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ABSTRACT

Privacy-Preserving Alert Correlation and Report Retrieval

Ben Wen Zhu

Intrusion Detection Systems (IDSs) have been widely deployed on both hosts and networks

and serve as a second line of defense. Generally, an IDS flags malicious activates as IDS

alerts and forwards them to security officers for further responses. The core issue of IDSs

is to minimize both false positives and false negatives. Previous research shows that alert

correlation is an effective solution. Moreover, alert correlation (in particular, under the

cross-domain setting) can fuse distributed information together and thus be able to detect

large-scale attacks that local analysis fails to handle. However, in practice the wide usage

of alert correlation is hindered by the privacy concern.

In this thesis, we propose the TEIRESIAS protocol, which can ensure the privacy-

preserving property during the whole process of sharing and correlating alerts, when incor-

porated with anonymous communication systems. Furthermore, we also take the fairness

issue into consideration when designing the procedure of retrieving the results of correla-

tion. More specifically, a contributor can privately retrieve correlated reports in which she

involved.

The TEIRESIAS protocol is based mainly on searchable encryption, including both

symmetric-key encryption with keyword search (SEKS) and public-key encryption with
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keyword search (PEKS). While designing TEIRESIAS, we identify a new statistical guess-

ing attack against PEKS. To address this problem, we propose the PEKSrand scheme,

which is an extension of PEKS and can mitigate both brute-force guessing attacks and

statistical guessing attacks. The PEKSrand scheme can either be used independently or be

combined with TEIRESIAS to further improve its privacy protection.
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Chapter 1

Introduction

The major goal of this thesis is to design a protocol that can provide secure and privacy-

preserving (intrusion detection) alert correlation under the cross-domain settings.

To defend against various attacks, Intrusion Detection Systems (IDSs) deployed on
hosts and networks as a second line of defense. IDSs can output alerts when suspicious

activities are observed. To take full advantage of IDS alerts, we may correlate them so
as to help us better understand the security threats and take appropriate responses. Such
a method is effective within a single trust domain, e.g., a large enterprise-wide network.
However, previous solutions adopted in a single domain are incompetent in detecting cross-
domain distributed attacks and more delicate cross-domain multi-hop attacks (e.g., stepping

stone attacks [37,77, 81]). Therefore, to further enhance the ability of detecting malicious

behaviors, it is desirable to achieve cross-domain alert correlation.

In reality, unfortunately, there is slow progress in sharing IDS alerts across domains.
The major barrier is the concern that, shared alerts may contain sensitive information,
which may be disclosed and misused at a later time. In this thesis, we leverage recent

advances in searchable encryption [15, 68] and keyed-hash functions to address the pri-
vacy and utility issues in the cross-domain alert correlation. Moreover, in the course of
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developing our solution, we identify a new type of attacks against a well-known search-
able encryption scheme, i.e., Pubic-key Encryption with Keyword Search (PEKS) [15]. An
extension of PEKS is then proposed to protect PEKS against both the new attack (called
statistical guessing attacks) and other attacks indicated in previous work [3, 8, 18, 60].

This chapter gives a brief introduction about the background and the motivation of our
research, together with a summary of our contributions.

1.1 Intrusion Detection and Alert Correlation

In traditional networks, firewalls act as the first line of defense. Through enforcing pre-

determined rules, firewalls can limit potential paths that adversaries utilized to access in-

ternal networks and block certain attacks directly. However, it is far from being able to
prevent and monitor all types of intrusions. Thus, Intrusion Detection Systems (IDSs) are

used as a second line of defense, i.e., detecting intrusions and triggering prompt responses

that recover compromised systems and/or update systems to prevent similar attacks in the
future.

Generally speaking, intrusion detection techniques can be classified into two categories:

misuse detection and anomaly detection. Misuse detection is based on patterns of well

known intrusions (signatures). When comparing suspected activities' profiles with signa-

tures, if an activity matches a known pattern, an alert will be generated accordingly. The
main advantage of misuse detection is the low ratio of false positives. However, it can only
detect attacks with known signatures. Anomaly detection generates alarms when an IDS
observes activities that abnormally deviate from the recognized normal profiles which are

established during the training process. The main advantage of anomaly detection is its
ability to detect unknown attacks. However, a major weakness of anomaly detection is its
relatively high false positive rate.

Although extensive research has been conducted to build more effective IDSs, current
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IDSs still suffer from many open problems. For example, an IDS usually produces a large
number of alerts. The high volumes and low quality of the raw alerts make it very diffi-
cult for security administrators to identify those important alerts and respond to them in
a timely manner. Another open challenge is to detect large-scale distributed attacks and
cross-domain multiple-step attacks. To address these two problems, alert correlation tech-
niques are developed.

Instead of measuring the validity of each single alert, alert correlation techniques focus
on discovering the logical relationships among alerts outputted by IDSs. In recent years,

several alert correlation techniques have been proposed to facilitate the analysis of intrusion
alerts. These techniques can be roughly divided into two categories: template-based alert
correlation, which can only correlate alerts satisfying pre-defined attack scenario templates,

and condition-oriented alert correlation which is not only able to correlate alerts satisfying
a pre-defined template, but also can construct new attack scenarios.

In this thesis, we are interested in more powerful condition-oriented alert correlation. A

typical work in this category is the alert correlation scheme proposed by Ning et al. [51] (a
more detailed overview of [5 1 ] is to be presented in Section 2.3). The idea of their approach
is that, each alert is treated separately, and both the needed conditions (A.K.A. prerequisites
or pre-conditions) to trigger an attack and the possible conditions (A.K.A. consequences

or post-conditions) caused by this attack are considered. For example, an attacker has to
install a Distributed Denial of Service (DDoS) daemon program in vulnerable hosts before
launching a DDoS attack. In this case, exploiting hosts and installing DDoS daemons can
be viewed as prerequisites of a DDoS attack, and the DDoS attack is the consequence of
either exploiting a host or installing a DDoS daemon on the host.
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1.2 Privacy-preserving Alert Sharing and Motivation of

Our Work

A report released by Symantec [69] shows that there exists a trend of increasing profes-
sionalization and commercialization of malicious activities, as well as the increasing num-

ber of attacks. Malicious users have built underground forums (e.g., IRC or web sites)
for exchanging information about new exploits and underground economy servers to trade
compromised resources. While malicious parties are collaborating with each other so as
to launch attacks more efficiently and effectively, unfortunately, on the other side of the
attacking-defending competition, there are relatively less collaborations going on among
the defenders.

Recently, more and more researchers, companies, organizations, and even governments

have begun to realize the tremendous benefits that may be brought to the detection of mali-
cious activities, through establishing such collaborations. In particular, sharing security
data among various detection systems, e.g., cross-domain Intrusion Detection Systems
(CIDS), is one of the most promising types of collaborations. It has significant impacts
on many security applications, e.g., detecting zero-day attacks and multi-hop attacks, or
generating a large-scale picture of Internet security status and trends. In reality, however,
there is slow progress in sharing security data across domains. The major barrier is the
concern that, shared security data may contain sensitive information, which may be dis-
closed and misused at a later time. And such information may be originally difficult to

obtain by adversaries or potential competitors that participate in the data sharing system.
For example, based on the shared security alerts, adversaries can deduce the locations of
IDS sensors through fingerprinting attacks [44].

There has been extensive work in privacy-preserving intrusion detection systems or
alert sharing [6, 11,45-48,64,79]. Most algorithms/schemes proposed are effective in
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preserving privacy while detecting high-volume events but failing to perform more delicate
tasks, e.g., alert correlation [51]. To the best of our knowledge, the only work addressing
this issue was done by Xu and Ning [78,79]. However, since the matching of events is based
on causal relations, together with the usage of an aggregation algorithm, their scheme has
a relatively high false positive, which has limited its practical usages.

Another major problem of previous solutions for privacy-preserving alert sharing is
that, most of them aim at localized data sharing within a company or an organization, and
thus assume the existence of either a fully-trusted online centralized entity that is respon-

sible for collecting and analyzing security data from different sources, or a fully-trusted
relationship among the group members that share their security data. Both assumptions are
implausible when considering the task of cross-domain alert correlation. The major prob-
lem of maintaining a fully-trusted online centralized entity is the single-point-of-failure in
terms of both availability and security. If the online centralized entity is compromised,
with the secret acquired, the adversary can trivially terminate the service and/or break the
privacy protection [63]. The availability issue can be addressed by providing a back-up
scheme. Unfortunately, it does not help in security. In all previous centralized solutions,
at any time at least one fully-trusted centralized entity has to be online, because the task
of analyzing security data relies on the secret possessed only by the trusted entities. As to
the latter assumption, i.e., the fully-trusted relationship among members, it does not hold
when the insider attack is possible, e.g., in the scenarios that participants of the system are
potential competitors.

Previous work in privacy-preserving alert sharing mainly concentrates on the core task
of correlation. However, we argue that the privacy-preserving property should be held
during the whole process of collaboration, which includes alert collection, alert correla-
tion, and the retrieval of correlation results. Currently, there are two main methods for

the acquisition of correlation results. Either the centralized entity is responsible for both
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correlating alerts and returning the results to all legitimate users or a specific set of users

(e.g., users who may be affected by the detected attack), or it is only responsible for alert
correlation and publishes the results upon the completion of correlation online. Apparently,
it is inefficient to forward the results of correlation to every member, despite of their rel-

evance. In terms of privacy, in the first method, if the results are only forwarded to those
members who are relevant, the identity of the contributors has to be disclosed to the cen-
tralized entity. As to the later, due to the results' open access to everyone, it is vulnerable
to probe-response attacks [10,46,62].

Another issue largely ignored in previous work in privacy-preserving alert sharing is
fairness. Many previous solutions work well under an implicit assumption that, participants
are motivated to share their data in exchange of more accurate analysis results and thus
more effective defense. It makes sense when there is no selfish participant. Since there is a

fundamental trade-off between privacy and usability [63], whenever any usable information
is disclosed, it must have weakened the privacy protection to a certain extent. Thus, a selfish

participant may be reluctant to provide any useful data. If there is no mechanism that can
ensure the fairness in terms of the contributions and rewards, the system is vulnerable to

attacks similar to Freeriding in peer-to-peer systems [4]. Under cross-domain settings,
neither there exists a fully-trusted online centralized entity, nor it is possible to enforce
different entities to unconditionally share their security data, even if it is the government (or
a designated department of the government) that enforces the collaboration for the sake of
national security [52]. Without sufficient incentives together with a mechanism enforcing
fairness and privacy at the same time, the quantity and quality/usability of the shared data
are questionable. To maintain a fair correlation system, an intuitive solution is that, the
more useful information that a participant shares with others, the more useful analysis
results should be accessible to her/him.
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1.3 Research Contributions and Thesis Organizations

The main contribution of this research is the designing of a secure and privacy-preserving
system that encourages the sharing of security data. The main characteristics of our design
include:

• Enable privacy-preserving alert correlation which can detect both high-volume events
and more delicate events (e.g., multi-hop attacks).

• Do not require the existence of a fully-trusted online centralized entity. Instead,
our scheme needs one or a few online semi-trusted servers, which are honest-but-

curious [33].

• Provide privacy protection during both alert collection, correlation and retrieval.

• Ensure the fairness of alert sharing. To the best of our knowledge, our work is the

first one that can ensure both fairness and privacy during alert sharing and retrieval
in the absence of an online fully-trusted entity.

• Be resistant to probe-response and collusion attacks launched by outsiders and insid-
ers.

• Extend PEKS to support predicate privacy based on the idea of randomization. To
the best of our knowledge, this is the first work that ensures predicate privacy in the
public-key settings without requiring interactions between the receiver and potential
senders, the size of which may be very large.

• Identify a new type of attacks against PEKS, i.e., statistical guessing attacks.

• Introduce a new concept of statistical privacy, and extend PEKS to support this new
privacy property.
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The rest parts of this thesis are organized as follows. In Chapter 2, we review the
related research works and define the privacy problems touched in this thesis. In Chap-
ter 3, we describe the framework and general ideas of our design. Afterwards, we present

defined privacy-preserving alert correlation protocol named TEIRESIAS in Chapter 4, fol-
lowed by the implementation and experimental results in Chapter 5. The predicate privacy-
preserving extensions to the PEKS are presented in Chapter 6. The conclusion is drawn in
Chapter 7.
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Chapter 2

Literature Review

In this chapter, we review previous research that is relevant to our work. It mainly includes
alert correlation, privacy-preserving information sharing, and predicate privacy in PEKS.

2.1 Alert Correlation

Before digging deeper into alert correlation, it is worthwhile to distinguish between alert
fusion and alert correlation within the context of CIDS due to the natural differences and

connections between them.

2.1.1 Alert Fusion and Alert Correlation

Alert fusion can be considered as the process of mitigating redundant alerts which are
triggered by the same attacking activity or the process of grouping similar alerts (e.g., alerts
with the same source and destination IP address). In contrast, alert correlation attempts to

organize alerts into some kind of high-level (e.g., the trace of multi-step attacks) and easy
understood models (e.g., visualized attack scenarios or attack graphs). In other words,
compared to alert fusion, alert correlation focuses on identifying the relationships among
collected alerts and extracting attackers' strategies.

9



Valdes and Shinner proposed a probabilistic approach to fuse alerts by estimating the
similarities of alert attributes [72]. The similarity is evaluated based on the feature-specific

similarity functions of all investigable attributes. In addition, clustering techniques, through

which similarity is evaluated, have also been adopted to fuse alerts. Cuppens [20] fused

similar alerts into clusters, and Julish et al. [41,42] used a hierarchical conceptual clustering

technique to fuse alerts. Recently, Gu et al. [36] proposed a decision-theoretic alert fusion
technique based on the likelihood ratio test (LRT). In [73], Valeur et al. put alert fusion

into a comprehensive intrusion detection alert analysis framework.

Note that, alert fusion and alert correlation are complementary functions. Hence, our

work can be easily integrated with any alert fusion techniques. In the remained parts of this

thesis, we assume that the input to our protocol is fused alerts.

2.1.2 Review of Alert Correlation

The goal of alert correlation is neither to significantly reduce the number of alerts, nor

to roughly classify alerts into different groups. Instead, it is to link relevant alerts and

reconstruct attack scenarios from isolated alerts. Alert correlation serves the role of helping

security professionals better understand what has happened, how it happened and even what
is happening and how it is evolving on the network. Previous works on alert correlation

can be divided into the following two categories:

• Template-based Alert Correlation Formal methods have been widely employed

in most previous works of this category, such as LAMBDA [21], STATL [25], ADeLE
[71], all of which are formal attack specification languages defined to facilitate alert

correlation. Meanwhile, a data mining approach is used in [22] to achieve the same

goal. The effectiveness of template-based correlation is limited by pre-defined tem-

plates which are specified by humans or are learned automatically from training
datasets. In particular, they are able to discover known attack scenarios but fail to
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uncover new attack strategies.

• Condition-oriented Alert Correlation To overcome the limitation of template-

based correlation, researchers proposed to correlate alerts based on the casual rela-

tionship between alerts. The most common feature of these approaches is that, alerts

are correlated based on pre-condition (i.e., prerequisites, which are needed conditions

to trigger this attack) and post-condition (i.e., consequences, which are all possible
conditions that can be caused by this attack) of each individual alert. The well-

known works in this category include correlation algorithms proposed by Templeton

and Levis [70], Cuppens and Miège [30], and Ning et al. [51].

JIGSW [70] is the first work that considers using the idea of condition-oriented alert

correlation. However, it is not a very flexible choice when used in practice. For

instance, it considers/«// correlation, which requires all the prerequisites of an attack

happen in order to consider its consequence. In particular, this may lead to correlation

missing if IDS fails to identify any of the prerequisite attacks. Other weaknesses

include ignoring failed attempts and lacking of aggregating consideration [51].

To overcome the drawback of mis-detection or mis-reporting in full correlation, the

algorithms proposed in [30, 51] employ partial correlation, which only requires to

satisfy part of the pre-conditions and post-conditions. Because an instance/applica-
tion of our work is built upon the correlation techniques proposed by Ning et al. [51],

we will give a more detailed review of their work in Section 2.3.

2.1.3 Cross-domain Alert Correlation

A typical framework for cross-domain alert correlation is shown in Figure 1, where alert

collection aims to gather alerts from heterogeneous IDSs, and alert fusion process com-

bines alerts triggered by the same attack from independent IDSs, while alert correlation

11



discovers attack threads among alerts. Finally, visualization and result delivery are two

optional processes highly beneficial in understanding analysis results. Visualization gives
a logical and clear presentation of detailed attack scenarios and attack strategies. Result

delivery aims to help contributed IDSs' profit from their sharing by enlarging the scope of

a contributor from local network to global network.

IDS

IDS

Alert
Collection

alert Fwslw*

visualization

ÂiéÉ;Correlation i Optional }

Figure 1 : A Cross-domain Alert Correlation Framework

Result
Delivery

f Optional !

2.1.4 Privacy Concerns in Alert Correlation

There are various privacy concerns in cross-domain alert correlation, and are usually rele-

vant to the attributes of IDS alerts. The two attributes of particular interests to our work are

identity and type.

• Identity Most attackers interest in information related to identities, which is the

straight forward privacy offense. If an attacker can extract the identity related in-

formation encoded in a alert, no matter how little other information obtained, he

can conclude that certain security vulnerabilities exist on that particular machine. In

addition, without identity protection, attackers can easily distinguish the alerts re-

lated to the specific interested machines by excluding irrelevant alerts. The identity

information may also be utilized by skilled and active attackers to compose special
fingerprints to probe the security posture of a particular machine, i.e., probe-response

12



attacks [10,46,62]. In an IDS alert, identity information is usually reflected by Source

IP address, where the network traffic (e.g. a attack) is initiated and Destination IP

address, where the network traffic reaches.

• Type Attackers are also interested in the information revealed through an alert's
type attribute, which may indicate a successful launched attack or expose type or

version information of the IDS through the particular type signatures. Thus, alert
types may directly reveal the existing vulnerabilities and security postures of the
hosts or networks.

2.2 Privacy-Preserving Security Information Sharing and

Alert Correlation

In this section, we first review previous research work about privacy-preserving security

information sharing in general, and then focus on the related work in privacy-preserving
alert correlation in particular.

2.2.1 Privacy-Preserving Security Information Sharing

The concerns about privacy in intrusion detection rose as early as the late 1990s [67].

In [48, 49], Lundin and Jonsson proposed to use pseudonyms to replace original names.
This solution is vulnerable to the reidentification attack. A few other methods, e.g., adding

"noise" to log files and creating sufficiently complicated pseudonyms, were briefly dis-
cussed.

In [12], Biskup and Flegel proposed an adapted version of Shamir's secret sharing
scheme [59] to provide better protection against reidentification. Instead of directly map-
ping a real identity to a pseudonym [48,49], the identity is mapped to a set of shares of a
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unique secret. The basic idea of this scheme is to have a pseudonymizer, acting as repre-
sentative of the anonymity group of all its clients, and split an identifying feature idig into
as many pseudonyms as are needed to pseudonymize audit records containing idig . Given

any tg pseudonyms of idig taken from pseudonymous audit records, idig can be recovered.
In this scheme, the audit service is under the primary control of the Personal data protection
officical (PPO) who is fully trusted by the user. Upon a special request, the PPO is able to
perform the reidentification. In a later work [28], Flegel discussed about pseudonymizing
Unix log files, again, with the help of a PPO. The PPO is trusted both by the users to protect
their pseudonymity and by the site security officer(s) (SSO) to ensure accountability in the
face of a security incident.

In an important work in the field of privacy-preserving alert sharing [46], Lincoln
et al. first investigated several types of potential attacks (e.g., dictionary attacks, probe-
response attacks, and alert flooding), and then proposed to use hash function to anonymize
identity information. More specifically, in their scheme, standard hash functions and keyed-
hash functions are used for internal and external IP addresses, respectively. As a result of

balancing privacy and utility, equality comparisons are restricted to external IP addresses
in this scheme, and thus this scheme is effective in detecting high-volume events. On the
other hand, there is no privacy guaranteed for a participant's IP addresses if they appear in
the alert reported by another participant. In addition, the semantics of alert attributes is de-
stroyed due to the usage of hash functions, and thus certain high-level correlation may not
be possible. Besides hash-based solutions, Lincoln et al. proposed a few further privacy
protection methods, e.g., re-keying by the repository and randomized hot list thresholds,
based on the assumption that the alert repository is fully-trusted. Generally, the scheme is
effective in detecting simple high-volume events.

In [35,47], a distributed collaborative IDS was proposed. The basic idea is to use bloom
filters [13] to built watchlists so that original IP addresses and port numbers in the alerts
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are anonymized. This method is suitable for matching the value of single property, e.g.,

suspicious addresses, and can greatly improve the efficiency of large-scale detections in
this case. Unlike other approaches that focus on header-based alert data (e.g., IP addresses
and port numbers), Parekh et al. combined this bloom filter-based solution with two types

of payload-based anomaly sensors that were developed at Columbia University [74-76] to
investigate the possibility of performing privacy-preserving payload-based correlation [55].
Before correlating network traffic, the anomaly sensors need to be trained. In addition, this
scheme aims at identifying non-semantic commonality and is unsuitable for the scenarios
that more complicated correlations [51] are required and the correlator is not fully trusted.

A research issue that is very similar to privacy-preserving intrusion detection/alert shar-
ing is packet trace anonymization. Research works in both fields aim at sharing data that

are crucial to security or network analysis, while satisfying certain privacy requirement at
the same time. The main difference lies in the object of the problem. The object of packet
trace anonymization is raw network traffic, while the object of privacy-preserving intrusion

detection/alert sharing is (security) application-level data extracted from either network
traffic or host-based events. Generally, almost the same set of anonymization techniques,
e.g., random permutation and hashing, can be applied to both problems. Current solutions
for packet trace anonymization [53,54] assume the existence of a fully-trusted administra-
tor which is responsible for anonymizing packet traces before publishing them.

Prefix-preserving IP address anonymization [27,80] is one of anonymization techniques

that have drawn much attention. It aims at preserving the prefix relationship among IP

addresses after shared data are anonymized, and has been used in different contexts [53,65,
66].

Slagell et al. improved the original prefix-preserving IP address anonymization tool
implemented in the Crypto-PAN project [27, 80] with an efficient passphrase-based key
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generation algorithm for the purpose of ensuring the prefix-preserving property while shar-
ing network logs [65]. Afterwards, they developed a tool that supports multiple levels of
anonymization so as to provide better trade-offs between security and utility [66]. In [64],
Slagell et al. designed an anonymization framework for computer and network logs, and
developed an anonymization tool called as FLAIM. This tool includes the implementation
of most anonymization algorithms proposed till then. Instead of proposing new anonymiza-
tion techniques, the key contributions of this work is two-fold. One is to allow the user to
specify an anonymity policy that can make use of a variety of anonymization algorithms at
run-time. The other is to separate parsing from I/O to allow third parties to add support for
additional logs.

In a recent work, Lee et al. [45] proposed a framework for privacy-preserving interdo-
main auditing. There are three types of entities in this framework: organizations, audit
groups, and auditors. Organizations that have a certain degree of trust relationship form an
audit group, and then run a group key management scheme so as to share a secret. A paid
or contracted auditor will execute a program that all members of an audit group agree to
analyze collective audit records. Making use of this shared secret, the authors presented a
set of obfuscation methods, two of which (i.e., local greater-then relation and local blinded
summation) are new in the field of privacy-preserving log/alert sharing. This framework
assumes that "members of the audit group trust one another enough to maintain any group
secrets necessary for processing audit records sent to the auditor"1. Therefore, it is ideal
for the cases such as branches of a large company, but is unsuitable for the scenarios that
the sensitivity of shared data is higher than the mutual trusts among the members [52].
Fairness is not provided in this design, since all the alerts generated by the program will be
sent to all the members, the auditor returns the Allman et al. [6] also proposed a scheme

'Note that, similarly, in our design we also assume that contributors share a secret. However, the major
difference is that such a secret is not used to anonymize the whole shared records/alerts but only to perform
keyed-hashing on IP addresses.
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for the detection of coordinated attacks upon cross-organization information sharing. How-

ever, their scheme assumes that the detectives, which are equivalent to the correlator in our

scheme, are fully trustworthy.

In [63], Shmatikov and Wang undertook a deep analysis on probe-response attacks
against collaborative intrusion detection systems (CIDS). Their work aims at mitigating
the effectiveness of probe-response attacks in terms of detecting epidemic phenomena, i.e.,
high-volume events. The basic idea is that, by employing a fully decentralized structure, the
adversaries has a very low chance of observing rare events. They designed a gossip-based
architecture for CIDS, and quantitatively analyzed the basic tradeoff between usability (i.e.,
a CIDSar ability to detect attacks) and privacy (i.e., the security of individual monitors
against probe-response attacks).

Research work in privacy-preserving data mining and database obfuscation [5, 19, 26]
is relevant to our work, but differ in a few aspects. Most privacy-preserving database obfus-
cation techniques require a centralized trusted party to determine the released view based

on privacy requirements, e.g., k-anonymity [57]. Privacy-preserving data mining tech-

niques were designed to discover statistic properties over datasets without compromising
privacy of an individual contributor. However, they are not suitable for exact matching of

a specific string like IP address or malicious code pattern, while ensuring privacy and data

confidentiality (i.e., the string itself) at the same time.

Despite the strong privacy protection provided by secure multiparty computation (SMC)
[24], its usage is limited due to the poor efficiency [46].

There has been extensive research in anonymous communications [61], which aims at

preventing adversaries from tracing back to the source or the destination of sniffed com-
munications. It is complementary to our work.
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2.2.2 Privacy-Preserving Alert Correlation

The focus of this thesis is privacy-preserving alert correlation. Both template-based alert

correlation and condition-oriented alert correlation are built on dedicated matching oper-

ations. To the best of our knowledge, the privacy-preserving alert correlation schemes
proposed by Xu and Ning [78, 79] are the first and only known works that can perform

complicated correlations [51]. They are based on the idea of concept hierarchies, which
generalize sensitive alert attributes to high-level concepts to introduce uncertainty. Their
approach consists of two stages: alert sanitization and sanitized alert correlation. The first

stage is guided by (differential) entropy. Due to the generalization, exact matching between

sanitized attributes is not possible. To achieve correlation, matching based on a casual re-
lation is employed instead, which may lead to false positives. In addition, an aggregation
algorithm is presented to improve the quality of alert correlation graphs, at the cost of in-
troducing a higher false negative. In a later work [79], Xu and Ning proposed three new

schemes based on the idea of injecting artificial alerts and/or randomization.

2.3 The Intrusion Detection Alert Correlation Scheme Pro-

posed by Ning et al.

In this section, we first review the alert correlation scheme proposed by Ning et al. [5 1 ], and

then discuss the possible privacy breaches in this scheme. The basic idea of their approach

is that, each alert is treated separately, and needed conditions to trigger this attack and

possible conditions caused by this attack are considered.
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2.3.1 The Architecture of the Alert Correlation Scheme Proposed by

Ning et al.

In this scheme, all alerts are extended with pre-conditions and post-conditions and the

actual correlation relies on both the alert itself and extended conditions. Figure 2 shows the

architecture of the intrusion alert correlator introduced in Ning et al.'s scheme, excluding

the components for visualizing correlation results.

Knowledge
Base

Alert
Preprocessor

Hyper-Alerts
&

AukiHarv Data

Alerts

Correlation
Engine

Database
Management System

Correlated
Hyper-Alerts............teint

Figure 2: Intrusion Detection Alerts Correlator Proposed by Ning et al.

Their scheme is based on the idea of correlating the preconditions and consequences

of individual alerts. In order to perform the correlation, Ning et al. introduced the notation

of Hyper-alert Type (HT) and Hyper-alert Instance (HI). A HT is defined as a triplet (fact,

prerequisite, consequence), where fact consists of all attribute names involved in the de-

scription of prerequisite and consequence. A HI is the result of replacing components of

the triplet with the corresponding values from a real alert. If the consequence of an earlier

hyper-alert A1 makes one of the prerequisite of the latter one A2 True, we say A1 prepares
for A2.
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In this architecture, knowledge base stores the information about all HTs and implica-

tion relationship between predicates (i.e., prepare-for relation), and database management
system stores original alerts collected from IDSs at the beginning of the correlation process.
In the first step, alert preprocessor converts original/raw alerts received from the database
into hyper-alerts and auxiliary data using the HT information from the knowledge base.
Afterwards, the hyper-alerts and auxiliary data are stored at the database and then are feed
to correlation engine. Together with prepare-for relation provided by the knowledge base,
the correlation engine can correlate alerts. Finally, the results of correlation are sent back

to the database for further processing, e.g., visualization.

2.3.2 Example 1

Consider four raw alerts captured by a RealSecure Network Sensor [39] in Table 1. Each
raw alert has eight attributes, i.e., AlertID, AlertType, Begin_time, End_time, DestIPAd-

dress, DestPort, SrcIPAddress and SrcPort. Among them, AlertID is a unique identity

assigned by the local sensor when the alerts are generated. The first record indicates

that a possible attacker, whose IP address is 202.077.162.213, initialized a Sadmind_-

Amslverify_overflow instance from port 56262 against a target machine with IP address
172.016.112.050 to port 32773 at 04:53:26 AM on 10/11/2001.

Table 1 : Raw Alert Records

AlertID(Local) AlerType Begin_time DestIPAddress DestPort SrcIPAddress SrcPort
63963 Sadmind_Amslverify_overflow 10/11/2001 4:53:26 AM 10/11/2001 4:53:26 AM 172.016.112.050 32773 202.077.162.213 56262
63997 FTP Put 10/11/20015:13:05 AM 10/11/2001 5:13:05 AM 172.016.112.050 32773 202.077.162.213 60569
64163 Stream_Dos 09/11/2001 4:58:07 PM 09/1 1/2001 4:58:07 PM 131.084.001.031 26341 009.145.123.135 24661

Mstream Zombie 09/1 1/2001 4:36:47 PM 09/1 1/2001 4:36:47 PM 172.016.115.020 9325 172.016.112.050 33345
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In the knowledge base, the HT of Sadmind_Amslverify_overflow is defined as:

Sadmind_Amslverfiy_overflow =

{{DestIP},

VulnerableSadmind(DestIP) ? OSSolaris(DestlP),

{GainAccess(DestlP)})

and the HI of the first record is generated as:

Sadmind_Amslverfiy_overflow =

({172.016.112.050},

VulnerableSadmind(172M6.ll2.050)AOSSolaris(172M6A12M0),

{GqmAccess(172.016.112.050)})

Similarly, the HT of FTPJ1Ut is:

FTP_Put =

({DestIP, DestPort},

ExistService(DestIP, DestPort) ? GainAceess(DestlP),

{SystemCompromised(DestIP) })
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and the HI of the second record is generated as:

FTP_Put =

({172.016.112.050,32773},

ExistService(172.016.112.050, 32773) ? GainAccèss (172.OW. 112.050),

{SystemComprornised(172.016.112.050)})

As highlighted in previous expressions, i.e., the unlined parts, the consequence of the HI

corresponding to the first record, i.e., {GamAccess(172.016.112.050)}, is one of the pre-
requisites of the HI of the second record. Hence, these two alerts are correlated in Ning et
al.'s scheme.

2.3.3 Privacy in Ning et al.'s Alert Correlation Scheme

Attackers have various approaches to defeat contributors' privacy against the above cor-

relator. For example, by accessing DBMS or public correlated results. This is due to the
design that plaintexts are stored or published. More specifically, by knowing the Alert-
Type and SrcIPAddress or DestlPAddress, an attack can easily link these attributes to learn

the possible vulnerabilities on a particular machine and to launch a direct attack. To keep
the content of alerts secret while preserving the utility of correlation algorithms is one of
intents of this work.

Another possible approach to deduce a contributor's private information is by acting

as eavesdroppers, observing and decoding certain information (e.g. IP addresses) from the
network traffic package between communicating computers, and tracing the source of the

connection, further compromising the identity.
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2.4 Predicate Privacy in PEKS

Public-key Encryption with Keyword Search (PEKS) introduced by Boneh et al. [15] is

the first practical asymmetric searchable encryption scheme, as well as the first predicate

encryption scheme. In this section, we give background knowledge of PEKS and present

related predicate privacy issues.

2.4.1 A Brief Review of PEKS

PEKS is originally designed for the purpose of intelligent email routing. For example, as

shown in Figure 3, a user R may receive emails through different devices, e.g., a PDA or

a desktop at the office. Hence, she/he may want to selectively forward emails with certain

keywords to a specific device, e.g., emails that contain the word "agenda" are forwarded to

the PDA. To protect data confidentiality, emails are encrypted at the sender side. Hence,

the mail server G has no access to the content of emails. To delegate G the capability of

performing selective forwarding, however, G is assigned a set of trapdoors that are corre-

sponding to keywords that might be used for searching at a later time. For a keyword x,

the corresponding trapdoor t(x) is generated from the master secret held only by R and
is used to define a predicate p. Upon receiving a ciphertext, G can verify whether the
corresponding plaintext is equal to ? based on the predicate.

As shown in Figure 3, there are three types of entities in the PEKS scheme [15]: receiver

R, sender, and server G. PEKS consists of the following four procedures:

1. KeyGen(s): Takes as input a security parameter s, the receiver R generates a PEKS
public/private-key pair, i.e., { Apub, Apriv}, as well as other public parameters;

2. Trapdoor (Apriv, x): given the private key Awiv and a keyword x, the receiver R
produces a corresponding trapdoor Tx;
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Figure 3: Public Key Encryption with Keyword Search Framework

3. PEKS(Apub, x): given the receiver's public-key (i.e., Apub) and a keyword x, a
sender generates the PEKS ciphertext of a message (e.g., an email) to be sent to R,

which is denoted as S;

4. Test(S, Tx): given the received PEKS ciphertext S = PEKS(Apub, x') and a trap-
door Tx = Trapdoor(Apriv, x), the server G outputs 'yes' if ? = ?' and 'no'
otherwise.

An instantiated construction of PEKS is based on a bilinear map of elliptic curves. It

uses two cyclic groups Gi, G2 of the same prime order ? and a symmetric bilinear map

e : Gi ? Gi -» G2 between them. If we use a multiplicative notation to describe the
operation in Gi and G2, e has following properties:

Bilinear: e(gx,gy) = e(g, g)xy for all integers x,y G [l,p], g e G1;
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• Non-degenerate: e(g, g) f 1 and if g is a generator of G\ then e(g, g) is a generator
OfG2;

• Computable: There is a polynomial time algorithm to compute e(g,h) € G2 for all
0,/ieGi.

The security of PEKS is based on the assumption of Elliptic Curve DLP, which is
believed to be intractable for certain carefully chosen groups including the group that is

formed by the points on an elliptic curve defined over a finite field. More specifically,

given two points on an elliptic curve, g and gx, where ? is a scalar, it is computationally

infeasible to obtain x, if ? is sufficiently large.

2.4.2 Predicate Privacy in PEKS

Most previous works on predicate encryption concentrate on plaintext privacy, i.e., the

property that ciphertexts reveal no information about the encrypted data to any party with-

out the private key other than what is inherently revealed by the trapdoors. However, re-

searchers also identified a few other security/privacy issues relevant to PEKS [3, 8, 18, 60].

One major concern is to limit the delegate's capability of keyword searching within a cer-

tain time frame [3,8]. Another important concern is that PEKS is subject to offline keyword

guessing attacks firstly identified by Byun et al [18]. Later, Shen, Shi, and Waters formal-

ized the second concern and introduced the notion ofpredicate privacy [60], i.e., the prop-

erty that t(x) reveals no information about the encoded predicate p. They also proposed a
predicate encryption scheme that can achieve both plaintext privacy and predicate privacy

in the symmetric-key settings. Moreover, Shen, Shi, and Waters claimed that it is inherently

impossible to achieve predicate privacy in the public-key setting, such as PEKS. Interest-

ing though, several researchers had actually proposed a few solutions to this problem [3, 8].
However, Shen, Shi, and Waters's claim may be based on an implicit assumption that the
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proposed solution should not conflict with one of the aims of PEKS, i.e., making keyword

search possible without interaction between the sender and receiver, which was indicated

by Baek et al [8]. Such an assumption is definitely reasonable, since in practice the size of

potential senders could be a huge number. Moreover, the proposed solutions [3, 8] require

to share some secret, in the form of either a set of public keys of the receiver [3] or the

method of refreshing keywords [3, 8], between senders and the receiver. Considering the

huge number of potential senders, the overhead of synchronizing the secret and protecting

it from disclosure is overwhelming.

Formally, the predicate ? of the equality test in PEKS can be defined as p(e(x), t(x)) =
1, in which ? is the keyword, è(x) is the encryption of x, and t(x) is the trapdoor derived
from ? and the private key held only by R. In reality, the mail server G is usually considered

as a semi-trusted entity, which is honest-but-curious [33]. Since the public-key encryption

function does not require a secret key, G can encrypt any plaintext of her choice and then

evaluate the resulting ciphertext with the trapdoors assigned by R. By verifying whether

the resulting ciphertext satisfies the predicate associating with a trapdoor, G learns whether
the chosen plaintext is equal to the keyword that is corresponding to the trapdoor. In other

words, the mail server G can launch an attack similar to brute-force password attacks.

In particular, PEKS is especially fragile to this type of attacks in those applications, in

which there exists a small set of keywords that are frequently used, such as "Urgent" and

"Classified". In this paper, we refer this type of attacks as brute-force guessing attacks.

Our solution to brute-force guessing attacks are based on two basic ideas. One is to

introduce randomness into the procedure of generating trapdoors so as to avoid the deter-

ministic one-to-one mapping between a searching keyword and the corresponding trapdoor.

It is also the underlying idea of previous solutions [3,8]. The other is to limit the knowledge

of the secret introducing randomness to only one or a small set of entities. Through creating

random instances of keywords, the actual plaintexts used in the generation of trapdoors are
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known only to the entities that know the secret used in the randomization. Hence, in terms

of the intelligent email routing, the semi-trusted mail server G cannot launch brute-force
guessing attacks any more. On the other hand, by limiting the holders of the secret, the

overhead of synchronizing and protecting the secret is much smaller.
Besides brute-force guessing attacks, an alternative attack that may be launched by the

mail server is to make use of external knowledge about the statistical distribution of key-
words to identify the relation between a trapdoor/predicate and a keyword. We call it as a

statistical guessing attack. For example, in an application the probabilities that a keyword

? and any other keyword are matched are 20% and no more than 10%. In such a case, the

mail server can easily deduce the trapdoor corresponding to ? by simply counting the num-
ber of times that each trapdoor is matched. Note that, the method of refreshing keywords

by appending the time period to the keyword before the encryption is still subject to this
type of attacks, because it does not change the statistical distribution of keywords within

the same time period. Informally, the idea of our solution to statistical guessing attacks is
to spread out the statistical distribution of keywords. In the previous example, it is much

more difficult for the mail server to guess when the probabilities that a trapdoor mapped to

keyword ? and a trapdoor mapped to any other keyword are matched are 2% and no more
than 1%, given that the same number of keyword matching events are observed. Appar-
ently, when the mail server observes a sufficient number of events, it can still figure out

the mappings between trapdoors and keywords. Hence, we have to refresh such mappings
before it happens. In this paper, we provide detailed analysis on identifying an appropriate

balance between privacy and efficiency. In Chapter 6, we proposed the PEKSrand scheme
to provide strong privacy protection in PEKS. PEKSrand has two variants: PEKSrand-BG

and PEKSrand-SG. Both variants are robustly against brute-force guessing attacks, and

thus can ensure predicate privacy in the scenarios where the statistical distribution of key-

words to be searched is unknown. Compared to PEKSrand-BG, PEKSrand-SG can further
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mitigate Statistical guessing attacks at the cost of the storage overhead on the delegate,

e.g., the mail server in the intelligent email routing application. According to our analysis

and experimental results, both schemes introduce negligible additional communication and

computation overheads and can be smoothly deployed in existing systems.
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Chapter 3

The Framework of the TEIRESIAS

Protocol

In this chapter, we describe the system and adversary models assumed in the design of the

TEIRESIAS protocol. Afterwards, the design goals and the basic idea of our design are

presented, followed by an outline of the system framework of TEIRESIAS.

3.1 System Model and Adversary Model

Our design aims at providing privacy-preserving alert correlation and retrieval under the
cross-domain setting. We assume that there are a group of domains/organizations that want

to share and correlate their alerts, and they may not have a full trust on each other.

We also assume that there is an offline fully trusted authority, denoted as O, which
is responsible for the selection of system-wide parameters and the generation of security

tokens. Note that, to avoid the potential risk that the fully trusted entity is compromised, a

major difference of our design from many previous schemes is that it does not require O to
be online, since the tasks of alert correlation and retrieval do not involve O, once the system

has been set up. Instead, the task of alert correlation and the task of retrieving correlation
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results are handled by a correlator and a data server that stores the correlation results,

respectively. We assume that, both the correlator and the data server are semi-trusted, i.e.,

honest-but-curious [33].

We assumed that, the adversary could be an insider (i.e., a domain participating in alert

sharing), or an outsider, or both. In the last case, the outsider(s) collude(s) with one or a few

insiders so as to break the system. We further assume that, the insiders restrain themselves

from launching active attacks. Such an assumption is reasonable, since active attacks are

much more easier to be detected and traced and the insiders may want to avoid relevant

legal issues. In addition, the exposure of insiders may greatly reduce the effectiveness of
future attacks.

An overall solution of privacy-preserving alert sharing should also include privacy pro-

tection during alert collection, e.g., employing an anonymous routing protocol like Tor [23].

The discussion about the design of such an anonymous communication protocol is beyond

the scope of this paper. It is complementary to our work.

3.2 Design Goals

A scheme that aims at providing secure and privacy-preserving cross-domain alert correla-

tion and retrieval should satisfy the following requirements:

• Data Confidentiality The content (e.g., alert type and source/destination IP ad-

dresses) of any alert shared should be protected from both insiders and outsiders,

except the source of this alert.

• Unlinkability Both insiders and outsiders can neither link an alert with its source,

i.e., the entity that shares this alert, nor link alerts from the same source.

• Fairness An entity that participates in the cross-domain alert correlation system
can only retrieve those correlation results that are pertinent to the alerts that it shares.
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• Usability The results of alert correlation upon transformed alerts stored on the

correlator should be the same as, or at least with few differences from, that upon

original alerts.

3.3 Building Blocks and Basic Idea of Our Design

To ensure data confidentiality and unlinkability, an easy way is to encrypt the data to be
protected. However, simple encryption destroys the structure of the data, and thus the
usability of such data is extremely limited. Therefore, we adopt encrypted keyword search
algorithms as candidates in this thesis. In the past several years, there has been many

research works on searchable encryption, which aims at balancing the security and usability
of the outsourced data.

The schemes for searchable encryption can be divided into two categories: symmetric-
key encryption with keyword search (SEKS) [32, 68] and public-key encryption with key-

word search (PEKS) [15].

In a typical application of SEKS, e.g., Song et al.'s scheme [68], a user U outsources
her/his data in the encrypted format to a remote server S. When user U wants to search for
a particular keyword on the outsourced data, she/he needs to inform the remote server the

corresponding searching key. The remote server will return the result, if any, to the user.
However, it has no idea about the keyword or the content (i.e., the plaintext) of the searching
result. If we ignore the process that U discloses a searching key corresponding to a keyword
to S, SEKS can be simplified into two steps: 1) U outsources data to S; 2) S searches on
the encrypted data and returns the results to U. We define it as the U(ser)-S(erver)-U(ser)

model, USU for short. Note that, in the USU model, the scope of a searching operation is

bounded by the data owner.

In the original design of PEKS ' , upon receiving security tokens from user U that are
1A brief review is presented in Section 2.4.1
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corresponding to certain keywords, the mail server is capable of filtering those emails con-

taining a specific keyword and then forwarding them to a specific device. However, the
mail server has no idea about the exact keyword corresponding to the security token that
it possesses. If we ignore the process that U discloses a searching key corresponding to a
keyword to server S, PEKS can be simplified into two steps: 1) multiple users send mes-

sages to U, which are stored by S; 2) S searches on the encrypted data and forwards the
results to U. We define it as the M(ulti-user)-S(erver)-U(ser) model, MSU for short. Note

that, in the MSU model, the scope of a searching operation is bounded by the intended

recipient of the data.

Apparently, these two categories of searchable encryption schemes aim at different
types of applications, and thus have distinct system models. In terms of the application
on which our work concentrates, we observe that, alert correlation and alert retrieval fall

into the MSU model and the USU model, respectively. Therefore, the basic idea of our de-
sign is to employ PKES for providing privacy-preserving alert correlation without requiring
an online trusted authority and to employ SEKS for the purpose of privacy-preserving re-
trieval. Note that, the 'S' in MSU and USU in our design are not the same entity. Instead,

they are corresponding to the correlator and the data server, respectively. To the best of our
knowledge, hence, there is no previous work that employs SEKS and PEKS in the same
system or application.

3.4 System Framework and Outline of TEIRESIAS

The proposed system framework is shown in Figure 4. The TEIRESIAS protocol uses
the following five procedures: setup, anonymization & R (etrievable)-token concatenating,
alert correlation, report retrieval and advanced analysis (optional). We now present an

outline of the operations of TEIRESIAS in the basic scheme. (The advanced scheme is
described in Section 4.3. In this scheme, the setup, anonymization and alert correlation
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Figure 4: Proposed System Framework of TEIRESIAS

During setup phase, the S-token generator, which plays the role of O in the system

model, generates a network wide public /secret key pair and other public information,

e.g., the security parameters chosen. In addition, S'-token generator replaces sensi-

tive keywords in the knowledgebase by its corresponding trapdoors. Subsequently,

transformed knowledgebase is delivered to the correlator. Once transformed knowl-

edgebase and public parameters are released, S'-token generator may remain offline
until the next setup operation.

Anonymization & R-token concatenating are both done by each contributor, who

anonymizes every AlerfType by using S-token generator's public key and a random
number chosen by the contributor. Then, the plaintext of SrcIPAddress and Destl-
PAddress are replaced by the corresponding keyed-hash results. After anonymiza-
tion, every anonymized alert is concatenated with an i?-token, which is generated
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from a symmetric key and a secret number kept by the contributor.

• Alert correlation correlates encrypted alerts based on the transformed knowledge-
base.

• Report retrieval addresses the fairness issue by allowing a contributor to query re-

lated correlation results back. Through analyzing a retrieved report, two goals can

achieve: first, understand both local and cross-domain correlation results, and sec-

ond, be aware of probe-response and collusion attacks.

• Advanced analysis is an optional procedure, which is only provided to fully-trusted
and highly privileged analysts to reconstruct detailed attack scenarios.
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Chapter 4

The TEIRESIAS Protocol

In this chapter, firstly, the procedures of TEIRESIAS in the basic and advanced schemes

are presented. Then, we focus on several previous attacks against privacy-preserving in-

formation sharing and discuss how security and privacy-related properties are achieved in
TEIRESIAS. Finally, we identify a particular collusion attack against the TEIRESIAS pro-

tocol and propose the countermeasure.

4.1 Notations and Terminologies

• Bilinear Groups and Bilinear Map Let G\,G2 be cyclic groups whose order is a
prime ? and let e: Gi ? Gi —> G2 be a symmetric bilinear pairing between Gi,G2
with following properties:

1. Bilinearility: e(gx, gy) = e(g, g)xy for all integers x, y e [I, ?], g G Gi;

2. Non-degeneracy: e(g,g) f 1 and if g is a generator of Gi then e(g,g) is a
generator of G2;

3. Computability: there is an polynomial time algorithm to compute e(g,h) G G2
for all g,h e Gi.
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• Hash Functions ?? : {0, 1}* —> G\ is a hash function which maps any variable-
length message to a group member in Gi; H2 : G2 —»· {0, l}logp is another hash
function which maps a group member in G2 to a binary string whose length is log p.

• Keyed-hash Function HMAC represents a system wide keyed-hash function in-

volving a cryptographic hash function, such as MD5 or SHA-I, in combination with

a uniform secret key shared among all contributors. One construction of such keyed-

hash function is proposed in [9].

• Pseudorandom Number / Generator / Functions Define X = {0, l}n_m, Y =
{0, l}m and a key set ?, then

1 . A pseudorandom number B? is outputted by the pseudorandom generator G :
kg —? ?? for a specified ?, which is the total number of ß-token.

2. If ? ? ? —? 7 is used to represent pseudorandom functions, we initialize two

pseudorandom functions F : kf ? X —>¦ Y and / : Kf ? {0,1}* —> k/ keyed
independently. We write Fk(x) and fk(x) for the results of feeding ? to F and
/ with k e ?, respectively.

• Deterministic Encryption E Suppose N is a secret number, the computation of
E(N) = {0, 1}" depends only on N. For instance, ECB encryption of TV using some
block ciphers is an implement of E.

• Symbols In the description of TEIRESIAS, for any two objects (i.e., alerts, alert

attributes or ciphertexts): ? and y, we write x\\y for the concatenation of ? and y;
? ? y for the bitwise XOR of ? and y; ? —> y for the discovered the relation "Alert ?

prepare for alert y".

I (resp. i) is the local (respectively, global) ID number assigned by the contributor
(resp. correlator) to the alert a.
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4.2 The Basic Scheme

In this section, we present the procedures of TEIRESIAS in the basic scheme, followed by

a concrete example to illustrate the details.

Generally, the 5-token generator uses Hx to generate .S-tokens from AlertType in the

knowledgebase by mapping these keywords into the group Gi so as to anonymize the
knowledgebase. Each contributor employs H\, H2, HMAC and e to anonymize sensitive
attributes (i.e., AlertType, SrcIPaddress and DestIPaddress) in the raw alerts. Meanwhile,

each contributor also computes the bitwise exclusive XOR of E(N) with an artificial token
T to construct one i?-token, Cn, for the retrieval function.

4.2.1 Procedures of The Basic Scheme

In the following description of the procedures, by default, we assume all system-wide pa-

rameters are publicly known once they are set up.

• Setup The input security parameter determines the size, p, of the groups Gi and
G2. »S-token generator picks a random a e Z* and a public generator g of G\. Then
outputs public key pair Apub = [g,h = ga] and Apriv = a;

The ,S-token for each keyword Wkau ? AlertType in the knowledgebase, is generated

as a trapdoor T(Wkat) = Hi(Wkat)a G Gi. After replacing all Wkat with the cor-
responding 5-tokens, the anonymized knowledgebase is delivered to the correlator

through a secure channel built between <S-token generator and correlator;

Meanwhile, all potential contributors authenticate themselves to an authentication
sever in order to get the uniform secret key, which is used to calculate HMAC of
SrcIPAddress and DestIPAddress. Such an authentication service can be achieved by

deploying Kerberos [50] for instance.
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• Anonymization & ß-token Concatenating For each sensitive AlertType, Wrat

in the raw alert a, the contributor first picks a random r E Z*, and computes t —

e(Äi(Wret), hr) e G2, then outputs PEKS ciphertext PEKS(Wrat) = [gr, H2(t)}
to replace Wrat. For each sensitive SrcIPAddress or DestIPAddress (i.e., Wsrcip or

WDestip) in the raw alert a, the plaintext is replaced by the corresponding keyed-hash

result: HMAC{WSrcip) or HMAC(WDestIP).

If raw alert a is formated as following:

a = / Il Wrat Il Begin_time Il Endjime Il WDestIP Il DestPort Il Wsrc/p Il SrcPort

Then, the anonymized a is:

a = / Il PEKS(Wrat) Il Beginjime Il Endjime
Il HMAC(W7De^p) Il DestPort Il HMAC(WSrc/P) Il SrcPort

The following four steps are executed to generate one i?-token:

1 . First, encrypts a ?-bit concatenation N of a x-bit secret number and a (n — x)
bits unique local index / using the encryption algorithm E, and E(N) is still
?-bit. Then E(N) is split into two parts, E(N) = E1(N)I]E2(N), where
Ei(N) (respectively, E2(N)) denotes the first ? — m bits (resp. last m bits) of
E(N);

2. Second, a key k = fk> (Ei(N)) is chosen, where k' is chosen uniformly and
randomly in ? by the contributor and never revealed;

3. Third, pseudorandom bits B? are generated by the pseudorandom generator G,
and ?? is (n — m) bits;

4. Finally, takes ?? and key k to set T = ??\ \Fk(Bx), and outputs the i?-token
Cn = E(N) ? T.

After removing the AlerlD(Local) I in the anonymized alert a, the generated i?-token
C^ is concatenated with a and formated as following:
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a = Cn Il PEKS(W7-Oi) Il Beginjime II Endjime
Il HMAC(WDest/p)ll DestPort Il HMAC(WSrc/P) Il SrcPorí

• Alert Correlation To generate the HI of an alert through identifying the corre-
sponding HT in the knowledgebase, Ning et al.'s scheme is based on the exactly

matching of the HT and the alert's AlertType. However, the ¿"-token and PEKS ci-

phertext generated from a same AlertType are no longer exactly matching. For exam-

ple, T(FTP_Put) f PEKS(FTP>_Put). Thus, in TEIRESIAS, we use Algorithm
1 to generate His.

Afterward, the actual correlation of His can be efficiently achieved by using a simple

"SELECT-FROM-WHERE" SQL query. Finally, by linking correlated alert pairs,

different attack scenarios at different detailed levels can be reconstructed through

report retrieval and advanced analysis procedures.

To support report retrieval and advanced analysis, the correlator extracts different

information from correlated alert pairs. On the one hand, i?-tokens are extracted from
correlated alert pairs and sent to the data server. On the other hand, AlertID (Global)

assigned by the correlator for all incoming alerts are extracted from correlated alert
pairs and stored locally. Also note that the paired relationship between each two
extracted attributes (i.e., either i?-token or AlertID (Global)) is preserved in both

formats.

• Report Retrieval Report retrieval procedure enables contributors to get corre-
lated results which they involved in back, while guaranteeing that no one can retrieve

any other contributors' private alerts without her authorization (i.e., the particular

retrieval query).

To construct a retrieval query, the contributor reveals < E(N), k > pairs to the data
server, who searches each .ñ-token received from the correlator by checking whether
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Algorithm 1 Privacy-Preserving His Generation in the Basic Scheme
Input: (1) Anonymized alerts a¿, in which

PEKS(W^) = [gr% H2(U)], and U = C(H1(W^), h«);
(2) HTs with AlertType T(W¿at) = H1(WtJ".

Output: His.
1: Setz = 1;
2: for alert a¿ € Database do
3: Setj = l;
4: for T(W3kat) e S-tokens do
5: if H2(e(T(WÌat), 9n)) = H2(U) then
6: Generate HI from HT with T(WJkat), goto step 1 1 ;
7: else
8: j=j + l\
9: end if

10: end for
11: i = i + l;
12: end for
13: return 0

Cn ?E(N) is of the form S\ \ Fk (S) for some S. If so, the data server marks this satis-
fied i£-token (e.g., concatenates a symbol ! with the satisfied ü-token as ! | \CN). Oth-
erwise, encrypts this i?-token by another deterministic encryption algorithm É (Cn)
whose secret key is only kept by the data server. Finally, all pairs, which have marked
i?-tokens, are delivered back to the querying contributor. If none of the R tokens is
marked, just returns no alert correlated. In particular, If only interested in some spe-
cific alerts, the contributor just reveals those corresponding < E(N), k > pairs.

To eliminate the potential possibility that a requester's identity exposed through the
messages in the public network, a secure channel such as SSL [31] is required to
set up between each contributor and the data server to transfer retrieval request /
response.

Upon receiving returned reports, by XOR first (n — m) bits of marked Cn with Bx,
which only can be generated by the pseudorandom generator G with the original
seed, the alert owner can regain (n — m) bits Ei(N), which allows to compute k
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and thus recovers the (n - x) bits unique local index number /. Finally, by cross-
referring to the raw alerts set, correlated results can be learned. Note that in reports,
the deterministic encryption algorithm E(Cn) assures that the ciphertexts generated
from the same A-token are always exactly matching, although i?-tokens from other
contributors are not allowed to decrypt due to privacy concerns. Thus, the usability
of retrieved report is maximized.

Advanced analysis (optional) Since all the ciphertexts could be unsealed, ad-
vanced analysis function is only provided to fully-trusted and highly privileged ana-
lysts to reconstruct detailed attack scenarios.

To perform this function, analysts first get all encrypted alerts and AlertID (Global)
pairs prepared by the correlator, as well as original knowledgebase and corresponding
S-toke list held by S-token generator. Then, based on AlertID (Global) pairs, ana-
lysts extract correlated encrypted alerts and picture their prepare-for relationships.
Finally, by matching (since decryption function is not supported in TEIRESIAS)
AlertType attributes in the encrypted alerts with trapdoors in the original 5-toke list,
analysts can reconstruct detailed attack scenarios for further study.

Table 2: Anonymized Alert Records
I AlenID(Global) | fl-lokeTT AlertType Begin_time DestIPAddress | DeslPon | SrclPAddress | SrcPort

CV.i.iam
Ow

PnKS(Sadmind_Amslvcriry_ovcrflow) 10/1 1/2001 4:53:26 AM
PEKS(FTP-PuI) 10/1 1/2001 5:13:05 AM

10/1 1/2001 4:53:26 AM
10/11/20015:13:05 AM

HMAC(172.016.112.050)
HMAC(172.016. 1 12.050)

HMAC(202.0?7.162.213)
HMAC(202.077.162.213)

CNi. ? PEKS(Slream_Dos) 09/1 1/2001 4:58:07 PM 09/1 1/2001 4:58:07 PM HMACU31.084.001.031) HMAC(009.145.123.135)
<?».„„„ PEKS(Mslnsarn_Zombie) 09/11/2001 4:36:47 PM 09/1 1/2001 4:36:47 PM HMACO72.016.115.020) HMAC(172.016.112050)

4.2.2 Example 2

Table 2 shows the anonymized raw alerts of Table 1. The anonymized HTs in example 1
with ^-tokens are:
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T (Sadmind_Amslverfiy_overflow) =

({Desti?},

T(VulnerableSadmind)(DestIP) ? T(OSSolaris){DestIP),

{T{GainAcœss){DestIP)})

T(FTP_Put) =

({DestIP,DestPort},

T(ExistService)(DestIP, DestPort) A T(GainAccess)(DestIP),

[T(SystemCompromised)(DestIP)})

By executing Algorithm 1, The generated His of first two encrypted alerts in Table 2 are:

PEKS(Sadmind_Amslverfiy_overflow) =

({#JkL4C(172.016.112.050)},

T(VulnerableSadmind)(HMAC{172.016.112.050))A

T[OSSoIaHs)(HMAC ( 172.016. 112.050)),

{T(GamA:cess)(ffMAC(172.016.112.050))})
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PEKS(FTP_Put) =

({ifMj4C(172.016.112.050), 32773},
T(ExistService)(HMAC(172M6A12.050,32773))A

T(GainAccess)(HMAC(172M6Al2.050)),

{T(SystemCampromised)(HMAC(172M6A12.050))})

The exactly matching of unlined parts of above two His enables the correlator judging
that a125 —? «430- Similarly, the corresponding knowledgebase also guides the correaltor
discovering that four encrypted alerts in Table 2 also meet following two extra relations:
«430 -*· «334 and 0334 —>· 0173.

To support report retrieval, the f?-token pairs sent to the data server are organized as:

"63963 "63997

"64072 "64163

"63997 "64072

Suppose in Table 2, alerts with Ä-tokens Cn63963, Cn63997 and Cn64072 are contributed by a
network-based intrusion detection system, Alice. Alert with f?-token CjV64163 is contributed
by another intrusion detection system, Bob.

By checking above Ä-token pairs with following retrieval query from Alice,

[ E(N63963), k63963 — Zk(Ei(N63963)) ]
[ E(N63997), ¿63997 = Jk(Ei(N63997)) }
[ E(N64072), Zc64072 = Zk(Ei(N64072)) ]

the data sever marks and sends the following report back to Alice:

• HCjV63963 "^ 'HCjV63997
? I CjV64072 —*· E(Cn64163)
•I |Cjv63997 —»· !| |Cjv64072
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It is very convenient for Alice to restore AlertID(Local) from the above marked R-

tokens, and the final report learned by Alice is:
Prepare—For Prepare—For

x63963 ^63997 a64072
Prepare—For ,_,/E (Cw64I63)

Further, alice can reconstruct attack scenario which she is involved in as Figure 5
through the above report.

;adnriind„Amsiverify_overfloi^2§> I^FTP_Put43oJ) ><astream_2ombie3àì) +C XXXX J

Figure 5: The First Attack Scenario Reconstructed by Report Retrieval

Similarly, the final report learned by Bob is:

E (CaT64072) Prepare—For
*64163

and the attack scenario learned by Bob is in Figure 6.

xxxx ?(^Stream_Dos1?3 J)

Figure 6: The Second Attack Scenario Reconstructed by Report Retrieval

To support advanced analysis, three locally stored AlertID (Global) pairs are formated
as:

125 -»· 430

334 -»· 173

430 -* 334

Through cross referring to the encrypted alerts in Table 2, the above AlertID (Global)

pairs enable analysts to identify the following attack relationships among those four alerts:

Prepare—For Prepare—For Prepare—For
0*125 > Û430 ? «334 ? ^173

Finally, the detailed attack scenario can be constructed as shown in Figure 7.
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Cadmiliadmind_Amslverify_overfiow125>——-*f FTP_Put43Û ) MN1stream._Zombi©33Ì) MStream_Dos173;

Figure 7: The Attack Scenario Reconstructed by Advanced Analysis

4.3 The Advanced Scheme

An ideal keyed-hash function used in the basic scheme to anonymize IP addresses is able
to withstand all known types of cryptanalytic attacks, however, the security and privacy
of IP attributes are totally relied on the secrecy of the shared uniform key to generate
keyed-hash values. In certain scenarios, especially in the cross-domain intrusion detection
alert correlation setting, the confidentiality of the uniform key can not be guaranteed. For
example, the key may be leaked through a contributor which is a undetectable insider. At
this point, the privacy of IP attribute is compromised in the basic scheme. Nevertheless, as
our last defense, the basic scheme still preserves the unlinkability between the AlertType
and SrcIPAddress (or DestIPAddress) in any one of the anonymized alerts, which baffles a
attacker to figure out the specific security vulnerability associated with that IP address.

Anonymizing IP address also drew much attention in recent works. However, the pro-
posed schemes are all infeasible in our case. For instance, using a uniform hash func-
tion and different keyed-hash functions to digest external and internal IP addresses re-
spectively [46] may restrict equality test of internal IP addresses; Using concept hierarchy
approach to generalize detailed values into a higher level value [78] introduces uncertainty
and fails to perform delicate equality test; Using prefix-preserving IP address anonymiza-
tion [27, 80] can only preserve the prefix relation among IP addresses. Bloom filter [13] is
the only scheme allowing delicate equality test, however, it is also vulnerable to dictionary
attacks in the alert correlation case if we create a bloom filter for each IP attribute.

To countermeasure the keyed-hash vulnerability, our intuitive idea is to use double-
random (i.e., using PEKS to randomize AlertType and keyed-hash value of SrcIPAddress /
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DestIPAddress) in the advanced scheme to provide better privacy protection without losing
the capability of equality test of IP attributes. Comparing to the basic scheme, modifications
are required to the setup, anonymization and alert correlation procedures. Generally, in the
setup procedure, extra ¿»"-tokens are generated to facilitate the matching of all possible IP
addresses, while in the anonymization procedure randomness is introduced by PEKS each
keyed-hash IP address value as PEKS(HMAC(WSrcip)) or PEKS(HMAC(WDestIP)). In the

alert correlation procedure, besides AlertType attribute, the matching algorithm operated
on the corresponding SrcIPAddress and DestIPAddress attributes is also required and works
the same as described in Algorithm 1 for AlertType attribute to generate His.

However, if HMAC is a collision-free hash function, there are totally 232 possibilities
of HMAQWsrcip) or HMAC(WDestIP) for all IPV4 addresses. Thus, in the setup, theoreti-
cally 232 ¿"-tokens are needed if we output one ¿-token from each possible IP address so as
to eliminate false negative in alert correlation. This results in on average 231 matching op-
erations to generate each IP attribute in the generation of HI. Since the matching operation,
which includes the computation of bilinear pairing e, is a very time-consuming operation,
experienced readers may have noticed that it is not practical to generate HI in this way in
reality.

We notice that, the execution times of matching operations, T, of each IP address meets
following relationship with the ¿-token space, N (i.e., TV is the total number of ¿-tokens
used for matching IP addresses): T 32 ? N According to Figure 8, smaller S-log2AT 2

token space not only contribute to less storage cost, more importantly, but also lead to fewer
matching operations. Thus, we set N = 2X=1 = 2 to reduce matching operations times to
T = 2y=4 = 32 rather than 231 per IP address. Also note that "x=l" represents in order to
achieve ¿-token space N = 2, each IPV4 address should be treated as 32 bits binary.

Thereafter, to anonymize a SrcIPAddresss (resp. DestIPAddresss) attribute in the aonymiza-
tion phase, the contributor first calculates the HMAC(WSrcip) (respectively, HMAC(WDestip))
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Figure 8: Relationship between g-token Space and Matching Operations

G [1,232]. Then transfers the HMAC(WSrcip) (resp, HMAC(WDestIP)) into 32 bits bi-
nary. If HMAC(WSrcip)p (respectively, HMAC(WDestIP)p) is used to represent the p-th
bit of HMAQWsrcip) (resp, HMAC(WDestIP)), a anonymized FEKS(HMAC(WSrcip)) =
PEKS(ZZMAC(W57-Cp)1) Il PEKS(ZZMAC(W5rc/p)2)ll · · · Il PEKS(ZZMAC(W5i.c/p)32) (re-
spectively, PEKS(ZZMAC(WDesi/P)) = PEKS(HMAC(WDestIPh) Il PEKS(ZZMAC(WDesi/p)2)ll
• · ¦ Il PEKS(ZZMAC(VKDeSiZp)32)). The anonymized a will be formated as follows.

a = Z Il PEKS(Wn,*) Il Beginjime Il Endjime IIPEKS(HMAC(VF0esi/p))
Il DestPort Il PEKS(HMAC (W5rc/P)) N SrcPort

Accordingly, in the sefwp, ¿¡"-token generator also generates two trapdoors T(W1P=0)
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Algorithm 2 Privacy-Preserving His Generation in the Advanced Scheme
Input:

(1) Anonymized alerts a¿, in which
PEKS(W?J = \gri, H2(U)], and U = e(Hx(WÍJ, hr');
PEKS(HMAC(W|rc/P)p) = \gr*, H2(C)], and if = e(i/1(HMAC(^rc/P)p), hT*)\
PEKS(HMAC(W¿esí/P)p) = [gr> , H2(tf)], and tf = 6(F1(HMAC(^ZpW, ^);
(2) HTs with AlertType T(WiJ = Hi(WU";
(3) T(WIP=0) = H1(Wf1,)* and T(W/P=1) = #i (W7V)".

Output: His.
Set i = 1;
for alert a¿ e Database do

Set J = 1;
for T(WiJ e 5-tokens do

if//2(e(T(^at),^)) = ^2(í¿)then
Set p = 1;
for ? < 32 do

if tf2(e(7WP), ^)) = ^a(ij) then
Replace PEKS(HMAC(WlSrcIP)p) by T(W/P=0), ? = P + 1, goto step 7;

else

Replace PEKS(HMAC(WlSrcIP)p) by T(W/P=1), ? = ? + 1, goto step 7;
end if

end for
Set p= 1;
for ? < 32 do

if tf2(e(TWP), <f0) = #a(tf) then
Replace PEKS(HMAC(WlDestIP)p) by 7W,P=0),p = p+ 1, goto step 15;

else

Replace PEKS(HMAC(WlDestIP)p) by T(W}P=i),p = P + 1, goto step 15;
end if

end for

Generate HI from HT with T(W^J, goto step 23;
else

i = J" + i;
end if

end for
i = i + l;

end for
return 0
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and T(Wip=i) that are derived from 0 and 1 bit respectively to match all possible IP ad-
dresses besides generating ^-tokens from AlertType. Consequently, in the alert correlation,
we propose to execute Algorithm 2 to generate His in the advanced scheme. Afterward,

the actual correlation of His can be efficiently achieved as described in the basic scheme

and the same as Ning et al's scheme.

4.4 Security and Privacy-related Properties Achieved in

TEIRESIAS

In this section, we first review several attacks specialized against previous works of privacy-
preserving information sharing. Then, the investigation of how the security and privacy-
related goals defined in Section 3.2 achieved in TEIRESIAS are given.

4.4.1 Attacks against Privacy-preserving Information Sharing

• Eavesdropping and Casual Browsing By sending partial anonymized data via
public network, and publishing analysis results online, or returning to all (or a set of
all) legitimate users may cause released data to be eavesdropped or browsed, possi-
bly even copied, storied and shared out of control capability. Although these kinds

of attacks are easy to defend through cryptographic approaches, such as public-key
encryption or keyed-hash function we used in TEIRESIAS, potential harms still exist

since leaked information may lead more sophisticated attacks which we are going to
discuss in the following.

• Dictionary Attacks Besides standard hash functions are vulnerable to this kind

of attack, a keyed-hash function is also fragile when the secret key used to generate

hashes is compromised. The attacker can pre-organize his references by computing
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all possible values, and then matches with information either eavesdropped from

network traffic or published by analysis centers. This kind of attack is especially

powerful in some particular situations. For example, if an insider targets a machine

in a particular subnet, he can just pre-compute hashes of all possible IP addresses
in this network and check through browsed or eavesdropped fragments of network

traffic to see if any attribute matches. Since the IP space is usually not enormous for

an insider, this kind of attack is very practicable to compromise identity information.

• Camouflage If a fully-trusted analysis center exists, an attacker may be highly

motivated to set up his own camouflage or compromise an existing one in order to

get immediate access to the shared information since it eliminates the need for all
other attacks. A similar risk also exists if a center itself is semi-trusted and able to

access partially anoymized data.

• Probe-Response Probe-response attacks are the nightmare of previous privacy-
preserving information sharing schemes, which are based on various anonymiza-

tion technologies including black marker, truncation, permutation, hash, keyed-hash,
bloom filter, prefix-preserving permutation and so on.

In contrast to most attacks aiming to bypass security guarding devices, these kind

of attacks try to be detected and reported. It creates a paradox of privacy-preserving

information sharing: for accurate analysis, more detailed local events should be re-

vealed; for strict privacy guarantee, detected local observations should not always

be honestly reported. There are two types of probe-response attacks [63] accord-
ing to the different goals: the first aims to identify the identities of the collaboration
monitors [10, 62] while the second aims to learn the security posture of a particular

target [46].
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4.4.2 Security and Privacy-related Properties Achieved

• Data Confidentiality The construction of TEIRESIAS only involves cryptography
primitives with well-defined notation of security, and the building blocks (i.e., SEKS

and PEKS) have been formally proved secure in [15,68]. Thus, the proposed protocol

preserves provable security.

A curious insider, outsider, or semi-trusted correlator can launch eavesdropping or
casual browsing attacks by looking for familiar value of attributes through cap-

tured fragments. However, TEIRESIAS is able to fully mitigates this kind of at-

tack since cryptographic primitives in TEIRESIAS guarantee the confidentiality of

each anonymized attribute. Moreover, our retrieval mechanism only returns pertinent
.R-token pairs to avoid disclosuring any information about the original alerts.

An outsider may also try to launch a correlator camouflage attack by setting up a
faked correlator. However, cryptographic primitives assure that this kind of corre-
lator cannot tell any plaintext information by just observing ciphertext. Meanwhile,
without receiving transformed knowledgebase from the 5-token generator, faked cor-
relator is not able to perform any one of the procedures defined in TEIRESIAS.

• Unlinkability In this thesis, we concern two types of unlinkability: identity unlink-
ability and alert attributes unlinkability.

1. Identity Unlinkability Generally, the possible methods of breaking iden-
tity unlinkability can be divided into two categories: traffic-based analysis and

protocol-based analysis. The idea behind traffic-based analysis is to detect com-

mon information among sniffed network traffic, assuming that any two pack-

ets are transferred along the same route if they have information in common.

The "common information" could be either identical content (e.g., the same

sequence number) in sniffed packets, or identical time consumed in handling
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sniffed packets (i.e., time analysis). In TEIRESIAS, to prevent traffic analy-
sis [56], on the one hand, all contributors send their encrypted alerts through
a Mixnet-based anonymous communication system such as Tor [23]. On the

other hand, each contributor sends (or receives) retrieval requests (or responses)

by building a secure channel with the data server so that not only outsiders but

also other insiders cannot discover the identity of that contributor.

In protocol-based analysis, adversaries try to deduce the identity of the sender
by analyzing the semantic context of messages. For example, to ensure that
the receiver can verify the signature, the sender may include her public key in
the packet. If that is the case, adversaries can easily discover the identity of
the sender. In TEIRESIAS, within any encrypted alert there is no public key
and the only identity-related information is i?-token, however, it is provable
secure and untraceable from the semantic of a .ñ-token itself. Moreover, both

the retrieval request and response messages, are sent through secure channels to
avoid accessibility of any other insiders or outsiders during the report retrieval
procedure.

Even the adversary gets to know all E(N) revealed by a contributor to the data
server in retrieval queries, he still can not use any known E(N) to find the ?-bits
secret of the contributor and thus deduce her identity.

Given that the elliptic curves DLP is hard, TEIRESIAS is also robust against
brute force attacks. More specifically, for any PEKS ciphertext given g and
ga, there is no PPT function which adversaries can use to find secrets of the

contributor (i.e., a) and thus deduce her identity.

2. Alert Attributes Unlinkability An insider may analyze the semantic con-
text of messages in order to link alert attributes (i.e., AlertType, SrcIPAddress

and DestIPAddress) generated from same plaintext when he eavesdrops some
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encrypted alerts from other contributors.

In TEIRESIAS, each attribute encrypted by PEKS is processed with a different

secret number a chosen by the contributor. Given that DLP is hard, an insider

cannot deduce a from an encrypted attribute, and further to use his encryption

ability to launch a dictionary attack so as to link to the original plaintext.

In our basic scheme, IP addresses are encrypted using a uniform keyed-hash

function under the same key for all contributors, it is natural vulnerable to an

insider and assailable by the correlator or any outsider once secret key is leaked

to them. Therefore, in the advance scheme we fix this vulnerability by fur-

ther using PEKS to process all keyed-hash values to mitigate the possibility of

dictionary attacks.

A sophisticated attacker may try to launch probe-response attacks. The first

type of probe-response attack greatly relies on analysis centers' public statis-

tical results which should be easily accessed. These public results potentially

helps attackers get well organized oracle to identify created probes. An out-

sider may try to launch this type probe-response attacks. However, the retrieval

mechanism we designed can beat these probe-response attacks by excluding

any probes included and accessible by the outsider. Note that an insider may

not risk himself to launch this type of probe-response attacks since it requires
that insider launching active attacks.

The second type of probe-response attacks focus on known IP addresses and

it requires launching less probes (i.e., active attacks). However, this kind of

delicate attack is still meaningless for an insider since it is highly risky for him

to launch active attacks again. Meanwhile, an outsider may try to compromise a

correlator in order get access to the probes. To fix this flaw, on the one hand, we

design our system as the correlator only can receive incoming network traffic
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and all outgoing network traffic initiated by the correlator is blocked. On the

other hand, we also assume there exist security facilities deployed to protect and
monitor the correlator, which is able to be detected and recovered soon once got
compromised.

4.5 Resistance to Collusion Attacks

Little attention is paid on the resistance of collusion attacks in the previous works of
privacy-preserving information sharing. In the following, we consider the collusion be-
tween insiders and outsiders to launch skillful probe-response attacks and give the counter-
measure.

To launch probe-response attacks, there are two prerequisites: one is able to launch
active attacks as probes and the other is able to access responses from targets so as to
identify the artificial probes again. In TEIRESIAS, on the one hand, an outsider is able to

launch active attacks and use them as probes. However, our proposed retrieval mechanism
can prevent the outsider from viewing his initiated probes again. On the other hand, an
insider is able to access the retrieval reports while failing to launch active attacks. So,
an insider and an outsider may collude to launch a three-step second type probe-response
attack, in which the outsider starts probes and the insider identifies the probes from the
retrieved reports.

We use a concrete example to illustrate the attacks. Suppose an attacker, Eve, who is
an outsider with IP address 202.077.162.213 would like to inspect whether there is Sad-
mind_Amslverify_overflow vulnerability on a particular machine, Alice, whose IP address
is 172.016.112.050. Bob, is an insider colluding with Eve to launch this attack. We also
assume Alice, Eve and Bob all know the HTs described in Example 1.

• First, Eve launches a Sadmind_Amslverify_overflow attack directly to the Alice, who
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generates the first alert in Table 1 to represent Eve's attack.

• Second, Bob creates an artificial alert as the second alert in Table 1. Then Bob acts

as a normal contributor anonymizing the generated alert as the second alert in Table
2.

• Third, Bob uses [ E(N63997), Zc63997 = fk (E1 (N63997)) ] to query the correlated re-
sults about the artificial alert. Ideally, Bob retrieves a following .R-token pair:

E (Cn63963) —? !||CV63997

Based on above .R-token, Bob can recover the following attack scenario:

Prepare—For ?j-,/ ,~, % rrepare—r or /& [^N63963) ? a63997

Then Bob and Eve are able to work together and conclude there is a good chance that
the alert about Eve's attack is correlated with Bob's artificial alert and the real attack

scenario is shown as Figure 9. By observing the correlated alerts, Bob and Eve are
able to identify that Alice is vulnerable to the Sadm.ind_Amslverify_overfl.ow attack.

Figure 9: The Attack Scenario Reconstructed by the Collusion Attack

Apparently, the above three-step attack is more skillful and difficult to detect since it

just requires the outsider Eve to launch one active attack once, while the insider Bob always
operates as a normal contributor. Fortunately, the artificial alert is also correlated with the

alert contributed by Alice at the correlator side. Therefore, in the report retrieval procedure,
the correlated .R-token pair is returned to Alice as well. Consequently, the attack is still able
to be detected if Alice studies the retrieval report together with local network activity logs.
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More specifically, the above correlated .ñ-token pair is formatted as following to return to
Alice:

' 1 1 CjV63963 —> E(Cn63997)

Based on the i?-token, Alice is able to recover the following attack scenario:

Prepare—For? rrepare—ror t?/ ? /~t \a63963 *¦ E l^/V63997,)

Since the knowledgebase is known by Alice as well, she is able to notice that there

is much chance that the encrypted iü-token E' (Cn63997) is related to an FTPJPut attack
happened on her as shown in Figure 10. Through checking local network activity logs,
Alice is able to tell whether it is a really happened attack or a faked alert.

<§a*mnd_Amslverify_overfiowS396^ P^ FTP„Put J

Figure 10: The Attack Scenario Reconstructed to Discover the Collusion Attack
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Chapter 5

Implementation and Experiments of
TEIRESIAS

The implementation of TEIRESIAS is proceeded in three steps. The first step focuses on
the reimplement of a C++ version correlator based on the Ning et al's correlation scheme.
The second step involves the construction of function-level applications of SEKS and PEKS
written in C++. In the third setup, through integrating function calls to the correlator, which

are two blocks developed in the previous two steps, we realize user-level applications of
TEIRESIAS. These applications perform operations of different procedures in TEIRESIAS
and are provided to the different end-user (i.e., contributor, S'-token generator, correlator,
and data server).

More specifically, the construction of SEKS application is based on the following cryp-
tographic primitives: pseudorandom generator G and pseudorandom function F are built
by using XCBC-MAC [29]; deterministic encryption algorithm E(N) works with AES
in ECB mode. The construction of PEKS application leverages the Identity Based En-
cryption [14] algorithms implemented in the MIRACL library [2]. In the applications, we
adopt the well-known Tate Pairing [58], which is the heart of the PEKS encryption and
test processes. Based on the MIRACL library, we create an extension that performs PEKS
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operations, in which a 512-bit prime ? is used for effective 1024-bit security, and G1 and
G2 are groups on the supersingular elliptic curve y2 = x3 + ? mod ? with 160-bit group
order q — 2159 + 217 + 1 a prime which divides p. We also use 232 bits randomness, and
SHA-256 for hash operations.

All simulations are performed on a desktop with hardware setting Intel(R) Core (TM)2
2.13GHz CPU (64-bit processor) and 2GB RAM. The programs run on Windows XP
Professional operation system with ADO database connection to a Microsoft SQL 2000
database server.

5.1 Efficiency Issues

In this section, we describe several approaches that are utilized in our implementation to
improve the efficiency of TEIRESIAS.

5.1.1 Bilinear Pairing

The most expensive computational operations used in TEIRESIAS are the calculation of
bilinear pairings. In our implementation, the time consumption of a pairing operation
e(P, Q) (P is a point on the curve over Fp, Q is a point on the quadratic extension field
Fp2 ) is 13 milliseconds.

In TEIRESIAS, the operations of bilinear pairing are utilized in two phases, i.e., to
anonymize AlertType attribute by calculating t = e(Hi(Wrat, hr)) in the anonymization
phase, and to match PEKS ciphertexts with ^-tokens so as to generate His by computing
#2(e(T(W¿et), ^)) (in Algorithm 1, or H2(e(T(WJkat), g**)) and H2(e(T(W?P), g"))m
Algorithm 2) in the alert correlation phase, respectively.

In the anonymization phase, an alternative approach to speed up the encryption is to
use pre-computation by storing the fixed pairing parameter (i.e., hr in e(Hi(Wrat, hr)) if
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a contributor chooses to use a same random secret r for a bunch of alerts). This approach

can enhance the computation of a Tate pairing 57% faster than without pre-computation in
our implementation.

Nevertheless, the efficiency of the correlation procedures is the key in reality. In both

schemes, it takes TTime = Tprerequisite+TConSequenœ to generate His for all incoming alerts,
where

NpEKS

J Prerequisite = J Pothers "T" / _, J Rate *¦ ·< * PTokens
i=l

NpEKS

¦'¦Consequence J C'others "G / _, J Rate X ^* CTokens
i=l

In the above equations, Tpate is defined as the time consumption to perform one time

PEKS ciphertext and ¿j-token matching, which includes one time pairing computation;

Npe?s is the number of PEKS ciphertext attributes in all anonymized alerts; NPTokens and
^CTokens ^^ tne numbers of /S-tokens have been tested before discovering the right match
of each PEKS ciphertext to generate the corresponding prerequisite and consequence at-
tribute, respectively. Tpothers and Tcothers are the time consumptions of the rest of the oper-
ations (e.g., Hash) to generate prerequisites and consequences, respectively. Note that pre-

computation cannot be applied here since the pairing parameters are not fixed. However,

we can speed up by deploying two parallel servers to generate the prerequisite and conse-

quence instance SetS and the final time Consumption IS MAX {Tprerequisite-, ^Consequence]¦·
Recently, researchers proposed various optimization approaches to enhance the effi-

ciency of bilinear pairing, such as choosing different groups, computation fields or pair-

ing algorithms, or even, a combination of these approaches. Regarding TEIRESIAS, the

current implementations are also limited by our present knowledge and devices: if adopt-

ing more efficient pairing algorithms like Eta Pairing [38] or hardware implementation
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of some pairing algorithms like the jobs of Bilinear Pairing IP Core [40] which realized
EtaJT pairing over F397 in just 8.17 microseconds (µß) for a pairing computation, better
efficiency can be expected from our system. For this reason, we also treat all pairing as
"black box" and calculate our system's time consumption without pairing in section 5.3,
to further estimate the expected efficiency performance of our system. We leave the job of

more detailed optimizations to our further researches and implementations.

5.1.2 Indexing

The indexing technique adopted in our implementation is able to benefit TEIRESIAS from
two aspects: achieving better efficiency (by minimizing bilinear pairing times) and provid-
ing stronger privacy protection (of knowledgebase).

The idea is based on the observation that the .S-token list consists of two types of tokens
as shown in Table 3. Type A tokens are generated from all possible AlertType, and type B
tokens are the possible prerequisites or consequences of each AlertType. More specifically,
any AlertType attribute generated by an IDS belongs to type A, while a token belonging to
type B is used to link two type A alerts in the correlation algorithm. Be aware that, at the S-
token generation phase, we index all ¿"-tokens accordingly. Afterward, we use the indexes
of type B tokens to indicate prerequisites and consequences of a type A token instead of
ciphertexts.

Therefore, when generates a Hyper-alert instance, once an alert's AlertType has been
matched with a type A 5-token, instead of spending extra matching operations several
more times to identify its' prerequisite and consequence attributes by matching with type
B tokens, we just need to copy the index numbers indicated in the knowledgebase and
put them in the corresponding attributes, which greatly decrease the computation workload
caused by matching operations.

60



Meanwhile, indexing of prerequisites and consequences can provide better knowledge-
base privacy protection. Since in the knowledgebase and any one of His, the representation
of prerequisite and consequence attributes are just randomly assigned index numbers by
the ¿"-token generator without patterns to be tested by attackers, which means no one is
able to learn the knowledgebase masked by the ¿-token generator simply by observing the
indexed knowledgebase.

Table 3: Classified and Indexed ¿-Tokens
Index No. ¿-token Type

T(ExistService) B

T(GainAccess) B
15 T(OSSoIaHs) B
22 T(SystemCompromised) B
25 T(VulnerableSadmind) B
33 T(FTP_Put)
45 T(Sadmind_Amslverify_overflow)

5.1.3 Example 3

With index numbers, HTs in example 2 can be represented as following:

T(Sadmind_Amslverfiy_overflow) =

({DestIP},

25(DestIP) ? Ib(DeStIP),

{o(DestlP)})
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T(FTP_Put) =

({DestIP, DestPort},

5(DestIP, DestPort) ? 6(DestIP),

{22(DestIP)})

The above HTs facilitate correlator generating following His:

PEKS(Sadmind_Amslverfiy_overflow) =
({HMAC(172.016.112.050)},

25(#MAC(172.016.112.050)) ? 15(#MAC(172.016.112.050)),

{6(#MAC(172.016.112.050))}).

PEKS(FTP_Put) =

({#MAC(172.016.112.050), 32773},

5(#ikL4C(172.016.112.050, 32773)) ? 6(ffMAC(172.016.112.050)),

{22(#??(7(172.016.112.050))})

Similarly, the underlined parts of above His guide correlating these two alerts. It is also can
be demonstrated from the above expressions, on the one hand, the bilinear pairing times are
reduced by directly using an index number to represent each type B ¿"-token. On the other
hand, the accuracy is preserved and privacy is enhanced during correlation procedure.
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5.2 Experiments

To evaluate the efficiency and accuracy of adopting the TEIRESIAS protocol in correlating
IDS alerts, we perform a series of experiments using the DARPA 2000 intrusion detection
scenario specific dataseis (LLDOS 1.0 and LLDOS 2.0.2). LLDOS 1.0 contains a series

of attacks in which an attacker probes, breaks-in, and installs the components necessary
to launch a Distributed Denial of Service (DDOS) attack, and actually launches a DDOS
attack against an off-site server. LLDOS 2.0.2 includes a similar sequence of attacks run
by an attacker who is more sophisticated than the trusted one.

Table 4: Correlation Results of Ning et.al's Scheme
LLDOS 1.0 LLDOS 2.0.2

Dataset(Alerts No.) DMZ (891) Inside (922) DMZ+Inside(1813) DMZ (430) Inside (494) DMZ+Inside (924)
#A 57 44 102 13 19
#i 125 161 446 29 37

Trims (second)

As recorded in Table 4, Table 5 and Table 6, we conduct the following three sets of
experiments based on the alerts generated by a RealSecure Network Sensor [39] which

is feed with DARPA 2000 dataseis. First, to set the reference, we test the Ning et.al's
correlation scheme in our environment (in Table 4). Second, we process alerts by using
the basic scheme (in Table 5 and Table 6). Third, considering the particular circumstances
when the IP addresses in alerts can be abstracted into a same external network address, we

can choose only PEKS part of the binaries from the HMAC of the original IP address to
further improve the efficiency of His generation. In the advanced scheme 1 and advanced
scheme 2 (in Table 5 and Table 6), we set to PEKS all 32 bits and last 8 bits IP binaries,

respectively.

In Table 4, we record fAlerts as the total number of alerts extracted from alert sets;

#Pairs dénotâtes number of the alert couples discovered from extracted alerts; Trime —
MAX{TPrerequisite, Tccmsequence} represents the time needed to generate His. In Table 5
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and Table 6, we also record #'MeTts, #'Pairs and T'Time to represent results w.r.t correlation
algorithm of basic scheme and advanced schemes on anonymized alerts, respectively. With-
out loss of consistency, we continue use symbols with the superscript (') to denote results

w.r.t TEIRESIAS following. #'Test = {#'Prereguisite, ^'consequence} are the total number of
test functions called to match all the PEKS attributes (i.e., AlertType, SrcIPaddress and Des-

tIPaddress), while #'AlertType = {#'Prerei¡uiaite, inconsequence} ^ the number of test func-
tions called to match AlertType. Similarily, T'Test = MAX{T'Prerequisite, T'Consequence} are
the total time consumption of the all matching functions and T'Pairing = MAX{TPrerequisite,
^Consequence} ^0 me total time consumption of bilinear pairings which are included in the
matching functions.

Table 5: Correlation Results of TEIRESIAS and Usability Metrics
Scheme DataSet (Alert No.) #:Test(AlertType) Mfi

LLDOS 1.0

Basic Scheme
LLDOS 2.0.2

DMZ (891) 57 125 { 7165, 8099 } {7165,8099 ; 100%
Inside (922) 44 161

DMZ+Inside(1813)
{ 7266, 8561 } 7266, 8561 } 100%

102 446 {14431,16660} {14431, 16660) 100%
DMZ (430) {3126,3618 )
Inside (494)

{3126,3618 } 100%
13 29 { 3881,4560} 3881,4560} 100%

DMZ+Inside (924) 19 37 (7007,8178 ; [7007,8178 } 100%

125
161
446

29
37

LLDOS 1.0
DMZ (891) 57 125 { 34269, 49667 {7165,8099] 100%
Inside (922) 44 161 { 36706,51249} { 7266, 8561 } 100%

Advanced Scheme 1
DMZ+Inside (1813) 102 446 { 70975, 100916}

DMZ (430)
{14431, 16660} 100%

LLDOS 2.0.2
{ 16566, 23906 ] {3126,3618 ; 100%

Inside (494) 13 29 { 19401, 26928 ¡
DMZ+Inside (924)

{ 3881,4560} 100%
19 37 { 35967, 50834 } {7007,8178 } 100%

125
161
446

29
37

DMZ (891) 57 125
LLDOS 1.0

{13941, 18491}
Inside (922)

(7165,8099) 100%
44 161 { 14626, 19233} {7266,8561} 100%

Advanced Scheme 2
DMZ+Inside (1813) 102 446 {28567, 37724}

DMZ (430)
(14431, 16660} 100%

LLDOS 2.0.2
{6486, 8690} {3126,3618} 100%

Inside (494) 13 29 (7761, 10152} (3881,4560) 100%
DMZ+Inside (924) 19 37 {14247,18842} {7007,8178} 100%

125
161
446

29
37

5.3 Evaluation Metrics

We use four metrics to evaluate alert correlation with TEIRESIAS in comparison with Ning
et.al's scheme.
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Table 6: Time Consumptions and Efficiency Metrics
Scheme DataSet (Alert No.) ??™ (second)" TTe3t (second) TpaiHny (second)" ^Expected (SCCoñd) ME< ME

LLDOS 1.0

Basic Scheme
LLDOS 2.0.2

DMZ (891) 112 108 107
Inside (922) 118 114 112

DMZ+Inside (1813) 230 222 219
DMZ (430) 50 48 47
Inside (494) 63 61 60

DMZ+Inside (924) 113 109 107

37
39
33
25
32
38

DMZ (891) 693 669 659
LLDOS 1.0 Inside (922) 715 690 681

Advanced Scheme 1
DMZ+Inside (1813) 1416 1358 1338

DMZ (430) 333 322 317
LLDOS 2.0.2 Inside (494) 375 362 357

DMZ+Inside (924) 709 683 673

35
35
79
16
18
37

231
238
202
167
188
236 12

DMZ (891) 261 247 244
LLDOS 1.0 Inside (922) 272 257 253

DMZ+Inside (1813) 538 506 498
Advanced Scheme 2 DMZ (430) 123 116 114

LLDOS 2.0.2 Inside (494) 143 136 134
DMZ+Inside (924) 266 253 249

14
19
40

17

87
91
77
62
72
89

Metrics M%£cro and M££cro: Usability

we use metric M££CTO and metric Mg¿cro from both macro and micro aspects to
evaluate the Completeness (All valid correlation alerts discovered by TEIRESIAS
are the same as Ning et.al's scheme) and Correctness (Each correlated alert pair
discovered by the TEIRESIAS is a valid link and is the same as the discovery of
Ning et.al's scheme).

M1cc _ #Merts ? #pairs jg (J6A116J as a percentage which involves number of^Alerts TTPairs

extracted alerts and number of coupled alerts.
#'

M™¿cr° = Y^i^lTS Mi is defined to dig into each discovered prepare-for alert pair and
M™¿cr° equals to the number of exactly same matched couples in Teiresias compared
to Ning et.al's scheme. For any (one of #'pairs) HI pair P[ —> C\ correlated by
TEIRESIAS, if we can find a HI pair P¿ —> Q correlated by Ning et.al's scheme
have the same global AlertID assigned during per-process process, the corresponding
Mi = 1, otherwise M¿ = 0.

• Metric ME: Efficiency
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Me = ^^ evaluates the Efficiency through time consumption in TEIRESIAS com-
pared to that of Ning et al's scheme.

• Metric MEE : Expected Efficiency

By adopting various technologies we can achieve more efficient performance to
t'

power the system. Here, we estimates the Expected Efficiency MEE = E*pected byJ- Time

adopting hardware implementation of bilinear pairing as the work in [40] instead of

our current software implementation. TExpected can be computed as T'Time-T'Pairing +
#'Test* (8.17 XlO"6).

5.4 Analysis of Experimental Results

Through usability metrics, in Table 4 and Table 5, M^¿cro = 100% and M^¿cro =
#Pairs = Fpairs f°r eacn dataset each scheme demonstrates our system with TEIRESIAS
still preserves no wore usability than the origional correlation algorithm based on these
dataseis.

Through the efficiency metrics, in Table 6, the comparison of ME and MEE illus-

trates that the efficiency was enhanced by adopting more more efficient pairing imple-
mentations. More specifically, to handle around 1000 alerts without pairing will cost
?t?p?e~ ^Pairing ~ 6, 36 and 17 seconds for three schemes, respectively. Based on expected
hardware environment, we can save around 95%, 94%, and 93% time for three schemes
compared to the software implementation, i.e., around 1000 alerts cost no more than 6
seconds, 37 seconds and 17 seconds for the three schemes, respectively. Moreover, we find
that test functions cost majority of total time through evaluating -^1- > 96%, 96% and^ Time

94% for three schemes, respectively. The fact that most of the time computations are pair-
t'

ings is further proven by evaluating Pa,iring > 98%, 98% and 98% for all three schemes,
^ Test

respectively.
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Two more efficiency related observations from experiential results are:

• In Table 5, ifTest = #'Test(AierTyPe) f°r tne basic scheme since all matching compu-
tations are used to math AlertType attribute. We notice that the average pairing times

which can be computed by Te'«·*""^«««^ TeSt.Consequence for advanced schemes ?
and 2 are roughly increased to 4 and 1 times compared to the basic scheme. The
underlying reason is that the average matching times of the basic scheme is about

16 (including generating prerequisite and consequence instance), which equals to the
pairing times for each additional 8 bits of both SrclPAddress and DestiPAddress

binary.

• In Table 5, the increase of matching times, which equals to ifTest, is not a strict lin-
ear function that has alert numbers as input variable. The reason is two-fold: first,
the knowledgebase is not (the knowledgebase in our simulation is defined for re-

search purposes) and it is not possible (new attacks emerge frequently) to defined
comprehensively. The consequence is that once an AlertType attribute cannot be rec-

ognized, the matching operations of IP address parts can be ignored. Actually, 60
out of 891 alerts from DMZ dataset and 24 out of 922 alerts from Inside dataset can

not be identified in LLDOS 1.0 scenario; 11 out of 430 alerts from DMZ dataset

and 12 out of 494 alerts from Inside dataset cannot be identified in LLDOS 2.0.2

scenario. Second, the knowledgebase itself affects pairing times. For example, to
generate a Hyper-alert Instance after identifying knowledgebase T(Mstream_Zom-

bie)=({DestIP, SrcIP}, 22(DestIP) ? 22(SrcIP), fl7(null)f) requires 32 times of pair-
ing computation to identify SrcIPAddress and DestlPAddress. However, to generate
a Hyper-alert Instance after identifying knowledgebase T(Sadmind_Amslverfiy_over-

flow) = ({DestIP}, 25(DestIP) ? 15(DeStIP), f6(DestIP)}) only requires 16 times of
pairing computation to identify DestlPAddress. These above two factors can poten-

tially explain the reason why #'T. of LLDOS 1.0 DMZ dataset with 891*¦ •/hi "!¡,Prerequisite
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alerts is even more than ifTest of LLDOS 2.0.2 DMZ+Inside dataseis with 924 alerts.

5.5 Illustration of the Cross-domain Alert Correlation

The charming of cross-domain alert correlation lies that it potentially fuses distributed in-
formation together and explores the limited scope of local analysis. In the simulation, we
input both DMZ and Inside dataseis and the advantage of cross-domain alert correlation
can be demonstrated from correlated results in Figure 1 1 . Compared to the correlation re-
sults generated from separate DMZ and Inside dataset in Figure 12 and Figure 13, more
information has been extracted, which can be reflected by the number of correlated alerts
and the number of prepare-for pairs recorded in Table 5.
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Figure 11: LLDOS 2.0.2 Cross-domain (DMZ+ Inside) Correlation Result

In Figure 11, the ellipses with oblique lines are the alerts from DMZ dataset, and the
blank ellipses are the alerts from Inside dataset. The arrows are used to represent prepare-
for relationships read from left to right. As reflected, on the one hand, one more alert
FTP_Syst852 is extracted from Inside dataset and correlated with two alerts Sadmind_Am-

slverfty_overflow564 and Sadmind_Amslverfiy_overflow568 extracted from DMZ dataset,
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Figure 12: LLDOS 2.0.2 DMZ Dataset Correlation Result
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Figure 13: LLDOS 2.0.2 Inside Dataset Correlation Result

on the other hand, five more cross-domain prepare-for couples: Email_Ehlo819 —»· Email_-
Turn887, FTP_Syst852 ->¦ Sadmind_Amslverfiy_overflow564, FTP_Syst852 -»· Sadmind_-
Amslverfiy_overflow564, FTP_Syst852 —> Sadmind_Amslverfiy_overflow568, Sadmind_-
Amslverfiy_overflow227 —> FTP_Put883, and Sadmind_Amslverfiy_overflow23 -> F7P_-
Put883 are discovered from extracted alerts, therefore, Figure 1 1 is not a simply the ad-
dition of two subgraphs (i.e., Figure 12 and Figure 13) output by two datasets. A similar
observation also can be found by inputing both DMZ LLDOS 1.0 and Inside LLDOS 1.0
datasets as indicating in Appendix A, B and C.
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Chapter 6

PEKSrand

In this chapter, we describe and analyze the developed extensions (i.e., PEKSrand-BG and
PEKSrand-SG) that provide stronger privacy (i.e., predicate privacy and statistics privacy)
protection in PEKS.

6.1 Basic Ideas of PEKSrand

We observe that, PEKS's incompetence in ensuring predicate privacy is due to two facts.
On the one hand, the keywords used to create trapdoors in the targeted applications (e.g.,
intelligent email routing) are meaningful dictionary words. On the other hand, there exists
a deterministic one-to-one mapping between a keyword and a trapdoor.

Based on this observation, our first idea is to randomize the original keywords so that
the transformed keywords used to generate the trapdoors are not meaningful dictionary
words any more. A naive solution is that, user R (i.e., the receiver) and all other users
(i.e., senders) share a secret N, which is concatenated with original keywords (e.g., the
key refreshing solution proposed by Baek, Safiavi-Naini, and Susilo [8]) or is used as the
key for hashing original keywords. However, such privacy protection is frail, since the
protection of the shared secret is difficult. If any sender is compromised, which is very
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likely given that the size of the set of senders is usually large, this protection relies entirely
on the security of the semi-trusted delegate. Moreover, it is also not suitable for scenarios
where the membership of the set of senders might be dynamic, which results in additional

costs of key/secret management. To address this issue, we limit the entities that hold the

secret used for randomization to only one or a small set of proxy servers, which are well
protected and thus are more secure than normal senders. This method also greatly reduces
the cost of key/secret management. The PEKSrand-BG Scheme is built upon the first idea.

Another idea is to map a keyword to multiple trapdoors instead of one. It can weaken
the effectiveness of statistical guessing attacks at the cost of the increasing overhead of
storing trapdoors at the semi-trusted delegate. The PEKSrand-SG Scheme is developed
through a combination of both ideas.

In our design, besides the three types of entities in the original PEKS system, we add a
new type of entities called proxy server. In the remained parts of this paper, to avoid con-
fusions, we denote searching server and proxy server as gateway and proxy, respectively.

We assume that, both the proxy and the gateway are semi-trusted. In other words, they
do not launch active attacks (e.g., probe-response attacks [10,46,62]) or collude with any
malicious user, unless being compromised. We also assume that there exist certain security
mechanisms that can detect the compromise that occurs on any proxy or the gateway and
recover it within a short period. Hence, we assume that, although the adversary is capable of
compromising the gateway or a proxy, she cannot control both all proxies and the gateway
at the same time. We argue that this assumption is reasonable in practice, in particular in
the PEKSrand-SG scheme, where a set of proxies instead of one are used.

6.2 The PEKSrand-BG Scheme

The framework of the PEKSrand-BG scheme is illustrated in Figure 14. We denote the
receiver and the sender as Alice and Bob, respectively. Now, Bob wants to send a message

71



®
?3?

Alice
Bob

T
\j. Trapdoors Tw

Muhipticatrv« Inverses
GatewayPEKS Ciphertexts

©t). PEKSrand Ciphertexts t~íí
o

fc% Matched ResultsX.

Figure 14: The Framework of the PEKSrand-BG Scheme

(e.g., an email) to Alice, who relies on the gateway to route the incoming messages based
on the keywords contained in the messages.

In PEKSrand-BG, to be resistant to brute-force guessing attacks, Alice transforms the
original meaningful keywords using a secret during the trapdoor generation. To guarantee
that the searching function is still workable with randomized keywords without any inter-
action between Bob and Alice, we employ a proxy which sits between senders and the gate-
way. The proxy's major responsibility is to pre-process the PEKS ciphertexts received from
the senders before forwarding them. We specify two hash functions Hx : {0, 1}* —> Gi
and H2 : G2 —? {0, l}los*>. The detailed procedures are as follows.

• KeyGen(s): Alice picks a random number a e Z* and a generator g of Gi, and then
outputs a public/private key pair Ap110 = [g, h = ga] and Awiv — a. Afterward, Alice
chooses a secret number k e Zp and calculates it's multiplicative inverse as Ar1 G Zp
which satisfies k * Ar1 (mod p) = 1. At the end of this step, Alice sends k~l to the proxy
through a secure channel between Alice and the proxy;

• Trapdoor(Apriv, x,k): Given the private key Apriv = a, the secret k and a keyword x,
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Alice produces the trapdoor Tx = Hi(x)a*k and delivers it to the gateway through another
secure channel between Alice and the gateway;

• PEKS(Apub, x): For a keyword x, Bob first picks a random number r E Z*, and
computes t = e(Hi(x), hr) G G2, then outputs the PEKS ciphertext S = [gr, H2(t)]. Then,
the PEKS ciphertext S is sent to the proxy;

• PEKSrand(S, A;-1): For each PEKS ciphertext S received, the proxy updates it with
the multiplicative inverse number Ar1. More specifically, the transformed PEKS ciphertext
(i.e., the PEKSrand ciphertext) is calculated as S' = [gr*k~1 , H2(t)]. Afterwards, the proxy
forwards S' to the gateway.

• Test(S', Tx): Let each PEKSrand ciphertext S' = [A, B]. The gateway tests if
H2(e(Tx, A)) = B. If so, then it is a match otherwise it is not match.

6.3 The PEKSrand-SG Scheme

Although PEKSrand-BG is efficient and can defend brute-force guessing attacks, we still
have a few concerns about the security of this scheme. In PEKSrand-BG, we raise the
threshold of breaking the system through compromising online server(s) from a single
gateway in PEKS to two servers (i.e., a gateway and a proxy). However, in security-critical
scenarios, we may want to further raise the bar. The other concern is that, the PEKSrand-

BG scheme is still vulnerable to statistical guessing attacks. It is due to the fact that, the
PEKSrand-BG scheme breaks only the deterministic and direct mapping between a mean-
ingful keyword and the corresponding trapdoor through randomizing the original keyword
but not the indirect one-to-one mapping between the original keyword and the new trap-
door. Hence, the frequency of the appearance of a specific keyword is the same as that
of the corresponding trapdoor or predicate. Consequently, in the scenarios where the ad-
versary has extra knowledge on the statistical distribution of keywords, the PEKSrand-BG
scheme fails to protect predicate privacy.
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For the first concern, a naïve solution of maintaining a few proxies holding the same
secret k does not work. Even worse, it actually increases the risk of server compromises.
Therefore, we think about increasing both the number of proxies and the number of secrets
stored among the set of proxies. As to the second concern, our solution is to transform

the one-to-one mapping, either direct or indirect, between an original keyword and a corre-
sponding trapdoor in PEKS into a one-to-many mapping. To address these two concerns, in
PEKSrand-SG we employ a combination of two methods: Proxy Farm and Random Walk.

A proxy farm consists of N proxies, each of which stores a distinct multiplicative in-

verse. In a simple application of this proxy farm method, upon receiving a PEKS ciphertext,
the proxy performs the same type of ciphertext transformation as in PEKSrand-BG, with its
own multiplicative inverse. Afterwards, the proxy forwards the resulting PEKSrand cipher-
text to the gateway. In such a scheme, the PEKSrand ciphertexts corresponding to the same
keyword are verified by distinct trapdoors at the gateway, if they are generated by different
proxies. In other words, the original one-to-one mapping has been converted into a one-to-
F mapping, where F is an important parameter related to privacy protection. As a result,
the gateway has to store all the F trapdoors corresponding to the same keyword. Hence, the
storage overhead at the gateway is increased by a factor of F. In addition, we need F prox-
ies in the proxy farm. Although the storage overhead is reasonable in practice1 , it is costly
to maintain a proxy farm with a large size, considering the level of security protection and

trust level required. To mitigate this overhead, we integrate the idea of random walk into

the proxy farm method. Now, a ciphertext will be transformed multiple times with distinct

inverses instead of only once before it is finally forwarded to the gateway. Let U and u

denote the number of proxies in the proxy farm and the number of times that a ciphertext
is transformed with distinct inverses. In such a new method, with a proxy form with size
U, we can achieve the same level of privacy protection as that is provided by a proxy form

'Please refer to Section 6.5.2 for more details.
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with size C0 in the simple application of this proxy farm method. The framework of the
PEKSrand-SG scheme, which incorporates the ideas of proxy forma and random walk, is
shown in Figure 15.
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Figure 15: The Framework of the PEKSrand-SG Scheme

6.3.1 Procedures of the PEKSrand-SG Scheme

The PEKSrand-SG scheme consists of the four phases: setup, encrypt, random-walk, and
keyword-searching.

• Setup To initialize the whole system, the following system-wide parameters are de-
fined: U is the number of proxies that form the proxy farm, while u is the number of

distinct proxies involved in a random walk; the security parameter s determines the
size, p, of the groups G\ and G2, and e is a symmetric bilinear pairing between two
groups and defined as e : Gi ? Gi —> G2. Similar to PEKSrand-BG, to generate a
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system wide public key pair, Alice picks a random a G Z* and a generator g oí Gi,

and outputs Apub = [gih — ga] and Apriv = a.

To initialize the PEKSrand function in a proxy farm consisting of U proxies, Alice
chooses U secret numbers (fc¿, for i = 1, 2, . . . , £/") and calculates the correspond-

ing multiplicative inverses k¡~ 1 that satisfies /c¿ * kll(modp) = 1. Then, Alice sends
each proxy a distinct < i, fcr1 > pair through a secure channel.

For each keyword ? specified by Alice, C¡} trapdoors corresponding to x, denoted as
Ti(j e {1, 2, ... , O}}}), are generated. The trapdoors TJ's are calculated as follows:

T>= H1(X)0*11^ *, for je {1,2,..., C%} (1)

where V7 is a subset of {1, 2, . . . , £/} with u elements. Let Ij denote a string that
concatenates all elements in Vj with a predefined delimiter, such as ":". For example,
given that Vj = {2, 4, 7}, Ij is denoted as "2:4:7". Finally, Alice distributes all C£
pairs of < Ij, Ti > to the gateway through a secure channel.

• Encrypt In the encrypt phase of PEKSrand-SG, Bob encrypts the keyword ? in the
same way as in PEKSrand-BG and outputs the PEKS ciphertext S = [gr, H2(t)}.
Afterwards, S is forwarded to a randomly chosen proxy in the proxy farm.

• Random-Walk Without loss of generality, we assume that proxy P\ is the first proxy
receiving the PEKS ciphertext S and Pi holds the inverse fcf1. Px transforms the
ciphertext with k[ x and outputs S\ = [gr*ki , H2(t)]. Then, proxy P\ generates a
< E\ , Si > pair, where Ei is the index of the multiplicative inverse held by proxy
Pi in the format of a string (i.e., "1" in this case), and forwards the pair to a randomly
chosen proxy in the farm other than itself.

Without loss of generality, we assume that the path of the random walk within the
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proxy farm is P1 —> P2 ->...-+ P11, and proxy P¿ holds a multiplicative in-
verse fcr1 for i = 1, 2, . . . , u. For the following random walk process, we de-
note the PEKSrand ciphertext pair that a proxy P¿ receives from another proxy as
< Ex, Sx = [gr*ki *fc2 "¦*** , iÏ2 (í)] > where ? represents the number of proxies
that have performed a transformation on the ciphertext so far during the random walk.
Proxy Pi first checks whether the index of its multiplicative inverse is indicated in Ex.
If it is true, it means that proxy P1 has previously performed a transformation on this
ciphertext. In such a case, P¿ simply forwards the received pair to a randomly chosen
proxy again without any modification. Otherwise, proxy P¿ will update the pair as
< Ex+1, Sx+1 = [gr* 1 * 2 '"* x * ^+v , H2(t)] >, where Ex+1 is the concatenation
of Ex and the index of the multiplicative inverse of P1, separated by the predefined
delimiter. Afterwards, proxy P1 checks the number of the indexes of inverses that

appear in Ex+1. If it is less than u, Pi forwards the pair to a randomly chosen proxy
in the farm other than itself. If it is equal to u, the random walk process is complete,
and proxy P1 will forward the < Eu, Su > pair to the gateway.

• Keyword-Searching The whole trapdoor set that Alice assigns to the gateway can be
divided into C^ subsets, each of which contains d trapdoors for d keywords that Alice
chooses and is corresponding to a unique combination of u proxies. Each subset can
be labeled with the corresponding I3; for j e {1, 2, . . . , u}. Upon receiving a
< Eu, S11 > pair from the last hop of the proxy farm, instead of searching the whole
trapdoor set, therefore, we may first identify the subset of trapdoors corresponding to
the combination of proxies that have performed the transformation operation on the
ciphertext. It can be done by simply comparing X11 with the J/s of subsets that the
gateway receives from Alice.

Once the subset of trapdoors is determined, the gateway performs the keyword search-
ing step in the same way as in the PEKSrand-BG scheme. Let S11 = [A, B] denote the
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received PEKSrand ciphertext. More detailedly, the gateway executes Test(Su, T¿)
to verify whether ?2(e(?£, A)) = B is satisfied. If so, it means that the original
plaintext contains the keyword corresponding to the trapdoor used in the verification,
i.e., x. The correctness of the verification is shown as follows.

H2(e(T¿,A)) = H2(e(H1(x)a*kl*k2*-*kn,gr*kï1*kï1*-*kn1))
= Ho(e(H-i(x) o)Q*':i*fc2*--'*fcil*y*fc]"1*A;j1* ¦••*feñ1\

= H2Ie(HAx) n)a*r*kí*kí1*k2*k21*-**kn*kñ1\

= H^e(H1(X), g)a*r)
= B

6.4 Security and Privacy Analysis of the PEKSrand Schemes

In this section, we analyze the level of security and privacy achieved in the PEKSrand-BG
and PEKSrand-SG schemes.

6.4.1 Security Analysis

The security of both PEKSrand schemes relies on the difficulty of the Elliptic Curve DLP:
suppose gx and gx*k~x (resp. gx*k) are two points on an elliptic curve where both k~l
(respectively, k) and ? are scalare. Given gx and g**^1 (resp. gx*k), it is computationally
infeasible to obtain Ar1 (respectively, k) , if k~l (resp. k) is sufficiently large.

In the PEKSrand-BG scheme, due to the usage of randomized keywords, in order to
break the system, e.g., compromising data confidentiality, the adversary has to compromise
both the gateway and the proxy. In the PEKSrand-BG scheme, the protection is further
enhanced in the sense that the adversary has to compromise both the gateway and at least
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u proxies.

6.4.2 Privacy Analysis

As an extension of PEKS, both variants of the PEKSrand scheme inherit PEKS 's capability
of ensuring plaintext privacy. Hence, in this paper we limit privacy analysis to the protec-
tion of predicate privacy, more specifically, privacy protection against brute-force guessing
attacks and statistical guessing attacks. In addition, since these two types of attacks re-
quire the knowledge of trapdoors, which is only held by the semi-trusted gateway and the
receiver, in the following analysis we focus on privacy protection against the gateway.

• Protection against Brute-force Guessing Attacks The root cause of brute-force

guessing attacks against the original PEKS scheme is that, a predicate represents a
deterministic and direct mapping between the original keyword and a trapdoor. In
both variants of the PEKSrand scheme, such a mapping is changed. More specifi-
cally, the mapping represented by a predicate is neither deterministic (i.e., the origi-
nal keyword is randomized before the generation of the trapdoor), nor direct (i.e., the
mapping between the original keyword and the trapdoor is indirect, although there
exists a direct mapping between the randomized keyword and the trapdoor). As a
result, they are robust against brute-force guessing attacks.

• Protection against Statistical Guessing Attacks Unlike brute-force guessing at-
tacks, in statistical guessing attacks the adversary has extra knowledge of the statis-
tical distribution of keywords. We observe that, in spite of the randomization of key-
words before trapdoor generation, in PEKSrand-BG there exists an indirect mapping
between the original keyword and the trapdoor that is generated from a randomized
instance of the original keyword. And such a mapping can be revealed through first
recording the history of trapdoor mapping during the keyword searching procedure
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and then comparing the frequency of a specific keyword, which is obtained from the
extra knowledge of the statistical distribution of keywords, with the frequency that

each trapdoor has been successfully matched. Hence, the PEKSrand-BG scheme is

vulnerable to statistical guessing attacks.

Since it is not feasible to limit the keyword usage at the sender side, we consider
to mitigate the observed matched frequency of trapdoors during keyword searching
phase at the gateway side. In the PEKSrand-SG variant, each keyword is mapped
to multiple trapdoors instead of one in PEKSrand-BG. Theoretically, the PEKSrand-
SG scheme is also vulnerable to statistical guessing attacks, since the expansion from
one-to-one mapping to one-to-many mapping is applied to all keywords. Therefore,

for two keywords X1 and X2, if the frequency of ?? is higher than that of x2, in
PEKSrand-SG the frequency of any trapdoor that is mapped to X1 is still higher than

the frequency of any trapdoor that is mapped to X2. For example, suppose that statis-
tically the frequencies of X1 and x2 are 20% and 10%, respectively. Assume that, a
proxy farm consisting of five proxies is deployed and each ciphertext has been trans-

formed two times before being forwarded to the gateway. Hence, each keyword is

mapped to Cf = 10 trapdoors, and statistically the frequency of any trapdoor de-
rived from X1 (i.e., 2%) is higher than that of any trapdoor derived from x2 (i.e., 1%).
However, intuitively, given the same number of total successful trapdoor matching2,
to distinguish two events with the statistical probability of 2% and 1%, respectively,
is more difficult than to distinguish two events with the statistical probability of 20%
and 10%, respectively. In the following, we seek the theoretical basis that supports
such an intuition and estimate the effectiveness of this method.

We begin with the entropy analysis [34]. We first define the mapping factor F as
2In the theoretical analysis, we ignore unsuccessful trapdoor matching due to two reasons. The adver-

sary's knowledge of the statistical distribution of keywords is defined in terms of all matched keywords.
Moreover, we argue that taking unsuccessful trapdoor matching into consideration actually introduces noise
to the statistical distribution and thus favor our goal of privacy protection.
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the number of trapdoors that are mapped to a single keyword. Hence, F is equal to
1 and Oft in PEKSrand-BG and PEKSrand-SG, respectively, where U and u denote
the number of proxies in the proxy farm and the number of times that a ciphertext
is transformed with distinct inverses. Let X = [X1, x2, . . . , Xk} denote the set of
all keywords that the receiver chooses. Let TBG = (T1, T2, ... , Tk} denote the set
of trapdoors corresponding to X in the PEKSrand-BG scheme. Let p¿ denote the
probability that keyword x¿ or the corresponding trapdoor T¿ is used. Hence, the
entropy of keywords X or trapdoors TBG in the PEKSrand-BG scheme, denoted as
EBG, can be calculated according to Equation (2).

k

EBG = ~^2 Pi log Pi (2)

Let TSG = {Tí, . . . , Tf, T¡,...,Tf,...,Tl,..., Tf] denote the set of trapdoors
corresponding to X in the PEKSrand-SG scheme. p¡ denote the probability that
trapdoor Tf is used. In the PEKSrand-SG scheme, each keyword is mapped to F
trapdoors evenly. Thus, we have p¡ = ?. Consequently, the entropy of keywords X
or trapdoors T5G in the PEKSrand-SG scheme, denoted as ESg, can be calculated as
follows.

E>° - -SS^°«>? = -SS?1?4
i=l j=X i=l j'=l

k k

= . - S?? log % = ~ 5^p<(losPi ~ los F)
¿=1 i=X

k k

= -^pdogpi + ^pilogF
i=X i=X

k

= EBG + J2PilogF = EBG + logF (3)
i=X
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According to Equation (3), compared to PEKSrand-BG, the entropy of keywords
X is improved by a value of log F in PEKSrand-SG. In addition, Equation (3) also
shows that, by increasing the mapping factor F, we can achieve better privacy pro-
tection on keywords, In practice, compared to entropy, probability is a more intuitive
representation of the privacy criteria. Hence, in the following we present the prob-
ability analysis so as to illustrate the trade-off between privacy and efficiency in a
more clear and intuitive manner.

To perform further analysis, we introduce a new concept called n-F !indistinguish-
able. Let ? denote the total number of successful trapdoor matching. Given a pair of
trapdoors TA and TB corresponding to keywords A and B, respectively, without loss
of generality, we assume that the frequency of A is higher than that of B according
to the statistical distribution of keywords. If the actual number of times that trapdoor
TB is matched is no less than that of trapdoor TA, we say that "the trapdoor TA is n-F
undistinguishable from the trapdoor T8". Hence, our design goal is to maximize the

probability of n-F undistinguishable, denoted as pn-F· Further, let p^EF and pfGF
denote the probability of n-F undistinguishable in PEKSrand-BG and PEKSrand-SG,
respectively.

If we view each trapdoor matching as an experiment with only two possible results
(i.e., "Ta is matched" and "Otherwise"), the probability of trapdoor TA is matched
kA times in a sequence of ? independent matching experiments can be calculated
using Equation (4) according to the binomial distribution.

pA„k = f(n, kA,pA) = CknApkAA{l - pA)n~kA (4)

where pA is the statistical probability that trapdoor TA is matched in the ? indepen-
dent experiments.
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Similarly, if we view each trapdoor matching as an experiment with only two pos-
sible results (i.e., "TB is matched" and "Otherwise"), among the remained ? — kA
independent matching experiments (namely, excluding kA independent experiments
matching TA), the probability of trapdoor TB is matched kB times, given that trap-
door Ta is matched kA times, can be calculated using Equation (5) according to the
binomial distribution.

Tl
PB-k = f(n-kA,kB, r—-pB)n — kA

where pB is the statistical probability that trapdoor TB is matched in terms of all ? ex-

periments including those experiments matching TA. Hence, p„Ep can be calculated
as shown in Equation (6).

? ?— kA

Pn-F = ^[f(n,kA,pA)* V f(n-kA,kB, r- · Pb)]
kA=0 kB=kA ?

?

kA=0

"S c'-^Pt)kB{1 - Ptr~kA~kB] (6)kB=kA ?-?? n-KA

In the PEKSrand-SG, the one-to-one mapping between an original keyword and a
corresponding trapdoor is transformed into a one-to-F mapping. Accordingly, the
statistical probabilities of any trapdoor T'A mapped to keyword A and any trapdoor

T'B mapped to keyword B are changed into p'A = ? and p'B = ?, respectively.
Hence, p%lF can be calculated according to Equation (7).
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? n—kA

Pn-F = ^2[f(n,kA,i/A)* S f(n-kA,kB, ™ ¦ p'B)}kA=o kB=kA n Ka

= S^F^a-^G"^*
kA=0
n—kA
V CkB \ npB l*BPl npB l"-fc4-fcRi m

kB=kA -kA\n-kA)Fl L {n-kA)F

Let ??% denote the probability of n-F undistinguishable in PEKSrand-SG, given any
possible pair of trapdoors TA and TB corresponding to keywords A and B, respec-
tively. According to Equation (8), we know that ??°_F = ??,SG/

F-

pn% = SS?«·^ = SS4·^^=^^ (8)F2
i=í j—l i=\ j=l

where pij denote that the probability of a specific pair that consists of the zth trapdoor
corresponding to keyword A and the jth trapdoor corresponding to keyword B is
chosen and p„_F denote the probability of n-F undistinguishable when such a pair is
chosen.

In Figure 16, we compare the probabilities of n-F undistinguishable in PEKSrand-BG

and PEKSrand-SG under four settings of pA and pB. As shown in Figure 16, p^F is
much higher than pB^F m all settings. Nonetheless, careful readers may notice that
in Figure 16 the probability of n-F undistinguishable may drop to a low level if ? is
big enough, i.e., by observing a large number of trapdoor matching records, even in
the PEKSrand-SG scheme.

To address this issue, we need to perform periodical secret refreshments, i.e., exe-
cuting the setup phase in PEKSrand-SG after executing a predetermined number of
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Figure 16: Probability Comparison of PEKSrand-BG and PEKSrand-SG (10-250)

successful trapdoor matchings, which we call the refreshing threshold. Apparently,
there exists a trade-off between privacy and efficiency. More specifically, Figure 17
shows the trade-off between the probability of n-F undistinguishable and the refresh-
ing threshold when pA = 30% and pB = 20%. Note that, given that the number of

proxies is fixed, to maximize the mapping factor F, we choose u = [fJ . According
to Figure 17, given a specific requirement on ?„2?, by slightly increasing the number
of proxies in the proxy farm, the refreshing threshold can be improved significantly.
For example, assume that we set the privacy requirement as pf^F > 0.5, Table 7
shows the maximum refreshing threshold satisfying the privacy requirement under
different settings of proxy farm and random walking. The mapping factor and the
refreshing threshold is denoted as F and TD, respectively, in Table 7. When the
setting of random walking is (U, u) = (5, 2), the maximum refreshing threshold is
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Figure 17: Tradeoff between Statistics Privacy and Storage Efficiency

only 53. By simply increasing the number of proxies to 10 and 11, the maximum
refreshing threshold is increased to 1367 and 2507, respectively. We argue that, such
refreshing thresholds are sufficient for many real applications, e.g., intelligent email
routing. A more detailed analysis about the overhead of the proposed scheme is given
in Section 6.5.

6.5 Efficiency Analysis and Empirical Results

Our PEKSrand implementation leverages the Identity Based Encryption [16] algorithms
implemented in the MIRACL library [2]. We adopt the well-known Tate Pairing, which
is the heart of the ciphertext generation, transformation, and testing processes. In our
extension of PEKS, a 5 12-bit prime ? is used for effective 1024-bit security, and G1 and G2
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Table 7: Mapping Factors and Refreshing Thresholds When ??^? > 0.5
(U, u)
(5,2)
(6,3)
(7,3)
(8,4)
(9,4)

(10, 5)
(11,5)

10
20
35
70
126
242
462

TD

53
108
189
379
683
1367
2507

TD/F
5.30
5.40
5.40
5.41
5.42
5.65
5.43

are groups on the supersingular elliptic curve y2 = x3 + ? mod ? with 160-bit group order
q = 2159 + 217 + 1, a prime which divides p.

We simulate the PEKSrand-BG and PEKSrand-SG schemes on a desktop with an In-
tel(R) Core (TM)2 2.13GHz CPU (64-bit processor) and 2GB RAM. The programs run on
Windows XP Professional operation system with ADO database connection to a Microsoft
SQL 2000 database server.

6.5.1 Computation Overhead

Compared to the original PEKS, in terms of computation, PEKSrand-BG introduces only
one additional exponential calculation per ciphertext at the proxy. In PEKSrand-SG, sim-
ilarly, each proxy involved in the random walking process performs only one additional
exponential calculation per ciphertext.

Note that, the number of trapdoor matching that the gateway needs to perform in
PEKSrand-SG is the same as that of the original PEKS. It is due to the fact that, the trap-
door matching process is limited to a subset that contains d elements, where d is the number

of keywords that Alice chooses, in spite that the total number of trapdoors is increased by a
factor of F. More specifically, the gateway needs to perform | trapdoor matching operation
on average. Hence, the only additional operation at the gateway is to identify the subset
that should be subject to the following trapdoor matching operation.
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On our testbed, an exponential multiplication and a trapdoor matching operation take 5
milliseconds and 13 milliseconds, respectively. And the operation of identifying a subset is
very efficient. It takes only 15 milliseconds in the worst case (i.e., U=U and F = 462).

Therefore, compared to the original PEKS scheme, the additional computation overhead
introduced by the PEKSrand schemes is negligible. Moreover, given a reasonable size
of keywords to be searched, the actual computation overhead is small in most real world
applications.

Table 8 shows the simulation results about the performance of the original PEKS and
two PEKSrand schemes. The sample set we used are 256 keywords extracted from the
Enron Email Dataset [43]. For each round, we randomly chose 50 out of 256 keywords and
encrypt them, and then record both the number of trapdoor matching operations performed,
as well as the exact time used at the gateway. Let #Tesi and TTime denote the number of

trapdoor matching operations performed to identify all 50 keywords chosen and the time
used that complete the keyword matching process. The results shown in the Table 8 are the
averages of 50 rounds.

______Table 8: Simulation Results
Scheme | #rest | TTime (Second)
PEKS I 6510 I 88.61

PEKSrand-BG 6510 88.61
PEKSrand-SG 6510 88^63

6.5.2 Storage Overhead

PEKSrand-BG has the same storage overhead at the gateway, since the number of trapdoors
assigned to the gateway in PEKSrand-BG is the same as that of PEKS. In contrast, in
PEKSrand-SG, the storage overhead is increased by a factor of F, while the original one-
to-one mapping in PEKS is converted into a one-to-F mapping.
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In our implementation, to achieve effective 1024-bit security, the size of a trapdoor is
128 bytes. Thus, given that there are 256 keywords in our simulation, the total storage
overheads of PEKSrand-BG and PEKSrand-SG at the gateway's side are 32768 bytes and
32768 *F bytes, respectively. We argue that, the storage overhead of PEKSrand-SG is still
acceptable in many real world applications, considering that nowadays it is common that
the hard drives of a server have the capacity of ITB or more [I]. For example, in the
intelligent email routing application, gateway with ITB storage can support more than 213
users, given that F = 462 and the number of keywords that each user specifies is 28 on
average.

6.5.3 Communication Overhead

If we view the proxy in PEKSrand-BG or the proxy farm in PEKSrand-SG as a transparent
component between the sender and the gateway, there is actually no additional traffic gener-
ated in the PEKSrand schemes, since the same number and size of ciphertexts are transmit-
ted, although the content of packets are changed. However, the PEKSrand schemes indeed
introduce some delay due to the ciphertext transformation and random walking within the
proxy farm. Fortunately, as shown in Section 6.5.1, the ciphertext transformation opera-
tion is lightweight. In addition, analysis in Section 6.4.2 (in particular Table 7) shows that
only a small u, e.g., 4 or 5, is sufficient to satisfy the privacy requirement of most real
world applications. Consequently, compared to the original PEKS scheme, the additional
communication overhead introduced by PEKSrand-BG and PEKSrand-SG is negligible.
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Chapter 7

Conclusion and Future Work

In this chapter, we finalize this thesis by drawing conclusions and proposing future works.

7.1 Conclusion

Nowadays, intrusion detection systems (IDSs) are widely deployed into hosts and networks
as a second line of defense to defend against increasing number of various attacks. IDSs
generate intrusion detection alerts when suspicious activities are observed. Although nu-
merous new techniques have been proposed and adopted to build better intrusion detection
systems, current IDSs still have three well-known problems: (1) generated IDS alerts usu-
ally contain a lot of false positive or false negative, (2) IDSs usually produce huge number
of alerts which overwhelm network administrators, (3) a single IDS is not capable to detect
large-scale or cross-domain multi-hop attacks.

IDS alert correlation techniques are thus proposed to mitigate these IDS troubles. These
techniques have been proven efficiently as well as effectively and able to help analysts bet-
ter understand security threats further to take appropriate responses. However, privacy con-
cerns, such as sensitive information contained in the shared security alerts may be disclosed
and misused, stopped IDS alert correlation systems especially large-scale cross-domain
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IDS alert correlation systems deployed in the reality.
This thesis focuses on cross-domain intrusion detection alert correlation. In particular,

we proposed solutions for the following three problems.

• Privacy-Preserving Alert Correlation To address privacy concerns, it is always
highly desirable and usually mandatory to anonymize sensitive attributes in IDS
alerts before sharing. Previous proposed sanitization techniques may work well on
some particular circumstances by seeking a tradeoff between privacy and usabiltiy.
However, these most commonly used anonymization techniques have huge negative
effects on delicate analysis of anonymized data (e.g., intrusion detection alert corre-
lation).

In this thesis, we proposed the first work that used Public-key Encryption with Key-
word Search (PEKS) techniques to preserve data confidentiality without loose of data
usability. We also gave a concrete system example, which operates according to the
defined TEIRESIAS protocol, based on Ning et.al' alert correlation algorithm [51]
to instantiate our idea. From our experiment results, we achieved ideal security and
privacy outlooks.

• Privacy-Preserving Report Retrieval Another issue largely ignored in previous
works in privacy-preserving alert sharing is fairness. Many previous solutions work
well under an implicit assumption that, participants are motivated to share their data
in exchange of more accurate analysis results and thus more effective defense. How-
ever, selfish users who also exist in reality may reluctant to provide any useful in-
formation but to share the final analysis results. Thus, fairness issue should not be
ignored when designs a realistic system.

In this thesis, we proposed a report retrieval mechanism, which is based on Symmetric-
key Encryption with Keyword Search (SEKS), to address the fairness issue. The
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fairness is achieved through allowing contributors to request correlated results back

if attack happens while selfish users are not able to get any information. Once again,
the retrieval mechanism is privacy-preserving by guarding that any private informa-
tion will not be disclosed during the whole retrieval procedure.

• Predicate Privacy and Statistics Privacy in PEKS The development of PEKS
boosts many useful applications such as secure searchable automated Remote email

storage [7] and privacy-preserving alert correlation presented in this thesis. However,

recent research on attacks against PEKS [3, 8, 17, 18, 60] may discourage the usages
of PEKS in real world applications.

In this thesis, we identified a new type of attacks against the original PEKS scheme
(i.e., statistical guessing attacks) and proposed the PEKSrand scheme that aims at
protecting predicate privacy and statistics privacy, which is a new concept introduced
by us. Both variants of the PEKSrand scheme can prevent brute-force guessing at-
tacks. However, only the PEKSrand-SG scheme can be used to mitigate statistical
guessing attacks at the cost of a higher storage overhead at the gateway or delegate.
According to our analysis and experimental results, both schemes introduce neg-
ligible additional communication and computation overheads and can be smoothly
deployed in existing systems. The PEKSrand scheme can either be used indepen-
dently or be combined with TEIRESIAS to further improve its privacy protection at
the cost of the storage overhead at the correlator.

7.2 Future Work

Though in this thesis we have addressed a few problems in privacy-preserving intrusion
detection alert correlation and implemented a workable system, there are still many im-
provements that can be developed based on the current results. In the following, we list
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two problems deserving further studies.

• Support Online Analysis Our current implementation is an offline alert correla-
tion analysis system, which operates on anonymized alerts stored in the database.
To support online analysis, a correlator should have real-time abilities to efficiently

analyze all incoming alerts.

Since the most expensive time consumption in TEIRESIAS is the calculation of bi-
linear pairings, and our current implementation is based on the software computation
of bilinear pairings. So, one possible solution to enhance the efficiency of our system
is by using hardware implementations of bilinear pairings. Moreover, all the calcu-
lation of time-consuming cryptographic primitives can also be replaced by hardware
implementations .

Current implementation of alert correlator is a DBMS-based application, which pro-
vides great convenience and reliable supports to manage IDS alerts. However, inter-
action with the DBMS is required to process each single alert, which introduces sub-
stantial performance overhead for a real time system. So, another possible approach
to enhance the efficiency of our system is to draw support from memory management
or query optimization techniques.

• New Privacy-Preserving while Usable Techniques An ideal privacy-preserving
while usable technique should be able to provide strong privacy protection to all in-
formation as well as maintain support for various analysis based on anonymized data.
In this thesis, the techniques we adopted are able to provide exact-matching test abil-
ity on the anonymized alert attributes. However, rich operations such as Conjunctive,
Subset, and Range test ability are also highly desired in the cross-domain alert corre-
lation circumstance in order to support both delicate analysis and roughly statistical
analysis.
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Appendix A

LLDOS 1.0 DMZ Dataset Correlation

Result
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Figure 18: LLDOS 1.0 DMZ Dataset Correlation Result
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Appendix B

LLDOS 1.0 Inside Dataset Correlation

Result
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Figure 19: LLDOS 1.0 Inside Dataset Correlation Result
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Appendix C

LLDOS 1.0 Cross-domain Correlation

Result
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