
Efficiency of BitTorrent-like Peer-to-Peer Live Streaming

Systems

Ali Issaei

A Thesis

In

The Department

Of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science at

Concordia University
Montreal, Quebec, Canada

January 2010

©Ali Issaei, 2010

?F? Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1 A 0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre référence
ISBN: 978-0-494-67281-5
Our file Notre référence
ISBN: 978-0-494-67281-5

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

¦+¦

Canada

ABSTRACT

Efficiency of BitTorrent-like Peer-to-Peer Live Streaming Systems

Ali Issaei

From the past few years, peer-to-peer (P2P) applications have becoming well-liked

magnificently. BitTorrent (BT) has one of the most effective mechanisms for P2P content

distribution among all P2P applications. In P2P applications, each node plays a role both

as a client and a server simultaneously, comparing to the traditional client-server systems,

where every node has only one responsibility to act as either a client or a server.

Therefore, in P2P applications, the upload bandwidth of each peer can be counted as a

significant resource of the network. Although BT was created for file-sharing purposes at

the beginning, which is a time-insensitive distribution, after a while, it has attracted the

attentions to be use for video/audio streaming purposes too, which are time-sensitive. The

importance of this capability is that peers now, can be able to watch, or listen to, their

favorite live streaming content concurrently. Motivated by this fact, a stochastic model

for a BT-based P2P live streaming system is proposed and numerically solved and based

on what we gain, it is also shown how the performance of the system can be affected by

different parameters of the system (such as the number of neighbors, delay time, size of

the buffer, etc.). Moreover, we also try to apply some minor changes needed in the

BitTorrent's mechanisms, in order to support the video/audio streaming more efficiently.

iii

To myparents

For their love and support

ACKNOWLEDGEMENTS

This thesis would not have been possible without the supervision of Dr. Dongyu Qiu,

whose patience, encouragements, guidance, understanding and supports, from the

beginning to the final level of my master study at Concordia University, taught me to

believe myself, have a better understanding of my surrounds and develop an

understanding of the subject.

I would also like to show my gratefulness to the faculty and staff member of Concordia

University, who provided me assistance during my studies there.

Lastly, but not least, I offer my regards and blessings to Ms. Nadia Secreto for her

truthful support and valuable remarks throughout this work.

?

TABLE OF CONTENTS

LISTOFFIGURES ix

LISTOFABBREVIATIONS xiü

CHAPTER 1 INTRODUCTION 1

1.1 LITERATUREREVIEW ?

1.2 CLIENT-SERVER MODEL 3

1.3 P2P MODEL 9

1 .4 INTRODUCTION TO P2P FILE SHARING SYSTEMS ..1 5

1.4.1 FIRST GENERATION OF P2P FILE-SHARING SYSTEMS 17

1.4.2 SECOND GENERATION OF P2P FILE-SHARING SYSTEMS 18

1.4.3 THIRD GENERATION OFP2P FILE-SHARING SYSTEMS 18

1.4.4 FOURTH GENERATION OFP2P FILE-SHARING SYSTEMS 19

1.5 BITTORRENT 20

1.5.1 INTRODUCTION. 20

1.5.2 HOWBITTORRENT WORKS? 21

1 .6 AN INTRODUCTION TO P2P STREAMING SYSTEMS 23

1 .7 RELATED WORKS AND RESEARCH OBJECTIVES 25

1.8 THESIS ORGANIZATION 28

Vl

CHAPTER 2 EFFICIENCY OF BITTORRENT-LIKE P2P LIVE

STREAMING IN PEERS WITH NON-PRIORITIZED AND LIMITED

SIZEBUFFERS 30

2.1 MOTIVATION 31

2.2 STOCASTIC MODEL 33

2.2.1 MODEL ASSUMPTIONS 33

2.2.2 MODEL ANALYSIS 40

2.3 NUMERICAL RESULTS 52

2.4 CONCLUSION... 66

Chapter 3 EFFICIENCY OF BITTORRENT-LIKE P2P LIVE

STREAMING SYSTEMS WITH PEERS WHICH HAVE LIMITED

SIZE BUFFERS AND HIGH PRIORITIES ONLY IN THEIR FIRST

SLOTS. 67

3.1 MOTIVATION 67

3.2 STOCASTIC MODEL 68

3.2.1 MODEL ASSUMPTIONS 68

vii

3.2.2 ANALYSIS OF THEMODEL 78

3.3 NUMERICAL RESULTS Ill

CHAPTER 4 CONCLUSIONS AND FUTURE WORK 117

4.1 CONCLUSIONS 117

4.2 FUTURE WORKS 119

BIBLIOGRAPHY 121

VlIl

LIST OF FIGURES

Figure 1.1 : Percentages of Internet Users in the World by Geographic Region 2

Figure 1.2 : Number of Internet Users in the World by Geographic Region 3

Figure 1.3 : Percentages of total Internet traffic 10

Figure 1.4: P2P model versus Client-Server model 12

Figure 2.1: Peer A with buffer size L=IO and playtime of tA= 15 35

Figure 2.2: Peer A with buffer size L=IO when there are 10 useful pieces in its buffer

(Pieces #12- #21) 39

Figure 2.3: Peer A with buffer size L=IO when some of its pieces old pieces (pieces #12

~ #14 that have been already played) have been replaced (overwritten) by #22 ~ #24

(new) pieces 40

Figure 2.4: Real buffer (when Peer A with buffer size L=IO has four useful pieces

(pieces #1 8 ~ #21) its playtime is tA=\ 8 at a specific time slot.) 41

Figure 2.5: Virtual buffer (when Peer A with buffer size L=IO has four useful pieces

(pieces #1 8 ~ #2 1) its playtime is tA=\ 8 at a specific time slot.) 42

Figure 2.6: An insight into the peer A's buffer, when its buffer is the product ofmerging
its real and virtual buffers together 43

¡x

Figure 2.7: A discrete-time stochastic model for a BitTorrent-like P2P live streaming

system when peers have limited buffer length of size L 44

Figure 2.8: The effect of the buffer length on the probability of continuity (Pcontinuity),

where 20 > L > 2 and T=I, 5, 10, 15 and 20 54

Figure 2.9: The effect of the delay time on the probability of continuity (Pcontinuity),

where 20 > G > 1 and L=2, 5, 10, 15 and 20 56

Figure 2.10: The effect of the delay time and the buffer length on the download rate (d¿),
where 20 > L > 2 and T = 1 57

Figure 2.11: The effect of the delay time and the buffer length on the download rate (d¿),
where 20 > L > 2 and 7 = 5 58

Figure 2.12: The effect of the delay time and the buffer length on the download rate (d¿),
where 20 > L > 2 and T = 10 59

Figure 2.13: The effect of the delay time and the buffer length on the download rate (d¿),
where 20 >L> 2andT = 15 60

Figure 2.14: The effect of the delay time and the buffer length on the download rate (d¿),
where20>L> 2 and T = 20 61

Figure 2.15: The effect of the delay time and the buffer length on the probability of

continuity (PCont¿nii¿ty;, where 20 > L > 2 and 20 > T > 1 62

?

Figure 2.16: The effect of neighbour number on the probability of continuity

(Pcontinuity), where L = 4,7 = 10 and 180 > H > 10 63

Figure 2.17: The effect of neighbour number on the probability of continuity

(Pcontinuity), where L = 6,7 = 15 and 180 > H > 10 64

Figure 2.18: The effect of neighbour number on the probability of continuity

(Pcontinuity), where L = 7, T = 20 and 180 >H> 10 65

Figure 3.1: Peer A with buffer size 1=10 and playtime of tA= 18 71

Figure 3.2: Peer A with buffer size L=IO, containing old piece #16, old pieces #21 ~ #25
and useful pieces #27 ~ #30 in its buffer, in a specific time slot 75

Figure 3.3: Peer A with buffer size 1=10 with 4 useful pieces (pieces #27 ~ #30) in its
buffer, when it is missing (and looking for) piece #26 and pieces #31 ~ 35 in a specific
time slot 75

Figure 3.4: Peer A with buffer size L=IO, containing old piece #17, old pieces #21 ~ #25,
useful piece #26 and useful pieces #28 ~ #30 in its buffer in a specific time slot 77

Figure 3.5: Peer A with buffer size L=IO with 4 useful pieces (piece #26 and pieces #28
~ #30) in its buffer , when it is missing (and looking for) piece #27 and pieces #31 ~ 35 in
a specific time slot 78

Figure 3.6: A discrete-time stochastic model for a BitTorrent-like P2P live streaming
system for peers that have limited buffer length of size L and there is high priority on the
first slot 80

xi

Figure 3.7: The effect of the buffer length on the probability of continuity

(PContinmty),where20>L> 2 and T=I, 5,10,15 eaad20 112
Figure 3.8: The effect of the delay time on the probability of continuity (PC0ntinuity)>

where 20 >T> land 1=2,5, 10, 15and20 114

Figure 3.9: The effect of neighbour number on the probability of continuity

(Pcontinuity),vtere 180 > H > 10 115

XIl

LIST OF ABBREVIATIONS

Abbreviation Description

BT BitTorrent

DHT Distributed Hash Table

FCFS First-Come-First-Served

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

P2P Peer-to-Peer

SMTP Simple Mail Transfer Protocol

Snap Structured overlay Networks Application Platform

UDP User Datagram Protocol

URL Uniform Resource Locator

XlIl

Chapter 1

INTRODUCTION

1.1 LITERATURE REVIEW

The development of the Internet in the duration of the last decades was absolutely fast.

According to statistics that have been done by the Internet World Stats on September 30,

2009, estimated number of Internet users over the world is 1,733,993,741 people as it is

shown in Figure 1.1 and 1.2 [16]. The Internet is one of the most essential and useful

tools used in today's society which can be a significant impact in people's life style.

Sometimes it can be used as an informative resource, which John Allen Paulos [1] said

that: "The Internet is the world's largest library. It's just that all the books are on the

floor", while some other times it will be used as an entertaining or a communicational

tool.

Peer-to-Peer (P2P) applications are one of the most interesting applications which have

been proposed a few years ago and have been attracting more and more attentions every

day. A peer-to-peer (P2P) network includes some participants who share a part of their

resources (such as network bandwidth, disk storage, etc) with the other participants in

that network and act simultaneously both as clients and servers in the network and as a
1

result of this characteristic they would not need to use any central coordination instances

(stable hosts or servers) to interact with each other [4].

Percentages of Internet Users in the World by
Geographic Region

Middle East
Afr,ca^ -W

Latin Amer :? / ¿% \ ¦ ¦
Caribbean^ ... ^11% V''" - ¦ . \ i

'*:V : ;. \i ¦;

North America

15% ^-

.l'-
Europe

U% ...

m.

\
Asia N
43%' \

Figure 1.1: Percentages of Internet Users in the World by Geographic Region

Africa, 67400000
Latin America /

Caribbean,
179000000-^

.Middle East,
S7400000

Oceania /
.Australia,
21000000

la.
ISiilii^ ìli ?

Asili,
7 JR JOOOQO

North America,
252900000

G?????.
41S00U000

Figure 1.2: Number of Internet Users in the World by Geographic Region

1.2 CLIENT-SERVER MODEL

Definitions:

A Client-Server network will be defined as distributed network that consists of one higher

performance system which is generally called the server, and several lower performance

systems which are called the clients.

A server is a central registering unit and it is the only provider (source) of a specific content

and service. A network server is a computer (a group of computers) which is (are) designed

to process the requests of the clients in that network and deliver data to them over the

Internet or a local network[4] & [5].

On the other hand, a client would only be able to request the content(s) or execute the

service(s) which has (have) been provided by the server without having the ability of sharing

any portion of its own contents (resources) with other clients in that network [4].

The Client-Server architecture is a network-architecture in which each any process or any

computer on that network could play a role either as a client or as a server.

A Server normally is a process dedicated to printers (print servers), manage disk drives (file

servers), network traffic (network servers) or a powerful computer.

Clients usually are personal computers or workstations on which users run their applications.

As it seems, the clients depend on servers for resources such as devices, files and processing

power [6].

Client-Server model in a network provides an easy way to link the programs, which are

effectively distributed across different locations. A common Client-Server model could be

the computer transactions. For example, when we want to check our bank account online

over the Internet with our computers, a client program in our computer will forward our

request to a server program in our bank. This program might forward the request to its own

client program that sends a request to a database server at another bank computer (probably

to the central bank computer) to retrieve our account balance. The balance will be returned

back to the bank data client, which in turn serves it back to the client in our personal

computer. Hence, it provides the information that we are looking for [7].

Architecture:

One of the most popular models in constructing distributed systems is the Client-Server

model. In this design, clients demand for contents or required services from a server. The

4

client and server require a known set of customs before they could be able to have interaction

with each other. This set of customs contains a protocol, which should be carried out at both

ends of a connection. As some examples, we can mention the TELNET protocol that has

been used in the Internet for remote terminal imitation, the File Transfer Protocol (FTP) and

Hypertext Transfer Protocol (HTTP).

Server:

A server as a service provider must determine responses to the requests and then by using an

appropriate protocol, it should return the results. A server also can be run either on the same

device that the client is running on, or on another obtainable device in that network.

Performance:

In some specific conditions, the clients could be deficient devices. In this case the calculation

would be done on a high-performance server. The usability of this approach is really rare

nowadays; but in some application, such as virtual reality computations for film scenes, they

still use this method.

Central data management:

The Client-Server models are very common and some of services provided by a server are as

follows:

File server:

One server provides multiple clients with a file system. Access control and transaction

control are some of the tasks that these kinds of servers will do. It is also important to

mention that only one client may have access to the file with write permission at any time.

5

Web server:

A Web server provides various clients with information. And the information could be either

static on a Web server or dynamic, which would be generated by different service

applications.

Client:

A client generally is a device or a process that uses the service(s) of one or more servers.

Clients normally act like interfaces among servers and the users (people). They have been

designed for some purposes like the information input and visualization of information. In

the past, clients had only a few numbers of resources with a really low functionality.

However, today we see that most of the clients are personal computers with much higher

performances required to the resources and functionalities. Earlier clients displayed only the

running application on the server and forwarded the input(s) of the user(s) to the server. [9]

A thin client (sometimes also called a lean or slim client) has very limited local resources in

both hardware and software dimensions, which means that it relies on other computer

(server) to do its traditional computational roles. [8]

Thin clients, share their computations with the same server and it shows that they act as the

components of a broader computer infrastructure and so theirs infrastructures can be seen as

the depreciation of some computing service across several user-interfaces. [11]

It also applicably needs the processing time. One of the most common usages of the modern

thin clients is the low-end microcomputer that merely focuses on providing a graphical user

interface (GUI) to the end-user(s). (10)

6

On the other hand, a thick client, also called a fat client or rich client, is rich in terms of

hardware and software. They can store, execute their own independently and provide rich

functionality without any need of the central server [12]. They usually refer to personal

computer(s) [9].

Client-Server model's Advantages and Disadvantages:

Some of the advantages and disadvantages of the Client-Server architecture are listed below:

Advantages:

? Data management is very easy because of the centralized location for the files and data. This

property causes the fast backups and low errors; it consists of different permission levels that

will prevent users (clients) from making the files and data damaged. All the processes take

place on the server and only the final outcomes would be returned to the users (clients). This

procedure by lessening the volume of the traffic in the network among the server and the

clients will increase the total performance in the network.

? Since all the data, file and applications are on the server, if there is any defective client in the

network, thin clients can replace it very efficiently.

Therefore, we can categorize the client-server advantages and disadvantages as the following

[13]:

? Centralized Resources:

> It means that all data is stored in one central location.

> It is easier to backup files and data.

> Accessibility to files and data are easier.

7

? Good Efficiency:

> In most of the cases, when the load of the network is light or medium, the

traditional client-server models have good efficiencies (Software and hardware

are optimized for multiple users).

? High Security:

> In traditional client-server networks, because there is only one central login, they

have high securities generally.

? Good Scalability:

> When the load of the traditional client-server networks is light or medium, they

generally have good scalability.

Disadvantages:

? Client-Server systems are costly and require a high maintenance.

? In Client-Server systems, the servers are extremely vulnerable and if a problem happens to

them, their failures would probably cause heavy delays or sometimes a complete system

breakdown. Resulting in blocking several clients from working with their applications or

other data.

As a summary we can categorize the client-server disadvantages as the following [13]:

> If the server goes down, it will bring a part or the whole network down.

> When the number of users increases, the client-server's scalability decreases and

sometimes it could result in the partial/complete breakdown in the server.

> It is expensive to install and upgrading the Hardware(s) is costly.

> It needs to be maintained and supervised by some professional IT staff.

8

1.3 P2P MODEL

The P2P (peer-to-peer) paradigm was proposed based on the principle that every single

component of the system is responsible for acting both as a client and as a server

concurrently, in order to overcome the inadequacy of the traditional client-server model.

As a result of this fabulous property in P2P model, each user in the network would share

a portion of its resources (e.g. bandwidth) and as a result, the total bandwidth of network

would be improved as the number of clients increases. In other words, the total

bandwidth of the network is equal to the sum of all the users' bandwidths in that network.

Nowadays, several applications have been designed based on the P2P model, such as

Instant Messaging (IM), Online games, Collaborative Community, IP Telephony, High

Performance Computing, File sharing and Streaming (Live Streaming and Recorded

Streaming) [14].

According to an analysis of traffic demographics in North-American broadband networks

that has been done by Sandvine Intelligent Broadband Networks in May 2008, it shows

that P2P users account for around 43.5% of the Internet traffic, as shown in Figure 1.3

[15].

As mentioned earlier, the client-server model is a traditional model which is used in

many of the Internet protocols such as File Transfer Protocol (FTP), Simple Mail

Transfer Protocol (SMTP), Hypertext Transfer Protocol (HTTP), etc [17].

Having a centralization feature in client-server models, allows them to have some great

advantages (such as service assurance, satisfactory security, easy server maintenance and

9

ease of updating the resources). On the other hand, this characteristic also brings them

some disadvantages as we discussed earlier.

Percentages of total Internet traffic
¡ Peer to Peer a Web Browsing H Streaming ^Tunneling H News Groups a Online Games

.Streaming

Wub
Browsing

¿7.3%
1

G 14.8%

HBpP"^ ^^A Tunnelingw ^JEm 5.9%

\v Peer to Peer

Other
1 News

Online Games
1.2%

i

i &
VOIP

0.2%

Figure 1.3: Percentages of total Internet traffic

Among those disadvantages, one of the biggest issues that the traditional client-server

models face is the scalability problem. When the load of the service request is light, they

can work properly; but, the problem will come up when the service load is not light

anymore. Imagine a very popular web server such as yahoo.com, google.com, cnn.com,

etc; there may be large number of service requests at any time while the server's capacity

is limited. When the load of the system (service requests) increases, it will result in the

10

increase of the response time crucially and relatively. Users probably must wait from a

few minutes to several minutes to be able to view a simple web page.

Although there are some solutions, such as employing expensive servers with high

capacities, in order to face this problem, it seems that it is not wise enough and the

scalability is still vulnerable.

In order to overcome over the scalability issue, the P2P models has been needed to be

proposed, in which each node (user) works both as a client and a server simultaneously.

In general, P2P models have been developed in a distributed manner where they do not

depend on a single centralized server in the system. Generally speaking, a centralized

server is a must for the traditional client-server network.

The difference between a P2P and a client-server model has been shown in Figure 1 .4.

P2P models can be seen as a substitution for the client-server models. Therefore, they can

be added as a complementary component to the client-server networks to improve their

performances.

In some applications, a combination of a P2P model and a client-server model has been

employed in order to achieve a better performance. As an example, the Structured

overlay Networks Application Platform (SNAP) uses this combination to get to a better

performance [18].

11

P2P Model

Client

Client-Server Model

Client

Server

Client

Client

Figure 1.4: P2P model versus Client-Server model

12

Therefore, a P2P model has the following advantages in brief:

? Scalability :

> In a P2P system as we mentioned earlier, each node (peer) concurrently acts as

both a client and a server. Meaning, in a well-designed P2P model, the more peers

are in the system, the better performance the network would have.

? Anonymity:

> Nodes (peers) in a P2P network can interact with each other anonymously.

? Ease of Sharing:

> Peers can choose the best neighbors to communicate. Moreover, P2P models do

not need any publication step, which means that they neither need to create web

pages nor upload information to a server.

? Low cost:

> In a P2P network, every single peer (node) in that network shares a portion of its

resources (e.g. bandwidth, storage space, etc) in that network. Therefore, there is

no need to costly high capacity servers and also facing any special management or

administrative issues.

? Robustness and Reliability (Fault Resilience):

> Because of the P2P models' architecture, dependency on the single central servers

is diminished and moreover, the system breakdown which could be due to the

single point failure is preventable.

Although, P2P applications have lots of advantages as mentioned above, they also have

some disadvantages that are coming in the following [19]:
13

? Virus infection:

> In a traditional Server-Client model, all the resources (files/data) are stored on the

server side only, the server is maintained by professional administrators and

because of this, the resources are safe and have no virus, unless the files have

been replaced by hackers with illegal hacking activities.

On the other hand, in the P2P architectures, every single peer (node) in the

network acts both as a client and a server simultaneously. From this characteristic

the files/data which they share with other peers in the network might be infected

by the viruses and cannot be completely reliable.

?> Junk Information:

> Sometimes, we see that the files that have been shared by a peer or a group of

peers are not totally related to the content that they have been claimed for. Such

threats, in most of the times are the tricks rather than the malice. This would lead

the peers to waste their time and bandwidth in the network.

? Privacy Invasion:

> Important information such as personal information, military secrets or

commercial secrets released by the P2P applications is a disruptive threat, which

can be caused either by inappropriate configuration in P2P applications or by

virus infection(s).

? Storage Damage:

> In a traditional Client-Server system, a client can only download the resources

(data/file) from the server. In a P2P system, each node (peer) play a role both as a

14

server and a client concurrently, which means that it uploads data while it is also

downloading. According to BitJourney' s test report [19], in order to download a

7MB MP3 file with Foxy (a famous P2P application in Taiwan), it needs to do the

writing action 4986 times on average and in the meantime, it requires doing the

reading action 2472 times on average. These numbers lead us to the conclusion

that the file has been shared while the downloading has not been yet completed.

Even when the file has been downloaded completely, it has been on the process of

getting shared on the internet till the file had been removed or the P2P application

has been shut down completely. However, the reading actions are not essential in

the traditional Client-Server models. By doing a simple calculation, it would be

revealed that the damage has been increased approximately about 49.6%.

1.4 INTRODUCTION TO P2P FILE SHARING SYSTEMS

In a P2P file sharing system as we described earlier, the resources (files or data) have

been stored that the users, which are called "peers" or "nodes", and they are normally

personal computers, and the network generally does not have a centralized control unit.

Because of the P2P models' infrastructure, each peer at the same time works both as a

client and a server; which means that during the time which it is connected to the

network, it might make a request for a specific file or data to other peers in the network

and simultaneously it also might reply to the other peers' requests in the system.

15

Before P2P file sharing model has been introduced, the client-server model by using

some protocols such as File Transfer Protocol (FTP) or Hypertext Transfer Protocol

(HTTP) was responsible for the most of the file-sharing on the Internet. We also should

mention that they are still in use. Nowadays as we see them in some file-hosting sites

proposed a few years ago, such as rapidshare.com, megaupload.com, etc. For example

regarding the Rapidshare file-hosting website, we should say that it is a German-

owned one-click hosting pay and free-service (the free service comes with some

limitations on the download speed and the number of downloads per day) website which

operates from Switzerland[20]. The original Rapidshare' s website address is

rapidShare.de, which uses the German top-level domain ".de" [21]. On October 20, 2006,

Rapidshare announced that "Unfortunately all drives ofRapidShare.de are full right now"

[22]. We see that how a huge file-sharing site like rapidshare.de with having a lot of

super expensive and gigantic equipments has been gotten full and could not be able to

handle any other requests. This has made its founders established a new website

(rapidshare.com), which is now one of the largest file-hosting sites in the world and
claims that its clients have uploaded more than 10 Petabytes (1016 bytes) of files onto its
servers and can fulfill concurrently, up to three million requests. Later on, when the

number of clients increases, this will lead to the increase in the load of the system and the

reduction of the performance of the network. Again they will need to buy larger

equipments and pay a lot of money to be able to handle the volume of the requests at that

time. As a result, this method could not be a realistic and wise solution for this problem.

On the other hand, P2P file sharing systems show their excellent scalability in these

16

situations. Even in a well designed P2P model, when the number of users (peers)

increases, the performance does not get decreased and sometimes it can be increased

surprisingly, if the system was designed well. No wonder that the P2P file sharing

applications have been being become popular.

The P2P models, based on the connection protocol which they use, can be classified into

three main categories which are structured, unstructured and hybrid models.

Structured P2P systems has a strict structure to connect the peers to each other whereas in

unstructured systems, each peer will be connected to a fixed number of other peers

arbitrarily where the files' locations have not been reported.

Each of structured and unstructured approaches has its own advantages and

disadvantages. Hybrid approaches have been introduced to use a combination of these

two approaches that overcome each of their disadvantages while keeping their benefits.

1.4.1 FIRST GENERATION OF P2P FILE-SHARING SYSTEMS

In the first generation of P2P file sharing applications, both of the P2P and client-server

models are combined together. For instance, we can mention the Napster [23, 24, 25, 26],

that has a centralized server, which is generally utilized as the centralized file index

server. The centralized system controls the traffic among the peers in the network; and

the server keeps the information, regarding the shared file/data; and the peers upload the

specific resource in order to provide them to the other users that are willing to download

that shared resource in the network. In this model, whenever a peer joins the network or

sends a request for a specific file/data which is in the network, the network will send him
17

a list of peers who have that specific resource. It then could be able to start

communicating with those peers and download the resource from them.

These kinds of P2P systems have single centralized servers, pretty similar to the client-

server model, they have a single failure point at their central servers; which means that if

their single central servers stopped working properly, all of the network would be

affected and might not work properly to any further extent.

1.4.2 SECOND GENERATION OF P2P FILE-SHARING SYSTEMS

The second generation of the P2P file sharing network, started by arrival of the Gnutella

[32]. In this model of P2P file sharing networks, there would be no need to any

centralized server as in the first generation. In other words, this generation of P2P file

sharing networks is a decentralized P2P model which makes higher-capacity peers act as

index server and the lower ones ramify from them.

Distributed hash tables (DHTs) [27], were introduced with the appearance of the second

generation of P2P file sharing systems. By selecting a range of nodes (peers) to index

certain hashes, we see the searching efficiency has been improved. As some examples for

this class of P2P applications, we can mention some such as Kazaa, Gnutella,

eDonkey2000 and Emule [25, 29, 26, 31, 32].

1.4.3 THIRD GENERATION OF P2P FILE-SHARING SYSTEMS

The third generation of P2P network is an indirect and encrypted P2P network [29, 24].

18

There is no doubt, that in fact, the BitTorrent (BT) merits the name of the third generation

file sharing systems. BitTorrent is named the third generation P2P technology which was

invented by an American software engineer, Bram Cohen, in 2001 [33].

The third generation of the P2P file sharing network, is an indirect and encrypted P2P

network. It interconnects uploaders (seeders) to downloaders (leechers) by using a

tracking file (.torrent), while it does not use a decentralized server to search sharing files.

By using this method, it would get rid of the searching issues for sharing files across the

network. However, existence of online forums or some communities to exchange .torrent

files is vital [34].

1.4.4 FOURTH GENERATION OF P2P FILE-SHARING SYSTEMS

There are services which send streams instead of files over a P2P network. Therefore, we

can listen to a radio channel or watch a television channel without using any server.

The streaming media is distributed over a P2P network and it would be really helpful that

instead of using a treelike network structure or any traditional client-server model. A P2P

model gets employed for this aim [35].

We also need to bring it into attention that in this category of P2P networks, it is the

streams which get exchanged rather than the files as in the other previous classes of P2P

models. For example, some of the popular streaming sharing systems are PPlive,

PPstream, Peercast, Miro, Cybersky and Demo TV [36].

19

1.5 BITTORRENT

1.5.1 INTRODUCTION

BitTorrent has the highest popularity among the P2P file sharing applications. According

to a recent study done by Ipoque in 2009 [37], a leading European providers of deep

packet inspection (DPI) solutions for Internet Traffic Management and analysis,

BitTorrent is still the most common file sharing protocol in the world. It is responsible for

almost 45-78% of all P2P traffic [38].

Ipoque statistics show that more than 90% of the P2P traffics is generated by two

protocols, which are Emule (eDonkey) and BitTorrent. Gnutella only stands for nearly

2% of the P2P traffic, and Kazaa is almost nothing.

BitTorrent traffic iconsists of movie downloads, while Edonkey/Emule traffic seems

miscellaneous and mischievous. Ipoque addressed that, "By looking at the number of

shared files it becomes apparent, that small-volume content types such as e-books are

massively shared, too. Music, movies, pornography and TV-series are the most often

shared content types for BitTorrent. eDonkey's relative number of pornographic files is at

30%o about twice as high as for BitTorrent. "[3 9].

In a BitTorrent network, peers (nodes) are divided into two main categories which are

called downloaders (leechers) and uploaders (seeds). A downloader would be defined as

a peer which only has a portion (or none) of the file or data that is interested in. On the

other hand, a seed would be defined as a peer that has the whole file and provides its

upload bandwidth to serve other downloaders.
20

1.5.2 HOW BITTORRENT WORKS?

In earlier versions of BitTorrent, when there were some central servers, when a peer

joined the network, it would first acquire a torrent file. A torrent file is a small size file

which has the Uniform Resource Locator (URL) of a tracker. A tracker would be defined

as an Internet server that arranges communications among peers. Also torrent files

generally can be found on file sharing websites or through the search engines. When a

peer gets the specific torrent file that it was looking for, it would be connected to the

tracker. The most important function of a tracker is returning the list of peers, which have

the desired file requested by the newly joined peer.

After the newly joined peer obtains the torrent file, and due to that the other peers'

information, it would start communicating with them, the downloading process would

begin and in the meanwhile, they also communicate with the tracker and update the

information recurrently. If for any reason the tracker fails, the downloading process for

peers that already began the file exchange would not be interrupted but no more peers

could be able to join the network and start interacting with other peers.

Therefore, the tracker is vulnerable and could be seen as a single point of failure.

Fortunately, this problem has been resolved in the latest versions of the BitTorrent and

the centralized tracker has been has been replaced by the multi-tracker torrents in order to

elevate the reliability when the tracker stops working. With this method, when one of the

trackers fails, the other ones would support the file transfer [40]; and the tracker-less

torrents when every single peer (node) in the network can also play the role of a tracker

and as a result, having a single tracker server would be avoidable.

21

Generally speaking, the tracker-less torrents are divided into two main categories;

Azureus Distributed Database (DDB) and Distributed hash table (DHT) implementations

[40,41,42].

In the P2P file sharing applications, files would be divided into smaller and fixed size

pieces. Typically, in the BitTorrent application, the default size of a piece is 256KB. And

each of these pieces also would be divided into smaller and fixed size sub-pieces, which a

default size of 1 6KB and regularly requests for five sub-pieces would be sent all at once.

Normally, during the downloading process each peer has different pieces from the others

in that network. It is also obvious that when the number of pieces that a peer has

increases, the number of requests which it also receives would increase and vice versa,

the less number ofpieces that a peer holds, the less number of requests it would receive.

BitTorrent uses four main piece selection strategies; namely, random first, rarest first,

strict priority and the endgame mode, in order to keep its performance acceptable.

In the following, each of these four piece selection strategies will be described in brief:

? Random first: A newly joined peer to the network with no pieces, will select a piece

to download at random. This strategy guarantees that the new peer downloads the first

piece as soon as possible and starts serving the other peers in the system.

? Rarest first: It simply says that the peer should first download the rarest piece in the

network and the random first is just an exception to the rarest first. For instance, when

there is only one copy of a piece available in the network and the peer holding that,

leaves the network, then we can find no peer in the network which has that piece. In

22

order to reduce the possibility of such situations, having the rarest first strategy is

significantly beneficial.

? Strict priority: It means that when a peer makes a request for a sub-piece of specific

piece, the remaining sub-pieces ofthat particular piece would be requested before any

other sub-pieces, which belongs to other pieces.

t Endgame mode: Consider a situation when a peer has already downloaded all the

pieces except one piece which is left. In this condition, the peer sends the request for

the left piece to all of its neighbors (all of the peers that it is in communicating with)

and it could probably result in the last piece duplication; and due to that some of the

bandwidth would be wasted [24, 34].

1.6 AN INTRODUCTION TO P2P STREAMING SYSTEMS

Before that audio or video stream could be played, streaming media players have to

buffer segments of that stream. After a segment of that stream gets buffered, the media

player would play it and simultaneously, the media player is also dealing with the

buffering of the next segment. In an ideal manner, the media stream (video or audio)

which is playing should not be stopped [45]. Regrettably in real world, the internet

servers and internet channels normally get overloaded and due to that, users who are

watching (or listening to) a specific media will be encountered with a frozen frame and

because of that, they have to wait from a few seconds to several minutes to be able to

watch (listen to) the rest of the media stream. P2P streaming model, which is categorized

as the fourth generation of P2P models, is the key to improve the Internet streaming.
23

Some examples of the P2P streaming applications are PPLive, PPStream, Coolstreaming,

QQLive, SopCast, Feidian and TV Ants. These applications, by employing a similar

technology to that of BitTorrent (BT), allow users to watch (or listen to) their favorite

media stream (such as TV channel or radio channel) [45, 46]. By using the BitTorrent

technology in these P2P streaming application, every single peer (user) simultaneously

views (downloads) a media stream in the network and also uploads the resources (media

streams that it has already downloaded) to the other interested users that are looking for

those specific pieces in the network. It is obvious that in this kind of networks, every

single user (viewer) act both as a downloader (viewer or a client) and also as an uploader

(broadcaster or a server) simultaneously.

Therefore, in a well design P2P streaming application, when the number of users (peers)

increases, the performance of the system improves and the possibility of having

discontinuity (freezing) during watching or listening to a media stream perhaps will be

reduced. In this generation of P2P applications, each node (peer) automatically would

find different connection nodes and would download its favorite media stream from the

closest peers (nodes with the closest distances from it). We also need to mention this

good point that new P2P streaming applications have been designed in a way in which

the media stream (data) is buffered in the memory (cache), instead of the hard disk which

used to be in the other generations of P2P applications [45].

P2P streaming Internet TV/radio applications create a stream on a local host and then,

that stream would be played by Windows Media Player, Real Player or other media

24

players. Again, because of the incentive mechanisms that have been applied into the P2P

streaming applications, when a peer wants to receive the media stream pieces (segments),

it has to send (upload) data to other peers which are interested in its pieces in return.

In conclusion, the more users share their segments with other peers, the smoother play of

the media stream they would have. Thus, it would make it better for each peer that before

starting time of a preferred event, it establishes a connection as soon as it can in order to

increase the possibility of having a smoother play ofthat stream, when it is watching or

listening to its media stream [45, 46].

1.7 RELATED WORKS AND RESEARCH OBJECTIVES

During the last decade, BitTorrent has drawn a significant amount of research interest.

Lots of works have been done on BitTorrent-like file sharing systems. Early works have

been focused on the traffic measurements and system designs for BitTorrent-like file

sharing systems, [47, 48, 49]. In [50], a closed queuing system is used to model a general

P2P file sharing system. In [51, 52], they studied how efficient the incentive mechanism

works and they improved the collaboration among peers, by proposing some new simple

mechanisms. In [53], the authors implemented a BitTorrent client and by collecting

statistics, information and messages, which have been shared among the clients, they

provided some insights on how BitTorrent file sharing systems works. They showed that

it is an efficient and cheap solution to the traditional client-server systems. In [54], one of
25

the greatest works has been done on the performance and scalability of BitTorrent-like

P2P file sharing systems using a simple fluid model.

However, during the past few years, a lot of research attentions have been inclined

towards using P2P architecture for streaming purposes. In [55], it has been provided a

streaming service by using a hybrid server/P2P streaming system approach. The clients

(peers) obtain the stream from a streaming server while at the same time, they share

pieces using BitTorrent. In this case, the BitTorrent protocol remains unchanged except

that the clients cannot download any data prior to the current playback time. They also

mention that the BitTorrent-like systems are not suitable for streaming purposes; because

the peers will have only sequential pieces of the stream and as a result, the Tit-for-Tat

strategy fails. However in our work we question the accuracy of this statement. We show

that if BitTorrent-like systems are used for the live streaming, this statement cannot be

right. Moreover, we also show that by applying some modifications to the BitTorrent-like

file sharing, we would be able to reach to a satisfying QOS (quality of service). In [56],

the other interesting work that has been done is CoolStreaming. CoolStreaming, uses a

data-centric design of an overlay network. Its core operations are same as in BitTorrent.

Similar to the Piece Selection mechanism found in BitTorrent, in Coolstreaming, based

on a heuristic scheduling algorithm, the decision of requesting a particular piece will be

made. However, it does not explain the trade-offs involved in selecting the target number

of peers or the buffer length.

Another interesting work is Chainsaw [57], which uses BT concept but also uses gossip

and pushed-based approaches. The BiTos [58], uses BitTorrent for streaming purpose.

26

Therefore, it is similar to our work here somewhat. Unfortunately, it only discusses the

mechanisms that should be applied to BitTorrent, the importance of selecting an

appropriate buffer size and the piece selection strategies; and no analytical model has

been proposed in this paper.

As we already mentioned, Qiu et al. in [54], obtained a formula to calculate the efficiency

of P2P file sharing. This formula has been applied directly to P2P streaming by Tewari at

al. in [59], but it is incorrect, because of the significant differences between P2P

streaming and P2P file-sharing.

In [2], some insights into the BitTorrent-based live video streaming is provided and a

general probability model and an analytical analysis of the BitTorrent-based live video

streaming under some certain assumptions is proposed. Although it is similar in spirit to

our work, we propose a better and more realistic probability model for the BitTorrent-like

live streaming systems. We propose a stochastic model which provides some great

insights. We determine how different parameters of the system can affect the

performance of the system. Moreover, we go further and propose changes to the

infrastructure of our BitTorrent-like live streaming system and prove that the

performance of the system can even go higher.

27

1.8 THESIS ORGANIZATION

This thesis will be presented as follows:

Chapter 2

? Efficiency of BitTorrent-like P2P live streaming in peers with non-prioritized

and limited size buffer

> In this chapter, the efficiency of the BitTorrent-like P2P live streaming systems

will be studied in a network that peers has non-prioritized and limited size buffer.

In section 2.1, the motivation would be described and it will be followed by

section 2.2, which would present assumptions of the system and the proposed

model requests will be presented and analyzed. In section 2.3, numerical results

will be shown that some important insights on how different parameters could

affect the performance of a BitTorrent-like P2P live streaming system. And

finally, it will be followed by section 2.4, which is a brief conclusion on chapter
2.

Chapter 3

? Efficiency of BitTorrent-like P2P live streaming systems with peers which have

limited size buffers and high priority only in their first slots

> In this Chapter, the efficiency of this type of systems will be studied. In section

3.1, the motivation would be described and the rational for the changes applied to
28

the architecture of the previous model will be explained. In section 3.2

assumptions of our new model will be presented. In section 3.3, through the

numerical methods, we obtain some important insights which confirm the

advantages of our new model. And at the end, this chapter will be followed by

section 3.4, which is a brief conclusion on chapter 3.

Chapter 4

? Conclusions and future work

> In section 4.1, the conclusions of this thesis are summarized and in section 4.2,

some of the possible future works are discussed.

29

Chapter 2

EFFICIENCY OF BITTORRENT-LIKE P2P

LIVE STREAMING IN PEERS WITH NON-

PRIORITIZED AND LIMITED SIZE BUFFERS

2.1 MOTIVATION

As we explained in chapter one, in P2P BitTorrent-like live streaming systems, a certain

file/data would be divided into many small little pieces, where the size of each piece

could vary from a few hundred kilobytes up to some megabytes. A little while after the

arrival of a new peer (viewer) into that network, it starts interacting with other peers in

the network and the downloading (viewing) procedure begins. As discussed in chapter

one, in a well designed P2P application, when the number of peers increase, the network

gets larger. Surprisingly, the performance of the system would be degraded and

30

sometimes it even can get better; because every single peer in these kinds of networks

collaborates simultaneously both as a downloader (viewer) and as a uploader (server).

Therefore, if resources of such these P2P networks are used efficiently, then they will

have very impressive performances. A handful number of researches have been done in

this field. For example, we consider the number of pieces that a given peer has at any

point of time, could be counted as one of the most important factors that have an effect on

the upload utilization. For instance, we consider a case when a peer would just join the

network. At the beginning of its arrival, it has no piece and as a result, it cannot be able to

upload any pieces. Therefore, its upload utilization would be equal to zero. On the other

hand, the more number of pieces that a peer could have at any point of time, with higher

probability it can upload its pieces to other peers and the higher upload utilization it can

have.

Although P2P live streaming and P2P file sharing applications have almost the same

principles and infrastructure, they also have some considerable differences that would be

listed in the following:

? Content size (file size) in P2P live streaming is unknown

> Unlike to P2P file sharing systems, the content size is not known in advance.

When we talk about sharing a static file (media or data), we already know all the

information about the file size; however, when it comes to a live streaming

content, like a live soccer match, we cannot find its size. (Because it is still

running and who knows when exactly that would be done?!)

31

? Unlike P2P file sharing models, contents (data/media) is stored in the buffer

temporarily, where normally the buffer size is limited and it is much shorter in

size compared to the total length of the content(s), of a peer instead of getting

stored on the hard disk.

> In a P2P live streaming application, content (data or media) would be stored on a

very fixed and limited buffer, a memory area, instead of getting stored on hard

disk. When the buffer size is finite, it means that a random peer not only cannot

be able to receive much older pieces (because it does not need them anymore) but

also cannot receive too new (fresh) pieces as well (because the buffer size is

limited and the peer is looking only for just closer pieces).

? P2P live streaming is very time sensitive

> Because the buffer size in P2P live streaming systems is fixed and has a very

limited size, data/media-file should be delivered to it before the playback time.

As already mentioned, in this work we would consider P2P live streaming system with a

limited size buffer. We propose a stochastic model to study the peer distribution

regarding to the number of pieces that a peer could have at any point in time.

We define {P¿} as the probability that a random peer has i useful pieces, where 0 < i <

L and L is the size of the buffer. We also assume that all the peers in the network have the

same buffer size.

32

2.2 STOCASTIC MODEL

2.2.1 MODEL ASSUMPTIONS

In this section, our assumptions for the stochastic model, which we proposed, will be

described:

? Total number of Pieces in the network iV

> As mentioned earlier, in BitTorrent-like P2P applications, a random file will be

divided into several small pieces. Here, we assume that the total number of the

pieces of a specific media stream/data is N pieces.

? Peer distribution P¿

> Peer distribution Pj, is the probability that a random peer in the network has i

useful pieces in its buffer of size L when it is in steady state, where O < i < L.

? ßi

> In our analysis, µ? would be described as the probability that a randomly selected

peer in the network, which has i useful pieces in its buffer in a specific time slot,

would be able to play a piece in this time slot.

? Useful pieces

> As we already discussed, any random peer in the network has a limited buffer

size. Here, a useful piece for a random peer will be defined as a piece which that

peer has already downloaded it but has not played it out yet.

33

? Number of neighbours (H)

> When a random peer joins to a network, as we already described about the

BitTorrent-like P2P models, the first thing that it does is getting the peers' list

from the tracker; These peers would be defined as its neighbours.

In our analysis, we assume that the number of neighbours of each peer is same

(with size H).

? Download and upload bandwidth:

> For simplicity of our analysis, I assumed that the download bandwidths of all the

peers in the network will be assumed to be unlimited and all the peers have the

same upload bandwidth in that network. In order to be able to have a smooth play

on every peer's side, it is also important to assume that the upload rates of the

peers are greater or equal to the bit rate of the specific streamed media which is

going to be streamed in the network.

? Source play time (ts)

> In a P2P live streaming, as we already discussed, there are one or more sources

which broadcast live streamed media content(s). We define ts as the play time of

that streamed media which is broadcasting.

? Maximum delay (T)

> It would be define as the maximum possible time difference between the play

time of the source and the play time a peer. Based on our assumption, we will

have ts + 1 < tpiaytime0f arandompeer in the network — ^s + T an(* T^-U where

34

the playtime of any randomly picked peer in the network is uniformly distributed

in this interval.

Playback pointer:

At any point in time, a randomly picked peer in the network with the buffer size L has

a playback pointer on its buffer that indicates which piece has to be played at that

time slot. The time that the playback pointer indicates at any point of time is called

the play time for that peer at that time slot and it will be shown with tA.

As an example, a randomly picked peer (e.g. Peer A), with buffer size L=IO and the

playtime tA = \5, has been shown in the following Figure 2.1.

Playback pointer

12 13 14 15 16 17 18 19 20 21

Figure 2.1 : Peer A with buffer size L=I 0 and playtime of tA= 1 5

? Playing time duration of a piece

> In the analysis we assumed that the fastest time that would be possible for a peer

to play a piece in its buffer is equal to one time slot. In other words, a randomly
35

picked peer can play one piece at most during a slot time. For example, in the best

situation, if a peer has a piece in its buffer and that piece is ready to be played at

that time (it is the playtime of that piece), at the beginning of a time slot, then it

will take one time slot of its time to play that piece.

Steady State

Based on the studies and the verified measurements that have been done, any

BitTorrent-like P2P file sharing/streaming network has three stages, namely, growing

stage, stabilizing stage (steady state) and decaying stage. The stabilizing phase is the

stage in which most of downloads occur and due to this fact, the performance of the

system can be established solely based on this stage.

In our model, the steady state would be satisfied under the condition that N — L >

ts > L, when N is much greater than L (N»L).

Number of peers in the network (M)

> We assume that we the network is in the steady state, and the total number of

peers in the network is equal to M, where M > H.

Piece distribution

In P2P live streaming models, every single peer (viewer) has a limited buffer size (L)

to store the data temporarily in it. For example, for a random peer like peer A with

buffer size L and play time tA, if we assume that at a specific time it has i useful

pieces, where 0<i<L, then at this time, it is looking for (L-i) other pieces to download.

As we already expressed, because all peers have limited buffer sizes, they only look

for those pieces which are very close to their playtimes. It means that they cannot

36

hold old pieces for a long time in their buffers (because they want to replace them

with new pieces that they would be interested in) and they also are not interested in

too fresh (new) pieces to download, because they reserve the available spaces for

those new pieces which are closer.

Before we start explaining how what happens inside a randomly peer's buffer, we first

need to describe some terms, which are useful pieces, old pieces, new pieces, too new

pieces and too old pieces, in brief:

? Useful piece:

> A useful piece in a random peer's buffer would be described as a piece which has

not been played yet by that peer.

? Old piece:

> An old piece in a randomly picked peer would be described as a piece that has

been already played by that peer but has not been replaced (rewritten) by a new

piece yet.

? New piece:

> A new piece would be described as a piece that a random peer is interested in

downloading that piece, which means that peer has at least one old piece in its

buffer to replace that with the new piece, but has not downloaded it yet.

? Too new piece:

> Too new piece is a piece that a randomly picked peer is not interested in it

currently, but it would be interested in future.

? Too old piece:
37

> Too old piece is a piece which a randomly picked peer has already played it and

probably is not interested in it anymore.

As we mentioned earlier, every single peer in this P2P live streaming model that we

proposed, has a limited size buffer, where it is much smaller than the total number of

pieces of a specific streamed media. Therefore, when a useful piece in a randomly picked

peer in that network plays, it would become an old piece and afterwards, that peer would

be able to send a request for a new specific piece to its neighbours. Afterwards, if its

request gets approved, then it will substitute the new piece with that old one in its buffer.

In order to understand the above, let us explain it intuitively with an example:

As we see, each peer has two pointers, namely, write pointer and playback pointer which

track the playback process and write process correspondingly. In order to have playback

continuity, the write pointer should always be ahead of the playback pointer. At whatever

time that the latter gets to the former, the playback must be stopped till the write pointer

leads the playback pointer to some extent. This process is called the rebuffering process.

It is also important to mention that once the playback pointer of a randomly picked peer

catches the end of its buffer, it has to roll back to the beginning of it in order to be able to

play next useful pieces which have been already downloaded and stored in the buffer.

To better understand the processes that occurs in the following buffer of a randomly

picked peer (e.g. peer A), we will provide an example, first, we assume that peer A with

the buffer size 1=10 has initially 10 useful pieces (? =10), pieces #12 - #21, in its buffer.

Hence, the playback pointer is at the beginning of its buffer and the write pointer is

38

located at the end of its buffer as we see in Figure 2.2. Note that the green color

represents the useful piece(s) and the red color shows the old piece(s) in the buffer.

Playback pointer Write pointer

12 M 14 15 1(> 17 18 lu

Figure 2.2: Peer A with buffer size Z=IO when there are 1 0 useful pieces in its buffer

(Pieces #12- #21)

At this time, the write pointer will be frozen until the playback point goes forward

(peer A starts watching the streamed media). As it is shown in Figure 2.3, a few time

slots after that, then there would be some old pieces in the buffer and now peer A can

look for some new pieces of its interest in its neighbours, send requests to the desired

ones, and if the neighbours approve them, download them simultaneously, the write

pointer moves forward (in this condition it will roll back to the beginning of the

buffer) and replace the old pieces with those which is getting downloaded in its

buffer. This procedure will be continued till the streamed media gets done.

39

Write pointer Playback pointer

¦m au 24 \ Ai 16 ¦ iy ? 2d

Figure 2.3: Peer A with buffer size Z=IO when some of its pieces old pieces (pieces

#12 ~ #14 that have been already played) have been replaced (overwritten) by #22 ~

#24 (new) pieces.

2.2.2 MODEL ANALYSIS

Before proposing the model, it is better to explain one more aspect regarding to the

mechanisms which happen in a randomly picked peer in the network. Primarily, it is

better to understand how a randomly picked peer in a network (e.g. peer A) with buffer

size L (L>1), i useful pieces (0<i<L) and playtime tA, will look for next piece(s) to
download?

When peer A has / useful pieces in his buffer at a specific time slot when it is in the

steady state condition, it looks for (L-i) pieces to download in that time slot. How it

would choose its pieces is an important parameter which affects its efficiency. In our

analysis, we divide a peer's buffer into two sections. The first section is called real buffer
and the second one is called virtual buffer. The real buffer consists of two parts, namely,

useful part and old part. Useful part has those useful pieces (/ pieces) which peer A has in

its buffer and old part involves pieces ((L-i) pieces) that have been already played by peer

A and they still exist in its buffer (old pieces).

The virtual buffer does not exist in reality. At any time slot, we only imagine that there

exists a virtual buffer with size L where it begins with the playtime piece and it consists

of i useful pieces in the buffer, where (L-i) slots in that buffer are empty. Based on our

assumptions, at the beginning of any time slot, at first, that peer will take a look at its
virtual buffer to make a list of

missing ones to its neighbours.

issiEg pieces. Atte:

For example, we assume that there is a randomly picked peer (e.g. peer A) with buffer

size L=IO in the network that at a beginning of a specific time slot, it has also four useful

pieces (z'=4) in its buffer which are pieces #18 ~ #21 and its play time is ^=18 as it is

shown in Figure 2.4. Based on our assumptions, we see that there exists L-i = 6 old pieces
in the real buffer.

I? W 14

Playback pointer

¦?5? Î6 17 18

Write pointer

19 20 21

Figure 2.4: Real buffer (when Peer A with buffer size Z=IO has four useful pieces

(pieces #18 ~ #21) its playtime is tA=lS at a specific time slot.)

Now we can consider our virtual buffer, where it starts with the playback piece number

(tA), has a length size ofL (here we assume that L=IO) and has i (here we assume that

i'=4) useful pieces and its buffer where (L-i) other slots of its buffer are left empty, as we

see in Figure 2.5. We define green, red and purple blocks representing those slots which

contain useful pieces, old pieces (those pieces that have been already played and still

exist in the buffer) and those pieces which are scheduled to be downloaded in that

specific time slot, which have not been downloaded yet, respectively.

Playback pointer

21 7?

1I"'". · .

23 24 - I; "25' "»6 27

Pieces that are scheduled to be downloaded at a specific time slot by peer A

Figure 2.5: Virtual buffer (when Peer A with buffer size Z=IO has four useful pieces

(pieces #1 8 ~ #21) its playtime is ^=18 at a specific time slot.)

42

So, if we merge the real buffer and the virtual buffer together, as it is shown in Figure 2.6

for peer A, we can have a better perception about the events that take place at any time

slot inside any randomly picked peer in the network.

Virtual buffer

12 P H 15 I îft 17 IS IV 2d 21 22 2 * 24 25 26 27

Real buffer

Figure 2.6: An insight into the peer A's buffer, when its buffer is the product ofmerging

its real and virtual buffers together.

With the assumption and explanations that have been described, the stochastic model can

be shown as Figure 2.7.

At any time slot, a randomly picked peer that has a fixed and limited buffer length of size

L, will be in one of those (L+J) states, which have been shown in Figure 2.7. The value

which is written in each of the above states (circles) indicates the number of useful pieces

that exist in the buffer ofthat peer at that time slot. In other words, it is obvious that a

peer with buffer size L would have zero piece, one piece, two pieces,. . .,up to L pieces at

43

most in its buffer at any time slot and hence, it would be fitted in one of the above L

states.

L·-!i-k i-11O ?

'0.0 n.o n.Qn.o

µ? Mi Vl

Figure 2.7: A discrete-time stochastic model for a BitTorrent-like P2P live streaming
system when peers have limited buffer length of size L

In BitTorrent-like systems, whenever a peer receives a piece or some pieces, it will

update its recent information with its neighbours. Likewise, whenever its neighbours

obtain pieces, they will also inform it with their latest information about pieces that they

have.

In our BitTorrent-like P2P live streaming model, at the beginning of any time slot, a

randomly picked peer in that network will send requests for those pieces of its interest to

those neighbours which have those ones. And because any peer in these networks acts

simultaneously both as a client (downloader) and a server (uploader), therefore that peer

would probably receive one or some requests from its neighbours too.
44

If that peer receives more than one request at any time slot, it will approve one of the

requests, fulfills that request, and rejects the other ones. How and based on what

condition(s) that peer will choose one of these requests and refuse the rest of them is out

of scope of this work and could be a part of the future work. In a nutshell, we would just

mention that this decision would be made by a built-in incentive mechanism designed in

BitTorrent-like P2P applications.

In the next step, we continue our work by analyzing the interactions of two peers, which

are neighbours. We assume that peer A has i useful pieces and peer B hasy useful pieces

in their buffers at a random time slot.

We define F(i,j) as the probability that peer A with / useful pieces in its buffer would not

be interested in peer B, when it hasy useful pieces in its buffer. It is obvious that peer A

would not be interested in peer B's pieces. If peer A contains all the pieces that peer B

has in its own buffer at that time.

In order to derive F(iJ), we should consider four mutually exclusive cases depending on

the situation ofpeer B's play time (tB) to peer A's play time (tA):

Case 1- When ts + 1 < tB < tA - L

ts+T tA-L

?= S S F (?:
tA=ts + l tB = ts+l

45

Case 2- When tA - L + 1 < tB < tA

ts+T tA

P2
Min(L-(tA-tB),ï) ,L_tj4_tß>. nA-tB\ (tA-tB+x\i-S S S (- }^)(' }(^>t^=^+! t^MaxCts+l.t^-L+l) x=Aíin (tyj-tg.í)

Case 3- When t,, + 1 < tß< t¿ + 2L -;' - 1

ts+7 Min(tA+2L-j-l,ts+T) Min(L-(tB-tA),i-Min(tB-tAlL-j)) tg_t ,L_tA_tg^S ^1 X^ v i-x) y ?)
tA=ts+l tB=Min(ts+T,tA+î) x=i-Min{tA-tB,i) ViJ \jj

(tB-tA+x\ # / tB-tA-x \\ j J \i-x-Min(tB-tA,L-j)J f l ? nì: (tB-tA\ Vj2) \ä)V i-x /

Case 4- When tA + 2L-j<tB<ts + T

ts+T ts+T

Pi
tA = ts+l tB = tA + 2L-j

?= S S F (4)

Therefore, F(Uj) can be expressed as follows:

F(ij) = P[+ P¡+ P¡+ Pi (5)

46

At any given time slot, if peer B has a pieces (or some pieces) that peer A is interested in,

peer A will send a request to peer B. In this work, we assume that any random peer in a

network has H neighbours, and it is a constant. We also assume that at any time slot if

any randomly picked peer (e.g. peer B) receives more than one request, only one of them

will be fulfilled by peer B randomly.

Based on the infrastructures which have been designed in P2P file sharing BitTottent-like

systems, when a randomly picked peer in the network has i pieces, then the maximum

number of requests which can be sent by that peer to its neighbours is equal to d, where

d=min (H,(L-i)) and H is the number of neighbours which that peer has and L is the

length of the buffer.

In this work, that our model is a P2P live streaming BitTorrent-like system with the

limited buffer length of size L. When a randomly selected peer in the network has i useful

pieces at a specific time slot, then the maximum number of requests that can be sent by

that peer to its neighbours would be d=min(H,(L-i)) requests, where (L-i) is number of

pieces which that peer wants to download at that specific time slot.

We also need to find t/¿, as the probability that a randomly selected peer which has i

useful pieces in a specific time slot in its buffer in the network (e.g. peer A), would be

interested in having a piece from one of its randomly selected neighbours. Therefore, it

can be expressed by the following equation:

L

Ui=^(I-FHJ))* Pj (6)
47

In the next step, we need to find the probability that a randomly selected peer in the

network (e.g. peer A) sends k requests to its neighbours.

We define F(H,i',k), as the probability that a randomly selected peer which has i useful

pieces ,in a specific time slot, in its buffer and it is looking for V , where i'=L-i, pieces in

that time slot, sends k requests to its neighbours. It is obvious that 0<k< min (V, H).

Where F(m,V,k) is a recursive function and it can be calculated by using the following

equation (7), as follows:

F(m,i',k)=Ui*F(m-l,i'-l,k-l)+(l-U{)*F(m,i',k), (7)

Where H> m >0, i=0, 1, ... , L and V=O, ..., L-i and k=0, ..., min(m,i')·

Using equation (7) and the initial conditions, which are shown as follows, will lead us to

getto F(H,V,k).

\-F(m,V,k) =1 ; m=0 , k=0 , i=0, 1, ..., L and V=O, ... , min(m, i').

2-F(m,V,k)=0 ; H>m>l , i=0, 1, ..., L, V=O, ... , min(m, i') and V*k=0.

It can be seen that we can derive F(H, V , K) by solving the following H equations, as they

are shown in below :

Equation I)F(O, i ',k) = 0

Equation 2) F(I, V, k) = U1 * F(O, V-l,k-l) + (l- U1) * (1-F(O, V, k))

Equation 3) F(2, V, k) = Ut * F(I, V - 1, k - 1) + (1 - U1) * (F(I, V, k))

48

Equation H-I) F(H-I, V1 Ic) = U1* F(H-2, V - 1, k - 1) + (1 - U1) * F(H-2, V, k)

Equation H) F(H, V, k) = U1 * F(H-I, V - 1, k - 1) + (1 - í/¿) * Ff/f-i, V, k) (8)

Next, we define K1I, as the average number of requests that a randomly picked peer,

which has / useful pieces and is looking for V = (L - i) pieces in a specific time slot,

will send to its neighbours. And it can be derived by calculating the expected value of

F(H, V, k), as shown below:

TQ= Expected-value [F(H, V, k)] = S^??''^ k * F(H> V· k)> (9)

Where /=0, 1, 2, ... , L , V=O, ... , L-i and k=0, ... , min(H, i')-

At any given time slot, we define k, as the average number of requests that any randomly

picked peer sends to its neighbours at any given time slot; and it can be expressed by,

L

k = ^V*'* K^i) (10)
¿'=o

We also define X, as the average number of requests that a randomly selected peer (e.g.

peer B) receives from its neighbours besides peer A' s request, as it s shown as below:
49

X = íüzlL± (il)

Now, we introduce Q, as the probability that a randomly selected peer (e.g. peer B) fulfils

a specific request (e.g. peer A' s request) among all the requests that it has received. And

it can be expressed as follows:

Q = -^ (12)^ l+X

Where /=0, 1, ... , L and ¿'=0, ... , L-i.

Next, we define rin, as the probability that a peer, which has i useful pieces at a given

time slot, downloads ? pieces in this time slot. Again, as we discussed earlier, the

maximum number of requests that can be sent by this peer will be d=min(L-i,H).

It is also obvious that the number of pieces which can be downloaded by this peer at any

given time slot is a Binomial random variable with parameters k and Q. And it can be

expressed as follows:

d

?,? = J] (f(H,L- i,k) * (J * (QT * (1 - Q)k~n). (13)
k=n

Where i=0, ... , L, V=Q, ... , L-i , d=min(H, i') and n=0, ... ,d.

In our analysis, we assume that in a specific time slot, in a randomly picked peer's buffer

in the network, desired pieces, which are scheduled to be downloaded in this time slot,

gets downloaded and stored in the buffer by that peer is uniformly distributed.

50

As we have discussed before, µ^ the probability that a randomly picked peer in the

network with the buffer length of size L and i useful pieces, which are uniformly

distributed, in its buffer in a specific time slot, can play a piece in this time slot, would be

expressed as follows:

µ,-? <")

Where / = 0, 1,... ,L.

As we know, since the system is in the steady state, the peer distribution does not change

during time. Therefore, based on the Figure 2.7, we will have the following equation:

(µ?+? * Pi+i) + I 2, (?-fcJk * Pi-k))-[S(?* * ^) I " (ft * ?) = 0, (15)
Where /=0, 1, ... , L and (S?=? pi) = *¦·

Solving the Eq. (15) will lead us to obtain the peer distribution {P¿}, where i =

0,1, .-?.

Although it is very complicated to find a closed form for the peer distribution, it can be

seen that it is numerically solvable.

Then, we define Pcontinuity as me probability that a randomly picked peer in the network
that is watching or listening to a certain live streaming content in a specific time slot,

would be able to play its desired piece at this time slot. It can be expressed as follows:

51

* Continuity

U

= ^P¿*M¿ (16)
I=O

We define d¿, as the average download rate of a peer that has i useful pieces in its buffer

of size L in a specific time slot. It can be shown as follows:

Min(H,h-i\

k=0
(= X (?*?? (17)

Where i=0, 1,... ,L.

2.3 NUMERICAL RESULTS

In this section, we show how different parameters such as number of neighbours (H),

delay time (T) and buffer length (L), can affect the system performance (which is the

probability of continuity (Pcontinuity)) an^ tne download rate (dÉ), where i is the number

of useful pieces that a randomly picked peer in the network has in its buffer in a given

time slot, 0 < i < L).

? The Effect of buffer length

In this part, we do the numerical results under the following assumptions:

S N=IOOO

In the numerical results, our streaming media has 1000 pieces in total.

52

V 2 < L < 20

As we already explained, when peers are in the steady state, the length of the

buffer is much smaller compared to the size of N (N»L). Here we do our

numerical results for different values for L, between 1 and 20.

• i7=40

Each peer has forty neighbours.

Here, we will consider the effect of the buffer length (L) on the probability of continuity

(^continuity) an<^ me download rate (d¿), as they are shown in below:

? The effect of the buffer length on the probability of continuity

("Continuity/

As we already said, we did our numerical results for different values of L between 2 and

20 in different values for T, T=I, 5, 10, 15 and 20.

As we see in the Figure 2.8, in order to get to an almost satisfying value for

the Pcontinuity tne size °f me buffer (L) should have a size of at least 4 or greater.
Although increasing the buffer length can be helpful, it is found out that if the size of the

buffer gets increased more than a certain amount, the performance of the system drops.

For example, if we consider one of following cases above, when the delay time T=20, we

can see when L=2, probability of continuity is equal to 66.27% (Pcontinuity = 66.27%)

and by increasing the buffer size to L=I, probability of continuity gets to 79.46%

(Pcontinuity = 79.46%). However, if the buffer size gets larger the performance of the

53

system gets worse; where as we see, when L=20, probability of continuity drops very

significantly and gets to the value of 56.72% (Pcontinuity — 56.72%), which is very

unpleasant.

Ê- 0.75

0.7Jf .""

-F— T= 1
H T=5
¦¦*¦ T=10
? T= 15

--T— T=20

10 12 14
Buffer length (L)=2~20

20

Figure 2.8: The effect of the buffer length on the probability of continuity

(Pcontinuity), where 20 > L > 2 and T=I, 5, 10, 15 and 20.

? The Effect of Delay time

In this part, we do the numerical results under the following assumptions:

54

S N=IOOO

In the numerical results, our streaming media has 1000 pieces in total.

y 1<G<20

Here we do our numerical results for different values for T, between 1 and 20.

• #=40

Each peer has forty neighbours.

Here, we will consider the effect of the delay time (T) on the probability of continuity

(Pcontinuity) and the download rate (d¿) .

Therefore, we divide our numerical results in this part into three main categories, which

are expressed in below:

? The effect of delay time on the probability of continuity (Pcontinuity)

We divide our numerical results in this part into five categories, as they are expressed in

below:

As we already described, we did our numerical results for different values of T between 1

and 20 in different values for L, where L=I, 5, 10, 15 and 20. By taking a look at the

Figure 2.9, we find out that there exists a relation between the size of the buffer (L) and

the delay time (T); we see, in most of the cases, when some delay time (T) gets added to

the system, the performance of the system gets increased. However, if the amount of

delay time gets more than sufficient, the performance of the system drops.

55

0.9

0.85 h

0.8

-£ 0.75

d
Sf 0.7

0.65

0.6

0.55

</
'-il·-

F a- é

;¡c ? ¦ ,y ? X ¦ · . ¦ ? ? - · x x
9 « « ¦ - - » » « ¦ - 9 ¦ a ¦ ß 9 a

8 10 12
Delay time (T)= 1-20

* L= 10
L=15

L=20

X

7<- " ~f -f-

14 16 18 20

Figure 2.9: The effect of the delay time on the probability of continuity (PC0ntinuity),

where 20 > T > 1 and L=2, 5, 10, 15 and 20.

As an example, if we consider one of the following case in Figure 2.9 for the case that

L=5, we see that the probability of continuity is around 60% (PContinuity Ä 60%), where

1<G<6. It also can be seen that for the delay time (T), between 7 and 12, the higher

amount of T brings the higher probability of continuity for a peer, when at 7M2, the

probability of continuity will be around 80% (PContinuity Ä 80%). However, it can be

seen when T goes beyond 12, the larger G results in the lower probability of continuity.
56

? The effect of delay time and the buffer length on the download
rate (df)

We divide our numerical results in this part into five categories, as they are expressed in
below:

• The effect of the delay time and the buffer length on the download rate (d£),
when 20 > L > 2 and T = 1

Buffer length (L)

Number of useful pieces (i)

Figure 2.10: The effect of the delay time and the buffer length on the download
rate (d¿), where 20 > L > 2 and T = 1.

57

• The effect of the delay time on the download rate (df), when 20 > L > 2 and

T=5

5 Buffer length (L)

Number of useful pieces (i)

Figure 2.11: The effect of the delay time and the buffer length on the download

rate (d¿), where 20 > L > 2 and 7 = 5.

• The effect of the delay time on the download rate (d,·), when 20 > L > 2 and

T= 10

M

3.5

3-

2.5

2

1.5

1 ·

0.5

0
20

15

10

Buffer length (L)

2.5

1.5

?-??

10.5

20

Number of useful pieces (¡) 0 o

Figure 2.12: The effect of the delay time and the buffer length on the download

rate (d¿), where 20 > L > 2 and T = 10.

59

• The effect of the delay time on the download rate (d{), when 20 > L > 2 and

T = 15

5 Buffer length (L)

Number of useful pieces (i)

Figure 2.13: The effect of the delay time and the buffer length on the download

rate (d¿), where 20 > L > 2 and T = 15.

60

• The effect of the delay time on the download rate (d¿), when 20 > L > 2 and

T= 20

-;- 3

Number of useful pieces (i) 0 0 Buffer length (L)

Figure 2.14: The effect of the delay time and the buffer length on the download

rate (d¿), where 20 > L > 2 and T = 20.

As we see in Figures, Figures 2.10, 2.1 1, 2.12, 2.13 and 2.14, for small values for i,

we will have the highest download rates. When the delay time (T) gets increased in

the system, the download rate will be increased. However, it does not necessarily

mean that the probability of continuity for our system also gets increased. When the

delay time increases in the system, peers play-times will me more diverse. This

means that the probability that any given two neighbour peers could have more
61

different pieces compared to each other and hence, they will upload more to each

other and their download rates gets increased.

? The effect of the buffer length and the delay time on the probability

Of Continuity (Pcontinuity)

And finally, if we want to see the Pcontinuity versus the buffer length (L) and the delay

time (T) all together, where H = 40, 20 > L > 2 and 20 > T > 1, it can be shown as

follows:

Q- 0.3

Buffer length (L) 0 0
Delay time (T)

Figure 2.15: The effect of the delay time and the buffer length on the probability

of continuity (Pcontinuity), where H = 40,20 > L > 2 and 20 > T > 1.

62

? The effect of neighbour number on the probability of continuity

("Continuity/

In this case, we do the numerical results for some random cases (three cases) as an

example, to see how the number of neighbours could affect the probability of continuity

('Continuity/·

• The effect of neighbour number on the probability of continuity (Pcontinuity)'

when L = 4 and T = 10 and 180 > H > 10

0.95

0.85

-S 0.8

0.75

0.65

20 40 60 80 100 120
Number of neighbours (H)

180

Figure 2.16: The effect of neighbour number on the probability of continuity

(Pcontinuity). where L = 4,T = 10 and 180 > H > 10.
63

• The effect of neighbour number on the probability of continuity (Pcontinuity) >

when L = 6 and T = 15 and 180 > H > 10

0.95 h

0.85

~ 0.8

0.75

0.65

20 40 60 80 100 120
Number of neighbours (H)

180

Figure 2.17: The effect of neighbour number on the probability of continuity

(Pcontinuity), where L = ß,? = 15 and 180 > H > 10.

64

The effect of neighbour number on the probability of continuity (Pcontinuity)'

when L = 7 and T = 20 and 180 > H > 10

20 40 60 80 100 120
Number of neighbours (H)

140 160

Figure 2.18: The effect of neighbour number on the probability of continuity

(Pcontinuity). where L = 7, T = 20 and 180 > H > 10.

As we see, in Figures 2.16, 2.17 and 2.18, when the number of neighbours is too small,

the probability that a peer uploads to its neighbours is small and because of that, the

performance of the systems (probability of continuity) is very low. When the number of

neighbours gets increased, the probability of continuity (performance of the system) will

be increased. However, when the number of neighbours gets more than certain values,
65

because the more number of neighbours causes the more competition among peers for

downloading their desired pieces, the performance of the system will not be changed

significantly.

2.4 CONCLUSION

In this chapter, we proposed a stochastic model for the BitTorrent-like P2P live streaming

protocols, with limited size buffer. We have analyzed the efficiency of such these

systems, by solving them numerically, and could be able to get some significant insights

regarding to the effect of different parameters of the system on its performance.

66

Chapter 3

EFFICIENCY OF BITTORRENT-LIKE P2P

LIVE STREAMING SYSTEMS WITH PEERS

WHICH HAVE LIMITED SIZE BUFFERS AND

HIGH PRIORITIES ONLY IN THEIR FIRST

SLOTS

3.1 MOTIVATION

As we already discussed before, we know that the P2P BitTorrent-like live streaming

systems are time sensitive comparing to the BitTorrent-like file-sharing systems. By

doing numerical results on the previous model that have been proposed in the last

chapter, we come to the conclusion that employing a pure file-sharing BitTorrent-like
67

model would not be able to satisfy those requirements which are needed in a live-

streaming context solely. These numerical results tell us that the probability of

discontinuity is generally high in such these systems and as a result, their efficiencies are

lower than what a peer (user) is looking for in such these systems and it is not satisfactory

most of the times. This will lead us to this conclusion that in order to achieve higher

efficiency and better performance in these systems, we need to apply some modifications

and changes to the structure of BitTorrent-like P2P file sharing systems and make them

function better in supporting content delivery with time constrains.

3.2 STOCASTIC MODEL

3.2.1 MODEL ASSUMPTIONS

In this section, our assumptions for the stochastic model will be described as follows:

? Total number of Pieces in the network (N)

> As we said earlier, in BitTorrent-like P2P applications, a random file will be

divided into several small pieces. Here, we assume that the total number of the

pieces of a specific media stream/data is N pieces.

? Peer distribution P^1 ,·2)

68

> In this model, we put the high priority on the first slot of a randomly selected

peer's buffer in the network and a non-prioritized priority on the rest of its slots

on that buffer. Peer distribution P^1 ¿2), is the probability that a randomly picked

peer, which has a buffer with size L, in the network has ^useful piece in the first

slot of its buffer, where 0<ix<l, and i2 useful pieces in the remaining slots in the

buffer, where 0<i2<(L-l).

? Useful pieces

> As we already discussed, any random peer in the network has a limited buffer

size. Here, a useful piece for a random peer will be defined as a piece which that

peer has already downloaded it but has not played it yet.

? Number of neighbours (H)

> When a random peer joins to a network, as we already described about the

BitTorrent-like P2P models, the first thing that does is getting the peers' list from

the tracker. These peers would be defined as its neighbours.

In our analysis, we assume that the number of neighbours that a peers has is the

same (with size H).

? Download and upload bandwidth:

> For the simplicity of the analysis, assuming that the download bandwidths of all

the peers in the network are unlimited and all the peers have the same upload

bandwidth in that network. In order to be able to have a smooth play on every

peer's side, it is also important to assume that the upload rates of the peers are

69

greater or equal to the bit rate of the specific streamed media which is going to be
streamed in that network.

? Play time of the source (ts)

> In a P2P live streaming, as we already discussed, there are one or more sources

which broadcast live streamed media content(s). We define ts as the play time of

that streamed media which is broadcasting.

? Maximum delay (T)

> When peers in the network want to receive a piece or some pieces from the

source(s), the transmission(s) will be happened with some delay (equal to T).

Assuming that any randomly picked peer's play time is always between the

transmission time (ts) and the transmission time plus the propagation delay time,

where ts + 1 < tpiaynme 0f a random peer in the network— ^s+'-* an(^ * — '¦

? Playback pointer:

At any point of time, a randomly picked peer in the network with the buffer size L has

a playback pointer on its buffer that indicates which piece has to be played at that

time slot. The time that the playback pointer indicates at any point of time is called

the play time for that peer at that time slot and that slot will be shown with tA.

For example, a randomly picked peer, called Peer A, with buffer size Z=IO with the

playtime tA=\S has been shown in the following Figure 3.1.

70

Playback pointer

12 13 14 15 16 17 18 19 20 21

Figure 3.1 : Peer A with buffer size ¿=10 and playtime of tA= 1 8

Write pointers

In this proposed model, at any point of time, a randomly picked peer in the network

with the buffer size L and the playback pointer tA has two write pointers. The first

write pointer depending on the availability of the piece in the first slot ofthat peer's

buffer has different responsibilities and the responsibility of the second write pointer

depends on how the first write pointer acts at any given time slot. How each of these

write pointers works will be discussed further.

Playing time duration of a piece

> The fastest time that would be possible for a peer to play a piece in its buffer is

equal to one time slot. In other words, a randomly picked peer can play one piece

at most during any slot time. For example, in the best situation if a peer has a

piece in its buffer and that piece is ready to be played at that time (it is the

71

playtime piece), at the beginning of a time slot, then it will take one time slot of

its time to play that piece.

Steady State

Based on the studies and the real measurements that have been done, any BitTorrent-

like P2P file sharing/streaming network has three stages, namely, growing stage,

stabilizing stage (steady state) and decaying stage.

The stabilizing phase mostly is the stage in which most of downloads occur and due

to this fact, the performance of the system can be established solely based on this

stage.

In our model, the steady state would be satisfied under the condition that (N — L) >

ts > L, when N is much greater than L (N»L).

Piece distribution

In P2P live streaming models, every single peer (viewer) has a limited buffer size (L)

to store the data temporarily on it. For example, for a random peer like peer A with

buffer size L and play time tA, if we assume that at a specific time it has I1 useful

pieces in its first slot, where 0<it<l, and i2 useful pieces in the remaining (L-I) slots,

where 0<i2<(L-l), then at this time, it is looking for 7-I1 piece in its first slot and (L-

l-i2) useful pieces in its next (L-I) slots.

As been denoted, because any peers have a limited buffer size, they only look for

those pieces which are very close to their playtimes. It means that they cannot hold

old pieces for a long time in their buffers (because they want to replace them with

new pieces that they would be interested in) and they also are not interested in too

72

fresh (new) pieces to download, because they reserve the available spaces for those

new pieces which are closer.

Before I start explaining what happens inside a randomly peer's buffer, we first need to

describe some terms, which are useful pieces, old pieces, new pieces, too new pieces and

too old pieces, in brief:

? Useful piece:

> A useful piece in a random peer's buffer would be described as a piece which has

not been played yet by that peer.

? Old piece:

> An old piece in a randomly picked peer would be described as a piece that has

been already played by that peer but has not been replaced (rewritten) by a new

piece yet.

? New piece:

> A new piece would be described as a piece that a random peer is interested in

downloading that piece, which means that peer has at least one old piece in its

buffer to replace that with the new piece, but it has not downloaded it yet.

?*? Too new piece:

> Too new piece is a piece that a randomly picked peer is not interested in it

currently, but it would be interested in future.

? Too old piece:

> Too old piece is a piece which a randomly picked peer has already played it

probably and is not interested in it anymore.
73

For a randomly selected peer (e.g. peer A) in a specific time slot when its playback

pointer is pointing on tA and the peer has a buffer length of size L in the network, one of

the following cases could happen:

? When peer A does not have a useful piece in its first slot (I1 = 0) and has i2

pieces in the rest of its L-I slots, where 0 < i2 < (L - 1), in this time slot.

> In this case, peer A is interested in the piece number tA to download and replace it

with the old piece, which exists in its first slot. Simultaneously, it is also looking

for (L-I-I2) pieces to download and replace them with those (L-I-I2) old pieces

that are located in its next (L-I) slots.

Therefore, in this situation, we put the high priority only on the first slot and the

first write pointer and the playback pointer are both located at the beginning of the

first slot (piece #tA).

Let's assume that a randomly picked peer (e.g. peer A), with a buffer length of

size L=IO, at a given time slot it has its playback pointer at tA = 25 and does not

have a useful piece in its first slot (¿i=0) and old piece #16 still exists in this slot)

and in the next 9 slots, there exists 4 (i2 = 4) slots which hold 4 useful pieces

(pieces #27 ~ #30) and 5 slots that hold 5 old pieces (pieces #21 ~ #25), as it can

be seen in Figure 3.2. At this time slot, it is obvious that peer A is looking for the

piece number tA = 26 to download and replace with piece #16 and at the same

time, it is also looking for pieces #31 ~ #35 to download and replace them with

pieces #21 ~ #25, as it is shown in Figure 3.3.
74

Green, red and purple blocks show those slots which contain useful pieces, old

pieces and missing pieces (those pieces that peer A is interested in them to

download at this specific time slot) respectively.

Playback pointer First write pointer Second write pointer

Figure 3.2: Peer A with buffer size Z=IO, containing old piece #16, old pieces #21

#25 and useful pieces #27 ~ #30 in its buffer, in a specific time slot.

Second write pointerPlayback pointer First write pointer

Figure 3.3: Peer A with buffer size 1=10 with 4 useful pieces (pieces #27 ~ #30) in

its buffer, when it is missing (and looking for) piece #26 and pieces #31 ~ 35 in a

spei

In this case, when there is not a useful piece in the first slot (I1 = 0), in a specific

time, we see that the first write pointer is only responsible for the first slot in the

buffer and the second write pointer is responsible for the remaining slots in that

buffer.

By taking a look at Figure 3.2, we see that in this case, at the beginning of this

time slot, the first write pointer and the playback pointer are both located at the

beginning of the first slot and the second write pointer is located at the end of the

last piece that has been downloaded and written in the buffer in the previous time

slot.

? When peer A has a useful piece in its first slot (I1 = 1), does not have a useful

piece in its next slot and has (L-2-i2) pieces in the rest of its (L-2) slots,

where 0 < i2 < (L — 2), in this time slot.

> In this case, we put the high priority only on the second slot (tA + 1) and the first

write pointer located at the beginning of the second slot and the playback pointer

is located at the beginning of the first slot (piece #tA).

As an example, let's assume that a randomly picked peer (e.g. peer A), with a

buffer length of size Z=IO, at a given time slot it has its playback pointer at piece

#tA (piece #26) and has its useful piece (piece #26) in its first slot (¿i=l) and is

missing the piece #27 (which should be in its second slot); and in its next 8 slots,

there exists 3 slots which hold 3 useful pieces (pieces #28 ~ #30) and 5 slots that

hold 5 old pieces (pieces #21 ~ #25), as it can be seen in Figure 3.4.

76

At this time slot, it is obvious that peer A is looking for the piece number

#(tA + 1) (piece #27) to download and replace with piece #16 and at the same

time, it is also looking for pieces #31 ~ #35 to download and replace them with

pieces #21 ~ #25, as it is shown in Figure 3.5. Again, Green, red and purple

blocks representing those slots which contain useful pieces, old pieces and

missing pieces (those pieces that peer A is interested in them to download at this

specific time slot) respectively.

Playback pointer

¦¦¦i2*3l lim m

Figure 3.4: Peer A with buffer size L=IO, containing old piece #17, old pieces #21 ~

#25, useful piece #26 and useful pieces #28 ~ #30 in its buffer in a specific time slot.

77

Second write pointerFirst write pointerPlayback pointer

Figure 3.5: Peer A with buffer size ¿=10 with 4 useful pieces (piece #26 and pieces

#28 ~ #30) in its buffer , when it is missing (and looking for) piece #27 and pieces

#31 ~ 35 in a specific time slot.

3.2.2 ANALYSIS OF THE MODEL

Before proposing the new model, it is better to explain those events that happen for a

randomly picked peer in the network. At first, it is better to understand how a randomly

picked peer in a network (e.g. peer A) with a buffer size L (N»L) and play time tA,

downloads its required pieces that have been scheduled to be downloaded in this time

slot.

As mentioned before, in this model, the buffer is split into two regions. The first region

(high prioritized region) has a high priority compare to the other pieces in the buffer and

it only includes one slot at any given time slot. The second region (non-prioritized

region), includes the remaining slots ((L-I) slots) in that buffer at any given time slot.
78

The first region of the buffer, includes only one slot in that buffer and depending on the

availability of a useful piece in the first slot (piece #tA) the second slot (piece #(tA + I)),

it can be region containing the first or the second slot. In other words, if in a specific time

slot, the playtime piece (piece #tA) does not exist, then the high prioritized region will be

dedicated to the first slot, and seeks for the piece #tA among the neighbours to download

it at that time slot. If in a specific time slot, the playtime piece (piece #tA) exists and the

next piece (piece #(tA + I)) does not exist, then the first region will be belonged to the

second slot, and searches for the piece #(tA + 1) to download at this time slot.

The second part of the buffer (non-prioritized region), depending on each of the above

situations that could be happened in the first region, includes the remaining (L- 1) or (L-2)

other slots in that buffer. It is obvious that in the non-prioritized region, none of the

missing pieces, which have been scheduled to be downloaded in this time slot in the

second part of the büffer, have priority over the other ones.

With the assumption and explanations that have been described, the stochastic model can

be shown as Figure 3.6, in below.

At any time slot, a randomly picked peer that has a finite buffer length of size L will be in

one of these 2L states, which has been shown in Figure 3.6.

Inside each of the above states (circles), there is a (I1, ¿2) pair, where 0 < I1 < 1 and

0 <i2< (L — 1). I1 represents the availability of the playtime piece (the piece that

should be played at that specific time slot); when I1 = 1, it means that piece is available

and when I1 = 0, it means that it does not exist in the buffer in this specific time slot.
79

G(0,0),(0,?,1)

Mo,o),(o,¡-k) rioj-k),(0,k)

«M>2) (0,lrl)(0¿)mm MM-«(»,o) (OiD

r(0,L-2),(0,0)«?,??,?

r»
?(o

o

IiI1OUl1Kk) r<i,¡-k),(i,k)

r(0,0),(l,l)

mm(1JL-2)m(U-k)(1,0) (U) r i

G(?,???,») rii,i-k),(i,0)

Figure 3.6: A discrete-time stochastic model for a BitTorrent-like P2P live streaming
system for peers that have limited buffer length of size L and there is high priority on the

first slot.

At any time slot, a randomly picked peer that has a fixed and limited buffer length of size
L will be in one of these 2L states, which has been shown in Figure 3.6.

Inside each of the above states (circles), there is a (I1, i2) pair, where 0 < I1 < 1 and

0 < ¿2 < (L - 1). I1 represents the availability of the playtime piece (the piece that

should be played at that specific time slot); when I1 = 1, it means that piece is available

and when I1 = 0, it means that it does not exist in the buffer in this specific time slot.
80

In BitTorrent-like systems, whenever a peer receives a piece or some pieces, it will

update its recent information with its neighbours and likewise, whenever its neighbours
obtain pieces, they will also inform it with their latest information about pieces that they
have.

In our proposed BitTorrent-like P2P live streaming model, at the beginning of any time

slot, a randomly picked peer in that network will send requests for those pieces of its

interest to those neighbours which have those ones. Any peer in these networks acts

simultaneously both as a client (downloader) and a server (uploader), therefore that peer

would probably receive one or some requests from its neighbours too.

If that peer receives more than one request at any time slot, it will choose (approve) one

of the requests and fulfills that request and rejects the other ones. How and based on what

condition(s) that peer will choose one of the request and refuses the rest of them is out of

scope of this work and could be a part of the future work.

In the next step, we continue our work by analyzing the interactions between two

randomly selected peer (e.g. peer A and peer B), in a specific time slot. Before that, in all

of our analyses here, we assume that all the peers in this network have fixed and limited

buffer length of size L; the play times of peer A and peer B are tA and tB respectively;

and peer A has ilA useful piece in its first slot and ¿^useful pieces in its remaining slots,
in this time slot, where 0 < iu < 1 and 0 < î2a < (L - 1). And peer B has ¿lguseful

piece in its first slot and ¿2j} = ; useful pieces in its remaining slots in this time slot, where

81

O < ilß < 1 and O < ;' < (L - 1). For this reason, it can be classified into two main
categories, as follows:

? When ilA = 0 and i2„ = i, where 0 < i < (L-I):

> In this case, the high priority region will be dedicated to the playtime piece (piece

#tA). Therefore at this time slot, peer A is looking for piece #tA with the high

priority and simultaneously, it is looking for (L-l-i) other useful pieces in its

remaining non-prioritized slots.

We define Pt , as the probability that peer A, which does not have piece #tA and

is looking for this piece in this time slot, is not interested in peer B.

In order to derive Pt , we should consider four cases depending on the situation of

Peer B's play time (tB) comparing to the position of the peer A's play time (tA):

Case 1- When ts + 1 < tB < tA - L

ts+T tA-L

tA=ts+l tB=ts+l

Case 2- When tA - L + 1 < tB < tA - 1

«-S S ¿ÎV^ïMfM^
tA=ts+l tB=min (ts+l,tA-L+l) J1 =0 J=O

82

Case 3- When tB = tA

ts+T tA L-!

p3= S S S(^)*?(0·? (3)
tA=ts+ltB=tA J=O

Case 4- When ts + T>tB>tA

ts+T ts+T L-x

? S S S (h)-«*»
KtA=ts+l tB=min(ts+T,tA+l) j=L-tB+tA+l

(ts+T ts+T L-i

S S S
tA=ts+l tB=min (ts+T,tA+i) j=L-tB+tA

fts+ r ts+T l-i

S S . S (f)·«^ (4)

Therefore, Pecari be expressed as follows:

PtA=P{ + Pi + Pi + Pl (5)

Next, we define this probability Pi-iny as tne probability that peer A, which has
i2 = i useful pieces, where 0 < i < (L-I), in its non-prioritized buffer region of

size (L-I), is not interested in peer B. We also assume that peer B has ilg useful

piece in its first slot, where 0 < ilß < 1, and i2¡¡ = ; useful pieces in the rest of its

buffer, where 0 < ;' < (L - 1).
83

In order to derive P¿_1,n, we should consider four cases depending on the

situation of Peer B' s play time (tB) comparing to the position of the next peer A' s

playtime (tA + 1):

Case 1- When ts + 1 < tB < tA - L + 1

ts+T tA-L+l

^i- S S F> (6)
tA=ts+ltB=ts+l

Case 2- When tA - L + 2 < tB < tA

Pl-H»2
/_1 ts+T min(tA,ts+T) MinCL-l-a^-tB+lXO .L_1_(t/i_tB). nA-tB\

=S S S S ' ¿);=0 tA=ts+l tB=Max(ts+l,tA-L+2~) x=i-Min (tA-tB,i) v £ J

ftA-tB+x\

(7)

84

Case 3- When tA + 1 < tB < tA + L - 1

^-V3
¡_1 ts+T min(tA+L-l,ts+T) m.in{tB-{tA+l),i-min(tB-(tA+l),L-j))

=S<S S S tìy=0 ??=?5+? ??=7??p(?5+G,??+1) y=i-min(tB-(tA+l),i)

(tB-itA+*f\ * ^-!-(tfl-ti*)^ ftß-^+y^ * AB-C^+^-mmitß-Ct^+lU-i)^V i-y-i y V y J \ j J \ i-y-l-min(tB-(tA+l),L-j) J

(?:?) *(';') * (W)

ts+r minCtyi+L-l.ts+T') min(tB-{tA+l),i-min(tB-{tA+l),L-j))
+

tA=t^+1 tB=min(tJ+T,tA+l) y=i-min(tB-(tA+l),i)
S S S (1^)
=ts+l tB=min(ts+T,tA+l) y=i-min(tB-(tA+l),i)

(tB-(tA + VÌ\ * (L-l-(tB-tA)\ (tB-tA+y\ (tB-{tA + ï)-min(tB-{tA + l),L-j)\\ i-y) \ y) \) J V i-y-min{tB-(tA+ï),L-j) J

(?:?)·(?) * (W)

ts+T t???(?,4+?-1,?5+?) TninCtB-Ct^+lXi-minCtß-Ct^+l)^-;'-!))

-S S S
t,i=ts+l tB=min(ts+T,tA+l) y=i-min(tB-{tA + l),l)

ftB-(t,,+i;A /'L-l-(tB-£^)'\ ftß-t^+y'j ^ /tB-(ti4+l)-min(tB-(ti4+l),L-;-l)>\V t-y-1 y V y J \ j J \ t-y-l-minCtB-Çt^+lU-y-l) 7

(H)-(1J1) * (W)

* P(Ij)) (8)

85

Case 4- When tB>tA + L

PL-lm .(O <

ts+T ts+T L_i i ÍL-l-tA+L-(tB-Tnin{tB-(tA+i),L-ilB-j))\
? V^ VV V i-tA+L-{tB-min{tB-{tA+ï),L-hB-j)))

tA=ts+ltB=min(tA+L,ts+T) ;'=0ilß=0 ^ i '

* (^) * WiB.ï) (9)

Therefore, PL_! caribe expressed as follows:

Pl-Hî) - Pl-I^1 + PL-i{i)'2 + PL-i(i)'3 + Pi-\^· (10)

Where 0 < i < (L - 1).

? When I1 = 1 (piece #t¿ exists in the buffer) , but piece #(tA 4- 1) is not

available in the buffer and therefore, i2ñ = i, where 0<i <(L-2):

> In this case, as we explained it earlier, the high priority region will be dedicated to

the piece #(tA + 1), Therefore at this time slot, peer A is looking for piece #(tA +

1) with the high priority and simultaneously, it is looking for (L-1-i) other useful

pieces in its remaining non-prioritized slots.

We define PtA+1 , as the probability that peer A has piece #tA and does not have

piece #(tA + 1), and therefore, it is looking for this piece in this time slot, would

not be interested in peer B.
86

In order to derive P^4+1, we should consider four cases again, depending on the

situation of Peer B's play time (ts) comparing to the position of the next peer A's

playtime^ + 1):

Case 1- When ts + 1 < tB < (tA - L + 1)

ts+T tA-L+l

p"= S S F> (11)
tA=ts+l tB = ts+l

Case 2- When tA - L + 2 < tB < tA

*-S S SS?'-^'^'?™
??=G5+1 tB=min(ts+l,tA-L+2) ilß=0 7=0

Case 3- When tß = t¿ + 1

ts+T t„+l ¿-I

*- S S S^)·"0·»
£yl = t5+ltB=tyi + l J=O

(13)

87

Case 4- When ts + T > tB > tA + 1

ts+T ts+T L-I

H S S S &)·™-?
¿A=ts+1 tB=min(ts+T,tA+2) j=L-tB+tA+2

ts+T ts+T f,-i

S S S
. tA=ts+l tB=min (ts+T,tA+2) j=L-tB+tA+l

I ts+T ts + l L-I \ \

+ S S S y*"^ a*)

Therefore, PtA+1can be expressed as follows:

PtA»=PÏ + Pi-+P3+PÏ (15)

Next, we define this probability PL_2(¿), as the probability that peer A, which has
i2 = / useful pieces, where 0 <i < (L-2), in its non-prioritized buffer region of

size L-I, is not interested in peer B. We also assume that peer B has ilfl useful

piece in its first slot, where 0 < ilß < 1, and i2g = j useful pieces in the rest of its

buffer, where 0 < j < (L - 1). In order to derive /\-2(i)> we should consider four
cases depending on the situation of Peer B's play time (tB) comparing to the

position of the next peer A' s play time (tA + 1):

88

Case 1- When ts + 1 < tB < tA - L + 2

ts+T tA-L+2

??--2(??_ Zj Zj (7*z)
tA=ts + l tB=ts+l

Case 2- When tA - L + 3 < tB < tA + 1

Pz--2co2
ts+T min(t„+l,ts+r) Mm(L-2-(t^-tB),i) "_2-(til-tB)\ ftA-tB\- S S S ('(4(t-)

itA-tB+l+x\

>i.(P(o,7) + p(i.y)).(i)

89

Case 3- When tA + 2 < tB < tA + L - 1

P/--2(i)3
l-X ts+T min(tA+L-l,ts+T) min(L-l-(tB-tA),i-min(tB-(.tA+2),L-j))

¦S<S S S (ih)
;=0 tA=ts+l tB=min(ts+T,tA+2) y=i-min(tB-(tA+2),i)

(tB-(.tA+2y\ (L-l-(.tB-tA)\ (tB-tA+y\ (tB-(tA+2)-min(tB-(.tA+2),L-j)\\ i-y-1) V y) \ j J V i-y-l-min(tB-(tA+2U-J) J

ts+T min(tA+L-l,ts+T) min(L-l-(tB-tA),i-min(tB-(.tA+2),L-j))
+

tj^ts+l tB=min(ts+T,tA+2) y=i-min(tB-(tA+2),i)
S S S (1T^i)
=ts+l tB=min(ts+T,tA+2) y=i-min(tB-(tA+2),i)

(tB-(tA+2)\ (L-l-(tB-tA)\ (tB-tA+y\ ftB-{tA+2)-min(_tB-{tA+2),L-fì\V i-y J V y y V J / V i-y-min(tB-(tA+2U-J) J

O* (Y) * (???}+2))
* (72) * ?(°'>)

ts+T miriít^+t-l.ts+r) ™??(?,-1-(??-£>4),?-tt??t?(??--(£?+2),?.-./))

+ S S S (éi)
tA=ts+l tB=min(ts+T,tA+2) y=i-min(tB-(tA+2),ï)

(tB-(tA+2)\ ÍL-l-{tB-tA)\ (tB-tA+y\ (tB-(tA + 2)-min(tB-(tA + 2),L-j-l)\\ i-y-l J V y y \ j J \ i-y-l-min(tB-(tA+2),L-j-l) J
o* er) * (".^*)

* P(Ij)) (18)

90

Case 4- When tB>tA + L

P,-L-2(o4

ts+T ts+T ¿-? ? ÎL-2-tA+L-(tB-min(.tB-(tA+ï),L-ilB-j))\
_ ST1 V^ VV V i-tA+L-(.tB-min(.tB-(tA+l).L-ilB-j)))

tA=ts+ltB-min(tA+L,ts+T) j=OiiB=0 *¦ ¿ '

{??)?&?>? <19)

Therefore, PL_2rncan be expressed as follows:

PL-2& = Pl-2^ + Pl-2^ + Pl-2{0; + Pl-2w;. (20)
Where 0 < i < (L - 2).

Now we define,Ua. as the probability that a randomly selected peer with the buffer

length of size L , that has i useful pieces in its non-prioritized buffer part of size w (and it

is looking for downloading j=(w-i) other useful pieces in that specific time slot), is

interested in a randomly picked neighbour in this time slot. In this work, in order to find

this probability, we have to consider two different conditions, depending on the size of

the non-prioritized buffer (w=(L-l) or w=(L-2)) of a randomly selected peer (e.g. peer

A), where the total length of the buffer is L.
91

? When is W=L-I

> In this case, by using Eq. (10), Ua¡ _ can be expressed as follows:

? When is w=L-2

> In this case, by using Eq. (20), Uai can be expressed as follows:

uaiL_2L = (i - pl-2(0)

Next, we define F(V, j, k ,w), as the probability which a randomly selected peer ,which

has a total buffer length of size L and a non-prioritized buffer of size w and, is looking

for j useful pieces for its non-prioritized buffer area in a specific time slot and sends k

requests to its neighbours of size V in this time slot, where L > w, 0 < j < w and 0 < k <

min (VJ).

F (m, j, k, w) would be defined as a recursive function and it can be calculated by using

the following equation:

F (m,j, k, w)=Uaw_. *F(m-l,j - 1, k - 1, w)+(J-Uaw_) *F(m,j, k, L), (23)w 'Wi jWl

Where V>m>0, j=0, J, ... , L and k=0, ..., min(m, j).

92

(21)

(22)

In order to find F(V, j, k, w), we also need an initial condition, which is expressed in

below:

F (m, j, k, w) =1 ; m=0 , k=0,j=0. (24)

It can be seen that now, we are able to derive F (V, j, k, w) by solving the following V

equations, as they are expressed in below:

Equation I)F(OJ, k,w) = 0

Equation 2) F(I, j, k, w) = Uaw_ *F(0, j - 1, k - 1, w) + (1 - (/„) * (1-Jwi jwl

F(0,j,k,w)

Equation 3) F(2, j, k, w) = Uaw_ * F(I, j - 1, k - 1, w) + (1 - Ua) *jwl Jwi

(F(IJXw)

Equation V-I) F (V-I, j, k, w) = ?/a . * F (V-2, j-l,k - 1, w) + (lJwL \

Uau,-i *F(V-2J, k,w)1W- Ì

93

Equation V) F(V, j, k, w) = Ua * F(V-I, j - 1, k - I1 w) + (l - ?/a .) *w JWi \ JWi/

F(V-JJ, k, w) (25)

In our analysis for this chapter, we could encounter different buffer lengths and different

values for the number of neighbours in a random time slot for a peer. Therefore, we

categorize them into four different classes depending on the values of w and V, in below:

? When V=H and W=L-I

> In this case, we want to find F (H, j, k, L-I). And by employing Eq. (21) , (24)

and (25), it can be calculated, as it is expressed in below:

F(H, j, k, L - 1) = (JJa) * F(H-IJ - 1, k - 1, L - 1) + (l -
{/)* F(H-IJ, k, L-Y), (26)

Where, 0 <j<L-l and k = 0, 1, ... , min (Hj)

? When V=H-I and W=L-I

> In this case, we want to find F (H, j, k, L-I). And by employing Eq. (21) , (24)

and (25), it will be calculated, as it is expressed in below:

F(H-IJ, k, L-l) = (UaiLiL)*F(H-2J-l, k - 1, L - 1) + (l -
Ua.)*F(H-2J, k, L-I), (27)

Where, 0 <j<L-l and k = 0, 1, ... , min (H-IJ)

? When V=H and w=L-2

94

> In this case, we want to find F (H, j, k, L-2); and by employing Eq. (22), (24) and

(25), it will be calculated, as it is expressed in below:

F (H, j, k, L - 2) = (UaiL2) * F(H-I, j - 1, k - 1, L - 2) + (l - I/«iL_2J *
F(H-l,j, K L-2), (28)

Where, 0 <j<L-2 and k = 0, 1, ... , min (Hj)

? When V=H-I and w=L-2

> In this case, we want to find F (H-I, j, k, L-2); and by employing Eq. (22), (24)

and (25), it will be calculated, as it is expressed in below:

F(H-IJ, k, L-2) = (Ua.)*F(H-2,j-l, k - 1, L-2)+ (l -
O-iL-zd^F(H'2'i' k' L~2)' (29)
Where, 0 <j<L-2 and k = 0, 1, ... , min (H-IJ)

Next, we can introduce E[K] as the average number of requests that a peer sends to its

neighbours in a given time slot. In order to derive it, we assume that in a specific time

slot, we have a randomly picked peer (e.g. peer A) with the buffer length of size L, which

has ¿o piece in its high prioritized buffer region (e.g. piece #tA) and has I1 useful pieces

in its non-prioritized buffer part and is looking forJ=(L-I-I1) other useful pieces for this

area, in this time slot, where 0 < I1 < (L - 1) and 0 < ¿0 < 1; then we divide our

calculations here into two parts. In the first one, peer A does not have a useful piece in its

high-prioritized slot; and in the second one, it has a useful piece in it, as they are

explained in below:

95

? When peer A does not have the piece #tA in its buffer (i0 = 0).

> In this case, we define E[K]0, as the number of requests that peer A send in any

given time slot on average, when it does not have a useful piece in its high

prioritized slot. In this case, depending on the availability of this high prioritized

piece among the peer A' s neighbours, one of the following two possible events

could be happened:

¦ When none of peer A's neighbours have the piece #tA .

In this case, we define £ [K] 0q the average number of requests that peer A
sends in any given time slot will be expressed as follows:

L-I WiJn(H1L-I-I1)

E[K]00 = S S
I1=O /C1=O

Ai1* P(O, I1)*
(Pt/)* F (H1L-I-^k11L-I) (30)

When at least of peer A's neighbours has the piece #tA in this time slot.

In this case, we define E[K]01 the average number of requests that peer A

sends in any given time slot will be expressed as follows:

E[K]01 =
l-\ min{H'-1,L-I-I1)

S S
I1=O /C1=O

(Zc1 + I)* P(O, I1)*
•(?-*/)

* F (H - 1, L - 1 - I1, /C1, L - 1)
(31)

Therefore, E[K]0 would be described as the sum of Eq. (27) and (28)' (E [K]0 =

E[K]0q + E[K]01). As we already mentioned, it will lead us to the average number of
96

requests that is sent by a randomly selected peer in the network, when it does not have a

useful piece in its high prioritized buffer. And it will be expressed as follows:

E[K]0 =
/,_! TnIn(H1L-I-I1)

S S /C1* P(O, I1)*
(PtAH)*F(H,L-l-iltkvL-i)

l-\ TnIn(H-I1L-I-I1)

S S
I1=O Ic1=O

(Zc1 + I)* P(O, I1)*
*(?-0

F(H-I1L-I-I^k11L-I)
(32)

When peer A has the piece #tA in its buffer (i0 = 1)·

> In this case, we define E[K]1, as the number of requests that peer A send in any

given time slot on average, when it has a useful piece in its high prioritized slot

(piece #tA is available in its buffer).

Depending on the availability of the next piece (piece #(tA + I)) in peer A's

buffer and also peer A's neighbours, one of the following three possible events

could be happened:

¦ When peer A does not have the piece #(tA H- 1) in its buffer at the

beginning of this time slot and none of its neighbours have this piece in

their buffers either.

In this case, we define E[K]10 the average number of requests that peer A
sends in any given time slot will be expressed as follows:

97

E[K]i0 =
1-2 min(H,L-l-ti)

/?=? fc£o (Pt„+1H) * F (H, L - 1 - I1, klt L - 2) (33)

When peer A does not have the piece #(tA + 1) in its buffer at the

beginning of this time slot and at least one of its neighbours has this piece

in its buffer.

In this case, we define E[^]11 the average number of requests that peer A

sends in any given time slot will be expressed as follows:

E[K]I1 =
L-2 min(H-1,L-I-I1) Cl + fei) * ? _ _Jl_\ * PCl1 ¿?)
2, Z, *F(H-l,L-l-i1,k1,L-2)
I1=O Ii1=O

(34)

When peer A has piece #(tA + 1) in its buffer at the beginning of this

time slot.

In this case, we define E[K]12 the average number of requests that peer A

sends in any given time slot will be expressed as follows:

E[K]12 =
L-2 TnEn(H1L-I-I1)

S S£f=o ¿?=? * P(I, h)* F(H1L-I- I1, U1, L-2)
^'(éd (35)

Therefore, E[K]1 would be described as the sum of Eq. (33), (34) and (35) (E[K]1 =

£|X]i0 + ^ IXl ii + E[K]12). This will lead us to the average number of requests that is

98

sent by a randomly selected peer in the network, when it has a useful piece in its high

prioritized buffer. This will be expressed as follows:

E[K]1 =
1-2 min(H,L-\-i{)

S S.?=? fco (PtA+1H) * F(H1L-I- I1, kv L - 2)
/Cl*(1"r^ï)*P(1'/l)

+

t-2 min(H-l,L--U-I-I1) (1 + ki) * (? _ _?_) * P(I, ¿J
/_, 2-, * F (H -1,L-I- ^k11L -2)

* (i - ?tAJ)I1=O Jc1=O

¿_2 TTiIn(H1L-I-J1)

S S (W(^) (36)

Finally, by integrating Eq. (32) and (36) together, we can reach to the number of requests

that a randomly picked peer in the network sends in any given time slot on average. This

can be expressed as follows:

E[K] = E[K]0 + E[K]1 (37)

Next, we assume that we have two randomly selected neighbours, namely, peers A and B.

Then we introduce X, as the average number of requests that peer B receives in any given

time slot beside peer A's request, where each peer in the network has H neighbours.

Therefore, by using Eq. (37), X can be expressed as follows:

99

? = (w-1>g[Kl (38)

Now, we introduce Q, as the probability that a randomly selected peer (e.g. peer B) fulfils

a specific request (e.g. peer A' s request) among all other requests that it receives from

other peers in a specific time slot, where each peer in the network has //neighbours.

Therefore, by using Eq. (38), Q can be expressed as follows:

1 1

9 = ?? = ? , (ff -?* ¿[im (39)

Next, we continue our work by analyzing the possible jumps that a randomly selected

peer (e.g. peer A), where play time of peer A is tA , neighbour size is H and the buffer

size is L, could have in a specific time slot. For this reason, the possible jumps can be

classified into four different classes, as follow:

? When peer A Jumps from state (0, i0) to state (0, 11), where L — l>ix>i0>Q

> In this situation, peer A can have this jump if one of these two possible ways

happens for it:

1- When none of peer A' s neighbours have piece #tA and peer A obtains

(ii - *o) pieces from its neighbours (H neighbours) for its non-prioritized

buffer part of size (L-I).

100

We name this probability as ?"((?,?0),(?,??))?' and it can be expressed as follows:

r'((0,I0)Xo,/!))! —Probability [Peer A's neighbours do not have piece #t/J *
Probability [Peer A downloads (I1 — i0) pieces from its H neighbours for its

non-prioritized buffer area ofsize (L-I) in this time slot] (40)

Or, it can be expressed as follows:

TnIn(H1I1-I0)

'((O1 ioUo,iû)i - (7W * ¿,
fc=(ii-i'o)

F(H1I1- i0, k, L-I)
,[k ?

* (Q)fe_(¿1_/o)
* (i - <2)¿i-¿°

(41)

2- When at least one of peer A's neighbours has piece #tA but peer A's

request for is piece gets rejected and besides that, peer A obtains Ci1 — ??)

pieces from the rest of its neighbours ((H-I) other neighbours) for its non-

prioritized buffer part of size (L-I).

We name this probability as ^((o,ì0),(o,ì!))2 > and it can be expressed as follows:

r((o,(0),(o,ti))2 —Probability [At least one ofpeer A's neighbours has piece #t¿J
* Probability[Peer A's requestfor piece #tA gets rejected] * Probability[Peer

A downloads (I1 — ¿0) pieces from the remaining (H-I) other neighbours for

its non-prioritized buffer area ofsize (L-I) in this time slot] (42)

Where Probability [Peer A's request for piece #tA gets rejected] =(1-Q)

Or, it can be expressed as follows:
101

"((0,¿o)-(0;i1))2 - X,
TtIiTi(H1I1-Io)

S
K=(H-I0)

F(H, I1 - ¿o, fc, L -I)*
k 1*-I0Jh

(Q)k-(ii-io) *
.(1 - C)^-O *(1-Pt/)*(1 -C).

(43)

Therefore, the jumping probability, defined as 7"((0,J0X(O^1)) > would be the sum of

r((o,¿o),(o,¿1))0 and r((0,¡0),(0,i1))1, Eq. (41) and (43), and it is expressed in below:

rao.i0),(o,i1)) - r((o,i0),(o,i1))1 + r((o,i0),(o,i1)) (44)

When peer A Jumps from state (0, i0) to state (1, 11), where L — 1 > I1 > i0 > 0

> In this situation, peer A can have this jump if it downloads piece #tA from one of

its neighbours; and at the same time, it also downloads (I1 — I0) other pieces for

its non-prioritized buffer area of size (L-I) in this time slot.

Therefore, the jumping probability, defined as í"((o,¿0),(i,¿i)) > can ^e expressed by:

r((o,¿0),(i,¿i)) = Probability fat least one ofpeer A 's neighbours has piece #tA *
and Peer A obtains piece #tAfrom one ofthem] * Probability [Peer A downloads

(I1 - i0) pieces from the rest of its neighbours ((H-I) other neighbours) for its

102

non-prioritized buffer area ofsize (L-I) in this time slot].

Or, it can be expressed as follows:

TnIn(H-I1I1-I0)

r((0,i0),(l,ii)) S
fc=(ii-io)

FiH-I1I1-I0XL-I)*
\ k Ì*

(Q)fc-Oi-to) *
(1 - Q)^o *(1- Pt/) *((?).

(45)

(46)

When peer A Jumps from state (1, i0) to state (1, 11), where i.-l>ii>i0^0

> In this situation, peer A can have this jump if one of these two possible ways

happens for it:

1- When peer A that has piece #tA and also piece #(tA + 1), with the

probability of (-3-) , and there are i0 pieces in peer A' s non-prioritized

buffer of size (L-I); and Peer A obtains (I1 - i0) pieces from its

neighbours (H neighbours) for its non-prioritized buffer part of size (JL —

2).

As discussed before, those pieces that a randomly picked peer in the system

has in its non-prioritized buffer area, they are uniformly distributed.

Therefore, for example in this case, when peer A has i0 pieces in its non-

prioritized buffer part, the probability that peer A could have the first piece

(piece #(tA + I)) in that part of its buffer would be (^¡-).

103

We name the probability of this part as í"((i,í0),(i,í1))1» and it can be expressed
as follows:

r((i,t0),(i,ii))i = Probability [Peer A has piece #(tA + 1) in its buffer at the

beginning of this time slot]* Probability [Peer A downloads (JL1 — I0) pieces

from its H neighbours for the rest of its non-prioritized buffer area of size

(L — 2) in this time slot].

Or, it can be expressed as follows:

TnIn(H1I1-I0)

-((i-iowwi)), - Gt=t) * S
fc=(¿i-io)

F(H, I1 - ¿o, k,L-2) *
f * 1.I1 - I0J

(Ç)fc-(Éi-io) *
(!_Q)ii-io

(47)

(48)

2- When peer A that has piece #tA , does not have #(tA + 1), with the

probability of (1 - -—-) , when it has i0 pieces in its non-prioritized buffer

of size (L-I) ; and it obtains piece #(tA + 1) in this time slot and (J1 -

i0 - 1) pieces from the rest of its neighbours ((H-I) other neighbours)

for its non-prioritized buffer part of size (L-2).

Therefore, for example in this case, when peer A has i0 pieces in its non-

prioritized buffer part, the probability that peer A could not have the first

piece (piece #(tA + I)) in this part of its buffer would be (1 — -3-).

We name this probability as r((i,¿0),(i,¿a)) · It can De expressed as follows:

104

r((i,¿) (?,?))2 = Probability [Peer A, which does not have piece #(tA + 1),
downloads piece #(tA + 1) in this time slot, given at least one of its

neighbours has this piece] * Probability [Peer A downloads (J1 — ¿0 — 1)

pieces from the rest of its neighbours ((H-I) other neighbours) for the rest of

its non-prioritized buffer area ofsize (L-2) in this time slot]

Or, it can be expressed as follows:

TOm(H-I1I1-I0-I)

"((i,io).(i.ii))2 S
Jc=(I1-I0-I)

F{H-l,ir-i0-l,k,L-2)*
k p

I1-Z0- IJ
(Q)fc-(il-l'o-l) *
(1 - C)¿1_ío_1 *

(49)

(50)

Therefore, the jumping probability, defined as r((1Jo)1(U1)) , in this case can be

expressed by:

r((o.i0).(o.ii)) - r((l,i0).(l.ii))i + r((l.io).CUi))2 (51)

When peer A jumps from state (1, i0) to state (0, 11), where L-l>i!>i0>0

> In this situation, peer A can have this jump if one of these two possible ways

happens for it:

105

1- When peer A has already downloaded piece #tA , but is did not download

piece #(tA + 1), by the beginning of the current slot time, and it does not

obtain this piece in this time slot; because its request for this piece gets

refused by one of its neighbours which the request for this specific piece

has been sent to it, when this neighbour has this piece in its buffer; and at

the same time, peer A obtains (I1 - i0) pieces from the rest of its

neighbours ((H-I) neighbours) for its non-prioritized buffer part of size

(L-2), when it has i0 pieces in its non-prioritized buffer of size (L-I).

As we already discussed, those pieces that a randomly picked peer in the

system has in its non-prioritized buffer area, they are uniformly distributed.

Hence, for example in this case, when peer A has i0 pieces in its non-

prioritized buffer part, the probability that peer A does not have the

piece #(tA + 1) in this part of its buffer would be (1 — 777)·

We name the probability of this part as r((i,i0),(o,i1')')1> ani* it can be expressed
as follows:

r((i,t0),(o,i1))1 = Probability [Peer A does not have piece #(tA + 1) in its
buffer] ^Probability [At least ofpeer A's neighbours has piece #(tA + 1) and

peer A 's requestfor this piece gets declined] * Probability [Peer A downloads

Q1 — i0) pieces from the rest of its neighbours ((H-I) neighbours) for the rest

ofits non-prioritized buffer area ofsize (L-2)] [52]

Where Probability [Peer A's request for piece #(tA + 1) gets rejected]=(l- Q)

Or it can be expressed as follows:
106

IHIn(H-I1I1-I0)

r((l,io).(0,i1))1 = ¿,
R=(I1-I0)

F(H-l,Ì!-i0,k,L-2)
r k ?

* * (Q)k_(il~io)Li1 - i0J

((I - Q)'1"'0) * (? -^)
* (? - ptA+1H) * a - Q)

(53)

2- When peer A has already downloaded piece #tA , but it did not download

piece #(tA + 1), by the beginning of this current slot time, and it does not

obtain this piece in this time slot (Because none of its neighbours have this

piece in their buffers); and concurrently, it obtains (I1 — i0) pieces from

its neighbours (H neighbours) for its non-prioritized buffer part of size

(L-2).

Therefore, for example in this case, when peer A has i0 pieces in its non-

prioritized buffer part, the probability that peer A could not have the first

piece (piece #(tA + I)) in this part of its buffer would be (1 — r~r)·

We name this probability as G((1/?0),(0,?1))2 , and it can be expressed as follows:

r((i,i0),(o,i1))2 = (l —r~) * Probability [None ofpeer A 's neighbours have
piece #(tA + 1)7 *[Peer A downloads (I1 — i0) pieces from its neighbours (H

neighbours) for the rest ofits non-prioritized buffer area ofsize (L-2)]. (54)

Or it can be expressed as follows:

107

min(H,ii-io)

r((l,io),(0,i1))2 = (¿?
Ic=(I1-I0)

F(H, I1 -i0,k, L -2)*

(. k . Ì * (Q)1^-WVi1 — i0/

(1-Q)-O* (1-^1)
* ((PtA+1)")

(55)

Therefore, the jumping probability, defined as 1"((1,Iq)1(I1I1)) > m this case can be

expressed by:

r((l,¿o).(0,¿i)) - r((l,to).(0,i1))1 + r((l.i0),(0,i1)). (56)

Next, we define Pcontinuity as tne probability that a randomly picked peer in the network

that is watching or listening to a certain live streaming content in a specific time slot,

would be able to play its desired play time piece at this time slot. If we assume that the

size of the buffers for the peers is L, then Pcontinuity can be expressed as follows:

I1=L-I

Pcontinuity ~ ? P\X> h) (57)
U=O

Next, we define d¿, as the average download rate of a peer with the total buffer size of L

that has i0 piece in its high prioritized buffer and I1 useful pieces in its non-prioritized

108

buffer in a specific time slot, where 0 < i0 < 1 and 0 < I1 < L - 1. And it can be shown

as follows:

JnIn(H-Ic01L-I-I1) min (H1I-I0)

d(¿o,¡i)= X X (fc0+ fcl)*nio.ii).(io+fco.¿i+*i)' (58)
/C1=O /C0=O

Where 1 > i„ > 0 and (L - 1) > I1 > 0.

Since the system is in the steady state, the peer distribution does not change during the

time and therefore, base on the Figure 3.6, when peers have buffers of size L, we will

have the following two equations for a randomly picked peer (e.g. peer A) in the

network:

? When peer A has a useful piece in its high prioritized buffer (i0 = 1) and has

I1 = í useful pieces in its non-prioritized buffer of size L-I, where 0 < i < L — 1.

> In this case, peer A will be in the state of (1, 11); and therefore, we would have

the following equilibrium equation:

L L

P(I1Q = (2_V(i,fc),(i,0 * Pd,fc)) + (¿(/(?,/?,a,? * P{ojc))
/c=0 Jc=O

L-l-i

(2_, (rd.i).(U+fc) * ?(?,?)
/C = I

L-l-i

(2_, (r(i.O.(o.i+fc) * ?(?,?)' (59)
/c=0

109

Where i=0, 1, ... ,L-I.

? When peer A does not have a useful piece in its high prioritized buffer (i0 =

0) and has I1 = i useful pieces in its non-prioritized buffer of size L-I,

where 0 < i < (JL - 1).

> In this case, peer A will be in the state of (0, 11); and therefore, we would have

the following equilibrium equation:

P(o,i) = (¿V(o,fc),(o.i) * P(°.fc)) + (¿,(r(i.*).(o.O * Pd,fe))
fc=0 k=0

L-l-i

(2_, (r(0,0,(0,t+fc) * p(o,o)
fc=l

L-l-i

- (¿J (r(o.O.(i.i+fc) * P(o,¿))' (6°)
k=0

Where i=0, 1,...,L-I.

Solving the Eq. (59) and (60), will lead us to obtain the peer distribution (P(J0^1)), where

1 > ¿o > 0 and (L - 1) > I1 > 0.

Although it is very complicated to find a closed form for the peer distribution, it can be
seen that it would be solved numerically.

110

3.3 NUMERICAL RESULTS

As it has been already explained, the reason that we proposed a new model in this chapter

is that we try to achieve a better system performance (probability of continuity),

compared to the previous model that has been proposed in the previous chapter. Here, we

inspect how different parameters such as number of neighbours (H), delay time (T) and

buffer length (L), can affect the performance of the system and verify our goal, which is

achieving a better system performance, by comparing our new results to the results in

previous chapter.

? The Effect of buffer length of the probability of continuity

In this part, we do the numerical results under the following assumptions:

S N=IOOO

In the numerical results, our streaming media has 1000 pieces in total.

• 2 < L < 20

As we already explained, when peers are in the steady state, the length of the

buffer is much smaller comparing to the size of N (N»L). Here we do our

numerical results for different values for L, between 1 and 20.

y H=40

Each peer has forty neighbours.

Ill

Here, we will consider the effect of the buffer length (Z) on the probability of continuity

(Pcontinuity), as it is shown in below:

0.9 r
Priritized(T=1)
Non-priritized (T= 1)
Non-priritized (T= 10)
Priritized (T=10)
Non-priritized (T= 15)
Priritized (T=15)
Non-priritized (T=20)
Priritized (T=20)

8 10 12 14

Buffer length (L)=2-20

20

Figure 3.7: The effect of the buffer length on the probability of continuity

(Pcontinuity), where 20 > L > 2 and T=\, 5, 10, 15 and 20.

In Figure 3.7, in most cases, we see that the performance of the system gets increased by

increasing the length of the buffer somewhat. However, it can be seen when the buffer

length goes beyond certain value, in any of the given cases, the performance of the

system drops. The reason could be based on not having given priorities to the rest of the

buffer.

112

It is also can be seen that by using our new proposed model we can achieve higher

performance in our system.

? The Effect of Delay time

In this part, we do the numerical results under the following assumptions:

• N=IOOO

In the numerical results, our streaming media has 1000 pieces in total.

y 1 < T < 20

Here we do our numerical results for different values for T, between 1 and 20.

• #=40

Each peer has forty neighbours.

Here, we will consider the effect of the delay time (T) on the probability of continuity

(Pcontinuity), as it is shown in below:

As we see in Figure 3.8, adding some delay to our system, to some extent, can be helpful

and elevates the performance of the systems. However, if the delay goes beyond some

certain values, it is detrimental and decreases the system performance. It is because when

the delay time increases in the system, the probability that different peers have different

playtimes gets increased and as a result, the probability that any randomly selected peer

in the system could be interested to its neighbours' pieces will be lesser and hence, the

performance of the system gets reduced.

113

It also can be seen in Figure 3.8 that we can get to a better system performance in our

new proposed model compared with the previous model that has been discussed in

already; and gain we see that it verifies our goal in this chapter, which was achieving

higher performance in our systems.

0.95

0.9

0.85

0.8

= 0.75
o

¿
0.7

0.65

Non-prioriSzed (L=2)
¦ Prioritized (L=2)

Non-prioritized (L=5)
Prioritized (L=5)
Non-prioritized (L=10)
Non-prioritized (L=10)
Non-prioritized (L=15)
Prioritized (L=1 5)
Non-prioritized (L=20)

- Prioritized (L=20)

0.6 1 *-*-*

0.55 L
10 15

Delay time (T)=1-20
20

Figure 3.8: The effect of the delay time on the probability of continuity (Pcontinuity),

where 20 > T > 1 and L=2, 5, 10, 15 and 20.

114

? The effect of neighbour number on the probability of continuity

("Continuity/

In this case, we do the numerical results for some random cases (three cases) as an

example, to see how the number of neighbours can affect the probability of continuity

(Pcontinuity), as it is shown in below:

None-prioritized (L=7 and T=20)
Prioritized (L=7 and T=20)
None-prioritized (L=6 and T=15)
Prioritized (L=6 and T=15)
None-prioritized (L=4 and T=IO)
Prioritized (L=4 and T=10)

60 80 100 120
Number of neighbours (H)

Figure 3.9: The effect of neighbour number on the probability of continuity

(Pcontinuity), where 180 > H > 10.

115

When the number of neighbours is too small, the probability that a peer uploads to its

neighbours is small and as a result, the performance of the systems (probability of

continuity) is very low. When the number of neighbours gets increased, the probability of

Continuity (performance of the system) will be increased. However, when the number of

neighbours gets more than certain values, because the more number ofneighbours causes

the more competition among peers for downloading their desired pieces, the performance

of the system will not be changed significantly. We also see that with our new proposed

model, as it can be seen in the above Figure, performance of the system has been gotten

better.

116

Chapter 4

CONCLUSION AND FUTURE WORK

4.1 CONCLUSIONS

During the last decade, peer-to-peer model have drawn so many attentions and a lot of

new internet applications have been being designed based on this model.

P2P applications have been designed for the purpose of file-sharing substantially.

However, in recent years, a significant amount of attention has been inclined towards

using P2P file-sharing model, which is a time-non-sensitive model, for audio/video

streaming purposes, which are time-sensitive.

In this thesis, the efficiency of BitTorrent-based P2P live streaming systems has been

studied. Additionally, I proposed some minor changes to BitTorrent's mechanisms, in

order to make BitTorrent support live streaming better.

In chapter 2, we proposed a stochastic model and under the assumption that our system is

in the steady state, we analyzed the system and derived some significant analytical

equations for different parameters of our system. Next, we solved the equations
117

numerically and then, we could be able to get to some great insights on how the different

parameters of our system, such as the delay time, size of the buffer, number of

neighbours, etc., can affect the probability of continuity and the download rate of a peer

in this system. We also found that in different situations, each of these influential

parameters can act differently on the performance of the system. Sometimes

increasing/decreasing of each of these parameters can improve the performance of the

system significantly; sometimes if the amounts of these changes go beyond more than

they are needed, they can drop the performance of the system; and sometimes they may

have not some significant influence on the performance of the system. Therefore, based

on these achievements that we gained, we will be able to design an optimum P2P live

streaming network.

As we already mentioned in previous chapters, an ideal P2P live streaming network can

be defined as a system in which there is no discontinuity for any randomly picked peer in

that network when it is watching, or listening to, its favourite streaming content.

In chapter 3, I tried to apply some minimal changes to the BitTorrent's mechanisms in

order to have a BitTorrent-like P2P live streaming system more efficiently.

In this approach, for a randomly selected peer in the network, I give a higher priority to a

piece that is supposed to be played in a given time slot, if this piece does not exist in the

buffer at that time slot. Otherwise, the higher priority will be given to the next piece

number, which should be played in the next time slot.

118

Then, I have proposed a new stochastic model for this case; and again I studied the

system under the assumption that the system is in the steady state mode.

I have derived a set of equations again in order to describe the system. These equations

have been numerically solved and we could be able to get to the peer distribution.

Then, I have shown that in our new design BitTorrent-like P2P live streaming system, we

can be able to have a smoother playtime, a higher probability of continuity, comparing to

our previous model.

4.2 FUTURE WORKS

Although our proposed models in this thesis contains almost all the important

characteristics that a BitTorrent-base P2P live streaming system can have, it can be seen

that we have assumed lots of assumptions in order to make our analysis simpler. To make

it clear, we explain some of them in below:

1 . We assumed that all peers in the network have unlimited download bandwidth or

they have the same upload bandwidth, which are not true in real networks. In real

networks, peers have limited download bandwidth and different upload bandwidth

normally. Even a peer can also have different download/upload bandwidth in

different times.

2. We also assumed that the number of requests that any randomly selected peer in

the network sends in any given time slot is a fixed number and based on that we
119

have approximated the probability that a request of a randomly picked peer in the

network, which has been sent to one its neighbour, gets fulfilled. However, we

know that in real networks these assumptions are not true and we just made them

to simplify our analysis.

3. In chapter 3, we tried to improve the performance of the system by putting higher

priority only to closest piece that is close to be reproduced by the player. We went

through several huge analytical formulas and finally, by solving the equations

numerically and comparing the results, we showed that this was a successful

approach somehow. One of the other future works could be an extension of our

approach. Instead of giving priority only to one piece, we extend it and put

different priorities on all the pieces. Depending on how close those pieces are, to

be reproduced by the player, we give them different priorities. The closer each of

them is to be reproduced by the player, the higher priority it will get.

4. Finally, we attained all the numerical results by doing the numerical results and

unfortunately, we have not been able to perform our experiments in a real

BitTorrent-like P2P live streaming network to verify out results, due to the

complexity of the experiments. Therefore, scrutinizing our results in a real
network is also another work that can be done in the future.

120

BIBLIOGRAPHY

[1] John Allen Paulos, available at http://www.math.temple.edu/~paulos/XJanuary 2010).

[2] Hao Liu and George Riley, "How Efficient Peer-to-Peer Video Streaming Could

Be?," in proceeding ofIEEE in Consumer Communications and Networking Conference

(CCNC), 2009.

[3] World Internet Users and Population Stats, available at

http://www. internetworldstats. com/stats. htm/ (January 20 1 0).

[4] Schollmeier, R., "A Definition of Peer-to-Peer Networking for the Classification of

Peer-to-PeerArchitectures and Applications," in Proceedings ofthe First International

Conference on Peer-to-Peer Computing P2P, January 2001 .

[5] Server, available at

http.V/compnetworking. about. com/od/basicnetworkingconcepts/g/network_servers. htm

(January 2010).

[6] Client/server architecture, available at

http://www. webopedia. com/TERM/C/client server architecture, html (January 2010).

[7] Client/server, available at

http.V/searchnetworking. techtarget.com/sDefinition/0„sid7_gci21 1 796, OO.html (January

2010).

121

[8] Thin client, available at http://www.webopedia.eom/TERM/t/thin_client.html (January

2010).

[9] ETHOS: Client Servers, available at

http://www. ethoseurope.org/ethos/Techterm. nsf/All/CLIENT+SER VERS (January 2010).

[10] Graphical user interface, available at

http://en.wikipedia.org/wiki/Graphical_user_interface (January 201 0).

[11] Thin client, available at http://en.wikipedia.org/wiki/Thin_client (January 2010).

[12] Fat client, available at http://en.wikipedia.org/wiki/Fat_client (January 2010).

[13] What are the advantages and disadvantages of client/server?, available at

http://www.faqs.org/qa/qa-l 7360.html (January 2010).

[14] P2P: Introduction and Real World Applications, available at

http://www.readwriteweb.com/archives/p2p_introduction_real_world_applications.php

(January 2010).

[15] 2008 Analysis of Traffic Demographics in North-American Broadband Networks,

available at

http://www.sandvine.com/downloads/documents/Traffic_Demographics_NA_Broadband_

Netwo^-pdf (January 2010).

[16] World Internet Users and Population Stats, available at

http://www.internetworldstats.com/stats.htm (January 2010).

[17] Computer Protocols- TCP/IP, POP, SMTP, HTTP, FTP and More, available at

http://vlaurie.com/computers2/Articles/protocol.htm (January 201 0).

122

[18] Caries Pairot Gavalda, Pedro Garcia Lopez, and Ruben Mondejar Andreu,

"Deploying Wide-Area Applications Is a Snap", IEEE Internet Computing, Vol. 1 1, No.

2, pp. 72-79, March 2007.

[19] What is P2P (Peer-to-Peer) file downloading?, available at

http://www. bitjourney. com. tw/en_us/Prologue_IR_en.htm (January 2010).

[20] RapidShare, available at http://en.wikipedia.org/wiki/RapidShare (January 2010).

[21] RapidShare is Appealing, available at

http://www.reuters.com/article/idUSl 98247+01 -Feb-2008+PRN20080201 (January

2010).

[22] Archived front page of RapidShare.de, available at

http://web.archive.Org/web/20061025014424/http://www.rapidshare.de/ (October 2006).

[23] Green Matthew. Napster opens pandora's box: Examining how file-sharing services

threaten the enforcement of copyright on the Internet. Page 63:799. Ohio State Law

Journal, 2002.

[24] File sharing, available at http://en.wikipedia.org/wiki/File_sharing (January 2010).

[25] eMule, available at http://en.wikipedia.org/wiki/EMule (January 2010)

[26] eDonkey / Overnet P2P File Sharing Client, available at

http://compnetworking. about. com/od/p2ppeertopeer/p/overnetedonkey.htm (January

2010).

[27] Distributedhashtable, available at

http://en. wikipedia. org/wiki/Distributed_hash_table (January 2010).

[28] eMule, available at http://en.wikipedia.org/wiki/EMule (January 2010)

123

[29] Peer-to-peer, available at http://en.wikipedia.org/wiki/Peer-to-peer (January 2010).

[30] eDonkey / Overnet P2P File Sharing Client, available at

http://compnetworking. about. com/od/p2ppeertopeer/p/overnetedonkey. htm (January

2010).

[31] Kazaa site becomes legal service, available at

http://news.bbc.co.Uk/2/hi/5220406.stm (January 2010).

[32] Filesharing history, available at http://filesharingz.com/guides/filesharing-

history.php (January 2010).

[33] Bram Cohen, available at http://en.wikipedia.org/wiki/Bram_Cohen (January 2010).

[34] From P2P to BT, File-Sharing Software Upgrades with Lawsuits, available at

http://www. chinaipmagazine. com/en/journal-show,asp?id=32 7 (January 2010).

[35] The fourth P2P-Generation: Streams over P2P, available at

http://cmogen.com/sc_blog/?p=7#more-7 (January 2010).

[36] Ultimate guide for download and use P2PTV software to watch television online for

free, available at http://p2ptv.yourglobaltv. com/ (January 2010).

[37] Ipoque :: Profile, available at http://www.ipoque.com/company/profile (January

2010).

[38] BitTorrent Still King of P2P Traffic, available at http://torrentfreak.com/bittorrent-

still-king-of-p2p-traffic-090218/ (January 201 0).

[39] P2P traffic on the rise in Germany, available at http://www.p2p-

blog.com/index.php?blogid=l&archive=2006-10 (January 2010).

124

[40] BitTorrent tracker, available at http://en.wikipedia.org/wiki/BitTorrent_tracker

(January 2010).

[41] All about BitTorrent, available at http://www.onlytorrents.com/what-is-torrent/

(January 2010).

[42] Distributed database, available at

http://www. azureuswiki. com/index.php/Distributed_database (January 2010).

[43] BitComet, available at http://en.wikipedia.org/wiki/BitComet (January 2010).

[44] Incentives Build Robustness in BitTorrent, available at

http://www. bittorrent.org/bittorrentecon.pdfXJanuary 2010).

[45] p2p media streaming: Peer-to-peer streaming Internet TV, available at http://all-

streaming-media.com/peer-to-peer-TV/p2p-media-streaming-peer-to-peer-streaming-

Internet-TV.htm (January 2010).

[46] P2PTV, available at http://en.wikipedia.org/wiki/P2PTV (January 2010).

[47] T.S. E. Ng, Y.-H. Chu, S. G. Rao, K. Sripanidkulachai, and H. Zhang,

"Measurement-based Optimization Techniques for Bandwidth-Demanding P22r-to-Peer

Systems", IEEE INFOCOM, Vol. 3, pp. 2199-2209, April 2003.

[48] M. Ripeanu, I. Foster, and A. Iamnitchi, "Mapping the gnutella network: Properties

of large-scale peer-to-peer systems and implications for system design", IEEE internet

computing Journal, Vol. 6, No. 1, 2002.

[49] M. Ripeanu, "Peer-to-peer architecture case study: Gnutella network," in Proceeding

ofInternational Conference on Peer-to-peer Computing, August 2001.

125

[50] Z.Ge, D. R. Figueiredo, S. Jaiswal, J.Kurose, and D. Towsley, "Modeling peer-to-

peer file sharing systems", IEEE INFOCOM, Vol. 3, pp. 2188-2198, 2003.

[5I]N. Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ripeanu, " Influences on

cooperation in bittorrent communities, " in Proceedings ofACMSigcomm, Philadelphia,

PA, Aug 2005.

[52] S. Jun and M. Ahamad, "Incentives in bittorrent induce free riding," in Proceedings

ofACM Sigcomm, Philadelphia, PA, Aug 2005.

[53] A. Legout and G. Urvoy-Kellerand P. Michiardi, "Understanding bittorrent: An

experimental perspective," Technical report, Sophia Antipolis, France, 2005.

[54] D. Qiu and R. Srikant, "Modeling and Performance Analysis of BitTorrent-Like

Peer-to-Peer Networks," in Proceedings ofACM Sigcomm, vol. 51, 2004, p. 61801.

[55] C. Dana, D. Li, D. Harrison, and C. Chuah, "Bass: Bittorrent assisted streaming

system for video-on-demand," in International Workshop on Multimedia Signal

Processing (MMsP) IEEE Press, 2005.

[56] X. Zhang, J. Liu, B. Li, and T.P. Yum, "Coolstreaming/donet: A data-driven overlay

network for peer-to-peer live media streaming," in Proceedings ofIEEE/INFOCOM,

Miami, March 2005.

[57] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A.E. Mohr, "Chainsaw:

Eliminating trees from overlay multicast," in Proceedings ofIPTPS, Ithaca, New York,
Feb 2005.

126

[58] A. Vlavianos, M. Iliofotou, and M. Faloutsos, "BiToS: Enhancing BitTorrent for

Supporting Streaming Applications", in Global Internet Workshop in conjunction with

IEEE INFOCOM 2006, April 2006.

[59] S. Tewari and L. Kleinrock, "Analytical model for BitTorrent-based live video

streaming," in Proceedings ofIEEE NIME Workshop, 2007.

127

