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Abstract

The identification of novel interactions of the vesicle tethering complex TRAPP

Audrey Morin

Membrane trafficking is an essential cellular process where tethering factors offer
the first level of specificity for the proper localization of vesicles to target membranes.
The localization of the tethers themselves may depend on their associations with a unique
subset of lipids or activated GTPases. The TRAPP vesicle tethering complex localizes to
the Golgi m an unknown manner but its localization may be mediated by the Bet3
protein. To gain insight into the mechanism of localization of TRAPP a synthetic lethal
yeast screen with the ber3-4 mutant was employed. The screen is based on a plasmid-
dependent assay which exploits the adenine biosynthesis pathway and red/white colony
sectoring. A Saccharomyces cerevisiae bet3-4 ade2 ade3 mutant strain with a counter-
selectable plasmid harbouring the BET3 and ADE3 genes was randomly mutated with
ethyl methanesulfonate (EMS). Double mutants, identified as uniformly red colonies,
were obtained and initially screened for the presence of a mutation in either BET3 or
another gene encoding a TRAPP subunit. Mutants that were judged to be in non-TRAPP
genes were then screened with a yeast library to try to identify the mutated gene. One
synthetic lethal mutant was suppressed by VPS16, a gene encoding a component of
another vesicle tethering cémplex. Since VPS16 does not suppress bet3-4 and since
sequencing failed to reveal any mutations in VPSI6, our results suggest that the defective
- gene in this particular mutant can be suppressed by VPSI6. The identity of the mutated

gene remains unknown at present.
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1. Introduction

1.1 Intracellular traffic in the early secretory pathway

In éukaryotic cells, proteins are transported from a donor organelle to a specific
target organelle by transport vesicles in a process referred to as membrane traffic.
Membrane trafficking is essential for cell viability and organelle functionality. The
secretory pathway, a branch of membrane traffic that ultimately leads to the release of
proteins from the cell, begins in the endoplasmic reticulum (ER) where newly
synthesized proteins are packaged into coat protein complex II (COPII)-coated vesicles
which bud off the ER (Schekman and Orci, 1996). COPII is composed of the small
guanosine-5’-triphosphatase (GTPase) Sarlp (Nakano and Muramatsu, 1989) and two
heterodimers, Sec23p/24p and Sec13p/31p (Barlowe et al., 1994). Studies have shown
that these components are the minimal requirements for the formation of vesicles from

liposomes in vitro (Higashio et al., 2008).

Activation of GTPases is an essential step in membrane trafficking. GTPases are
present in one of two nucleotide-bound forms: guanosine diphosphate (GDP-) or
guanosine triphosphate (GTP-) bound. The GDP-bound form is considered the “inactive”
form while the GTP-bound form is considered the “active” form (Bourne et al., 1990).
Only the active GTP-bound form can transduce a signal. GTPase-activating proteins
(GAPs) interact with GTP-bound GTPases and facilitate the hydrolysis of the GTP into

GDP thus inactivating the GTPase. GDP-bound GTPases require accessory factors called



guanine nucleotide exchange factors (GEFs) to facilitate the release of GDP and allow

GTP to bind (Bourne et al., 1990).

Budding is triggered by the activation of Sarlp by its GEF Sec12p. Once in its
active form, Sarlp-GTP recruits Sec23/24p and Sec13/31p which mediates membrane
curvature and protein sorting (Behnia and Munro, 2005). Vesicle cargo selection is
determined in part by the Sarlp-Sec23p/24p prebudding complexes (Aridor et al., 1998;
Kuehn ef al., 1998). Different sites on Sec24p recognize different protein motifs and
allow for the packaging of specific cargo inside vesicles (Higashio et al., 2008). Finally
the bud is pinched off the ER and forms a COPII-coated transport vesicle (Barlowe ef al.,
1994). Vesicle uncoating is mediated by the inactivation of Sarlp by its GAP Sec23p
(Sato and Nakano, 2004; Yoshihisa et al., 1993). The coats are recycled back to the ER
while the vesicles are tethered, docked and fused with the target membrane, the Golgi
(Bonifacino and Glick, 2004). Resident ER proteins that escaped are trafficked back to
the ER by virtue of several characterized sequences at or near their carboxy-terminus
(e.g. KKXX and KDEL) (Nilsson et al., 1989; Pelham, 1989; Teasdale and Jackson,
1996). These proteins are transported back to the ER in association with COPI (coat

protein complex I) coated vesicles (Letourneur et al., 1994).

There are three levels of specificity which allow binding of vesicles with their
target membrane(s). First, vesicle tethering factors and coiled-coil proteins tether
vesicles to acceptor membranes. Second, small Rab GTPases and effector proteins

regulate vesicle tethering and docking through their cycling between GDP- and GTP-



bound forms (Pfeffer, 2001). Thirdly, the binding of SNARESs (soluble N-
ethylmaleimide-sensitive factor attachment protein receptors) on both the vesicle and
target membranes mediate membrane fusion (Ungar and Hughson, 2003). Each of these

levels of specificity will be discussed in the following sections.

1.2 The Golgi

The Golgi is a major site for protein sorting and processing (e.g. glycosylation)
(Dean, 1999; Lowe and Marth, 2003; Ungar and Hughson, 2003). Processing enzymes
are segregated based on their requirements for function and are concentrated in specific
regions (cis, medial or trans) of the Golgi. The mechanism of transport of material
through the various compartments of the Golgi is unclear and three models have been
proposed: the forward-trafficking model, the cisternal-maturation model, and the rapid

partitioning model (Jackson, 2009).

In the forward-trafficking model, cargo proteins are transported from the cis-
Golgi to the trans-Golgi in COPI vesicles and undergo modifications in each
compartment (Palade, 1975). The Golgi compartments are said to be static in this model
because the resident proteins do not change. This model explains the forward transport of
cargo from the ER to the Golgi in COPII vesicles but fails to explain experimental
observations of the retrograde traffic of COPI vesicles (Lanoix et al., 1999; Martinez-

Menarguez et al., 2001). In an attempt to better represent traffic of enzymes through the



Golgi the cisternal-maturation model was proposed. In this model, it is the processing
enzymes themselves that are transported from the late to the early Golgi resulting in the
maturation of early compartments into late compartments while the cargo remains static
(Bonifacino and Glick, 2004; Eléner et al., 2003; Morre D.J. and Mollenhauer, 2007). A
more recent model, the rapid partitioning model, suggests that the trafficking of lipids is
coupled to cargo and enzyme traffic (Patterson et al., 2008). There are regions of the
Golgi enriched in certain lipids creating a gradient of lipid composition through the Golgi
and among the cisternae themselves. Cargo proteins are rapidly exposed to the different
Golgi cisternae until they associate with their preferred lipid environments. It is
noteworthy that, in this model, cargo proteins and processing enzymes can move bi-
directionally (cis-to-trans and trans-to-cis) among the Golgi stacks (Pelham and
Rothman, 2000; Patterson ef al., 2008). In all three models, once the cargo proteins have
undergone the proper post-translational modifications they are transported to other
intracellular locatiqns such as the plasma membrane, secretory vesicles, or organelles of
the endocytic pathway (Bard and Malhotra, 2006; McNiven and Thompson, 2006;

Pelham and Rothman, 2000).

1.3 SNAREs

SNARE proteins have been shown to co-localize and directly interact with
specific tethering complexes (Fridmann-Sirkis et al., 2006; Price et al., 2000; Suvorova et

al., 2002). Tethers function in bringing vesicles in close proximity to target membranes



establishing a loose interaction with the target membrane. Once tethered, vesicles
establish a more stable interaction through the binding of compatible SNARESs in a
process referred to as docking (Waters and Pfeffer, 1999). SNARE:s allow for vesicle
fusion with acceptor membranes and provide an additional layer of specificity (Jahn,

2008; Shorter et al., 2002).

Fusion is mediated by the formation of a functional four-helix bundle, referred to
as SNAREpins, composed of one a-helix from a vesicle-SNARE (v-SNARE) to three a-
helices of a cognate target-SNARE (t-SNARE) on the target membrane (Fasshauer et al.,
1998; Sutton et al., 1998; Antonin et al., 2002). The four-helix bundle links the donor and
acceptor membranes (Lupashin and Sztul, 2005) and provides the necessary energy to
pull the donor and acceptor membranes together resulting in membrane fusion since no
additional energy input is required (Li et al., 2007). SNARESs are further classified into
four subfamilies (Qa-, Qb-, Qc- and R-SNARESs) according to highly conserved
glutamine or arginine residues at the center of the four-helix bundle (Fasshauer et al.,
1998). Q-SNARE:S are usually found on target membranes while R-SNARESs are usually

found on vesicles.

1.4 Vesicle tethering complexes

Tethering is a complex process involving multiple protein interactions which

occur at various steps along the secretory pathway. The localization of tethers is thought



to depend on their associations with a unique subset of lipids or activated small GTPases
present on target membranes. Tethering factors are believed to impart the initial
recognition of specific vesicles with their target membranes which is then amplified by
the engagement of cognate SNARESs (Cai et al., 2007a; Lupashin and Sztul, 2005; Waters
and Pfeffer, 1999). There are two types of tethering factors: coiled-coil tethers and
multisubunit tethering complexes (Lupashin and Sztul, 2005). The focus of the remainder

of this section will be on the multisubunit tethering complexes.

The multisubunit tethering complexes are evolutionarily conserved peripheral
membrane protein complexes that act prior to SNAREpin formation (Oka and Krieger,
2005; Swennen and Beckerich, 2007). There are four known multisubunit Golgi tethering
complexes: TRAPP (transport protein particle) I, TRAPP II, COG (conserved oligomeric
Golgi) and GARP (Golgi-associated retrograde protein) (Cai et al., 2007a; Lupashin and
Sztul, 2005). In addition, there are four other known multisubunit tethering complexes on
other subcellular compartments: homotypic fusion and vacuole protein sorting (Stroupe ef
al., 2006), class C core vacuole/endosomes tethering (CORVET), the exocyst and bsll
(Cai et al., 2007a). These multisubunit tethering complexes interact with different factors

to facilitate tethering.

TRAPPI/II (see below) and COG mediate ER to Golgi and intra-Golgi transport.
The COG complex is found in the cis/medial Golgi (Suvorova et al., 2001; Ungar ef al.,
2002) and functions in the retrograde trafficking of proteins from endosomes to the early-

Golgi (Bruinsma ef al., 2004; Suvorova et al., 2002). It is composed of eight subunits



(Cogl-8p) (Ram er al., 2002; Suvorova et al., 2002; Whyte and Munro, 2001). The COG
complex subunits interact with proteins involved in Golgi trafficking indicating a role for
COG in membrane traffic (Suvorova ef al., 2002; VanRheenen ef al., 1998; VanRheenen
et al., 1999). Importantly, the COG complex interacts with activated GTP-bound Rab
Yptlp, Golgi associated SNAREs and the COPI coat (Suvorova ef al., 2002). In HeLa
cells, it was observed that knock-down of one of the components of COG did not block
anterograde transport but did, however, lead to a block in retrograde transport (Zolov and
Lupashin, 2005). This further confirmed its role in the retrograde transport of COPI
vesicles to the early-Golgi. Database searches using the amino (N)-terminal domains of
COG components revealed structural similarity with other tethering complexes (the
exocyst and GARP) indicating a possible common ancestor which diverged to specialize

at different steps of the secretory pathway (Whyte and Munro, 2001).

The exocyst is found at the plasma membrane (Guo et al., 1999) and helps target
vesicles to bud tips in post-Golgi secretion (Finger et al., 1998; Hsu et al., 2004; TerBush
et al., 1996). It is composed of eight subunits (Sec3p, Sec5p, Secbp, Sec8p, Secl0p,
Sec15p, Exo70 and Exo84p) (Guo ef al., 1999; TerBush ef al., 1996) which arrange in a
tree-like configuration with subunits branching off from a central point (Hsu ef al., 1998).
The exocyst complex, like the COG complex, does not possess GEF activity. However,
the exocyst does interact with the activated form of the Rab protein Secdp (Guo et al.,
1999). Most exocyst subunits are recruited to post-Golgi vesicles by the interaction of the
Sec15p subunit with active GTP-bound Sec4p (Guo et al., 1999). Two exocyst subunits,

Sec3p and Exo70p, localize to the plasma membrane (Boyd et al., 2004; Finger et al.,



1998). Post-Golgi vesicles are tethered to the plasma membrane and the exocyst complex
can then assemble (Boyd ef al., 2004). The assembled exocyst complex can then promote
SNARE-mediated membrane fusion by binding Seclp which binds to a SNARE complex
and promotes fusion with the plasma membrane (Carr et al., 1999; Wiederkehr et al.,

2004).

The GARP complex is found associated with the late-Golgi and mediates the
transport of endosome derived vesicles to the late-Golgi (Conibear and Stevens, 2000;
Conibear et al., 2003; Reggiori et al., 2003). The GARP complex is composed of four
subunits: Vps51p, Vps52p, Vps53p and VpsS4p. Mutations in VPS52, VPS53 or VPS54
lead to the mislocalization of proteins in the late-Golgi while protein sorting in the early-
Golgi remains unaffected (Conibear and Stevens, 2000). These results indicate that the
complex has a role in protein sorting in the late-Golgi. The GARP subunit Vps51p
associates with the t-SNARE Tlglp found in the late-Golgi and thus may provide a link

between vesicle tethering and fusion (Conibear et al., 2003).

The HOPS and CORVET complexes are very similar to each other. Each is
composed of six subunits, four of which are common to both complexes: Vpsl1, Vpsl6,
Vps18, and Vps33 (Peplowska et al., 2007). These homologous complexes can
interconvert, forming intermediate complexes by exchanging a few subunits. However
each is localized to a different intracellular region (HOPS at the vacuole and CORVET at
endosomes) and have distinct functions (Peplowska et al., 2007). The HOPS complex is

involved in vacuole-vacuole and vesicle-vacuole fusion (Haas ef al., 1995; Mayer and



Wickner, 1997; Price et al., 2000; Wurmser et al., 2000), while the CORVET complex
mediates endosome-lysosome transport (Peplowska et al., 2007). The interaction of
HOPS and Ypt7p is required for vacuole-vacuole and vesicle-vacuole fusion (Price ef al.,
2000; Seals et al., 2000; Wurmser et al., 2000). Activated Ypt7p and its interaction with
Vps33p promotes the binding of HOPS to the SNARE Vam3p (Laage and Ungermann,
2001; Seals et al., 2000; Wang ef al., 2001). In addition, the binding of HOPS to the
SNARE Vam7p may facilitate membrane fusion (Stroupe et al., 2006). HOPS contains
Vps41p and Vps39p, while CORVET contains their homologues Vps8p and Vps3p
respectively (Peplowska et al., 2007). Vps39p and Vps3p act as GEFs for Ypt7p and
Vps21p respectively (Peplowska et al., 2007; Wurmser ef al., 2000). Vps41p and Vps8p
act as effector proteins reéognizing active GTP-bound forms of these GTPases (Ypt7p
and Vps21p respectively). Exchanging subunits would change the GEF activity of the
complex from the small GTPase Ypt7p (Stroupe ef al., 2006) to Vps21p (COVET) and

vice/versa (Peplowska et al., 2007).

The Dsll complex is involved in the tethering of retrograde CO.PI Golgi derived
vesicles with the ER (Andag et al., 2001; Reilly et al., 2001). It is composed of only three
subunits: Dsl1p, Tip20p and Sec39p, which all localize to the ER (Kraynack et al., 2005;
Reilly et al., 2001; VanRheenen et al., 2001). The subunits are linked together like a
chain: Sec39p-Dsl1p-Tip20p (Tripathi et al., 2009). Interactions with both the COPI coat
and SNAREs elucidates a mechanism for the tethering of vesicles by the Dsl1 complex.
At the centre of the complex, Dsl1p has overlapping binding sites for two COPI vesicle

coat proteins (Andag et al., 2001; Andag and Schmitt, 2003). As well, at each end of the



complex, there are t-SNARE binding sites. Sec39p and Tip20p bind to the ER t-SNARESs
Uselp and Sec20p, respectively (Kraynack er al., 2005; Sweet and Pelham, 1993;
Tripathi ef al., 2009). Interaction with these t-SNARESs as well as the t-SNARE Ufelp
and the v-SNARE Sec22p are proposed to form the SNARE complex which allows

fusion of the vesicle with the ER (Tripathi er al., 2009).

1.4.1 TRAPPI and TRAPPII complexes

As mentioned above, TRAPP is a family of protein complexes with two members,
TRAPPI and TRAPPII. In yeast, both TRAPPI and TRAPPII are composed of the same
~core of seven subunits (Bet5p, Bet3p, Trs20p, Trs23p, Trs31p, Trs33p and Trs85p), while
TRAPPII has three additional subunits (Trs65p, Trs120p and Trs130p). As well, a novel

TRAPPII subunit called YEL048¢/Tcal7p in yeast (TRAPPC2L in mammals) has

recently been identified (Scrivens et al., 2009).

TRAPP has specific GEF activity for certain GTPases which are important
vesicular transport regulators. The three key GTPases which TRAPP interacts with are
Yptlp, Ypt31p and Ypt32p. TRAPPI has GEF activity toward the specific Rab protein
Yptlp (Wang et al., 2000) while TRAPPII has GEF activity toward YPT31/32 (Jones et
al., 2000; Morozova et al., 2006). Bet3p, Bet5p, Tr§3 1p and Trs23p represent the
minimal TRAPP subunits required for GEF activity for Yptlp (Kim et al., 2006; Cai et

al., 2008). Consistent with its role as a GEF, mutations in some TRAPP subunits lead to a
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loss in GEF activity and a defect in the secretory pathway (Sacher ef al., 2001). For
instance, the Bet3p mutant (ber3-1) was created which has a temperature-sensitive (ts)
phenotype and results in a defect in the tethering of vesicles to the Golgi (Jiang et al.,
1998; Rossi ef al., 1995). TRAPP containing the mutant bet3-1p has a decreased ability
to stimulate the release of *[H]JGDP from Ypt1p at 30°C and almost a complete loss in
GEF activity is observed at 37°C (Wang et al., 2000). This is consistent with the finding
that Bet3p is necessary for Yptlp-directed GEF activity (Kim et al., 2006; Cai et al.,

2008).

Co-expressed yeast TRAPPI subunits are able to assemble into a functional
recombinant complex (Kim et al., 2006). However, the co-expressed vertebrate subunits
were only able to form smaller subcomplexes and not fully assembled recombinant
TRAPP. This indicates that either there is an as yet unknown vertebrate subunit which
links the two subcomplexes or post-translational modifications are required for complex

assembly (Kim et al., 2006).

While both TRAPP I and TRAPP II are found on the Golgi, they act at different
steps in the secretory pathway. TRAPPI is associated with the cis-Golgi (Sacher etal.,
1998) and functions in ER-to-Golgi transport while TRAPPII is associated with the frans-
Golgi/ early endosome (Cai et al., 2005; Morozova et al., 2006) and is thought to mediate
endosome-to-trans-Golgi transport (Cai et al., 2005; Sacher et al., 2001). The detailed
mechanism of vesicle tethering by the TRAPP complexes remains obscure but may

involve interactions with GTPases and the recognition of vesicle coat proteins.
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The ways in which the different subunits interact are likely key to the functions of
the complexes. For example, as only TRAPPI and not TRAPPII recognizes uncoated ER-
derived (COPII) vesicles (Sacher er al., 2001), the two unique and essential subunits of
TRAPPII may in some way be blocking this recognition from occurring. As well, the
subunits unique to TRAPPII may be blocking GEF activity towards Yptlp and allowing
GEF activity for Ypt31/32p (Morozova et al., 2006). Since the TRAPP complexes
activate Yptlp and Ypt31/32p in ER-to-Golgi and trans-Golgi traffic, respectively, it has
been proposed that they mediate coordinated entry and exit of material at the two ends of

the Golgi (Morozova et al., 2006).

Also, the specific composition of the COPII protein coat and possibly the vesicle
content itself may have a role in association with specific tethers and thus target
membranes. Indeed, one component of the COPII coat, Sec23p, has been shown to bind
to TRAPPI and this interaction was reported to be mediated by the Bet3 protein (Cai et
al., 2007b). Vesicle tethering was successfully reconstituted ir vitro using TRAPPI and
COPII vesicles and no other tethering factors were required for association with the
complex (Sacher ef al., 2001). This indicates that TRAPPI is sufficient to tether COPII
vesicles and that recruitment of other tethering factors occurs either in parallel to
strengthen the tether in vivo or after this event (Sacher et al., 2001). Such additional

factors may include Usolp in yeast, and p115 and GM130 in mammals.

Membrane trafficking is essential to cell survival and mutations in the tethering

factors can have adverse effects on the function of a cell. Spondyloepiphyseal dysplasia
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tarda (SEDT) is an X-linked recessive disease caused by mutations in the sedlin gene (S.
cerevisiae Trs20 protein) a component of the TRAPP complex (Suvorova er al., 2001).
This disease causes skeletal abnormalities and early-onset osteoarthritis. Although the
sedlin message is found in all cells examined, its specific effect may indicate a tissue

specific role for TRAPP (Barrowman et al., 2000; Gedeon et al., 1999; Sacher, 2003).

1.4.2 BET3

Multisubunit tethering complexes are involved in the initial stages of vesicle
recognition. Therefore, their correct localization to the appropriate subcellular
compartments is essential. While none of the TRAPP subunits have a membrane
spanning domain (Kim et al., 2005b), biochemical studies of yeast and mammalian
TRAPP suggest that it is anchored to the Golgi (Sacher et al., 2000) through electrostatic

-interactions or post-translational modifications (such as lipidation) (Kim et al., 2005b;
Turnbull et al., 2005). The mechanism by which this is achieved is unclear, however
special interest has been placed on the Bet3p subunit due to several unique structural

features.
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1.4.2.1 The crystal structure of BET3 and BET3 mutants

The crystal structure of full length mouse Bet3p was solved to a resolution of
1.9A. Its structure consists of four a-helices and five B-strands. One hairpin structure (B2
and B3) is juxtaposed to a second hairpin structure (f4 and p5) forming an anti-parallel f3-
sheet. One face of this B-sheet forms hydrophobic interactions with a3 and a4 while the

other face is exposed to the solvent (Kim et al., 2005b).

Complete chain tracing identified a central hydrophobic channel. This channel is
lined by well conserved apolar side chains contributed by a2, a3 and o4 and also by
Leul8 on al (Kim et al., 2005b). Curiously, the channel enclosed a long alkyl chain that
could be attributed to a myristate group in the electron density map. A conserved cysteine
at position 68 (C68) near the entrance of the channel was clearly observed in crystals of
truncated Bet3p (residues 8-172) (Kim et al., 2005b). A Bet3 mutant was generated in
yeast with a C68S substitution (inhibiting acylation) and a carboxy (C)-terminal
hemmaglutinin (HA) tag. This mutant had no temperature-sensitive phenotype nor was
there any observable change in the localization or subcellular fractionation of the mutant
versus the wild type. These results indicate that acylation is not a requirement for

membrane-anchoring of Bet3p (Kim et al., 2005b).

It has been speculated that the hydrophobic channel may be needed to bind
specifically to the Golgi membrane through the insertion of a hydrophobic anchor

protein. Therefore, to study the function of the hydrophobic channel, a Bet3p A94L
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mutant was generated where a conserved alanine residue in the middle of the channel was
changed to a leucine residue. This substitution has no predicted effect on the structure of
the channel surrounding it but would effectively block access to most of the channel
(Kim et al., 2005b). This mutant, referred to as bet3-4, is conditionally lethal at 37°C.
Immunofluorescence visualization of the HA tagged mutant showed localization to many
intracellular compartments suggesting that localization of Bet3p to the Golgi is lost when

the hydrophobic channel is blocked (Kim et al., 2005b).

The hydrophobic channel on Bet3p is located adjacent to a wide flat surface with
an overall positive charge due to seven exposed basic residues. Five of these residues are
well conserved (>84%): Lys13, Arg62, Arg67, Lys80 and Lys84. Although Bet3p in the
channel blocked mutant did not localize correctly to the Golgi, it was able to bind less
specifically to other membranes. The conserved positive patch of amino acids on Bet3p
may account for the interactions with the negatively charged lipids on these membranes
(Kim et al., 2005b). To examine the role of the positive surface on Bet3p, a mutant called
bet3-3 was generated containing both K13E and K84E. substitutions. These changes
generated a conditionally-lethal phenotype and inhibited TRAPP from binding to the
Golgi membrane (Kim ef al., 2005b) suggesting that this positive patch on Bet3p is

necessary for the proper association with this membrane.

Bet3p and Trs33p are structurally similar even though their amino acid sequences
are very different (Kim et al., 2005a). The heterodimerization of these two proteins

allows for the co-precipitation of Bet5p with Bet3p (Kim ef al., 2005a). This indicates
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that Trs33p facilitates the interaction of Bet3p with other proteins and thus may also have
a role in the assembly of TRAPP (Kim et al., 2005a) and its localization to the Golgi

membrane.

1.4.2.2 Genetic interactions

BET3 was first identified as a genetic interactor with the SNARE mutant bet/-] in
a synthetic lethal screen (Rossi ef al., 1995). Immunopurified c-myc tagged Bet3p was
shown to be part of TRAPP. BETS, TRS20, TRS23 and TRS33 are high copy suppressors
of the temperature-sensitive mutant bet3-1 (Sacher et al., 1998), as could be expected
from proteins in the same complex. Overexpression of genes that encode SNAREs
(BOS1,SEC22, SEDS5, BETI) and genes whose products are involved in membrane
trafﬁcking (YPTI, SLYI1, SEC17, SECI8) are also able to suppress this mutant (Sacher et
al., 1998). Co-localization and subcellular co-fractionation with the t-SNARE Sed5p
indicate that Bet3p resides on the cis-Golgi membrane (Sacher et al., 1998; Banfield ef
al., 1994). Bet3p is the most highly conserved TRAPP subunit, it is essential for cell
viability, it localizes to the Golgi, and it genetically interacts with SNAREs and other
membrane trafficking factors (Sacher et al., 1998). For these reasons, Bet3p is thought to
be a determining factor in the ability of TRAPP to attach specifically to the Golgi

membrane.
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1.5 Synthetic lethal yeast screen

Synthetic lethality is a phenomenon by which the combination of two otherwise
non-lethal mutations results in lethality. Such a genetic interaction oftentimes suggests
that the corresponding gene products act in the same or in a parallel pathway (Guarente,
1993). In the present study a synthetic lethal screen will be employed using the channel-
blocked bet3-4 mutation. By using the channel blocked mutant bet3-4 in this screen, we
hope to identify a gene whose protein product may be responsible for TRAPP’s ability to

attach specifically to the Golgi membrane.

1.5.1 Overview of project

The variation of the screen chosen for the present study is based on a plasmid-
dependent assay which exploits red/white colony sectoring (Bender and Priﬁgle, 1991).
In‘the adenine biosynthetic pathway, the product of the ADE3 gene acts upstream of the
product of the ADE2 gene. An ade2 mutation blocks the 5-aminoimidazole
ribonucleotide carboxylase step (Patterson et al., 2008) and leads to the accumulation of
the oxidized and polymerized intermediate AIR (Smirnov ef al., 1967) in the vacuoles
(Weisman et al., 1987). However, a single ade3 mutation and a double ade?2 ade3
mutation result in colonies that are white in appearance since the pathway is blocked and
the red intermediate is not produced (Appling, 1999). Yeast genetics can be used to

control the red/white appearance by inserting a counter-selectable plasmid harbouring a
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wild type ADE3 gene into ade?2 ade3 cells. In this scenario the preferred counter-
selectable gene is URA3 which can be counter-selected on medium containing 5-
fluoroortic acid (5-FOA) (Boeke er al., 1984). The URA3 gene codes for the enzyme
orotidine 5-phosphate decarboxylase (ODCase) which is involved in the synthesis of
pyrimidine ribonucleotides where it catalyses the decarboxylationiof orotidine 5-
phosphate into uridylic acid (Umezu ef al., 1971). Mutations in this gene, which lead to a
defect in enzyme activity, result in lethality unless supplemented with uracil in the
growth media. ODCase also catalyses the conversion of 5-FOA into a toxic compound
(5-fluorouracil) (Boeke er al., 1984). Therefore, only cells which have lost the URA3-

containing plasmid will grow on 5-FOA media.

Treatment of yeast with ethyl methanesulfonate (EMS) results in random
mutagenesis (méinly point mutations resulting in G to A base substitutions but also A to
G substitutions and base insertions and deletions) (Sega, 1984). When performed in a
strain with an ade?2 ade3 background that carries a mutation (e.g. bet3-4) as well as the
counter-selectable plasmid mentioned above (containing URA3 and ADE3 with a wild
type copy of the mutant gene (e.g. BET3)), cells with mutations that are not synthetically
lethal with the mutation of interest will be capable of losing the URA3/ADE3-containing
plasmid and will appear as white colonies or red colonies with white sectors. However, if
a resulting mutation is synthetically lethal with the mutation of interest, then the colonies

will not be capable of losing the plasmid and will remain uniformly red.

Once these mutants have been identified, a yeast plasmid library is used to screen

for complementation. By complementing the EMS-induced mutation in the unknown
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gene, red mutant colonies will be able to lose the ADE3-containing plasmid and will have

a white or sectored phenotype.
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2. Materials and Methods

2.1 Strains, media and oligonucleotides

The S. cerevisiae strains used in the present study are listed in Table 2.1. Bacterial
strains and plasmid information are listed in Table 2.2. Strains were grown in the
appropriate media listed in Table 2.3. All oligonucleotides (Dean, 1999) used are listed in

Table 2.4.

2.2 Construction of yeast strains for the synthetic lethal yeast screen

In order to generate the starting strain for the screen (bet3-4 ade2 ade3), strains
MSY116 and MSY15a were patched one on top of the other to allow mating on a yeast
peptone dextrose (YPD) plate and grown for 5 hours at 30°C. Diploids were then isolated
after visual inspection using a micromanipulator and allowed to grow for 3 days on YPD
at 30°C. These diploids were then patched onto a sporulation (SPO) plate and sporulated
at 30°C for 7 days. Following dissection of the sporulated diploids, a red (ade?2) colony
was selected which was Jeu” and temperature-sensitive at 38°C indicating it contained the

bet3-4 mutation. This strain was designated MSY 188d.

This strain, MSY 188d, was then crossed again to MSY116. Following dissection

of the tetrads, a white (ade2 ade3) colony was selected which is also leu” and
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Table 2.3A Media

Media

Components

YPD 1% yeast extract, 2% peptone, 2% dextrose

drop-out | 0.67% yeast nitrogen base, 0.08% amino acid mix, 2% dextrose

5-FOA 0.1% 5'-FoA

0.67% yeast nitrogen base, 0.08% complete amino acid mix, 2% dextrose,

SPO amino acid mix

1% potassium acetate, 0.1% yeast extract, 0.05% dextrose, 0.02% complete

LB+ amp | 0.5% yeast extract, 1% tryptone, 1% sodium chloride, 34mg/ml Ampicillin

G418 1% yeast extract, 2% peptone, 2% dextrose, 200pug/ml G418

Note: For solid media 2% agar was added.

Table 2.3B Amino acid mix

Components (g/ 25L of media)

1g adenine

0.5g uracil

1g tryptophan

0.5g histidine

0.5g arginine

0.5g methionine

0.75g tyrosine

0.75 isoleucine

3.725g valine

0.75g lysine

1.25g phenylalanine

2.5g ghatamic acid

5g threonine

1.55_.3, leucine

Note: To make low adenine medium 0.15g of adenine is used in the mix instead of 1g

which lowers the concentration of adenine from 40mg/L to 6mg/L.
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temperature-sensitive at 38°C and was designated MSY206. Strain MSY207 was
obtained by swapping the LEU2 gene in MSY206 for the LYS2 gene using a standard
marker swapping protocol (see below, section 2.8) (Voth ef al., 2003) and selecting a
strain which is lys” leu” ura” and temperature-sensitive at 38°C. The /eu2 marker was
made available in this strain for the later use of a yeast plasmid library which is on a
LEU?2 plasmid. MSY207 was then transformed with a balancing plasmid containing wild

type BET3 (plasmid from MSB365a) to obtain the strain MSY211a.

2.3 Plasmid construction

To construct the balancing plasmid used in the synthetic lethal screen, the wild
type BET3 open reading frame with 400 base pairs upstream and downstream was
isolated from the plasmid from strain MSB8 (pRS315-BET3) by digesting with the
restriction enzyme Xbal (New England Biolabs). The plasmid from strain MSB340 with
the ADE:? and URA3 genes was also digested with Xbal for 1hour at 37°C followed by a
30 minute incubation at 37°C with calf intestinal alkaline phosphatase (CIP) to
dephosphorylate the 5° ends of the linearized deoxyribonucleic acid (DNA). The insert
and linearized plasmid DNA were then fractionated on a 1% agarose gel and the bands
were extracted using a gel extraction kit (Fermentas). The insert and plasmid were then
ligated together with T4 DNA ligase (200 Units in a total volume of 10pl) at room
temperature overnight. The following day, Sul of the ligated DNA was transformed into

40pl of CaCl; competent DH5a cells and plated on solid Luria-Bertani (LB)+ampicillin

25



(LB+amp) overnight at 37°C. The following day a single colony was picked into 3ml of
liquid LB+amp and again grown overnight. The following day the plasmid was isolated
from 1.5ml of this culture using a kit (Fermentas). The presence of the insert was
confirmed by its release from the plasmid following digestion with Xbal. The resulting

plasmid is referred to as MSB365a.

2.4 Transformation of Saccharomyces cerevisiae

In order to transform cells with plasmids or DNA fragments a Sml pre-culture was
grown in the appropriate medium overnight at 30°C on a rotary shaker at 250rpm. The
next day, the absorbance at 600nm of a 10 fold dilution of this culture was measured in a
spectrophotometer. Commonly, a concentration of 1x10%cells/ml gives an optical density
(OD)goo of 0.1. Using this formula the approximate number of cells in culture at different

points in this protocol could be calculated (Gietz and Woods, 2002).

Liquid media (50ml) was inoculated with 2.5x10°® cells to give a starting
concentration of 5x10° cells/ml equivalent to an ODgg of 0.5 and grown at 30°C for 3-5
hours on a rotary shaker at 250rpm. When an ODggo of 2 was reached (~2x1 O7cells/ml),
cells were pelleted by centrifugation at 3000 x g for 5 minutes in a table-top centrifuge.
The pellet was washed with 25mL of sterile distilled water (dH,O) and resuspended in
1ml of sterile dH,O. Cells were pelleted again at the same speed for 1minute and

resuspended in dH,O to a final volume of 1ml. For each transformation, 100ul of this cell
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suspension was transferred to a fresh 1.5ml microcentrifuge tube, pelleted at 13000rpm
and the supernatant discarded. A transformation mix consisting of 33.3% polyethylene
glycol (PEG) 3500, 100mM lithium acetate (LiAc) and 1.4pg/pl of boiled salmon sperm
DNA (carrier DNA) and sample DNA (10ul if linear or 2pl if circular) was added to the
cells and mixed vigorously. A typical transformation contained a total volume of 360ul.
The tubes were incubated in a 42°C dH,O bath for 40 minutes. Samples were then
centrifuged for 30 seconds (13000rpm) and the supernatant discarded. Cells were
resuspended in 500ul of sterile dH,O and 200pl of this cell suspension was plated on the
appropriate selective medium and incubated at 30°C for 2-3 days (Gietz and Woods,

2002).

2.5 Mating of Saccharomyces cerevisiae

Strains were crossed on YPD and grown overnight at 30°C and replica plated onto
the appropriate double drop-out plates (to select for diploids) and grown overnight at
30°C. Diploids wefe streaked onto new plates to obtain single colonies and grown for 3
days at 30°C.

Alternatively, when markers were not available to select for diploids, strains of ’
opposite mating types were patched one on top of the other to allow mating on YPD and

grown for 5 hours at 30°C. Diploids were then isolated using a micromanipulator and
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allowed to grow for 3 days on YPD at 30°C. MSY116 was crossed with MSY15a in this

manner to ultimately generate MSY116.

2.6 Sporulation of Saccharomyces cerevisiae

Single colonies from diploids were patched onto sporulation (SPO) plates and
grown for 5 to 9 days at 30°C. Once tetrads were observed under a light microscope,

plates were removed from the 30°C incubator.

2.7 Dissection of Saccharomyces cerevisiae asci

Using a 3mm loop, cells from the patches on the SPO plate, a mixture of
vegetative cells and asci, were placed into 100ul of tetrad juice (1M Sorbitol, 50mM Tris
(hydroxymethyl) aminomethane (Tris) pH 7.5, 0.05mg/mL Zymolya.se 100T). After 3 to
5 minutes of incubation at room temperature to lightly digest the spore wall, 5ul of the
cell mixture was gently spread on a YPD plate. The cells of 10 to 12 tetrads were then
separated and relocated in vertical rows using a micromanipulator and grown on rich
medium (YPD) at 30°C for 2 days after which time the growth pattern of the haplo ids can
be observed. Auxotrophic markers and mutations were assessed by replica plating onto
selective media and observing growth after 1-2 days at 30°C or 38.5°C (Sherman and

Hicks, 1991).
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2.8 Marker Swap

In order to facilitate further characterization of synthetic lethal strains, a leu2
auxotrophic marker was needed. The LEU2 gene was disrupted with LYS2 using the
plasmid MS7 (D771) (Voth et al., 2003). The plasmid was digested with Pst/ and Sacl
for 1 hour at 37°C, purified on a spin column (Qiagen) and resuspended in 50pl Tris
ethylenediaminetetra acetic acid (EDTA) (TE) buffer. This linear DNA (10ul) was then
transformed into the yeast strain MSY206 (see method above) and a lys* leu” colony was

isolated. This strain is referred to as MSY207.

2.9 EMS mutagenesis and death rate calculation

Ethyl methane sulfonate (EMS), a volatile organic compound that is a carcinogen
and a mutagen, was used to generate random mutations in DNA. Two 3ml cultures of
MSY211a were grown in —~URA drop out medium at 30°C for 3 days to a final ODsgo of
3.5 and then stored at 4°C. Two 1ml aliquots from one culture were used to test the death
rate following EMS mutagenesis as follows. Cells were pelleted at 6500rpm in a
microcentrifuge for 10 seconds and the supernatant discarded. Cells were resuspended in
1ml sterile dH,O, pelleted and again washed with 1ml of sterile dH,O. Cells were then
resuspended in 1ml 0.1M sodium phosphate buffer pH 7.0. A 30ul aliquot of EMS was
added to one of the two tubes, and sealed with parafilm. The untreated tube served as the

control. The cells were vortexed vigorously and placed on a nutator in a 30°C incubator
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for 1 hour. Cells were pelleted and the supernatant removed. The pellets were then
resuspended in 200ul of 5% sodium thiosulfate (to inactivate the EMS) and transferred to
new tubes. Cells were washed twice with 200ul of 5% sodium thiosulfate and finally
resuspended in 1ml of sterile dH,O. Serial dilutions up to 10 were prepared and 150pl
of each was plated on YPD plates and incubated at 30°C for 4 days. The death rate
(colonies on treated plate divided by colonies on control plate) of MSY211a treated with
30ul of EMS for 1 hour was calculated by counting the number of colonies on the1:1000
and 1: 10000 plates. For the present screen a death rate of 62% was obtained where a

death rate between 50 to 70% is considered ideal.

For the actual screen, mutagenesis was repeated under the same conditions with
the second 3ml culture of MSY211a. A 150ul aliquot of a 1:500 dilution was plated on
60 plates and grown at 30°C for 4 days. It was calculated that this amount should

correspond to ~48000 colonies (about an 8X coverage of the yeast genome).

Foliowing the four day incubation at 30°C, the 60 plates were refrigerated at 4°C
for 9 days to allow the red color in the mutated colonies to become more apparent. Red
colonies were streaked onto new YPD plates and grown at 30°C for 3 to 4 days followed
by storage at 4°C for 3-4 days. This was performed a total of three times to yield the final

pool of synthetic lethal mutants studied.
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2.10 Confirmation of genetic interaction

All 70 potential synthetic lethal mutants were crossed to a wild type strain
(MSY20). Diploids were isolated and sporulated to obtain tetrads (see above section 2.6).
Tetrads were dissected using a micromanipulator and grown on YPD for 3 days at 30°C.
Dissection plates were then replica plafed on—URA and YPD (at 38.5°C) to test the
phenotype of the ascospores. Growth on the dissection and replica plates was scored and

analyzed for a synthetic lethal phenotype.

2.11 Identification of TRAPP genes as synthetic lethal interactors

A library of yeast TRAPP subunits on individual low copy plasmids (DNA
isolated from bacterial strains MSB299 (BETS), MSB300 (TRS20), MSB301 (TRS31),
MSB302 (TRS23), MSB303 (TRS85), MSB304 (TRS65), MSB305 (TRS120), MSB306
(TRS33), with pRS313 backbones, was made with equal contribution from each plasmid
DNA. This library as well as the individual plasmid in MSB470 (YEL048c with a
pRS315 backbone) and MSB474 (TRS130 with a pRS425 backbone), were transformed
into all 70 synthetic lethal mutants. Transformation of these mutant strains with the
plasmid from MSB297 (BET3, with a pRS313 backbone), was used as a control.
Transformants were replica plated onto 5-FOA plates to counter-select against the BET3,
URA 3 plasmid. Mutant strains which were not complemented by any genes present in the

TRAPP library or YEL048c and TRS130 are presumed to have a mutation in a non-
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TRAPP gene. Colonies able to grow on 5-FOA were identified as having a mutation

which can be complemented by a TRAPP subunit.

Further transformation with the individual TRAPP subunits helped identify the
exact TRAPP subunit which could complement the unknown mutation in the synthetic

lethal mutant.

2.12 Genomic DNA (gDNA) extraction

Genomic DNA was isolated using a standard yeast genomic extraction protocol.
Initially, 1.5ml of overnight culture was pelleted at top speed (13000rpm) in a table top
microcentrifuge for 1 minute. The pellet was washed with 750ul of dH,O and then
resuspended in 500ul of spheroplast medium (0.9M sorbitol, 0.1M EDTA, 30mM B—
mercaptoethanol and 0.1mg zymolyase 100T) and incubated at 37°C for 1 hour. Cells
were again pelleted at 13000rpm and gently resuspended in 200pl of Tris-EDTA (50mM
Tris pH 7.5 and 20mM EDTA). A 30ul aliquot of 10% sodium dodecyl sulphate (SDS)
was added and the cell mixture was incubated at 70°C. After 30 minutes, 80ul of SM
potassium acetate was added and tubes were incubated on ice for 30 minutes to one hour.
Cells were centrifuged at 13000rpm for 10 minutes and the supernatant was transferred to
a new tube. Tubes were centrifuged again for 1 minute (13000rpm) and the supernatant
was transferred to a new tube avoiding the transfer of any debris. An equal volume of

isopropanol was mixed with the supernatant and centrifuged for 1 minute. The pellet was
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then washed with 500p1 of 70% ethanol and air dried in a 37°C heat block for 15 minutes.
The clear DNA pellet was then resuspended in TE buffer (10mM Tris pH 7.5 and 1mM

EDTA).

2.13 Yeast plasmid library DNA maxiprep

The yeast plasmid library YEp213 with a LEU2 backbone was kindly provided
Doreen Harcus (Biotechnology Research Institute, Montreal). The cells were diluted up
to 10 and plated on LB+amp to calculate the cell titer. Cell titer was calculated to be
4.32x10° cells/ml. Plasmid DNA was extracted from 2.16x10"" cells using a cesium

chloride-based maxiprep. The concentration of the resulting DNA was 0.94pg/pl.

2.14 Yeast plasmid library screen and the identification of synthetic lethal mutants

To identify the mutated gene which was lethal in combination with bet3-4, the
yeast plasmid library was transformed into the synthetic lethal mutants where the second

mutation was shown not to be in one of the TRAPP subunit genes.

The yeast plasmid library DNA was transformed into synthetic lethal mutants on a
small scale on one large 15¢m plate of -LEU/low ADE (drop-out mix without leucine

and only 6mg/L of adenine instead of 40mg/L) for each transformation. If a large number
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of red transformants (2000 to 4000) and few (5) to no white or sectored transformants
were observed, these strains were transformed on a large scale to obtain 50000 to 60000
transformants. White or sectored colonies were isolated by streaking out three
consecutive times on fresh plates, allowing for three days of growth for each plate, and
then grown in —LEU liquid media. Library plasmid DNA was extracted (see below) and
amplified by transforming into E. coli. Bacterial plasmid DNA was extracted using a
standard plasmid extraction kit (Fermentas) and re-transformed into the original mutant
yeast strain to see if it could rescue the synthetic lethal phenotype again. Plates were
replica plated onto 5-FOA. Those plasmids that were able to complement one of the
mutations present (growth on 5-FOA) were sequenced to determine the boundaries of the

yeast genomic DNA insert (see below).

2.15 Yeast plasmid extraction

The isolation of yeast plasmid DNA was performed using a user-developed
protocol with the QIAprep Spin Miniprep Kit from Qiagen (Michael Jones from the
Chugai Institute for Molecular Medicine in Ibaraki, Japan). Isolated white colonies from
the synthetic lethal mutants complemented by plasmids from the YEp213 yeast plasmid
library were grown overnight (16 to 24hrs) in Sml of -LEU drop out medium at 30°C.
Cells were then pelleted by centrifugation for 5 minutes at 3000 x g (gravity) in a table-
top centrifuge and resuspended in 250pl of Resuspension buffer (Fermentas). Acid-

washed glass beads (70mg) were added to the cells and the tubes were vortexed for 5
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minutes. Beads were allowed to settle and the supernatant was removed. Lysis buffer
(25ul) (Fermentas) was added to the supernatant and tubes were inverted gently 4-6 times
and left at room temperature for 5 minutes. Neutralization buffer (Fermentas) (350pul)
was added and the tubes were inverted gently 4-6 times. Lysates were centrifuged at
13000rpm for 10 minutes in a microcentrifuge. Supernatants were passed through
QIAprep Spin Columns by centrifugation at 13000rpm for Iminute. Flow-through was
discarded and the column was washed with 750ul of PE buffer from the QIAprep spin
miniprep kit and centrifuged at 13000rpm for 1 minute. Flow-through was again
discarded and residual buffer was removed by an additional centrifugation step at
13000rpm for 1 minute. The DNA was eluted by the addition of 25pl of elution buffer
(EB) (Fermentas). Following a 1 minute incubation at room temperature the eluted DNA

was collected from the column by centrifugation at 13000rpm for 1 minute.

2.16 Sequencing of yeast plasmid insert

Complementing plasmids from the yeast plasmid library (YEp213) were checked
for the presence of BET3 by performing a polymerase chain reaction (PCR) with Taq
DNA polymerase (Fermentas) and oligos Bet3BamHI-F and Bet3EcoRI-R. A 25ul
amplification mix contained 1 Unit of Taq DNA polymerase (Fermentas) enzyme with
2.5ul of Taq Buffer (without magnesium chloride) (Fermentas), 2pl of 12.5X magnesium
chloride, 2.5l of each SuM oligo, 2.5ul of 2mM dNTP and 1pl of a 1/5 dilution of the

template DNA. Amplification conditions consisted of 95°C for 3 minutes, 30 cycles of
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95°C for 30 seconds, 55°C for 30 seconds and 72°C for 1 minute, and a final elongation
step at 72°C for 7 minutes. If BET3 was not detected in these samples, then they were
sent for sequencing at the McGill Genome Centre with oligos P336 and P82. This
generated plasmid and insert sequence information from both ends of the insert. Aligning
the insert sequence to the Saccharomyces cerevisiae genome database
(www.yeastgenome.org) allowed the coordinates of the beginning and end of the insert to
be obtained. The chromosomal maps of these regions indicate the whole or partial genes

present in the inserts.

2.17 Sequencing of TRAPP genes and potential novel interactors

Extracted genomic DNA from synthetic lethal mutants was subjected to PCR
amplification using oligos to amplify the open reading frame (ORF) and 400bp upstream
and downstream of the complementing gene (Table 2.4). A 50ul amplification mix
contained 1.75 Units of High Fidelity Polymerase enzyme with Spl of Buffer 1 (Roche),
5ul of each 5uM oligo, 5pl of 2mM dNTP and 1pl of a 1/5 dilution of the template DNA.
Running conditions consisted of 95°C for 3 minutes, 30 cycles of 95°C for 30 seconds,
55°C for 30 seconds and 72°C for 1 minute/kb, and a final elongation step at 72°C for 7
minutes. For TRS85 and VPS16, the extension temperature was lowered to 68°C. PCR
products were purified using a PCR purification kit (Fermentas) and sequenced at the
McGill University/ Genome Quebec Innovation Centre using sequencing oligos listed in

Table 2.4.
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2.18 Confirmation of potential novel suppressors

To help identify the potential novel suppressor in the insert in MSE736,
fragments of this insert were cut out (removing certain genes) using restriction enzymes
and the vector re-ligated together. MSB736 was digested with the restriction enzyme
Pvull (New England Biolabs) and electrophoresed on a 1% agarose gel. Three fragments
of 2380bp, 2628bp and 10286bp were observed as expected and the largest fragment was
gel extracted using a gel extraction kit (Fermentas). This DNA was ligated together and
transformed into competent DH5a cells (as described in section 2.3). Plasmid DNA was
extracted from a single colony using a miniprep kit (Fermentas) and digested with Pvull
to verify the loss of part of the insert. As expected, since there should only be one Pvull
restriction site in the new construct, only one fragment equal to the size of this plasmid

(10286bp) was observed. This plasmid is referred to as MSB821.
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3. Results

3.1 Synthetic lethal yeast screen

A synthetic lethal yeast screen was performed with a bet3-4 mutant strain to help
identify genetic interactors which may be linked to the ability of TRAPP to anchor itself
specifically to Golgi membranes. The bet3-4 mutant strain (MSY211a) was randomly
mutagenized with EMS. Roughly 48000 colonies (8X the yeast genome) were screened
for a uniformly red phenotype. A total of 187 such colonies, ranging from pink to dark
red, were identified and re-streaked three times each, making sure to select colonies
which were uniforrﬁly coloured following 3-4 days at 4°C. Afier re-streaking, only 70
mutants remained completely red and never showed any white sectoring. This uniform
red colour indicates that all the cells need to retain the balancing plasmid in order to
survive and that the mutations present in these mutants are synthetically lethal with ber3-

4.

3.2 Confirmation of synthetic lethal phenotype

In order to confirm the genetic interaction visually observed by the red colony
color, all 70 mutants identified in the synthetic lethal yeast screen were crossed with a
wild type (wt) strain (MSY20), sporulated and dissected. Dissection plates were then

replica plated onto YPD (grown at the restrictive temperature of 38.5°C) and -URA
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(grown at 30°C). The bet3-4 allele is temperature-sensitive at 38.5°C and so cells which
have this mutation display slower growth at this temperature. The random mutation
produced from the exposure to EMS is at an unknown locus and there is no direct way of
tracking this mutation. In each ascus there are two wild type copies and two mutatant
alleles of each of these genes. In each ascus, the induced mutations either: do not co-
segregate with the ber3-4 allele (nonparental ditype), co-segregate in only one ascospore
(tetratype), or co-segregate in two of the ascospores (parental ditype) (see Figure 3.1).
Since we have no way of tracking the location of the unknown second mutation, we
predict that if the cell does not grow (on YPD at 30°C) it has both mutations present and
that the interaction is a confirmed synthetic lethal interaction. In this scenario, either all
four or only three or two ascospores are able to grow from each tetrad. This pattern is
referred to as a synthetic lethal growth pattern and indicated as 4,3,2 or 4,3 or 3,2 (see
Figure 3.2). Fifty mutants were identified as having this synthetic lethal growth pattern
(see Table 3.1). If the combination of these two mutations is in fact not lethal, then we
would expect all four cells of all asci to be able to grow on the dissection plate. These
strains would then have been rejected for not containing a synthetic lethél interaction.

However, no such strains were identified.

If the two mutations co-segregate it is either that these mutations are found in the
same gene (BET3) or in an adjacent gene tightly linked to BET3. In this case, two of the
ascospores in all asci will not be able to grow on the dissection plate, while the other two
would have no mutations and grow well. This is a 2 live: 2 dead growth pattern (indicated

as 2:2) (see Figure 3.3). Eight mutants had this growth pattern and are presumed to
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Figure 3.1 Tetrad types. Different potential outcomes from the cross AB x ab'are listed
whether the genes are on homologous chromosomes (center column) or on
nonhomologous chromosomes (right column). Parental ditypes (PD): all four gametes are
parental. Nonparental ditypes (NPD): all four gametes are recombinant. Tetratypes (T):
two gametes are parental and two gametes are recombinant. When the PD> NPD the
genes are linked and are on homologous chromosomes. When genes are on

nonhomologous chromosomes the PD=NPD while the T are more common.
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YPD 30°C YPD 38.5°C -URA

Figure 3.2 Independent segregation of mutant alleles. Dissection of mutant #98
crossed with MSY20 (wild type strain). All twelve dissected tetrads show a growth
pattern indicative of independently segregating mutant alleles. (A) Dissection plate on
YPD at 30°C. Three of the four ascospores grew in tetrads 3, 6, 7, 8 and 11, while only
two grew in tetrads 1, 4, 9 and 12. This indicates a 3,2 growth pattern. There is a
maximum of 2 red and 2 white colonies for each dissected tetrad. Although not shown
here, it is possible for all four ascospores to be able to grow. This would be indicated as a
4,3,2 growth pattern. (B) Replica plate on YPD at 38.5°C. When only two ascospores
grew on YPD at 30°C they were not temperature-sensitive at 38.5°C because they do not
have the bet3-4 mutation. When only three of the ascospores in a tetrad grow on YPD at
30°C, only one of these is temperature-sensitive at 38.5°C and grows slower. (C) The
absence of growth on -URA at 30°C confirms the loss of the balancing BET3 URA3

plasmid.
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YPD 30°C

Figure 3.3 Linked segregation of mutant alleles. Dissection of mutant #3 crossed with
MSY20 (wild type strain) on YPD at 30°C. Tetrads 1 through 12 show a distinct 2 live: 2
dead pattern indicating linked segregation of the mutant alleles. The second mutation is
either in or very close to the BET3 gene. Dissected tetrads were also replica plated onto
YPD and grown at 38.5°C and show no temperature sensitivity (not shown). Absence of

growth on -URA confirmed the loss of the balancing BET3 URA3 plasmid (not shown).
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contain a second bet3 mutation resulting in lethality (see Table 3.2).

Thirteen strains (mutants #17, 24, 45, 52, 63, 64, 66, 112, 130, 136, 144, 153 and
157) were disregarded as they either grew very poorly or they did not show conclusive
growth patterns following dissection since they kept the wild type balancing plasmid (see

Table 3.1).

3.3 bet3-4 is synthetically lethal with genes encoding the TRAPP subunits TRS23,

TRS65 and TRS85

To determine whether any of the induced mutations were in known TRAPP
genes, all confirmed synthetic lethal mutants were transformed with a library of plasmids
containing all known TRAPP subunits (BETS5, TRS20, TRS23, TRS31, TRS33, TRS65,
TRS85, TRS120, TRS130 and TCA17) on either LEU2 or HIS3 plasmids (see Table 2.2
and Figure 3.4). The synthetic lethal mutants which showed some complementation with
the library of TRAPP subunits were further transformed with individual TRAPP subunits
(see Figure 3.5). Transformants were replica plated onto 5-FOA plates to see if they
could survive the loss of the BET3 gene on the balancing URA3 plasmid. If all
transformants grew on 5-FOA then the specific TRAPP gene in question is able to
complement either the bet3-4 mutation or the second mutation found in that strain. To
identify the second mutation, the DNA sequence of the TRAPP gene complementing the

phenotype of the synthetic lethal mutant was compared to the sequenced genomic DNA
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Table 3.2 Summary of TRAPP mutants

Synthetic lethal
Mutant ¥ phenotype when TRAPP Identified mutation
crossed to wt subunit

7 43,2 Trs23 ORF wt, +/-300bp also wt

8 4,3.2 Trs23 1 base missing 29 bases after stop codon
16 43,2 Trs23 P194L, base 581 isa C changedtoa T
26 4.3 Trs23

95 4,32 Trs23 ORF wt, +/-300bp also wt

98 3,2 © Trs23 G138, base 37 is a G changed to an A
139 4,3,2 Trs23
142 43,2 Trs23
169 432 Trs23
172 432 Trs23

81 4,32 Trs23/Trs33
104 4,3,2 Trs23/Trs33
114 4,3,2 Trs23/Trs85
148 4,3 Trs23/Trs31
177 3,2 Trs23/Bet5

37 4,3 Trs85 premature stop codon, 58a.a. truncation
159 43,2 Trs85 premature stop codon, 392a.a. truncation
146 432 Trs65
149 3,2 Trs65/Trs120

3 2:2 Bet3

6 2:2 Bet3

20 2:2 Bet3

30 2:2 Bet3

43 2:2 Bet3

51 2:2 Bet3

53 2:2 Bet3
164 2:2 Bet3

Table 3.2 Summary of TRAPP mutants. Synthetic lethal mutants which showed some
complementation by a library of TRAPP subunits were classified as TRAPP hits. These
were further tested with individual TRAPP subunits and the complementing subunit(s)
are listed. TRS23 was sequenced in mutants #7, 8, 16, 95 and 98. TRS85 was sequenced
in mutants #37 and 159. Mutants that had a 2:2 dissection pattern are presumed to contain
mutations in bet3 or a tightly linked gene.
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Replica plates

5-FOA

-URA/-HIS
TRAPP library

-URA/-LEU
YELO48c (MSB470)

-URA/-LEU
TRS130 (MSB474)

Figure 3.4 TRAPP library screen. Mutant #98 was transformed with the TRAPP library
on plasmids containing either HIS3 (BETS5, TRS20, TRS23, TRS31, TRS33, TRS65,
TRS85, TRS120) or LEU2 (TCA17, TRS130) and replica plated onto 5-FOA (30°C) to
counter select for the BET3 URA3 balancing plasmid. Ability to grow on 5-FOA indicates

complementation by a TRAPP gene. As seen by growth on 5-FOA, all colonies on the
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control transformation plate with BET3 (MSB297) were able to grow without the
balancing plasmid. No growth is seen on the 5-FOA plates for the 7CA17 and TRS130
transformations. Approximately 1/8" of the TRAPP library transformants were able to
grow on 5-FOA. Therefore, mutant #98 most likely contains a mutation in one of the

TRAPP genes tested on that plate.
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Replica plates

-URA/-HIS 5-FOA

BET3 (MSB297)

BETS (MSB299)

TRS20 (MSB300)

TRS31 (MSB301)

TRS23 (MSB302)
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Figure 3.5 (continued) Complementation by a TRAPP subunit

Replica plates

-URA/-HIS 5-FOA

TRS85 (MSB303)

TRS120 (MSB305)

TRS33 (MSB306)

Figure 3.5 Complementation by a TRAPP subunit. Mutant #98 was transformed with
individual TRAPP subunits (HIS3 plasmids) and replica plated onto 5-FOA (30°C) to
counter select for the BET3 URA3 balancing plasmid. Ability to grow on 5-FOA indicates

complementation by the TRAPP subunit. Only TRS23 is able to complement one of the
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mutations present in mutant #98 and allow growth on 5-FOA. Mutant #98 most likely

contains a mutation in TRS23.
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of the untreated (no EMS exposure) strain (MSY211a). TRS23 and TRS85 were
confirmed as genetic interactors of the BET3 allele bet3-4. While TRS635, TRS31, TRS33,
TRS120 and BETS complemented some of the synthetic lethal mutants (see Table 3.2),
they were not sequenced to confirm the location of the mutation(s) present in the mutants

since we were interested in non-TRAPP genes.

Potential 77523 mutants: TRS23 was able to complement the synthetic lethal

phenotype in ten mutants generated from the screen (#7, 8, 16, 26, 95, 98, 139, 142, 169
and 172) (see Table 3.2). To verify that these strains indeed contained mutations in
TRS23, five representatives of this pool (#7, 8, 16, 95 and 98) were sequenced with
primers that covered only the ORF or primers that included the flanking 400 bases.
Sequences were compared to that of untreated MSY211a (see Figure 3.6). Mutant #8 had
no mutations present in the ORF but revealed a one base deletion 29 bases after the stop
codon. Mutant #16 contained a C to T substitution at position 581 resulting in a P194L
mutation in the protein. Mutant #98 contained a G to A substitution at position 37
resulting in a G13S mutation in the protein. No TRS23 mutations were found in mutants

#7 and #95.

There were five mutants (#18, 104, 114, 148 and 177) which showed
complementation of the phenotype by TRS23 as well as a second TRAPP subunit: #81
and #104 (TRS33), #114 (TRS85), #148 (TRS31) and #177 (BETS5) (see Table 3.2). While
both genes can complement the mutation, only one of these genes harbours the mutation.

These mutants were not sequenced since we were interested in non-TRAPP
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TTTTGGCAGAGATTGC TGGGGCGAGATGCAGTACTACACCACTTTAATGGAARRAACTGAATAGGARATGGTACAC
GAGATTTTTCTTCCCATAAAATGGAAGT TATCAATATTGTAAAGAGAAGCATTTACAAGCTTTTATTTTTCTTTT
TAATTTCCACTACTGGTTCTGCTTTARAATGTTGTTTTATAATTTATGTACATTTAGGCCTATAGAAGATTCTTT
CAATAATATGCTACACATTCTTTTATTTTTCCATCATATGTTGGAGTTTATGCCTCCTCGGCAGGAGTTGGGCGG
TGCGAAGAGAAGAAAAAGAGTGAAACTAAAAAAAGGAATCTGCCTTTGCATAAGTTCAAAAGTGCAATTTTAGTG
TTGGATTTAAACGGGAAAAATTCAAATGGCCATCGAAACAATACTTGTAATARACAAATCAGGCGGACTAATCTA
TCAGCGGAATTTTACCAACGACGAACAGAAATTGAACAGCAATGAATACTTAATTCTTGCTAGTACACTGCACGG
TGTATTCGCCATCGCGAGCCAGCTGACTCCGAAGGCATTACAGCTAACTCAACAAACGAACATCGAAAATACCAT
CCCATATATACCTTACGTGGGCATGTCCAGCAATAGGAGCGATACAAGAAATGGAGGTGGCAATAACAACAAACA
CACTAATAATGAAAAACTGGGCAGTTTTAAAGGAGATGATTTTTTCAAAGAACCATTTACGAACTGGAACAAGAG
CGGATTGAGACAACTATGCACGGATCAGTTCACGATGTTCATATATCAGACCCTAACCGGCCTGAAGTTTGTCGC
TATCAGCTCCAGCGTCATGCCCCAGAGACAGCCAACTATAGCCACCACCGACAAGCCTGACCGACCCAAGAGTAC
ATCCAATTTGGCCATCCAARATAGCCGACAACTTCCTAAGGAAGGTTTACTGTTTGTATAGTGACTACGTCATGAA
AGACCCATCTTACTCAATGGAAATGCCTATAAGATCTAACCTGTTCGACGAAAAAGTCAARAAAATGGTAGAAAA
CCTACAATAGACGCACGCGCCATCGGAAGATAAACGCATITCACACCAAGAAAATAAATACTACGTACTTCTAGAA
CTAAGAAGAAGTTGCCGCTCTCCGTCTCCTCCTTCATAAATAGGGATAGCTTTTACTACTACGTACGARRAAAGA
CCACACTGCGACGGATCCTCTGCATCCCAACACCAGCGATAGAAAATGCGCCGCCTATATCGTCATCTTGCTTCC
TTTTTCTTACTCCCTTCCTGCCCTGGAAACACCATACAATCCATCACATCATATCCTGCCAATGCACTATTACGC
AGCTTTCGGCACGTGAGTACGGAAACACCAGTTCGGAACCGGGTACACAATAGGGATAGT CAAAGCTGTCCATTT
TTTCCGCTGATGGATGACTGATACCAAAGTGTAAC

Figure 3.6 #rs23 mutants. The sequence of 7TRS23 including 400 bases upstream and
downstream of the ORF. Trs23p is 219 amino acids long. The start codon is highlighted
in green while the stop codon is highlighted in red. Three synthetic lethal screen mutants
were shown to have mutations in the #7523 gene. Mutant #98 has the earliest mutation
with a G to A base substitution at position 37 (highlighted in blue) which results in a
G13S missense mutation. Mutant #16 has a C to T base substitution at position 581
(highlighted in grey) which results in a P194L missense mutation. In mutant #8 there are
no changes in the ORF for TRS23. However, there is a deletion of the twenty ninth base

after the stop codon (highlighted in purple).
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genes and we would need to sequence several genes in each of these strains.

Potential rrs65 mutants: Mutants #146 and #149 could be complemented by either

TRS65 or both TRS65 and TRS120 (see Table 3.2). Genomic DNA from neither of these

mutants was sequenced for reasons stated above.

Potential 17585 mutants: TRS85 was able to complement the second mutation

found in two mutant strains: #37 and #159 (see Table 3.2 and Figure 3.7). PCR of the
extracted genomic DNA was used to amplify the TRS85 ORF and 400bp upstream and
downstream. Mutant #37 contained a single base substitution resulting in a premature
stop codon and a 58 amino acid truncation from the C-terminus of the protein. Mutant
#159 also contained a single base substitution resulting in a premature stop codon and a

392 amino acid truncation.

34 éenetic interaction between TRS85 and BET3 is not allele specific

To test if the interaction between TRS85 and BET3 is specific to the allele used in
the screen, a TRS85 deleted strain was crossed with bet3 mutants at our disposal to test
for a synthetic genetic interaction. Since TRSS5 is not essential, it can be completely
deleted from a strain while maintaining viability. A trs85A::HIS3 (MSY214) was crossed
with three different mutant alleles of BET3: bet3-3, bet3-4 and bet3-5 (found in strains

MSY14c, MSY15a and MSY 146, respectively). Diploids were sporulated and dissected
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TACCTTCCTCATCTTGATGCTGAARAGTAAATTGATGGAGTCAAGCGGTTCACCAATAGCGGGATTTCATCGCCTG
AGTGATATGTTGTGGGAGATAGGCCTGGCAAGGAAAATCCTTTAGTTARAGTTGCATAGCAATAAATCAGCAACC
AAACACCTCGTTTCATTACCGATTATTAATTATCAATATGTGTACTAATATAATTGTCAAAATTTATGATGTAAA
TTTAGGGTTCCCAACATATTTTACTCAACTGTAAACAAGTCATAATTTCCTCGGACAAAATTAGGCAAAATAACA
GAAAAACCAATGGATGGGATGGGTAGGAAAATGAGTAAGTAACCCAAACAAACGGTACCTCTTTATTCAGTCGGC
TTTACAGATACTGAGGTAACTTATAE:@GTTTTTTCTTATGAGCACTATATGAATCTCCTTTTCCATTTGGATAA
CAGTAAAGAAACGGTGCCTCCAGAGATTGCAAAAAGAATAATTTCARATGCTATAGCTCCTGTAATAACAGTTAC
TTCAACTCCTCTCTTCGACAAACATATTCAAGAARACGTACAAAGTAGATTCTCTCTATATGCTGCTGCGATTCTT
TGGCGGTTGTGTCTCTGATAGAGATCAAGCCAATGAAGCGAAGGTTGGACAGCATGAGCATGAGGTTTGTGATGC
AAGTGACTCGACGGATTCAATTCCCAAAAATAAARAATTTGGAAGTGCCCAATTTATCAAAGARAGGTAGTCGCAG
TAGGTCGAATAGTCTTTTCCAGAGGGATTCAACGCAATCTCAATATATCAGGTTTACAAGGCCATTAGGTGACTT
GATCGAAACAAGAGATGCAAATGATATGTTATTCAATTACCATTCTTTAGAGGTATTCTTAGATAATTATTTGAA
ATTGGTTGCAGCAAATACTGATGAAATGGTTCCTCATAATCTTCTTAAGAAATCCATTTATCATAGTTTCTTTTC
ACTAGCAATTTCATCCACAAATAACTTATCGCCCTATGAAACTTTTAATCACCCTATTCTTTCCTTGATTGCTTT
AGATATATCAAATGGCGAAGTTTATGAGGATGCAAGAGATCTTTTAGTCAATTTCAAGAATCTTAATCATAATAC
TGAAAACTTTCCTATCTTCATGAATACAAATGAAATGCTTCCAGTTTTCTTACTCTGCTACAATGACGATTCCCA
AGAAGAATTCGAAAAATGCCAGGCGTTAGCTAAGAAACTAAAGAAGCAGTTGTTTGTTGAGAGTATCTTACTAGC
ACTCTGGAAGGATTCTTTTATTTACGACGAAAATTCAGTCATAE%GTTACACCAACCAGTAATGTCATCGCTTGA
AGABATTCTCTTCTTCCTTCAAGCTCCAACTCAAACAACACTCTCTCTGGCTTTGATAAACTCGATCTATGATAT
GCTTGATTATTTGGTTTATGATTTAATGATACCATTCATGAAAAGAAARAGTGTCATTCTGGGAAGAGACAATTTT
ACAGCCAAGAAAGTCGCTATTTAATGGTGCAAAGTTTTTCAAAAAATTTATGAATAAAARATCCTGTCAATGGTAA
TCACCAACATAATTCTCTAACGAGAGACAGCCAGGGAAATGAATACTTCGCATCGTCATCTTCTGAGTTTTTGAT
GAGAAAGTTAGCAGATTGGTCTATGATGCTATCCGACTTCAAAACTGCTTATTCCACATACGAATCGCTTATGGA
TGACCTAGATGCATTTCCAAAGTACCTGGCATCATGCATCGAATGGTGCGCGGTATCACTATTGATGGGTGCGCA
GAGCATAGTCACCGTGAAAATGATCAAAARACGATATAARATCCTCTTATCGAAAGGGCATTAGCCACATACGAARA
CTGCTCACGAATACAACGTGGTAAAGGCAAAGAATCAAACTCTTTGGATGTTACAGAGCCAGTGCGTTCGTATGA
GACACGTTGTATGATTTTGGCATCTGAATTGTTTTTATCTTTAAGCAATACGTGGACATCTACCCCATACGCTAT
CCAATATTTAGAAACAATTCTAGACGAGTGCAAGTTGGGACCTTGTTCACAGATAATGGTTTGGGAAAGGCTTAG
TGACTGCTATAATTTGAGAGTTGACCCTAGAATCAAACATAGAGTTGGAGCAATGAAGAAGGACGCTAAAGACAC
CGAAGATCTCCGAGGTGAGCATAAGTATAGCACAGATCATTTCACAGACGAGGACATATTATCGGAAGGGTTAAC
AAGAAGACGCAAGGCAGCTTTTTTTAGGTTAATAGCAGCTAAGAAGTGGGCAGAGCAAAAACAATGGAGA@AGGT
TTCTTGGTGCTTAAAAGATATTGAAAGTACCTATTCAGAGATCAAATTTTTGCATGGTAACGGTTTAATTTTAAG
CAARACTAAAAAATCAACTCAATTTAAAGGACGTGGATTCTGCACCACGGCCCTCCGAAAAGAATCTTACAAGAAC
AAGTGTTAGCTTTATTGGACTTTATGGAAAATTCATGTTTTGAGTATAAATTATACGTACGAATCTTATAGA
TATATATTTTTCTTTTAAAACTCCATTTCAGCTCATAAGCCGATACAAACACCTTCTATATATTATTTCTCTAAC
AGCTATGTTAACATGATTGCCTTTGTTTATCTACTAAAGGACCCTTCTACTTTATCTACCATACGCCTATATTTT
CTCTGTGTTTCAATCATATCGAGAAAAATTTGGTACTTCGTGTCTARAAGAATTCTATCTGGATGAGTTTTCTCA
TTTGGATTGACAATTCTTGCATTACCCGTTAGCTCTTGCATAACTTTCCATAGARAACTTGTCCCGTTATATCTT
CCCTCTCCTAGGCTCTCCTGTCCCACGGTCAATGAAGCATCCTTACT

Figure 3.7 trs85 mutants. Trs85p is 698 amino acids. The sequence of TRS85 including
400 bases upstream and downstream of the ORF. The start codon is highlighted in

green while the stop codon is highlighted in red. Two synthetic lethal screen mutants
were shown to have mutations in the frs85 gene. Mutant #159 contained the earliest
mutation with a C to T base substitution at position 919 (highlighted in purple) resulting

in a premature stop codon and a 392 amino acid truncation of the protein. Mutant #37
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contained a C to T base substitution at position 1921 (highlighted in blue) resulting in a

premature stop codon and a 58 amino acid truncation of the protein.
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onto YPD plates (grown at 30°C). The dissection plates of trs83A::HIS3 x bet3-3 and
trs85A::HIS3 x bet3-4 were replica plated onto YPD (38.5°C), —LEU and -HIS.

The dissection plate of trs85A::HIS3 x bet3-5 was incubated at 25°C and replica plated
onto YPD (38.5°C) and —HIS (25°C). The growth patterns of these dissected tetrads were
analysed for a synthetic genetic phenotype (see Table 3.3 rows 1 to 3). If a synthetic
lethal interaction is observed there would be a combination of dissected asci which have
4, 3 or 2 ascospores growing at the permissive temperature. If no synthetic lethal
phenotype is observed, all the ascospores from all asci should be able to grow. The
crosses between 1rs85A::HIS3 and bet3-3 (Bet3p(K24/96E)), bet3-4 (Bet3p(A94L)) or
bet3-5 (Bet3p(G64E)), all show.ed a synthetic lethal interaction (4, 3, 2 or 3, 2 growth

pattern) indicating that the interaction is not allele specific (see Figure 3.8).

3.4.1 Genetic interaction between TRS85 and TRS33, TRS65, TRS130 and BETS5

TRS85 was also tested for a genetic interaction with mutant alleles in genes
encoding other TRAPP subunits: TRS33, TRS65, TRS130 and BETS. A strain containing
trs85A::KanMX (MSY362) was crossed with the following TRAPP mutants:
trs33A::HIS3, trs65A::HIS3, trs130-1::URA3 (temperature-sensitive at 38°C) and bet)-
1::URA3 (temperature-sensitive at 38°C). All sporulated diploids were then dissected on
YPD plates (30°C) and replica-plated onto medium to reveal the markers linked to each
mutation. (see Table 3.3 rows 4 to 7 and Figure 3.8). A synthetic lethal interaction was

seen with bet5 as indicated by the 4,3,2 growth pattern. No synthetic genetic interaction
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YPD (30°C) YPD (30°C)

Figure 3.8 Synthetic lethal and non-synthetic lethal growth patterns. (A) Synthetic
lethal growth. Dissection plate on YPD at 30°C of bet5-1 x trs85A. All twelve dissected
tetrads show a growth pattern indicative of a synthetic lethal interaction (4,3,2). All four
ascospores grew in tetrad 5. Three of the four ascospores grew in tetrads 2, 3, 4, 6, 8, 9,
10 and 11, while only two grew in tetrads 1, 7 and 12. (B) Non-synthetically lethal
mutations. Dissection plate on YPD at 30°C of trs65A x trs85A. Ten of the twelve
dissected tetrads show a growth pattern indicating no genetic interaction between the
mutations present. All four ascospores grew in tetrads 1 to 4, 6, 7 and 9 to 12. To ensure
the quality of the tetrads chosen and to track the location of the mutations present,
dissection plates were replica plated onto selective media and the growth patterns

analyzed (not shown).
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was observed with 17s635A or trs130-1 since all four ascospores in the tetrads were able to
grow even when both mutations were present in the same cell. In the t7s83A cross with
trs33A, while the mutations are not synthetically lethal the mutations have a synthetic

genetic interaction seen by a reduced ability of the double mutants to grow at 30°C.

3.5 BETS3 genetically interacts with non-TRAPP genes

Synthetic lethal mutants (thirty) which showed no complementation by any
TRAPP subunit tested were presumed to have a mutation in a non-TRAPP gene (mutants
#5,13,14,15,18,19, 29, 31, 35‘, 36, 38, 48, 73, 80, 82, 85, 87, 99, 113, 115, 116, 121,
123, 125, 128, 132, 143, 154, 173 and 179) (see table 3.4). To identify these genes, a
library (YEp213) containing all yeast genes was used. This library, on a LEU2 plasmid,
was transformed into a subset of these mutants (mutants # 5, 15, 29, 35, 36, 38, 80, 121,
128 and 132) which represented the range of mutants identified based on color intensity
(red and light red) and dissection results (smaller colony size arising from a subset of
ascospores). A full screen (mutants # 5, 15, 29, 80 and 121) was performed if less than
five white colonies were observed in the small scale screen. Transformants were screened
for complementation based on color change. There is a background of red colonies which
did not receive the wild type copy of a gene which can complement one of the two
mutations (either bet3-4 or the unknown mutation). White or sectored colonies should be
rare as few colonies receive a plasmid which can complement one of the mutations and

no longer keeps selection for the balancing BET3 plasmid. These white or sectored
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Table 3.4 Summary of non-TRAPP mutants

mutant | # viable progeny per ascus mutation YEP213 library screen
15 43,2 not TRAPP | possible VPS16 or ELC] mutant
5 4,32 not TRAPP " no rescue
29 43,2 not TRAPP no rescue
80 43,2 not TRAPP no rescue
121 43,2 not TRAPP no rescue
13 4,3,2 not TRAPP N/A
14 3,2 not TRAPP N/A
18 43,2 ‘ not TRAPP N/A
19 3,2 not TRAPP N/A
31 43,2 not TRAPP , N/A
48 4,32 not TRAPP N/A
73 4,32 not TRAPP N/A
82 432 not TRAPP N/A
85 432 not TRAPP N/A
87 4,3,2 not TRAPP N/A
99 4,32 not TRAPP N/A
113 432 not TRAPP N/A
115 432 not TRAPP N/A
116 3,2 not TRAPP N/A
123 3,2 not TRAPP N/A
125 43 not TRAPP N/A
143 4,32 not TRAPP N/A
154 4,32 not TRAPP N/A
173 4,32 not TRAPP N/A
179 ' 432 not TRAPP N/A
35 3,2 not TRAPP small scale only
36 43,2 not TRAPP small scale only
38 3,2 not TRAPP small scale only
128 43,2 not TRAPP small scale only
132 3,2 not TRAPP small scale only

Table 3.4 Summary of non-TRAPP mutants. Synthetic lethal mutants which were not
complemented by any of the tested TRAPP subunits were classified as non-TRAPP hits.
Small scale yeast plasmid library screens were carried out on mutants #5, 15, 29, 35, 36,

38, 80, 121, 128 and 132. Further large scale screens were done with mutants #5, 15, 29,
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80 and 121. A VPSI6 containing YEp213 plasmid was able to complement a mutation

found in mutant #15.
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colonies were isolated three times on —-LEU / low ADE plates and finally grown in liquid
~LEU medium. Plasmid DNA was extracted from these cultures and amplified in

bacteria.

- Of the five strains subjected to a full screen, only mutant #15 yielded a plasmid
that could complement the lethality when re-transformed into the original mutant strain
(see Figure 3.9). Plasmids from the white colonies observed from mutant #15 that did not
contain BET3 as judged by PCR were sequenced. Sequencing of one such plasmid
revealed it originated from chromosome XVI. The chromosomal map of this region
(chromosome X VI coordinates 466119bp to 470749bp (see Figure 3.10) indicated the
presence of two whole genes (VPS16 and ELCI), the 5° end of a third gene (VOP4, 1-
814bp out 0f 2058bp) and the 3” end of a fourth gene (Ingvarsdottir ef al., 2005) in the
insert. Interestingly, Vps16p is a component of the multisubunit vesicle tethering
complexes HOPS and CORVET which are involved in vesicle trafficking in the
endosomal pathway (Peplowska et al., 2007). ELC] is involved in transcription
elongation and plays a role in excision repair. Of the more than 20 genes shown to
interact with ELC], it genetically interacts with YPT6 and SEC28, two genes involved in
membrane transport at the level of the Golgi. Nop4p is involved in ribosomal RNA
processing (Sun and Woolford, Jr., 1994) while Sgfl1p is a subunit of the Spt-Ada-Gen5-
acetyltransferase (SAGA) histone acetyltransferase complex (Pfeffer, 2001; Ingvarsdottir

et al., 2005).
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-URA/-LEU 5-FOA 30°C

Figure 3.9 Complementation in mutant #15 by VPS16 and ELCI containing library
plasmid. (A) Mutant #15 was re-transformed with the VPS16 and ELCI containing
plasmid identified in the yeast plasmid library screen (saved under MSB736) and plated
on -URA/-LEU and grown for 3 days at 30°C. (B) Transformants were replica plated
onto 5-FOA and grown for 2 days at 30°C. Transformants show some re-growth on 5-

FOA.
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Figure 3.10 YEp213 yeast plasmid library insert which complemented mutant #15.

The chromosomal map of chromosome XVI coordinates 466119bp to 470749bp. There is

a whole gene (VPS16) present and the N-terminal part of a second gene (NOP4 1-814bp

out of 2058bp) in the insert.
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3.6 VPSI16 appears to suppress an unidentified mutation in mutant #15

The extracted library plasmid containing VPS16 and ELC] was able to
complement one of the mutations in mutant #15. There are three scenarios to explain this:
(i) VPS16 or ELC1 suppresses bet3-4, (ii) VPS16 or ELCI complements a vpsI6 or elcl

mutation, respectively, (iii) ¥PSI16 or ELCI suppresses some other unidentified mutation.

To test the first possibility, the isolated plasmid was tested in a non-EMS treated
bet3-4 mutant (MSY207 temperature-sensitive at 38°C) and another bet3 mutant, bet3-5,
for suppression of the temperature-sensitive growth phenotype (see Figure 3.11). This
latter allele was tested to see if suppression would be allele-specific. If any gene or partial
gene present in this plasmid can complement the bet3 mutation, then it should be able to
suppress the temperature-sensitive growth at the restrictive temperature. As expected,
BET3 could suppress both bet3 mutations and the transformed strains grew better at
higher temperatures, similar to the wild type strain (panels B, C, F and G). In contrast, the
library plasmid was not able to suppress the temperature-sensitive growth defect of either
bet3 mutant tested (panels D and H). These results suggest that the rescue of the synthetic

lethality seen in mutant #15 is not due to suppression of the bet3-4 mutation.

To test which gene is complementing the unidentified mutation in mutant #15, a
plasmid construct was made where most of VPS16 and all of NOP4 was removed from
the suppressing plasmid insert and the plasmid re-ligated together (MSB821; see Figure

3.12). This plasmid was then transformed back into mutant #15 along with the original
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suppressing plasmid. A transformation with BET3 (positive control) and an empty
plasmid (negative control) was also performed. Transformants were plated on the
appropriate selective medium (-LEU/low ADE or -HIS/low ADE) and grown at 30°C for
3 days. White colonies were observed with the addition of BET3 or the original
suppressing plasmid (MSB736) but not with the plasmid digested with Pvul/l (MSB821)
or the empty negative control plasmid (see Figure 3.13). Therefore, VPS16 or the NOP4
fragment appears to be necessary for the suppression of the synthetic lethal phenotype in

mutant #15.

To directly test if ¥PS16 was altered in strain #15, the gene was sequenced in one
direction using four oligonucleotides. Comparison to the sequenced wild type strain
revealed no mutations in the ORF and the surrounding regions (125 bases upstream and
322 bases downstream). Overall, these results suggest that PS16 is suppressing an as yet

unidentified mutation in strain #15.
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Figure 3.12 Mutant #15 suppressing plasmid. This plasmid (MSB736) from the yeast
library (YEp213) suppresses the synthetic lethal phenotype of mutant #15. The plasmid
insert contains two whole genes (VPS16 and ELCI) and two partial genes (NOP4 and
SGF'11; not shown in diagram due to its small size). Restriction enzyme Pvull was used
to remove most of VPS16, leaving only a few amino acids at the N-terminus, and all of
NOPA4. The re-ligated construct contains the short 3” end of SGF11 from the original

insert, all of ELCI and 177bp of the 5° end of VPS16 (59 amino acids).
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SUPPression pl:;smid ELCI fragnient
Figure 3.13 VPS16 or NOP4 suppresses the synthetic lethal phenotype of mutant
#15. Synthetic lethal mutant #15 was transformed with (A) BET3 plasmid (MSB297), (B)
empty LEU?2 plasmid (MSB238), (C) the suppression plasmid (MSB736) and (D) the
ELCI only containing plasmid (MSB821). BET3 and MSB736 are both able to suppress
the synthetic lethal phenotype of mutant #15 (A and C). However, the empty plasmid and

MSB821, containing only FLCI, are not. These colonies retain the balancing plasmid and

are red (B and D).
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4. Discussion

4.1 The synthetic lethal screen

The synthetic lethal screen with bet3-4 in the present study generated 70 mutants
to analyse. The color of these mutants (red, light red and pink) was noted for a possible
correlation to be made between colour intensity and genetic interaction. For example a
pink colour may have indicated that the combination of the two mutations causes the cells
to be sick resulting in a large number of cells in each colony losing the balancing
plasmid. However, no such link has been made thus far and it is likely that none exists.
Colour may be influenced by several different factors and, therefore, it is likely that there
is no direct correlation with the kind of genetic interaction present (Hieter e al., 1985;
Koshland et al., 1985). As would be expected since one of the mutations present is bet3-
4, there were several mutants (Umezu ef al., 1971) which showed linked segregation
when crossed to a wild type strain and dissected. This indicated that the second mutation
is likely to be within BET?3 or in a gene that is very close and does not readily segregate

away.

4.2 trs23 and #rs85 mutants

As well as the bet3 mutants, there were fifty mutants which showed a confirmed

synthetic lethal interaction. Among these fifty mutants there were likely to be mutations
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present in TRAPP genes. As expected, nineteen mutants were shown to be complemented
by one or more TRAPP subunit genes. It remains formally possible that a mutation in
another gene may be complemented by a TRAPP subunit gene. This notion is supported
by the fact that mutants #7, #8 and #95 were suppressed by TRS23 yet had no mutations
in the ORF or the nearby flanking regions. The TRAPP genes in this class of mutants,

therefore, need to be sequenced in order to confirm the location of the mutations.

Point mutations were identified in #7523 in mutants #16 and #98, and in trs85 in
mutants #37 and #159. Since these were synthetically lethal with bet3-4, a mutation
which causes the mislocalization of TRAPP, it is possible that, alone, they too would lead
to the same phenotype. This can be tested by introducing these mutations into a yeast
strain by homologous recombination or on a vector, thereby isolating the mutation from
any other lesions present in the strains caused by the EMS treatment. Subcellular
fractions on a sucrose gradient of the yeast cell lysates followed by western blotting for
one of the TRAPP subunits (e.g. Trs33p) could be used to determine the localization of
TRAPP within these mutant cells. In the case of #s85 mutants, a trs85 deleted strain can
be used since it is a non-essential gene. If mislocalization of TRAPP is observed then
these subunits are also involved in the anchoring of TRAPP to the Golgi membrane. This
was in fact performed, however preliminary data for the subcellular fractionation of

TRAPP in a t7s85A mutant was inconclusive.

The trs85A mutant was crossed to three different bet3 mutants and this showed

that their synthetic lethal interaction was not allele specific. As opposed to the amino acid
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substitutions found in frs23 mutants #16 and #98, the fs85 mutations in mutants #37 and
#159 lead to stop codons and truncations of the protein. If an allele-specific interaction
had been identified between these mutants and ber3-4, it would have indicated that the
region conferring this function to rs83 was located within the smallest of the two C-
terminal truncations (the last 58 amino acids). However, no such allele-specific

interaction was observed.

The two rs23 mutations found in this study should also be tested for allele
specificity with these three betr3 mutants. An allele-specific synthetic lethal interaction
with bet3-4 would indicate that these specific amino acid changes are important for the
ability of TRAPP to anchor itself to Golgi membranes. Furthermore, if more than one
synthetic lethal mutant shows mutations in the same region of the same gene, it may be
that the amino acids in this region are important for the function of this protein. If allele
specificity is also observed between these mutants and bet3-4, then it would suggest that

this region is involved in the ability of TRAPP to anchor itself to Golgi membranes.

4.3  Strains possibly harbouring multiple mutations

Thirteen strains did not conform to expected results for a mutation that is
synthetically lethal with bet3-4. These thirteen strains may have many mutations present
which may be affecting the cells in various ways including, in some cases, their ability to

grow well. In addition, the six mutant strains that did not grow well at 30°C may have a
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second mutation which itself is temperature-sensitive at this temperature and thus would
require incubation at a lower temperature. Since the synthetic lethal screen was carried
out at 30°C, all induced mutations analysed are able to grow at this temperature although
they may grow better at a lower temperature and similarly may have slower growth at
higher temperatures. To observe the potential temperature-sensitive phenotype of the
induced mutations, mutant growth can be analysed at several temperatures spanning a

wider range.

Strains that kept the wild type balancing plasmid after being crossed to a wild
type strain (some colonies on the dissection plate were sectored or grew on -URA) were
unexpected since in the diploid étate there should be no selection for the plasmid. It is
possible that although there is no selection for the plasmid, not all of the cells lose it.
However, in such a case BET3 on the plasmid masks the presence or absence of the bet3-
4 mutation and it becomes difficult to confirm the synthetic lethal interaction through the
dissection growth pattern. Therefore, these mutants were classified as behaving oddly and

not further analysed.

Strains (#64, #112 and #130) in which some colonies displayed red/white
sectoring following dissection also indicated the presence of the balancing plasmid
although this was not confirmed by replica plating onto -URA medium. Therefore, these

strains were also unusual and not analysed further.
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Pre]imvinary analysis of the temperature sensitivity of the synthetic lethal mutants
reveals no apparent temperature sensitivity (data not shown). However, for mutants
which showed some small colonies following dissection or grew slowly at 30°C (and
were classified as behaving oddly) it would be necessary to look at their possible
temperature sensitivity further by comparing the growth of serial dilutions of each strain
at the various temperatures listed above. It is possible that the temperature-sensitive
phenotype was missed because the cell cultures may have been too concentrated to show

a slight temperature-sensitive phenotype.

4.4  trs85A genetic interactions

As well as testing for allele specificity in the genetic interaction between frs85A
and bet3 mutants, trs85A was tested for genetic interactions with other TRAPP subunit
genes. We found that trs85A genetically interacts with both bet5 and trs33A. It is
interesting to note that betr3-4 was previously shown to be complemented by TRS33 as
seen by growth on YPD (Kim et al., 2005a). In the present study, however, the bet3-4
mutants were not complemented by TRS33 on an 5-FOA plate. Taken together with the
findings above showing a genetic interaction between f7s85A and bet3-4, these findings
may suggest that the two non-essential TRAPP subunits Trs85p and Trs33p help Bet3p in
anchoring TRAPP to the Golgi or in other functions. Following these observations, it

would be warranted to investigate the localization of TRAPP in a trs33A strain. A trs33A
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mutant should be subjected to subcellular fractionation as described above and the

localization of TRAPP assessed.

4.5 Non-TRAPP synthetic lethal interactions

The thirty mutants which had non-TRAPP mutations were a main focus fof this
study. Ten mutants were chosen as representatives for the small scale screen using the
yeast plasmid library based, among other factors, on their various shades of red colour.
The small scale screen revealed that the light red coloured strains (mutants #128 and
#132) were unsuitable. The rare white colonies were virtually indistinguishable amongst
a light red, almost pink, background of colonies. The five strains chosen for the large

scale screens had the darkest red colour and the fewest white colonies.

An eight-fold coverage of the yeast genome was analyzed in the screen to ensure
that even genes expressed at low levels would be represented. In all large scale screens,
except for mutants #5 and #80, there were a surprisingly large number of white colonies
(over forty). A large number of white colonies is unexpected unless the mutation is
suppressed by multiple genes or is suppressed by genes that are highly expressed. The
yeast plasmids from mutants #5 and #80 did not re-complement the mutations in these
strains as seen by the lack of growth on 5-FOA medium. Therefore, systematic evaluation
of the white colonies in strains #15, #29 and #121 was carried out. Isolated plasmids were

tested to see if they could complement a mutation found in their respective strains by
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replica plating onto 5-FOA and looking for growth. Only five isolated plasmids from
mutant #15 (and none from any other mutant) were able to do so. The other white
colonies were false positives, some of which contained empty plasmids as revealed by
sequencing (data not shown). Of the five isolated plasmids, four contained BET3 as
expected in such a screen while one did not. This plasmid contains two whole genes
(VPS16 and ELCI), the 5’ end of NOP4 and the 3’ end of a fourth gene SGF11. SGF11 1s
unlikely to be of interest since the insert lacks the 5’ untranslated region, the start codon
and further sequences downstream. Although formally possible, NOP4 is not believed to
be the suppressing factor for several reasons. First, in the plasmid it is truncéted to the
extent that only ~39% of the gene is present. Second, Nop4p is involved in ribosomal
RNA production (Patterson et al., 2008) and, as seen in the S cerevisiae database
(www.yeastgenome.org), does not display genetic or physical interactions with any

known membrane trafficking components.

VPS16 seemed to be the likely suppressor in the plasmid since it is also involved
in vesicle trafficking. Vps16p is part of both the HdPS and CORVET complexes which
function in the late secretory pathway (Peplowska et al., 2007). HOPS, found at the
vacuole, is involved in vacuole-vacuole and vesicle-vacuole fusion (Haas et al., 1995;
Mayer and Wickner, 1997; Price et al., 2000; Wurmser et al., ZOOFO). While the CORVET
complex, at endosomes, mediates endosome-lysosome transport (Peplowska et al., 2007).
As a component of TRAPP II, which localizes and functions in the late Golgi/early
endosome compartment (Cai et al., 2005), Bet3p is also found in a portion of the

secretory pathway that may be affected by HOPS and/or CORVET. Although Vps16p
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may not have a direct interaction with Bet3p, vps/6 may aggravate an already defective
late trafficking step in a bet3 mutant. To address this, part of the insert in the suppressing
plasmid contai‘ning most of ¥PS16 and the entire NOP4 fragment was removed and the
plasmid re-ligated leaving ELCI intact. This plasmid was then tested for its ability to
suppress the synthetic lethal phenotype. White colonies were observed when the entire
insert is present (MSB736) but not when only ELC] is present (MSB821). Therefore,
VPS16 (or the N-terminal portion of NOP4) is complementing the as yet unidentified
mutation in mutant #15. Sequencing analysis showed no mutations in VPS/6 in mutant
#15. However, sequencing of NOP4 remains to be carried out. A plasmid containing only
VPS16 should be used in the same experiment, described above, to conclusively show

that VPS16 is indeed the gene conferring suppression.

4.6  Future perspectives

This study suggests that an as yet unidentified mutation suppressed by either
VPS16 or the amino-terminal péﬂion of NOP4 genetically interacts with bet3-4.
Since VPS16 itself is not altered in mutant #15, and since the plasmid could not suppress
any bet3 alleles tested, it is likely that VPS16 is complementing a defect in another gene.
To identify this gene, another large scale yeast plasmid library screen could be done on
mutant #15 in the hope that this gene could be identified in a complementing plasmid.
However, by looking at known interactions of VPSI6 we may be able to make an

educated guess as to this unidentified mutant gene. As part of the HOPS and CORVET
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complexes, Vps16p interacts directly or indirectly with Vpsl1p, Vps18p and Vps33p
(components common to both complexes), Vps39p and Vps41p (HOPS complex
components), and Vps3p and Vps8p (CORVET complex components)
(www.yeastgenome.org). It may be the case that mutant #15 has a mutation in one of the
genes encoding these proteins. These genes should be sequenced in mutant #15 to look
for a mutation. If a mutation is found, then this gene should then be tested for its ability to
suppress the synthetic lethal phenotype in mutant #15. If no mutation is found in any of

these genes then another yeast library screen would need to be carried out.
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