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ABSTRACT

Measures and Adjustments of Pattern Frequency Distributions

Tongyuan Wang
Concordia University, 2010

Frequent pattern mining over large databases is fundamental to many data mining

applications, where pattern frequency distribution plays a central role. Various

approaches have been proposed for pattern mining with respectable computational

performance. However, the appropriate evaluation of the pattern frequentness and the

refinement of the mining result set are somewhat ignored. This has created a set of

problems in conventional mining approaches which are identified in this thesis. Most

conventional mining approaches evaluate pattern frequentness with an ill formed

"support" measure, and generate patterns with full enumeration mode which produces

excessive number of patterns in an application. Consequently, the mining result sets

exhibit among other issues those of overfitting and underfitting, probability anomaly and

bias for generated against original observations. Even worse, these results are delivered

to users without any refinement. Overcoming these drawbacks is challenging, since these

problems are rather philosophical than computational and hence their resolution demands

a well established theory to reform the mining foundations and to pursue graceful

knowledge degeneration.



Based on the problems identified, this thesis first proposes a reformulation of the

frequentness measure, which effectively resolves the probability anomaly and other

related issues. To deal with the profound full enumeration mode, we first explore a set of

properties governing raw pattern frequency distributions, such that a number of important

mining parameters can be predetermined. Based on these explorations, an approach to

adjust the raw pattern frequency distributions is established and its theoretical merits are

justified. This refinement theory shows that unconditional pattern reduction is achievable

before domain constraints are imposed. The thesis then presents a maximum likelihood

pattern sampling model and strategies to realize the adjustment.

Findings presented in this thesis are based on known set theory, combinatorics, and

probability theory, and they are theoretically fundamental and applicable to every item

based or key words based pattern mining and the improvement of mining effectiveness.

We expect that these findings would pave a way to replace the full enumeration pattern

generation with selective generation mode, which would then radically change the state

of the art of pattern mining.

IV



Acknowledgement

Many thanks to Dr. Bipin C. Desai for his dedicated supervision during the

doctoral program and this thesis, his encouragement, time and liberal thinking.

Tongyuan Wang

April 2010

V



Table of Contents

Chapter 1. Introduction 1

Research background 1
Our contributions 3

Structure of this thesis . 4

Chapter 2. Related work and open issues 6

2.1 The problem and terminology 6
2.2 Related work 8

2.3 The open fundamental issues 15

2.3.1 Meaningless but overwhelming number of resulted patterns 15

2.3.2 Overfitting issues 16

2.3.3 Probability anomaly 17

2.3.4 A further insight into the summation issue of the supports 19

2.3.5 Other drawbacks of using S2 21

2.3.6 The absolute support S2 is no better a choice than the relative sz 22

2.3.7 Full enumeration mode and overfitting and underfitting 23

2.3.8 The bias for generated patterns against the original ones 24

2.3.9 The bias for shorter patterns 24

2.3.10 The mixture of pattern mining and element mining 25

2.3.11 The ultimate question: What is a pattern and what is pattern mining? 26

2.3.12 Other examples 28

2.4 Challenges and motivations 31

Chapter 3. Resolution of probability anomaly and S2 33

3.1 The classic probability theory and sz 33

3.2 The multivariate probability theory and S2 37

3.3 The multi valued state viewpoint and the resolution of S2 41

3.4 Primary overfitting / underfitting quantifications 44

3.5 Numerical comparisons 45
vi



3.6 The significance and impacts of the resolution 49

Chapter 4. Fundamentals of raw pattern frequency distributions 52

4.1 A dual problem 52
4.2 The inclusion-exclusion principle 55

4.3 The raw collective frequencies 56

4.4 Fundamental propositions 58

4.5 Formulae for w and Hk 60

4.6The odd and even length pattern frequencies 67

4.7 The Hk-curve and its properties 68

Chapter 5. The adjusted pattern frequency distributions 92

5.1 The assumptions underlying the full enumeration mode 92

5.2 The principle of pattern frequency adjustment 96

5.3 The adjusted Hk, hk 99

5.4 The hk-curve and its properties 103

5.5 The aggregative relations between the Hk and the hk measures 107
5.6 The concavity of hk-curve 109

5.7 Further semantic justification of the adjustment of Hk to hk 112

5.8 Higher order reductions 117

5.9 Summary 123

Chapter 6. Empirical verification 124

Chapter 7. The optimized sampling model 128
7.1 The model 128

7.2 A sample solution 131

7.3 Significance and implications 141

Chapter 8. Conclusions, contributions and future work 144
REFERENCES 148

APPENDIX A: THE OUTPUT OF EMPIRICAL DATASETS 157

List of Figures viii
List of Tables viii

vii



List of Figures

Fig. 1. The Hk and hk Curves 69

Fig. 2. A convex domain of Hk 91

List of Tables

Table 1. Adatábase (DBo) 6

Table 2. "Statistics" from the data of Table 1 and formula (2-1) 18

Table 3. Original sample 35

Table 4. Bitmap indexing 37

Table 5. The contingency table 38

Table 6. The DBv 42

Table 7. Comparisons of the resulted parameters based on data of Table 46

Table 8.The DBd 53

Table 9. The recursive computation of H^s 66

Table 10. Demonstrations of the Hk and Rk roperties 83

Table 11. The recursive computation of hks 117

Table 12. Empirical results 125

Table 13. A mutual element free dataset 134

Table 14. The raw patterns from Table 1 135

Table 15. The raw patterns from Table 13 after merging V4 and V7 136

Table 16. The refined patterns from Table 15 137

Table 17. The reorganized refined patterns 139

viii



Chapter 1. Introduction

Frequent pattern mining over large databases is fundamental to other mining especially

the association rule mining, correlation mining and causation mining. Starting from the

work by Agrawal [1, 5], extensive research to date has been reported on frequent pattern

mining. Most of the research is focused on the computation efficiencies, including

scalability and memory optimization [2]. Efficiency is certainly important in dealing

with large dataseis, but the most important yet least studied issue is how to refine the

mining result set to improve the mining reliability and hence usability. We notice this

importance in the mining domain in our earlier attempted causation mining over

traditional Chinese medicine (TCM); this issue formed the starting point of our current

research.

Research background

Mining causation relations from TCM is not only industrially important but also

technically significant because of the complications of the TCM data sources, which calls

for effective mining solution. Among other difficulties, the typical data issues in TCM

mining include:

1 . Synonymous entries - different literals used in the TCM data source referring to the

same thing or similar thing.

2. Multiple valued states (MVS) - a data cell may contain a set of values of an attribute,

which violates the "first order normal form" (INF) requirement of the relational
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database theory; e.g., a medicine may have different origins and hence characteristics.

3. Complex domains: the values of an attribute may not be exclusive to one another,

while conventional database deals with simple domains. A simple domain X means:

U i Xj = X, and Xj ? Xk = 0, where x¡ and Xj are values of X, j F k, and 0 is the

empty set.

The attribute "origin" is an example of complex domain that, a herb may grow in

province A or B, while another herb may grow in Mount M that stretches over but

only partially covers A and B.

4. Layered values: This is related to the above issue but more concerned with the scope

of the denotations or connotation of the values. For instance, the scope of the

"origin": some herbs might grow throughout a country, but some others might grow

in a small area of a province only.

5. Data reliability: Due to the long historical evolution of TCM and due to the imprecise

records, data reliability issue is the primary concern for reliable mining results, even

though we have managed to ensure the database to be filled with as accurate as

possible data drawn from the data source [52].

The above five issues mostly emerge together among most of the attributes of the TCM

database we have constructed. We have used the "origin" attribute as a commonly

understandable example of the data complications for non-medical readers. For other

more important attributes of TCM, such as the "efficacy", the difficulties engendered by

the above five issues cannot be overlooked. In short, data complication is the first

challenge for us to propose an effective mining approach. However, reported data
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mining approaches as summarized in [2] are unable to deal with the above introduced

data complications together, though some of them have concerned with individual data

characteristics.

Taking all of these issues into consideration, we have designed and implemented a fuzzy

"Hyper Knowledge Discovery System" (HKDS) to deal with TCM data mining. The

first set of functionalities of the HKDS is on fuzzy information retrieval, pattern mining

and association rule mining, as summarized in [52].

What we want to point out here is that, after many efforts in dealing with the data

complications as described above, we found that there are even more profound issues

preventing us from pursuing convincing mining results over many dataseis including the

TCM data. Such issues include overfitting and underfitting, probability anomaly, bias for

generated against original observations, etc. as summarized in Chapter 2. These issues are

generally incurred but not well addressed by conventional pattern mining approaches. It

is these issues that led us from our original efforts to mine TCM data to concentrating on

the current research topic towards refining mining concepts and theories. This work has

culminated in the following contributions:

Our contributions

Our main contribution is in investigation and reformulation of some concepts and

theories underlying the conventional pattern mining approaches, such that the state of the

art of pattern mining would be radically changed. The contribution can be described in

the following aspects:

3



a) The investigation and identification of the fundamental drawbacks embodied in

conventional mining approaches. This is a contribution because detecting a

problem is of first importance in a research, then is its solution, and because the

problems revealed in this thesis are fundamental to an effective pattern mining.

b) The reformulation of frequentness measure. The change is simple but effective

especially in the resolution of probability anomaly and overfitting issues.

c) The explorations of a set of laws governing raw pattern frequency distributions,

and hence lays a foundation for frequency adjustments. These laws can be used in

data property analysis and can serve as checkpoints to validate mining algorithms.

d) A theory on the adjustment of the raw pattern frequency distributions, which

forms an unconditional pattern refinement framework and promises a

development of selective pattern generation mode.

e) An optimization model and the related strategies to adjust individual pattern's

frequentness based on the above adjustment framework.

These contributions are embodied in the following context.

Structure of this thesis

In the second chapter, we present a brief literature review on frequent pattern mining and

the profound issues and drawbacks that conventional mining approaches unintentionally

embrace, including overfitting and underfilling, probability anomaly, bias for generated

against original observations, and bias for shorter against longer patterns. Chapter 3
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proposes a new measure to gauge the pattern frequentness and radically resolve the

probability anomaly issue. Chapter 4 analyzes the properties underlying the raw pattern

frequency distributions based on full enumeration pattern generation regime. Chapter 5

then points out the need and presents a theory to reduce the number of excessively

generated patterns and adjust their frequency distributions in a collective mode. The

adjustment theory is established on a set of mathematical properties, such that the merits

of the full enumeration mode could be maintained while its drawbacks are handled

effectively. In other words, dimension reduction and noise diminishment are naturally

embodied in the adjustment functions. Chapter 6 presents empirical verifications of the

theories and properties presented in the previous two chapters. Finally, Chapter 7

proposes a maximum likelihood model to optimize the pattern sampling and realize the

proposed adjustment theory; this is followed by our conclusion.
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Chapter 2. Related work and open issues

Frequent pattern mining is a broad area. According to the data types, it can be divided

into qualitative or quantitative mining [53, 54]. This thesis focuses on the former one

concerning non-continuous data sources. However, the principles discussed herein could

be applicable to the latter one as well. According to the application domains, pattern

mining has developed from the early days' market-basket itemset mining to today's

temporal pattern mining, spatial pattern mining, sequential pattern mining, medical data

mining, genomic pattern mining, and so on. Nevertheless, the fundamental problem is

the same in all of these tasks. Below is a running example to illustrate the basic problem.

2.1 The problem and terminology

Table 1 represents a database DBo of u rows and two Table 1. A Database (DBo)

columns. Column TDD represents the key attribute and

VED represents an application domain O of ? distinct

elements. Each row is a tuple, where T¡ (i = 1, 2, ..., u)

is a tuple ID; and each cell of column VID contains a

value V (or a set of values) of that domain. For

example, in a market-basket problem, a TID could

represent a transaction ID, and a value of VID, V¡ (i = 1,

2, ..., ?), is an "item" from the domain O of

merchandise. Particularly, a combination of k distinct

Vs is termed as a pattern Zk = (V¡Vj...Vs) of length k, or

6

TID VID

V1, V4, V7

T2 V2, V4, V7, V8

T3 v2,v6

V1, V6, V8

T5 V1, V2, V3, V4, V7, V8

V5

T7 V4, V7

V1, V2

T10 V1, V2, V3, V8



k-itemset in market-basket problem [1, 5]. A formation of such a pattern is termed a

pattern generation. By convention, the number of occurrences or absolute frequency S of

a pattern Z is termed as its (absolute) support Sz over the database. The relative support

is a ratio sz[2]:

sz = s(Z) = count(Z) / IDBoI = S(Z) / u = S2 / u, (2-1)

where u = IDBoI is the total number of tuples, i.e., the cardinality u of DBo. The

multiple notations of the above support measure are used for convenience in the later part

of this thesis.

Obviously, (2-1) comes from classical frequency based probability concept, and sz

should be taken as the first link between probability theory and pattern mining. In

statistics terminology, the dataset DBo is a sample of the real world application at hand.

The cardinality u of DBo is the sample size; and a record (tuple) is a realized event of the

sampling [16], and hence a subset of O. In data mining language, we term each original

tuple (event) an original pattern, or an original observation. A TID can be taken as a

sample label or trial JD, and the column VID refers to the set of events [6]. Based on

these notations, the fundamental data mining problem can be stated as follows:

Problem 2-1 (conventional problem 2-1): Given a dataset DBo as shown in Table 1

involving the universe O of ? distinct elements of domain "VTD, output all patterns of the

elements in any length, such that the sz of a pattern Z satisfies sz > sm¡n, where sm¡n is a

user predefined minimum support; such satisfactory patterns are termed as qualified

patterns.
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Problem 2-1 itself is not too difficult to comprehend. A main issue for most of the

research is the computation complexity, since there are up to the power set (2n) of

possible patterns over the ?-element domain O. Note that, in this thesis we do not take

the empty set (0) as a pattern, and F(0) = 0 in case its frequency needs to be considered.

Then the largest number of possible patterns is 2n - 1. The power set complexity

demands not only a great amount of computation time but also large memory space to

store the candidate patterns and other information. The next section briefly summarizes

how researchers have attempted to handle this problem.

2.2 Related work

There have been many proposals for pattern mining, and they are quite often embodied in

association rule mining. Examples of these proposals include the early days Apriori

algorithm [2, 5], the FP-growth method [7], their variations and extensions, and many

other approaches.

To understand the pursuance of these proposals, let us look at the primitive mining

approach over Table 1, where eight elements are involved, which means there will be 2

- 1 = 255 possible combinations (patterns). The primitive approach is then enumerating

each of the possible patterns and counting how many tuples support that pattern from

Table 1. This would be the best understanding of the origin of the notation "support".

For instance, we can get S(W1) = 4, 5(V1V2) = 3, ..., 5(V1V5) = 0, and so on. This

approach is simple, complete, but inefficient in a couple of aspects. Firstly, notice the

dataset involved is normally too large to be fully loaded into the main memory to carry

out the required enumeration-counting processes. This then demands multiple IOs,
8



which is expensive. Secondly, each turn of pattern enumeration - database access -

querying and counting is again costly. Thirdly, there could be zero occurrences of many

combinations, and enumerating them entails a (computation) resource waste. For

instance, in Table 1 , more than 70% of the 255 combinations are of zero frequency (refer

to Table 2 in next section). Fourthly, similar waste can occur when enumerating those

combinations whose occurrences are under Smin. Lastly but not least, the enumeration

demands large memory space for storing these patterns.

It is because of these inefficiencies of the primitive approach, most mining proposals

concentrate on efficient generation of patterns and the determination of their frequencies.

An easiest way to eliminate the third waste listed above is by replacing the full pattern

enumeration from the whole element space O by full enumeration from each data tuple.

This is the origin of the "pattern generation". This approach, however, introduces a side

effect and complication that, for each tuple, one needs to check whether a combination of

the elements of that tuple has already been enumerated or not. As can be imagined, such

checking is expensive. Accordingly, strategies for pattern search are introduced,

including "breadth first" and "depth first" search methods. In breadth first search the

patterns are generated and examined from each record of (T¡: {Vj}) in horizontal data

format [2]. In depth first search, the original dataset DBo are transformed into a "vertical"

dataset (Vj: {Tk}), then patterns and their related frequencies are determined [9, 10].

Many proposals have been made to reduce the fourth waste. For instance, the Apriori

algorithm [5] features pruning infrequent itemset as early as possible to achieve

9



computation efficiency. The pruning strategy is based on the intuition that any super

pattern of an infrequent pattern cannot be frequent. This intuition is proved (as can be

seen in Chapter 4) to be true against conventional mining conception and now referred to

as "anti-monotonicity" or "downward closure" property [2]. The Apriori is a level-wise

mining approach. The algorithm starts from k = 1, and for each loop k, enumerate

(generate) all the patterns of length k (candidate patterns) to determine their frequencies;

prune away those Zk with s(Zk) < sm¡n. The retained {Zk} are the qualified patterns of

length k, and use the retained {Zk} as the seeds to generate patterns of length k + 1, since

the super patterns of those pruned patterns could not be frequent based on the downward

closure property. Repeat these operations until no more patterns could be generated and

counted [5].

The Apriori approach, however, requires large memory space to generate and store a

bundle of candidate patterns at each level of the pattern length, and it needs to repeatedly

scan the database to obtain the candidate pattern frequencies. As a result, a number of

variations and extensions of the Apriori approach have been proposed to improve the

shortcomings. For instance, the "incremental mining" [43], the "dynamical itemset

counting" [44], the "parallel and distributed mining" [45], the "hash-based" [46] and the

"partitioning" [47] algorithms, are a few example proposals, which we do not summarize

in depth here to save space.

Unlike the Apriori approach, the frequent pattern growth (FP-growth) approach [7] tries

to avoid candidate pattern generation and hence reduce memory space requirement and

IO cost. We do not present a complete explanation of this approach here due to space

10



required to adequately cover the terminologies and the techniques used in the paper. In

short, this approach involves two database accesses and two types of trees to build. The

first database access counts the frequencies of all the individual elements that are then

listed in a descending order. The second database access is to build a FP-tree, starting

from the most frequent elements obtained in the first step. The FP-tree is a prefix tree

and acts as a compression of the original database, such that a data tuple is embodied in a

branch of the tree. Then pattern mining from the original database is converted to mining

from the FP-tree. The mining starts from length- 1 patterns as initial suffix of other

patterns, by constructing "conditional trees" from the FP-tree. A conditional tree

represents a sub database, called "conditional base", consisting of the prefix paths of the

patterns that are co-occurring with the suffix.

The advantage of the FP tree is that, once the tree is built, it can be repeatedly used by

later mining activities without further database access and hence improve mining

efficiency. However, the cost to build the tree is substantial, and more importantly, the

FP tree is not guaranteed to fit completely into the main memory, and hence the mining

efficiency will be compromised. To overcome these drawbacks, many extensions and

variations of this approach have also been reported, for example, the "hyper structure

mining" approach [48], the "bottom up and top down" tree building approach [49, 50],

the array based data structure to implement the prefix tree [51], and the like.

There is also a proposal to avoid multiple IOs and to reduce the candidate pattern

generations by statistical estimation over database scanning [8]. The basic idea is to

randomly sample the original dataset and use it to mine the patterns against a lower smin;
11



the resulting pattern set is the final mining result set, which can be verified by the rest of

the dataset. The paper claims that, in normal case, one pass of sampling and hence just

one set of IOs could produce the whole result set, and if not, the missed patterns can be

found in at most another pass of sampling. Nevertheless, as the paper admitted, this

approach could not guarantee to output the qualified patterns precisely and completely.

The above are just a few examples that researchers have attempted for mining patterns

efficiently. We would not summarize many other proposals here because of space

limitation; furthermore, efficiency is not the main focus of this thesis. Rather, we are

more concerned with the refinement of the mining results and on how to reduce the

number of meaningless patterns that conventional mining approaches produce. In this

regard, we have not found many articles on mining refinement to reduce the meaningless

patterns, although a lot of research has been done on how to present the mining result set

in a reduced form, such as follows.

The "constrained" pattern mining [27] reduces the mining result set size by user

constraints. For instance, a user may want to mine patterns with Vi and V2 only, or with

other constraint(s), from Table 1 . A number of categories of constraints and the related

mining approaches have been studied. One of them is the "monotonie" (or anti-

monotonic) constraint, which features, if C is a constraint, then any of its superset SdC

is also a constraint. This property can be seen as a mirror to the "downward closure"

property used in the Apriori approach, and it then can be used in a mining algorithm in a

similar way as the Apriori approach to prune patterns that do not meet these constraints

[23]. Similarly, others, such as the "succinct" constraint [23], the "convertible"
12



constraint [26], and the "block" constraint [11], have been studied. We do not discuss

these constraints further here, while the purpose of these studies is the same as that for

"monotonie" constraint, namely, how to adopt the properties of these constraints into the

related mining strategies and algorithms.

Another school of reduction approaches is the "concise" ("condensed" [4], or

"compressed" [2]) representation of the patterns, which means they use a small subset of

the frequent patterns to represent the whole mining result set. For example, the "free

sets" [29] or "generators" [30] are concise sets to represent the whole result set in an

application, where a generator can be understood as a set of elements G, such that there is

no G' c G with support(G') = support(G) . The generator possesses the anti-monotonic

property as well, that is, if G is not a generator, then G' c: G is neither. From here, we

see the anti-monotonic property has been widely used in pattern mining. Similarly, other

concise sets, e.g., "disjunction-free" [31], or "non-derivable" sets [28], have been

proposed, while the "closed" [13], and the "maximal" [14] (or "hybrid clique" [15])

approaches have attracted more attentions. A pattern is closed if none of its proper super-

pattern takes the same frequency [2, 13]. A pattern is maximal if none of its proper

super-pattern is frequent against a sm¡n [2, 14]. The "closed set" representation is a

lossless compression of the results set, in the sense that all of the patterns and their

supports can be derived from the closed set; while the "maximal" expression is a lossy

compression [2].

13



Similar to a lossy compression, there are approximation approaches to represent the

mining results, for instance, the "top-k most frequent closed" [32], and the "pattern

profile" [33] approaches.

The former proposes to mine desired number k of top frequent closed itemsets of length

no less than a predefined min_l. The related mining algorithm TFP is developed from the

FP growth approach. This approach does not take the sm¡n threshold into consideration,

since it is not easy for a user to define a smin. This is a notable point, but on the other

hand, this approach [32] faces the same problem, namely, how to determine the number k

and min_l, and by whom? The paper [32] did not touch this problem, and we could only

surmise, similar to smin, that k and min_l can only be defined ad hoc in an application.

The latter approach (pattern profile [33]) is based on an observation that, rather than

efficiency, how to interpret the result patterns in an application is the main issue of

pattern mining. The paper [33] then proposes a statistical model to summarize the large

number of patterns with a small set of k representative patterns. The paper presents

algorithms to seek an optimized k such that the frequent patterns can be recovered from

the representative set including their supports with a small error. The authors claim that

the summarization solves the interpretability problem, but it is not clear from the paper as

to how. Similar to other concise or approximation approaches, the pattern profile

summarization is still a compressed representation approach by using a small set of

patterns to recover (or represent) but not to (semantically) interpret the whole pattern set.

The above approaches demonstrate the efforts that researchers have made in dealing with

the big number of patterns in an application, yet from the above introductions, it is easy
14



to see that the representation approaches do not touch on the issues of refinement and

hence on how to improve the meaningfulness of the mining result set. At least, these

approaches did not claim, for instance, whether patterns within the concise set would all

be meaningful. Additionally, these approaches did not address other more fundamental

issues as presented in the next section.

2.3 The open fundamental issues

In this section, we examine some fundamental mining problems from shallow phenomena

to deeper theoretic issues, so that we could identify the problems clearly and develop our

solution rationally.

2.3.1 Meaningless but overwhelming number ofresultedpatterns

The first goal of pattern mining should be on the meaningfulness of the mined results.

However, this is a far reaching issue. A few years ago, people noticed that, in an

application especially if smjn is low, thousands or millions of frequent patterns may be

produced from a fairly large database [12], but many of them are meaningless, some of

them being even "counter intuitive" [55]. These problems essentially remain unchanged

today, though notably many thoughtful resolutions have been proposed, for instance, the

"concise representation" pattern mining approaches summarized above. These

approaches try to use a small set of patterns to represent the whole result pattern set, but

no article has claimed that its approach reduces the number of meaningless patterns.

Furthermore, no article has claimed the related concise or representative sets contain

none or fewer meaningless patterns.
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2.3.2 Overfitting issues

The above mentioned issue of huge number but meaningless frequent patterns is

theoretically an "overfitting" problem. Overfitting here simply means spurious patterns

falsely taken to be significant ones. Conversely, a true frequent pattern but falsely taken

to be infrequent is termed as underfitting. In our study, the overfitting problem is

dominant and widely incurred in previously proposed pattern mining approaches. The

overfitting or underfitting problem is important since it determines the reliability of the

mined results.

Reliability is a widely used and discussed criterion in data mining community. Article

[56] is an example wherein the problem of enhancing data mining reliability is addressed.

However, formal and concise definition of data mining reliability is not readily available.

In general, data mining reliability is determined by the effectiveness of a mining

approach, in addition to other factors, such as the data quality, data size, and data

complexity. Deriving reliability matrix is still an open issue, but criteria used in classic

statistical tests can be availed of, including the stability of the mined results against data

size change or data source change, and more importantly the degree of closeness of the

mined results to the real values or structures embodied in the real world. For an unknown

world, the said closeness can only depend on the soundness of the mining technology.

The minimum requirement of the soundness should be the compliance of mining results

with commonsense; a higher requirement should be the conformability of the mining

principles with other related established theories.
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Overfitting or underfitting certainly deviates a mining result set from the real structure,

and causes instability of the mining results as we would soon see. Unfortunately, we have

not found, from data mining literature, a substantial and generally accepted criterion to

measure the degree of overfitting embodied in a mining result set. The absence of such

measurement on one hand reflects the difficulty of the overfitting problem, and on the

other hand reflects the lack of known "right" mining solution to compare with. In other

words, researchers have not found a proper answer to the cause and mechanism of the

overfitting problem. The following subsection reveals some of the sources of the

overfitting issue.

2.3.3 Probability anomaly

As we know, pattern mining is a probability and statistics based technology, and some

people even take it to belong to the area of statistics [18]. However, under our

investigation, the radical problem of pattern mining - the overfitting issue - is exactly

rooted from its improperly designated probabilistic criterion, the use of "support" sz as

defined in (2-1). It is obvious to see in today's data mining literature that sz is indeed

used to mean the frequentness (relative frequency) of a pattern, whether it is called

"support" or not. Note that the "frequentness" is a synonym to "probability" in frequency

based probability theory. Then, the accumulative frequentness of all the patterns in a

question must be equal to 1. However, the use of sz directly leads to a common problem

in pattern mining that the accumulated probability (the sum of sz) of the mining results is

much larger than 1, which seriously violates the fundamental probability concept. We

term this issue a "probability anomaly".
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Table 2. "Statistics" from the data of Table 1 and formula (2-1)

K Example patterns Zk #of
Zk

ISz S sz # freq. Zk
(Smin =20%)

ESz S Sz #' freq. Zk
(smin =20%)

B D D' F'

V1, V2, ...,V8 24 2.56 28 2.8

V1V2,..., V7V8 19 30 3.33 10 36 3.6 13

V1V2V3, ...,V4V7V8 21 26 2.9 30 3.0

V1V2V3V4, ...,V3V4V7V8 15 16 1.8 17 1.7

V1V2V3V4V7..., V2V3V4V7V8 0.67 0 0.6 0

V1V2V3V4V7V8 0.11 0 0.1 0

69 103 11.4 23 118 11.8 32

Note, the last 3 columns are resulted from the whole Table 1, columns B, D, E and F are from its first 9
tuples.

Example 2-1: A concrete example is given in Table 2 based on Table 1, where column

D, E, and F represent statistics derived from the first 9 tuples of Table 1 , while column

D', E', and F' show corresponding results from the whole 10 tuples. Column B is the

subtotal of the patterns of same length; column D is the accumulated frequency (subtotal

of occurrences) of the patterns of same length; column E is the accumulated relative

supports and hence accumulated probability of patterns of same length, from which we

see that the grand accumulated probability Sd? =11.4 » 1. Column F is the number of

frequent patterns of same length with a not-low threshold smin = 20%, in total of 23. In a

common sense, it is difficult to believe so many frequent patterns can be derived from

such a small dataset (of 9 tuples). Even worse, if a new record T]0 = { Vi, V2, V3, V8) is

added to Table 1, then as shown in the last column of Table 2, the total number of

frequent patterns increases from 23 to 32, for a 40% increase at smin = 20%. This
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illustrates that the result set is very unstable. The large number of frequent patterns and

the instability of the result set are the typical symptoms of overfitting. The cause of the

probability anomaly is the definition of sz that legalizes overfitiing in current data mining

methods, since sz is generally used in the proposed pattern mining approaches to date. In

this sense, we can safely conclude that overfitting is naturally presented in available

pattern mining approaches. Even worse, the degree of overfitting and the probability

anomaly are increasing exponentially to the typical tuple size (length) of the dataset in

question. This is because, by combinatorics: a tuple of ? items will generate 2X (to be

more precise, 2X - 1) combinations (patterns), and hence one such tuple added to the

database will increase the accumulative frequency w by 2\

2.3.4 A further insight into the summation issue of the supports

It might be argued that the "supports" sz should not be summed together as described in

previous subsection. A typical argument is that, for instance, pattern A and B may not be

disjoint, and hence, s(A) and s(B) are not directly additive at all. We will discuss this

joint-disjoint issue in the next chapter further. Here we can simply answer that, if s(A)

and s(B) are not directly additive, then it means they are not directly comparable either.

In this sense, sz is disqualified to properly compare the frequentness of different patterns

again.

The reason we consider all sz to be additive is based on the fact that conventional mining

approaches generate all the patterns from every data tuple based on uniform distribution

assumption. This is analogous to the classical event based probability theory, where all

events can be drawn from a universe based on uniform distribution assumption, and the
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probabilities of all the drawn events are additive and accumulated to 1. Secondly, in real

applications, we need the sz summations. For instance in the running example, suppose

there are two milk-based products: yogurt represented by Vi, and bottled milk by V2.

Then a question could naturally be asked: what is the total percentage (total support) of

the milk-based product patterns? If those supports are not additive, then what should the

solution be? On the other hand, if they are additive, as can be quickly seen from Table 1,

the sum of their supports is certainly larger than 1. This is another dilemma due to the

use of conventional "support".

Another typical argument can be put like this: It is not wrong to use either sz or s'z, but

just a viewpoint difference, since sz represents the probability that a randomly selected

data tuple contains the pattern Z, while s'z measures the probability of Z that is selected

randomly from a randomly selected tuple of the DBo (all are based on random selection

and uniform probability distribution assumption over the data tuples). We notice that,

the basic task of pattern mining is the comparison of the frequentness (probabilities) of

different patterns, but not the probability of the data tuple (transaction) itself. At the

same time, even if we wanted to accept the argument, it still does not avoid the problem

of probability anomaly. Take the first data tuple Ti = {Vi, V4, V7) of Table 1 as an

example again, and notice that, from Table 1, s(VO = 5/10 = 0.5, s(V4) = 4/10 = 0.4, and

S(V7) = 0.4, then it is easy to see their summation is already larger than 1, let alone other

generated patterns' supports!

The answers to the above two arguments will become much clearer in the next chapter.
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2.3.5 Other drawbacks of using sz

In addition to being the source of probability anomaly, another related issue of the use of

sz is the inability to compare the frequentness of the mined results of similar mining tasks

against different data sources. This is because, as stated above, the frequentness of a

pattern generated from a database of larger tuple size in general would be much larger

than that from a database of smaller tuple size, if the two databases have the same

number of tuples. For instance, in a market-basket mining problem, the frequentness

(support) of most of the patterns generated from a database of a supermarket could be

very likely much larger than that from a database of a grocery store, if the supermarket

and the grocery store sell the same set of items, and if the numbers of records of the two

databases are the same. This is based on the observation that normally the number of

items included in a transaction in a supermarket would be much larger than that in a

grocery store.

Another big problem to be addressed is the objectiveness in determining the threshold,

Smin, to mean if a pattern is frequent or not. The value of smi„ is assumed to be set up by

the user in most of studies, and there has been no formal proposal to establish the

threshold sm¡n. This assumption is somewhat absurd. As [32] has noticed, it is hard for a

user to decide the sm¡n, but the problem is much beyond that. From a more industrial

practice point of view, it is the miner, not the user, to tell at what grade based on what

standard a mined material is rich of something. Secondly, if the user takes the role and

set an arbitrary sm¡n, it could results in an anomalous situation. For instance, with the

same dataset, a pattern could be frequent for a user with a low sm¡n, but infrequent for
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another user with a high smjn. This is certainly not objective or theoretically sound for

serious data mining. There is a need of generally accepted indicator to be the

frequentness threshold, or the smjn. A user defined smjn can only be taken as the threshold

the user wants to look at from the mining result.

2.3.6 The absolute support Sz is no better a choice than the relative sz

The question that remains is whether the absolute Sz is a better measure of the pattern

frequentness. The answer is no, even though Sz has been used as the "support" measure

in more than few research papers, e.g., [24 and 42]. Firstly, sz is obtained from Sz, thus

issues of sz are applicable to Sz but harder to be identified since Sz does not present the

"symptom" of probability anomaly. Instead, the symptom could easily be interpreted as a

result of the use of too big dataset, since too many patterns (hence overfitting) could pass

a fixed Sz when the data size becomes large. Such interpretation is counter to common

sense that, with bigger dataset, more realistic mining results should be obtained.

Consequently, there is an issue of what and how an absolute Smin could be set up to

determine if a pattern is frequent or not; and, should the absolute Smjn be changed if the

data size changes or if the dataset changes? If yes, how? These are just a few questions

among others to be answered formally.

Finally, either the absolute or the relative support is stiff, in the sense that Sz or sz of a

pattern Z is unable to reflect any change of other patterns' frequencies or their

accumulative frequency. This is then another big problem to use either Sz or sz to

compare and to reflect frequentness of different patterns.
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In summary, the use of sz is a main source of the problems listed from 1.3.1 to 1.3.3.

There is another reason - the full enumeration pattern generation methodology

fundamentally used in conventional mining approaches that reinforces these problems.

At the same time, this generation mode causes other problems too. Following

subsections discuss the drawbacks induced by this mode.

2.3.7 Full enumeration mode and overfitting and underfitting

As its term implies, the full enumeration approach generates every possible combination

including unrealistic patterns, resulting in an excessive number of patterns. This results in

the previously mentioned exponential increase of accumulative frequency against typical

data tuple size. As has stated before, a tuple of length ? added to the database will

increase the accumulative frequency w by 2X; at the same time, a number of infrequent

patterns and false patterns could be promoted to frequent ones. This is how the number

of frequent patterns can increase non-linearly with data size increasing, and how

"overfitting" problem could occur even without the use of conventional sz. On the other

hand, since the accumulative pattern frequency w increases exponentially to the size of

every added data tuple under the full enumeration regime, this inflated w then causes true

frequent patterns to become less frequent (this can be seen more clearly by measure (3-

8a) in next Chapter), giving rise to underfitting.

Note that, most of the mining approaches including the concise representations,

constrained mining, and the use of pattern pruning strategies, work over the full

enumeration foundation, and hence they are generally prone to both overerfitting and

underfitting problems.
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2.3.8 The bias for generatedpatterns against the original ones

The full enumeration approach is unable to weight the frequentness of the original

patterns and the generated ones differently, since no measure has been reported to

differentiate the original from the generated patterns. For instance, the length-one

patterns Vi and V5 in DBo of Table 1. In conventional pattern mining approaches, Vi is

taken to be of absolute support 5 while V5 is of 2, meaning Vi is more frequent than V5.

However, V5 is an originally observed pattern and randomly sampled twice, but Vi is just

a "possible" pattern "generated" from longer patterns. This raises a question: could we

really take the generated combination to be more likely a pattern than the observed one?

This is a simple explanation on how the full enumeration approach is biased towards

generated patterns.

2.3.9 The bias for shorterpatterns

In conventional mining approaches due to the "downward closure" property [2], the

longer (original) patterns are potentially less frequent than their sub-patterns and hence

more likely to be excluded from the mining result set and only their sub patterns are kept

against a given sm¡n. This is a drawback since it is unable to properly maintain the

common observation that, only when sufficient necessary elements arise simultaneously

can certain event take place. Take the pattern Vi as an example in Table 1; it is evaluated

to be frequent at sm¡n = 20%, but a question is, could it really appear frequently without

other elements such as V2 or V3? In real world, it is common that compounds (patterns)

are more frequently seen than single elements. For instance in chemistry, pure copper

(Cu) is much less frequently found than its compounds, e.g., copper oxide (CuO) , but in
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conventional mining approaches we can only conclude that individual elements are more

frequent than their combinations (patterns). This illustrates the previous problem again:

the frequentness determination in pattern mining is not properly designed. At the same

time, the "downward closure" property needs to be re-examined, which as can be seen

later, is only valid in the conventional mining theory and the full enumeration pattern

generation regime.

2.3.10 The mixture ofpattern mining and element mining

This issue is related to the above problem, and it is common in conventional mining

approaches that, individual elements are taken to be patterns and they are the most

frequent ones compared with their super patterns (of length > 1). In some applications,

such as spatial or sequential pattern mining, an individual element may form a pattern

under certain structural or ordering (temporal) constraints, but in a pure frequentness

based pattern mining, individual elements may not be very suitably termed as patterns but

just complicate mining.

Theoretically, a single element could not be excluded as a pattern. However, if and only

if such an element behaves independently, could we consider it a pattern. Otherwise

pattern mining would be equal to (or at least, mixed with) "element mining". Similarly, a

shorter combination (termed as "sub" patterns in literature) generated from longer

pattern(s) (known as "super" pattern(s)) might be a true pattern, or might be a component

(but not a pattern) of the longer pattern, depending on their behavior.
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2.3.11 The ultimate question: What is a pattern and what is pattern mining?

There are myriads of papers about data mining in general, but we have not found a formal

definition of the very basic object - the pattern - for the mining. There have been some

definitions of pattern mining, e.g., by [13], but they are more on the mining computation

issue, and the "patterns" are taken as "given". What we can conclude from the related

literature about pattern is that:

A pattern is a combination whose frequentness is no less than a threshold smi„.

However, the above is a posterior assertion after the fact; secondly the above "definition"

conflicts with a widely used term "infrequent pattern", whose frequentness is low (< smjn)

but still considered as a pattern.

This might be the most critical problem - with the "pattern" being not well defined, a

user then could be presented with whatever is mined as a pattern, ending up with a huge

number of patterns - this in fact is the starting point of our present discussion as stated in

subsection 2.3.1. Similarly, there has been no formal definition of the meaningfulness or

meaningless of a pattern in the literature. One reason for this could be due to its

dependence on the domain of application.

Neither are we ready to provide a formal definition of pattern and its meaningfulness,

which we would have presented in the beginning of this section, since there is no other

reference except the frequentness to define a pattern. Nevertheless, for a more formal

discussion, we have the following remarks without referring to a specific domain:

Remark 2-1: A pattern is a configuration of the same elements significantly appearing

in a dataset.
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Remark 2-2: If a pattern is generated but should not have been under certain

configuration rules, it is deemed to be "meaningless" or "redundant".

Note that, configuration implies semantics. A pattern is firstly a combination of some

element(s), but not every arbitrary combination of elements could be a meaningful

configuration and hence a pattern. The above remarks can be easily extended to more

specific pattern mining problems. For instance, a sequential pattern is a significant

presence of the same elements in certain ordering, wherein the ordering characterizes the

configuration and semantics of the patterns; in spatial pattern mining, the configuration of

a pattern is its spatial structure that reflects its semantics. For pure frequentness based

pattern mining, focused on in this thesis, the semantics of frequent patterns can be

generally described as follows: length- 1 patterns demonstrate the individuality or strength

of independency of individual elements behaving in a question; length-2 patterns

manifest the ability of coexistence or partnership between two concerned elements;

similarly, length-3 patterns exhibit this ability among three related elements, and so on.

Although we could not generally describe the configuration of a pattern in pure

frequentness based pattern mining, in many applications the configuration can be easily

identified. These can be demonstrated more clearly in Example 2-2 and 2-3 below.

The second note is that "meaningfulness" might be taken as a synonym of

"interestingness" used in association rules mining [40, 42], since the adaptation of

interestingness also means to reduce the number of patterns, and the objective measure of

interestingness is mainly on the pattern frequentness, or the significant presence of the

patterns. In our understanding, interestingness implies more subjective connotations than
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meaningfulness. However, this thesis is not focused on association rules mining, and we

do not further discuss the difference between these two notations.

The third note is that the "redundant" or "redundancy" used in the above remarks is

different from that used in the literature. For instance, the concise approaches refer to

those patterns that can be represented (or recovered) by the concise subset as redundant

without an association with the "meaningfulness".

2.3.12 Other examples

To understand the above listed drawbacks intuitively, let us look at the following

concrete examples.

Example 2-2: Suppose Vi, V2, . . ., Vg are dancers having participated in a dance contest

of different styles, solo, "pas de deux", etc., and Table 1 is their performance records,

where each T¡ represents a performance, and the corresponding VID records the

necessary dancers in that performance. Now, consider the following questions:

Question 1: Who are the active dancers? This is equal to a query of frequent element

mining, and the raw frequentness works. For instance, V], V2, V4, V7, V8, would be

entered into the answer set because of their higher raw frequentness than that of other

elements (this can be referred from Table 8 in Chapter 4).

Question 2: Who could be the active solo dancers? This is equal to asking the frequent

length- 1 pattern. Indeed "solo" can be taken as a pattern in this case; and similarly "pas

de deux" is another pattern. In conventional mining approaches, Vi, V2, V4, V7, V8,

would still be the priori answer than other elements simply because of their higher (raw)

frequentness. However, this answer is contradictory to common sense: element V5, who
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has played solo twice in this record while none of others has done so, should be the first

answer! In other words, V5 is underfitted but Vi is overfitted at least to some degree. In

this regard, one may argue, even though, for instance, there is no record for Vi as solo,

s/he might be a good solo dancer since s/he has been so active and performed much more

different styles than V5 in the contest. We do not fully have objection to this argument,

but at least it is only an assumption that Vi could be an active solo dancer; one is good at

multiple person dance is not necessarily good at solo, and using their raw frequentness to

mean V] is more likely than V5 to be an active solo dancer is certainly not reasonable or

convincing. Similarly, determining the active "pas de deux" dancers would have similar

confusions.

Below is another similar example to see how the conventional mining approach could be

misleading.

Example 2-3: Assume Table 1 is a criminal record of same sort (e.g., burglars) kept in a

police station, and Vi, V2, ...,V8 are the criminals who were involved in cases T¡ (i = 1,

2, ...u). Now, suppose an unsolved case is reported and the case was done by a single

person among those criminals. The immediate action of the police is then to use pattern

mining software to search from Table 1 to see who could be the most probable suspect(s).

Again, this applies for length- 1 pattern mining rather than an element mining, and by

conventional approaches, Vi, V2, V4, V7, V8, would be the priori answer because of their

higher (raw) frequentness. If so, the police officers would be very likely misled and

overlooking the more possible suspect V5. Similarly, the police officers would be fooled

by the mining software in search cliques of other number of members. For instance, to
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decide which combination, V2V6 and V2V3, could be more likely a pattern (criminal

conspirers), the police offers would get a crystal clear answer, V2V3, from convention

mining approach, since F(V2V3) > F(V2V6). However, the answer would not be obvious:

V2V6 is observed once but not V2V3, although F(V2V3) is larger than F(V2V6). More

convincing answer can only be obtained after the raw frequencies have been adjusted.

The above examples illustrate that the configuration and semantics of a pattern is

application dependent, for instance, in the dancer example, the correspondence between a

length- 1 pattern and a solo dancer. In these examples, length- 1 patterns are meaningful

but the related mining approach should be different from that mining frequent elements.

In other applications, individual elements may not be meaningfully taken as (length- 1)

patterns. For example, in the known market-basket problem, it would be hard to identify

an individual commodity as a pattern in a business sense. Then, in this case, frequent

element mining could be meaningful but length- 1 pattern mining may not. In other

words, conventional mining approaches work for frequent element mining but not

properly for length- 1 pattern mining. These examples also illustrate the inapplicability of

full repeatable (re)sampling and hence the full enumeration pattern generation regime.

For example, Vi might be a pattern with V2, or with V3, but s/he may not be a pattern

with other agent(s) at the same time drawn from a tuple in either the dance or the criminal

case.

The above examples have illustrated the following: the difference between element

mining and pattern mining; the mixture of the two in the conventional mining

approaches; overfitting or underfittin; bias towards generated patterns; why the reliability
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of mining result by conventional approaches is questionable; and hence how important it

is to adjust the raw frequentness in an application.

2.4 Challenges and motivations

We now have investigated the most fundamental issues affecting proper pattern mining in

general. These issues exhibit in various aspects, but they can be traced into two main

approaches: the use of the conventional frequentness measure support, and the full

enumeration generations mode. These issues and their roots, however, have not been

well addressed in the conventional mining approaches such as those reviewed in the first

part of this chapter. Most of the conventional approaches pay attention to mining

efficiency but less attention on proper measure of the frequentness measure and the

refinement of the mining results.

The open problem is to resolve the addressed problems effectively. As the problems and

their roots have been identified clearly, our first goal is to reformulate sz, the frequentness

measure; this is presented in Chapter 3. Our second goal is to resolve problems raised by

full enumeration pattern generation regime. This is a much intricate task, and we deal

with it in the remaining chapters.

We notice that, resolving the identified problems is a challenge, since the problems as

studied above are more philosophical than computational. Furthermore, the challenges

are not only from the philosophical problem itself, but also from the fact that there are no

ready test rules, tools, or testimonies to guide our work. We have seen tests and

comparisons of relative mining efficiency from most of the research proposals, for

instance, the benchmarks of FEVII (Frequent Itemset Mining Implementations) [25] and
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of [57]. However, we rarely see the testimonies or benchmarks for mining correctness,

especially of semantic correctness. Without proper verifications and comparisons, a

research proposal would not be accepted or utilized by domain users. This is why data

mining in general is still far from a mature technology such that it could be confidently

used in knowledge system or in business decisions. However, the lack of benchmark or

testimony means the lack of well established underlying theory!

At the same time, even in terms of mining efficiency, the efforts made are hard to fully

comprehend, since there are too many proposals, the correct choice is overwhelming for

many users. Researchers have noticed this problem, and there is an appeal for a unified

theory over the numerous and ad hoc proposed approaches based on a poll of more than

ten data mining experts [19]. However, our emphasis is not on the unification of the

proposed approaches, but more on the reinvestigation of the theoretical foundations of

pattern mining. The issues listed above, especially the refinement of the patterns

generated, have not been addressed, to our knowledge, by conventional mining

approaches, and our purpose is to provide an insight into the issues and their resolutions.

We aim to describe the mentioned philosophical problems and their resolutions over solid

mathematical basis, so that findings presented in this thesis could serve as references,

criteria for reliable benchmark and test tool buildups. From delivery point of view, our

proposal would lay a refinement foundation such that the number of meaningless patterns

could be substantially reduced without imposing domain constraint before the results

being delivered to the user, who then may or may not refine the result set further

depending on the application requirement.
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Chapter 3» Resolution of probability anomaly and sz

In this chapter, we present a primary resolution of the probability anomaly through a

reformulation of the measure s2. The first reason to reformulate sz is its drawbacks

analyzed in the previous chapter. The other reason is that, a (frequent) pattern mining, as

its name implies, can be simply defined as a "frequentness based mining". It differs from

other data mining, such as classification or clustering that uses other characteristics of the

elements in question for the mining. Since frequentness is the only criterion, a proper

definition of frequentness measure is therefore of fundamental significance.

To resolve the probability anomaly and to reformulate sz, we first need to see the

theoretical justification of the use of sz. In this regards, the relevant theories are the

classic probability theory and the multivariate probability theory.

3.1 The classic probability theory and sz

The classic frequency based probability space [16, 22] is defined to be a triple (O, ?, P):

1. The sample space O, is a nonempty set whose distinct elements Vi, V2, ..., Vj (j = 1, 2,

..., n), as stored in the second column of DBo (Table 1), are known as outcomes or

states of the domain in question [16, 17]. The total number of elements of O is noted

as I O I = n.

2. The event set ?3, is a power set (2n) of O in general, or a subset of such power set in a

particular application. An event Z is a combination of any number of elements in O.

Data stored in Table 1 are examples of the events labelled with T¡.

3 Formally, ? is an s-algebra, which is not discussed in this thesis.
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3. The probability measure P is a function from ? to the real numbers in [0, 1] that

assigns each event Z a probability between 0 and 1 . The probability function P (Z)

satisfies the probability axioms:

D P(Z)>0, (3-1)

2) P(O)=I, (3-2)

3) P(IJ Z)= S?(?)> (3"3>
j j

if { 2 } Qfflisa countable collection of pairwise disjoint sets.

Compared with the above theory, the concept of pattern in pattern mining is exactly the

same as that of an event. Then it is natural to expect the theory of pattern mining to be

established on the classic probability theory. The related problem is how to determine

the probability of every event (pattern) involved in an application. For simplicity, we

use an example of two elements A and B only, and an experiment (sample) given in

Table 3. In the classic approach, we follow the following conventions:

1. Each data tuple records one observed event. In relational database theory, this

corresponds to the first normal form (INF) requiring each cell of a domain to store

an atomic value only.

2. Each observation is used once and only once in frequency count.

3. Consequently, the accumulative frequency w is equal to the sample size (data

size) u.

4. The probability of an event is taken to be its frequentness - the relative frequency

f(Z)/w or f(Z)/u, per se the experiment output given. That is,
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p(Z) = f(Z)/w = f(Z)/u. (3-3)

Example 3-1, From Table 3, we can get, p(A) = f(A)/u = 2/5 = 0.4, p(AB) = f(AB)/u =

2/5 = 0.4, and p(B) = f(B)/u = 1/5 = 0.2.

Obviously, the above probabilities are additive and they sum to 1 . As we can see, in this

case, there is no joint or disjoint issue involved in the related probability determinations,

simply because the events and their frequencies are all from observations. Note that,

although AB is a combination of A and B, but AB itself is an event different from A or B.

However, the above observation does not prevent one from analyzing the joint relation

between two events, for instance A and B. This is done using the conditional probability

theory,

p(B/A) = p'(AB)/p'(A).

Note that the denominator p'(A), called "absolute probability" of A [16], is different from

p(A) given above, and,

p'(Z) = counts(Z)/u, (3-4)

which means:

p'(Z) = S(Z) /u = s(Z). (3-5)

Note that, the absolute probability p'(Z) cannot be compared with

one another and hence not additive directly with one another, and so

cannot be s(Z), as seen in following example.

Table 3.
Original sample

TID

Tl

T2

T3

T4

T5

VID

AB

AB

B

Example 3-2, From Table 3, we can get, p'(A) = S(A)/u = 4/5 = 0.8, p'(B) = S(B)/u

3/5 = 0.6, and p(AB) = S(AB)Ai = 2/5 = 0.4.
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From the above we see, p'(A) and p'(B) are increased from p(A) and p(B) in Example 3-

1. The reason is that Example 3-1 corresponds to three events, A, B and AB, while

Example 3-2 corresponds to two events A and B only. In this case, we only know

p'(A) + p'(B) -p'(AB) = 1. From this only condition we could not know exactly what

the respective "net" probabilities of these two events are, and p'(A) and p'(B) are

certainly not comparable. This incomparability will become even clearer in the next

section.

At the same time, the joint relation can be and should be applied to event A and AB:

p((AB)/A) = P(AH(AB)) / p'(A) = p(AB) / p'(A) = p(B/A) .

That is, the joint relation between B and A is the same as that between AB and A. This is

very rational and understandable. It implies then, the full enumeration based pattern

generation of B (or A) from AB is questionable, since the relations between B and A and

between AB and A are the same.

From (3-4) and (3-5), we see that the support s(Z) defined in (2-1) and used in pattern

mining finds its equivalence in classic probability theory, s(Z) = p'(Z). And, it is in this

property that one indicates that the supports cannot be additive as mentioned in Section

2.3.4. However, if s(Z) is not additive, two other issues arise:

1) s(Z) cannot be used as the frequentness measure, simply because, for instance,

p'(A) and p'(B) cannot be compared with each other.

2) Consequently the comparable measures we can use are p(A) and p(B), which,

however, lead us to go back to the results of the original problem as seen in

Example 3-1; at the same time, it implies no pattern generation to render.
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We assume that the above two consequences are not what conventional pattern mining

approaches wanted. To understand these two issues and to see the comparability between

s(Z) and p'(Z) further, let us look at them alternatively through multivariate joint

probability distribution theory, presented in the next section.

3.2 The multivariate probability theory and sz

The "bitmap indexing" method used in some articles [41] could be seen as a link between

pattern mining and the multivariate probability theory.

Under the multivariate probability theory paradigm and in bitmap indexing, an element in

Table 3 is taken to be a variable of two random values only: 1, if the element is present in

a tuple, or 0 otherwise. Then, Table 3 is transformed into Table 4. From this table, we

can get the corresponding joint probability distribution contingency table (Table 5).

Example 3-3: In Table 5, the middle two columns and rows represent the joint

probability distribution of the two variables. For instance p(A = 1, B = 0) = 2/5 = 0.4,

which is equal to p(A) in Example 3-1.

The last column and the last row in Table 4 present marginal

probability Pa and Pb respectively, where the expression

Pa(A = 1, · ) reads the marginal probability of A when A is valued

at 1, and the dot indicates that the other variables can be valued at

any value. That is:

Pa(A = 1, ·)= counts (A = 1, ·)/ u. (3-6)
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That is, to get the marginal probability Pa(A = 1, ·), it counts whenever A=I. This

means exactly the same as that to derive s(A) defined in (2-1). Then from the results of

Example 3-2 and the marginal probabilities from table 5, the following relations hold:

p'(A)= Pa(A=I, ·) = s(A), and

p'(B) = Pb(B = I, ·) = s(B).

That is, the measure support s(Z) used in pattern mining is exactly equal to the marginal

probability of Z with Z positive. Note that, marginal probability is a synonym of absolute

probability [16].

A side effect here is that the equality between s(A) and Pa(A = 1 , · ) provides the

simplest way to prove the downward closure property numerically. This property is

mentioned in Section 2.2, meaning the frequentness of a pattern B is no less than its

supper pattern AB for instance. That is: s(B) > s(AB). This is because:

s(B) = pa(B = 1, ·) and

S(AB) = PAb(A= 1,B = I, ·).

Since the former is less constrained than the latter, it is then obvious that s(B) > s(AB).

Table 5. The contingency table

B 0 1

0 0 1/5 Pa(A = O, ·) = 1/5

2/5 2/5 Pa(A=I, ·) = 4/5 = s(A)

Pb(B = O, ·) = 2/5 Pb(B=I, ·) = 3/5 = s(B)

However, a very important observation here is that, the above proof is only numerical; it

violates the comparison rule embodied in the probability theory! It is so, since
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s(Z) = pz(Z =1, ·) , then s(Z) should keep the same properties of the marginal

probability pz(Z = 1, ·). However, as known, marginal probabilities can only be

comparable within the same marginal distribution. That is, Pb(B = 1, ·) can only be

compared with Pb(B = 0, · ). Meanwhile, such comparison is trivial in the bitmap index

situation, since,

Pb(B = O, ·)=1 -Pb(B = I,-).

It follows that, the measure support s(B) cannot be compared with s(A), or with s(AB) ,

etc., but can only be compared with s(—? B). Such comparison, however, is not only

trivial, but also meaningless in two aspects. Firstly, s(—? B) is not independent of s(B).

Secondly, the original dataset does not produce s(-iB) at all, simply because a database

(e.g., Table 3) does not record unobserved objects. Similarly, in the joint probability

distribution, Table 5 gives p(A = 0, B = 0) , but Table 3 does not produce its equivalence

p(-iA'-iB).

The above means that the bitmap indexing is not a lossless transformation of the original

data mining problem. Indeed, there is a question whether the transformation is

appropriate, since the elements A or B presented in the original problem and Table 3 are

values of a domain (a variable) VID, but the transformation makes each element (value)

as a variable! However, we do not discuss further the pros and cons of this indexing

approach, since it is not the focus of this thesis.

What we can see from the above example is that, for instance, s(B) is mistakenly taken

to be the frequentness measure might have been because of some concept confusions and

notation illusions, for instance between P(B) and P' (B). Furthermore, in marginal
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probability terminology, s(B) is exactly to mean s(B = 1, · ). However, the dot is easy to

be ignored since it means the values of other variables than B do not matter; meanwhile,

B = 1 is simplified as B only, then s(B = 1, · ) is simplified as s(B), which then falls into

misunderstanding again.

Now, we can conclude from the above, the measure support s(Z) in pattern mining can

find its equivalence in either the classic or the multivariate probability theory, but neither

of the theories justifies its use as the pattern frequentness measure. This creates a serious

dilemma for the conventional pattern mining approaches: If s(Z) is not taken to be the

frequentness measure, then frequentness based pattern mining would become baseless,

since there is no other frequentness measure established yet. On the other hand, if s(Z)

is taken to be the measure of pattern frequentness, then s(Z) must be comparable with

one another and hence additive, but in this case the probability anomaly arises, which

cannot be ignorable.

The above described dilemma reveals a theoretical fallacy of pattern mining. How to fix

this fallacy becomes important in pursuing effective pattern mining. We suggest that

any remedy should satisfy the following requirements:

1 . Allow pattern generations from the original dataset.

2. Maintain the occurrences of a pattern as the base of its frequentness.

3. Pursue conformability of the pattern frequentness measure with the recognized

theories, particularly the classic and the multivariate probability theory.



The first two terms above attempts to recognize the mining operations already exercised

to avoid discontinuity; the third attempts to correct the identified inappropriateness to

approach theoretical soundness of the mining operations.

3.3 The multi valued state viewpoint and the resolution ofsz

The previous two sections have demonstrated that sz cannot be justified by either classic

or multivariate probability theory. Here we look further into why and how this problem

arises. The problem is indeed induced from pattern generations from each data tuple.

Such generation violates the conventions listed in Section 3.1, wherein each data tuple

contains one event only and is used only once in frequency calculations and the

accumulative frequency w is equal to the data size u. In other words, if we consider the

elements of each tuple in DBo (Table 1 or 3) as an assembly, i.e., a single pattern, then

the column VID is "single value stated", and we term such patterns as "original patterns".

From this point of view, the accumulative frequency w of the patterns is the same as the

cardinality u of the DBo, and the probability anomaly issue does not arise. However,

when other patterns are "generated" or "enumerated" from the same tuple, the

interpretation of the values of the column VED (of Table 1, for instance) has changed.

That is, in the miner eyes, each cell does not hold only one but multiple values in

database language, multi events in probability theory, or multi patterns in data mining

terminology. Let us look at the operation of pattern generation again.

Assume Vi, V4, and V7 stands for Bread, Coffee, and Milk respectively in a market

transaction Ti of Table 1, and the customer who made this transaction indeed wanted to

combine Bread with Milk as one menu (one pattern), and Coffee with Milk as another
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pattern. Then Ti is truly composed of at least two patterns. The purpose of pattern

generation is then to recover those patterns merged in a tuple. It is in this interpretation

that the generation is justifiable (however, the full enumeration generation over every

tuple may not be justifiable. This will be clarified in section 5.1).

The above interpretation can be adopted to the primitive mining approach too (refer to

Section 2.2), which enumerate patterns from the element space O, but such enumeration

is equivalent to the enumeration from each data tuple. Then, based on classic probability

theory, one observation describes one event (or pattern); then multiple patterns

correspond to multiple observations. That is, the primitive mining approach assumes that

a single data tuple of the original dataset to embody multiple observations (tuples) of

single patterns.

The above would be the most favorable explanation of the legality

of the pattern generation approach. From this point of view,

column VID of Table 1 is "multi value stated". It is this multi value

stated problem that breaks the conventions listed in Section

3. !established for applications of classic probability theory, and

hence sz defined in (2-1) is no longer compliant with the classic

approach and leads to probability anomaly. Based on the

understanding of these problems, it is then natural to expect a

resolution of sz by probability measures over multi valued state

situations. However, there has been no such multi-value state

TID' Patterns

"v;

Ij I V1V4V7

V1V2

??8 V1V2V6V8
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probability theory available. Instead, the above analysis has already signified a resolution

based on classical probability theory.

In classical statistics and probability theory terminology, a pattern generation is equal to a

"re-sampling" over a data tuple of the original dataset, since an event stored in a tuple is a

subset of the sample space O according to the classic probability theory [16] (refer to

section 3.1). Then, the full enumeration pattern generation approach means to re-sample

(enumerate) every possible pattern from every tuple contained in the DBo based on

uniform distribution assumption. We now put all the re-sampled patterns into a (virtual)

pattern database, DBv, as shown in Table 6. Then the sample size w can be defined as:

w = IDBvI. (3-7)

We note here that to get w is not much harder than to obtain the dataset size u. We

present the solution for w in Chapter 4.

Now the definition of the probabilities of the patterns becomes straightforward. If we

continue the use of the support, we can keep it in its similar format as defined in (2-1) but

the denominator u must be changed into the cardinality of DBv, w. That is:

S'z = Sz/w, (3-8)

where, Sz is the occurrences or "raw frequency" F of Z.

In other words:

S'z = F(Z)Iw = p(Z), (3-8a)

where p(Z) is the probability of pattern Z as defined in the classic case (3-3).

The above reformulation can be intuitively further understood from the following

problem.
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Problem 3-1: Given a database of u tuples, from which a total of m patterns have been

generated with their accumulative frequency w. Suppose an individual pattern Z has an

absolute (raw) frequency Sz, then how should its frequentness or relative frequency be

expressed?

The answer to Problem 3-1 would be unarguably Sz/w (using 3-8) but not Sz/u (2-1).

With the above resolution, problem 2-1 can be simplified as a typical sampling or

probability problem as seen in most text books, and can be reformulated as:

Problem 3-2 (revised mining problem): Given a universe O of ? distinct elements Vi, V2,

. . ., Vn, and a pattern sample of size w from O as stored in DBv, output all of the frequent

patterns Z, such that s'z > smin·

With the reformulation of sz, the probability anomaly issue is automatically eliminated.

And, as can be seen in next two sections, the two typical symptoms of overfitting,

namely, too many frequent patterns and unstable mining result set, will be greatly,

corrected.

3.4 Primary overfitting / undetfitting quantifications

The above has described not only how sz defined in (2-1) is reshaped, but also how the

probability anomaly issue is primarily eliminated. Here, we present how the degree of

overfitting or underfitting of conventional pattern mining approaches could be quantified

against the reformulated sz. We term this quantification as the primary overfitting or

underfitting ratio rs, depending on whether rs > 1 or rs < 1, where,

rs = S2/ s'z (3-9)
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We then get:

rs = S2/ s'z = (Sz /u) / (Sz /w) = w/u = ?, (3-10)

where ? is the average raw frequency per tuple of the DBo.

This reflects the observation that more patterns will be generated from longer data tuples,

which then causes pattern frequency to increase faster and consequently overfitting

increases. That is why rs is proportional to ?. As a result, it validates the assertion made

in 2.3.5 that pattern frequency over dataseis of longer data tuples will be higher and

hence the overfitting issue will be severer than that over datasets of shorter data tuples.

Since ? can be very large if the length of the data tuples is large, then rs can be very large.

We noticed in the running example and Table 2 (as well as Table 7 in next sections) that,

for such a small dataset with average tuple length around 3, the overfitting ratio is over

10 against the raw probability distribution.

The above explains why so many frequent but meaningless patterns result in

conventional mining approaches, and justifies our assertion that overfitting is naturally

embodied in previously proposed mining approaches. This is a significant finding, which

strongly disqualify the extensively used conventional "support" indicator sz.

3.5 Numerical comparisons

For a more intuitive understanding of the difference of the evaluation of the pattern

frequentness in conventional and the proposed reformulated sz, we give the related

comparisons in Table 7 based on the data given in Table 1 . In Table 7, the numbers and

their semantics of column A, B, E, and E' are copied from Table 2. That is, column E
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shows the accumulated conventional "frequentness" of patterns of same length, as well as

the overfitting ratios against the reformulated sz, based on the first 9 tuples of Table 1 .

Column E' shows the same but based on all 10 tuples of Table 1. Column Ea and Ea'

present the accumulative reformulated frequentness £s'z of patterns of same length k,

where the probability anomaly is eliminated. The other columns starting from column T

until the last show some example patterns and their related raw frequencies and raw

frequentness obtained from the conventional and the reformulated support measures

respectively, where column x, y, and ? are the results from the first 9 tuples, while

column x', y', and z' are the results after the last tuple (Vi, V2, V3, V8) has been added

into Table 1 .

Table 7. Comparisons of the resulted parameters based on data of Table 1

k #Zk S sz S s'z Sd? Sd'? Example Sz S: S7 S

A Ea E' Ea'

2.56 0.33 2.8 0.24 V,
V2
V4
V7

.45

.45

.45

.45

.039

.039

.039

.039

.042

.042

.034

.034

3.33 0.36 3.6 0.31 V4V7
V1V2
V1V8

.45

.22

.22

.039

.019

.019

.034

.025

.025

21 2.9 0.22 3.0 0.25 V2V4V7
V1V2V3

.22

.11
.019
.010

.017

.017

15 1.8 0.08 1.7 0.14 V2V4V7V8
V1V2V3V8

.22

.11
.019
.010

.017

.017

0.67 0.01 0.6 0.05 V1V2V3V4V7 .11 .010 .009

6

? 69

0.11

11.4

0.01

1.00

0.1

11.8

0.01

1.00

V1V2V3V4V7V8 .11 .010 .009

46



We note that, with the reformulated sz, the number of frequent patterns has been greatly

reduced. With smin = 20%, there is no frequent pattern in the reformulated case against 23

patterns in the conventional case. More strikingly, with smin = 10%, there is still no

frequent pattern in the reformulated case, but all of the 69 patterns are frequent in the

conventional case (examples are shown in columns T and y). Obviously, the

reformulated case reflects reality that we could not mine a big portion of frequent patterns

from a small dataset DBo. At the same time, the results illustrate how the two oveifitting

symptoms, unstable mining result set and rapid pattern frequentness growth, have been

remedied with the reformulation of sz. Using s'z, the more frequent a pattern is, the more

stable is its frequentness as the dataset size changes, as shown in column ? and z'. This is

what is normally to be expected, with increasing data size, the frequentness of every

pattern approaches asymptotically to its natural degree. The conventional sz in general

increases faster than s'z.

The above observations can be formalized as follows: against a data size increase, s'z

increases slower than sz, if the added accumulated frequency produced from the added

data tuple is over the average accumulated frequency per tuple. Secondly, as long as the

added data tuple contains Z, sz can always increase, while s'z may not, and it can even

decrease. Thirdly, a larger s'z will increase slower than a smaller s'z .

Proof: initial u, w, sz and s'z for a given pattern Z and its raw frequency Fz. Now

suppose one data tuple added into the dataset, that is, Au = 1, which could cause Fz to

increase at most by 1, since one data tuple can generate a particular pattern once, while w
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will be increased by Aw (= 2X - 1) > 1 unless ? < 1, as have been stated in Chapter 2,

where ? is the length of the added tuple. Then:

Asz/sz = A(Fz/u)/(Fz/u)

= ((uAFz - Fz Au) / u2) / (F2 / u) = 1/ Fz - 1/u, (3-11)

and As'z/s'z = A(Fz/w)/(Fz/w)

= ((wAFz - Fz Aw) / w2) / (F2 / w) = 1/ Fz - Aw / w.

Considering w = ?a, where ? is the average accumulated frequency per tuple (refer to (3-

10)), the above can be reformulated as:

As'z / s'z = 1/ Fz - Aw / (??) = 1/ Fz - (1 /u) (AwA,). (3-12)

The above formulae (3-11) and (3-12) state that:

1) As'z / s'z < As2 / sz, as long as Aw > ?, which then proves the first conclusion. At the

same time, it implies importantly, to keep As'z / s'z comparable with Asz / sz the data

tuple length will ultimately decline toward 1.

2) (3-11) tells As2 / sz > 0 always hold, since Fz < u (if Fz = u, Z can be fully removed

from the dataset, since every data tuple holds Z). However, (3-12) indicates that

As'z / s'z can be either positive or negative, even if an added tuple makes Fz increased

(by 1). It then proves the second conclusion. Meanwhile, it brings another important

implication: the data tuple length matters much in a mining problem: a fairly long

tuple added in can cause all patterns' frequentness decrease, and lead to underfitting,

since a long data duple can cause w dramatically increased.

3) Notice that, a smaller s'z means a smaller Fz, and hence (3-12) proves the third

conclusion as well.
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Although the above added only one data tuple in the proof, the proof can be easily

generalized to additions of multiple tuples.

From the above, we see that, the sz resolution not only revaluates pattern frequentness,

but more importantly, it reveals a number of interesting and intrinsic properties

underlying pattern frequentness measure and the mining effectiveness in whole.

3.6 The significance and impacts ofthe resolution

The following summarize the proposed resolution:

1. We explain why the conventional widely used support sz is not a qualified

frequentness measure, and how the probability anomaly occurs.

2. Based on this, we have provided a resolution. This resolution while simple is

effective, since it radically resolves the issues addressed in sections 2.3.1 through

2.3.6, especially the probability anomaly. At the same time, the resolution fulfills the

requirements stated at the end of Section 3.2.

3. Consequently, the resolution would have the following impacts on pattern mining in

general:

a) Because of the equalization of the pattern frequentness and the probability

measure of events, there is no longer any need to use a dedicative "support"

concept to mean pattern frequentness. For instance, we can use 3% or 5% to be

the frequentness threshold without bothering user to define sm¡n. Such thresholds

are often used in various research and applications, though they are not formally

defined or required [58].
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b) Under the proposed s'z regime and because of the unification of accumulative

frequentness to 1, if the total number of patterns is large, the individual pattern

frequentness would be much decreased from that of conventional results. The

degree of decrease is described by the overfitting ratio rs. In this sense, one

cannot expect many individual patterns' frequentness to be over 5%, for instance.

In a case of large number of patterns, their probability distribution is more

analogous to the (continuous) probability density distribution rather than the

(discrete) mass probability distribution in classic probability theory. When use a

3% threshold for infrequent patterns under s'z regime, it refers to all those patterns

whose cumulated frequentness is less than 3%. Similarly, when we refer to the

top 10% frequent patterns, it means all those patterns whose accumulated

probability is equal to or larger than 10%. These statements with s'z are consistent

with the conventional probability theory and notations, while sz regime does not

maintain these conventions.

c) The above impacts will propagate to other mining applications based on pattern

mining, for example, association rules mining, causation mining, and the like.

4. The above insights would also correct a viewpoint on pattern mining or data mining

in general. The phrase "knowledge discover from database (KDD)" usually gives us

an impression that the mining is fact based, since what a database contains are all

observed facts or experimental results. However, from the above analysis we can see

it not to be so. Although we can accept what a database holds are facts, the patterns

generated are largely subjective, especially by the uniformly used full enumeration

generation mode without justifications. Take the first tuple Ti = {Vi, V4, V7) from
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Table 1 as an example, in terms of fact, we can only see Ti proves V1V4V7 in whole,

but Ti itself does not state its support forViV4 or ViV7 or the like separately and

equally. To take that Ti supports all of those separated patterns is a very subjective

assessment! In this sense, pattern mining or data mining in general is at most a

mixture oí fact based and assumption based, and in many cases, the latter plays a

bigger role than the former, since the generated patterns could be much more than the

observed ones. The issue addressed in section 2.3.8 on the bias towards generated

patterns against the observed ones is indeed a bias for subjective against objective.

Then a big task in pattern mining is to reduce the subjective involvement as much as

possible and improve the mining objectiveness.

5. The proposed s'z, resolves the probability anomaly and covers other related

drawbacks addressed in Section 2.3, for example, the stiffness in reflecting reference

pattern frequency changes. However, we notice it is not a complete or a final

resolution for those addressed issues, including the overfitting/underfitting problems,

since these issues are also caused or reinforced by the full enumeration pattern

generation mode. This then goes back to the same issue addressed in point 4 above.

Only after the number of unrealistic patterns has been reduced or their frequentness

been reduced, could the s'z of a realistic pattern approach closer to its true value. In

this sense, the first requirement of the resolution stated at the end of section 3.2

should be modified as "allow pattern generations while minimizing the unnecessary

(meaningless) generations". The remaining chapters present our efforts toward this

objective.
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Chapter 4. Fundamentals of raw pattern frequency distributions

To see how to modify the full enumeration pattern generation mode, we need first to

know what the properties of the mode are. In this chapter, we explore these properties by

following the convention and generate all possible combinations from every tuple, and

we do not distinguish the connotations of patterns and combinations to simplify the

elaboration. We term each generated pattern as a "raw" pattern, and its absolute

occurrences Sz as "raw" frequency F(Z). The relative frequentness P(Z) of an individual

pattern follows formula (3-8a):

P(Z) = F(Z)Zw = Sz/w (4-1)

Below we first introduce a dualism to facilitate our study; then we derive and prove a set

of properties governing raw pattern frequency distributions.

4.1 A dual problem

Dualism is quite often used when an original problem is not easy to tackle, e.g., a profit

maximization problem could be studied with its dual problem of cost minimization.

Here, we use the dualism to introduce and prove some basic concepts, based on which,

further mathematical properties of pattern frequency distributions are derived.

Dual transformation: we first transform the original database DBo to its dual database

DBd by a translation t:
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DBo(TID -* VID) ¦*· DBd(VID ^ TID) (4-2)

That is, t exchanges the roles of TID and VID such that VID
Table 8. The DBd

in DBd acts as the key attribute, each V¡ (i = 1, 2, ..., ?)

representing a set of TjS that holds the same V¡ in the original

database DBo, as seen in Table 8. For example, in DBo, Vi

is referred by Ti, T4, T5, T9 and T10. So, in DBd, Vi refers to

these TjS in turn. In other words, if U1 means the universe

of the elements Tj (j = 1, 2, ..., u), then V¡ refers a subset of

Uh i.e., Vi ç U,

The concept of dual transformation is obvious and we do not

present an algorithm for it; and we note that the transformation is similar to that used by

vertical search approaches [9, 1O].

The correspondences of the DBo and DBd are:

IDBoI = u, li/vl = I O I = ?, (4-3)

IDBdI = ?, lt/,1 = u, (4-4)

Idbo ITjI = IoBd IViI, (4-5)

where IXI means the number of elements (the cardinality) of X; Uv means the

universes of the domain VID in DBo and U, is the universe of TID in DBd.

Furthermore, there are two other important dual concepts between DBo and DBd: the

patterns and their frequencies. In the original problem, a pattern Zk = (VpVq..Vs), is

generated within a cell of VID of DBo. In the dual problem, the same pattern Zk is a
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?, T5, Tío
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To, Ts

V6 T3, T4

V7 T,, T2, T5,T7

?« T2, T4, T5, Tío



combination of the Vs vertically selected from different cells of the column VID of DBd.

Since a V¡ in DBd is taken to be a subset (of U,), a combination of Vs then exactly

represents a new subset - the intersection of the Vs. These concept conversions lead to

the dualism of the "frequency", as given below:

Definition 4-1: The elements T¡ (i e [1, u]) held by a combination of number k of Vs,

Zk = (VpVq..Vs), in DBd are the "intersected content(s)" (IC) of those held by each

individual Vx involved in Zk, denoted by Ic(Zk).

For instance, in DBd (Table 8) the elements held by Vi is {Ti, T4, T5, T9, T10}, held by

V4 is (T), T2, T5, T7). Then the elements held by the combination (intersection) ViV4 is

their "intersected contents", Ic(ViV4) = (T1, T5); and, Hc(V1V4)I = 2. The duality of a

pattern's frequency is stated as follows:

Proposition 4-1: The "raw frequency" F of a pattern Zk = (VpVq..Vs) in the original

Problem 3-1 equals to the cardinality of the "intersected contents" of the combination Zk

in the dual problem:

F(Zk) = IVpVq..Vsl = 1Ic(Zk)I. (4-6)

The concepts expressed in definition 4.1 and Proposition 4-1 can be traced to the formal

concept analysis theory [59] and are similar to those used in vertical search approaches

as in [9, 10]. However, here we are not interested in what the intersected contents are,
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but only in the number of such elements. Obviously, for a pattern of length- 1 in

DBd (Z = Vi), F(Vi) = H0(Vi)I = IV1I.

To determine the frequency distribution, we present the dual problem below:

Problem 4-1 (dual problem): Given a database DBd as in Table 8, for every combination

Zk = (VjVj...Vk) of length k, determine the number of its intersected contents (the

frequency), IIc(Zk)l.

The following sections describe various concepts and solutions for the above problem,

and we use "frequency" and "intersected contents" or Ic interchangeably later on.

4.2 The inclusion-exclusion principle

To study problem 4-1, we start with patterns of length one and refer to DBd (Table 8)

where the universe U1 = {Ti, T2, ...Tu}, and u = IU1I. We notice that the length-1 patterns

V], V2, —, Vn are a (overlapped) partition of Ut in the dual problem, since each V¡ (i = 1,

2, ..., ?) represents a subset of Ut. e.g. V4 = {Tj, T2, T5, T7) (refer to Table 8). By set

theory, if ? and u are finite, we have:

U1=(JVi = Vi U V2... U Vn, (4-7)
¿=1

and, IUtI = u. (4-8)

Expand (4-7) and (4-8), and start from a very basic set operation (n = 2):

IV] U V2I=IViIh-IV2I-IV1V2I,

where VjV2 is a shorthand for V) ? V2.
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In general, if ? and u are finite, for U1 = V1 IJ V2 ... U Vn, combining (4-7) and (4-8), we

have:

IU1I = (IV1I + IV2I + ... + IVnI) - (IV1V2I + IViV3I + ... + I Vn-JVnI) + (IV1V2V3I + ...

+ IVn.2Vn.iVnI) - ... + IV1 V2...VnI

= Zi 'Vii - Ii,j,i<j IViVjI +Eij,m, i <j<m IViVjVj - ...± ivi V2.. .VnI

= u, (4-8a)

where, each £ represents a sum of the raw frequencies of a "collective" of

patterns of the same length, £WPVq,...,Vsl. Again, IVpVq...Vsl is not the length of

(VpVq...Vs) but the number of its intersected elements (Ic), which equals the frequency as

stated in Proposition 4-1.

Formula (4-8a) is referred as "inclusion-exclusion principle" [20], since the alternating

signs presented in the formula imply the compensations of possible excessive inclusion or

exclusion of the elements involved in every (VpVq...Vs) during the calculation. This

principle has been used, for instance, in concise representation study [4, 30], and in

estimation of upper bounds of candidate patterns [24]. In this thesis, we use this principle

as starting point to explore more general laws governing pattern frequency distributions

under the full enumeration regime.

4.3 The raw collectivefrequencies

Now, to simplify expression (4-8a), we use Lk to mean a collective of patterns of length k,

Hk to mean the "raw collective frequency" of Lk, and C* to mean the number of patterns

of the collective Lk, More formally:

Definition 4-2: The "raw collective of patterns of the same length k":
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Lk= {Zjk}, where j = 1, 2, ..., Q, (4-9)

and Zi *s tne jth pattern4 within Lk.
Definition 4-2a: The "raw collective frequency" of Lk:

tik = ¿45, q, ..., s, p<q < ... <s ' »p » q·· · V8I

Then, (4-8a) can be reformulated as:

lut|= S«-1)"!, F(z;))= S*-1)""'"* =u· (4'n)*=i ^' *=i

The "inclusion-exclusion principle" then becomes easy to express by (4-11). An

important point to note here is that, (4-8a) and hence (4-11) is originally motivated for the

frequencies of patterns of length- 1 V¡, but ends up with the involvement of frequencies of

patterns of all longer lengths.

The above concept and formulae are fundamental for the rest of this thesis, and we shall

explore a number of their interesting properties. To avoid confusion, we summarize the

concepts below:

A pattern Zk is a subset of k elements of O, Zk = (VpVq. . .V5) in the original problem,

and k is termed as the length of Zk. In the dual problem, the combination VpVq. . .V5

becomes a label of a subset of U1, and IVpVq...Vsl means the number of elements of

Ut held by such subset, and termed as 1I0(VpVq... V8)I or 1I0(Zk)I, which is equal to the

raw frequency of Zk, or H0(Zk)I = F(Zi). Lk is a collective (not a union) of all patterns

4 j is for enumeration in (4-9) and (4-10) - j is a cardinal but not an ordinal number.
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of the same length k. The total number of patterns within an Lk is Q, and the

collective raw frequency of Lk is Hk.

4.4 Fundamental propositions

As mentioned, the known "anti-monotonic" or "downward closure" property [2, 5], was

originally taken as an intuition in [5]. Here we see how this property can be formally

proved using dualism.

Proposition 4-2: The frequency of a pattern Zk = (VpVq ... VrVs) is no greater than that

of any of its sub-pattern, say, Zd = (VpVq . . . Vr), where 0 < d < k. That is, F(Zk) < F(Zj).

It is not very straightforward to prove the above proposition from the original problem.

However, it could be much easier examined with the dual problem, the I0 notation and

formula (4-6). The above proposition could be restated as:

Proposition 4-2': in the dual problem (4-1), IIc(Zk)l < IIc(Zd)l, where Zk is the intersection

of k Vs, (Vp,Vq, . . .,Vr, Vs), such that Zk = (VpVq . . . VrVs), and Zd is the intersection of d

Vs, (Vp, Vq, . . .,Vr,) involved in Zk, (0 < d < k).

Proof: As given, Zk = Zd ? Vs, and hence Zk ç Zd, then, Ic(Zk) e Ic(Zd), and IIc(Zk)l <

1I0(Zd)L By Proposition 4-1 and formula (4-6), it means, F(Zk) < F(Zd). Proposition 4-2'

and hence 4-2 is then fully proved.

Proposition 4-2 has been proved, for instance in [10] based on Galois lattice theory and

[59], which, however, may be a bit difficult to comprehend for many readers. Here we

proved it with basic set theory and dualism.
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Additionally, as reader might have noticed, the above property is "monotonie", since by

[21]:

Ifa measure m is monotonie, and ifX ç Y, then, m(X) < m (Y).

The proof of Proposition 4-2' (or 4-2) is then conformable with the above definition, and

Proposition 4-2should be reflected as a monotonie property. However, conventionally it

has been referred as anti-monotonic! This is another mirror effect of dualism.

Following is another proposition that has not been explicitly addressed in other research.

Proposition 4-3: Given a pattern A and its sub-pattern B, the necessary and sufficient

condition for the raw frequencies of A and B to be the same is that they are generated (re-

sampled) from the same tuple(s) of the original dataset.

This might not be easy to prove by the original Problem 3-1, but again it becomes rather

simple using the dual problem and the I0 notation. The proposition can be stated

mathematically in the dual problem as:

Proposition 4-3': Given combinations A, B, and AcB (or BeA), then, IAt = IBI, iff

Ic(A) = Ic(B).

The proof is obvious: if I0(A) = Ic(B), then IAI = IBI. On the other hand, if IAI = IBI, and

because AcB (similarly to B c A), only if Ic(A) = I0(B).

Proposition 4-3 is important and lays the foundation for pattern de-sampling to be seen in

the remaining of this thesis. On the other hand, we need to address that, though proved as
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above the three propositions are all based on the "full enumeration" pattern generation

rule. This rule is very primitive, and when the rule is changed such that only partial but

not full number of patterns is generated from a tuple, these propositions shall not be

generally held any more.

Based on the above concepts, propositions and notations, we can now perform the

calculations of the fundamental measures in pattern frequency distribution theory, the

accumulative frequency w and each of the collective frequencies, Hk as defined in (4-10).

4.5 Formulaefor w and Hk

During a scan of a database to obtain the total number of records u, it is easy to determine

the length bj of each record. The accumulative raw frequency w of all patterns then can

be obtained precisely before the pattern generation as follows:

j=u l=bj j=u J=U
w = S ZCk = S F - D = S 2bj - ». (4-12)j=\ ,·=! U> J=I j=\

where bj = ITjI, is the number of elements held by a tuple Tj in the original dataset
DBo. And, u = IDBoI.

Now, define g as the number of tuples holding a number of k elements in the original
dataseis DBo, and hence:

S gt="- (4"13)
£=1

(4-12) then can be further simplified as:

j=u '~Dj ?·=a ¡=k

w= S IC, = S (g, ZCl)J=I i=l ' ?=? ?=1
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k£g,(2K-l)¿M " ?

=lgkTk = ì:2kgk-"> (4-14)fc=l *=1 *

where, J4 =2^—1. (4"15)
which represents the number of patterns and hence the sum of their frequencies

enumerated from a tuple of length k.

The simplification of (4-12) to (4-14) reduces the number of exponent operations from u

to a, and as we know, commonly, a « u. Furthermore, we can completely avoid the

exponent operations, starting by reformulating (4-14):

k=a i~k k=a i-a

W

fc=l ~ " i = l Ar=I /=*

?=a ?~? K=a i-a t

(4-14) and (4-16) produce the same w, but they represent different pattern generation

strategies. (4-14) describes the case that, in a loop k, patterns of different lengths < k are

generated from tuples of same length k, but (4-16) states that, in a loop k, patterns of

same length k are generated from all tuples of length > k., and the result is then the Hk.

That is:

H^=lgiC\ (4-17)
i=k

k=a i=a k k=a

and w= £ Y^g1C = S 7^- (4-18)k=\ ¡=k ' k=\

(4-17) and (4-18) can also be in vector and matrix expressions. Firstly, we define:
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G*^8k>gk.>~>8j (4-19)

as a "gathering vector" of dimension (a - k + 1);

as a "setup vector" of dimension (a - k + 1). In particular, when k = 1, T] is

termed as "initial setup vector", and

T? = (1,2, ...,a). (4-21)

In addition, we define a "product vector" Ek, each element e¡ of it being the product

P-C- (i = k, k+ 1, ..., a). That is,

Ek = (ek,ek+1,...,ea) = {gkC\* g k+ìCk+ì> ¦¦- g aCJ- (4"22)

Then, (4-17) can be expressed as:

Hk = Y^g1C] =Gk· 0k. (4-23)

Or, H1 = Vp G" = Bk · Ek, (4-24)
i=k

where, Bk is termed as a "base vector" of dimension (a - k + 1), with all elements

being 1:

Bk=(l, 1,..., 1). (4-25)

62



In the following matrix expression, we use non-bold Gk and 0k to mean the

corresponding matrixes:

Hk = Yg-C* =GkIk®k. (4-26)
I=K

where, Gk is an 1 * (a - k + 1) "gathering matrix", starting from g : Gk = ( g

gk+i ... ga); 0k is an (a - k + 1) * 1 "setup matrix", and 0k = ( q\ CL - Cl )'* \T

In particular, when k = 1, T] is an a * 1 "initial setup matrix", and T? = (1, 2, ..., a) ; Ik is

an(a-k+ 1) * (a - k + 1) idempotent matrix, with all elements of the main diagonal

being 1 while the rest being 0.

Among other significances, a use of the above vector and matrix formulae is its facility to

obtain //¿s recursively without involving any exponent operation.

Using (4-17), we can directly get:

Hk+,= Y g .Ck+l (4-27)

Since Q= —— Q (from the combinatorics), (4-28)
K ~t~ 1

then (4-27) becomes:
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Jt + ¦1 ¡=lr+í

1 Dk « E'k. (4-29)
jfe + l

Where E'k is a vector of all the elements of Ek except the first element being cut

off, for instance, if Ek = (2, 3, 5), then E'k = (3, 5); Dk is a "deductive vector", each of

its element ¿^ being (i - k), and Dk = (1, 2, .. ., a - k). In fact, Dk can be seen as the
first section of the T? vector (4-21) up to element a - k. The properties of Dk and E'k

make the Hk computation pretty easy as would be seen soon.

To process the recursive operations on all Hk s, we only need to know Ek+i and the initial

vector ??. According to (4-24), we have:

Hk+1 = Bk+i · Ek+i, (4-29a)

Since Bk+i is a base vector, comparing (4-29) and (4-29a), we can easily see that, any

element e'k+i of Ek+i is the computation result from (4-29):

E^{¿+1 = -i-*i Vt,i = k+l,k + 2,...,a} (4-30)K ? 1

where, i is the value of the ith element of Dk and ^ is the ith element of E'k.

In addition, it is easy to see from (4-22):

E1= Gi· T?, (4-31)
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where Gi is the vector of the whole series of Q , and T? = (1, 2, ..., a ).

(4-31) and (4-30) form the recursive computation of Ek.

Table 9 is an example which uses the above formulae to compute all HkS recursively and

w over dataset DBo shown in Table 1 . The first row of Table 9 lists the element of T?,

which is just an enumeration from 1 to a (here a = 6); and the second row lists the

elements of Gi (the series Q ). These two lists are the only inputs. The bold numbers are

the elemental results of (4-29), and they together form an upper triangular matrix, each

row of it forms an Er (k = 1 , 2, . . . , a). For instance, Row 3 is the results of Ei (refer to 4-

31) and hence H¡, by multiplying the corresponding elements of Gi and T?. In row

4, to compute E2 and H2, right shift T? by one column and get Di; or similarly but left

shift Ei by one column and we get ??. Then according to (4-30), the first element of E2,

e2' = Vi (1 * 4) = 2.

Indeed, the main diagonal elements are just a copy of the Gi (the second row)! The

remaining computations and the results would be easy to follow.

The above clearly demonstrated the programming and computation advantages of using

formulae (4-29) to (4-31). Table 9 also shows the potential improvement of the

computation efficiency. Furthermore, all the intermediate results are fully reused, and,

compared with the initial formula (4-12), where the computation complexity of w is more

than linear (to the data size u), here the computation cost is (nearly) constant for a
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relatively large data size. This is
Table 9. The recursive computation of

because, when the data size becomes "*s

large, the maximum pattern length a

would be relatively stable, and hence

the numbers of columns and rows of

Table 9 become stable, and the

computation cost becomes constant.

In other words, our approach realizes

a full scalability of the calculation of

Hk and w. It would be even more

significant if this approach could

develop a way to reach the scalability of pattern mining in general, which is recognized

as a critical issue in pattern mining [25]. Furthermore, when data size changes, for

instance, some data tuples added in or deleted, Table 9 can be updated with only those

columns and rows affected by the changed g (this becomes clearer with Corollary 4.3

stated in next subsection). Finally, the tabular approach also eliminates the exponent

operations required in y' (see 3-15), and Table 9 presents the relationship between

formulae (4-14) and (4-17), where the vertical (column) summation represents the

mechanism of (4-14), while the horizontal (row) summation represents that of (4-17).

©i

knx;,Gi 0 Hk

28

12 15 36

0 20 30

0 15 17

0

1

§kTk 14 30 0 63 w =

118
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4.6 The odd and even length pattern frequencies

Additionally, there are interesting relations between the summations of the frequencies of

odd length and even length patterns. Manipulating (4-11) such that all negative signed

terms are moved to the right hand side:

nil nil

SH2^= S?2* +u, (4-32)
Ar=I k=\

where, the upper bound "n/2" of the left hand side should be replaced by (n+l)/2

if ? is odd. We use H0(¡d and Heven to mean the raw frequencies of patterns of odd lengths

and even lengths respectively:

nil nil

Hodd = S HIk-I . and Heven = S H 2k . (4-33)
Jt=I *=1

Then, (4-32) becomes:

Hodd = Heven + U. (4-34)

Adding Hodd to both sides of (4-34), and noting ?0<? + Heven = w, we get:

^¦H0dd — H0dd + Heven + u = w + u.

That is, for the sum of frequencies of all odd length patterns:

Hodd = (w + u)/2. (4-35)

And similarly, for the sum of frequencies of all even length patterns:

Heven = (w-u)/2. (4-36)

As measures of frequencies, H0dd and Heven each must be an integer. We have a

proposition that guarantees it:
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Proposition 4-4: w + u or w - u is always even numbered; and w is even or odd follows

u is even or odd.

Proof: Using (4-12), and let y = ^] 2 · Since bj = ITj' > °» iù follows that Y is always

even. Then, w + u = y-u + u = y, and w-u = y-u-u = y-2u. In both cases, the

results are even, and the first part of Proposition 4-4 is proved. At the same time, it is

easy to see that, if u is even (or odd), w is then even (or odd); and the second part of the

proposition is proved.

The above results can be seen from Table 9.

Following, we introduce significant laws governing all of the Hk distributions.

4. 7 The Hk-curve and its properties

If we plot the Hk distribution (k, Hk) and link all of the Hk value points together as shown

in Fig. 1, we get a curve of "raw collective frequency distribution" (or "//¿-curve", see

Fig. 1). Interestingly, the curve can be expressed as a relation between every adjacent Hk

and Hk+] as what follows:

Theorem 4-1: in pattern mining problem, the //¿-curve can be expressed as:

Hk+j=Rk^-Hk, (0<k<a<n) (4-37)k + 1

and, Hk = 0, (k < 1 , or k > a) (4-37a)

where, a is the maximum length of the patterns; Rk is a "collective frequency

reducer", or abbreviated as "reducer":

0<Ä*<1, (0<k<a). (4-38)
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To be more understandable, we prove the theorem qualitatively starting with a

preliminary case where all the u subsample spaces (Tj) of O stored in the dataset DBo are

of same size a, such that every collective frequency is multiplied by u:

Hk = u*Ca.

According to (4-28), C1 + = C* » we then have: Hk+¡ = Hk.**"* k + \ a k + 1

(4-39)

(4-40)

In this case, Hk possesses properties identical to Q . For instance, Hk is symmetric since
..a-k

Q -Q , when a is an even number, Hk is strictly quasi-concave and reaches its

oc
maximum value at k =— ; when a is an odd number, Hk gets its two maximum values at k

(? — \ oc + 1= and k = . The preliminary Hk model (4-40) is seen as the dashed curve in

Fig. 1.

Hk

Hn

hk curve

— . Preliminary Hk

Hk curve

D^

12 q a/2

Fig. 1. The Hk and hk curves

a

In reality, where many re-

sampling subspaces are smaller

than a, the simplified model (4-

40) must be tuned using the

following factors:

i). Different frequencies of

individual patterns within a

collective. Since we are

interested in Lk as a collection
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rather than its individual patterns, we consider Hk as a whole. In this way, the individual

frequency differences within a collective do not matter.

ii). Inter-collective frequency reduction. Based on the Proposition 4-2, on average,

the frequency of a pattern of length k + 1 will be less than its sub pattern of length k. We

use Rk to mean such frequency reduction to adjust (4-40), and Rk has the following

properties:

0<Rk<\, (l<k<a)

which explains how (4-38) comes, and note obviously, Rk F 0 for k e [1, a].

iii). Pattern contraction. This reflects the fact that, many subsample spaces are

smaller than a, which means that not every pattern of length k will extend to pattern of

length k+1. However, this phenomenon is the cause of point ii) above: a longer (super)

pattern's frequency is less than that of its sub pattern, because a shorter pattern does not

always extend to be a longer one. Hence, this observation reinforces that Rk < 1, but has

no more effect on (4-40).

In summary, Rk defined in point ii) fully captures the tuning mechanism for (4-40). And,

since Rk is a model of the proved Proposition 4-2, Rk is thus well established such that:

Qt — h
Hk+j = Rk Hk, as declared in the theorem.

k + l

The above delivers a qualitative proof of (4-37 and 4-38). To be more convincing, we

prove (4-38) qualitatively below:

Following (4-26), Hk = S g C = Gk Ik 0k, we have
I=Jt '
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Hk+1 = 2^, S i^ = ^k+1 ^k+1 ®k+1 (4-41)
i=*+ 1

On the other hand, by (4-28),

,'=t-H ;=*- + ! ?. T 1I=Jt-I-I

a-k ¿2, i-k k
fc +

a-k
k + 1

Gk+i Ak+i 0'k, (4-42)

where, 0'k is a sub-matrix of 0k without the first row (and first column); similarly

Gk+i is a copy of Gk without the first element. Ak+i is a diagonal matrix of dimension (<x-

i — k
k) * (a-k), and termed an "adoptive matrix". Its main diagonal elements aiti = < 1a-k

for all i, (k < i < a).

Now, we define a diagonal matrix A'k of dimension (a-k+l) * (a-k+1), with its first

element au = 0, while its sub matrix of dimension (a-k) * (a-k) being exactly the same as

Ak+i. To be more understandable, following are examples of the matrixes related to the

running example with k = 3 (Gk and 0k can be referred from Table 9), then:

/* ' /ii + l '

1/3

2/3 AV =
1/3

2/3

With the above results, (4-42) can be reformulated as:
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Hk+i =^4 G^' A*+> T*' = ?~? G* A'k ®k. (4-43)k + l k + l

Now (4-26) and (4-43) becomes comparable. Since ever element (except the last one) of

A'k is less than that of Ik, and if not all of the other elements except the last one of Gk is

zero (note if the last element of Gk is zero, then the longest pattern length will be less

than a!), then,

O<GkA'k0k<GkIk0k. (4-44)

Or, 0 < Gk A'k ®y = Rk* Gk Ik 0k = Rk * Hk (4-44a)

where 0 < Rk < 1 must be held to satisfy (4-44), and finally from (4-44a and 3-43),

Hk+i = -—- Gk A'k 0k = Rk-—-Hk,
k + l k + l

which proves (4-37).

Now, an interesting question: is there any case where Rk= 1 would hold? The answer is

yes, but the case is rare, and we have the following:

Corollary 4-1: the necessary and sufficient condition for Rk = I is that every element

except the last one of Gk equals to zero.

Corollary 4-2: If Rk = 1, then all R5= 1, where k < s < a (note Rk series is ended at Ra.j).

The two corollaries above are easy to derive from the above proof and from (4-26) and

(4-44a). If and only if the condition of Corollary 4-1 holds, both GkA'k 0k and Gklk0k

degrade to a scalar value s Q and the corollary becomes true. In fact, Corollary 4-2
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comes directly from Corollary 4-1; and it can be simply noted as, if there are m zeros in

the Q distribution from i = a - 1 backwardly, then there are m ones in the right section

of Rk series.

(4-38) is now formally proved. At the same time we see from these two corollaries, when

R1 = 1, which means all of the original data tuples are of same length a, and we get the

preliminary case depicted in (4-40). This is where our qualitative and quantitative proofs

converge.

After seeing the above interesting results, we have another property of Rk.

Corollary 4-3: The distribution of original data tuples of lengths less than k, g (j < k),

does not have effect on Rs (s > k).

Proof: It can be easily seen from (4-43) and A'r.

This corollary converges again with the qualitative proof referred in the former part

where Rk is tuned because not all (shorter) data tuples extend to longer ones, which is

equal to say shorter data tuples have no effect on the frequencies of longer patterns as

stated by corollary 4-3. This corollary can be stated alternatively that Rk is determined by

all and only the g (j > k),

The above now has fully proved (4-38) and (4-37), as well as other Rk properties, and

hence Theorem 4-1 is fully proved. As follows, Theorem 4-2 below presents an

important property of the //¿-curve.
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Theorem 4-2 (Hk quasi-concavity theorem): If Rk is non-decreasing, then, the //¿-curve

expressed in (4-37) is strictly quasi-concave downward over 0 < k < a, and it reaches its

apex value at k = q < a /2 (refer to Fig. 1).

"Quasi concavity" is used in real valued function study [22]. If a function f(Z) is strictly

quasi concave within a domain E, then there exists a Z* (Z* € E) such that f(Z) is

increasing for Z < Z* and f(Z) is decreasing for Z > Z* [22], where Z can be a vector of

multidimensional variables. We use this concept not only for better understanding but

also for formal applications of the properties of the Hk distributions. The only difference

here is that the "quasi-concavity" property applies to discrete Hk values only.

If Rk = 1, the concerned problem is trivial according to corollaries 4-2 and 4-3, so we

prove the quasi concavity property for Rk < 1 only.

Let us first look at the slope of the //¿-curve, AHk. /Ak, with Ak = I which is the

smallest interval:

AHk. / Ak= (Hk+J-Hk ) /Ak = Hk+]-Hk

= (Rk^±-l)Hk. (4-45)k + l

(X — k
Since Hk. > 0, the sign of the slope AHk. /Ak is determined by Rk 1. We noticek + l

that,

sy h
i). is a strictly decreasing function of k, since:

k+l
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A(^-A)/Ak = ^±î <0. (4-46)
Jfc + 1 (k + ï)(k + 2)

ce — k
ii). Without the effect of Rk, ( 1) will be positive initially and cause Hk to

k + l

increase and reach its maximum value at k =— if a is even, or, k = and k =
2 2

sy _L 1 sy — h
------ if a is odd, as stated in the proof of Theorem 4-1 such that ( I) = O. After

2 k + l

cc — k
that ( 1) becomes negative and leads to a decrease of Hk.

k + l

cc — k
iii). With the effect of Rk, , at the early stage (k « n), could dominate andk + l

ex — k
keep Rk > 1. That means Hk will be increasing with k but at a reduced rate because

k + l

cc — k
Rk < I. Consequently (Rk 1) ~> 0 at a point q such that Hk reaches its apex value

k +1

CC
Hq, but q would be no larger than— due to the reduction effect of Rk; and the Hq itself

would become much smaller than that without the effect of Rk (as seen in Fig. 1). The

condition that Rk is not decreasing as given in the theorem guarantee Hk is always

increasing until q, although the increase rate is diminishing. Once the Hq has been

cc — k
reached, the slop factor (Rk 1) becomes negative and keeps decreasing with kk + l

increasing, this is because, although Rk is increasing (or not decreasing), the decreasing

cc — k
rate of — is more dominant. Hk thus keeps decreasing until k -> a, and there is no

k+l

chance for Hk to get another apex value Hq regardless of a being odd or even.
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In summary, Hk has one and only one apex at q, and Hk is strictly increasing for k < q but

strictly decreasing for k > q, with the given condition of the theorem. Hk is thus strictly

quasi-concave, and the theorem is fully proved.

Note, when a is not very large, Hi1 might take the maximum value at k = 1, but this does

not affect the soundness of the theorem. Another point to note is that, theorem 4-2 stated

a sufficient condition of Rk to keep an Hk curve quasi concave, while following are the

more precise description of Rk against this condition:

Corollary 4-4: If the Rk series is not decreasing, and q is the apex point of the Hk curve,

then:

-^- < Rk < 1 for 0 < k < q < a/2, (4-47)a-k

and, - < Rk < 1 for q < k < a. (4-47a)
a-q + 1

Proof: Both formulae are based on the fact of non decrease of Rk and its upper boundary

defined in (4-38). The former formulae can be derived from (4-37) directly; the latter one

is obtained by applying k = q - 1 into (4-47) and taking Rq.¡ as the base of comparison

with other Rk (with k > q). These two formulae can also be verified from the data of Table

9.

Quasi concavity is a nice property for an Hk curve. At this point, a question may arise:

could this property be typical? Or, would the condition of no-decreasing Rk hold in most

frequent pattern mining applications? The following theorem answers it.
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Theorem 4-3: For an ordinary a distribution, the Rk series is no decreasing, and, the

smaller the k relative to a, the stronger the condition Rk+1 > Rk.

The implication of this theorem is that, once a Rk+i < Rk happens, it would reflect an

abnormal g distribution such that either, at the right tail of the distribution a nearly

longest transaction (referring g for k -> a) is more frequent than a shorter one, or, at the

left tail, there is a jump (a sharp increase or decrease) from g to g (j > k). Note that

the requirement of "ordinary" g distribution means the distribution is denser around the

middle of a, diminishing towards the two ends. However, this requirement is easy to

meet. It does not require the classic ?(µ, s) normal distribution or ß distribution. It even

does not require the distribution of a single mode, and a scattered g distribution is

allowed, as long as the extra mode does not appear in the right tail of the distribution.

This theorem can be proved through any of the basic Hk expression (4-17), the vector

expression (4-23), or the matrix expression (4-26). However, in any expression mode, a

fully formal proof of this theorem would be lengthy. Here below we present the

framework of the proof through the basic expression (4-17).

'-" k

Starting from (4-17), Hk.= Yg -C , then,
I=K

?=*+] ?'=* +1 ? t 1
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* + 1 i-ÍJ-li=k+ì

and, Hk+2 = Y £ C = Y - Q C

A i-k k k+\ ?, i-k k
Then,/?* = Hk+1IHk =

a~k Eg1C1 g^vg^ig.c:
i=k i=k+2

k + l ?

a-k (4.48)
*4 + <* + 1>*4+, + G.

1

Jt-Hl "*- *+2

where, Xl+2 = ¿ ^^;C:, (4-48a)i=it+2 U K

^ Yk+2 = Hg1C)- (4-48b)
i=k+2

Rk+J = ;—- Hk+2 1 Hk+ia-k-l

^ /· ,^ i-k-1 „* ^. ,. r.i-k-l ^k

1(''-^g1C <* + Dg1., + S «'-*>£, C*
Z=Jt-H i'=Jt+2



where ?]+2 = ± (/-*)±JLZÎg tf, (4-49a)
i=k+2 UKl

a
,2and> Yl+2= Zv-Vg1C- (4-49b)

Then, the general condition of Rk < R/c+i is substituted by the following inequality:

k + l
.2a-k8M + X*+2 < X1^

^+(*+1)^+1+y*+2. <*+ 1^4+1+ ?
2

fc+2

For simplicity, the following proof uses X and Y without superscripts and subscripts to

mean either (4-48a, b) or (4-49a, b), since these Xs and Ys are linear combinations of the

same 2 .(J1 senes.

The advantage of (4-50) is that it simplifies the problem and involves three terms only,

g , g , and the remains g (i > k + 1) which are wrapped into the respective X and

Note in the above formulae, the following always hold:

i < a, k<a-l,k<i-l, and hence in general, i-k<a-k; i-k-l<a-k-l;

and

i k > ' k * ; (4-51)
a-k a-k-l

xL<YL>™dxL<YL> (4-51a)
79



•1 -,-,T- , ??1 ,-riand, Xk+2< Xk+2, and Yk+2< Yk+2. (4-5Ib)

(4-48), (4-49) and (4-5Ia) above explain again why Rk and Rk+i < 1. In (4-51), the

difference of the two sides is not large in general. Furthermore, given k, the difference

gets its maximum at the smallest possible i then diminishing with i increasing. For

instance, let a = 6 as given in the running example, and suppose k = 2, then,

Ii = 4 = 1/6, Ij = 5 = 1/12; and in general, for any feasiblea-k a-k — l a-k a-k — 1

i — k — l i — k
k, lim i a = lim ¡ a = 1 . Consequently, for any k < a - 2, we have:

a-k-ì a-k

xL/yL>xL/yL> (4-51c)

and lim^a_2 X\+2 = ??, and ?]+2 = ^+2; (4-5Id)

lim^-2 xL/yL = xL/yL = i- (4-51e)

*+l .1

r/ — l· Ô k+i **¦ k+2Now, look back (4-50). Rk = ——— ¡— can be taken as an expansion of

xL/yL . and *?' = x¿+2+ 2 an exPansion of xL /YlO k + i *
2

k+2

Comparing (4-50) and (4-5Ic), we see the expansions should reverse the relation of (4-

51c). According to Theorem 4-3, this reversion is dominant in most of the applications.

Following are the analysis on what the forces are to maintain or reverse the inequality

Rk <Rk+i-
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Unlike (4-51), the "greater than" relation of (4-5Ic) is not monotonie against k but

depends on the distribution of g involved in the two ratios X k+2 / Yk+1 and

? / Yk+2 ¦ If k is relatively large and close to a, then only few g s would be

involved and a relatively large g could cause a significant difference of the two ratios,

which may lead to Rk+ 1 < Rk- This is one reason why Rk+! < Rk would be more sensitive

at the right tail of the distribution. The other possible reason for Rk+¡ < R is the relative

effect of a and g expressed in (4-50). In general, if g and g are significantly

smaller (e.g., zero valued) than the remaining g s , then the relation of (4-5Ic) may be

maintained. In particular, if a > g and the two X/Y ratios do not differ much, which

k + l
would lead Rk+/ < Rh This is because the effect of could be large for a large k. In

a-k

summary, as k approaches a, if Rk+] is less than Rk, then g would be greater than g (i

> k). This means that in the right tail longer transactions occur more frequently than

shorter ones, and reflects an abnormal g distribution.

For a smaller k, the number of a s involved in X and Y is increased, stretching from the

right to the left tail of the distribution. Then, a single g could significantly influence the

X/Y ratios only if a is comparatively very large and i is smallest possible (e.g., i = k +

k + l
2). Secondly, the factor is decreasing quickly when k decreases compared witha-k
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the relatively small decrease from ? ^+2 /Yk+2 t0Xk+2/ Yk+2 · Thirdly, notice that,

from (4-5 lb), X k+2< X k+2 · These are the forces to support (4-50). In other words, to

reverse the relation of (4-50) such that Rk+] < R holds, one possibility is g » g ( j > k,

and typically g » g ), and reflects the other type of "abnormal" g distribution at

the left tail of the g distributions as mentioned before. The theorem is then proved.

Table 10 demonstrates the above conclusions and hence Theorem 4-3. Here the second

row refers to the original data of Table 1, which gives an increasing Rk series and a quasi

concave Hk curve. Column 1 of the table indicates the value of k, for which the relation

Rk+i < Rk would occur. Column 2 lists the g distributions, and the bold numbers are the

minimum g s that would cause an Rk +/ < Rk, which illustrates clearly that the smaller the

i, the more significant g is required. Column 3 lists the Rk series and the bold numbers

are those in the inequalities of Rk +/ < Rk. Column 4 gives the two ratios of X/Y

corresponding to those Rk and Rk+], and this column demonstrates the properties given

from (4-5Ia) to (4-5Ie); meanwhile, row 3 shows the case of Rk +i < Rk mainly due to

X k+2/ Yk+2 Dem§ significantly larger than X k+2/ Yk+2 » while row 2 and 4 show the

cases that Rk +1 < Rk is caused mainly by an abnormally large g over g , when the

two X/Y ratios do not differ much (less than 3% in these examples). Column 5 is the

corresponding Hk series, from which we can see how resilient the quasi concavity

property is. Except the last row, all of the other cases result in strict quasi concave ^s.
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A basic reason for the observation is that the related Rk fluctuation (Rk+i < Rk) is not

significant, as just noted that the abnormal g is the minimum (to alternate the relation

Rk+i > Rk into Rk +? < Rk)- Only when such a g becomes even larger, and Rk+i becomes

significantly smaller than Rk, could the corresponding Hk curve becomes non quasi

concave. The last row of Table 10 provides a case of no quasi concave Hk curve for a =

10, from which we notice the extreme g distribution. Interested reader can verify that in

this case, Rk fluctuates greatly.

Table 10. Demonstrations of the Hk and Rk properties

8r Rk series XAf ratios Hk series

2, 3, 2, 2, 0, 1 0.514, 0.625, 0.756,
0.882, 1

28, 36, 30, 17, 6, 1

X1K+2A^+2 = 0.642
X2R+2A^2K+2 = 0.656

2,50, 2, 2, 0, 1 0.272, 0.271, 0.756,
0.882, 1

78,61,30, 17,6, 1

X'k+2A" k+2 = 0.494
X2k+2A^k+2 = 0.455

2, 3, 12, 2, 0, 1 0.4551, 0.4545, 0,567,
0.882, 1

58, 66, 40, 17, 6, 1

X R+2Af k+2 - 1
X R+2Af k+2 = 1

2, 3, 2, 2, 3, 1 0.614, 0.682, 0.711,
0.703, 0.667

43, 66, 60, 32, 9, 1

50, 100, 300, 0,
0, 0, 0, 0, 6, 3

1234, 1351, 1164,
1386, 1506, 1134,
576, 189,36,3

In conclusion, we observe from Table 10 that Rk distribution is much less scattered than

its underlying g distribution. In other words, Rk function would mostly transform a

rather scattered g distribution into a nice monotonie Rk series. At the same time, we

notice that a single data tuple can be seen as the simplest preliminary case (of u = 1),
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which produces a quasi concave curve of frequencies of patterns of different lengths.

Then the Hk curve is an aggregation of these individual quasi concave curves. In general,

a summation of a set of quasi concave curves is not necessarily quasi concave, and how

to organize such set of quasi concave curves into a single quasi concave curve is an

interesting topic in many applications [22]. In this sense, Rk, is a nice solution.

Finally, we see that the quasi concavity property of Hk is more resilient than the

monoitonicity of Rk, and would not be affected by some minor fluctuations or decreasing

of Rk over a given g distribution. It means then, the monotonie condition of Rk as stated

in (4-38) is stronger than required, and the deeper reason for it is that the effect of

------- is more dominant than Rk in (4-37). Considering all of these aspects together,
k + \

quasi concavity property for Hk is very typical.

From the above quasi concavity theorem and its proof, we see that the different lengths of

data tuples do not degrade but indeed improve the quasi-concavity of the left section of

the Hk curve compared with the preliminary case (4-40). The reason is that, the shorter

data tuples slow down the rapid frequency increase with k increasing in the preliminary

case, which then causes the Hk curve to become more rounded. Then a natural question

would arise: is it possible for an Hk curve to become not just quasi but genuine concave?

The answer is given in the following theorem.

Theorem 4-4: An //¿-curve can be strictly concave downward within an interval E = [a,

b], if the following condition holds:
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k + l k + 2 k + l

where a is the maximum length of all the patterns, and,

the minimum a = 1, the maximum b = 1A * (a+2 + (a+2)'/2). (4-53)

We prove the theorem starting from the definition of "concavity": if a function f(z) is

strictly concave over an interval E, then for any three points Zi, Z2, Z3 within E, such that

Z2 = ??? + (1- ?)?3, where ? e (0, 1), and ? can be a vector of multidimensional variables,

then the following relation holds [22]:

Xf(Z1) + (1- ?)?(?3) < f(z2). (4-54)

Alternatively, set ? = 1A, the necessary and sufficient condition for f(z) to be strictly

concave is [22]:

Vi (f(Zl) + f(z3)) < f(z2). (4-54a)

where Z2 is in the middle of Zi and zy. Z2 = V2(Zi + Z3)·

To facilitate the proof, we use (4-54a) and choose any three consecutive points k, k+l

and k+2 of the domain of the //¿-curve and check whether they satisfy (4-54a). In this

case, ? = 1A, and k+l = 1A (k + (k+3)). Then the related Hk values must satisfy: 1A (Hk +

Ht+2) < Hk+1. By (4-37), it means:

V2(Hk + Rk+10^1 k ^1 Hk+1) < Rk^Hk,k+2 k+l
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Or, V.(Hk + Rk„Rk^-^-\^Hk) < Rk°^Hk.k+1 k + 2 k + 1

Manipulating the above and removing Hk since Hk > 0, we get the condition for Hk

concavity:

k + 1 k + 2 k+1

which is the necessary and sufficient condition specified in Theorem 4-4.

Now, we look at the maximal interval E = [a, b] over which (4-54a) could hold.

According to the rationale that the first section of the Hk curve can be augmented to

concavity is due to the effect of shorter data tuples such that Rk is less than 1 and the

growth of Hk slows down before Hk reaches its apex value. After that, to maximally

maintain the concavity section, Rk should keep as large as possible to prevent Hk from

decreasing quickly. It means then that the right end of the concave interval will be the

same in the preliminary case where all data tuples are of same length a, and Rk is in its

maximum 1. We then first solve (4-52) in the preliminary case, where (4-52) becomes:

a-k a-k-1 _2a??+?<0 (4„56)
k+1 k + 2 k + 1

Solution (of k) to the above inequality is:

s [=ceiling (Vi * (a-2 - (a+2)'/2))] < k < [floor (Vi * (a-2 + (a+2)'/2))] = t, (4-57)

where ceiling(y) is a minimum integer s > y; and floor(y) is a maximum integer t

< y. Here, s is the left end but t is not the ultimate right end of the concavity section of
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Hk curve in the preliminary case, since, based on the above formulations, if k = t is a

solution to (4-56), then k+1 and k+2 will be included in the concave interval as well. That

is:

b = t + 2 = Vi * (a-2 + (a+2)'/2) + 2 = Vi * (a+2 + (a+2)'/2), (4-57a)

which is then the ultimate right end of the concave interval as declared in the

second part of (4-53) of Theorem 4-4, since after that, there is no force to entail Rk > 1 to

slowdown the decrease of the Hk curve and augment its right quasi concave tail into

genuine concavity.

It is easy to find out from (4-57) and (4-57a), the two end points, s and b, are symmetric

against a/2 (the middle of the a distribution), as we have introduced before, the

preliminary Hk curve is symmetrical. This means that, in the preliminary case, only the

middle section of the Hk curve is concave, but (for a > 4) its right and left "tails" are

quasi-concave only. Since s or b is an increasing function of a, then a larger a implies

longer quasi-concave tails, but the middle concave interval decreases relatively against a.

This is because, (b - s) / a = ((a+2)'/2 + 2) / a decreases against a. If a is large, for

instance, a = 100, then in the preliminary case, (b - s)/a ~ 12%, a small portion.

Now, in a general case where the uniformed data tuple length is no longer held, and Rk

can be as small as possible in the left section of the a distribution (as long as Rk > 0

holds). In other words, the left end of the interval can be stretched as left as possible, and

ultimately s = 1 . This then proves the first part of (4-53).
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Continuing the above example (where a = 100) in the general case, the concave interval

could be increased from [s, b] to as large as [1, b]; and the percentage of the whole

concavity section [1, b] is increased to (b - l)/a = 56%, a big increase! A more concrete

example is given here with a = 10, and a distributions = {2, 3, 52, 10, 8, 6, 5, 3, 2, 3}.

In this case, the related Hk curve gets its maximum concavity interval [1, 7], against [3, 7]

in the preliminary case.

Theorem 4-4 and its implications have now been fully proved. However, an important

notice here is that the maximum concave interval is only possible and may not be seen

often in empirical cases. This is because, as implied above, the left extended concavity

interval corresponds to a left skewed g distribution. At the same time, the concavity

interval can otherwise be smaller than that in the preliminary case. How large the

concavity interval could be obtained from an application is determined by the

underlying g distributions. The value of Theorem 4-4 and the previous ones is in that

they formally describe the properties of the raw frequency distributions, the shapes of the

Hk curves, and their relations with the underlying g distributions.

In this chapter, we have introduced and proved the Hk concave and quasi-concave laws,

and also delivered a number of accompanied interesting implications and properties

embodied in the corollaries. Hereafter we will not distinguish quasi concavity and

concavity unless required, since a concavity implies quasi concavity, though not vice

versa. The Hk quasi concavity property would be applied to many pattern mining
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applications, just as those quasi-concave functions are widely used in modern economics,

operation research and other related domains. For instance, if an Hk is known, then Hk-i

and Hk+i could be predicted as well, according to the Hk expressions. This property and

other properties, such as the relation between odd and even length pattern frequencies,

could be taken as check points of the correctness of a mining algorithm. They can also be

used as a reference for the determination of the boundaries of supports or frequentness of

patterns in concise representations [4, 28, 34, 35], or for the estimates of the number of

patterns of different levels [24]. However, our emphasis is not on the application of the

raw pattern based studies. The more significant use of the Hk concavity property is on

how to refine the raw pattern frequency distributions. For this, we present below a prime

property of the quasi-concave function. Other properties of it and their applications shall

be studied in future work.

The prime property of a quasi-concave curve f(Z) is that, in the real value situation, the

domain of Z covered by f(Z) is a convex upper contour set, where Z can be a vector of

multidimensional variables [22]. Here, we can imagine that the domain Z as a hyper

polyhedron; and the convex domain means the polyhedron is dense - without internal

hole and the surfaces of it are convex. Intuitively, given a straight line between two

separate points Z, and Zj (i F j) within the convex polyhedron, all of the points of the line

will be within the polyhedron [22]. Since each Z¡ is a multidimensional hyper point, we

term this domain density as "dense by point". The domain covered by a quasi-concave

Hk curve is the integer k, from 1 to a; and this domain is dense meaning no integer m (1 <

m < a) is not been covered by the Hk curve. This is an easy but superficial understanding
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of the prime property of the Hk concavity. There are two important things to note.

Firstly, it is not appropriate to consider the discrete integer domain density the same as

the continuous density as in the real value situation. This is because, theoretically, for a

given domain (interval) [a, b], the number of points within it is infinitive in the

continuous case but finite in the integer case; and intuitively, the discrete integers within

the domain could not form a continuous line. Secondly and more importantly, if we took

k as a one-dimension integer only, then we totally ignored the semantics of k. Under the

Hk regime, each k value represents a collective of patterns of length k. That is the insight,

and k implies a function to collect all of such length patterns:

k = k(Z).

Then, Hk = H(k) = H(k(Z)) = f(Z).

In this case, since each k represents a collective of hyper points Z, then reasonably we

can take k as a "hyper plane", and the domain density under the concave Hk curve can be

termed as "dense by (hyper) plane" or "dense by collective", compared with the "dense

by point" in the conventional real valued case. To understand the "dense by plane", we

take a simple example of a pattern domain Z of elements (values) A, B, C, which can be

illustrated as a 3-D polyhedron graphically as plotted in Fig. 2, where each of the three

values is a hyper point represented by a unit vector in the polyhedron. And, the patterns

generated from them can also be plotted as vertices (points) of the polyhedron. Then,

connecting the patterns of same lengths k forms (hyper) planes L/, L2, and L?

respectively, where Lj shrinks into a (hyper) point in this simple example. In this way,

the concept of hyper plane in this space corresponds to a collection of patterns. Thus we

can analogue "dense by plane" to "dense by point": for a given straight line connecting
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two non-adjacent hyper planes, L¡ and L?,

for instance, the line must pierce through all

the hyper planes (here only Li) sandwiched

between these two planes (L¡ and Lj). This

then gives the semantics of the quasi-

concavity of Hk curve, under which no more

patterns could be enclosed into the domain

covered by the Hk curve. On the other hand,

L3 = ABC

Fig. 2. A convex domain of Hu

such domain can be too dense in an application. For instance, when a new data tuple is

added, then the hyper planes in Fig. 2 could overlap. This corresponds to the already

mentioned case where the full enumeration based pattern generation produces excessive

number of patterns. Considering these phenomena together, we term the domain

convexity (density) a saturation property in lieu of Hk concavity for the full enumeration

pattern generation regime.

In the following chapter, we will see how the quasi convexity (saturation) property could

be used and maintained in pattern frequency adjustment.
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Chapter 5= The adjusted pattern frequency distributions

The previous chapter has introduced a set of interesting properties governing raw pattern

frequency distributions under full enumeration regime. A merit of complete enumeration

approach is the fullness of patterns produced, which is reflected by the saturation

(concavity) property of the associated Hk curve. However, as discussed in section 2.3,

the full enumeration means meaningless patterns will be generated with other drawbacks,

notably the overfitting and underfitting issues, bias for generated vs. original patterns,

and favoring shorter against longer patterns. Ideally, we want to overcome these

drawbacks and at the same time keep the advantage of the full enumeration approach. To

do so, we first look at why full enumeration mode has been used by conventional mining

approaches, and then we present the theory on how to adjust this approach.

5.1 The assumptions underlying thefull enumeration mode

In a sense, the drawbacks induced by full enumeration mode and examined in Section 2.3

are the surface problems, and one may ask, why the full enumeration mode is used, since

it has so many drawbacks? We can trace these problems to the following underlying

assumptions that researchers have adopted but not formally reported in the relevant

literature:

1) The assumption of full repeatable random sampling. From statistical point of

view, the concerned pattern generation is exactly a re-sampling over every

original data tuple. The full enumeration then exactly corresponds to the full

repeatability assumption of (re)sampling, as explained below.

2) The assumption of uniform probability distribution of the patterns to be generated.
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3) The assumption of every generated pattern is effective, or in other words, no

pattern generated is meaningless or a "random walk".

Only with the identification of the above assumptions could we explain why and how a

miner generates the patterns. That is because: the miner could not consider an original

tuple as a pattern. For instance, without prior knowledge, a miner could not assume that

the first tuple of the DBo in Table 1, (ViV4V7), is a true pattern, but can only postulate

that combinations of the three elements are equally possibly patterns. Here the miner

does not only take the uniform probability distribution assumption, but also assume the

elements can be repetitively drawn to form different patterns with each other. In this

sense, the full repeatability is the base of full enumeration.

The question is then whether this full repeatability assumption would hold. In a sense,

this assumption could be justified for the original data tuples. For instance, in a market-

basket problem, every element can be drawn repeatedly by customers to form

transactions (data tuples), since every element (product) can be always refilled by the

supplier. Such transactions are the originally sampled events. In other words, if each

original tuple is taken to be a single observation, then we can take it as an outcome of

pattern generation based on full repetition (or full replacement) assumption. Regarding a

sampled event (tuple), e.g. V]V4V7, the full repeatability of re-sampling may not be

justifiable: After V] and V4 had been drawn to form a pattern, for instance, would Vi be

used again to form another pattern with or without other element(s) together from that

tuple, since Vi is already used? There is no predetermined answer regarding a single data

tuple, since in pattern mining, only the presence of an item matters, not its quantity.
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At this point, a question may arise, since we have stated in Section 2.2 that the full

enumeration mode over every single tuple is equivalent to the full enumeration from the

whole element space, but here we do not suppose full enumeration of pattern over a

single tuple is justifiable, is it a contradiction in the context? The answer is, although

full repeatability is the base of full enumeration, it does not necessarily imply that the

repeatable draws will produce every possible combination of the elements, let alone

every possible pattern. This can be verified practically, even in a market-basket problem,

the number of patterns is normally far less than the power set. That is, the above

paragraphs do not mean full pattern enumeration from the whole element space is a

natural consequence of the assumed full replacement sampling mode. The logic is clear

then, full pattern enumeration from a single data tuple is not justifiable, but it is

fundamentally exercised by conventional mining approaches.

It is because of the full repetitive (re)sampling assumption and because of the

equalization of this assumption with the full pattern enumeration, the drawbacks of 2.3.7

through 2.3.9 listed in section 2.3 take place. Since, for instance, according to

combinatorics described in Chapter 4, the frequencies of shorter patterns will certainly be

larger than the longer ones, and hence causes drawback 2.3.9.

Similarly, the third assumption is reflected from the fact that the occurrence Sz of a

pattern Z is incremented by every generation of Z without any deduction or adjustment in

conventional pattern mining approaches. The deeper reason for this is that, with the

absence of domain knowledge, a miner could not assume a single data tuple is a random
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walk over the whole dataset, or an element is a random walk towards a single data tuple.

Subsequently, the patterns are generated from that tuple and they can only be taken to be

equally meaningful. From this we notice how a contradictory consequence is created in

pattern mining: in the generating process every pattern is meaningful but the process ends

up with too many meaningless patterns and hence an overfitting!

Now, a question may arise: whether approaches, such as the constrained, the concise

representation approaches, including the "closed" and the "maximal" approaches, would

solve the above full enumeration related problems, since, as reported, they produce a set

of greatly reduced number of patterns [2, 25]? Our answer is negative. Basically, the

mission of these approaches is not to address and resolve these problems. Respectively,

the constrained approach is mechanical and ad hoc, since it does not exactly "reduce" the

mining result set but rather, "take over" only a subset of the result satisfying the

constraints, and the constraints are application/user determined. Here the takeover means

that, even though the delivered result set is smaller, the listed problems are delivered

without a radical remedy. The concise representation approaches, as the name implied,

do not exactly reduce the mining result set either, but just use a subset to "represent" the

whole result set. The only reduction is the memory space to store a subset of the result

instead of the whole. The computation cost can be reduced and mining efficiency be

improved [34, 35, 36], but post work is needed to get an exact pattern and its

frequentness. A more subtle issue is that, since the concise approaches do not necessary

deliver the substantiated patterns [35] to the user but just wait and answer the user's

query as to a pattern is frequent through the mining program, the user may not be alerted
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of some surprising patterns! In general, this mode may not be very plausible to the user,

who expects to get full knowledge of the mining results from the miner instead of

querying the patterns that the user may not know yet. Finally, a common evidence of no

pattern reduction from these approaches is that the pattern frequentness, Sz/u, as defined

in (2-1), is commonly used by all of the approaches mentioned above, and it does not

matter how small the result set is delivered, the included individual pattern frequentness

is the same as that in the complete result set.

5.2 The principle ofpattern frequency adjustment

The above section reveals a methodological weakness of the full enumeration based

pattern generation - it is single data tuple based, since the resulted pattern set is just a

simple collection of the separated generations over every original data tuples. Such tuple

based generation could only follow those underlying assumptions listed in section 5.1

even though they are not very plausible, since no better assumptions could be adopted.

This methodological weakness then leads to a contradictory consequence of the

generation, in the sense that every combination generated from each data tuple is equally

taken to produce an effective pattern, but their assemble ends up with too many

meaningless patterns. What we need then is how to organically adjust the tuple based

pattern generation with the information embodied in the dataset in whole, such that the

drawbacks identified in section 2.3 could be resolved, and a reduction of the meaningless

patterns could be pursued before domain specific constraints have been imposed. We

term this kind of reduction an "unconditional pattern de-sampling", and the reduction is

realizable based on the following two observations.
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Observation 5-1: For a given set T1 of m (m > 1) elements over the original dataset (e.g.,

the DBo of Table 1), if T¡ in whole is not a pattern, then at least one of its elements is a

random walk to T¡.

Observation 5-2: For the same T¡ in observation 5-1, if T¡ in whole is a pattern, then at

least one of its immediate proper sub patterns (of m - 1 elements) must be redundant, and

hence meaningless to generate.

Observation 5-1 is philosophically unarguable; note that an element is a random walk to a

single data tuple does not necessarily mean it is a random walk towards the whole

dataset. Observation 5-2 is also unarguable based on remark 2-1. For instance, if T¡ = {A,

B, C} is a pattern that means the three elements present steadily in the dataset, and if AB

and AC also present steadily, then BC must present steadily and hence be a pattern

without a generation. Indeed, in this particular example if we know any one of the

length-2 combinations is a pattern, then we know the other two are. That is, two of them

are redundant. This is why the phrase "at least" is used in observation 5-2. Furthermore,

the first observation is even stronger than the second one in the implication that we can

safely de-sample at least one immediate sub pattern from an original element set T¡.

The problem is, regarding a single T¡ = {A, B, C}, we do not know which of the three

length-2 patterns is (are) meaningless to generate and should be de-sampled. Following

elaborates our approach.

Since a reduction of pattern generation (a pattern de-sampling) means a decrement of the

sum of the pattern frequencies, our approach to realize the pattern de-sampling is then
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through the adjustment of the frequency distribution based on a principle as manifested

from the above observations:

Principle of pattern frequency adjustment: the accumulated frequency of the

immediate proper sub-patterns generated from a set T¡ of m elements should be safely

reduced by the frequency of T¡.

Since Tj represents m elements, where m is any feasible number (1 < m < a), repeatedly

applying this adjustment principle to all pattern levels from a to 1, it is easy to see the

frequency of patterns of length k should be affected by that of all of their super patterns.

This is well consistent with the spirit of the inclusion-exclusion principle stated in

Section 4.3, where we have noticed that the determination of the total frequency of

length- 1 patterns involves that of patterns of length > 1:

^(-l)kiHk=u, (referto4-ll)
k=\

This inclusion-exclusion principle then can be naturally extended to represent the above

adjustment principle in whole from level 1 to a, formalized as the following proposition:

Proposition 5-1: Extended implications of the "inclusion-exclusion principle":

i). The raw frequencies of patterns of length / must be adjusted (reduced) by that

of their super-patterns of length > /.

ii). Some patterns might be de-sampled.

iii). The degree of pattern de-sampling and frequency reduction are defined

implicitly by (4-11).

iv). The adjustments are to be done in an alternating mode.
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Elaboration of the above proposition is as follows:

Recall that the frequency of a pattern is equal to the number of intersected element "I0"

held by a pattern (refer to Proposition 4-1), then I0 counted by a super pattern should not

be recounted by its sub-patterns. This is the essence of the proposition as manifested in

part i). Part ii) is a corollary of part i). When a sub-pattern Z and its super-pattern hold

the same I0, then by reduction, Z' s frequency will become zero, which means Z get de-

sampled. This is an important mechanism, and it allows the expected de-sampling. Part

iii) states that the pattern de-sampling and frequency reduction must be done properly,

neither less nor more than the formula requires. We will see what is exactly required

soon. The reason for part iv) is the same as given in section 4.2.

The next section introduces the mathematical model to adjust the collective pattern

frequencies based on the above adjustment principle and proposition 5-1.

5.3 The adjusted Hi0 hk

Definition 4-1: The "adjusted collective frequency" (of all patterns of length k) is:

h = Hk- 5>l)j-k-'//, , (k e [1, a]) (5-1)
j=k+ì

which can be simplified to:

hk = Hk-hk+h (ke[l,a]) (5-2)

with hk = 0. (k < 1 , or k > a) (5-3)
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To be a measure of frequency, hk must be nonnegative. In fact, we have the following

theorem to guarantee it:

Theorem 5-1: If the underlying Hk -curve is strictly quasi concave, then ?* defined in (5-

1, or 5-2) is always positive; and it fits the boundary conditions at k = 1 and k = a

seamlessly.

Following we prove the theorem by induction. Since Hk is strictly quasi-concave, we

examine the problem in two intervals, [1, q] and (q, a] respectively, where q is the

maximum point of Hk and a is the longest pattern length.

For k e [1, q], take the initial case k = 1, we see (5-1) is exactly (4-11) itself, thus

h, = u. (5-4)

It means the theorem holds at k = 1, since h¡ > 0. At the same time, (5-4) tells that (5-1)

or (5-2) automatically fits the boundary condition at k = 1.

At k = 2 and by (5-2),

h2 = H,-hj=Hi-u>0, (5-5)

which is obvious, since H1 = £u ITjI > u (unless ITjI < 1 (i = 1, 2, ...u), but it is

too trivial a case, and more importantly the Hk curve shrinks into a point H¡ only in this

case) , where Tj is the ith tuple of DBo.

Now, suppose the theorem holds at k= t (1 < t < q), such that h, > O, we check if h,+\ > 0

would still hold.
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Since the theorem holds at k = t, it thus holds at k = t - 1 as well, that is, Ki > 0; and

notice H, - H1., > 0 for t e [1, q] (because of the Hk concavity as given). Then, by (5-2),

it means:

ht+1 = Ht- K= H - (H,., - Ki) = (H1 - H1.,) + h,., > 0, (5-6)

and the theorem is proved for k e [1, q].

For k e (q, a], we start at k = a as the initial case and prove the theorem in a reverse

direction. In this case, note that there is no pattern of length k > a. Thus, h,= H1 = F(0)

= 0 (for t > a, and 0 is the empty set). It thus means,

ha = Ha-ha+1=Ha>0. (5-7)

It again demonstrates how (5-1) or (5-2) nicely fit the boundary condition at k = a, and K

> 0 at the initial case k = a, such that the theorem holds.

At k = a- 1, and notice that by (4-37),

1 k + 1
Ha.¡ = ( -#*+/) U = CXi =(a/Ra-i)Ha, then:

Rk a~k

ha.i = Ha., - K = Ha., - Ha = (a / Ra., - 1 ) Ha > 0, (5-8)

which results from a > 1 ; 0 < Ra.j < 1 ; and H0, > 0.

Now, suppose the theorem holds at k = t (q < t < a), such that h, > 0, we check if h,.\ > 0

would still hold.

Since the theorem holds at k = t, it thus holds at k = t + 1 as well, that is, ht+] > 0; and

notice that H,.¡ - H, > 0 for t e (q, a]. Then, by (5-2), it means:

K) = H,., - h, = H,.j - (H - hl+I) = (H,., - H1) + h!+, > 0. (5-9)
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That is, the theorem holds for k e (q, a] as well, hence the theorem is fully proved.

Theorem 5-1 justifies the necessary conditions for hk to be a frequency function. The

following points justify the sufficient conditions for hk to be the expected adjustments

covering the issues more than that addressed in from subsection 2.3.7 through 2.3.9:

a) hk is truly succinct, thus overfitting is suppressed. This can be seen clearly from

(5-2) which indicates that the sum of frequencies of shorter patterns is subtracted

by that of longer patterns, and hence there is no double counted inter-collective

frequencies in the accumulative frequency.

b) hk well addresses the combinational effects in pattern formation, and it takes care

of longer patterns that should not be less weighted. In particular, as shown by (5-

7), the longest patterns' raw frequencies would not be reduced.

c) hk also takes care of those original patterns from the original datasets as well,

since the longer or especially the longest patterns are the original ones. This is a

noticeable point that all the original patterns could be maintained in the final

results set. Contrarily, they cannot all be recovered from conventional mining

result set.

d) On the average, the adjustment is relatively evenly distributed over different

collectives. That is, the collectives of larger number of frequencies would be

adjusted more than those of smaller frequencies.

e) More importantly, the adjustment would not excessively de-sample the patterns

generated from the full enumeration, since the adjustment maintains the quasi
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concavity property. Below we prove this assertion first and the other statements

will become clearer.

5.4 The hk-curve and its properties

Similar to the //¿-curve, by connecting all of the hk values together, we get an /z¿-curve,

and its quasi-concavity property can be presented by a theorem below:

Theorem 5-2 (hk quasi-concavity theorem): If £u ITjI > 2u, where T¡ is the ith tuple of the
original database DBo, then if the corresponding //¿-curve is strictly quasi-concave

downward, then the /incurve is strictly quasi concave downward as well, and it reaches

its apex value at k = q', where q' = q or q+1; and q is the apex point of the corresponding

//¿-curve.

Note the condition of £u IT¡i > 2u, or equally average ITjI > 2, is symbolic only, since any

complex mining problem would satisfy it. Another implication of this condition is the

maximum pattern length a = max(IT¡l) > 3.

To prove the above theorem, we first look at the following relations:

hk+i -hk = (Hk+i - hk+2) - {Hk - hk+]),

or, (hk+i- hk) + (hk+2- hk+i) = Hk+1- Hk, (5-10)

or, hk+2 - hk = Hk+i - Hk. (5-1Oa)

On the other hand, we have:

hk+i - hk = (Hk - hk) - (Hk-i - hk-i),

or, hk+, - hk-j =Hk- Hk-i. (5-1 1)
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We notice that, for k e [1, q), based on theorem 4-2, Hk- Hk- 1 > 0, (5-1Oa) and (5-11) are

consistent and we get:

hk+2 > hk, (from (5-1Oa) (Case I)

and, hk+i > hk-i, (from (5-11) (Case II)

and refer to (5-5), and notice H¡ = £u IT¡I > 2u, we have:

h2 > h¡, (5-5a)

Since k can be any number within [1, q), the only way to have (5-5a) and both cases I and

II to always hold within this interval is:

hk+2 > hk+i > hk> hk.,. (5-12)

Similarly, for k e (q, a], Hk+i - Hk < 0, (5-1Oa) and (5-11) are consistent; shifting back k

by 1 , we get:

hk+i < hk-i, (Case G)

and, hk<hk-2, (Case IF)

and, refer to (5-8): ha.¡ = Ha.j -ha = (a/ Ra.¡ -\)ha\ and notice a > 3, 0 < Ra.¡ < 1, then:

K-, > ha, (5-8a)

That is, within (q, a], the only way to always maintain (5-8a) and the cases G and IF is:

hk+i <hk<hk-i <hk-2. (5-12a)

However, at point q, (5-10a) and (5-11) represent things differently as follows:

hq+2 < hg, (from (5- 10a) (5-13)
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and, hq+¡>hq.¡. (from (5-11) (5-13a)

Then, the relation between hq and hq+1 is not fixed and can only be case determined. In

other words, the apex value of hk in an application can be reached at either q or q+1, and

we simply refer to it as q'. Here, we do not examine whether hq = hq+] would happen,

since, no other integer exists between q and q+1, then even if hq = hq+¡ takes place, it

does not affect the quasi concavity property.

We can now conclude that, /^-curve reaches its apex value at q', and it is strictly

increasing within [1, q'] (based on (5-12)) and strictly decreasing within [q\ a] (based on

(5- 12a)), /îrcurve is thus strictly quasi-concave, and the theorem is fully proved.

Since /incurve keeps the quasi concavity property, it means under the proposed

adjustment regime, sufficient number of patterns is still maintained. However, the degree

of quasi concavity has been reduced from that of the //¿-curve. Accordingly, we use

sufficiency instead of "saturation" to mean the hk concavity.

The hk-cmvt is shown in Fig. 1, which depicts how hk compresses //¿, as hk curve is fully

underneath the Hk curve.

From the above proofs, and assuming the condition of theorem 5-2 holds, we can induce

other implications as follows:

The calculus function of ?*: From equation (5-10):

(hk+, - hk) + (hk+2 - hk+]) = Hk+j - Hk,

or, Áhk+ Ahk+i = AHk, (5-1Ob)
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or, Ah I AHk + Ahk+I / AHk = 1. (5-1Oc)

(5-1Oc) is taken to be the calculus function of /i¿ over Hk.

Corollary 5-1: If an //¿-curve gets its apex value at k = 1, then the related ¿¿-curve will

definitely reaches its apex value at k = 2.

This is obvious, since ¿2 > h¡ is always true (refer to (5-5a)) and q' = q + 1 applies.

Corollary 5-2: The difference function between the //¿-curve and the ¿¿-curve is also

quasi-concave.

In general, a difference of two quasi-concave functions may not necessarily be quasi-

concave. Corollary 5-2 then represents a special "quasi-concavity invariant" property of

the difference function between the //¿ and the hk curves. Indeed, the proof of this

corollary is rather straightforward: the difference function is the shifted ¿¿-curve itself,

since from (5-2):

Hk- hk = hk+1 . (5-14)

This corollary and (5-14) indicates that the larger the /Z¿, the larger the adjustment. In

other words, the adjustments are relatively evenly distributed over different collectives

and correspond to point d) claimed in the end of subsection 5.2. At the same time, it

reflects point b) that the adjustments correct the bias for shorter patterns. In this regard,

following corollary depicts more precisely. .

Corollary 5-3: The adjustments correct and redistribute the frequencies from shorter

patterns towards longer ones, such that:
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h<V2Hk, ke [l,q') (5-15)

h > Vi Hh ke (q',a] (5- 15b)

and, hq>~V2Hq. (5-15c)

Proof: According to the hk quasi-concavity property and for k e [1, q'), hk < hk+i, then by

(5-14), Hk= hk + hk+i, it means Hk> 2hk. (5-15) is then proved. Similarly we can prove

(5- 15b). And (5- 15c) is a natural consequence of the former two.

In addition to the above, in the case of q' = q + 1, the redistribution toward longer

patterns is even obvious because of the shifted apex point from Hk to hk. Even without

the apex point shifting, the relation hq+i > hq.¡ as seen in (5- 13a) is generally held, which

is another sign of the redistribution and a characteristic of the hk -curve.

Corollary 5-3 then formally demonstrates that hk realizes the desired correction of under

evaluation of longer patterns than that of shorter ones by conventional mining

approaches, and hk thus takes care of combinational effects in pattern formation as

addressed in subsection 2.3 and the end of subsection 5.2. Corollary 5-3 also implies that

about half of the raw frequencies would be squeezed accumulatively. This is to be seen

formally in the next subsection.

5.5 The aggregative relations between the Hk and the hk measures

From (5-2) to (5-6), we have:

hi =Hj -h2

h2 = H2 -hs
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ha.¡ = ?a.? - ha

ha =Ha

and, -u= -h¡ (refer to (5-4))

Summarize the above equations together, we get:

¿At-u=¿/f*-ZA*.
k=] k=\ k=\

or, 2¿At -u= ¿ff4. (5-16)
it=] k=\

km

Note that H^ = hk = 0 for k > a, thus: ¿lHk = ^Hk = w (the raw accumulative
k=i /H

frequency).

Set the "adjusted accumulative frequency" as wa, then from (5-16) we get:
a

Wa=E^=(W + U)/2' (5"17>
k=\

which is a coincidence with (4-35), and hence:

a

W8 =£/!,= /J0^ (5-18)
k=\

(5-17) tells how the adjustment compresses the number of accumulated raw frequencies.

Since normally u « w, (5-17) implies wa ~ w/2. We term it a "law of half.

Meanwhile, since every increment of frequency of a pattern implies a generation of that

pattern from a data tuple, then the number of patterns deducted from the adjustment
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process would be proportional to the number of frequencies reduced if such a reduction

leads a pattern de-sampled. That is, the estimate of the lower boundary of the total

number of patterns after the adjustment process would follow the law of half. This is

another important implication in an application.

The above relations thus enable the adjusted accumulative frequency to be easily

predetermined. This is what many approaches pursue but no final finding has been

reported to our knowledge.

5.6 The concavity ofhk-curve

Similar to the //¿-curve, after we have proved the hk quasi concavity and other

accompanied properties, we have the hk genuine concavity property as well.

Theorem 5-3: If an //¿-curve is strict concave downward over an interval E = [a, b], then

the corresponding hk-curve would maintain the concavity over the interval [aj, bi],

subject to the only condition of:

(Hk.ì+Hk)>2(hk., + hk+ì), (5-19)

where aj and bjcan be either greater or less than a, b respectively.

Proof: According to the definition of concavity (refer to the proof of Theorem 4-4 and

formula 4-54a), if an hk distribution curve is strictly concave over an interval E, then for

any three consecutive integers k-1, k, k+1 e E, the following relation must hold:

h{k-i)/2 + (k+i)/2 = hk> Vi (hk-i + hk+i).
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The above can be expressed as: Xk = 2hk - (hk-¡ + hk+i) > 0. (5-20)

Our task is then to prove how (5-20) could hold over the interval [ai, bi] stated in the

theorem.

Because of the strict concavity of /f^-curve as given by the theorem, then there exists:

Hk -Vi(Hk., +Hk+1) > 0.

Or, A = 2Hk -(Hk-i + Hh+j) >0. (5-21)

From the definition of hk, we know Hk = hk + hk+], then (5-21) becomes:

A = 2Hk-(Hk.] + Hk+i)

= 2(hk + hk+]) - ((hk-] + hk) + (.hk+J + hk+2))

= (2hk - (hk-i + hk+1)) + (2hk+¡ - (A* + hk+2))

= Xk + Xk+!>0, (5-2Ia)

where, Xk+i = 2hk+1 - (hk + hk+2)- (5-2Oa)

Note that, Xk+i is a forwardly shifted Xk over triple (k, k+1, k+2), which can be always

feasible for a > 5, since max(k) = b - 1 < a - 2 from the boundary of the concavity

interval of an Hk curve stated in (4-57) of Theorem 4-4.

From (5-2Ia), A = Xk + Xk+] > 0, we see it is not possible for both Xk < 0 and Xk+i < 0 to

hold. On the other hand, if both Xk > 0 and Xk+i > 0 hold, it means conditions of (5-20)

and (5-20a) are both satisfied and the concavity maintenance of hk is fulfilled. Because
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of the similarity of Xk and Xk+] in their formulation, we take Xk as the target to discuss

the condition to keep its positivity. This can be done by the following manipulation:

Xk = 2hk - (hk-j + hk+i) = (hk - hk.¡) + (hk - hk+i)

= {{Hk., - hk.j) - hk.j) + {{Hk - hM) - hk+]) = (Hk.¡ - 2hk.j) + (Hk - 2hk+I)

= (Hk.i+ Hk) - 2(hk.i + hk+J) > 0,

which is the condition (5-19) stated in the theorem; and if Xk > 0 for every k

within (a, b) is maintained, then hk maintains the concavity.

On the other hand, from the above context, we see the definition of Xk does not restricted

to (a, b), so the interval of hk concavity can be either larger or smaller than [a, b], while it

is harder to entail the concavity before than after the apex point q of the Hk curve. This

can be seen from (5-19) again, which is reformulated as:

Xk = (Hk ., - 2hk.¡) + (Hk - 2hk+i) > 0. (5- 19a)

According to Corollary 5-3, we know Hk.j > 2hk.¡ for k < q, which support the above

inequality. For the second term, although Hk - 2hk is ensured, but Hk - 2hk+i > 0 is not,

because hk is increasing against k before q. Therefore, the ultimate sign of the left hand

side of (5- 19a) is not predetermined.

However, for k > q, although Hk.¡ - 2hk.¡ becomes negative (refer to Corollary 5-3), Hk -

2hk+¡ would be most likely positive and compensate the loss of Hk.¡ - 2hk.¡, because hk is

decreasing against k after q, and (Hk - 2hk+]) > (Hk -2hk)> (Hk.j - 2hk.¡) could hold and

(5-19a) to be reached. Additionally, as we can see from (5-2Ia), if k = b - 1, and if both
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Xk > O and Xk+i > O hold, it means the right end of the hk concavity interval will be

extended from b to b + 1. That is, bj > b takes place.

Theorem 5-3 is now fully proved. As have done in proof of Theorem 4-4, we continue

the example given there with a = 10, and a distributions = {2, 3, 52, 10, 8, 6, 5, 3, 2, 3},

the maximum Hk concavity interval is [1, I]. Here we can find the corresponding hk

maintains this concavity interval without a change. In next chapter, we will see the cases

that ai or/and bi differ from a or/and b in empirical dataseis.

As mentioned before, the concavity and quasi concavity of /^-curve is very important. It

lays a theoretical foundation for the reduction of the number of raw patterns generated

from full enumeration, and at the same time the sufficiency property is maintained, which

ensures non-excessive reduction to happen. The concavity and quasi concavity are

essential features of our theory, and a justification of the appropriateness of the proposed

adjustment functions.

5.7 Further semanticjustification of the adjustment ofHk to hk

Having presented the above hk properties, we now prove that the hk adjustment exactly

represents the principle of pattern de-sampling and the semantics of the two observations

stated in section 5.2.

Theorem 5-4 (the equivalence theorem): The adjustment of Hk to hk is effectually

equivalent to an alternated pattern generation (combination) by a reduced order. That is,

compared with Hk=^1S-C ,
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hk-Yg.C^ - (5-22)
I=K

Proof: Notice that Hk and hk both are summations of combination operations over

individual tuples of the underlying dataset. Theoretically, there is no restriction of the

data size to the use of Hk and hk. For simplicity, we prove the theorem assuming u = 1,

i.e., only one tuple contained in the dataset; and the length of the tuple is m. That is, for
¡?

Hk= (J. ,we only need to prove

hk = ¿?', · (5-22a)
We prove (5-22a) in induction again.

Starting from k = m (the highest level):

h-=Hm=crm = i= el! = Cl"', . which satisfy <5-22a)·
For k = m - 1 :

hm.j = Hm.j -hm = Qm~X - 1 = m - 1
_ 1 _ „(m-l)-l _ „*-l

\s m-1 i-' m-\ V_^ m-1 '

which means (5-22a) holds.

For k = m - 2:

hm-2 = Hm-2 - h,„-i

= Cl" - (m - 1) = Yi (m * (m - I)) - (m - 1) = Vi (m - l)(m-2)
_ 2 _ „(m-l)-2 _ „(m-2)-l _ —,*-!

V^m-I ?-* m-1 V^m-I v-^ m-1 '

which means (5-22a) holds again.

Now, suppose k = t + 1 (0 < t < m) the formula (5-22a) holds, that is
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ä,+7=cL,. (5-22b)
Then, for k = t,

h,=H,-ht+¡ = CL-Cl1

_ m\ (m-1)! _ (m-l)!(m-(m-i))
~ t\(m-t)\ f!(m-í-l)! t\(m-t)\

t*{m-\)\ (m-1)! (-1

v-' m-í!(w-í)! (f-l)!(/n-0! "'

Note that the formula C - C , = C , can be found from many mathematic\s m \s m-1 V-- m-1 ¦*

textbooks.

In conclusion, when k = t, (5-22a) still holds, and it is fully proved.

Now, for the general case with g distribution and u > 1, as already known,
i-a £

Hk = V g C ; and note hk+i is a weighted (by g ) summation of (5-22b), such that:
i=k '

hk+i= S g -C ,then
/=*+!

hk =Hk-hM = fjg.cki -g #.c^ =( g g¿c' + ^)-? gfç=k ¡=k+l I=Jt-M i=it +1

= S S1-(Cf-Cl1) + g, = S g£~„ + g, e" (5-220
í=yt+l I=JH-I

,=a i- ?

I =

which is (5-22), and hence Theorem 5-4 is fully proved.
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Additionally, follows are other implications of Theorem 5-4.

Firstly, set k' = k - 1, and i' = i - 1, then (5-22) becomes:

i=k i'=k'

which paves a way to prove the hk quasi concavity property as done for theorem

5-2.

Since the hk equivalence (5-22d) shown above has the same formulation as Hk, hk should

possess the same properties as Hk, and hence the concavity. We did not use this approach

to prove theorem 5-2 is because it would be harder to derive other properties and

corollaries presented in section 5.3.

Secondly, notice (J = I, where ? > 0. Then at k = 1, in a general case, (5-22) becomes:

i=a £_| i'=Q o [~a_

^TigiC^^gf^Ygr** (5"23)i=k i=l i=l

which means the conformity with formula (5-4) on one hand; on the other hand, it

notifies us of attention to the details in calculation of w and wa. When we calculate w, the

accumulated //¿s, according to (4-12), k starts from 1 to a, for wa, the accumulated A*s

(by 5-22d or 5-23), k starts from 0 to a -1. For instance in the particular case (5-22a), a =

m and u = 1 , then

w =

¡t=l

m-1

ZCl=2m-l;

and, wa = XCl-! = 2 = ^2"1 - 1) + l)/2 = (w + u)/2.
it=0

This is another method that can be used to prove the "law of half
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Now, what can we infer from the above equivalence theorem? The inference is that, for a

given tuple of m elements in DBo, different from the full enumeration regime (Hk) that

generates patterns from the m elements, hk takes (m - 1) elements as the generation base.

Meanwhile, notice that the original tuple of m elements is kept as it is, as shown in the

above proof. Considering these two aspects together, we can see that the adjustment hk

means that, either the m elements in whole (the original tuple) is a pattern, or (an

inclusive or), at least one element is a "random walk", and hence the patterns can only be

embodied in its subset of (m - 1) elements, which reflects exactly the semantics of

observation 5-1 and 5-2, and hence well represent the principle of pattern frequency

adjustment and proposition 5-1 presented in section 5-2. The above interpretation then

illustrates that the proposed adjustment hk is philosophically sound in three senses: It

reduces meaningless pattern; it is safe; and it is rational. In other words, Theorem 5-4

presents a perfect semantic justification of the hk adjustment, and it lays a foundation for

dimension reduction and noise diminishment in pattern generation, in addition to what

have been stated in the end of subsection 5-3.

Finally, we present the approach to calculate hks. Although it is the most efficient way to

get hkS from Hks if they are available, there would be a need to know hks before Hks or

Hks could not be precisely obtained. Because of the similar formulation of Hk and hk

equivalence, hk can be calculated without knowing Hks by the tabular approach used in

Table 9. Table 1 1 gives an example. The only differences between Table 1 1 and 9 are:

because of the reduced order combinations, each value of k is decreased by 1 (Table 1 1

keeps the original k values in the brackets to refer to the subscript of hk); and according to

116



(5-23) the elements of the third row xabie 11. The recursive computation of
hks

(k = 0(1)) would be the same as that

of the second row (the Gi series).

Starting from row 4 (k = 1(2)), T?

(first row) should be right shifted

by 1 column. The remaining

operations are the same as the ones

described for Table 9 (see Section 4-

5).

The purpose of the above example is

to show how to obtain the hi$ in an equivalent way, but their inner compositions (the

elements of the bold triangular matrix of Table 11) may not necessary be kept the same

under the de-sampling policies (e.g. the solution to the model presented in chapter 7).

The above presents an insight into the understanding and obtaining the hks based on the

equivalence theorem. The application of the theorem can be further extended, as shown

below.

5.8 Higher order reductions

As can be implied from the previous subsection and from the principle of pattern

frequency adjustment, there would still be some meaningless patterns retained after the hk

adjustment, since the reduction is at the "least". In other words, there is a need to further

T?

KXG1 0 hk

0(1) 10

1(2) 18

2(3) 10 18

3(4) 0 10 12

4(5) 0

5(6)

16 32 Wa =
64
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reduce the number of patterns, or, further adjust the pattern frequencies. Indeed, the

approaches proposed in previous subsections can be rightly extended to feed the needs.

Since hk has similar formulation as Hk, the reduction operations can be applied to hk as

well. For this we term hk as the first order reduction of Hk. The second order reduction is

noted as h k, and

h2k = hk-h2k+], (5-24)

which is analogous to (5-2).

The first order reduction is to diminish redundancy of pattern generation in general; the

second order reduction reinforces the effect of the first order, and at the same time can

effectually remove all generated length-one patterns (except those original tuples of one

element only). This effect may be desired in some applications. As we have addressed in

chapter 2, length- 1 pattern could be meaningful, for instance, in spatial or sequential

pattern mining, but may be less interested in some pure frequency based pattern mining

applications. Following is how the length- 1 patterns can be naturally de-sampled based

on the equivalence Theorem 5-4 and (5-24).

Comparing the formulation of (5-22c), hk+i = V g -C ,we can get,.~^, ^ l i-i

h2k+j = V g C , this can be verified by its conformity with (5-24), which

results: h2k = V g .(J
i=k

Then,fork = 2,^=gg.C°_2 = g^.\=2 i=2
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From (5-23):

i—a i-a

^ = Ig, = Zg1+ gì·
i=\ ¿=2

Then, h2i = h1-h22=fjg¡+ g -f,g=g
i=2 /=2

which concludes that, at k = l,the reduction of the number of frequencies is equal

to that of all those generated but original length-one patterns. At the same time, this

helps understand further why the apex point q' of hk curve may right shift one position

from that of the corresponding Hk curve, such that q' = q + 1 as stated in Theorem 5-2,

which is because the one-order adjustment reduces relatively more of the frequencies of

shorter patterns and hence relatively increases that of longer patterns and leads an apex

shifting.

Again, due to formulation similarity, if g is not very large compared with other g s, h u

will possess all of the properties of hk, and the law of half becomes:

w2 = IÄ2* = (w.+ g1)/2, (5-23a)
where w2 is defined as the accumulative frequency of all patterns after the second

order reduction.

For completeness, we affirm that the reduction can be extended to higher orders, h k, h *,

. . ., h"k , as defined below:

h"\ = hm-Jk - hmk+] = Y g G""" , 2 < m < k < i < a, (5-24a)

and h'"k = g , 0 < k < m. (5-24b)
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(5-24a) starts from k = m is because its right hand side does not exist for k < m. Similar

to the second order reduction, (5-24a) can be obtained directly from the original dataset

by the tabular approach as given in Table 10 with some modifications.

The above formulae means, each higher order (m > 1) reduction (adjustment) will remove

equally a whole level of (m - 1) generated but the original patterns. For instance h * will

remove all of the generated length-two patterns effectually and end at h 2 = g ¦ In this

sense, the proposed adjustment approach is an inverse operation of the pattern generation,

and we term it pattern "degeneration", a synonym of pattern de-sampling. The

degeneration implies at least two applications. Firstly, it provides a way to recover the

original dataset from the generated data. Such ability to recovery is an added feature of

our approach: data recovery has many applications. Secondly, since full enumeration

based pattern generation is excessive, the degeneration is rightly a correction, as long as it

is not excessively corrected. In this regard, theoretically, the smaller the m (of /zm¿), the

lower risk towards over correction, since smaller m means the recovered g s will be

within the left section of the hm'\ series, and that section is more likely to maintain the

concavity (refer to Theorem 5-4). However, a reduction of higher than the second order

requires some cautious: This is because the quasi concavity property is not guaranteed to

hold, because (5-24a) starts from k = m > 1, and the law of half needs to be reformulated,

similar to what has been done on h ¿ (refer to (5-23a)).

In short, for normal mining applications, the first order adjustment is generally

applicable; the second order can be optional depending on the mining objectives. Higher
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order reductions are not generally recommended in this thesis for pattern frequentness

adjustment, but they can be used in other application purposes, for instance, data

recovery, etc.. However, it could be a very interesting topic on how to determine up to

what order the reduction can be safely and effectively rendered in an application. In this

regard, we hypothesize that:

The order m of pattern reduction rises with the increase of sample size u:

m o« u, (5-25)

which implies u -> oo, m -> a. (5-25a)

That is, if a sample size is infinitively large, there is no need of pattern generation at all!

This hypothesis is based on the known "law of large number" in classic probability and

statistics theory that, when the sample size is infinitively large, a measure obtained from

the sample reaches the true value of the whole population in question [6, 16]. In this

sense, whether the above hypothesis holds or not is converted into the question whether

the large number theorem would hold in pattern mining problems. If the hypothesis

holds, then its practical significance is obvious: when the dataset in question is

sufficiently large, frequent patterns can be obtained from the dataset (the original patterns

themselves) directly without pattern generation or with light generation only. As a result,

the complexity of pattern mining problem will be greatly reduced. We would discuss

these issues in a future work.

Finally, corresponding to the adjusted accumulative frequency wm (m = a, 2, 3, ..., a), the

relative frequentness of a pattern after the adjustment is given by:
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P(Z) = Fm(Z)/wm. (5-26)

where Fm(Z) is the frequency of pattern Z after adjustment up to order m.

Meanwhile, the primary overfitting /underfitting ratio rs proposed in Chapter 2 shall be

modified with Fm and we get the corresponding adjusted overfitting/underfitting ratio ra:

ra(Z) = S(Z) /P(Z) = (F(Z) / u) / (Fm(Z)/wm)

= F(Z)/Fm(Z)*wm/u.

= F(Z) / Fn(Z) * wm / w * w / u

= F(Z) / F1n(Z) * wm / w * rs(Z) , (5-27)

where rs(Z) = w / u is the corresponding primary overfitting/underfitting ratio.

Notice that F(Z) > F1n(Z), and wm < w. The above formula presents following properties:

1) If F(Z) / F1n(Z) > wm / w, then ra(Z) > rs(Z); otherwise ra(Z) < rs(Z) would hold.

Particularly, if a pattern's frequency is not changed after the refinement, i.e., F(Z)

= Fn(Z), then ra(Z) < rs(Z).

2) Since wm decreases with m increasing, then ra(Z) is monotonie decreasing against

m as well. Its implication is obvious: more generation leads to more severe

overfitting problem (note lower m means less degeneration and hence more

generation). In other words, to reduce the overfitting problem, generate as small a

number of patterns as possible. This is very understandable, and it then justifies
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the designation of the two indicators, rs(Z) and ra(Z), since they properly describe

the mining phenomena.

5.9 Summary

In this chapter, we have presented a theory over a set of properties to reduce the number

of meaninglessly generated patterns via pattern frequency distribution adjustments. The

theory lays a foundation for dimensional reduction and noise reduction in pattern

generation. The theory and the adjustment functions resolve the drawbacks of

conventional full enumeration based pattern mining approaches, including, the bias for

generated patterns vs. original ones, the bias for shorter patterns vs. longer ones, the

mixed element mining, and in overall the reduction of meaningless patterns and hence

overfitting and underfitting issues. A practical significance of the theory is its potential

compliance with the traditional (mineral) mining, wherein the mined materials are

required to be refined before delivering to the end user. Conventional pattern mining

approaches do not take this refining process and that is why users complain against the

too many meaningless patterns delivered. Our proposal lays a theoretical foundation for

reduction of meaningless patterns in more than one order to become possible.

At this stage, the adjustment functions are in terms of different collectives (of same

pattern length k). Chapter 6 presents empirical verifications of the properties revealed in

Chapter 4 and 5; Chapter 7 introduces a model to apply these collective based functions

to individual pattern frequentness adjustments.

123



Chapter 6. Empirical verification

The properties revealed in the previous chapters have been theoretically proved. In

Table 12, we present empirical verifications of these properties by 7 datasets. These

dataseis5 have been used in a number of research articles, and as benchmarks used in

FIMI 2003/04 [25, 39]. These datasets represent different types of data sources. For

instance, the Q distributions include two preliminary cases that all data tuples keep the

same length, three datasets in ordinary distributions, and two not very ordinary (the

"Accident" and the "Pummsb*" have 17 and 48 consecutive zeros in the left end of their

respective g distributions). The datasets are empirically collected, except the last two

which are generated ones. More info about these datasets can be found in [39].

Despite the dataset variations, the results from them well demonstrate the conformability

with the theories developed in the previous two chapters. For instance, in Hk related

properties, we see from Table 12 that, all Hk curves keep strict quasi concave property;

while in the preliminary case (mushroom dataset) Hk has two adjacent apex values

because of its odd u (refer to the proof of Theorem 4-1). And, the results show precisely

that all the corresponding apex points satisfy q < a/2; particularly, for the datasets

Accident, Pumsb* and T1014D100k, their q values are significantly smaller than a/2, a

reflection of their left skewed Q distributions (this can be seen from the comparison

between the last two datasets). The results also show the intervals of the genuine

5 We express our sincere thanks to the dataset providers.
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concavity of the Hk curves as depicted in Theorem 4-4 in both preliminary and ordinary

cases. In the preliminary cases, the intervals obtained from formula (4-57 and 4-57a)

Table 12. Empirical results
Item DBs Mushroom pumsb Retail Accident Pumsb* T40I10D100k TlOHDlOOk

u (tuples) 8124 49046 88162 340183 49046 100000 100000

? (elements) 120 7117 16470 469 7117 1000 1000

a (max length) 23 74 76 51 63 77 29

Q distribution

characteristics

Preliminar

y case

Preliminar

y case
Ordinary,
1 zero in

the right

17 zeros
in the
left
section

48 zeros
in the
left
section

Some zeros
in the left
section, and 2
in the right

Ordinary;
left skewed

c.p. wt the
left db

Quasiconca. True True True True True True True

q (< a/2?) 11, 12 37 38 21 28 38 11

Ht

Concv intvl
(theoretical)

[8, 15] [32, 42] [33, 43] [21,30] [27, 36] [34, 43] [11,18]

Concv intvl
(actual)

[8, 15] [32, 42] [33, 43] [16,25] [23, 33] [33,43] [7, 15]

Concavity
comparisons

Same Same Same Left
shifted

Left
shifted

Left extended

by 1
Left shifted

0 </?*<!? All Is All Is 0 < Rk < 1 0<Rk<
1

0<?*<
1

0<Rk< 0<Rk<\

Monotonie True True True Decrease
bt[l, 11]
but rate
<1%

Decrease
bt[l, 16]
but rate
<1%

True True

Coro. 4-1 True True True True True True True

Coro. 4-2 True True True True True True True

Coro. 4-4 True True True True True True True

W (accumulative
frequency)

68149043
268

9.265E+26 .0816E2 5.967E1
6

4.055E2
0

4.3158E23 6556956652

Hn, 34074525
696

4.632E+26 5.4080E2
2

2.983E1
6

2.027E2
0

2.1579E23 3278528326

H„ 34074517
572

4.632E+26 5.4080E2
2

2.983E1
6

2.027E2
0

2.1579E23 3278428326
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Table 12. Empirical results (continued)
Item DBs Mushroom pumsb Retail Accident Pumsb* T40I10D100k TlOHDlOOk

Quasi-concv True True True True True True True

q' = {q,q+l} 37,38 38 21 28 38 12

V' - Ki ? True True True True True True True

Corollary 5-3 True True True True True True True

Error (%) b.t.
hq and VïHq

4.16 2.63 1.08 0.098 0.024 2.20 1.13

Law of half True True True True True True True

Concave intvl

(actual)
[9, 15] [33, 42] [33, 43] [17,26] [24, 33] [33, 43] [8, 16]

Compared
with Hk
concavity

a, = a + 1
>a

a, = a+ 1
> a

Same a) = a +
l>a;
b, =b +
l>b

a] = a +
l>a;

Same a! = a + 1 >
a;
b|=b+l >
b

are exactly the same as that numerically computed from the datasets. For those dataseis

in ordinary cases, the theoretical and actual concave intervals also conform to the

conclusion of Theorem 4-4.

The Rk properties are verified too. For instance, Rk keeps 1 for all k in the two

preliminary case datasets; and the number of Is of the /?* series are equal to the number

of Os in the right tails of the g distributions of other datasets (refer to Appendix A), as

stated in Corollaries 3-1, 3-2 and 3-4. As a reflection of the consecutive zeroed g s of

the left section of g distributions in the two datasets stated above, the related /?*s are

decreasing but at a slight rate (less than 1 %), while /?*s are always monotonie increase in

other cases.
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The only parameters that cannot be fully precisely listed in this table are the w, Hodd and

Heven due to their large values, except for the first and the last dataseis from which we can

see their relations.

On the hk related series and their properties, Table 12 also presents a full conformity with

the theorems and corollaries presented in previous chapter. For instance, the quasi

concavity is well maintained in all the cases, and it is not affected by the slight

fluctuations of the /?¿s stated above. The results also precisely demonstrates the apex

point q' of every A*, series compared with that of Hk series, such that q' equals q or q + 1.

And interestingly, there is a case (for the "Pumsb*" dataset) that two adjacent apex

values at q' = q and q' = q' + 1 are reached, as have been mentioned in the proof of

Theorem 5-2. The results verified Corollary 5-3 that before q\ hk> 1A hk, and after it, the

relation is reversed, and the closeness of hk and 1A Hk at the apex point q'. The genuine

concave hk intervals and their relation with that of Hk are also presented in the last two

rows of Table 12.

Details of the results are given in Appendix A.
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Chapter 7. The optimized sampling model

In this chapter, we present an optimization model for the first order individual pattern

frequency adjustment.

7.1 The model

The first order individual pattern frequency adjustment is the realization of the hk

function and the rational improvement of overall pattern generation, such that true

frequent patterns would be kept frequent, false frequent ones be corrected, and random

walks be de-sampled. Mathematically, these together mean an optimized sampling such

that a "maximum likelihood" of the whole set of sampled patterns Z would be reached.

That is, suppose the probability of an individual pattern Z1 is p(Z') = /ff(Z')/wa, where

/?,(?') is the adjusted frequency of pattern Z1 and wa is the adjusted accumulative

frequency, then the sampling leads to:

Y[ p(Zl) -> max (7-1)
Z

Subject to: hk, (k = 1, 2, ...a), (7- la)

and: 0 < p(Z!) < F(Z')/wa, (7-lb)

where F(Z1) is the raw frequency of pattern Z1.

(7-1) is a very neat optimization model but it captures the spirit of all the sampling

optimization mechanisms addressed above.
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Unlike most other likelihood maximization problems typically concerning resolving only

one or a few given parameters, it is challenging to solve (7-1) because of the need of

identifying a huge number of patterns and their frequencies in an application. However,

the solution can be reachable with the following strategies:

1 . Pursue as few patterns as possible. This is based on the fact that every p(Z') <

1 (unless the number of patterns i = 1, but it is too trivial), and the adjusted

accumulative frequency wa is fixed by fa function. This strategy implies

pattern de-sampling. At the same time, because of the constraint of hk,

excessive de-sampling will be controlled.

2. For those patterns which could not be de-sampled but their collective

frequency is larger than that required by an hk, keep those concerned patterns'

frequencies as close as possible while maintaining their frequentness orders.

We term this a "trim" of frequency, which leads a correction (reduction) of the

frequencies of overfítted patterns.

3. Localize the operation as much as possible, and ideally render the operation

within every two adjacent levels (collectives). This is because, the

maximization of the objective function (7-1) can be rearranged as:

Max(J] Pi?)) = max(Yl(Y[p(Z\)) = f[ (max(Y[p(Z\)), s.t. hk (7-2)
Z k=l L *=> L

where Lk is the collective of patterns of length k (refer to section 4.3), and

the above formula indicates that global optimization is the product of local

optimizations of different levels (collectives).
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Though the hk functions are level-wise defined, the de-sampling at level k

must be done by referring the super patterns and their frequencies in level

k+1. This implies the localization should minimally refer two levels.

Pursuing the largest p(Z') can also be a strategy, and is embodied in the first strategy.

This is because, firstly, each raw frequency F(Z1) already has a maximum value since it

resulted from full enumeration as discussed in previous chapters. Secondly, since the

adjusted accumulative frequency wa is fixed and decreased from w, and since the number

of retained patterns after the de-sampling is reduced to its minimum, any p(Z') equals

F(Z')/wa automatically reaches its maximum value as shown in (7-lb). At the same time,

we see how the optimization alters the frequentness of the resulted pattern via (7-lb).

The above presents the essential features of our approach, and the strategies are

guidelines to pattern de-sampling and frequency distribution adjustments. How to apply

these strategies to form an operable solution of the optimization model (7-1) would be a

challenge. What we are thinking includes, for example, the adaptation of the known

linear programming (LP) technology or mixed integer linear programming in particular

[37, 38] to solve the model, since the constraint (7-la) of the model are in integer

domain, and the object function of the model can be translated into linearity by a

logarithm transformation:

Xi = ln(p(Z¡)). (7-3)

However, this transformation would cause, for instance, a transformation of (7-la), which

would complicate the transformation. We are also considering other more effective
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approach to solve the problem, and following is our trial solution for the running example

(Table 1).

7.2 A sample solution

To apply the above three solution strategies to model (7-1), we use the following rules:

Rule 7.1: The de-sampling rule: if F(ZV) </v(Zjk+i) and Z\ c Zjk+i, then Z\ can be a
candidate pattern to be de-sampled, where fw is the adjusted frequency (of pattern ZJk+i,

which stays in the result set).

The above rule says if a sub pattern Z\ is not more frequent than its super pattern ZJk+i,

then it can be de-sampled, where the superscripts i and j are respective enumerators. This

rule is based on Proposition 4-3 and the frequency adjustment principle (stated in Section

5-2). Proposition 4-3 says, if Z\ c Zjk+i, and if F(Z*k) = F(Zjk+i), then they must be
generated from the same data tuples. Since ?\+? is already in the result set, and since Z'k

is not more frequent than ZJk+i generated from the same data tuples, then it means Z\
does not bear more information than ZJk+) and hence can be de-sampled.

Rule 7.2: The competition and tie-resolution rule: when a competition takes place, that is,

F(Zsk) = F(Z1It) < F(Zjk+i), where Zske Zjk+i and Z\a Zjk+], then if there is a case that
F(Zsk_m) > F(ZVm), where Zsk_m a Zsk and Z\.m <= Z'k, 0 < m < k, then Zsk should be de-

sampled. In case of a tie, a random draw is used to break the tie.

The above rule says if two or more sub patterns of ZJk+i are of equal frequency and hence

equally good to be de-sampled, then the sub pattern Zsk that has stronger (more frequent)

descendent/s (sub pattern/s) should be de-sampled. Note that, according to the downward
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closure property and the frequency adjustment principle stated in 5-2, there is at most one

sub pattern that can be de-sampled against a pattern Z\+\.

The above rule is based on the rationale that, although Zsk and Z\ are equally frequent at

level k, Z\ is indeed relatively weaker than Z\, since Zsk's sub pattern/s (at level k - m)

is stronger than that of the other. The rule also implies that, when m is reached, the

comparison stops. Finally, the second part of the rule refers to a tie case where no

stronger sub pattern of Z\ is found than that of Z\ and vice versa until k = 1 . In this case

the miner can arbitrarily choose Zsk or Z\ to be de-sampled. We can prove that, in this

case, a draw would not affect the output of next level. However, the proof is not given

here. This no side effect propagation is a merit of the maximization model and the above

defined solution rules.

Based on the above, we define adjusted pattern frequency below:

Definition 7.1: The "adjusted pattern frequency" /w(Zjk) (k = 1, 2, . . .a-1) is defined as:

fw(Z\) = 0, (de-sampled case) (7-4)

or, fw(Z\) = F(Z\) - Fd, (trimmed case) (7-5)

or, /v(Zjk) = F(Zjk), (unchanged case) (7-6)

where, Fd > 0 is the frequency to be reduced, and it is determined in the following

conceptual algorithm.

The above definition and the following algorithm can be simply understood as that,

during the adjustment course, a pattern is de-sampled (if it is not more frequent than its
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antecedent (super pattern), and if it is the least frequent one compared with its siblings),

or its frequency is reduced (trimmed). If a pattern got no antecedent to compare with in a

step, then its frequency is not affected (the unchanged case).

Algorithm 7-1:
For (k = a-1, a-2, ..., 2, 1) do:

For each Z'k+i, let y =fw(Z\+1) > 0,
If there are sub-patterns, Zjk, such that F(Zjk) < y, do

While (F(Zjk)<y)
If there is only one such Zjk,

then de-sample it (set/w(Zjk) = 0), and let y = y - F(Zjk)
If more than one such Zjk exists,

then resolve the competition and tie case with rule 7-2.
End while

End if ... do

If there is no such sub-pattern Zjk that F(Zjk) < y, then
For each Z\ in the sub patters set { Zsk}, reset its frequency

.MZM = F(ZV) -Fd,
where Fd is determined by the following steps:

Set: Fs = Xs F(Zsk), Zjk e { Zsk} (7-7)

Fd= round (y*F(Z'k)/Fs). (7-8)

Then, fw(A) = F(Z\) - Fd (7-9)

end for each,

end for... do.

The above algorithm features the following: it is a top-down approach since the hk

constraints are defined top-down; and each time the operations are localized in two
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adjacent levels, k and k+1. This localization greatly Table 13. A mutual
element free dataset

simplifies the solution. However, if a competition or a tie

occurs, its resolution may require multiple level searches

and comparisons as stated in rule 7-2.

Now, we use the running example (Table 1) to demonstrate

the solution of the optimization model using algorithm 7.1.

In Table 1, we notice a "mutual pattern". A "mutual

pattern" Zk is a pattern whose k compositional elements

always occur simultaneously in the original dataset. We

define the elements of a mutual pattern as "mutual

elements"6. In table 1, V4 and V7 are mutual elements and

they form a mutual pattern in this example. Discovering a mutual pattern is certainly

interesting, not only because it can be seen as a true pattern in any sense, but also because

it has a big impact on pattern mining, particularly in the refinement solutions - it will

cause a de-sampling tie as can be imagined. This tie causation can also be formally

proved, since the frequencies of all sub patterns of a mutual pattern are the same! Since a

tie could greatly complicate the resolution process as we have mentioned, it is desired to

eliminate it by merging the mutual elements as a single (composite) element only. This

resolution does not only reduce the tie complication, but also reduce the mining

dimension.

TDD VID

Vi, V0

V2, V0, V8

V2, V6

V1, V6, V8

V1, V2, V3, V0, V8

Vs

Vn

V5

V1, V2

10 V1, V2, V3, V8

6 Finding mutual pattern itself is a data mining problem!
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Table 14. The raw patterns from Table 1

Ck Hk Raw Patterns

A B Xi

28 0.237 V,(.042)/5, V2(.042)/5, V3(.017)/2, V4(.034)/4, V5(.017)/2,
V6(.017)/2, V7(.034)/4, V8(.034)/4

18 36 0.305 V47(.034)/4,
V,3(.017)/2,
V24(.017)/2,
V78(.017)/2,
V68(.009)

V12(.025)/3, V18(.025)/3, V28(.025)/3,
V14(.017)/2, V17(.017)/2, V23(.017)/2,
V27(.017)/2, V38(.017)/2, V48(.017)/2,

V16(.009), V26(.009), V34(.009), V37(.009),

21 30 0.254 V123(.017)/2, V128(.017)/2, V138(.017)/2, V147(.017)/2,
V238(.017)/2, V247(.017)/2, V248(.017)/2, V278(.017)/2,
V478(.017)/2, V124(.009), V127(.009), V137(.009), V148(.009),
V168(.009), V178(.009), V134(.009), V234(.009), V237(.009),
V347(.009), V348(.009), V378(.009)

15 17 0.144 V1238(.017)/2, V2478(.017)/2, V1234(.009), V1237(.009),
V1247(.009), V1248(.009), V1278(.009), V1347(.009),
VI348(.009), V1378(.009), V1478(.009), V2347(.009),
V2348(.009), V2378(.009), V3478(.009)

0.051 VI2347(.009), V12348(.009),
V]3478(.009),V23478(.009)

V,2378(.009), V12478(.009),

0.009 V 1234781(.009)

69 118 1.00

Notes: the terns in X¡ (i = 1, 2, 3), e.g, VJ23(.017)/2 means: pattern V 1V2V3(probability
s'z)/frequency. If frequency not specified, it is 1.

Merging V4 and V7 into Vo gives the data set shown in Table 13, wherein the longest

pattern length a is reduced from 6 to 5, and the related //¿series becomes {24, 25, 16, 6,

1 } . The reduction certainly simplifies the problem. For instance, the total number of

patterns generated from the reduced case (Table 13) is 37, and the accumulative

frequency w = 72, compared with the 69 patterns and their accumulative frequency 118
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in the original problem (seen in Table 14). The raw patterns generated from Table 13 are

presented in Table 15.

Table 15. The raw patterns from Table 13 after merging V4 and V7
Ck Hk Sd'? Raw Patterns

B X

24 0.333 V0(.056)/4, Vi(.069)/5, V2(.069)/5, V3(.028)/2, V5(.028)/2,
V6(.028)/2, V8(.056)/4

13 25 0.347 Voi(.028)/2, V02(.028)/2, V08(.028)/2, V03(OH), V13(.028)/2,
V23(.028)/2, V38(.028)/2, V12(.042)/3, V18(.042)/3,
V28(.042)/3, V16(.014), V26(.014), V68COH)

11 16 0.222 V012COI4), Vo,3(.014), V018(.014), V023(.014), V028(.028)/2,
V038(.014), V123(.028)/2, V128(.028)/2, V138(.028)/2,
V238(.028)/2, V168COH)

0.08.3 V0123(OH),
V1238(.028)/2

V0128(OH), V0138(OH), V0238(.0H),

0.014 V01238(OH)

37 72 1.00

Notes: the terns in the column X, e.g, V123(.028)/2 means: pattern V^V^probability
s'z)/frequency. If frequency not specified, it is 1.

Applying Algorithm 7-1 and starting from k = a - 1 = 4, there is only one pattern at k =

5, V01238 with frequency y = 1. We see its sub patterns listed in k = 4 of Table 15 are of

same frequency 1 except V1238. It means then there is a competition to resolve.

According to algorithm 7-1, we go down to k = 3, and find that V0128 and V0238 have

equal number of stronger sub patterns than other ones. Then we keep looking into level k

= 2 and find that V0128 has a stronger sub pattern (V18) than that of V0238. V0128 is then de-

sampled. That is, at k = 4, the refined pattern set is { V0123COH), V0138(OH), V0238(OH),
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V1238(.028)/2} as shown in Table 16. In this example, from k = 4 to k = 2, the main

refinement operation is pattern de-sampling, and the refined pattern set is seen in Table

16.

At k = 1, frequency trimming defined in algorithm 7-1 plays the major role, since the

frequencies of all the sub patterns at k = 1 are larger than that of their respective super

patterns at k = 2. Notice that at k = 2 in Table 16 and k = 1 in Table 15, there are

following correspondences:

V0,(2) ^-* { Vo(4), V,(5)}, V08(2) <~> (V0(4), V8(4)}, V28(2) <--» [W2(S), V8(4)},

Vi2O) <"» { V,(5), V2(5)}, V18(3) <--» { V0(4), V1(S)), V0i(2) <r^ { V0(4), V,(5)},

V0i(2)<"» {Vo(4),V,(5)},

Table 16. The refined patterns from Table 15

Ck ls\ Raw Patterns

A B X

10 0.244 V0](.049)/2, V1 (.024), V2(.049)/2, V3(.049)/2, V5(.049)/2,
V6(.028)

14 0.341 Voi(.049)/2, V08(.049)/2, V12(.042)/3, V18(.042)/3,
V28(.049)/2, V26(.024), V68(.024)

11 0.268 Voi3(.024), V028(.049)/2, V038(.024), V123(.049)/2,
V138(.049)/2, V238(.049)/2, V168(.024)

0.122 V0123(.024), Voi38(.024), V0238(.024), V1238(.049)/2

0.024 Voi238(.024)

S 27 41 1.00

Notes: the terns in the co
s'z)/frequency. If frequency not specified, it is 1.

lumn X, e.g, V]23(.049)/2 means: pattern V^V^probability
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where the left hand side of <--> is the adjusted frequency/», of a pattern at k = 2,

and the right hand side is the corresponding two sub patterns at k = 1 and their raw

frequencies which are noted in the round brackets.

Applying formulae (7-7) to (7-9) to the above, we get:

Fd(Vo) = 4*2/9+1*2/2=1.9 -> 2

Fd(Vi) = 5*2/9+1*3/2+5* 3 /9 = 4.3 -»4

Fd(Vi) = 5*2/9+1*3/2 + 2/7 = 3 -> 3

Fd(V6) = 2/7 + 2/6 = 0.6 -M

Fd(Ys) =1/2 + 4*2/9+4*3/9 + 4/6 = 4 -> 4

That is, based on formula (7-5) the refined patterns and their frequencies obtained from

Table 16 at k= lare: {V0(2), V1(I), V2(2), V3(2), V5(2), V6(I)).

This completes the refinement process, and the refined patterns and their adjusted

frequencies are seen in Table 16. However, for a conceptual consistency in pattern

length, we need to slightly reorganize the result set, since Vo is not really a single

element. For example, V0i stored in k = 2 of Table 16 should be moved to k = 3, since it

is exactly a length-3 pattern V]47. The rearranged result set is presented in Table 17,

wherein we substituted the element number V47 in lieu of V0 to avoid confusions. At the

same time, we note that there is no need to split V47 into V4 and V7 again and put their

separate combinations with other elements into the result set, for instance, V]4 or V234.

This is simply because V4 and V7 always occur together. If one sees a Vi4, then it is

exactly Vi47! This is an important significance of finding a mutual pattern, not only
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because of the pattern itself, but also because of the reduction of the pattern generation

and the reduction of the mining dimension, as illustrated in the above example.

Table 17. The reorganized refined patterns

Ck hk Is'z Raw Patterns

B X

0.195 Vi(.024), V2(.049)/2, V3(.049)/2, V5(.049)/2, V6(.028)

12 0.293 V47(.049)/2, V28(.049)/2, V26(.024), V68(.024), V12(.073)/3,
V18(.73)/3

11 0.268 V123(.049)/2, V138(.049)/2,
V147(.049)/2, V478(.049)/2

V238(.049)/2, V168(.024),

0.146 V,238(.049)/2, V1347(.024), V2478(.049)/2, V3478(.024)

0.073 V12347(.024), V13478(.024), V23478(.024),

0.024 V123478(.024)

S 27 41 1.00

Notes: the terns in the column X, e.g, Vi23(.049)/2 means: pattern V]V2V3(probability
s'z)/frequency. If frequency not specified, it is 1.

The result set demonstrate the essences of the adjustment model. For instance, the

number of patterns is reduced (from 37 in Table 15 to 27 in Table 17, about 30%

decrease; compared with that in Table 14, the reduction is from 69 to 27, a 60%

decrease); the frequentness of most retained patterns (in Table 17) is enhanced compared

that in Table 15. For instance, in Table 17, the probabilities of all the patterns are

between 0.024 and 0.073; and there are more than 50% of the patterns that their

probabilities are no less than 0.049. However, in Table 15, the probabilities of all the

patterns are between 0.014 and 0.069; and there are less than 20% of the patterns that

their probabilities are over 0.042. This enhancement is even more striking compared with
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that in Table 14. Consequently, the maximization objective of the optimization model is

then reached.

The results also reflect what we have argued in previous chapters. For instance, recall

that we have interpreted the dataset Table 1 (equally Table 13 above) as the dancer

example (refer to Example 2-2 in Chapter 2); there we discussed the problem of an

entertainment company which wants to find out the most possible potential solo dancer/s.

In conventional mining approaches (refer to Table 14, at k = 1), the answer would be

Vi (5) ,V2(5) , V4(4) , V7(4) , and V8(4) , while V5(2) is almost impossible, since it is one

of the least frequent elements. We have argued that the result is counter commonsense,

since V5 is observed as a solo dancer twice, while all the rest are generated patterns,

although their raw frequencies are much higher than that of V5. Our argument is now

justified, and from the result set {V,(l), Y2(Z), V3(2), V5(2), V6(I)), as shown in the

row k = 1, Table 17, the entertainment company will find that V¡ is weaker than V5, a

reverse conclusion from the conventional mining approaches. Similarly, V2 becomes only

comparable with V5 from a much stronger position in the conventional case. More

strikingly, V8 gets fully out of the scene after the refinement, but it is rather stronger than

V5 in the conventional case. At the same time, V3 can be seen as a surprising pattern,

since its raw frequentness is one of the lowest compared with other elements, but it

becomes comparable with V5 and V2 in the refined case. Finally, it is also very

understandable that V4 and V7 are not in the answer set, because V4 and V7 are mutual

elements, they act always together and could not be individual players! However, in

conventional mining approaches, the answer is reversed.
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7.3 Significance and implications

From the above sample solution, we see that, the results from the refinement model are at

least more interpretable and more coherent with commonsense rather than counter

intuition exhibited in the result set of conventional mining approaches. The results from

the solution also indicate that, although the optimization model aims at maximization of

the probabilities in whole, it does not exclude those less frequent but potentially

interesting patterns. The results support a vision that the adjustment model provides a

mechanism to retain and discover surprising patterns. Using conventional approaches, we

would be unable to get the above insights into the solo dancer situation. One of the

reasons for these noticeable points can be seen from the adjustment algorithm: every

pattern's frequency will be examined and compared as long as it has an antecedent.

Furthermore, the comparisons are rendered both vertically and laterally. That is, the

comparison must be done between a parent and its children, and among the siblings. This

is the essence of mining. Conventional approaches do not implement these comparisons.

It should also be noticed that the frequency comparisons are done "locally" with

relevance. The comparisons are not extended to patterns of no relation. This is the basic

reason for the less frequent patterns to be retained in the result set which is another

significant difference from conventional approaches that compare pattern frequencies

globally and absolutely without consideration of relevance. It then implies the inability

of conventional frequent pattern mining approaches to discover and retain less frequent

but meaningful patterns, or surprising patterns.
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Having discussed the main characteristics of the optimization model, we notice that the

merits of the model and its solutions, such as the ability to discover surprising patterns,

are theoretical only at this moment. Furthermore, the example is very small, and the

solution only demonstrates that the optimization model is solvable. The solution

complexity could increase rapidly with the increase of the number of elements involved

and the data size. A specific complexity could be due to the existence of mutual

pattern(s), which is indeed a mining problem itself. More general complexities would

mostly originate from decision making problems. In the above sample solution, we have

set up some rules to resolve competition and tie problems, but these may not be the only

ones required. In general, to solve a realistic refinement problem, it is imperative to

address the following:

• Investigate and identify in what and how many situations we will face a decision

making problem, and the nature of each decision making problem.

• What rule(s) to be used to make a decision; the justification of the rule and the

consequences of the decision to be made, especially, whether alternative decisions

would lead to substantially different final result sets.

All of these are research problems and only after these problems have been resolved,

could we design and implement the appropriate algorithm(s) to solve the refinement

model for practical pattern mining.

As stated earlier, the nature of the refinement is a reduction of the number of

meaninglessly generated patterns, in other words, a correction of the full enumeration

generation, which implies an inception of "selective pattern generation" mode. The
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above proposed refinement model can be seen as an indirect selective pattern generation

approach, since the selectivity is equivalent to selection of patterns from the fully

generated pattern set. Our expectation is that, after the refinement strategies and the

related decision making complexities elaborated above have been fully studied, they can

be applied to develop a direct selective pattern generation approach. Thus, patterns could

be generated directly to fit to the target refined result set without involving the use of full

enumeration. This is analogous to obtaining the refined accumulative frequency wa and

hkS directly without knowing the raw w and H^s as presented in Section 5.6. In short, the

refinement model and the development of a selective pattern generation regime could

herald a radical change of pattern mining methodologies.
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Chapter 8. Conclusions, contributions and future work

Pattern mining is fundamental to many data mining tasks, especially association rule

mining, causation mining and the like, of which pattern frequency distribution and

frequentness determination play essential roles. Conventional pattern mining approaches

focus on mining efficiency but largely ignore the importance of appropriate measure of

pattern frequentness and the refinement of the mining results sets. Even worse, such

unrefined results are taken to be final and delivered to the users. This thesis reveals

theoretical pitfalls underlying and subsequently the drawbacks imposed by conventional

mining approaches, and then proposes their corresponding resolutions with theoretical

proofs. This is the general contribution of our work.

Problems, such as overfitting and huge number of meaningless patterns resulted from

mining have been noticed for some years, but no substantial investigation has been

reported. This could be because of the difficulty of the problems that are not only

computational but philosophical as well. We noticed such difficulties, and we are aware

that revealing and resolving philosophical problems could not be so exciting or as easy to

be recognized as developing an efficient algorithm. However, we believe the first

important thing in research is the unearthing and identifying the problems.

Our study has identified that the overfitting problem is dominantly existent in previously

proposed approaches, wherein overfitting implies meaningless combinations of elements

are falsely taken to be meaningful patterns, or less frequent ones be frequent patterns.

The overfitting and other drawbacks revealed in the second chapter of this thesis are
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rooted mainly from two sources. One is the probability anomaly caused by the

conventional defined and widely used "support" sz; another is the full enumeration

pattern generation regime. These discoveries are the first contribution of our work.

Based on the problem investigations, we have presented our primary reformulation of sz,

which forms our second contribution. The reformulation is simple but effective: it

automatically resolves the probability anomaly and covers other issues addressed in from

subsection 2.3.1 through 2.3.6; it also fulfills the requirements raised at the end of section

3.2. Along with the resolution, the degree of overfitting embodied in the conventional

mining approaches can also be quantified. We have numerically illustrated the

effectiveness and the striking differences of the mining result set of our proposed

reformulation compared with the one obtained by conventional mining approaches.

Compared with the frequentness measure issue, it demands much more intellections in

understanding and resolving the full enumeration pattern generation related drawbacks.

This thesis provides an insight into the problems, and proposes a refining framework

based on our third contribution in explorations of a set of intrinsic properties governing

pattern frequency distributions, such that the merit of tue full enumeration generation is

maintained while the related drawbacks addressed in Section 2.3 are corrected.

Findings presented in this thesis are well derived from set theory and combinatiorics, and

we believe they could be well exploited in applications of pattern mining. These

findings, particularly the Hk and hk curves and their properties, could form a set of

reliable indicators and check points to test and guide pattern mining. For example, if an

Hk curve derived from a dataset is not quasi concave, then there must be some
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characteristics embodied in the related data source, or the mining approach might have

not been correctly implemented. More importantly, the Hk and A* curves and their quasi

concavity properties theoretically prove the possibility to obtain a succinct mining result

set while maintaining sufficiency. The succinctness means the overfitting and

underfitting problems will be controlled, and the sufficiency property is to ensure only

meaningless patterns to be reduced without an excessive cut-off. A salient feature of our

proposal is the promise of substantial reduction of the number of meaninglessly generated

patterns before domain specific constraints are imposed. Moreover, our proposed

reduction can be done in more than one order, complying with the real industrial mining

practice that the mined raw materials should be refined more than once before delivering

to the user. In short, this thesis presents a refinement theory for dimension reduction in

pattern generation and for noise reduction, so that graceful degeneration of knowledge

acquisition is achievable. This is the fourth contribution of our work.

Our fifth contribution is the maximum likelihood model developed in the last chapter to

realize the proposed refining theory. We have analyzed and suggested a number of

strategies to solve the optimized sampling model. In the end, we have presented a sample

solution to demonstrate that the optimization model is solvable. At the same time the

solution supports what we have addressed on the drawbacks of the conventional

approaches and their expected resolutions.

The conventional support measure, the full enumeration pattern generation mode and the

"downward closure" property based on it, are the foundations of conventional mining

approaches. A modification of these foundations would indicate a radical change of the
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state of the art of pattern mining. This is because, our proposal means an overpass of the

full enumeration pattern generation mode adopted by the conventional mining

approaches. In other words, findings and the refinement model presented in this thesis

would lead to a development of selective pattern generation regime. Under this regime,

the downward closure property is no longer to hold, and the widely used pattern pruning

and the like strategies will become invalid. Accordingly, the focus of data mining will be

shifted from conventionally on how to efficiently produce all possible frequent

combinations (patterns) into how to obtain meaningful patterns. This is the principle

significance of our work.

The above has summarized our main contributions and the possible impacts. These

impacts will certainly extend to other mining tasks based on pattern mining, for instance,

association rule mining, causation mining.

Our future work can be divided into two stages. In the first stage, we will try to find the

fully fledged operational approaches and algorithms to solve the proposed optimized

refinement model over real dataseis, which corresponds to an indirect selective pattern

generation approach. The model optimally selects patterns from the fully generated

pattern set. This proposed future work would mainly focus on the investigation and

identification of various decision making problems, for instance, to decide which

pattern(s) to be retained or degenerated, or to decide to what degree a pattern's frequency

may be reduced, and so on. The next stage work will be on how to develop a direct

selective pattern generation mode, such that patterns would be generated directly to fit to

the target refined pattern set without the involvement of full enumeration.
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APPENDIX A: THE OUTPUT OF EMPIRICAL DATASETS

The databases used as follows are original from the source [39] without any change,

except the format of the files has been changed from html to txt to read into computer

easily. The computation is programmed with C#.

Output for mushroom_dat.txt

Total number of elements ? = 1 20

Total number of tuples u = 8 1 24

Longest pattern length Alpha = 23

The Gk distributions:

0000000000000000000000 8124

The Hk Series:

(1) 186852 (2) 2055372 (3) 14387604 (4) 71938020 (5) 273364476 (6) 820093428 (7) 1991655468 (8)
3983310936 (9) 6638851560 (10) 9294392184 (11) 10984281672 (12) 10984281672 (13) 9294392184
(14) 6638851560 (15) 3983310936 (16) 1991655468 (17) 820093428 (18) 273364476 (19) 71938020 (20)
14387604 (21) 2055372 (22) 186852 (23) 8124

The Hk Quasi Concavity: + Increase, - decrease, = equality.

Io 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+11+ 12= 13- 14- 15- 16-17-18- 19-20-21-22-23-

The Hk Genuine Concavity: Hk:(Hk - (Hk-I + Hk+l)/2 >= 0?); theoretic concavity domain = [8, 15];
exact= [8, 15].

Detailed as below:

Io 2:(-5231856) 3:(-22609092) 4:(-71938020) 5:(-172651248) 6: (-3 124 16544) 7:(-4 100467 14) 8:(-
331942578) 9:(0) 10:(482825568) 11:(844944744) 12:(844944744) 13:(482825568) 14:(0) 15:(-
331942578) 16: (-4 100467 14) 17:(-3 124 16544) 18:(-172651248) 19:(-7 1938020) 20:(-22609092) 21:(-
5231856) 22:(-844896)
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The Rk Series:

1111111111111111111111

The Rk Monotonie: + Increase, - decrease, = equality.

= I+ 2= 3= 4= 5= 6= 7= 8= 9= 10= 11= 12= 13= 14= 15= 16= 17= 18= 19= 20= 21= 22=

The accumulative frequency w = 68149043268

The sum of odd length pattern frequencies H_odd = 34074525696

The sum of even length pattern frequencies H_even = 34074517572

The hk Series:

(1) 8124 (2) 178728 (3) 1876644 (4) 12510960 (5) 59427060 (6) 213937416 (7) 606156012 (8)
1385499456 (9) 2597811480 (10) 4041040080 (11) 5253352104 (12) 5730929568 (13) 5253352104 (14)
4041040080 (15) 2597811480 (16) 1385499456 (17) 606156012 (18) 213937416 (19) 59427060 (20)
1251 0960 (21)1 876644 (22) 1 78728 (23) 8 1 24

The hk Quasi Concavity: + Increase, - decrease, = equality.

Io 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+11+ 12+ 13-14- 15- 16-17-18- 19-20-21-22-23-

The hk Genuine Concavity: hk:(hk -(hk-1 + hk+l)/2 >= 0?); Concavity domain = [9, 15].

Detailed as below:

Io 2:(-763656) 3:(-4468200) 4:(-18140892) 5:(-53797128) 6:(-l 18854120) 7:(-193562424) 8:(-
216484290) 9:(-l 15458288) 10:(1 15458288) 11:(367367280) 12:(477577464) 13:(367367280)
14:(1 15458288) 15:(-1 15458288) 16:(-2 16484290) 17:(-193562424) 18:(-1 18854120) 19:(-53797128)
20:(-18140892) 21:(-4468200) 22:(-763656)

Output for pumsb_dat.txt

Total number of elements ? = 71 17

Total number of tuples u = 49046
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Longest pattern length Alpha = 74

The Gk distributions:

000000000000000000000000000000000000000000000000000000000
0000000000000000 49046

The Hk Series:

(1) 3629404 (2) 132473246 (3) 3179357904 (4) 56433602796 (5) 790070439144 (6) 9085810050156 (7)
88262154772944 (8) 739195546223406 (9) 5.42076733897164E+15 (10) 3.52349877033157E+16 (11)

(12)
(15)
(18)
(21)
(24)
(27)

(30)
(33)
(36)
(39)
(42)

(45)
(48)
(51)
(54)
(57)
(60)
(63)

1.07626871530128E+18
8.94604017861415E+19
3.56405416870793E+21
7.42823921478075E+22
8.59752627694929E+23
5.761 07743686 175E+24
2.3008835 132688E+25
5.58520917333797E+25
8.33870 165094997E+25
7.69726306241536E+25
4.3883786361 94 12E+25
1.5339223421792E+25
3.24060605823473E+24
4.045 8947 1856437E+23
2.88875969463696E+22
1.1254907901 1829E+21
2.2365 1004465354E+19
2.05003564819291E+17

2.05003564819291E+17
2.23651004465354E+19
1.1254907901 1829E+21
2.88875969463696E+22
4.0458947 1856437E+23
3.24060605 823473E+24
1.533922342 1792E+25
4.3883786361 941 2E+25
7.6972630624 1536E+25
8.33870165094997E+25
5.5852091 7333797E+25
2.3008835 132688E+25
5.76107743686175E+24
8.59752627694929E+23
7.42823921478074E+22
3.564054 16870793E+21
8.94604017861415E+19
1.07626871530128E+18
5.42076733897164E+15
790070439144 (70) 56433602796 (71) 3179357904 (72) 132473246 (73) 3629404 (74) 49046

(13)
(16)
(19)
(22)
(25)
(28)

(31)
(34)
(37)
(40)
(43)

(46)
(49)
(52)
(55)
(58)
(61)
(64)

(66) 739195546223406 (67) 88262154772944 (68) 9085810050156

5.13297387297533E+18 (14)
3.29885231586397E+20 (17)
1.05045807077708E+22 (20)
1.78953035628809E+23 (23)
1.71950525538986E+24 (26)
9.67037998330365E+24 (29)
3.26577014786539E+25 (32)
6.735 1051 796 1344E+25 (35)
8.56407196584051E+25 (38)
6.735 1051 796 1344E+25 (41)
3.26577014786539E+25 (44)
9.67037998330365E+24 (47)
1.71950525538986E+24 (50)
1.78953035628809E+23 (53)
1.05045807077707E+22 (56)
3.29885231586397E+20 (59)
5.13297387297533E+18 (62)
3.52349877033 157E+16 (65)

(69)

The Hk Quasi Concavity: + Increase, - decrease, = equality.

Io 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+11+ 12+ 13+14+ 15+ 16+ 17+ 18+ 19+20+21+22+23+24+25+26+
27+ 28+ 29+ 30+ 31+ 32+ 33+ 34+ 35+ 36+ 37+ 38- 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50- 51-
52- 53- 54- 55- 56- 57- 58- 59- 60- 61- 62- 63- 64- 65- 66- 67- 68- 69- 70-71- 72- 73- 74-

The Hk Genuine Concavity:
exact = [32, 42].

Detailed as below:

Hk:(Hk - (Hk-I + Hk+l)/2 >= 0?); theoretic concavity domain = [32, 42];

Io 2 :(- 1459020408) 3:(-25 1036801 17) 4:(-34019 1295728) 5:(-3781051387332) 6:(-35440302555888)
7:(-285878523363837) 8:(-2.01531920064889E+15) 9:(-1.25663242857979E+16) 10:(-
6.99771783758158E+16) 1 1:(-3.50748286683006E+17) 12:(-1.59272000359603E+18) 13:(-
6.5877 1070794299E+1 8) 14:(-2.4931587383023E+19) 15:(-8.66647642303246E+19) 16:(-
2.7759036436582 1E+20) 17:(-8.2147891002887E+20) 18:(-2.25098158Q23659E+21) 19:(-
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5.721244849768E+21)
6.04828963733 135E+22)
3.30674087574973E+23)
8.79770446023222E+23)
7.8860926866O678E+23)
34:(9.38690617367726E+23)
37:(2.2537031489054E+24)
40:(9.38690617367726E+23)
7.88609268660673E+23)
8.79770446023222E+23)
3.30674087574973E+23)
6.04828963733 135E+22)
5.721244849768E+21)
2.77590364365 82 1E+20)
6.58771070794299E+18)
6.99771783758158E+16)

20:(-1.35058894814195E+22)
23 :(- 1 . 14763359805432E+23)
26:(-4.9968528789107E+23)
29:(- 1 .0003841 3620383E+24)

21:(-2.96379241397818E+22) 22
24:(-2.02294735928219E+23) 25
27:(-6.94415583907443E+23) 28
30:(-9.89627317534964E+23) 31

32:(-3.71 1 10244075615E+23)
35:(1.60359647133653E+24)
38:(2.08034136822037E+24)

33 : (2.3467265434 1 932E+23)
36:(2.080341 36822037E+24)
39:(1.60359647133653E+24)

4 1 :(2.3467265434 1 932E+23)
44:(-9.89627317534968E+23)
47:(-6.94415583907443E+23)
50:(-2.022947359282 1 9E+23)
53:(-2.96379241397817E+22)

56: (-2.250981 5 8023659E+21)
59:(-8.66647642303245E+19)
62:(- 1 .59272000359603E+ 1 8)

42:(-3.71110244075615E+23) 43
45:(-1.00038413620383E+24) 46
48:(-4.9968528789107E+23) 49

51:(-1.14763359805432E+23) 52
54:(-1.35058894814195E+22) 55
57:(-8.2147891002887E+20) 58
60:(-2.4931587383023E+19) 61

63:(-3.50748286683006E+17) 64
66:(-2.01531920064889E+15) 6765:(-l .25663242857979E+16)

285878523363837) 68:(-35440302555888) 69:(-378 105 1387332) 70:(-340191295728) 71 :(-251036801 17)
72:(-1459020408) 73:(-62631742)

The Rk Series:

11111111111111111
1111111111111111

111111111111111111111111111111111111111

The Rk Monotonie: + Increase, - decrease, = equality.

= 1+ 2= 3= 4= 5= 6= 7=
27=28-29+30-31+32=
51=52-53=54=55=56=

8= 9= 10- 11+ 12= 13+ 14- 15= 16= 17= 18+ 19- 20+ 21- 22- 23+ 24= 25+ 26-
: 33= 34= 35= 36= 37= 38= 39= 40= 41= 42= 43- 44- 45+ 46= 47= 48- 49+ 50+
: 57= 58= 59= 60+61- 62+ 63- 64= 65= 66= 67= 68= 69= 70= 71- 72+ 73=

The accumulative frequency w = 9.26452746075298E+26

The sum of odd length pattern frequencies H_odd = 4.63226373037649E+26

The sum of even length pattern frequencies H_even = 4.63226373037649E+26

The hk Series:

(1) 49046 (2) 3580358 (3) 128892888 (4) 3050465016 (5) 53383
8349122748792 (8) 79913032024152 (9) 659282514199254 (10)
3.04735028785433E+16 (12)
4.2312352196148E+18 (15)
2.58558695027176E+20 (18)
7.8074586341 5393E+21 (21)
1.25750781 7932 17E+23 (24)
1.13859131775815E+24 (27)
6.01 131728691 848E+24 (30)
1.89767724808394E+25 (33)

1.74530061940748E+17 (13)
1.81338652269206E+19 (16)
8.66932095091 11 9E+20 (19)
2.10801383122156E+22 (22)
2.7883869006322E+23 (25)

2. 10201 47404765 8E+24 (28)
9.32790613487351E+24 (31)
2.4907013881 1018E+25 (34)

37780 (6) 736687301364 (7)
4.76148482477239E+15 (11)

9.01738653360531E+17 (14)
7.13265365592209E+19 (17)
2.69712207361681E+21 (20)
5.32022538355918E+22 (23)
5.80913937631709E+23 (26)
3.659062696385 16E+24 (29)
1 .36809289978 1 45E+25 (32)
3.09450778522779E+25 (35)
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3.64059739438564E+25
4.28203598292025E+25
3.09450778522779E+25
1.36809289978145E+25
3.659062696385 16E+24
5. 8091 393763 1709E+23
5.32022538355918E+22
2.69712207361681E+21
7.13265365592209E+19
9.0173865336053 lE+17
4.76148482477239E+15
736687301364(70)53383

(36) 4.0566656680297 lE+25 (37)
(39) 4.0566656680297 1E+25 (40)
(42) 2.4907013881 1018E+25 (43)
(45) 9.3279061 348735 1E+24 (46)
(48) 2.10201474047658E+24 (49)
(51) 2.7883869006322E+23 (52)
(54) 2.10801383122156E+22 (55)
(57) 8.66932095091 119E+20 (58)
(60) 1.81338652269206E+19 (61)
(63) 1.7453006 1940748E+ 17 (64)

4.28203598292025E+25 (38)
3.64059739438564E+25 (41)
1.89767724808394E+25 (44)
6.0 1 1 3 1 72869 1 848E+24 (47)
1.13859131775815E+24 (50)
1.25750781 7932 17E+23 (53)
7.80745863415394E+21 (56)
2.58558695027 176E+20 (59)
4.2312352196148E+18 (62)

3.04735028785433E+16 (65)
(69)(66) 659282514199254 (67) 79913032024152 (68) 8349122748792

137780 (71) 3050465016 (72) 128892888 (73) 3580358 (74) 49046

The hk Quasi Concavity: + Increase, - decrease, = equality.

Io 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+13+ 14+ 15+16+ 17+18+19+20+21+22+23+24+25+26+
27+ 28+ 29+ 30+ 31+ 32+ 33+ 34+ 35+ 36+ 37+ 38= 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50- 51-
52- 53- 54- 55- 56- 57- 58- 59- 60-61- 62- 63- 64- 65- 66- 67- 68- 69- 70- 71-72- 73- 74-

The hk Genuine Concavity: hk:(hk -(hk-1 + hk+l)/2 >= 0?); Concavity domain = [33, 42].

Detailed as below:

Io 2:(-60890609) 3:(-1398129799) 4:(-23705550318) 5:(-316485745410) 6:(-3464565641922) 7:(-
31975736913966) 8:(-253902786449871) 9:(-1.76141641419902E+15) 10:(-1.08049078715989E+16)
11:(-5.91722705042169E+16) 12:(-2.91576016178789E+17) 13:(-1.30114398741724E+18)
5.28656672052575E+18)
2.10570620797994E+20)
4.081 17155876228E+21)
4.02696901561 89 1E+22)
2.02873021295997E+23)
4.82167128710853E+23)
3.17198958618682E+23)
35:(6.50106677568863E+23)
38:( 1.1 2685 15744527E+24)
41 :(2.88583939798859E+23)
4.71410310041995E+23)
3.9760331 73 12369E+23)
1.27801066278976E+23)
2.02132062171245E+22)
1.640073291 0057 1E+21)
6.70197435678273E+19)

(-1.96450206624973E+19)
(-6.1 0908289230876E+20)
(-9.4247 1 792265725E+2 1 )
(-7.44936696492427E+22)
(-2.9681 2266595073E+23)
(-5.1821 7007492973E+23)

33:(-5.391 1 285456932 1E+22)
36:(9.5348979376767E+23)

39:(9.5348979376767E+23)

(-6.70197435678273E+19)
(- 1.640073291 0057 1E+21)
(-2.02 132062 17 1245E+22)
(-1.27801066278976E+23)
(-3.97603317312369E+23)
(-4.7 1410310041 995E+23)

34:(2.88583939798859E+23)
37 :( 1 . 1 2685 1 5744527E+24)

40:(6.50106677568863E+23)

14
17:
20:
23:
26
29
32:

42:(-5.391 1 285456932 1E+22)
45:(-5.18217007492973E+23)
48:(-2.96812266595073E+23)
51 :(-7.44936696492427E+22)

43:(-3. 1 7 1 989586 1 8682E+23)
46:(-4.82 1 67 1 287 10853E+23)
49:(-2.02873021295997E+23)
52:(-4.02696901 56 1 89E+22)

(-9.4247 1 792265725E+2 1 )
(-6. 1 090828923O876E+20)
(- 1 .96450206624973E+ 1 9)
(-2.91576016178789E+17)

55
58
61
64

(-4.081 17155 876229E+21)
(-2. 1 0570620797994E+20)
(-5.28656672052575E+18)
(-5.91 722705042 1 69E+ 1 6)

44:
47
50
53
56
59
62
651.301 1 439874 1724E+ 18)

1.080490787 15989E+ 16) 66:(-1.76141641419902E+15) 67:(-253902786449871) 68:(-31975736913966)
69:(-346456564 1 922) 70:(-3 164857454 1 0) 7 1 :(-237055503 1 8) 72:(- 1 398 1 29799) 73 :(-60890609)

Output for retail_dat.txt
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Total number of elements ? = 16470

Total number of tuples u = 88162

Longest pattern length Alpha = 76

The Gk distributions:

3016 5516 6919 7210 6814 6163 5746 5143 4660 4086 3751 3285 2866 2620 2310 21 15 1874 1645 1469
1290 1205 981 887 819 684 586 582 472 480 355 310 303 272 234 194 136 153 123 115 112 76 66 71 60
50 44 37 37 33 22 24 21 21 10 1 1 10 9 1 1 4 9 7 4 5 2 2 5 3 3 0 0 1 0 1 1 0 1

The Hk Series:

(1) 908576 (2) 7164335 (3) 52502539 (4) 366817927 (5) 2447321444 (6) 15534598332 (7) 93307736462
(8) 527550301625 (9) 2796416534241 (10) 13863139450195 (11) 64204046715896 (12)
277757200264229 (13) 1.12312584494064E+15

5.0062502381 1958E+16
1.2697630 1242088E+ 18
1. 89355257 17633E+ 19

1.70361 679656958E+20
9.42483166801 12E+20
3.2501290738274E+21

7.05069716806149E+21
9.671 1681 54273 17E+21
8.39616377302037E+21
4.5981 1839985694E+21
1.57537354482505E+21

3.32957641 309953E+20
4.25025368313273E+19

3.17919252128806E+18
1.33528383786941E+17

(16)
(19)
(22)
(25)
(28)
(31)
(34)
(37)
(40)
(43)
(46)

(49)
(52)

(55)
(58)

1.5058885990449E+16
4.59121 121980175E+17
8.14636975894685E+18
8.65288386954046E+19
5.61949830792223E+20
2.26577690430042E+21
5.73212226482143E+21
9.15769085268638E+21
9.26120299243453E+21
5.91772992838759E+21
2.3735685301 1541E+21
5.9046404820075E+20
8.94240979386786E+19
8.0257650807726E+18
4. 1092662735464 IE+ 17
1.13749193542012E+16
(64) 31838940145963 (65) 5851270021055 (66) 971240578752 (67) 144437457258
(69) 2203389079 (70) 219831833 (71) 18542293 (72) 1285749 (73) 70375 (74) 2851 (75) 76 (76) 1

(14)
(17)
(20)
(23)
(26)
(29)
(32)
(35)
(38)
(41)
(44)
(47)
(50)
(53)
(56)
(59)

4.24904654295735E+15 (15)
1.563274721 19759E+ 17 (18)
3.31067777753649E+18 (21)
4.16131440789675E+19 (24)
3.1 77870 16348576E+20 (27)
1.499881 85541 216E+21 (30)
4.42825 14322391 1E+21 (33)
8.2421 9004470 137E+21 (36)
9.707686397 18059E+21 (39)
7.23232941 85029 1E+21 (42)
3.39150713519183E+21 (45)
9.91013257283473E+20 (48)
1.77535631 86 1495E+20 (51)
1.90382440924376E+19 (54)
1.18129875755773E+18 (57)
4.043045825897 12E+1 6 (60)

(61) 2.96417842579272E+15 (62) 712836643924391 (63) 157536096738717
(68) 1905621 Î 853

The Hk Quasi Concavity: + Increase, - decrease, = equality.

10 2+3+4+5+6+7+8+9+10+ 11+ 12+13+ 14+ 15+ 16+ 17+ 18+ 19+20+21+22+23+24+25+26+
27+ 28+ 29+ 30+31+ 32+ 33+ 34+ 35+ 36+ 37+ 38+ 39- 40-41- 42- 43- 44- 45- 46- 47- 48- 49- 50-51-
52- 53- 54- 55- 56- 57- 58- 59- 60-61- 62- 63- 64- 65- 66- 67- 68- 69- 70-71- 72- 73- 74- 75- 76-

The Hk Genuine Concavity: Hk:(Hk - (Hk-I + Hk+l)/2 >= 0?); theoretic concavity domain = [33, 43];
exact =[33, 43].

Detailed as below:
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lo 2:(-19541222.5) 3: (-134488592) 4:(-883094064.5) 5:(-5503386685.5) 6:(-32342930621) 7:(-
178234713516.5) 8:(-91731 1833726.5) 9:(-4398928341669) 10:(-19637092174873.5) 11:(-
81606123141316) 12:(-3 15907745564039) 13:(-1.14027602667015E+15) 14:(-3.84195937473746E+15)
15:(-1.20968884716276E+16) 16:(-3.56306766739083E+16) 17:(-9.8264340060926E+16) 18:(-
2.53924120290146E+17) 19:(-6.15136437337449E+17) 20:(-1.39738860814738E+18) 21:(-
2.97673 198863789E+1 8) 22:(-5.94423120132421E+18) 23:(-l.ll 190381275513E+19) 24:(-
1.94585731725583E+19) 25:(-3.1796247865032E+19) 26:(-4.83687388760149E+19) 27:(-
6.81852607826247E+19) 28:(-8.84326763010704E+19) 29:(-1.04248180138614E+20) 30:(-
1.092285603 19354E+20) 31:(-9.68850944423698E+19) 32:(-6.28742370853074E+19) 33:(-
7.35203532886717E+18) 34:(6.35410133000913E+19) 35:(1.37996034327435E+20)
36:(2.01011753199109E+20) 37:(2.38479529339683E+20) 38:(2.41500823826744E+20)
39:(2.09277907334049E+20) 40:(1.4939756755 1648E+20) 41:(7.53825677989307E+19)
42:(2.50601920766935E+18) 43:(-5.65001319327722E+19) 44:(-9.43363297943486E+19) 45:(-
1.09871809893028E+20) 46:(-1.06917348874388E+20) 47:(-9.19055392294298E+19) 48:(-
7.1521401095963E+19) 49:(-5.10421987211691E+19) 50:(-3.36552377628212E+19) 51:(-
2.05949864077324E+19) 52:(- 1.1 728634 1842308E+ 19) 53:(-6.22590686361234E+18) 54:(-
3.08295322609023E+18) 55:(-1.4243393978771E+18) 56:(-6.13760816763625E+17) 57:(-
2.46486943317692E+17) 58:(-9.21501590198654E+16) 59:(-3.2021 19331 15998E+16) 60:(-
1.03223989881807E+16) 61:(-3.07969957327008E+15) 62:(-848020617341325) 63:(-214801695296460)
64:(-49854743233923) 65:(-10553820341302.5) 66:(-2026613160404.5) 67:(-3507 10938044.5) 68:(-
54264211315.5) 69:(-7434632764) 70:(-891 133853) 71:(-92016498) 72:(-8020585) 73:(-573925) 74:(-
32374.5) 75:(-1350)

The Rk Series:

0.210272925251529 0.297094051410328 0.382831246282321 0.463316718039126 0.536416236147605
0.600644667263741 0.65552176787858 0.701570924935985 0.739920275015639 0.771879594163558
0.798676329287781 0.82134661868907 0.840718401553246 0.857434446016042 0.871986691039956
0.884749696089944 0.896009184273812 0.905984998255989 0.914848923844976 0.922738141516824
0.929765099200748 0.936024549137197 0.941598411268332 0.94655903067817 0.950971295213339
0.954893979352975 0.958380588604126 0.961479900011198 0.964236331011297 0.96669022077285
0.968878073679284 0.970832791317424 0.972583904574083 0.974157808823637 0.975578000710482
0.976865313167724 0.978038144975912 0.979112681618661 0.980103104973037 0.981021790211479
0.981879489047814 0.98268549907259 0.983447819379726 0.984173293000019 0.984867736850611
0.985536060009938 0.98618237115967 0.986810076020608 0.987421965565713 0.988020295733908
0.988606859302998 0.989183050515657 0.989749922993555 0.990308241423762 0.990858527459561
0.991401100244955 0.991936111947395 0.99246357866565' 0.992983407067619 0.993495417104725
0.993999361143785 0.994494939852474 0.994981815169571 0.995459620685058 0.995927969747206
0.996386461603664 0.996834685870954 0.997272225611996 0.997698659284314 0.998113561803096
0.99851650494359 0.998907057287231 0.999284783895796 0.999649245878639 1

The Rk Monotonie: + Increase, - decrease, = equality.

= 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 1 1+ 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+
26+ 27+ 28+ 29+ 30+ 31+ 32+ 33+ 34+ 35+ 36+ 37+ 38+ 39+ 40+ 41+ 42+ 43+ 44+ 45+ 46+ 47+ 48+
49+ 50+ 51+ 52+ 53+ 54+ 55+ 56+ 57+ 58+ 59+ 60+ 61+ 62+ 63+ 64+ 65+ 66+ 67+ 68+ 69+ 70+ 71+
72+ 73+ 74+ 75+

The accumulative frequency w = 1.081 6058203 1538E+23
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The sum of odd length pattern frequencies H_odd = 5.40802910 15769E+22

The sum of even length pattern frequencies H_even = 5.408029 1015769E+22

The hk Series;

(1) 88162 (2) 820414 (3) 6343921 (4) 46158618 (5) 320659309 (6) 2126662135 (7) 13407936197 (8)
79899800265 (9) 447650501360 (10) 2348766032881 (11) 11514373417314 (12) 52689673298582 (13)
225067526965647 (14) 898058317974992 (15) 3.35098822498236E+15 (16) 1.17078977654666E+16
(17) 3.83546046157292E+16
9.28614757944738E+17 (21)
1.31712189782779E+19 (24)
1.12274766062243E+20 (27)
5.86045586295229E+20 (30)
1.8981884386439E+21 (33)
3.84863789683527E+21 (36)
4.90702944945289E+21 (39)
3.93561 77283 1354E+21 (42)
1.97710016165872E+21 (45)
6.1621198824275E+20 (48)
1.1 7294862 149926E+20 (51)
1.33 192086042 178E+19 (54)
8.72462928735225E+17 (57)
3.14375852548001E+16 (60)

(18) 1.1797286750403E+17 (19)
2.38206301959175E+18 (22)
2.8441925 1006897E+19 (25)
2.055 12250286333E+20 (28)
9. 138362691 16928E+20 (31)

2.53006299359521E+21 (34)
4.3935521478661E+21 (37)
4.80065694772769E+21 (40)
3.29671 169018937E+21 (43)
1.41440697353311E+21 (46)

3.74801269040722E+20 (49)
6.024076971 15692E+19 (52)
5.71903548821977E+18 (55)
3.08835828822501E+17 (58)

(61)

3 .4 1 148254476 1 45E+ 1 7 (20)
5.764306739355 IE+ 18 (23)
5.8086913594715E+19 (26)

3.56437580505891E+20 (29)
1.351 940635 18349E+21 (32)
3.20205927 122623E+21 (35)
4.764 13870482027E+21 (38)
4.46054604470683E+21 (41)
2.62101823819822E+21 (44)
9.59161556582305E+20 (47)
2.15662779160028E+20 (50)
2.91833282271095E+19 (53)
2.30672959255284E+18 (56)
1.02090798532 141E+17 (59)
2.38204635003018E+15 (62)8.99287300417102E+15

582132075762540 (63) 130704568161851 (64) 26831528576866 (65) 500741 1569097 (66) 843858451958
(67) 127382126794 (68) 17055330464 (69) 2000881389 (70) 202507690 (71) 17324143 (72) 1218150 (73)
67599 (74) 2776 (75) 75 (76) 1

The hk Quasi Concavity: + Increase, - decrease, = equality.

Io 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+ 26+
27+ 28+ 29+ 30+ 31+ 32+ 33+ 34+ 35+ 36+ 37+ 38+ 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50- 51-
52- 53- 54- 55- 56- 57- 58- 59- 60- 61- 62- 63- 64- 65- 66- 67- 68- 69- 70-71- 72- 73- 74- 75- 76-

The hk Genuine Concavity: hk:(hk -(hk-1 + hk+l)/2 >= 0?); Concavity domain = [33, 43].

Detailed as below:

Io 2:(-2395627.5) 3:(-17145595) 4:(- 117342997) 5:(-76575 1067.5) 6:(-4737635618) 7:(-27605295003)
8:(-150629418513.5) 9:(-766682415213) 10:(-3632245926456) 11:(-16004846248417.5) 12
65601276892898.5) 13:(-250306468671140) 14:(-889969557999009) 15:(-2.95198981673845E+15) 16
9.14489865488914E+15)
1.8214555824824E+17)
2.01233425957972E+18)
1.22714319867515E+19)
3.93413377848903E+19)
5.407171869692E+19)
34:( 1 .270882601 09896E+ 1 9)
37 :( 1 . 1 3847906 1 60774E+20)
40:(9.24087066862 1 58E+ 1 9)

17:(-2.64857780190192E+16)
20:(-4.329908790892 1 E+ 1 7)
23
26
29

(-3.93189694174449E+18)
(-1.95248158782805E+19)
(-4.90913385161801E+19)
32:(-4.28133757454501E+19)

35:(5.08321872891022E+19)

18:(-7.17785620419068E+16) 19
21:(-9.64397729058168E+17) 22:(-
24:(-7. 187141 18580676E+18) 25:(-
27:(-2.88439229977343E+19) 28:(-
30:(-5.51568416224334E+19) 31:(-

33:(-2.006086 1 3398568E+ 1 9)
36:(8.7 1 638470383339E+1 9)

38:( 1 .2463 1 623 1 789 1 E+20) 39:( 1 . 1 6869200647833E+20)
41:(5.69888608654323E+19) 42:(1.83937069334968E+19) 43:(-
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1.5887687725827E+19) 44:(-4.06124442069455E+19) 45:(-5.37238855874031E+19) 46:(-
5.6147924305625E+19) 47: (-5 .07694245687632E+ 19) 48:(-4.11361146606667E+19) 49:(-
3.03852864352963E+19) 50:(-2.06569122858727E+19) 51:(-1.29983254769484E+19) 52:(-
7.59666093078404E+18) 53:(-4.13197325344678E+18) 54:(-2.09393361016557E+18) 55:(-
9.8901961592466E+17) 56:(-4.35319781952443E+17) 57:(-1.78441034811182E+17) 58:(-
6.80459085065098E+16) 59:(-2.41042505133557E+16) 60:(-7.91694279824414E+15) 61:(-
2.40545618993661E+15) 62:(-674243383333473) 63:(-173777234007852) 64:(-41024461288608) 65:(-
8830281945315) 66:(-1723538395987.5) 67:(-303074764417) 68:(-47636173627.5) 69:(-6628037688)
70:(-806595076) 71:(-84538777) 72:(-7477721) 73:(-542864) 74:(-31061) 75:(-1313.5)

Output for accident_dat.txt

Total number of elements ? = 469

Total number of tuples u = 340183

Longest pattern length Alpha = 5 1

The Gk distributions:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 8 8 24 72 173 338 847 2126 5424 13454 25037 29434 35640 42540
45977 42977 35957 25896 16093 9187 4689 2322 1069 486 225 102 40 19 8 4 2 1

The Hk Series:

(1) 11500870 (2) 190126271 (3) 2048535348 (4) 16178712662 (5) 99868593350 (6) 501747368618 (7)
2109641396806 (8) 7575707412975 (9) 23596557346745 (10) 64532436426248 (11) 156494619826759
(12)339292670918357 (13) 662267155920527 (14) 1.17088896993161E+15 (15) 1.8852993348772E+15
(16) 2.77836082215053E+15 (17) 3.76507207472581E+15 (18) 4.7129201 8449639E+I5 (19)
5.47335759367226E+15 (20) 5.92316179314867E+15 (21) 5.9984917558589E+15 (22)
5.70812727877794E+15 (23) 5.12307216430698E+15 (24) 4.35034034688795E+15 (25)
3.50335749 197 144E+1 5 (26) 2.67904254984003E+15 (27) 1.94572268328735E+15 (28)
1.34084120169436E+15 (29) 875055956580332 (30) 539379672531933 (31) 313012776894420 (32)
170412248731500 (33) 86712999547974 (34) 41079409043847 (35) 18045666283976 (36)
7319881053213 (37) 2729465391540 (38) 931089778543 (39) 289014188456 (40) 81138980458 (41)
20459031625 (42) 4595198520 (43) 910273047 (44) 157094976 (45) 23255333 (46) 2893313 (47) 294207
(48) 23479 (49) 1379 (50) 53 (51) 1

The Hk Quasi Concavity: + Increase, - decrease, = equality.

Io 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22- 23- 24- 25- 26-
27- 28- 29- 30- 31- 32- 33- 34- 35- 36- 37- 38- 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50-51-
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The Hk Genuine Concavity: Hk:(Hk - (Hk-I + Hk+l)/2 >= 0?); theoretic concavity domain = [21, 30];
exact= [16, 25].

Detailed as below:

Io 2:(-839891838) 3:(-6135884118.5) 4:(-34779851687) 5 :(- 159094447290) 6:(-603007626460) 7:(-
1929085993990.5) 8:(-527739 1958800.5) 9:(-l 24575 14572866.5) 10:(-255 131 52 160504) 11:(-
45417933845543.5) 12:(-700882 16955286) 13:(-92823664504456.5) 14:(- 102894275467252) 15:(-
89325561163873) 16:(-46824882650971) 17:(19431571402343.5) 18:(93705350297363)
19:( 1553 16604849722) 20:( 187237 11 8383095) 21:(182847219895598) 22:(14734531 8694995)
23:(9383835 1474037) 24:(37 1255 18748737) 25:(-l 1333956392545.5) 26:(-45497537789368) 27:(-
64219192479843.5) 28:(-695481 18239482) 29:(-65054480532814) 30:(-54654694205443) 31:(-
41883183737296.5) 32:(-29450639489697) 33:(-19032829339699.5) 34:(-l 1299923872128) 35:(-
6153978764554) 36:(-3067684784545) 37:(-1396020024338) 38:(-578150011455) 39:(-217100191044.5)
40:(-73597629582.5) 41:(-22408057864) 42:(-6089453816) 43:(-1465873701) 44:(-309669214) 45:(-
5673881 1.5) 46:(-8881457)47:(-l 164189) 48:(-124314) 49:(-10387) 50:(-637)

The Rk Series:

0.661258743034223 0.659669654543449 0.658141465063295 0.656685031958284 0.655314215959906
0.654047156055942 0.652907811677863 0.651927808078982 0.651148622656721 0.650624147205726
0.650423646437093 0.650635093421442 0.651368776120728 0.65276090286432 0.654976644410335
0.658211589674931 0.662689941194264 0.668657005852476 0.676362919352789 0.686034681672803
0.69783541843641 0.711814225724103 0.727856847392233 0.745654195061704 0.764707157627939
0.784377425463368 0.803976203159195 0.822865095523693 0.840537944733476 0.856662762258845
0.871081368229159 0.88377912861112 0.894842061853888 0.90441520981245 0.912669674289271
0.919780150823181 0.925911606151859 0.931212634215335 0.935813115744347 0.939824362739502
0.943340532325904 0.946440576340251 0.949190323549149 0.951644496165901 0.953848578875793
0.955840519155722 0.95765226524182 0.959311157488252 0.960841189267585 0.962264150943396

The Rk Monotonie: + Increase, - decrease, = equality.

= 1+ 2- 3- 4- 5- 6- 7- 8- 9- 10- 1 1- 12+ 13+ 14+15+ 16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+ 26+ 27+
28+ 29+ 30+31+ 32+ 33+ 34+ 35+ 36+ 37+ 38+ 39+ 40+ 41+ 42+ 43+ 44+ 4Z\- 46+ 47+ 48+ 49+ 50+

The accumulative frequency w = 5.96696205467851E+16

The sum of odd length pattern frequencies H_odd = 2.98348102735626E+16

The sum of even length pattern frequencies H_even = 2.98348102732224E+16

The hk Series:

(1) 340183 (2) 11160687 (3) 178965584 (4) 1869569764 (5) 14309142898 (6) 85559450452 (7)
416187918166 (8) 1693453478640 (9) 5882253934335 (10) 17714303412410 (11) 46818133013838 (12)
109676486812921 (13) 229616184105436 (14) 432650971815091 (15) 738237998116519 (16)
1.147061 33676068Ef 15 (17) 1.63129948538985E+15 (18) 2.13377258933595E+15 (19)
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2.57914759516044E+15 (20) 2.89420999851 182E+15 (21) 3.02895179463686E+15 (22)
2.96953996122204E+15 (23) 2.73858731755589E+15 (24) 2.38448484675109E+15 (25)
1.96585550013686E+15 (26) 1.53750199183458E+15 (27) 1.14154055800545E+15 (28)
804182125281904 (29) 536659076412455 (30) 338396880167877 (31) 200982792364056 (32)
112029984530364 (33) 58382264201136 (34) 28330735346838 (35) 12748673697009 (36)
5296992586967 (37) 2022888466246 (38) 706576925294 (39) 224512853249 (40) 64501335207 (41)
16637645251 (42) 3821386374 (43) 773812146 (44) 136460901 (45) 20634075 (46) 2621258 (47) 272055
(48) 22152 (49) 1327 (50) 52 (51) 1

The hk Quasi Concavity: + Increase, - decrease, = equality.

Io 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22- 23- 24- 25- 26-
27- 28- 29- 30-31- 32- 33- 34- 35- 36- 37- 38- 39- 40-41- 42- 43- 44- 45- 46- 47- 48- 49- 50-51-

The hk Genuine Concavity: hk:(hk -(hk-1 + hk+l)/2 >= 0?); Concavity domain = [17, 26].
Detailed as below:

Io 2:(-78492196.5) 3:(-761399641.5) 4:(-5374484477) 5:(-29405367210) 6:(-129689080080) 7:(-
473318546380) 8: (-14557674476 10.5) 9:(-382162451 1 190) 10:(-8635890061676.5) 11:(-
16877262098827.5) 12:(-28540671746716) 13:(-41547545208570) 14:(-512761 19295886.5) 15:(-
51618156171365.5) 16:(-37707404992507.5) 17:(-91 17477658463.5) 18:(28549049060807)
19:(65156301236556) 20:(90160303613166) 21:(97076814769928.5) 22:(85770405 125669.5)
23:(61574913569325.5) 24:(32263437904711.5) 25:(4862080844025.5) 26:(-16196037236571) 27:(-
29301500552797) 28:(-34917691927046.5) 29:(-346304263 12435.5) 30:(-30424054220378.5) 31:(-
24230639985064.5) 32:(-17652543752232) 33:(-l 1798095737465) 34:(-7234733602234.5) 35:(-
4065190269893.5) 36:(-2088788494660.5) 37:(-978896289884.5) 38:(-417123734453.5) 39:(-
161026277001.5) 40:(-560739 14043) 41:(-17523715539.5) 42:(-4884342324.5) 43:(-12051 11491.5) 44:(-
260762209.5) 45:(-48907004.5) 46:(-7831807) 47:(-1049650) 48:(-l 14539) 49:(-9775) 50:(-612)

Output for pumsb_star_dat.txt

Total number of elements ? = 71 17

Total number of tuples u = 49046

Longest pattern length Alpha = 63

The Gk distributions:

000000000000000000000000000000000000000000000000 22935 9873 3818
4765 2609 2069 1 598 840 337 1 22 50 1 8 9 2 1

The Hk Series:
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61354029 (3) 994833553
30249595410859

(1) 2475947 (2)
5478723572673 (8)
2.33540366924541E+15 (12)
6.80363124277246E+16 (15)
8.79814160690642E+17 (18)
5.60654354176194E+18 (21)
1.89100778445261E+19 (24)
3.5476672516081E+19 (27)
3.82934583427739E+19 (30)
2.43152661257564E+19 (33)
9.20693786834402E+ 18 (36)
2.08997787870144E+18 (39)
2.82450446058859E+17 (42)
2.21365926396406E+16 (45)
955173953763785 (48)

(4) 11871905109 (5) 111195816937 (6) 851319404422 (7)
(9) 145536526875785

7.93100064889181E+15 (13)
1.73726669682348E+17 (16)
1.7574197680144E+18 (19)

8.99841235384127E+18 (22)
2.48447602743 104E+ 19 (25)

3.86467885423445E+19 (28)
3.48833924491648E+19 (31)
1.86226459072274E+19 (34)

5.945 11230350647E+ 18 (37)
1.13708536219218E+18 (40)
1.286733 18925082E+1 7 (43)
8.32482 138536006E+ 15 (46)

(10) 617668265835985
2.43565338674182E+16
4.07257800899788E+17
3.25536545673323E+18
1.34865978950395E+19
3.06294523332462E+19
3.96329973373586E+19
2.997765200 13333E+ 19

1.3471702716558E+19
3.62689357357827E+18
5.83709528649578E+17
5.51003443981372E+16
2.9228275554106E+15

289545255456520 (49) 81096958191925 (50) 20893465857031
4926251959547 (52) 1056719242649 (53) 204804664373 (54) 35570797824 (55) 5481629787
740386627 (57) 86293143 (58) 8503379 (59) 688905 (60) 44060 (61) 2086 (62) 65 (63) 1

(?)
(14)
(17)
(20)
(23)
(26)
(29)
(32)
(35)
(38)
(41)
(44)
(47)
(51)
(56)

The Hk Quasi Concavity: + Increase, - decrease, = equality.

Io 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+ 13+ 14+ 15+ 16+ 17+18+ 19+20+21+22+23+24+25+26+
27+ 28+ 29- 30- 31- 32- 33- 34- 35- 36- 37- 38- 39- 40- 41-42- 43- 44- 45- 46- 47- 48- 49- 50- 51-52- 53-
54- 55- 56- 57- 58- 59- 60- 61- 62- 63-

The Hk Genuine Concavity: Hk:(Hk - (Hk-I + Hk+l)/2 >= 0?); theoretic concavity domain = [27, 36];
exact = [23, 33].

Detailed as below:

Io 2:(-437300721) 3:(-4971796016) 4:(-44223420136) 5:(-320399837828.5) 6:(-1943640290383) 7:(-
10071733834967.5) 8:(-45258029813370) 9:(-178422403747637) 10:(-622801832224613)
1.9389307881 1849E+15) 12:(-5.41496811944001E+15) 13:(-1.362712267089E+16)

15:(-6.39203869814079E+16) 16:(-1.19512614286707E+17)
18:(-3.10170040697539E+17) 19:(-4.26616198154934E+17)
21:(-5.4815836455947E+17) 22:(-4.67647204144157E+17)

24:(7.49951854242324E+16) 25:(4.68735938u50552E+I7)
27:(1.09195361562472E+18) 28:(1.16287389479943E+18)
30:(7.478372771 1 1 153E+17) 31:(3.78322713872712E+17)

3.10052893471588E+16)
2.02524623766451E+17)
5.20345363525314E+17)
2.55601240148853E+17)
26:(8.38552078285578E+17)
29:( 1.0352634495 122 IE+ 18)
32:(1.51171714760417E+16)
5.01469641688197E+17)
2.9201 1589183787E+17)
7.3740977728471 IE+ 16)
9.57599O25210805E+15)

11:(-
14:(-
17:(-
20:(-
23:(-

33:(-2.7083851392974E+17) 35:(-
38:(-
41:(-
44:(-
47:(-

651012451669773) 48:(-228590200521335) 49:(-74 122402464850.5) 50:(-221 18139218705) 51:(-
6048840590293) 52:(-1508809069311) 53:(-341340355863.5) 54:(-69572349256) 55:(-12673962438.5)
56:(-2043574838) 57:(-288151860) 58:(-34987645) 59:(-3584814.5) 60:(-301435.5) 61:(-19976.5) 62:(-
978.5)

36
39
42
45

(-4.71803417454677E+17)
(-1.9975834 1483328E+ 17)
(-4.01020763034159E+16)
(-4.20488871 21 6552E+1 5)

34:(-4.43089 17 1 22777 IE+ 1 7)
37 :(-3 .9065 1 5 1 752568 1 E+ 1 7)
40:(-l .26058375475942E+17)
43:(-2.030461 13842242E+16)
46:(-l .7171701 1415133E+15)

The Rk Series:
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0.799355650911127
0.790332862627539
0.78368932235445
0.781398546973771
0.785072759884749
0.794936744564861
0.811113096004816
0.836012380588156
0.869706763894576
0.903500120543403
0.929533599935222
0.949061895815607
0.965963566634708

0.797441359743064 0.795570614012051
0.788755029462367 0.78728550616 1 52 1

0.782817769858833 0.782137868362556
0.78 1 626423970857 0.7 82 1 0548344993

0.786565487599363 0.788302210448135
0.797625514522334 0.800566891621507
0.815294672530897 0.819858242566212
0.842203663140048
0.876829133362802
0.909400599698905
0.933820517630707
0.952559235596893
0.969230769230769

0.84874255517094
0.88385116897483
0.914940670244909
0.937880535278096
0.955982204250804

0.793754180999234
0.785940235398599
0.781665432451595
0.782839566398919
0.790277873459113
0.803778641516764
0.824826809129727
0.855563924013948
0.890682796103732
0.920127247453258
0.941751401362476

0.959348531364992

0.792003935231445
0.784735834312018
0.781414854427055

0.78382936695266
0.792489284825161
0.807284573837009
0.830212599248142
0.862584207594161
0.897250265368588

0.92498130812786
0.94546815279118

0.962672113784234

The Rk Monotonie: + Increase, - decrease, = equality.

= I+ 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 16- 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+ 26+ 27+
28+ 29+ 30+ 31+ 32+ 33+ 34+ 35+ 36+ 37+ 38+ 39+ 40+ 41+ 42+ 43+ 44+ 45+ 46+ 47+ 48+ 49+ 50+
51+ 52+ 53+ 54+ 55+ 56+ 57+ 58+ 59+ 60+ 61+ 62+

The accumulative frequency w = 4.05464141001747E+20

The sum of odd length pattern frequencies H_odd = 2.02732070500873E+20

The sum of even length pattern frequencies H_even = 2.02732070500873E+20

The hk Series:

(1) 49046 (2) 2426901 (3) 58927128 (4) 935906425 (5) 10935998684 (6) 100259818253 (7)
751059586169 (8) 4727663986504 (9) 25521931424355 (10) 120014595451430 (11) 497653670384555
(12) 1.83774999886086E+15 (13) 6.09325065003095E+15 (14) 1.82632832173873E+16 (15)
4.97730292103373E+16 (16)
5.96510000262865E+17 (19)
3.51208785278024E+18 (22)
1.09098044505476E+19 (25)
1.87821760065975E+19 (28)
1.8525073541 1623E+19 (31)
1.06959330324256E+19 (34)
3.6619480265879E+18 (37)
7.4624858204 173 IE+ 17 (40)
8.95776975597307E+16 (43)

1.2395364047201 IE+ 17 (17)
1. 1 6090976775 153E+ 18 (20)

5.48632450106103E+18 (23)
1.39349558237628E+19 (26)
1.98646 12535747E+ 19 (29)

1.63583 189080025E+ 19 (32)
7.92671287480185E+18 (35)

2.283 1 642769 1856E+ 18 (38)
3.908367801 5045E+17 (41)

(44)

2.83304160427777E+17 (18)
2.094455688981 7E+ 18 (21)

8.00027339397851E+18 (24)
1 .66944965094834E+ 1 9 (27)
1.976838480161 16E+19 (30)
1.36193330933308E+19 (33)
5.5449898417561 1E+1 8 (36)
1.3437292966597 IE+ 18 (39)
1.92872748499128E+17 (42)
1.60047230327857E+16 (45)3.90956213653515E+16

6.13186960685486E+15 (46) 2.1929517785052E+15 (47) 729875776905397 (48) 225298176858388 (49)
64247078598132 (50) 16849879593793 (51) 4043586263238 (52) 882665696309 (53) 174053546340 (54)
30751 1 18033 (55) 4819679791 (56) 661949996 (57) 78436631 (58) 7856512 (59) 646867 (60) 42038 (61)
2022 (62) 64 (63) 1

The hk Quasi Concavity: + Increase, - decrease, - equality.
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lo 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 1 1+ 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+ 26+
27+ 28+ 29- 30-31- 32- 33- 34- 35- 36- 37- 38- 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50- 5 1- 52- 53-
54- 55- 56- 57- 58- 59- 60- 61- 62- 63-

The hk Genuine Concavity: hk:(hk -(hk-1 + hk+l)/2 >= 0?); Concavity domain = [24, 33].
Detailed as below:

lo 2:(-27061186) 3:(-410239535) 4:(-4561556481) 5:(-39661863655) 6:(-280737974173.5) 7:(-
1662902316209.5) 8:(-8408831518758) 9:(-36849198294612) 10:(-141573205453025) 11:(-
481228626771588) 12:(-1.4577021613469E+15) 13:(-3.95726595809311E+15) 14:(-
9.6698567 1279687E+ 15) 15:(-2.13354326343619E+16) 16:(-4.2584954347046E+16) 17:(-
7.69276599396608E+16) 18:(-1.25596963826791E+17) 19:(-1.84573076870748E+17) 20:(-
2.42043121284186E+17) 21:(-2.78302242241128E+17) 22:(-2.69856122318343E+17) 23:(-
1.9779108182581 1E+17) 24:(-5.78101583230403E+16) 25:(1.32805343747271E+17)
26:(3.35930594303277E+ 17) 27:(5.0262 1483982299E+1 7) 28:(5.893321 3 1 642434E+ 1 7)
29:(5.73541763156984E+17) 30:(4.61721686355218E+17) 31:(2.8611559075594E+17)
32:(9.22071231167693E+16) 33:(-7.70899516407296E+16) 34:(-1.93748562289009E+17) 35:(-
2.49340608938763E+17) 36:(-2.52129032749433E+17) 37:(-2.19674384705243E+17) 38:(-
1.70977 132820439E+ 17) 39:(-1.21034456363348E+17) 40:(-7.872388511998E+16) 41:(-
4.7334490355962E+16) 42:(-2.64064873725092E+16) 43:(-1.36955889309067E+16) 44:(-
6.6090224533 1746E+1 5) 45:(-2.96696779879059E+15) 46:(-1.23792091337493E+15) 47:(-
479249200776396) 48:(-171763250893376) 49:(-56826949627958.5) 50:(-17295452836892) 51:(-
4822686381813) 52:(-1226154208480) 53:(-282654860831) 54:(-58685495032.5) 55:(-10886854223.5)
56:(-1787108215) 57:(-256466623) 58:(-31685237) 59:(-3302408) 60:(-282406.5) 61:(-19029) 62:(-947.5)

Output for T40I10D100K_dat.txt

Total number of elements ? = 1000

Total number of tuples u = 100000

Longest pattern length Alpha = 77

The Gk distributions:

0 001 0 02 1 55 16 24 17 31 41 71 124 164 258 306 439 593 723 923 1074 1366 1588 1946 2217 2707
2816 3164 3602 3753 3876 4232 4495 4555 4445 4725 4555 4414 4300 4062 3829 3441 3135 2822 2615
2225 1936 1657 1429 1 173 909 737 639 472 336 275 208 152 127 79 47 38 32 15 8 8 9 6 1 2 0 0 2

The Hk Series:

(1) 3960507 (2) 80096632 (3) 1099569571 (4) 11498654533 (5) 97500349307 (6) 697040556063 (7)
4315006899213 (8) 23581577918301 (9) 115450483283408 (10) 512200640492561 (11)
2.07838480923294E+15 (12) 7.77254238471906E+15 (13) 2.69602689096333E+16 (14)
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8.72093105225744E+16 (15)
2.027373 15009449E+ 18 (18)
2.87009431427177E+19 (21)
2.6192091 1124247E+20 (24)
1.58561966617132E+21 (27)
6.42723570378944E+21 (30)
1.74224680567533E+22 (33)
3.14029467104375E+22 (36)
3.73504477947147E+22 (39)
2.904595 17099384E+22 (42)
1.46003 1966915 lE+22 (45)
4.6745614248956E+21 (48)
9.3520491 8695762E+20 (51)
1.1 40095377 19929E+20 (54)
8.19139092845594E+18 (57)
3.31604783678242E+17 (60)

2.6429854945 1808E+ 17 (16)
5. 164277 1846885 IE+ 18 (19)
6.28554616251805E+19 (22)
4.9925047455 1047E+20 (25)
2.643 186531 708 15E+21 (28)
9.37347701 999 184E+21 (31)
2.21941675425744E+22 (34)
3.48593998907014E+22 (37)
3.6026 185483506E+22 (40)
2.425772068769 13E+22 (43)

1.05104249632529E+22 (46)
2.88379514993618E+21 (49)
4.9066566544455E+20 (52)
5.03619463496462E+19 (55)
3.00569848327089E+18 . (58)

(61)

7.53449913781887E+17 (17)
1 .24842740049338E+ 1 9 (20)
1.3130647241 166E+20 (23)

9.09809445277863E+20 (26)
4.21450413899866E+21 (29)
1.30705726297083E+22 (32)
2.70 126 1961 87 154E+22 (35)
3.69383350456697E+22 (38)
3.31341422800792E+22 (41)

1.9290953957398E+22 (44)
7.19197535857808E+21 (47)
1.6871482076563 1E+21 (50)
2.43392596483649E+20 (53)
2.0948 1653579947E+19 (56)
1.03282769896598E+18 (59)
2.75920564468882E+16 (62)9.92248748007835E+16

7.10728187982204E+15 (63) 1.68956517387226E+15 (64) 369111622206975 (65) 73743280712269 (66)
13396208900647 (67) 2197849349159 (68) 323037347878 (69) 42117832681 (70) 4811996111 (71)
474320277 (72) 39521 1 1 1 (73) 2706699 (74) 146302 (75) 5852 (76) 154 (77) 2

The Hk Quasi Concavity: + Increase, - decrease, = equality.

Io 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 1 1+ 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+21+ 22+ 23+ 24+ 25+ 26+
27+ 28+ 29+ 30+ 31+ 32+ 33+ 34+ 35+ 36+ 37+ 38+ 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50- 51-
52- 53- 54- 55- 56- 57- 58- 59- 60- 61- 62- 63- 64- 65- 66- 67- 68- 69- 70- 71-72- 73- 74- 75- 76- 77-

The Hk Genuine Concavity: Hk:(Hk - (Hk-I + Hk+l)/2 >= 0?); theoretic concavity domain = [34, 43];
exact = [33, 43].

Detailed as below:

Io 2:(-47 1668407) 3:(-468980601 1.5) 4:(-37801 304906) 5:(-256769255991) 6:(-1509213068197) 7
7824302337969) 8:(-36301 167173009.5) 9:(-152440625922023) 10:(-5847 1700576561 3)
2.06398670337287E+15)
5.8420098658146E+16)
9.3 1 490399 1 407 12E+ 17)
8.96892467233942E+18)
5.33575623571069E+19)
1.9087832232 1689E+20)
3.66754875705814E+20)
2.09902029388026E+20)
35:(4.66936955729053E+20)
38:(8.68187530126885E+20)
4 1 :(3.50020226053 1 3E+20)
3.003697911 744 19E+20)
3.63323829361528E+20)
1. 5370201 7854666E+20)
3.28677336967184E+19)
3.78554099217683E+18)
2.3442 1 503205 138E+ 17)

12:(-6.74678447471404E+15)
1 5 : (- 1 .5603 1 062700423E+ 1 7)

1 8:(-2.09 1 54639282562E+ 1 8)
21:(-1.71482461520083E+19)
24:(-8.66147036500077E+19)
27:(-2.56875370876839E+20)
30:(-3.75427146757043E+20)

33:(-2.33762951599835E+19)
36:(6.88759012647823E+20)

13:(-2.05306575440135E+16)
16:(-3.92385935991259E+17)
1 9:(-4.4483361 5876934E+ 1 8)
22:(-3.10817139630536E+19)
25:(- 1 .3262562508332E+20)

28:(-3.207069787501 33E+20)
3 1 :(-3.27399908664255E+20)

34:(2. 14062492209486E+20)
37:(8.3341 1202961639E+20)

11
14
17
20
23
26
29
32

39:(7.838904461 0901 8E+20) 40:(5.9807368335701 8E+20)
42:(8.9267854023 1 1 1 7E+ 1 9)

45
48
51
54
57
60

(-3.8572255061 1654E+20)
(-2.97059666339774E+20)
(-9.8633092 1 45 1557E+ 19)
(-1.7?69051893157?+19)
(- 1 .6064 1 083044007E+ 1 8)

43 :(- 1.38066221 023 168E+20) 44
46:(-4.0051 7835496 172E+20) 47
49:(-2.22351826659664E+20) 50
52:(-5.89450050985906E+19) 53
55:(-8.32850328105641E+18) 56
58:(-6.35823934508589E+17) 59
61:(-2.55740218934146E+16) 62:(-8.03735452617814E+16)

7.53352893055817E+15) 63:(-2.04863157714224E+15) 64:(-512542605085291) 65:(-l 17510634841542)
66:(-24574356130067) 67:(-4661773775103.5) 68:(-796946243042) 69:(-121 806839313.5) 70:(-
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16484080368) 71:(-1951438334) 72:(-198992377) 73:(-l 7 127007.5) 74:(-1209973.5) 75:(-67376) 76:(-
2773)

The Rk Series:

0.532206130493686
0.610327780377984
0.679946041857347
0.749891428293542
0.820687403393911
0.882515571705354
0.927272134279971
0.956258430888995
0.97434143037415
0.985436953827253
0.992091412237422
0.995963265072766
0.998139349900338
0.999305152713364
0.99985886118885 0

0.549121501638171
0.62457315580858
0.693731023265632
0.764182536073514
0.834159663435217
0.892907969046751
0.934180095009313
0.960598937691932
0.977021508618985
O.987059922953293
0.993046721462159
0.99650724903779

0.99843707485557
0.999456112135685

.999916358626659 0.

0.565265636725842 0.58077282848635 1
0.638581469879227 0.652432293565568
0.707598160120602 0.721576924331548
0.778494 1 20578493 0.792747495 1 1 6936
0.847160690026802 0.859599380655357
0.902567435357276 0.91 1499656693908
0.940489786208399 0.946244325093674
0.96454494 1 509479 0.968 1 30376204 1 33
0.97945033606295 1 0.98 1 6495804 1 6 1
0.988523299 1 52587 0.98984 1 1 863325 1 2
0.993902629138512 0.994668445730243
0.996991 1910463 0.997421023305281

0.998699216755331 0.998929270654587
0.99958529875504 1 0.99969450684 1141

.999958621183959 0.999986329646895 1 1

0.595759024640537
0.666198613909566
0.735678223852825
0.806847190367279
0.871402069082201
0.919724449254064
0.951486683594253
0.971386382222729
0:983639064462367
0.991026570850394

0.99535271543366
0.997802123497653
0.999130337596984

0.99978526553124

The Rk Monotonie: + Increase, - decrease, = equality.

= 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+
26+ 27+ 28+ 29+ 30+31+ 32+ 33+ 34+ 35+ 36+ 37+ 38+ 39+ 40+41+ 42+ 43+ 44+ 45+ 46+ 47+ 48+
49+ 50+ 51+ 52+ 53+ 54+ 55+ 56+ 57+ 58+ 59+ 60+ 61+ 62+ 63+ 64+ 65+ 66+ 67+ 68+ 69+ 70+ 71 +
72+ 73+ 74+ 75+ 76-

The accumulative frequency w = 4.3 15801 01 724358E+23

The sum of odd length pattern frequencies H_odd = 2.1 5790050862 179E+23

The sum of even length pattern frequencies H_even = 2.1 5790050862 179E+23

The hk Series:

(1) 100000 (2) 3860507 (3) 76236125 (4) 1023333446 (5) 10475321087 (6) 87025028220 (7)
610015527843 (8) 3704991371370 (9) 19876586546931 (10) 95573896736477 (11) 416626743756084
(12) 1.66175806547686E+15 (13) 6.1 107843 192422 IE+ 15 (14) 2.0849484590391 IE+ 16 (15)
6.6359825932 1834E+ 16 (16)
1.47186195983222E+18 (19)
1.99090843626402E+19 (22)
1.7356081 5975 127E+20 (25)
1.00149987946938E+21 (28)
3.85441 82 1702955E+21 (31)
9.87095423000729E+21 (34)
1.671 3540404289 1E+22 (37)
1.85579722354573E+22 (40)

1.979387235 19624E+ 17 (17)
3.69241522485629E+18 (20)
4.29463772625403E+19 (23)
3.2568965857592E+20 (26)
1.64168665223878E+21 (29)
5.51905880296229E+21 (32)
1.23232133125671E+22 (35)
1.81458594864123E+22 (38)
1.74682 132480487E+22 (41)

5.5551 1190262263E+ 17 (18)
8.79185878007748E+18 (21)
8.83600951491 197E+19 (24)
5.841 1 978670 1943E+20 (27)
2.5728 1748675989E+21 (30)
7.5515 1382674604E+21 (33)
1.4689406306 1483E+22 (36)
1 .87924755592574E+22 (39)
1 .56659290320305E+22 (42)
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(43) 1.08776980097834E+22 (44)
(46) 4.323361241 71 646E+21 (47)
(49) 1.0778478419022E+21 (50)
(52) 1.64761 11 2502899E+20 (53)
(55) 1.49838926104668E+19 (56)
(58) 7.78580302342771E+17 (59)
(61) 2. 1867487745746 IE+ 16 (62)

1.38271317868002E+15 (64) 306851995192239 (65) 62259627014736 (66) 11483653697533 (67)
1912555203114 (68) 285294146045 (69) 37743201833 (70) 4374630848 (71) 437365263 (72) 36955014
(73) 2566097 (74) 140602 (75) 5700 (76) 152 (77) 2

1.33800226779079E+22
6.18706372153644E+21
1.80594730803398E+21
3.25904552941651E+20
3.53780537391793E+19
2.2271 181 809281 2E+1 8
7.73573870550372E+16

8.41325594761459E+21
2.8686141 1686162E+21
6.093003657541 llE+20
7.86314839807498E+19
5.96427274752782E+18
2.54247396623204E+17
5.724568701 14201E+1 5

(45)
(48)
(51)
(54)
(57)
(60)
(63)

The hk Quasi Concavity: + Increase, - decrease, = equality.

Io 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+ 26+
27+ 28+ 29+ 30+ 31+ 32+ 33+ 34+ 35+ 36+ 37+ 38+ 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50- 51-
52- 53- 54- 55- 56- 57- 58- 59- 60- 61- 62- 63- 64- 65- 66- 67- 68- 69- 70- 71- 72- 73- 74- 75- 76- 77-

The hk Genuine Concavity: hk:(hk -(hk-1 + hk+l)/2 >= 0?); Concavity domain = [33, 43].

Detailed as below:

Io 2:(-34307555.5) 3:(-437360851.5) 4:(-4252445160) 5:(-33548859746) 6:(-223220396245) 7
1285992671952) 8:(-6538309666017) 9:(-29762857506992.5) 10:(-1 226777684 15031) 11
462039237350582)
1.53858205353217E+16)
2.7938915141366E+17)
3.00889101367078E+18)
1.989350 1 4697 139E+ 19)
7.9474982320705E+19)
1.75234947874278E+20)
1.43492689738746E+20)
35 :( 1 .7 1 0294477201 83E+20)
38:(4.4055969832268E+20)
4 1 :(2.4 1 8 1 1 069052 1 99E+20)
1.19124918045337E+20)
1.96040158013605E+20)
9.25758316678117E+19)
2.14380991402894E+19)
2.64123264816965E+18)
1.737214480757E+17)
5.90053176107107E+15)
66:(-206024374 11392)

1 2:(- 1 .60 1 94746602229E+ 1 5)
15:(-4.30342781228242E+16)

18:(-6.52101247727052E+17)
21:(-5.96003365866864E+18)
24:(-3.3464060887393E+19)

27 :(- 1 . 1 1 403340000984E+20)
30:(-1.91519927831536E+20)

33 :(-6.64093396492825E+ 1 9)
36:(2.95907508008868E+20)

39:(4.2762783 1 804205E+20)
42:( 1 .08209 1 57000934E+20)

45:(- 1 .8 1 244873 1 29084E+20)
48:(-l. 6728367 1347923E+20)
51:(-6.11261861868545E+19)
54:(-1.1429634556429E+19)
57:(-1.14430834400718E+18)

60:(-6.0700055 1 294379E+ 16)

13:(-5.14483700869175E+15) 14
16:(-1.12996784577599E+17) 17
19:(-1.43944514509857E+18) 20
22:(-1.11882124933397E+19) 23
25:(-5.31506427626147E+19) 26
28:(-1.45472030875855E+20) 29
31:(-1.83907218925509E+20) 32

34:
37
40:

(-
(-

(4.30330444893032E+19)
(3.9285 1504638957E+20)
(3.56262614304817E+20)

43:(-1.89413029778261E+19)
46:(-2.04477677482568E+20)
49:(- 1 .2977599499 1 852E+20)
52:(-3.75069059583011E+19)
55:(-5.68727063288676E+l 8)
58:(-4.62102486432889E+17)

44
47:
50
53:
56:
59
626 1 :(-l .96734901 323435E+ 1 6)

63:(-1.6329971694871E+15) 64:(-415634407655141) 65:(-96908 197430150)
67:(-397 191 871 8675) 68:(-689855056428.5) 69:(-107091 186613.5) 70:(-

14715652700) 71:(-1768427668)
2699)

72:(-183010666) 73:(-15981711) 74:(-l 145296.5) 75:(-64677) 76:(-

Output for T1014D100k_dat.txt
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Total number of elements ? = 1000

Total number of tuples u = 100000

Longest pattern length Alpha = 29

The Gk distributions:

128 545 1607 3287 4849 6525 7990 9759 10471 10892 10242 8719 7364 5685 4185 2932 1963 1255 756
388215 117 67 27 17 11 202

The Hk Series:

(1) 1010228 (2) 5270095 (3) 18790249 (4) 51202603 (5) 113283212 (6) 211446703 (7) 341991592 (8)
488936418 (9) 627432107 (10) 731187069 (11) 780208311 (12) 765930113 (13) 692835561 (14)
576788640 (15) 440503927 (16) 307192014 (17) 194493524 (18) 111044874 (19) 56721409 (20)
25679299 (21) 10189328 (22) 3495680 (23) 1019555 (24) 247387 (25) 48507 (26) 7373 (27) 814 (28) 58
(29) 2

The Hk Quasi Concavity: + Increase, - decrease, = equality.

Io 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12- 13- 14- 15- 16- 17- 18- 19- 20- 21-22- 23- 24- 25- 26- 27- 28-
29-

The Hk Genuine Concavity: Hk:(Hk - (Hk-I + Hk+l)/2 >= 0?); theoretic concavity domain = [11, 18];
exact = [7, 15].

Detailed as below:

Io 2:(-4630143.5) 3:(-9446100) 4:(-14834127.5) 5:(-18041441) 6:(-16190699) 7:(-8199968.5)
8:(4224568.5) 9:(17370363.5) 10:(27366860) 11:(31649720) 12:(29408177) 13:(21476184.5)
14:(10118896) 15:(-1486400) 16:(-10306711.5) 17:(-14624920) 18:(-14562592.5) 19:(-1 1640677.5) 20:(-
7776069.5) 21:(-439816L5) 22:(-2108761.5) 23:(-851978.5) 24:(-286ò44) 25:(-78873) 26:(-17287.5) 27:(-
2901.5) 28:(-350)

The Rk Series:

0.372624157262378 0.396160874603673 0.41922401020133 0.442490050749959
0.492248855567246 0.519881380858361 0.549968185083263 0.582682222381074
0.654466336918235 0.691728161626673 0.728441333570636 0.763718104780982
0.827943675745325 0.856415717985551 0.882286046073426 0.905453494640798
0.943449852630124 0.958316101179578 0.970568532349898 0.980387004976009
0.993625389936254 0.997542997542998 1

0.466632917770728
0.617761948514005
0.796988553131721
0.925846872481475
0.987991423918197

The Rk Monotonie: + Increase, - decrease, = equality.
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= 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 11+ 12+ 13+ 14+ 15+ 16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+
26+ 27+ 28+

The accumulative frequency w = 6556956652

The sum of odd length pattern frequencies H_odd = 3278528326

The sum of even length pattern frequencies H_even = 3278428326

The hk Series:

(1) 100000 (2) 910228 (3) 4359867 (4) 14430382 (5) 36772221 (6) 76510991 (7) 134935712 (8)
207055880 (9) 281880538 (10) 345551569 (11) 385635500 (12) 394572811 (13) 371357302 (14)
321478259 (15) 255310381 (16) 185193546 (17) 121998468 (18) 72495056 (19) 38549818 (20) 18171591
(21) 7507708 (22) 2681620 (23) 814060 (24) 205495 (25) 41892 (26) 6615 (27) 758 (28) 56 (29) 2

The hk Quasi Concavity: + Increase, - decrease, = equality.

Io 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+ 1 1+ 12+ 13- 14- 15- 16- 17- 18- 19- 20- 21- 22- 23- 24- 25- 26- 27- 28-
29-

The hk Genuine Concavity: hk:(hk -(hk-1 + hk+1 )/2 >= 0?); Concavity domain = [8, 16].
Detailed as below:

Io 2:(-1319705.5) 3:(-3310438) 4:(-6135662) 5:(-8698465.5) 6:(-9342975.5) 7:(-6847723.5) 8:(-
1352245) 9:(5576813.5) 1?:(11793550) 11:(15573310) 12:(16076410) 13:(13331767) 14:(8144417.5)
15:(1974478.5) 16:(-3460878.5) 17:(-6845833) 18:(-7779087) 19:(-6783505.5) 20:(-4857172) 21:(-
2918897.5) 22:(-1479264) 23:(-629497.5) 24:(-222481) 25:(-64163) 26:(-14710) 27:(-2577.5) 28:(-324)
Produced on 9/1 1/2009 1:08:53 AM

By Tongyuan Wang, Dept of CS, Concordia University
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