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Abstract 

Topological Approaches for 3D Object Processing and Applications 
Khaled Tarmissi 

The great challenge in 3D object processing is to devise computationally efficient algorithms for 

recovering 3D models contaminated by noise and preserving their geometrical structure. The first 

problem addressed in this thesis is object denoising formulated in the discrete variational frame-

work. We introduce a 3D mesh denoising method based on kernel density estimation. The pro-

posed approach is able to reduce the over-smoothing effect and effectively remove undesirable 

noise while preserving prominent geometric features of a 3D mesh such as sharp features and fine 

details. The feasibility of the approach is demonstrated through extensive experiments. 

The rest of the thesis is devoted to a joint exploitation of geometry and topology of 3D objects 

for as parsimonious as possible representation of models and its subsequent application in object 

modeling, compression, and hashing problems. We introduce a 3D mesh compression technique 

using the centroidal mesh neighborhood information. The key idea is to apply eigen-decomposition 

to the mesh umbrella matrix, and then discard the smallest eigenvalues/eigenvectors in order to 

reduce the dimensionality of the new spectral basis so that most of the energy is concentrated in the 

low frequency coefficients. We also present a hashing technique for 3D models using spectral graph 

theory and entropic spanning trees by partitioning a 3D triangle mesh into an ensemble of sub-

meshes, and then applying eigen-decomposition to the Laplace-Beltrami matrix of each sub-mesh, 

followed by computing the hash value of each sub-mesh. Moreover, we introduce several statistical 

distributions to analyze the topological properties of 3D objects. These probabilistic distributions 

provide useful information about the way 3D mesh models are connected. Illustrating experiments 

with synthetic and real data are provided to demonstrate the feasibility and the much improved 

performance of the proposed approaches in 3D object compression, hashing, and modeling. 
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Framework and Motivation 

Recent advances in computer technology have contributed to the emergence and the increase of 

3D digital data activity. With the increasing use of 3D scanners to create 3D models, 3D object 

processing, transmission and visualization have become active research fields. 

This chapter contains problems definition, motivation, objectives, and a brief review of essen-

tial concepts and definitions which we will refer to throughout the thesis, and also presents a short 

summary of material relevant to 3D mesh processing. 

1.1 Problems definition 

1.1.1 3D mesh denoising 

The great challenge in image processing and computer graphics is to devise computationally ef-

ficient and optimal algorithms for recovering images and 3D models contaminated by noise and 

preserving their geometrical structure. With the increasing use of 3D scanners to create 3D models, 

there is a rising need for robust and efficient 3D mesh denoising techniques to remove undesirable 

noise from the data. Even with high-fidelity scanners, the acquired models are invariably noisy, 

and therefore require filtering. Mesh denoising refers to the process of recovering a 3D model 

contaminated by noise as shown in Figure 1.1. The challenge of the problem of interest lies in 

faithfully recovering the original model from the observed model, and furthering the estimation by 

making use of any prior knowledge/assumptions about the noise process. 

1 
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Figure 1.1: Illustration of 3D mesh denoising. 

1.1.2 3D mesh compression 

Compression of images and shapes has long been the central theme of image processing and com-

puter vision. Its importance is increasing rapidly in the field of computer graphics and multimedia 

communication because it is difficult to transmit digital information efficiently over the internet 

without its compression. 3D objects consist of geometric and topological information, and their 

compressed representation is an important step towards a variety of computer graphics applications 

including indexing, retrieval, and matching in a database of 3D models. 

1.1.3 3D mesh fingerprinting 

The increasing use of 3D models in multimedia applications and the wide demand of online ser-

vices have opened the doors for users to modify the digital content without leaving any perceptual 

traces. To tackle this problem, cryptographic hash functions could help in ensuring the authentica-

tion and the integrity of data. The problem of 3D mesh hashing is relatively new compared to 2D 

hashing and has received less attention partly because the technology that has been used for image 

and video analysis cannot be easily adapted to 3D objects. 
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1.1.4 Statistical 3D mesh distributions 

Shape analysis of 3D objects has become an active research field with the recent developments in 

solid modeling and visualization. Nowadays, vast amounts of 3D models are being developed and 

are distributed freely or commercially on the internet. 3D graphics are commonly used in several 

multimedia applications such as video gaming, engineering design, virtual reality, e-commerce and 

scientific visualization. 3D objects consist of geometric and topological information. Topology is 

the property that determines which parts of the shape of objects are connected to which other parts, 

while geometry determines where, in a given coordinate system, each part is located. 

1.2 Objectives 

A 3D object is usually represented by a triangle mesh which consists of geometric and topological 

data. In this context geometric models are often acquired by 3D scanning techniques and have 

to go through post-processing and shape optimization techniques before being actually used in 

production. Thus, our objectives may be summarized as follows: 

• Develop an efficient kernel-based algorithm to remove undesirable noise from the 

3D models contaminated by noise while preserving their geometrical and topologi-

cal structure, and perform an experimental comparative study with the state-of-the-art 

denoising techniques. 

• Devise a novel computationally efficient algorithm to compress the 3D models while 

preserving their geometrical and topological structure. 

• Design a robust fingerprint function that produces a unique identifier for a 3D model 

to ensure the authentication and the integrity of data. 

• Analyze and convert the 3D mesh data into useful and meaningful information which 

can be used in 3D object processing. To convert the 3D mesh data into information, we 

need appropriate probabilistic tools and techniques. Such statistical methods will help 

us quantify the mesh topological properties, and to also gain very useful information 

by presenting the same data graphically. 
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1.3 Background 

This thesis addresses the application of computational geometry and topology algorithms to three-

dimensional surfaces. The following background material is presented to provide context for this 

work. 

1.3.1 Triangle mesh 

In computer graphics and geometric-aided design, 3D objects are usually represented as polygonal 

or triangle meshes. A triangle mesh M is a triple M = (V, £, T), where V = {t?x, . . . , vm} is 

the set of vertices, 8 = {eij} is the set of edges, and T = { f i , . . . , tn} is the set of triangles. 

Each edge etJ = [v,-. Vj] connects a pair of vertices {vt, Vj}. Two distinct vertices vu Vj e V are 

adjacent (written Vj, ~ Vj) if they are connected by an edge, i.e. erJ E S. The neighborhood (also 

referred to as a ring) of a vertex vt is the set v* = {vj G V : Uj ~ Vj}. The degree di of a vertex 

Vi is simply the cardinality of v*. We denote by T(v*) the set of triangles of the ring v*, and by t* 

the set of all triangles sharing a vertex or an edge with a triangle U e T of a mesh M = (V, T). 

Figure 1.2 depicts an example of a neighborhood v*, where the degree of the vertex vt is di — 6, 

and the number of triangles of the set T(v*) is also equal to 6. An illustration of t* is provided in 

Figure 1.3. 

Figure 1.2: Vertex neighborhood v*. 

Given a triangle t3 € T , we denote by area(ij) and n(tj) the area and the unit normal of tj 

respectively. Consider a triangle tj with vertices A, B and C, angles a, (3 and 7 and sides a, b and c 
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as illustrated in Figure 1.4. The triangle normal n(tj) can be calculated as the vector cross product 

of two edges of the triangle, and a numerically stable Heron's formula for computing area(tj) is 

given by 

area(tj) = ^ y / { a + {b + c))(o + {b - c))(c + (a - b)){c - (a - 6)), (1) 

where the length of the sides are arranged such that a>b>c. 

The normal n , at a vertex Vi is obtained by averaging the normals its neighboring triangles 

1 tjenvt) 
Figure 1.5 depicts the vertex normals of a triangle mesh. 
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Figure 1.5: Illustration of the vertex normals. 

The normal may be defined by weight-averaging the normals of the neighboring triangles (fol-

lowed by a normalization step) 

Hi = Uijn{tj). (3) 
tj€T(V*) 

where uijj is a normalized weight given e.g. by l /d, , or by the angle formed by the edges of t j 

incident to viy or by the area of each triangle t r 

1.3.2 Edge matrix of a triangle mesh 

Given a triangle mesh M = (V, £, T), the mean edge length I of the mesh is given by 

where ||e,j || = — Vj | 

The edge matrix of a triangle mesh is then given by 

IVi — if Vj ~ Vj 
E = (eij) = < (5) 

0 otherwise 

Spectral graph theory uses the spectra of matrices associated with the graph, such as the adjacency 

matrix, the Laplacian matrix, or the normalized Laplacian, to provide information about the graph. 

One goal is to characterize a graph or obtain information about the graph from the spectra of these 

matrices. 
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1.3.3 Normalized Laplacian matrix of a triangle mesh 

The Laplacian matrix of a triangle mesh M = (V, 8, T) is given by L = D — A, where A = 

(ciij) is the adjacency matrix between the vertices, that is a..„ = 0 and a^ = 1 if v., ~ Vj ; and 

D = diag{di : i = 1 , . . . , m} is the degree matrix (diagonal matrix whose (i, i) entry is di). 

It is worth pointing out that the number of edges of a triangle mesh M = (V, 8, T) is given by 

\8\ = trace(D)/2 = trace(/l2)/2. The Euler characteristic is then given by x(M) = | V | - | £ | + |T|. 

The Laplacian matrix is defined as [71] 

f di if Vi = Vj 

— 1 if Vi ~ Vi L = {tij)=< - 1 if V i ~ V j (6) 

0 o.w. 

Figure 1.6 and 1.7 illustrate examples of 2D and 3D triangle meshes and their Laplacian 

matrices, respectively. 

» • • 

. . . . • ... ... . . ... .... . . ... ... . . . . . . ... ... ... . .... . . . . 
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0 
0 
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0 
0 
0 
0 

-1 -1 -1 
0 0-1 
-1 -1 0 

15-10 
1 -1 4 -1 
) 0 -1 3 

Figure 1.6: 2D triangle mesh and its Laplacian matrix. 

The normalized Laplacian matrix C is given by 

C = D-1'2LD~1'2 = 1- D-^AD-1'2 = 

1 if Vi = Vj 

7== if Vi ~ Vi (7) 

0 o.w. 

and may be viewed as an operator defined on the space of functions </?: V —> R as follows 

Vvi e v . (8) 
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500 

1000 

1500 

0 500 1000 1500 
number of zeros = 11028 

Figure 1.7: 3D triangle mesh and its Laplacian matrix. 

The eigenvalue spectrum of the normalized Laplacian matrix allows us to compare the structure 

of graphs of different sizes. 

1.3.4 Vertex differential operators 

Given a triangle mesh M, we define the vertex gradient operator V-u, as 

V j Vi 
^vjev* 

\ \J~dj Vd~i 

We also define the vertex Laplace operator as 

(9) 

(10) 

where div(-) is the divergence operator. 

1.4 Thesis Overview 

This thesis presents research work carried out towards the objectives mentioned above. The entire 

thesis consists of five chapters. Each of these chapters deals with separate but inherently integrated 

tasks. The organization of this thesis is as follows: 
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• In Chapter 2, we propose a 3D mesh denoising technique using Gaussian kernel density 

estimators in order to reduce the over-smoothing problem and remove the noise effectively 

while preserving the nonlinear features of the 3D mesh. 

• In Chapter3, we propose a 3D mesh compression technique using the centroidal mesh neigh-

borhood information. 

• In Chapter 4, we propose a 3D mesh fingerprinting technique that encodes the geometric and 

topological information of a 3D object into a unique hash value. 

• In Chapter 5, we introduce several statistical distributions to analyze the topological proper-

ties of 3D objects. 

• In Chapter 6, we summarize the contributions in this thesis and propose some future research 

directions. 



Mesh Denoising via Multivariate Kernel 

Diffusion 

2.1 Introduction 

Recent advances in computer and information technology have increased the use of 3D models 

in many fields including medicine, the media, art and entertainment. With the increasing use of 

3D scanners to create 3D models, which are usually represented as triangle meshes, there is a 

rising need for robust mesh denoising techniques to remove inevitable noise in the measurements. 

Even with high-fidelity scanners, the acquired 3D models are usually contaminated by noise, and 

therefore a reliable mesh denoising technique is often required. 

In recent years, a variety of techniques have been proposed to tackle the 3D mesh denoising 

problem [7-11], The most commonly used mesh denoising method is the so-called Laplacian flow 

which repeatedly and simultaneously adjusts the location of each mesh vertex to the geometric 

center of its neighboring vertices [7], Although the Laplacian smoothing flow is simple and fast, 

it produces, however, the shrinking effect and an oversmoothing result. The most recent mesh 

denoising techniques include the mean, median, and bilateral filters [12-14] which are all adopted 

from the image processing literature. Also, a number of anisotropic diffusion methods for trian-

gle meshes and implicit surfaces have been proposed recently. Desbrun et al. [15,16] introduce a 

weighted Laplacian smoothing technique by choosing new edge weights based on curvature flow 

10 
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operators. This denoising method avoids the undesirable edge equalization from Laplacian flow 

and helps to preserve curvature for constant curvature areas. However, re-computing new edge 

weights after each iteration results in more expensive computational cost. Clarenz et al. [17] pro-

pose a multiscale surface smoothing method based on the anisotropic curvature evolution problem. 

By discretizing nonlinear partial differential equations, this method aims to detect and preserve 

sharp edges by two user defined parameters which are a regularization parameter for filtering out 

high frequency noisy and a threshold for edge detection. This multiscale method was also extended 

to the texture mapped surfaces [18] in order to enhance edge type features of the texture maps. Dif-

ferent regularization parameters and edge detection threshold values, however, need to be defined 

by users onto noisy surfaces and textures respectively before the smoothing process. Bajaj et 

al. [19] present a unified anisotropic diffusion for 3D mesh smoothing by treating discrete surface 

data as a discretized version of a 2D Riemannian manifold and establishing a partial differential 

equation (PDE) diffusion model for such a manifold. This method helps enhancing sharp fea-

tures while filtering out noise by considering 3-ring neighbors of each vertex to achieve non-linear 

approach of smoothing process. Tasdizen et al. [20,21] introduce a two-step surface smoothing 

method by solving a set of coupled second-order PDEs on level set surface models. Instead of 

filtering the positions of points on a mesh, this method operates on the normal map of a surface 

and manipulates the surface to fit the processed normals. All the surfaces normals are processed 

by solving second-order equations using implicit surfaces. In [22], Hildebrandt et al. present a 

mesh smoothing method by using a prescribed mean curvature flow for simplicial surfaces. This 

method develops an improved anisotropic diffusion algorithm by defining a discrete shape operator 

and principal curvatures of simplicial surfaces. Peng et al. [23] have successfully applied locally 

adaptive Wiener filtering to 3D meshes. Delouille et al. [24] proposed wavelet-based approaches 

to denoise a signal defined on an irregular bivariate grid that represent the denoised data in the 

wavelet domain by a few scaling coefficients present at the coarsest scale together with the detail 

coefficients. Another multiscale approach is proposed in Le Faucheur et al. [25], where the au-

thors presented a Bayesian shrinkage framework for spherical wavelets with interscale dependency 

and intrascale smoothing considerations and showed how local consistency can help outperform 
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uniform shrinkage rules. El Ouafdi et al. [26] proposed a stochastic diffusion-based approach for 

mesh denoising using normalized transition probability and diffusion tensor. 

Roughly speaking, mesh denoising techniques can be defined as the requirement to adjust 

vertex positions without changing the connectivity of the 3D mesh, and may be classified into 

two main categories: one-step or two-step approaches. The one-step approaches directly update 

vertex positions using the original vertex coordinates and a neighborhood around the current vertex, 

and sometimes face normals too. On the other hand, the two-step approaches first adjust face 

normals and then update vertex positions using some error minimization criterion based on the 

adjusted normals. In many cases, a single pass of a one-step or two-step approach does not yield 

a satisfactory result, and therefore iterated operations are performed. In this chapter, we present 

a 3D mesh denoising method based on kernel density estimation. The proposed technique falls 

into the category of one-step approaches. The main idea is to use Laplacian smoothing algorithm 

combined with Gaussian kernel density estimators in order to reduce the over-smoothing problem 

and remove the noise effectively while preserving the nonlinear features of the 3D mesh such as 

curved surface regions, sharp edges, and fine details. 

The rest of this chapter is organized as follows. In the next section, a general formulation of 3D 

mesh denoising problem is stated. In Section 2.2, a kernel-based nonlinear diffusion is introduced. 

In Section 2.3, we provide experimental results to demonstrate a much improved performance of 

the proposed method in 3D mesh denoising. 

2.1.1 Mesh denoising model 

In all real applications, measurements are perturbed by noise. In the course of acquiring, transmit-

ting or processing a 3D model for example, the noise-induced degradation often yields a resulting 

vertex observation model, and the most commonly used is the additive one, 

v = u + 77, ( 1 ) 

where the observed vertex v includes the original vertex u, and the random noise process rj which 

is usually assumed to be Gaussian with zero mean and standard deviation a. 
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Mesh smoothing refers to the process of recovering a 3D model contaminated by noise. The 

challenge of the problem of interest lies in recovering the vertex u from the observed vertex v, 

and furthering the estimation by making use of any prior knowledge/assumptions about the noise 

process TJ, as well as the unknown original mesh. 

Generally, 3D mesh denoising methods may be classified into two major categories: isotropic 

and anisotropic. The former techniques filter the noisy data independently of direction, while the 

latter methods modify the diffusion equation to make it nonlinear or anisotropic in order to preserve 

the sharp features of a 3D mesh. Most of these nonlinear methods were inspired by anisotropic -

type diffusions in the image processing literature. The diagram shown in Figure 2.1 summarizes 

the classification of the 3D mesh denoising approaches. 

Figure 2.1: Classification of 3D mesh denoising techniques. 
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2.2 Proposed Mesh Denoising Approach 

The proposed method is inspired by the good performance of anisotropic diffusion in image de-

noising. In [27], we defined a vertex-based anisotropic diffusion as follows 

vt = div(g(\Vv\)Vv), (2) 

where g is a redescending function of the vertex gradient magnitude. This function is chosen 

to allow more smoothing in homogenous regions of 3D mesh, and less smoothing around sharp 

features. That is, the function g satisfies g(x) —> 0 when x —> oo so that the diffusion is 

"stopped" across sharp details of the mesh. More specifically, the smoothing effect of a vertex-

based anisotropic diffusion may be explained as follows: in flat regions of a 3-D mesh where the 

vertex gradient magnitudes are relatively small, Eq. (2) is reduced to the heat equation which tends 

to smooth more but the smoothing effect is unnoticeable. And around the sharp features of the 3-D 

mesh where the vertex gradient magnitudes are large, the diffusion flow given by Eq. (2) tends to 

smooth less and hence leads to a much better preservation of the mesh geometric structures. 

In discrete form, it can be easily shown that the vertex-based anisotropic diffusion may be 

reduced to the following update rule 

E, . I ( Vj Vi \ 

where the ^-function is defined as <p(vi — Vj) = g(\ Vt7j|) + g{\ Vv, |), and the gradient magnitudes 

are given by 

\ V v i \ = ( £ 2 \ \ v i / V d l - v j / y / d j f y / 2 , (4) 

and 

= ( E | | v ^ - W 4 | | 2 ) 1 / 2 (5) 

Kernel density estimates are output as smooth curves with the amount of smoothing governed 

by a bandwidth value used during calculation [28]. Densities are calculated by placing kernels 

over the distribution of data points. Kernels that overlap one another increase density values in 

shared areas of the distribution. For univariate and multivariate data, the Gaussian kernel is the 
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most commonly used one. In particular, for 3D data, the standardized Gaussian kernel function 

(see Figure 2.2) is given by 

Figure 2.2: 3D level surface of the Gaussian kernel function K(x). 

Motivated by kernel density estimation as an important data analytic tool that provides a very 

effective way of showing structure in a set of a data [28], we propose a mesh kernel flow. This 

mesh denoising flows updates iteratively each mesh vertex according to the following rule 

+ (7) 

where the (^-function is given by 

IChM - Vj) = det[H,) - 1 ' 2 K{H~1/2(vt - Vj)) (8) 

and Hi is a symmetric positive semi-definite matrix. This matrix defines a covariance matrix 

around the neighborhood of vertex v^ and it is given by 

Hi = - Ci){Vj - Ci)T, where a = j Vj. (9) 
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It is worth pointing out that Hi is also called the bandwidth matrix in the context of kernel smooth-

ing and it measures the amount of smoothing. Also, note that the choice of the kernel function 

appears to have very little effect on the quality of the proposed denoising approach. However, the 

selection of the bandwidth matrix is widely recognized to have more effect on the performance 

of kernel density estimation. In this proposed method, we use the trivariate Gaussian density as a 

kernel function, and the data-driven neighborhood covariance as a bandwidth matrix. 

The neighborhood weighting kernel ICh, may be expressed in matrix form as /C = (/%), which 

will be referred to as mesh neighborhood weighting kernel matrix. Each element of this rn x m 

sparse matrix is given by the right-hand side of Eq. (8). Thus, the mesh neighborhood weighting 

kernel matrix may be written as 

|

det(// i)-1/2(27r)"3/2 if V i = Vj 

det{Hi)-1 '2 K { H 7 ^ ( V l - vj)) if - v , (10) 

0 o.w. 

Note that the value of the the first row of Eq. (10) results directly from Eq. (6) when x = 0, 

that is K(0) = (2n)~3/2. Therefore, like many iterative methods the update flow of the proposed 

approach can be easily implemented in terms of matrix-vector products. Figure 2.3 displays a 3D 

object and its mesh neighborhood weighting kernel matrix. 

Figure 2.3: (a) 3D object with rn = 3403 vertices and its (b) mesh neighborhood weighting kernel 
matrix. 

Next we show how kernel density estimation can be used for 3D mesh reconstruction. Given 
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m mesh vertices vt, let v be a 3D vector whose ?-th realization is vt. Thus, the mesh kernel density 

estimate (KDE) may be written in the general form 

, m to 

/>) = -Y,det(H)-1/2K{H-1/2(v-vl))=-Y/lCH(v-vl), (11) 
m 1' m z—' i=1 i=l 

where H = YHLiivi ~~ c)(vi ~ C)T is the mesh covariance matrix which controls the smoothness 

of the resulting density estimate, and c = (1 /m) v i ^ e mesh centroid. The mesh KDE 

is a trivariate volumetric function which may be graphically visualized by plotting a level surface 

(also called implicit surface or isosurface) of / as shown in Figure 2.4(b). This figure displays 

an isosurface of the mesh KDE using the vertices of the 3D object shown in Figure 2.4(a). The 

horizontal slices of the mesh KDE are also depicted in Figure 2.4(c). 

(c) 

Figure 2.4: (a) 3D object, (b) mesh KDE, and (c) horizontal slices of the mesh KDE. 

2.3 Experimental Results 

This section presents experimental results where the mean filtering [12], angle median filter-

ing [12], Laplacian flow [7], weighted Laplacian flow [15,16], geometric diffusion [17], bilateral 

filtering [13], and the proposed method [1] are applied to noisy 3D models obtained by adding 

Gaussian noise to the original 3D models. The standard deviation of the noise was set to 2% of the 

mean edge length, that is a = 0.021, where £ is given by Eq. (4) in chapter 1. 
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In practical applications, the covariance matrix Hj given by Eq. (9) may become singular. To 

circumvent this singularity problem and also to ensure the stability of the proposed algorithm, we 

use a regularized covariance matrix as follows 

Hi = Hi + XI (12) 

where I is a 3 x 3 identity matrix and A is a positive regularization parameter. 

Figure 2.5 displays the mesh denoising results obtained by our proposed method for different 

values of the regularization parameter A, where the number of iterations was to set to 5. As can be 

seen in Figure 2.5, the value A = 0.4 gives the best denoising result for the 3D rabbit model. And 

as a the value of A increases, the rabbit model becomes more noisier. Also, we noticed through 

experimentation that a smaller value of A often tends to produce a geometrically distorted shape of 

the 3D object as shown in Figure 2.5(c). Therefore, the regularization parameter should be tuned 

to be small enough to capture the intrinsic shape of a 3D object and large enough not to recapture 

noise. 

Figure 2.6 depicts the output results of the proposed approach at different iteration numbers. 

These results show that, using the proposed approach, the noise can be removed with just a small 

number of iterations and that the sharp features are well preserved when the regularization param-

eter is appropriately chosen. 

2.3.1 Qualitative evaluation of the proposed method 

Figure 2.7(c) through Figure 2.7(h) show the denoising results obtained via Laplacian flow, 

weighted Laplacian flow, mean filtering, angle median filtering, bilateral filtering, and the pro-

posed method respectively. These results clearly show that our method outperforms all the mesh 

filtering techniques used for comparison. Moreover, the proposed method is simple and easy to 

implement. One main advantage of the proposed algorithm is that it requires only few iterations 

to smooth out the noise, whereas the weighted Laplacian flow, the mean and the angle median 

filters require substantial computational time. In Figure 2.8, we use the zoom tool to enlarge the 

view of the 3D cow model's head in order to clearly show the better performance of our proposed 
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algorithm. In particular, the geometric structures and the fine details around the eye and the ear of 

the 3D cow model are very well preserved by our method. More experimental results showing the 

better performance of the proposed algorithm are presented in Figure 2.9 and Figure 2.10. 

In all the experiments, we observe that the proposed technique is able to suppress noise while 

preserving important geometric structure of the 3D models in a very fast and efficient way. This 

better performance is in fact consistent with a variety of 3D models used for experimentation. 

2.3.2 Quantitative evaluation of the proposed method 

Let M and M be the original model and the smoothing result model with vertex sets V = {v*}™ i 

and V = {v*}™ i respectively. To quantify the performance of the proposed approach, we com-

puted the visual error metric [29] given by 

Intuitively, the error metric given by Eq. (13) captures the visual difference between the original 

model and the denoised one by taking into account geometric closeness and local smoothness dif-

ference. More specifically, the first term of this visual metric measures how close the vertices in 

both models are, whereas the second term captures the object smoothness which basically rep-

resents the visual properties of the human eye. The values of the visual error metric for some 

experiments are depicted in Figure 2.11(a) and Figure 2.11(b) which clearly show that the pro-

posed method gives the best results, indicating the consistency with the subjective comparison. 

Unlike the Laplacian flow which tends to produce spherically-shaped outputs at higher iteration 

numbers [7], the proposed approach is, however, experimentally shown to stabilize as depicted in 

Figure 2.12 and Figure 2.13. It is apparent from these figures that the output results at iterations 

20 are 30 are visually indistinguishable, indicating that the proposed algorithm produces a stable 

solution. 

(13) 

where T is the geometric Laplacian operator defined as 

(14) 
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2.3.3 Choice of the regularization parameter 

A mentioned earlier, the regularization parameter should be chosen appropriately in order to obtain 

satisfactory mesh denoising results. This parameter may be estimated experimentally using the 

visual error as shown in Figure 2.14(a) and Figure 2.14(b), which display the plots of the visual 

error vs. the regularization parameter for different iteration numbers of the proposed approach. 
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(a) Original model (b) Noisy model 

J 
y 

X 

W v ^ 

(c) A = 0.1 (d) A = 0.4 (e) A = 0.5 

i / 
I 

I I 
(f) A = 0.6 (g) A = 0.75 (h) A = 0.9 

Figure 2.5: Output results of our proposed mesh denoising approach for different values of the 
regularization parameter. The number of iterations is set to 5. 
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(c) 5 iterations (d) 6 iterations 

/ \ 

\ 

(e) 8 iterations (f) 12 iterations 

Figure 2.6: Output results of our proposed mesh denoising approach at different iteration numbers. 
The regularization parameter is set to A = 0.8 
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I I 

(g) (h) 

Figure 2.7: Denoising results for the 3D cow model: (a) original model; (b) noisy model; (c) 
Laplacian flow; (d) weighted Laplacian flow; (e) mean filtering; (f) angle median filtering; (g) 
bilateral mesh flow; (h) our proposed approach. The number of iterations is set to 6 in each case. 
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Figure 2.8: Zoomed portion of the 3D cow model: (a) original model; (b) noisy model; (c) output 
result of our proposed approach with A = 0.8. The number of iterations is set to 6. 
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Figure 2.9: Denoising results for the 3D igea model: (a) original model; (b) noisy model; (c) 
Laplacian flow; (d) weighted Laplacian flow; (e) mean filtering; (f) angle median filtering; (g) 
bilateral mesh flow; (h) our proposed approach. The number of iterations is set to 6. 
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\ 

(d) (e) (f) 

(g) (h) 

Figure 2.10: Denoising results for the 3D rabbit model: (a) original model; (b) noisy model; (c) 
Laplacian flow; (d) weighted Laplacian flow; (e) mean filtering; (f) angle median filtering; (g) 
bilateral mesh flow; (h) our proposed approach. The number of iterations is set to 3. 
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Figure 2.11: Visual error comparison results between the proposed approach and other methods 
for the (a) rabbit and (b) cow models. 
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\ i 

y V 

(a) Noisy model (b) 10 iterations 

(c) 20 iterations (d) 30 iterations 

Figure 2.12: Denoising results for the 3D rabbit model using A = 0.4 at higher iteration numbers. 
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/ r 

(a) Noisy model (b) 10 iterations 

(c) 20 iterations (d) 30 iterations 

Figure 2.13: Denoising results for the 3D cow model using A = 0.8 at higher iteration numbers. 
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Figure 2.14: Visual error vs. regularization parameter with different number of iterations for the 
(a) rabbit and (b) cow models. 



Mesh Umbrella Operator for 3D 

Compression 

In this chapter we propose a 3D mesh compression technique using the centroidal mesh neigh-

borhood information. The key idea is to apply eigen-decomposition to the mesh umbrella matrix, 

and then discard the largest eigenvalues/eigenvectors in order to reduce the dimensionality of the 

new spectral basis so that most of the energy is concentrated in the low frequency coefficients. 

Extensive experimental results demonstrate the effectiveness of the proposed approach in 3D com-

pression. 

3.1 Introduction 

Compression of images and shapes has long been the central theme of image processing and com-

puter vision. Its importance is increasing rapidly in the field of computer graphics and multimedia 

communication because it is difficult to transmit digital information efficiently over the internet 

without its compression. 3D objects consist of geometric and topological information, and their 

compressed representation is an important step towards a variety of computer graphics applications 

including indexing, retrieval, and matching in a database of 3D models [30-32,48]. 

In this chapter, we present a novel compression technique for 3D models. The proposed method 

is inspired by previous works on object compression, and in particular the Laplacian matrix-based 

31 
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compression technique recently introduced by Karni et al [29]. Our proposed approach is based 

on the so-called mesh umbrella operator [7] which replaces each mesh vertex by the centroid of its 

neighbors. The primary motivation of the proposed method is to encode a 3D shape into a more 

compact representation by retaining the largest eigenvalues/eigenvectors of the mesh umbrella ma-

trix. We essentially discard the smallest eigenvalues and the corresponding eigenvectors, hence 

reducing the dimensionality of the new basis. In other words, most of the energy is concentrated 

in the low frequency coefficients. To gain further insight into the proposed compression method, 

some numerical experiments are provided to demonstrate the potential and the much improved 

performance of the proposed methodology in 3D object compression. This improved performance 

was evaluated by computing a nonlinear visual metric error between the original 3D model and the 

compressed model. 

The rest of this chapter is organized as follows. In the next section, we introduce the mesh 

umbrella matrix. In Section 3.3, a spectral 3D mesh compression technique is proposed. In Section 

3.4, we provide experimental results to demonstrate a much improved performance of the proposed 

method in 3D mesh compression. 

Applying the umbrella operator to the triangle mesh is equivalent to move each vertex to the cen-

troid of its neighbors. In matrix form, the mesh umbrella operator may be written as 

3.2 Umbrella matrix of a triangle mesh 

The mesh umbrella operator is defined as 

(1) 

U = KV = {uiu2 . . . um)T G R m x 3 , 
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where V = (vi v2 ... vm)T is the m x 3 mesh vertex matrix, and K is an m x m sparse matrix 

which we refer to as the mesh umbrella matrix and it is given by 

(A*,-) = < 

— 1 if Vi = Vj 

l/di ifVi~Vj 

0 otherwise 

(2) 

Let Vi = {xi, yi, Zi)T G V, then the mesh vertex matrix having as rows the coordinates of the mesh 

vertices may be written as 
/ xi yi zi ^ 

X2 2/2 2̂ n m x 3 

y Vrrt %m J 

Figure 3.1 illustrates an example of a 2D and a 3D triangle meshes and their sparse umbrella 

matrices. 

3.3 Proposed Method 

The eigen-decomposition of the umbrella matrix K yields KB = BA, where B = (b\ b2 • • • bm) 

is an orthogonal matrix whose columns are the eigenvectors which we refer to as umbrella basis 

vectors, and A = diag{A( :?' = ! . . . . , rn} is a diagonal matrix of eigenvalues arranged in increas-

ing order of magnitude. We may express the mesh vertex matrix in the subspace spanned by the 

umbrella matrix eigenvectors as follows 

m 
V = B C T = Y / b l c J , (3) 

i=1 

where C = (ci c2 . . . cm) £ R m x 3 is a matrix of the spectral coefficient vectors, that is C = BTV 

is the projection of the mesh vertex matrix onto the umbrella basis vectors. Moreover, 

r m ra 
V = blCJ + £ blCJ = BrCT

r + £ bicf, (4) 
i= 1 i=r+1 i=r+1 
compressed 
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Figure 3.1: 2D/3D triangle meshes (left) and their umbrella matrices (right). 

where r is usually chosen to be smaller than m, and hence this yields a compressed version Vr of 

the original vertex matrix V. The matrix Br = (bi 62 • • • br) contains the r spectral basis vectors, 

and the matrix CT — (ci c2 . . . c r) contains the r spectral coefficient vectors. The reconstructed 

mesh vertex matrix V is obtained by minimizing the error \\BrCj — V\\2 with respect to the 

matrix Cr. The minimization of this error yields Cr = (BjBr)+BjV where (Bj'Br)+ is the 

pseudo-inverse of the matrix B'Br, and hence the mesh vertex matrix of the compressed model is 

estimated by 

V = BTCT
r = Br{BjBr)+BjV. (5) 

Note that ^ro]BV = Br{BjBr)+BjV gives the projection of the mesh vertex matrix onto the 

space spanned by the columns of the matrix Br. 
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If we rewrite V and C in the form of 3-column matrices, that is 

V = ( V X Vy V Z ) 

and 

I X\ yx zi ^ 

X2 V2 Z2 

y %m !Jrn J 

CX l Cy l C Z l 

CT — (cx Cy Cz) — 

\ CXm
 CVm CZm J 

then the spectral coefficients in the x, y, and z-dimension are given by cx = BTvx, cy = BTvy, 

and cz = BTvz respectively as shown in Figure 3.2. 

3.4 Experimental Results 

This section presents experimental results where the Laplacian matrix-based compression tech-

nique [29], and the proposed method [5] are applied to the compression of the original models 

shown in Figure 3.3. 

Figure 3.4(a) through Figure 3.4(d) show the mesh compression results using the Laplacian-

based method, and the proposed approach. These results clearly show that the Laplacian-based 

technique has a poor compression performance in comparison with the proposed method as illus-

trated in Figure 3.5 where we use the zoom tool to enlarge the view of the 3D bunny model's 

head in order to clearly show the better performance of our proposed algorithm. In particular, the 

geometric structures and the fine details around the face and the ears of the 3D bunny model are 

very well preserved by our method. More experimental results showing the better performance of 

the proposed algorithm are presented in Figure 3.6 and Figure 3.7. 

In all the experiments, we observe that the proposed technique has much better compression 

capabilities than the Laplacian-based approach while preserving important geometric features of 
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Figure 3.2: (a) 3D bunny model, and its spectral coefficients of in the (b) ^--dimension, (c) 
y-dimension, and (d) ^-dimension. 

the 3D models in a very fast and efficient way. This better performance is in fact consistent with a 

large number of 3D models used for experimentation. 

To quantify the better performance of the proposed approach in comparison with the Laplacian 

mesh compression, we propose a nonlinear visual error D(M, M) defined between the original 

model M and the compressed model M as follows 

D( M,] 
^ m 

2m * =i 

+ 
.. m 

i= l 
(6) 

where {v^and {vi}"Li are the mesh vertex sets of M and M respectively. A is a nonlinear 
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• \ y 

Figure 3.3: Original 3D models used for experimentation: camel, bunny, and femur (upper part of 
the long bone in the thigh). 

diffusion operator [27] defined as 

where the gradient magnitudes are given by 

3\) (7) 

|Vt»i| = 

= 

\ E 
Vi Vi 

y/di ^Jdj 

\ E 
vkev* 

Vi vk 

y/dj Vdk 

(8) 

(9) 

and g is Cauchy weight function (see Figure 3.8) given by 

1 
9{x)

 = r r w (10) 

with a constant tuning parameter c that needs to be estimated. It can be shown (see [33]) that 

the 95% asymptotic efficiency on the standard Gaussian distribution is obtained with the tuning 

constant c = 2.3849. This tuning value is used in all the experimental results. 

Note that the visual error D(M, M) requires the use of two neighboring rings as depicted 

in Figure 3.9. Intuitively, the anisotropic operator A introduces some smoothing effect which 
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(c) r = 500 basis functions (d) r = 125 basis functions 

Figure 3.4: Spectral compression of the 3D bunny at different resolutions, (a)-(b): Laplacian 
compression, (c)-(d): Proposed method. 

(a) Laplacian compression (b) proposed method 

Figure 3.5: Close-up comparison of Laplacian compression and the proposed approach using 
r = 125 basis functions. 
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(a) r = 500 basis functions (b) r — 125 basis functions 

(c) r = 500 basis functions (d) r = 125 basis functions 

Figure 3.6: Spectral compression of the 3D camel at different resolutions, (a)-(b): Laplacian 
compression, (c)-(d): Proposed method. 

may be explained as follows: in flat regions of a 3D mesh where the vertex gradient magnitudes 

are relatively small, Eq. (7) is reduced to a linear operator which tends to smooth more but the 

smoothing effect is unnoticeable. And around the sharp features of the 3D mesh where the vertex 

gradient magnitudes are large, the nonlinear diffusion operator given by Eq. (7) tends to smooth 

less and hence leads to a much better preservation of the mesh geometric structures. 

The values of visual error metric for all the experiments are depicted in Figure 3.10-3.12 

which clearly show that the proposed method gives the best results indicating the consistency with 

the subjective comparison. 
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(a) r = 500 basis functions (b) r = 250 basis functions 

(c) r = 500 basis functions (d) r = 250 basis functions 

Figure 3.7: Spectral compression of the 3D femur at different resolutions, (a)-(b): Laplacian 
compression, (c)-(d): Proposed method 

x 

Figure 3.8: Cauchy weight function with c = 2.3849. 
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Figure 3.9: Illustration of two neighboring rings. 
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Figure 3.10: Compression error results for the 3-D bunny model. 
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Figure 3.11: Compression error results for the 3-D camel model. 
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Figure 3.12: Compression error results for the 3-D femur model. 



3D Mesh Fingerprinting 

4.1 Introduction 

The increasing use of 3D models in multimedia applications and the wide demand of online ser-

vices have opened the doors for users to modify the digital content without leaving any perceptual 

traces. To tackle this problem, cryptographic hash functions could help in ensuring the authenti-

cation and the integrity of data. Cryptographic hash functions play an important role in modern 

cryptography [34], Hash functions take an input of arbitrary length to produce an output of fixed 

length referred to as hash. 

The authenticity of the data can be verified by recalculating the hash value from the underlying 

data and comparing it to the attached hash value. Recently, Venkatesan et al. [35] introduced a 

method for robust image hashing. This technique uses randomized signal processing strategies 

for a non-reversible compression of images into random binary strings, and is shown to be ro-

bust against image changes that are due to compression, geometric distortions, and other attacks. 

Another robust image hashing technique was proposed in [36], which presents a framework for 

perceptual image hashing using feature points. Using on the characteristics of the visual system, 

significant image features are extracted by using a wavelet-based feature detection algorithm [37]. 

This hash algorithm withstands standard benchmark attacks and common signal processing op-

erations. In [38], a novel algorithm for generating an image hash based on Fourier transform 

43 
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features and controlled randomization was proposed. This scheme shows its resiliency to content-

preserving modifications. 

The problem of 3D mesh hashing is relatively new compared to 2D hashing and has received 

less attention partly because the technology that has been used for image and video analysis can-

not be easily adapted to 3D objects. Also, a large number of attacks can be applied to 3D meshes. 

In [29], the mesh Laplacian matrix was used to encode the 3D shape into a more compact represen-

tation by retaining the smallest eigenvalues and associated eigenvectors which contain the highest 

concentration of the shape information. In [39], an geometric hashing method for object recogni-

tion was presented. This method identifies objects in the presence of noise and partial occlusion. 

In [40], a public authentication of 3D mesh models was presented. The signature is embedded 

within the 3D mesh model for authentication purposes, and a new hash value is produced and 

compared with the value decrypted from the retrieved signature. 

The primary motivation behind the proposed method is to encode the geometric and topological 

information of a 3D object into a hash value that may be used for a variety of rightful ownership 

protection purposes including authentication and integrity. Our approach partitions a 3D triangle 

mesh into sub-meshes and produces a hash value for each sub-mesh. To gain further insight into the 

proposed technique, we performed extensive numerical experiments to demonstrate the potential 

and the much improved performance of the proposed scheme in 3D object authentication. 

The layout of this chapter is as follows. Section 4.2 is devoted to the problem formulation, 

followed by a brief background material about Laplace-Beltrami matrix and entropic spanning 

trees. Section 4.3 describes the algorithmic steps of the proposed approach. In section 4.4, we 

present experimental results to show the performance of the proposed method and its robustness 

against the most common attacks. 

4.2 Problem Formulation 

The objective of 3D hashing is to design a robust hash function that produces a unique identifier 

for a 3D model, while satisfying three main requirements [34], First, given a 3D model M and a 
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hash function H, the computation of the hash value h = H(M) must be easy. Second, Given h, 

it is hard to find a 3D model M such that h — H(M). Third, two different 3D models should not 

produce the same hash value. 

4.2.1 Laplace-Beltrami matrix of a triangle mesh 

Let Vi e V, the Laplace-Beltrami operator Amvl is defined as 

AmVi = - ^ (cot Ctij + COt Pij){Vj ~Vi), 
V Vj€V* 

(1) 

where c*y and fy are the angles Z.ViVj-\Vj and /Lvtv3+\v.j respectively (see Figure 4.1), and 

V = Y,t3er(v*) area{tj). 

Vi-i Vj+1 

Figure 4.1: Illustration of Laplace-Beltrami angles cty and fy. 

We may define the Laplace-Beltrami matrix as 

di - u>u if Vi = Vj 

L = D — W = < -u. 

0 

if Vi ~ Vj 

otherwise 

(2) 

where W = denotes the weighted adjacency matrix with Wij = 3(cot a,j + cot ) ///, 

and D = diag{di : Vi 6 V} is the degree matrix with diagonal entries di = Ylvjev* • 

Figure 4.2 illustrates an example of a 3D triangle mesh and its sparse Laplace-Beltrami matrix. 
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0 500 1000 1500 2000 2500 3000 nz = 13410 

Figure 4.2: (a) 3D tank model and its (b) Laplace-Beltrami matrix. 

4.2.2 Minimal spanning tree 

A spanning tree is a connected acyclic graph that passes through all the elements of the vertex set 

V, and it is specified by an ordered list of edges e^ connecting certain pairs (vu v.j), i ^ j, along 

with a list of edge adjacency relations [41]. 

Recently, there has been a concerted research effort in statistical physics to explore the proper-

ties of Tsallis entropy, leading to a statistical mechanics that satisfies many of the properties of the 

standard theory [42], When a system is composed of two statistically independent subsystems, then 

Shannon or Renyi entropy of the composite system is just the sum of entropies of the individual 

systems, and hence the correlations between the subsystems are not accounted for. Tsallis entropy, 

however, does take into account these correlations due to its pseudo-additivity property [42]. 

We may define an estimator Ha of Tsallis entropy as follows 

Ha(V) 
1 

1 - a 
L*(V) 
f3ma 1 (3) 

where L*(V) is the total length of the minimal spanning tree [41], a is referred to as an entropic in-

dex, and [3 is a constant playing a role of bias correction [43], We employ Kruskal's algorithm [41] 

to compute the minimal spanning tree. Figure 4.3 shows two 3D models and their minimal span-

ning trees. 
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Figure 4.3: 3D models and their minimal spanning trees. 

4.3 Proposed Hashing Method 

In this section, we describe the main steps of the proposed 3D object hashing methodology. 

4.3.1 Mesh partitioning 

The proposed algorithm is based on the concepts of entropic spanning trees and the eigen-decomposition 

of the Laplace-Beltrami matrix. However, calculating of the eigenvalues and the eigenvectors of 

a typically large m x m Laplace-Beltrami matrix is prohibitively expensive C(m3) . To circum-

vent this limitation, we first partition the original 3D mesh into sub-meshes and then apply eigen-

analysis to each sub-mesh. To this end, we implemented a 3D mesh partitioning algorithm based 

on MeTiS [44-46], Figure 4.4 shows some 3D models partitioned into eight sub-meshes. 

4.3.2 Proposed algorithm 

The algorithmic steps of the proposed 3D hashing approach may be summarized as follows: 

1) Partition a 3D object M into s sub-meshes: M = Uj?=1Mfc, where the cardinality of the vertex 

set Vk of each sub-mesh M^ is equal to |14| = nik-
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(a) (b) (c) 

Figure 4.4: 3D mesh partitioning: each sub-mesh is colored randomly, (a) 3D arm model, (b) 3D 
cow model, and (c) 3D camel model. 

1.1) Apply Kruskal's algorithm to each in order to compute the entropy value of each sub-

mesh 
L*(Vk) - 1 

. y/rnk 
where the Tsallis entropic index a is set to 1/2. 

k = 1,..., s 

1.2) Apply eigen-decomposition to the Laplace-Beltrami matrix of each sub-mesh, that is 

Lk — BkAkB^, where Bk = (&i, b2, •.., bmk) is an orthogonal matrix whose columns 

are eigenvectors which form a spectral basis, and Ak = diag(Aj : i = 1 , . . . nik) is a diagonal 

matrix of eigenvalues arranged in decreasing order of magnitude. 

1.3) Retain the r (r < m*) significant spectral basis vectors which account for most of the energy. 

1.4) Compute the hash value fik of each sub-mesh according to the formula given by /ik = 

£ i = i A f l M I 2 

2) Stack the hash values of all the sub-meshes into a single vector h = (/ij, • • •, Us), which we 

refer to as the hash vector. 
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4.4 Experimental Results 

We tested the performance of the proposed hashing method using a variety of 3D models. Figure 

4.5 shows a sample of six 3D objects. 

(a) (b) (c) 

• A 
i ' h 

(d) (e) (f) 

Figure 4.5: 3D models used for experimentation: (a) Camel, (b) Cow, (c) Shark, (d) Triceratops, 
(e) Baby, (f) Arm. 

Figure 4.6(a)-(h) and Figure 4.7(a)-(h) depict the minimal spanning trees for each sub-mesh 

of the 3D camel and cow models respectively, as well as their corresponding hash values fik, where 

k = 1,...,8. 

To test the robustness of the proposed hashing algorithm, we applied several attacks to the 3D 

models including scaling, rotation, mesh smoothing, mesh simplification, and Gaussian noise, as 

shown in Figure 4.8 and Figure 4.9. We evaluated the performance of the proposed scheme by 

computing the normalized correlation p between the resulting hash vectors as follows 

|/ii • h21 
P = (4) 

I M I I M ' 

where h\ and h2 are the hash vectors before and after the attack respectively. The correlation 
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(a) fix = 199 (b) ii2 = 1452.1 (c) ti3 = 3881.2 (d) m = 3203.3 

(e) /z5 = 3312.6 (f) ^ = 4485 (g) = 3411 (h) /ig = 4069.1 

Figure 4.6: Minimal spanning trees of the 3D camel sub-meshes and their corresponding hash 
values: (a) head, (b) neck, (c)-(d) front feet, (e) hump, (f) shoulders, (g)-(h) back. 

results shown in Table 4.1 clearly demonstrate the good performance of the proposed method in 

terms of robustness against the attacks. Moreover, this good performance is in fact consistent with 

all the 3D models used for experimentation. 

4.4.1 Uniqueness 

Uniqueness is an important factor that needs to be take into consideration when dealing with hash 

functions. As mentioned earlier, the hash value produced by our proposed method should be 

unique. Therefore, we compared the hash vectors between different 3D models using the normal-

ized correlation coefficient to check whether the proposed hash vector fulfills the requirement of 

uniqueness. The results are listed in Table 4.2. It is apparent that the proposed method shows a 

very good performance in terms of the ability to distinguish between different 3D models and also 

to produce different hash values. 
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(a) ni - 4650.6 (b)/i2 = 4422 (c)/i3 = 5771 (<1)̂ 4 = 6829.3 

(e) /X5 = 4264.9 (f) w = 3408.7 (g) A*7 = 1453.4 (h) ^ = 1696.4 

Figure 4.7: Minimal spanning trees of the 3D cow sub-meshes and their corresponding hash val-
ues: (a)-(b) back feet, (c)-(e) front feet, (d) back-tail, (f) neck, (g)-(h) head-horn. 

Table 4.1: Normalized hash correlation results for different 3D models. 
Attacks 3D Models Attacks 

Camel Cow Shark Triceratops Baby Arm 

iE-axis scaling 0.9674 0.9908 0.7539 0.7755 0.5907 0.7704 
y-axis scaling 0.9625 0.9910 0.7565 0.7864 0.6017 0.7784 
z-axis scaling 0.9553 0.9221 0.7433 0.7637 0.5916 0.7673 
ar-axis rotation 45° 0.9534 0.9880 0.7486 0.7807 0.5864 0.7812 
y-axis rotation 45° 0.9534 0.9880 0.7486 0.7807 0.5864 0.7812 
z-axis rotation 45° 0.9534 0.9880 0.7486 0.7807 0.5864 0.7812 
Mesh smoothing 0.9531 0.9886 0.7343 0.7765 0.5922 0.7643 
Mesh simplification (70%) 0.7965 0.8448 0.7247 0.7641 0.8862 0.7621 
Gaussian Noise (cr = 0.25) 0.9572 0.9893 0.7606 0.7931 0.6153 0.7886 
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Figure 4.8: 3D camel model under different attacks: (a) x-axis scaling, (b) y-axis scaling, (c) 
z-axis scaling, (d) Laplacian mesh smoothing using 10 iterations, (e) rotation around ,x-axis by 
45°, (f) rotation around y-axis by 45°, (g) rotation around z-axis by 45°, (h) mesh simplification 
70%, and (i) additive Gaussian noise with a = 0.25. 
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(d) (e) (f) 

^ L3 ( j (J 
(g) (h) (i) 

Figure 4.9: 3D cow model under different attacks: (a) a-axis scaling, (b) vy-axis scaling, (c) 2-axis 
scaling, (d) Laplacian mesh smoothing using 10 iterations, (e) rotation around x-axis by 45°, (f) 
rotation around y-axis by 45°, (g) rotation around 2-axis by 45°, (h) mesh simplification 70%, and 
(i) additive Gaussian noise with a = 0.25. 
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Table 4.2: Normalized correlation coefficients results between different 3D hashed models. 
Camel Cow Shark Triceratops Baby Arm 

Camel 1 0.7987 0.7458 0.7668 0.8112 0.7834 
Cow 0.7987 1 0.7842 0.8590 0.8855 0.7921 
Shark 0.7458 0.7842 1 0.7816 0.5129 0.7172 
Triceratops 0.7668 0.8590 0.7816 1 0.7179 0.7145 
Baby 0.8112 0.8855 0.5129 0.7179 1 0.8328 
Arm 0.7834 0.7921 0.7172 0.7145 0.8328 1 



Statistical 3D Mesh Distributions 

In this chapter we introduce several statistical distributions to analyze the topological properties 

of 3D objects. The proposed statistical measures include the mesh degree, the mesh assortativity, 

the mesh clustering coefficient, and the mesh geodesic distance distributions. These probabilistic 

distributions provide useful information about the way 3D mesh models are connected. Illustrating 

experimental results show the effectiveness of the proposed measures in quantifying the topological 

features of 3D objects. 

5.1 Introduction 

Shape analysis of 3D objects has become an active research field with the recent developments 

in solid modeling and visualization [48]. Nowadays, vast amounts of 3D models are being de-

veloped and are distributed freely or commercially on the internet. 3D graphics are commonly 

used in several multimedia applications such as video gaming, engineering design, virtual reality, 

e-commerce and scientific visualization. 3D objects consist of geometric and topological informa-

tion. Topology is the property that determines which parts of the shape of objects are connected 

to which other parts, while geometry determines where, in a given coordinate system, each part 

is located. The topological properties of 3D objects in the statistical framework are the focus of 

this chapter, and the main objective is to convert the 3D mesh data into useful and meaningful in-

formation. To convert the 3D mesh data into information, we need appropriate probabilistic tools 
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and techniques [47,49-51], Such statistical methods will help us quantify the mesh topological 

properties, and to also gain very useful information by presenting the same data graphically. Even 

with modern 3D computer graphics tools, we cannot draw a meaningful conclusion about a large 

3D model or graph using direct examination by the human eye [49]. This examination analysis can 

be done only by statistical methods for quantifying the connectivity information of large graphs. 

Generally, graph-theoretic representations of a problem are based towards highlighting aspects 

such as the connectivity of components in the problem. In recent years, we have witnessed a sub-

stantial development in graph theory research, with the attention shifted from the analysis of small 

graphs and the properties of individual vertices or edges within such graphs to the consideration of 

large-scale statistical properties of graphs [49], This change has been driven fast by the availability 

of powerful computers and communication networks that allow us to gather and analyze data for 

larger 3D mesh models. 

In this chapter, we introduce some statistical distributions to analyze the connectivity infor-

mation of 3D mesh models. The proposed distributions are defined in terms of the topological 

properties of the mesh. In particular, we introduce the vertex degree distribution, and the geodesic 

distance distribution which captures the nonlinearity structure and the intrinsic geometry of a 3D 

object. We also propose the clustering coefficient distribution which provide useful information 

about a 3D mesh and the way it is connected. Clustering techniques have been well studied in 

many applications such as data mining,image segmentation, pattern classification and text catego-

rization in which a group of similar words characteristics are clustered in the same group. Recently 

a graph based-representation approach has been used [52], and the main idea is to analyze the hu-

man language acquisition by representing the set of terms as vertices and edges representing the 

relationship between them. Also, statistical measures have been recently studied to determine how 

well the internet topologies are connected in order to reflect many practical and theoretical network 

characteristics such as robustness of the network under attack. 

The rest of this chapter is organized as follows. In Section 5.2 we propose some statistical 

distributions to study the topological properties of 3D mesh data and we explain in more details 

the fundamental aspects of each distribution. In Section 5.3, we provide experimental results to 
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show the usefulness of the proposed statistical measures in 3D graphics. 

5.2 Proposed Statistical Measures 

5.2.1 Average vertex degree 

The average vertex degree of a triangle mesh M is the coarsest connectivity characteristic, and it is 

given by 

The average vertex degree may be used as a measure of connectivity of a triangle mesh. We 

say that a triangle mesh is "better-connected" if it has a higher average vertex degree. Figure 5.1 

shows an example of two triangle meshes with different average vertex degrees. Although the 

number of edges in the 3D bunny model is about 14.2 times larger than the 3D camel model, we 

found out, however, that the 3D camel has a much higher average vertex degree and hence it is 

much better-connected than the 3D bunny. 

The average vertex degree, however, has limited utility since triangle meshes with the same 

average vertex degree may have vastly different topological structures. 

(1) 

(a) (b) 

Figure 5.1: (a) 3D camel model, (b) 3D bunny model. 
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5.2.2 Mesh degree distribution 

A more informative characteristic of graph connectivity is the vertex degree distribution, which 

provides information on the number of vertices in the triangle mesh having a certain degree. The 

vertex degree distribution is the probability that a randomly selected vertex has a degree equal to 

k, and it is given by 

Pk = — , (2) rn 

where nik is the number of vertices of degree k, that is m^ is the cardinality of the set Vfc = {vt G 

V :di = k}. 

The degree distribution contains more information about the mesh connectivity than the aver-

age vertex degree since given a specific form of we can always restore the average vertex degree 

by 
^max 

k=J2 kpk, (3) 
k=\ 

where /crnax is the maximum vertex degree in the set 14. 

5.2.3 Mesh assortativity distribution 

An important concept that provides important information about the correlations of the degree of 

neighboring vertices is the average neighbor connectivity of each vertex, and it is given by 

Knn{vi) = j J2 V ^ e V . (4) 

The assortativity function of a mesh is defined as 

Knn{k) = — V Knn(vi) (5) 
m kv"tvk 

If degrees of neighboring vertices are uncorrelated, then the assortativity is a constant. When 

correlations are present, two main classes of possible correlations can been identified: assortative 

and disassortative. The triangle mesh has an assortative behavior if Knn(k) increases with k, 

indicating that large degree vertices are connected with other large degree vertices, and has an 
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disassortative behavior if Knn(k) is a decreasing function of k. The mesh assortativity distribution 

is defined as the histogram of the assortativity function. 

5.2.4 Mesh clustering coefficient distribution 

Clustering refers to the the process of organizing objects into groups whose members are similar 

in some way. In the triangle mesh framework, clustering may be used to measure how close the 

neighbors of any vertex are to form a group within the mesh. The clustering coefficient of each 

vertex is defined as 

= T~~T' (6) di - 1 
and the higher clustering coefficient of the vertex is, the more interconnected its neighbors are. 

The average clustering coefficient of all vertices of degree k is given by 
cw = — E cw> w nik 

and the clustering coefficient distribution is defined as the histogram of C(k). 

5.2.5 Mesh geodesic distance distribution 

The geodesic distance g{vi, v3) between two mesh vertices v.t and v3 is the shortest length L(7) = 

fa I I V W P of a smooth curve 7 : [a, 6] —> M such that 7(a) = Vi and 7(b) = Vj. The primary 

motivation behind the geodesic distance is of overcoming the limitations of the Euclidean distance 

which by virtue of its linearity in nature cannot account for nonlinear structures in a 3D object. 

Unlike the Euclidean distance which is basically a straight line between two points in 3D space, 

the geodesic distance captures the global nonlinear structure and the intrinsic geometry of the data. 

The geodesic distance calculation is based on a similar approach used for computing the isometric 

feature mapping (Isomap) for multidimensional scaling [67] on nonlinear manifolds [53]. The 

algorithm has two main steps: 

(i) Construct a neighborhood graph by connecting a given vertex to its fc-nearest neigh-

bors, and link these neighboring vertices by edges with weights equal to the Euclidean 

distances. 
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(ii) Compute the geodesic distances (shortest paths) between all pairs of n points in the 

constructed graph using Dijkstra's or Floyd's algorithm. 

Note that Step (i) may be alleviated by choosing a random subset of V in order to reduce the 

computational complexity of the geodesic calculation. 

5.3 Experimental Results 

This section presents experimental results where the proposed statistical distributions are applied to 

3D mesh models with different topologies and varying sizes as depicted in Figures 5.2(a)-5.19(a). 

For example, the 3D camel model contains 2443 vertices and 7326 edges, whereas the 3D bunny 

model consists of 34834 vertices and 104288 edges. 

The Laplacian spectra of each model are depicted in Figures 5.2(b)-5.19(b). Spectral analysis 

is a powerful tool for investigating 3D structures such as discovering clusters of highly connected 

vertices. By performing the spectrum analysis, a wide range of critical graph characteristic can 

be discovered. The largest values are particularly important. Most graphs with high values for 

these largest eigenvalues have small diameter and contain strong clusters. In our experiments, we 

discovered using spectral analysis of the Laplacian matrix that the eigenvalues start at most for the 

lower normalized ranks which explains that all the 3D models are highly clustered on those lower 

normalized ranks. 

By analyzing the mesh degree distributions of the 3D models as shown in Figures 5.2(c)-

5.19(c), we can easily see that the probability of the degree increases as the vertex degree increases 

until it reaches the maximum with vertices of degree 6, then it starts decreasing as the vertex degree 

increases. 

From the mesh assortativity plots shown in Figures 5.2(d)-5.19(d), we observe that the distri-

bution of assortativity depends on the distribution of vertices on a 3D mesh. For example, the 3D 

camel, cow,feto, caballo, frog,hand,femur,foot and sculpture models have a strong dissortative be-

havior as illustrated in Figure 5.2(d), Figure 5.4(d), Figure 5.7(d), Figure 5.8(d), Figure 5.9(d), 

Figure 5.10(d), Figure 5.15(d), Figure 5.17(d) and Figure 5.19(d) but all the remaining models 
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show an assortative behavior for small vertex degrees, and a dissortative for large vertex degrees. 

For the mesh clustering coefficient distributions shown in Figures 5.2(e)-5.19(e), the vertices 

of degree 3 have the highest coefficient value which is equal to 1, meaning that every neighbor 

connected to a vertex v̂  of degree 3 is also connected to every other vertex within the neighborhood. 

Moreover, the clustering coefficient starts decreasing as the vertex degree increases until it reaches 

a lower clustering value for the highest vertices degree. 

The mesh geodesic distance distributions as depicted in Figures 5.2(f)-5.19(f) clearly show that 

the nonlinear structure of each 3D object. For example, the geodesic distributions of the 3D camel 

and dragon models have a multimodal shape which clearly capture the humps in these models. 
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FngMire 5„2: (a) 3D camel model, (b) spectrum, (c) vertex degree distribution, (d) assortativity 
distribution, (e) clustering distribution, (f) geodesic distance distribution. 
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Figure 5.12: (a) 3D mannequin model, (b) spectrum, (c) vertex degree distribution, (d) assortativ-
ity distribution, (e) clustering distribution, (f) geodesic distance distribution. 
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Figure 5.12: (a) 3D mannequin model, (b) spectrum, (c) vertex degree distribution, (d) assortativ-
ity distribution, (e) clustering distribution, (f) geodesic distance distribution. 
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Figure 5.12: (a) 3D mannequin model, (b) spectrum, (c) vertex degree distribution, (d) assortativ-
ity distribution, (e) clustering distribution, (f) geodesic distance distribution. 



Figure 5.8: (a) 3D maxplanck model, (b) spectrum, (c) vertex degree distribution, (d) assortativity 
distribution, (e) clustering distribution, (f) geodesic distance distribution. 
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Figure 5.12: (a) 3D mannequin model, (b) spectrum, (c) vertex degree distribution, (d) assortativ-
ity distribution, (e) clustering distribution, (f) geodesic distance distribution. 
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Figure 5.12: (a) 3D mannequin model, (b) spectrum, (c) vertex degree distribution, (d) assortativ-
ity distribution, (e) clustering distribution, (f) geodesic distance distribution. 
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Figure 5.12: (a) 3D mannequin model, (b) spectrum, (c) vertex degree distribution, (d) assortativ-
ity distribution, (e) clustering distribution, (f) geodesic distance distribution. 
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Figure 5.12: (a) 3D mannequin model, (b) spectrum, (c) vertex degree distribution, (d) assortativ-
ity distribution, (e) clustering distribution, (f) geodesic distance distribution. 



Figure 5.13: (a) 3D maxplanck model, (b) spectrum, (c) vertex degree distribution, (d) assortativity 
distribution, (e) clustering distribution, (f) geodesic distance distribution. 



5.3 Experimental Results 74 

rm 
(C) (d) m ..ill 

S 10 15 20 25 
i 

(e) (f) 

Figure 5.12: (a) 3D mannequin model, (b) spectrum, (c) vertex degree distribution, (d) assortativ-
ity distribution, (e) clustering distribution, (f) geodesic distance distribution. 
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Figure 5.12: (a) 3D mannequin model, (b) spectrum, (c) vertex degree distribution, (d) assortativ-
ity distribution, (e) clustering distribution, (f) geodesic distance distribution. 



Figure 5.16: (a) 3D maxplanck model, (b) spectrum, (c) vertex degree distribution, (d) assortativity 
distribution, (e) clustering distribution, (f) geodesic distance distribution. 
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Figure 5.12: (a) 3D mannequin model, (b) spectrum, (c) vertex degree distribution, (d) assortativ-
ity distribution, (e) clustering distribution, (f) geodesic distance distribution. 



Figure 5.18: (a) 3D maxplanck model, (b) spectrum, (c) vertex degree distribution, (d) assortativity 
distribution, (e) clustering distribution, (f) geodesic distance distribution. 
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(e) (f) 

Figure 5.12: (a) 3D mannequin model, (b) spectrum, (c) vertex degree distribution, (d) assortativ-
ity distribution, (e) clustering distribution, (f) geodesic distance distribution. 



Conclusions and Future Research 

Directions 

This chapter briefly concludes the thesis and highlights the major contributions of this research. 

This thesis presented a robust 3D mesh denoising method based on kernel density estimation, a 

3D mesh compression approach based on the mesh umbrella matrix, a 3D mesh fingerprinting 

scheme, and statistical 3D mesh distributions. We have demonstrated the effectiveness of the 

proposed methods through numerical experiments with a variety of 3D models. 

In the next section, the contributions made in each of the previous chapters and the concluding 

results drawn from the associated research work are presented. Suggestions for future research 

directions related to this thesis are provided in Section 6.2. 

6.1 Thesis Contributions 

6.1.1 Mesh denoising via multivariate kernel diffusion 

In chapter 2, we introduced a simple and fast 3D mesh denoising technique using the concept of 

multivariate kernel density estimation. The main idea behind our proposed approach is to use a 

regularized bandwidth matrix of the kernel density in order to avoid over-smoothing and to fully 

preserve the geometric structure of the 3D mesh data, while effectively removing undesirable noise. 

The experimental results showed that our proposed technique is robust, accurate, and has a low 
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computational cost compared to existing methods. 

6.1.2 3D mesh compression 

In chapter 3, we proposed an new methodology for 3D object compression. The key idea is to 

apply spectral decomposition to the mesh umbrella matrix. Object compression is then achieved 

by discarding the largest eigenvalues/eigenvectors. The main advantages of the proposed approach 

are: (i) the mesh umbrella matrix captures very well the connectivity information of the 3D mesh 

data, (ii) the approach is simple and computationally inexpensive, and (iii) the simulation results 

indicate the suitability of the proposed technique for 3D object compression. 

6.1.3 3D mesh fingerprinting 

In chapter 4, we proposed a robust hashing scheme for 3D models. The approach consists of par-

titioning a 3D model into sub-meshes, followed by applying eigen-decomposition to the Laplace-

Beltrami matrix of each sub-mesh in order to obtain the hash values of all the sub-meshes. The 

performance of the proposed method was evaluated through extensive experiments which clearly 

showed satisfactory resiliency against a variety of attacks. 

6.1.4 Statistical 3D mesh distributions 

In chapter 5, we proposed several statistical measures to analyze the topological properties of 

3D models. The proposed statistical measures include the mesh degree, the mesh assortativity, the 

mesh clustering coefficient, and the mesh geodesic distance distributions. The experimental results 

clearly showed the effectiveness of the proposed measures in quantifying the topological features 

of 3D objects. 
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6.2 Future Research Directions 

Several interesting research directions motivated by this thesis are discussed next. In addition to 

designing robust mesh denoising approaches for 3D object processing, we intend to accomplish 

the following projects in the near future: 

6.2.1 Kernel mesh denoising 

Our ongoing efforts are focused on exploring the use of the local structure tensor instead of the 

covariance matrix. Also, theoretically we hope to develop more rigorous way of finding the optimal 

regularization parameter of the covariance matrix. 

6.2.2 Kernel topological modeling 

Another future work direction is to tailor the proposed mesh neighborhood weighting kernel matrix 

/C, which takes into account the connectivity and geometry of an object, to compute skeletons of 

robust topology for 3D objects by constructing kernel Reeb graphs from the eigenfunctions of K. 

6.2.3 Object matching and retrieval 

Another possible future work direction is the use of statistical shape distributions as a shape signa-

ture for 3D object matching and retrieval. Also, it would be of interest to incorporate topology into 

the proposed methodology through surface singularities of the global geodesic shape function. 
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