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Abstract

The identification of novel interactions of the vesicle tethering complex TRAPP

Audrey Morin

Membrane trafficking is an essential cellular process where tethering factors offer

the first level of specificity for the proper localization of vesicles to target membranes.

The localization of the tethers themselves may depend on their associations with a unique

subset of lipids or activated GTPases. The TRAPP vesicle tethering complex localizes to

the Golgi in an unknown manner but its localization may be mediated by the Bet3

protein. To gain insight into the mechanism of localization of TRAPP a synthetic lethal

yeast screen with the bet3-4 mutant was employed. The screen is based on a plasmid-

dependent assay which exploits the adenine biosynthesis pathway and red/white colony

sectoring. A Saccharomyces cerevisiae bet3-4 ade2 ade3 mutant strain with a counter-

selectable plasmid harbouring the BET3 and ADE3 genes was randomly mutated with

ethyl methanesulfonate (EMS). Double mutants, identified as uniformly red colonies,

were obtained and initially screened for the presence of a mutation in either BET3 or

another gene encoding a TRAPP subunit. Mutants that were judged to be in non-TRAPP

genes were then screened with a yeast library to try to identify the mutated gene. One

synthetic lethal mutant was suppressed by VPSl 6, a gene encoding a component of

another vesicle tethering complex. Since VPSl 6 does not suppress bet3-4 and since

sequencing failed to reveal any mutations in VPSl 6, our results suggest that the defective

gene in this particular mutant can be suppressed by VPSl 6. The identity of the mutated

gene remains unknown at present.
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1. Introduction

1.1 Intracellular traffic in the early secretory pathway

In eukaryotic cells, proteins are transported from a donor organelle to a specific

target organelle by transport vesicles in a process referred to as membrane traffic.

Membrane trafficking is essential for cell viability and organelle functionality. The

secretory pathway, a branch of membrane traffic that ultimately leads to the release of

proteins from the cell, begins in the endoplasmic reticulum (ER) where newly

synthesized proteins are packaged into coat protein complex II (COPII)-coated vesicles

which bud off the ER (Schekman and Orci, 1996). COPII is composed of the small

guanosine-5 '-triphosphatase (GTPase) Sarlp (Nakano and Muramatsu, 1989) and two

heterodimers, Sec23p/24p and Secl3p/31p (Bariowe et al., 1994). Studies have shown

that these components are the minimal requirements for the formation of vesicles from

liposomes in vitro (Higashio et al, 2008).

Activation of GTPases is an essential step in membrane trafficking. GTPases are

present in one of two nucleotide-bound forms: guanosine diphosphate (GDP-) or

guanosine triphosphate (GTP-) bound. The GDP-bound form is considered the "inactive"

form while the GTP-bound form is considered the "active" form (Bourne et al., 1990).

Only the active GTP-bound form can transduce a signal. GTPase-activating proteins

(GAPs) interact with GTP-bound GTPases and facilitate the hydrolysis of the GTP into

GDP thus inactivating the GTPase. GDP-bound GTPases require accessory factors called
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guanine nucleotide exchange factors (GEFs) to facilitate the release of GDP and allow

GTP to bind (Bourne et al, 1990).

Budding is triggered by the activation of Sari ? by its GEF Secl2p. Once in its

active form, Sarlp-GTP recruits Sec23/24p and Secl3/31p which mediates membrane

curvature and protein sorting (Behnia and Munro, 2005). Vesicle cargo selection is

determined in part by the Sarlp-Sec23p/24p prebudding complexes (Aridor et ah, 1998;

Kuehn et al., 1998). Different sites on Sec24p recognize different protein motifs and

allow for the packaging of specific cargo inside vesicles (Higashio et al, 2008). Finally

the bud is pinched off the ER and forms a COPII -coated transport vesicle (BarIowe et al,

1994). Vesicle uncoating is mediated by the inactivation of Sarlp by its GAP Sec23p

(Sato and Nakano, 2004; Yoshihisa et ah, 1993). The coats are recycled back to the ER

while the vesicles are tethered, docked and fused with the target membrane, the Golgi

(Bonifacino and Glick, 2004). Resident ER proteins that escaped are trafficked back to

the ER by virtue of several characterized sequences at or near their carboxy-terminus

(e.g. KKXX and KDEL) (Nilsson et al, 1989; Pelham, 1989; Teasdale and Jackson,

1996). These proteins are transported back to the ER in association with COPI (coat

protein complex I) coated vesicles (Letourneur et al., 1994).

There are three levels of specificity which allow binding of vesicles with their

target membrane(s). First, vesicle tethering factors and coiled-coil proteins tether

vesicles to acceptor membranes. Second, small Rab GTPases and effector proteins

regulate vesicle tethering and docking through their cycling between GDP- and GTP-
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bound forms (Pfeffer, 2001). Thirdly, the binding of SNAPvEs (soluble N-

ethylmaleimide-sensitive factor attachment protein receptors) on both the vesicle and

target membranes mediate membrane fusion (Ungar and Hughson, 2003). Each of these

levels of specificity will be discussed in the following sections.

1.2 The Golgi

The Golgi is a major site for protein sorting and processing (e.g. glycosylation)

(Dean, 1999; Lowe and Marth, 2003; Ungar and Hughson, 2003). Processing enzymes

are segregated based on their requirements for function and are concentrated in specific

regions (eis, medial or trans) of the Golgi. The mechanism of transport of material

through the various compartments of the Golgi is unclear and three models have been

proposed: the forward-trafficking model, the cisternal-maturation model, and the rapid

partitioning model (Jackson, 2009).

In the forward-trafficking model, cargo proteins are transported from the cis-

Golgi to the trans-Go\gi in COPI vesicles and undergo modifications in each

compartment (Palade, 1975). The Golgi compartments are said to be static in this model

because the resident proteins do not change. This model explains the forward transport of

cargo from the ER to the Golgi in COPII vesicles but fails to explain experimental

observations of the retrograde traffic of COPI vesicles (Lanoix et al., 1999; Martinez-

Menarguez et al., 2001). In an attempt to better represent traffic of enzymes through the
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Golgi the cisternal-maturation model was proposed. In this model, it is the processing

enzymes themselves that are transported from the late to the early Golgi resulting in the

maturation of early compartments into late compartments while the cargo remains static

(Bonifacino and Glick, 2004; Eisner et al., 2003; Moire D.J. and Mollenhauer, 2007). A

more recent model, the rapid partitioning model, suggests that the trafficking of lipids is

coupled to cargo and enzyme traffic (Patterson et al., 2008). There are regions of the

Golgi enriched in certain lipids creating a gradient of lipid composition through the Golgi

and among the cisternae themselves. Cargo proteins are rapidly exposed to the different

Golgi cisternae until they associate with their preferred lipid environments. It is

noteworthy that, in this model, cargo proteins and processing enzymes can move bi-

directionally (cis-to-trans and trans-to-cis) among the Golgi stacks (Pelham and

Rothman, 2000; Patterson et al, 2008). In all three models, once the cargo proteins have

undergone the proper post-translational modifications they are transported to other

intracellular locations such as the plasma membrane, secretory vesicles, or organelles of

the endocytic pathway (Bard and Malhotra, 2006; McNiven and Thompson, 2006;

Pelham and Rothman, 2000).

1.3 SNAREs

SNARE proteins have been shown to co-localize and directly interact with

specific tethering complexes (Fridmann-Sirkis et ah, 2006; Price et al., 2000; Suvorova et

al., 2002). Tethers function in bringing vesicles in close proximity to target membranes
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establishing a loose interaction with the target membrane. Once tethered, vesicles

establish a more stable interaction through the binding of compatible SNAREs in a

process referred to as docking (Waters and Pfeffer, 1999). SNAREs allow for vesicle

fusion with acceptor membranes and provide an additional layer of specificity (Jahn,

2008; Shorter et al, 2002).

Fusion is mediated by the formation of a functional four-helix bundle, referred to

as SNAREpins, composed of one a-helix from a vesicle-SNARE (v-SNARE) to three a-

helices of a cognate target-SNARE (t-SNARE) on the target membrane (Fasshauer et al.,

1998; Sutton et al., 1998; Antonin et al., 2002). The four-helix bundle links the donor and

acceptor membranes (Lupashin and Sztul, 2005) and provides the necessary energy to

pull the donor and acceptor membranes together resulting in membrane fusion since no

additional energy input is required (Li et al., 2007). SNAREs are further classified into

four subfamilies (Qa-, Qb-, Qc- and R-SNAREs) according to highly conserved

glutamine or arginine residues at the center of the four-helix bundle (Fasshauer et al.,

1998). Q-SNAREs are usually found on target membranes while R-SNAREs are usually

found on vesicles.

1.4 Vesicle tethering complexes

Tethering is a complex process involving multiple protein interactions which

occur at various steps along the secretory pathway. The localization of tethers is thought
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to depend on their associations with a unique subset of lipids or activated small GTPases

present on target membranes. Tethering factors are believed to impart the initial

recognition of specific vesicles with their target membranes which is then amplified by

the engagement of cognate SNAREs (Cai et al., 2007a; Lupashin and Sztul, 2005; Waters

and Pfeffer, 1999). There are two types of tethering factors: coiled-coil tethers and

multisubunit tethering complexes (Lupashin and Sztul, 2005). The focus of the remainder

of this section will be on the multisubunit tethering complexes.

The multisubunit tethering complexes are evolutionarily conserved peripheral

membrane protein complexes that act prior to SNAREpin formation (Oka and Krieger,

2005; Swennen and Beckerich, 2007). There are four known multisubunit Golgi tethering

complexes: TRAPP (transport protein particle) I, TRAPP II, COG (conserved oligomeric

Golgi) and GARP (Golgi-associated retrograde protein) (Cai et al. , 2007a; Lupashin and

Sztul, 2005). In addition, there are four other known multisubunit tethering complexes on

other subcellular compartments: homotypic fusion and vacuole protein sorting (Stroupe et

al., 2006), class C core vacuole/endosomes tethering (CORVET), the exocyst and DsIl

(Cai et al, 2007a). These multisubunit tethering complexes interact with different factors

to facilitate tethering.

TRAPPI/II (see below) and COG mediate ER to Golgi and intra-Golgi transport.

The COG complex is found in the cis/medial Golgi (Suvorova et al., 2001; Ungar et al.,

2002) and functions in the retrograde trafficking of proteins from endosomes to the early-

Golgi (Bruinsma et al., 2004; Suvorova et al, 2002). It is composed of eight subunits
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(Cogí -8p) (Ram et al, 2002; Suvorova et al, 2002; Whyte and Munro, 2001). The COG

complex subunits interact with proteins involved in Golgi trafficking indicating a role for

COG in membrane traffic (Suvorova et al, 2002; VanRheenen et al, 1998; VanRheenen

et al, 1999). Importantly, the COG complex interacts with activated GTP-bound Rab

Yptlp, Golgi associated SNAREs and the COPI coat (Suvorova et al, 2002). In HeLa

cells, it was observed that knock-down of one of the components of COG did not block

anterograde transport but did, however, lead to a block in retrograde transport (Zolov and

Lupashin, 2005). This further confirmed its role in the retrograde transport of COPI

vesicles to the early-Golgi. Database searches using the amino (N)-terminal domains of

COG components revealed structural similarity with other tethering complexes (the

exocyst and GARP) indicating a possible common ancestor which diverged to specialize

at different steps of the secretory pathway (Whyte and Munro, 2001).

The exocyst is found at the plasma membrane (Guo et al, 1999) and helps target

vesicles to bud tips in post-Golgi secretion (Finger et al, 1998; Hsu et al., 2004; TerBush

et al, 1996). It is composed of eight subunits (Sec3p, Sec5p, Sec6p, Sec8p, Seel Op,

Secl5p, Exo70 and Exo84p) (Guo et al, 1999; TerBush et al, 1996) which arrange in a

tree-like configuration with subunits branching off from a central point (Hsu et al, 1998).

The exocyst complex, like the COG complex, does not possess GEF activity. However,

the exocyst does interact with the activated form of the Rab protein Sec4p (Guo et al,

1999). Most exocyst subunits are recruited to post-Golgi vesicles by the interaction of the

Secl5p subunit with active GTP-bound Sec4p (Guo et al, 1999). Two exocyst subunits,

Sec3p and Exo70p, localize to the plasma membrane (Boyd et al., 2004; Finger et al,

7



1998). Post-Golgi vesicles are tethered to the plasma membrane and the exocyst complex

can then assemble (Boyd et al, 2004). The assembled exocyst complex can then promote

SNARE-mediated membrane fusion by binding Sec Ip which binds to a SNARE complex

and promotes fusion with the plasma membrane (Carr et al., 1999; Wiederkehr et al.,

2004).

The GARP complex is found associated with the late-Golgi and mediates the

transport of endosóme derived vesicles to the late-Golgi (Conibear and Stevens, 2000;

Conibear et al., 2003; Reggiori et al, 2003). The GARP complex is composed of four

subunits: Vps51p, Vps52p, Vps53p and Vps54p. Mutations in VPS52, VPS53 or VPS54

lead to the mislocalization of proteins in the late-Golgi while protein sorting in the early-

Golgi remains unaffected (Conibear and Stevens, 2000). These results indicate that the

complex has a role in protein sorting in the late-Golgi. The GARP subunit Vps51p

associates with the t-SNARE TIg Ip found in the late-Golgi and thus may provide a link

between vesicle tethering and fusion (Conibear et al. , 2003).

The HOPS and CORVET complexes are very similar to each other. Each is

composed of six subunits, four ofwhich are common to both complexes: Vpsl 1, Vpsl6,

Vpsl8, and Vps33 (Peplowska et ah, 2007). These homologous complexes can

interconvert, forming intermediate complexes by exchanging a few subunits. However

each is localized to a different intracellular region (HOPS at the vacuole and CORVET at

endosomes) and have distinct functions (Peplowska et al, 2007). The HOPS complex is

involved in vacuole-vacuole and vesicle-vacuole fusion (Haas et al, 1995; Mayer and
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Wickner, 1997; Price et al, 2000; Wurmser et al, 2000), while the CORVET complex

mediates endosome-lysosome transport (Peplowska et al, 2007). The interaction of

HOPS and Ypt7p is required for vacuole-vacuole and vesicle-vacuole fusion (Price et al,

2000; Seals et al, 2000; Wurmser et al, 2000). Activated Ypt7p and its interaction with

Vps33p promotes the binding of HOPS to the SNARE Vam3p (Laage and Ungermann,

2001; Seals et al, 2000; Wang et al, 2001). In addition, the binding of HOPS to the

SNARE Vam7p may facilitate membrane fusion (Stroupe et al, 2006). HOPS contains

Vps41p and Vps39p, while CORVET contains their homologues Vps8p and Vps3p

respectively (Peplowska et al, 2007). Vps39p and Vps3p act as GEFs for Ypt7p and

Vps21p respectively (Peplowska et al, 2007; Wurmser et al, 2000). Vps41p and Vps8p

act as effector proteins recognizing active GTP-bound forms of these GTPases (Ypt7p

and Vps21p respectively). Exchanging subunits would change the GEF activity of the

complex from the small GTPase Ypt7p (Stroupe et al, 2006) to Vps21p (COVET) and

vice/versa (Peplowska et al , 2007).

The DsIl complex is involved in the tethering of retrograde COPI Golgi derived

vesicles with the ER (Andag et ah, 2001 ; Reilly et al, 2001). It is composed of only three

subunits: Dsllp, Tip20p and Sec39p, which all localize to the ER (Kraynack et al, 2005;

Reilly et al, 2001 ; VanRheenen et al, 2001). The subunits are linked together like a

chain: Sec39p-Dsllp-Tip20p (Tripathi et al, 2009). Interactions with both the COPI coat

and SNAREs elucidates a mechanism for the tethering of vesicles by the DsIl complex.

At the centre of the complex, Dsllp has overlapping binding sites for two COPI vesicle

coat proteins (Andag et al. , 2001 ; Andag and Schmitt, 2003). As well, at each end of the
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complex, there are t-SNARE binding sites. Sec39p and Tip20p bind to the ER t-SNAREs

Use Ip and Sec20p, respectively (Kraynack et al, 2005; Sweet and Pelham, 1993;

Tripathi et al, 2009). Interaction with these t-SNAREs as well as the t-SNARE Ufelp

and the v-SNARE Sec22p are proposed to form the SNARE complex which allows

fusion of the vesicle with the ER (Tripathi et al, 2009).

1.4.1 TRAPPI and TRAPPII complexes

As mentioned above, TRAPP is a family of protein complexes with two members,

TRAPPI and TRAPPII. In yeast, both TRAPPI and TRAPPII are composed of the same

core of seven subunits (Bet5p, Bet3p, Trs20p, Trs23p, Trs31p, Trs33p and Trs85p), while

TRAPPII has three additional subunits (Trs65p, Trsl20p and Trsl30p). As well, a novel

TRAPPII subunit called YEL048c/Tcal7p in yeast (TRAPPC2L in mammals) has

recently been identified (Scrivens et al., 2009).

TRAPP has specific GEF activity for certain GTPases which are important

vesicular transport regulators. The three key GTPases which TRAPP interacts with are

Yptlp, Ypt31p and Ypt32p. TRAPPI has GEF activity toward the specific Rab protein

Yptlp (Wang et al, 2000) while TRAPPII has GEF activity toward YPT31/32 (Jones et

al, 2000; Morozova et al, 2006). Bet3p, Bet5p, Trs31p and Trs23p represent the

minimal TRAPP subunits required for GEF activity for Yptlp (Kim et al., 2006; Cai et

al, 2008). Consistent with its role as a GEF, mutations in some TRAPP subunits lead to a
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loss in GEF activity and a defect in the secretory pathway (Sacher et al., 2001). For

instance, the Bet3p mutant (bet3-J) was created which has a temperature-sensitive (ts)

phenotype and results in a defect in the tethering of vesicles to the Golgi (Jiang et al.,

1998; Rossi et al, 1995). TRAPP containing the mutant bet3-lp has a decreased ability

to stimulate the release of 3 [H]GDP from Yptlp at 3O0C and almost a complete loss in

GEF activity is observed at 37°C (Wang et al, 2000). This is consistent with the finding

that Bet3p is necessary for Yptlp-directed GEF activity (Kim et al, 2006; Cai et al,

2008).

Co-expressed yeast TRAPPI subunits are able to assemble into a functional

recombinant complex (Kim et al, 2006). However, the co-expressed vertebrate subunits

were only able to form smaller subcomplexes and not fully assembled recombinant

TRAPP. This indicates that either there is an as yet unknown vertebrate subunit which

links the two subcomplexes or post-translational modifications are required for complex

assembly (Kim et al, 2006).

While both TRAPP I and TRAPP II are found on the Golgi, they act at different

steps in the secretory pathway. TRAPPI is associated with the c/s-Golgi (Sacher et al.,

1998) and functions in ER-to-Golgi transport while TRAPPII is associated with the trans-

Golgi/ early endosóme (Cai et al., 2005; Morozova et al, 2006) and is thought to mediate

endosome-to-toms-Golgi transport (Cai et al, 2005; Sacher et al, 2001). The detailed

mechanism ofvesicle tethering by the TRAPP complexes remains obscure but may

involve interactions with GTPases and the recognition of vesicle coat proteins.
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The ways in which the different subunits interact are likely key to the functions of

the complexes. For example, as only TRAPPI and not TRAPPII recognizes uncoated ER-

derived (COPII) vesicles (Sacher et al, 2001), the two unique and essential subunits of

TRAPPII may in some way be blocking this recognition from occurring. As well, the

subunits unique to TRAPPII may be blocking GEF activity towards Yptlp and allowing

GEF activity for Ypt31/32p (Morozova et al, 2006). Since the TRAPP complexes

activate Yptlp and Ypt31/32p in ER-to-Golgi and trans-Golgi traffic, respectively, it has

been proposed that they mediate coordinated entry and exit of material at the two ends of

the Golgi (Morozova et al, 2006).

Also, the specific composition of the COPII protein coat and possibly the vesicle

content itself may have a role in association with specific tethers and thus target

membranes. Indeed, one component of the COPII coat, Sec23p, has been shown to bind

to TRAPPI and this interaction was reported to be mediated by the Bet3 protein (Cai et

al., 2007b). Vesicle tethering was successfully reconstituted in vitro using TRAPPI and

COPII vesicles and no other tethering factors were required for association with the

complex (Sacher et al, 2001). This indicates that TRAPPI is sufficient to tether COPII

vesicles and that recruitment of other tethering factors occurs either in parallel to

strengthen the tether in vivo or after this event (Sacher et al., 2001). Such additional

factors may include Uso Ip in yeast, and pi 15 and GMl 30 in mammals.

Membrane trafficking is essential to cell survival and mutations in the tethering

factors can have adverse effects on the function of a cell. Spondyloepiphyseal dysplasia
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tarda (SEDT) is an X-linked recessive disease caused by mutations in the sedlin gene (S.

cerevisiae Trs20 protein) a component of the TRAPP complex (Suvorova et al, 2001).

This disease causes skeletal abnormalities and early-onset osteoarthritis. Although the

sedlin message is found in all cells examined, its specific effect may indicate a tissue

specific role for TRAPP (Barrowman et al, 2000; Gedeon et al, 1999; Sacher, 2003).

1.4.2 BET3

Multisubunit tethering complexes are involved in the initial stages of vesicle

recognition. Therefore, their correct localization to the appropriate subcellular

compartments is essential. While none of the TRAPP subunits have a membrane

spanning domain (Kim et al., 2005b), biochemical studies of yeast and mammalian

TRAPP suggest that it is anchored to the Golgi (Sacher et al, 2000) through electrostatic

interactions or post-translational modifications (such as lipidation) (Kim et al, 2005b;

Turnbull et al, 2005). The mechanism by which this is achieved is unclear, however

special interest has been placed on the Bet3p subunit due to several unique structural

features.

13



1.4.2.1 The crystal structure of BET3 and BET3 mutants

The crystal structure of full length mouse Bet3p was solved to a resolution of

1.9Á. Its structure consists of four a-helices and five ß-strands. One hairpin structure (ß2

and ß3) is juxtaposed to a second hairpin structure (ß4 and ß5) forming an anti-parallel ß-

sheet. One face of this ß-sheet forms hydrophobic interactions with a3 and a4 while the

other face is exposed to the solvent (Kim et al. , 2005b).

Complete chain tracing identified a central hydrophobic channel. This channel is

lined by well conserved apolar side chains contributed by a2, a3 and a4 and also by

Leul 8 on a? (Kim et al, 2005b). Curiously, the channel enclosed a long alkyl chain that

could be attributed to a myristate group in the electron density map. A conserved cysteine

at position 68 (C68) near the entrance of the channel was clearly observed in crystals of

truncated Bet3p (residues 8-172) (Kim et al, 2005b). A Bet3 mutant was generated in

yeast with a C68S substitution (inhibiting acylation) and a carboxy (C)-terminal

hemmaglutinin (HA) tag. This mutant had no temperature-sensitive phenotype nor was

there any observable change in the localization or subcellular fractionation of the mutant

versus the wild type. These results indicate that acylation is not a requirement for

membrane-anchoring of Bet3p (Kim et al, 2005b).

It has been speculated that the hydrophobic channel may be needed to bind

specifically to the Golgi membrane through the insertion of a hydrophobic anchor

protein. Therefore, to study the function of the hydrophobic channel, a Bet3p A94L

14



mutant was generated where a conserved alanine residue in the middle of the channel was

changed to a leucine residue. This substitution has no predicted effect on the structure of

the channel surrounding it but would effectively block access to most of the channel

(Kim et al, 2005b). This mutant, referred to as bet3-4, is conditionally lethal at 37°C.

Immunofluorescence visualization of the HA tagged mutant showed localization to many

intracellular compartments suggesting that localization of Bet3p to the Golgi is lost when

the hydrophobic channel is blocked (Kim et al, 2005b).

The hydrophobic channel on Bet3p is located adjacent to a wide flat surface with

an overall positive charge due to seven exposed basic residues. Five of these residues are

well conserved (>84%): Lysl3, Arg62, Arg67, Lys80 and Lys84. Although Bet3p in the

channel blocked mutant did not localize correctly to the Golgi, it was able to bind less

specifically to other membranes. The conserved positive patch of amino acids on Bet3p

may account for the interactions with the negatively charged lipids on these membranes

(Kim et al, 2005b). To examine the role of the positive surface on Bet3p, a mutant called

bet3-3 was generated containing both Kl 3E and K84E substitutions. These changes

generated a conditionally-lethal phenotype and inhibited TRAPP from binding to the

Golgi membrane (Kim et al, 2005b) suggesting that this positive patch on Bet3p is

necessary for the proper association with this membrane.

Bet3p and Trs33p are structurally similar even though their amino acid sequences

are very different (Kim et al, 2005a). The heterodimerization of these two proteins

allows for the co-precipitation ofBet5p with Bet3p (Kim et al, 2005a). This indicates
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that Trs33p facilitates the interaction of Bet3p with other proteins and thus may also have

a role in the assembly of TRAPP (Kim et al, 2005a) and its localization to the Golgi

membrane.

1.4.2.2 Genetic interactions

BET3 was first identified as a genetic interactor with the SNARE mutant betJ-I in

a synthetic lethal screen (Rossi et al, 1995). Immunopurified c-myc tagged Bet3p was

shown to be part of TRAPP. BET5, TRS20, TRS23 and TRS33 are high copy suppressors

of the temperature-sensitive mutant bet3-l (Sacher et al, 1998), as could be expected

from proteins in the same complex. Overexpression of genes that encode SNAREs

(BOSl, SEC22, SED5, BETl) and genes whose products are involved in membrane

trafficking (YPTl, SLYl, SEC17, SEC18) are also able to suppress this mutant (Sacher et

al., 1998). Co-localization and subcellular co-fractionation with the t-SNARE Sed5p

indicate that Bet3p resides on the cw-Golgi membrane (Sacher et al, 1998; Banfield et

al., 1994). Bet3p is the most highly conserved TRAPP subunit, it is essential for cell

viability, it localizes to the Golgi, and it genetically interacts with SNAREs and other

membrane trafficking factors (Sacher et al, 1998). For these reasons, Bet3p is thought to

be a determining factor in the ability ofTRAPP to attach specifically to the Golgi

membrane.
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1.5 Synthetic lethal yeast screen

Synthetic lethality is a phenomenon by which the combination of two otherwise

non-lethal mutations results in lethality. Such a genetic interaction oftentimes suggests

that the corresponding gene products act in the same or in a parallel pathway (Guarente,

1993). In the present study a synthetic lethal screen will be employed using the channel-

blocked bet3-4 mutation. By using the channel blocked mutant bet3-4 in this screen, we

hope to identify a gene whose protein product may be responsible for TRAPP's ability to

attach specifically to the Golgi membrane.

1.5.1 Overview of project

The variation of the screen chosen for the present study is based on a plasmid-

dependent assay which exploits red/white colony sectoring (Bender and Pringle, 1991).

In the adenine biosynthetic pathway, the product of the ADE3 gene acts upstream ofthe

product of the ADE2 gene. An ade2 mutation blocks the 5-aminoimidazole

ribonucleotide carboxylase step (Patterson et al, 2008) and leads to the accumulation of

the oxidized and polymerized intermediate AIR (Smirnov et al., 1967) in the vacuoles

(Weisman et al., 1987). However, a single adeS mutation and a double adel ade3

mutation result in colonies that are white in appearance since the pathway is blocked and

the red intermediate is not produced (Appling, 1999). Yeast genetics can be used to

control the red/white appearance by inserting a counter-selectable plasmid harbouring a
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wild type ADE3 gene into ade2 ade3 cells. In this scenario the preferred counter-

selectable gene is URA3 which can be counter-selected on medium containing 5-

fluoroortic acid (5-FOA) (Boeke et al, 1984). The URA3 gene codes for the enzyme

orotidine 5-phosphate decarboxylase (ODCase) which is involved in the synthesis of

pyrimidine ribonucleotides where it catalyses the decarboxylation of orotidine 5-

phosphate into uridylic acid (Umezu et al, 1971). Mutations in this gene, which lead to a

defect in enzyme activity, result in lethality unless supplemented with uracil in the

growth media. ODCase also catalyses the conversion of 5-FOA into a toxic compound

(5-fluorouracil) (Boeke et al, 1984). Therefore, only cells which have lost the URA3-

containing plasmid will grow on 5-FOA media.

Treatment of yeast with ethyl methanesulfonate (EMS) results in random

mutagenesis (mainly point mutations resulting in G to A base substitutions but also A to

G substitutions and base insertions and deletions) (Sega, 1984). When performed in a

strain with an ade2 ade3 background that carries a mutation (e.g. bet3-4) as well as the

counter-selectable plasmid mentioned above (containing URA3 and ADE3 with a wild

type copy of the mutant gene (e.g. BET3)), cells with mutations that are not synthetically

lethal with the mutation of interest will be capable of losing the URA3IADE3-conidimmg

plasmid and will appear as white colonies or red colonies with white sectors. However, if

a resulting mutation is synthetically lethal with the mutation of interest, then the colonies

will not be capable of losing the plasmid and will remain uniformly red.

Once these mutants have been identified, a yeast plasmid library is used to screen

for complementation. By complementing the EMS-induced mutation in the unknown
18



gene, red mutant colonies will be able to lose the ^DisJ-containing plasmid and will have

a white or sectored phenotype.
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2. Materials and Methods

2.1 Strains, media and oligonucleotides

The S. cerevisiae strains used in the present study are listed in Table 2.1. Bacterial

strains and plasmid information are listed in Table 2.2. Strains were grown in the

appropriate media listed in Table 2.3. All oligonucleotides (Dean, 1999) used are listed in

Table 2.4.

2.2 Construction of yeast strains for the synthetic lethal yeast screen

In order to generate the starting strain for the screen (bet3-4 ade2 ade3), strains

MSYl 16 and MSY 15a were patched one on top ofthe other to allow mating on a yeast

peptone dextrose (YPD) plate and grown for 5 hours at 300C. Diploids were then isolated

after visual inspection using a micromanipulator and allowed to grow for 3 days on YPD

at 300C. These diploids were then patched onto a sporulation (SPO) plate and sporulated

at 300C for 7 days. Following dissection of the sporulated diploids, a red (ade2) colony

was selected which was leu+ and temperature-sensitive at 38°C indicating it contained the

bet3-4 mutation. This strain was designated MSYl 88d.

This strain, MSY188d, was then crossed again to MSYl 16. Following dissection

of the tetrads, a white (ade2 ade3) colony was selected which is also leu+ and
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Table 2.3A Media

Media Components
YPD 1% yeast extract, 2% peptone, 2% dextrose

0.67% yeast nitrogen base, 0.08% amino acid mix, 2% dextrosedrop-out

5-FOA
0.67% yeast nitrogen base, 0.08% complete amino acid mix, 2% dextrose,
0.1% 5'-FoA

SPO
1% potassium acetate, 0.1% yeast extract, 0.05% dextrose, 0.02% complete
amino acid mix

LB+ amp 0.5% yeast extract, 1% tryptone, 1% sodium chloride, 34mg/ml Ampicillin
G418 1% yeast extract, 2% peptone, 2% dextrose, 200µg/ml G418

Note: For solid media 2% agar was added.

Table 2.3B Amino acid mix

Components (g/ 25L of media)
1 g adenine
0.5g uracil
Ig tryptophan
0.5g histidine
0.5g arginine
0.5g methionine
0.75g tyrosine
0.75 isoleucine
3.725g valine
0.75g lysine
1 .25g phenylalanine
2.5g glutamic acid
5g threonine
1.5g leucine

Note: To make low adenine medium 0.1 5g of adenine is used in the mix instead of Ig

which lowers the concentration of adenine from 40mg/L to 6mg/L.

23



(U
?
C
?
3
s?

GO

§

Ü

O
<
O
H
O
<:
?
?
Ü
U
H
<
U

¡?

?
>>
?
?
G
cu

ÖXJ

VO
m
m
Pi

Ü
H
Ü
Ü
U
H
O
O
O

U
O
<
Ü
O
<

<
H
Ü

H
<
H
Ü
Ü
O
O
H
O
U
H
<
U
<
O
H
Ü
H
U
H
<
U
O
H
O
O
<
O
U
<:
o
<
H
Ü

?
CCJ

H

<
H
Ü
Ü
H
H
<

<
H
Ü
Ü
H
H
H
O
<
U
H
O
O
<:
o
O
Ü
H
<

OJ

S
O

,CT
O
O
Ti-

(J-.
I

HH
O
Kl

GO
VO

CO

>

tó

<
O
H
<
Ü
H
<

O
Ü
H
H
Ü
<:
o
o
H
U
<
O
O
<;

O O^
CO
CO
Ph
Ph

-P
O
O
TJ"

CO

P.

-CT
(N
OO
(N

bO
g'3
(U
-3
(D

cQl

O
Ki

GO

t/3
Ph
>

P-
-P
(N
OO
(N

?
HH
O
Ki

GO
?

P¿¡
VO

73
PhI
>

od

VO

(/3
Ph
>

PQ
I

VO

CO
Ph
>

U
I

VO

[/3
P.

<
U
U
<
U
<
H
O
<
E->
O
<
O
O
H
<

<
O
U
O
Ü
O
H
O
Ü
<
O
U
<:
Ü
<
O

oa
C!

1
(U

er
<u
CO
Sh

c2

VO

co
Ph
>

O
H
<
O
H
Ü
<
O
H
<
H
Ü
Ü
H
H
H
O
<

<
H
H
O
U
H
O
O
<
O
U
<

<
H
Ü

U
H
H
a

O
Ü
H
H
H

O
Ü
H
U
H
<:
<:
o
o
<
<

«ß

s
O

O
O
Tf

U-.
HH
O
Ki

GO
en
(N

CO
Sh
H

PÏ
CO
Ki
Ph

O
O
Ti-

HH
O
Ki

GO
m
(N
co
)H
H

O
H
Ü
H
H
O
H
<
H
<
Ü
H
Ü
<
Ü
H
U
O
Ü
U
H
<
U
U
H
O
O
<
O
O
<
O
<
H
Ü

bfl
_g'3
C
(U
3
cr
<u
C/3
H.

<u
CO
m
(N

CO

O
U
H
<
<
U
H
Ü
H
H
<

<

u
O
H

H
Ü
O
H
U
O
<
O
O
<
O
<:
H
o

i
s
O

P.
-P
O
O

Ki
P-
P-

O
O
Tt-

Pi
cr
(U
co
m
(N

CO

HH

GO

OO

tí*3
CO

GO
in
OO

H

O
H

O
<
O
H
O
Ü
<
H

O
O
O
O

o

CT1
(U
CO

ID
OO
co

OX)
ci

g
(U

cr
(U
co
s-

cr
<u
CO
in
oo

<
H
Ü
O
H
H
O
?
ü
H
Ü
<
O
U
O
<

<:
U
<
H
H

e

I
(U

er
(U
co
in

m9

o
cr
(U
co

>n
oo
co
Ih
H

O
O
<
Ü
O
H
<
<
U
O
O
<
O
U
<
H
O
H
H
H
O
O
H
<
O
O
H
<
Ü
Ü
Ü
<

5
H
Ü
O
O
H
<
O
O
O
O
O
H
H
U

<
H
U
U
H
H
<

Ü
O
U

OX)

(U
3
er
<u
co
>H

h2

ben
tì

(U
3
cr
(U

«ai h2:

ol
?
co
in
oo
co

H

OX)
_£'3
C
(U
3
cr
<u

£

*

O
O
?
m
+-*
(U

PQ

24



temperature-sensitive at 38°C and was designated MSY206. Strain MSY207 was

obtained by swapping the LEU2 gene in MSY206 for the LYS2 gene using a standard

marker swapping protocol (see below, section 2.8) (Voth et al., 2003) and selecting a

strain which is lys+ leu urd and temperature-sensitive at 3 80C. The leu2 marker was

made available in this strain for the later use of a yeast plasmid library which is on a

LEU2 plasmid. MSY207 was then transformed with a balancing plasmid containing wild

type BET3 (plasmid from MSB365a) to obtain the strain MSY21 la.

2.3 Plasmid construction

To construct the balancing plasmid used in the synthetic lethal screen, the wild

type BETS open reading frame with 400 base pairs upstream and downstream was

isolated from the plasmid from strain MSB8 ($RS315-BET3) by digesting with the

restriction enzyme Xbal (New England Biolabs). The plasmid from strain MSB340 with

\heADE3 and URA3 genes was also digested with Xbal for lhour at 37°C followed by a

30 minute incubation at 37°C with calf intestinal alkaline phosphatase (CIP) to

dephosphorylate the 5' ends of the linearized deoxyribonucleic acid (DNA). The insert

and linearized plasmid DNA were then fractionated on a 1% agarose gel and the bands

were extracted using a gel extraction kit (Fermentas). The insert and plasmid were then

ligated together with T4 DNA ligase (200 Units in a total volume of 1 0µ1) at room

temperature overnight. The following day, 5µ1 ofthe ligated DNA was transformed into

40µ1 of CaCh competent DH5a cells and plated on solid Luria-Bertani (LB)+ampicillin
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(LB+amp) overnight at 37°C. The following day a single colony was picked into 3ml of

liquid LB+amp and again grown overnight. The following day the plasmid was isolated

from 1.5ml of this culture using a kit (Fermentas). The presence of the insert was

confirmed by its release from the plasmid following digestion with Xbal. The resulting

plasmid is referred to as MSB365a.

2.4 Transformation of Saccharomyces cerevisiae

In order to transform cells with plasmids or DNA fragments a 5ml pre-culture was

grown in the appropriate medium overnight at 300C on a rotary shaker at 250rpm. The

next day, the absorbance at 600nm of a 10 fold dilution of this culture was measured in a

spectrophotometer. Commonly, a concentration of lxl06cells/ml gives an optical density
(OD)óoo of 0.1. Using this formula the approximate number of cells in culture at different

points in this protocol could be calculated (Gietz and Woods, 2002).

Liquid media (50ml) was inoculated with 2.5x1 08 cells to give a starting
concentration of 5x1 06 cells/ml equivalent to an OD6oo of 0.5 and grown at 300C for 3-5

hours on a rotary shaker at 250rpm. When an OD6oo of2 was reached (~2xl07cells/ml),
cells were pelleted by centrifugation at 3000 ? g for 5 minutes in a table-top centrifuge.

The pellet was washed with 25mL of sterile distilled water (dH20) and resuspended in

lml of sterile dFLO. Cells were pelleted again at the same speed for 1 minute and

resuspended in dH20 to a final volume of lml. For each transformation, 100µ1 of this cell
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Suspension was transferred to a fresh 1 .5ml microcentrifuge tube, pelleted at 13000rpm

and the supernatant discarded. A transformation mix consisting of 33.3% polyethylene

glycol (PEG) 3500, 10OmM lithium acetate (LiAc) and 1.4µ£/µ1 of boiled salmon sperm

DNA (carrier DNA) and sample DNA (10µ1 if linear or 2µ1 if circular) was added to the

cells and mixed vigorously. A typical transformation contained a total volume of 360µ1.

The tubes were incubated in a 42°C dH20 bath for 40 minutes. Samples were then

centrifuged for 30 seconds (13000rpm) and the supernatant discarded. Cells were

resuspended in 500µ1 of sterile dl-^O and 200µ1 of this cell suspension was plated on the

appropriate selective medium and incubated at 300C for 2-3 days (Gietz and Woods,

2002).

2.5 Mating of Saccharomyces cerevisiae

Strains were crossed on YPD and grown overnight at 300C and replica plated onto

the appropriate double drop-out plates (to select for diploids) and grown overnight at

300C. Diploids were streaked onto new plates to obtain single colonies and grown for 3

days at 300C.

Alternatively, when markers were not available to select for diploids, strains of

opposite mating types were patched one on top of the other to allow mating on YPD and

grown for 5 hours at 300C. Diploids were then isolated using a micromanipulator and
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allowed to grow for 3 days on YPD at 300C. MSYl 16 was crossed with MSY15a in this

manner to ultimately generate MSYl 16.

2.6 Sporulation of Saccharomyces cerevisiae

Single colonies from diploids were patched onto sporulation (SPO) plates and

grown for 5 to 9 days at 300C. Once tetrads were observed under a light microscope,

plates were removed from the 300C incubator.

2.7 Dissection of Saccharomyces cerevisiae asci

Using a 3 mm loop, cells from the patches on the SPO plate, a mixture of

vegetative cells and asci, were placed into ???µ? of tetrad juice (IM Sorbitol, 5OmM Tris

(hydroxymethyl) aminomethane (Tris) pH 7.5, 0.05mg/mL Zymolyase 100T). After 3 to

5 minutes of incubation at room temperature to lightly digest the spore wall, 5µ1 of the

cell mixture was gently spread on a YPD plate. The cells of 10 to 12 tetrads were then

separated and relocated in vertical rows using a micromanipulator and grown on rich

medium (YPD) at 300C for 2 days after which time the growth pattern of the haploids can

be observed. Auxotrophic markers and mutations were assessed by replica plating onto

selective media and observing growth after 1-2 days at 300C or 38.5°C (Sherman and

Hicks, 1991).
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2.8 Marker Swap

In order to facilitate further characterization of synthetic lethal strains, a leu2

auxotrophic marker was needed. The LEU2 gene was disrupted with LYS2 using the

plasmid MS7 (D771) (Voth et al, 2003). The plasmid was digested with Pstl and Sad

for 1 hour at 37°C, purified on a spin column (Qiagen) and resuspended in 50µ1 Tris

ethylenediaminetetra acetic acid (EDTA) (TE) buffer. This linear DNA (10µ1) was then

transformed into the yeast strain MSY206 (see method above) and a lys+ leu" colony was
isolated. This strain is referred to as MSY207.

2.9 EMS mutagenesis and death rate calculation

Ethyl methane sulfonate (EMS), a volatile organic compound that is a carcinogen

and a mutagen, was used to generate random mutations in DNA. Two 3ml cultures of

MSY21 la were grown in -URA drop out medium at 30°C for 3 days to a final OD6oo of

3.5 and then stored at 4°C. Two 1ml aliquots from one culture were used to test the death

rate following EMS mutagenesis as follows. Cells were pelleted at 6500rpm in a

microcentrifuge for 10 seconds and the supernatant discarded. Cells were resuspended in

lml sterile dEbO, pelleted and again washed with 1ml of sterile dH20. Cells were then

resuspended in Imi 0.1M sodium phosphate buffer pH 7.0. A 30µ1 aliquot of EMS was

added to one ofthe two tubes, and sealed with parafilm. The untreated tube served as the

control. The cells were vortexed vigorously and placed on a nutator in a 300C incubator
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for 1 hour. Cells were pelleted and the supernatant removed. The pellets were then

resuspended in 200µ1 of 5% sodium thiosulfate (to inactivate the EMS) and transferred to

new tubes. Cells were washed twice with 200µ1 of 5% sodium thiosulfate and finally

resuspended in 1ml of sterile dH20. Serial dilutions up to 10"4 were prepared and 150µ1
of each was plated on YPD plates and incubated at 300C for 4 days. The death rate

(colonies on treated plate divided by colonies on control plate) of MSY21 la treated with

30µ1 of EMS for 1 hour was calculated by counting the number of colonies on thel :1000

and 1 : 1 0000 plates. For the present screen a death rate of 62% was obtained where a

death rate between 50 to 70% is considered ideal.

For the actual screen, mutagenesis was repeated under the same conditions with

the second 3ml culture of MSY21 la. A 150µ1 aliquot ofa 1 :500 dilution was plated on

60 plates and grown at 300C for 4 days. It was calculated that this amount should

correspond to -48000 colonies (about an 8X coverage of the yeast genome).

Following the four day incubation at 300C, the 60 plates were refrigerated at 4°C

for 9 days to allow the red color in the mutated colonies to become more apparent. Red

colonies were streaked onto new YPD plates and grown at 3O0C for 3 to 4 days followed

by storage at 4°C for 3-4 days. This was performed a total of three times to yield the final

pool of synthetic lethal mutants studied.
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2.10 Confirmation of genetic interaction

All 70 potential synthetic lethal mutants were crossed to a wild type strain

(MSY20). Diploids were isolated and sporulated to obtain tetrads (see above section 2.6).

Tetrads were dissected using a micromanipulator and grown on YPD for 3 days at 300C.

Dissection plates were then replica plated on -URA and YPD (at 38.5°C) to test the

phenotype of the ascospores. Growth on the dissection and replica plates was scored and

analyzed for a synthetic lethal phenotype.

2.11 Identification of TRAPP genes as synthetic lethal interactors

A library of yeast TRAPP subunits on individual low copy plasmids (DNA

isolated from bacterial strains MSB299 (BET5), MSB300 (TRS20), MSB301 (TRS31),

MSB302 (TRS23), MSB303 (TRS85), MSB304 (TRS65), MSB305 (TRSl20), MSB306

(TRS33), with pRS3 1 3 backbones, was made with equal contribution from each plasmid

DNA. This library as well as the individual plasmid in MSB470 (YEL048c with a

pRS315 backbone) and MSB474 (TRSl30 with a pRS425 backbone), were transformed

into all 70 synthetic lethal mutants. Transformation of these mutant strains with the

plasmid from MSB297 (BET3, with a pRS313 backbone), was used as a control.

Transformants were replica plated onto 5 -FOA plates to counter-select against the BET3,

URA3 plasmid. Mutant strains which were not complemented by any genes present in the

TRAPP library or YEL048c and TRSl30 are presumed to have a mutation in a non-
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TRAPP gene. Colonies able to grow on 5-FOA were identified as having a mutation

which can be complemented by a TRAPP subunit.

Further transformation with the individual TRAPP subunits helped identify the

exact TRAPP subunit which could complement the unknown mutation in the synthetic

lethal mutant.

2.12 Genomic DNA (gDNA) extraction

Genomic DNA was isolated using a standard yeast genomic extraction protocol.

Initially, 1 .5ml of overnight culture was pelleted at top speed (13000rpm) in a table top

microcentrifuge for 1 minute. The pellet was washed with 750µ1 of dF^O and then

resuspended in 500µ1 of spheroplast medium (0.9M sorbitol, 0.1 M EDTA, 3OmM ß-

mercaptoethanol and 0.1 mg zymolyase 100T) and incubated at 37°C for 1 hour. Cells

were again pelleted at 13000rpm and gently resuspended in 200µ1 of Tris-EDTA (5OmM

Tris pH 7.5 and 2OmM EDTA). A 30µ1 aliquot of 10% sodium dodecyl sulphate (SDS)

was added and the cell mixture was incubated at 700C. After 30 minutes, 80µ1 of 5M

potassium acetate was added and tubes were incubated on ice for 30 minutes to one hour.

Cells were centrifuged at 13000rpm for 10 minutes and the supernatant was transferred to

a new tube. Tubes were centrifuged again for 1 minute (13000rpm) and the supernatant

was transferred to a new tube avoiding the transfer of any debris. An equal volume of

isopropanol was mixed with the supernatant and centrifuged for 1 minute. The pellet was
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then washed with 500µ1 of 70% ethanol and air dried in a 37°C heat block for 1 5 minutes.

The clear DNA pellet was then resuspended in TE buffer (1OmM Tris pH 7.5 and ImM

EDTA).

2.13 Yeast plasmid library DNA maxiprep

The yeast plasmid library YEp213 with a LEU2 backbone was kindly provided

Doreen Harcus (Biotechnology Research Institute, Montreal). The cells were diluted up

to 10"6 and plated on LB+amp to calculate the cell titer. Cell titer was calculated to be
4.32xl09 cells/ml. Plasmid DNA was extracted from 2.16xlOn cells using a cesium

chloride-based maxiprep. The concentration of the resulting DNA was 0.94µ£/µ1.

2.14 Yeast plasmid library screen and the identification of synthetic lethal mutants

To identify the mutated gene which was lethal in combination with bet3-4, the

yeast plasmid library was transformed into the synthetic lethal mutants where the second

mutation was shown not to be in one of the TRAPP subunit genes.

The yeast plasmid library DNA was transformed into synthetic lethal mutants on a

small scale on one large 15cm plate of-LEU/low ADE (drop-out mix without leucine

and only 6mg/L of adenine instead of 40mg/L) for each transformation. If a large number
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of red transformants (2000 to 4000) and few (5) to no white or sectored transformants

were observed, these strains were transformed on a large scale to obtain 50000 to 60000

transformants. White or sectored colonies were isolated by streaking out three

consecutive times on fresh plates, allowing for three days of growth for each plate, and

then grown in -LEU liquid media. Library plasmid DNA was extracted (see below) and

amplified by transforming into E. coli. Bacterial plasmid DNA was extracted using a

standard plasmid extraction kit (Fermentas) and re-transformed into the original mutant

yeast strain to see if it could rescue the synthetic lethal phenotype again. Plates were

replica plated onto 5-FOA. Those plasmids that were able to complement one of the

mutations present (growth on 5-FOA) were sequenced to determine the boundaries of the

yeast genomic DNA insert (see below).

2.15 Yeast plasmid extraction

The isolation of yeast plasmid DNA was performed using a user-developed

protocol with the QIAprep Spin Miniprep Kit from Qiagen (Michael Jones from the

Chugai Institute for Molecular Medicine in Ibaraki, Japan). Isolated white colonies from

the synthetic lethal mutants complemented by plasmids from the YEp213 yeast plasmid

library were grown overnight (16 to 24hrs) in 5ml of -LEU drop out medium at 300C.

Cells were then pelleted by centrifugation for 5 minutes at 3000 ? g (gravity) in a table-

top centrifuge and resuspended in 250µ1 of Resuspension buffer (Fermentas). Acid-

washed glass beads (70mg) were added to the cells and the tubes were vortexed for 5
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minutes. Beads were allowed to settle and the supernatant was removed. Lysis buffer

(25µ1) (Fermentas) was added to the supernatant and tubes were inverted gently 4-6 times

and left at room temperature for 5 minutes. Neutralization buffer (Fermentas) (350µ1)

was added and the tubes were inverted gently 4-6 times. Lysates were centrifuged at

13000rpm for 10 minutes in a microcentrifuge. Supernatants were passed through

QIAprep Spin Columns by centrifugation at 13000rpm for 1 minute. Flow-through was

discarded and the column was washed with 750ul of PE buffer from the QIAprep spin

miniprep kit and centrifuged at 13000rpm for 1 minute. Flow-through was again

discarded and residual buffer was removed by an additional centrifugation step at

13000rpm for 1 minute. The DNA was eluted by the addition of 25µ1 of elution buffer

(EB) (Fermentas). Following a 1 minute incubation at room temperature the eluted DNA

was collected from the column by centrifugation at 13000rpm for 1 minute.

2.16 Sequencing of yeast plasmiti insert

Complementing plasmids from the yeast plasmid library (YEp213) were checked

for the presence of BET3 by performing a polymerase chain reaction (PCR) with Taq

DNA polymerase (Fermentas) and oligos Bet3BamHI-F and Bet3EcoRI-R. A 25µ1

amplification mix contained 1 Unit of Taq DNA polymerase (Fermentas) enzyme with

2.5µ1 of Taq Buffer (without magnesium chloride) (Fermentas), 2µ1 of 12. 5X magnesium

chloride, 2.5µ1 of each 5µ? oligo, 2.5µ1 of 2mM dNTP and ?µ? of a 1/5 dilution of the

template DNA. Amplification conditions consisted of 95°C for 3 minutes, 30 cycles of

35



95°C for 30 seconds, 55°C for 30 seconds and 72°C for 1 minute, and a final elongation

step at 72°C for 7 minutes. IfAETJ was not detected in these samples, then they were

sent for sequencing at the McGiIl Genome Centre with oligos P336 and P82. This

generated plasmid and insert sequence information from both ends of the insert. Aligning

the insert sequence to the Saccharomyces cerevisiae genome database

{www.yeastgenome.org) allowed the coordinates of the beginning and end of the insert to

be obtained. The chromosomal maps of these regions indicate the whole or partial genes

present in the inserts.

2.17 Sequencing of TRAPP genes and potential novel interactors

Extracted genomic DNA from synthetic lethal mutants was subjected to PCR

amplification using oligos to amplify the open reading frame (ORF) and 400bp upstream

and downstream of the complementing gene (Table 2.4). A 50µ1 amplification mix

contained 1.75 Units of High Fidelity Polymerase enzyme with 5µ1 of Buffer 1 (Roche),

5µ1 of each 5µ? oligo, 5µ1 of 2mM dNTP and 1 µ? of a 1/5 dilution of the template DNA.

Running conditions consisted of 95°C for 3 minutes, 30 cycles of 95°C for 30 seconds,

55°C for 30 seconds and 72°C for 1 minute/kb, and a final elongation step at 72°C for 7

minutes. For TRS85 and VPSl 6, the extension temperature was lowered to 68°C. PCR

products were purified using a PCR purification kit (Fermentas) and sequenced at the

McGiIl University/ Genome Quebec Innovation Centre using sequencing oligos listed in

Table 2.4.
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2.18 Confirmation of potential novel suppressors

To help identify the potential novel suppressor in the insert in MSB736,

fragments of this insert were cut out (removing certain genes) using restriction enzymes

and the vector re-ligated together. MSB736 was digested with the restriction enzyme

Pvull (New England Biolabs) and electrophoresed on a 1% agarose gel. Three fragments

of 2380bp, 2628bp and 10286bp were observed as expected and the largest fragment was

gel extracted using a gel extraction kit (Fermentas). This DNA was ligated together and

transformed into competent DH5a cells (as described in section 2.3). Plasmid DNA was

extracted from a single colony using a miniprep kit (Fermentas) and digested with Pvull

to verify the loss of part of the insert. As expected, since there should only be one Pvull

restriction site in the new construct, only one fragment equal to the size of this plasmid

(10286bp) was observed. This plasmid is referred to as MSB821 .
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3. Results

3.1 Synthetic lethal yeast screen

A synthetic lethal yeast screen was performed with a bet3-4 mutant strain to help

identify genetic interactors which may be linked to the ability of TRAPP to anchor itself

specifically to Golgi membranes. The bet3-4 mutant strain (MSY21 la) was randomly

mutagenized with EMS. Roughly 48000 colonies (8X the yeast genome) were screened

for a uniformly red phenotype. A total of 1 87 such colonies, ranging from pink to dark

red, were identified and re-streaked three times each, making sure to select colonies

which were uniformly coloured following 3-4 days at 4°C. After re-streaking, only 70

mutants remained completely red and never showed any white sectoring. This uniform

red colour indicates that all the cells need to retain the balancing plasmid in order to

survive and that the mutations present in these mutants are synthetically lethal with bet3-

4.

3.2 Confirmation of synthetic lethal phenotype

In order to confirm the genetic interaction visually observed by the red colony

color, all 70 mutants identified in the synthetic lethal yeast screen were crossed with a

wild type (wt) strain (MSY20), sporulated and dissected. Dissection plates were then

replica plated onto YPD (grown at the restrictive temperature of 3 8. 5 0C) and -URA
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(grown at 300C). The bet3-4 allele is temperature-sensitive at 38.5°C and so cells which

have this mutation display slower growth at this temperature. The random mutation

produced from the exposure to EMS is at an unknown locus and there is no direct way of

tracking this mutation. In each ascus there are two wild type copies and two mutatant

alleles of each of these genes. In each ascus, the induced mutations either: do not co-

segregate with the beÜ-4 allele (nonparental ditype), co-segregate in only one ascospore

(tetratype), or co-segregate in two of the ascospores (parental ditype) (see Figure 3.1).

Since we have no way of tracking the location of the unknown second mutation, we

predict that if the cell does not grow (on YPD at 300C) it has both mutations present and

that the interaction is a confirmed synthetic lethal interaction. In this scenario, either all

four or only three or two ascospores are able to grow from each tetrad. This pattern is

referred to as a synthetic lethal growth pattern and indicated as 4,3,2 or 4,3 or 3,2 (see

Figure 3.2). Fifty mutants were identified as having this synthetic lethal growth pattern

(see Table 3.1). If the combination of these two mutations is in fact not lethal, then we

would expect all four cells of all asci to be able to grow on the dissection plate. These

strains would then have been rejected for not containing a synthetic lethal interaction.

However, no such strains were identified.

If the two mutations co-segregate it is either that these mutations are found in the

same gene {BETS) or in an adjacent gene tightly linked to BET3. In this case, two of the

ascospores in all asci will not be able to grow on the dissection plate, while the other two

would have no mutations and grow well. This is a 2 live: 2 dead growth pattern (indicated

as 2:2) (see Figure 3.3). Eight mutants had this growth pattern and are presumed to
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Figure 3.1 Tetrad types. Different potential outcomes from the cross AB ? ab' are listed

whether the genes are on homologous chromosomes (center column) or on

nonhomologous chromosomes (right column). Parental ditypes (PD): all four gametes are

parental. Nonparental ditypes (NPD): all four gametes are recombinant. Tetratypes (T):

two gametes are parental and two gametes are recombinant. When the PD> NPD the

genes are linked and are on homologous chromosomes. When genes are on

nonhomologous chromosomes the PD=NPD while the T are more common.
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A B C

YPD 300C YPD 38.5°C -URA

Figure 3.2 Independent segregation of mutant alleles. Dissection of mutant #98

crossed with MSY20 (wild type strain). All twelve dissected tetrads show a growth

pattern indicative of independently segregating mutant alleles. (A) Dissection plate on

YPD at 300C. Three of the four ascospores grew in tetrads 3, 6, 7, 8 and 11, while only

two grew in tetrads 1, 4, 9 and 12. This indicates a 3,2 growth pattern. There is a

maximum of 2 red and 2 white colonies for each dissected tetrad. Although not shown

here, it is possible for all four ascospores to be able to grow. This would be indicated as a

4,3,2 growth pattern. (B) Replica plate on YPD at 38.5°C. When only two ascospores

grew on YPD at 300C they were not temperature-sensitive at 38.5°C because they do not

have the betS-4 mutation. When only three of the ascospores in a tetrad grow on YPD at

3O0C, only one of these is temperature-sensitive at 3 8. 5 0C and grows slower. (C) The

absence of growth on -URA at 3O0C confirms the loss of the balancing BETi URA3

plasmid.
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YPD 300C

Figure 3.3 Linked segregation of mutant alleles. Dissection of mutant #3 crossed with

MSY20 (wild type strain) on YPD at 300C. Tetrads 1 through 12 show a distinct 2 live: 2

dead pattern indicating linked segregation of the mutant alleles. The second mutation is

either in or very close to the BET3 gene. Dissected tetrads were also replica plated onto

YPD and grown at 38.50C and show no temperature sensitivity (not shown). Absence of

growth on -URA confirmed the loss of the balancing BET3 URAS plasmid (not shown).
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contain a second bet3 mutation resulting in lethality (see Table 3.2).

Thirteen strains (mutants #17, 24, 45, 52, 63, 64, 66, 112, 130, 136, 144, 153 and

157) were disregarded as they either grew very poorly or they did not show conclusive

growth patterns following dissection since they kept the wild type balancing plasmid (see

Table 3.1).

3.3 bet3-4 is synthetically lethal with genes encoding the TRAPP subunits TRS23,

TRS65 and TRS85

To determine whether any of the induced mutations were in known TRAPP

genes, all confirmed synthetic lethal mutants were transformed with a library of plasmids

containing all known TRAPP subunits (BET5, TRS20, TRS23, TRS31, TRS33, TRS65,

TRS85, TRSl 20, TRSl30 and TCAlT) on either LEU2 or HIS3 plasmids (see Table 2.2

and Figure 3.4). The synthetic lethal mutants which showed some complementation with

the library of TRAPP subunits were further transformed with individual TRAPP subunits

(see Figure 3.5). Transformants were replica plated onto 5-FOA plates to see if they

could survive the loss of the BET3 gene on the balancing URA 3 plasmid. If all

transformants grew on 5-FOA then the specific TRAPP gene in question is able to

complement either the bet3-4 mutation or the second mutation found in that strain. To

identify the second mutation, the DNA sequence of the TRAPP gene complementing the

phenotype of the synthetic lethal mutant was compared to the sequenced genomic DNA
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Table 3.2 Summary of TRAPP mutants

Mutant
Synthetic lethal
phenotype when

crossed to wt
TRAPP
subunit

Identified mutation

4,3,2 Trs23 ORF wt, +/-300bp also wt
4,3.2 Trs23 1 base missing 29 bases after stop codon

16 4,3,2 Trs23 P194L, base 581 is a C changed to a T
26 4,3 Trs23
95 4,3,2 Trs23 ORF wt, +/-300bp also wt
98 3,2 Trs23 Gl 3 S, base 37 is a G changed to an A
139 4,3,2 Trs23
142 4,3,2 Trs23
169 4,3,2 Trs23
172 4,3,2 Trs23
81 4,3,2 Trs23/Trs33
104 4,3,2 Trs23/Trs33
114 4,3,2 Trs23/Trs85
148 4,3 Trs23/Trs31
177 3,2 Trs23/Bet5
37 4,3 Trs85 premature stop codon, 58a.a. truncation
159 4,3,2 Trs85 premature stop codon, 392a.a. truncation
146 4,3,2 Trs65
149 3,2 Trs65/Trsl20

2:2 Bet3
2:2 Bet3

20 2:2 Bet3
30 2:2 Bet3
43 2:2 Bet3
51 2:2 Bet3
53 2:2 Bet3
164 2:2 Bet3

Table 3.2 Summary of TRAPP mutants. Synthetic lethal mutants which showed some

complementation by a library of TRAPP subunits were classified as TRAPP hits. These

were further tested with individual TRAPP subunits and the complementing subunit(s)

are listed. TRS23 was sequenced in mutants #7, 8, 16, 95 and 98. TRS85 was sequenced

in mutants #37 and 159. Mutants that had a 2:2 dissection pattern are presumed to contain

mutations in bet3 or a tightly linked gene.
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Replica plates

5-FOA

-URA/-HIS
BET3 (MSB297)

-URA/-HIS
TRAPP library

-URA/-LEU
YEL048C (MSB470)

-URA/-LEU
TRS 1 30 (M SB474)

Figure 3.4 TRAPP library screen. Mutant #98 was transformed with the TRAPP library

on plasmids containing either HIS3 (BET5, TRS20, TRS23, TRS31, TRS33, TRS65,

TRS85, TRSl20) or LEU2 (TCAl 7, TRSl 30) and replica plated onto 5-FOA (300C) to

counter select for the BET3 URA3 balancing plasmid. Ability to grow on 5-FOA indicates

complementation by a TRAPP gene. As seen by growth on 5-FOA, all colonies on the
47



control transformation plate with BET3 (MSB297) were able to grow without the

balancing plasmid. No growth is seen on the 5-FOA plates for the TCA 17 and TRSl30

transformations. Approximately l/8th of the TRAPP library transformants were able to
grow on 5-FOA. Therefore, mutant #98 most likely contains a mutation in one of the

TRAPP genes tested on that plate.
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Replica plates

-URA/-HIS 5-FOA

BET3 (MSB297)

BET5 (MSB299)

TRS20 (MSB300)

TRS31 (MSB301)

TRS23 (MSB302)
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Figure 3.5 (continued) Complementation by a TRAPP subunit
Replica plates

-URA/-HIS 5-FOA

TRS85 (MSB303)

TRS65 (MSB304)

TRS120 (MSB305)

TRS33 (MSB306)

Figure 3.5 Complementation by a TRAPP subunit. Mutant #98 was transformed with

individual TRAPP subunits (HIS3 plasmids) and replica plated onto 5-FOA (300C) to

counter select for the BET3 URA3 balancing plasmid. Ability to grow on 5-FOA indicates

complementation by the TRAPP subunit. Only TRS23 is able to complement one of the
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mutations present in mutant #98 and allow growth on 5 -FOA. Mutant #98 most likely

contains a mutation in TRS23.
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of the untreated (no EMS exposure) strain (MSY2 1 la). TRS23 and TRS85 were

confirmed as genetic interactors of the BET3 allele bet3-4. While TRS65, TRS31, TRS33,

TRSl 20 and BET5 complemented some of the synthetic lethal mutants (see Table 3.2),

they were not sequenced to confirm the location of the mutation(s) present in the mutants

since we were interested in non-TRAPP genes.

Potential trs23 mutants: TRS23 was able to complement the synthetic lethal

phenotype in ten mutants generated from the screen (#7, 8, 16, 26, 95, 98, 139, 142, 169

and 172) (see Table 3.2). To verify that these strains indeed contained mutations in

TRS23, five representatives of this pool (#7, 8, 16, 95 and 98) were sequenced with

primers that covered only the ORF or primers that included the flanking 400 bases.

Sequences were compared to that of untreated MSY21 la (see Figure 3.6). Mutant #8 had

no mutations present in the ORF but revealed a one base deletion 29 bases after the stop

codon. Mutant #16 contained a C to T substitution at position 581 resulting in a P194L

mutation in the protein. Mutant #98 contained a G to A substitution at position 37

resulting in a G13S mutation in the protein. No TRS23 mutations were found in mutants

#7 and #95.

There were five mutants (#18, 104, 1 14, 148 and 177) which showed

complementation of the phenotype by TRS23 as well as a second TRAPP subunit: #81

and #104 (TRS33), #1 14 (TRS85), #148 (TRS31) and #177 (BET5) (see Table 3.2). While

both genes can complement the mutation, only one of these genes harbours the mutation.

These mutants were not sequenced since we were interested in non-TRAPP
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TTTTGGCAGAGATTGCTGGGGCGAGATGCAGTACTACACCACTTTAATGGAAAAACTGAATAGGAAATGGTACAC
GAGATTTTTCTTCCCATAAAATGGAAGTTATCAATATTGTAAAGAGAAGCATTTACAAGCTTTTATTTTTCTTTT
TAATTTCCACTACTGGTTCTGCTTTAAAATGTTGTTTTATAATTTATGTACATTTAGGCCTATAGAAGATTCTTT
CAATAATATGCTACACATTCTTTTATTTTTCCATCATATGTTGGAGTTTATGCCTCCTCGGCAGGAGTTGGGCGG
TGCGAAGAGAAGAAAAAGAGTGAAACTAAAAAAAGGAATCTGCCTTTGCATAAGTTCAAAAGTGCAATTTTAGTG
TTGGATTTAAACGGGAAAAATTGäA|ATG1GCCATCGAAACAATACTTGTAATÄAACAAATCA§GCGGACTAATCTA
TCAGCGGAATTTTACCAACGACGAACAGAAATTGAACAGCAATGAATACTTAATTCTTGCTAGTACACTGCACGG
TGTATTCGCCATCGCGAGCCAGCTGACTCCGAAGGCATTACAGCTAACTCAACAAACGAACATCGAAAATACCAT
CCCATATATACCTTACGTGGGCATGTCCAGCAATAGGAGCGATACAAGAAATGGAGGTGGCAATAACAACAAACA
CACTAATAATGAAAAACTGGGCAGTTTTAAAGGAGATGATTTTTTCAAAGAACCATTTACGAACTGGAACAAGAG
CGGATTGAGACAACTATGCACGGATCAGTTCACGATGTTCATATATCAGACCCTAACCGGCCTGAAGTTTGTCGC
TATCAGCTCCAGCGTCATGCCCCAGAGACAGCCAACTATAGCCACCACCGACAAGCCTGACCGACCCAAGAGTAC
ATCCAATTTGGCCATCCAAATAGCCGACAACTTCCTAAGGAAGGTTTACTGTTTGTATAGTGACTACGTCATGAA
AGACCgATCTTACTCAATGGAAATGCCTATAAGATCTAACCTGTTCGACGAAAAAGTCAAAAAAATGGTAGAAAA
CCTACAA^A^ACGCACGCGCCATCGGAAGATAAACGCA^TCACACCAAGAAAATAAATACTACGTACTTCTAGAA
CTAAGAAGAAGTTGCCGCTCTCCGTCTCCTCCTTCATAAATAGGGATAGCTTTTACTACTACGTACGAAAAAAGA
CCACACTGCGACGGATCCTCTGCATCCCAACACCAGCGATAGAAAATGCGCCGCCTATATCGTCATCTTGCTTCC
TTTTTCTTACTCCCTTCCTGCCCTGGAAACACCATACAATCCATCACATCATATCCTGCCAATGCACTATTACGC
AGCTTTCGGCACGTGAGTACGGAAACACCAGTTCGGAACCGGGTACACAATAGGGATAGTCAAAGCTGTCCATTT
TTTCCGCTGATGGATGACTGATACCAAAGTGTAAC

Figure 3.6 trs23 mutants. The sequence of TRS23 including 400 bases upstream and

downstream of the ORF. Trs23p is 219 amino acids long. The start codon is highlighted

in green while the stop codon is highlighted in red. Three synthetic lethal screen mutants

were shown to have mutations in the trs23 gene. Mutant #98 has the earliest mutation

with a G to A base substitution at position 37 (highlighted in blue) which results in a

G13S missense mutation. Mutant #16 has a C to T base substitution at position 581

(highlighted in grey) which results in a P194L missense mutation. In mutant #8 there are

no changes in the ORF for TRS23. However, there is a deletion of the twenty ninth base

after the stop codon (highlighted in purple).
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genes and we would need to sequence several genes in each of these strains.

Potential trs65 mutants: Mutants #146 and #149 could be complemented by either

TRS65 or both TRS65 and TRSl20 (see Table 3.2). Genomic DNA from neither of these

mutants was sequenced for reasons stated above.

Potential trs85 mutants: TRS85 was able to complement the second mutation

found in two mutant strains: #37 and #159 (see Table 3.2 and Figure 3.7). PCR of the

extracted genomic DNA was used to amplify the TRS85 ORF and 400bp upstream and

downstream. Mutant #37 contained a single base substitution resulting in a premature

stop codon and a 58 amino acid truncation from the C-terminus ofthe protein. Mutant

#159 also contained a single base substitution resulting in a premature stop codon and a

392 amino acid truncation.

3.4 Genetic interaction between TRS85 and BET3 is not allele specific

To test if the interaction between TRS85 and BET3 is specific to the allele used in

the screen, a TRS85 deleted strain was crossed with bet3 mutants at our disposal to test

for a synthetic genetic interaction. Since TRS85 is not essential, it can be completely

deleted from a strain while maintaining viability. A trs85A::HIS3 (MSY214) was crossed

with three different mutant alleles of BET3: bet3-3, bet3-4 and bet3-5 (found in strains

MSY14c, MSYl 5a and MSY146, respectively). Diploids were sporulated and dissected
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taccttcctcatcttgatgctgaaagtaaattgatggagtcaagcggttcaccaatagcgggatttcatcgcctg
agtgatatgttgtgggagataggcctggcaaggaaaatcctttagttaaagttgcatagcaataaatcagcaacc
aaacacctcgtttcattaccgattattaattatcaatatgtgtactaatataattgtcaaaatttatgatgtaaa
tttagggttcccaacatattttactcaactgtaaacaagtcataatttcctcggacaaaattaggcaaaataaca
gaaaaaccaatggatgggatgggtaggaaaatgagtaagtaacccaaacaaacggtacctctttattcagtcggc
tttacagatactgaggtaacttata|atg|gttttttcttatgagcactatatgaatctccttttccatttggataa
cagtaaagaaacggtgcctccagagattgcaaaaagaataatttcaaatgctatagctcctgtaataacagttac
ttcaactcctctcttcgacaaacatattcaagaaacgtacaaagtagattctctctatatgctgctgcgattctt
tggcggttgtgtctctgatagagatcaagccaatgaagcgaaggttggacagcatgagcatgaggtttgtgatgc
aagtgactcgacggattcaattcccaaaaataaaaatttggaagtgcccaatttatcaaagaaaggtagtcgcag
taggtcgaatagtcttttccagagggattcaacgcaatctcaatatatcaggtttacaaggccattaggtgactt
gatcgaaacaagagatgcaaatgatatgttattcaattaccattctttagaggtattcttagataattatttgaa
attggttgcagcaaatactgatgaaatggttcctcataatcttcttaagaaatccatttatcatagtttcttttc
actagcaatttcatccacaaataacttatcgccctatgaaacttttaatcaccctattctttccttgattgcttt
agatatatcaaatggcgaagtttatgaggatgcaagagatcttttagtcaatttcaagaatcttaatcataatac
tgaaaactttcctatcttcatgaatacaaatgaaatgcttccagttttcttactctgctacaatgacgattccca
agaagaattcgaaaaatgccaggcgttagctaagaaactaaagaagcagttgtttgttgagagtatcttactagc
actctggaaggattcttttatttacgacgaaaattcagtcataEjagttacaccaaccagtaatgtcatcgcttga
agaaattctcttcttccttcaagctccaactcaaacaacactctctctggctttgataaactcgatctatgatat
gcttgattatttggtttatgatttaatgataccattcatgaaaagaaaagtgtcattctgggaagagacaatttt
acagccaagaaagtcgctatttaatggtgcaaagtttttcaaaaaatttatgaataaaaatcctgtcaatggtaa
tcaccaacataattctctaacgagagacagccagggaaatgaatacttcgcatcgtcatcttctgagtttttgat
gagaaagttagcagattggtctatgatgctatccgacttcaaaactgcttattccacatacgaatcgcttatgga
tgacctagatgcatttccaaagtacctggcatcatgcatcgaatggtgcgcggtatcactattgatgggtgcgca
gagcatagtcaccgtgaaaatgatcaaaaacgatataaatcctcttatcgaaagggcattagccacatacgaaaa
ctgctcacgaatacaacgtggtaaaggcaaagaatcaaactctttggatgttacagagccagtgcgttcgtatga
gacacgttgtatgattttggcatctgaattgtttttatctttaagcaatacgtggacatctaccccatacgctat
ccaatatttagaaacaattctagacgagtgcaagttgggaccttgttcacagataatggtttgggaaaggcttag
tgactgctataatttgagagttgaccctagaatcaaacatagagttggagcaatgaagaaggacgctaaagacac
cgaagatctccgaggtgagcataagtatagcacagatcatttcacagacgaggacatattatcggaagggttaac
aagaagacgcaaggcagctttttttaggttaatagcagctaagaagtgggcagagcaaaaacaatggagagaggt
ttcttggtgcttaaaagatattgaaagtacctattcagagatcaaatttttgcatggtaacggtttaattttaag
caaactaaaaaatcaactcaatttaaaggacgtggattctgcaccacggccctccgaaaagaatcttacaagaac
aagtgttagctttattggaftgajctttatggaaaattcatgttttgagtataaattatacgtacgaatcttataga
tatatatttttcttttaaaactccatttcagctcataagccgatacaaacaccttctatatattatttctctaac
agctatgttaacatgattgcctttgtttatctactaaaggacccttctactttatctaccatacgcctatatttt
ctctgtgtttcaatcatatcgagaaaaatttggtacttcgtgtctaaaagaattctatctggatgagttttctca
tttggattgacaattcttgcattacccgttagctcttgcataactttccatagaaaacttgtcccgttatatctt
ccctctcctaggctctcctgtcccacggtcaatgaagcatccttact

Figure 3.7 trs85 mutants. Trs85p is 698 amino acids. The sequence of TRS85 including

400 bases upstream and downstream of the ORF. The start codon is highlighted in

green while the stop codon is highlighted in red. Two synthetic lethal screen mutants

were shown to have mutations in the trs85 gene. Mutant #159 contained the earliest

mutation with a C to T base substitution at position 919 (highlighted in purple) resulting

in a premature stop codon and a 392 amino acid truncation of the protein. Mutant #37
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contained a C to T base substitution at position 1921 (highlighted in blue) resulting in a

premature stop codon and a 58 amino acid truncation of the protein.
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onto YPD plates (grown at 300C). The dissection plates of trs85A:\H1S3 ? bet3-3 and

trs85A::HIS3 ? bet3-4 were replica plated onto YPD (38.5°C), -LEU and -HIS.

The dissection plate of trs85A::HlS3 ? bet3-5 was incubated at 25°C and replica plated

onto YPD (38.5°C) and -HIS (25°C). The growth patterns of these dissected tetrads were

analysed for a synthetic genetic phenotype (see Table 3.3 rows 1 to 3). If a synthetic

lethal interaction is observed there would be a combination of dissected asci which have

4, 3 or 2 ascospores growing at the permissive temperature. If no synthetic lethal

phenotype is observed, all the ascospores from all asci should be able to grow. The

crosses between trs85A:\HIS3 and bet3-3 (Bet3p(K24/96E)), bet3-4 (Bet3p(A94L)) or

bet3-5 (Bet3p(G64E)), all showed a synthetic lethal interaction (4, 3, 2 or 3, 2 growth

pattern) indicating that the interaction is not allele specific (see Figure 3.8).

3.4.1 Genetic interaction between TRS85 and TRS33, TRS65, TRS130 and BETS

TRS85 was also tested for a genetic interaction with mutant alleles in genes

encoding other TRAPP subunits: TRS33, TRS65, TRSJ 30 and BET5. A strain containing

trs85A::KanMX (MSY362) was crossed with the following TRAPP mutants:

trs33A::HIS3, trs65A:\HIS3, trsl30-l::URA3 (temperature-sensitive at 380C) and bet5-

1::URA3 (temperature-sensitive at 38°C). AU sporulated diploids were then dissected on

YPD plates (300C) and replica-plated onto medium to reveal the markers linked to each

mutation, (see Table 3.3 rows 4 to 7 and Figure 3.8). A synthetic lethal interaction was

seen with bet5 as indicated by the 4,3,2 growth pattern. No synthetic genetic interaction
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A B

YPD (300C) YPD (300C)

Figure 3.8 Synthetic lethal and non-synthetic lethal growth patterns. (A) Synthetic

lethal growth. Dissection plate on YPD at 300C of bet5-l ? trs85A. All twelve dissected

tetrads show a growth pattern indicative of a synthetic lethal interaction (4,3,2). All four

ascospores grew in tetrad 5. Three of the four ascospores grew in tetrads 2, 3, 4, 6, 8, 9,

10 and 11, while only two grew in tetrads 1, 7 and 12. (B) Non-synthetically lethal

mutations. Dissection plate on YPD at 300C of trs65A ? trs85A. Ten of the twelve

dissected tetrads show a growth pattern indicating no genetic interaction between the

mutations present. All four ascospores grew in tetrads 1 to 4, 6, 7 and 9 to 12. To ensure

the quality of the tetrads chosen and to track the location of the mutations present,

dissection plates were replica plated onto selective media and the growth patterns

analyzed (not shown).
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was observed with trs65A or irsi30-1 since all four ascospores in the tetrads were able to

grow even when both mutations were present in the same cell. In the trs85à cross with

trs33à, while the mutations are not synthetically lethal the mutations have a synthetic

genetic interaction seen by a reduced ability of the double mutants to grow at 300C.

3.5 BET3 genetically interacts with non-TRAPP genes

Synthetic lethal mutants (thirty) which showed no complementation by any

TRAPP subunit tested were presumed to have a mutation in a non-TRAPP gene (mutants

# 5, 13, 14, 15, 18, 19, 29, 31, 35, 36, 38, 48, 73, 80, 82, 85, 87, 99, 113, 115, 1 16, 121,

123, 125, 128, 132, 143, 154, 173 and 179) (see table 3.4). To identify these genes, a

library (YEp213) containing all yeast genes was used. This library, on a LEU2 plasmid,

was transformed into a subset of these mutants (mutants #5, 15, 29, 35, 36, 38, 80, 121,

128 and 132) which represented the range of mutants identified based on color intensity

(red and light red) and dissection results (smaller colony size arising from a subset of

ascospores). A full screen (mutants #5, 15, 29, 80 and 121) was performed if less than

five white colonies were observed in the small scale screen. Transformants were screened

for complementation based on color change. There is a background of red colonies which

did not receive the wild type copy of a gene which can complement one of the two

mutations (either bet3-4 or the unknown mutation). White or sectored colonies should be

rare as few colonies receive a plasmid which can complement one of the mutations and

no longer keeps selection for the balancing BET3 plasmid. These white or sectored
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Table 3.4 Summary of non-TRAPP mutants

mutant # viable progeny per ascus mutation YEP2 1 3 library screen
15 4,3,2 not TRAPP possible VPSl 6 or ELCl mutant

4,3,2 not TRAPP no rescue

29 4,3,2 not TRAPP no rescue

80 4,3,2 not TRAPP no rescue

121 4,3,2 not TRAPP no rescue

13 4,3,2 not TRAPP N/A
14 3,2 not TRAPP N/A
18 4,3,2 not TRAPP N/A
19 3,2 not TRAPP N/A
31 4,3,2 not TRAPP N/A
48 4,3,2 not TRAPP N/A
73 4,3,2 not TRAPP N/A
82 4,3,2 not TRAPP N/A
85 4,3,2 not TRAPP N/A
87 4,3,2 not TRAPP N/A
99 4,3,2 not TRAPP N/A
113 4,3,2 not TRAPP N/A
115 4,3,2 not TRAPP N/A
116 3,2 not TRAPP N/A
123 3,2 not TRAPP N/A
125 4,3 not TRAPP N/A
143 4,3,2 not TRAPP N/A
154 4,3,2 not TRAPP N/A
173 4,3,2 not TRAPP N/A
179 4,3,2 not TRAPP N/A
35 3,2 not TRAPP small scale only
36 4,3,2 not TRAPP small scale only
38 3,2 not TRAPP small scale only
128 4,3,2 not TRAPP small scale only
132 3,2 not TRAPP small scale only

Table 3.4 Summary of non-TRAPP mutants. Synthetic lethal mutants which were not

complemented by any of the tested TRAPP subunits were classified as non-TRAPP hits.

Small scale yeast plasmid library screens were carried out on mutants #5, 15, 29, 35, 36,

38, 80, 121, 128 and 132. Further large scale screens were done with mutants #5, 15, 29,
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80 and 121. A VPS16 containing YEp213 plasmid was able to complement a mutation

found in mutant #15.
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colonies were isolated three times on -LEU / low ADE plates and finally grown in liquid

-LEU medium. Plasmid DNA was extracted from these cultures and amplified in

bacteria.

Of the five strains subjected to a füll screen, only mutant #15 yielded a plasmid

that could complement the lethality when re-transformed into the original mutant strain

(see Figure 3.9). Plasmids from the white colonies observed from mutant #15 that did not

contain BET3 as judged by PCR were sequenced. Sequencing of one such plasmid

revealed it originated from chromosome XVI. The chromosomal map of this region

(chromosome XVI coordinates 4661 1 9bp to 470749bp (see Figure 3.10) indicated the

presence of two whole genes (VPSl 6 and ELCl), the 5' end of a third gene (NOP4, 1-

814bp out of 205 8bp) and the 3' end of a fourth gene (Ingvarsdottir et al., 2005) in the

insert. Interestingly, Vpsl6p is a component of the multisubunit vesicle tethering

complexes HOPS and CORVET which are involved in vesicle trafficking in the

endosomal pathway (Peplowska et al, 2007). ELCl is involved in transcription

elongation and plays a role in excision repair. Of the more than 20 genes shown to

interact with ELCl, it genetically interacts with YPT6 and SEC28, two genes involved in

membrane transport at the level of the Golgi. Nop4p is involved in ribosomal RNA

processing (Sun and Woolford, Jr., 1994) while Sgfl Ip is a subunit of the Spt-Ada-Gcn5-

acety!transferase (SAGA) histone acety!transferase complex (Pfeffer, 2001; Ingvarsdottir

et al, 2005).
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B

-URA/-LEU 5 -FOA 300C

Figure 3.9 Complementation in mutant #15 by VPS16 and ELCl containing library

plasmid. (A) Mutant #15 was re-transformed with the VPSl 6 and ELCl containing

plasmid identified in the yeast plasmid library screen (saved under MSB736) and plated

on -URA/-LEU and grown for 3 days at 300C. (B) Transformants were replica plated

onto 5-FOA and grown for 2 days at 300C. Transformants show some re-growth on 5-

FOA.
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SGD Sep 27, 2009

Figure 3.10 YEp213 yeast plasmid library insert which complemented mutant #15.

The chromosomal map of chromosome XVI coordinates 4661 19bp to 470749bp. There is

a whole gene (VPS16) present and the N-terminal part of a second gene {NOP4 l-814bp

out of 2058bp) in the insert.
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3.6 VPS16 appears to suppress an unidentified mutation in mutant #15

The extracted library plasmid containing VPSl 6 and ELCl was able to

complement one of the mutations in mutant #15. There are three scenarios to explain this:

(i) VPSl 6 or ELCl suppresses bet3-4, (ii) VPSl 6 or ELCl complements a vpsl6 or elei

mutation, respectively, (iii) VPSl 6 ox ELCl suppresses some other unidentified mutation.

To test the first possibility, the isolated plasmid was tested in a non-EMS treated

bet3-4 mutant (MSY207 temperature-sensitive at 38°C) and another bet3 mutant, bet3-5,

for suppression of the temperature-sensitive growth phenotype (see Figure 3.11). This

latter allele was tested to see if suppression would be allele-specific. If any gene or partial

gene present in this plasmid can complement the bet3 mutation, then it should be able to

suppress the temperature-sensitive growth at the restrictive temperature. As expected,

BET3 could suppress both bet3 mutations and the transformed strains grew better at

higher temperatures, similar to the wild type strain (panels B, C, F and G). In contrast, the

library plasmid was not able to suppress the temperature-sensitive growth defect of either

bet3 mutant tested (panels D and H). These results suggest that the rescue of the synthetic

lethality seen in mutant #15 is not due to suppression of the bet3-4 mutation.

To test which gene is complementing the unidentified mutation in mutant #15, a

plasmid construct was made where most of VPSl 6 and all ofNOP4 was removed from

the suppressing plasmid insert and the plasmid re-ligated together (MSB821; see Figure

3.12). This plasmid was then transformed back into mutant #15 along with the original
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suppressing plasmid. A transformation with BET3 (positive control) and an empty

plasmid (negative control) was also performed. Transformants were plated on the

appropriate selective medium (-LEU/low ADE or -HIS/low ADE) and grown at 300C for

3 days. White colonies were observed with the addition of BET3 or the original

suppressing plasmid (MSB736) but not with the plasmid digested with PvuII (MSB821)

or the empty negative control plasmid (see Figure 3.13). Therefore, VPSl 6 or the NOP4

fragment appears to be necessary for the suppression of the synthetic lethal phenotype in

mutant #15.

To directly test if VPSl 6 was altered in strain #15, the gene was sequenced in one

direction using four oligonucleotides. Comparison to the sequenced wild type strain

revealed no mutations in the ORF and the surrounding regions (125 bases upstream and

322 bases downstream). Overall, these results suggest that VPSl 6 is suppressing an as yet

unidentified mutation in strain #15.

67



I
+

rei
+
M·

O

•?
ta

S
(D

a

?
?

?

-Ci
?-
?
>

?

T?
-ß}

e
<u
S
?.
?

O
fi

cu
O

i
s-
S
OC

O

?
kl

<a
Q
¡*
p
O

TJ
?

•*-^
ce

en
CC

O
O
O
O

Oh

C

-4—»

-3
"3

Ö
•4-1

O
ce
(D

O

Ö
?
e
?
kH
a
(?

?

Q
O
.!=?
?

?»•3
kl
O
?
?
ce
?
(D
N

"ce
a
er
(D

-o
C
ce

S
o

?

s
C/3

je?-
S
hi
>>

-4—»

?-

a
ce

^ £

(?

U
kl

-4—»

OO

.a'3
kH

-*-»
(/3
<D

S
?
a
ce

en
(D

ce
(D
T-
?

-4—»

en
a
o

'kn
ce
>

a

o

OX)

a
ce
(D

I
ce
en

a
ce

-o
(D

H

w

u
o
ir>
CX)
m

co

?"

U
o
O
m

"8
ce

(N

r-"
(N

irf
CN

(D

ce
(D
T-

S ü
a

.o?
ce
>

h—»
ce
C

O
kH
bß
en
ce
£

oo
m
(N
PQ

a

o
S-I
(SjO
(D
kH
<D

OO

(N
oa

O

"?.
S
>>

I
cu
a
ce

en
G
ce
kH

O
x>

O
(N
;>
C/3

a
'3

§

(D
J3

fe
?
ce

oo

ce
r-

oo

a
3

a
ce

i
cu

(D

H

CT
U.

U
O
in
OO
CO
?
a
ce
r-

m

o"
m
?
a
ce

tì U
o

1
(N

(N

«?"
(N

en
(D
kH
a

-4—»
ce
kH
CJ
T-

2 s

<è5 'S

en
a

ce
>

¦4—»
ce

68



co
(U

KJ

Dh

(?

O

'S
>

-4—»
tí
tí

OS-H

?
S-H
(U

o
ON
(N
CQ
CO

a
O

?

'e
JS
"a,
S

(U
J3

£
M

O

r^
O
(N

C(S
S-H

I
(U

(U
J=I

g"3

c<3
-4—»

I

<u
js

J*

C
cd

GO

ce
Sl

a
ce

1^

CU

jh Ü
ä -s
£ U

-a °1 '"OO
m

1
No"

o"
m

?
tí

U

O
o
O
m

T3

ON
(N

(N

(N

U
o
O
en

-a
a
03

ON
(N

r-^
(N

(N

Si
tí

-4—»
CO
Si
(U

I
(U

3
O

'si
ce
>

te
C

OSi
C5Û

m

CQ
CO

O
ctì

JS??
C

Sl

o

S

-a

cQ
ce

o
J^

O
(N
[>
GO

CU
J=

O
tí

_o
-4—»

-3
T3
ce
?

J=-

?

'S
-O
Si
O

M-
I

<N->
ca

(H-I
O
(U

O
tí
(U

J=!

O
Si
dû

(U
bû

J=!
O

§
en

J
Ĥ
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Figure 3.12 Mutant #15 suppressing plasmid. This plasmid (MSB736) from the yeast

library (YEp213) suppresses the synthetic lethal phenotype of mutant #15. The plasmid

insert contains two whole genes (VPS16 and ELCl) and two partial genes (NOP4 and

SGFIl; not shown in diagram due to its small size). Restriction enzyme PvuII was used

to remove most of VPSl 6, leaving only a few amino acids at the N-terminus, and all of

NOP4. The re-ligated construct contains the short 3' end ofSGFIl from the original

insert, all ofELCl and 177bp of the 5' end of VPS16 (59 amino acids).
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A B

BETi empty plasmici

C D

suppression plasmici ELCl fragment

Figure 3.13 VPS16 or NOP4 suppresses the synthetic lethal phenotype of mutant

#15. Synthetic lethal mutant #15 was transformed with (A) BET3 plasmici (MSB297), (B)

empty LEU2 plasmid (MSB238), (C) the suppression plasmid (MSB736) and (D) the

ELCl only containing plasmid (MSB821). BET3 and MSB736 are both able to suppress

the synthetic lethal phenotype of mutant #15 (A and C). However, the empty plasmid and

MSB821, containing only ELCl, are not. These colonies retain the balancing plasmid and

are red (B and D).
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4. Discussion

4.1 The synthetic lethal screen

The synthetic lethal screen with beÜ-4 in the present study generated 70 mutants

to analyse. The color of these mutants (red, light red and pink) was noted for a possible

correlation to be made between colour intensity and genetic interaction. For example a

pink colour may have indicated that the combination of the two mutations causes the cells

to be sick resulting in a large number of cells in each colony losing the balancing

plasmid. However, no such link has been made thus far and it is likely that none exists.

Colour may be influenced by several different factors and, therefore, it is likely that there

is no direct correlation with the kind of genetic interaction present (Hieter et al., 1985;

Koshland et al., 1985). As would be expected since one of the mutations present is bet3-

4, there were several mutants (Umezu et al, 1971) which showed linked segregation

when crossed to a wild type strain and dissected. This indicated that the second mutation

is likely to be within BET3 or in a gene that is very close and does not readily segregate

away.

4.2 trs23 and trs85 mutants

As well as the bet3 mutants, there were fifty mutants which showed a confirmed

synthetic lethal interaction. Among these fifty mutants there were likely to be mutations
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present in TRAPP genes. As expected, nineteen mutants were shown to be complemented

by one or more TRAPP subunit genes. It remains formally possible that a mutation in

another gene may be complemented by a TRAPP subunit gene. This notion is supported

by the fact that mutants #7, #8 and #95 were suppressed by TRS23 yet had no mutations

in the ORF or the nearby flanking regions. The TRAPP genes in this class of mutants,

therefore, need to be sequenced in order to confirm the location of the mutations.

Point mutations were identified in trs23 in mutants #16 and #98, and in trs85 in

mutants #37 and #159. Since these were synthetically lethal with bet3-4, a mutation

which causes the mislocalization of TRAPP, it is possible that, alone, they too would lead

to the same phenotype. This can be tested by introducing these mutations into a yeast

strain by homologous recombination or on a vector, thereby isolating the mutation from

any other lesions present in the strains caused by the EMS treatment. Subcellular

fractions on a sucrose gradient of the yeast cell lysates followed by western blotting for

one of the TRAPP subunits (e.g. Trs33p) could be used to determine the localization of

TRAPP within these mutant cells. In the case of trs85 mutants, a trs85 deleted strain can

be used since it is a non-essential gene. If mislocalization of TRAPP is observed then

these subunits are also involved in the anchoring of TRAPP to the Golgi membrane. This

was in fact performed, however preliminary data for the subcellular fractionation of

TRAPP in a trs85A mutant was inconclusive.

The trs85A mutant was crossed to three different bet3 mutants and this showed

that their synthetic lethal interaction was not allele specific. As opposed to the amino acid
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substitutions found in trs23 mutants #16 and #98, the trs85 mutations in mutants #37 and

#159 lead to stop codons and truncations of the protein. If an allele-specific interaction

had been identified between these mutants and bet3-4, it would have indicated that the

region conferring this function to trs85 was located within the smallest of the two C-

terminal truncations (the last 58 amino acids). However, no such allele-specific

interaction was observed.

The two trs23 mutations found in this study should also be tested for allele

specificity with these three bet3 mutants. An allele-specific synthetic lethal interaction

with bet3-4 would indicate that these specific amino acid changes are important for the

ability of TRAPP to anchor itself to Golgi membranes. Furthermore, if more than one

synthetic lethal mutant shows mutations in the same region of the same gene, it may be

that the amino acids in this region are important for the function of this protein. If allele

specificity is also observed between these mutants and bet3-4, then it would suggest that

this region is involved in the ability of TRAPP to anchor itself to Golgi membranes.

4.3 Strains possibly harbouring multiple mutations

Thirteen strains did not conform to expected results for a mutation that is

synthetically lethal with bet3-4. These thirteen strains may have many mutations present

which may be affecting the cells in various ways including, in some cases, their ability to

grow well. In addition, the six mutant strains that did not grow well at 300C may have a
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second mutation which itself is temperature-sensitive at this temperature and thus would

require incubation at a lower temperature. Since the synthetic lethal screen was carried

out at 300C, all induced mutations analysed are able to grow at this temperature although

they may grow better at a lower temperature and similarly may have slower growth at

higher temperatures. To observe the potential temperature-sensitive phenotype of the

induced mutations, mutant growth can be analysed at several temperatures spanning a

wider range.

Strains that kept the wild type balancing plasmid after being crossed to a wild

type strain (some colonies on the dissection plate were sectored or grew on -URA) were

unexpected since in the diploid state there should be no selection for the plasmid. It is

possible that although there is no selection for the plasmid, not all of the cells lose it.

However, in such a case BETS on the plasmid masks the presence or absence of the bet3-

4 mutation and it becomes difficult to confirm the synthetic lethal interaction through the

dissection growth pattern. Therefore, these mutants were classified as behaving oddly and

not further analysed.

Strains (#64, #1 12 and #130) in which some colonies displayed red/white

sectoring following dissection also indicated the presence of the balancing plasmid

although this was not confirmed by replica plating onto -URA medium. Therefore, these

strains were also unusual and not analysed further.
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Preliminary analysis of the temperature sensitivity of the synthetic lethal mutants

reveals no apparent temperature sensitivity (data not shown). However, for mutants

which showed some small colonies following dissection or grew slowly at 300C (and

were classified as behaving oddly) it would be necessary to look at their possible

temperature sensitivity further by comparing the growth of serial dilutions of each strain

at the various temperatures listed above. It is possible that the temperature-sensitive

phenotype was missed because the cell cultures may have been too concentrated to show

a slight temperature-sensitive phenotype.

4.4 trs85A genetic interactions

As well as testing for allele specificity in the genetic interaction between trs85A

and bet3 mutants, trs85A was tested for genetic interactions with other TRAPP subunit

genes. We found that trs85A genetically interacts with both bet5 and trs33A. It is

interesting to note that bet3-4 was previously shown to be complemented by TRS33 as

seen by growth on YPD (Kim et al, 2005a). In the present study, however, the bet3-4

mutants were not complemented by TRS33 on an 5-FOA plate. Taken together with the

findings above showing a genetic interaction between trs85A and bet3-4, these findings

may suggest that the two non-essential TRAPP subunits Trs85p and Trs33p help Bet3p in

anchoring TRAPP to the Golgi or in other functions. Following these observations, it

would be warranted to investigate the localization of TRAPP in a trs33A strain. A trs33A
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mutant should be subjected to subcellular fractionation as described above and the

localization of TRAPP assessed.

4.5 Non-TRAPP synthetic lethal interactions

The thirty mutants which had non-TRAPP mutations were a main focus for this

study. Ten mutants were chosen as representatives for the small scale screen using the

yeast plasmid library based, among other factors, on their various shades of red colour.

The small scale screen revealed that the light red coloured strains (mutants #128 and

#132) were unsuitable. The rare white colonies were virtually indistinguishable amongst

a light red, almost pink, background of colonies. The five strains chosen for the large

scale screens had the darkest red colour and the fewest white colonies.

An eight-fold coverage of the yeast genome was analyzed in the screen to ensure

that even genes expressed at low levels would be represented. In all large scale screens,

except for mutants #5 and #80, there were a surprisingly large number of white colonies

(over forty). A large number ofwhite colonies is unexpected unless the mutation is

suppressed by multiple genes or is suppressed by genes that are highly expressed. The

yeast plasmids from mutants #5 and #80 did not re-complement the mutations in these

strains as seen by the lack of growth on 5-FOA medium. Therefore, systematic evaluation

of the white colonies in strains #15, #29 and #121 was carried out. Isolated plasmids were

tested to see if they could complement a mutation found in their respective strains by
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replica plating onto 5-FOA and looking for growth. Only five isolated plasmids from

mutant #15 (and none from any other mutant) were able to do so. The other white

colonies were false positives, some of which contained empty plasmids as revealed by

sequencing (data not shown). Of the five isolated plasmids, four contained BET3 as

expected in such a screen while one did not. This plasmid contains two whole genes

(VPS16 and ELCl), the 5' end ofNOP4 and the 3' end of a fourth gene SGFIl. SGFIl is

unlikely to be of interest since the insert lacks the 5' untranslated region, the start codon

and further sequences downstream. Although formally possible, NOP4 is not believed to

be the suppressing factor for several reasons. First, in the plasmid it is truncated to the

extent that only -39% of the gene is present. Second, Nop4p is involved in ribosomal

RNA production (Patterson et al. , 2008) and, as seen in the S cerevisiae database

(www.yeastgenome. org), does not display genetic or physical interactions with any

known membrane trafficking components.

VPSl 6 seemed to be the likely suppressor in the plasmid since it is also involved

in vesicle trafficking. Vpslóp is part of both the HOPS and CORVET complexes which

function in the late secretory pathway (Peplowska et al, 2007). HOPS, found at the

vacuole, is involved in vacuoIe-vacuole and vesicle-vacuole fusion (Haas et al., 1995;

Mayer and Wickner, 1997; Price et al, 2000; Wurmser et al, 2000). While the CORVET

complex, at endosomes, mediates endosome-lysosome transport (Peplowska et al, 2007).

As a component of TRAPP II, which localizes and functions in the late Golgi/early

endosóme compartment (Cai et al., 2005), Bet3p is also found in a portion of the

secretory pathway that may be affected by HOPS and/or CORVET. Although Vpslóp
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may not have a direct interaction with Bet3p, vpsló may aggravate an already defective

late trafficking step in a bet3 mutant. To address this, part of the insert in the suppressing

plasmid containing most of VPS16 and the entire NOP4 fragment was removed and the

plasmid re-ligated leaving ELCl intact. This plasmid was then tested for its ability to

suppress the synthetic lethal phenotype. White colonies were observed when the entire

insert is present (MSB736) but not when only ELCl is present (MSB821). Therefore,

VPSl 6 (or the N-terminal portion ofNOP4) is complementing the as yet unidentified

mutation in mutant #15. Sequencing analysis showed no mutations in VPSl 6 in mutant

#15. However, sequencing OÎNOP4 remains to be carried out. A plasmid containing only

VPSl 6 should be used in the same experiment, described above, to conclusively show

that VPSl 6 is indeed the gene conferring suppression.

4.6 Future perspectives

This study suggests that an as yet unidentified mutation suppressed by either

VPSl 6 or the amino-terminal portion ofNOP4 genetically interacts with beÜ-4.

Since VPSl 6 itself is not altered in mutant #15, and since the plasmid could not suppress

any bet3 alleles tested, it is likely that VPSl 6 is complementing a defect in another gene.

To identify this gene, another large scale yeast plasmid library screen could be done on

mutant #15 in the hope that this gene could be identified in a complementing plasmid.

However, by looking at known interactions of VPS16 we may be able to make an

educated guess as to this unidentified mutant gene. As part of the HOPS and CORVET
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complexes, Vpslóp interacts directly or indirectly with Vpsl Ip, Vpsl8p and Vps33p

(components common to both complexes), Vps39p and Vps41p (HOPS complex

components), and Vps3p and Vps8p (CORVET complex components)

(www.yeastgenome.org). It may be the case that mutant #15 has a mutation in one of the

genes encoding these proteins. These genes should be sequenced in mutant #15 to look

for a mutation. If a mutation is found, then this gene should then be tested for its ability to

suppress the synthetic lethal phenotype in mutant #15. If no mutation is found in any of

these genes then another yeast library screen would need to be carried out.
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