-1226154208480) 53:(-282654860831) 54:(-58685495032.5) 55:(-10886854223.5)
56:(-1787108215) 57:(-256466623) 58:(-31685237) 59:(-3302408) 60:(-282406.5) 61:(-19029) 62:(-947.5)

Output for T40110D100K _dat.txt

Total number of elements n = 1000
Total number of tuples u = 100000

Longest pattern length Alpha =77

The Gk distributions:

00010021551624173141 71 124 164 258 306 439 593 723 923 1074 1366 1588 1946 2217 2707
2816 3164 3602 3753 3876 4232 4495 4555 4445 4725 4555 4414 4300 4062 3829 3441 3135 2822 2615
22251936 1657 1429 1173 909 737 639 472 336 275208 152 1277947 38 3215889612002

The Hk Series:

(1) 3960507 (2) 80096632 (3) 1099569571 (4) 11498654533 (5) 97500349307 (6) 697040556063 (7)
4315006899213 (8) 23581577918301 (9) 115450483283408 (10) 512200640492561 (11)
2.07838480923294E+15  (12)  7.77254238471906E+15  (13)  2.69602689096333E+16  (14)
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8.72093105225744E+16  (15)  2.64298549451808E+17  (16)  7.53449913781887E+17  (17)
2.02737315009449E+18  (18)  5.16427718468851E+18  (19) 1.24842740049338E+19  (20)
2.87009431427177E+19  (21) 6.28554616251805E+19  (22) 1.3130647241166E+20  (23)
2.61920911124247E+20  (24)  4.99250474551047E+20  (25)  9.09809445277863E+20  (26)
1.58561966617132E+21  (27)  2.64318653170815E+21  (28)  4.21450413899866E+21  (29)
6.42723570378944E+21  (30)  9.37347701999184E+21  (31) 1.30705726297083E+22  (32)
1.74224680567533E+22  (33)  2.21941675425744E+22  (34)  2.70126196187154E+22  (35)
3.14029467104375E+22  (36)  3.48593998907014E+22  (37)  3.69383350456697E+22  (38)
3.73504477947147E+22  (39) 3.6026185483506E+22  (40) 3.31341422800792E+22  (41)
2.90459517099384E+22  (42) 2.42577206876913E+22  (43) 1.9290953957398E+22 (44)
1.4600319669151E+22  (45) 1.05104249632529E+22  (46) 7.19197535857808E+21 47)
4.6745614248956E+21 (48) 2.88379514993618E+21 49 1.68714820765631E+21 (50)
9.35204918695762E+20  (51) 4.9066566544455E+20  (52) 2.43392596483649E+20  (53)
1.14009537719929E+20  (54)  5.03619463496462E+19  (55)  2.09481653579947E+19  (56)
8.19139092845594E+18  (57)  3.00569848327089E+18 . (58) 1.03282769896598E+18  (59)
3.31604783678242E+17  (60)  9.92248748007835E+16  (61)  2.75920564468882E+16  (62)
7.10728187982204E+15 (63) 1.68956517387226E+15 (64) 369111622206975 (65) 73743280712269 (66)
13396208900647 (67) 2197849349159 (68) 323037347878 (69) 42117832681 (70) 4811996111 (71)
474320277 (72) 39521111 (73) 2706699 (74) 146302 (75) 5852 (76) 154 (77) 2

The Hk Quast Concavity: + Increase, - decrease, = equality.

1<> 24 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 124 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 214 22+ 23+ 24+ 25+ 26+
27+ 28+ 29+ 30+ 31+ 32+ 33+ 34+ 35+ 36+ 37+ 38+ 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50- 51-
52- 53- 54- 55- 56- 57- 58- 59- 60- 61- 62- 63- 64- 65- 66- 67- 68-69- 70- 71- 72- 73- 74-75-76- 71-

The Hk Genuine Concavity: Hk:(Hk - (Hk-1 + Hk+1)/2 >= 07); theoretic concavity domain = [34, 43];
exact = [33, 43].

Detailed as below:

l<> 2:(-471668407) 3:(-4689806011.5) 4:(-37801304906) 5:(-256769255991) 6:(-1509213068197) 7:(-
7824302337969)  8:(-36301167173009.5)  9:(-152440625922023)  10:(-584717005765613)  11:(-
2.06398670337287E+15) 12:(-6.74678447471404E+15) 13:(-2.05306575440135E+16) 14:(-
5.8420098658146E+16) 15:(-1.56031062700423E+17) 16:(-3.92385935991259E+17) 17:(-
9.31490399140712E+17) 18:(-2.09154639282562E+18) 19:(-4.44833615876934E+18) 20:(-
8.96892467233942E+18) 21:(-1.71482461520083E+19) 22:(-3.10817139630536E+19) 23:(-
5.33575623571069E+19) 24:(-8.66147036500077E+19) 25:(-1.3262562508332E+20) 26:(-
1.90878322321689E+20) 27:(-2.56875370876839E+20) 28:(-3.20706978750133E+20) 29:(-
3.66754875705814E+20) 30:(-3.75427146757043E+20) 31:(-3.27399908664255E+20) 32:(-

2.09902029388026E+20) 33:(-2.33762951599835E+19) 34:(2.14062492209486E+20)
35:(4.66936955729053E+20) 36:(6.88759012647823E+20) 37:(8.33411202961639E+20)
38:(8.68187530126885E+20) 39:(7.83890446109018E+20) 40:(5.98073683357018E+20)

41:(3.5002022605313E+20) 42:(8.92678540231117E+19) 43:(-1.38066221023168E+20) 44:(-
3.00369791174419E+20) 45:(-3.85722550611654E+20) 46:(-4.00517835496172E+20) 47:(-
3.63323829361528E+20) 48:(-2.97059666339774E+20) 49:(-2.22351826659664E+20) 50:(-
1.53702017854666E+20) 51:(-9.86330921451557E+19) 52:(-5.89450050985906E+19) 53:(-
3.28677336967184E+19) 54:(-1.71169051893157E+19) 55:(-8.32850328105641E+18) 56:(-
3.78554099217683E+18) 57:(-1.60641083044007E+18) 58:(-6.35823934508589E+17) 59:(-
2.34421503205138E+17) 60:(-8.03735452617814E+16) 61:(-2.55740218934146E+16) 62:(-
7.53352893055817E+15) 63:(-2.04863157714224E+15) 64:(-512542605085291) 65:(-117510634841542)
66:(-24574356130067)  67:(-4661773775103.5)  68:(-796946243042)  69:(-121806839313.5)  70:(-
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16484080368) 71:(-1951438334) 72:(-198992377) 73:(-17127007.5) 74:(-1209973.5) 75:(-67376) 76:(-
2773)

The Rk Series:

0.532206130493686 0.549121501638171 0.565265636725842 0.580772828486351 0.595759024640537
0.610327780377984 0.62457315580858 0.638581469879227 0.652432293565568 0.666198613909566
0.67994604 1857347 0.693731023265632 0.707598160120602 0.721576924331548 0.735678223852825
0.749891428293542 0.764182536073514 0.778494120578493 0.792747495116936 0.806847190367279
0.820687403393911 0.834159663435217 0.847160690026802 0.859599380655357 0.871402069082201
0.882515571705354 0.892907969046751 0.902567435357276 0.911499656693908 0.919724449254064
0.927272134279971 0.934180095009313 0.940489786208399 0.946244325093674 0.951486683594253
0.956258430888995 0.960598937691932 0.964544941509479 0.968130376204133 0.971386382222729
0.97434143037415 0.977021508618985 0.979450336062951 0.9816495804161 0.983639064462367
0.985436953827253 0.987059922953293 0.988523299152587 0.989841186332512 0.991026570850394
0.992091412237422 0.993046721462159 0.993902629138512 0.994668445730243 0.99535271543366
0.995963265072766 0.99650724903779 0.9969911910463 0.997421023305281 0.997802123497653
0.998139349900338 0.99843707485557 0.998699216755331 0.998929270654587 0.999130337596984
0.999305152713364 0.999456112135685 0.999585298755041 0.999694506841141 0.99978526553124
0.99985886118885 0.999916358626659 0.999958621183959 0.999986329646895 1 1

The Rk Monotonic: + Increase, - decrease, = equality.

= 1+ 2+ 3+ 44 5+ 64+ 7+ 8+ 9+ 10+ 114 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+
26+ 27+ 28+ 29+ 30+ 31+ 32+ 33+ 344 35+ 36+ 37+ 38+ 39+ 40+ 41+ 42+ 43+ 44+ 45+ 46+ 47+ 48+
49+ 50+ 514 524 53+ 54+ 55+ 56+ 57+ 58+ 59+ 60+ 61+ 62+ 63+ 64+ 65+ 66+ 67+ 68+ 69+ 70+ 71+
T2+ 73+ 74+ 75+ 76- :

The accumulative frequency w = 4.31580101724358E+23
The sum of odd length pattern frequencies H_odd = 2.15790050862179E+23

The sum of even length pattern frequencies H_even = 2.15790050862179E+23

The hk Series:

(1) 100000 (2) 3860507 (3) 76236125 (4) 1023333446 (5) 10475321087 (6) 87025028220 (7)
610015527843 (8) 3704991371370 (9) 19876586546931 (10) 95573896736477 (11) 416626743756084
(12) 1.66175806547686E+15 (13) 6.11078431924221E+15 (14) 2.08494845903911E+16 (15)
6.63598259321834E+16  (16)  1.97938723519624E+17  (17)  5.55511190262263E+17  (18)
1.47186195983222E+18  (19)  3.69241522485629E+18  (20)  8.79185878007748E+18  (21)
1.99090843626402E+19  (22)  4.29463772625403E+19  (23)  8.83600951491197E+19-  (24)
1.73560815975127E+20  (25) 3.2568965857592E+20  (26) 5.84119786701943E+20  (27)
1.00149987946938E+21 (28) 1.64168665223878E+21  (29)  2.57281748675989E+21  (30)
3.85441821702955E+21 (31)  5.51905880296229E+21  (32)  7.55151382674604E+21  (33)
9.87095423000729E+21 (34)  1.23232133125671E+22  (35) 1.46894063061483E+22  (36)
1.67135404042891E+22  (37) 1.81458594864123E+22  (38) 1.87924755592574E+22  (39)
1.85579722354573E+22  (40) 1.74682132480487E+22  (41) 1.56659290320305E+22  (42)
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1.33800226779079E+22  (43) 1.08776980097834E+22  (44)  8.41325594761459E+21  (45)
6.18706372153644E+21  (46)  4.32336124171646E+21 (47) 2.86861411686162E+21  (48)
1.80594730803398E+21 49) 1.0778478419022E+21 (50)  6.09300365754111E+20  (51)
3.25904552941651E+20  (52) 1.64761112502899E+20  (53)  7.86314839807498E+19  (54)
3.53780537391793E+19  (55) 1.49838926104668E+19  (56)  5.96427274752782E+18  (57)
2.22711818092812E+18  (58)  7.78580302342771E+17  (59)  2.54247396623204E+17  (60)
7.73573870550372E+16  (61)  2.18674877457461E+16  (62)  5.72456870114201E+15  (63)
1.38271317868002E+15 (64) 306851995192239 (65) 62259627014736 (66) 11483653697533 (67)
1912555203114 (68) 285294146045 (69) 37743201833 (70) 4374630848 (71) 437365263 (72) 36955014
(73) 2566097 (74) 140602 (75) 5700 (76) 152 (77) 2

The hk Quasi Concavity: + Increase, - decrease, = equality.

1<> 24 3+ 4+ 54 6+ 7+ 8+ 9+ 10+ 114 124 13+ 14+ 154 16+ 174 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+ 26+
27+ 28+ 29+ 30+ 314 32+ 334 34+ 35+ 36+ 37+ 38+ 39- 40- 41- 42- 43- 44- 45- 46- 47- 48~ 49- 50- 51-
52-53- 54- 55- 56- 57- 58- 59- 60- 61- 62- 63- 64- 65- 66- 67- 68- 69- 70- 71- 72- 73- 74-75- 76- 77-

The hk Genuine Concavity: hk:(hk -(hk-1 + hk+1)/2 >= 0?); Concavity domain = [33, 43].
Detailed as below:

1<> 2:(-34307555.5) 3:(-437360851.5) 4:(-4252445160) 5:(-33548859746) 6:(-223220396245) 7:(-
1285992671952)  8:(-6538309666017)  9:(-29762857506992.5) - 10:(-122677768415031) 11:(-
462039237350582) 12:(-1.60194746602229E+15) 13:(-5.14483700869175E+15) 14:(-
1.53858205353217E+16) 15:(-4.30342781228242E+16) 16:(-1.12996784577599E+17) 17:(-
2.7938915141366E+17) 18:(-6.52101247727052E+17) 19:(-1.43944514509857E+18) 20:(-
3.00889101367078E+18) 21:(-5.96003365866864E+18) 22:(-1.11882124933397E+19) 23:(-
1.98935014697139E+19) 24:(-3.3464060887393E+19) 25:(-5.31506427626147E+19) 26:(-
7.9474982320705E+19) 27:(-1.11403340000984E+20) 28:(-1.45472030875855E+20) 29:(-
1.75234947874278E+20) 30:(-1.91519927831536E+20) 31:(-1.83907218925509E+20) 32:(-

1.43492689738746E+20) 33:(-6.64093396492825E+19) 34:(4.30330444893032E+19)
35:(1.71029447720183E+20) 36:(2.95907508008868E+20) 37:(3.92851504638957E+20)
38:(4.4055969832268E+20) 39:(4.27627831804205E+20) 40:(3.56262614304817E+20)

41:(2.41811069052199E+20)  42:(1.08209157000934E+20)  43:(-1.89413029778261E+19)  44:(-
1.19124918045337E+20) 45:(-1.81244873129084E+20) 46:(-2.04477677482568E+20) 47:(-
1.960401580136U5E+20) 48:(-1.67283671347923E+20) 49:(-1.29775994991852E+20) 50:(-
9.25758316678117E+19) 51:(-6.11261861868545E+19) 52:(-3.75069059583011E+19) 53:(-
2.14380991402894E+19) 54:(-1.1429634556429E+19) 55:(-5.68727063288676E+18) 56:(-
2.64123264816965E+18) 57:(-1.14430834400718E+18) 58:(-4.62102486432889E+17) 59:(-
1.737214480757E+17) 60:(-6.07000551294379E+16) 61:(-1.96734901323435E+16) 62:(-
5.90053176107107E+15) 63:(-1.6329971694871E+15) 64:(-415634407655141) 65:(-96908197430150)
66:(-20602437411392)  67:(-3971918718675)  68:(-689855056428.5)  69:(-107091186613.5)  70:(-
14715652700) 71:(-1768427668) 72:(-183010666) 73:(-15981711) 74:(-1145296.5) 75:(-64677) 76:(-
2699)

Output for T1014D100k_dat.txt
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Total number of elements n = 1000
Total number of tuples u = 100000

Longest pattern length Alpha =29

The Gk distributions:

128 545 1607 3287 4849 6525 7990 9759 10471 10892 10242 8719 7364 5685 4185 2932 1963 1255 756
38821511767271711202

The Hk Series:

(1) 1010228 (2) 5270095 (3) 18790249 (4) 51202603 (5) 113283212 (6) 211446703 (7) 341991592 (8)
488936418 (9) 627432107 (10) 731187069 (11) 780208311 (12) 765930113 (13) 692835561 (14)
576788640 (15) 440503927 (16) 307192014 (17) 194493524 (18) 111044874 (19) 56721409 (20)
25679299 (21) 10189328 (22) 3495680 (23) 1019555 (24) 247387 (25) 48507 (26) 7373 (27) 814 (28) 58
29)2 :

The Hk Quasi Concavity: + Increase, - decrease, = equality.

1<> 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12- 13- 14- 15- 16~ 17- 18- 19- 20- 21- 22- 23- 24- 25- 26- 27- 28-
29-

The Hk Genuine Concavity: Hk:(Hk - (Hk-1 + Hk+1)/2 >= 0?); theoretic concavity domain = [11, 18];
exact ={7, 15].

Detailed as below:

1<> 2:(-4630143.5) 3:(-9446100) 4:(-14834127.5) 5:(-18041441) 6:(-16190699) 7:(-8199968.5)
8:(4224568.5)  9:(17370363.5) 10:(27366860)  11:(31649720) 12:(29408177) 13:(21476184.5)
14:(10118896) 15:(-1486400) 16:(-10306711.5) 17:(-14624920) 18:(-14562592.5) 19:(-11640677.5) 20:(-
7776069.5) 21:(-4398161.5) 22:(-2108761.5) 23:(-851978.5) 24:(-286644) 25:(-78873) 26:(-17287.5) 27:(-
2901.5) 28:(-350)

The Rk Series:

0.372624157262378 0.396160874603673 0.41922401020133 0.442490050749959 0.466632917770728
0.492248855567246 0.519881380858361 0.549968185083263 0.582682222381074 0.617761948514005
0.654466336918235 0.691728161626673 0.728441333570636 0.763718104780982 0.796988553131721
0.827943675745325 0.856415717985551 0.882286046073426 0.905453494640798 0.925846872481475
0.943449852630124 0.958316101179578 0.970568532349898 0.980387004976009 0.987991423918197
0.993625389936254 0.997542997542998 1

The Rk Monotonic: + Increase, - decrease, = equality.
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= 14 24 34 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 124 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+
26+ 27+ 28+

The accumulative frequency w = 6556956652
The sum of odd length pattern frequencies H_odd = 3278528326

The sum of even length pattern frequencies H_even = 3278428326

The hk Series:

(1) 100000 (2) 910228 (3) 4359867 (4) 14430382 (5) 36772221 (6) 76510991 (7) 134935712 (8)
207055880 (9) 281880538 (10) 345551569 (11) 385635500 (12) 394572811 (13) 371357302 (14)
321478259 (15) 255310381 (16) 185193546 (17) 121998468 (18) 72495056 (19) 38549818 (20) 18171591
(21) 7507708 (22) 2681620 (23) 814060 (24) 205495 (25) 41892 (26) 6615 (27) 758 (28) 56 (29) 2

The hk Quasi Concavity: + Increase, - decrease, = equality.

1<> 24 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+ 13- 14- 15- 16- 17- 18- 19- 20- 21- 22- 23- 24- 25- 26- 27- 28-
29-

The hk Genuine Concavity: hk:(hk -(hk-1 + hk+1)/2 >= 0?); Concavity domain = [8, 16].
Detailed as below:

1<> 2:(-1319705.5) 3:(-3310438) 4:(-6135662) 5:(-8698465.5) 6:(-9342975.5) 7:(-6847723.5) 8:«(-
1352245) 9:(5576813.5) 10:(11793550) 11:(15573310) 12:(16076410) 13:(13331767) 14:(8144417.5)
15:(1974478.5) 16:(-3460878.5) 17:(-6845833) 18:(-7779087) 19:(-6783505.5) 20:(-4857172) 21:(-
2918897.5) 22:(-1479264) 23:(-629497.5) 24:(-222481) 25:(-64163) 26:(-14710) 27:(-2577.5) 28:(-324)

Produced on 9/11/2009 1:08:53 AM

By Tongyuan Wang, Dept of CS, Concordia University
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