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ABSTRACT

Calculation of Droop Parameters for Microgrids with Different Inverter Ratings

and Feeder Lengths

Mohammad Ali Aghasafari

A microglia is a local electricity network with several distributed energy systems.

Different strategies of power sharing in distributed generation are reviewed and the droop

control approach for inverter based distributed generators is selected for further

investigation due to its low cost and potential for performance enhancement. The

inverters in a microgrid with droop control use a wireless control system which doesn't

have any intercommunication cost and is not distorted by electromagnetic interferences.

The control system is extendable to any number of distributed sources. Proper power

sharing, which enables the energy sources (with energy storage units) to provide powers

proportional to their apparent rated powers, is a very important property of the system.

Hence, the collection of the distributed sources can deliver their maximum powers when

there is full load demand, without overloading some and underutilizing others. The

conventional droop control doesn't result in proper power sharing; especially when the

sources have different rated powers or the feeders are unbalanced (have different

impedances). This drawback has not been fixed in the other publications; either by using

the power sources with equal apparent power or by ignoring the improper power sharing

ratio. Also in some publications, there have been some poor load voltage regulations. In

this thesis, a modified droop system has been used which will result in appropriate power

sharing and load voltage regulation. Furthermore, the effects of the sources' voltages'



magnitude, phase angle, and frequency on the system power sharing are considered.

Moreover, the influences of the droop system's parameters on system's behaviour were

evaluated in different cases of sources' apparent powers ratio and feeders' lengths ratio

and a general rule is presented which shows how to choose the droop parameters for any

isolated microgrid's control system.
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CHAPTER 1

Introduction

1.1 Background

The renewable energies produced by sources such as wind turbines, solar panels,

biomass, and fuel cells, are used more and more compared to the fossil fuel based energy

sources nowadays. The reason is that the renewable sources cause reduced environmental

impact and their resources won't run out. Besides, because of the limitation of the

resources of fossil based and nuclear fuels, and the growing need of energy in the world,

the average of their prices are expected to increase in the next years. That's why Canada

(like many other countries) has started to increase its amount of electric energy produced

by renewable energy sources (RESs).

Distributed generation (DG) is the application of parallel small (up to 1 OMVA)

electric sources (renewable or non-renewable) which could include hydropower turbines,

wind turbines, photovoltaic panels, diesel generators, fuel cells, or gas turbines. The

distributed sources are located as close as possible to the main load to decrease the power

loss in the distribution lines [I]. A small DG system with small sources and loads in a

limited area is called microgrid. In a microgrid, there is usually a cluster of loads and

microsources, overall operating as a single controllable system that can provide power

and heat to the local facilities [2]. The electrical connection of sources and loads can be

done through a DC (Direct Current), or an AC (Alternating Current) bus link.
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Power Converters interfacing electric sources to the grid are usually connected in

parallel, although series arrangements of sources are possible to allow better use of high

voltages and currents (e.g. in photovoltaic cell arrays). All configurations require a

controlled voltage at the load bus and controlled sources' active power (P) and reactive

power (Q) flows. (Note that for DC currents, there is no Q)

An AC link microgrid can be seen in Fig. 1-1.

Solar Wind Fuel Cell
Panel Turbine

sc

fimi
XL

Ss
J•V

XXXX iO-
•ç

XX

IX
?. Electricity

Line
Electrical

loads

Fig. 1-1 A microgrid

In grid connected DG systems, the main grid can supply the lack of produced

energy by the energy sources (ESs) to be delivered to the load or can absorb the extra

energy produced by ESs. In this case, the DG units don't need an energy storage device

but there would be the cost of connecting the microgrid to the utility grid network

(especially when the loads are far from the grid; e.g. a remote village); and also there

would be the energy loss in the grid connecting feeders (which increase as the load gets

further from the grid network).
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In isolated (non-grid connected) DG systems, the sources need the energy storage

units, such as battery, ultra capacitor, hydrogen, or flywheel [3]. These storage units store

extra produced energy to be delivered to the load at the time of ESs production shortage.

This type of DG system is appropriate for areas far from the grid, which have some sorts

of renewable or non-renewable energies enough for the consumption in that area. In this

thesis this type of DG system will be addressed.

From another point of view, in a system with renewable sources (like solar panel,

or wind turbine) with no or too small storage units (connected to utility grid), the sources

have to transfer all the generated active power to the load or grid; where as in the isolated

systems with large enough storage units the delivered P is equal to the required amount

demanded by load or dispatcher operator, not necessarily the amount of P generated by

the sources [4-7].

1.2 Integration of Energy Sources

When applying electrical energy conversion technology to energy systems, two

classes of electrical systems must be considered: stationary and rotating. The stationary

type usually provides direct current. Photovoltaic arrays and fuel cells are the main

renewable energy sources in this group. The rotating type usually provides alternating

current. Induction, synchronous, and permanent-magnet generators are the main drivers

for hydropower, wind, and gas turbine energy sources; which all make AC voltage. If

only photovoltaic and fuel cell systems are used, a dc-link bus might be used to integrate

them. If only hydro or wind power is used, an AC voltage control can be used for their

aggregation. But if some AC sources need to be integrated to some DC source, either all

3



the AC voltages should be converted to DC to have DC integration, or all the DC

voltages should be converted to AC to have AC integration.

In the AC systems, it is less expensive and less complicated to change the voltage

level; also it is possible to have three phase systems which have less construction's costs

and feeders' losses. Moreover the frequency of the voltage in the AC integrated system

can be used as wireless intersources communication signal. Besides, the galvanic

isolation would be easy for AC systems. These are some reasons showing why the AC

integration is better than DC integration to integrate any number of AC and DC ESs. In

this thesis AC type of integration is considered.

1.2.1 Distributed Generation Control Schemes
In power systems, if the sources are connected to the grid, their frequencies are

constant and defined by the grid and the magnitudes and phase angles of their output

voltages are adjusted to control the system's active and reactive power flows; while in

islanded mode, the system frequency is adjusted instead of sources' phase angles. Note

that this replacement is essential, to use system frequency as the communication signal

for a seamless control of power sharing.

The power sharing schemes can be divided into to 2 hierarchical categories:

dispatched and autonomous [I]. A typical dispatched hierarchical system consists of three

levels. Each level can coordinate the lower-level. The lowest (first) level is the most time-

demanding level of control, which is related to the switching of high-power transistors in

the power electronic converters. The pulse-width modulation, current & voltage controls,

and power electronic device protection are all within this layer.
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The second level of control is required to manage the system; to generate

sources' voltages' characteristics, to control the power flow among the energy sources

(including energy storage units) and load; and to control load bus voltage;

The third level of control is responsible for the implementation of optimal power

sharing policy to produce as much energy from the system as possible, or to minimize the

costs ofproduced energy and system maintenance.

As an example of this category of systems, conventional dispatched synchronous

generator based droop system adjusts VT0 and fe„ in (1-1) & (1-2) to control the power

sharing and the load voltage. The droop equations of a rotating generator are shown

below [8].

VT = VT0 - mGQ (1-1)

fe = fe0 - nGP (1-2)

Note that vT is the generator output voltage; Vj0 is the generator no reactive load

output voltage; fe is the system frequency, and feo is the no active load frequency. Also mG

& nG are droop coefficients which are dependent on the values of the source rated power

and allowed ranges of voltage and frequency changes

In the other category, the autonomous hierarchical scheme, the third level doesn't

receive the orders about the power sharing policy from outside world (i.e. dispatch

operator); and this level only makes the decisions about the power sharing policy based

on the received information about the system sources' powers, the programmed power

sharing strategy and possibly measured load voltage, and system frequency. The

autonomous scheme has the advantage of no dispatching and less communication costs

5



compared to the dispatched scheme, but it is more difficult to change the power sharing

policy in the autonomous scheme if it is needed.

In such a scheme, mostly the main system frequency (around 50Hz or 60 Hz,

depending on the country) is used as the communication signal to control the power

sharing [9-12]. The communication signal has rarely a frequency different than the

system's main frequency as in [13].

An improved droop based system of this category will be proposed in this thesis

for inverter based power networks (though it is extendable to the networks consisting of

both inverter based and synchronous generator based sources). It will be shown later in

chapter 2, that for very good P sharing, the feQs should be equal between the sources

(which is not done in the conventional synchronous generator based droop system)

1.3 Objectives and Challenges

In this thesis, an enhanced droop system for inverter based parallel distributed

sources is proposed. The inverters have been used to connect distributed power sources to

a microgrid with the capability of modification of the voltage amplitude and frequency.

The inverters in a microgrid with droop control use a wireless control system which

doesn't have any intercommunication cabling cost and is not distorted by electromagnetic

interferences. The control system is extendable to any number of distributed sources.

Power sharing, which enables the energy sources to provide powers proportional

to their apparent rated powers, is a very important property of the system. Hence, sources

can provide their maximum powers when there is full load, without saturation in one of

them and presence of some power capability in the other one. The conventional droop
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control doesn't result in good power sharing, especially when the sources have different

rated powers or the when feeders between sources and load(s) have different lengths.

This bad power sharing has not been fixed in other relevant publications such as [14-16]

and has been ignored in these references either by using some sources with equal

apparent power or by ignoring the bad power sharing results; but in this thesis the

improved droop system has been investigated which will result in appropriate active and

reactive power sharing. Also the improved droop system makes a good load voltage

regulation which is not taken care of in some publications such as [17].

1.4 Contribution of the Thesis

The major contributions of the thesis are:

1. Consideration of the effects of the sources' voltages (voltage magnitude and phase

angle), and system frequency on the system P & Q sharing.

2. Design of an improved droop system using the new parameters of

"voltage drop factor" and "correction factor" (added to the basic droop system) to

have both good P & Q sharing and also to have good load voltage regulation. The

comprehensive droop system design is done for cases of different ratios of the

sources' apparent powers and feeders' lengths.

3. Consideration of the effects of the droop coefficients on the system P & Q sharing,

load voltage magnitude, sources' voltages' magnitudes and phase angles, system

overshoot, speed, stability, and steady state frequency.

7



1.5 Thesis Outline

This thesis includes five chapters.

The first chapter includes an overview about renewable sources, the distributed

generation, the microgrid, the advantages and disadvantages of different ways of

integration of electric sources, the dispatched and autonomous hierarchical schemes, and

why the modified droop system is chosen in the thesis to be used as the sources'

integration method.

In the second chapter, the effects of the sources' voltages (voltage magnitudes and

phase angles), and system frequency on the system P & Q sharing, are elaborated.

Also the conventional inverter based droop system and its problems in providing good Q

sharing and load voltage regulation, are considered.

The third chapter presents the design of an improved droop system using the new

parameters "voltage drop factor" and "correction factor" (added to the basic droop

system) to have both good P & Q sharing and also to have good load voltage regulation.

This comprehensive droop system design is done for cases of different ratios of the

sources' apparent powers and feeders' lengths. This chapter also includes the

consideration of the effects of the droop coefficients on the system P & Q sharing, load

voltage magnitude, sources' voltages' magnitudes and phase angles, system overshoot,

speed, stability, and steady state frequency.

The fourth chapter is about the simulation results of the complete system with a

benchmark and actual elements' values. The system includes the voltage loop, the real

values of the elements in low pass filters after the inverters, and all the internal parasitic

resistances.

8



The fifth chapter summarizes the work done in the thesis. Besides, it covers the

conclusion of the materials in the previous chapters and suggestions for the future work

on the topics in this thesis.

9



CHAPTER 2

System with the basic droop technique

2.1 Introduction

This chapter evaluates the effects of the system parameters (i.e. sources voltage

magnitudes and phase angles, and system frequency) on the system powers. The

sensibility and the change course of the real and reactive powers regarding each

mentioned system parameter are considered; and the droop strategy is designed based on

them. Also the sources' voltages conditions under which the system has some desired real

or reactive powers sharing are obtained. The commonly used basic droop control is

designed in section 2.3 based on the system behaviors shown in section 2.2 and the

transient and steady state behavior of a system with this basic droop system is evaluated

in section 2.4.

2.2 System Powers' Dependency on System Parameters

The values in Table 2-1 are used for the benchmark model.

TABLE 2-1 Benchmark Model Power parameters

Source 1 Source 2

Power rating (VA) 1400 700

Line impedances (O) (0.20 +¡?* 0.00154) 3*(0.20+JG>* 0.00154)
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Full load impedance= (5.99+ jro*0.0119) (O). The load has PF=0.8 lagging and also rated

voltage is V_rated=120VRMs· Line impedance phase angle =78.9° => Mostly inductive

line. Note that the line parameters are used by NRCan (Natural Resources Canada).

2.2.1 System Power Equations

The simplified power system with two inverters and a single load is shown in Fig.

2-1 where the inverters and LPFs have been replaced by AC sources.

P1'Q1 7iin*i v load „,¦ o P2'Q2_> Zlinel - Zline2

?2?,

Fig. 2-1 Simplified power stage of the system

For the Fig. 2-1 when the phasors of Ei and E2 have respectively the phase angles

of f?, 0 (Rad). The load voltage phasor is:

Tr -CV ^. I ZUnelWZload ^i _¦_ rr _ ( ^linelll^load \iVioad -1^1 * I — ¡7;—rrz Ij + ?£2 * \7Z [7=—tt? is

which has the magnitude of |Vioatj| and the phase angle of cpioad·
The first source powers can be calculated as:

(2-1)

Pl= I E1 1 1 Vioadl

^linell
COS(Cp1 - (pload) - Iv,oadl

\2u: I cos(pfc(ZIinel)) +

Ql=

EA>^ Sin(Cp1 - cpload) sln(pÄ(ZMnel))

sin(p/i(ZIinel))

IZlI:

|Ei||Vload| r _ ^ |Vload

(2-2)

l^linell

IEillVioadl ¦

\zlinei\

lzlinell sin(9i - cpload) cos(p/i(ZIinel)) (2-3)
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where ph(.Zlinel) is the phase angle of the line impedance 1.

Since ((P1 — cpioad) is small in practical power applications, one simplifies the

equations above into:

Pl= (?^-?^) cos(ph(Zlinel)) +y IZiinell \zlinel\ J

IEiHVloadl
IZiinell *(<Pi - (Pioad)(rad) sin(p/i(Zi¿nel)) (2-4)

<"n_ ( lEil|Vload| lvload| ^ „;„f„uf7 \?Ql- [?^G-^J) Sm^Z^elV -
11^T *(F? - f??«a)(Gß4) cos(pA(Zttnel)) (2-5)

Note that in previous equations all the voltage magnitudes are in RMS and phase

angles are in Radians.

2.2.2 Evaluation of the Effects of Sources' Parameters on

System Powers

In this section, the effects of the sources' parameters (i.e. the magnitudes of

voltages, the phase angles of voltages, and the system frequency) on system powers are

considered which visualizes the power equations in the previous section by the following

2 and 3 dimensional figures.

2.2.2.1 System Power Flow Graphs for the Plane of (|Ei|,i)

Using the precise power equations (2-2) & (2-3), for the system in the case of

voltage source2 with reference phase angle of 0, constant frequency of 60Hz and

magnitude of 120 V (source 2 can be considered as the infinite bus), with the line

impedance2= 3* line impedance 1, the effects of the phase angle (difference between the

12



sources' phase angles) and the magnitude of the first source on powers are shown in

following figures.

Fig. 2-2 shows that the maximum Ql occurs when |Ei| (or equivalently | E ? |— | E2D

is maximum and f? (f?-(?2) is minimum and vice versa. Also it can be seen that Ql is

very sensitive to f?. For example, in practical systems the difference between the

sources' angles is very small.

1600

1400

1200

H 1000

800

H600

400

200

162 164 166 168 170 172 174 176 178
E1(V)

Fig. 2-2 Changes in Ql (VAR) as the peak magnitude and phase angle of the first
source change
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-3 Three dimensional view of changes in Ql(VAR) as the magnitude and phase
angle of the first source change

Fig. 2-4 shows that the maximum Q2 occurs when |Ei| is minimum and f? is

maximum and vice versa.
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-400 —
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170 172 -I74 176 178 0.2

800
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200

•200

-400

E1(V) Phil (Rad)

Fig» 2-4 Three dimensional view of changes in Q2(VAR) as the magnitude and phase
angle of the first source change



Fig. 2-5 shows the changes in Q2(VAR) as the magnitude and phase angle of the
first source change.
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162 164 166 168 170 172 174 176 178
E1<V)

Fig. 2-5 Changes in Q2(VAR) as the magnitude and phase angle of the first source
change

It can be seen in Fig. 2-6 that Ql and Q2 have the reverse course of change

compared to each other for both changes in JEx | and f?. So that an increase in (|Ei I-JE2I) or

(f2-f?) results in an increase in (Q1-Q2) which is verified by the time domain simulation

results as it can be seen in section 3.4.
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°'15 0.2 0.25Phil (Rad)

-6 Three dimensional view of changes in Ql & Q2 (VAR) as the magnitude and
phase angle of the first source change

The intersection of the two surfaces on the Fig. 2-6 can be seen in Fig. 2-7. This

curve shows that for having equal Q, as the magnitude of the first source increases, its

phase angle should increase too. Fig. 2-7 shows that if the droop system is designed

correctly to change the sources' magnitudes and phase angles, one can achieve equal Q

sharing with any value of Q. Other ratios for Q sharing can be achievable as far as the

multiples of the surfaces in the Fig. 2-6 (moved in vertical direction) have intersection in

02
the allowable range of El and f?. For example if the desired value of— is 2, the surface

of 2*Q2 (moved up compared to initial surface of Q2) will have another intersection with

the surface of Ql which represents the desired region of Q sharing.
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Fig. 2-7 Three dimensional curve of the region in which Q1=Q2, (|E2| = 120V, f2=0)

Figure 2-7 shows the two dimensional curve of the region in which Q1=Q2 with
|E2 1 = 120V and cp2=0.

0.25

Phil Rad

E1 peaWV
175

Fig. 2-8 Two dimensional curve of the region in which Q1=Q2 with |E2| = 120V and
(p2=0
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It can be seen in Fig. 2-9 that the maximum Pl happens when |Ei| and f? are

maximum and vice versa. As it can be seen in this figure, the phase angle variations have

more impact on P than voltage variations. For example, in practical systems the

difference between the sources' angles (or power angles) is very small.
0.25

0.2

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

-0.2

fe ?-..

162 164

. mœi&itmii

mr*"¿nm:·

168 170
E1(V)

172 174 176 178

2500

2000

l· H1500

1000

-, -500

Fig. 2-9 Changes in Pl (W) as the magnitude and phase angle of the first source change

It can be seen in Fig. 2-10 that the minimum P2 occurs when |Ei| and f? are the

maximum and vice versa. Also by comparing Figures 2-9 & 2-10, it can be observed that

P2 has less sensitivity to |Ei| compared to sensitivity of Pl on it, which is expected since

in previous power equations, for the second source, the voltage magnitude and phase

angle is constant and the change in its power flow is just dependent on the change in the

load voltage.
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Fig. 2-10 Changes in P2 (W) as the magnitude and phase angle of the first source
change

It can be seen in Fig. 2-11 that Pl and P2 have the reverse course of change

compared to each other for the changes in f?.

o -2000

0.25

¦0.1

Figo 2=11 Changes in Pl & P2
-0.2 -°-15

as the magnitude
change

Phil(Rad)

phase angle of the first source
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Figures 2-12 & 2-13 show the intersection of the previous Pl & P2 surfaces

where P1=P2 (equal P sharing). Other ratios for P sharing can be achievable as far as the

multiples of the surfaces in the Fig. 2-11 (moved in vertical direction) have intersection
—»

in the allowable range of |Ei| and f?.
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Fig. 2-12 Three dimensional curve of the region m which P1=P2
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Fig. 2-13 Two dimensional curve of the region in which P1=P2

There is another influencing parameter in power sharing which is |E2| whose

effect will be considered in the next subsection.

20



2o2o2o2 System Power Flow Graphs for the (E19 E2) Plane

Now using the precise power equations (2-2) & (2-3) for the system in the case of

voltage sources with equal constant phase angles of 0°, constant frequency of 60Hz, with

the line impedances2= 3* load impedances 1, the effects of the magnitudes of the sources

voltages on powers' flows will be shown in the coming figures.

It can be seen in Fig. 2-14 that the maximum Ql happens when maximum IE1I

and minimum |E2| and vice versa. The case is reversed for Q2 which can be observed in

Fig. 2-15. Also by comparing these two figures it can be seen that Ql has more

sensitivity to IE1I and Q2 has more sensitivity to |E2|.
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168
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164

162
162 164 166 168 170 172 174

E1(V)
176 178

Fig. 2-14 Changes in Ql (VAR) as the magnitudes of sources' voltages change
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Fñgo 2-1 S Changes in Q2 (VAR) as the magnitudes of sources' voltages change

The reverse course of change in the values of Ql and Q2 versus the change in

voltage magnitudes can be seen in Fig. 2-16 as the partial slopes (i.e. surfaces' edges'

slopes) with different signs. Also figure 2=16 shows that any desired Q sharing ratio is

achievable as far as the multiples of the Q surfaces have intersection in the allowable

range of IE1I and |E2|
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Fñgo 2=16 Changes in Ql & Q2 (VAR) as the magnitudes of sources5 voltages change

Fig. 2-17 shows that Pl increases as (E1I increases or |E2| decreases. There is the

reverse case for P2 as it is shown on Fig. 2-18. Also in these two figures, it can be

observed that Pl is more sensitive to IE1I, and P2 is more sensitive to |E2|.
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Figure 2-18 shows the changes in P2 (W) as the magnitudes of sources' voltages change.
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Fig« 2-18 Changes in P2 (W) as the magnitudes of sources' voltages change

The reverse course of change in the values of Pl and P2 versus the changes in

voltage magnitudes can be seen in Fig. 2-19 as the partial slopes with different signs.

Also it can be seen that since the line impedance 2 is 3 times larger than line impedance

1, if the sources have the same phase angles, for any choice of IE1I and |E2|, P2 will be

less than Pl. So that if one needs to have more P2 compared to Pl or equal power

sharing, the sources' phase angles need to be adjusted too, as one can see in Fig. 2-11.
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Fig. 2-19 Changes in Pl & P2 (W) as the magnitudes of sources' voltages change

2.2.23 System Power Flow Graphs for the Plane of (<pi,F)

Now for the system in the case of voltage source2 with reference phase angle of

0°, constant magnitudes of 120V for both sources, with the line impedances2= 3* load

impedances 1, the effects of the phase angle 1 (difference between the sources' phase

angles) and the system's frequency on powers are shown in following figures.

It can be seen on figures 2-20 & 2-21 that by increment in f?, Ql decreases and

Q2 increases. Also the reactive powers have very small sensitivity to the system's

frequency in its allowed range (horizontal color bands).
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Fig. 2-21 Changes in Q2(VAR) as the system's frequency and the first source's phase
angle change
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Figure 2-22 demonstrates the changes in Ql & Q2
frequency and the first source's phase angle change.

is the syster
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Q2WAR1

60.5 \Q25 -0.2

0.25

Phil (Rad)
Fig. 2-22 Changes in Ql & Q2(VAR) as the system's frequency and the first source's

phase angle change

It can be seen on the figures 2-23 and 2-24 that by increasing f?, P2 decreases

and Pl increases. Also the active powers have very small sensitivity to the system's

frequency (horizontal color bands).
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Figure 2-25 demonstrates the changes in Pl & P2(W) as the system's frequency
and the first source's phase angle change.
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Fñgo 2=25 Changes in Pl & P2(W) as the system's frequency and the first source's phase
angle change

It has been observed in this subsection that the steady state frequency doesn't

have any considerable effect on the P & Q sharing but as it was seen in the subsection

2.2.2.I9 the transient state frequencies have effects on power sharing since the difference

of the sources' phase angles is the integral of the difference of the sources transient state

frequencies, in other terms (f?=f2)(?) = ?f? + (2tt J (/j — Z2)(It) where (t >to),

to is a time in the stability period at which the difference between the sources' phase

angles is ?f?, and the time interval of [to,t] can include the transient state.
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2.3. Basic Droop Loop

In some papers' droop systems, the sources' voltage magnitudes (|Ej|) are made

dependent on the source output real powers (Pi); and the sources frequencies (co¡) are

made dependent on the source output reactive power (Qi), via linear equation with the

droop coefficients [18]. In this scheme, there will be good Q sharing but not good P

sharing. In some other papers' droop schemes, the | E4 1 is made related to Qi; and the íú¡ is

made related to Pi, using basic linear droop equations [19]. For this scheme, there will be

good P sharing but not good Q sharing. Both schemes are implementable for islanded

microgrids, but the latter is better since good controlled P sharing is important for the

control of the states of the charge of the sources' energy saving elements (such as

batteries).

In this chapter this kind of basic droop scheme is used. The droop equations are:

|Ei| = Eoi- miQi (2-6)

?? = ??? — n¡Pi (2-7)

Note that Eoiand ??? are respectively the no reactive load voltage magnitude and

the no active load source frequency. Also mj and ^ are droop coefficients.

As it was seen in figures 2-14 & 2-15, by increment in the voltage magnitude |Ei|

the reactive power (Qi) will increase; so that in (2-6) the negative sign creates a negative

feedback to help the system stability. Also Fig. 2-9 shows that increment in the

f? (= J (JU)1 — 12Qn)dt) will increase Pl. So the negative sign in (2-7) makes negative

feedback in the system to help its stability. Also notice that in the droop equations, the

frequency is used instead of the phase angle even though the phase angle has a lot of

effect in power equations (2-4) & (2-5) since each source doesn't know the initial phase
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angle of the other sources [20] and one can just measure each source frequency at a time.

Also frequency works as the intersources communication signal.

For the same system as described at the beginning of section 2.2, the droop

coefficients are obtained as below:

AEmax 12*V2V n n. _._ V ,_ _.mi=— = ——-»1111=0.0102—— (2-8)2*Qmaxl 2*1400*0.6VAR x VAR v '

Note that AEmax is 10% of the rated voltage magnitude [21].

E01 = 120V * V2 = 169.7V (2-9)

Note that for the case that|E¡| = Eoi, there is no Q, though there might be
maximum P which causes the maximum voltage drop at the load; so that if the source

provides the rated (or even close to rated) P & Q, the load voltage will be too low. That's

one of the disadvantages of the basic droop system which will be solved by adding the

"Voltage Drop Factor" in the proposed system in the next chapter.

AEmax 12*V2V _ n~n. V _ ,_ 1 ??m2 = = » m2 = 0.0204 = 2mt (2-10)¿ 2*Qmax2 2*700*0.6VAR ¿ VAR x v '

E02 = 120 * VI = 169.7V = E01 (2-11)

= Acornax = OlHz^ ^ Rad = n,
1 Pmax 1400*0.8 S.W 2 v J

Rari?01 = ?02 = 2p * 60.05 ^? (2-15)

Note that the allowed ranges of voltage magnitude and frequency changes in

previous equations are in harmony with IEEE 1 547 standard.

According to the simulation results in section 3.3.2, by increment in Acomax, (or

equivalently parameters ns), the system will be slower and will become unstable at some
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point. This feature and other behaviors of the system will be addressed in detail in section

3.3.2.

Also note that according to (2-7)

Pi =^^ (2-16)
ni

Besides, the inverters have the same steady state and no load frequencies, and

according to the basic droop scheme

S1 * U1 = S2 * n2 (2-17)

where S is the apparent rated power of the inverter; thus

Which shows very good P sharing; But since the steady state voltage magnitudes of the

inverters (|E¡|) are not necessarily identical or not even very close, (especially in the case

of non-identical apparent rated powers or different feeders' impedances), if the droop

parameters ms are chosen as in (2-8) & (2-10), it will not result in good Q sharing.

2.4 System Transient and Steady State Behavior

The following simulation's results are obtained by SFMULINK software. The

power system parameters are the same as the ones in Table 2-1 and the beginning of

section 2.2.
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The power system schematic is shown in Fig. 2-26.
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Fig. 2-26 Power system schematic

Also the control system schematic is shown on Fig. 2-27.
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Figure 2-28 shows the system sources' powers when there is full load (before load

change), and also after 20% decrement in the load at t=0.8s.
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Fig. 2-28 System powers changes as the load decreases by 20% at t= 0.8s

(waveform's order from the top to the bottom: Pl, Ql, P2, Q2)

The steady state values of the system's powers on Fig. 2-28 will be shown in

Table 2-2 to evaluate the system's power sharing quality.

In can be seen in Fig. 2-29 that load voltage regulation is not good since the load

voltage is less than the minimum of 120V*0.95=1 14V. This problem will be eliminated

in the proposed system in next chapter. The small ripples are due to the oscillations

caused by the multipliers in the power calculator units (shown in Fig. 2-27) and also due

to the RMS calculator blocks in SIMULINK.
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Fig. 2-30 Sources' frequencies' changes as the load decreases by 20% at t=0.8s
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In Table 2-2, the steady state results are for the full load case before load change, and

the transient results are for the transient case state after 20% decrement in the load at

t=0.8s. It could be seen in this table that the Q sharing is not good since its value is not

even close to the desired value of 2; but the P sharing is good. Good Q sharing will be

achieved in the proposed system in chapter three by changing the way of the

determination of m & ? parameters. Also frequency regulation is acceptable in Table 2-2.

(According to [21])

TABLE 2-2 Steady state results (before load change) and some transient state results

Ql
(VAR)

Q2
(VAR)

Q1/Q2 P1=2P2
(W)

E1
(Vrms)

E2
(Vrms)

Vioad
(Vrms)

f1-f2
(Deg)

Steady state
Frequency

(Hz)

Ts
(S)

Over
shoot
(%)

757 293 2.58 868 114.6 115.8 109.2 -1.02 59.972 0.4 10.6

2.5 Conclusion

In this chapter the exact power equations were used to attain the relationships

between the system's parameters and the system's powers. It was observed that the

sources' voltage's magnitudes and phase angles have significant effects on the system's

powers. On the other hand, the system's steady state frequency doesn't have such effect

on system's powers. The design of the basic conventional droop system was considered

using these power relationships. It was explained why the sources' voltages' parameters

have been made dependent on the sources' powers in the specific manner in (2-6) & (2-

7). It was also discussed how the droop system makes negative feedback to help the

system stability.
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The disadvantages of the basic droop system were determined to be Q sharing

and load voltage regulations problems with the help of the mathematical equations and

also the bench mark system simulation results. These disadvantages of the basic droop

system will be resolved in the proposed droop system in the next chapter using the

"Voltage Drop Factors", and "Correction Factors".
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CHAPTER 3

Proposed droop system

3.1 Introduction

In this chapter a novel droop strategy is proposed which provides both desired P

& Q sharing and also acceptable load voltage regulation. This is done in section 3.2 by

modifying the basic droop system used in chapter 2 which includes adding the voltage

drop factors and correction factors to the system.

In section 3.3, the effects of each droop coefficient on system's steady state

results such as the active and reactive powers and their ratios, sources' voltages'

magnitudes and phase angles, load voltage's magnitude, and system's frequency are

evaluated. Also, the effects of the droop coefficients on system's stability and system's

transient state results like overshoot, and speed are considered. Then the optimum droop

coefficients are obtained from those results to have a solution for the best Q sharing,

highest speed, and least overshoot; and also to have the load voltage's magnitude and

system's frequency within their allowed ranges.

The same method has been used in section 3.4 to obtain the optimum droop

coefficients for different cases (with different values of the sources' apparent powers and

feeders' lengths).
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3.2 The structure of the Proposed Droop System

One starts with the values below from the benchmark model used in chapter 2.

TABLE 3-1 Power system Characteristics

Source 1 Source 2

Power rating (VA) 1400 700

Line impedances (O) (0.20 +jo* 0.00154) 3*(0.20+jco* 0.00154)

Full load impedance= (5.99+ ja>*0.0119) (O) and also V_rated=120VRMs·

Like in section 2-2 the general droop equations are:

E = E0 - mQ (3-1)

? = ?0 - nP (3-2)

But now another method is used to determine the values of? and m as following:

Zloadp
The reference mi = m0i =

12* V2V

AEmax_source AEmaxJoad
2*Qmaxl 2*Qmaxl

eQmim

Zloadeq +Zlinel

2 * 1400 * 0.6VAR
1.5* [(5.99+ jœ* 0.0119)]

1.5 * [(5.99 + jü> * 0.0119) ] + (0.20 + jo> * 0.00154)
?

-1

moi ~ 0.0100 *1.0457« 0.0105 VAR (3-3)

Note that the voltage drop factorl=VDFi=l-0457 and its counterpart in the second

inverter, modify the conventional droop coefficients values to have good load voltage

regulation.

For the full load condition there would be a too low load voltage because of the

voltage drop in the feeders, that's why the Vdfs are multiplied into the rated voltages for

calculation of E0s.
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E01 = 120 * V2 * VDFl = 169.7 * 1.0457V « 177.5V

Also, the reference Hi2=In02 =

12*V2V

(3-4)

AEmax source AEmax load

2*700*0.6VAR

2*Qmax2

3*[(5.99+jco*0.0119)]

2*Qmax2

i-l

Zloadeclmin2

Zloadeqmin2+Zline2

-1

3*[(5.99+ jco*0.0119)] +3*(0.20 +ja>* 0.001S4)

m02 « 0.0204 *1.0689* 0.0218 —?? VAR

E02 = 120 * VI * VDF„ = 169.7 * 1.0689 « 181.4V
I+i

(3-5)

(3-6)

Where Zloadeq minl = ^Zloadmin = 1.5 * (5.99 + jœ * 0.0119) (3-7)
ZloadeQ_min2 = (J + l)Zloadmin = 3 * (5.99 + jco * 0.0119) (3-8)

Where J = -r = 2 is the ratio between the sources' apparent powers.S2

The equivalent load impedances (Zloadeq_lj2) are obtained by splitting the joint

load impedance into a combination of parallel equivalent loads. Each equivalent load

represents the load seen by the correspondent inverter. The ratios of the impedance

magnitudes are the reverse of the correspondent sources' apparent powers' ratios. Using

these equivalent loads one can divide the system with a joint load to some systems, each

with a source and a load.

Pl, Ql Zlinel

V load

Zload el

Zline2
P2,Q2

Zload e2 E2W

Fig. 3-1 Simplified split system's circuit using the equivalent loads
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_,, _ icomax 1*2p n nnc¿ Rad n02 ,., ^xThe reference ni = n01 = = « 0.0056 -— = — (3-9)1 U1 Pmax 1400*0.8 S.W J v y

f01 = f02 = 60.5Hz (3-10)

Final values of the droop coefficients are

n!=n01*a (3-11)

n2=a*(J*n0i) (3-12)

mi= m01 * ß * CF1 (3-13)

m2 = m02 * ß * CF2 (3- 14)

where a < 1 (3- 15)

ß < 1 (3-16)

and CFs (correction factors) <1 (3-17)

(The maximum values of a =1 corresponds to the frequency range of

59.5Hz< f<60.5Hz and ß = 1 corresponds to the 120*0.95Vrms< ViOad<120*1.05VRMs).

By using this droop strategy there will be good P sharing and one needs modified

droop coefficients for obtaining appropriate Q sharing as it will be done by using the

"Correction Factors" later in this chapter.

3.3 Evaluation of the Effects of Droop Parameters on System

Transient and Steady State Behavior

In this section, the system power parameters are the same as the ones in the

section 3.2. Overshoots are measured from the frequency waveforms. Also note that in

the following simulations, for now, the both correction factors are kept equal to 1 ; but

they might be decreased later to create better Q sharing.

41



As an example of system behavior, one can see in Fig. 3-2, the system powers

when a = 0.2, ß = 0.7.

/
P1(W)

/
QI(VAR)

600

/
P2(W)

400 7*
0.2(V^R)

1.5 1.6 1.7 1.8
Time(s)

1.9 2.1

Fig. 3-2 System's powers as the load decreases by 20%

Table 3-2 shows the values obtained for several system parameters from simulations

conducted with different values of ß while keeping the other parameters constant

(e.g. a = 0.2, CFl= CF2=1). Notice that the steady state results are for the 100% load and

the transient results are for the transient state after 20% decrement in the load at t=1.5s.

Table 3-2 Effects of ß on system's behavior

ß Qi
(VAR)

Q2
(VAR)

Q1/Q2 P1=2P2

(W)
Ei
(V)

E2
(V)

E1-
E2
(V)

Vload
(RMS)

Delta
F

(Deg)

Steady
state

freq.
(Hz)

Ts

(s)
Over
shoot
(%)

0.1 829 428 1.937 1039 176.6 180.5 -3.9 119.4 -0.763 60.315 0.46 7.1

0.3 815 417 1.954 1019 174.9 178.7 -3.8 118.2 -0.772 60.318 0.46 7.7

0.5 802 407 1.971 1000 173.3 177.0 -3.7 117.1 -0.777 60.322 0.47

0.7 788 399 1.975 982 171.7 175.3 -3.6 116.1 -0.781 60.325 0.47 7.9

0.8 781 395 1.977 973 170.9 174.5 -3.6 115.6 -0.782 60.327 0.47 8.4

0.9 774

768

391

387

1.980

1.984

964

956

170.2

169.4

173.7

172.9

-3.5 115

114.5

-0.784

-0.785

60.3280

60.330

0.46

0.46

8.5

IT
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As it can be seen in the Table 3-2, by increment in ß (m), (E1-E2) increases,

which will result in increment in Q1/Q2 (in accordance with figure 2-14 & 2-15) and will

make this reactive power ratio closer to the desired value of 2 as it can be seen in

Fig. 3-5.

Since both Ei and E2 decrease by increment in ß, the load voltage and the real

powers decrease too; Pl decreases since Ei and f? decrease (as shown on Fig. 2-9), so the

droop system decreases E2 enough to decrease P2 adequately to keep the constant ratio

between the real powers.

Moreover, as seen in the Table 3-2, by increment in ß (m), the steady state

frequency increases, since the real power decreases and these two are related reversely

via the droop equation (3-2). Note that ß (m) has effect on the difference between the

phases of sources even though it is not linked directly to the system frequency in the

droop system. Also pay attention that ß (m) has very small effects on the settling time.

Figures 3-3 to 3-5 demonstrate the effects of ß on system's behavior.

9

8.5

8

7.5

7

6.5

0.1 0.3 0.5 0.7 0.9

Fig. 3-3 Effect of ß on system over shoot

Over(Under) shoot
percentage
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0.472

0.468

0.466

0.464

0.462

0.458

0.1 0.3 0.5 0.7 0.9

Fig. 3-4 Very small changes in settling time vs. changes in ß

1.990

Q1/Q2
1.980

1.970

1.960

1.950
Q1/Q2

1.940

1.930

Fig. 3-5 Effect of ß on reactive power sharing

The best point here is chosen to be for ß=1 since in this case there are the best Q

sharing and settling time.
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Then, the values of ß as well as the CFs are kept constant to 1 ; and now a (?) is

changed to see its effects on system behavior. The results are shown in Table 3-3.

TABLE 3-3 Effects of a on system's behavior

a Qi
(VAR)

Q2
(VAR)

Q1/Q2 Pl= 2P2
(W)

El
(V)

E2
(V)

E1-E2
(V)

Vload
(RMS)

Delta
f

(Deg)

Steady
state

freque.
(Hz)

Ts
(s)

Over
shoot
(Max)

(%)
0.1 769 387 1.987 955 169 173 -3.6 114.5 -0.785 60.4149 0.48 11.2

0.2 768 387 1.984 956 169 173 -3.5 114.5 -0.785 60.3295 0.46 8.7

0.3 768 387 1.984 957 169 173 -3.6 114.5 -0.785 60.244 0.7 7.4

0.4 769 387 1.987 958 169 173 -3.6 114.5 -0.784 60.1583 10

0.6 771 388 1.987 957 169 173 -3.6 114.5 -0.784 59.987 4.1 22.4

0.8 Unstable Unstable

Unstable Unstable

The effects of ß on settling time, overshoot, and stability is less than the effects of

a(n) on them as the results of comparison of Tables 3-1 & 3-2.

The effects of a on system's transient state behavior are shown on figures 3-6 and 3-7.

Fig. 3-6 Changes in settling time vs. changes in a
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23

21

19

17

15

13

11

9

7

0.1 0.2 0.3 0.4 0.5 0.6
Alpha

Fig. 3-7 Effect of a on system over shoot

It can be seen that in Table 3-3 that a (?) has almost no effect on the source

voltages' magnitudes and phases, and therefore no effect on sources powers but it has

remarkable effects on the system steady state frequency and transient behavior, even

more than ß (m). One can see in figures 3-6 and 3-7 that the best transient state can be

achieved at around a=0.2 (the best speed and smallest overshoot). This value of a has

been verified before as the selected value, so that no more iteration is needed and finally

the values of a=0.2 and ß=1 have been chosen as the optimum droop coefficients.

Moreover, since — = 1.98 « 2, there is no need to change the correction factors (CFi(?2

and CF2) and they will remain equal to 1 .

Over shoot Percentage
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3.4 Optimum Droop Coefficients for Different System

Types

3.4.1 System Behavior (Length2 = (LengthI), S1=S2)

One starts with the simplest case in which the sources have the same rated

apparent power and feeder impedance.

TABLE 3-4 Power system Characteristics

Source 1 Source2
Power rating (VA) 1050 1050
Line impedances (0.20+JcD* 0.00154) (0.20 +joo* 0.00154)

The calculated droop parameters are:

-*m0i «0.0134* 1.034 «0.0139 — (3-18)U1 VAR v '

E0I = 120 * VI * VDFl = 169.7 * 1.034 « 175.5V (3-19)

-> m02 « 0.0134 * 1.034 « 0.0139 ^ (3-20)
E02 = 120 * V2 * VDFl = 169.7 * 1.034 « 175.5V (3-21)

Atomax 1*2p n nr,_r Rad a 1?\?0? = n02 = = « 0.0075 — (3-22)U1 uz Pmax 1050*0.8 S.W v J

f01 = f02 = 60.5Hz (3-23)

Note that in the following simulations a=0.15, ß=1, CFi=CF2=I. In this specific

case which has completely symmetric power stage, if the sources have the same initial

phases, there will be no transient frequency difference; also there will be equal Qs no

matter how much a and ß are. So to have some better evaluation of system the initial

phase difference is applied. (f2=f?+0.03 (Radians))

47



P1(W)
P2(W)
QI(VAR)
Q2(VAR)

Time(s)

Fig. 3-8 System frequencies response as the load decreases by 20% at t=ls (the order of

the waveform from the top to the bottom (at t=0.15) Pl, P2, Q2, Ql)

As it can be seen on the figure 3-8, the initial phase difference makes transient frequency

difference; but for changes in load in the steady state, there will not be any transient

frequency difference.

When a = 0.15, CFi= CF2=I results are shown in Table 3-5.

TABLE 3-5 The effects of ß on system behavior

0.2

0.4

0.6

0.8

Vload
(RMS)

118.88

117.74

116.69

115.65

114.68

f_st
(Hz)

60.3630

60.3665

60.3679

60.3703

60.3725

Ts(s)

0.06

0.07

0.07

0.08

0.08

Over shoot
(%)
0.0

0.1

0.2

0.5

0.9
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As mentioned before for any value of ß there will be great Q sharing. Also as it

can be seen in the previous table, the overshoot just changes a little as ß changes, so that

it doesn't make such an advantage if a small value of ß is chosen to have just a little bit

less overshoot. On the other hand, in reality, because of the system feeders and LPFs are

not ideal, there are always differences in the equivalent line impedances (sum of the

feeder impedance and the LPF output impedance); so that it is better to use the value of

ß=1 which works for the non balanced feeders cases too. By increment in ß, load voltage

decreases. Moreover the steady state frequency increases since the real power decreases.

1.0

0.8

0.6

0.4

0.2

0.0

0.1 0.3 °-5Beta 07 °3
Fig. 3-9 Effect of ß on system's over(under)shoot

0.09
0.08

0.07
0.06
0.05

0.04
0.03
0.02
0.01

0

0.1 0.3 0.5 0.7 0.9

Fig. 3-10 Effect of ß on system's settling time

Over(Under) shoot
percentage

¦Ts(s)

Beta
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When the values of ß, CFi, and CF2 are kept constant to 1, a (?) is changed to see

its effects on system behavior which are presented on Table 3-6.

TABLE 3-6 Effects of a on system's behavior

a

o.i

0.15

0.2

0.3

0.4

Vload

(RMS)

114.68

114.68

114.68

114.68

Steady
state

frequency
(Hz)

60.4150

60.3725

60.3299

60.2446

Ts(s)

0.08

0.08

0.08

0.08

Unstable

Over shoot

(Max) (%)

0.7

0.9

1.4

1.5

Figure 3-11 shows the effects of a on system's overshoot percentage.

Over shoot Percentage

Fig. 3-11 Effects of a on system's overshoot percentage

It can be seen that a (?) has almost no effect on the sources' voltages' magnitudes

and phase angles, and therefore no effect on sources' powers. Also it has almost no effect

on the settling time. But it has some small effects on the system steady state frequency

and overshoot. One can concluded by results in Table 3-6 and Fig. 3-11 that the best case

can be achieved at a=0.1 which has smallest overshoot.
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So finally the values of a=0.1 and ß=l have been chosen as the optimum droop

parameters. Also since the Q sharing is already achieved the traditional values of

CFi=CF2=I will be kept.

3.4.2 System with (Length2 = LengthI, S1=2S2)

The system apparent powers and feeder impedances are shown in Table 3-7.

TABLE 3-7 Power system Characteristics

Source 1 Source2

Power rating (VA) 1400 700

Line impedances (0.20 +ja* 0.00154) (0.20 +joo* 0.00154)

Similarly as in section 3.3 the calculations are done. The results follow.

m01 « 0.0100 »1.0457« 0.0105 ^ (3-24)
m02 « 0.0204 * 1.0457 « 0.0213 — (3-25)uz VAR V /

E02 = E01 = 120 * V2 * VDFl = 169.7 * 1.0457V « 177.5V (3-26)

Also the reference m = n01 = ^^ = -^- « 0.0056 ^ = M (3-27)1 ul Pmax 1400*0.8 S.W J v '

f01 = f02 = 60.5Hz (3-28)
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As an example of system behavior, one can see the system frequencies in Fig. 3-12 when

a = 0.2, ß = 0.5.

60.5«

60.45

60.4

60.35 h

60.3

60.25

Fig 3-12 System frequencies response as the load decreases by 20% (f2 has more initial
undershoot (0 < t < 0.15s) and more overshoot (Is < t < 1.15s) than fl)

Time(s)

With a = 0.2, CFi= CF2=1 results are as shown in Table 3-8.

TABLE 3-8 System simulation results when ß changes

ß

0.1

0.3

0.5

0.7
0.8

0.9

Qi
(VAR)

598

651

673
683

685

686
686

Q2
(VAR)

649

570

524
492

480

469
459

Q1/Q2

0.921

1.142

1.284
1.388

1.427

1.463
1.495

Vload
(RMS)

120.7

119.4

118.2
117.1

116.6

116.1
115.6

f_st
(Hz)

60.312

60.315

60.32
60.3230

60.325

60.3262
60.328

Ts
(s)

0.91

0.97

0.98
0.98

0.98

1.15

Over shoot
(%)

29.5

26.6

26.2

25.2
24.6

24.1

23.9

As it can be seen in the previous table and following diagrams, by increment in

ß (m) there would be increment in Q1/Q2 and better Q sharing (since Si=2Si).
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By increment in ß, load voltage decreases. Moreover the steady state frequency increases

since the real power decrease.

Figures 3-13 to 3-15 show the effects of ß on system's transient behavior and Q sharing

ratio.

30

29

28

27

26

25

24

23

0.1 0.3 0.5 0.7 0.9

Fig 3-13 Effects of ß on system's over(under)shoot

1.2

1.15

1.1

1.05

1

0.95

0.9

0.85

0.8

0.1 0.3 0.5 0.7 0.9

Fig 3-14 Effects of ß on system's settling time

Over(Under) shoot

» » F

¦Ts(s)

Beta
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1.600

Q1/Q2
1.400

1.200

1.000

0.800

Fig 3-15 Effects of ß on system's Q sharing ratio

Also note that increment in ß (m) has very small effects on overshoot and

increases the settling time a bit. According to the previous results the ß=0.8 has been

chosen which has small settling time and rather good Q sharing.

The value of ß is kept constant to 0.8, also CFl= CF2 =cte=l; Now a (?) is

changed to see its effects on system behavior. The results are shown in Table 3-9.

TABLE 3-9 Effects of a on system behavior

a Qi
(VAR)

Q2
(VAR)

Q1/Q2 Vload
(RMS)

f_st
(Hz)

Ts(s) Over shoot

0.05 685 480 1.427 116.6 60.4562 0.5 35.1

0.1 685 480 1.427 116.6 60.4122 0.53 30.1
0.15 685 480 1.427 116.6 60.3686 0.61 29.6

0.2 685 480 1.427 116.6 60.3247 0.98 24.6

0.25 685 480 1.427 116.6 60.2807 1.8 23.1

0.3 685 480 1.427 116.6 60.237 4.5 22.8

0.4 Unstable

0.6 Unstable

0.8 Unstable

Unstable
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Figures 3-16 and 3-17 show the effects of a on the system's settling time and

overshoot percentage respectively.

Fig 3-16 Effects of a on the system's settling time

Over shoot Percentage

Fig 3-17 Effects of a on the system's overshoot percentage

It can be seen that a (?) has almost no effect on the source voltages magnitudes

and phases, and therefore no effect on sources powers but it has remarkable effects on the

system steady state frequency and transient behavior even more than ß (m). One can see

in figures 3-16 and 3-17 that the trade-off point can be achieved at around a = 0.2 which

rather small settling time and overshoot. So finally the values of a = 0.2 and ß = 0.8 have

been chosen as the optimum droop parameters.
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When one keeps the values of a = 0.2 and ß = 0.8, CF2=1 constant and varies the

values of CFi to see its effects on the system behavior, the results can be seen in

Table 3-10.

TABLE 3-10 Effects of the correction factor1 on the system behavior

CF1

0.4

0.7

P1=2P2(W)

1010

995

983

Ql
(VAR)

812

743

685

Q2
(VAR)

387

437

480

Q1/Q2

2.10

1.7

1.427

Vioad
(Vrms)

118.18

117.32

116.60

Steady
state

frequen.
(Hz)

60.3198

60.3224

60.3247

Ts
(s)

1.3

1.05

0.98

Overshoot
(%)

16.4

21

24.6

Figure 3-18 demonstrates the effects OfCF1 on the system's settling time and Q sharing

ratio. The intersection of the two curves on top has a real part which is the exact desired

QiCFi at which — =2.Q2

Q1/Q2

Ql/Q2=2

Fig 3-18 The effects of CFi on the system's settling time and Q sharing ratio

56



As one can see in the previous table, by decrement in the CFi starting from 1

(conventional value), the real powers and load voltage increase. During the course of

decrement of CFi, the steady state frequency decreases since P increases; meanwhile the

settling time increases a bit and overshoot decreases. So the value of CFi=0.45 has been

chosen since it results in good reactive power sharing.

3.4.3 System with Length2 = (Length1)/3, S1=2S2

Now the system is changed to have the power characteristics as shown in Table 3-11 as

another case.

TABLE 3-11 Power system characteristics

Sourcel Source2
Power rating (VA) 1400 700

Line impedances (0.20+jco*0.00154)*3 (0.20 +jœ* 0.00154)

Like the previous systems the calculations were done:

-> m01 « 0.0100 * 1.140 « 0.0114^ (3-29)
E01 = 120 * V2 * VDFl = 169.7 * 1.40V « 193.4V (3-30)

-> m02 « 0.0204 * 1.0457 « 0.0213 ^ (3-31)
E02 = 120 * V2 * VDFl = 169.7 * 1.0457K ~ 177.5K (3-32)

The reference nl = nm = = « 0.0056 — = — (3-33)U1 Pmax 1400*0.8 S.W 2

f01 = f02 = 60.5Hz (3-34)
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As an example of system behavior, one can see in figure 3-19 the system's

voltages when a = 0.2, ß = 0.8, CFi= CF2=I.

132

130

128

d- 126
co
(U
O)

I 124
CO
S 122

120

118

116

Jmfi^^

0.9

Vload

miwm

1.1 1.2
Time(s)

1.3 1.4 1.5

Fig. 3-19 System voltages as the load decreases by 20% at t=ls

When a = 0.2, CFi= CF2=I, and ß changes, simulation results are shown in

Table 3-12.

TABLE 3-12 Simulation results as ß changes

o.i

0.2

0.4

0.8

Qi
(VAR)

821

812

804

795

Q2
(VAR)

557

540

491

474

459

Q1/Q2

1.469

1.520

1.654

1.696

1.732

Vload
(RMS)

121.21

120.5

117.Í

116.68

115.51

f_st
(Hz)

60.3057

60.3080

60.3162

60.3198

60.3234

Ts

(s)

0.68

0.67

0.66

0.65

0.65

Over
shoot
(%)
91.5

91.5

104.6

91.3

90.9
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It can be concluded from the simulation results that by increment in ß (m) there

would be increment in Q1/Q2 and better Q sharing. Also by increment in ß, load voltage

decreases. Moreover the steady state frequency increases since the real power decreases.

Figures 3-20 and 3-21 show respectively the influences of ß on system's settling

time and Q sharing ratio for this case.

0.545

0.535

0.525

0.515

0.1 0.3 0.5 0.7 0.9

Fig. 3-20 The influence of ß on system's settling time

1.100

Q1/Q2
1.090

1.080

1.070

1.060

1.050

Fig. 3-21 The influence of ß on system's Q sharing ratio
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Also note that increment in ß (m) has small effects on overshoot and increases the

settling time a bit. The ß =1 has been chosen which has small settling time and overshoot

and also good Q sharing.

Now the value of ß is kept constant to 1 (CFi=I, CF2=1), and a (?) is changed.

The results are in Table 3-13.

TABLE 3-13 System's results as a is changed

a

0.05
0.1

0.15
0.2

0.3

0.5
0.7

Qi
(VAR)

795

795
795

795

795
795

Q2
(VAR)

459

459
459

459

459
459

Q1/Q2

1.732

1.732
1.732

1.732

1.732
1.732

Vload
(RMS)
115.5

115.5
115.5

115.5

115.5

f_st
(Hz)

60.4559

60.4118
60.3676

60.3234

60.2347
115.5 60.0562

Ts(s)

0.9

0.4
0.43

0.65

1.1
2.8

Over shoot
(0/.

98.6

97.9
92.1

90.9

87.0
85.5

Unstable

Figures 3-22 and 3-21 show the effects of a on the system's settling time and overshoot

percentage respectively.

Fig. 3-22 Effect of a on the system's settling time
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100.0

Over shoot Percentage

Fig. 3-23 Effect of a on the system's overshoot percentage

One can see in figures 3-22 and 3-23 that the trade-off point transient state can be

achieved at around a = 0.15 which has small settling time and rather small overshoot. If

one repeats the first procedure to change ß again this time for a of 0.15 instead of 0.2 one

will get a table close to the table for with a = 0.2 (even exactly the same results for

system powers), and the value of ß =1 will be chosen again since it has the best Q

sharing. So finally the values of a = 0.15 and ß =1 have been chosen as the optimum

droop parameters.

Then, one keeps the values of a = 0.15 and ß =1, CF2=I constant and varies the

values of CFi, the results are presented on Table 3-14.

TABLE 3-14 System's behavior when CFi varies

CF1 Qi
(VAR)

Q2
(VAR)

Q1/Q2 Qlinel
(VAR)

Qline2
(VAR)

Qlinel/
Qline2

Qloadl
(VAR)

Qload2
(VAR)

Qloadl/
Qload2

Vload
(Vrms)

0.75 847 426 1.99 173 18 9.61 674 408 1.65 116.19

0.8 836 433 1.93 171 18 9.50 665 415 1.60 116.05

795 459 1.73 165 19 8.68 630 440 1.43 115.50

As one can see in Table 3-14, by decrement in CFi starting from 1 (conventional

value) the load voltage increases. Also note that since the length of feederl is 3 times that
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of the feeder2 and also the apparent power (current) of source 1 is twice of source2, P and

Q consumed in feederl are much larger than those in feeder2. As it can be assessed in

this table, the ratios of the reactive powers consumed in the feeders, loads, and overall are

different. The Q sharing is based on the last ratio (4th column above from left). The value
of CF]=0.75 has been chosen since it results in good total Q sharing.

3.4.4 System with (Length2 = (Length1)/3, S1=S2)

The new values for power stage for this case are presented in Table 3-15.

TABLE 3-15 Power system characteristics

Sourcel Source2
Power rating (VA) 1050 1050
Line impedances (0.20 +j(D* 0.001 54)*3 (0.20 +jco* 0.00154)

The calculated droop parameters are:

-» moi « 0.0134 * 1.104 « 0.0148^ (3-36)
E01 = 120 * VI * VDF1 = 169.7 * 1.104V « 187.3V (3-37)

->m02 «0.0134* 1.034 «0.0139 ^- (3-38)
E02 = 120 * V2 * VDF1 = 169.7 * 1.034 « 175.5V (3-39)

Acomax 1*2p ???1? Rad ,_ .?.?™ = rim = = « 0.0075 — (3-40)01 ^2 Pmax 1050*0.8 S.W v '

f01 = f02 = 60.5Hz (3-41)
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When a = 0.1, CFi=CF2=l, and ß changes, the results are shown in Table 3-16.

TABLE 3-16 Effects of ß on system's behavior

ß

0.2

0.4

0.8

Qi
(VAR)

667

650

621

608

Q2
(VAR)

608

600

584

575

Q1/Q2

1.097

1.083

1.063

1.057

Vload

(RMS)

118.8

117.65

115.48

114.46

Steady
state

frequency
(Hz)

60.4074

60.4091

60.4125

60.4140

Ts
(s)

0.53

0.53

0.54

0.52

Over shoot

(%)

39.2

39.4

42.1

38.9

As it can be seen in this table and following diagrams, by increment in ß (m) there

would be decrement in Q1/Q2 and better Q sharing. Also, by increment in ß, load voltage

decreases; moreover, the steady state frequency increases since the real power decreases.

The influences of ß on the system's overshoot percentage, settling time, and Q

sharing ratio are shown in the figures 3-24 to 3-26 respectively.

Fig. 3-24 System's frequency's overshoot percentage as ß changes
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Fig. 3-25 System's settling time as ß changes
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Fig. 3-26 System's Q sharing ratio as ß changes

Note that increment in ß (m) has small effects on overshoot and settling time.

According to the results above the ß =1 has been chosen which ends to smallest settling

time and overshoot and also the best possible Q sharing.
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The values of ß, CFj and CF2 are kept constant to 1 and now a (?) is changed to

see its effects on system behavior in Table 3-17.

TABLE 3-17 Effects of changes in a on system behavior

a Qi
(VAR)

Q2
(VAR)

Q1/Q2 Vioad
(RMS)

Steady state
frequency(Hz)

Ts(s) Over shoot
(%)

0.1 608 575 1.057 114.5 60.4140 0.52 38.9

0.15 608 575 1.057 114.5 60.3710 0.45 37.2

0.2 608 575 1.057 114.5 60.3279 0.49 35.9

0.3 608 575 1.057 114.5 60.2415 0.64 34.7

0.5 608 575 1.057 114.5 60.0682 31.2

0.7 Unstable

Also the influences of a on the system's settling time and overshoot percentage

are shown in the figures 3-27 and 3-28 respectively.

Fig. 3-27 The influences of a on the system's settling time
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Over shoot Percentage

Fig. 3-28 The influences of a on the system's overshoot percentage

One can see in figures 3-27 and 3-28 that the trade-off point transient state can be

achieved aft a = 0. 1 5 with smallest settling time and rather small overshoot. So finally the

values of a = 0.15 and ß =1 have been chosen as the optimum values.

When one keeps the values of a = 0.15 and ß =1, CF1=I constant and varies the

values of CF2, the following results are obtained in Table 3-18.

TABLE 3-18 Effects of CF2 on the system's Q sharing and load voltage

CF2

0.85

0.9

Qi
(VAR)

589

595

608

Q2
(VAR)

603

593

575

Q1/Q2

0.98

1.00

1.06

Vload

(RMS)

114.91

114.78

1 14.46

As one can see in this table, by decrement in the CF2 from 1, the load voltage

increases and Q1/Q2 decreases. The value of CF2=0.9 has been chosen since it results in

good total Q sharing.
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3.5 Conclusion

In this chapter the effects of different system's parameters on the P & Q sharing

were considered. It was seen that by correct control of the sources' voltages' magnitudes,

phase angles, and steady state frequency, one can have any desired power sharing. Based

on the obtained relations of the sources' voltages' magnitudes and phase angles with

sources' powers, the proposed droop strategy was designed.

The proposed droop system includes correction factors which make good Q

sharing. This droop system also includes the voltage drop factors to guarantee desired

load voltage regulation. The details of droop system design were elaborated and the

effects of each droop parameter on system transient and steady state behaviors were

evaluated.

The design of the droop system and evaluation of the droop parameters' effects on

system's nonlinear behaviors were generalized for different cases of the power system

with different ratios of the sources' apparent powers and different ratios of feeders'

lengths.

Having compared the relevant figures for different power systems, it was

observed that by increment in ß(m), the ratio of Q1/Q2 gets close to S1/S2 in all the

cases; also by this increment, the sources' voltages' magnitudes and consequently load

voltage magnitude and sources' produced powers decrease. Besides, system's frequency

increases. Also as ß changes between 0 & 1, it makes rather small changes on system's

settling time & overshoot.
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For all the cases, a(n) doesn't have any effect on the sources' voltage's

magnitudes and phase angles, and consequently no effect on the load voltage's

magnitude and sources' P & Q. But it has huge effect on the system's stability, steady

state frequency, speed, and overshoot, which is more than ß(m) effects. For all the

considered states, by increment in oc(n), the system's steady state frequency decreases.

Besides, for all the cases (except the ideal symmetric one), for small values of a(n)

the settling time doesn't change a lot and after that as a increases, settling time increases

significantly till the system becomes unstable at some point.

Decrement in a correction factor (while the other one is 1), makes its relevant

source produce more Q than the other one (with CF=I) to adjust the Q sharing. This

decrement in CF value also increases its pertinent source's voltage's magnitude and

consequently the load voltages' magnitude and sources' Ps, which makes slight

decrement in system's frequency.

As a comprehensive approach to choose droop parameters for any power system,

the droop parameters mQs, nQs, EQs, & f0s should be designed as in (3-3) to (3-10).

ß=1 can be a good choice for all the cases but in the cases similar to the one in

subsection 3.4.2 (which have almost equal feeders' impedances but one source larger

than the other one), it is better to use ß~0.8 to make the system faster. 0.1<a<0.2 can be

used for all the cases to have small oscillations and proper speed. Also, the correction

factor of the source which needs to provide more Q should be decreased. The more the

ith source needs to provide Q¡ (Larger -1 and/or larger ——1), the more decrement in CFj
Jj ZiIl?Gj

should be implemented.
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CHAPTER 4

System With Complete Benchmark and Control

Elements

4.1 Introduction

In this chapter the simulation results for the benchmark model with complete

control system are presented. The power stage of the system is a laboratory scale version

of a real Canadian system. Compared to the power systems in chapters 2 & 3, the ideal

dependent AC power sources (as in Fig. 2-1) have been replaced by DC sources

(representing the combination of RES and storage unit), unipolar single-phase (1f)

sinusoidal pulse width modulated (SPWM) inverters which are controlled by the

proposed control system, and finally second order LC low pass filters (LPF) for

attenuating the switching harmonics.

Also in chapters 2 & 3, the voltage control stage was not included, with the

inverters being represented by dependent voltage sources for the sake of simplicity of

control system and faster simulations; but in this chapter the voltage control stage is

added to the control system to see the effect ofthat in transient and steady state results.

The steps of the design of power stage and voltage control stage are also

explained.
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4.2 Power Elements

The system has the following characteristics.

Sioad= 21 00VA ; Vrated=120V which is used at the low voltage level in North America;

Iratedjoad=^^ =1 7.5 A (4- 1 )
The base impedance of the scaled down system is

¿base-benchmark = irate(j load* (4-2)

In a real system in Canada (information obtained by Natural Resources Canada),

Riine=0.0305 O, and Lline=235uH (for 100 meters of used feederl) and Rioad=0.914 O ,

Lioad=l-816mH, PF=0.8 lagging ; and for this real system Vrated=240VRMs and Sioad=55

kVA. So that for the mentioned 240 V system implemented in Canada

Zbase -real model =^ =1-047 ohm (4-3)äbase

So the line and load parameters in the benchmark scaled down (120V) system will

be R,inei=^^=0.2 O, and LUnel= ^^=1.54mH, Rioad=5.99 O, Lload=11.9mH
obtained by using the same per unit line and load values for the two systems. Note that

feeder2 is three times longer than feederl.

In the power system, there are two DC voltage sources (representing the RES and

storage unit) which are connected to two PWM unipolar 1f inverters; and the inverters

are connected to two LC second order low pass filters (LPFs) on the AC side.
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Figure 4.1 shows the power stage of the system. The 3 RL (Resistive-Inductive)

elements at the middle of Fig. 4-1 are the same as the ones in Fig. 2-1. The Ei and E2

(shown in Fig 2-1) are the outputs of the two LC low pass filters which are connected to

two sets of switches on the other ends.

Bh „
Fmi T I f™s

Ideal Sxilcni

_,_qfl(p_,_ ¦MM-Wu
Line 2 FNIerLÎ

Fig. 4-1 Power stage of the system

Eh
?322G

Fipm11

Î
,, EhT ¦ Frano rt: .

Jl Ideal S»ilcn3 /1J A

The switching frequency is fsw= 20 kHz, and LPF inductor is Lf¡i=2mH (with

parasitic resistance of 0.1 74O), LPF capacitor is Cfü=20uF (with parasitic resistance of

0.04O) which will produce the LPF output voltage transfer function's cut-off frequency

of around 1300Hz = 6.5%* fsw as it could be seen in Fig. 4-2. The small percentage of

6.5% assures the small harmonics in the LPFs' output voltages.

Using the equivalent loads mentioned in section 3.2, The LPF1 output voltage's

first (main) harmonic (Elhl) transfer function is

Eihl [(Zloadeq+ZiineQllZcfli] 20 (s+1.25e006) (s+480.7)
Vrefhl [( Zloadeq+Zlinei)||ZcfiI]+ZLfil (s+452) (s2 + 137.2s + 2.696e007) (4-4)
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Where Vrefhlis the first (main) harmonic of the inverter reference signal (output of

voltage controller for a PWM inverter), and ZLfii and Zqü are respectively the LPF's

inductor's and capacitor's impedances including their parasitic resistances. The order of

this transfer function is three since for an isolated inverter circuit using the equivalent

loads (as in Fig. 3-1), only the series combination of equivalent load and line's R & L are

considered so that there will be two inductors and one capacitor in each separated power

circuit, which are totally three storage elements.

20

S -20

-40

0

-45

: -90

-135

-180

System vo_over_Vin
Frequency (Hz): 1 39e+003
Magnrtude (dB): -5.97

10' 10° 10'
Frequency (Hz)

Fig. 4-2 Magnitude (on top) and phase (at the bottom) of the LPF's output voltage's

main harmonic's transfer function
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It can be seen in Fig. 4-2 that the power system has a resonant frequency of about

830Hz (the diagram's peak) whose voltage harmonics should be eliminated by correct

design of the voltage controller.

4.3 Control Elements

The sourcel control system's scheme is shown in Fig. 4-3. The second source

control scheme has the same scheme but it has different values for the droop parameters.

As it can be seen in this figure, the measured line voltage and current, and system

frequency are used to calculate P & Q. The details of the power calculation are addressed

in subsection 4.3.5. Droop system uses these calculated P & Q to make the required

amount of voltage magnitude and frequency for the source voltage reference. Then the

output of the voltage controller goes to the gating system to be commanded to the

inverter. Details of the gating system follow.
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Fig. 4-3 Schematic diagram of control system
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4.3.1 Gating System

Gating system uses 2OkHz sawtooth waveform to be compared to the control

signal (InI of the gatingl box in Fig. 4-3) to make unipolar gating signals of the inverter

(4 outputs of gatingl box). This circuit first receives the output of the voltage controller;

then it divides that by the source voltage (VDCl in Fig. 4-3) to generate the control

signals. This division makes the inverters capable of working with variable DC bus

voltages as they have always the constant ratio of 1 between their fundamental

components of reference voltages and the their output voltages by proper selection of

KPWM which is equal to — (division of the voltage controller's output by Vdc ·"dc

,Vouthi _ vDC „ _ 1 >. ,/«(-^- = -^- * KPWM = 1) (4-5)

where VDC, Vst, & KPWm ^e respectively the DC bus voltage, maximum saw

tooth waveform magnitude (= 1), and PWM gating gain. Notice that the variations in

Vdc should be much slower than sawtooth variations (2OkHz) to have good modulation

and small harmonics in the power system's sources' voltages. Also Vdc should be greater

than the peak of the reference voltage of inverters all the time; otherwise there will be

some low order harmonics in the system's sources' voltages or even instability due to

overmodulation in the inverters.

4.3.2 Current Loop

A controller can be used which facilitates the design of voltage controller. The

current controller would be used when it is hard to design the voltage controller directly.

In such a case the current loop is used as the inner loop and the reference current is the
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output of voltage controller. The current controller should be about 10 times faster than

voltage controller as in basic cascaded control loops scheme.

In the simulations in this chapter, the current controller is not useful because it is

not necessary to be included since one can design the voltage controller directly. In this

case the control system would be simpler and cheaper too. This current controller

elimination has been done in some publications such as [19, 22].

4.3.3 Voltage Loop

A PR controller [23] is used to have sinusoidal voltage waveforms with very

small distortions and zero error in the steady state, following a step variation. A

proportional resonant (PR) controller such as the one in (4-6) consists of two conjugate

purely imaginary roots (though it might include some other poles in the left hand side of

the s-plane). Also the order its numerator should be equal or less than that of the

denominator. The purely imaginary conjugate roots are to amplify the desired frequency

of the reference signal. The other details are explained in the coming subsection.

4.3.3.1 Design of the voltage controller

The Bode diagram and root and zero loci of the voltage loop transfer function

(VLTF) (product of the LPF output voltage and voltage controller transfer functions), and

the Bode diagrams of the closed voltage loop transfer function (CVLTF) are shown in

Fig. 4-3. The open loop transfer function was presented in (4-4).
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The voltage controller needs two imaginary roots (S = ±j377) on 60Hz to make

a huge amplification of the main frequency of the reference voltage in that region around

60Hz, and attenuate the effect of the power system's internal resonance at around 830 Hz

dramatically. PI controller can't do this great attenuation since it has limited gain around

60Hz.

Controller's three zeros are chosen to make appropriate PM for VLTF, and the

phase margin (PM) is designed to be 43 «100* damping factor [24].

As it can be seen in Fig. 4-4, the real controller's root (s = —14610) makes a
dB dB

slope between -40-— and -20j— at high frequencies (around switching frequency and its
multiples) in the VLTF and consequently CVLTF to help attenuating the switching's high

frequency harmonics. The gain is adjusted to make a proper open loop transfer function

cut-off frequency of 1280Hz = 6.4% * fsw ( consequently low cut-off frequency of

around 2500kHz=12.5%*fsw in the CVLTF) which helps the appropriate attenuation of

switching's high frequency harmonics in the LPF's output voltages too.
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Fig. 4-4 Voltage open and closed loop control systems characteristics

So finally the PR controller transfer function is achieved:

£.0676 (s+1058) (s+1118) (s+639.7)
(s+14610) (s2 + 142100) (4-6)

The two sources' references and real voltages' waveforms can be seen in Fig. 4-5.

The Vref2 has been increased from 96Vrms to 120Vrms at the time t=0.04s. It can be seen

in this figure that there are very small harmonics in the system steady state voltages, and

also the voltage controller can restore the desired voltage fast after the change its

reference signal. The settling time for the voltage loop is about 15ms which shows a very

proper speed.
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Fig. 4-5 Sources' reference and actual voltages before and after a change in Vrefl

Figure 4-6 shows the difference between the reference and real voltages (voltage

ripple (error)), before and after the change in Vref2· The maximum momentary steady

state voltage ripple is 1.4V which is 0.8% of nominal peak voltage. This small value

shows the desired accuracy of the voltage controller. This ripple can be reduced by

decreasing the simulation step size since a portion of the error is due to the simulation

software calculations approximations in each time step.
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Fig. 4-6 Sources' output voltages' ripple (V2 ripple (error) has more initial variations)

4.3.4 Droop Loop

The droop system makes the reference of the voltage controller using the

measured P and Q and also droop parameters. The values of the droop parameters are the

same as ones used in section 3.2. The detailed design of the droop loops is also elaborated

in that section.

4.3.5 Power Calculators

Figure 4-7 shows the scheme of a P calculator. The Q calculator unit is the same

as P calculator except Iijnei which is shifted by 90° [18]. The product of the inverter's

output voltage and current has the DC desired value and a harmonic around 120Hz which

should be attenuated by control system's LPFs. That's why two second order LPFs with

the cut-off frequency of 20Hz have been used in the power calculator units. If the cut-off

frequency of the control LPFs decreases, the system will be slower to respond to changes
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in load (as in [18]), but there will be less ripple in the system steady state voltages'

magnitudes and frequency, and also measured Ps & Qs. In the other hand these LPFs are

the slowest units in the whole control system, so the solution would be two LPFs in series

with a rather high cut-off frequency such as 20Hz which maintains good system speed

and control stage simplicity while they attenuate the harmonics of around 120Hz

sufficiently.

im I vi

ay
In2

IJinel Produce

(2*??·20)?2
den(s) den(s) -KD

Out1
LPF3 LPF2

Fig. 4-7 Active Power Calculator

4.4 Simulation Results for the Complete System

By changing the control system in section 4.3.3, the reference voltage is now put

to be the output of the droop system. The power system feeders, and droop system in

section 3.3 are the same as the ones in the all the simulations in this section.

Note that because of the complexity of the complete system, high switching frequency,

required rather long simulation time, and limitations of RAM and CPU of the available

computers, one has been forced to use PSIM instead of SEViULINK for this step of the

simulation which makes almost no change in the results.
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4.4.1 Two Sources with a Linear Load which Changes

In the following simulations, the linear load (the same as the one used in section

3.3) has decreased by 20% at the time t=0.6s. Fig 4-8 shows the steady state system's

results before the load change.

P1 Q1 P2 Q2
1000.00 ? : ¦ : ¦ ?
900.00 ; i i ;
800.00 i - -- ---; ----- - ; ; —
700.00 ; ; i ;
600.00 \ ; ; '¦
500.00 \ ; i ;
400.00 ? i '¦¦ I i
300.00 1 : ! I :

f refi f ref2
60.50 ? = ; ; 1 ; 1
6045 \ i j \
60.40 i i j j --- -
60.35 ; i i i
60.30 I i : '¦ :

Vload RMS
118.00 ? = : ; ; ; 1117.00 i ; ? i
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114.00 - ---i i - - i- \
113.00 \- ; i ;
112.00 ¦ ¦ i '· i

550.00 560.00 570.00 580.00 590.00 600.00
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Figure 4-8 Steady state system results before the load's change (for the graph on top, the

order of the waveforms from the top to the bottom: Pl, Ql, P2, Q2)

The values of the power system parameters measures taken in steady state before

the load's change (at t=0.596s) are shown on Table 4-1 which demonstrate system's

appropriate P & Q sharing, and frequency and load voltage regulation.
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Table 4-1 Power system's steady state parameters' values

Time 0.596s
Pl 961W
P2 480W

P1/P2 2.00

Qi 768 VAR
Q2 3 85VAR

Q1/Q2 1.99
System Frequency 60.3Hz

RMS Load Voltage 115.0V

The transient waveforms after the 20% load decrement are shown in Fig. 4-9.

According to the waveforms in this figure, settling time is 0.48s and the frequency

overshoot is 9.2% which show system's proper speed and transient response.
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Figure 4-9 System's transient behavior after the 20% load decrement (for the graph on

top, waveforms from the top to the bottom: Pl5Ql, P2, Q2), (for the graph at the middle:

fren has overshoot and fref2 has undershoot at the beginning)
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Steady state and transient results are close to the ones obtained in section 3.3

(without voltage controller or LPFs and with ideal sources) since they have the same

main power and control parameters. The very slight difference is due to the difference in

switches' models and the simulation calculations procedure in SIMULINK and PSIM,

and also addition of the voltage control stage to the control system.

4.4.2 Disconnection of One Source from the Network

Now the joint load is 65% full load compared to the initial load in the previous

5.99 11.9
subsection, (i.e. Rioad = ——O, Lioad= —~~ mH) at the beginning and then at t= 0.6 s the0.65 0.65

second source goes out of the network (e.g. because of the operation of circuit breakers as

a result of a short circuit in the sources' terminals). Also notice that the other control and

power system's elements have been kept constant to the previous subsection's values.

Fig. 4-10 shows the system's power and sources' voltage's peaks before and after

the disconnection of source2 from the network. Since the load is small enough, the first

source can deliver the whole power to the load without exceeding the nominal powers

(current) after the disconnection of the source2.
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Fig. 4-10 System's powers (on top) and sources' voltage's peaks (at the bottom) before

and after the disconnection of source2 from the network (for the graph on top, waveforms

from the top to the bottom: Pl, Ql, P2, Q2), (the graph at the middle: Erefl is lower than

Eref2)

Also since the droop parameters are designed correctly, the first source frequency

would remain in the allowable range (59.5 Hz to 60.5Hz) after the other sources'

disconnection as it can be seen in Fig 4-11. Also note that since source 2 has been

disconnected, its post disconnection (t>0.6) frequency value should be disregarded.
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Fig. 4-11 System's sources' frequencies

1.18

Sinusoidal wave forms of the sources' output voltages and load voltage and also

feeders' currents can be observed on Fig. 4-12.
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Fig. 4-12 Sources' output voltages and load voltage (on top) and also feeders' currents (at

the bottom) (|Ilinel|>|Iline2|)
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The variations of the peak value of the load voltage can be seen in Fig. 4-13. It

can be observed in this figure that since the load is small enough, and the droop

parameters are designed correctly, the load voltage's peak remains in the desired range

(161.2V to 178.2V) after the disconnection of the other source.
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Fig. 4-13 The variations of the peak value of the load voltage

4.4.3 System with a Resistive-Inductive (RL) Nonlinear

Load

The system has the same system's parameters as the ones in section 4.4.1 except

the load, which consists of a linear portion which is 80% of the initial load in 4.4.1; and a

nonlinear load (20% of the initial load in 4.4.1) which is connected to the linear load

through a full diode bridge).
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Fig. 4-14 shows the load and feeders' currents and also sources' output voltages

as well as the load voltage. It can be seen that since the load has a nonlinear portion, the

feeder's currents and the load voltage have some harmonics (the load voltage is zero

during the current commutation period [25]). Consequently the nonlinear load even

makes some small harmonics in the linear load's current and in the sources' output

voltages after the LPFs. But the control system is still capable of controlling the system's

voltage and stability and the sources share the load current.
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Fig. 4-14 Load and feeders' currents (on top) and also sources output and load voltages

(at the bottom)
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4.5 Conclusion

The system in this chapter has been a more complete version of those used in

chapters 2 & 3. That means, the DC sources, power stage LPFs, voltage controllers, and

gating systems have been added to the system.

The control system and its different stages were discussed. Also the design of the

LPFs, voltage controllers, active and reactive power calculators, and gating systems'

elements were addressed. The proper accuracy of the PR voltage controllers was shown.

The simulation results for the benchmark with more complete control stage (after

addition of voltage controller stage) were presented for a system with same load, feeder,

and droop elements as in section 3.3. It was observed that those results were close to

those of the simpler system in section 3.3.

Finally, the simulations have been performed for the case when one source is

disconnected from the network, and also for the cases when the power system has a

resistive-inductive nonlinear load. It was observed the control system is capable of

controlling the system in all mentioned cases.

89



CHAPTER 5

Conclusion

5.1 Summary

This thesis proposes a new droop system for very proper power sharing between

some energy sources which are integrated in a low voltage isolated microgrid. This droop

system also provides desired load voltage regulation for such an integrated system. The

system uses its frequency as the intercommunication signal so that there is not any

intercommunication cable cost or any problem with the electromagnetic interference with

the intercommunicating signal.

Proper P sharing has been achieved by making the frequency of each inverter

dependent on its measured P; appropriate Q sharing has been achieved by using new

parameters called "Correction Factors" inserted in the calculations of the droop

parameters "ms"; and desired load voltage regulation has been obtained by inserting the

"Voltage Drop Factors" into the calculations of the droop parameters "ms" and "Eos."

The last two features are the main advantages of the proposed droop scheme over the

basic conventional one.

Also for the first time, the exact effects of the sources' voltages' characteristics

(i.e. their magnitudes, phase angles, and frequency) on the system active and reactive

powers flows have been elaborated by means of 3 dimensional graphs, which finally

explain the way the droop equations are derived from these power relationships. So the
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droop system is designed in a way to make negative feedbacks for the power system to

help the system stability.

Then, the optimum droop coefficients (ms and ns) were obtained by defining the

new parameters (a, ß, Vdfi, VDF2, CF1, CF2) and adding them to the basic ones (ms, ns,

fos, and Eos) and verification of their effects on the system's steady state behavior (i.e.

reactive power sharing ratio, load voltage, and system frequency magnitudes), system's

transient behavior (i.e. overshoot, settling time), and system's stability.

The correction factors make good Q sharing and the voltage drop factors are used

to guarantee desired load voltage regulation.

The design of the droop system and evaluation of the droop parameters' effects on

system's nonlinear behaviors were generalized for different cases of the power system

with different ratios of the sources' apparent powers and different ratios of feeders'

lengths.

Having compared the relevant figures for different power systems, it was

observed that by increment in ß(m), the ratio of Q1/Q2 gets close to S1/S2 in all the

cases; Also as ß changes between 0 & 1, it makes rather small changes on system's

settling time & overshoot.

For all the cases, a(n) doesn't have any effect on the load voltage's magnitude

and sources' P & Q. But it has huge effect on the system's stability, steady state, speed,

and overshoot, which is more than ß(m) effects. For all the cases, (except the ideal

symmetric one), for small values of a(n) the settling time doesn't change a lot; and after

that, as a increases, settling time increases significantly till the system becomes unstable

at some point.
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Decrement in a correction factor (while the other one is 1), makes its relevant

source produce more Q than the other one (with CF=I) to adjust the Q sharing.

As a comprehensive approach to choose droop parameters for any power system,

the droop parameters (m0s,n0s, VDFs, ¿Os, &/os) should be designed as in (3-3) to

(3-10). ß=l can be a good choice for all the cases but in the cases similar to the one in

subsection 3.4.2 (which have almost equal feeders' impedances but one source larger

than the other one), it's better to use ß ~ 0.8 to make the system faster. 0.1<a<0.2 can be

used for all the cases to have small oscillations and proper speed. Also, the correction

factor of the source which needs to provide more Q, should be decreased. The more the

ith source needs to provide Q¡ (Larger -1 and/or larger ——1), the more decrement in CFj

should be applied.

In the inner part of control system, the current loop was eliminated to make the

system faster and simpler. Besides, the design of a proportional resonant voltage

controller was addressed. This controller results in a smaller voltage's steady state error

compared to PI type controllers. Besides, this controller can attenuate switching

frequency multiples harmonics and specially the power stage internal resonant frequency

harmonic very well.
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