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ABSTRACT 

A Framework for Analyzing Changes in Health Care Lexicons and Nomenclatures 

Arash Shaban-Nejad, Ph.D. 

Concordia University, 2010 

Ontologies play a crucial role in current web-based biomedical applications for capturing 

contextual knowledge in the domain of life sciences. Many of the so-called bio-

ontologies and controlled vocabularies are known to be seriously defective from both 

terminological and ontological perspectives, and do not sufficiently comply with the 

standards to be considered formal ontologies. Therefore, they are continuously evolving 

in order to fix the problems and provide valid knowledge. Moreover, many problems in 

ontology evolution often originate from incomplete knowledge about the given domain. 

As our knowledge improves, the related definitions in the ontologies will be altered. 

This problem is inadequately addressed by available tools and algorithms, mostly 

due to the lack of suitable knowledge representation formalisms to deal with temporal 

abstract notations, and the overreliance on human factors. Also most of the current 

approaches have been focused on changes within the internal structure of ontologies, and 

interactions with other existing ontologies have been widely neglected. 

In this research, after revealing and classifying some of the common alterations in a 

number of popular biomedical ontologies, we present a novel agent-based framework, 

RLR (Represent, Legitimate, and Reproduce), to semi-automatically manage the 

evolution of bio-ontologies, with emphasis on the FungalWeb Ontology, with minimal 

human intervention. RLR assists and guides ontology engineers through the change 
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management process in general, and aids in tracking and representing the changes, 

particularly through the use of category theory. 

Category theory has been used as a mathematical vehicle for modeling changes in 

ontologies and representing agents' interactions, independent of any specific choice of 

ontology language or particular implementation. We have also employed rule-based 

hierarchical graph transformation techniques to propose a more specific semantics for 

analyzing ontological changes and transformations between different versions of an 

ontology, as well as tracking the effects of a change in different levels of abstractions. 

Thus, the RLR framework enables one to manage changes in ontologies, not as 

standalone artifacts in isolation, but in contact with other ontologies in an openly 

distributed semantic web environment. The emphasis upon the generality and 

abstractness makes RLR more feasible in the multi-disciplinary domain of biomedical 

Ontology change management. 
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- Is it true, said Codes, what you say? 
- What? 
- That you have killed him [the eagle]? 
- And that we are going to eat him? ... 

Do you doubt it? said Prometheus. Have you looked at me? — When 
he was alive, did I dare to laugh? - Was I not horribly thin? 

- Certainly. 
- He fed on me long enough. I think now that is my turn. 
- A table! Sit down! Sit down! Gentlemen! 

If he had made me suffer less, he would have been less fat; less fat, 
he would have been less delectable. 

Andre Gide (1869-1951), "Prometheus Illbound" translated by L. 
Rothermere, London, Chatto and Windus 1919 
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I. Introduction and Thesis 
Statement 

This introductory chapter presents a general overview of the 
thesis organization and the proposed approach. In addition, it 
explains the motivation, the main problems, objective of the 
research and major contributions and questions addressed in 
the thesis. 



1.1 Introduction 

Nobody steps into the same river twice. 
The same river is never the same, 
because that is the nature of water. 

"Heraclitus on Rivers," Derek Mahon, 
1991, quoted Jaybook, August 1997 

Using clinical vocabularies and lexicons has a long history in medicine and life science. 

However, a new trend is emerging to use ontologies, as defined by Gruber [Gru93] 

("specification of a conceptualization") to provide an underlying discipline of sharing 

knowledge and modeling biomedical applications by defining concepts, properties and 

axioms. Ontologies are widely used as a vehicle for knowledge management in current 

biomedical applications, for sharing common vocabularies, describing semantics of 

programming interfaces, providing a structure to organize knowledge, reducing the 

development effort for generic tools and systems, improving the data and tool integration, 

reusing organizational knowledge, and capturing behavioral knowledge. 

The main components of ontologies are concepts (classes), relations (properties), 

individuals (instances) and axioms. Concepts represent a set or class of entities within a 

domain. Relations describe the interactions between individuals of those concepts. 

Individuals are the "things" that exist in the real world, represented by a concept. Axioms 

are being used to constrain values for concepts or individuals. Ontologies capture 

knowledge from a domain of interest in order to share it between both machines and 

humans. When the knowledge changes, then definitions will be altered. A formal 

ontology is dynamic such as a living organism. It is evolving over time in order to fix 
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errors, reclassify the taxonomy, add/remove concepts, attributes, relations and instances. 

As ontologies are changing over the time, one of the most challenging issues in ontology 

change management is keeping ontologies consistent when changes occur. The topic of 

change continues to be a source of much debate, as it brings together various issues that 

are central to philosophy, logic, cognitive science, neural networks, linguistics and 

physics including identity, persistence and time [Was06]. 

This research aims to provide an answer to the following questions: what is actually 

changed during the evolutionary process of a biomedical ontology? How this non-stop 

evolution can be controlled and managed with minimum human intervention? What 

formalisms are suitable to capture, represent and analyze the ontological alterations? To 

answer these questions, we present a novel multi-agent-based approach, RLR (Represent, 

Legitimate, and Reproduce) to manage the evolving structure of biomedical ontologies in 

a consistent manner. The RLR framework aims to assist and guide ontology engineers 

through the change management process in general, and aids in tracking and representing 

the changes, particularly through the use of graph transformation empowered with 

category theory as a mathematical notation, which is independent of any specific choice 

of ontology language or particular implementation. 

As an application scenario, we consider the FungalWeb Ontology [BSS+06], an 

integrated formal bio-ontology in the domain of fungal genomics. The Fungal taxonomy 

is not stable. Most of the alterations are changes in names and taxonomic structure and 

relationships. Fungal names reflect data about the organisms; thus, as our understanding 

of the relationships among taxa improves, these names will need to be changed, as they 

will no longer convey the correct information to the user [Cro05]. Most fungi names are 
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currently based on phenotypes (visible characteristics of an organism). These name 

changes may cause confusion and affect the validity of different queries. For example, 

eyespot disease in cereals and the issues related to naming its associated fungi are 

actually represented in [CGG03]. The morphological conceptualization of fungi is not 

sufficient, and will no longer work because all of the names based only on morphology 

must be re-evaluated. In addition, the phylogenetic-based conceptualization has its own 

limitations, since the decision of where to draw the line between different species is not 

always easy to make [Cro05]. To manage this process of continuous change, one needs to 

refer to the nature of ontological structure, where names in a taxonomy are only 

meaningful and valuable once linked to descriptive datasets, which are extracted and 

managed from various databases and literature in an integrated environment. Through 

advances in molecular biology, one can also expect changes in taxonomical structure and 

relationships. For example, by studying some molecular, morphological and ecological 

characteristics, Glomeromycota was discovered in 2001 [SSW01] as a new fungal 

phylum. Another example is the sedge parasite, Kriegeria eriophori, which has never 

been satisfactorily classified. As another example, ribosomal RNA gene sequences and 

nucleus-associated ultrastructural characters were analyzed separately and combined to 

define the new subclass Microbotryomycetidae [SFM99]. 

A small percentage of discovered fungi have been linked to human diseases, 

including dangerous infections. Treating these diseases can be risky because human and 

fungal cells are very similar. Any medicine that kills the fungus may also damage the 

human cells. Therefore, greater knowledge of fungi and correct identification of each 

species is crucial to improving the quality of fungal-based products and identifying new 
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and better ways to treat serious fungal infections in humans. In order to update the 

ontological structure of the Fungal Web Ontology for the annotation of fungal genes, we 

need to improve the content of the ontology regularly. As an example, the older version 

of the FungalWeb Ontology did not have sufficient terminology to annotate genes 

involved in Malassezia infections. To meet this new requirement, the updated version of 

the ontology has gained 26 additional terms addressing these infections. 

RLR takes a building blocks approach towards the development of a fully automatic 

ontology change management framework. What is presented in this thesis is a rather 

theoretical research, which uses insights and ideas from semantic web, software 

engineering, category theory, intelligent agents and the theory of graph transformation. 

11.1 Motivation 

After Implementing the FungalWeb Ontology we have reached a stage where we wish to 

develop a change management strategy to update ontological knowledge. Ontologies 

evolve all the time and each change in ontological structure or nomenclature can have 

crucial impacts on the inferred knowledge. Especially in a heterogeneous environment 

like the Web with vast amount of interdependencies, even simple changes on ontological 

elements can trigger a domino effect and sometimes it is really hard to guess all impacts 

of a simple change. Different versions of an ontology behave differently in response to 

the posed queries. If one works with a system based on frequently changing ontologies 

how one can even ask queries and be sure about the logical and scientific correctness of 

the answer. The issues arising from ontology evolution can affect validity of information 

in applications which are tightly bound to concepts in a particular ontological context. 

5 



The fact that the problem of ontology evolution has existed for the past decade in the 

field of knowledge representation and artificial intelligence and despite many efforts in 

this area, there are no trustable and widely accepted tools and algorithms available and 

also there is not any clear sign of progress in the attempts to solve the problem of changes 

in the conceptualization. These observations motivated us that there is a need to direct 

our attention to more diverse theories and disciplines which seem to propose an 

alternative set of concepts able to reveal and solve these fundamental problems. 

11.2 Problem/Objective of Research 

This study attempts to achieve the following objectives: 

1. To identify the effects of changes in bio-ontologies in general and in the 

FungalWeb ontology and its dependent artifacts in particular (Section II.6, Section 

III.l, and Section IV.l); 

2. To identify the factors influencing the consistency of evolving ontologies, and 

propose a method to deal with this issue (See Section II 3.3, Section 11.4, Section 

II.6, Section III 2.3.3, Section III 3.5.5.2, Section III 4.5 (specifically III 4.5.4.2), 

and Section (V.3); 

3. To analyze changes in distributed biomedical ontologies (See Section III 4.5, and 

Section IV.l); 

4. To design an agent-based framework to capture, represent and analyze changes in 

bio-ontologies with minimum human intervention (See Section III.2); 

5. To examine category theory as a formalism for ontological change management 

(See Section III.3); 
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6. To introduce a representation formalism to support agent interactions and analysis 

of evolving structures using graph transformation (Section III 3.5.6, Section III.4, 

and Section (III 4.5.5). 

11.3 Research question 

The major research question in this research is: "Which mechanisms and methods can be 

used to build a framework to handle changes in ontologies, especially the ones in the 

biomedical domain?" This general question can be detailed into some smaller questions: 

1. What are the specific natures and characteristics of ontological changes? (see 

Chapter II (specifically Section II.2, Section II.3, and Section II.6)) 

2. What is actually changed during the evolutionary process of an ontology? (See 

Section II.2, Section II.3, and Section II.6) 

3. How this non-stop evolution can be controlled and managed with minimum 

human intervention? (See Section 11.4, and Section III.2) 

4. What formalisms are suitable to capture, represent and analyze the ontological 

alterations? (Section III.3, and Section III.4) 

5. How changes can be captured, tracked and represented and how a representation 

can be changed? (Section III.2, Section III.3, and Section III.4) 

6. What variables determine the quality of the changed ontology, and to control 

consistencies during the evolution process? (See Section II 3.3, Section II.4, 

Section II.6, Section III 2.3.3, Section III 3.5.5.2, and Section III 4.5) 

7. How can we manage and monitor the frequently changing ontologies in a 

distributed environment? (Section III 4.5, and Section IV. 1) 
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8. Is it possible to extend the usage of the proposed framework into different 

domains? (Section IV. 1) 

In our research we attempt to explain how the state-of-the-art research and 

development in the Semantic Web and bioinformatics can help in addressing these 

issues. 

11.4 Approach 

By analyzing the context of the problem and reviewing other existing techniques for 

change management in some existing ontologies, we propose an agent-based framework 

for maintaining changes in bio-ontologies through the notions of graph transformation 

and category theory. 

As an experiment we have focused on changes in the FungalWeb Ontology which 

can potentially alter the related artifacts in an integrated biomedical system. In contrast to 

some of the existing works on ontology evolution, we specifically focus on changes in 

distributed ontologies, not as standalone artifacts but in contact with other ontologies in 

an open Semantic Web environment. The introduced formal representation framework, 

based on hierarchical distributed graph transformation and category theory, is expressive 

enough to capture the evolutionary behavior of dynamic ontologies in a distributed 

environment. Our proposed method offers a multidisciplinary framework in which 

different approaches from various disciplines can be plugged in to define a 

comprehensive change management mechanism. To provide some evidence of the 

usability of our framework, we will consider some case studies to apply some of the 

proposed techniques to show the technical correctness and feasibility of our approach. 
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Biomedical Ontologies 

Fig. 1.1.' The RLR framework aims for protecting biomedical ontologies from the undesired effects of 
changes due to human actions, environments and alteration in other linked resources. RLR is an integrated 
multi-agent framework, which is formalized using category theory and graph transformation. 

11.5 Contributions and Publications 

In order to achieve the research objectives and answer to the questions raised in Section I 

1.3, this thesis offers the following key contributions. 

• Introducing and reviewing basic definitions (Section II.1), major tasks and 

challenges in ontology evolution from several perspectives including philosophical 

and linguistics (Section II.2), artificial intelligence (Section II.3), software 

' This figure demonstrates our emphasize on a controlled method for applying changes in ontologies 
(analogous to water absorption of the tree roots rather than watering through uncontrolled scattered 
showers). 
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engineering and database (Section II.5), as well as issues relating to human 

intervention (Section II.4); 

• Studying of change management in several bio-ontologies (Section II 6.1), along 

with revealing and classifying the most common alterations in their structure (Table 

2.3), as well as reviewing the available tools and algorithms (Section II 6.2); 

• Analyzing the FungalWeb Ontology and classifying the changes in its terminology 

and hierarchical structure, along with presenting actual examples of such changes 

(Section III. 1); 

• Modeling RLR, a cooperative Multi-agent framework, to capture, represent, track 

and analyze changes within ontological structures through a rule-based reactive and 

proactive behavior with minimum human intervention acting along with an 

integrated argumentation framework (Section III.2). RLR, with its associated 

formalisms, tends to provide a blueprint for modeling a realistic algorithm for 

managing changes in biomedical knowledge-based systems. 

• Formalizing the RLR framework through category theory (Section III.3) and graph 

transformation (Section III.4); 

• Employing category theory as a mathematical representation vehicle for analyzing 

changes within biomedical ontologies and performing a number of editorial 

operations in various abstraction levels, which can be used to address several 

problems including scalability and complexity issues in large biomedical ontologies 

through operations such as composition (Section III.3); 
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• Utilizing categories to support agents' communication, negotiation, state 

transitions, compositions and transformations in different levels of abstractions 

(Section III 3.5.6); 

• Presenting an extended graph-oriented semantics for analyzing temporal distributed 

biomedical ontologies by means of hierarchical distributed graph transformation 

(Section III 4.5), which supports consistent transitions, and coordinates the 

communications and interactions between different agents to perform concurrent 

and parallel actions (Section III 4.5.4, and Section HI 4.5.5); 

• Focus on breadth of coverage to reflect the interdisciplinarity in our research as 

much as possible. To this end we have tried to address both computational and non-

computational problems in ontology change management; 

• Emphasis upon the generality and abstractness, which makes our approach more 

feasible in the multi-disciplinary domain of biomedical ontology change 

management; 

• Demonstrating the applicability of our approach through a series of case studies in 

various domains, such as biomedical ontologies evolution (Section IV. 1), 

requirement engineering for agile application modeling (Section IV.2) and 

exploring the evolutionary relationship between different species through 

phylogenetic analysis (Section IV.3). 

The details of our contributions for each part of our research can be found at 

the end the related sections. Our efforts have been mostly reflected in our 

publications in refereed journals and conference proceedings [SHIOa, SHI Ob, 

SOK+09, SH09, SH08a, SH08b, SH08c, SH07a, SH07b, SH07c, SH07d, SH06a, 
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SH06b, BSS+06]. The following chapters and sections are partially written based 

on our published papers. 

• Chapter II is partially based on [SHIOa] (Section II.4), [SH09] (Section II.6 and 

Section II 2.1), [SH06a] (Section II.5), and [SH06b] (Section II.2, and Section 

H.3); 

• Chapter III is partially based on [SHIOb] (Section III.4), [SH08a] (Section III 

2.2), [SH07a, SH07b, SH07d] (Section III 3.5 and Section III 1.1), [SH07c] 

(Section III 2.3), [SH06a] (Section III 3.5.5.2), and [BSS+06] (Section Hl.l); 

• Chapter IV is partially based on [SOK+09] (Section IV.2), [SH08a, SH07b] 

(Section IV. 1), [SH08b, SH08c, SHI Ob] (Section IV.3), and SH07c (Section 

IV.2). 

11.6 Thesis Overview and Organization 

This thesis proceeds as follows: Chapter II introduces the primary definitions, which are 

used throughout the thesis, of knowledge representation, the Semantic Web, ontologies 

with focus on ontologies in the domain of life science. We also look at the problem of 

change through the lens of other disciplines, such as philosophy and linguistics, with 

emphasize on the philosophical foundations for "change" "from ancient time till now. In 

addition we review some of the well known maintenance approaches in software 

engineering and database domains. Then we go on and will look at the major 

requirements and challenges in ontology change management, which need to be 

addressed in this field. We provide a comprehensive survey on the state of the art of 
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change management in biomedical ontologies. We also address some of the issues related 

to human intervention in dynamic systems. 

After a motivational scenario on the FungalWeb Ontology and its evolving structure, 

Chapter III will utilize our designed agent based ontology change management 

framework along with the categorical formalism needed to represent the agents' 

communication and analyzing changes in ontological structures. The discussion on the 

formalism will be continued in Chapter III by describing our graph oriented approach for 

representing model transformations and ontological transitions using hierarchical 

distributed graph transformation. The applicability of our approach will be shown in 

different application areas throughout a series of case studies in Chapter IV. Finally 

Chapter V concludes the discussion by giving a summary of our achievements and 

highlighting our scientific contribution and the plan for future work. 
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II. Ontology Maintenance: Scope, 
Requirements & Challenges 

This chapter includes six sections, which respectively provide 
reviews on knowledge representation, the Semantic Web and 
ontologies, philosophical foundations for change mangement, 
general requirements for a successful ontology change 
management, challenges back to human factors, the 
established practices for change management in database and 
software engineering, and state of the art in biomedical 
ontologies maintenance. 
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II. 1 Knowledge Representation, the Semantic 
Web and Ontologies 

/ know that you believe you understand 
what you think I said, but I'm not sure 
you realize that what you heard is not 
what I meant. 

Robert McCloskey (1914-2003) 

II 1.1 Knowledge Representation 

Knowledge representation (KR) as a multi-disciplinary area in AI is concerned with 

formally representing and analyzing a meaning in a domain of discourse within the 

natural world by adding metadata to the content and using logical reasoning, which 

allows inference [DSS93]. In summary, KR, as stated by Sowa [SowOO], can be defined 

as an "application of logic and ontology to the task of constructing computable models 

for some domain". The term "computable model" in this definition is what distinguishes 

KR in computer science from philosophy2. A broad range of major knowledge 

representation frameworks have been modeled based on frames, rules, logics, semantic 

networks and graphs, Prolog, SQL, Java, Petri nets, and object-oriented languages 

[SowOO]. Sowa indicates [SowOO] four essentials for any knowledge representation 

language, namely vocabulary, syntax, semantics, and rules of inference. Since the 

development of the World Wide Web (WWW) and its advance as a core part of the daily 

lives of many people around the world, the way in which information is transmitted, 

2 http://www.formalontology.it/index.htm 

15 

http://www.formalontology.it/index.htm


stored, and accessed has been revolutionized. In order to effectively represent knowledge 

out of the huge quantity of available data in the Web, W3C supported what is called the 

Semantic Web—as opposed to the syntactic Wei)—to move the Web towards being both 

human and machine understandable. The primary idea behind the Semantic Web has 

been defined as an "extension of the current Web in which information is given well-

defined meaning, better enabling computers and people to work in cooperation. It is 

based on the idea of having data on the Web defined and linked such that it can be used 

for more effective discovery, automation, integration, and reuse across various 

applications" [HBM02]. The Semantic Web generally uses URIs (Uniform Resource 

Identifier) to represent data in triple based structures such as "Resource Description 

Framework" (RDF)3 syntaxes, which were built for metadata modeling. 

II 1.2 Semantic Web and Ontologies 

To overcome the problem of miscommunication between humans and computers, 

ontologies have been employed as basic building blocks of the Semantic Web to reuse 

and share the common consensus of knowledge of a domain in the real world. The term 

ontology is originally borrowed from philosophy and, as stated by Smith in [Smi03.b], 

ontologies have been employed in computer science to solve the so-called "Tower of 

Babel" problem in databases, which refers to the lack of a standard (due to historical, 

cultural, technical, behavioral, or linguistic reasons) in representing information in 

different databases, where a unique concept may be represented with several dissimilar 

labels and vice versa. Gruber describes an ontology in the context of knowledge 

3http://www .w3.org/RDF/ 
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representation as "the specification of a conceptualization" [Gru93]. He defined 

"conceptualization" in his paper [Gru95] as "an abstract, simplified view of the world 

that we wish to represent for some purpose. Every knowledge base, knowledge-based 

system, or knowledge-level agent is committed to some conceptualization, explicitly or 

implicitly". Later, to distinguish between ontology in philosophy and in computer 

science, the term "formal" was added to Gruber's definition to emphasize the 

computability feature: "an ontology is a formal, explicit specification of a shared 

conceptualization" [SBF98]. Stumme and Maedche [SM01] defined an ontology as a 

tuple 0."= (C, is_a, R, a) with C is a set of concepts, is_a as a partial order on C (i. e., 

a binary relation is_a c C xC which is reflexive, transitive, and anti-symmetric), K is a 

set of relations, and a: K -» C+ is a function which assigns to each relation name its 

arity. Another algebraic definition of an ontology was presented in [KS03] as: "a pair O 

= (Si A), where S is the ontological signature - describing the vocabulary- and A is a set 

of ontological axioms- specifying the intended interpretation of the vocabulary in some 

domain of discourse". 

II 1.3 Biomedical Ontologies and Controlled Vocabularies 

Biomedical informatics is an emerging multi-disciplinary field that aims to integrate 

computer science techniques with applications derived from medicine and biology. It 

talks about different computational problems in the integration of biomedical databases, 

spatial and temporal patterns of mRNA expression, protein structure, laboratory 

management, clinical outcomes, publication records, and so forth [SWL+03]. There are 

some issues in biomedical informatics that motivate us to use ontologies as the basic 
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building blocks of knowledge representation methods in this area. Some of these issues 

are: 

• Multidisciplinary nature of the domain: Needs a common shared language 

between different agents (human or machine). The ontology provides a shared 

understanding, so different parties using the same interoperable ontology can 

recognize the meaning of the same resource. 

• Mass production of data: Biomedical applications usually produce and use 

massive quantities of data (e.g., all genes in a genome, all transcripts in a cell, all 

metabolic processes in a tissue, and all data involved in protein-protein 

interactions) [SWL+03], so we need some formal methods to deal with these data, 

and to annotate and process them for use by biologists. 

• Complexity of data: Biological data are complex in terms of the types of data 

stored and the richness and constraints working upon relationships between those 

data [BBB+98]. Ontologies in these complex structures facilitate data, information, 

and knowledge exchange. 

• Distribution of data: Bioinformatics is an inherently integrative discipline, 

requiring access to data from a wide range of sources and the ability to combine 

these data in new and interesting ways [AGM+90], Hundreds of differet data 

resources and analysis tools are used in bioinformatics [CBB+00]. 

• Volatility of data: Biological data are not static. As knowledge about biological 

entities changes and increases, so the annotations of data resources will be changed 

[SWL+03]. 
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• Heterogeneity of data: Most knowledge and data in the area of biology are both 

syntactically and semantically heterogeneous [Enz84], Individual concepts, such as 

gene, have many different, but equally valid, interpretations. 

These issues cause great difficulties for both curators of bioinformatics resources and 

their users. Some of the difficulties are knowing which resources to use in a task, 

discovering instances of those resources, and knowing how to use each of those 

resources, how to link their content, and how to transfer data between resources 

[SWL+03]. Therefore, computational support is required for storing, exploring, 

representing, and exploiting biological knowledge as well as knowledge in the minds of 

domain experts. 

Biological classification has a long history, dating back to Aristotle's scala naturae 

[Ver08] (scale of nature), which was a very simple method of dividing organisms into 

groups, ranging from the simple species to more complex ones, based on their 

appearance. In the 17th century, Carl Linnaeus (1707-78), who is often referred to as the 

father of modern taxonomy, developed his classification system called Systema Naturae4 

for the naming and classification of all organisms. Linnaeus represented his classification 

method based on binomial nomenclature, "the combination of a genus name and a single 

specific epithet to uniquely identify each species of organism"5 (e.g., humans are 

identified by the binomial Homo sapiens). In his system, all species were categorized in 

three kingdoms, namely Plantae, Animalia, and a group for minerals and organized based 

on their structural similarities in a five-rank hierarchy as Kingdom, Class, Order, Genus, 

and Species. 

4 http://www.linnaeus.uu.se/online/animal/l_l.html 
5 http://en.wikipedia.org/wiki/Linnaean_taxonomy 
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Later, as the understanding of the relationships between organisms changed, 

taxonomists converted the five ranks into the seven-rank hierarchy by adding the two 

ranks of "Phylum" (between Kingdom and Class) and "Family" (between Order and 

Genus). Change in the taxonomic ranks is still an ongoing process. Due to advances in 

knowledge and the influence of Darwinian evolution as the mechanism of biological 

diversity and species formation, taxonomists needed a new classification scheme to 

reflect the phylogeny of organisms. Also, recruiting new criteria other than structural 

similarities, such as genetic codes and molecular features, and advances in tools and 

techniques resulted in the discovery of various organisms, forming three new kingdoms, 

Archaea, Bacteria, and Fungi. These three kingdoms, plus Plantae and Animalia, formed 

the popular five-kingdom scheme. The biomedical classifications have been organized in 

several models as Controlled Vocabularies, Thesauri, Taxonomies, and Ontologies. 

According to Hedden [Hed08]: 

• Controlled Vocabularies: are restricted lists of words or terms used for labeling, 

indexing, or categorizing and cross-referencing, which evolve under central 

control over the changes based on defined policies. 

• Thesauri: are a more structured kind of controlled vocabulary, providing 

information about each term and its relationships with other terms. 

• Taxonomies: are a type of controlled vocabulary that has a tree structure 

hierarchy (broader term/narrower terms), but not necessarily containing the 

related-term relationships and other requirements of a standard thesaurus. 

Many of the so-called biomedical ontologies are in fact controlled vocabularies, 

thesauri, or taxonomies, as they do not follow the essential requirements of formal 
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ontologies. Several efforts for migrating available biomedical terminologies to a formal 

ontological framework are still ongoing. In Section II.6, we will look at some of the 

popular existing ontologies and controlled vocabularies in the area of life science. 

II 1.4 Formalisms for Ontological Knowledge Representation 

There are different ontology languages [ZK05] for the representation of conceptual 

models, with varying characteristics in terms of their expressiveness, ease of use, and 

computational complexity [SGBOO]. The current languages range from natural language-

based representations to frame-based and logic-based languages. To support the available 

ontology languages, several tools and editors [CFG03] are available to aid the ontologist 

in building, editing, managing, querying, and visualizing ontologies, as well as checking 

their consistency and reasoning. 

II 1.4.1 Description Logics 

Description logics (DL) [BCM+03], as a family of knowledge representation languages, 

provide formal semantics and terminology for describing ontologies. DLs describe 

knowledge in terms of concepts and relations that are used to automatically derive 

classification taxonomies. Description logic is also being used for ontology validation. 

The validation of an ontology by a DL-based classifier such as RACER6 [HM01], Pellet7, 

and FaCT++8 allows compliance with certain rules of classification, and it also brings 

other benefits in terms of coherence checking and query optimization. The basic building 

6 http://www.racer-systems.com/ 
7 http://clarkparsia.com/pellet 
8 http://owl.man.ac.uk/factplusplus/ 
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blocks used to represent knowledge in description logics are called Tbox (Terminological 

box: axioms about class definitions), Abox (Assertional box: axioms about individuals) 

and Rbox (axioms about roles). 

II 1.4.2 The O W L W e b Ontology Language 

OWL is a W3C9 recommendation and a de facto standard designed for use by 

applications that need to process the content of information instead of just presenting 

information to humans [OWL04]. In comparison with XML (Extensible Markup 

Language) and RDF, OWL adds more vocabulary [OWL04] for describing properties and 

classes, such as relations between classes, cardinality, equality, richer typing of 

properties, characteristics of properties, and enumerated classes. The OWL has three 

types: (i) OWL-Lite: supports basic hierarchical representation with simple constraints, 

which make it easier to provide tool support; (ii) OWL-DL: supports maximum 

expressiveness without losing computational completeness (all entailments are 

guaranteed to be computed) and decidability (all computations will finish in finite time) 

of reasoning systems [OWL04]; (iii) OWL-Full: supports maximum expressiveness and 

the syntactic freedom of RDF with no computational guarantees, which makes it difficult 

to be supported by reasoning tools [OWL04]. The rich expressivity of OWL and its 

ability to use description logics, which facilitate formal reasoning, make it a fine 

candidate to model the complexities of biomedical applications. 

9 http://www.w3.org/ 
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II 1.5 Summary of Section II.l 

In this Section, we have reviewed basic definitions, which we will use in the rest of the 

thesis, of knowledge representation, Semantic Web, and ontologies. In addition, the roles 

of ontologies and controlled vocabularies for sharing a common understanding between 

human and machines in computer science and biomedicine have been briefly introduced. 
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11.2 Philosophical Foundations 

Artificial Intelligence cannot avoid 
philosophy. If a computer program is to 
behave intelligently in the real world, it 
must be provided with some kind of 
framework into which to fit particular facts 
it is told or discovers. This amounts to at 
least a fragment of some kind of 
philosophy, however naive. 

John McCarthy, Mathematical Logic in AI. 
Daedalus 117(1): 297-310, Winter 1988. 

This section discusses how we can gain valuable perspectives on our research by viewing 

it through the lens of other disciplines, such as philosophy and linguistics. 

II 2.1 Change and Philosophy 

Designing a framework for ontology evolution by using available methods in the area of 

knowledge representation (KR) is the main strategic plan in the Semantic Web 

community. However, since the problem of change management is not completely 

computational, it seems necessary to incorporate complementary techniques from other 

disciplines such as philosophy, mathematics, biology, neural networks, semiotics, 

linguistics, and psychology (to study the behavioral affects) for the ontology evolution 

process (cf. Figure 2.1). The topic of change, particularly changes in ontologies, brings 

together various issues that are central to philosophy, including identity, persistence and 

time [Was06]. 
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Discussion about change is as old as philosophy itself. Heraclitus (535^75 BCE), 

for example, argued that "All is flux," and everything is changing all the time, so that it is 

impossible to step into the same river twice. Parmenides (b. 510 BCE) and Zeno of Elea 

(490-430 BCE) were not in agreement with Heraclitus's statement; they believed in the 

constancy and stability of the world. Parmenides had stated that "reality is one, and this 

one, which only is, is unchanging" [Mag99]. Zeno of Elea also believed all changes and 

motions are in fact illusions of the senses [HG04], and to show the paradoxical nature of 

change and motion, he summarized his philosophy into several paradoxes, including The 

Dichotomy, Achilles and the Tortoise and The Arrow [Kem06]. 

- What is "being*? 
-What is is'? 
•What is "change"? 

- Social impacts 
- Social networks and change 
- Security 

• User behaviour 
• Human mental model 

- Validation of change 
- Representation of change 

- Formalizing Change 
- Reproducibility 
- Proofs 

Mathematics 

- Lexical and Grammatical change 
- Linguistics Pattern for change 

DB & Software' 
Eng. 

• Database Schema versioning 
• Software Maintenance. 

( _ ^ Biology J) 

- Biological Changes and Processes 
- Theory of Evolution 
- Phylogenetic Analysts. 

- Abstraction 
- Public approval 

Perceiving evolving knowledge 

- Changes in subject-predicate-object 
- Switching signify and signifier 

- Memory and remembering 
Neural Networks) - Simulation in human brain 

- Dynamic Human-Brain interface 

Fig. 2.1. Multi-disciplinary nature of research on ontology change management. 
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Plato (427-347 BCE) in his allegory of the Cave tried to overcome this issue by 

separating the world into the visible world, which is uncertain and changes frequently, 

and the intelligible or real world, which is stable, arose from reason and includes the 

timeless unchanging "Forms". Husserl (born 1859) tried to define the concept of changes 

by considering the notion of time, saying, "Things are always intended toward 

something, and are always 'about' something," which shifts the notion of ontology from 

studying "being" towards studying "becoming". 

It has been commonly acknowledged that a change happens in relation to time. 

However, Aristotle (384-322 BCE) in his book Physics IV (10) argued that since change, 

unlike time, occurs at different rates, it is distinct from time [HG04]. The nature of 

change may appear to be contradictory and a source of inconsistency, as "it requires both 

sameness and difference" in parts and attributes [Was06] and deals with contrary facts 

about the identity of things. Consider a cup of tea that changes from hot to cold as it 

remains on a table. The hot tea must be the same as the cold tea or else the tea does not 

change. The hot tea is also not exactly the same as the cold tea. More information on 

change, persistence, and identity can be found in Leibniz's Law at [Was06], Theseus's 

paradox at [Coh04], and the heap paradox (Sorites) at [Zal05]. A classical example to 

demonstrate the change-driven issues of identity was described in the heap paradox. This 

paradox is usually presented as chains of conditions as following [Zal05]: 

-1 grain of wheat does not make a heap. 
- If 1 grain of wheat does not make a heap then 2 grains of wheat do not. 
- If 2 grains of wheat do not make a heap then 3 grains do not. 

- If 999,999 grains of wheat do not make a heap then 1,000,000 do not. 

1,000,000 grains of wheat do not make a heap. 

Or more formally: 
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Fa, 
If Fa\ then Fa2 

If Fa2 then Fa3 or Fa, 
V«(Fa„-»/s£i„+,) 

If Fan then Fa, 

Fctf (where i can be arbitrarily large) \fnFan 

Where "F" represents the predicate (e.g., "does not make a heap"), "a„" (« is a 

natural number) represents a subject expression in the series with regard to which "F" is 

soritical (e.g., "w grain(s) of wheat"). Thus, the argument is that since one grain of wheat 

does not build a heap and adding one more grain does not make any difference for 

building a heap (for any number n, if n grains of wheat do not make a heap, n+1 grains 

won't either). These rules of inference are endorsed by modern and classical logic 

[Zal05]. The heap paradox can be applied to any situation that one can make minute 

changes to. Unger, in his paper entitled "I Do Not Exist" [Mac79], applied the heap 

paradox to himself, removing one cell at a time. This puzzle becomes very important 

once we try to apply meaning and semantics to the logical symbols because many 

frequently used words, such as few, a lot, big, small and like, as well as colors and 

sounds, may be used to generate a heap paradox [Wil94]. 

II 2.2 Identity, Change, and Time 

Due to the paradoxical nature of change, change in a thing causes various problems, 

including the problem of the consistency of change. Some have said that the only way to 

make sense of change is through inconsistency [Var05]. Many philosophers believe that 

studying and reasoning about change only make sense when things extend through 

"time". This means the temporal parts of a changing "concept" can have different 

properties at different times [Var05]. In other words, one may think of time as another 
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dimension along which objects extend, just as they extend across the three spatial 

dimensions. 

For example, when we say a cup of tea is placed here but not there, by the passage of 

time and the changing tea temperature, we can say that the tea is cold now but it was not 

a couple of minutes ago, insofar as the current temporal part of the tea is cold but the 

previous part is not. We have got the same object (the same tea), but its temporal parts (as 

well as spatial parts) are not quite alike [Var05]. So for ontologies to capture the 

scientific picture of the real world, things should be studied in four-dimensional models 

[Miz04], considering time as the additional dimension to traditional three-dimensional 

models. 

In order to talk about the identity of objects, ontologists need to distinguish between 

Continuants/Occurrents, Dependents/Independents, and Universals/Particulars [SWS03]. 

According to [SWS03], Continuants (objects) are things that continue to exist through 

time and their identities remain unchanged. Occurrents (processes) are time-dependent 

entities whose identities unfold at different points in time. The existence of a 

"Dependent" depends on the existence of other things (e.g., a bodily injury is dependent 

upon the injured organ), in contrast to an "Independent", whose existence does not 

necessarily depend on other things (e.g., atoms, molecules). Also, "Universals" can be 

considered classes or groups of things (e.g., "student") while "Particulars" are "instances" 

of those classes (e.g., a specific student). In Chapter III, we will consider "time" as a 

primary factor in our approach to analyzing changes in temporal biomedical ontologies. 

In debates on distinguishing between "Dependent" and "Independent" entities in the 

real world, the two concepts of Ontological Philosophy and Dialectic Change attracted 
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our attention. The concept of Ontological Philosophy [Scr99] focuses on the wholeness 

and unity10 of the world and considers change as an aspect of substances in the real 

world. From the other side, the concept of Dialectical Change [Hol98] tries to represent a 

change as new forms built upon the old and by combining the new and the old without 

total replacement, implying both newness and continuity. In this theory, any change 

needs a cause and can be placed through a process. Holsti [Hol98] used the Marxist 

idiom, the synthesis, as a metaphor for this processes. However, unlike synthesis in 

Marxist vocabulary, which is defined as the process arising from the contradictions 

between old forms and always leads to a "higher" form, a change process can also denote 

reversal, corruption, or decline [Hol98]. Change also can be studied as a Transformation, 

which results from quantitative changes accumulated over a period of time and generates 

a new form out of old patterns (coexistence of both old and new) [Hol98]. It means a 

concept may remain structurally similar, but its semantic changes (e.g., the concept of 

monarchy in England has changed from ruling to symbolic) [Hol98]. 

II 2.3 Change and Philosophical Problems in Knowledge Representation 

Hansson [Han03] described several philosophical problems in dealing with change and 

revision, focusing on the AGM model of belief change [AGM85]. Hansson classified 

these problems, which are mostly applicable in the areas of knowledge representation and 

semantic web, under ten categories [Han03]: 

1. Can stricter cognitive limitations than finiteness be represented in an interesting way? 

2. How can modal and conditional sentences be represented? 

10 "We live in exactly one world, not two or three or seventeen." [Sea95] 
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3. What is the {formal and informal) relationship between the two notions of degree of 

belief: confidence and resistance to change? 

4. What is the relation between vulnerability/resistance and justificatory structure? 

5. Which is the best way to change the AGM model to achieve categorical matching? 

6. To what extent are retrieval and change operations interchangeable? 

7. How should ordinary, non-pure contraction be represented? 

8. Are there atomic operations in terms of which all belief changes can be represented? 

9. What are the roles of intermediate non-committed and intermediate inconsistent belief 

states? 

10. What is the relation between decision-prevision and expansion^consolidation? 

As can be seen, half of the problems are explicitly related to representation, while the 

rest of the problems are implicitly affected by the issues in representation. In Chapter III, 

we focus on the problem of representation in dynamic ontologies from two broad 

perspectives: how to represent a change and how to change the representation. 
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II 2.4 Philosophy, Linguistics, and Change 

If words are not things, or maps are not the 
actual territory, then, obviously, the only 
possible link between the objective world and 
the linguistic world is found in structure and 
structure alone." 

Alfred Korzybski (1879-1950) 

Changes in all aspect of a language (words, syntax, grammar, meanings, and 

pronunciation) are constantly taking place throughout the passage of time. Sentences like 

"/ logged on to my account with my Blackberry and sent her an emaiF would have been 

incomprehensible nonsense only a few years ago. There is a famous issue in linguistics, 

known as the Saussurean paradox [Ferdinand de Saussure (1857-1913)], which states: "if 

a language is primarily an orderly system of relations, how is it that a language can 

change without disrupting that system?" [TM05]. In other words, "how can a language 

continue to be used effectively as a vehicle for expression and communication while it is 

in the middle of a change, or rather in the middle of a large number of changes?" 

[TM05]. Just imagine a court, where laws are changing during a trial; or a tennis match 

with frequently changing rules during a match [TM05]. 

In linguistics, there is still no consensus for using words like news, people, and law 

as plural or singular [FR98]. The answer may lies in "variation", which is "the vehicle of 

change" and means "all accepted forms of one word can be accepted and used side by 

side. When a change is in progress, the older and newer forms coexist, and almost all the 

users and applications are familiar with both forms, even if some people use only one or 

the other. Over time, the older form becomes less and less frequent, and the newer one 
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becomes ever more frequent, until, one day, there is no one left alive still using the older 

form, and the change is complete" [TM05]. For example, one may choose between 

telephone and phone, between gymnasium and gym, between omnibus and bus, and after 

a while, one form is no longer used at all, as has now happened with omnibus [TM05]. 

The study of variation in language is called sociolinguistics [Cry97, LabOO]. 

II 2.5 Summary of Section II.2 

Several sub-disciplines in artificial intelligence, software engineering, cognitive science, 

philosophy, and so forth have considerable overlaps in their outcomes, which should be 

considered for a successful ontology change management process. In summary, one can 

distinguish different kinds of problems related to changes in ontologies. Many of them 

are philosophical and linguistics problems. Inspired by the philosophical perspectives 

explained in this section, we ground our proposed techniques for ontology change 

management. One of the distinguishing features of our study is doing broad research in 

several interrelated domains on performing successful ontology change management. 
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II.3 Ontology Change Management - Requirements 
and Challenges 

The fluttering of a butterfly's wings 
can effect climate changes on the 
other side of the planet. 

Paul Erlich 

II 3.1 Ontology Engineering and Maintenance 

Knowledge engineering has been defined by Sowa [SowOO] as "the application of logic 

and ontology to the task of building computable models of some domain for some 

purpose". Ontology engineering, as an essential part of the knowledge engineering 

process, consists of ontology modeling (e.g., defining author concept descriptions, 

relations, and axioms), managing changes, refining the ontology, managing errors, and 

reusing and integrating different ontologies [Hor07]. Ontology maintenance is 

traditionally focused on two aspects of ontology engineering, namely ontology change 

management and integration in dynamic environments. 

Due to the dynamic nature of biomedical knowledge-based applications, the need for 

change management can be seen in their entire developmental life cycles. For example, a 

typical clinical application must frequently deal with new information on a timely basis, 

such as drug-related and similar data from patients in a hospital setting, or in a 

biomedical research lab, where the knowledge essentially grows and changes over time. 

Capturing, representing, tracking, and applying the changes, along with discovering all 
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the consequences of even small changes in such dynamic environment, are far from 

trivial. 

II 3.2 Ontology Evolution and Change Management 

Ontology change management can be studied as the process of changing an ontology in 

response to a set of particular requirements [FMK+08]. Considering the definition by 

Studer et al. [SBF98] of an ontology as "a formal, explicit specification of a shared 

conceptualization" in a domain of interest in the real world, researchers distinguish 

different rationales for changes in an ontological structure: 

• Changes may happen in the formal representation (formalization) of the ontology 

from one version to another (e.g., from DAML+OIL11 to OWL). These changes 

mostly affect the syntax of the representation of the ontological axioms, without 

altering the semantics or terminologies. Formalization change is the subject of 

"ontology translation" [DMQ05] studies. 

• Specifications and granularities can be altered because of changes in the target 

application, changes in potential users' requirements [HS05], or changes in the 

original ontological structure by adding newly discovered knowledge or fixing 

errors [PT05] or inconsistencies [FHP+06]. 

• The domain of interest [SMS+03] as well as views on the domain may change 

[NK04]. 

• The conceptualization might also change if it cannot convey a shared consensus 

of meaning in the real world, which may happen due to changes in view of the 

11 http://www.damI.org/2001/03/daml+oiI-index.html 
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world or in usage perspective [NK04]. In fact, the conceptualization changes as 

the knowledge about the domain grows [HHL99]. 

In distributed Semantic Web environments, where ontologies are developed based on 

several inter-related components [KN03] and meant to be reused as much as possible in a 

collaborative fashion [NCL+06], the high coupling between different ontologies can 

cause a domino effect (a chain reaction caused by a small initial change, which leads to a 

series of changes in the objects nearby (Wikipedia)) in dependent ontologies and 

knowledge sources. Also, reusing the ontologies gives rise to issues like ontology 

matching, mapping, merging, alignment, and integration [PGM99]. 

II 3.3 Ontology Change Management and Sub-Fields 

As mentioned in the previous section, the iterative [HHL99], collaborative nature of an 

ontology development life cycle requires that ontologies go through one or more 

processes, such as matching, mapping, merging, alignment, integration, debugging, and 

versioning [PGM99], which often impose changes on one or more components of the 

ontological structure. Ontology change management consists of all activities and 

processes that are required for consistently maintaining an ontology in response to a 

particular change in the ontological structure. It may consist of several steps depending 

on the complexity of the ontology and its application, as well as the degree of coupling 

between the ontology structure and other dependent artifacts. 

For example, this process has been described in six phases by [SMM+02] for 

iterative change management: (i) change capturing (determining the required changes), 

(ii) change representation (formally encoding the changes), (iii) semantics of change 
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(analyzing the sources and effects of changes and resolving the problems caused by the 

changes), (iv) change implementation (applying the changes to the ontology), (v) change 

propagation (propagating the changes and the related consequences in the dependent 

artifacts), and (vi) change validation (assessing the target ontology for consistency). 

The current state of ontology evolution, as well as a list of existing tools, can be 

found in [FMK+08] and [DM08]. Flouris et al. (2008) [FMK+08] presents a comparative 

survey for clarifying the borders for each of the mentioned ontology change management 

sub-fields. Despite their efforts, it is not always easy to draw a clear line between these 

fields. For example, defining where ontology mapping ends and ontology alignments 

start still seems far from trivial. 

II 3.3.1 Ontology Mapping 

Ontology mapping is defined [KS03] as "the task of relating the vocabulary of two 

ontologies in such a way that the mathematical structure of ontological signatures (the 

terminologies) and their intended interpretations, as specified by the ontological axioms, 

are respected". There are also less formal definitions, such as [ES04], which describes the 

mapping of a given ontology A to B as follows: "for each concept (node) in ontology A, 

we try to find a corresponding concept (node), which has the same or similar semantics, 

in ontology B and vice versa." The tasks of finding and measuring semantic similarities 

between the concepts in different granularities are the subject of several research projects 

(e.g., in biomedical ontologies, see [CSC07]). 
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II 3.3.2 Ontology Matching and Alignment 

Ontology matching is described as "the process of finding relationships or 

correspondences between entities of different ontologies" [ES07], and its result, which 

can be used for purposes such as ontology merging, integration, translation, and 

interoperability management, is called ontology alignment, which expresses "with 

various degrees of precision the relations between the ontologies under consideration" 

[ES07]. 

An extensive list of ongoing projects and infrastructures for ontology matching can 

be found at http://www.ontologymatching.org/projects.html. 

II 3.3.3 Ontology Translation 

Translation takes place when an ontology or its parts need to be reused with a tool or 

algorithm that uses a language different from that of the ontology [Cor05]. In this 

situation, one must deal with several mismatches in language level (differences in 

ontology languages, syntaxes, and logical notations) and model level (differences in the 

way a domain is conceptualized and interpreted) [KleOl]. Several tools and techniques, 

such as OntoMorph [ChaOO] and ODEDialect [CG07], focus on ontology translation. 

II 3.3.4 Ontology Debugging 

Ontology debugging is defined as the "process of identifying and removing undesirable 

logical contradictions (inconsistencies/incoherencies) from an ontology" [FMK+08]. 

Most of the existing ontology inference engines can report errors like unsatisfiable 

concepts or inconsistencies in ontologies without clarifying the reason and source of 
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these errors. A prompt and precise debugging service is a vital part of a safe and effective 

change management system [KPS+06]. As an example, a debugging framework for 

OWL-DL ontologies using the Pellet12 [SPG+07] description logic inference engine has 

been described in [Kal06]. 

II 3.3.5 Ontology Versioning 

Ontology versioning has been defined [KF01] as "the ability to handle changes in 

ontologies by creating and managing different variants of it." In other words, ontology 

versioning [HHL99, HP04] deals with "the process of managing different versions of an 

evolving ontology, maintaining interoperability between versions and providing 

transparent access to each version as required by the accessing element (data, service, 

application or other ontology)" [FMK+08]. 

II 3.3.6 Ontology Integration 

Ontology integration is defined as the process of "building an ontology in one subject 

reusing one or more ontologies in different subjects" [PGM99]. This process is often 

performed by the aggregation and combination of source ontologies, and usually involves 

changes, such as extension, specialization, or adaptation [PM01]. To reuse ontologies in 

one consistent integrated structure, they need to be aligned, which means that they have 

to be brought into mutual agreement, and then mapped by relating similar concepts or 

relations from different sources to each other by an equivalence relation [KleOl]. 

12 http://clarkparsia.com/pellet 
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The integration process is usually done in two steps: data/semantic integration and 

reconciliation. The data integration is comparable to data integration as studied in 

databases, with the one major distinction being that while in database integration it is 

assumed that each source is basically a logical theory with a single model, such an 

assumption is not made in ontology integration, where an ontology is an arbitrary logical 

theory that may convey several models [CGL01]. The most common issue in ontology 

integration is mismatching between ontologies on language and model levels [KleOl]. 

The language level mismatches mostly deal with problems in syntax, semantics, and 

expressivity of different ontology languages. To fix this problem, one usually needs to 

utilize some translation techniques alongside the integration method. The model level 

mismatches involve interpretation and conceptualization mismatches, and differences in 

the way the conceptualization is specified [KleOl]. The second issue is much more 

challenging, since many of the effecting parameters cannot be fit in a computational 

model. Some of the available approaches in ontology integration that also deal with 

problems of ontology alignment and matching are FCA-MERGE [SMOla], COMA++ 

[ADM+05], ILIAD [UGM07], and DINO [NLH+08]. 

II 3.4 Challenges for Ontology Change Management 

There are major challenges in this field of research, going back to the theoretical 

foundations and practical implementations as categorized by [Nov07b]. Lack of 

appropriate formalism for representation of ontology changes, tracking and analyzing 

logical consequences of different changes, analyzing semantic changes and the relation 

between syntactic and semantic changes, and consistency management in dynamic 
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ontologies are all issues related to the theoretical foundations. From the implementation 

perspective, Novacek [Nov07b] highlights some of the main issues concerned. For 

example, most of the few ontology change management models are analogical to schema 

version management and software evolution, with little focus on ontological features. 

Efficient implementation of the existing methodologies to explicitly address ontology 

evolution is still challenging. Also, one must rely on advances in other related fields (e.g., 

NLP techniques for automatic ontology learning from text) for dynamic knowledge 

acquisition in evolving ontologies. In addition, any successful approach should address 

the human factor as an essential part of an interactive Semantic Web environment. Some 

other challenges in an ontology change management process are highlighted below. 

II 3.4.1 Backward and Forward Compatibility 

A major process in any ontology maintenance framework is managing different versions 

of an ontology and checking the compatibility between them to determine if one version 

can be used as an alternative to other versions in a consistent way. The compatibility can 

be analyzed based on a set of requirements that a version of an ontology should fulfill 

[Ple06] with regard to backward (or downward) and forward (or upward) directions. 

Backward compatibility [Kle04] checks if the newer version of an ontology uses a 

data source that conforms to the older version and ensures that the changes in new 

version do not affect the existing definitions (e.g., monotonic additions of concepts or 

relations [HHOO]). As an example, according to [HHOO], the version management service 

in SHOE 3 can assist agents and query systems in discovering and specifying the 

divergence and backward compatibility between the versions of an ontology. The forward 

13 Simple HTML Ontology Extensions (SHOE): http://www.cs.umd.edu/projects/plus/SHOE/index.html 
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compatibility verifies that the data source in an ontology version can be used in a newer 

version of the ontology and the changes in existing version do not change the validity of 

the future, upgraded version (e.g., deletion of a standalone concept). Determining forward 

compatibility is not always possible, since foreseeing the complexity, semantic richness, 

users, and usages of the future versions might not be feasible. 

II 3.4.2 Traceability 

Traceability is another critical task in change management, which provides transparent 

access to different versions of an evolving ontology. Traceability also aids in 

understanding the impact of a change, recognizing a change and alerting upon 

occurrence, improving the visibility, reliability, auditablity, and verifiability of the 

system, propagating a change [SDK+03], and reproducing results for (or undoing effects 

of) a particular type of change. Advances in impact analysis gained by traceability 

facilitate predictability in the post-change analysis stage in an ontology maintenance 

framework. 

II 3.4.3 Querying Over Multiple Versions 

Queries over different versions of an ontology may return different results, which in 

many cases may not be desirable. Consider a court trial, for example: how could we try a 

case in court if the laws were constantly changing during the trial? For successful 

querying over evolving ontologies with multiple versions, we need an approach for 

unifying and filtering all data in different versions. In database schema management, one 

solution for this problem is following the "view approach" by creating a view per version 
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that maps each version into a universal document, which can hold all the information 

from every version [BOS+05]. However, the problem seems much more complicated in 

ontology evolution. 

II 3.4.4 Metamorphosis 

Metamorphosis is defined as a marked change in appearance, character, condition, or 

function , which often appears as a sort of radical temporal discontinuity in one species. 

For example, a caterpillar becomes a moth or a butterfly, or a tadpole becomes 

amphibious. In ontology engineering, dealing with metamorphosis gives rise to many 

issues relating to conceptual identity (recall Leibniz's law, Theseus's paradox, and Sorites 

in Section II.2). 

II 3.4.5 Controlling Belief Revisions 

The concept of belief revision [Dra97] refers to consistently changing a belief during the 

revision of a knowledge base in response to a change [KL07]. From the logical point of 

view (i.e., from the DL perspective [QY08]), this problem deals with detecting and 

resolving logical inconsistencies caused by a revision and providing necessary 

justification to maintain the "truth" [BH90]. According to [AGM85], belief changes can 

be found in three forms: (i) expansion (adding a fact and its logical consequences), (ii) 

contraction (deleting a fact, which may involve the elimination of other dependent 

elements), and (iii) revision (consistently adding a new fact and its logical consequences, 

and retracting the knowledge base in case of an inconsistency). Control over belief 

14 Online Free Dictionary: http://www.thefreedictionary.com/metamorphosis 
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revision guarantees that new information gained through the learning process does not 

contradict the conceptualizations and specifications associated with the existing 

knowledge base system [G2r90]. 

II 3.4.6 Structural and Semantic Dependency 

Due to the interoperability of different ontologies and their versions and the tight 

coupling between their elements, there are usually dependencies (implicit or explicit) 

between the effects of a change. This issue is most challenging in the change propagation 

stage, and requires some synchronization processes [OliOO] to ensure that the chain of 

changes is maintained consistently and coherently. 

Employing modularization techniques [WHB07] in ontology engineering aims to 

address some of the challenges related to unintended and unexpected domino effects due 

to dependencies between ontological elements. Therefore, analyzing the dependency 

graphs, which represent the dependencies between ontological elements, is a starting 

point in managing updates and revisions in modular ontologies [SK03]. 

II 3.5 Summary of Section II.3 

Ontology maintenance and change management consists of several interrelated tasks for 

refining ontologies, managing the errors and inconsistencies, (partially) reusing 

ontologies, and performing mapping, translation, merging, matching, alignment, and 

integration on different ontologies. These tasks are extremely challenging and 

interconnected, and need comprehensive methods along with logics, formalisms, tools, 

and infrastructure support in a collaborative environment. We will look at some of the 
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existing tools, methodologies, and practical solutions for ontology maintenance, as well 

as state of the art of change management in some popular biomedical ontologies in 

Section II.6. 
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II.4 Human Factors in Change Management 
Process 

Metathesiophobia: The persistent, abnormal, 
and unwarranted fear of change. Symptoms 
usually include shortness of breath, rapid 
breathing, sweating, nausea, irregular 
heartbeat, and overall feelings of dread. 

Phobia list, Wikipedia 

II 4.1 Human Factors in Dynamic e-health Environments 

During the last two decades, many advances in healthcare have required the development 

of artificial intelligence (AI) techniques in the biomedical domain. Several integrated 

health knowledge management systems, such as Acute Care Systems, Medical Decision 

Support Systems, Educational Systems, Quality Assurance and Administration, 

Laboratory Systems, Medical Imaging, and so forth, are recruiting large knowledge-bases 

and ontologies as their backbone to facilitate human-machine communication and capture 

knowledge from the domain of interest. Biomedical knowledge based systems, especially 

the ones dealing with human health, require fast responses and real-time decision

making. Human intervention can be seen in the whole life cycle of biomedical systems. 

In fact, relations between the system maintainers, patients, nurses, lab technicians, health 

insurers, and physicians are crucial in such systems, and should be encouraged when 

necessary. From the other side, many of the editorial decisions on performing a change in 

a system need to be made by humans. Man-machine interaction problems are not purely 

computational and need a deep understanding of human behavior. 
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As mentioned in Chapter I dealing with change is mainly a social, linguistic, and 

philosophical problem, rather than a computational one. A key issue in managing current 

dynamic biomedical systems relates to users' behavior and the cultural and disciplinary 

assumptions [For98], which can determine the success or failure of a system. The change 

management phase in current systems is largely addressed implicitly, and followed with 

human supervision and intervention. The human contribution improves rationality and 

plays an important role in controlling the quality of the results. However, there are 

several applications where human intervention is difficult, impossible, or simply 

undesirable [FPA06] (e.g., due to security issues). Also, differences in background 

knowledge, views, or preferences are other obstacles for consensus between people. In 

this sense, a result might not be accurate or reproducible. In addition, the system's 

outcome might be highly dependent on human behavior, which makes it difficult for 

evaluation in terms of efficiency or correctness. 

The existing well-known biomedical systems and digital libraries usually affect large 

and heterogeneous groups of people, with different levels of background knowledge and 

dissimilar interests. Therefore, an efficient user-centered approach, along with 

psychological and organizational proficiency should be taken to reduce the behavioral 

side-effects and successfully manage changes in healthcare applications. An ideal e-

health system should be able to automatically coordinate human factors, processes, tools 

and knowledge-bases while coping with different changes. There are some issues that 

affect the successful implementation of such infrastructures. In this section, we review 

and survey the potential issues related to the human factor in an integrated dynamic 

biomedical system composed of several interrelated knowledge bases, and bio-ontologies 

46 



by looking at different theories in social science, psychology, and cognitive science, and 

we address the following issues: 

• The organizational and social impacts of human-driven changes in e-health systems; 

• Different sources of change; 

• Human errors due to change and alteration; 

• Responding to change in a dynamic e-health environment; 

• Safety; 

• User interface issues; 

Lorenzi and Riley [LROO] presented an overview of change management efforts in 

information systems showing the roles of people and the organizational issues (i.e., the 

interruption of a known routine) that were counterproductive to the implementation and 

management of major information systems. Based on their research, the main reasons for 

system failure can be categorized under miscommunication, cultural barriers, 

underestimation of complexity, inadequate or low-quality training, lack of organizational 

change management strategies, and weak leadership. Considering the dynamic nature of 

current knowledge bases, which need real-time decision-making and proper action from 

human agents, the concept of change and the ability to cope with various alterations play 

important roles in biomedical knowledge bases. Lewin [Lew47], with his social 

psychology perspective, focused on the motivations for an individual's behavior. He 

believed that psychological needs in humans cause tension until they are fulfilled. Lewin 

indicated three major conflict situations: the choice between two positive goals of equal 

strength, two equally negative goals, or opposing positive and negative forces of different 

strengths. Lewin's field theory, commonly used in healthcare systems, allows one to 
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identify different types of conflict situations and to analyze the effect of a change in a 

knowledge-based environment [LR03.a]. 

II 4.2 Types of User-Driven Changes 

Watzlawick et al. [WWF74, LROO] used two theories to explain first-order and second-

order changes, namely the theory of groups and the theory of logical types, from 

philosophy and logic. A first-order change (improving a system) is defined as the logical 

extension and incremental improvements of past and current practices in a given system, 

leaving the system's core belief relatively unchanged (Examples include recovery from 

system failure, and generating new reports). If a system itself is changed, then a second-

order change happens (deep alteration in a system). This change usually "involves a 

redefinition or re-conceptualization of the ideas, tasks, domains, or roles in an 

organization" (i.e. the change from paper-based medical records to electronic medical 

records in biomedicine) [LROO]. 

For any alteration in a system, users, designers and developers can play various roles, 

which will influence their conceptualization about the change and their reaction to it 

[LROO]. So, in making decisions and taking action within dynamic biomedical systems, 

the users' behavioral aspects associated to each role should be controlled. 

II 4.3 Human Error in Clinical Systems and Change Management 

Studies [LROO] on people working with health-related systems imply that due to high 

stress and pressure in the field they are relatively more resistant to being confronted with 

changes. Changes can potentially increase the chance of errors in a system by routine 
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disruption. One factor urging system change is the need to deal with human errors, 

present in all stages of a system's life cycle. Human error should be considered in clinical 

application development's life cycle, along with many other aspects of design. Studying 

human error provides valuable information for analyzing human behavior and reveals 

user requirements and misunderstandings. Human error is defined by Barfield [Bar93] as 

an error caused in some way by the user of the system, in contrast to a system error, 

where there is a physical fault in the system. Based on the user's mental model, he 

grouped the errors into two categories: errors of action (error in the translation between a 

user's intention and their action) and errors of intention (the user doing the wrong thing 

on purpose). This classification is comparable with Norman's categorization of errors 

[Nor88] into mistakes and slips: if a person has intent to act that is inappropriate, it is a 

mistake; if the action was not what was intended, it is a slip. In order to deal with human 

error, Norman highlighted the needs for better consistency in describing the errors and 

better feedback for capturing and reporting them [LR94]. In dynamic environments with 

several external and environmental parameters such as evolving e-health systems, the 

rates of unintentional errors can increase greatly. Bes in [Bes97] and Decortis in [Dec93] 

have worked on the effects of temporal characteristics on users' activities in dynamic 

environments. Decortis stated that temporal errors can originate from incorrect estimates 

about the sequence or duration of actions and/or failure in choosing the right time to act, 

in anticipation of an event or in synchronization of collective actions [Dec93]. In 

addition, De Keyser [Dek95] identified other sources of temporal errors, such as the 

absence of high-quality indicators to highlight the change, the presence of micro-changes 

too short to be received, and the existence of distracters capturing the users' attention 
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[Bes99]. [HL02] made the distinction between two methods for change management: the 

technical method that can be understood and addressed with available knowledge (mostly 

used for managing first-order change) and the adaptive method that is beyond the existing 

and available techniques of operation. Several efforts such as [For98, LR94, LROO, 

LR03.a] have been made for applying knowledge of human and organizational behaviors 

derived from psychology, sociology and cognitive science to the implementation and 

management of healthcare systems. 

II 4.4 Safety 

The six principles were defined by the Committee on Quality of Healthcare in America 

[ComOl], to be followed by any e-health knowledge-based system to provide high-

quality services, with focus on safe, effective, patient-centered, timely, efficient, 

equitable environments. User and patient safety is a challenging issue that needs to be 

addressed with proper real-time control and feedback mechanisms in the systems. User 

interfaces can play a vital role in this case by providing appropriate forms of messages 

and warnings in a timely manner. The number of potentially hazardous errors can be 

reduced by employing intelligent safety devices, accurate alerts, and effective user-

friendly interfaces. To cope with changes in the constantly evolving knowledge-based e-

health environments, one must have a formal model of human reactions to change, 

enabling cognitive error analysis. Beitler et al [BFK+95] designed an interface that 

provides a virtually simulated multimodal user control environment, based on the 

knowledge of a reactive planner to allow "autonomous planning as well as planning 

through human-machine interaction". The system acts like a human agent and can be 
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used in situations unsafe for people. This approach is especially useful in assisting people 

to perform repetitive tasks, which potentially increase the chance of error for humans. 

II 4.5 Trust and Security Issues 

Kini et al. [KC98] observed various aspects of human trust in computer-dependent 

systems, according to personality theory, sociology, economics, and social psychology. 

They defined trust as "a belief that is influenced by the individual's opinion about certain 

critical system features". Their study relies only on human as the "truster" (instead of 

system) and does not support the problem of trust between humans and processes 

involved in knowledge-based interactions. Gambetta [GamOO] defined trust as an 

estimation that can be determined by the probability of an action being successfully 

performed. Josang et al. [JIB07] look at trust in a user-centered framework where 'one 

party is willing to depend on something or somebody in a given situation with a feeling of 

a relative security, even though negative consequences are possible'. In this sense, 

human-agent interactions play important roles in the security process, which usually 

includes authentication, authorization, and confidentiality. Relying only on human factors 

in the security process, especially in complex health systems, may lead to unpredictable, 

inaccurate, and inconsistent results that often may not be reproducible. So, in modern e-

health knowledge bases, security management must be carried out automatically, with 

minimal human intervention. 

II 4.6 User Interface Issues 

Since biomedical knowledge bases and applications are most often used by lab 
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technicians, nurses, and physicians, a formal logical language is not well-suited for 

representing the interactions. Therefore, special attention is given to the design of the 

operational user interface, based on natural language processing and intuitive graphical 

representations. Currently available tools do not provide complete support for dealing 

with the complexity of evolving medical systems, which go beyond the capabilities of 

existing user interfaces. One method for dealing with the representation of changes in 

user interfaces is to employ ontologies in capturing the knowledge about evolving 

concepts. In this way, changes to the user interface can be made by changing the 

underlying ontology. [TMM+96] and [GMZ99] undertook two efforts devoted to 

modeling user interface for biomedical applications. Pohl et al. [PRW07], Leitner et al. 

[LAH07], and Carrigan et al. [CGC+07] also recently demonstrated their advances in the 

usability of user interfaces of available information systems in medicine and healthcare. 

In general, a user interface based on human factors is a key to the acceptance of a system 

[Nie93] in medicine. In creating a graphical user interface (GUI), the level of expertise 

and the operational habits of the medical staff should be considered. 

Hartson et al. [HB93] specified behavioral and construction domains for 

implementing a user interface. The behavioral domain includes the design and 

development of the interactive part of an interface, and the construction domain includes 

the development of the graphical environment. The development process of a usable GUI 

is not possible without active participation of physicians, psychologists, and other end-

users of an e-health system. It also requires the consideration of important human factors, 

such as intuitiveness, functionality, accessibility, flexibility, and adaptability of the user 

interface. However, design criteria based on human factors do not automatically 
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guarantee a solid, usable interface [TMM+96]. As the GUI development for dynamic 

environments is always an iterative process [HB93], it requires the occasional 

modification of initial system specifications based on new requirements or newly 

obtained knowledge. 

II 4.7 Participative Change Management 

A dynamic health knowledge-base usually deals with spatial and temporal data, metadata, 

documents, and data warehouses while working in an integrated web-based system that 

includes databases, ontologies, and software agents. To overcome some of the existing 

challenges in current knowledge-based systems, researchers try to design systems based 

on human behavior and needs [BT94, DH96]. 

In our approach we emphasize on the role of human factor in maintaining changes in 

a consistent way. For detecting any behavioral change, we first need to specify behavioral 

patterns to capture current behavior, the behavior upon change, and the advantageous 

replaced behaviors. For this purpose, we introduce our agent-assisted framework (RLR), 

meant to assist humans in performing changes (semi)automatically. Figure 2.2 

demonstrates the interactions between human user/administrator, intelligent agents, 

environmental parameters and existing knowledge bases involved in a decision making 

process for performing a change in our proposed RLR framework. 
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Fig. 2.2. The Decision making mechanism for user-centric change management. 

The details on this framework and associated agents will be explained in Chapter III. 

II 4.8 Summary of Section II.4 

Hidetora: I am lost... 
Kyoami: Such is the human condition. 

Ran (1985) by Akira Kurosawa 

A large body of literature exists on the importance of human-machine interactions in 

various domains of interest. Life science and biomedical fields are challenging domains 

in knowledge management. Biomedical data are highly dynamic, and the large 

biomedical knowledge sources contain complex interrelated elements, with various levels 

of interpretation. Considering the dynamic nature of current volatile digital libraries, 

which need real-time decision-making and proper action from human agents, the concept 
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of change and the ability to cope with various alterations play important roles in 

biomedical knowledge bases. 

In this section, we reviewed some of the issues relating to human intervention in 

maintaining biomedical systems and knowledge bases. Later we will investigate the 

potential of some advanced formalisms in the Semantic Web context (such as using 

intelligent agents to assist computational inferencing) to assist the human user in 

decision-making and dealing with changes. We will return to the concept of participative 

change management as the collaboration between human and software agents for (semi-) 

automatic ontology evolution in Chapter HI, where we will see how an interactive 

diagrammatic formalism facilitates human-computer interaction, reasoning and problem 

solving. 
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II.5 Change Management in Database and 
Software Engineering 

Management is doing things right; 
leadership is doing the right things. 

Peter F. Drucker (b. 1909) 

II 5.1 Database Schema Evolution 

Since databases are characterized as one of the fundamental components in many 

software applications, experts in this field are faced with two issues: schema evolution 

and versioning. Software applications operate in a world of constant change. The changes 

particularly apply to the underlying schema, as it needs to be adapted to ever-changing 

requirements [BSH+06]. Dynamic schema evolution (DSE) is defined as the ability of the 

database schema to handle changes to its structure without losing the existing data and 

without interrupting the regular operations of the database [RS03]. While most of the 

popular database systems maintain a few simple change operations (e.g., adding/deleting) 

automatically, handling complex changes needs a precise, future-oriented strategy. A 

successful schema evolution process includes the study of the sources of change and the 

analysis of effects of different changes on the data and schema for coherent management 

of different versions [NK04]. 

The issues and potential of schema evolution are well studied and a large body of 

literature exists on the topic (for instance, see the surveys in [Rod95], and [RS03]). 

Generally, schema evolution consists of three [RS03] interrelated activities: core schema 

evolution (detecting and applying the changes while keeping the schema consistent), 
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version management, and application management (keeping the applications that benefit 

from the database in working order). Some systems focus only on maintaining multiple 

versions [MS92, CLR04], while others consider all three aspects in their design model. 

A comprehensive summary of the different research activities on schema evolution 

can be found in [RS03]. Most efforts on this topic have been focused on studying changes 

in single stand-alone databases, and evolution in distributed, heterogeneous sets of 

databases has not received enough attention. Another challenging problem in this domain 

relates to database integration issues, particularly semantic integration. One of the 

common operations during database schema evolution is the integration process, defined 

as "merging a set of given schemas into a single global schema" [DH05], which is 

usually performed in two phases: data and semantic integration. A brief survey on 

semantic integration research in the database community can be found in [DH05]. 

Comparing different types of database schemas, the XML databases, considering the 

semi-structured characteristics of XML, allow maximum flexibility in coping with 

schema changes and extensions1 by enabling loose coupling through schema variation 

and evolution [BOS+05]. 

II 5.2 Database Evolution vs. Ontology Evolution 

Despite important differences between schema evolution and ontology evolution 

stemming from different usage paradigms, the presence of explicit semantics and 

different knowledge models [NK04], there are also similarities that allow some of the 

studied techniques to be reused for the ontology evolution process. 

, s The extendibility feature refers to the term "extensible" in Extensible Markup Language (XML). 
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Generally speaking, the content, structure, usage, and underlined semantics of 

ontologies are usually more complex than that of database schemas, and the set of 

potential alterations for ontologies is much more diverse than the possible set of changes 

in database schemas [BKK+87, Kle04]. In addition, the distinction between schema 

versioning and schema evolution, as described in [Rod95], is not fully applicable to 

ontologies because it is often far from trivial to find and capture similarities and 

differences between various ontology versions. Also, in ontologies, compatibilities 

between different versions are defined not only in terms of preservation of instance data 

(as it is with databases), but also in terms of preservation of the conceptual and 

ontological structure [NK04]. Conceptualization changes in ontologies, caused by 

alterations in perceived knowledge from the real world, are comparable [NK04] to 

changes in database schemas caused by changes in the real world [VH91]. 

II 5.3 Software Evolution and Change Management 

A software application is continuously evolving to meet frequently changing 

requirements. Software maintenance and change management are crucial tasks in the 

software development life cycle and often take place after the application has released its 

first version. Improving the quality of the maintenance process reduces the associated 

costs. Software maintenance encompasses the contributions of human factors—for 

planning and scheduling—along with algorithms, heuristics, and formal methods to 

support the evolution process, while considering correctness to be the main concern 

[HKL05]. Software change management is a vital step in project management, which 

aims to maintain the reliability of the software products during their entire life cycle by 
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deciding which changes to allow, support, or prevent, based on project goals, schedule, 

and budget [PCC+93]. Software change management processes have been traditionally 

studied under two general tasks, namely software maintenance [IEEE98, BBE91] and 

software configuration management (SCM) (i.e., handling changes during the software's 

Hfecycle)[Pre01,SN01]. 
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Fig. 2.3. ISO/IEC Maintenance Process Activities (adapted from [SN01]). 

The maintenance process activities developed by ISO/IEC 14764 are illustrated in 

Figure 2.3 [SN01]. Each activity consists of several sub-actions. For example, Problem 

and Modification tasks can be broken down into these steps: performing initial analysis, 

verifying the problem, developing options for implementing the modification, 

documenting the results, and obtaining approval for the modification option. As another 

example, Software Retirement tasks include developing a retirement plan, notifying users 
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of retirement plans, conducting parallel operations, notifying users that retirement has 

started, and ensuring that old data is accessible [SN01]. 

Olsen [01s93] proposed a model for software change management based on 

considering the entire development process to be, metaphorically, "a dynamically 

overloaded queue, which can be described mathematically." In fact, Olson's model 

(Figure 2.4) is an abstraction that encompasses all activities performed by the software 

developer (i.e., enhancements like adding new features, revisions due to bug reports, 

filling out forms, etc.) as changes. Therefore, the model can be used for both software 

development and maintenance. Based on this model, change requests come from users, 

stakeholders, change managers, and test units in the forms of suggestions. 
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Fig. 2.4. Olson's proposed model for software change management (adapted from [Ols93]). 
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Changes in Olsen's model have been defined in a highly abstract manner, which 

makes it difficult to distinguish between different types of changes [MakOO]. Lehman in 

[LRW+97] formulated the eight Laws for Software Evolution. In Lehman's context, 

software evolution is managed in a feedback-driven and controlled maintenance process 

[Leh96]. He believed that the functionality and quality of software applications need to 

be constantly improved over their lifetimes to meet users' needs and satisfaction [Leh96]. 

Lieberherr and Xiao [LX93] gave the motivation for using an ontological structure for 

managing changes in software systems by proposing propagation patterns—a set of 

programs wherein all class members are connected through part-of and inheritance 

relationships—for interpreting object-oriented applications at a higher level of 

abstraction. 

The so-called AGILE software development methodologies [ASR+02], are another 

effort for developing software with futuristic perspective. Some of the main principles16 

behind an agile method are: (i) Incremental development (iterative, minimal planning, 

small releases in fast intervals); (ii) Cooperative and negotiative framework (strong 

collaboration and communication between designers, developers, customers and end-

users along with contract negotiation); (iii) Accessible (well-documented, available, easy 

to learn and change); (iv) adaptive (can accommodate scheduled or non-scheduled 

modifications and changing circumstances); and (v) simplicity. 

16 Agile Manifesto principles: http://www.agilemanifesto.org/principles.html 
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II 5.4 An Ontology Driven Software Application 

In our research, we have focused on ontologies not in isolation but as artifacts that are 

part of a software system and used to specify, model, or document these systems. 

Currently, there are some ongoing efforts in applying ontological concepts and concept-

centric [HKL05] approaches to support software maintenance and evolution [DD04]. 

Emphasis on object-oriented and component-based architectures in software engineering 

allows for modularization, encapsulation, and distribution of units of program code 

[OHE96]. A vast amount of research [XS04, ACC01, XS06] in software evolution has 

focused on object-oriented systems. Using ontologies that aim to provide a common 

vocabulary to represent useful knowledge for software developers is a new trend to 

manage the inherent complexity of large software systems. Ontologies define a common 

shared understanding about a software application domain and associated tasks, and 

provide an underlying discipline of modeling software applications by defining concepts 

and properties. They can describe software architectures and requirements, which are 

difficult to model with object-oriented languages [DD04]. Ontologies are also useful in 

software applications for describing the semantics of programming interfaces, providing 

a structure to organize knowledge, reducing development effort for generic tools, 

improving the data and tool integration, facilitating requirement elicitation by providing a 

common vocabulary, reusing organizational knowledge [SVS04], and capturing 

behavioral knowledge [DD04]. In addition, ontological commitment in software plays an 

important role in increasing the accessibility, maintainability, integrity, and transparency 

of application software based on the ontologies [Gua98]. An ontology-driven object-

oriented application, in our context, is defined as an architecture created from a shared 
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domain model that includes several interrelated knowledge sources, which are connected 

with some object-oriented components for user interface and control components 

[KOT+06]. Due to the reusability of ontologies, the overall cost and effort for creating 

and maintaining ontology-driven applications will be reduced. Thus, consistently 

modifying and adjusting the underlined ontologies in response to changing data or 

requirements play significant roles in the maintenance of the knowledge-based systems. 

II 5.5 Challenges in Software Change Management and Schema 
Evolution 

Several challenges in software evolution and change management have been addressed in 

[MWD+05], including the needs for improved software quality to deal with software 

aging, common software evolution platforms, techniques to support higher levels of 

abstraction for supporting co-evolution between different representations of software 

artifacts, new theories, mathematical models, and formalisms for representing software 

evolution, a formal programming language to explicitly support software evolution, 

support for multi-language systems, evolution benchmarks, increasing managerial 

awareness, improving versioning systems, advanced predictive models, more 

comparative studies and empirical research, runtime evolution (maintaining evolution in 

continuously running systems), and advances in accessing, retrieving, integrating, and 

analyzing editorial data from various sources (i.e., historical data in change logs, bug 

reports, change requests, source code, versioning repositories, execution traces, error 

logs, documentation, and so on) [MWD+05]. 

These challenges are often interrelated and sometimes more than one problem can be 

addressed with the same proposed solution. For example, employing language 
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independent methods for software change management can deal with several problems, 

including supporting model evolution and supporting multilingual systems. As another 

example, studies on evolution-supporting tools contribute to answering challenges related 

to empirical researches and theory of software evolution [MWD+05]. 

II 5.6 Summary of Section II.5 

Despite many differences between ontology, database and object-oriented modeling 

[IBM], in some sense, an ontology can be viewed as a hierarchical structure of classes 

and objects in a software conceptual design phase. Therefore, some rules and definitions 

are applicable for both, so we can benefit from the research in database schema evolution 

and software change management for managing changes in ontologies. 
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II.6 State of the Art and Related Works 

"Criticism is an indirect form of self-boasting" 

Emmet Fox (1886-1951) 

Based on our recent literature review for ontology evolution, changes are being studied 

on three different levels: the domain, the specification, and the conceptualization [KF01]. 

The problems in the first level are partially similar to database schema evolution [VH91], 

and the second level mostly involves conversion and translation (of both syntax and 

semantics) of different ontology representation languages [CGOO], but there is no clear 

detailed analysis of the effect of specific changes in conceptualization on the 

interpretation of data in the ontology evolution process [KF01]. This issue might lead to 

data and semantic inconsistencies. In our research, we have studied different editorial 

procedures for change management in existing biomedical ontologies, along with 

available tools and techniques. 

II 6.1 Biomedical Ontologies and the Editorial Procedure -
State of the Art 

There are currently a growing number of ontologies and controlled vocabularies in 

various areas of life sciences. In this section, we review the state of the art of change 

management in some available bio-ontologies. It is not a surprise that many of them do 

not sufficiently meet the requirements to be considered a formal ontology [Gua95]. Most 

ontologies in the biomedical domain are recognized to be acutely defective from both 

terminological and ontological perspectives [KS03a, Smi03, KSS04, GSG04, CSK+04, 
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SR04, CS06, SC06, Smi06]. A list of open-source ontologies used in life sciences can be 

found on the Open Biological Ontologies (OBO) website17. Many of the available 

ontologies are still under active development, revision and improvement, and are subject 

to frequent changes. The following ontologies and controlled vocabularies have been 

selected for a study of their change management mechanism based on several criteria, 

such as availability, popularity, and complexity of and accessibility to the source and 

documentation. The Gene Ontology (GO) [ABB+06] is a community standard and the 

Unified Medical Language System (UMLS) [HLS+98] is quite popular, with its rich 

collection of biomedical terminologies. Clinical Terms Version 2 [Cim96a, BR99] deals 

with actual patient care records and the Generalized Architecture for Languages, 

Encyclopedia and Nomenclatures in medicine (GALEN) [Bee] which is a formal 

description logic based ontology. We also look at HL7 [HLR], FMA [RM03], the NCI 

thesaurus (NCIT) [SCH+07], SNOMED [SCC97] and Terminologia Anatomica (TA) 

[Whi99] to see different examples of potential changes. 

II 6.1.1 The Gene Ontology (GO) 

The Gene Ontology (GO) is a collaborative project [ABB+06] that intends to provide a 

controlled vocabulary to describe gene and gene product attributes in existing organisms 

based on their associated biological processes, cellular components and molecular 

functions. The Gene Ontology has been modeled and implemented based on three distinct 

ontologies, represented as directed acyclic graphs (DAGs) or networks consisting of a 

number of terms, represented by nodes within the graph, connected by relationships that 

are represented by edges [LSB+03]. The current GO term count as of April 27, 2010 at 

17 http://obo.sourceforge.net/ 
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14:00 (PST)18 is 30350 terms with 1434 obsolete terms. The GO consortium makes cross

links between the ontologies and the genes and gene products in the collaborating 

databases [SklOO]. The Gene Ontology is currently available in Flat File, FASTA, 

MySQL, RDF-XML, OBO-XML and OWL formats. Members of the consortium 

contribute to updates and revisions of the GO. Changes in GO occur on a daily basis and 

a new version of GO is published monthly. As GO becomes larger and complexity arises, 

it also becomes more difficult to control and maintain. To ensure consistency of the 

modified ontology, all changes are coordinated by a few biologists in the GO editorial 

office staff, who have write access to the Concurrent Versions System (CVS) [Ced] 

repository in which GO files are maintained. The users can make requests for 

modifications through an online system that tracks the suggestions and manages the 

change requests. All tracking information about requests and changes are archived and 

several curator interest groups have been established with associated actively archived 

mailing lists [Har05]. The GO editorial staff notifies others of the changes via monthly 

reports19 to the users (by email), or at the GO site. Different sources of suggested changes 

in GO, as described by [Har05], are advances in biology that alter the knowledge of gene 

and protein roles in cells; joining new groups that require new terms and relations; fixing 

errors; completing unfinished parts of the ontology; updating legacy terms and improving 

the formal representation of the ontology by identifying missing or misplaced 

relationships and terms. One of the problems in Gene Ontology maintenance is related to 

the versioning tool. CVS repositories, which currently handle versioning in GO, work 

based on syntactic differences between ontologies. For instance, CVS is not able to 

18 http://www.geneontology.org/GO.download s.shtml 
19 http://www.geneontology.org/MonthlyReports 
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differentiate class versions, being able only to differentiate text/file differences 

[VEK+05]. The research on conceptualization change over time [VEK+05] is still 

promising. The following statistics presented in [HKR08] show the average number of 

added/deleted/obsolete changed concepts per month in the period from May 2004 to Feb 

2008. 

Ontology Addition Deletion Obsolete 
GeneOntology 200 12 4 

- Biological Process 146 7 2 
- Molecular Function 36 3 2 

'Biological process ™°™-Molecular function "*-™Cellular components 

Fig. 2.5. Evolution chart in GO Ontology (Source: [DGL08]). 

Also, some information about the rate of change in each one of the three sub-

ontologies of GO has been provided by [HKR08] in the same period, and through 44 

versions. 
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Ontology |C|(startru |C|(latest) grow 
GeneOntology 17368 25995 1.50 

- Biological Process 8625 15001 1.74 
- Molecular Function 7336 8818 1.20 
- Cellular Components 1407 2176 1.55 

II 6.1.2 UMLS Semantic Network 

The Unified Medical Language System (UMLS) [MN95] is a composite of about 100 

source vocabularies that contain 870,853 concepts and 2.27 million terms [UML08]. It 

was created by the National Library of Medicine (NLM) to facilitate the development of 

computer systems that behave as if they "understand" the meaning of the 

biomedicine/health language. To that end, the NLM produces and distributes the UMLS 

knowledge sources (databases) and associated software tools (programs) to system 

developers for use in informatics research and in building or enhancing electronic 

information systems that create, process, retrieve, integrate, and aggregate 

biomedical/health data and information. The UMLS Knowledge Sources are multi

purpose, and can utilize a variety of data and information, such as patient records, 

scientific literature, guidelines and public health data [UML08]. Due to the popularity 

and multi-purpose nature of the UMLS, it seems to be a perfect candidate to study change 

management. The UMLS Semantic Network covers different levels of granularities, 

which have a key effect on interpreting the meaning that has been assigned to the 

Metathesaurus concepts [FSU06]. Changes in the UMLS are usually recommended by 

|C|(start) and |C[(end) are respectively indicating the number of concepts in first and last versions ; and 
"grow" denotes the ratio between them [HKR08]. 
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the UMLS contractors and others who have experimented with the previous versions of 

the ontology. UMLS terms that share the same conceptual meaning are linked by a 

concept unique identifier (CUI) [COS+98]. Two files called DELETED.CUI, which lists 

deleted concepts, and MERGED.CUI, which lists all pairs of CUIs that were merged, are 

associated with each new release of the UMLS [OET+96]. These files help users to 

determine whether a CUI that is no longer present in the new version was removed due to 

a deletion of the concept, or due to a merger of the concept with another concept 

[OSS+99]. 

II 6.1.3 Clinical terms version 3 (The Read Codes) 

The Clinical Terms Version 3 (CTV3)21 [OPR95, NHSOOa] or Read Codes are a set of 

coded terms arranged in a hierarchical structure for use in clinical practice, with such 

applications as viewing a patient's record from different perspectives (e.g., clinical audit, 

producing reports, meeting central returns, research, etc.). The CTV3 classifies chemicals 

by their name, i.e., alphabetically. The first version of Read Codes (CTV1) was initially 

developed to provide a terminology for describing relevant clinical summaries and 

administrative data for general practice. It is known as the 4-Byte Set since each code is 

four characters long. In the next version (CTV2), the codes were subsequently adapted 

for use in hospitals, and were extended to allow more detail. To hold more detailed 

information, a supplementary alphanumeric character was included in the Read Codes (5-

Byte Sets) [NHSOOb]. CTV2 uses the code to specify a class and its unique place within 

the taxonomy, which has a limited, fixed number of levels. The CTV3, with its flexible 

structure unlike the previous versions, allows more changes in terminology [JMY04]. 

21 http://www.nhsia.nhs.uk/terms/pages/ 
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The Read Codes have been changed in each version (based on strict protocol under 

central control of NHS) by adding terms and codes to fix the errors and reflect the newly 

discovered knowledge (mostly to enrich the descriptions). Further alterations include 

changes to qualifiers and atoms (semantic definitions), the hierarchical structure and the 

mapping files [NHSOOa]. CTV1 and CTV2 changed relatively little between releases, due 

to their rigid file structure that was limited to five levels of offspring, and about 60 

siblings. The CTV3 "Description Change File" (DCF) [NHSOOa] shares the entire change 

management procedure between "terminology providers" and "terminology users" (i.e., 

clinicians). The DCF starts by recommending a new code for any terminology discovered 

to be incorrectly classified and suggesting that the user replace it. The process continues 

by labeling the obsolete concepts as "extinct". An example from [NHSOOa] describes the 

deletion of the relation between the terms 'Cardiac rupture' and 'Myocardial infarct', 

which turned out to have the same code in CTV2, and the addition of a new code to 

'Cardiac rupture' in CTV3. 

We also consider some other popular controlled vocabularies in life science in the 

following. 

II 6.1.4 GALEN 

Generalized Architecture for Languages, Encyclopedia and Nomenclatures in medicine 

(GALEN)22 [RN94] has been modeled to represent clinical information to support 

clinicians and is intended to "put the clinical into the clinical workstation" by generating 

a formal multilingual coding system for medicine [Bee]. It originally evolved from the 

Pen&Pad electronic medical record system [RNK91], which was modeled using 

22 http://www.opengalen.org/ 
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Structured Meta Knowledge (SMK), in the way that terms were described through 

relationships to other terms. The core of GALEN is an ontology, the Common Reference 

Model, formulated in a specialized description logic, GRAIL, that does not support the 

use of disjunction or negation [RBG+97]. The GALEN community tries to enable the 

system to recognize concepts with different GRAIL descriptors that are equivalent in 

meaning. GALEN achieves expressiveness (the ability to represent the concepts 

formally) by providing a compositional representation of concept representations. It 

provides abstraction (defining generic categories of the concepts and the relations 

between them) by allowing formal logical classifications of the concepts and supports 

scalability and maintainability by using formal algorithms for consistency control 

[RR05]. GALEN has been employed as a basis for studying nursing terminologies 

[HR01], surgical vocabularies [TRR+00], anatomy [Don05], and decision support 

systems [KarOl]. 

The major strengths of GALEN are the formal representation of clinical information 

and the use of a formal structure based on description logic. GALEN also allows 

"multiple views of relevant detail as needed" [Smi05]. From another point of view, 

GALEN is not fully developed and it is not a comprehensive, stable ontology. In its 

current state, GALEN contains some errors (e.g., Vomitus contains carrot [Smi05]), 

which are not prevented by description logics. Also, many of the relations in GALEN 

need to be reconstructed [RG04]. 
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II 6.1.5 National Cancer Institute Thesaurus (NCIT) 

The NCI Thesaurus23 (NCIT) [SCH+07] is an integrated description logic-based 

terminology for supporting reliable coding and cross-translation research, based on 

cutting edge molecular and clinical cancer-related information. The NCIT contains about 

100,000 terms (divided among several taxonomies), 34,000 concepts, and more than 50 

types of role relationships for describing diseases, abnormalities, drugs, chemotherapy 

regimens, anatomy, gene, and proteins [CHS+04]. It was originally implemented using 

Apelon24 and is now available in OWL (DL and Lite) format. The NCI uses the UMLS 

Metathesaurus as a basis for its NCI Metathesaurus (published monthly). It includes 

different cancer-oriented terminologies (prevention, treatment, and research), and assists 

users in finding appropriate terms and translations corresponding to related biomedical 

terminologies. A terminological and ontological analysis performed by Ceusters et al. 

[CSG05] revealed several inconsistencies in the terms and their definitions in NCIT. 

Some of the terminology errors have been inherited from the definitions in original 

sources, particularly some of the characteristic inconsistencies of the UMLS [CSG05]. 

The updates in NCIT take place weekly for internal and monthly for external 

baselines [CHS+04]. The editorial changes in NCIT are limited to the following actions: 

creation, modification (addition/deletion), splitting, merging, and retiring [HFO+03]. 

Some of the NCI's retired concepts can be seen in Figure 2.6. 

http://nciterms.nci .nih .gov/NCIBrowser/Dictionary .do 
http://www.apelon.com/ 
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* Retired Concepts 
o Breast Cancer Carboxv-Termiaal Domain 
o S-uraical Adjuvant 
o Monocyte Chemoaltractant Protein-1 
o F A D P 
o Chemokine C Motif X C Receptor 1 
a GLI1 Gene 
o HLH Motif 
o Anti-inflatrjmatorv Agent 
o G 12 13 Alpha 
o Commercial or Non-CTBP I M P agent 
o Physiologic Reproductive Process 
o BR3C Protein 
o Trefoil Farraiv Gene 
o Physiologic Process 
o Canton and Enderbary Islands 
o Monoclonal Aatjbodv Therapeutic 
o 14 3 3 Sigma Gene 
o H M G Motif Genes 
« Gold Coast 
o Antiangiogenesis 
D BCL2-Related Protein I Short Isoform 
o Histocompatibifity Antigen Class I 
o Neurodegenerative Disease Gene 
o ^Kovel Ery$hropQiesis Stiremlatins; Protem 
a TACC2 Protein 
o Receptor Mediated Permeabffizer Agent 

Fig. 2.6. Some of the NCI's retired concept25. 

NCI Thesaurus is maintained on a COTS (Commercial Off-The-Shelf) basis for 

terminology editing with public domain customizations as needed, mainly through the 

publishing tools from Apelon [CHS+04], including: 

• TDE26 (Terminology Development Environment): enables periodic exports of 

change sets, conflict resolution, and publishing of new baselines. It logs 

information related to creation, modification, and deletion. For managing changes 

in NCIT, the TDE has been extended to support split and merge, and deletion has 

been substituted with retirement [HFO+03]. 

• DTS27 (Distributed Terminology Server): enables data normalization, code 

translation, comparisons of concept extensions, tracking, and localization (adding 

25 Resource: www.mindswap.org/2003/CancerOntology/htmls/retired_kind.html 
26 http://www.apelon.com/products/tde.htm 
27 http://www.apelon.com/products/dts.htm 
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concepts, synonyms, codes, etc.). It has been extended by including a DTS history 

API28 to facilitate NCIT's history tracking [HFO+03]. 

The mechanisms for updating the NCI Metathesaurus and managing concept changes 

over time by history tracking in the NCIT has been described in [NCI06, HFO+03]. Here 

is the NCI's revisions statistics based on [HKR08] in the period of May 2004-Feb 2008. 

Ontology Addition Deletion Obsolete 

NCI Thesaurus 627 2 12 

Ontology jC|(start) |C|(btest) grow 

NCI Thesaurus 35814 63924 1.78 

II 6.1.6 Health Level 7- Reference Information Model (HL7-RIM) 

HL729-RIM is a set of standard vocabularies that aims to provide a UML-based standard 

for the exchange, management, and integration of data to support clinical patient care and 

the management, delivery, and evaluation of healthcare services. HL7 was adopted by 

Oracle as basis for its Electronically health record (HER) support programs. It embraced 

as US federal standard and also considered as a central part of a multi billion dollars 

program for integration of all UK hospital information systems [Smi05]. HL7 has been 

also accepted as the mandatory standard30 by Canada Health Infoway31. The relevant 

healthcare information in the RIM has been organized into the six classes, namely: Act, 

Entity, Role, Participation, Act-Relationship and Role-Link [HLR]. The ontological and 

logical analysis performed in [Smi05b] and [VSC04] address several problems in HL7-

RIM, such as the problems of Circularity (some definitions fall into infinite regressive 

28 Application Programming Interface 
29 http://www.hl7.org/ 
30 HL7 Canada: http://sl.infoway-inforoute.ca/content/dispPage.asp?cw_page=infostand_h]7can_about_e 
31 http://www.infoway-inforoute.ca/ 
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loops)32, logical incoherencies [VSC04], logical contradictions [Smi05], neglecting 

objective states of affairs and real processes, also the failure to distinguish properly 

between acts and documents [Viz04]. 

To be considered as a universal standard HL7 - with several known and unknown 

problems and incoherencies - needs to go through constant rigorous revisions. In respect 

to this issue, the HL7 standard includes a protocol version ID in all HL7 messages. The 

mechanism for controlling the changes in HL7 has been described [HLS] as: addition of 

new transactions or data elements to HL7, which are caused by changes in the Standard 

or due to legitimate changes in the local implementation. Considering some defined 

Encoding Rules, "new fields can be added first to the sending or source system; the 

receiving system will ignore the new fields until it has been updated to use them" [HLS]. 

Often, these rules also facilitate changing the receiving system first. Until the sending 

system is changed, the receiving system will find the new data field 'not present' and deal 

with this according to its rules for data not present. Similarly, the HL7 Encoding Rules 

support changes in data field sizes. Tables 2.1 and 2.2 demonstrate some of the new 

added features and changes in HL7 standards, in transition from version 2.1 to 2.2 and 

from version 2.2 to 2.3 respectively. 

32 For example defining "person" as "a person with document" (i.e. An A is an A which is B) makes it 
impossible to refer to As which are not Bs (e.g. to an undocumented person) [Smi05]. 
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Table 2.1. Some changes in data elements of HL7 from version 2.1 to 2.2 (Source : Health Level Seven 
Implementation Support Guide for HL7 Standard Version 2.3) 

Segment/S*q 
MSH-5 
MSH-7 
MSH-9 
MSH-12 
MSH-15 

MSH-16 

MSH-17 
MSA-6 
ERR-1 
QRD-1 
QRD-6 

QRD-7 
QRF-2 

Nam* 
Receiving Application 
Date/Time of Message 
Message Type 
Version ID 
Accept Acknowledgement 
Type 
Application 
Acknowledgement Type 
Country Code 
Error Condition 
Error Code and Location 
Query Date/Time 
Deferred Response 
Date/Time 
Quantity Limited Request 
When Data Start 

New 

X 

X 

X 

X 

Change 
X 

X 

X 

X 

X 

X 

X 

X 

X 

Description 
Length changed from 15 to 30 
Length changed from 19 to 26 
Datatype changed from ID to CM 
Datatype changed froraNM to ID 

Datatype changed from ID to CM 
Length changed from 19 to 26 
Length changed from 19 to 26 

Length changed from 1.9 to 26 
Length changed from 19 to 26 

Table 2.2. Some changes in data elements of HL7 from version 2.2 to 2.3 (Source : Health Level Seven 
Implementation Support Guide for HL7 Standard Version 2.3) 

Segment/Sent 
MSH-3 

MSH-4 

MSH-S 

MSH-6 

MSH-11 

MSH-5 8 
MSH-19 

QRD-8 

QRD-9 

QRD-10 

QRF-4 
QRF-5 
QRF-6 
QRF-9 
URD-3 

URD-4 

URD-5 

Name 
Sending application 

Sending facility ID 

Receiving application 

Receiving facility 

Processing ID 

Character set 
Principal language of 
message 
Who subject filter 

What subject filter 

What department data code 

What user qualifier 
Other QRY subject filter 
Which date/time filter 
When quantity/timing filter 
R/U who subject definition 

R/U what subject definition 

R/U what department code 

!few 

X 
X 

X 

Change 
X 

X 

X 

X 

X 

X 

X 

X 

X 
X 
X 

X 

X 

X 

Description 
Length changed from 15 to ISO. Data 
type changed from ST to HD 
Length changed from 20 to 180, data 
type changed from ST to HD 
Length changed from 30 to 130, data 
type changed from ST to HD 
Length changed from 30 to 180, data 
type changed from ST to HD 
Length changed from 1 to 3. data type 
changed from ID to PT 

Length changed from 20 to 60, data 
type changed from ST to XCK 
Length changed from 3 to 60, data type 
changed from ID to CE 
Length changed from 20 to 60, data 
type changed from ST to CE 
Length changed from 20 to 60 
Length changed from 20 to 60 
Table - remo\red value CAN 

Length changed from 20 to 6G, data 
type changed from ST to XCN 
Length changed from 3 to 60. data type 
changed from ID to CE 
Length changed from 20 to 60, data 
type changed from ST to CE 

http://www.hl7.org.gr/assets/hl7implementationguide/HL7_implementation_guide.pdf 
http://www.hI7.org.gr/assets/hl7implementationguide/HL7_implementation_guide.pdf 
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II 6.1.7 Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) 

SNOMED CT was generated by merging SNOMED Reference Terminology (RT) 

[SCC97] with Clinical Terms Version 3 (CTV3). According to [NS08], SNOMED CT 

includes 311,313 concepts (84% primitive and 16% fully defined) and 920,146 defining 

relationships. SNOMED CT can be used in various browsers35 and is available in 

different formats36, such as IHTSDO37 support format, containing the original flat tables 

with information to concepts, descriptions, and relationships; description logic format 

[BSK+07]; and Metathesaurus format in UMLS (April 2009)38. A list of ontological and 

logical problems in SNOMED CT, which force the changes, can be found in [SSB07]. 

Spackman [Spa05] studied the rates of change in six subsequent releases over a period of 

three years (July 2002 to Jan 2005). The diagrams [Spa05] in Figures 2.7.a and 2.7.b 

illustrate the number of new active concepts added to each release and the number of 

duplicate and ambiguous concepts identified and retired in each release respectively. 
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Fig. 2.7. The number of (a) new active concepts added to each release; (b) duplicate and ambiguous 
concepts identified and retired (Source: [Spa05]). 

35 http://www.nlm.nih.gov/research/umls/Snomed/snomed_browsers.html 
36 http://www.nlm.nih.gov/research/umls/Snomed/snomed_faq.html 
37 The Int'l Health Terminology Standards Development Organisation (IHTSDO) (http://www.ihtsdo.org/) 
38 http://www.nIm.nih.gov/research/umls/licensedcontent/snomedctfiles.html 
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SNOMED is available as various snapshots of the current component status at a 

specific release date. The original SNOMED CT history mechanism could not support 

change tracking procedures for subsets and their membership [RefS06]. To solve this 

problem, a "Reference Set specification" (RefSet) has been defined, which is an 

extension of the original subset to enhance the change tracking mechanism, handle 

different user preferences, and use cases and issue recommendations for the evolution of 

other SNOMED CT elements [RefS06]. The ability to track each RefSet member and its 

property over time will improve "incremental updates of SNOMED's content since last 

synchronization, and facilitate time-sensitive queries for point in time retrieval of the 

status of each component" [RefS06]. 

Recently, a system called Terminology Version (TV) Manager [IB08] has been 

proposed for "searching and navigating in synchronized presentations of selected 

versions of SNOMED CT" based on comparisons of the sub-trees of interest. 

II 6.1.8 The Foundational Model of Anatomy (FMA) 

FMA39 is a frame-based ontology (developed in Protege) that represents an evolving 

source of explicit declarative knowledge about human anatomy and claims to be the most 

complete ontology of canonical human anatomy in a high granularity from the 

macromolecular to the macroscopic levels [RM03]. It primarily aims to expand the 

anatomical content of UMLS, by consisting of over 70,000 concepts and 110,000 

anatomical terms along with 168 relationship types, which cover over 1.5 million 

relations between its concepts [CZ06]. FMA has been recently translated to OWL (DL 

39 http://sig.biostr.washington.edu/projects/fin/AboutFM.html 
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and Full) [NR08]. FMA includes three models, namely (i) the ontological model 

(represents classes); (ii) the structural model (describes spatial and topological 

relationships); and (iii) the transformational model (represents morphological changes) 

[CZ06]. 

The FMA has been recruited in applications such as the Biolucida system [WB05] to 

improve the capability of content authoring and knowledge presentation tools, functional 

computer-administered exam systems, study aids, and an injury propagation modeling 

environment, as well as haptic applications, such as surgery simulation [WB05]. 

II 6.1.9 Terminologia Anatomica (TA) 

Terminologia Anatomica [Whi99] is a standard controlled vocabulary on human 

anatomical terminology, developed by the Federative Committee on Anatomical 

Terminology (FCAT). The TA's structure has been represented "through hierarchies of 

headings, varied typographical styles, indentations, and an alphanumeric code implies 

specific relationships between the terms embedded in the list" [RosOO]. All the changes in 

TA can be granted by decision and approval of the FCAT members [RosOO]. 

II 6.1.10 Different Types of Changes in Biomedical Ontologies 

Based on our research of the literature, observing different releases of ontologies, 

surveys, and interviews with several domain experts and ontology engineers, we 

distinguished about 74 different types of changes that frequently occur in life cycles of 

existing bio-ontologies. These changes can be classified under 10 general terms: addition, 
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deletion, retirement (obsoletion), merging, splitting, replacement (edit or rename), 

movement, importing, integration, or changes to file structure. 

Table 23. Common changes in some of the existing popular bio-ontologies. 

Type of 
change 
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Definition 

Improving ontological structure by adding 
one or more components to the available 
makeup. The most common additions in the 
observed bio-ontologies are of the 
following elements: Namespace, identifier 
code, concept, attribute, abbreviation, 
super-class, sub-class, attribute value, 
synonym, constraint (cardinality, type and 
min/max, inverse roles, default value), 
associative relationships (relationships to 
other individuals), annotation description, 
class-status (hidden/public), and instance. 

Erasing the selected element(s) when it does 
not reflect the ontological 'truth' anymore. 
The most common deletions are of the 
following elements: Namespace, identifier 
code, concept, synonym, abbreviation, 
annotation (description), constraint 
(cardinality, type and min/max), attribute 
value, super-class, sub-class, constraint 
(cardinality, type and min/max, inverse 
roles, default value), associative 
relationships, annotation description, class-
status (hidden/public), and instance. 

Deprecating an older element when a 
newer, more functional element or meaning 
supersedes it. The older version can be kept 
somewhere for future use, but its usage will 
be discouraged [Cim96a]. The retirement 
can usually be seen for me concepts, 
attributes, identifier codes, instances and 
relationships. 

The process of creating a consistent and 
coherent ontological element that includes 
information from 2 or more basic elements. 
It can be seen as following: Merging two or 
more concepts into one of the concepts or 
into a new concept [Cim96a], two or more 
attributes into one of the attributes or into a 
new attribute, two or more associative 
relations into one of the relations or into a 
new relation, two or more identifier codes 
into one of the codes or into a new code. 

Observed 
Ontology 

Gene 
Ontology 

(GO) 

Gene 
Ontology 

(GO) 

Health 
Level 7 
(HL7) 

Health 
Level 7 
(HL7) 

Example 

The curators at MGI, who were reviewing the 
existing terms for comprehensive annotation of 
mammalian genes involved in the regulation of 
blood pressure, realized that the existing GO 
terms were not sufficient to annotate genes 
involved in the various processes that regulate 
blood pressure. They then proposed 43 new GO 
terms, which were discussed and refined with 
other GO curators through the GO discussion 
forum. They efforts yielded new annotations for 
mouse genes directly involved in the process of 
blood pressure regulation [GON06, GOB]. 

The GO terms must characterize biological 
entities (i.e., functional activities that are 
catalyzed by enzymes). The terms classified as 
"Unknown" violated this principle, so the 
decision was made to delete the following terms: 
biological process unknown; GO:0000004, 
molecular function unknown; GO:0005554 and 
cellular component unknown; and GO:0008372 
from the ontology. The new annotations signify 
that a given gene product should have a 
molecular function, biological process, or 
cellular component, but that no information was 
available as of the date of annotation [GON07b]. 

In the release 2.0 of HL7, the components: 
ClinicalDocument.copyTime, MaintainedEntity, 
CodedEntry, inkHtml.name,table.border, table, 
cellspacing and table.cellpadding are retained for 
backwards compatibility with HL7 Clinical 
Document Architecture (CDA), Release 1.0, and 
have been retired. Further use of these 
components is discouraged [DAB+04]. 

In HL7, the purpose of the header is to enable 
clinical document exchange across and within 
institutions, facilitate clinical document 
management, and facilitate compilation of an 
individual patient's clinical documents into a 
lifetime electronic patient record [DAB+04]. In 
HL7's Clinical Document Architecture (CDA), 
Release 2.0, two concepts in the header 
(serviceactor and servicetarget) have been 
merged [DAB+04]. 
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An ontological element may be split into 
two or more new elements. This means that 
a concept can be split into two or more new 
concepts, an attribute into two or more new 
attributes, an associative relationship into 
two or more new relationships, or an 
identifier code into two or more codes. 

This process is for editing available labels 
and values. This editing mostly happens to 
change namespace, concept name, concept 
definition, attribute value, attribute name, 
attribute definition, and concept role. 

The transition of one or more ontological 
elements across the ontological hierarchy. 
This transition can happen to identifier 
codes, concepts, attributes, super-class, sub
class, associative relationships, and 
instances. 

Importing refers to the process of bringing 
an existing ontology (a tree) or parts of an 
existing ontology (sub-tree) into another 
ontological structure. 

In data integration, process data is extracted 
from different sources with different data 
formats, and then normalized into a 
consistent syntactic representation and 
semantic frame of reference [BCC+02]. The 
semantic integration is more complex than 
data integration. 

By the advancement of technology for 
storing and retrieving data files and the 
emergence of new standards, the format of 
file structures can be changed. 

Terminologia 
Anatomica 

(TA) 

Health 
Level 7 
(HL7) 

Gene 
Ontology 

(GO) 

Gene 
Ontology 

(GO) 

Foundation 
al Model of 
Anatomy 
(FMA) 

Read 
Codes 

In TA, terms that share an id code are treated as 
synonyms. But, this does not hold for sexually 
dimorphic anatomical parts, such as 'Ovarian 
artery' and 'Testicular artery'. These two share 
the same TA code (A 12.2.12.086) and therefore 
might be thought of as synonyms, but the two 
arteries are distinct and have different 
connections and other spatial relationships 
[Whi99]. So, they have to be modeled as two 
separated concepts, it means the code 
A12.2.12.086 can be split into A12.2.12.086-1 
for 'Ovarian artery' and A 12.2.12.086-2 for 
'Testicular artery'. 

A typical scenario [DAB+04] from HL7 Release 
2.0 is a simple replacement of Clinical 
Documented "1.2.345.6789.266" replacing 
ClinicalDocumentid "1.2.345.6789. 123" 

GO terms representing transporter activity in the 
Molecular Function are gradually being 
overtaken to better represent current scientific 
knowledge. A new high-level term called 
"transmembrane transporter activity" 
(GO:0022857) was introduced. So, the related 
child terms and sub-classes have been moved 
under GO terms that describe the activity of the 
transporters, such as channel activity, active 
transporter activity, and symporter, antiporter 
and uniporter activity [GON07c]. 

In 2001, the GO developers imported the first 
pass40 annotation from SW1SS-PROT, trEMBL 
and Ensembl [GOM01]. Also, 7316 GO 
annotations were imported from Proteome and 
literature associations [GOM01]. 

In order to meet the need for an expressive 
ontology in neuroinformatics, the FMA 
developers have integrated the extensive 
terminologies of NeuroNames and Terminologia 
Anatomica into FMA. They have enhanced the 
FMA to accommodate information unique to 
neuronal structures, such as axonal input/output 
relationships [MRM+03]. 

In Read Codes, Ver. 1.0 four character codes 
determined the position of a term in a hierarchy 
(4-Byte Set). The restrictions imposed by only 4 
levels of hierarchy led to the development of a 5-
Byte Set, which expanded the set to support 
secondary and tertiary care. This set was released 
in two structurally different versions. Ver. 1.0 
has shorter terms and keys than Ver. 2.0. The 
more complex Ver. 3.0 structure is a superset of 
all old versions, and supports the character 
structures of both Ver. 1.0 and Ver. 2.0 
[RCS+97]. 

The annotations, which are derived with minimal human control and validation (e.g. initial results for a 
sequence similarity) and produced with various annotation programs such as tRNA Scan, Blast, etc. 
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After monitoring the alterations in several popular biomedical ontologies one can see 

that most of the changes are additions and deletions. For example, in the period May 

2004 to Feb 2008, the changes in popular community standard Gene Ontology were 

almost 92.6% additions41, and 5.6% deletions (see Figure 2.5), and for NCIT almost 

97.8% additions, and 0.31% deletions (see Section II 6.1.5). The significant percent of 

additions is quite natural, since most of the biomedical ontologies are still under active 

development and ontology curators are adding new knowledge to their structure. These 

percentages may differ when the ontologies enter the maintenance phase. 

II 6.1.11 Challenges in Maintaining Existing Bio-Ontologies 

We found out from the current state-of-the-art of change management in existing 

ontologies in life science that formal change models with clear semantics are typically 

not employed. The change management in current systems is mostly addressed implicitly 

and takes place under human supervision. No matter how successful these change models 

are, for the purposes for which they were designed, they all have problems in maintaining 

their rapidly evolving structure because lack of formality and predictability. Most bio-

ontologies that were built according to the existing formal knowledge representation 

models have not found widespread use in life science and health care applications 

[OSS+99]. Current bio-ontologies are built for a particular purpose, such as literature 

retrieval and there has been no goal to conform to a model that is useful for other 

applications. Therefore, due to inconsistencies among change models of different 

Although the given statistics is based on three types of changes in GO and NCIT, namely addition, 
deletion, and obsolescence, but it is a good indication to show the large number of additions in compare 
with other editorial activities in these ontologies. 
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ontologies, it is difficult to merge or share their content, therefore, it is not feasible to 

track the effect of changes in one ontology on other ontologies in an integrated system. 

II 6.2 Existing Tools to Support Ontology Change management 

There are a few tools [HS04, Sto04] to manage changes in ontologies. These tools 

include but are not limited to available ontology editors such as Protege [NFMOO] and 

OntoEdit [SAS03], and TopBraid Composer [Top07]. Despite their differences, they all 

assist users in implementing, updating and managing elementary changes in ontologies. 

According to [Sto04, SM02], the most critical requirements for ontology editors in order 

to be more robust in a changing environment are related to functionality, customizability, 

transparency, reversibility, auditing, refinement and usability. Other available tools 

include but are not limited to Concurrent Version System (CVS) [CedJ, CONCORDIA 

[OS00], KAON [MS03, GSV04] Ontology management tool, OntoView [KFK+02], 

OntoManager [SSG+03], TextToOnto [MV01], SWOOP [KPS+06b], DogmaModeler 

[Jar05], SemVersion [VEK+05], and DINO [NLH+08]. Table 2.4 represents some of the 

popular ontology editors and management tools with their descriptions. 
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Table 2.4. Some of the ontology editors and management tools. 
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Description 

A popular ontology design environment with support for RDF and OWL 
ontologies. It provides some editing facilities such as: 
adding/deleting/renaming ontological elements, undo/redo of changes and 
version archiving [LAS05]. Protege also includes plug-ins such as 
PROMPT for managing multiple ontologies. It can compare versions of the 
same ontology, merge two ontologies into one and extract part of an 
ontology [NM03]. PromptDiff [NM04] also can determine the changes 
between two versions. Recently a new ontology reviser plug-in for Protege 
4.0 has been introduced in [RW08], which helps performing some 
contraction and revision operations in DL ontologies. The reviser has been 
implemented using the OWL API42 and the OWL DL reasoner Pellet 
[RW08]. 

A commercial ontology editor that supports editing RDF Schemas and 
OWL Ontologies, as well as executing rules and queries in the SPARQL 
Protocol and RDF Query Language (SPARQL) [Bec06] and the Semantic 
Web Rule Language (SWRL) within a multi-user environment. It manages 
multiple versions of ontologies by using the following set of rules. Any 
changes to the statements are written into the source ontology. If the 
change is "overtyping" an entry, it will be saved in the original ontology as 
an update. In case of the "deletion" of an entry and then the "addition" of a 
new one, the deletion would be done in the original file and the new triple 
would be saved in the existing file. Also, by changing any class, the 
composer scans to see if there are any other ontologies that import this 
class. It keeps a log of the changes that is accessible from the Change 
History view. Unsaved changes can be undone. To prevent accidental 
changes, a file can be defined as "read only". 

A web ontology browser and editor, built based on the Model-View-
Controller (MVC) paradigm [GHV04] for OWL ontologies. SWOOP 
consists of a version control unit, which aims for managing different 
versions by defining a set of annotation classes (i.e. ontology changes), 
logging all changes and processing the logs. Within the SWOOP OWL 
API each possible change type has a corresponding Java class, which is 
subsequently applied to the ontology and allow for the representation of 
changes, as well as metadata about the changes [KPS+06b]. 

http://owlapi.sourceforge.net/ 
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Supports basic version control functionality and maintains a history of the 
changes. CVS can reveal syntactical and textual differences between two 
files. It mostly works on the syntactic level. Since ontology versioning and 
change management need operations on the conceptual level rather than 
the syntactic level, CVS might not seem an appropriate tool for ontology 
change management [VG06]. However, CVS can provide basic support for 
managing structural changes in RDF and OWL files. 

A model for managing divergence in concept-based terminologies, 
developed to facilitate the study of synchronization in health care 
terminologies. CONCORDIA uses the models of Medical Subject 
Headings (MeSH) [NJH01], ICD-9-CM [Cim96a], and ICD-10. It enables 
one to manage 27 different kinds of changes, such as adding, deleting, 
retiring, or merging concepts, terms or attributes [OS00]. CONCORDIA 
does not provide any services to log motivations for the changes [CS06]. 

An integrated open-source ontology management system targeted at 
semantics driven business applications, KAON components can be divided 
into 3 layers: (i) The applications/services layer realizes user interface 
applications and provides interfaces to non-human agents; (ii) The API, 
which is the major part of KAON, checks the validity of change sequences, 
and also requests user approval for performing a change, justifies the 
necessity of a particular change, executes the modifications, reverses the 
effect of some undesirable changes and keeps a history of changes; (iii) 
The data and remote services layer provides data storage facilities. See 
[GSV04] for more information. 

A web-based system that assists users in handling ontology evolution. The 
system helps to keep different versions of web-based ontologies 
interoperable by maintaining the transformations between ontologies and 
the relations between concepts in different versions. OntoView was 
inspired by and can be considered a Web interface for CVS. OntoView 
compares ontologies at a conceptual level, analyzes effects of changes 
(e.g., by checking consistency and highlighting the places in the ontology 
where conceptually changed concepts or properties are used) [KFK+02]) 
and utilizes changes. 

www.nongnu.org/cvs 
http://kaon.semanticweb.org/ 
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Has been designed to assist ontology managers in managing ontologies 
according to the users' requirements. The technique used to evaluate users' 
needs depends on the information source by tracking user interactions with 
the application in a log file. The OntoManager consists of three modules: 
(i) The data integration module, which aggregates, transforms, and 
correlates the usage data; (ii) The visualization module that presents the 
integrated data in a comprehensible visual form; and (iii) The analysis 
module, as the major part of the change management, provides guidance 
for adapting and consistently improving the ontology with respect to the 
users' requirements. This module keeps track of the changes and has the 
ability to undo any action taken upon the ontology. 

A tool suite built upon KAON in order to support the ontology engineering 
process by text mining techniques. Since TextToOnto does not keep any 
references between the ontology and the text documents it has been 
extracted from, it does not allow for mapping textual changes to the 
ontology. Therefore data-driven change discovery is not supported by this 
tool. 

DogmaModeler is an ontology modeling tool based on Object Role 
Modeling (ORM) [HalOl]. It is intended to be used for modeling, 
browsing, and managing domain and application axiomatizations, 
automatic composition of axiomatization modules, verbalizing 
application axiomatizations into pseudo natural language and other 
tasks described in [Jar05]. 

SemVerion |VEK+05] is an RDF-based ontology versioning system that 
separates the management aspects of the problem from the versioning core 
functions [FMK+08] 

Dynamic INtegration of Ontologies (DINO) aims for integration of the 
knowledge in data-intensive and dynamic biomedical domains based on the 
negotiation of agreed alignments, inconsistency resolution and natural 
language generation methods. [NLH+08]. 

As can be seen from the current state-of-the-art change management in existing 

ontologies in life sciences, the current biomedical ontologies do not follow any standard, 

consistent, formal change models with clear semantics. Most of the available tools are 

just simple ontology editors with a few extended features. Some parts of ontology 

evolution, such as the change representation and conceptualization change, are not 

http://www.jarrar.info/Dogmamodeler/ 
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satisfactorily managed by existing tools and they are left to be handled by the users. The 

major issues in available ontology management tools can be summarized as: (i) Too 

much reliance on human decisions due to lack of fully automatic ontology change 

management tools and too much dependency of the existing systems on the human factor 

[HS04], which both give rise to several issues relating to complexity, accuracy, security 

and reproducibility [FI0O6]; (ii) Representation and tracking of complex changes using 

available technologies are limited; (iii) Lack of formal evaluation methods, which makes 

the comparison and evaluation of different algorithms extremely difficult [FI0O6]; (iv) 

Little or no support for conceptualization change management; (v) Change models that 

have been designed based on time/space independent ontologies; and (vi) Lack of a 

precise benchmark forecast for anticipating nature changes; (vii) Representing knowledge 

in dynamic environments is still challenging; (viii) The consequences of a change cannot 

be represented. An important open question about ontology evolution is: How can a 

machine decide on the best solution to implement a change from different available 

alternatives? 

II 6.3 Employing Logics for Ontology Maintenance 

Logics provide frameworks to describe the underlying semantics of ontologies. Two 

families of logic which are broadly being used in knowledge representation are 

Description logics and Fuzzy Logics. This section presents a quick review of these two 

and provides an introduction to the new compound logic, Fuzzy-DL and its relation to the 

ontology evolution tasks. 
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II 6.3.1 Description Logics and Ontology Evolution 

In order to analyze effects of changes, one can use a DL reasoner such as RACER to 

automatically verify the changes and the specified conceptual relations between versions. 

RACER can help for checking the consistency of the ontology and look for unexpected 

implied relations. The authors in [RSS02] and [LLM+06] present interesting implications 

for updating dynamic DL-based knowledge bases. 

II 6.3.2 Description Logics and Temporal Reasoning 

Knowledge representation needs theories, applications and tools for expressing structured 

knowledge, accessing and reasoning with it [FVK+00]. In order to formalize time-based 

domains one can use description logics for temporal reasoning as proposed by Schmiedel 

[Sch90, Sch91]. The DL system BACK [Pel91] was inspired by this idea. Later, 

following the standard approaches in the representation of time, both interval-based and 

point-based approaches have been studied, specifically focusing on the decidability and 

complexity of the reasoning problems [BCM+03]. An interesting application of temporal 

description logics for reasoning about temporal conceptual models has been presented in 

[Art04]. Also a survey of temporal extensions of DL can be found in [AE01 ]. 

One of the main issues in temporal DLs is related to reasoning. Reasoning in 

temporal description logics that discriminate between past and future changes is generally 

undecidable [ALT07]. A multi-dimensional description logics has been proposed in 

[ALT07] by combining the modal logic with the description logic to support reasoning 

about change - without discriminate the past and future changes - by allowing to express 

the changes in concepts and roles over time [ALT07]. 
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II 6.3.3 Fuzzy Logics: Towards Finding a Solution to the Old Puzzle 

Recalling the discussion about Sorites in Section II.2 (Philosophy), philosophers tried to 

combine sets and logic in order to analyze language. One common idea is that the 

predicates of our language correspond to sets. So the predicate "is a heap" corresponds to 

the set of all heaps [Aub90]. What the Sorites tells us is that there will always be a 

questionable case about whether something is a heap. Apart from threatening the attempt 

to analyze predicates of a language, the Sorites throws a doubt on the ability of 

propositional and predicate calculus to describe the way the world is. The law of identity 

(a=a) and the law of non-contradiction '-(p&'-p) are two fundamental axioms of classical 

logic. The Sorites challenges both. It challenges the law of identity because it seems to 

come up with the result that something that is a heap is also not a heap. For the same 

reason it also challenges the law of non-contradiction [Rom99]. 

To answer this paradox, contemporary thinkers reconsider the classical logic's 

principle which says that truth is binary: true and false. Fuzzy set theory (and before, 

multiple-valued logics proposed by Lukasiewicz [Tom99] in 1918) has modified this rule 

by stating that a degree of truth is an abstract notion that cannot be directly measured as 

such [DP97]. Then, one can think of sentences as being very "true", "fairly true", 

"reasonably false", "completely false" and so on. Multiple-valued logics [Tom99] and 

fuzzy logics [Zad65] are created based on this new idea. The notion of a fuzzy set has 

been introduced by L. Zadeh [Zad65] in order to formalize the concept of gradedness in 

class membership, in connection with the representation of human knowledge. As an 

example in fuzzy logic it is true to say of an oval that "it is round" and to say the same of 

a rectangle, despite the fact that neither is really round. One of the challenges in 
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conceptualization change management is comparing different versions of ontologies and 

finding similarities and differences. One way to do this is to get benefit from fuzzy logics 

to find the various degrees of similarities between new and old conceptualizations. In 

other words, one can find the "degree of truth" in ontologies represented by fuzzy 

propositions [DP97]. 

II 6.3.4 Fuzzy Description Logic 

With advances in technology about fuzzy and uncertain knowledge management there are 

many efforts to apply these techniques in description logics [GL05, GL02, StrOl, 

BDG06, Yen91] to represent uncertain and vague knowledge in the Semantic Web 

[LS06]. The main motivation of using fuzzy techniques in DL is to identify concepts and 

notions that cannot be properly defined with an "exact" numerical bound [BCM+03]. For 

example, the concept of "Acting in low pH" cannot be always defined with an exact 

boundary for low pH, but must be represented with a membership or degree function 

[BCM+03], which expresses low/high pH in a continuous way. 

It seems an interesting initiative to extend OWL using fuzzy technologies. Ding et al. 

[DP04] also extends OWL using probabilistic knowledge. In fact, uncertain knowledge or 

vague concepts is as important as probabilistic knowledge in the real world. In [Str05] the 

authors try to extend OWL by encoding fuzzy constructors, axioms and constraints 

(denoted FOWL) and map semantics of new fuzzy terms to fuzzy description logic. The 

extended OWL can directly resolve fuzzy inference questions by a constraint propagation 

calculus. A fuzzy description logic and constraint propagation calculus, fuzzy 

constructors, axioms and constraints in RDF/XML and also a set of translation rules from 
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OWL to FOWL can be seen in [Str05, GL02]. Fuzzy description logic can present vague 

concepts and roles (from the point of fuzzy sets [DP04]) as well as interoperates in these 

concepts and roles. Reasoning algorithms are also provided for computing fuzzy 

subsumption within the framework of tableau-based methods [BCM+03]. 

A reasoner called FuzzyDL [Str] has been recently developed for fSHIN(D). It is a 

free Java/C++ based reasoner for fSHIN(D) with concrete fuzzy concepts. FuzzyDL aims 

to provide a procedure to compute the maximal degree of subsumption and instance 

checking with respect to a general TBox and Abox [Str]. It supports Zadeh's semantics, 

Lukasiewicz semantics and is backward compatible with classical description logic 

reasoning [Sat]. The efficiency of FuzzyDL is still under investigation. For syntax and 

some examples of FuzzyDL one can refer to [Str]. 

II 6.4 Change Management for RDFS/OWL Ontologies 

There are three main activities involved in managing ontology change. Firstly we need to 

identify changes, secondly describe these identified changes, and finally describe and 

implement the changes. Standard languages for encoding ontological knowledge on the 

web, such as the RDF schema (RDFS) [Bri04] and the Web Ontology Language (OWL) 

[BVH+04] provide some basic mechanisms for managing the evolving structure of 

ontologies. In [Kal06], a framework for change management in RDFS/OWL ontologies 

has been proposed. Also [Cha-1] and [Cha-2] provide studies for RDFS/OWL ontology 

evolution in two aspects: change in names and change in metadata with focus on OWL 

Full with maximum expressiveness but lack of full computational support. 
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II 6.4.1 Change in names 

Currently changes in names for RDFS/OWL ontologies and ontology versions are 

handled by assigning a URI to the ontology, and also to each "snapshot" or "version" of 

the ontology. Two examples of name changes have been studied in the wine and the food 

ontologies [Cha-1]. 

II 6.4.2 Changes in Metadata 

Metadata provide annotation for existing data. Creating metadata can support change 

management for RDFS/OWL ontologies [Cha_2] and control versioning. In current OWL 

ontologies two types of metadata are widely used: 

I. OWL Annotation Properties: OWL facilitates ontology classes, properties and 

instances to be annotated with various pieces of metadata. These metadata are mostly 

being used to keep auditing or editorial information. For example, some predefined 

OWL annotation properties are comments, versionlnfo, label, seeAlso and 

isDefinedBy. When we use a description logics based reasoner such as RACER all 

annotation properties are ignored and considered as comments by the reasoner. 

OWL-DL which is the selected language for The FungalWeb Ontology, supports 

maximum expressiveness without losing computational completeness and 

decidability of reasoning systems, but unlike OWL-Full it has some restriction for 

using annotation properties [BVH+04]. The sets of different properties (object, 

datatype and annotation properties) must be disjoint. It means, for example, 

owhversionlnfo is not allowed to be defined as a datatype and an annotation property 
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at the same time. Also annotation properties must not be used in property axioms. 

So, specifying domain or range constraints and sub-properties for annotation 

properties is not allowed. 

II. Dublin Core Metadata: The Dublin Core [Dub] can be used to specify a set of 

metadata elements that can be used to annotate various elements of an ontology with 

information such as 'creator', 'date', 'language', 'publisher', 'title', 'modified', 

'issued'. These annotations can be use for change management purpose. 

II 6.4.3 Dynamic O W L for handling the changes 

A Dynamic OWL (DOWL) language [AY03] has been proposed for describing ontology 

changes. DOWL can be represented in the RDF abstract syntax which enables one to 

describe the effects of a change in a more formal manner. This formalism can provide the 

basis for an automated ontology change management system. It is claimed that DOWL 

provides a necessary and sufficient set of operators for expressing changes in an OWL 

ontology. DOWL formalism is set in the context of the OWL by extending the RDF 

compatible model theoretic syntax and semantics for OWL [AY05]. 

Despite all the efforts, creating a standard web ontology language to capture and 

represent the evolving structure of ontologies remains a difficult challenge [HVD02]. 

Another effort in OWL-DL ontology change management is OWLMeT (OWL-

MetricTime) [KLG+07], which is grounded on the Metric temporal description logic with 

a temporal query language. It aims to trace the changes of each ontological element 

through time and determine the status of the ontological elements at a specific time point. 
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It introduces the special sort of a nominal (temporal nominal) for ontology versions 

[KLG+07] and uses an extended version of the DL-reasoner Pellet for temporal querying. 

II 6.5 Summary of Section II.6 

Biology and medicine are known as two fields with continuous evolution. Many 

healthcare applications must deal with the problem of change in order to keep their 

scientific knowledge up-to-date and valid. One of the important activities in knowledge 

representation and bioinformatics is properly responding to changes and coping with the 

ontological evolution. Research on ontology change management is an ongoing effort 

that is still in its early stages. In this section, we reviewed some of the available tools and 

techniques for maintaining biomedical ontologies and we have shown that they still have 

long road ahead to be considered for practical usage due to following issues: 

- Lack of formal change models with clear semantics 

- Inconsistencies among change models and log models 

- Too much reliance on human decisions 

- Reproducibility of the results cannot be guaranteed 

- Little or no support for the representation of complex changes 

- Lack of formal evaluation methods 

- Little support for handling changes in conceptualization 

In addition, we presented different types of potential changes in biomedical 

ontologies, and we tried to show actual evidence of these changes in some of the most 

popular ontologies in health science. Knowing different types of changes can help 

knowledge engineers model their ontologies accordingly. Through these insights into 
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what can actually be changed in a typical bio-ontology, we begin to find an answer as to 

how we can manage and control this non-stop evolution. One of the issues in the 

ontology evolution process is the lack of formal change models with clear and 

comprehensible semantics. We will discuss this issue further in Chapter III. 
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III. The Framework for Change 
Management 

The purpose of this chapter is to describe and analyze our 
proposed agent-based framework, namely RLR, for change 
management in biomedical ontologies. Moreover, in this 
chapter we explain the formalism chosen to support our 
framework and its potential to represent and analyze evolving 
ontologies in various levels of abstraction, independent of 
domain and implementation language. The use of category 
theory and hierarchical distributed graph transformation for 
realizing the semantics of evolving distributed ontologies in 
RLR will be utilized. 
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III.l Evolutionary Taxonomy of Fungi: A 
Motivational Scenario 

"The hierarchy of relations, from the molecular 
structure of carbon to the equilibrium of the 
species and ecological whole, will perhaps be 
the leading idea of the future." 

Joseph Needham (1900-1995) 

III 1.1 Fungi Phytogeny and Evolution 

Fungi are widely used in industrial, medical, nutritional and biotechnological 

applications. They are also related to many human, animal and plant diseases, food 

spoilage and toxigenesis [BAP+02]. Fungi are also interesting because their cells are 

surprisingly similar to human cells [MRC06]. The reason for this is that fungi split from 

animals about 1.538 billion years ago—nine million years after plants did—therefore 

fungi are more closely related to animals than to plants [NHI94]. It is estimated that there 

are about 1.5 million fungal species [Hey95] on the earth, but only about 10% of those 

are known and only a few of the known fungi have an identified usage, such as yeast for 

making bread, beer, wine, cheese and some antibiotics [MRC06]. A small percentage of 

discovered fungi have been linked to human diseases, including dangerous infections. 

Due to the similarities between human and fungal cells, treating the fungal diseases can 

be risky. Any medicine that kills the fungus can also damage the human cells. Thus, 

knowing more about fungi and the correct identification of each fungal species is crucial, 

and can improve the quality of fungal-based products and help to identify new and better 
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ways to treat serious fungal infections in humans. Fungi are also the main source of 

agricultural and plant diseases, so identifying them will aid us in tracking and controlling 

these diseases [MRC06]. 

Typically, fungal evolution studies have been based on comparative morphology, 

cell wall composition [Bar87], ultrastructure [Hea86], cellular metabolism [LeJ74], and 

the fossil records [HKS+95]. Recently, by advances in cladistic and molecular 

approaches, new insights have emerged [GGS99]. Some other new identification methods 

are based on immuno-taxonomy and polysaccharides [GGS99], which are highly suited 

antigens for the identification of fungi at the genus and species level [NDW+88]. The 

following fungal chemical substances are also used as complementary characters to the 

classical morphological taxonomy of fungi: proteins, DNA, antigens, carbohydrates, fatty 

acids and secondary metabolites. One can find a review of the methods for employing the 

substances in [FBA98]. These substances are very valuable at many taxonomic levels, 

and they play an increasing role in the clarification of the phylogeny (a classification or 

relationship based on the closeness of evolutionary descent) of fungi [NDW+88]. At the 

moment, the phylogenetic relationships between fungal taxa are still uncertain and 

controversial [GGS99]. 

I l l 1.2 The FungalWeb Ontology 

For the application scenario, we have applied our method for managing changes to the 

FungalWeb Ontology [SBH+05]. The FungalWeb Ontology is a formal ontology in the 

domain of fungal genomics, which provides a semantic web infrastructure for sharing 

knowledge using four distinct sub-ontologies: enzyme classification based on their 
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reaction mechanism, fungal species, enzyme substrates and industrial applications of 

enzymes. The ontology was developed in OWL-DL by integrating numerous online 

textual resources, interviews with domain experts, biological database schemas (e.g., 

NCBI [WCL+00], EC, NEWT [PPF+03], SwissProt [BaiOO], Brenda [SCE+04]) and 

reusing some existing bio-ontologies, such as GO and TAMBIS [BBB+98]. 
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Fig. 3.1. The FungalWeb Ontology and its major resources. 

I l l 1.3 Name changes in Fungal Taxonomy 

Most fungal names are not stable and change with time. Fungal names reflect information 

about organisms, and as our understanding of the relationships among taxa increases, 

names will be forced to change so that they do not implicitly contradict the data [Cro05]. 

Most names are currently based on the phenotype (visible characteristics of an organism). 
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As more data become available, however, we run into various problematic issues, such as 

convergent evolution, seen as the evolution of the same form in different families and 

even orders, so that similar anamorphs (the imperfect (asexual) state of a fungus) may 

have completely different, unrelated teleomorphs (the sexual stage in the life cycle of a 

fungus, considered the perfect stage). These names then have to change, as they no longer 

convey the correct information to the user [Cro05]. These name changes may cause 

confusion and affect the validity of different queries. Take for instance Acremonium 

Link, a simple anamorph morphology which is known to have affiliations to more than 

20 different teleomorph genera [GBP+96], or as another example consider Cladosporium 

Link, which probably includes more than 20 different genera (Crous, unpublished data). 

Verticillium Nees [ZGC00], Coniothyrium Corda [LSG+04] and Mycosphaerella 

Johanson / Sphaerulina Sacc. [CGM+04] and a few more links [Cro05] are some other 

examples, which face with this issue. A more specific example about eyespot disease in 

cereals and issues related to naming its associated fungi has been described in [CGG03]. 

The morphological conceptualization is not sufficient, and will no longer work 

because all names based only on morphology have to be re-evaluated. In addition, the 

phylogenetic-based conceptualization has its own limitations, as sometimes the decision 

of where to draw the line between different species is not easy to make [Cro05]. Another 

issue in fungal taxonomies is dual nomenclature (two names for one organism) due to the 

anamorph/teleomorph debate [Cro05]. This is caused by the fact that it is frequently 

impossible to say when an asexual state belongs to a specific sexual state without the 

backup of molecular data. A study on revision of the fungi names [LSM+98] shows that 
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between 1960 and 1975, 212 names of foliicolous lichenized fungi were described or 

used by A.C. Batista and co-workers. 

Managing name changes: We are currently in the middle of a revolution in fungal 

taxonomy [Cro05]. Names are linked to data. Older names are mostly classified based on 

small data sets (largely phenotypic), and therefore they are subject to change. How can 

biologists deal with this process of continuous change? To answer this question, one 

needs to refer to the nature of ontological structure, where names in taxonomy are only 

meaningful and valuable once linked to descriptive datasets that were extracted from 

various databases and literatures and managed in an integrated environment. The 

incorporation of DNA data is also needed to ensure stability in names and reliable species 

recognition. Through future advances in the technology, biologists hope to preserve the 

fungal taxonomy from change by using unique DNA signatures and species identifier 

numbers to recognize the species rather than using the names [CG05]. There are currently 

databases such as MycoBank [CGS+04], which link fungi names to their DNA sequence 

data, pleomorphic states, herbarium specimens, descriptions, illustrations and related 

publications, etc. 

By 2005 only about 16% of 100,000 known fungal species have been represented by 

DNA sequence data [Cro05], which is approximately 1.1% of the estimated 1.5 million 

species on Earth, thus it seems that a very low percentage of the already discovered 

fungal species are in fact being preserved from the change [Haw04]. The changing 

nomenclature of medically important fungi is often very confusing. Currently, some of 

the pathogenic fungi have a very unstable taxonomy. For instance, the name of the fungi 

Allescheria boydii, which can cause various infections in humans, was changed to 
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Petriellidium boydii and then to Pseudallescheria boydii within a short time [OAD+92]. 

Consequently, the infections caused by this organism were referred to as allescheriasis, 

allescheriosis, petriellidosis, and pseudallescheriosis in the medical literature [OAD+92]. 

In order to manage the changes in fungal names and clarify the ambiguities, the 

Nomenclature Sub-Committee of the International Society for Human and Animal 

Mycology (ISHAM) published its regulations for mycosis nomenclature [OAD+92, 

OR95]. Based on these regulations, a disease should be given a meaningful, descriptive 

name, while in the traditional disease taxonomies, the names "fungus+sis" indicate only a 

causative fungal genus that could be highly influenced by the taxonomic changes. 

Additionally, under the new regulations, the value of names of the "pathology A due to 

fungus B" construction was emphasized [OR95], e.g., "subcutaneous infection due to 

Alternaria longipes" [GGS99]. 

I l l 1.4 Changes and Revisions in Taxonomic Structure 

Through advances in molecular biology and changes to the fungal nomenclature, one can 

expect changes in taxonomical structure and relationships. Here are some examples: 

Example 1; Glomeromycota was discovered in 2.001 .[SSWO 1] as a new fungal phylum. 

The arbuscular mycorrhizal (AM) fungi and the endocytobiotic fungus, Geosiphon 

pyriformis, are analyzed phylogenetically by their small subunit rRNA gene sequences. 

By studying their molecular, morphological and ecological characteristics, it is 

discovered that they can be separated from all other major fungal groups in a 

monophyletic clade [SSW01]. Consequently, they are removed from the polyphyletic 

Zygomycota, and relocated to a new monophyletic phylum, the Glomeromycota, with 
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four new orders: Archaeosporales, Paraglomerales, Diversisporales and Glomerales 

[SSW01]. 

Example 2: The sedge parasite Kriegeria eriophori has never been satisfactorily 

classified, because a number of its characters at the gross micromorphological and 

ultrastructural levels appeared to be autapomorphic [SFM99]. By advances in the 

nucleotide sequence data approach that provides more information than standard 

morphological approaches, some of the ultrastructural characters were discovered to be 

synapomorphies for a group containing K. eriophori and Microbotryum violaceum. These 

characters serve to define the new subclass Microbotryomycetidae [SFM99]. 

Figure 3.2 represents how the place of the concept "pH optimum" has been changed 

within the FungalWeb taxonomy (ver. 2.0) by adding the new concept "Functional 

Property". 
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Fig. 3.2. A simple change in taxonomical structures of two consecutive versions of the FungalWeb 
Ontology (FWOnt). 

The problem of Unspecified Fungi: As mentioned before only a small portion 

(around 100000) of 1.5 million fungi species are described. It means almost 1.4 million 

fungi are still unspecified due to the lack of knowledge. Clearly, as the knowledge about 

fungi species grows and new methods become available by discovering new species 
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[HR97], one can anticipate a fundamental change in the current fungal taxonomy 

structure. In the meantime using reliable approaches to ensure stability of fungal 

taxonomy by describing the names based on verifiable data and not on opinions and 

statements is still promising. 

Ill 1.5 Summary of Section III.l 

For the meantime, the categorization of fungi is controlled by the International Code of 

Botanical Nomenclature (ICBN) [GBB+94] as adopted by each International Botanical 

Congress. ICBN primarily aims to provide a reliable scheme for naming taxonomic 

groups, avoiding and rejecting names which may cause error, vagueness, or any 

confusion [GGS99]. Any proposed changes to the Code are published in Taxon, the 

official journal of the International Association for Plant Taxonomy, and then discussed 

in the Congress for approval [GGS99]. The strict application of the Code frequently leads 

to name changes for nomenclatural rather than scientific reasons [Haw93]. This causes 

confusion among users, who do not usually understand the reasons for the changes. 

The changing nomenclature of fungi of biotechnological, industrial and medical 

importance is often tremendously confusing for workers in the applied field [Sam91]. 

Many of the pathogenic fungi have a very unstable taxonomy, which may cause fatal 

errors in highly critical medical knowledge based systems. In the rest of this chapter we 

will introduce our formal agent-based approach for consistently managing this non-stop 

evolution. 
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III.2. The Multi Agent Based Framework 

It has been said that man is a rational 
animal. All my life I have been searching 
for evidence which could support this. 

Bertrand Russell (1872-1970) 

III 2.1 On the AI Completeness of Change Management for 
Biomedical Ontologies 

The term Al-complete46 (or Al-hard) [SA07] is commonly applied to certain 

computational problems in artificial intelligence whose difficulty is equivalent to solving 

the central artificial intelligence problem, i.e., making computers as intelligent as 

humans. Some such problems can be found in computer science when one deals with 

topics like computer vision, planning, natural language understanding, and so on. One of 

the classic Al-complete problems occurs when one needs to manage unexpected 

situations and deal with changes while planning for a real world critical system. Critical, 

in this case, means when the failure or malfunction of the system may result in severe 

loss [Ave09]. One may find excellent examples of life support critical systems based on 

massive integrated knowledge bases in health science, dealing with the health and life of 

a patient, the failure of which is intolerable. 

As bio-ontologies are constantly being revised, each revision potentially makes the 

ontology more susceptible to future changes. Moreover, the biomedical knowledge bases 

are extremely dynamic [ECP+02], as they tend to be openly reused, and integrated by 

46 Wikipedia: http://en.wikipedia.org/wiki/Al-complete 
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other existing knowledge based systems in the distributed dynamic semantic web 

environment, where new pieces of elements connect and existing parts are removed, and 

the representation formalisms and the governing rules themselves are unpredictably 

volatile. Auditing and controlling all these change in large complicated biomedical 

ontologies, as seen in Section II.4, is simply beyond human ability. In this section, 

software agents are proposed as a remedy to assist the human factor (here, the ontology 

engineer) in overcoming this issue. 

Ill 2.2 Multi-Agent Systems and Patterns of Change 

According to Wooldridge [Woo09], agents act to meet their design objectives by carrying 

out autonomous actions in their environments. They achieve their goal through their 

actions: reactivity (perceiving the environment and responding in a timely fashion to 

changes that occur, in order to satisfy their design objectives); proactiveness (exhibiting 

goal-directed behavior by taking the initiative to satisfy their design objectives); and 

sociability (interacting with other agents and possibly humans to satisfy their goals). In 

addition, mobility and learning aptitude are other capabilities that are important for 

agents in several application areas. An integrated system consisting of several agents that 

are communicating and interacting with each other through a unified communication 

channel is generally referred as a Multi-Agent System (MAS). A multi-agent system is a 

network of multiple autonomous agents cooperating to solve a problem when each agent 

has incomplete and limited knowledge. Data is decentralized, there is no global system 

control, and the computation is asynchronous [JSW98]. A MAS can address some of the 

challenges in human-computer interaction mentioned in Section II.4 so that an intelligent 
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environment supports collaborative maintenance and change management. Figure 3.3 

represents a general overview of interactions between a typical MAS and the users. 

HAS Architecture 

\£/ 
A 
User 

Fig. 3.3. An abstract view of the interactions between users and a typical multi-agent based framework. 
The MAS is capable of controlling the changes in the knowledge bases through a set of defined rules. A 
service ontology also provides sufficient knowledge for the interaction between the agents. Finally, the 
users can pose their query via a high-end user interface to communicate with the MAS. 

Intelligent agents have the ability to perceive changes in the real world and find, 

identify, and collect desired information from multiple resources about various actions 

under changing conditions [DevOl]. Agents are also able to work rationally in order to 

capture changes in dynamic and heterogeneous environments, and to respond properly to 

these changes [LWY05], ideally in real time. Traditionally, agents in semantic web are 

classified under three categories [SWK+02], namely service providers (which present 

different kinds of services, such as searching, locating, and querying), service requesters 

(which ask the provider for a service), and middle agents (which help other agents 

perform their tasks). The middle agents seek out appropriate provider(s) to fulfill a 
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particular request, issued by the requesters), through the process called matchmaking. In 

a typical MAS, different types of links and relationships connect agents and represent 

dependencies, constraints, and dialogue paths between them. The research on intelligent 

agents and their interactions is already mature enough to be used and trusted in many 

autonomous systems, in areas such as medicine, supply chain management, auctioning, 

advertising, trip/vacation management, stock market analysis, and so forth. 

I l l 2.3 The RLR Framework 

The RLR framework aims to Represent, Legitimate, and Reproduce the changes and their 

effects (Figure 3.4). It helps to capture, track, represent, and manage the changes in a 

formal and consistent way, enabling the system to generate reproducible results. 

Diagrammatical ̂ ^ ^ Formal 

Agents 

Learning 
Theories 

Fig. 3.4. The RLR framework: The arrows in the diagram denote the iterative nature of change 
management process. The representation of changes can be done through formal representation languages 
or via diagrammatical (semi-formal) representation methods or combination of both. The legitimation can 
be performed by experts and by public users. Also, logical validation is carried out using a logical reasoner. 
Intelligent agents with their learning ability contribute to reproduce the results of changes, when necessary. 

• Representation: This phase is responsible for consistently updating the 

representations of new knowledge. Many of the problems in ontology evolution are 

basically problems about the nature and representation of change. The concerns 

about the problem of representation in dynamic systems seem to be twofold 
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[Hey90]: firstly, how the changes can be represented, and secondly, how the 

representation can be changed. For the formal representation of changes, we use 

description logics, and for diagrammatical representation, we employ a method 

based on discrete state model and category theory [SH07b]. Since a representation 

has been defined as "an abstract structure which is related through certain 

operations with external, physical phenomena" [Hey90], the abstractness of 

categories can help us to represent the dynamic interactions that happen in 

ontological structures through a set of operations in various discrete states. 

• Legitimation: in our context, is defined as the verification of the legitimacy and 

consistency of a change in the domain of interest. This phase assesses the impact of 

a potential change before the change is actually made. Experts and logical 

reasoners should study a change based on its consistency with the whole design, 

including changes in the inferred assertions, in various degrees of granularity. 

Then, the final approval is needed from end-users. Logical legitimation can be 

obtained by the reasoning agents, which work in close collaboration with the 

negotiation agents. 

• Reproduction: Overreliance on human factors is a problem in current change 

management methodologies. Despite the advantages of maintenance, including 

higher rationality, human intervention does not guarantee the reproducibility of 

results of a change [FI0O6]. To overcome this issue, we propose using intelligent 

agents that discover patterns for different forms of changes and their consequences. 

The final outcome, which has been generated through a rigorous argumentation 

process over generally accepted arguments, has an implicit link to the archived 
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historical processes that can be reused to choose a proper pattern in the reproduction 

phase (Figure 3.5). 
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Fig. 3.5. A generic transition system in a multi-agent system. A system changes its state from St/ to 5/? 
via a transition unit and a rigorous argumentation process between the agents to choose proper patterns 
from the change pattern repository for implementing a certain type of change. 

In RLR framework, various ontological changes can be represented in either formal 

or diagrammatical ways. Each change will be legitimated and validated logically, then 

approved publicly and by experts. To reproduce the results of changes and automate the 

change management process, agents are recruited to learn change patterns (the pattern of 

change of ontological elements and constraints during the certain period of the ontology 

life cycle) and their consequences. The change patterns depict editorial activities, assist 

consistency control, and help predict the system's behavior and consecutive feedbacks. 

Several studies on change pattern have focused on representing change patterns to 

automatically infer likely changes [KNG07], revealing error patterns [LZ05] and aspect 

patterns to identify cross-cutting changes [BZ06], and extracting change patterns. One of 

the techniques for discovering and extracting change patterns is through hierarchical 

clustering with a sample change history [FGG08], which considers transformations in a 

matrix with the change types as the rows and method versions (extracted by 
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ChangeDistiller [FWP+07, GFP09]) as the columns. This process continues by dividing 

the change history of the system into fractions (e.g., yearly quarters, months, weeks, etc.) 

and creating a matrix for each of these fractions. The final step includes analyzing and 

comparing the change type patterns of each of the fraction clusters among each other and 

with those of the full cluster [FGG08]. The change patterns will be employed later as the 

basis for detecting and identifying the editorial activities and making automatic 

recommendations for performing different actions to deal with the applied changes. 

RLR recruits four types of agents that act in a collaborative environment, namely: 

Change Capture Agents (CCA), Learner Agents (LA), Reasoning Agents (RA), and 

Negotiation Agents (NA). Figure 3.6 demonstrates the interactions between these agents. 
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Fig. 3.6. The change management process using agents through an argumentation framework. 
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Ill 2.3.1 Change Capture Agents 

Having the ability to detect and capture a change or any stimulation indicating an 

alteration in an ontological structure is not trivial; this is confirmed by the fact that 

existing change management approaches have so far managed to detect, capture, and 

represent only a small portion of ontological changes, mostly at the syntactical level. The 

change capture agent family in RLR is responsible for discovering, capturing, and 

tracking the changes in ontology, by processing one or more change logs. They detect 

real-world alterations and report them as new facts with which to update the knowledge 

base of an agent. Changes can occur on a random or scheduled basis. The change capture 

agents act like triggers in a database. We have defined the following three different types 

of change-capture agents: 

• Action Control Agents (ACA): The action control agents consist of user 

activities and legal operations, which together capture changes such as deletion, 

insertion, and updates to ontology elements, and can store all the data related to 

different types of changes in change logs. 

• Explorer Agents (EA): The explorer agents capture changes by processing and 

reading change logs in parallel, in a specified time range. By logically 

determining transactions, the explorer agents generate the appropriate messages 

for the corresponding services. They also assist in extracting a pattern of changes 

by exploring whether a particular change or a category of interconnected changes 

appears frequently, and whether it implies specific actions. 
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Log-Reading Agents (LRA): The log-reading agents read the log files in a 

specified time period. This information will be passed on to a learning agent in 

order to create patterns for different changes. Later, the information can be used 

to Undo or Redo a change. 

Action Control Agents (ACA) 

Explorer Agents (EA) 

Log-Reading Agents (LRA) Nt 

Change Logs 

Fig. 3.7. The cooperation between the change capture agents 

Together, these agents (Figure 3.7) monitor all the alterations and determine which 

ontological elements have been changed. To capture ontological changes, we also use 

annotation properties such as: Timestamps, Version and Status on ontological elements. 

Moreover, since the popular biomedical ontologies have been organized in a 

hierarchical manner, it would be reasonable to employ the change capture agents to 

compute the changes by comparing old and new versions of the knowledge source and 

reducing the problem to that of finding a "minimum-cost edit script" [CRG+96] that 

gives us the necessary operations for transforming one hierarchy to another, or using the 

"fixed-point algorithm" presented in PROMPTD1FF [NM02]. As an example, in Figure 

3.8, consider two taxonomies related to ontologies Oi (source ontology) and O2 (target 

ontology), where each node represents a concept, which is identified with a label along 
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with a set of corresponding attributes. After discovering similarities and differences 

between these two taxonomies, we need to find a proper transformation that has been 

transformed Oi to O2. To start this procedure, the two taxonomies need to be aligned and 

brought into a mutual agreement, based on the matching concepts (the ones that affected 

less in the transformation) within the ontologies. The matching will be computed based 

on the degree of similarities between two concepts. 
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Fig. 3.8. The alignments between some concepts in two ontologies Oi and O2. 

Detecting changes by comparing the old and new versions can also be performed by 

some available tools, such as PROMPDIFF [NM02]. The problem of comparing two 

hierarchical structures will be redefined in Section III.4 while exploring isomorphisms in 

their structures. We will also show how the use of graph transformations helps us 

discover the set of operations that transforms the hierarchy indicating the old version of 

an ontology into the hierarchy indicating the new one. 

I l l 2.3.2 Learner Agent 

As an application is used and evolves over time, the change logs can accumulate 

invaluable data and information about various types of changes. A learner agent can use 

these historical records of changes that occur over and over in a change process to derive 
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a meaningful pattern. After several changes, possibly from various releases, it would be 

feasible to estimate the rate and direction of possible future changes for a system by 

generating rules or models. In RLR, the reasoner and negotiation agents can change the 

generated rules, and send modifications to the adaptive learning agent. Changing the rules 

is a main adaptation principle [RL04] for learning in RLR framework. The learning agent 

starts with limited, uncertain knowledge of the domain, and tries to improve itself, relying 

on adaptive learning based on semantics provided by the ontological backbone. The 

adaptive learner agent plays an important role in the reproduction phase, where we look 

for patterns to bootstrap the process of change management. The discovery of temporal 

patterns for event-based data is addressed by P.S. Kam, et al. [KFOO], while Hoppner 

tackled the problem with the discovery of informative temporal rules for defining 

temporal patterns in [H6p03]. Learning rules for discovering temporal patterns is 

described by L. Sacchi, et al. [SBL+05, SLC+07] for extracting temporal rules to learn 

patterns of evolving ontological data [SBL+05]. In RLR based on the extracted rules, we 

use a mathematical model to assist users in anticipating certain actions when the agents 

are faced with a specific type of changes in the knowledge based system. 

I l l 2.3.2.1 Models of learning 

By determining the tradeoffs between losses and benefits that can result from agents' 

actions, we will be able to have a mathematical model to foresee the agents' (software or 

human) behavior. A state of "Nash equilibrium" [Osb03] is one of the popular 

approaches in evolutionary game theory for modeling the most beneficial (or least 

harmful) set of actions for a set of intelligent agents. For the sake of prediction, Nash 

equilibrium can be understood as "a potential stable point of a dynamic adjustment 

116 



process in which individuals adjust their behavior to that of the other players in the game, 

searching for strategy choices that will give them better results" [HR04]. Nash's theory 

has been found applicable in several dynamic domains, such as climate change [DR04], 

explaining economical and biological evolutions, where there is always the need to make 

a choice during a set of repetitive events and actions until agents reach an equilibrium. 

Intelligent agents decide on the proper actions and are able to change and improve 

their decisions based on what they learn. Based on [Wan06], as shown in Figure 3.9, for 

each learner agent, we define an internal state b; a function/that shows how an agent 

decides and chooses actions based on its internal state (decision-making); the functions 

showing the payoff dominance (loss/benefit); and a state update function g, specifying 

how an agent updates its state based on the payoff received from previous iterations. The 

state of each agent depends on the probability distribution over all the possible situations 

[Wan06], and the one with the highest probability can specify the final decision. The 

update function can be computed based on different loss/benefit algorithms. 
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Fig. 3.9. A simple learning model for agents based on Nash equilibrium. 
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Another technique for automating the learning process is through inductive bias. The 

inductive bias of learning [Mit90] in neural networks is a set of assumptions, given as 

input, that the learner uses to predict and approximate the target outputs (even for unseen 

situations) through a series of training instances and their generalization. As stated by 

Mitchell [Mit90], in order to describe and represent the inductive bias learning, there is 

the need for a generalization language, so that each generalization denotes the set of its 

related instances (e.g., in Figure 3.10, gj and g2 are two generalizations and each matches 

a different subset of the instances). The language that "allows describing every possible 

subset of these instances" is called an unbiased generalization language [Mit90]. 

Instances Generalizations 

Fig. 3.10. Relationships among Instances and Generalizations (adapted from [Mit90]) 

III 2.3.2.2 Anomaly Pattern Analysis 

Intelligent agents also detect and generate patterns of anomalies, either syntactic or 

semantic, by assessing and analyzing consistent common errors that occur through 

different revisions. After the anomalies have been flagged by change capture agents, the 

learner agent can then be taught the proper route for performing the revisions through a 

set of pattern mining algorithms (see [CM05] as an example of techniques for mining 

dynamic patterns). This task is crucial in a wide variety of applications, such as 

biosurveillance for disease outbreak detection [WMC+03] using Bayesian network 
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analysis and cancer diagnosis. The learner agents not only enable the RLR framework to 

manage potential, expected, and prescheduled changes, but also prepare it for dealing 

with random and unexpected alterations. However, human supervision and participation 

will be anticipated for the former case. 

I l l 2.3.3 Reasoning Agent 

A reasoning agent is a software agent that controls and verifies the logical validity of a 

system, revealing inconsistencies, hidden dependencies, redundancies, and 

misclassifications. It automatically notifies users or other agents when new information 

about the system becomes available. We use RACER [HM03] as a description logic 

reasoner agent, along with other semi-formal reasoners in the RLR framework. When the 

agent is faced with a change, it ought to revise its conceptualization [CCS05] based on 

the new input by reasoning about the consistency of the change using both prior and new 

knowledge. Several attempts [Poi86, GLT89, Pav96, KKR06] have been made, to 

provide reasoning services for category-based systems. We also use a semi-automated 

reasoning system for basic category-theoretic reasoning based on a first-order sequent 

calculus [KKR06]. It captures the basic categorical constructors, functors, and natural 

transformations, and provides services to check consistency, semantic coherency, and 

inferencing [KKR06]. The reasoning agent in this framework uses the predefined 

constraints and axioms, given as input, to reason about the possible states of a certain 

ontology. 

Another face of the reasoning agent in RLR will be revealed when it acts as a 

supplementary query engine (in cooperation with negotiation and learning agents) to 
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reason and assess how the change in an ontology affects the state, quality, range, and 

depth of possible answers to some queries, which are posed at different time points. Just 

recall the incomplete nature of ontological knowledge that usually unfolds through the 

time. We may need to make some assertion about temporal situations without specifying 

the exact time (e.g., in response to the question, "Is the patient's heart rate at rest less 

than some value x?" one may expect an answer like, "No, should I notify you when it 

is?"). 

I l l 2.3.4 Negotiation Agent 

Negotiation happens when agents with conflicting interests desire to cooperate [RRJ+03]. 

In the RLR framework, the negotiation agent acts as a mediator allowing the ontology 

engineer and other autonomous agents to negotiate the proper implementation of a 

specific change while maximizing the benefits and minimizing the loss caused by such 

change. A human expert may then browse the results, propose actions and decide whether 

to confirm, delete, or modify the proposals, in accordance with the intention of the 

application. In our framework, negotiation is defined based on the conceptual model of 

argumentation [VGH96]. In this context, an argument is described as a piece of 

information that allows an agent to support and justify its negotiation stance or influence 

that of another agent [RRJ+03, JPN+98] through a negotiation protocol, which formally 

provides necessary rules for negotiation dialogue among participants. These rules may 

include rules for admission, withdrawal, termination, proposal validity, or commitment 

[JPN+98]. In our approach, we adapted the architecture of the argumentative negotiating 
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agent described at [ARL07]. We also assume the argumentation process is performed in a 

tree-like structure within the so-called "argumentation tree" [OT09]. 

Employing argumentation to analyze belief revision [FKS02, PC04, OT09] with the 

intention of updating an agent's knowledge has been studied in [CCS05] based on 

dialectical databases. Belief revision commonly refers to the situation where agents 

change their initial positions and statements because of a new conceptualization achieved 

by new inferred knowledge. To reach an agreement among the agents and provide a 

common understanding, a service ontology (Figure 3.11) is needed, so that updating this 

ontology generates a new understanding for the software agents, which can then update 

and adjust their beliefs based on new knowledge. 
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Fig. 3.11. A service ontology providing consensus between agents. 
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Employing service ontologies to automatically provide a service profile to describe 

the supported services and the related communicative transactions and invoke the 

services for service-seeking agents is currently being considered as a solution to 

overcome some of the issues related to overreliance on human intervention. However, 

these ontologies will not remain static and unchanged throughout their life cycle, and 

managing their dynamic structure would be part of the whole problem itself. 

A software agent (Req-A) sends a request to the change capture agent (CCA-B) to 

check for the possible changes in an ontology while Req-A is interacting with other 

agents and the CCA-B responds to the Req-A by sending the list of changes (Figure 

3.12). 

Fig. 3.12. Interactions between different types of agents for capturing changes. The solid lines represent the 
main interactions and the dotted line denote the marginal interactions. 

Il l 2.4 Agent communications 

Using a common language (syntax) is a necessary condition for communication and 

knowledge exchange in an MAS, but not sufficient by itself. The agents should also use a 

common semantics, using a generic consensus ontology. The consensus between the 

agents can be achieved either through a negotiation process, which supports future 

changes, or by determining a pre-consensus ontology for cases where changes to the 

122 



core-ontology have been limited. Two standards, both founded on speech act theory 

[Sea72], are more commonly used for creating communication channels between 

intelligent agents, namely FIPA-ACL (standardized by FIPA47) and KQML48 [FFM+94]. 

However, there are other communication languages offered by organizations such as 

KIF49 (based on first-order predicate calculus) and OMG50 (and its agent working 

group)51 that are less popular in the field. In addition, to adapt agent communication 

languages to industrial needs, several attempts have been made to combine the 

aforementioned standards, i.e., the cooperation between FIPA and OMG to adapt the 

communication language with an object-oriented modeling paradigm. Following the 

FIPA+OMG approach, by extending UML, a formalization called "Agent UML" 

[BMO01] was proposed to describe interactions within an MAS. This formalism uses 

UML diagrams such as interaction diagrams (sequence and collaboration diagrams), state 

diagram and activity diagram to model dynamic behavior of agents52. It also benefits 

from the object constraint language (OCL)53 to add constraints (i.e., pre- and post

conditions of operations) to the UML models. The "Agent UML" combines features of 

sequence diagrams with state diagrams to describe the interaction protocols [BMO01] 

and generate communicative patterns. The interaction protocols consist of "agent lifeline" 

(determines the time frame for the existence of an agent), several agent-roles (which 

satisfy certain properties and service descriptions, and assist in dynamic classification in 

47The Foundation for Intelligent Physical Agents: http://www.fipa.org/repository/aclspecs.html 
48 Knowledge Query and Manipulation Language 
49 KIF: Knowledge Interchange Format: http://www.ksl.stanford.edu/knowledge-sharing/kif/ 
50 Object Management Group: http://www.omg.org/ 
51 http://www.objs.com/isig/wg-agents06-minutes.html 
52 Interaction diagrams are more appropriate to model how several objects collaborate and behave without 

representing the behavior's details. The state diagrams are more suitable to monitor a specific object's 
behavior [FSOO]. 

53 For more information on OCL specifications see: http://www.omg.org/docs/ad/97-08-08.pdf 
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a way that an agent can change its role and place in the UML classification), and 

proposed semantics for UML messages to define the agents communication patterns in a 

more efficient way through parameters, cardinalities, and so on [BMO01]. 

In RLR each agent has been defined to have a lifeline indicating its existence from 

creation to destruction (e.g., the Action Control Agents (ACA) for each session can be 

created upon an alteration in a system and can be destroyed after storing the change in the 

change logs). A lifeline may split into two or more lifelines to express the different 

alternatives that an agent has for responding to the received messages, or different 

lifelines may merge together at some point to represent an agreement or concurrency 

[BMO01]. Ideally, an agent communication language must allow flexible message 

exchanges with abstract semantics. In our approach (Section III.4), we extend the existing 

semantics by incorporating concepts from category theory in order to define more formal, 

reusable communicative patterns for agents' communications (i.e., message exchange54). 

This expressive categorical framework enables us to describe the interactions within an 

MAS and impose several restrictions and constraints, which are essential for reproducing 

agents' actions and responses using the defined rules. By this method, the ontology 

engineers can model the system with insights gained from foreseeing the changes and 

possible confrontations. 

Ill 2.5 The Change Analysis Model in RLR 

Our change analysis model is composed of a set of states that are linked to their 

predecessors and successors through some defined relationships. This allows us to check 

54 In classic UML-based agent communication formalisms, the message flow between agents can usually be 
represented using protocol diagrams [ODB00]. 
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backward and forward compatibilities for one specific ontological structure from a given 

state. This is determined by defining various conditions and constraints for an event. The 

conditions can later be used to restore the previous state based on the insights gained for 

each event. Somehow it means a revision or review of the past, or an attempt to define an 

alternate (parallel) past [May83]. Since ontological assertions are based on open world 

assumptions, neither past nor future knowledge about the world is complete. One can 

always ask questions (e.g., "Could that mutation, under those circumstances, lead to the 

species X or Y?") and draw a different path from the previous states to the subsequent 

states. This iterative process of switching between the future, current, and revised past 

states has been regarded in [May83] as the process of "rolling back to some previous 

state and then reasoning forward" in the form of queries such as, "Is there some future 

time in which p is true?" [May83]. 

To deal with forward and backward compatibility, in our research we have employed 

graph transformation techniques, which enable us to analyze different states of the graphs 

based on the given initial states and the transformation rules. If the framework remained 

limited to only traditional graph transformation, no significant improvements would have 

been accomplished. Indeed, graph transformation offers many benefits, as will be 

outlined in Section III.3, but lacks sufficient expressivity and semantics to deal with all 

aspects of ontology change management. Our approach for this issue can be improved by 

recruiting a formal mathematical representation such as category theory. The 

enhancement can be done in two aspects: 1) the rules can impose restrictions on ontology 

transformation in the way that, for example, some alteration can be prohibited, or some 

changes, which have less impact on ontological elements, can be excluded in the related 
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change analysis (e.g., the transition of a fungus from one genus to another does not affect 

its physical appearance); 2) the changes in states can be scheduled to occur 

simultaneously, sequentially, or in parallel. 

HI 2.5.1 The RLR Dialectic Change Management 

Recall the concept of "dialectical changes" from Section II.2, where a change is defined 

as new forms built upon the old. Using this concept as a metaphor, we have introduced 

our formal agent-based argumentative framework, where "synthesis" takes place, for 

studying ontology evolution and shifting as model transformation. This transformation 

results from quantitative changes accumulated over a period of time and generates a new 

form out of old patterns ("coexistence of both old and new") [Hol98]. In fact, most of the 

changes that occur in an ontological structure, which lead to a new state, emerge from the 

preceding states55. In other words, the change lies within the system [Gil06]. Therefore, 

"learning" about different actions in different states of a system seems to be a key factor 

for starting a successful change management mechanism. 

In a typical scenario within the RLR argumentative architecture, a user (human or 

agent) initially sends a request to an ontology engineer for a particular change in the 

ontological structure. Based on the system's background knowledge and the choice of the 

ontology engineer, various options are available to implement a change. The negotiation 

agent, along with the reasoning agent, provides arguments for the acceptance or rejection 

of a change proposal. The "Argument Generator" (Figure 3.6) determines appropriate 

responses based on the negotiation rules. Different arguments attack each other to enforce 

A "state" in this manuscript is being used to express a situation describing a part of the real (dynamic) 
world in a specific instance of time. 
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their rules and defeat their peers by sending counter-arguments. The inferred arguments 

can increase the possibility of higher quality agreements [CCS05, ARL07]. The 

Negotiation Protocols in the RLR architecture contain the rules that dictate a protocol. As 

the knowledge base is used and evolves, the historical information about different 

changes will be accumulated in the change logs. This information will be used by the 

learner agent, which acts as a basis for a recommender system56, to propose different 

alternatives for the implementation of future changes. 

The reasoning and negotiation agents can change the rules if necessary and send 

modifications to the learning agent. In order to maintain agents' argumentation for 

automation of ontology evolution, we employ the "dialectical databases" [CCS05]. In 

argumentation-based multi-agent systems, a dialectical database tends to improve the 

speed of inference responses by storing pre-compiled knowledge about potential 

dialectical trees [BK08]. The dialectical trees represent sets of possible dialectical 

confrontations between the arguments to accept or deny a proposal to deal with a 

particular change [CCS07]. 

I l l 2.5.2 Identity Preservation in R L R 

The identity of a concept can be determined by those properties and facts that remain 

stable through time, even during multiple ontological changes. If ontologies are able to 

maintain their conceptual stability, they can better preserve their intended truth. To this 

end, the RLR framework employs a defensive mechanism to prevent harmful changes 

and reduce the risk of potentially dangerous actions by incrementally adapting to the 

56 The ability to generate (infer) appropriate recommendations is considered as one of the key 
functionalities in RLR. The level of the system's automaticity is highly depends on the quality of these 
recommendations. 
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changes at different levels. If a destructive change is about to happen in the ontology 

(e.g., deleting a concept, such as "fungi", when other dependent concepts, such as "fungal 

infection", exist), a warning signal will be sent to the agents based on the knowledge 

within the ontology (e.g., "fungi are the cause of fungal infections") to infer the potential 

threat and prepare them to plan for a proper action. This mechanism works much like the 

self-awareness system inside rational animals, which helps them avoid possible dangers 

without actually experiencing their life threatening influences. For example, as pointed 

out in [Hey90], a person who is confronted with fire does not have to experience the 

burning and can run away as a counteraction, since the person has been taught that smoke 

indicates fire and that fire can kill humans. 

Il l 2.5.3 The Rule-based Recommender System for Change Management 

As mentioned, RLR is applied to capture and describe changes (syntactical, semantical, 

or environmental) and respond promptly by generating adequate knowledge for other 

agents involved to propose recommendations or by making decisions about actions based 

on a set of pre-defined rules. For example, consider the deletion of a concept, C, from 

ontology O, which can be done using the RLR framework with various degrees of effort 

depending on the location of C (e.g., terminal concept (leaf), a parent concept with 

children and with or without siblings, a top concept (root)). As another example, we have 

defined the following rules for adding a concept to an ontology structure with a pure 

subsumption taxonomy: 

"Rate 1: Check whether the concept to be inserted is an initial concept (the only one) in 

the ontology. In this case, just add the concept and associate its attributes. 
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l&de 2: If the concept is not an initial concept, add is-a relationship to its parent concept, 

which is usually determined as the one with the most similar derived and 

primitive properties, to form the hierarchy (Figure 3.13). 

addition 

Fig. 3.13. Adding new concepts to an ontology. 

There are of course cases where we want to replace a concept with a new one. In this 
case: 

"Ride 3: Check whether the change only affects the concept's name or not. If the old and 

new concepts follow the same semantic (same definition, attributes, and 

relationships) but carry two different names, the replacement task will be 

reduced to editing the old concept's name and the related offspring can stay the 

same or its name can be changed accordingly (in the case of a dependency 

between the names of parent and child). 

T^de 4: If the old and new concepts are not equivalent, the old concept should be deleted 

and then the new one must be added. 

To delete a concept from a hierarchy, several cases can be anticipated: 

TRaie 5: If the concept is the only concept in the ontology, it can be safely removed. 
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T&de 6.- If the concept is a terminal concept (leaf) within the hierarchy, the deletion can 

be done by removing the concept and the is-a relation that connects it with the 

parent concept. 

7: If the concept has offspring, they should be deleted first, along with their 

taxonomical relationship (Figure 3.14). 

Each of the above rules may be decomposed into several simpler rules. 

Deletion ofojjfepririg and the 
taxonomical relationships 

$ 

Fig. 3.14. Deleting a concept from an ontology. 

One way of studying the process of merging between two ontologies from the same 

domain is through the union of their algebraically represented hierarchies [LM04]. Figure 

3.15 demonstrates the partial merging between ontologies O and O'. We will model 

ontology merging in Section 111.4 using the notion of co-product in category theory. 
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Fig. 3.15. The partial merging between ontologies O and O'. 

I l l 2.6 Summary of Contributions in Section III.2 

As it has been pointed out in Section II.4, and Section II.6, the overreliance on human 

factors is one of the challenges in current change management practices. Despite the 

advantages of human intervention in the process of ontology maintenance, including a 

relative increase in the overall rationality of the system, it does not guarantee 

reproducible results of a change. Also, it is far beyond the capability of a human to deal 

with all changes and their impacts in large complex biomedical knowledge-based 

systems, which are usually integrated from several knowledge sources. Another issue that 

we mentioned in Section II.6 is inconsistencies among different change models, which is 

largely originated from miscommunication, and lack of proper conflict resolution 

mechanism. 
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In order to address these issues we have made the following contributions in this 

Section. 

• Modeling RLR, a Multi-agent framework, to capture, represent, track and 

analyze changes through a rule-based reactive and proactive behavior with 

minimum human intervention; 

• Proposing an integrated argumentation framework that enables the different 

types of agents in RLR to communicate with each other within a dialectic 

environment to manage the changes and resolve the conflicts. 

• Defining a set of evolution rules for generating patterns, which increase the 

learning capacity, assist in estimating the direction of potential changes, and 

thus improve the ability for reproduction of the results 

In Section III.3, and Section III.4 we will describe how we employ category theory 

and graph transformation for representation and analysis of the changes in biomedical 

ontologies, modeling agents' dynamic behavior, and providing a formal semantic for 

communications, interactions, and operations within the RLR framework. 
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III.3 Category Theory as Knowledge Representation 
Formalism 

"We often forget that we just made the 
categories up. Then we treat them as 
though nature created them with such 
specificity. Nature didn't." 

Curran J., and Takata, S.R., Categorical 
Thinking, 200257 

Several attempts have been made in last two decades to provide a formal foundation for 

conceptual representation and modeling. In this section, along with some terminological 

clarification, we discuss the appropriateness of category theory with its mathematical and 

logical basis for representing dynamic knowledge and tracing changes in ontological 

structure. In order to orient the reader with a precise definition of categories and some 

important introductory definitions, we refer to [AL91]58 for additional information. 

Ill 3.1 The Problem of Representation of Change 

Knowledge Representation (KR) as a discipline within Artificial Intelligence is generally 

concerned with the representation and management of knowledge. The existing 

knowledge representation languages have not been properly adapted to respond to the 

interactivity and evolvability requirements. Many biomedical ontologies and controlled 

vocabularies face various challenges when it comes to changing their compositional 

terminologies and expressions [EBL+03] that usually describe a time-dependent event or 

Available at: http://www.students.uwp.edu/academic/criminal.justice/catthink01 .htm 
Readers can access the entire book freely at: 
ftp://ftp.di.ens.fr/pub/users/longo/CategTypesStructures/book.pdf (Accessed on 10 March 2010) 
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process (i.e., the term consumingmedicinexaftermeal in a drug-food interaction 

knowledge base). 

Set theory, being a powerful, significant, and flexible mathematical formalism, has 

been widely used for conceptual modeling. However, sets are abstract entities, which 

exist beyond the realms of time, space, and causality [DHH+01]. Therefore, in order to 

deal with objects in the world of flux, sets should be accompanied by other 

complementary frameworks [DHH+01]. 

A diagrammatic representation is a possible alternative for capturing the behavior of 

dynamic systems. Diagrams have the ability to intuitively resemble a structural 

correspondence with the fact (entity or event) they represent, be it visual, propositional 

(only describes the domain model), or analogical (mimics the domain model). In 

diagrammatic representations meaning can be conveyed via the diagrams' shape. 

Diagrammatic representation and reasoning as surveyed in [AB09] have also been used 

extensively in various application domains, such as: arrow diagrams in algebra and 

category theory [Pie91]; Euler and Venn diagrams in set theory and logic; circuit, state, 

and timing diagrams in hardware design [JBA96]; UML diagrams in software modeling; 

higraphs in specification [Har88]; visual programming languages [Cha90] and visual 

logic and specification languages [APR98], [HTI90], [OT00]; transition graphs in model 

checking [BBF+01]; ER-diagrams and hyper-graphs in databases [FMU82]; semantic 

networks in AI [RN02]; and icons and other pictorial devices in GUIs and information 

visualization [MS94, Tuf90, War04]. The problem in diagrammatical representation 

languages is that they are not expressive enough to represent all the behaviors of dynamic 

ontological structures. 
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Therefore, due to the limitations of the set theory-based knowledge representation 

formalisms (including the popular web ontology languages RDFS and OWL) for 

dynamic conceptual modeling, we have decided to use another type of formalism based 

on category theory, which is a powerful vehicle to model abstract systems, yet expressive 

enough to demonstrate their evolutionary behaviors. 

I l l 3.2 Categorization and Categorical Representation 

The idea of categorization is central to many disciplines in AI, machine learning, 

cognitive science, and so on. Categorization is defined in cognitive science as "the 

process of dividing the world into categories, and usually involves constructing concepts 

that provide mental representations of those categories" [TF05], and can be done for both 

observable concepts (e.g., humans, limbs) and non-observable concepts (e.g., genes, 

disease agents, a process such as injection). In the case of categorizations for non-

observables, the process also involves creating concepts for unambiguous rationalization 

of the real world [TF05]. More formal categorization is also referred to as "any 

systematic differential interaction between an autonomous, adaptive sensorimotor59 

system and its world" [Har05b]. In this definition, the term "systematic" has been used to 

exclude arbitrary interactions (e.g., the effects of the wind blowing on the sand) and an 

"autonomous, adaptive sensorimotor system" means a dynamic system that interacts and 

changes in time through adaptive changes in the states of the system. "Differential" 

implies that the categorization process generates a different kind of output with a 

different kind of input [Har05b]. 

59 For more information on sensorimotor activities and systems, see: Rowlands, M. (2006) Sensorimotor Activity. 
Psyche 12(1), March 2006. http://psyche.cs.monash.edu.au/symposia/noe/Rowlands.pdf 
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As can be seen in this definition, categorization has to deal with adaptive state 

changes across time60. In the real world, all the perceptions, experiences, and beliefs, 

which may be categorized in several specific domains, link up with one another and 

together shape the webs of our beliefs. In other words, different categories interact with 

each other firstly because they exist as parts of a single, seamless world view, and 

secondly, due to reciprocal interaction between the categories, it is not practical to reduce 

either type to the other [Bev03]. From this insight, one can see that categorization is a 

natural way to deal with conceptual changes. 

I l l 3.3 What is Category Theory? 

Category theory is a relatively new domain of mathematics, introduced and formulated in 

1945 [EM45]. Employing formalisms based on logics and mathematics in order to move 

the Web from being only human understandable to being both human and machine 

understandable is the known goal of Semantic Web, defined by W3C [CCV+04]. 

Category theory is closely connected with computation and logic [Whi97], which allows 

an ontology engineer to implement different states of design models to represent the 

reality. Categorical notations consist of diagrams with arrows. Each arrow /• X-*Y 

represents a function. A Category C includes: 

• A class of objects and a class of morphisms ("arrows"), and for each morphism / 

there exists one object (A) as the domain off, and one object (B) as the codomain 

(Figure 3.16 (a)). 

60 To put it simply, the exact same input will not produce the exact same output across time, every time, the way it does 
in the interaction between wind and sand ("whenever the wind blows in exactly the same direction and the sand is in 
exactly the same configuration"). Categorization is accordingly not about exactly the same output occurring 
whenever there is exactly the same input [Har05b]. 
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• For each object A, an identity morphism, which has domain A and codomain A 

("IDA") (Figure 3.16(b)). 

• For each pair of morphisms/A—>B and g:B—>C, (i.e., cod(/) = dom(g)), a composite 

morphism, g o f. A—>C exists (Figure 3.16 (c)). 

Representation of a category can be formalized using the notion of a diagram. 

(a) (b) (c) 

Fig. 3.16. Categorical concepts representation 

Category theory has been also defined as: 

A branch of abstract algebra devoted to investigating transformations and 

compositions of transformations in a highly abstract form [Sym08]. 

- A toolbox of techniques for illuminating relationships between distinct domains 

of mathematical investigation [Sym08]. 

Moreover, the categorical representation of sets unifies the two ancient 

philosophical problems of continuity and discreteness [Bel06], by offering a deep 

insight into the shared features of different phenomena. Here are some examples61 of 

categories: 

Set: the category of sets and set functions. 

Graph: the category of graphs and graph morphisms. 
Cat: the category of categories and functors. 
The category ofstateful objects and dependencies (object diagram). 
The category of states and messages (state diagram). 

61 The examples are taken from: Category Theory in Haskell theoretical foundations Wiki: 
http://www.haskelI.org/haskellwiki/Category_theory 
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Some of the primitive constructors of category theory [Mac71] that we use in our 

framework for ontology change management are as follows: Products, Co-products, 

Functors, Natural Transformation, Pushout and Pullback. More information on these 

categorical notions can be found in [AL91]. 

I l l 3.3.1 Category Theory, Logic, and Set Theory 

Based on [LS81], the traditional "development of logic in an elementary course proceeds 

with (i) the propositional calculus; (ii) the predicate calculus and (iii) the theory of 

identity"; however, this definition has been open to criticism [LS81]. There are tight 

connections between logics and category theory, as studied by Lambek [Lam89] and 

others [Poi86b, G0IO6], and many categorical structures can be studied under logical 

interpretations. From the logical perspective, a category can be studied as "a deductive 

system of the objects as formulas and of the arrows as deductions". Today, the study of 

categorical logic [LS86, PitOO] is quite common between logicians. The categorical 

framework offers a rich conceptual background for logical and type-theoretic 

constructions, for representing both syntax and semantics by a category, and a semantic 

interpretation by a functor [Awo09]. Jacobs also presented some of the relations between 

categorical logics and equational logic and first order and higher order predicate logic 

[Jac99]. In addition, many basic concepts of category theory are comparable with the set 

of notions in set theory. Table 3.3.1 shows some of these pairs of concepts [Gra84]. 

138 



Table 3.1. A partial list of the pairs of concepts in category theory and set theory (adapted from [Gra84]). 

Category Theory 
Object 

Morphism 
Monomorphism 
Epimorphism 
Isomorphism 

Product 
Co-product 

Set Theory 
Set 

Function 
One to one function 

Surjection 
Bijection 

Cartesian product 
Disjoint Union 

Figure 3.17 (adapted from [Che04]) demonstrates the world from different perspectives 

of category and set theories. 

(a) (b) 

Fig. 3.17. (a) The world from the set theory perspective; and (b) The world from the category theory point 
of view (adapted from [Che04]). 

The declarative approach offered by category theory describes objects only in terms 

of their relationships and interactions with other objects, without the necessity of 

knowing about the internal structure of objects. This is one of the distinct features of 

categories in comparison with sets or logic theories [Gog91, DC94]. For more 
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information on the interaction between category theory and set theory, one may refer to 

[Bla84]. 

I l l 3.3.2 Why Category Theory? 

Using categories, one can recognize certain regularities to distinguish a variety of objects, 

capture and compose interactions and identify patterns of interacting objects in a 

declarative way and extract some invariants in their action, or decompose a complex 

object into basic components [EV06]. They offer a graphical yet formal notation for 

knowledge representation. Categories are also able to identify patterns that recur over and 

over in a changing system [KKR06]. Some other reasons for using category theory in our 

framework, as stated by Adamek, et al. [AHS90], are abundance, precise language, and 

convenience of symbolism for visualization. Categories can be found in many places in 

mathematics (e.g., sets, vector spaces, groups, and topological spaces all naturally give 

rise to categories). It also provides a language to precisely describe many similar 

phenomena that occur in different mathematical fields with an appropriate degree of 

generality. For example, it allows one to precisely make distinctions via the notion of 

natural isomorphism. It also provides a unified language to describe topological spaces 

via the notion of concrete isomorphism [AHS90]. In addition, Categorists have developed 

a symbolism for visualizing complicated facts by means of diagrams. 

In a category, one can only have access to the processes, the arrows (similar to an 

API in software engineering terms), and it is not necessary to know what the available 

objects are made of or how they have been created [Alp07]. This is important if operating 

in an interactive semantic web (or Web 2.0) environment, where the potential users do 

not usually have direct and transparent access and control over the existing objects. In 
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fact, categorically, the behavior of the objects is much more important than their 

identities; this is why definitions in category theory are usually very abstract and 

conveyed through isomorphisms (if two objects behave the same way in an API, they 

must be considered similar based on the given definition of similarity). The abstractness 

of the definition can facilitate reusing the definitions in different contexts. In addition, 

employing the concept of isomorphism enables us to generalize the definition of 

similarity [Alp07]. As well, categorical entities are "subject to a constant process of 

enrichment, which bears a certain resemblance to evolution" [Kai05]. 

For these reasons, category theory has great potential to be used as an abstract 

mathematical vehicle to represent, track, and analyze changes in ontologies, without 

considering the type of underlying knowledge representation formalism or any 

implementation language (representation independence [Gog91]). 

I l l 3.3.3 Applications of Category Theory 

Category theory has been extensively used in a wide range of applications. It is already 

being applied in physics, linguistics, philosophy, and different disciplines in computer 

science, including XML semantic analysis [CD02] and XML database engineering 

[Tot08]; object databases and the Semantic Web [Gut04]; conceptual modeling [HLW97, 

WH99, CHR08]; ontology and knowledge-base modeling [HC06, KHE+05, JR08]; 

designing multi-agent systems [Pfa07b]; neural networks' architecture [HOY+09]; 

knowledge engineering and cognition [HC04]; analyzing living systems [MCF81, 

Kai05]; biology [Ros58, MCF81, MacOl, EV06, LSA+06, Din08]; theoretical 

neurobiology [Pfa07a]; neural modeling and graphical representations [HeaOO]; 

philosophy [Per06]; linguistics [Van06]; software engineering [WH99, Fia04]; object 
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oriented visual modeling [DW08]; managing software specifications [WE98]; managing 

software component dependencies [Guo02] and model merging [SNS+07]; cognitive 

development [HW80]; data refinement [JNP09]; machine semantics [Hin08]; and so 

forth. 

I l l 3.3.4 Tools Supporting Category Theory 

As mentioned, category theory provides an abstract formalism, which does not pay 

much attention to the operational details and internal interactions of a system. This 

feature is one strength of this formalism, but the high level of abstractness makes the 

actual usage of category theory and its constructors in software tool applications tricky 

[Men99]. 

There are some tools, however, such as Specware62 [MA01], which has been used in 

[WHOO] for software maintenance at the requirements level, and GDCT63 [BRG+06], that 

are available to study a category and answer queries about isomorphism, product, 

coproduct, pushout, pullback, creating sum and product, checking the equality of arrows, 

testing whether an object is initial or terminal, and so on (Figure 3.18). Also, there are 

software packages for implementing categorical concepts and structures in Haskell64 (an 

advanced, purely functional programming language) [HHJ+07]. For instance, category-

extras65 [Men04] offers a collection of modules implementing various constructors 

inspired by category theory. 

http://www.kestrel.edu/home/prototypes/specware.html 
http://mathcs.mta.ca/research/rosebrugh/gdct/ 
The Haskell Home Page: http://haskell.org/ 
http://hackage.haskell.0rg/cgi-bin/hackage-scripts/package/category-extras-O.l 
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Fig. 3.18. A Screenshot representing a hierarchical tree structure [Source: from the introduction to 
Graphical Database for Category Theory (GDCT)66]. 

Ill 3.3.5 Categories, Conceptual Data Modeling, and Ontologies 

The concept of ontology is based on the categorization of things in the real world. 

Category theory, with its logical and analytical features, has the potential to be 

considered as a vehicle for representation of ontologies. An ontology can be viewed in an 

interconnected hierarchy of theories as a sub-category of a category of theories expressed 

in a formal logic [HC06]. In fact, we use category theory to represent ontologies as a 

modular hierarchy of domain knowledge. Ontological relationships represented using 

category theories are considered to be directed [KHE+05] to show the direction of 

information. These "relationships", which preserve the conceptual hierarchies and the 

relations, are known as "morphisms". 

66 http://www.eng.auburn.edu/department/cse/research/graph_drawing/manual/tree.gif 
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The research presented in [BM99] employed categories for algebraic specifications 

and the representation of ontologies via morphisms. The authors in [CDJ01] described a 

categorical method for formalizing the relationship of abstraction and refinement for 

abstract models of enterprise information systems and for managing databases (e.g., 

through view updates [JR01]). Kent [Ken04] presented a categorical axiomatization of 

the first-order model theory67 for representing ontologies as hypergraphs with respect to 

formal concept analysis (FCA)68. Hitzler et al. [HEK+06] proposed an approach for 

analyzing the alignment between ontologies using category theory. Johnson and 

Rosebrugh [JR08] recently applied their method based on universal algebra and category 

theory to the analysis of interoperability between ontologies using the notions of "view" 

and "view update". 

We now present the basic ideas concerning the generic ontological representation in 

a categorical frame. Here is a simple intuitive example: consider a world consisting of 

categories of families, with persons as objects and the family relations that exist between 

them as morphisms. One may use family.owl69 knowledge base for the purpose of initial 

conceptualization. Figure 3.19 shows the related T-Box, A-Box along with the set of role 

assertions for this example (adapted from [HMW04]). 

See: First-order Model Theory. Stanford encyclopedia of Philosophy. First published Sat Nov 10, 2001; 
substantive revision Tue Apr 28,2009. http://plato.stanford.edu/entries/modeltheory-fo/ 
http://www.upriss.org.uk/fca/fca.html 
http://www.owldl.com/ontologies/family.owl 

144 

http://plato.stanford.edu/entries/modeltheory-fo/
http://www.upriss.org.uk/fca/fca.html
http://www.owldl.com/ontologies/family.owl


Role Declarations: 
tran»itive(hasjJescendanl) 
attributz{age, integer) 
feature (has.father) 
feature(hag-motlier) 

T-box: 
hasjchild C hasjdescendanl 

invJias-child = inv(ha$jchild) 
has^father C invJias-cktid 
ha$-rnothe.r C mvJiasjzhild 

•man C jmrson 
woman Q person 
brother C man 
parent = per nan n {3ha$jdvild.person) 
mother = woman f\ parent 

grandmother = moifeern 

A-box: 
«.><?«"}«« (a/fce), woman(betty). brotheri diaries'), 
(< lhas sibling) (char les), hasjsister{eve,darts), 
hasjdiUd(alice, beity), hasjzhild(alice„ charles). hasjchildibstty, doris). 
hasjshild(betty.eve), ha$-$ibling(ckarles,betty), hasjnster{doris} eve) 

Fig. 3.19. A knowledge base representing the domain of family using DL axioms (adapted from 
[HMW04]). 

The categorical representation for the Smith family by considering people as the objects 

and the family relationships as morphisms can be illustrated as shown in Figure 3.20. 

Fig. 3.20. The categorical representation of the family knowledge base. 

As it can be seen in Figure 3.20 both identity and composition laws are valid; for 

example there is an identity morphism for object Doris such that Doris —> Doris, or 

145 



"Doris is Doris", which is a true statement. Also the composition for the following 

diagram for example: 

Doris hasmo"Kr > Betty hasjno,her > Alice yields to Doris *"-g»*w*»' > Alice. 

As you may noticed by now, this representation resembles the A-box diagram in 

description logics sense, which enables one to do some sort of assertions. In dealing with 

internal structures of the objects, categories might not fully reveal their capabilities 

however, category theory, as we will see throughout this chapter, has a set of universal 

constructors that help us in dealing with more general and abstract problems. 

I l l 3.4 Categories for Dynamic Systems: The Birdwatching 
Approach 

"When you know what the habitat and the 
habits of birds are watching them is so 
much more interesting." 

The Beginners Guide to Bird Watching 

Since the existing biomedical knowledge bases are being used in various organizational 

and geographical levels (i.e. institutional, local, regional, national and international), any 

change management framework should be able to address this decentralization and 

distribution nature. As mentioned in Section II 3.4.2, one of the critical tasks in any 

change management framework is traceability. To explain our proposed method for 

change management in RLR more intuitively we use a conceptual metaphor based on 

Birdwatching activity. Birdwatching as a recreational and social activity is the process of 

observation and study of birds through a particular time frame using different auditory 

70 http://birdwatchingforbeginners.info/ 
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devices . F igu re 3.21 shows a s equence of typical act ivi t ies r e c o m m e n d e d for 

Bi rdwatch ing : 

KeepYourEye Estimate General Look for Wing StndyMovement Describe Habitat, Region, 
on the Bird Size and Shape Bats & Tail Shape &Ftight Patterns and Climate 

I Listen for Calls MakeNote of Facial ObserveLeg Determine Feeding Record Your 
J and Song Markings andBill Color &Length Habits Observations 
I Characteristics 
1 

Fig. 3.21. A series of activities in Birdwatching. 

Looking at the above list one can discover that the central idea of Birdwatching, 

which is tracking the position of the birds at different time points and predicting their 

path by deriving a flight pattern based on recorded observed information, is quite close in 

spirit to monitoring any dynamic spatial-temporal system. Inspired by this metaphor we 

can explain how the functionalities within the RLR framework can assist to fulfill the 

Birdwatching's goal. In RLR the change capture agents are responsible for tasks 1 and 2 

(in Figure 3.21), the changes logs store the information about the changes (task 4), the 

learning agents starts with limited knowledge (task 5 and 6) and tries to improve itself by 

gaining inferred knowledge (tasks 8 and 9) based on the semantics provided by the 

ontological backbone. Moreover the learning agents along with negotiation agents and 

reasoning agents can derive a pattern of changes using the information stored in the 

change logs and the background and derived knowledge (task 7). Using this pattern one 

can achieve a practical estimate for expected changes (task 3). Finally the result of the 

observation will be stored to be used for future inferencings (task 10), and to choose an 

appropriate pattern (task 7) in the reproduction phase. 

71 Bird Watching Tips for Beginners: http://animals.about.com/od/birding/tp/birdidtips.htm 

147 

http://animals.about.com/od/birding/tp/birdidtips.htm


The Galileo's dialogue72 for explaining motion for the first time stated that for 

capturing and tracking a moving object one needs to record the position of that object in 

each instance of time. Categorically speaking [LS09], studying any motion and 

dynamism needs an analysis on mapping from a category of times to a category of 

spaces. Figure 3.22 demonstrates such mappings. 

The role of time is not usually taken into account in current ontology evolution 

studies. Considering time in ontologies can increase the complexity and needs a very 

expressive ontology language to represent it. In our approach, as we will show in Section 

HI 3.5.5.2, we represent conceptualization of things indexed by time and we use 

categorical constructors for capturing the states of ontologies at different time points. 

Fig. 3.22. A map from category of time points to category of positions in space for describing a bird's 
flight in categorical perspective [LS09]. 

Similarly, the behavior of an individual ontological element (state) can be monitored 

by function g, which maps the time points to the set of positions for the element in the 

ontology. Time s*>«"^-b<h™<" > Ontology 

Moreover an ontology has different states and behaves in a distributed semantic web 

environment. State < ihas-s""e Ontology hbehar,es > Semantic Web 

Galileo, G. (1632) Dialogue Concerning the Two Chief Systems of the World - Ptolemaic and Copenican. 
http://www.gap-system.org/~history/Extras/GaIileo_Dialogue.html 
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Composing these diagrams one can see that a behavior of an individual ontological 

element should be studied in close relations with time, the state and the behavior of the 

whole ontological structure in a semantic web environment (Figure 3.23). 

Time 
I g:element's_behavior 

State < '•*«»-**« ontology hMu™* > Semantic Web 

Fig. 3.23. A temporal diagram for studying the behavior of ontologies. 

Ill 3.5 Category Theory as an Algebraic Formalism for the RLR 

Category theory facilitates representing, tracking, and analyzing changes in ontologies. It 

can also be considered as a supplementary formalism alongside other formalisms to 

capture the full semantics of evolving bio-ontologies. Categorical constructors allow one 

to describe different relationships between the entities of a dynamic system, as well as 

offering a formal ground for representing various changes, actions, and operations, such 

as addition/deletion, merging/splitting, mapping, alignment, and integration. Category 

theory puts most of its effort into describing the relations between elements of a dynamic 

system (morphisms) rather than the system's elements (objects). Depending on the level 

of abstraction, different types of categories (i.e., categories of classes and properties in 

the lower level of abstraction, and categories of ontologies and contexts in the higher 

level) can be defined for modeling ontological structures. 
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Il l 3.5.1 The Category Class 

Classes can be defined as a set of properties (attributes and methods) shared by a set of 

individuals within an equivalence class. Whitmire [Whi97] was one of the few who 

identified a model based on category theories for object oriented applications 

measurement. Here we follow his approach for demonstration of ontological elements. 

We can define the category Class with attribute domains as objects and set-theoretic 

functions as arrows. We can also define some operations for a class. In ontology, a 

concept or an instance can transit from one state to another based on its behavior in 

response to a change. An event can be formally modeled as an ordered pair E = <St;, 

St2> [EV06]. Sti is the start state and St2 is the end state. Sti and St2 are not necessarily 

distinct and they might refer to the same state [Wan89] (when an event does not change 

state). The category Class is defined with three types of objects and three types of arrows. 

The three types of objects are [Whi97]: 

1- The state space for the class, labeled with the name of the class. 

2- The domain sets for the attributes in the class, labeled with the name of the domain. 

3- The steady states (a situation in which the relevant variables are constant over time) 

for objects of the class, labeled with the name for the state used in the domain. 

Three types of arrows are: projection (71), selection (o), and operation arrows. 
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St, 

A I m A4 
°> X0<; 

A" = C 

(«) 

fty" 
%y 

-+aj 

(b) 

Fig. 3.24. (a) Representation of the n attribute domains, and the state space of class C (An), when 7tn 

determines the value of n,h attribute (adapted from [Whi97]); (b) a, has been defined to select a state (here 
jth state) from the state space [Whi97]; n^ retrieves the value of ith attribute in state j ; which also can be 
inferred directly from Oy = a, O 7t;r As it can be seen this inference causes the triangle at the right side to 
commute. 

The projection arrow for each attribute is drawn from the state space to the attribute 

domain and labeled with the name of the attribute. The value of the /th attribute is 

provided by 7ij. A selection arrow for each state is drawn from the state space to the state 

and labeled as <rx where x is the name of the state [Whi97]. An operation arrow for each 

event E = <Stj, St2> drawn from St/ to St2 and labeled with the name of the method to 

which the operation corresponds (Figure 3.25). One can select a state using the selection 

function a, which gives the /th state. 

op, 
SL SL 

Fig. 3.25. Operation arrow opi denotes a valid operation in the defined category and demonstrates a 
transition of an object from one state to another (e.g. from Stt to S(2). This operation is only valid within the 
determined state. 

I l l 3.5.2 Operations on the Class 

Most common operations during ontology evolution are adding a class, deleting a class, 

combining two classes into one, adding a generalization relationship, adding an 

association relationship, adding/deleting a property, and adding/deleting a relationship. 
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Figure 3.26 represents adding a class to our available structure and Figures 3.27 (a) and 

Figure 3.27 (b) demonstrate adding and deleting a relationship respectively. 

Q 

A3 9 
The designed class C 

wants to relate 
Classes A, B 

Classes A, B and their 
attribute domains 

Combining 2 diagrams and jhe Integrated Result 
adding aggregation (part-of) Diagram 

relationship from A to B 

Fig. 3.26. Adding a class to the available structure based on categorical operation following Whitmire's 
approach (adapted from [Whi97]). The represented aggregation73 relation between the classes A and B 
implies the part-of relationship between them. The classes A, B, C in the left hand side has been 
represented in the higher level (external view), while during the rest of the operations their attributes and 
internal structures have been demonstrated. 
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Fig. 3.27. (a) ADD a Relationship between two classes A and B (b) Drop a Relationship (adapted from 
[Whi97]) 

III 3.5.3 Categories Operation and States 

We define the category Operation with the set of defined operations and attributes as 

objects and the relationships between them as morphisms. The morphisms can be 

73 There are different types of relations in an ontological structure such as subsumption (parent-child 
relationship), association (relationships between individuals of different classes), and aggregation (a 
type of association relation, which causes the semantic enrichment of the related classes; i.e. part-whole 
relation). 
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considered as pre/post conditions, which allow an operation to be executed. For example, 

as demonstrated in Figure 3.28, an object Opi can be related to other objects A/ and A2 

(indicating attributes) through morphisms prei and pos2 (indication pre- and post 

conditions). It is also useful to add other morphisms such as message links, for 

communication and comment exchange purposes. 

Ai~ *A2 

Fig. 3.28. Category operation with operation/attributes as objects and messages/conditions as morphisms. 

The message links may also pass parameters to other operations and therefore 

constribute in the definition of pre/post conditions for that operation. In addition, we 

define the category State with states74 of ontologies as objects and the operations, which 

determine the behavior of an evolving structure, as morphisms. 

C t = X 
R, = Y R, = Y* 

Cj = X' 
Rj = Y" 

Fig. 3.29. Ontology 0(C, R)75 transits to different states due to the different operations. One specific set of 
concepts and relationships from this ontology may have different values in different states. 

Figure 3.29 represents an example of transition of an evolving ontology through 

different states. Since our primary purpose for defining this category is to trace an impact 

of a change, through different versions of one ontology, here we only consider consistent 

74 By state we mean the situation, in which a system is consistent and stable. 
75 C and R are representing classes and relationships respectively. 

153 



states; however we can extend our definition to cover both consistent and inconsistant 

states for the sake of conflict detection and inconsistency resolution. Another extension is 

also possible through defining functors, which let us analyze the behavior of a system 

while for example mapping two different categories of state. More on functors can be 

found in Section HI 3.5.5.2. 

The introduced categories (operation and state) together assist us to analyze the 

behavior of an evolving structure, and monitor the impact of one particular change based 

on the complexity and coupling of this structure. 

I l l 3.5.3 The Category Ontologies 

The category Ontologies can assist in analyzing different behaviours and interactions 

with other ontologies, be they independent or various versions of the original ontology. 

The category Ontologies can be represented either by simple categorical notation, with 

ontologies as objects and the links between them as morphisms, or in a nested fashion, 

using a special categorical constructor called "functor". 

I l l 3.5.4 Operations on Ontologies 

As we noted in Section II 3.3, ontology change management is composed of several sub-

fields, including ontology alignment, mapping, merging, and integration, which are 

inevitable in a distributed environment. In this section, we discuss how category theory 

can be used as a visual formalism to model some of these processes. However, it is not so 

easy to generalize the categorical approaches, whose descriptions are mostly 

mathematical, in the context of practical ontology change management, and one needs to 

have a preliminary familiarity with this formalism. We try to limit our approach to the 
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most common categorical notions from a computer science perspective rather than purely 

mathematical techniques. The reader can refer to [AL91, Awo06, and LS09] for more 

information on category theory. For this section, we consider the category "U representing 

the ontologies76 (Oj, O2, •.., On) as the object and the transition functions between these 

ontologies as the morphisms. In this setting, categorical composition and identity 

morphisms can be understood through the notions of transitivity and reflexivity, 

respectively. The internal structures of objects are entirely ignored in this categorical 

representation. In the rest of this section, we will show that despite the simple appearance 

of a category, the semantics and derived results of categorical elements employed for 

ontology change management are amazingly rich, and often can represent the entire 

knowledge about a set of its defined objects (here, ontologies). 

I l l 3.5.4.1 Alignment and Mapping between Ontological Structures 

Basically, two ontologies can be aligned by first specifying the most similar 

(syntactically and semantically) components in both ontologies, through a binary relation. 

A categorical framework has been proposed by [BEE+04] to describe alignments in 

ontologies. Categorically, their analysis began with the assumption that there exists an 

object a and a pair of morphisms to the two ontologies O and O' in such a way that a is 

the most specific ontology that approximates both O and 0 \ Then the morphisms, 

representing binary relations that describe an alignment, are defined as a set of pairs of 

entities, which represents one entity from ontology O and another from ontology O' via a 

pair of projection functions (711,712) [ZKE+06]. 

76 This approach is not limited to formal ontologies and we can use any hierarchical controlled vocabularies 
as object. 
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When analyzing two ontologies, two types of taxonomical relationships may be seen in 

their subsumption structures, namely the parent-child relationship and equivalency (or 

isomorphism). A map/: A —» B is called an isomorphism [LS09] if there exists g: B —* A 

(inverse off) for which g o f= WA and fo g = Ids. In this c a s e / A —» B is called 

invertible [Mac71]. The objects A and B are called isomorphic (equivalent) if there is at 

least one isomorphism/: A —> B. The functions that change one ontology into another can 

be considered morphisms between these two ontologies. Regardless of the type of these 

change functions, the identity function and the composition of the change function can 

always be defined. The isomorphism between ontologies can be studied by applying the 

knowledge, implied by the change functions, backward and forward between the 

ontology versions. 

In [JPV+98] and [ZKE+06], ontology alignment has been addressed through 

Cartesian products (resembling the intersection between two structures). Products [AL91] 

in category theory generalize the notion of a Cartesian product of sets, but unlike the sets, 

they focus on morphisms and their properties rather than the internal structure of the 

objects. Products in category theory are generalization of the notion of Cartesian product 

of sets, and are defined [AL91] as follows: 

Let C be a category, and consider a and b as two objects in this category. The 

product of a and b is an object P representing (axb) together with two morphisms pa: P 

—• a and pi,: P —* b, such that for any object X e C and each pair of maps/- X —+ a and g: 
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X —> b, there exists exactly one (unique) map h: X—*- P for which both/= Pah and g = 

Pbh holds (means the following diagram in Figure 3.30 commutes). Two maps pa and pb 

are called projection maps for the product and we may refer to them as 7ta and n\, 

respectively. 

X 

f /h 

a* 
#-

\ 8 

— p ^D 
P a (axb) P b 

Fig. 3.30. A diagrammatical representation of categorical product. 

As an example of product in the category of sets, assume two sets a: {x, y, z} and b: 

{1, 2} based on the definition. The following diagram (Figure 3.31) represents the 

categorical product P: axb. 

Fig. 3.31. An example, demonstrating the categorical product in the category of sets. 

The product is useful for analyzing the alignment of two ontological structures, but it 

is not fully appropriate for ontology merging. It seems that another categorical 

constructor called Coproduct, which performs a sum (or union) operation between 

ontological structures, would be better suited for merging. 
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Definition (Coproduct) [AL91]: Let C be a category, and consider a, b to be two objects 

in this category. The Coproduct of a, b is an object q together with two morphisms qa: a 

—» q, qi>: b —> q such that for any object X e C and each pair of maps/- a —» X and g: b 

—• X, there exists exactly one (unique) map h: q —* X in the way that the following 

diagram commutes (Figure 3.32). 

X 

f / h X g 

a >q+—.——u 
qa (a + b) qb 

Fig. 3.32. A diagrammatical representation of categorical coproduct. 

The categorical coproduct is also unique up to isomorphisms77. As an example, for 

obtaining coproduct in the category of sets one can consider the disjoint union between 

the sets. 

Mapping by means of binary relations can be achieved for ontologies d and O2. As 

shown in [ZKE+06], categories can be recruited for ontology alignments on the abstract 

level in two forms, V-alignment (for simple alignments) and W-alignment (more 

expressive for more complex alignments). A V-alignment between two ontologies O-i and 

O2 has been defined as a triple <0, pi, p2> such that O is an ontology, and pi: O—>Oi and 

P2: O—>C>2 are two refinement functions. In a W-alignment, a set of bridge axioms 

[BEF+06], for defining a bridge ontology between the two ontologies to be aligned, and 

77 "An object A having a certain property <p(A) is unique upto isomorphism if given any other object B 
such that q>(B), there exists an isomorphism / between A and B" [Enc04] (e.g., in category theory 
terminal objects are unique upto isomorphism). 
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two V-alignments , for aligning each of the two ontologies with the bridge ontology, 

have been employed to cover more types of relationships [ZKE+06]. 

Ontology 0 2 

(partofMeSh) 

Bacterial Infections and Mycoses fCOll 

Bagtaat&fectfa>nsfC0l,2S21 + 

Bran Abscess fCOI.3231 + 

Central Nervosa System Infections [CO 1.3951 + 

Infection fCOI.5391 ± 

P- Mycoses [C01.7031 

AtperailonsfC01.703.0781 + 

Blastomycosis 'CO i .703.1281 

_ „ ^Candidas; fCO 1.703.1601 

Candidiasis, Chronic Mucocutaneous fCD1.703.160.165'; 

Candidiasis. Cutaneous fC01.703.160.1701 

Candidiasis. Oral fC01.703.160.180] 

Candidiasis. Vulvovaginal rC01.703.160.1901 

Central Nervous SystemFuig3lMectionsfC01.703.i811 + 

Coccidioidomycosis rC01.703.2031 

Cryptococcosis fC01.703.2481 r 

Dermatoiaycoses rC01.703.2951 + 

Fig. 3.33. Two ontologies covering a specific domain with different granularities. 

Figure 3.33 demonstrates two ontologies Oi and O2 that are simply representing part 

of the FungalWeb and MeSH ontology, respectively. These two taxonomical structures 

can be linked together via a mediator ontology, which is built based on the similarities in 

both ontologies Oi and O2. As noted before, the two projection mappings a —> Oi and a 

—• O2 give us the intended alignment in its simplest situation (V-alignment). When there 

are matching concepts in both ontologies, for example, the existence of two synonymous 

concepts, "haole rot" in one ontology and "tinea versicolor" in the other, each of these 

concepts can be considered as a gluing point between two ontologies. When there is no 

exact match for an entity from ontology O} into ontology O2, we may need to consider 

1 If one needs to obtain the alignment between more than two ontologies, the number of simpler 
alignments (i.e., V-alignments) and composed alignments (i.e., W-alignments) would increase 
accordingly. 

Ontology Oi 

{part of FungalWeb) 

- fungi 
- fungal disease 

* human disease 
candidiasis • 
chytridiomycosis 
coccidioidomycosis 
cryptococcosis 

'Anima! disease 
0 Plant disease 
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other closely related elements that share the most similar properties with that entity. For 

example, the concept "tinea versicolor''' in the extended version of the FungalWeb 

Ontology may not have an exact equivalent in the "Human disease ontology"79, but there 

is a concept "fungal infection" in the "Human disease ontology" that can be considered a 

parent class for the concept "tinea versicolor''' in the FungalWeb ontology. This 

subsumption (parent-child) relationship between two concepts would be later considered 

as one of the major gluing points for merging (partially) the two ontologies. One 

possibility for merging these ontologies is through an artificial gluing concept (e.g., the 

concept "fungal infection v tinea versicolor in the mediator ontology. By creating the 

mediator ontology (Om) and employing the so called W-alignment [ZKE+06], we can use 

the composition condition in category theory to generalize the notion of alignment in 

such a way that if there are alignments between O] and Om and between Om and O2, then 

one can get the alignment between Oiand O280. 

Here let us look at two important categorical notions called Pushout and Pullback. 

The pushout for two morphisms/: A—>B & g: A—>C is an object D, and two morphisms 

*/: B—>D & if. C—>D exist such that the square commutes (Figure 3.34 (a)). D is the 

initial object in the full subcategory of all candidates D' (i.e., for all objects D' with 

morphismsy'y andj2, there is a unique morphism from D to D'). The pullback (also known 

as "Cartesian square") for two morphisms/- A—»C and g: B—>C is an object D, and two 

morphisms //: D—>A and i?. D—>B, such that the square commutes. Here D is the terminal 

object in the full subcategory of all such candidates D' [Eas98] (Figure 3.34 (b)). 

1 http://obo.cvs.sourceforge.net/*checkout*/obo/obo/ontology/phenotype/human_disease.obo 
1 Categorically speaking, consider a and p as the alignments between Oi and Om and between Om and 0 2 

respectively, then the alignment between a and P can be described as y = a o p. 
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(a) (b) 

Fig. 3.34. Two categorical constructors (a) Pushout, (b) Pullback. 

For example as represented in Figure 3.35 (a) in the category of sets pushouts can be 

defined as union of pairs of elements from B and C that are the images of the same 

element in A, plus the rest of the elements of B and C. The pullback of can be defined 

dually81 (Figure 3.35 (b)). 

A B D A 

(a) (b) 

Fig. 3.35. An example, demonstrating (a) the pushout for two morphisms A—>B and A—>C in the category 
of sets (adapted from [Eas98]); and (b) the pullback for two morphisms A—*C and B—->C. 

The dual notion for a theorem can be achieved by reversing the morphisms. 
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If a given diagram composing /• A—»B and //: B—>D can be completed such that 

diagram represented in Figure 3.34 (a) is a pushout diagram, then we call C (in Figure 

3.34 (a)) together with morphisms g: A—>C and iV C—>D a pushout complement of ij.f.82 

In many cases, where one has to deal with composition and decomposition of different 

evolving structures, finding a pushout complement for a given state is a primary task. 

One can find details on using pushout and pullback for ontology alignment and merging 

[HKE+05, ZKE+06]. Specifically, the V-alignment and W-alignment approaches in 

[ZKE+06] have been described in terms of the pushout construction. Several researchers, 

including [JPV+98, HEK+06, ZKE+06], employed categorical pullback to model the 

composition of alignments. Also, to obtain different types of alignments (based on the 

level of granularity) and to ensure the minimality of the results, one can use the 

intersection or union (achieved by pushout of the intersection [S0IO6]) of different 

alignments or their compositions. 

Ill 3.5.4.2 Categorical Constructors for Ontology Merging and Integration 

The ontology merging process transforms two or more ontologies into a single ontology. 

Ontology merging in its simplest situation (when ontologies are totally separate) can be 

represented by their disjoint union, but in real world applications, the ontologies to be 

merged usually have some elements in common and overlap (syntactically or 

semantically) in some areas. As a result the merging process can be seen as gluing the 

non-aligned part of one ontology to the aligned subpart of another one. Therefore, the 

pushout operator in category theory, which resembles the merging operation, can be 

82 For simplification C is usually refer to as the pushout complement without mentioning the morphisms. 
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employed [SRP02, BEE+04, HKE+05, ZKE+06]. Pushouts model the merging between 

two aligned structures without any restrictions due to dependency on any implementation 

language. The initial attempt for merging and integrating two ontologies (see Figure 3.36) 

in existing approaches starts with creating a mediator ontology using the notion of 

approximation83 and entailment between the two ontologies [HP04b, Ken04]. 

Fig. 336. Ontology integration process (Adapted from [Ken04]). In the first step two ontologies O, and 02 

are being aligned using a bridge ontology Om and a set of refinement morphisms and bridge axioms. Then 
two mediator ontologies Bj and B2 are merged84 into the ontology O. The final integration phase consists of 
deriving two direct morphisms from the two initial ontologies by composing the morphisms in the previous 
states. 

There are several possibilities to use categories as a basis for merging and integrating 

ontological elements. Besides pushouts and pullbacks, other categorical notations, which 

are commonly employed for performing integration, are limits and colimits. Before 

defining these notions here we need to present some introductory definitions of other 

categorical constructors such as initial and terminal objects, diagrams, and cones. 

Definition (initial and terminal objects): an initial object of a category C is an object I 

of this category such that for every object O in C, there exists exactly one morphism I —> 

O. In another words 1 is an initial object if for each object O there is exactly one map 

' As defined in Wikipedia, approximation "is an inexact representation of something that is still close 
enough to be useful". For more information on approximation in OWL-DL ontologies, we refer the reader 
to [PT07]. 
1 In the set theoretical sense, one may describe this process with a special sum of Bi and B2. 
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from I to X. For example, in the category of sets an empty set is an initial object. In the 

following diagram / denotes an example of initial objects (Figure 3.37) 

y 

Fig. 3.37. A diagrammatical representation of initial (/) and Terminal (T) objects in category C. 

The terminal object (T in Figure 3.37) is defined dually as follows: T is terminal if 

for every object O in C there exists a single morphism O —* T85. As an example a 

singleton set is a terminal object. If an object is both initial and terminal, it is called a 

zero object or null object. 

Definition (diagram) [AL91]: A diagram D in a category C is a directed graph whose 

vertices i el are labeled by objects dt and whose edges e e E are labeled by morphisms 

fe. Later on in Section III.4 we will see that we can define a categorical diagram as a 

graph homomorphism. 

Definition (cones and co-cones) [AL91]: Let C be a category and D a diagram with 

objects dj, iel. Then as represented in Figure 3.38 a cone to D is an object c and a family 

of morphisms {fi e Cfc, dj \ ielf6 such that V/je/, V e e £ fe e C[d„dJ then fe ° fi =fj. 

85 This definition of terminal object closely resembles the conception of "Thing" in OWL. 
86 The brackets in Cfc, dj are representing the domain and co-domain of a morphism in C (i.e. c —> d,). 
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Fig. 338. A representation of a cone to a diagram D, which is an object c e C and arrowsy*. c —»dj, df e C 
such that for each arrow di —>djthe diagram, commutes. 

Co-cones are defined dually, such that a co-cone for a diagram D is an object c and a 

family of morphisms {fi e C [di, c] \ i&I} such that the generated diagram commutes. 

Definition (limits and coiimits) [Awo06]: A limit for a diagram D in category C is a 

cone {fi: c —• dj} such that if {/',: c' —• dj} exists, then there a unique map u: c' —• c exists 

that causes the following diagram for every dt in D commutes (cf. Figure 3.39 (a)). 

\s mm wm *••• ** " " i ^ \ ^ \^ *Q"* *•• *••» *"•• »"»^? 

dj dj 

(a) (b) 

Fig. 3.39. Diagrammatical definition of (a) limits and (b) coiimits. 

Coiimits are also defined as dual of limits. A colimit of D is a co-cone {fr. di —• c) 

such that if {/"',: dt —-> c'} exists, then there is a unique map u: c —* c' exist cause the 

following the diagram in Figure 3.39 (b) commutes for every dt in D. It is some how 

inferable [LS09] that limits as a universal construction generalize notions such as 
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terminal objects, intersections, products, pullbacks; while colimits generalize notions 

such as initial objects, sums, coproducts, disjoint unions, and pushouts87. 

After aligning the ontologies, using a bridge ontology, a set of bridge axioms, and 

the mediating ontologies (the initial ontologies after applying the bridge axioms), a 

categorical colimit can be used [ZKE+06] to model the merging88, through a series of 

successive pushouts. For example if two ontologies are aligned using W-alignment then 

three pushouts can compute the merging between the ontologies (Figure 3.40). By 

increasing the number of ontologies and composing different alignment methods 

together, the number of pushouts, which are used for computing the merge increases 

accordingly. 

Fig. 3.40. Integration of two ontologies Oi and 02, which are aligned via W-alignment technique, using 
colimits and three pushouts (adapted from [ZKE+06]). Ai and A2 are the alignments and B is the bridge 
ontology and O'I and 0'2 are the initial ontologies plus the added bridge axioms and finally M represents 
the final integration result. 

87 For example, initial objects can be defined as colimits of empty diagrams, coproducts are colimits of 
diagrams indexed by discrete categories, and pushouts are colimits of a pair of morphisms with common 
domain [Lim09]. 

88 For example, categorically speaking one can describe the integration described in Figure 3.32 to be the 
colimit of the specified alignment diagrams. 
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I l l 3.5.5 Category Theory for Representing and Tracking Changes 

Categorical representation enables the progressive analysis of ontologies. After 

describing the ontological concepts within categories representing a modular hierarchy of 

domain knowledge, we employ category theory to analyze ontological changes in the 

following ways. 

I l l 3.5.5.1 Exploring the Similarities 

One of the major tasks in performing ontology alignment and mapping is finding 

similarities (structural or semantical) between the ontologies. Finding semantic 

similarities in a network structure gives rise to several computational, psychological 

[Tve77], and philosophical issues, including the problem of identities and essence. As we 

discussed in Section III 3.5.4.2, similarity checking in ontology engineering can be 

studied under the notion of approximation [MME+06, PT07]. An approach for measuring 

semantic similarity that generates similarity scores based on trees [GGW03] and a graph-

based algorithm [MME+06] for managing semantic similarities in ontologies are 

examples of some of the efforts in the area of similarity measurement for hierarchical 

structures. Recently, research [AN09] on measuring semantic similarity for concepts 

within biomedical ontologies and a review of different approaches in this domain 

[PFF+09] has been conducted. 

The semantic similarity can be studied as finding logically equivalent classes and 

relationships that may differ in name while performing the same function. In fact, one of 

the significant uses of categories is analyzing different objects with some degree of 
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similarity in their underlying structure . Employing category theory enables us to deal 

with this problem of logical equality in evolving hierarchies using isomorphic reasoning 

[MazOTJ. In set theory, two ordered sets are defined to be equivalent90, iff there exists a 

third set, the members of which being ordered pairs such that (i) the first member of each 

pair is an element of A and the second is an element of B, and (ii) each member of A 

occurs as a first member and each member of B occurs as a second member of exactly 

one pair. In summary, a bijective order-preserving (monotonic) function should exist 

between A and B. These structure-preserving functions are a typical form of morphisms 

in category theory [HKE+05]. In categories, we do not focus on the internal structures of 

categories (i.e., the names of elements of a set are not important in the categorical 

approach) and instead all attention will be focused on the morphisms (representing the 

relations between objects), the composition of morphisms, and the cardinalities of 

categories of sets. 

The definition of equivalence of categories has been given in [Sel05, AL91], and we 

will return to this problem in Section IV.3 on the case studies. 

Ill 3.5.5.2 Tracking the Changes and their Impacts 

The tracking mechanism keeps track of ontological structures over time. A chosen 

ontological structure (or element) can be monitored in a certain time interval, and its 

behavior in response to various changes can be captured and marked. In this way, after a 

while, the elements with a high chance of alteration will be highlighted and can be used 

89 As an example described in [Hea07], one may consider an architectural plan of a building that includes 
several details about forms. The shape and measurements of the building may exist in different forms, 
such as a hand-drawn or printed form on a paper, or a digital version in a computer. 

90 Adapted from: "set theory." Encyclopaedia Britannica. 2009. Encyclopaedia Britannica Online. 12 Nov. 
2009 <http://www.britannica.com/EBchecked/topic/536159/set-theory>. 
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for detecting the possible change couplings [GHJ98, DLR09] through backward tracing. 

In our approach using categorical morphisms, we make an explicit connection between 

different versions of an ontological structure, which enables us to analyze and generalize 

dependencies and monitor the impact of different operations on the parts affected. The 

categorical representation enables the progressive analysis of ontologies. Category theory 

is being used to represent the evolutionary structure of ontologies and provides facilities 

for tracking changes and analyzing the impact of these changes as follows. 

I. Comparing a previous state of a class with a later state: A categorical model 

[Whi97] is able to describe the state space (set of all possible states for a given state 

variable set) for a class as a cross product of attribute domains and the operations of 

a class as transitions between states. It also allows the definition of message passing 

and method binding mechanisms. Category theory has a special type of mapping 

between categories called functor. Functors are defined as morphisms in the category 

of all small categories (where classes are defined as categories) [Awo06]. In other 

words they are structure-preserving maps between categories. As defined in [Oos02], 

we assume A, B are two categories, so a functor F: A —* B is a pair of mappings 

(Figure 3.41) that associates to each object x in A an object F(x) in B; and also maps 

each morphism of A onto a morphism of B, such that the identities and composition 

are preserved. The preservation of identities means if, for example, x is an A-

identity, then F(x) is a B-identity; and the preservation of composition means that 

considering/and g as two arrows in A, then one can find the following statement 

valid in B [Eas98]. 

91 Change coupling in an application can be defined as the implicit relationship between two or more 
components that frequently change together during the systems' evolution [DLR09]. 
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V / ' g e A => F(/-°g>=F(/)°F(g)eB 

As it can be seen in this definition, functors not only transform the objects but 

also represent an associated transformation of the structures (morphisms) [Ryd85]. A 

categorical model can represent transitions between different states of an ontological 

structure. As mentioned in Section III 3.4, following our Birdwatching allegory to 

capture and track this kind of transition, we represent the conceptualization of things 

indexed by time. For example, from the FungalWeb Ontology, "'enzyme 

has_property_x at f is rendered as "enzyme-at-t haspropertyx". As another 

example, in the higher level, we can consider that an ontological structure O at time t 

has a certain feature. Then we represent a set of time-indexed categories using 

functors to capture different states of the ontological structure at different points in 

time. The category O at time t (Ot) models the state of the ontologies and all related 

interactions at this time. A functor can represent the transition from O, to O,- (Figure 
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3.42) where the time changes from t to t'. In addition, each subontology A can be 

modeled by the series of its successive states A, from its 'Creation' to 'Destruction'' 

[EV06]. 

(Ot) 

Fig. 3.42. Using Functor 

It is quite common in software engineering to represent the relations between 

different versions of an application through a version graph [MDSOO] consisting of 

nodes and arrows representing a version of the application pointing towards the 

successor versions (Figure 3.43). 

Fig. 3.43. A typical version graph [MDSOO] composed of different branches representing the 
relationships between different versions and revisions of an ontology through a set of solid (shows a 
direct offspring and successor version) and dotted (shows the inheritance of some features) arrows. 

It would be also natural to use categorical functors to represent and analyze the 

relationships between different versions of ontologies, organized in a version graph, 
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within a specific life cycle. Here we extend the use of functor in ontology change 

management by introducing another categorical constructor called Natural 

Transformations, which describes the maps between functors (morphism of 

functors). Given two functors S, T, which represent two different transformations 

from category A into category B (S, T: A —> B), a natural transformation between 

these two functors (S —• 7) is a morphism / which assign to each object x o f A a 

morphism t(x): S(x) —* T(x) ofB in such a way that every morphism/- x —*• x' yields 

the following commutative diagram (Figure 3.44). 

/ 
•+-X 

S(x) 

t(x) 

T(x) 

S(fj 

W 

'S(x') 

t(x'j 

'T(x') 

Fig. 3.44. Diagrammatical representation of a Natural Transformation between two functors S, T. 

In fact natural transformation acts as a vehicle to represent transformation of one 

structure (modeled by a functor) into another structure (represented by another 

functor) within a temporal environment. So, it makes it feasible to model and track 

the relations between different revisions of one model. For example, considering 

another functor H in the natural transformation, depicted in Figure 3.44, which 

represents a map to the second revision of an evolving structure, one can obtain a 

composition of natural transformations [BW05]. 

II. Measuring coupling: As knowledge based systems become more complex, the new 

trends lean towards describing their architecture and behavior with more abstract 
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representations. Category theory not only supports high-level abstraction, but also 

treats these complex interconnected infrastructures with a more intuitive style. 

Categorical representation also improves the readability of the complex ontological 

structure by omitting some of the irrelevant details of the internal structures. 

Coupling specifies the extent of the connections between elements of a system and it 

can identify the complexity of an evolving structure. Measuring coupling is useful 

for predicting and controlling the scope of changes to an ontological application. 

Often, a change in one class can cause some changes to the dependent classes. When 

the coupling is high, it indicates the existence of a large number of dependencies in 

an ontological structure, which must be checked to analyze and control the chain of 

changes. Different types of couplings can be defined for ontologies, e.g. structural 

coupling, semantic coupling, message coupling and so forth. Especially structural 

coupling for ontological elements can be described by a number of connections and 

the links between them. Therefore, we focus on arrows in category theory to study 

these connections. 

Oi 

Mfcy) 

Dpi Precondition = 3 

A , Postcondition = 2 ~—*-A -

Fig. 3.45. Measuring Coupling as defined by [Whi97]. 

For analyzing a conditional change, we followed the formal model described in 

[Whi97] by identifying three types of arrows in the category operation: precondition, 
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post-condition and message-send arrows. The type of message is determined by the 

types of changes caused by a method. In the category shown in Figure 3.45, the 

coupling for the operation Opi is a nonnegative number (> zero) that can be 

calculated by counting the three types of arrows (post-conditions, preconditions, and 

M(x,y)). The message-send arrows can be excluded from this calculation, if they do 

not pass any parameters, thus do not have any operational affect on other ontological 

structures, or on other operations. 

III. Analyzing dependencies to control co-evolution: Dependency analysis generally 

means exploring and tracing the dependencies and couplings between different units in 

a system. Analyzing ontological dependencies [DMM07], ranging from an individual 

concept to an entire ontology, facilitates the study of potential relations between an 

ontological element and its context through a set of constraints. When a change occurs 

in an ontological element, the other dependent elements will be changed accordingly 

to keep the ontology valid and consistent. This leads to a new version of the ontology. 

Similarly, when the ontology O evolves into the new version O', this evolution should 

be reflected in the other interconnected ontologies as well. These reflections - or co-

evolution - should be formalized and supervised in a consistent way. In our approach, 

this problem will be addressed in the next sections by defining different levels of 

abstraction (micro and macro) in our analysis. Dependency analysis has been studied 

in [WH92] to maintain object-oriented programs and change impact analysis [AB96] 

by means of external dependency graphs (EDGs) and clustering methodologies. A 

classification of different dependencies in object-oriented programming, which is 

organized in a dependency graph, has been introduced in [WH92] as: Class-Class 
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dependencies (e.g., Ci is a direct parent of C2); Class-Method dependencies (e.g., class 

C inherits method M); Class-Message dependencies (e.g., C understands message); 

Class-Variable dependencies (e.g., i is an instance of class C); Method-Variable 

dependencies (e.g., V is a parameter for method M); Method-Message dependencies 

(e.g., method M sends message M'); and Method-Method dependencies (e.g., method 

Mi invokes method M2). The nodes and arcs in the dependency graph may represent, 

respectively, ontological elements and different types of dependencies between these 

elements. Using category theory as described in Parts I and II helps not only in 

tracking changes but also assists in tracing the dependencies between ontological 

elements. Tracing the dependencies provides more information for agents and makes 

the negotiation process more realistic, the conflict resolution more effective, and the 

outcome more consistent with the intended purpose of the ontology. 
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I l l 3.5.6 Category Theory for Representing Agents' Interactions 

"The meaning of things lies not in the 
things themselves, but in our attitude 
towards them" 

Antoine de Saint Exupery (1900-44) 

One of our primary research objectives in the RLR framework is to reduce human 

intervention in ontology change management life cycles. To this end, a mathematical 

knowledge representation formalism is necessary to support agent communications and 

interactions. As highlighted in [RM07], despite worldwide efforts in this domain, no 

proven formal frameworks, methods, and tools for modeling automatic agent interactions 

and argumentation yet exist. The interaction protocols, which consist of a set of steering 

rules to manage the interactions, are commonly represented using UML [LinOl], Petri net 

[PCN+04], State-charts [DCP05], state-transition diagrams, or finite state machines 

[FC03]. A key feature of our contribution has been the extension of existing agent 

modeling techniques using category theory to provide a formal yet intuitive 

diagrammatical representation for RLR. RLR employs categorical notions as a basis for 

modeling an agent communication language. The categorical framework is expressive 

enough to model the agents' behaviours, yet abstract enough to represent the generality of 

the protocols. RLR benefits from the algebraic power gained by using an abstract 

categorical representation of agents' interactions to increase the autonomy of 

argumentations in the change management framework. Category theoretical 

representation, with its ability to derive formal inference out of a diagrammatic 

representation, is independent of the type of interactions and their details, so its generality 

can be used to describe different types of protocols, study a MAS framework in different 
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levels of abstraction, analyze rule transformations (yielding a practical image of adaptive 

learning agents and their semantics), and formalize dialectic trees for argumentation. 

I l l 3.5.6.1 Analyzing a Multi-Agent Framework in Different Levels of Abstraction 

Recalling the zoom-in and zoom-out notions in conceptual modeling, we define different 

types of categories based on different local and global perspectives. Each agent can be 

considered a category, with states of the agent as objects and the actions that cause an 

agent to change its state as morphisms. More generally, we can define a category of 

agents, with agents as objects and the different types of communication and interaction 

channels between agents as (functor) morphisms. In the same way, one can for example 

define the services given by agents as a category, with agents as objects and the 

composition relations between the agents (representing different interactions, 

communications, message passing, or sharing attributes between agents) as morphisms, 

or, alternatively, the category of services, with agents' services as objects and the 

mapping between the services as (functor) morphisms. Moreover, by changing the level 

of abstraction, we define a multi-agent system as a category92 consisting of services as 

objects and the relations between them as morphisms, as well as the category of multi-

agent systems, with each system composed of several agents providing different services 

as an object and the different communication channels between two or more distributed 

multi-agent systems as (functor) morphisms. This viewpoint about the categorical 

conceptualization of MAS structures in different levels of abstractions leads us towards 

Based on different conceptualizations, one may consider a multi-agent system to be a category with agents as objects 
and the relations between them as the morphisms. 
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defining a formal semantic for various interactions occurring between agents in evolving 

environments. 

In an integrated multi-agent-based framework such as RLR, functors and their 

compositions are powerful abstraction mechanisms for analyzing the relations between 

different categories (e.g., relations between categories of agents, relations between a 

category of agents and a category of services, or a category of multi-agent systems and a 

category of states, etc.). As an example, consider a scenario for the alignment of two 

ontologies, by considering state as a category with the different states of an agent (i.e. 

initial state (IniS); requesting merge (Req_M); receiving the merge result (RecM) and 

checking for validity (ChkV)) as objects and the message passing between the states 

(i.e. issuing alert, change notice, ontology ID, and so on) as morphisms (Figure 3.46). 

change state 

Ontology IDs /' \ 

ignore change^ ini_S ) *\ Req_Mj 

y 
(new) Ontology ID 

issue alert 

Rec :_M) 

change notice r 

Fig. 3.46. The categorical illustration of states for the ontology merging scenario. 

The above categorical diagram might be changed to demonstrate different options for 

performing ontology merging. For example one may want to check whether two 

ontologies are from the same domain or not (ChkD) and if they are not from the same 

domain, cancel the merging and move back to the initial state (Figure 3.47). 
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change state 

Fig. 3.47. The categorical illustration of states for an alternative ontology merging scenario. 

Considering the first model represented in Figure 3.46 as Category OSti and the 

modified version represented in Figure 3.47 as category OSt2 in the category of states 

using the composition law and a functor, we are able to represent the transition between 

Sti and St2 through the functor F representing "Check Domain": F: Sti —* St2. 

In a similar way different associations between different types of objects (e.g. 

various cognitive units [And81] described in the categorical sense) can be modeled. For 

example93, one can describe a set of prepositions as objects within the category of 

prepositions and the relations between them as the morphisms in this category. Figure 

3.48 represents a typical diagrammatic representation of such interactions for the 

following prepositions. 

1. Agent AG_1 received a message. 

2. Agent A G 1 has perceived a change request through the message. 
3. The perceived change request is a delete request. 
4. The delete request is issued to be performed on ontology Oi. 
5. The target for the deletion is concept Cx within Ontology Oi. 
6. Ontology Oi is currently being used by KBi. 
7. The concept Cx is being reused in a process Pr_l . 

93 Oue example is inspired from the communication between the cognitive units presented in [And81]. 
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8. The concept Cx has three sub concepts Cxi, CX2, Cx3. 
9. Two concepts Cxi and CX2 are currently being used in a process Pr_l. 
10. The controller agent of KBi should be notified about the request. 
11. The negotiation for loss/benefit has been performed. 
12. Based on the negotiation outcome the delete request is postponed 
13. The notification to the agent AG_1 is sent. 
14. AG_1 ignored the change request. 

Fig. 3.48. A generic categorical representation of different prepositions in an agent based framework 
dealing with a "delete request" message. 

As can be seen in Figure 3.48 several concurrent interactions may be performed 

through the compositions between the morphisms. Also several inferred knowledge can 

be gained94 through this categorical approach, which can later on be used in the learning 

phase. Upon successful completion of the negotiation process in RLR, the ontology will 

either remain unchanged or be modified to convey the new knowledge based on the 

outcome. 

I l l 3.5.6.2 Representation of Agents' Rule Compositions and Transformations 

Intelligent agents perform actions in a context by using rules that guide interactions. In 

order to perform an action, which may lead to a state transition, often two or more sets of 

94 As an example of this inferred knowledge, one may notice the simple composition of morphisms in 
Figure 33.27 such that for instance: 1 —> 2 —> 3 implies 1 —* 3. 
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rules may be combined and integrated, ideally in an automatic fashion. The manual 

combination of rules is neither desirable nor feasible in many circumstances (i.e., when 

dealing with large sets of rules). The mathematical power of categories can deliver a 

formal guidance for combining these sets of rules, which are usually described in a 

diagrammatic representation95. For example, in the RLR framework, the agents follow 

certain rules, some simple and some complex ones (in the case of multiple options 

leading to different decision points, e.g., adding concepts, which needs the combination 

of several rules to find a place, check the validity, and so on). As shown in Figure 3.49, 

the two graphs 1 and 2, respectively denoting the (partial) state diagrams of agents Ai and 

A2 with nodes, represent the state and edges symbolizing the transitions. These two 

agents have their own opinions about the set of states in a change management process, 

which may differ with each other in some particular cases. To achieve the compositions 

of the two agents' views on performing a task, one can follow several options including 

conjunction or adjunction [CS01]. 

Composition / OR 

a «*-

C2 

Fig. 3.49. The composition of two initial agents' action graphs through conjunction (C ;) or adjunction (C2). 
As can be seen in Q emphasizes are on common paths within the two action graphs, while in C2 the focus is 
on sum of the available paths. 

95 They may be represented by UML, state transition diagrams, Petri nets, or finite state machines, to name a few 
possibilities. 
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As the above figure shows in these types of compositions, the origin of arrows might 

not be preserved. As another example, Figure 3.50 demonstrates the merging of two 

simplified transition diagrams Di and D2, respectively corresponding to the rules 

specifying state spaces Si (location finding) and S2 (adding an object), into the diagram 

D, which can be used in a typical algorithm for finding the shortest path [Fra08] 

(determining the closest node accessible from a particular node) in an agent based 

system. 

Dl: (ayLcSyL® D: (S^-4^-^-Q 

b.e 

Fig. 3.50. The integration of rules described in two transition diagram Di and D2 using the categorical 
product D] x D2 to obtain one compound state diagram, which can be used in a typical shortest path 
algorithm (adapted from [Fra08]). 

This approach can also be generalized for merging more than two rules with more 

complex structures through bridge-rules, which glue the rules based on their common 

features (similar to bridge axioms described in Section III 3.5.4). 

As mentioned in Section III 2.3.2, RLR considers the change of the rules as a 

primary adaptation principle for learning. For describing our adaptive agents, we follow 

the formalization method used by G. Resconi in [RL04]. Each rule includes a finite or 

infinite semantic unity96, which can be symbolized as Si, IN, Pi, and OUT. These 

symbols represent the input statement, the domain of the rule, the rule, and the range of 

the rule (denoting the value of an agent's action), respectively. Generally, when we work 

in a static environment, we deal with only one family of rules for each context. However, 

96 Semantic unities represent the conceptual map between a set of concepts within a specific context through rules 
[RL04]. 
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when the environment is dynamic, it is very likely that these rules change into other rules. 

Therefore, a single change in an ontological element triggers other changes in rules and 

contexts. As an agent gradually learns the different rules for various contexts, there is the 

need for a communication channel between these rules, as well as between different 

agents. Such changes are demonstrated in [RL04] as follows (Figure 3.51). 

IN 

IN 

i m 
T 
+ 
X, 

1 

i ' W 

Context 1 Rule Xi 

Pi 

P2 

^ O U T , 

X* 

• p u b \z 

Context 2 Rule X2 

Fig. 3.51. Demonstration of the semantic unity of the changes of the rule X| in the context 1 into the rule 
X2 in the context 2 (adapted from [RL04]). 

From the point of view of category theory, we consider the category of rules with 

semantic unities as objects and the mappings between them as morphisms. We then use 

category theory, along with General Systems Logical Theory (GSLT, described in 

[RH96]), to describe agents' communication. For example, the communication between 

different semantic unities can be represented as follows: 

Fig. 3.52. Categorical representation that demonstrates how rules Pi and P2 enable the transformation of 
the rule X] into the rule X2 (adapted from [RL04]). 
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Using categories to enhance the learning process has been also addressed in 

[FFG+95] by measuring and comparing the relative sizes of classes of inferable sets of 

functions based on inductive inference. To define the semantics of agents' protocols, we 

describe a set of pre- and post-conditions that need to be satisfied before/after the 

occurrence of a particular action or actions. Then the categorical semantics can be used to 

model different interaction protocols within a general dialectic framework. Few 

approaches attempt in defining categorical semantics for agent interactions including the 

one that can be seen in [JMP05], where they focus on denotational semantics, considering 

the protocols abstracted away from the type and the nature of the interaction results. 

Pfalzgraf [Pfa04a] has proposed a distributed logical ground based on category theory, 

the concept of logical fiberings [Pfa04b], and many-valued logics [Got07] for modeling 

multi-agent communications. In summary, the idea in this approach is to allocate a local 

logic (logical fiber) to each agent and make the fibering (global logical state space) out of 

the group of all the fibers over the base space of agents. 

In the RLR framework the semantics of an evolving agent-based system can be 

captured through a category of states and a set of operational transitions Op: Stm —* St„, 

representing that the state Stm can change into St„ by performing an operation Op. As 

illustrated in Figure 3.53 each individual agent (e.g. Ai...A„) can make a transition using 

a function (e.g./,, g„, . . .) , which force the transition of MAS to the new states through 

the operation arrows (e.g./org). 
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Fig. 3.53. The representation of a multi-agent system (MAS) transitions to different states using different 
operations and in different levels of abstractions. 

The interactions in RLR can be studies through a category with a set of states (St) 

denoting the points, a set M of possible message expressions, and a transition morphism 

T (product of states and massages). The current existing formalisms seem sufficient to 

model the interaction protocols for a relatively small set of interactions, but as the 

number of messages, exchanged expressions and potential interactions between multiple 

levels of nestings increase, it is far from trivial to manage all the prospective 

arrangements. 

Categories support the agents' rule interactions with no need for deep architectural 

and procedural nesting. As a simple example, let us once again look at the composition 

operation (o), which can be used to formalize the declarative rule interactions for agents. 

For instance, one may need to define a situation in which an agent should decide about 

the deletion of a node in an ontology. Since the rules are not isolated in RLR by using the 

composition operation (o), we can represent: Rs o RP o RR o RD where Rs is a 

morphism denoting "select node command", Rp is "parent checking condition", RR is 

"remove child morphism", and RD is the action (i.e., deletion) to be taken in the next 

move. 
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I l l 3.5.6.3. Modeling Argument Trees 

Analyzing the dependencies and legitimacy of a claim in an argument should be 

performed within a logical structure. Toulmin [Tou58] described an argument based on 

the Claim and Data supporting this Claim, a Warrant to infer the Claim from the Data and 

Backing to support the materials that support the Warrant, a Qualifier to represent the 

soundness of an argument with uncertainty, and a Rebuttal (Reservations) to represent the 

exceptional cases (Figure 3.54). 

Fig. 3.S497. The Toulmin's layout for argumentation, with C, D, W, B, R and Q denote respectively Claim, 
Data, Warrant, Backing materials, Rebuttal, and Qualifiers. 

Since Toulmin's description of argumentation trees have been adopted as one of the 

preferred vehicles for representing an argumentation framework through two or more 

contradicting structures where the roots, the nodes, and the edges respectively denote a 

claim, the grounds (supporting information), and the warrants (rules). Many of the 

uncertain and arguable grounds can be considered sub-claims, which are supported by a 

set of nodes (grounds). Figure 3.55 represents an example of such a tree. 

97 Adapted from: "A Description of Toulmin's Layout of Argumentation" 
http://www.unl.edu/speech/comml09/Toulmin/layout.htm 
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Fig. 3.55. A partial representation of a tree-like dialectically grounded argumentation structure. In this 
structure C represents the claims (e.g. Ontology O is a formal Ontology); G denotes grounds (e.g. Ontology 
O is written in OWL-DL); and R represents the warrants or rules (e.g. OWL-DL ontologies are formal 
ontologies). 

As it can be seen in the tree shown in Figure 3.55, each branch has been associated 

with an argument about the claim (root) and its interactions with other branches (other 

arguments) form the argumentation structure. Currently several tools are available for 

creating such argument diagrams (e.g., Araucaria [RR04]). Toulmin argumentation 

diagrams mainly focus on the static representation of arguments, but they have been also 

extended to reflect the evolving nature of argumentations in various domains (e.g., the 

dialogue game [Ben98, BGLOO]). In RLR, we also define categories of arguments with 

each category including the arguments as objects interacting within an argumentation 

framework (Figure 3.56) and the interactions between them as morphisms. Our initial 

plan to design a categorical model for RLR agent protocols starts with creating a graph 

for potential messages exchanged by the agents. Consider the category Communication with 

a set of time points as objects and message expressions, usually placed in argumentation 

protocols, as morphisms. The morphisms represent the expression needs for 

argumentation between two time points (simply denoting the start and end of an 
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argumentation). Thus, a communication for a protocol in the argumentation framework 

can be simply modeled by a sequence of morphisms and their compositions. Recall the 

use of functors and natural transformations to define different assignments between 

various categories. Here we are also able to generalize the communications between 

different protocols (e.g., two categories Ccomm, Dcomm) using functors (i.e. F: Ccomm.—* 

Dcomm)- In existing agent languages such as FIPA-ACL (see Section III 2.4), the 

messages exchanged between the agents may consist of requests and notifications, for 

example, without the possibility to define any combination rules; while in our approach 

we can define the rules' compositions in various levels of abstractions. This observation 

has been also studied in [PS08] from a different angle9 , where every MAS diagrammatic 

topology has been interpreted as a category PATH where the nodes are the objects and 

every sequence of consecutive arrows (a path which may include more than one single 

arrow) in the diagram is a morphism". Based on [PS08], a base diagram, which is a 

category PATH, has been associated with each MAS to represent the general attributes 

and organization of related communication channels (arrows) for that MAS. 

As mentioned in the introduction, the arrows in the category of agents (morphisms) 

convey a communicative operation of forwarding a message from one agent to another. A 

category of such arrows together implies an argument framework starting with an initial 

action and ending with a final decision (i.e. one may consider the classical example of 

auctioning). The set of rules provides sufficient expressiveness for the argument 

framework (e.g., winningbid > startingbid). Each communication protocol can be 

considered a reusable pattern, which is "formally defined and abstracted away from any 

98 In the study performed in [PS08] the authors focused on the communications between different MASs 
rather than the dialogues between individual agents. 

99 This actually implies the composition of morphisms. 
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particular sequence of execution steps" [WJKOO], and can be applied to other frameworks 

with different purposes. The categorical representations along with the graphical 

transformation greatly resemble UML representations (specifically state and activity 

diagrams) while providing more expressivity in terms of the underlying semantics. 

For agent negotiation, we also assumed that one may consider two options for 

merging two ontological elements A and B: simply by the product AxB (all possible 

pairs <element from A, element from B>) or the co-product of the objects A+B (all 

elements from A and all elements from B). The negotiation agent can select the best 

method of merging and integration out of several alternatives for both categorical objects 

and arrows (denoting ontological elements). Assume we define following arguments for 

the integration and merging of ontological structures: 

ar- AxB, ai\ A+B, ay. A, a4: B 

"<3i defeats 02" can be represented by an arrow from the domain a\ to the co-domain 

aj (Figure 3.56). By following the categorical representation, an argumentation network 

will be generated that can be used to formally describe negotiations and speed up 

inferences. 

Fig. 3.56. Categorical representation of the argumentation network. 
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The categorical representation focuses on the behavior in which arguments interact 

(i.e. the argument ai defeated the argument afi instead of focusing on details of their 

internal structures. This categorical formalism can be used as a basis for conflict 

resolution in a recommender system based on dialectical databases [CCS05]. An 

algebraic semantics based on category theory has been also introduced in [Amb96] for 

argumentation, which provides proof of soundness and reliability for the structures based 

on "Logic of Argumentation" [KAF92]. 

Ill 3.6 Summary of Contributions in Section III.3 

Category theory facilitates the analysis of the process of structural relationships and 

structural change in living and evolving systems. Categories have been extensively used 

in mathematics and theoretical computer science to assist in separating the levels of 

abstractions and integration of generic components. The categorical method to study and 

measure changes and to test several hypotheses and certain effects on developmental 

change between two time points has been applied in biological and social analysis as well 

as in psychological [AAG05] domains. However, the applications of category theory in 

biomedical Ontology change management are extremely rare. Category theory provides a 

universal algebra for the representation of highly abstract concepts. We use category 

theory to explore systematic changes in ontologies and study various dependencies 

between the ontological elements, as well as formalizing agents' interactions and 

communications in the RLR framework. The following is a summary of our main 

contributions in this section. 
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• Defining a method based on a metaphor taken from a recreational activity, 

Birdwatching, to highlight the temporal aspects of ontologies by representing 

conceptualization of things indexed by times, which enables one to control 

forward and backward compatibilities for taxonomic revisions. 

• Introducing the potential of category theory as a formal representation vehicle 

for analyzing changes within biomedical ontologies in different levels of 

abstraction. 

• Utilizing different categorical constructors and notations to assist in different 

tasks for the ontological change management process such as: performing 

change operations on ontological structures (e.g. add/delete, merge); exploring 

the similarities between different versions; tracking an ontological structure 

through its different states to monitor changes; measuring coupling and 

analyzing dependencies to control co-evolution. To this end, we have defined 

several categories to analyze classes, ontologies, operations, and states. 

• Extending the semantics for change management process within RLR, by 

defining a categorical framework to support agents' communication, negotiation 

(i.e. formalizing dialectic trees), state transitions, compositions and 

transformations (i.e. rule transformation) in different levels of abstractions 

(agents and MAS). For this purpose we have defined several categories 

including categories of agents, multi-agents systems (MAS), services, states, 

rules and prepositions. 

In the next section we extend our use of categories for managing evolving 

biomedical ontologies in the context of graph transformation. 
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III.4 A Graph-Oriented Formalism for Change 
Management 

"/ love fishing. You put that line in the 
water and you don't know what's on the 
other end. Your imagination is under 
there." 

Robert Altman (1925-2006) 

Advances in the World Wide Web, leading to the Semantic Web, Web 2.0, and Web 

3.0,100 have made a considerable impact on almost everything. The Semantic Web has 

been known for its complex and heterogeneous environment with highly volatile and 

non-deterministic interactions between its components, which are tightly coupled to each 

other. All of these features make the change management process for ontologies as basic 

blocks of the Semantic Web far from trivial. An enormous number of components, 

connected semantically and syntactically, are interacting with each other via several 

available knowledge bases, ontologies, databases, tools, and applications within the open 

distributed heterogeneous web environment. In such a situation, analyzing various 

changes requires a formalism with higher abstraction levels, which can simplify complex 

notions and representations to allow the study of changes in various levels. Despite the 

fact that employing the power of mathematical notation and mathematical proofs of 

formal methods has been studied in computer science for a long time [Wor99], in general, 

the current formal methods do not offer sufficient support for change management in 

terms of representation and verification (i.e. it is not yet formally verifiable that an 

100 Shannon, V. (26/06/2006). "A 'more revolutionary' Web". Int'I Herald Tribune. 
http://www.iht.com/articles/2006/05/23/business/web.php 
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implementation satisfies the initial defined specification). According to [MWD+05], "The 

formal methods need to embrace change and evolution as an essential fact of life. Besides 

the need for existing formal methods to provide more explicit support for software 

evolution, there is also a clear need for new formalisms to support activities specific to 

software evolution." 

In order to deal with several issues of ontology change management, we chose to use 

several areas to reflect the interdisciplinary nature of the topic. In this attempt, after 

considering graphs as a generic notation for information representation and link data 

[BHB09] in the web, we employ graph transformation [EPT04] and category theory to 

study ontological transitions and changes in different levels of abstractions. Using graphs 

enables researchers to study structural evolution and changes in a rule-based manner. The 

transformation rules assist in modeling the change operations. Moreover, we use graph 

transformation to support dependency analysis through structural and semantical changes. 

We then proceed by using graph transformation to propose more specific semantics for 

ontology change management in the context of distributed hierarchical systems. Because 

of the tight coupling between ontological elements within typical biomedical ontologies 

and the sophisticated, complex relationships between dependent ontologies in Semantic 

Web, the change management strategies that mainly focus on changes in individual 

ontological elements might not seem to be very realistic or appropriate. In order to 

increase the flexibility and practicality of our approach, we consider the representation of 

change, independent of any implementation language, and defined algorithms. In fact, 

our method mostly focuses on the representation of changes in the distributed ontological 
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compositions in different topological models rather than changes in an individual 

ontological element. 

After applying the categorical concepts, some of the consequences will be formally 

derived and their formal interpretations will be given. Subsequently, we present a report 

on our approach towards categorically modeling the RLR multi-agent communication 

channel. In Section III 4.3, the description of graph transformations along with the 

categorical double-pushout method is given. In Section III 4.5 we represent our approach 

based on hierarchical distributed graph transformation as an extension of traditional 

graph transformation. 

Il l 4.1 Graphs and Ontology Research 

Graph representation has been used extensively to build formalisms and algorithms for 

supporting different change management tasks such as dependency analysis [Mos90, 

WH92, AB96], traceability analysis [Boh95, LWS+00], and impact analysis [AB96, 

Lee98]. [Men99] also employed labeled typed graphs and conditional graph rewriting 

[Hec95] technique formalized with categories to represent the evolution in software 

components. Graphs enable us to model the dynamic behavior of a system (e.g., UML 

state diagrams) in terms of transformations, in a wide variety of application domains. 

Petri nets, Entity-Relationship (ER), UML, and flow diagrams are all examples of graphs, 

some of which have been employed extensively for semi-formal ontology modeling. 

Some of the preliminary concepts and definitions in graphs and graph transformation as 

introduced in [KKK06] and [Rei05] are as follows: 
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- Directed Graph (Digraph): A directed graph is a pair G = (V, E) of sets of 

vertices (nodes) V and edges (arcs) E c VxV. A pair (v, v') e E is called an edge 

from v to v', with v named the initial node and v' the terminal node. If a graph has 

attributed nodes and edges, it is called an attributed graph [Rei05]. 

Graph Morphisms: A morphism m between two graphs G and H, represented as 

m: G —> H, is a pair of structure-preserving mappings (mv /nE) where mv: VG—* 

VH and m^. EQ —> EH- The image of G in H from the morphism m is called a 

match of G in H, which means the match of G is the subgraph m(G) c H with 

respect to the morphism m [KKK06]. 

- Graph Homomorphisms: A homomorphism between two graphs G and H is a 

mapping / VG—>• VH such that for any (a, b) G EG =>Xa)/(b) G EH. Given a graph 

TG, called a type graph, TG-typed (instance) graph G can be defined if there is a 

homomorphism g: G -»• TG [HC04b]. 

Graphs have proven themselves to be an appropriate formalism for representing 

network of hierarchical structures. They not only represent the relationships between 

ontological elements in a natural and diagrammatic fashion (see [MGH+09] for some 

examples), but also enable us to intuitively describe key concepts in ontology evolution, 

such as dependencies, couplings, transformations, traceability, and impact analysis. 

Considering the graphical representation of ontologies, we study ontological 

structures at two levels, namely Micro-level (zoom-in approach), for analyzing the 

changes in internal structure of an ontology (Figure 3.57 (a)), and Macro-level (zoom-out 

approach), for exploring changes in a world consisting of interrelated ontologies (Figure 

3.57(b)). 
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(a) (b) 

Fig. 3.57. (a) The evolving structure of a standalone ontology; (b) An evolving arbitrary lattice-like 
structure consisting of several interconnected ontologies. 

At the first level, we consider an ontology consisting of several related RDF (OWL) 

graphs represented in a formal framework. 

I l l 4.1.1 RDF Graph Representation (Micro-Level) 

Following the RDF graph-based assumption, the digraph representation of an RDF101102 

triple, consisting of the predicate that relates the subject to the object, has been 

demonstrated in Figure 3.58. For the sake of flexibility, the subject and object can be left 

unspecified, indicating the blank nodes. A typical ontology consists of several collections 

of related RDF triples that form a generic graph-like structure as well. 

Predicate 
• 

Fig. 3.58. A directed graph representing an RDF triple. 

http://www.vv3.org/TR/rdf-syntax-grammar/ 
http://www.w3.org/TR/rdf-mt/ 
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For example, assume we have the following information: there is a fungus identified 

by a particular URI, its name is "Aspergillus nidulans", its NCBI Taxonomy ID is 

"162425", and it has a synonym "Emericella nidulans". The corresponding graph-like 

structure for these triples can be visualized as Figure 3.59. 

Fig. 3.59. An illustrated example of an RDF graph describing a fungal species from the FungalWeb 
Ontology. 

Graphical representation of RDF and its associated operations (e.g., union, 

intersection, merging, mapping and so on) has been discussed in literature. According to 

[GHM04], the mapping between two RDF graphs Gi and G2, is defined as: Gi—» G2; the 

union of the graphs (Gi u G2), is defined as the set theoretical union of their sets of 

triples; and the merging of the graphs (Gi + G2) is the "union Gi u G'2, where G'2 is an 

isomorphic copy of G2 whose set of blank nodes is disjoint with that of Gi, and Gi + G2 

is unique up to isomorphism". 

An OWL graph is a subset of RDF graphs, however, the reverse is not always 

correct. The W3C OWL working group103 [PH04] proposes a set of transformation rules 

for mapping and translating the abstract ontological syntax to OWL (with an emphasis on 

OWL DL) and RDF triples. RDF is considered the exchange syntax for OWL [PH04], 

thus the semantics of OWL ontologies in RDF can be determined from the corresponding 

103 http://www.w3.Org/TR/owl-semantics/mapping.html#transfonriation 

197 

http://www.w3.Org/TR/owl-semantics/mapping.html%23transfonriation


RDF graph organized by the collection of triples, obtained from the parsing of related 

documents. An RDF graph is an OWL-DL ontology (in graph structure) if it is equal to a 

result of the given transformation to triples and satisfies certain conditions (see [PH04] 

for more details on definitions of OWL-DL and OWL-Lite ontologies in RDF graph 

form). 

Because RDF and OWL graphs are naturally attributed graphs104 [TFH03], it is 

feasible to adapt AGG [Tae04] to perform the graph transformation [EPT04] for 

RDF/OWL Ontologies. 

Il l 4.1.2 Lattice-Like Graph Representation (Macro-Level) 

Instead of an individual analysis of ontologies to find out the changes in their internal 

structure, we use categories to study changes in different linked ontologies (as objects 

within the category) algebraically. In this view, ontologies are specified in an abstract 

way based on their relations to other ontologies. As mentioned in Sections I1I.2 and III.3, 

we are able to identify various types of categories in different levels of abstraction. As 

well, using the functor (a structure-preserving mapping between categories) facilitates the 

modeling of nested structures and the coexistence of several complex structures. 

There are both differences and similarities between the ways we deal with objects 

and morphisms on the micro and macro levels, but the difference of terms primarily 

reflects the changes in our perspective. There is also another possibility to define an 

intermediate level between these two levels to analyze ontologies and their relevant 

segments [SR06] in a modular manner. 

104 An attributed graph is usually made based on a graph structure and the data about this structure, which 
makes it comparable with ontologies hierarchical structures with related set of attributes and 
cardinlaities. 

198 



I l l 4.2 Incorporating Time within RDF Structures 

As mentioned before, considering time as an important factor in change management has 

several benefits for dealing with chronological data and knowledge scattered in different 

log files and for accessing different versions of ontologies. Upon changing a specific 

element in an ontology, several changes in the related triples in the RDF graph can be 

foreseen, which leads the graph to change its state through time frequently. To 

incorporate temporal reasoning, several frameworks including [GHV07] have been 

proposed for analyzing temporal RDF105 graphs, which allow metadata description, 

navigation, and querying across time. 

As an example (based on the approach given in [GHV07]) to reflect the temporal 

feature in the FungalWeb ontology, consider ti as the initial time when the ontology is in 

its initial state Sti and assume we add a new type of enzyme as concept CenZyme at time t2. 

This newly added concept has its own properties that affect several related concepts in 

the ontology, beginning at time 13 when the service is offered by the new concept, and at 

time t4, when new relations will be offered based on the newly added concept. By 

deleting a concept at time tn, the associated properties and relations would be removed as 

well. There is a problem in traditional ontological modeling, namely that when an 

ontology goes through a sequence of different changes (e.g., insertion, deletion, and/or 

replacement of concepts or properties), the answer to queries regarding the previous state 

might return no valid answers. Despite the fact that many approaches are available for 

different query languages for RDF [HBE+04], the temporal aspects of RDF graphs have 

not been sufficiently studied. Visser in [Vis04] reviewed some of the requirements that 

105 Recall that the RDF is naturally built in an extensible format. 
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are necessary for annotating and querying temporal knowledge bases, and then he 

described their approach by representing the so-called "qualitative abstraction of time". 

Several issues related to the temporal extension of RDF have been discussed in [GHV07], 

including decisions about different mechanisms for incorporating time (e.g., time 

labeling, snapshot capturing, considering time points or intervals, etc.) into regular RDF 

graphs, constructing temporal query languages, and temporal entailment106 (logical 

implication). 

In our approach, based on different levels of abstraction, we use timestamping 

(indexing the ontological structures with the time at which a certain event/change 

occurred) and snapshotting (denoting different states of the ontology) methods for 

temporal analysis of our hierarchy. To represent the temporal triples, we can index each 

triple with time. A series of related temporal triples form a temporal ontological graph. 

The time index can either be defined as constant or variable (to represent unknown or 

incomplete temporal information) [GHV07]. In this way, we can offer bitemporal107 data 

analysis, which allows the query agents to perform temporal rollbacks and chronological 

information retrieval. According to the ordinary temporal knowledge-based systems, time 

itself can be studied in points or intervals (e.g., an axiom about ontology is legitimate in 

specific time period [ti, t2] when ti < 12). In the FungalWeb Ontology, the initial graph at 

time t] can go through a series of changes in different timestamps, therefore any query 

would only be meaningful during a particular time range (e.g. [t3, t„.i]). For example, the 

period fo, t6J may indicate that the triple graph (Enzyme, has, propertyx) is only valid 

The entailement between RDF grphs is indicated by <=, and we can say Gi •= G2 iff there is a map from 
G2 to a closure of G, [GHV07]. 
(see also: W3C on RDF Semantics: http://www.w3.Org/TR/rdf-mt/#entaii_) 

107 In temporal databases, bitemporal tables support both "valid time", capturing the history of a changing 
reality, and "transaction time", capturing the sequence of states of a changing table [Sno99]. 
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during the time period between t3 and t6, and in t7 it might not be valid any more. 

Accordingly, the ontological elements can be indexed with their period of validity, which 

allows movement between the time periods and access to the different states (past and 

present) of the system. Since in temporal ontologies, unlike temporal databases [JS95], 

the union of all of the corresponding snapshots (taken at different time points) does not 

always yield the whole ontology, a check for the logical implication (entailment) (which 

in RDF/OWL graph sense may be reduced to satisfiability checking) [HP04b] would be 

necessary. Considering the graphical structure of ontologies, we continue our study of 

transitions and changes in ontologies in the context of graph transformation, which has a 

great potential to deal with temporal graphs [Kos09] and their transformations [GPS98, 

YTT+05]. 

Ill 4.3 Graph Transformation 

In order to overcome some of the limitations of the traditional rewriting methods (i.e., 

Chomsky grammars and term rewriting) for expressing the non-linear structures, graph 

transformation has been proposed [PR69] in the context of web grammars. There are 

various types of graph transformation methods, which can be classified in two general 

categories: the methods, which use the gluing condition [EKL90] and pushout 

constructor, and those based on nodes and subgraph replacement [ER97]. There are also 

two major formalisms for describing graph transformations based on category and set 

theories. 

In this section, we briefly describe the rule-based graph transformation, and 

introduce some of its important notions along with some of the existing formal methods, 
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such as single- and double-pushout approaches for graph transformation. The rule-based 

graph transformation can be studied based on the following three activities [Hec06]: 

- Creating the conceptual generalizations of the reality and transferring them from 

"reality" to its representation in a model; 

- The definition of rules as specifications of state transformations; 

- Using graphs as a means to represent snapshots, concepts, and rules. 

Generally, as shown in Figure 3.60 applying a transformation rule (production) p: (L, 

R) denotes finding a proper match of L (Left hand side) in the source graph and replacing 

L by R (Right hand side), leading to the target graph of the graph transformation. 

v 

P." (L,R) f <^ 

~^ 1 \ 
It. "Vi 

1 / / - ^. ~"V 

Fig. 3.60. A rule based graph transformation for a dynamic system (adapted from [EP05]). 

The major question in graph transformations is how to delete L from a source graph 

and connect R with the context in the target graph [EEP+06]. Following the double-

pushout approach [EPS73] (see Section III 4.3.1.1), a transformation rule (or production) 

is defined [DHP02] as a pair /:£<—/—»•/? of morphisms I: I—* L and r: I—* R such that 

/ is injective108, where the graphs L and R are called the left and right-hand sides 

respectively, and / is called the interface or gluing graph. It is not necessary for the 

morphism r: I —> R to be injective, which allows one to identify different nodes or edges 

in various transformations. Also, the injectivity of/: I—* L ensures the uniqueness of the 

108 One to one: every unique argument produces a unique result. 
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results in backward tracing in a transformation. The rule t transforms a graph O G into a 

graph OH, denoted by O G =>, OH if there is an injective occurrence morphism m: L —*• O G , 

and two pushouts of the following form: 

/ . r 
L + I • • R 

0) (n) 

o; K "*0 
Fig. 3.61. The Double Pushout approach for graph transformation. 

The morphism m, which models an occurrence of L in O G is called a match. The 

transformation, which is performed by the specified rule, represents the change of the 

graph 0 G to the graph OH. In more complex transformations we usually see a sequence of 

simpler transformations and a set of several transformation rules. As stated in [EKL90], 

by considering the dangling points (those points in L, a subgraph of 0 G ; that are the 

source or target of arcs in O G minus L) and the identification points (those points in L 

that are identified in O G ) in the transformation of O G , the gluing points of L (identified by 

KL) can be identified if both dangling and identification conditions are satisfied. These 

two conditions together form the gluing condition, which ensures the transformation is 

valid. 

Dangling condition U Identification condition c: Gluing Condition 

Based on the previous definitions, the pushout exist iff m satisfies the dangling 

condition with respect to /, and in this case O G , /, and m determine OH uniquely up to 

isomorphism. A graph transformation system is usually defined as a set of transformation 
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rules (productions) P. Graph transformation deals with the rule-based modification of 

graphs in such a way that "the core of a rule p = (L, R) is a pair of graphs (L, R) known 

as the left-hand side L and the right-hand side R. Applying the rule p = (L, R) means to 

find a match L in the source graph and replacing L by R, thus leading to the target graph" 

[EP05]. 

There are currently some available tools and programming languages to perform and 

visualize graph transformation such as: AGG109 [Tae04], Fujaba110, Grace1" [KBK01], 

and Progres112 [HJK+95]. To find more information on some preliminary definitions and 

terminologies of graph transformation for the readers, we refer to [KKK06, EEP+06]. 

I l l 4.3.1 Graph Transformation and Category Theory 

Several formalisms have been used to represent graph transformations, including set 

theory, algebra logics, and category theory [Roz97]. Category theory along with channel 

theory and situation theory are the most popular mathematical theories for representing 

semantic information flow (IF) [SK03] in dynamic systems. The concept of 

"homomorphism", borrowed from abstract algebra, means the transformation of structure 

(as morphism) and composition (as object) [BelOl]. Several research attempts have been 

inspired by this embedded ability for representing transformation. Category theory has 

been used to represent the semantic backbone for graph transformation since 1979 

[Ehr79]. It provides an abstract framework for efficiently generalizing and transferring 

conceptual structures with the ability for reasoning about basic concepts in different 

109 The Attributed Graph Grammar System: http://user.cs.ru-berlin.de/~gragra/agg/ 
110 http://wwwcs.uni-paderborn.de/cs/fujaba/ 
111 GRAph and rule CEntered specification language 
112 PRogrammed Graph REwriting Systems 
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levels of abstractions. Using the abstraction power of categories considerably reduces the 

proofs [Men99] and facilitates the parallel representation of different behaviors (either as 

a whole or in part) in complex and nested structures. The categorical method to graph 

transformation is a prominent generic method for studying the behavior of a dynamic 

system through modern representation languages. It is highly generic because all the 

proofs and constructions are valid and applicable for different kinds of graphs (e.g., 

node/edge, labeled/unlabeled) [Sch08a, Sch08c]. To maintain categorical graph 

transformations, Schneider [Sch08c] recently proposed a roadmap for implementing 

some of the categorical constructors in Haskell113, to support functional programming 

[Bir98] through interactive categories of sets and of graphs. Generally, two categorical 

methods are frequently used for graph transformation based on single-pushout (SPO) 

[Rao84, L6w93] and double-pushout (DPO) [EPS73]. One of the differences [EHK+97] 

between these two methods is this requirement for DPO to have additional dangling and 

identification conditions. Moreover other categorical constructors such as pullbacks 

[Bau95, BJOla] (as the dual construction of pushouts) can be used for modeling the 

transformations in the context of double-pullbacks [HEWO 1 ]. 

I l l 4.3.1.1 Double-Pushout Approach for Graph Transformation (DPO) 

The double-pushout approach (DPO) [EPS73] and its variations, defined by different 

researchers, are among the most common methods for modeling graph transformations. 

We also follow this approach for studying graph transformation in our framework. As 

mentioned in Section III 4.3 in this method, any legitimate transformation should satisfy 

the gluing condition, composed of identification and dangling conditions, so it can assist 

113 http://www.haskell.org/ 
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in identifying which component is changed and substituted by which other component 

and whether a transformation is valid or not. In DPO the source graph G of a graph 

transformation G => H via the rule L <— I —> R is given by the gluing of L and an 

intermediate graph K via /, written G = L +/ K (pushout I in Figure 3.61), and the target 

graph H is given by the gluing of R and K via I, written H = R+/ K (pushout II in Figure 

3.61). As shown in Figure 3.61, applying graph morphisms I —> L, I —• R, and I —> K 

shows how I is included in L, R, and K. In summary DPO should be performed through 

the following steps when a rule L <— / —• R is given. 

1. Find the elements of L in the given graph G, i.e. a match m: L —* G. 

2. Delete from G all the elements specified in L, which are not in the gluing graph /. 

This means to find a graph K and graph morphisms K —* G, and / —> K such that 

the square is a pushout. 

3. Add to graph K all the elements of R, which are not in the gluing graph / and create 

the second pushout and obtain a derived graph H. 

As an example, consider the following graph transformation, which transforms graph 

G to H using the rule p: L <— / —* R (Figure 3.62). 
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L 

X* *X5 

\ / \ 
Xi *-Xs 

\ f H 

Fig. 3.62. An example representing a graph transformation using DPO. The upper part represents the 
transformation rule (L <— I —> R), and at the bottom left there is a given graph G. Graph H is the result of 
applying the transformation rule on the given graph G, which has been obtained by following the three 
steps in DPO. 

Il l 4.3.1.2 Single-Pushout Approach for Graph Transformation (SPO) 

The single-pushout (SPO) [Rao84, L6w93] is another categorical approach for graph 

transformation that, unlike the DPO, has a single morphism in the transformation rule 

(production) p, which is a morphism in the category of graph with partial graph 

morphisms as arrows p: L —> R. In contrast with DPO, the transformation can be 

represented by a single-pushout diagram and there is no interface between the source 

graph G and the target graph H. 

I l l 4.3.2 Ontological Transitions in the Shade of Graph Transformation 

Specifying of the transformations between different versions of an ontology is one of the 

primary concerns in ontology change management research, which can be gradually 

analyzed through the changes between different versions of an ontology since its 

creation. Studying the rationale behind these transformations can reduce some of the 

evolution's side effects (e.g., divergence and loss of information through different 
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versions). Graph transformations have been efficiently used for describing dynamic 

changes of networked and hierarchical structures [KP02]. Some efforts to specify 

conceptual model transformations using the notion of type graph and conditional graph 

rewriting has been presented in [DM07] with emphasis on critical pair analysis for 

conflict detection [LEO06]. Recalling the graph-based origins of ontological models, the 

graph transformation techniques can offer several benefits in managing ontologies 

including: representing the operational semantics of evolving ontologies via an intuitive 

visual graphical syntax; offering a means for studying states of concurrent and distributed 

systems [KKK06]; providing a clear realization of complex context dependency operators 

and coupling between different components, which facilitate their comparison, matching, 

and alignment; and providing reasoning facilities for conflict detection and resolution 

[DM07] as well as modularization frameworks [ADM+07] for capturing knowledge. 

Most of the graph transformation languages support the basic operations for 

node/edge addition and deletion. Also many available transformation approaches are 

highly application-dependent and informal, and have been proposed fqr specific 

purposes. Tools such as OwlDotNetApi114 can assist us in creating a directed-linked 

OWL graph for a given ontology file. More information on the classes and interfaces 

available in this tool can be found in its web site"5. COE116 [HES+05] is another 

RDF/OWL ontology viewing/composing/editing tool that has been built on top of the 

IHMC CmapTools117 concept mapping package. Users can use COE for importing 

OWL/RDF ontologies and rendering them into graphical representation, as well as 

114 http://users.skynet.be/bpelIens/OwlDotNetApi/owldotnetapi.html 
115 http://mach.vub.ac.be/~bpellens/OwlDotNetApi/index.html 
116 http://coe.ihmc.us/groups/coe/ 
117 http://cmap.ihmc.us/conceptmap.hhnl 
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performing regular editorial operations such as adding/deleting/moving nodes and edges, 

and dragging, navigating, exporting, and so forth. 

In our model, changes in ontologies can be performed through a set of consecutive 

transformations (ideally autonomous) via transformation rules, performed on the initial 

graph representation of an ontological structure. We start our analysis by considering 

changes in a single ontological element, which can shift the state of the ontology to 

another state. By considering graphs and the associated formalism for abstract syntax 

representation of ontologies, we represent the changing ontological structure within the 

RLR framework through the graph transformation process, operating on the source 

ontology (initial graph) along with a set of rules or productions (operations) transforming 

the initial ontology to its target version. An ontology Otl can be transformed into another 

conceptual framework Ot2 through the transformation T, shown as: T: Otj —> Ot2, where 

O,, and Ol2 are ontologies at times ti and t2 respectively, represented as an OWL graph, 

and the arrow indicates a transformation, which may consist of a set of simple 

transformations of the graph's elements. For example, adding a node to the graph is a 

composite transformation, which consists of several elementary operations such as 

adding corresponding edges for that node or assigning matching attributes and 

characteristics for satisfying the ontology axioms and facts. When dealing with 

ontologies conveyed in very expressive languages with rich semantics, one should always 

keep in mind that the complete transformation of all elements to the graphical 

representation might not be straightforward. 

By defining a set of constraints within the transformation rules one can differentiate 

between different relations between ontological elements (e.g. subsumption relationships 
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(hierarchical relations) and association relationships (non-hierachical relations)). The 

dependencies between elements and editorial operations can be specified in the 

transformation rules by monitoring the states before (L) and after (R) applying the ru\ep: 

L—> R [DM07]. When an ontology is being implemented collaboratively and used by 

different users and groups, there may be cases where different editorial activities can 

cause inconsistencies and conflicts (syntactical or semantical). The conflict arises in cases 

of incompatible modifications of a component (e.g., nodes or edges) through different 

transformations. Graph transformation along with some techniques such as critical pair 

analysis [LEO06, DM07] and tools such as AGG [Tae04] can be beneficial in 

automatically detecting possible conflicts for each of the defined transformation rules. 

I l l 4.4 Change Analysis during Conceptual Model Transformation 

Graphs are a powerful vehicle for analyzing model transformations. Various types of 

model transformations have been surveyed in [MG06], including horizontal versus 

vertical [HCE+96], endogenous versus exogenous, and syntactical versus semantical 

transformations. In a "horizontal" transformation, the source and target models stay at the 

same abstraction level (e.g., refactoring, migration,) while in a "vertical" transformation, 

they reside at different levels (e.g., incremental refinement). If the source and target 

models have been expressed in the same language, the transformation is called 

"endogenous"; otherwise, it is "exogenous". In the syntactical transformation, only the 

syntax will be transformed (e.g., model import or export), unlike the semantical 

transformation, which also take the semantics of the model into account [MG06]. 
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Different changes that occurred to each ontological element can be passed along the 

chain of dependent elements. Our proposed framework supports the conceptual 

transformations between different versions of ontologies, as well as maintaining the links 

and relationships between the versions. In fact, sequences of horizontal and vertical 

transformations in ontological structures occur during the evolution process. Several 

ontology transformations can be studied during ontology evolution. These 

transformations include, but are not limited to, transformations in relationships and 

properties (data type or object) (see Figure 3.63 and Figure 3.64), concepts, domain, 

cardinalities, and constraints. In addition, the transformation can be partial, which affects 

only a limited part of the ontological element or structure (i.e., part of the taxonomy) or 

complete (e.g., in the case of metamorphosis). 

Hj*a|jse-

'%&0lase? 

?MrafeB«s 
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Fig. 3.63. Transformation by means of switching the domain and range of an associative relationship. 
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Fig. 3.64. Transformation by decomposing a property. 

We consider "transformation" as a specification of the series of actions and 

operations that make an aiteration in an ontologicai structure and cause the ontology , „ 

change state. For example, a change in a constrain, or the addition/deletion of a concept 

or a property can be shown as action A on ontologicai eiemen, a, action B on ontologicai 

element „, and so on. A change can be defined as the mapping between two specif* 

definitions from one ontology or different ontologies, or from different versions of one 

ontology. For example, 0,(„) - 0,(6) may be read as ontologicai element a from 

ontology , has been replaced by 6 f rom o n t o l o g v 2 . ^ ( r a c e s , h e c h a n g e s ^ ^ 

ontology and its transformations, and uses the information employed for each 

transformation for the reproduction phase, i f necessary. 
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Ill 4.5 The Transformation in Action 

Here we employ an adapted type of graph transformation, namely a hierarchically 

distributed graph transformation to maintain the hierarchically structured knowledge in 

the Semantic Web environment. In this framework, the graph transformation rules can 

describe the structural changes placed during a knowledge base operation. 

HI 4.5.1 Employing Hierarchically Distributed Graph Transformation 

Changes in an area due to technical, industrial, cultural, or social matters force the 

existing systems and applications to adapt themselves to the new state. Particularly, large 

systems and knowledge bases built upon smaller reusable sub-systems are in greater 

danger and should be continuously monitored to ensure the correctness and consistency 

of the entire infrastructure. Graphs can be seen as appropriate vehicles to represent such 

hierarchical systems with nesting and layered relationships. In an ontological sense, 

concepts in an ontology naturally match with nodes of a graph, while the relationships in 

an ontology correspond to edges. Several biomedical systems and applications currently 

deal with complex graphs, with millions of nodes and edges and likely a large number of 

different rules. These graphs need to continuously evolve and transform to supply the 

revised and valid knowledge for the systems. The graph-based representation of the 

biomedical ontologies has a great tendency to become large, complex, and hard to grasp, 

understand, or maintain in a very short time. In applications dealing with compound 

graphs in layered organizations, the notion of graph can be extended to hierarchical 

graph. Hierarchical graphs attract broad attentions in theoretical computer science (e.g., 

object oriented design [EJ03], database [EN07], and computational molecular biology 
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[MV08]), mostly for representing semantically complex and interrelated network 

structures. Despite the popularity of hierarchical graphs in different domains, there is no 

common data model available; however, most of the existing models support treelike 

structures. This is one of the factors that make the hierarchical graph transformation 

techniques an appropriate option for analyzing hierarchically organized ontologies. 

Different models, including the ones in [ES95, EROO, DKK+99, BKK05], have been 

studied concerning the issue of hierarchical transformation of dynamic complex graphs, 

and several models ([Hof99], [DHP02], [Pal08]) have been implemented using the rule-

based approaches. 

In order to mimic the actual nested hierarchical structure of the Semantic Web, 

where information is distributed in the nodes (graphs) and edges (relations between the 

graphs), we employ hierarchical distributed graphs [Tae99] for our approach. The 

hierarchical graphs have richer semantics and are more expressive in comparison with 

regular flat graphs. In addition, they reduce the complexity of representation of large 

interrelated systems by allowing one to describe a system on a more abstract level 

through hiding the irrelevant details in encapsulated sub-graphs [ES95]. Hierarchical 

graph transformation can be performed along with the algebraic and categorical graph 

grammars, using the extended double-pushout notion to represent various aspects of 

dynamic structures (e.g., the rearrangements of some temporal parts, describing the 

changes in relations, creation/deletion of communication channels, and performing 

operations such as "splitting" a graph into two or more graphs or "joining" distributed 

graphs into one graph [Tae94]). The categorical graph grammar [Sch89] supports the 

flexible change of complex interrelated compositions while providing explanations for 
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corresponding actions performed by graph transformation. Various states can be 

produced by internal or external actions, and their communications can be modeled and 

simulated using graphs and state transitions, then represented and described by means of 

graph transformation. The double-pushout technique has been extended from flat to 

hierarchical graphs [DHP02], where the associated transformation rules can be applied at 

all hierarchical levels. This facilitates changes of the graph's entries (i.e., by insertion or 

deletion) regardless of their size and configuration, with adaptation of the "dangling 

condition" from the flat graphs transformations [DHP02]. 

We use the concept of hierarchical distributed graphs to be able to perform graph 

transformation on different levels of abstraction. As defined by [TKF+99] distributed 

graphs distinguish between two levels, namely local (internal), and network (external or 

lattice) (Figure 3.65). 

Lattice (Network, External) 

nterface 

Internal graphs and 
Morphssms (Local) 

Fig. 3.65. A schematic representation of a distributed graph. 

In our model, the hierarchical graph (the lattice) consists of a set of internal graphs 

(which may be hierarchical graphs as well), the root of the hierarchy, and a set of edges 
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that relates the internal graphs to each other. Each editorial action is expressed through a 

graph transformation and every state of the ontological structure is modeled in a graph 

with the nodes denoting objects and the edges representing the connections linking them. 

The compound state of the entire system can be known by analyzing several other 

internal graphs, each having an internal state and behavior. There are also lattice-like 

dependency graphs representing the dependencies between different internal graphs. In 

the process of change management for the lattice-like structure, several concerns related 

to sequential, parallel, or concurrent evolution of its components arise. 

Different ontologies in Semantic Web are usually connected in a lattice-like structure 

and interact with each other through one or more interfaces. This lattice can be modeled 

as a directed graph with individual ontologies (internal graphs) as its nodes and the links 

between these ontologies as its edges. The described configuration is analogous to what is 

called a hierarchically distributed graph (HD-graph) [Tae94], where each of the links 

connecting the internal graphs contains a graph morphism specifying the relation between 

two internal states. When the internal graphs are faced with any change (e.g., 

adding/deleting a concept or relation), their state would be changed, which would affect 

other dependent graphs, and a synchronization unit within the RLR framework, which 

stores all the states in the change logs, forces the lattice-like structure and the mediator 

interface to change their states accordingly. Following the approach given in [Tae94], this 

structure can be modeled in two different but related planes, namely conceptual (shows 

all existing and potential relations, paths, and their revisions) and operational (shows only 

actual existing nodes and relations). 
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Fig. 3.66. A hierarchical graph for managing distributed ontologies representing the relations between 
different states of a lattice-like structure consisting different distributed ontologies. The changes can be 
performed in an interface graph that consists of all the nodes which have a matching node in the related 
internal graphs. In this way, the transformation of objects and morphisms allow the change of an evolving 
structure by changing its interfaces. 

The synchronization unit needs to check certain conditions, namely connection and 

network conditions, to ensure the consistency of distributed graph transformations. The 

connection condition [TKF+99] determines that: i) the objects of source graphs should 

not be deleted without first deleting the related local mappings into target graphs; ii) the 

local nodes and edges, which have corresponding elements in interfaces should not be 

deleted; iii) to extend source graphs (upon insertion) first the new graph objects need to 

be mapped to the related target graphs; and iv) The attributes of graph objects, which 

have correspondence in interfaces should not be changed. The network condition 

[TKF+99] regulates that: i) if a network node needs to be removed, its associated local 

graph has to be completely known by the rule; ii) if a network edge needs to be removed, 
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the local graph of its source node and the local morphism have to be completely known 

by the rule; and iii) if a new network edge needs to be added, the local graph of its source 

node has to be completely known by the rule. 

In order to categorically analyze the distributed transformations we employ the 

category of distributed graphs DGRAPH with distributed graphs as objects and 

distributed graph morphisms as arrows118 to define a transformation using an adapted 

version of double pushout approach described in [Tae99]. For the details of proofs and 

other related categorical notions in distributed graph transformation one may refer to 

[Tae99, EOP06]. 

I l l 4.5.2 Analyzing Events and Actions in Rule-Based Model Transformation 

In order to analyze different events that trigger actions during the ontological evolution 

process, we consider events as part of the rule condition in a graph transformation. The 

actions as mentioned before (Section III 4.4) are described by productions and the events 

will occur if certain predefined conditions are assessed to be true. To formalize graph 

transformation, we employ the notion of double-pushout from category theory, which 

needs certain requirements to compute production (describes actions in graph grammar) 

and its corresponding element in other graphs. One of the requirements is satisfying the 

gluing condition to derive a new graph by finding a match of the left side of the rule in 

the given graph, then deleting it (except the gluing point) and adding the right side of the 

rule (see [EKL90] for the details). 

By following the approach proposed in [Tae94], we use hierarchical distributed 

graph rules covering both internal and external production describing the internal and 

118 Notice the similarities with the functor categories. 
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external actions respectively. Since the lattice-like structure covering the internal graphs 

is less likely to be changed by internal actions, which affect mostly internal graphs, the 

external graph is transformed through an identical production that preserves the external 

graph nodes. A typical example, illustrated in Figure 3.67, is the addition of an 

ontological element (i.e., a concept) to an existing ontology, which causes the state of the 

ontological structure (internal graph) to be changed. This action does not have a 

significant effect on the lattice-like structure (external graph). 

l' UStl^USt2 
Fig. 3.67. Adding a new concept to an individual ontology that is part of a lattice made from several 
interconnected ontologies. 

As represented in Figure 3.67, the hierarchical graph production "concept addition" 

demonstrates an internal action that transforms the ontological structure O from state Sti 

to state St2. This production will not alter the external graph represented in Figure 3.66. If 

one wants to delete an ontological element that has referenced a relation from other 

distributed ontologies in the lattice, then an external action needs to be performed. The 

external actions are capable of transforming the external graph. Controlling these 

transformations is a central task in the ontology engineering domain, since they can easily 
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give rise to different types of inconsistencies, especially in cases that involve several 

parallel actions and transformations. 

As long as the actions (e.g. deletion, insertion) do not violate the defined conditions 

in the production rules several actions can be executed in parallel at the local level (e.g 

deletion/creation of internal elements). As mentioned, the external lattice production 

describes the structural changes of the external graph, and we can model the external 

actions using a hierarchical distributed graph production in such a way that a unique 

production for the internal graphs of every node of the external graph (individual 

ontological structures) must be performed. If the stated predefined conditions for 

insertion/deletion of the nodes in the internal graphs are satisfied, then the hierarchical 

distributed graph production can be applied at the external (lattice) level (for 

adding/deleting edges, a set of morphisms will be described instead). 

An example of alterations in the lattice is the insertion of connective internal graphs 

(nodes) between two or more other internal graphs (nodes). For instance, it is known that 

"a daily cup of yogurt significantly reduces the risk of Candida infection and 

colonization" [HIA92], but this diet might not seem appropriate for lactose intolerant 

patients. Also, some studies show that some nutrition is beneficial to reduce the risk and 

severity of Candida infections if consumed in a proper diet. 
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Fig. 3.68. The hierarchical distributed graph production "add connector" is represented in a way that the 
state of the graph "fungal infection" is now related to the graph "diet", rather than "nutrition". 

Some of the examples119 are Probiotics (up to 900 mg daily of beneficial bacteria), 

Fructooligosaccharides (up to 4 g daily), Goldenseal (250 to 750 mg daily), Lactoferrin 

(300 mg daily), Topical tea tree oil (based on the prescription), Oil of oregano (460 mg 

daily), Garlic (600 mg daily), and Boric acid (600 mg daily for 2-3 weeks, shown 

effective in 65% of women with vaginal Candida infections [SCN+03]). In order to 

conceptualize these facts in an ontological framework, we use a connecting node (internal 

graph) "diet" to connect two structure fungal infections and "nutrition" through the 

hierarchical distributed graph production "add connector" (Figure 3.68). 

Ill 4.5.3 Transformation Rules for Changes in Ontologies 

The transformation rules in ontology evolution determine what types of changes are 

allowed and can be performed on the ontological elements and axioms. Padberg [Pad08] 

'|l> Fungal Infections (Candida). Life Extension Electronic Magazine: 
http://www.lef.org/protocols/infections/fungal_infections_candida_01.htm 
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describes the notion of rule-based refinement as an extension of transformations with 

added refinement morphisms alongside the rules, which can be applied for maintaining 

component-based applications. We found that the ontology evolution process, through 

subsequent refinements, is generally analogous and compatible with rule-based 

hierarchical graph transformation and refinement. Generally, in a double-pushout 

approach, a rule-based transformation indicates the changes of OG to OH based on the 

defined rule (see Section III 4.3). The rules can be atomic120 or compound121 and will be 

examined to ensure the compatibility and consistency122 of the transformations. 

Our proposed rule-based transformation method for ontologies determines the 

circumstances under which an ontological element can be changed or refined. Table 3.2 

represents some examples123 of graph transformation rules, which can transform a typical 

graph such as Industry (Diagram 2). Diagram 3 represents the establishment of the 

relation "is being used in" to connect two graphs, "Fungi" and "Industry". Diagrams 4 

and 5 show the rules that specify the internal structure of the food industry. By applying 

these transformation rules, Diagram 6 is obtained, which gives us two potential matches 

(baking and wine industry) on the left. 

For example, in a DL sense, a rule with a single literal in the head can be counted as atomic [FT05]. 
121 A compound rule is made by combing the effects of two or more rules (atomic or non-atomic). 
122 In fact using graph transformation as the underlying formalism can guarantee the consistency of the results 

[TGM98]. This is an important point, since the distributing nature of evolving structures gives rise to 
different types of inconsistencies. 

123 For demonstrating the transformation rules in our model (Table 3.2), we employed the diagrammatical 
notions introduced in [Pal04]. 
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Table 3.2. Some examples of the graph transformation rules for part of the FungalWeb Ontology. 

Industry 

Two individual graphs Fungi 
and Industry are in their initial 
state 

industry 

Transforming the Industry 
graph (R) to the new version 
(L) to cover more detailed 
information (adding child) 

Defining the relation "is being 
used in" to connect the two 
graphs Fungi and Industry. 

Adding a child node to specify 
the internal structure of the 
food industry. 

Food industry 

L 
food industry 

R 

Adding another child node to 
specify the internal structure 
of the food industry. 

The two potential matches 
(baking and wine industry) 
can be chosen from the left 
hand side. 
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A graph transformation can be defined to be conditional [HHT96] in such a way that 

under certain conditions, the graph production (rules) transform a source graph into the 

target graph. These conditions, which impose a set of restrictions on the transformation 

processes, can help one to avoid inconsistencies and conflicts (e.g., the conflicts due to 

dangling edges). 

Ill 4.5.4 Formalizing the Ontology Change Model in Distributed 
Environments 

The hierarchical distributed graph can be used for analyzing dynamic distributed models 

and their transitions by describing the initial state, internal and external actions and 

defining communicating channels for synchronization. Category theory can be used as a 

complementary formalism for supporting graph grammar describing the initial graph and 

a set of all hierarchical graph productions modeling various actions (e.g., additions, 

modification of relations, and so on) in a distributed system. The double-pushout 

approach to graph transformation as a constructor within the categorical framework is 

comprehensively described in [Ehr79, EOP06] for directed and labeled graphs. This 

method has been generalized to so-called high-level replacement (HLR) systems in 

[EHK+90, EEP+06] by abstracting the results into arbitrary objects and morphisms124. It 

has been proven [Tae94] that the hierarchical distributed graph transformation is a highly 

appropriate scenario for HLR systems. Reflecting this approach into our framework, we 

consider the lattice L consisting of all interacting ontologies as a hierarchical distributed 

graph, with a set of transformation rules (e.g., rules for node addition/deletion), which is 

defined [Tae94] as a functor HD: L —» G, where G is the category of all labeled graph 

124The theory of HLR has been developed for different graphs, e.g. hyper-graphs, attributed and typed 
graphs, various Petri net classes, elementary nets, place/transition nets, and Colored Petri nets [Pad08]. 
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and LeG. To define the HD-morphism we can use natural transformations, which are 

simply the morphisms in the category of functors. 

A transformation rule can determine conditions such as: 'the deletion of a lattice 

node should be performed after deleting its corresponding internal graphs'. The 

hierarchically distributed graph transformation provides a means for dynamically 

analyzing model transformations in a distributed environment that consists of several 

hierarchically organized ontologies. Categorically speaking, the ontological structure can 

be considered as objects and the links between them, which shape the lattice structure, as 

morphisms. This approach allows one to study the behavior of evolving categorical 

systems in different layers (analogous to the modular definition of ontologies) and 

different levels of abstraction. 

I l l 4.5.4.1 Distributed Change Management within the RLR Framework 

In our approach, we adapted the graph transformation methods for realizing the problem 

of specifying changes in distributed ontologies in two levels of abstractions, namely 

micro level (changes in internal structure of an ontology, e.g., adding/deleting a concept 

to/from an ontology) and macro level (when the internal changes spread out to an 

interrelated ontological organization, e.g., changing the state of an ontology or 

adding/deleting an ontology to/from interrelated system). The propagation of changes 

may need to be performed during the runtime of many critical systems (e.g., knowledge 

bases supporting robotic surgeries or aviations); therefore, these two levels always need 

to interact closely to ensure the success of a change management strategy. We use 

distributed graph transformation to represent the dynamic nature of distributed 
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ontologies, and to model a framework for describing the changes in an ontological 

structure and their effect on the other dependent artifacts organized within a lattice-like 

environment, such as the Semantic Web. The distributed graph transformation can act on 

different levels of abstractions, ranging from explaining the details of local actions to the 

rule-based analysis of different interactions and operations (e.g., inter-communication, 

migration, and synchronization) [TGM98] before or after a transformation. In order to 

successfully manage changes in a specific dynamic system, it would be essential to know, 

or at least have a reasonably accurate guess, about all the possible states of that system at 

different times. The fact that the dynamic system acts in a distributed environment makes 

this need more vital. Several studies [KM90, KM98, TGM98] have been done on 

managing the coordination between structural and state changes in software engineering. 

The concept of distributed graphs has been defined in [CMR+97, TGM98] as 

networked compound graphs with a set of internal graphs as the nodes expressing a 

internal state of the system, and a set of graph morphisms as the edges connecting the 

nodes (internal graphs) to each other. Distributed graph transformation aims to mediate 

between these two levels of abstractions (networks and nodes) and can be used to model 

many different types of dynamic network reconfiguration [TGM99] by applying a set of 

rules for each of the levels (Figure 3.69) The rules contain the instructions for performing 

different changes (either in the network topology or in the nodes) and transformation in a 

dynamic system via defined actions at different levels of a distributed graph. The rules 

also determine whether or not a change operation is eligible to occur. 
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R.- Lattice transformalionrule 

L R 

Fig. 3.69. P/and P/ respectively specify sets of lattice and internal transformation rules. 

The communication between lattice and internal rules performed within a 

coordinated channel can be used to synchronize different actions in node and lattice 

levels. 

I l l 4.5.4.2 Synchronization and Coordination 

Managing several concurrent internal and external actions is also vital in the Semantic 

Web domain. Considering the Semantic Web as a hierarchically organized graph-like 

structure, each action on a graph has consequences in its modified consecutive version, 

which helps in tracing the events while preserving the reference state, or in some cases 

reconstruction of the past, if it has been removed from the original version. A hierarchical 

distributed graph production can be used for synchronization purposes by checking 

whether the external production is identical (or compatible) with what is performed by 

internal actions [Tae94]. More precisely, it checks if the lattice nodes and edges, in 

coordination with internal actions, have been identically replaced in the interface with 

respect to the gluing condition. For example, a graph production can describe a 

synchronous communication channel [Tae94] between two different versions of an 

internal graph by highlighting the revisions in the original state and the current state 

through the use of an interface graph. Later on, the action that causes a change in the 
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internal graph needs to be synchronized with other actions on dependent internal graphs 

and finally with the actions that alter the external graph. In real world applications, this 

synchronization usually results in a series of mappings between the previous and current 

states. To manage the interaction between the actions on different levels, we generalize 

the change model proposed in [KM90, KM98, TGM98] for the software engineering 

domain to classify the changes in a dynamic network at nodes and network levels. The 

distributed Semantic Web environment can be conceptualized in a hierarchical lattice-like 

structure, composed of several ontologies as nodes and the links between them as edges. 

The changes in a lattice-like structure can be performed at the nodes (e.g., replace/rename 

a node), edges (e.g., replace an edge) or hierarchical structure (e.g., adding/deleting one 

or more nodes). 

The agents in the RLR framework interact with each other through a set of 

communication channels to control actions at different levels. This control assures the 

consistency and integrity of changes by defining quiescent125 nodes and states. The nodes 

are assumed to be in a quiescent state (non-active/passive state) when changes occur at 

the lattice level. According to [KM90], a quiescent state for a node is a state wherein the 

whole system is consistent and no active communication exists between the nodes or 

within their environment. The notification for changing the node's state from active to 

passive (and vice versa) is given through the established communication channel between 

the defined abstraction levels. In RLR, upon detection of the alterations by the set of 

change capture agents, the current state of the system would be assigned to the newly 

This strategy is similar to "locking" in database research. 
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affected elements (e.g., newly added nodes) and an alert would be sent to the other 

involved components to inform them about the latest state of the system. 

The state of a system should be determined and declared by an agent to allow some 

actions to be performed in a proper state of the system, to postpone them for later states, 

or to prevent them from acting on some of the preserved elements. For example, in the 

case of deleting or splitting a node, it acts like the lock mechanism in the database. The 

synchronization begins with assigning the states to each element, starting with the initial 

state upon its creation and continuing until the final state is assigned upon its termination. 

RLR controls the changes by incorporating the transformation rules (at different levels) 

along with other pre-defined consistency conditions. The synchronization of two different 

nodes (internal graphs) in a distributed graph can be performed through an interface 

[TGM98] that connects these nodes together. The transformation is performed by a 

sequence of simpler transformations, each meeting certain conditions to ensure the target 

graph is still a distributed graph and to avoid any side-effects (explicit or implicit) on the 

graph structure. Some of these conditions are as follows [TGM98]: 

- Gluing condition of the double-pushout approach for the rules at different levels; 

- Connection condition, which prevents the deletion of the nodes and the edges if they 

are being used by other components. 

Also some other conditions and restrictions may be applied to each distributed rule, 

depending on its function. The main context conveyed by the lattice may be defined as 

protected to keep it unchanged. If the different actions and changes that are executed at 

the node's level have minimal or no interference with each other, they can operate in 

parallel. Assume a set of related ontologies, each with the ability to manage the changes 
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in its own structure and each change potentially affecting other ontologies. An agent can 

initiate an action for changing each ontology in the lattice, based on imposed rules. This 

action can then be spread throughout the entire lattice. The distributed graph 

transformation can be used to model real-time changes, such as the insertion or deletion 

of ontologies. This is important since many changes and updates, unseen in the design 

phase, can be applied when the system is in operation if they do not cause any 

interruption. If we consider changing a node, it should be flagged as an inactive state, so 

it will not update the system's knowledge upon a change (neither initiate an update nor 

service any update request [TGM98]). 

I l l 4.5.4.3 Rule-based Patterns for Transformations 

After each change, the system needs to be verified for consistency. In order to 

preserve the ontological elements' identities and guarantee the consistency and integrity 

of the changes, we can define a set of pre- and post-conditions to be satisfied. If all the 

conditions within a distributed graph transformation rule are satisfied, then the result of 

transforming an initial distributed graph would be a legitimate distributed graph as well. 

Consider the three ontologies (Oi, O2, and O3), connected to each other in a lattice-like 

structure. Each node of the lattice represents an ontology and each edge signifies a graph 

morphism. The information about the state of each ontology and its relations with other 

ontologies in the lattice is stored in an interface node. The diagrams in category theory 

intuitively reflect the feasibility of our method, by demonstrating the interactions between 

the states and the information related to the changes. By following the method given in 

[TGM98], Figure 3.70 demonstrates the changes in industrial applications within the 
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FungalWeb Ontology (as an internal graph in a whole integrated lattice), which consists 

of the concepts "enzyme" and "product", with the relation "uses". The figure depicts the 

effect of changes and the state of the ontology (starting from initial inactive state) in the 

lattice-like environment, along with its predecessor and successor versions, using the 

following distributed graphs: 

Uses 
Product \ J Enzyme 

Industrial App. 

I BD-Craph 
morphUm 

Industrial 
App. 

I Industrial 
1 App, 

Operation 

Operation n 

Interface 

t Operation 2 

< 
FungalWeb 

Industrial 
App. 

HD-Gmph 
morphism 

Produces 
Product 

Uses 
L-ompany Enzyme 

Industrial App. (after change) 

Fig. 3.70. Representation of a change in a part of the FungalWeb Ontology using graph transformation. 

In the Figure 3.70, assume an update (internal action) starts at the FungalWeb 

Ontology to delete the existing relation "Uses" and add the new concept "Company" and 

the new relations "Uses" and "Produces" to relate the newly added concept with concepts 
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"Enzyme" and "Product" respectively. We apply the following rules to perform this 

update: 

Add interface node ("FungalWeb Interface"), 

Operation 1: Add ontological element Concept (FungalWeb, "Company "); 

Operation 2: Delete ontological element Relation (FungalWeb, "Uses"); 

Operation 3: Add ontological element Relation (FungalWeb, ""Company", "Product", "Produces"); 

Operation 4: Add ontological element Relation (FungalWeb, ""Company", "Enzyme", "Uses"). 

To hide unnecessary details, the change processes and related interactions are 

performed via interfaces126 (cf. Figure 3.70). As mentioned in Section III.2, in using 

category theory, we focus on the interactions between objects rather than their internal 

structure. In summary, in our categorical representation of a hierarchical graph 

organization, anything other than nodes and edges (e.g., attributes such as data type 

properties for ontologies) are supposed to be marginal and not essential [BKK05]. Thus, 

the notion of graph transformation can be defined [BKK05] as G,R => C,E, with G, R, C, 

E respectively indicating a category of graphs, a category of rules, a category of control 

conditions, and a category of graph expressions (cf. [BKK05] for more information). 

Modeling the notion of graph transformation in an abstract way is significant in the sense 

that it hides the marginal information, which does not explicitly contribute in the 

transformation process. As an example, a transformation using the double-pushout (DPO) 

has been shown in Figure 3.71 for part of the FungalWeb taxonomy. The transformation 

rule determines a condition for a consistent deletion operation within an ontology by 

specifying that if a parent-node has to be deleted its children should be deleted as well. 

126 "Interface generally refers to an abstraction that an entity provides of itself to the outside. This separates 
the methods of external communication from internal operation, and allows it to be internally modified 
without affecting the way outside entities interact with it." [MVM10]. 
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The double-pushout approach, constructed based on categorical pushout, in our example 

has been generally represented as the gluing of two graphs via a common interface. 

Deleted elements Gluing points Adding elements 

J* ^ 

• ' 

A * 

o 

O 
C,Q 

: 
• 

CK V 
o> O 

K 

/ 

c'0 

' * 

*A 
Fig. 3.71. The transformation of part of an ontological structure following the rule "deletes a parent node". 
The upper part represents the transformation rule, and the bottom left shows a given graph and the bottom 
right demonstrate the result of the transformation, which has been obtained by following the three steps in 
DPO (see HI 4.3.1.1) 

As shown in Figure 3.71, the left side indicates a pattern127 to be located in the 

original graph (G); the right side represents the requested transformation, which 

transforms the original graph (G) to the transformed graph (H); and the middle section 

represents the gluing point(s) (Ci and C2), which are identified by L 0 R. 

In the RLR Framework the agents generalize the behaviors by systematically 

monitoring the transformations and encapsulating the changes from one point to the 

subsequent position to extract rules and generate the patterns. The patterns can be 

In order to define a pattern to be always applicable it would be sufficient to leave the left side of the 
associated rule empty. 
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repaired, improved, and evolved through an intensive didactic teaching128 process, which 

enables the agents to derive rules from a sequence of trial state changes129. 

I l l 4.5.4.4 Similarity Checking and Traceability 

A graph comparison methodology has been presented in [DHP02] to compare the 

contents of two graphs by considering the number of nodes and edges. The comparison 

has been performed based on applying the rules while considering the hierarchical 

dangling condition, to check whether a specific sub-graph exists or not130. This approach 

has been later used to perform hyperedge replacement and substitution. RLR intends to 

audit and monitor very large, heterogeneous, evolving biomedical ontologies and 

nomenclature scattered across the Web by highlighting changes between different 

versions of an ontology. In order to facilitate the change tracking process, we employ 

diagrammatic features on graph representation along with category theory, which enable 

us to represent the system's activity in different levels of abstraction. Our approach is 

similar to the tracking graph transformation approach [BKK05], which models the rules' 

internal structure by means of LHS (left-hand side) and RHS (right-hand side) graphs and 

a partial morphism between them, which facilitates the tracking of preserved graph 

components between two versions of a graph through a set of consistency constraints to 

check matching morphisms. 

Coleman, A. Didactic Teaching. http://www.resus.org.uk/pages/IDnpP_AC.pdf 
The idea of extracting rules as general behavior descriptions from sample state transformations is called 
programming by example and represents the main didactic tool of the Stage-Cast environment [Hec06]. 
This can be performed when one attempts to delete a graph. 
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I l l 4.5.5 MAS and Graph Transformations 

The transformation rules can be used to determine and model agents' behaviors and 

operations in MAS [KK99, DHKOO]. They also capture the effects of different agents' 

actions and operations on local or network levels, thus as a representation method, these 

rules enable modeling the agents' cooperation and interactions. When we consider graph 

transformation for formalizing agents' interactions and cooperation by means of 

communication with the other agents within a specific MAS or between different MAS 

systems and with their environment, it can be used for representing the transformation of 

the agents' communication network. To analyze changes in relations between a set of 

cooperative agents within a generic multi-agent system (MAS), considering the category 

of MAS, a transformation mechanism based on DPO can be defined by finding a pushout 

complement for a particular state through examining the gluing condition. 

Considering the challenges for modeling changes in distributed systems, which 

involve several issues including traceability and synchronization, RLR utilizes a 

distributed graph transformation technique, which explicitly supports the synchronization 

and concurrency processes. For the sake of consistent change management, a process 

within the RLR model needs to be synchronized with its adjacent processes in order to 

evolve coherently. For example, if two operations want to act on a common ontology 

through specific actions and conditions, these actions should act under a consensus 

agreement so they can both perform and evolve coherently. To coordinate the potential 

changes in the processes, a set of synchronization requests are issued at each abstraction 

level. These requests need to follow certain transformation rules and conditions, which 
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are compatible with each other131, in such a way that they support the concurrent 

evolutions of different parts of the system autonomously based on the consensus 

agreement. To ensure the consistency of the transformations, we enforce certain types of 

reactions and behaviors (preferably among several options) for agents in certain states, 

when the conditions are applicable (determined by L in the rule Z, <— / —» ic). The overall 

effect of an action within a scenario (e.g., select a node to be deleted) is described by a 

pair of instance diagrams132, modeling the before/after states [DHK02]. Sequences of 

transformations represent the changes in the states' agents and their behavior, and model 

their interactions within the communication channels in a MAS133. For example using the 

method presented in [DHK02], we consider the communications between the Explorer 

Agent (EA) and the Log-Reading Agent (LRA), in RLR (described in Section III 2.3.1) 

to capture the type of change operation (Figure 3.72). 

EA: Explorer Agent IRA: Change log 1 LRA: Change log 2 

T 
OPtl :Change Operation 1 i i i 

_ ^ changetype lookupQ | | 

| ' *j | 
, , Change type lookup () , 

I Propose change type j} I 1 
f5"~—: '— 1 l 
1 ' Propose change type () ' 

| Acceptthe proposal {} | | 
I ~\ Reject the proposal () i 

( . _ — _ _ — . j — _ . _ ^ 

Fig. 3.72. The communication between explorer and log reading agents to specify the type of a change 
operation. These communications can be placed during the negotiation phase. 

131 The compatibility here refers to this fact that the combinations of these transformation rules should keep 
the entire system in a consistent state. 

132 In UML, instance diagrams (object diagrams), are useful for exploring "real world" examples of objects and the 
relationships between them, while the type diagram reflects a given Use Case. [UML2] 

133 In agile object oriented modeling , This usually is represented by UML sequence diagrams [UML3]. 
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Due to the ability of graph transformation for handling temporal representation 

[GVH03], we have used the rule-based graph transformation [DHK02] to describe the 

pre- and post-states of an agent-based model (Figure 3.73), grounded on the 

communication diagram demonstrated in Figure 3.72. In this figure, the Explorer Agent 

(EA) reacts to alterations that appear in the environment (e.g., a change operation) and 

tries to affect the environment by locating the change and determining its type based on 

different proposals. In the same way, one can define other rules for rejecting the 

proposals, storing the proposals for future decisions, or aborting all the communications. 

Change 
Operation 

Asks_ queryJrom 

EA: Explorer Agent 

A$ks_ query Jrom 

IRA: Change tog 2 

URA: Change toy 1 

i Change type 
lookup 

Ask$_query_fiom 

Proposed 
change type 
from LRAl 

Picked 
EA: Explorer Agent 

IRA: Change log 2 

A$ks_query_Jrom ' 
Accepted by 

IRA; Change M?g,| 

— r 
Proposed by 

Fig. 3.73. A generic transformation rule for describing the pre- and post states in an agent-based model 
transformation based on the communication diagram demonstrated in Figure 3.72. 

By noticing the fact that many of the current dynamic agent models are represented 

by sequence and state diagrams, which have been studied here under a graph-oriented 

approach as well, we can extend our approach to study agents' model transformations in 
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more complex situations. For example, by following some of the object-oriented 

principles like differentiation between instance and type graphs (diagrams)134 ([CMR96], 

[BH04]), we can model the typed graph transformations [HCE+96, GPS98] by means of 

refactoring [SPL+01, MED+05, Men05] the state diagrams (adding/removing, merging, 

or decomposing the states) and conceptual models of ontological structures. 
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Fig. 3.74. (a) pre/post state representation before/after merging two states; (b) the representation of 
concurrency of two parallel states. 

As an example, following the approaches presented in [BSF02] and [Men05], we 

may merge the two states St3 and St4, which respectively represent the state of the RLR 

system after querying to determine the type of change and receiving the proposed 

answers, into one merged state St3;4 (Figure 3.74 (a)). As another example, Figure 3.74 

(b) demonstrates the transformation of a state diagram to the new diagram, representing 

134 In conceptual modeling a type graph models a class diagram and an instance graph models the objects 
(instance) diagram. 
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the concurrencies between the two states St5 (validation of the accepted response), and 

state St6 (ask permission to put the results into an action). In fact, we would be able to 

model various aspects of agents in the RLR model, such as agents' networks, topology, 

properties, interactions, and cooperation based on the agreed goal in the negotiation 

process. Also, due to the rule-based nature of this framework, we can formally model the 

structure and behavior of an evolving system and anticipate certain types of 

transformations and re-configurations upon future changes. 

Ill 4.6 Summary of Contributions in Section III.4 

In Section HI.3 a formal framework for managing changes in ontologies based on 

category theory has been defined. On top of this formalism, we defined a graph 

transformation approach to manage ontological changes by means of model 

transformation. In this method, graphs correspond to the evolving ontological structures 

and graph transformation has been employed to model their evolution. Semantic web is 

considered as hierarchical graphs with the ontologies composed of RDF/OWL triples' 

graphs as its nodes and the relations between these ontologies as its edges135. Therefore, 

we can naturally use graph transformation to define the changes in an ontology (or a 

series of related ontologies) and control the consistency of the result by imposing the 

rules and conditions to guarantee that the transformation result is a valid hierarchical 

graph as well. 

Graph transformation offers the means for analyzing updates and changes in graph

like structures. As well, there is a vast amount of theoretical studies with promising 

135 The relation between the OWL/RDF triples also represent edges for the ontology graphs. 
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outcomes readily available. The transformation rules can be used to describe merging and 

integration of internal graphs (analogous to the concatenation operation presented in 

[DHP02]). An approach for verification of whether a transformation indicated by a 

double-pushout rule is consistent or not has been shown in [BKK05], by demonstrating 

that every rule in a rule-based graph transformation can satisfy the path-checking and 

root-checking (due to root-level morphisms) conditions. In contrast to other existing 

methods, we do not limit ourselves to the specific type of implementation language. 

Moreover, our model is equipped with a category theory formalism and rule-based 

transformation mechanism, which enables us to represent the dynamic nature of 

ontological elements not only in isolation but also considering their interactions with 

other dependent components and artifacts in a distributed Semantic Web environment. 

Also the purpose and domain of our approach differs from other currently ongoing efforts 

in this area. In summary in this section we have presented the following major 

contributions. 

• Providing a graph-oriented semantics for analyzing temporal biomedical 

ontologies; 

• Extending the existing graph-based analysis for RDFS/OWL ontologies, by means 

of hierarchical distributed graphs, which enables one to deal with nested distributed 

ontologies in the real world applications; 

• Employing category theory along with graph transformation to represent, and 

analyze changes in distributed biomedical ontologies in different levels of 

abstraction, independent of any implementation language; 
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• Defining transformation rules for evolving ontologies that ensures the consistency 

of the results and coordinates the communications and interactions between 

different agents for concurrent and parallel actions. 

In the next chapter we demonstrate the feasibility of our approach through a series of 

experimentations on different application scenarios. 
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IV. Application Scenarios & 
Case Studies 

The applicability of our proposed method for managing 
change in ontologies has been already demonstrated 
throughout several examples in Chapter III. In Chapter IV we 
represent that the techniques presented in our proposed RLR 
framework can be joined together to serve as a blueprint for 
designing practical algorithms for maintaining changes in 
several domains. With the extensive popularity of biomedical 
ontologies in modern knowledge bases in healthcare, we 
believe our method is not only applicable for managing 
evolving biomedical ontologies, but also appropriates for 
many other topics, including requirement engineering and 
model analysis, and phytogeny evolution, where formal 
representation and analysis of changes are key to overcome 
parts of the big problem of bootstrapping the evolution 
process. 
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IV. 1 Case Study 1: Managing the Evolving Structure 
of an Ontology for Clinical Fungus 

There's a tiresome young man of Bay Shore 
When his fiancee cried: "I adore 
The beautiful sea!" 
He replied, "I agree; 
It's pretty, but what is it for?" 

Morris G. Bishop (1893-1973) 

Life sciences constitute a challenging domain in knowledge representation. Biological 

data are highly dynamic, and bioinformatics applications are large and there are complex 

interrelationships between their elements with various levels of interpretation for each 

concept. At this time, we are applying the proposed methods for managing changes in the 

FungalWeb Ontology which is the result of integrating numerous biological databases, 

web accessible textual resources and interviews with domain experts and reusing some 

existing bio-ontologies. To use the FungalWeb framework more practically in the 

medical domain to support dermatological practice and enhance the accuracy of clinical 

knowledge management, we have also modeled the SKin-Disease ONtology (SKDON), 

an integrated OWL-DL ontology with focus on medical mycology for dermatologists. In 

our work, we have concentrated on disorders of the skin and related tissues, such as hair 

and nail due to fungi. SKDON is created from several distributed resources, including 

structured/unstructured texts, online databases, and existing controlled vocabularies, such 

as MeSH [NLM94], ICD-9136, SNOMED137 and Disease database138. Cross referencing 

between the FungalWeb ontology, SKDON and MeSH "Chemicals & Drugs" category 

http://www.cdc.gov/nchs/icd9.htm 
http://www.snomed.org/ 
http://www.diseasesdatabase.com/ 
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provides valuable information about the disease, the involved fungus and the drugs 

prescribed. Change in any of the resources can alter the definitions in the target ontology. 

Recalling our discussion in Section I1I.1, as the knowledge about fungi species grows 

and new methods become available one can anticipate a fundamental change in the 

current fungal taxonomy structure. From the other way since skin disorders have been 

historically categorized by appearance rather than scientific and systematic facts 

[PCB+04], the existing taxonomy of fungal diseases must be also modified based on the 

new knowledge to update the ontological truth. Many terms in current medical mycology 

vocabularies describing skin disorders originate as verbal descriptions of appearance, 

foods, people, mythological and religious texts, geographical places, and acronyms 

[AAR+03]. Many names and terms are highly dependent on individual or regional 

preferences, causing redundancy, vagueness, and misclassification in current 

vocabularies. Thus, we study various alterations in both fungal taxonomy and fungal 

disease classification. As an example of changes in fungal terminologies, one can see 

several changes in the name of pathogenic fungi Trichophyton family (i.e. Trichophyton 

Soudanense, Trichophyton megninii, and Trichophyton equinum) in relatively short 

period of time. As another example, the pathogenic fungus Candida glabrata is now 

called Torulopsis glabrata [CS05b]. Usually changes in fungi taxonomy alter the related 

disease name and description (Figure 4.1). For instance, the name of the fungus, 

Allescheria boydii which can cause various infections in humans, was changed to 

Petriellidium boydii and then to Pseudallescheria boydii within a short time [OAD+92]. 

Consequently, the infections caused by this organism were referred to as allescheriasis, 

allescheriosis, petriellidosis, andpseudallescheriosis in the medical literature [OR95]. 
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Fig. 4.1. Changing the fungi name can change the related disease name. 

139 Fungal Meningitis is an infectious disease caused by three types of fungi (Candida 

albicans, Cryptococcus Neoformans, and Histoplasma). Cryptococcal Meningitis is 

caused by fungus Cryptococcus Neoformans140 and is typically seen in patients with 

immune deficiency (Immuno-lncompetent) such as AIDS. It usually results from an 

infection that spreads to patient's brain from another part of her body. This disease has 

been a subject for study in both dermatology [Leu90] and neurology [ST95] for a long 

time. The knowledge about this disease (i.e. symptoms, causes, etc.) are scattered in 

several existing ontologies and knowledge bases, which need to be aligned. As described 

in Section III 3.5.4.1 and also pointed out in [ZKE+06], and [CH07] we can model the 

alignment of two taxonomical structures {Ox and 02) by means of a pair of mappings 

from an ontology O (Figure 4.2). 

139 Meningitis Research Foundation of CANADA: 
http://www.meningitis.ca/en/whatjs_meningitis/fungal.shtml 

140 Here is the lineage of Cryptococcus neoformans in the FungalWeb Ontology: 
Fungi; Dikarya; Basidiomycota; Agaricomycotina; Tremellomycetes; Tremellales; Tremellaceae; 
Filobasidiella; Cryptococcus neoformans (Filobasidiella neoformans). 
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Fungal Infection 
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Tinea Versicolor 
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Funaal Meninaitis 

Disease 
C'o 

cs 
Nexiro-Derma Disorder 

c \ 
Cryptococcal Meningitis Disease in Immuno-Incompetent Patients 

Fig. 4.2. The diagrammatic representation of the alignment between the two taxonomies from Oi (Fungal 
disorders), and 02 (Diseases) using a set of mappings from ontology O (using the format given in [CH07]). 

In order to achieve a composite knowledge of the disease's properties we have used 

the categorical product to represent this integrated view (Figure 4.3). As can be seen in 

the Figure 4.3 medical specialty is the product arrow of the two branches in medicine, 

which includes the attributes of both domains. 

Fungal Meningitis 

Branch 
medical 

(MS) 

Dermatology 
•4 

specialty 

Neurology 

****•.. Branch 

Neurology 
— • 

MS j Dermatology MS 2 

Fig. 43. Determining the medical specialty for a particular disease through product. 

As mentioned in Section III 3.5.4.2 in order to merge two unrelated ontologies we 

can simply perform the disjoint union (or co-product). In our domain, we need to update 

and improve the ontological structure of the FungalWeb and SKDON Ontologies 

regularly for the annotation of fungal genes and analyzing the role of the fungi species in 

various diseases. For example, the older version of the FungalWeb Ontology did not have 

sufficient terminology to annotate genes involved in Malassezia infections. To meet this 
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new requirement, the updated version of the ontology has gained 26 additional terms 

addressing these infections. 

As we represented in our research, category theory within the RLR framework has a 

significant potential to be considered as a supplementary tool to capture and represent the 

full semantics of ontology driven applications and it can provide a formal basis for 

analyzing complex evolving biomedical ontologies. Figure 4.4 demonstrates a portion of 

the structure of the FungalWeb application in a diagrammatic representation. 

/ 

Functional 
Parameter 

Industrial and 
environmental process 

Can be / 'is using 
s x used ml ' 

\ \ \ Ik . \ V I J Has been reported lo be found in N <ongs to^ V I'' y \ 
• " » ' i ^ — • i < 

KM Value 
pH Optimum 

Fig. 4.4. A diagrammatic representation of portion of the FungalWeb application. 

As one can see in Figure 4.4 many of the nodes can be considered as one individual 

graph within the whole ontological structure, with several dependencies to different 

objects. Figure 4.5 represents this interconnect!vity between different ontological 

components. 
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Fig. 4.5. (a) A portion of the FungalWeb Ontology representing the conceptual frame supporting the 
identification of enzymes acting on polygalacturonic acid, (b) Conceptual frame supporting the 
identification of enzyme vendors, the characteristics and application domains of their products [BSS+06]. 

The FungalWeb Ontology as an integrated structure consists of several parts from 

other knowledge resources, which combined through their aligned components and 

merged into a consistent framework. Figure 4.6 represents an example of partial merging 

of two conceptual models (in the left) via a common component Substance/Product. 

y 
| (^jname~~^) 

Cnn.be tvssd 

> 

'" /industrial and\ i 

\ processes / ! 

''"Process name^) ; 

Fig. 4.6. A merging process based on the common elements between two parts of the FungalWeb 
Ontology. 
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The representation of a change in a part of the FungalWeb Ontology using graph 

transformation has been already shown in Section III 4.5.4.3 (see Figure 3.70). Also some 

examples for defining transformation rules and applying the double-pushout approach 

have been demonstrated in Table 3.2 and Figure 3.71 respectively. In fact ontologies are 

not isolated structures, but they tend to be reused as much as possible. The Semantic Web 

ultimate vision is to bring the existing ontologies, knowledge bases, controlled 

vocabularies, thesauri, databases and linked data sources under one umbrella, in such a 

way that they can communicate with each other and with users in a coordinated 

interactive manner. As mentioned earlier in Section III.l, the FungalWeb ontology is in 

close contact with other resources such as Gene Ontology, TAMBIS, SwissProt, 

BRENDA, and etc (Figure 4.7). 

l"mrn>i^imj\ Newt 

I oasoi-EyEPs j J 

N̂  

">^ 

/SiMa ******* i 

\ 
X I CttBt 

NEW! 
^ 

NEW 
\ jOBSotgrEo;] 

Fig. 4.7 . Interrelated distributed ontologies, knowledge bases and data sources in the FungalWeb project. 

141 For the visualization purpose, we used the format presented at W3C "Linking Open Data" project. 
http://esw.w3.Org/SweolG/TaskForces/CommunityProjects/LinkingOpenData#dbpedia-Iod-cloud 
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It is highly desirable that all changes within a resource can be tracked and all the 

impacts of such changes as well as their directions can be recognized and indentified. In 

our approach changes to each part of the ontology can cause the conceptual design 

changes its state, which may cause alterations to other dependent artifacts. In order to 

represent different states of our conceptualization, we use a categorical discrete state-

model, which describes the states and events in the ontological structure using a 

diagrammatical notation. The discrete state-model can be specified by a state space (all 

potential states), a set of initial states and a next state function. Based on our application 

we designed our class diagrams following the method described in [Whi97] (Figure 4.8). 

The Op; arrows in this figure represent the operations performed on the ontological 

structure. In this case, the operation or event opi causes an object in state St] to transition 

to state St2. The operation Opi has no effect upon the object if it is in any other state, 

since there is no arrow labeled Opi which originates in any other state. 

Fig. 4.8. A Class diagram for part of the FungalWeb class structure that represents the transition between 
states. 
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The object 0 in the diagram is the null state. The create arrow represents the creation 

of the object by assigning an identifier to the object and setting its state to the initial 

defined state, and the destroy arrow represents its destruction [Whi97]. 

As we described in Section III 4.5.1 the hierarchical graph transformation can be 

used to analyze the changes in interrelated biomedical resources in the sense of a 

sequence of transitions and transformations. These transformations assist for studying 

changes in the micro level (in the nodes of each internal graph) and the macro level 

(changes in lattice structure). Defining appropriate transformation rules, such as what is 

represented in Figure 4.9, is the first step towards performing a transformation. As 

mentioned earlier (III 4.3.1.1) finding proper pushout complements is one of the key 

point in categorical graph transformation. 

TransformationRule 
P : L — — — - R 

Fig. 4.9. A distributed transformation rule, which regulates the transformation of different interconnected 
ontologies in two abstraction levels, namely internal and lattice. 

Recalling the definition of category DGRAPH in Section 4.5.1 and using the 

approach proposed in [Tae99] a pushout over distributed graph morphisms with 
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respecting to both lattice (network) and internal (local) morphisms can be constructed, 

which enables us to apply the defined pushout-based transformation rules (see Section III 

4.3) to describe changes in the distributed ontologies. 

IV.2 Case Study 2: Managing Requirement Volatility 
in an Ontology-Driven LIMS 

In an ideal situation, the requirements for a biomedical system should be completely and 

unambiguously determined before design, coding, and testing take place. The complexity 

of bioinformatics applications and their constant evolution lead to frequent changes in 

their requirements: often new requirements are added and existing requirements are 

modified or deleted, causing parts of the software system to be redesigned, deleted, or 

added. Such changes lead to volatility in the requirements of biomedical applications. In 

this section, which is partially based on our published journal paper [SOK+09]142 and 

conference paper [SH07c], we deal with an important problem of requirements volatility 

in the context of an ontology-driven clinical Laboratory Information Management System 

(LIMS) [Mcd93, AMFOO]. A LIMS is a software application for managing information 

about laboratory samples, users, instruments, standards, and other laboratory functions 

and products. It forms an essential part of electronic laboratory reporting (ELR), and 

electronic Communicable Disease Reporting (CDR). ELR is a key factor in public health 

surveillance, improving real-time decision making based on messages reporting cases of 

notifiable conditions from multiple laboratories [OSM01]. Combining these reports with 

clinical experiments and case studies makes up a CDR system [WC05]. This framework, 

142 The definitions of the requirements' refinement models and the effects of various requirements on each 
other were contributed by the two co-authors. 
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along with the active participation of physicians specializing in fungal infectious 

diseases, infection control professionals, and lab technicians, is aimed at generating 

automated online reporting from clinical laboratories to improve the quality of lab 

administration, health surveillance, and disease notification. It provides security, 

portability, and accessibility over the Web, as well as efficiency and data integrity in 

clinical, pharmaceutical, industrial, and environmental laboratory processes. 

Research Problem: Requirements volatility is: "a measure of how much program 

requirements change once coding begins" [ED07]. Bioinformatics applications with 

frequently changing requirements have a high degree of volatility, while projects with 

relatively stable requirements have a low one [MD99]. Higher requirement volatility will 

result in higher development and maintenance costs, the risk of schedule slippage, and an 

overall decrease in the quality of the services provided. Therefore, requirement volatility 

is considered one of the major obstacles to using a LIMS. In this section, we propose an 

innovative approach for the automatic tracing of volatile requirement changes based on 

their formal representation in an ontological framework and using category theory as a 

solid mathematical foundation. 

Approach: Investigating the factors that drive requirement change is an important 

prerequisite for understanding the nature of requirement volatility. This increased 

understanding will minimize that volatility, and improve the process of requirement 

change management. One of the most important volatility factors is the diversity of 

requirement definitions in the application domain, which may lead to confusing and 

frustrating communication problems between application users and software engineers 

[Wie03]. Conceptualization of the requirements using an ontology minimizes the 
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requirement volatility by providing a deep and common understanding of the 

requirements [DS06], which is essential in order for bioinformatics application 

developers to manage the changes successfully. In this section we apply our proposed 

approach to model LIMS requirements with an emphasis on nonfunctional requirements, 

their dependencies and interdependencies using category theory. The resulting categorical 

model represents the functional requirements (FRs) and nonfunctional requirements 

(NFRs) based on an investigation of their dependencies and interdependencies, which is 

considered critical to success in tracing requirement changes. Requirement traceability, 

defined as "the ability to describe and follow the life of a requirement in both a forwards 

and backwards direction" [GF94] is an essential part in performing requirement 

maintenance and change management processes. Moreover, the extent to which change 

traceability is exploited is viewed as an indicator of system quality and process maturity, 

and is mandated by existing standards [ANR+06]. These changes have to be monitored 

for consistency with the existing categorical framework in the LIMS context. After 

capturing the LIMS requirements in an ontological framework - to provide a common 

shared understanding of the requirements - empowered with category theory, we recruit 

our RLR framework for handling volatile requirement identification, integrated change 

management and consistency monitoring in a LIMS (Figure 4.10). 

_ „ Change 
.oSxua. Conceptualization X ^ X x J O V Management 
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Framework 

Change 

Traceability 

< $ = > s — w 
Categorical Requirement 

Traceability Model 

Ontological Requirements Model 
empowered -with Category Theory LIMS Requirement 

Fig. 4.10. General view on the proposed approach for managing requirement volatility 
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The RLR framework then assists and guides the software developer through the 

change management process. 

IV 2.1 MYCO-LIMS Requirements Overview 

The Mycology Laboratory Information Management System (MYCO-LIMS) is our 

modeled experimental application for managing information about laboratory samples, 

users, instruments, standards, and other laboratory functions and products, and provides 

security, portability, and accessibility over the Web, efficiency, and data integrity in 

clinical, pharmaceutical, and industrial laboratory processes. MYCO-LIMS is an 

ontology-driven object-oriented application for a typical fungal genomics lab performing 

sequencing and gene expression experiments in the domain of medical mycology. In our 

context, the conceptual framework for requirement management outlines possible courses 

of action and patterns for describing a system's specifications and requirements. In 

complex biomedical systems development, a requirement change typically causes a ripple 

effect and forces the categorical requirements model to be altered as well. MYCO-LIMS 

is used in the FungalWeb integrated system to respond to queries regarding the clinical, 

pharmaceutical, industrial, and environmental processes related to pathogenic fungal 

enzymes and their related products. It is estimated that laboratory data account for 60-

80% of the data generated during the entire clinical trial process [Kra07]. 
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The Fungal Web semantic Web infrastructure (Figure 4.11) consists of the 

FungalWeb Ontology, SKin Disease Ontology (SKDON), a text-mining framework and 

intelligent agents. In addition several external applications such as MYCO-LIMS, 

MYCO-LIS, and Mutation Miner [BW06] have been designed for knowledge exchange. 

Microarrays are produced in different proportions, depending on the specific 

requirements of the gene expression study being initiated. A typical microarray may 

include thousands of distinct cDNA probes [JF02]. Preparation of an array begins with 

the clone set deliverance in the form of plates or tissue samples (with associated data) 

from a vendor or other source [JF021. MYCO-LIMS will be able to maintain the 

taxonomy for each plate or sample in the system, such that a user can easily see the life 

cycle of the entity. The LIMS is based on MGED-specified [MGE] microarray data 

exchange standards, such as MIAME [MIM] or MAGE-ML [MAG]. Software in general 
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and MYCO-LIMS in particular are characterized both by their functional behavior (what 

the system does) and by their non-functional behavior (how the system behaves with 

respect to some observable attributes like reliability, reusability, maintainability, etc.). 

Both aspects are relevant to software development and are captured correspondingly as 

functional requirements (FRs) and non-functional requirements (NFRs). 

IV 2.2 LIMS Functional Requirements (FRs) 

MYCO-LIMS is a Web-based system capable of providing services such as 

managing microarray gene expression data and laboratory supplies, managing patients, 

physicians, laboratories supplies or vendors' information, managing and tracking samples 

information, and managing orders. 

A 
Application User, 

Administrator 

LIMS 

LIMS Technician 

Fig. 4.12. The LIMS use case diagram. 
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Figure 4.12 summarizes some of the main actors and services of MYCO-LIMS 

application in a standard Use-Case Diagram. MYCO-LIMS is capable of receiving 

multiple orders or cancelation requests at the same time. It requires its users to have a 

certain level of privileges to access any of the functionalities, except when searching for a 

product. The privileges are granted automatically upon successful authentication. 

Here, we choose one functional requirement, "Manage Order", and decompose it into 

two more specific requirements, "view orders" and "place order", which each of them 

decompose to more detail requirements. Figure 4.13 presents the functional model, and 

shows that an FR is realized through the various phases of development by many 

functional models (e.g. in the object-oriented field, a use-case model is used in the 

requirements engineering phase, a design model is used in the software design phase, 

etc.). 

^Manage^ 
Order 

FR 
Hierarchy 

Events 
(Artifacts) 

Enter order 
number 

Visualize order 

Select product 

Place a payment 

Methods 
(Solution Space) 

viewOrderSession.view(order) 

orderCatalogue.view(order) 

placeOrderSession.makeOrder 

orderCatalogue.makeOrder 

Fig. 4.13. Illustration of MYCO-LIMS FR traceability model. 
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Each model is an aggregation of one or more artifacts (e.g. use case and sequences of 

events representing scenarios for the use-case model, classes and methods for the design 

model). For instance, the View Order use case is refined to a sequence of events <enter 

order number, visualize order> illustrating an instance of View Order service; each event 

is refined as a method (viewOrderSession.view and viewCatalogue.view 

correspondingly) in the design phase. Modeling FRs and their refinements in a 

hierarchical way gives us the option of decoupling the task of tracing FRs change from a 

specific development practice or paradigm. Figure 4.13 visualizes the FR hierarchical 

model for the chosen case study through the hierarchy graph that forms a primary 

taxonomy for analyzing ontological relationships between requirements. 

IV 2.3 LIMS Nonfunctional Requirements (NFRs) 

The use-case diagram shown in Figure 4.12 specifies the FRs of MYCO-LIMS services. 

Dealing with NFRs, such as performance, scalability, accuracy, robustness, accessibility, 

resilience, and usability, is one of the most important issues in the software engineering 

field today. NFRs impose restrictions by specifying external constraints on the software 

design and implementation process [KS98], and therefore need to be considered as an 

integral part of the process of conceptual modeling of the requirements. Here we propose 

a formal approach to NFR modeling, and traceability. 
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Fig. 4.14. Illustration of MYCO-LIMS NFR traceability model 

In this approach as represented in Figure 4.14 a LIMS' NFR is decomposed into 

more specific NFRs. Let us consider the requirements of "managing orders with good 

security" and "maintain the users' transactions with good performance". The security as 

an NFR may refer to a quite general domain and may need to be broken down into 

smaller specific parts such as integrity, confidentiality, and availability. In the security 

example, each sub-NFR has to be satisfied for the security NFR to be satisfied. The sub-

NFRs are refined (operationalized) into solutions that will satisfy the NFR (e.g. for 

confidentiality, can be achieved either through implementing authorization or the use of 

additional ID). 

IV 2.4 Integrating FRs and NFRs into an Ontological Framework 

Each software requirement usually intracts with other requirements and in this interaction 

they affect each others in various ways. Understanding FR/NFR relations is necessary for 

260 



consistent change management of the requirements. When an application is in action, it is 

somehow clear to check whether a particular FR has been met or not, as it can be 

explicitly specified in its definition. But, it is not that simple for NFRs since they can be 

defined based on different quantitative and descriptive statements, which are not always 

easy to process. The NFRs often have been modeled with correspondence to FRs in the 

design process. 

i i 

Fig. 4.15. Illustration of MYCO-LIMS NFRs/FRs dependencies hierarchical model. 

Despite the importance of the traceability, it has been widely neglected in operational 

NFRs change models. This area needs a special attention, because NFRs are subjective in 

nature and have a broad impact on the system as a whole. Here, we illustrate our 

approach towards finding an effective method for conceptualizing NFRs based on their 

hierarchy and interrelations with FRs in the MYCO-LIMS invoicing system case study. 

For example, associating response time NFR to the View Order use case would indicate 

that the software must execute the functionality within an acceptable duration (see 

association Ai, Figure 4.15). Another example is associating security NFR to the 

"Manage order" FR, which would indicate that the interaction between user and the 
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software system in the "Manage order" service must be secured (see association A2, 

Figure 4.15), which also precisely implies that the user interface for other interactions is 

not required to be secured. 

If an association exists between a parent NFR and a functionality (e.g. association A2 

between security and manage order, or A} between performance and manage order) 

(Figure 4.15), there will be an association between operationalizations derived from 

NFRs and methods derived from the functionality (e.g. authorize derived from security, 

and placeOrderSession.makeOrder derived from manageorder) (Figure 4.16). Figure 

4.16 illustrates the refinement of the interactions. The complete change management 

model would require the refinement of performance and scalability into 

operationalizations and methods, and the identification of the associated interaction 

points to which they are mapped. 

Fig. 4.16. MYCO-LIMS Requirements associations' refinement 
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A change in FRs or NFRs can be authorized if and only if that change is consistent 

with the existing requirements model. This process can be improved using the RLR 

framework by defining a set of consistency rules based on a formal presentation of the 

FR and NFR hierarchies and their relations, and these rules will be controlled 

automatically before a change is authorized. The conceptualization of FR and NFR 

hierarchies and their interconnections form the bases for analyzing ontological 

relationships between requirements in the Service Ontology (Figure 4.11). The NFR/FR 

ontological framework introduced in this section can be visualized through a categorical 

hierarchical graph, which makes it possible to keep track of the required behavior of the 

system using dynamic views of software behaviors from requirements elicitation to 

implementation. The following section introduces a generic categorical model of 

requirements with an emphasis on NFRs and their interdependencies and refinements 

through using category theory as a mathematical formalism, independent of any 

programming paradigm. 

IV 2.5 Generic Categorical Representation of Requirements and 
their Traceability 

As mentioned in our study (Chapter HI), categorical analysis offers a great potential for 

managing structural changes in evolving hierarchical structures. In order to explicitly 

reason about the impact of NFRs and their refinements on the project throughout the 

software development process, we explicitly represent NFRs, FRs, and their 

dependencies and refinements using category theory. Figure 4.17 captures the generic 

view on the requirements modeling process where Requirements Group, Hierarchical 

Model, Artifacts, and Solution Space are categories representing the project 
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requirements, the analysis models, the refined representations of the project requirements, 

and the requirements implementation respectively. The arrows are morphisms, which 

capture the refinement processes; namely, decomposition, operationalization, and 

implementation defined as shown in Figure 4.17. 

/ " ^~ ~ \ refinement^—-^operationalization^ implementation 

Fig. 4.17. Generic categorical framework for requirement traceability. 

Figure 4.17 shows that a requirement is realized through consecutive refinements by 

hierarchical models, where each model is an aggregation of one or more artifacts. The 

implementation arrow refines the artifacts into solutions in the target system that will 

satisfy the requirements. These solutions provide operations, processes, data 

representations, structuring, and constraints in the target system to meet the requirements 

represented in the Requirements Group. High-level FRs are refined in the requirements 

analysis phase into more specific sub-FRs (use cases and their relations, e.g. FR 

Hierarchy Mode), which are then operationalized as use-case scenarios describing 

instances of interactions between the actors and the software, and modeled as events 

(Artifacts), which are implemented as methods (Solution Space). More general NFRs are 

refined into an NFR hierarchy where the offspring NFRs can contribute fully or partially 

towards accomplishing a goal for the parent. The sub-NFRs are operationalized into 

solutions (Artifacts) in the target systems, which will sufficiently satisfy the NFR. 
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The requirement refinements are then expressed formally in terms of the composition 

operator °, assigning to each pair of arrows / and g, with cod /= dom g, a composite 

arrow g °f. dom/-> cod g (cod/is a notation for a codomain, and dom/is the notation 

used to indicate the domain of a function f). In this case, each requirement object 

belonging to the Requirements Group category will be refined to its implementation 

belonging to the Solution Space. The resulting solution forces preservation of the 

requirements and their relations, which are modeled with the trace arrows. The 

consistency between the solution and the original requirements can be guaranteed by the 

composition of categorical arrows representing morphisms. As a result, each change to a 

requirement or its refinement belonging to the domain of/will be traced to its refinement 

belonging to the codomain of g by means of the composition of the corresponding trace 

arrows. 

IV 2.6 Categorical representation of FRs, NFRs hierarchies and 
their interdependencies 

The category FR, NFR hierarchies, and relations (Figure 4.18) consists of objects 

representing FRs and NFRs, their decomposition into sub-FR and sub-NFR (which are 

also FR and NFR correspondingly), and their impact associations; above concepts are 

treated jointly and in an integrated fashion. Four areas have been defined for impact 

detection in which NFRs require change management support: (i) impact of changes to 

FRs on NFRs (inter-model integration); (ii) impact of changes to NFRs on FRs (inter-

model integration); (iii) impact of changes to NFRs on sub-NFRs and parent NFRs (intra-

model integration); and (iv) impact of changes to NFRs on other interacting NFRs (intra-

model integration). 
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Impact FR 
toFR Impact NFR to FR 

Impact NFR 
to NFR 

Fig. 4.18. FR, NFR hierarchies, and relations in a categorical framework 

IV 2.7 Categorical representation of the Solution Space 

The Solution Space category contains State Space SS (all potential states including initial 

states), State Transition ST (next state function), Class C categorical objects, and 

Methods arrows. The trace implementation morphism traces the effect of the changes to 

Artifact objects on the Solution Space objects. In Figure 4.19, for instance, we illustrate 

the refinement of an event from the Artifact category to a state transition object ST. 

Fig. 4.19. Tracing the changes to the state spaces, classes, and methods 

Moreover, each state transition ST is defined on the state space SS (arrow STSS) 

linked by a function STC: ST—* C to a class C. The state transitions are implemented by 

methods captured with the function STM: ST —*• APM, and belonging to a class C (see 
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function M_C). The above functions support the tracing mechanism and are captured 

formally in Figure 4.19. The changes are then represented formally in terms of the 

composition operator °; for instance, EST ° STSS °ST_C will trace a change in dom 

EST (which is AEvent) to the codomain of STC (which is Class Q . 

As we mentioned in Section III.2 category theory can be used for the taxonomical 

representation of requirements to help in the study of the ontological relationship between 

the various nodes within the hierarchy. Category theory has been used in RLR to 

integrate time factor, and represent and track changes in ontological structure in time 

through using the notion of state capturing an instance of a system's FRs, NFRs and 

associations at certain period of time. For example, a change in the Authorize Method 

would affect the method "placeOrderSession.makeOrder" in state Sti of the system, 

which will be traced to changes in state St2 (Figure 4.20). 

Fig. 4.20. The representation of evolving MYCO-LIMS functional requirements (FR) and nonfunctional 
requirements (NFRs). 
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Generally speaking, changes to each NFR would lead to changes in the conceptual 

framework. As mentioned in Section IV 2.5, we are monitoring the effect of FR or NFR 

changes through their refinement relations, that is: (1) identifying the "slice" of the 

conceptual framework that will be affected by the change; (2) applying the consistency 

rules to make sure the change does not introduce any inconsistencies in the "slice"; and 

(3) implement the change, if authorized. Explicitly capturing of the temporal evolution of 

the requirements can aid MYCO-LIMS developers and maintainers to deal with 

requirements change management in highly dynamic clinical applications. 

The RLR change management framework is modeled as an intelligent control loop, 

which has one state for each of the above stages (1), (2), and (3), the events modeling the 

change of state. Considering the requirements to be organized in a lattice-like ontological 

framework, in order to represent the various states of our conceptualization, we use a 

categorical discrete state model (explained in Section III 3.5), which describes the states 

and events in the ontological structure using a diagrammatical notation (Figure 4.21). 

'"'"dp* op2 op~~~~-* 
S t l , _+ S t 2 >st^—m+st^ 

*«.>.. °Pr 
*••..;*•" • Opr . . . . • -

Opr 

Fig. 4.21. Tracking different operations and their compositions along with their states in an evolving 
structure, which can be used to generate patterns for the learning agents. 

After studying the changes in FRs and NFRs in one conceptual model we can extend 

our analysis to monitor the changes in requirements of several interrelated applications 

268 



following our hierarchical distributed graph transformation (explained in section III 4.5.1, 

and III 4.5.2). 

IV.3 Case Study 3: Analyzing the Evolutionary 
Relationships between Species 

In this section, which is partially based on our published papers [SH08b, SH08c], we 

propose the use of our introduced methodology to provide an underlying formalism for 

capturing and analyzing the evolutionary behavior of the fungi phylogeny. In an 

experiment we have employed ontologies rather than cladistics, to reconstruct phylogeny 

trees and to analyze the evolutionary relationships between species. Also the lexical 

chaining technique has been used for the incremental population of evolving ontological 

elements. We also present some of our ideas about using adjoint functors to analyze 

structural transformation in phylogenetic trees, which can be pursued as a possible 

direction in our future work. 

IV 3.1 Introduction on Taxonomies and Phylogenies 

The major efforts to reorganize taxonomies of species over time can be summarized as 

the dynamic identification of essential classifying properties for a class and the collection 

of all beings that share values for these properties into that class [PST04]. It is commonly 

believed that all species are descended from a common ancestral gene pool through 

gradual divergence [Fut05] and form different kingdoms in the tree of life. 

In this process of constant evolution, Fungi were promoted from one subclass in the 

Plant kingdom to a kingdom of their own based on gene mutation. A gene mutation, 
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whether hereditary or new is a permanent change in the DNA sequence that makes up a 

gene [MAH08]. These changes, which can be insertions, deletions or rearrangements of 

genetic information happen in relation to time and alter the evolutionary taxonomies of 

different species. Thus, through several changes (based on mutations), the fungal classes 

are promoted, moved, folded, deleted, merged, and renamed as more is discovered about 

life on Earth. One of the primary goals of taxonomists is to reflect evolutionary history 

(phylogeny) in the biological classification [Tax99]. Phylogenetic trees demonstrate how 

a group of species are related to one another. To analyze the evolutionary relationships 

between groups of organisms for the purpose of constructing family trees, biologists 

currently use a method called cladistics or "phylogenetic systematics". Through this 

method, organisms are classified based on their evolutionary relationships; to discover 

these relationships, primitive and derived attributes should be analyzed [Clo96]. An 

extensive collection of evidences for the importance of systematics and taxonomy (with 

emphasis on fungal taxonomy) in biological research recently became available, provided 

by researchers from the British Mycological Society143. In summary, cladistics is based 

on the following assumptions [Phy]: 

1. Any group of organisms is related by their descent from a common ancestor. Thus, 

there is a meaningful pattern of relationships between all collections of organisms. 

2. The taxonomic trees should be binary, which means that new organisms may come 

into existence when currently existing species divide into two groups. 

3. Changes in attributes occur in lineages over time. 

http://vvww.parliament.uk/parliamentary_cornmittees/lords_s_t_select/evidenceselect.cfm 
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The third statement is the most important rule in cladistics. In fact, only when 

attributes and characteristics change one can recognize various lineages or groups [Phy]. 

Cladistic analysis has proved useful for analyzing evolutionary trees, but it does face 

several issues, mostly addressed in [Clo96], and [Rob86]. 

In order to overcome some of the issues that affect the cladistic inferencing, we have 

employed the FungalWeb Ontology, as a conceptual backbone to provide a common 

formal specification for each species in the fungal evolutionary tree. "Lexicon chaining" 

as a natural language processing (NLP) technique has been proposed for dynamically 

populating the ontology. To analyze the temporal fungal phylogeny, we also use category 

theory. In the following, after discussing the cladistic technique for studying evolutionary 

trees and the related issues, the relations between ontology, taxonomy and phylogenies 

will be utilized. Then we explain our categorical method along with an ontology-driven 

technique, to facilitate semi-automatic phylogeny construction and analyzing 

evolutionary relations between species. 

IV 3.2 Phylogenetic Systematics (Cladistics) 

As mentioned in Chapter II the taxonomical classification has a long history in biology; 

since the time of Darwin (1809-82) and his theory of natural selection [WDB] there have 

been debates between two groups of taxonomists [Tax99]: 

1. Classical taxonomists working on "Linnaean classification" [Bru97], a system based 

on a hierarchy of formal ranks (family, genus, etc.) and binomial nomenclature. 
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2. Cladists working on phylogenetic classification or cladonomy [Bru97], which is a 

clade-based classification system, without any formal ranks, including the genus, and 

no binomial nomenclature [Bru97], [DG92]. 

Cladistic approaches are being used to analyze the evolutionary trees based on 

primitive and derived attributes. Primitive attributes (plesiomorphic) are those attributes 

of a fungus that are shared by all members of the group. Having "fruiting body" is a 

primitive attribute for all species of Basidiomycota (a major phyla in the fungi kingdom), 

which has been inherited from their common ancestor. Primitives are not very helpful for 

analyzing the relationship between organisms in a specific group [Clo96]. 

When we try to construct a family tree for all Basidiomycotas, it is not helpful to 

note that they all have fruiting bodies, and it does not help us in determining the 

relationships between different species. Derived attributes (apomorphic) are advanced 

features that only appear in a number of members [Clo96]. In fact, the derived attributes 

are crucial to construct evolutionary relationships. For example, the shared derived 

attribute that defines the Ascomycota is the ascus [WK92]. Nuclear fusion and meiosis 

occur inside the ascus where one round of mitosis follows meiosis to leave 8 nuclei, and 

8 ascospores [WK92], [TSB06]. Accordingly, Fungi can be divided into two biological 

groups: without ascus and with ascus. The intersection of these two groups (a node) can 

be represented in an evolutionary diagram (cladogram) as a point at which a new species 

(with ascus fungi) evolved [Clo96]. Having ascus is a synapomorphy (a derived attribute 

shared by two or more taxa) of the Ascomycetes group. In cladistic method 

synapomorphies are used to construct phylogenies. A synapomorphy of one group might 

be primitive for another group. By analyzing sufficient attributes cladistics aims to 
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generate a family tree where either all members are descended from a single, common 

ancestor (monophyletic) or from several common ancestors (polyphyletic) [Clo96]. If the 

group includes some, but not all, of the descendants of a single common ancestor, it is 

called paraphyletic [Nat]. Cladistic analysis is currently performed using various software 

applications such as PHYLIP (Phylogeny Inference Package) [Fel05], PA UP [Swo] and 

MacClade [MM]. 

A data matrix similar to the one demonstrated by Figure 4.22. provides the input for 

cladistic analysis. This matrix simply summarizes the answers to questions such as: does 

a fungus have a set of attributes, or not? The answers are short and simple ([yes, no] or 

[1, 0]). The more species and the more attributes one puts in an analysis, the more likely 

it gets close to the accurate family tree [Clo96]. 

1- Cell walls composed of glucan and chitin: Yes (1), No (0) 
2. Has non-septate vegetative hyphae: Yes (1), No (P) 
3. Hasascus:Yes(l),No(0) 

4. Has fruittingbody: Yes (1), No (0) 

Attribute No. 1 2 3 4 

Glomeromycota Q 
Chytridiomycota \ 
Zygomycota 0 
Basidiomycota 0 
Ascomycota Q 

0 
0 
1 
0 
0 

0 
0 
0 
0 
1 

0 
0 
0 
1 
0 

Fig. 4.22. An example of a sample data matrix for analyzing major fungi clades (Ascomycota, 
Basidiomycota, Zygomycota, Chytridiomycota and Glomeromycota. 
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IV 3.3 Issues in Cladistic Analysis 

There are some known issues in cladistic analysis [Clo96]: 

I. Convergent evolution: If one defines having a fruiting body as an attribute of fungi 

basidiomycota, and considering that many plants have also fruiting bodies, should 

basidiomycota be considered closer relatives of plants than of the ascomycota fungi? 

The answer is negative. In fact, basidiomycota and ascomycota have a number of 

—• shared derived attributes that closely link them. Convergent evolution produces 

homoplasies. A homoplasy [Sim61, Wak91] can be defined as: "a resemblance 

between taxa that can be ascribed to processes other than descent from a common 

ancestor and which implies phylogenetic relationships that conflict with the best 

estimate of phylogeny for the taxa" [CW01]. By providing and analyzing as many 

different attributes as possible this problem can be reduced [Clo96]. 

II. Reversals can cause problems: As an example, whales unlike all the mammals do 

not have fur, because the fur of their mammalian ancestors has been lost in an 

aquatic environment [Clo96, Mam]. 

III. Considering fossils with missing parts: In this case, the attributes associated with 

those missing parts are represented by question marks and ignored when generating 

the cladogram. 

IV 3.4 Formal Ontology, Taxonomy and Phylogenetic Analysis 

Taxonomy in knowledge representation is considered as a collection of terms or entities 

organized in a hierarchical structure (implying parent-child relationships). Ontologies in 
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the context of semantic web consist of "taxonomies and a set of inference rule" [BHL01]. 

There may be more than one taxonomy for an ontology in a domain of interest, based on 

the granularity and the chosen subsets of ontological characteristics. 

Ontologies in the real world evolve over time as we fix errors, reclassify the 

taxonomy, and add or remove concepts, attributes, relations, and instances. Consistently 

modifying and adjusting the hierarchical structure of ontologies in response to changing 

data or requirements can provide new insight for studying evolutionary changes (or 

mutations in evolutionary phylogenies) in biological taxonomies occuring over time. 

Ontologies follow the open world assumption, which asserts that the captured knowledge 

is always incomplete, therefore if something cannot be inferred from what is defined in 

the knowledgebase, it is not necessarily false. The open world assumption is especially 

important when we represent knowledge with a dynamic system, which is gradually 

improved as we discover new facts. In cases such as the real world phytogeny analysis 

our knowledge is always incomplete and the facts described by the system can never be 

fully known. Due to the evolutionary nature of cladistics, it is possible to study the way in 

which attributes change (the direction in which attributes change, and the relative 

frequency of the change) over time within groups [Zan02] in an ontological framework. 

In order to study various changes in an ontologically inferred phylogenetic tree one can 

focus on ontology evolution and change management techniques. 

Our ontology change management framework as introduced in Chapter III aims to 

maintain the dynamic structure of ontologies and controlled vocabularies, to preserve the 

validity and consistency of ontological knowledge. Analyzing the evolving fungal 

taxonomy within the FungalWeb framework, as discussed in Case study 1, facilitates 
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ontological inferencing - which provides a valuable source of information for clarifying 

the explanations of complex evolutionary scenarios for fungi species - rather than 

cladistics inferencing. The ontology inferencing allows us looking at the diversity of the 

species within different groups by comparing the descendants of an ancestor to find out 

the patterns of origin and extinction. It also empowers biologists to examine different 

hypotheses about adaptation [WDB], [Zan02]. Currently, there is a need for a 

comprehensive methodology to describe how chronological alterations in ecological and 

environmental conditions [And95] have formed the adaptive evolution of fungal clades. 

IV 3.5 Ontology Learning for Managing Evolving Taxonomies 

By changing the knowledge, ontologies need to be incrementally updated to provide valid 

information for the human/agent learner. In our approach, we have used the Lexical 

chaining method to (semi-) automatically construct and populate the FungalWeb 

ontology by extracting relevant terms and relations from a structured or unstructured text 

corpus or other types of data. The Lexical chaining algorithm [HS98] reads a text corpus 

and places words in a related chain based on semantic similarity, using a set of reference 

dictionaries such as WordNet144 3.0, Integrated Taxonomic Information System (ITIS)145 

and TreeBase146 (a database of phylogenetic knowledge). As an example, based on one of 

our experiments focused on patient information leaflets to populate the medical subset of 

the FungalWeb Ontology, consider the following patient information: 

http://wordnet.princeton.edu/ 
http://www.itis.gov/ 
http://www.treebase.org/treebase/ 
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Patient A, a white male, nine years old, has recently found multiple, widespread 

scaly redpatches on his_ abdomen, chest, face, and arm. The physician diasnosed 

his disease as "Rosacea " and prescribed antibiotics. 

Using the lexical chaining algorithm described at [BE99], one can distinguish several 

possible chains such as: 

{Patient A, nine years old, male, white, his, abdomen, chest, face, arm}; 

{Multiple, widespread, scaly, red, patches}; 

{Physician, diagnose, disease, Rosacea, prescribed, antibiotics}. 

The chain of words together indicates a topic related to particular concepts in the 

related ontology. Different algorithms may generate different chains. For the evaluation 

some criteria such as reiteration, density and length of the chain [MH91] can be 

considered. Then using the RLR agent-based framework, the related ontologies - which 

provide the underlying knowledge for the learner agent - can be dynamically populated 

and validated using a description logics reasoner (e.g. RACER) (Figure 4.23). 

If some species have similar properties and genomes, it is very likely that they 

evolved from a common ancestor. The similarity of genomes is computationally 

measured based on the number and likelihood of different mutations (insertion, deletion, 

duplication or substitution of base pairs) [Mat02]. We have used the FungalWeb 

Ontology to determine the taxonomic provenance [BSS+06] for fungal species, in order 

to study the evolutionary relationships based on logical and ontological inferencing. 
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Fig. 4.24. Domain model of fiingal taxonomy Fig. 4.23. Framework for ontology learning and 
population 

By querying the FungalWeb Ontology the enzymologist can find the related fungal 

species: Pichia stipitis and Saccharomyces cerevisiae. Identifying the common lineage 

between the found organisms requires identifying the highest taxonomic group that unites 

all species known to produce the enzyme of interest, akin to finding a common ancestor 

[BSS+06]. Within the FungalWeb Ontology, a fungal taxonomy is represented in a deep 

hierarchy of taxonomic units/concepts. The defined key properties between "fungi" and 

"enzyme" allow for the identification of species found to produce 2-deoxyglucose-6-

phosphatase. One can identify the common lineage for these fungal species by using the 

description logic reasoner, the RACER, via the command instance types, which retrieves 

the concepts that instantiate each fungal species individual. A simple example of such 

queries is shown in Query 1. The common lineage of "2-deoxyglucose-6-phosphatase"-

278 



producing fungi, is a family of yeast in the order Saccharomycetales called 

Saccharomycetaceae, known for its reproduction by budding and use to ferment 

carbohydrates (WordNet definition). 

Query 1: This query uses RACER command "Instance types" to retrieve results for all 

fungi that produce the enzyme 2-deoxyglucose-6-phosphatase (EC# 3.1.3.68) as well as 

their ancestors. The common subset identifies the common lineage between the species: 

«:?X :http://a.com/ontology#Fungi:> 
«:?X :http://a.com/ontology#Ascomycota:> 
«:?X :http://a.com/ontology#Saccharomycotina:> 
«:?X:http://a.com/ontology#Saccharomycetes:> 
«:?X:http://a.com/ontology#Saccharomycetales:> 
«:?X :http.7/a.com/ontology#Saccharomycetaceae:> 

Analyzing and managing both syntactic and semantic changes in the fungal 

taxonomy can be used to derive a a meaningful pattern of relationships between the 

species, which assists automating the phylogeny tree reconstruction. 

IV 3.6 Categorical Phylogenetic Analysis 

After constructing the ontological structure one can also employ category theory and 

graph transformation to represent, analyze, and track the changes in the evolutionary trees 

in the same way that we used it for analyzing evolving biomedical ontologies. In an 

ontology-driven phylogenetic tree changes, actions (or mutations), and transitions can be 

formally modeled through our introduced framework as described in Section III 3.5 to 

capture the full semantics of evolving hierarchies. 
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Fig. 4.25. The categorical representation of ontology inferred phylogeny for yeast Saccharomyces 
cerevisiae which depicts the transition between various evolutionary states. 

Category theory is also capable of solving problems related to reverse analysis 

(mentioned in cladistics method) through recursive domain equations [SP82]. Categorical 

constructors also may be used for analyzing the bifurcating pattern of cladogenesis [Phy], 

through pushouts and pullbacks. Placing an organism in a phylogeny tree and associating 

a set of roles based on its evolutionary characteristics may sometimes lead to redundancy 

in the taxonomy. One of the major issues in phylogeny analysis is finding and identifying 

equivalent classes and relationships. Category theory enables us to deal with the problem 

of logical equality [Maz07] by using isomorphism, which has been introduced in Section 

III 3.5.4.1 and Section III 3.5.5.1 147 

Bijections in the category of sets are examples of isomorphism 
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IV 3.7 Structural Transformations and Functors 

One of the interesting subjects in phylogenetic analysis is comparing two morphological 

structures and finding their similarities and differences, in order to study their 

transformations and find a common origin or to place them into their appropriate ranks 

(e.g. finding a common lineage between humans and birds, which leads to Amniota148). 

The transformations of evolving structures can be studied in terms of functors, or 

more accurately adjoint, simple adjoint, and weak adjoint functors [BS73], where the 

adjointness relation between two structures embodies a link and similarity between them. 

As an example from life science taken from [BS73], the scientific findings explain the 

similarities between the nuclei of cells of some of the derived species in different stages 

of their life cycles. This similarity can be represented in an abstract way using "an 

isomorphism between the sets of temporal events in the two similar nuclei, together with 

an isomorphism between the sets of possible transformations (differentiations) of the 

equivalent totipotent nuclei" [BS73]. These isomorphisms are examples of an adjointness 

between equivalently similar nuclei of different cells, which can be considered dynamic 

living structures. If the isomorphisms have been restricted only to specific subsets of 

temporal events, or subsets of possible transformations (differentiations), we can talk 

about simple adjointness; otherwise, if in an adjointness we substitute epimorphisms149 

for isomorphisms, the weak adjointness will be obtained [BS73]. 

For more information see : http://tolweb.org/amniota 
Epimorphism is any morphism in a concrete category whose underlying function is surjective [Rei70]. 
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Fig. 4.26. The comparison between the skeleton of Bird (lest) and Human (right) based on the Belon's 
book150 of birds (1555). 

An evolving hierarchical structure [BS73] can be analyzed within a commutative 

categorical diagram consisting of a set of objects within this structure; the state space, 

which varies (unlike traditional definitions of evolving systems) according to the 

transformation rules, along with the collection of of all temporal events that produce the 

changes from one given stage to the next. Categorically the changes in this evolving 

structure can be studied [BS73] as a series of functors from the state space to a category 

of numbers indicating the states. Following this model, starting from an initial state, we 

can determine the number of possible states, necessary for performing a specific change 

to an evolving ontological structure, by transformation rules, and for analytical 

simplicity, we consider it fixed for a given system. The abstract categorical framework at 

each state, along with the transformation rules, which provide the appropriate links from 

150 L'histoire de la nature des oyseaux, avec leurs descriptions, & naifs portraicts. (The history and nature 
of birds) par Pierre Belon du Mans published in 1555. 
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one state to another one, diagrammatically demonstrate the dependency of different 

elements at given states of an evolving structure. We consider further research on this 

part as our future work. 

IV 3.8 Challenges and Limitations in Phylogenetic Analysis 

Some of the challenges that we faced in applying our approach are as following: In the 

task of employing lexical chaining algorithm we had the problem of non-cohesive [BE99] 

text corpuses which dramatically reduce the efficiency of our approach. Therefore we 

decided to start with the assumption that the target text is cohesive. Another problem is 

due to ontological incompleteness. Although the use of ontology inferred phylogeny is a 

very useful way forward, its success highly depends on taxonomic expertise and the 

availability of rich consistent collections of defined concepts for accurate and precise 

inferencing. 
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V. Discussion, Challenges and 
Future Works 

This chapter concludes our research, highlights our 
contribution to the field, and discusses some of the limitations 
of the proposed approach along with suggestions for the 
direction of future research. 
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V.l Summary of the Thesis 

"First comes thought; then organization 
of that thought, into ideas and plans; then 
transformation of those plans into reality. 
The beginning, as you will observe, is in 
your imagination." 

Napoleon Hill (1883-1970) 

Biomedical knowledge is constantly expanding in volume, scope, and granularity to 

cover different aspects of the domain and all advances in the field. This growth creates 

new opportunities and new challenges for researchers, physicians, nurses, lab technicians, 

patients, health policy makers, and agencies. Ontologies, which provide the conceptual 

backbone for many of the existing knowledge-based systems, generally must change to 

update their ontological 'truth'. The heterogeneity of biomedical ontologies and the 

volatility of their knowledge sources increase the odds of different structural alterations. 

Our research aims to assist a biomedical ontology engineer in capturing, tracking, and 

analyzing the changes in ontologies within the distributed semantic web environment. 

One issue in the domain of ontology evolution is the lack of formal change models 

with clear, comprehensible semantics. Due to the limitations of set theoretic based 

knowledge representation languages (including the popular web ontology languages 

RDFS and OWL) for dynamic conceptual modeling, we examined the applicability of 

categorical representation for ontology change management and agile application 

modeling. The semantic web can be conceptualized as an interconnected collection of 

categorically described ontologies and the progressive modification of their descriptions. 

Categorical logic [Law63] offers valuable insights for modeling the declarative semantics 
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of ontologies, which are stratified structures distributed in the heterogeneous semantic 

web environment. The functorial semantics can be employed as the categorical 

generalization of operational semantics for studying various ontological states and 

analyzing pre/post conditions for ontological transitions, independent of any specific 

choice of knowledge representation language. It also provides agile access to the 

magnifying function (zoom-in/zoom-out) over interconnected ontologies in the 

distributed and heterogeneous semantic web environment. 

Another issue in this area is overreliance on the human factor in different stages of 

decision making to perform a change. To remedy this issue, we have introduced a novel 

multi-agent framework to handle changes in bio-ontologies with minimum human 

intervention, while still benefitting from human rationality where necessary. Using 

category theory with its dynamic nature as a complementary knowledge representation 

tool facilitates the capture of the full semantics of evolving bio-ontologies and provides a 

formal basis to represent agent interactions. 

The third issue, a crucial one, is how to ensure consistency of evolving ontologies. 

This issue itself can give rise to several other problems related to security, trust, 

provenance, and so forth. It has been partially addressed using a rule-based hierarchical 

distributed graph transformation approach to define consistent transitions between the 

states with the ability to reveal conflicts and inconsistencies. 

Besides demonstrating the usability of our method in managing alterations in 

biomedical ontologies, we have also explored the potential of our proposed approach to 

solve other computational problems, such as managing requirement volatilities (with 

emphasis on non-functional requirements) and reconstructing evolutionary phylogenies in 
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bioinformatics. Using our category-based framework, we defined a change management 

strategy to monitor and maintain non-functional requirements (NFRs) in a software 

development life cycle. Ontologies represented in categorical depiction can describe 

abstract NFRs, which are difficult to model with object-oriented languages. The NFR's 

hierarchy volatility can be managed using our RLR framework. In addition, we have used 

our method to handle formal ontological inferencing, rather than cladistics, to reconstruct 

phylogeny trees and analyze the evolutionary relationships between species. The major 

efforts for the reorganization of taxonomy over time can be summarized as the dynamic 

identification of essential classifying properties for a class and the collection of all beings 

that share values for these properties into said class. For our experiments, we focused on 

the Fungal Web Ontology and phylogeny of fungi, but the method can be generalized for 

all other species and domains. 

Although the problems discussed in this thesis are sometimes of a more 

philosophical and linguistic nature, our focus on the "formalization" and 

"operationalization" aspects as two distinct features of a scientific approach [Hey90], 

along with the use of a mathematically sound theory (category theory) and graph 

transformation method, helped us to deal with the computational side. In fact our 

introduced approach, based on the insights from category theory, can be employed to 

develop algorithms and tools to assist ontology change management. In the end, we hope 

our attempt will be seen as a process towards providing a workflow for the 

implementation of a generic all-in-one algorithm and model for biomedical Ontology 

change management. 
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Throughout this thesis we have accomplished our research objectives in different 

extents and managed to answer many of our motivating questions. 

• As mentioned in Section I 1.2, the first objective was to identify the effects of 

changes in bio-ontologies with emphasis on the FungalWeb ontology. We have 

addressed this by studying different biomedical ontologies and their editorial 

procedure in Section II.6. We have also classified different types of changes in the 

FungalWeb Ontlogy, with their origins and their effects on the ontology (Section 

III.l) as well as the impact on the related disease ontology in sections (IV. 1). 

• The second objective has been partially accomplished by studying the factors 

affecting the consistency of evolving ontologies (Section II 3.3, Section II.4, and 

Section 11.6), and proposing a method to deal with this issue using RLR (Section III 

2.3.3) and employing category theory (Section III 3.5.5.2), along with graph 

transformation method (Section III 4.5 (specifically HI 4.5.4.2)). 

• To analyze changes in distributed biomedical ontologies, which was the third 

objective, we employed hierarchical distributed graph (HD graph) transformation, 

and utilize our approach in several examples including the case study in (Section 

IV.l); 

• To deal with the overreliance on human factor in current practices in ontology 

evolution (Objective 4), we designed RLR (Section III.2) an agent-based 

framework to capture, represent and analyze changes in bio-ontologies with 

minimum human intervention, which formalized using category theory and graph 

transformation. 
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• To achieve the fifth objective, which was examining category theory as a formalism 

for ontological change management, we have used categories extensively from 

studying changes in bio-ontologies within RLR (See Section III 3.5) to model agent 

interactions and protocols (Section III 3.5.6). We have also employed the 

categorical approaches for graph transformation to consistently manage changes in 

a rule-based manner in distributed environments. 

• In order to address the sixth objective, our proposed approach has been used for 

modeling agent communications (Section III 3.5.6, Section III 4.5.4, and Section III 

4.5.5) and analysis of ontology evolution by means of distributed graph 

transformation (Section III.4). The potential of our approach has been shown 

through several scenarios in Chapter IV. 

The sections, which address the research questions, can be found in detail in Section (I 

1.3). 

V.2 Highlights of Major Contributions 

The healthcare industry deals with large-scale integrated projects, including a variety of 

information services, resource allocation modules, planning, education, and production 

lines. From the ontological perspective, biomedical knowledge bases are highly 

heterogeneous and dynamic. In this thesis, we have presented an approach to incorporate 

categorical representations and graph transformations into an agent-based configuration, 
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yielding an integrated framework to analyze and manage changes in biomedical 

ontologies. In particular, we have presented the following contributions'51: 

i. A semantics for evolving ontologies within a distributed semantic web environment, 

in terms of the semantics of transformation of nested graphs (Section III 4.5) ; 

ii. A study of change management in some of the popular biomedical ontologies, the 

existing challenges, as well as the available tools and algorithms (Section II 6.1, and 

Section II 6.2); 

iii. The modeling of a collaborative multi-agent framework (RLR) for managing 

changes in biomedical ontologies with minimum human intervention, and with the 

ability to generate reproducible results, through an argumentive structure, whenever 

necessary (Section III.2); 

iv. Formalizing the agents' interactions and communications using category theory and 

graph transformation within the RLR framework. (Section III 3.5.6, Section III 4.5.4, 

and Section III 4.5.5); 

v. The introduction of a categorical syntax to analyze changes in evolving biomedical 

ontologies and to incorporate change in terms of temporal states into our proposed 

agent-based framework (Section III 3.4, and Section III 3.5); 

vi. A sketch of an ontological model transformation through a rule-based graph 

transformation approach (Section III 4.5.3, and Section III 4.5.4); 

vii. An extension of hierarchically distributed graph transformation rules to coherently 

manage changes in distributed evolving ontologies at different levels of abstraction 

(III 4.5, and IV 4.1); 

151 The details of contributions can be found at the end of the related sections. 
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viii.An analysis of the practical usage of our framework in three different domains: 

knowledge representation (biomedical ontologies), software engineering 

(requirement management), and bioinformatics (phylogenetic analysis) (Chapter IV). 

As mentioned in Chapter I, the goal of the RLR framework is to assist an ontology 

engineer in performing change management in a more effective manner, including 

reproducing the results of a change and ensuring the consistency of the affected 

ontology. In summary, in this research we addressed the management of changes in 

temporal biomedical ontologies, both as an individual standalone unit and as a unit 

interacting with other existing elements within the distributed semantic web 

environment, by studying human behavior and modeling an adaptive agent-based 

framework to minimize human intervention, as well as by introducing a representation 

formalism to support this framework using category theory and hierarchical distributed 

graph transformation. We have also used categorical formalisms to specify and 

represent changes in a declarative fashion, which can be used to define the 

transformation rules. Moreover, understanding the nature of human behaviour and 

agents' communications in a typical MAS can save time and effort in the design 

process. From our experience so far, some of the concrete advantages of our introduced 

model are: 

- The representation of events, time, actions, and operations employed in different 

scenarios of a dynamic ontological framework is an effective way to trace model 

changes; 

291 



- The independency of the framework from any particular domain, algorithm, 

protocol, or implementation language and its abstractness makes it more flexible for 

reuse in many application domains that use different formalisms and platforms; 

- Employing transformation rules to perform changes ensures the consistency of the 

evolving ontologies in different states; 

- Following the double-pushout approach for defining model transformation, which 

isolates the parts that remain unchanged, enables concurrent changes within an 

integrated knowledge-based system with minimum interruption to the system's 

operation. 

- The abstract categorical notions and their ability to specify objects and their relations 

in different levels of granularities, together with graph oriented semantics, enable us 

to describe the complex evolving structure in a consistent manner, which is beyond 

the capability offered by OWL's single semantic structure. 

V.3 Challenges and Limitations 

One of the characteristics that distinguishes our research is the focus on breadth of 

coverage. In order to model a comprehensive change management mechanism, we had to 

deal with several concepts, issues, and challenges from different domains (cf. Chapter II) 

in this thesis. Thus, extra efforts have been made to grasp the key concepts from different 

areas. However, this is the nature of multi-disciplinary research such as computational 

biology and health informatics. 
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In the process of employing category theory as the core formalism for the RLR 

framework, we had to deal with a variety of challenges, including the reasoning issues 

and management of conceptualization changes. 

However, we are able to provide basic reasoning and inferencing for categories, 

though we still must improve the reasoning capability to cover more advanced services. 

The representation of conceptualization changes is another challenge, especially for 

abstract concepts and notions. To overcome this, we plan to work on grammatical change 

algorithms in linguistics and language evolution. In the same way, one can see that in 

general the formal representation still faces bottlenecks in several domains, including 

agent negotiation processes, cost/benefit estimations, and prediction of all effects of a 

change. Minimizing human intervention is another issue in the "Reproduction" phase, 

although improvement of the learning and negotiation algorithms for the agents may 

reduce the problem. 

In order to manage complex situations in ontology change management, we still need 

to add more expressivity to the underlying formalism. For example, we need to define 

more constraints and induce several conditions to enrich the RLR semantics. Using 

sketches [Wel93, BW05], which are categorical constructors, is a potential solution that 

can be used as graphs with some commutative diagrams (conditions) to specify a set of 

conditions and constraints on a structure, along with specifying the objects that are 

limits/colimits with some conditions. In this way, one can precisely determine the 

expected outcome for the category of agents. 

Another challenge is related to the implementation of the framework. Since the tools 

(and GUI) supporting automatic ontology change management are not yet fully available, 
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we hope to continue our research towards the tool development. Althought, despite its 

advantages, the abstractness and minimalism of categorical formalism decreases the 

degree of expressivity, which necessitates more efforts for implementation of complex 

applications. Last but not least, there is the challenge of choosing a standard hierarchical 

graph model. Despite the existence of vast amount of researches and literature in this 

domain, still no common standard model exists [BKK05]. Different researchers have 

defined different concepts and models based on their application scenarios. We also tried 

to adapt some of the available models into our framework to reflect the hierarchical 

nature of ontologies and their compositions in a semantic web environment. 

V.4 Potential Improvements and Future Work 

Our proposed approach has still room for improvement in several areas, some of which 

have been considered for future work. As far as future work is concerned, further effort is 

necessary to incorporate this framework into an implemented operational ontology 

development tool and explore its implications when confronting rigorous changes in the 

real world. 

Incorporating new knowledge in an ontology, must be in a way that it should not 

contradict the existing 'truth'. Therefore as a vital part of ontology maintenance one 

should always watch for the consistency and coherency of the evolving ontologies. 

During the agents' collaboration and negotiation in RLR, each action is evaluated for its 

potential consequences on the detected and identified inconsistencies in each context. 

Then, either the action should be banned or the inconsistencies must be resolved. Ideally 

these processes should be examined every time the state transition has occurred to ensure 
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that the ontological consistency still holds. The consistency management in our model 

includes several options including: 

- Enforcing the actions for prohibiting the alterations that may lead to inconsistencies 

that often inherit to different versions and endure over the substantial part of the 

ontology's life cycle. This has been done by defining a set of conditions on 

transformations. Checking consistency of the graph transformation and whether a 

sound graph structure exists or not, along with controlling the consistency conditions 

have been broadly addressed by Heckel & Wagner [HW95]. 

- Employing tools such as AGG [Tae04] for automatically checking the consistency of a 

transformation. 

- Isomorphic Reasoning and Commutative Inference: In order to validate the categorical 

diagrams the partial isomorphism in the semantic web environment can be defined 

based on the similarity in structural relationships between syntax, semantics, and the 

resources of the knowledge in ontological frameworks. From a categorical point of 

view, the simplest type of isomorphic reasoning involves an explicit and continuous 

mapping of the correspondences and similarities at the syntactic level while ignoring 

the semantics. This method enables us to perform reasoning about the dynamic 

structure of ontologies. For example, in the case of context change in ontology 

evolution, since the applicability of specific knowledge in one context does not 

automatically indicate the validity of the reasoning in the new context, thus the 

isomorphism between different states of the ontological structures and the knowledge 

they implied needs to be carefully analyzed. A common sense approach to get insight 

into a categorical diagrammatic structure and trace its various states, is to follow and 
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chase the diagrams depicting the objects and morphisms, to check whether the 

diagram is commutative or not and ensure the equality of the compositions. A diagram 

is commutative "iff whenever p and p' are paths with the same source and target, then 

the compositions of morphisms along these two paths are equal" [Gog91]. Putting two 

commutative diagrams together yields another commutative diagram. The diagram 

chasing along with commutative inference allow us the state space analysis to examine 

all the potential state transitions based on a derived transformational pattern. 

Therefore, one of the fundamental functionalities in ontology engineering that is the 

traceability of isomorphic reasoning processes through time from an initial ontology 

version to its current operational version can be performed. 

- Using the semi-automated reasoning system introduced in [KKR06] for basic 

category-theoretic reasoning, which captures the basic categorical constructors, 

functors, and natural transformations, and provides services to check consistency, 

semantic coherency, and inferencing, is another option 

In order to fully utilize the potential of reasoning and consistency checking in our 

framework, we are still working on this part as our ongoing research. 

Categorical logic provides a reasoning service for changing ontologies, although for 

better analysis of changes within the states, it needs to be extended. Such an extension 

might be achieved, through our future work, by imposing some constraints, as proposed 

in [May83], on the occurrence of events and then deriving the appropriate state 

description. In addition, we plan to generalize our usage of category theory along with 

other formalisms such as colored Petri nets and Named graphs to improve the 

visualization of the changes. Also, to address some of the issues related to changes in 
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conceptualizations and to improve the negotiation and learning processes, we want to 

extend the RLR framework towards inclusion of an NLP engine to deal with changes 

from a linguistic point of view. Based on our experience in dealing with category theory, 

we feel that this formalism still has plenty of potential left to be used for ontology change 

management; thus, the categorical constructors such as sketches, n-categories, and 

enriched categories are due for examination in future work. 

In the employed graph transformation approach, we restricted ourselves to using 

typed labeled graphs; however, in order to increase the expressivity of the graph 

representation, one may want to employ hypergraphs instead. Although using 

hypergraphs increases the expressivity of our formalism, it also induces a tremendous 

amount of complexity on the reasoning process (comparable with using OWL Full as the 

representation language). In addition, extending the types of interactions between 

different change actions at the internal and external levels of our introduced HD graphs 

could be another possible enhancement. Moreover, modeling a rule-based query engine 

that enables us to pose complex queries to changing knowledge bases is another possible 

task to be pursued. 

297 



References 

[AAG05] Ato, M., Ato, E., and Gomez, J. (2005) Analyzing change among developmental stages with 

categorical models. Quality and Quantity 39(1): 87-108. 

[AAR+03] Al-Aboud, K., Al-Hawsawi, K., Ramesh, V., Al-Aboud, D. and AL-Githami, A. (2003) An 

Appraisal of Terms Used in Dermatology. SKINmed 2(3): 151-153. 

[AB96] Arnold, R., and Bohner, S. (1996) Software Change Impact Analysis. Wiley-IEEE Computer 

Society Press; Is' edition. 

[AB09] Arkoudas, K., Bringsjord, S. (2009) Vivid: An AI framework for heterogeneous problem 

solving. Artificial Intelligence, 173(15): 1367-1405. 

[ABB+06] Ashburner, M, Ball, C.A., Blake, J.A., Botstein, D. et al. (2000) Gene Ontology: tool for the 

unification of biology. Nat Genet., 25: 25-29. 

[ACC01] Antoniol, G., Canfora, G., and Casazza, G. (2001) Andrea De Lucia: Maintaining traceability 

links during object-oriented software evolution. Softw., Pract. Exper. 31(4): 331-355. 

[ADM+05] Aumueller, D., Do, H.H., Massmann, S., and Rahm, E. (2005) Schema and ontology matching 

with COMA++. In Proc. of the ACM SIGMOD int'l conference on Management of data, 

Baltimore, Maryland, pp. 906-908. 

[ADM+07] d'Aquin, M., Doran, P., Motta, E., and Tamma, V.A..M. (2007) Towards a Parametric 

Ontology Modularization Framework Based on Graph Transformation. In Proc. of WoMO'07, 

CEUR315. 

[AE01] Artale, A., and Franconi, E. (2001) A survey of temporal extensions of description logics. 

Annals of Mathematics and Artificial Intelligence, 30(1-4): 17-210. 

[AGM85] Alchourron, C.E., Gardenfors, P., and Makinson, D. (1985) On the Logic of Theory Change: 

Partial Meet Contraction and Revision Functions. J. of Symbolic Logic, 50: 510-530. 

[AGM+90] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local 

alignment search tool.J. Mol. Biol., 215: 403^110. 

[AHS90] Adamek, J., Herrlich, H., and Strecker, G.E. (1990) Abstract and Concrete Categories: The Joy 

of Cats. J. Wiley & Sons. 

[AL91] Asperti. A., and Longo, G. (1991) Categories, Types, and Structures: An Introduction to 

Category Theory for the Working Computer Scientist. The MIT Press. 

[Alp07] Alpheccar's blog (2007) Category Theory and the category of Haskell programs: Part 1, 

(Accessed 10 Dec 2009) http://www.alpheccar.org/en/posts/show/74 

[ALT07] Artale, A., Lutz, C, and Toman, D. (2007) A Description Logic of Change. In Proc. of the 20,h 

Int'l Joint Conference on Artificial Intelligence (IJCAI'07), Hyderabad, India, Jan 6-12, pp. 

218-223. 

298 

http://www.alpheccar.org/en/posts/show/74


[Amb96] Ambler, S. (1996) A Categorial Approach to the Semantics of Argumentation. Mathematical 

Structures in Computer Science 6(2): 167-188. 

[AMFOO] Avery, G., McGee, C, and Falk, S. (2000) Implementing LIMS: A 'How-To' Guide. 

Analytical Chemistry, 72(1): 57-62. 

[AN09] Al-Mubaid, H., and Nguyen, H.A. (2009) Measuring Semantic Similarity Between 

Biomedical Concepts Within Multiple Ontologies. IEEE Transactions on Systems, Man, and 

Cybernetics, Part C: Applications and Reviews, 39(4): 389-398. 

[And95] Andersen, N.M. (1995) Cladistic Inference and Evolutioanry Scenarios: Locomotory Structure, 

Function, and Performance in Water Striders. Cladistics, 11(3): 279-295. 

[And81] Anderson, J. R. (1981) Concepts, propositions, and schemata: What are the cognitive units? In 

J. Flowers (edi.) Nebraska Symposium on Motivation. Lincoln, Nebraska: Uni. of Nebraska. 

[ANR+06] Aizenbud-Reshef, A., Nolan, B.Y., Rubin, J., Shaham-Gafhi, Y. (2006) Model Traceability. 

IBM System Journal, 45(3): 515-526. 

[APR98] Agusti, J., Puigsegur, J. and Robertson, D.S. (1998) A visual syntax for logic and logic 

programming. Journal of Visual Languages and Computing, 9(4): 399-427. 

[ARL07] Ashri, R., Rahwan, I., Luck, M. (2007) Architectures for Negotiating Agents. In Proc. of the 3rd 

Intl. Central & Eastern European Conference on Multi-Agent Systems and Applications 

(CEEMAS'03), Prague, Czech Republic, LNCS 2691, Springer, pp. 136-146. 

[Art04] Artale, A. (2004) Reasoning on temporal conceptual schemas with dynamic constraints. In 

Proc. of 11th Int. Sympo. on Temporal Representation and Reasoning (TIME'04), Tatihou 

Island, Normandie, France, IEEE Comp. Soc, pp. 79-86. 

[Aub90] Aubin, J.P. (1990) Fuzzy differential inclusions, Problems Control Inform. Theory 19: 55-67. 

[Ave09] Aven, T. (2009) Identification of safety and security critical systems and activities. Reliability 

Engineering & System Safety, 94(2): 404-411. 

[Awo06] Awodey, S. (2006) Category Theory. Oxford University Press. 

[Awo09] Awodey, S. (2009) Categorical Logic. Lecture notes. 

http://www.andrew.cmu.edu/user/awodey/catlog/ 

[AY03] Avery, J., Yearwood, J. (2003) DOWL: A Dynamic Ontology Language. In Proc. of IADIS-

ICWT03, pp. 985-988. 

[AY05] Avery, J., and Yearwood, J. (2005) A formal description of ontology change in OWL. In Proc. 

of the 3rd Intl. Conf. on Information Technology and App. (ICITA'05), Vol. 2, IEEE Comp. 

Society, pp. 238-243. 

[BaiOO] Bairoch, A. (2000) The ENZYME database in 2000. Nucleic Acids Res, 28: 304-305. 

[BAP+02] Bernabe, M., Ahrazem, O., Prieto, A., and Leal, J.A. (2002) Evolution of Fungal 

Polysaccharides F1SS and Proposal of Their Utilisation as Antigenes for Rapid Detection of 

Fungal Contami nants. E. Journal of Env., Agr. & Food Chem. 1(1): 30-45. 

299 

http://www.andrew.cmu.edu/user/awodey/catlog/


[Bar87] Bartnicki-Garcia, S. (1987) The cell wall in fungal evolution. In Evolutionary biology of the 

fungi. Cambridge University Press, New York, N.Y., pp. 389-403. 

[Bar93] Barfield, L. (1993). The User Interface Concepts and Design. New York: Addison Wesley, pp. 

108-112. 

[Bau95] Bauderon, M. (1995) A uniform approach to graph rewriting: the pullback approach. In Proc. 

of the 21st Int'l Workshop on Graph-Theoretic Concepts in Comp. Scie. (WG'95), Aachen, 

Germany, LNCS 1017, Springer, pp. 101-115. 

[BBB+98] Baker, P.G., Brass, A., Bechhofer, S., Goble, C, Paton, N., Stevens, R. (1998) TAMBIS-

Transparent Access to Multiple Bioinformatics Information Sources. Proc Int'l Conf Intell Syst 

Mol Biol, 6: 25-34. 

[BBE91] Bjerknes, G., Bratteteig, T., and Espeseth, T. (1991): Evolution of Finished Computer Systems: 

The Dilemma of enhancement, Scandinavian Journal of Information Systems, 3: 25-46. 

[BBF+01] B'erard, B., Bidoit, M, Finkel, A., Laroussinie, F., Petit, A. et al. (2001) Systems and Software 

Verification. Model-Checking Techniques and Tools, Springer. 

[BCC+02] Buttler, D., Coleman, M., Critchlow, T., Fileto, R. et al. (2002) Querying Multiple Bioinformatics 

Data Sources: Can Semantic Web Research Help? SIGMOD Record 31(4): 59-64. 

[BCM+03] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., and Patel-Schneider, P.F. (2003) The 

Description Logic Handbook: Theory, Implementation, and App. Cambridge University Press. 

[BDG06] Bobillo, F., Delgado, M., and Gomez-Romero, J. (2006) A Crisp Representation for Fuzzy 

SHOIN with Fuzzy Nominals and General Concept Inclusions. In Proc. of the 2nd Workshop 

on Uncertainty Reasoning for the Semantic Web (URSW'06). 

[BE99] Barzilay, R. and Elhadad, M. (1999) Using lexical chains for text summarization. In: I. Mani, 

M. T. Maybury (eds.) Advances in automatic text summarization, Cambridge, MA, The MIT 

Press, pp. 111-121. 

[Bee] Bechhofer S. GALEN Documentation, frequently asked questions. (Accessed 16 Dec 2009) 

http://www.opengalen.org/faq/faq 1 .html 

[Bec06] Beckett, D. (2006) SPARQL RDF Query Language Reference v 1.8. (Accessed 10 Jan 2009) 

http://www.dajobe.org/2005/04-sparqI/SPARQLreference-1.8.pdf. 

[BEE+04] Bouquet, P., Ehrig, M., Euzenat, J., Franconi, E., Hitzler, P., Krotzsch, M., Serafini, L. et al. 

(2004) Specification of a common framework for characterizing alignment. Knowledge Web 

Deliverable 2.2. Iv2, University of Karlsruhe. 

http://www.aifb.uni-karlsruhe.de/WBS/phi/pub/kweb-221 .pdf 

[BEF+06] de Bruijn, J., Ehrig, M., Feier, C, Martins-Recuerda, F. et al. (2006) Ontology Mediation, 

Merging, and Aligning. In: Davies, J., Studer, R., and Warren, P. (eds.) Semantic Web 

Technologies. J. Wiley & Sons. 

[BelOl] Bell, J.L. (2001) Observations on Category Theory. Axiomathes, 12(1-2): 151-155. 

300 

http://www.opengalen.org/faq/faq
http://www.dajobe.org/2005/04-sparqI/SPARQLreference-
http://www.aifb.uni-karlsruhe.de/WBS/phi/pub/kweb-22


[Bel06] Bell, J.L. (2006) Abstract and Variable Sets in Category Theory. In Giandomenico Sica (ed.) 

What is Category Theory? Polimetrica Publisher, Italy, pp. 9-16. 

[Ben98J Bench-Capon, T.J.M. (1998) Specification and implementation of Toulmin dialogue game. In 

Proc. of Legal Knowledge-Based Systems. JURIX: The 11th Conference, pp. 5-19. 

[Bes97] Bes, M.O. (1997). Analysis of a human error in a dynamic environment: The case of air traffic 

control. In Proc. of the Workshop on Human Error and Systems Development, Glasgow. 

[Bes99] Bes, M.O. (1999). A case study of a human error in a dynamic environment. Interacting with 

Computers, 11(5): 525-543. 

[Bev03] Bevir, M. (2003) Notes toward an Analysis of Conceptual Change. Social Epistemology, 

17(1): 55-63. 

[BFK+95] Beitler, M., Foulds, R., Kazi, Z., Chester, D., Chen, S., and Salganicoff, M. (1995). A 

Simulated Environment of a Multimodal User Interface for a Robot. In Proc. of the RESNA 95 

Annual Conference, Vancouver: RESNA95,490-492. 

[Bri04] Brickley, D. (editor) (2004) RDF Vocabulary Description Language 1.0: RDF Schema, W3C 

Recommendation 10 February. http://www.w3.org/TR/rdf-schema/ 

[BGL00] Bench-Capon, T.J.M., Geldard, T., and Leng, P.H. (2000) A method for the computational 

modelling of dialectical argument with dialogue games. Artificial Intelligence and Law, 8(2-3): 

233-254. 

[BH90] Bridgeland, D.M., and Huhns, M.N. (1990) Distributed Truth Maintenance. In Proc. of 8th 

National Conf. on Artificial Intelligence (AAAI'90), Boston, MA, pp. 72-77. 

[BH04] Baresi, L., Heckel, R. (2004) Tutorial Introduction to Graph Transformation: A Software 

Engineering Perspective. In Proc. of the 2nd Infl Conference on Graph Transformations 

(ICGT'04), Rome, Italy, LNCS 3256, Springer, pp. 431^133. 

[BHB09] Bizer, C, Heath, T., and Berners-Lee, T. (2009) Linked Data - The Story So Far. International 

Journal on Semantic Web and Information Systems, 5(3): 1-22. 

[BHL01] Berners-Lee, T., Hendler, J., and Lassila, O. (2001) The semantic web. Scientific American, 

pp. 30-37. 

[Bir98] Bird, R. (1998) Introduction to Functional Programming using Haskell, 2nd edi. Prentice Hall. 

[BJ01 a] Bauderon, M., and Jacquet, H. (2001) Pullback as a Generic Graph Rewriting Mechanism. 

Applied Categorical Structures 9(1): 65-82. 

[BK08] Bryant, D., and Krause, P (2008) A review of current defeasible reasoning implementations. 

Knowledge Eng. Review 23(3): 227-260. 

[BKK+87] Banerjee, J., Kim, W., Kim, H.J., and Korth, H.F. (1987) Semantics and implementation of 

schema evolution in object-oriented databases. ACM S1GMOD Record, 16(3): 311-322. 

[BKK05] Busatto, G., Kreowski, H.J., and Kuske, S. (2005) Abstract hierarchical graph transformation. 

Mathematical Structures in Computer Science 15(4): 773-819. 

301 

http://www.w3.org/TR/rdf-schema/


[Bla84] Blass, A. (1984) The Interaction Between Category Theory and Set Theory. Mathematical 

Applications of Category Theory, 30, Providence: AMS, 5-29. 

[BM99] Bench-Capon, T.J.M., and Malcolm, G. (1999) Formalising Ontologies and Their Relations. In 

Proc. of the 10th int'l conference on Database and Expert Systems Applications (DEXA'99), 

Florence, Italy, LNCS 1677, Springer, pp. 250-259. 

[BMO01] Bauer, B., Mliller, J.P., and Odell, J. (2001) Agent UML: A Formalism for Specifying 

Multiagent Software Systems. International Journal of Software Engineering and Knowledge 

Engineering 11(3): 207-230. 

[Boh95] Bohner, S.A. (1995) A graph traceability approach for software change impact analysis. Ph.D. 

thesis, George Mason University. 

[BOS+05] Beyer, K.S., Ozcan, F., Saiprasad, S., and Van der Linden, B. (2005) DB2/XML: designing for 

evolution. In Proc. of the ACM SIGMOD Conference on Management of Data, Baltimore, 

Maryland, USA, ACM press, pp. 948-952. 

[BR99] Bailey, P.S., and Read, J. (1999) Software implementation of clinical terminologies: The use of 

component technology (tutorial), AMIA '99 Annual Symposium. Washington, DC. 

[BRG+06] Bradbury, J.S., Rutherford, I., Graves, M., Tweedle, J., and Rosebrugh, R. (2006) User Guide 

for Graphical Database for Category Theory 3.0. Mount Allison Uni. 30 pp. (Accessed 25 Feb 

2010) http://mathcs.mta.ca/research/rosebrugh/gdct/pdf/userguide/userguide.pdf 

[Bru97] Brummitt, R.K. Taxonomy versus cladonomy, a fundamental controversy in biological 

systematic. Taxon, vol. 46,1997, pp. 723-734. 

[BS73] Baianu, I., and Scripcariu, D. (1973) On adjoint dynamical systems. Bulletin of Mathematical 

Biology, 35(4): 475-486. 

[BSF02] Boger, M., Sturm, and Fragemann, P. (2002) Refactoring Browser for UML. In Proc. of 

NetObjectDays'02, LNCS 2591, pp. 366-377. 

[BSH+06] Bossung, S., Sehring, H.W., Hupe, P. and Schmidt, J.W. (2006) Open and Dynamic Schema 

Evolution in Content-intensive Web Applications. In Proc. of the 2nd Intl. Conf. on Web 

Information Systems and Technologies (WEBIST06), pp. 109-116. 

[BSK+07] Bodenreider, O., Smith, B., Kumar, A., and Burgun, A. (2007) Investigating subsumption in 

SNOMED CT: An exploration into large description logic-based biomedical terminologies. 

Artificial Intelligence in Medicine, 39(3): 183-195. 

[BSS+06] Baker, C.J.O., Shaban-Nejad, A., Su, X., Haarslev. V., Butler G. (2006) Semantic web 

infrastructure for fungal enzyme biotechnologists. Journal of Web Semantics 4(3), 168-180. 

[BT94] Brazier, F.M.T., and Treur, J. (1994). User Centered Knowledge-Based System Design: a 

Formal Modelling Approach. EKAW'94, LNCS 867, Springer, 282-302. 

[BVH+04] Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks et al. (2004) OWL Web Ontology 

Language Reference. Feb 2004 http://www.w3.org/TR/owl-ref/ 

302 

http://mathcs.mta.ca/research/rosebrugh/gdct/pdf/userguide/userguide.pdf
http://www.w3.org/TR/owl-ref/


[BW05] Barr, M., and Wells, C. (2005) Toposes, Triples and Theories. Originally published on 1985 by 

Springer, Reprints in Theory and Applications of Categories, No. 1,2005, pp. 1-289. 

[BW06] Baker, C.J.O., and Witte, R. (2006) Mutation Mining - A Prospector's Tale. Information 

Systems Frontiers, 8 (1): 47-57. 

[BZ06] Breu, S., and Zimmermann, T. (2006) Mining Aspects from Version History. In Proc. of the 

21st IEEE/ACM Int'l Conference on Automated Software Engineering (ASE'06), 18-22 Sep, 

Tokyo, Japan, pp. 221-230. 

[CBB+00] Discala, C, Benigni, X., Barillot, E., and Vaysseix, G. (2000) DBcat: A Catalog of 500 

Biological Databases. Nucleic Acids Research, 28(l):8-9. 

[CCS05] Capobianco, M., Chesfievar, C.I., and Simari, G.R. (2005) Argumentation and the Dynamics of 

Warranted Beliefs in Changing Environments. Autonomous Agents and Multi-Agent Systems 

11(2): 127-151. 

[CCS07] Capobianco, M. R., Chesfievar, C. I., and Simari, G. R. (2007) On the construction of 

Dialectical Databases. Inteligencia artificial, 35: 89-100. 

[CCV+04] Caldwell, B., Chisholm, W., Vanderheiden, G., and White, J. (2004) Web Content Accessibility 

Guidelines 2.0. W3C Working Draft 11 March 2004. 

http://www.w3.org/TR/2004/ WD-WCAG20-20040311/ 

[CD02] Cabral, C.H., and Duarte, C. (2002) A Logico-Categorical Semantics of XML/DOM. In Proc. 

of the 2nd Web dynamic Workshop at WWW'02, Honolulu, Hawaii, USA. 

[CDJ01] Colomb, R.M., Dampney, C.N.G., and Johnson, M. (2001) Category-theoretic fibration as an 

abstraction mechanism in information systems. Acta Inf. 38(1): 1^14. 

[Ced] Cederqvist P, Version Management With CVS Copyright 1993-2005 Free Software Found Inc. 

http:// ftp.gnu.org/non-gnu/cvs/source/stable/1.11,22/cederqvist-1.11.22.pdf. (Accessed 15 Nov 

2009). 

[CG00] Corcho, O. and Gomez-Perez, A. (2000) A roadmap for ontology specification languages., 12th 

Intl' Conference on Knowledge Engineering and Knowledge Management (EKAW-2000), 

France, Springer. 

[CG05] Crous, P.W., and Groenewald, J.Z. (2005) Hosts, species and genotypes: opinions versus data. 

Australas Plant Path 34(4):463^170. 

[CG07] Corcho, O., and Gomez-Perez, A. (2007) ODEDialect: a Set of Declarative Languages for 

Implementing Ontology Translation Systems. J. UCS, 13(12): 1805-1834. 

[CGC+07] Carrigan, N., Gardner, P.H., Conner, M., and Maule, J. (2007) The impact of structuring the 

interface as a decision tree in a treatment decision support tool. In Proc. of the 3rd Symp. of the 

HCI and Usability for Medicine and Health Care, USAB'07, Graz: Springer, pp. 273-288. 

[CGG03] Crous, P.W., Groenewald, J.Z., Gams, W. (2003) Eyespot of cereals revisited: ITS phylogeny 

reveals new species relationships, European J. Plant Pathol. 109: 841-50. 

303 

http://www.w3.org/TR/2004/
http://
ftp://ftp.gnu.org/non-gnu/cvs/source/stable/1.11,22/cederqvist-1.11.22.pdf


[CGL01] Calvanese, D., de Giacomo, G., and Lenzerini, M. (2001) A Framework for Ontology 

Integration. In the The Proc. of the 1st Semantic Web Working Symposium (SWWS'01), 

Stanford University, California, USA, pp. 303-316. 

[CGM+04] Crous, P.W., Groenewald, J.Z, Mansilla, J.P., Hunter, G.C., Wingfield, M.J. (2004) 

Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs occurring on 

Eucalyptus. Studies in Mycology, 50: 195-214. 

[CGS-K)4] Crous, P.W., Gams, W., Stalpers, J.A., Robert, V., and Stegehuis, G. (2004) MycoBank: an 

online initiative to launch mycology into the 21st century. Studies in Mycology 50: 19-22. 

[CH07] Cafezeiro, I., and Haeusler, E.H. (2007) Semantic Interoperability via Category Theory. In 

Proc. Challenges in Conceptual modeling in the 26th intl. conference on Conceptual Modeling 

(ER'07), Auckland, New Zealand, Nov 5-9, CRPIT 83 Australian Comp. Soc, pp. 197-202. 

[Cha90] Chang, S.K. (ed.): 1990, Principles of Visual Programming Systems, Prentice Hall, New York. 

[ChaOO] Chalupsky, H (2000) OntoMorph: A Translation System for Symbolic Knowledge. In Proc. of 

7th int'l conf. on Principles of Knowledge Representation & Reasoning (KR'00), 

Breckenridge, Colorado, USA, Morgan Kaufmann Pub., pp. 471^182. 

[Cha-1] Change Management for RDFS/OWL Ontologies, part 1: 

http://isegserv.itd.rl.ac.uk/cvs-public/~checkout~/swbp/vm/change-management/partl.html 

[Cha-2] Change Management for RDFS/OWL Ontologies, part 2: 

http://isegserv.itd.rI.ac.uk/cvs-public/~checkout~/swbp/vm/change-anagement/part2.html 

[Che04] Cheney, J. (2004) Category Theory for Dummies (I). (Accessed 15 Nov 2009) 

http://homepages.inf.ed.ac.uk/jcheney/presentations/ct4d 1 .pdf 

[CHR08] Cafezeiro, I., Haeusler, E.H., and Rademaker, A. (2008) Ontology and Context. In Proc. of 6th 

IEEE Intl. Conf. on Pervasive Computing and Communications (PerCom'08), 17-21 March, 

Hong Kong, pp. 417-422. 

[CHS+04] de Coronado, S., Haber, M.W., Sioutos, N , Turtle, M.S., and Wright, L.W. (2004) NCI 

Thesaurus: using science-based terminology to integrate cancer research results. In Proc. of 

Medinfo. 2004; ll(Ptl): 33-7. 

[Cim96a] Cimino J J. (1996) Formal descriptions and adaptive mechanisms for changes in controlled 

medical vocabularies. Methods of Information in Medicine, 35(3):202-210. 

[Clo96] Clos, L.M. (1996) What is cladistics? Fossil News, Journal of Avocational Paleontology. 

http://www.fossilnews.eom/l 996/cladistics.html 

[CLR04] Chen, S., Liu, B., and Rundensteiner, E.A., (2004) Multiversion-based view maint-enance over 

distributed data sources. ACM Trans. Database Syst. 29(4): 675-709. 

[CM05] Chung, S., and McLeod, D. (2005) Dynamic Pattern Mining: An Incremental Data Clustering 

Approach. J. Data Semantics, 2: 85-112. 

[CMR96] Corradini, A., Montanari, U., and Rossi, F., (1996) Graph processes, Fund. Inform. 26(3,4): 

241-266. 

304 

http://isegserv.itd.rl.ac.uk/cvs-public/~checkout~/swbp/vm/change-management/partl.html
http://isegserv.itd.rI.ac.uk/cvs-public/~checkout~/swbp/vm/change-anagement/part2.html
http://homepages.inf.ed.ac.uk/jcheney/presentations/ct4d
http://www.fossilnews.eom/l


[CMR+97] Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., and L5we, M. (1997) Algebraic 

Approaches to Graph Transformation - Part I: Basic Concepts and Double Pushout Approach. 

Handbook of Graph Grammars, Vol 1: Foundations. World Scientific, pp. 163-246 

[Coh04] Cohen SM (2004) Identity, Persistence, and the Ship of Theseus. Department of philosophy, 

University of Washington, http://faculty.washington.edu/smcohen/320/theseus.html 

[ComO 1 ] Committee on Quality of Healthcare in America Institute of Medicine. (2001) Crossing the 

quality chasm: a new health system for the 21st century. Washington, DC: National Academy 

Press. 

[Cor05] Corcho, O. (2005) A Layered Declarative Approach to Ontology Translation with Knowledge 

Preservation. Frontiers in AI & Applications! 16, IOS Press, pp. 20. 

[COS+98] Campbell, K.E., Oliver, D.E., Spackman, K.A., and Shortliffe, E.H. (1998) Representing 

Thoughts, Words, and Things in the UMLS. J Am Med Inform Assoc, 5(5):421^t31. 

[CRG+96] Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., and Widom, J. (1996) Change Detection in 

Hierarchically Structured Information. In Proc. of the ACM SIGMOD int'l conference on 

Management of data, Montreal, Quebec, Canad, pp. 493-504. 

[Cro05] Crous, P.W (2005) Plant pathology is lost without taxonomy. Outlooks on Pest 

Management 6:119-123. 

[Cry97] Crystal, D. (1997) The Cambridge Encyclopedia of Language. 2nd edi. Cambridge Uni. Press. 

[CS01] Chechik, M., and Easterbrook, S. (2001) Reasoning about Compositions of Concerns. In Proc. 

of the Workshop on Advanced Separation of Concerns in Software Eng. at ICSE'01. 

[CS05b] Cushion, M.T., Stringer, J.R. (2005) Has the Name Really Been Changed? It Has for Most 

Researchers. Clinical Infectious Diseases, 41, 1756-1758 (2005) 

[CS06] Ceusters, W., and Smith, B. (2006) A Realism-Based Approach to the Evolution of Biomedical 

Ontologies, in Proceedings of AMI A Annual Symposium. 

[CSC07] Couto, F.M., Silva, M.J., and Coutinho, P.M. (2007) Measuring semantic similarity between 

Gene Ontology terms. Data & Knowledge Engineering, 61 (1): 137-152. 

[CSG5a] Ceusters, W., Smith, B., and Goldberg, L. (2005) A Terminological and Ontological Analysis 

of the NCI Thesaurus. Method Inform Med 44:498-507. 

[CSK+04] Ceusters W, Smith B, Kumar A, Dhaen C (2004) Ontology-Based Error Detection in 

SNOMED-CT. In Proc. of the 11th World Congress on Medical Informatics; MEDINFO04, 

IOS; 482^186. 

[CW01] Collard, M., and Wood, B. (2001) Homoplasy and the early hominid masticatory system: 

inferences from analyses of extant hominoids and papionins. J. of Human Evolution, 41(3): 167-

194. 

[CZ06] Cimino ,JJ., and Zhu, X. (2006) The practical impact of ontologies on biomedical informatics. 

Yearb Med Inform. 2006:124-35. 

305 

http://faculty.washington.edu/smcohen/320/theseus.html


[DAB+04] Dolin, R.H., Alschuler, L., Boyer, S., Beebe, C, Behlen, F.M., Biron, P.V., Shabo, A. HL7 

Clinical Document Architecture, Release 2.0 (Last Published: Sun 12/12/2004. http://www.e-

ms.ca/documents/pdf_v3balIotCDA_ 2005Jan.pdf 

[DC94] Diskin, Z., Cadish, B. (1994) Algebraic Graph-Oriented = Category Theory Based. Manifesto 

of categorizing database theory. Tech. Report # 9406, Frame Info. Sys., Latvia. 

http://citeseerx.ist.psu.edu/viewdoc/summary ?doi=l 0.1.1.51.5787 

[DCP05] Dunn-Davies, H.R., Cunningham, J., and Paurobally, S. (2005) Prepositional Statecharts for 

Agent Interaction Protocols. Electr. Notes Theor. Comput. Sci. 134: 55-75. 

[DD04] Deridder, D., and D'Hondt, T.A. (2004) Concept-Centric Approach to Software Evolution. In 

Proc. of ACM OOPSALA'04 workshop, Vancouver, Canada. 

[Dec93] Decortis, F. (1993). Operator strategies in a dynamic environment in relation to an operator 

model. Ergonomics Special issue: Cognitive processes in complex tasks, 36(11), 1291-1305. 

[DHK02] Depke, R., Heckel, R., and Kuster, J.M. (2002) Formal agent-oriented modeling with UML and 

graph transformation. Sci. Comput. Program. 44(2): 229-252. 

[DHP02] Drewes, F., Hoffmann, B., and Plump, D. (2002) Hierarchical Graph Transformation. J. 

Comput. Syst. Sci. 64(2): 249-283. 

[Dek95] De Keyser, V. (1995). Time in Ergonomics. Ergonomics, 38(8), 1639-1661. 

[DevOl] Devedzic, V. (2001) Knowledge Modeling - State of the Art. Integrated Computer-Aided 

Engineering, 8(3): 257-281. 

[DG92] De Queiroz, K., and Gauthier, J. (1992) Phylogenetic taxonomy. Ann. Rev. Ecol. Syst., 23: 

449-^80. 

[DGL08] Ontology Evolution in the Life Sciences Project (2008) Database Group Leipzig. 

http://dbs.uni-leipzig.de/research/projects/bioinformatik/ontology_evolution/gosubontologies 

[DH96] Duribreux-Cocquebert, M., and Houriez, B. (1996). A user-centered methodology for 

knowledge-based systems development: MODESTI. In Proceedings of the IEEE International 

Conference on Systems, Man, and Cybernetics, 2,1208-1213. 

[DH05] Doan, A., and Halevy, A.Y. (2005) Semantic Integration Research in the Database 

Community: A Brief Survey. AI Magazine 26(l):83-94. 

[DHH+01] Degen, W., Heller, B., Herre, H., and Smith, B. (2001) GOL: toward an axiomatized upper-

level ontology. In Proc. of 2nd Int'l Conf. on Formal Ontology in Information Systems 

(FOIS'01), Ogunquit, Maine, USA, ACM press, pp. 34-46. 

[DHKOO] Depke, R., Heckel, R., and Kuster, J.M. (2000) Agent-Oriented Modeling with Graph 

Transformation. In Proc. of AOSE'OO, LNCS 1957, Springer, pp. 105-120. 

[Din08] Dini, P. (2008) Notes on Relational Biology and Elementary Category Theory. In Proc. of the 

2nd Int'l OPAALS Conference on Digital Ecosystems, Tampere, Finland, 7 - 8 October. 

http://matriisi.ee.tut.fi/hypermedia/events/opaals2008/article/opaals2008-article25.pdf 

306 

http://www.e-
http://citeseerx.ist.psu.edu/viewdoc/summary
http://dbs.uni-leipzig.de/research/projects/bioinformatik/ontology_evolution/gosubontologies
http://matriisi.ee.tut.fi/hypermedia/events/opaals2008/article/opaals2008-article25.pdf


[DKK+99] Drewes, F., Knirsch, P., Kreowski, H.J. et al. (1999) Graph Transformation Modules and Their 

Composition. In Proc. of AGTIVEe99, LNCS 1779, Springer, pp. 15-30. 

PLR09] D'Ambros, M, Lanza, M., and Robbes, R. (2009) On the Relationship Between Change 

Coupling and Software Defects. In Proc. of 16th Working Conference on Reverse Engineering 

(WCRE'09), IEEE Comp. Soc. pp. 135-144. 

[DM07] De Leenheer, P., and Mens, T. (2007) Using Graph Transformation to Support Collaborative 

Ontology Evolution. In Proc. of the 3rd Intl. Sympo. on App. of Graph Transformations with 

Industrial Relevance (AGTIVE'07), Kassel, Germany, LNCS 5088 Springer, pp. 44-58. 

[DM08] De Leenheer, P., and Mens, T. (2008) Ontology Evolution, in Hepp, M., De Leenheer, P., de 

Moor, A., and Sure, Y (Eds.) Ontology Management, Semantic Web, Semantic Web Services, 

and Business Applications. Semantic Web And Beyond Computing for Human Experience 

Vol. 7 Springer, pp. 131-176. 

[DMM07] De Leenheer,P., de Moor, A., and Meersman, R. (2007) Context Dependency Management in 

Ontology Engineering: A Formal Approach. J. Data Semantics, 8: 26-56. 

[DMQ05] Dou, D., McDermott, D.V., and Qi, P. (2005) Ontology Translation on the Semantic Web. J. 

Data Semantics, 2:35-57. 

[Don05] Donnelly, M. (2005) Containment relations in anatomical ontologies. 2005 AMIA Fall 

Symposium, pp. 206-210. 

[DP97] Dubois, D., Prade, H. (1997) The three semantics of fuzzy sets. Fuzzy Sets and Systems 90 

(1997)141-150. 

[DP04] Ding, Z., Peng, Y. (2004) A probabilistic extension to ontology language OWL. In Proc. of the 

37th Hawaii Inl. Conference on System Sciences, (HICSS-37), 10 pp. 

[DR04] Dutta, P.K., and Radner, R. (2004) Self-enforcing climate-change treaties. PNAS, 101(14): 

5174-5179. 

[Dra97] Dragoni, A.F. (1997) Belief revision: from theory to practice. The Knowledge Engineering 

Review, 122(2):147-179. 

[DS06] Dobson, G., and Sawyer, P. (2006) Revisiting Ontology-Based Requirements Engineering in 

the age of the Semantic Web. In Proc. of the Intl. Seminar on Dependable Requirements Eng. 

of Computerised Systems at NPPs, Norway. 

[DSS93] Davis, R., Shrobe, H., Szolovits, P. (1993) What is a Knowledge Representation? AI Magazine, 

14(1): 17-33. 

[Dub] The Dublin Core Metadata Initiative (DCMI) http://dublincore.org 

[DW08] Diskin, Z., and Wolter, U. (2008) A Diagrammatic Logic for Object-Oriented Visual 

Modeling. Electronic Notes in Theoretical Comp. Sci., 203(6, 21):19-41. 

[Eas98] Easterbrook, S. Category theory for beginners, Tutorial given at ASE'98, Oct 1998. 

http://www.cs.toronto.edu/~sme/presentations/catl01.pdf 

307 

http://dublincore.org
http://www.cs.toronto.edu/~sme/presentations/catl01.pdf


[EBL-HB] Elkin, P.L., Brown, S.H., Lincoln, M.J., Hogarth, M., and, Rector, A. (2003) A formal 

representation for messages containing compositional expressions. Int'l J. of Medical Infor, 

71(2-3):89-102. 

[ECP+02] Estrin, D., Culler, D., Pister, K., and Sukhatme, G. (2002) Connecting the Physical World with 

Pervasive Networks. IEEE Pervasive Computing, 1(1): 59-69. 

[ED07] Eisenbarth, M, and D6rr, J. (2007) Facilitating Project Management by Capturing 

Requirements Quality and Volatility Information. In Proc. of Workshop on Measuring 

Requirements for Project and Product Success (MeReP'07), Palma de Mallorca, Spain, 

[EEP+06J Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. (2006) Fundamentals of Algebraic Graph 

Transformation. Monographs in Theoretical Computer Science. An EATCS Series, Springer. 

[EHK+90] Ehrig, H., Habel, A., Kreowski, H.J., and Parisi-Presicce, F. (1990) From Graph Grammars to 

High Level Replacement Systems. In Proc. of the 4th int'l workshop on Graph-Grammars and 

Their App. to Comp. Sci. Bremen, Germany, LNCS 532, Springer, pp. 269-291. 

[EHK+97] Ehrig, H., Heckel, R., Korff, M., Lowe, M. et al. (1997) Algebraic Approaches to Graph 

Transformation - Part II: Single Pushout Approach and Comparison with Double Pushout 

Approach. Handbook of Graph Grammars, World scientific, pp. 247-312. 

[Ehr79] Ehrig, H. (1979) Introduction to the algebraic theory of graph grammars (a survey), in proc. of 

int'l workshop on Graph-Grammars and their Application to Com. Sci. and Biology, Bad 

Honnef, Germany, LNCS 73, Springer, pp. 1-69. 

[EJ03] Van Eetvelde, N., and Janssens, D. (2003) A Hierarchical Program Representation for 

Refactoring. Electr. Notes Theor. Comput. Sci. 82(7):91-104. 

[EKL90] Ehrig, H., Korff, M., and Lowe, M. (1990) Tutorial Introduction to the Algebraic Approach of 

Graph Grammars Based on Double and Single Pushouts. In Proc. of 4lh Int'l Workshop Graph-

Grammars and Their App. to Comp. Sci., Bremen, Germany, LNCS 532, Springer, pp. 24-37. 

[EM45] Eilenberg S, Mac Lane S (1945) General Theory of Natural Equivalences. T Am Math Soc 

58:231-294. 

[Enc04] Encyclopedia Everything, unique up to isomorphism, Jan 16 2004 

http://everything2.com/title/unique+up+to+isomorphism 

[Enz84] Enzyme nomenclature Recommendations (1984) of the nomenclature committee of the int'l 

union of biochemistry. Academic Press, Orlando/NY 1984. pp. 646. 

[EN07] Elmasri, R., and Navathe, S.B. (2007) Fundamentals of Database Systems. 5th Ed.. Addison 

Wesley. 

[EOP06] Ehrig, H., Orejas, F., and Prange, U. (2006) Categorical Foundations of Distributed Graph 

Transformation. In Proc. of 3rd int'l Conference on Graph Transformations (ICGT'06), Natal, 

Rio Grande do Norte, Brazil, LNCS 4178, Springer, pp. 215-229. 

[EP05] Ehrig, H., Prange, U. (2005) Modeling with Graph Transformation. In Proc. of InterSymp'05. 

HAS. Baden-Baden, Germany. http://tfs.cs.tu-berIin.de/pubIikationen/Papers05/EP05.pdf 

308 

http://everything2.com/title/unique+up+to+isomorphism
http://tfs.cs.tu-berIin.de/pubIikationen/Papers05/EP05.pdf


[EPS73] Ehrig, H., Pfender, M. and Schneider, H. J. (1973) Graph grammars: An algebraic approach. In 

Proc. of 14* Symposium on Foundations of Comp. Science, Iowa City, Iowa, IEEE Comp 

Society, pp. 167-180. 

[EPT04] Ehrig,H., Prange, U., and Taentzer, G. (2004) Fundamental Theory for Typed Attributed Graph 

Transformation: Long Version, at: http://iv.tu-berlin.de/TechnBerichte/2004/2004-09.pdf 

[ER97] Engelfriet, J., and Rozenberg, G. (1997) Node Replacement Graph Grammars. In: Handbook 

of graph grammars and computing by graph transformation: volume I. foundations, World 

Scientic Publishing Co., pp.1-94. 

[ER00] Engels, G., and Heckel, R. (2000) Graph Transformation as a Conceptual and Formal 

Framework for System Modeling and Model Evolution. In Proc. of ICALP'00, Geneva, 

Switzerland, LNCS 1853, Springer, pp. 127-150. 

[ES95] Engels, G., and Schiirr, A. (1995) Encapsulated hierarchical graphs, graph types, and meta 

types. Electr. Notes Theor. Comput. Sci. 2: 101-109. 

[ES04] Ehrig, M., and Sure, Y. (2004) Ontology mapping - an integrated approach, in: 1st European 

Semantic Web Symposium (ESWS'04), Heraklion, Greece, LNCS 3053, Springer, pp. 76-91. 

[ES07] Euzenat, J., and Shvaiko, P. (2007) Ontology Matching. Springer-Verlag, Berlin. 

[EV06] Ehresmann AEC, Vanbremeersch JP (2006) The Memory Evolutive Systems as a Model of 

Rosen's Organism-(Metabo!ic, Replication) Systems. Axiomathes, 16: 137-154. 

[FBA98] Frisvad, J.C., Bridge, P.D., Arora, D.K. (1998) Fungal chemical taxonomy. Marcel Dekker, 

Inc., New York-Basel-Hong Kong. 

[FC03] Fornara, N. and Colombetti, M. (2003) Defining Interaction Protocols using a Commitment 

BasedAgent Communication Language. In Proc. of AAMAS'03, ACM Press, pp. 520-527. 

[Fel05] Felsenstein, J. PHYLIP (Phylogeny Inference Package) ver. 3.6. Distributed by the author. 

Department of Genome Sciences, University of Washington, Seattle, 2005. 

[FFG+95] Fortnow, L., Freivalds, R., Gasarch, W.I., Kummer, M. et al. (1995) Measure, Category and 

Learning Theory. Proc. of the 22nd Colloq. on Automata, Languages and Programming 

(ICALP95), Szeged, Hungary, LNCS 944 Springer, pp. 558-569. 

[FFM+94] Finin, T.W., Fritzson, R., McKay, D.P., and McEntire, R. (1994) KQML As An Agent 

Communication Language. In Proc. of the 3rd Int'l Conf. on Information and Knowledge 

Management (CIKM'94), Gaithersburg, Maryland, pp. 456-463. 

[FGG08] Fluri, B., Giger, E., Gall, H. (2008) Discovering Patterns of Change Types. In Proc. of the 23rd 

Intl. Conf. on Automated Soft. Eng. (ASE'08), 15-19 Sep 2008, L'Aquila, Italy, pp. 463-466. 

[FHP+06] Flouris, G., Huang, Z., Pan, J.Z., Plexousakis, D., and Wache, H. (2006) Inconsistencies, 

Negations and Changes in Ontologies. In Proc. of 21s1 National Conf. on Artificial Intelligence 

and the 18th Innovative Applications of Artificial Intelligence Conference, July 16-20, Boston, 

Massachusetts, AAAI 2006. 

309 

http://iv.tu-berlin.de/TechnBerichte/2004/2004-09.pdf


[FKS02] Falappa, M., Kern-Isberner, G., and Simari, G.R. (2002) Explanations, belief revision and 

defeasible reasoning, Artificial Intelligence, 141(1-2): 1-28. 

[Fia04] Fiadeiro, J.L. (2004) Categories for Software Engineering," Springer, 1st edition 

[Flo06] Flouris G (2006) On Belief Change and Ontology Evolution. Ph.D. thesis in the Department of 

Computer Science, University of Crete. 

[FMK+08] Flouris G, Manakanatas D, Kondylakis H, Plexousakis D, Antoniou G (2008) Ontology 

change: classification and survey. Knowl Eng Rev 23(2):117-152. 

[FMU82] Fagin, R., Mendeizon, A., and Ullman, J. (1982) A simplified universal relation assumption 

and its properties, ACM Trans, on Database Systems 7(3):343-360. 

[For98] Forsythe, D.E. (1998). Using ethnography to investigate life scientists' information needs. Bull 

Med Libr Assoc., 86(3), 402-9. 

[FPA06] Flouris, G., Plexousakis,D., and Antoniou, G. (2006) Evolving Ontology Evolution. In 

Proceedings of the SOFSEM 2006. Merin, Czech Republic, Springer, 14-29. 

[FR98] Fromkin, V., and Rodman, R. (1998) An introduction to language, 6lh edition. Fort Worth: 

Harcourt Brace. 

[Fra08] Frank, A.U. (2008). Shortest Path in a Multi-Modal Transportation Network, KI Kunstliche 

Intelligenz, 3:14-18. 

[FSU06] Fact Sheet of Unified Medical Language System (UMLS) Semantic Network (2006) last 

updated on 28 Mar 2006. http://www.nlm.nih.gov/pubs/factsheets/umlssemn.html. Accessed 

10 Jan 2009. 

[FT05] Franconi, E., and Tessaris, S. (2005) A unified logical framework for rules (and queries) with 
ontologies. In proc. of W3C Workshop on Rule Lang, for Interoperability, Washington, D.C., 
USA. 

[Fut05] Futuyma, D.J. (2005) Evolution. Sunderland, Massachusetts: Sinauer Associates, Inc. 

[FVK+00] Fensel, D., Van Harmelen, F., Klein, M., Akkermans, H.,Broekstra, J., Fluit, C. etal. (2000) 

Ontoknowledge: Ontology-based Tools for Knowledge Management, eBusiness and eWork, 

2000, Madrid, October. 

[FWP+07] Fluri, B., Wursch, M., Pinzger, M., and Gall, H.C. (2007) Change distilling: Tree differencing 

for fine-grained source code change extraction. IEEE Transactions on Software Eng. (TSE), 

33(11): 725-743. 

[GamOO] Gambetta. D. (2000). Can We Trust Trust? In D. Gambetta (ed.), Trust: Making and Breaking 

Cooperative Relations. Oxford: University of Oxford, Chapter 13. 

[Gar90] Gardenfors, P. (1990) Knowledge in Flux: Modeling the Dynamics of Epistemic States. MIT 

Press, Cambridge, MA, 1990. 

[GBB+94] Greuter, W., Barrie, F.R., Burdet, H.M., Chaloner, W.G. et al. (1994) International code of 

botanical nomenclature (Tokyo Code) adopted by the 15th Intl. Botanical Congress, 

Yokohama, Aug-Sep 1993. Regnum Veg. 131. Koeltz Scientific Books, Konigstein, Germany. 

310 

http://www.nlm.nih.gov/pubs/factsheets/umlssemn.html


[GBP+96] Glenn, A.E., Bacon, C.W., Price, R., and Hanlin, R.T. (1996) Molecular phylogeny of 

Acremonium and its taxonomic implications. Mycologia 88:369-383. 

[GF94] Gotel, O.C.Z., and Finklestein, A.C.W. (1994) An analysis of the requirements traceability 

problem. In Proc. of the 1st Int'l Conference on Requirements Engineering (ICRE'94), 

Colorado Springs, CO, USA, pp.94-101. 

[GFP09] Gall, H.C., Fluri, B., Pinzger, M., (2009) Change Analysis with Evolizer and ChangeDistiller. 

IEEE Software, 26(1): 26-33. 

[GGS99] Guarro, J., Gene', J., and Stchigel, A.M. (1999) Developments in fungal taxonomy. Clinical 

Microbiology Reviews, 12(3): 454-500. 

[GGW03] Ganesan, P., Garcia-Molina, H., and Widom, J. (2003) Exploiting hierarchical domain 

structure to compute similarity. ACM Trans. Inf. Syst. 21(1): 64-93. 

[GHJ98] Gall, H., Hajek, K., and Jazayeri, M. (1998) Detection of logicalcoupling based on product 

release history. In Proc. of Int'l IEEE Conference on Software Maintenance (ICSM'98), pp. 

190-198. 

[GHM04] Gutierrez, C, Hurtado, C.A., and Mendelzon, A.O. (2004) Foundations of Semantic Web 

Databases. In Proc. of the 23rd ACM SIGACT-SIGMOD-SIGART Sympo. on Principles of 

Database Systems (PODS'04), Paris, France, pp. 95-106. 

[GVH03] Gyapay, S., Varro, D., and Heckel, R. (2003) Graph Transformation with Time. Fundam. 

Inform. 58(1): 1-22. 

[GHV04] Gamma, R.J.E., Helm, R., and Vlissides, J. (2004) Design patterns: Elements of reusable 

object-oriented software, Addison-Wesley. 

[GHV07] Gutierrez, C, Hurtado, C.A., and Vaisman, A.A. (2007) Introducing Time into RDF. IEEE 

Trans. Knowl. DataEng. 19(2): 207-218. 

[Gil06] Gilbert, M.C. (2006) The Dialectics of Knowledge Management. 

http://news.gilbert.org/DialecticsKM 

[GL02] Giugno, R., Lukasiewicz, T. (2002) P-SHOQ(D): A Probabilistic Extension of SHOQ(D) for 

Probabilistic Ontologies in the Semantic Web. pp. 86-97. 

[GL05] Gao, M., and Liu, C. (2005) Extending OWL by Fuzzy Description Logic. In Proc. of ICTAF05, 

pp. 562-567. 

[GLT89] Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University Press (1989) 

[GMZ99] Gupta, A., Masthoff, J., and Zwart, P. (1999). Improving the User Interface to Increase Patient 

Throughput. In Proceedings of the First Workshop on Human Error and Clinical Systems 

(HECS'99), Scotland: Glasgow, 15-17 April. 

[GOB] GO Browser representing blood pressure terminologies. (Accessed 10 Jan 2009) 

(http://www.informatics.jax.org/searches/GO.cgi?id=GO:0008217) 

[Gog91] Goguen, J. (1991) A Categorical Manifesto. Mathematical Structures in Comp. Sci., 1(1): 49-67. 

[Gol06] Goldblatt, R. (2006) Topoi; The Categorial Analysis of Logic. Mineola, NY, Dover Publications. 

311 

http://news.gilbert.org/DialecticsKM
http://www.informatics.jax.org/searches/GO.cgi?id=GO:0008217


[GOM01] GO Meeting collected notes, July 14-15,2001, Hosted by Judy Blake and the Jackson Lab in 

Bar Harbor, ME. compiled by L. Reiser. 

http://www.geneontoIogy.org/minutes/collected_minutes.txt 

[GON06] GO Newsletter, Issue No. 1 May 2006. 

(http://www.geneontology.Org/newsletter/archive/200605.shtml#bp) 

[GON07a] GO Newsletter, No. 4 February 2007. 

http://www.geneontology.org/newsletter/archive/200702.pdf 

[GON07b] The Gene Ontology Newsletter, Issue No. 5 May 2007. 

http://www.geneontology.org/newsletter/archive/200705.pdf 

[GON07c] GO Newsletter, Issue No. 6 Aug. 2007. 

(http://www.geneontology.org/newsletter/current-Newsletter.shnnl) 

[Got07] Gottwald, S. (2007) Many-Valued Logics. In: Handbook of the Philosophy of Sciences. Vol. 

5: Philosophy of Logic (D. Jacquette ed.), North-Holland: Amsterdam, pp. 545-592. available 

at: http://www.uni-leipzig.de/~logik/gottwald/SGforDJ.pdf 

[GPS98] GroBe-Rhode, M.., Parisi-Presicce, F., and Simeoni, M. (1998) Spatial and Temporal Refinement 

of Typed Graph Transformation Systems. In Proc. of MFCS'98, LNCS 1450, Springer, pp. 553-

561. 

[Gra84] Gray, J. W. (1984) Mathematical Applications of Category Theory. American Mathematical 

Society, p. 11. 

[Gru93] Gruber, T.R. (1993) A translation approach to portable ontologies. Knowledge Acquisition 

5(2): 199-220. 

[Gru95] Gruber, T. R. (1995) Toward Principles for the Design of Ontologies Used for Knowledge 

Sharing. International Journal of Human and Computer Studies, 43(5/6):907-928. 

[GSG04] Grenon P, Smith B, Goldberg L (2004) Biodynamic ontology: Applying BFO in the 

Biomedical Domain, in Pisanelli DM (ed). Ontologies in Medicine. Proceedings of the 

Workshop on Medical Ontologies, Rome, IOS Press, Studies in Health Technology and 

Informatics, vol 102:20-38. 

[GSV04] Gabel, T., Sure, Y., and Voelker, J. (2004). KAON - ontology management infrastructure. 

SEKT informal deliverable 3.1.1 .a, Inst. AIFB, Uni. of Karlsruhe. 

http://www.aifb.uni-karlsruhe.de/WBS/ysu/publications/SEKT-D3.1.1 .a.pdf 

[Gua95] Guarino N (1995) Formal Ontology, Conceptual Analysis and Knowledge Representation. Int J 

Hum-Comput St 43(5/6):625-640. 

[Gua98] Guarino, N. (1998) Formal Ontology and Information Systems. In Proceedings of FOIS'98, 

Trento, Italy, IOS Press, pp 3-15. 

[Guo02] Guo, J. (2002) Using Category Theory to Model Software Component Dependencies. In Proc. 

of the 9th IEEE Intl. Conf. on Engineering of Computer-Based Systems (ECBS'02), 8-11 April, 

Lund, Sweden, pp. 185-194. 

312 

http://www.geneontoIogy.org/minutes/collected_minutes.txt
http://www.geneontology.Org/newsletter/archive/200605.shtml%23bp
http://www.geneontology.org/newsletter/archive/200702.pdf
http://www.geneontology.org/newsletter/archive/200705.pdf
http://www.geneontology.org/newsletter/current-Newsletter.shnnl
http://www.uni-leipzig.de/~logik/gottwald/SGforDJ.pdf
http://www.aifb.uni-karlsruhe.de/WBS/ysu/publications/SEKT-D3


[Gut04] Giittner, J. (2004) Object Databases and the Semantic Web. Ph.D. Thesis, Brno University of 

Technology. 

[HalOl] Halpin, T. (2001) Information Modeling and Relational Databases. Morgan-Kaufmann. 

[Han03] Hansson, S.O. (2003) Ten Philosophical Problems in Belief Revision. J. of Logic and 

Computation, 13(1): 37-49. 

[Har88] Hard, D. (1988) On visual formalisms., Communication ACM, 31(5):514-530. 

[Har05] Harris, MA. (2005) Why GO there? Ensuring that the Gene Ontology Meets Biologists' Needs. 

The Gene Ontology Consortium and EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, 

UK. 

[Har05b] Harnad, S. (2005) To Cognize is to Categorize: Cognition is Categorization, in Cohen, H., and 

Lefebvre, C. (eds.) Handbook of categorization in Cognitive Science. Elsevier, pp. 19-43. 

[Haw93] Hawksworth, D.L. (1993) Name changes for purely nomenclatural reasons are now avoidable. 

Systema Ascomycetum 12:1-6. 

[Haw04] Hawksworth, D.L. (2004) Fungal diversity and its implications for genetic resource 

collections. Stud Mycol 50:9-17. 

[HB93] Hartson, H., and Boehm-Davis, D. (1993). User interface development processes and 

methodologies. Behavior & Information Technology, 12(2), 98-114. 

[HBM02] Hendler, J., Berners-Lee, T., and Miller, E. (2002) Integrating Applications on the Semantic 

Web. Journal of the Institute of Electrical Engineers of Japan, 122(10): 676-680. 

[HBE+041 Haase, P., Broekstra, J., Eberhart, A., Volz, R. (2004) A Comparison of RDF Query 

Languages. In Proc. of the 3rd Infl Semantic Web Conference (ISWC'04), LNCS 3298, 

Springer, pp. 502-517. 

[HC04] Healy, M.J., Caudell, T.P. (2004) Neural Networks, Knowledge and Cognition: A 

Mathematical Semantic Model Based upon Category Theory. Tech Report EECE-TR-04-020, 

Uni. of New Mexico. https://repositorv.unm.edU/dspace/bitstream/l 928/33/2/EECE-TR-04-

020.pdf 

[HC04b] Heckel, R., and Cherchago, A. (2004) Application of Graph Transformation for Automating 

Web Service Discovery. In Proc. of Language Engineering for Model-Driven Software 

Development 2004, Dagstuhl Seminar Proceedings 04101. 

[HC06] Healy, M.J., and Caudell, T.P. (2006) Ontologies and Worlds in Category Theory: Implications 

for Neural Systems. Axiomathes 16:165-214. 

[HCE+96] Heckel, R., Corradini, A., Ehrig, H., and Lowe, M. (1996) Horizontal and Vertical Structuring 

of Typed Graph Transformation Systems. Mathematical Structures in Comp. Science 6(6): 

613-648. 

[Hea86] Heath, LB. Nuclear division: a marker for protist phylogeny. Prog. Protis.1988, 1:115-162. 

313 

https://repositorv.unm.edU/dspace/bitstream/l


[HeaOO] Healy, M.J. (2000) Category Theory Applied to Neural Modeling and Graphical 

Representations, in Proc of the Proceedings of the IEEE Intl. Joint Conference on Neural 

Networks, (IJCNN'OO), Como, Italy, July 24-27,2000, Volume 3, pp. 35-40. 

[Hea07] Healy, M J. (2007) Category Theory as a Mathematics for Formalizing Ontologies. 

http://johnsymons.files.wordpress.com/2007/10/healy-tao-r3.pdf 

[Hec06] Heckel, R. (2006) Graph Transformation in a Nutshell. Electr. Notes Theor. Comput. Sci. 
148(1): 187-198. 

[Hed08] Hedden, H. (2008) Controlled Vocabularies, Thesauri, and Taxonomies. The Indexer, 26( 1): 33-34. 

[HEK+06] Hitzler, P., Euzenat, J., Krotzsch, M., Serafini, L., Stuckenschmidt, H. et al. (2006) Integrated 

view and comparison of alignment semantics. Tech Rep. D2.2.5, AIFB, Uni. of Karlsruhe. 

http://www.aifb.uni-karlsruhe.de/Publikationen/showPublikation_english?publ_id=1125 

[HES+05] Hayes, P.J., Eskridge, T.C., Saavedra, R., Reichherzer, T., Mehrotra, M., and Bobrovnikoff, D. 

(2005) Collaborative knowledge capture in ontologies. In Proc. of the 3rd Int'l Conference on 

Knowledge Capture (K-CAP'05), Banff, Alberta, Canada. ACM, pp. 99-106. 

[Hey90] Heylighen, F. (1990) Representation and Change. A Metarepresentational Framework for the 

Foundations of Physical and Cognitive Science, (Communication & Cognition, Gent), 200 p. 

[Hey95] Hey wood VH (ed.) (1995) Global Biodiversity Assessment. Cambridge Uni. Press. 

[HFO+03] Hartel, F.W., Fragoso, G., Ong, K., and Dionne, R. (2003) Enhancing quality of retrieval 

through concept edit history. 2003 AMIA Annu Symp Proc, pp. 279-83. 

[HG04] Hardie RP, Gaye RK (translators) (2004) Physics by Aristotle. eBooks@Adelaide, Adelaide 

University: http://etext.library.adelaide.edu.aU/a/aristotle/a8ph/index.html 

[HH00] Heflin, J., Hendler, J.A. (2000) Dynamic Ontologies on the Web. In proceedings of 

AAAI/IAAI 2000, pp. 443-449. 

[HHJ+07] Hudak, P., Hughes, J., Jones, S.P., and Wadler, P. (2007) A history of Haskell: being lazy with 

class. In Proc. of the 3rd ACM SIGPLAN conf. on History of programming language. San 

Diego, CA,pp.l2-l-12-55. 

[HHL99] Heflin, J., Hendler, J., and Luke, S. (1999) Coping with changing ontologies in a distributed 

environment. In Proc. of the Workshop on Ontology Management at the 16th National Conf. on 

Artificial Intelligence (AAAI'99), Berlin, AAAI Tech. Report WS-99-13, pp.74-79. 

[HHT96] Habel, A., Heckel, R., and Taentzer, G. (1996) Graph Grammars with Negative Application 

Conditions. Fundam. Inform. 26(3/4): 287-313. 

[HIA92] Hilton, E., Isenberg, H.D., and Alperstein, P. (1992) Ingestion of yogurt containing 

Lactobacillus acidophilus as prophylaxis for candidal vaginitis. Ann Intern Med, 116:353-7. 

[Hin08] Hines, P. (2008) Machine semantics. Theoretical Computer Science, 409(l):l-23. 

[HJK+95] Heimann, P., Joeris, G., Krapp, C.A., Westfechtel, B. (1995) A programmed graph rewriting 

system for software process management. Electr. Notes Theor. Comput. Sci., 2: 127-136. 

314 

http://johnsymons.files.wordpress.com/2007/10/healy-tao-r3.pdf
http://www.aifb.uni-karlsruhe.de/Publikationen/showPublikation_english?publ_id=1125
http://etext.library.adelaide.edu.aU/a/aristotle/a8ph/index.html


[HKE+05] Hitzler, P., Krotzsch, M., Ehrig, M., and Sure, Y. What is ontology merging? - a category 

theoretic perspective using pushouts. (2005) In Proc. of the 1st Intl. Workshop on Contexts & 

Ontologies: Theory, Practice and Applications (C&O), AAAI Press, pp. 104-107. 

[HKL05] Harman, M., Korel, B., Linos, P.K. (2005) Special issue on software maintenance and 

evolution. IEEE Transactions on Software Engineering, 31(10): 801-803. 

[HKR08] Hartung, M., Kirsten, T., Rahm, E. (2008) Analyzing the Evolution of Life Science Ontologies 

and Mappings. In Proc. of the 5th Int'l Workshop in Data Integration in the Life Sciences 

(DILS'08), Evry, France, LNCS 5109, Springer, pp. 11-27. 

[HKS+95] Hawksworth, D.L., Kirk, P.M., Sutton, B.C., and Pegler, D.N. (1995) Ainsworth and Bisby's 

dictionary of the fungi, 8th ed. Intern. Myco. Institute, Egham, UK. 

[HL02] Heifetz, R.A., Linsky, M. (2002). Leadership on the Line: Staying Alive Through the Dangers 

of Leading. Boston: Harvard Business School Press, 1st edition. 

[HLR] Health Level 7 Reference Information Model 

http://healuiinfo.med.dalxa/hl7intro/CDA_R2_noiTOativewebedition/infrastructure/rim/rirn.htni 

[HLS+98] Humphreys BL, Lindberg DAB, Schoolman HM, and Barnett GO (1998) The Unified Medical 

Language System An Informatics Research Collaboration. J Am Med Inform Assoc 5(1):1-11. 

[HLW97] ter Hofstede, A.H.M., Lippe, E., and van der Weide, T.P. (1997) Applications of a categorical 

framework for conceptual data modeling. Acta Informatica, 34(12): 937-963. 

[HM01] Haarslev V, Moller R. RACER System Description. In Proceedings of the First International Joint 

Conference on Automated Reasoning (IJCAR01), Siena, Italy, June 18-23,2001, p.701-706. 

[HM03] Haarslev, V., Moller, R.: Description Logics for the Semantic Web: Racer as a Basis for 

Building Agent Systems. KI 17(3) 10-15 (2003) 

[HMW04] Haarslev, V., Moller, R., and Wessel, M. (2004) Querying the Semantic Web with Racer + nRQL. 

In Proc. of KI'04 Int'l Workshop on Applications of DLs (ADL'04), Ulm, Germany, Sep. 24. 

[Hof99] Hoffmann, B. (1999) From Graph Transformation to Rule-Based Programming with Diagrams. 

In Proc. of AGTIVE'99, LNCS 1779, Springer, pp. 165-180. 

[Hol98] Holsti, K.J. (1998) The Problem of Change in International Relations Theory. Paper No. 26 

from CIR Working Paper Series. 

[H6p03] Hoppner, F.: Knowledge discovery from sequential data. PhD thesis, Technical University 

Braunschweig, Germany, (2003). 

[Hor07] Horrocks, I. (2007) Ontology Engineering: Tools and Methodologies. Tutorial in SemanticDays07. 

(www.comlab.ox.ac.uk/people/ian.horrocks/Seminars/download/SemanticDays07-tutorial.ppt) 

[HOY+09] Healy, M.J., Olinger, R.D., Young, R.J., Taylor, S.E., Caudell, T., and Larson, K.W. (2009) 

Applying category theory to improve the performance of a neural architecture. 

Neurocomputing, (Article in Press) 

[HP04] Heflin, J., Pan, Z. (2004) A model theoretic semantics for ontology versioning. In Proc. of the 

3rd Int'l Semantic Web Conf. (ISWC'04), Hiroshima, Japan, LNCS 3298, Springer, pp. 62-76. 

315 

http://healuiinfo.med.dalxa/hl7intro/CDA_R2_noiTOativewebedition/infrastructure/rim/rirn.htni
http://www.comlab.ox.ac.uk/people/ian.horrocks/Seminars/download/SemanticDays07-tutorial.ppt


[HP04b] Horrocks, I., Patel-Schneider, P.F. (2004) Reducing OWL entailment to description logic 

satisfiability. J. Web Sem. 1(4): 345-357. 

[HR97] Hawksworth, D.L., Rossman, A.Y. (1997) Where are all the undescribed fungi? 

Phytopathology. 87: 888-891. 

[HR01] Hardiker, N.R., Rector, A.L. (2001) Structural validation of nursing terminologies. J Am Med 

Inform Assoc, 8(3):212-221. 

[HR04] Holt, C.A., and Roth, A.E. (2004) The Nash equilibrium: A perspective. PNAS, 101(12): 

3999-4002. 

[HS98] Hirst, G., and St-Onge, D. Lexical chains as representations of context for the detection and 

correction of malapropisms," In: Fellbaum, C. (ed.): WordNet: An Electronic Lexical 

Database. MIT Press, Cambridge, MA, 1998. 

[HS04] Haase, P., and Sure, Y. (2004) D3.1.1.b State-of-the-Art on Ontology Evolution. Institute 

AIFB, University of Karlsruhe, Deliverable D3.1.1.b, EU-IST Project IST-SEKT. 

http://www.aifb.uni-karlsruhe.de/WBS/ysu/pubIications/SEKT-D3.l.l.b.pdf 

[HS05] Haase, P., and Stojanovic, L. (2005) Consistent evolution of OWL ontologies. In Proc. 2nd 

European Semantic Web Conference (ESWC'05), LNCS 3532, Springer, pp. 398^112. 

[HTI90] Hirakawa, M., Tanaka, M. and Ichikawa, T. (1990) An iconic programming system, HI-

VISUAL, IEEE Transactions on Software Engineering, 16(10): 1178-1184. 

[HVD02] Heflin, J., Volz, R., and Dale, J. (2002) Requirements for a Web Ontology Language. 

http://www.w3.org/TR/2002/WD-webont-req-20020307/ 

[HW95] Heckel, R., and Wagner, A. (1995) Ensuring Consistency of Conditional Graph Grammars - A 

Constructive Approach. Electronic Notes in Theoretical Computer Science, 2:118-126. 

[HW80] Halford, G.S., and Wilson, W.H. (1980) A category theory approach to cognitive development. 

Cognitive Psychology, 12(3):356-411. 

[IB08] Ingenerf, J., and Beisiegel, T. (2008) A version management system for SNOMED CT. Stud 

Health Technol Inform., 136:827-32. 

[IBM] What is ontology? IBM: http://www.aIphaworks.ibm.com/contentnr/semanticsfaqs 

[IBMH] Healthcare 2015: Win-win or lose-lose? A portrait and a path to successful transformation, 

IBM. http://www-03.ibm.com/industries/healthcare/us/detail/landing/G883986O04888I88.html 

[IEEE98] IEEE 1998, IEEE STD 1219. IEEE standard for software maintenance. IEEE Standard 

collection: 

http://standards.ieee.org/reading/ieee/std_public/description/se/1219-1998_desc.html 

[Jac99] Jacobs, B. (1999) Categorical Logic and Type Theory. North-Holland, Elsevier, Amsterdam. 

[Jao06] Jao (2006) Programmers go bananas, March 17. Available at: 

http://programming-musings.org/2006/03/17/programmers-go-bananas/ 

[Jar05] Jarrar, M. (2005) Towards Methodological Principles for Ontology Engineering. Ph.D. theis, 

Faculty of science, Vrije Universiteit Brussel. 

316 

http://www.aifb.uni-karlsruhe.de/WBS/ysu/pubIications/SEKT-D3
http://www.w3.org/TR/2002/WD-webont-req-20020307/
http://www.aIphaworks.ibm.com/contentnr/semanticsfaqs
http://www-03.ibm.com/industries/healthcare/us/detail/landing/G883986O04888I88.html
http://standards.ieee.org/reading/ieee/std_public/description/se/
http://programming-musings.org/2006/03/17/programmers-go-bananas/


[JBA96] Johnson, S.D., Barwise, J., and Allwein, G. (1996) Towards the rigorous use of diagrams in 

reasoning about hardware, in Allwein, G., and Barwise, J. (editors), Logical Reasoning with 

Diagrams, Oxford University Press, pp. 201-223. 

[JIB07] J0sang, A., Ismail, R., and Boyd, C. (2007). A survey of trust and reputation systems for online 

service provision. Decision Support Systems, 43(2):618-644. 

[JMY04] Jurisica I, Mylopoulos J, Yu ESK (2004) Ontologies for Knowledge Management: An 

Information Systems Perspective. Knowl Inf Syst 6(4): 380-401. 

[JPN+98] Jennings, N.R., Parsons, S., Noriega, P., and Sierra, C. (1998) On argumentation-based 

negotiation. In Proc. of Intl. Workshop on Multi-Agent Systems (IWMAS98), Boston, USA. 

[JNP09] Johnson, M., Naumann, D., Power, J. (2009) Category Theoretic Models of Data Refinement. 

Electronic Notes in Theoretical Computer Science, 225:21-38. 

[JPV+98] Jannink, J. and Pichai, S. and Verheijen, D. and Wiederhold, G. (1998) Encapsulation and 

Composition of Ontologies. In: AAAI Workshop on AI and Information Integration, July 27, 

Madison, WI. http://ilpubs.stanford.edu:8090/309/ 

[JR01] Johnson, M., and Rosebrugh, R.D. (2001) View Updatability Based on the Models of a Formal 

Specification. In Proc. of Int'I Sympo. of Formal Methods Europe (FME'01) pp. 534-549. 

[JR08] Johnson, M., and Rosebrugh, R. (2008) Ontology engineering, universal algebra, and category 

theory, (book chapter) http://www.mta.ca/~rrosebru/articIes/oeua.pdf 

[JS95] Jensen, C.S., and Snodgrass, R.T. (1995) Semantics of Time-Varying Attributes and their Use 

for Temporal Database Design. In Proc. of OOER'95, Gold Coast, Australia, LNCS 1021, 

Springer, pp. 366-377. 

[JSW98] Jennings, N.R., Sycara, K.P., and Wooldridge, M. (1998) A Roadmap of Agent Research and 

Development. Autonomous Agents & Multi-Agent Systems 1(1):7-38 

[KAF92] Krause, P., Ambler, S., and Fox, J. (1992) The Development of a "Logic of Argumentation". In 

Proc. of IPMU'92, Palma de Mallorca, Spain, LNCS 682, Springer, pp. 109-118. 

[Kai05] Kainen, P.C. (2005) Category Theory and Living Systems. In Proc. of Int'I Conference 

"Charles Ehresmann : 100 ans", Universite de Picardie Jules Verne a Amiens, 7-9 Oct. 

http://pagesperso-orange.fr/vbm-ehr/ChEh/articles/Kainen.pdf 

[KaI06] Kalyanpur, A.( 2006) Debugging and Repair of OWL Ontologies. Ph.D. thesis in University of 

Maryland, USA. 

[KarOl] Karlsson, D. (2001) A design and prototype for a decision support system in the field of 

urinary tractinfections - application of OpenGALEN techniques for indexing medical 

information. Medinfo., pp. 479-83. 

[KBK01] Kreowski, H.J., Busatto, G., and Kuske, S. (2001) GRACE as a unifying approach to graph-

transformation-based specification. Electr. Notes Theor. Comput. Sci. 44(4): 1-15. 

[KC98] Kini, A., and Choobineh, J. (1998). Trust in Electronic Commerce: Definition and Theoretical 

Consideration. In Proc. of the 31s' Intl. Conf. on System Sciences, IEEE, pp. 51-61. 

317 

http://ilpubs.stanford.edu:8090/309/
http://www.mta.ca/~rrosebru/articIes/oeua.pdf
http://pagesperso-orange.fr/vbm-ehr/ChEh/articles/Kainen.pdf


[Kem06] Kemerling G (2006) The Origins of Western Thought, Kemerling philosophy page, last update 

on Dec 20, 2006. (http://www.philosophypages.eom/hy/2b.htm#hera) 

[Ken04] Kent, R.E. (2004) The IFF Foundation for Ontological Knowledge Organization. Cataloging & 

Classification, 37(1): 187 - 203. 

[KFOO] Kam, P.S., Fu, A.W. Discovering temporal patterns for interval-based events. In: Kambayashi, 

Y., Mohania, M.K./Tjoa, A.M. (eds.) DaWaK 2000. LNCS 1874, Springer, pp. 317-326. 

[KF01] Klein, M.C.A., Fensel, D. (2001) Ontology Versioning for Semantic Web. In Proc. of 13th Intl' 

Semantic Web Working Workshop (SWWS'OI), Stanford. 

[KFK+02] Klein MCA, Fensel D, Kiryakov A, Ognyanov D (2002) Ontology Versioning and Change 

Detection on the Web. In proceedings of EKAW 2002, LNCS: 197-212. 

[KHE+05] Krotzsch, M., Hitzler, P., Ehrig, M., and Sure, Y. (2005) Category Theory in Ontology 

Research: Concrete Gain from an Abstract Approach. Tech. Report, AIFB, Uni. of Karlsruhe. 

[KK99] Knirsch, P., and Kreowski, H.J. (1999) A Note on Modeling Agent Systems by Graph 

Transformation. In Proc. of AGTIVE'99, LNCS 1779, Springer, pp. 79-86. 

[KKK06] Kreowski, H.J., Klempien-Hinrichs, R., and Kuske, S. (2006) Some Essentials of Graph 

Transformation. Esik, Z., Martin-Vide, C, Mitrana, V. (Eds.) Recent Advances in Formal 

Languages & App. Studies in Computational Intelligence Vol. 25 Springer, pp. 229-254. 

[KKR06] Kozen, D., Kreitz, C, Richter, E. (2006) Automating Proofs in Category Theory. In: Furbach, 

U., Shankar, N. (eds.) IJCAR'06. LNCS, vol. 4130, Springer, pp. 392-407. 

[KL07] Kang, S.H., and Lau, S.K. (2007) Ontology Revision, An Application of Belief Revision 

Approach, in Sharman, R., Kishore, R., and Ramesh, R. (eds.) Ontologies, A Handbook of 

Principles, Concepts and Applications in Information Systems. Springer, pp. 297-318. 

[KleOl] Klein, M. (2001) Combining and relating ontologies: an analysis of problems and solutions. In: 

Gomez-Perez, A. et al. (eds.), Workshop on Ontologies & Info. Sharing, IJCAI'01, Seattle, USA. 

[Kle04] Klein M (2004) Change Management for Distributed Ontologies. Ph.D thesis, Vrije University. 

[KLG+07] Keberle, N., Litvinenko, Y., Gordeyev, Y. and Ermolayev, V. (2007) Ontology evolution 

analysis with OWLMeT. In Proc. of Int'l Workshop on Ontology Dynamics (IWOD'07), 

Innsbruck, Austria, pp. 1-12 

[KM90] Kramer, J. and Magee, J. (1990) The Evolving Philosophers Problem: Dynamic Change 

Management. IEEE Transactions on Software Engineering 16(11):1293—1306. 

[KM98] Kramer, J., and Magee, J. (1998) Analysing dynamic change in software architectures: a case 

study. In Proc. of the 4th int'l Conference on Configurable Distributed Systems, pp.91-100. 

[KN03] Klein MCA, Noy NF (2003) A Component-Based Framework for Ontology Evolution. In 

Proceedings of the UCAI-03, CEUR-WS, vol. 71. 

[KNG07] Kim, M., Notkin, D., and Grossman, D. (2007) Automatic inference of structural changes for 

matching across program versions. In Proc. of Int'l 29lh IEEE Conf. Software Eng. (ICSE'07), 

Minneapolis, MN, USA, May 20-26, pp. 333-343. 

318 

http://www.philosophypages.eom/hy/2b.htm%23hera


[KOT+06] Knublauch, H., Oberle, D., Tetlow, P., and Wallace, E. (2006) A Semantic Web Primer for 

Object-Oriented Software Developers, W3C Working Group Note 9. 

[Kos09] Kostakos, V. (2009) Temporal graphs. Physica A 388:1007-1023. 

[KP02] Kreowski, H.J., and Plump, D. (2002) Appligraph: Applications of Graph Transformation. 

(Final report) available at: http://www.informatik.uni-bremen.de/theorie/appligraph/ 

[KPS+06] Kalyanpur, A., Parsia, B., Sirin, E., and Grau, B.C. (2006) Repairing Unsatisfiable Concepts in 

OWL Ontologies. In Proc. of the 3rd European Semantic Web Conf. (ESWC'06), Budva, 

Montenegro, June 11-14, LNCS 4011 Springer, pp. 170-184. 

[KPS+06b] Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C., and Hendler, J.A. (2006) Swoop: A Web 

Ontology Editing Browser. J. Web Sem. 4(2):144-153. 

[Kra07] Krasovec, E.D. Limber Labs, 2007. http://www.starlims.com/lCT_Autumn_2007.pdf 

[KS98] Kotonya, G., Sommerville, I. (1998) Requirements Engineering: Processes and Techniques. J. 

Wiley & Sons. 

[KS03] Kalfoglou, Y., and Schorlemmer, M. (2003) Ontology mapping: the state of the art. Knowl. 

Eng.Rev., 18(1):1-31. 

[KS03a] Kumar A, Smith B (2003) The Unified Medical Language System and the Gene Ontology, 

KI2003: Advances in Artificial Intelligence, LNCS 2821:135-48. 

[KSS04] Kumar A, Schulze-Kremer S, Smith B (2004) Revising the UMLS Semantic Network. In Proc. 

of the 11th World Cong, on Medical Informatics MEDINFO'04. IOS Press, 1700-4. 

[LabOO] Labov, W. (2000) Principles of Linguistic change. Volume II: Social Factors. Oxford: 

Blackwll. 

[LAH07] Leitner, G., Ahlstrom, D., and Hitz, M. (2007). Usability of Mobile Computing in Emergency 

Response Systems - Lessons Learned and Future Directions. In Proceedings of the 3rd 

Symposium of the HCI and Usability for Medicine and Health Care, USAB2007, Graz: 

Springer, 241-254. 

[Lam89] Lambek, J. (1989) On some connections between logic and category theory. Studia Logica, 

48(3): 269-278. 

[LAS05] Liang Y, Alani H, Shadbolt N (2005) Ontology Change Management in Protege. In 

Proceedings of the 1st AKT Doctoral Symposium. 

[Lee98] Lee, M.L. (1998) Change Impact Analysis of Object-Oriented Software. PhD Thesis, George 

Mason University. 

[Leh96] Lehman, M.M. (1996) Laws of Software Evolution Revisited. In Proc. of the 5th European 

Workshop on Software Process Technology, LNCS: 1149, pp. 108-124. 

[LeJ74] LeJohn, H. B. 1974. Biochemical parameters of fungal phylogenetics. Evol. Biol. 7:79-125. 

[LEO06] Lambers, L., Ehrig, H., and Orejas, F. (2006) Efficient Detection of Conflicts in Graph-based 

Model Transformation. Electr. Notes Theor. Comput. Sci. 152:97-109. 

[Leu90] Leung, C.Y. (1990) Antifungal Therapy in Dermatology. Journal of the Hong Kong Medical 

319 

http://www.informatik.uni-bremen.de/theorie/appligraph/
http://www.starlims.com/lCT_Autumn_2007.pdf


Association, 42(4): 203-205. 

[Lew47] Lewin, K. (1947). Frontiers in Group Dynamics 1. Human Relations 1, 5—41. 

[LG06] Lorence, D.P., and Greenberg, L. (2006) The Zeitgeist of Online Health Search: Implications 

for a Consumer-Centric Health System. J Gen Intern Med. 21(2): 134-139. 

[Lim09] Limit (category theory) (2009, June 8). In Wikipedia, The Free Encyclopedia. Retrieved, Nov 

17,2009, from 

http://en.wikipedia.org/w/index.php?title=Limit_(category_theory)&oIdid=295110702 

[LinOl] Lind, J. (2001) Specifying Agent Interaction Protocols with Standard UML. In Proc. of 

AOSE'OI, LNCS 2222, Springer, pp.136-147. 

[LLM+06] Liu, H., Lutz, C, Milicic, M., and Wolter, F. (2006) Updating Description Logic ABoxes. In 

Proc. of the 10th Int'l Conference on Principles of Knowledge Representation and Reasoning 

(KR'06), Lake District of the United Kingdom, June 2-5, AAAI Press, pp. 46-56. 

[LM04] Lammari, N., Metais, E. (2004) Building and maintaining ontologies: a set of algorithms. Data 

Knowl. Eng. 48(2): 155-176. 

[Low93] Lowe, M. (1993) Algebraic approach to single-pushout graph transformation. Theoretical 

Computer Science, 109(1-2): 181-224. 

[LR94] Lorenzi, N. M., and Riley, R. T. (1994). Organizational Aspects of Health Informatics: 

Managing Technological Change. New York: Springer-Verlag. 

[LR00] Lorenzi, N. M., and Riley, R. T. (2000). Managing Change: An Overview. J Am Med Inform 

Assoc, 7(2), 116-124. 

[LR03.a] Lorenzi, N.M., and Riley, R.T. (2003). Public Health Informatics and Organizational Change. 

In O'CarrolI, P.W., Yasnoff, W.A. et al. (Eds.) Public Health Informatics and Information 

Systems. London: Springer, 179-198. 

[LRW+97] Lehman, M.M., Ramil, J.F., Wemick, P.D., Perry, D.E., and Turski, W.M. (1997) Metrics and 

Laws of Software Evolution - The Nineties View. In Proc. of the 4th International Symposium 

on Software Metrics. IEEE Computer Society, pp. 20-32. 

[LS81] Lambek, J., and Scott, P.J. (1981) Intuitionist type theory and foundations. Journal of 

Philosophical Logic, 10( 1): 101 -115. 

[LS86] Lambek, J., and Scott, P.J. (1986) Introduction to Higher Order Categorical Logic. Cambridge 

University Press, Cambridge, UK. 

[LS06] Lukasiewicz, T., and Straccia, U. (2006) An overview of uncertainty and vagueness in 

description logics for the Semantic Web. INFSYS Research report 1843-06-07. 

[LS09] Lawvere, F.W., Schanuel, S.H. (2009) Conceptual Mathematics: A First Introduction to 

Categories. 2nd edition, Cambridge University Press. (The lsl ed. published on 1997) 

[LSA+06] Letelier, J.C., Soto-Andrade, J., Abarzua, F.G., Cornish-Bowden, A., and Cardenas, M.L. 

(2006) Organizational invariance and metabolic closure: analysis in terms of (M,R) systems. J 

Theor Biol. 238(4):949-61. 

320 

http://en.wikipedia.org/w/index.php?title=Limit_(category_theory)&oIdid=295110702


[LSB+03] Lord, P.W, Stevens, R.D., Brass, A., Goble, C.A. (2003) Semantic similarity measures as tools 

for exploring the Gene Ontology. Pacific Symposium on Biocomputing, 8:601 -612. 

[LSG+04] Lennox, C.L., Serdani, M., Groenewald, J.Z., Crous, P.W. (2004) Prosopidicola mexicana gen. 

et. sp. nov., causing a new pod disease of Prosopis species. Studies in Mycology 50: 187-94. 

[LSM+98] Lucking, R., Serusiaux, E., Maia, L.C., Pereira, E.C.G. (1998) A Revision of the Names of 

Foliicolous Lichenized Fungi Published by Batista and Co-workers Between 1960 and 1975. 

The Lichenologist, March 1998,30(2):121-191. 

[LWS+00] Lukoit, S., Wilde, N., Stowell, S., and Hennessey, T. (2000) TraceGraph: Immediate Visual 

Location of Software Features. In Proc. of International Conference on Software Maintenance 

(ICSM'00), San Jose, California, USA, pp. 33-39. 

[LWY05] Li, L., Wu, B., Yang, Y. (2005) Agent-Based Approach for Dynamic Ontology Management. 

KES (3), Springer, pp. 1-7. 

[LX93] Lieberherr, K.J., and Xiao, C. (1993) Object-Oriented Software Evolution. IEEE Transactions 

on Software Engineering, 19(4): 313 - 343. 

[LZ05] Livshits, V.B., and Zimmermann, T. (2005) DynaMine: finding common error patterns by 

mining software revision histories. In Proc. of ESEC/SIGSOFT FSE 2005, Lisbon, Portugal, 

Sep. 5-9,2005. ACM Press, pp. 296-305. 

[MAO 1 ] McDonald, J., and Anton, J. (2001) SPECWARE - Producing Software Correct by 

Construction. Kestrel Institute Tech. Rep. KES.U.01.3., March 2001. 

ftp://ftp.kestrel.edu/pub/papers/specware/specware-jm.pdf 

[Mac71 ] MacLane S (1971) Categories for the Working Mathematician (corrected 1994), Springer. 

[Mac79] MacDonald, G.F. (ed.) (1979) I do not Exist, in Perception and Identity, London: Macmillan. 

[MacOl] Mack, G. (2001) Universal Dynamics, a Unified Theory of Complex Systems. Emergence, 

Life and Death. Commun. Math. Phys. 219, 141 - 178. 

[Maz07] Mazur, B. (2007) When is one thing equal to some other thing? Available at: 

(http://www.math.harvard.edu/~mazur/preprints/when_is_one.pdf) 

[MAG] MAGE-ML: MicroArray Gene Expression Markup Language: 

http://xmI.coverpages.org/MAGEdescription2.pdf 

[Mag99] Magee J (1999) The Problem of change. In the website of Thomistic Philosophy at the Center 

for Thomistic Studies at the University of St. Thomas, Houston, Texas, last update on 1999. 

http://wvw.aquinasonline.com/Topics/change.html. Accessed 10 Jan 2009. 

[MAH08] Mutations and Health from Genetics Handbook, Genetic Home Reference. Available: 

http://ghr.nlm.nih.gov/. June 20,2008. 

[MakOO] Makarainen, M. (2000). Software change management processes in the development of 

embedded software. PhD thesis, Espoo: VTT Publications. 

http://www.vtt.fi/inf/pdf/pubIications/2000/P416.pdf 

[Mam] Mammal Encyclopaedia Article: http://www.naturalresearch.org/Mammal/encyclopedia.htm 

321 

ftp://ftp.kestrel.edu/pub/papers/specware/specware-jm.pdf
http://www.math.harvard.edu/~mazur/preprints/when_is_one.pdf
http://xmI.coverpages.org/MAGEdescription2.pdf
http://wvw.aquinasonline.com/Topics/change.html
http://ghr.nlm.nih.gov/
http://www.vtt.fi/inf/pdf/pubIications/2000/P416.pdf
http://www.naturalresearch.org/Mammal/encyclopedia.htm


[Mat02] University of Virginia, CS201J Course material, Fall 2002, Available: 

http://www.cs.virginia.edu/cs20 lj-fall2002/ problem-sets/ps4/ 

[May83] Mays, E. (1983) A Modal Temporal Logic for Reasoning about Change. In Proc. of 21st 

Annual Meeting of the Association for Computational Linguistics (ACL) Cambridge, MA, US, 

pp. 38-43. 

[Mcd93] Mcdowall, R.D. (1993) A Matrix for the Development of a Strategic Laboratory Information 

Management System. Analytical Chemistry, 69(20): 896A-901A. 

[MCF81] MacFarlane, A.I.: Dynamic structure theory: A structural approach to social and biological 

systems. Bulletin of Mathematical Biology. 43(5), 579-591 (1981). 

[MD99] Malaiya, Y.K., and Denton, J. (1999) Requirements volatility and defect density. In Proc. of 

the 10th Int'l Symp. on Software Reliability Engineering, pp. 285-294, Boca Raton, FL, USA. 

[MDS00] Meta Data Services Programming (SQL Server 2000). Available at: 

http://msdn.microsoft.com/en-us/library/aal 79133(SQL.80).aspx 

[MED+05] Mens, T., van Eetvelde, N., Demeyer, S., and Janssens, D. (2005) Formalizing refactorings 

with graph transformations. Journal of Software Maintenance 17(4): 247-276. 

[Men99] Mens, T. (1999) A Formal Foundation for Object-Oriented Software Evolution. Ph.D. Thesis, 

Vrije University Brussel. 

[MenOl] Mens, T. A Formal Foundation for Object-Oriented Software Evolution, in proceedings of the 

IEEE Intl. Conf. on Software Maintenance (ICSM'01), Florence, Italy, 2001, pp. 549-552. 

[Men04] Menendez, D. (2004) category-extras. 

http://hackage.haskell.Org/cgi-bin/hackage-scripts/package/category-extras-0.l 

[Men05] Mens, T. (2005) On the Use of Graph Transformations for Model Refactoring. In: Proc. of 

GTTSE'05, LNCS 4143, Springer, pp.219-257. 

[MG06] Mens, T., Gorp, P.V. (2006) A Taxonomy of Model Transformation. Electr. Notes Theor. 

Comput. Sci. 152:125-142. 

[MGE] Microarray and Gene Expression Data - MGED (http://wwwjnged.org/index.html) 

[MGH+09] Motik, B., Grau, B.C., Horrocks, I., and Sattler, U. (2009) Representing Ontologies using, 

Description Logics, Desctiption Graphs, and Rules. Artif. Intell. 173(14): 1275-1309. 

[MH91] Morris, J., and Hirst, G. (1991) Lexical cohesion computed by thesaural relations as an 

indicator of the structure of text. J. Computational Linguistics. 17(1) (March 1991), 21^15. 

[MIM] Minimum Information about a Microarray Experiment: 

http://www.mged.org/Workgroups/MIAME/miame.html 

[Mit90] Mitchell, T. M. (1990). The need for biases in learning generalizations. In: Shavlik, J.W., and 

Dietterich, T.G. (eds.) Readings in machine learning. Morgan Kaufmann, pp. 184-191. 

[Miz04] Mizoguchi, R. (2004) Tutorial on Ontological Engineering: Part 3: Advanced Course of 

Ontological Engineering. New Generation Comput. 22(2): 193-220. 

322 

http://www.cs.virginia.edu/cs20
http://msdn.microsoft.com/en-us/library/aal
http://hackage.haskell.Org/cgi-bin/hackage-scripts/package/category-extras-0.l
http://wwwjnged.org/index.html
http://www.mged.org/Workgroups/MIAME/miame.html


[MM] Maddison, D.R., and Maddison, W.P. MacClade: a computer program for phylogenetic 

analysis, published by Sinauer Associates, Avilable at: http://macclade.org/index.html 

[MME+06] Maguitman, A.G., Menczer, F., Erdinc, F., Roinestad, H., and Vespignani, A. (2006) 

Algorithmic Computation and Approximation of Semantic Similarity. World Wide Web 9(4): 

431^156. 

[MN95] McCray, A.T., and Nelson, S.J. (1995) The representation of meaning in the UMLS. Method 

Inform Med 34 (1/2):193-201. 

[Mos90] Moser, L.E. (1990) Data Dependency Graphs for Ada Programs. IEEE Transactions on 

Software Engineering, 16(5): 498-509. 

[MRC06] McLaughlin, D., Rinard, P., and Cassutt, M. (2006) Discovery about evolution of fungi has 

implications for humans. University of Minnesota, 20 Oct, 2006. 

[MRM+03] Martin, R.F., Rickard, K., Mejino, J.L.V., Agoncillo, A.V., Brinkley, J.F., Rosse, C. The 

Evolving Neuroanatomical Component of the Foundational Model of Anatomy. In Proc. of 

American Med. Info. Assoc. Fall Symp. 2003, p. 927. 

[MS92] Monk, S.R., and Sommerville, I. (1992) A Model for Versioning of Classes in Object-Oriented 

Databases. In Proc. of the 10th British National Conference on Databases (BNCOD'92), 

Aberdeen, Scotland, LNCS 618, Springer, pp. 42-58. 

[MS94] Mullet, K., and Sano, D. (1994) Designing Visual Interfaces: Communication Oriented 

Techniques, Prentice Hall. 

[MS03] Maedche A, Staab S (2003) KAON-The Karlsruhe Ontology and Semantic Web Meta Project. 

Kiinstliche Intelligenz (KI) 17(3): 27-30. 

[MV01 ] Maedche A, Volz R (2001) The ontology extraction and maintenance framework text-to-onto. 

In Proc. of the ICDM'01 Workshop on Integrating Data Mining and Knowledge Management, 

San Jose, CA, USA. 

[MV08] Mason, O., and Verwoerd, M. (2008) Graph Theory and Networks in Biology. arXiv:q-

bio/0604006vl. avilable at: http://arxiv.org/abs/q-bio/0604006vl 

[MVM10] Miller, F.P., Vandome, A.F., and McBrewster, J. (2010) Interface (computer science): 

Interface, Abstraction (computer science), Polymorphism in Object- oriented Programming, 

Indirection, User Interface. Alphascript Publishing. 

[MWD+05] Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., and Jazayeri, M. (2005) 

Challenges in Software Evolution, in Proc of 8th IEEE Intl. Workshop on Principles of 

Software Evolution (IWPSE'05), Lisbon, Portugal, pp. 13-22. 

[Nat] The Nature Journal Glossary: 

http://www.nature.eom/nrg/journal/v3/n 11 /glossary/nrg929_glossary .html 

[NCI06] NCI Metathesaurus User Guide 2.2 (2006) 

ftp://ftpI.nci.nih.gov/pub/cacore/EVS/NCI_Metathesaurus/NCIMetaphraseUserGuide.pdf 

323 

http://macclade.org/index.html
http://arxiv.org/abs/q-bio/0604006vl
http://www.nature.eom/nrg/journal/v3/n
ftp://ftpI.nci.nih.gov/pub/cacore/EVS/NCI_Metathesaurus/NCIMetaphraseUserGuide.pdf


[NCL+06] Noy, N.F., Chugh, A., Liu, W., and Musen, M. (2006) A Framework for Ontology Evolution in 

Collaborative Environments. In Proc. of the 5th International Semantic Web Conference 

(ISWC'06), Athens, GA, USA, LNCS, Springer, pp. 544-558. 

[NDW+88] Notermans, S., Dufrenne, J., Wijnands, L.M., and Engel, H.W. (1998) Human serum 

antibodies to extracellular polysaccharides (EPS) of moulds, Journal of Medical Veterinary 

Mycolology 26: 41-48. 

[NHI94] Nikoh, N., Hayase, N., Iwabe, N., Kuma, K., and Miyata, T. (1994) Phylogenetic relationships 

of the kingdoms Animalia, Plantae and Fungi, inferred from 23 different protein species. Mol. 

Biol. Evol. 11:762-768. 

[NHSOOa] NHS Information Authority (2000) The Clinical Terms Version 3 (The Read Codes): 

Introduction and Overview. Ref# 1999-IA-166 vl .0. (the Accessed to the following url on 10 

Jan 2009). 

http://www.connectingforhealth.nhs.uk/systemsandservices/data/readcodes/docs/chapl.pdf. 

[NHSOOb] NHS Information Authority (2000) The Clinical Terms Version 3 (The Read Codes): 

Managing Change: Description Change File. Ref# I999-IA-173 vl .0. 

[NFM00] Noy, N.F., Fergerson, R.W., Musen, M.A. (2000) The Knowledge Model of Protege-2000: 

Combining Interoperability and Flexibility. In Proc. of 12th Intl. Conf. on Knowledge Eng. and 

Management (EKAWOO), French Riviera, pp. 17-32. 

[Nie93] Nielsen, J. (1993). Iterative user interface design, Computer, 26(11), 32-41. 

[NJH01] Nelson, S. J., Johnston, D., and Humphreys, B. L. (2001) Relationships in Medical Subject 

Headings. In: Bean, Carol A.; Green, Rebecca, editors. Relationships in the organization of 

knowledge. New York: Kluwer Academic Publishers,171-184. 

[NK04] Noy, N.F., and Klein, M.C.A. (2004) Ontology Evolution: Not the Same as Schema Evolution, 

In: Knowledge and Information Systems, 6(4):428^t40. 

[NLH+08] Novacek, V., Laera, L., Handschuh, S., and Davis, B. (2008) Infrastructure for dynamic 

knowledge integration—Automated biomedical ontology extension using textual resources. 

Journal of Biomedical Informatics, 41(5):816-828. 

[NLM94] National Library of Medicine, Medical Subject Headings, Bethesda, MD, 1994. 

[NM02] Noy, N.F., and Musen, M.A. (2002) PROMPTDIFF: A Fixed-Point Algorithm for Comparing 

Ontology Versions. In Proc. of AAAI/IAAI 2002, Edmonton, Alberta, pp. 744-750. 

[NM03] Noy, N.F., and Musen, M.A. (2003) The PROMPT Suite: Interactive Tools For Ontology 

Merging And Mapping. Int J Hum-Comput St 59(6): 983-1024. 

[NM04] Noy, N.F., and Musen, M.A. (2004) Ontology versioning in an ontology management 

framework. IEEE Intelligent Systems 19(4) 6-13. 

[Nor88] Norman, D.A. (1988). The Psychology of Everyday Things. London: Basic Books. 

[Nov07b] Novacek, V. (2007) KWTR: ontology maintenance. Available at: 

http://semanticweb.Org/wiki/KWTR:_ontology_maintenance 

324 

http://www.connectingforhealth.nhs.uk/systemsandservices/data/readcodes/docs/chapl.pdf
http://semanticweb.Org/wiki/KWTR:_ontology_maintenance


[NR08] Noy, N.F., and Rubin, D.L. (2008) Translating the Foundational Model of Anatomy into OWL. 

Web Semantics, 6(2):133-136. 

[NS08] Nystrom, M., and Sundvall, E. (2008) Statistics for SNOMED CT January 2008 International 

Core. Dept. of Biomedical Engineering, Linkoping University. 

http://www. imt.1 iu.se/~erisu/2008/04-Iund/Snomed-jan2008-size-v3 pdf 

[OAD+92] Odds, F.C., Arai, T., Di Salvo, A.C., Evans, E.G.V, Hay, R.J., Randhawa, H.S., Rinaldi, M.G., 

Walsh, T.J. Nomenclature of fungal diseases, A report from a Sub-Committee of the IntF 

Society for Human and Animal Mycology (ISHAM). 1992. 

[OET+96] Olson, N.E., Erlbaum, M.S., Turtle, M.S. et al. (1996) Exploiting the metathesaurus update 

model. In Proc. of 18th Symp. on Computer App. in Medical Care. Philadelphia: Hanley & 

Belfus, 902. 

[OHE96] Orfali, R., Harkey, D., and Edwards, J. (1996) The Essential Distributed Objects Survival 

Guide. New York: John Wiley & Sons. 

[OliOO] Oliver DE (2000) Change management and synchronization of local and shared versions of a 

controlled vocabulary, Ph.D. thesis, Stanford University. 

[01s93] Olsen, N.C. (1993) The Software Rush Hour. IEEE Software, 10(5): 29-37. 

[Oos02] Van Oosten, J. (2002) Basic Category Theory. Lecture Notes (83 pp). BRICS Lecture Series 

LS-95-01, last update 2002. http://www.math.uu.nl/people/jvoosten/sylIabi/catsmoeder.ps.gz 

[OPR95] CNeil, M.J., Payne, C, Read, J.D. (1995) Read Codes Version 3: A User Led Terminology. 

Meth Inform Med; (34): 187-921. 

[OR95] Odds, F.C., and Rinaldi, M.G. (1995) Nomenclature of fungal diseases. Curr. Top. Med. 

Mycol. 6:33-46. 

[OS00] Oliver, D.E., and Shahar, Y. (2000) Change management of shared and local versions of 

health-care terminologies. Method Inf Med 39(4/5):278-290. 

[Osb03] Osborne. M.J. (2003) Nash Equilibrium: Theory. A chapter in "An Introduction to Game 

Theory", Oxford University Press, http://www.economics.utoronto.ca/osborne/igt/nash.pdf 

[OSM01] Overhage, J.M., Suico, J., and McDonald, C.J. (2001) Electronic laboratory reporting: barriers, 

solutions and findings. Journal of Public Health Management Practice, 7: 60-66. 

[OSS+99] Oliver D, Shahar Y, Shortliffe EH, Musen MA (1999) Representation of change in controlled 

medical Terminologies. Artif Intell Med 15:53-76. 

[OTOO] Ogawa, T. and Tanaka, J. (2000) CafePie: A Visual Programming System for CafeOBJ, Cafe: 

An Approach to Industrial Strength Algebraic Formal Methods, Elsevier, pp. 145-160. 

[OT09] Okuno, K., and Takahashi, K. (2009) Argumentation System with Changes of an Agent's 

Knowledge Base. In Proc. of IJCAI'09, Pasadena, California, USA. available online at: 

http://ijcai.org/papers09/Papers/IJCAI09-047.pdf 

[OWL04] OWL Web Ontology Language Overview. 10 Feb 2004. http://www.w3.org/TR/owl-features/ 

[Pad08] Padberg, J. (2008) Integration of Categorical Frameworks: Rule-Based Refinement and 

Hierarchical Composition for Components. Applied Categorical Structures, 16(3): 333-364. 

325 

http://www
http://iu.se/~erisu/2008/04-Iund/Snomed-jan2008-size-v3
http://www.math.uu.nl/people/jvoosten/sylIabi/catsmoeder.ps.gz
http://www.economics.utoronto.ca/osborne/igt/nash.pdf
http://ijcai.org/papers09/Papers/IJCAI09-047.pdf
http://www.w3.org/TR/owl-features/


[Pal04] Palacz, W. (2004) Algebraic hierarchical graph transformation. Journal of Computer and 

System Sciences, 68(3): 497-520. 

[Pal08] Palacz, W. (2008) Hierarchical graph transformations with meta-rules. Annales UMCS 

Informatica AI VIII, 2: 89-96. 

[Pav96] Pavlovic, D. (1996) Maps II: Chasing Diagrams in Categorical Proof Theory Logic Jnl IGPL, 

March 1996; 4: 159- 194. 

[PC04] Paglieri, F., and Castelfranchi, C. (2004) Revising beliefs through arguments:bridging the gap 

between argumentation and beliefrevision in MAS. In Proc. of ArgMAS'04, LNCS 3366, 

Springer, pp.78-94. 

[PCB+04] Papier, A., Chalmers, R.J.G., Byrnes, J.A. and Goldsmith, L.A. (2004) Framework for 

improved communication: the Dermatology Lexicon Project. J. of the American Academy of 

Dermatology, 50 (4): 630-634. 

[PCC+93] Paulk, M.C., Curtis, B., Chrissis, Chrissis, M.B., and Weber, C. (1993) Capability Maturity 

Model for Software, Version 1.1. IEEE Software, 10(4): 18-27. 

[PCN+04] Purvis, M., Cranefield, S., Nowostawski, M., and Purvis, M. (2004) Multi-Agent System 

Interaction Protocols in a Dynamically Changing Environment. An Application Science for 

Multi-Agent Systems, Springer, pp. 95-111. 

[Pel91] Peltason, C. (1991) The BACK System - An Overview. SIGART Bulletin 2(3): 114-119. 

[Per06] Peruzzi, A. (2006) The Meaning of Category Theory for 21st Century Philosophy. 

Axiomathes, 16(4): 426-459. 

[Pfa04b] Pfalzgraf, J. (2004) On Logical Fiberings and Automated Deduction in Many-valued Logics 

Using Grobner Bases. RACSAM, Rev. Real. Acad. Ciencias, Ser. A. Mat., 98(1): 213-227. 

[Pfa07a] Pfalzgraf, J. (2007) ACCAT and Theoretical Neurobiology: On a Network Structure Modeling 

Approach. Talk given at the 2nd ACCAT'07 workshop, at ETAPS-2007, March 24-April 1, 

Braga, Portugal 

[Pfa07b] Pfalzgraf, J. (2007) The Base Diagram of a Multiagent System: A Categorical Model of the 

General Communication Structure. Talk given at Symposium on Multiagent Systems, Robotics 

and Cybernetics: Theory and Practice. 

[PFF+09] Pesquita, C, Faria, D., Falcao, A.O., Lord, P., and Couto, F.M. (2009) Semantic similarity in 

biomedical ontologies. PLoS Comput Biol. 2009 Jul;5(7):el000443. Epub 2009 Jul 31. 

[PGM99] Pinto, H.S., Gomez-Perez, A., and Martins, J.P. (1999) Some issues on ontology integration. In 

Proc. of the Workshop on Ontologies and Problem-Solving Methods at 16th Int'l Joint Conf. on 

Artificial Intelligence (IJCAI-99). 

[PH04] Patel-Schneider, P.F., and Horrocks,I. (eds.) (2004) OWL Web Ontology Language Semantics 

and Abstract Syntax Section 4, Mapping to RDF Graphs. http://www.w3.org/TR/owl-

semantics/mapping.html#transformation 

326 

http://www.w3.org/TR/owl-


[PR69] Pfaltz, J.L., and Rosenfeld, A. (1969) Web Grammars. In Proc. of the 1st Int'l Joint Conference 

on AI (IJCAI'69), Washington, DC, W. Kaufmann, pp. 609-620. 

[Phy] Phylogenetic systematics, a.k.a. evolutionary trees. The centre for understanding evolution, 

Berkeley University, http://www.ucmp.berkeley.edu/clad/cladl.html 

[Pie91] Pierce, P. (1991) Basic Category Theory for Computer Scientists, MIT Press. 

[PitOO] Pitts, A. M. (2000) Categorical Logic. Chapter 2 of Abramsky, S., Gabbay, D.M., and 

Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, Vol 5. Algebraic and 

Logical Structures, Oxford Uni. Press 

[Ple06] Plessers, P. (2006) An Approach to Web-based Ontology Evolution. Ph.D. Thesis, Vrije 

Universiteit Brussel. 

[PM01] Pinto, H.S., and Martins, J.P. (2001) Ontology Integration: How to perform the Process. In 

Proc. of IJCAI2001's Workshop on Ontology and Information Sharing. 

[Poi86] Poigne, A.(l 986) Elements of Categorical Reasoning: Products and Coproducts and some 

other (Co-) Limits. In: Pitt, D.H., Abramsky, S., Poigne, A., Rydeheard, D.E. (eds.) CTCS'85. 

LNCS, vol. 240, pp. 16-42. 

[Poi86b] Poigne, A. (1986) Category theory and logic. In Proc. of CTCS'85, Guildford, UK, LNCS 240. 

Springer, pp. 103-142. 

[PPF+03] Phan, I.Q.H., Pilbout, S.F., Fleischmann, W., and Bairoch, A. (2003) NEWT, a new taxonomy 

portal, Nucleic Acids Res 31(13):3822-3823. 

[PreOl] Pressman, R. (2001) Software Engineering- A Practitioner's Approach. 5* ed. McGraw-Hill. 

[PRW07] Pohl, M., Rester, M., and Wiltner, S. (2007). Usability and Transferability of a Visualization 

Methodology for Medical Data. In Proc. of the 3rd Sympo. of the HCI and Usability for 

Medicine and Health Care, USAB07, Graz: Springer, 171-184. 

[PST04] Pinto, H.S., Staab, S., Tempich, C. (2004) DILIGENT: Towards a fine-grained methodology 

for Distributed, Loosely-controlled and evolving Engineering of oNTologies. In Proc. 16' 

Eureopean Conference on Artificial Intelligence, (ECAI'04), Valencia, pp. 393-397. 

[PT05] Plessers, P., and de Troyer, O. (2005) Ontology change detection using a version log. In Proc. 

of the 4lh Int'l Semantic Web Conference (ISWC'05), Galway, Ireland, LNCS 3729, Springer, 

pp. 578-592. 

[PT07] Pan, J.F., and Thomas, E.D. (2007) Approximating OWL-DL Ontologies. AIn Proc. of 

AAAI'07, Vancouver, British Columbia, Canada, pp. 1434-1439. 

[QY08] Qi, G., and Yang, F. (2008) A Survey of Revision Approaches in Description Logics. In Proc. 

of 21st Int'l Workshop on Description Logics (DL2008), Dresden, Germany, 353 CEUR-

WS.org. 

[Rao84] Raoult, J.C. (1984) On Graph Rewriting. Theoretical Computer Science, 32:1-24. 

327 

http://www.ucmp.berkeley.edu/clad/cladl.html
http://WS.org


[RBG+97] Rector, A., Bechhofer, S., Goble, C, Horrocks, I., Nowlan., W, and Solomon, W. (1997) The 

GRAIL concept modeling language for medical terminology. Artificial Intelligence in 

Medicine, 9(2):139-171. 

[RCS+97] Robinson D, Comp D, Schulz E, Brown P. et al. (1997) Updating the Read Codes: User-

interactive Maintenance of a Dynamic Clinical Vocabulary. J Am Med Inform Assoc 4(6): 

465^172. 

[RefS06] SNOMED Clinical Terms Reference Sets, July 2006. 

http://www.ihtsdo.org/fiIeadmin/user_upload/Docs_01/Technical_Docs/reference_sets.pdf 

[Rei70] Reid, G.A. (1970) Epimorphisms and surjectivity. Inventiones Mathematicae, 9(4): 295-307. 

[Rei05] Reinhard, D. (2005) Graph Theory. Third edition, Springer. 

[RG04] Rector, A.L., and Rogers, J. (2004) Patterns, Properties and Minimizing Commitment: 

Reconstruction of the GALEN Upper Ontology in OWL. In Proc. of the EKAW04 Workshop 

on Core Ontologies in Ontology Engineering, Northamptonshire (UK). 

[RH96] Resconi, G., Hill, G. (1996) The Language of General Systems Logical Theory: A Categorical 

View. In Proc. of the Third European Congress on Systems Science, Rome, pages 1091-1096. 

[RL04] Resconi, G., and Jain, L.C. Intelligent Agents: theory and applications. Vol. 155 of Studies in 

Fuzziness and Soft Computing, Springer-Ver. Berlin, 2004. 

[RM03] Rosse, C, and Mejino Jr, J.L.V. (2003) A reference ontology for bioinformatics: the 

Foundational Model of Anatomy. J Biomed Inform 36:478-500. 

[RM07] Rahwan, 1., McBurney, P.(2007) Guest Editors' Introduction: Argumentation Technology. 

IEEE Intelligent Systems 22(6): 21-23. 

[RN94] Rector, A.L., and Nowlan, W.A. (1994) The GALEN project.Comput Methods Programs 

Biomed, 45(1-2): 75-8. 

[RN02] Russell, S. and Norvig, P. (2002) Artificial Intelligence: A Modern Approach, Prentice Hall, 

Upper Saddle River, NJ. 

[RNK91] Rector, A.L., Nowlan, W.A., and Kay S. (1991) Foundations for an electronic medical record. 

Methods Inf Med, 30(3): 179-86. 

[Rob86] Robinson, H. A Key to the Common Errors of Cladistics. Taxon, 1986,35(2):309-311. 

[Rod95] Roddick, J.F. (1995) A Survey of Schema Versioning Issues for Database Systems. 

Information and Software Technology, 37(7):383-393, 1995. 

[Rom99] Romerales, E. (1999) Amounts of Vagueness, Degrees of Truth. Sorites, 11:41-65. 

[Ros58] Rosen, R. (1958) The Representation of Biological Systems from the Standpoint of the Theory 

of Categories, Bulletin of Mathematical Biophysics 20:245—260. 

[RosOO] Rosse, C. (2000) Terminologia Anatomica; Considered from the Perspective of Next-

Generation Knowledge Sources. Clinical Anatomy 14:120-133. 

[Roz97] Rozenberg G. (ed.) (1997) Handbook of Graph Grammars and Computing by Graph 

Transformations, Vol. 1: Foundations. World Scientific. 

328 

http://www.ihtsdo.org/fiIeadmin/user_upload/Docs_01/Technical_Docs/reference_sets.pdf


[RR05] Rector, A.L., and Rogers, J.E. (2005) Ontological & Practical Issues in using a Description 

Logic to Represent Medical Concepts: Experience from GALEN. University of Manchester 

School of Computer Science Preprint CSPP-35. 

[RRJ+03] Rahwan, I., Ramchum, S.D., Jennings, N.R., McBurney, P., Parsons, S., Sonenberg, L. (2003) 

Argumentation Based Negotiation. Knowledge Engineering Review 18(4): 343-375. 

[RRZ+03] Rector, A.L., Rogers, J., Zanstra, P.E., and Van Der Haring, E. (2003) OpenGALEN. 

OpenGALEN: open source medical terminology and tools. AMIA Annual Symp. Proc. p. 982. 

[RS03] Ram, S., and Shankaranarayanan, G. (2003) Research issues in database schema evolution: the 

road not taken. University of Arizona, Working Paper #2003-15. 

[RSS02] Roger, M., Simonet, A., and Simonet, M. (2002) Toward updates in description logics. In 

Proc. of the 15,h Int'l Workshop on Description Logics (DL'02), Toulouse, France, CEUR-WS 

Vol. 53. 

[RW08] Ribeiro, M., and Wassermann, R. (2008) The Ontology Reviser Plug-In for Protege. In Proc. of 

3rd Workshop on ontologies and their applications (WONTO'08), October 26th, Salvador, 

Bahia, Brazil. http://www.cin.ufpe.br/~wonto2008/wonto2008_arquivos/Wonto08.pdf 

[Ryd85] Rydeheard, D.E. (1985) Functors and Natural Transformations. In Proc. of CTCS'85, LNCS 

240, Springer, pp. 43-50. 

[SA07] Shahaf, D., and Amir, E. (2007) Towards a theory of Al completeness. In Proc. of 8th Int'l 

Sympo. on Logical Formalizations of Commonsense Reasoning (Commonsense'07), in AAAI 

Spring Sympo., California, USA. 

[Sam91] Samson, R.A. (1991) Problems caused by new approaches in fungal taxonomy. Mycopathologia, 

116:149-150. 

[SAS03] Sure Y, Angele J, Staab S (2003) OntoEdit: Multifaceted Inferencing for Ontology 

Engineering. Journal on Data Semantics (LNCS) (1): 128-152. 

[Sat] Sattler, U. Description Logic Reasoners: http://www.cs.man.ac.uk/~sattler/reasoners.html 

[SBF98] Studer, R., Benjamins, V.R., and Fensel, D. (1998) Knowledge engineering: Principles and 

methods. Data and Knowledge Engineering, 25(1-2): 161—197. 

[SBH+05] Shaban-Nejad A., Baker C.J.O., Haarslev V., and Butler G. (2005). The FungalWeb Ontology: 

Semantic Web Challenges in Bioinformatics and Genomics. In Proc. of the 4th Intl' Semantic 

Web Conf. (ISWC'05)Nov. 6-10, Galway, Ireland, LNCS Springer, Vol. 3729, pp. 1063-1066. 

[SBL+05] Sacchi, L., Bellazzi, R., Larizza, C, Porreca, R., Magni, P.: Learning Rules with Complex 

Temporal Patterns in Biomedical Domains. In: Miksch, S., Hunter, J., Keravnou, E.T. (eds.) 

AIME'05. LNCS 3581, pp. 23-32. Springer (2005) 

[SC06] Smith B, Ceusters W (2006) HL7 RIM: An Incoherent Standard. Studies in Health Technology 

and Informatics 124:133-138. 

[SCC97] Spademan, K.A., Campbell, K.E., Cote, R.A. (1997) SNOMED RT: A reference terminology 

for healthcare, in Proc of 1997 AMIA Annual Fall Symposium, pp. 640-644. 

329 

http://www.cin.ufpe.br/~wonto2008/wonto2008_arquivos/Wonto08.pdf
http://www.cs.man.ac.uk/~sattler/reasoners.html


[SCE+04] Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, et al. (2004) BRENDA, the enzyme 

database: updates and major new developments. Nucleic Acids Res 32(DB issue):431-433. 

[Sch89] Schneider, H.J. (1989) Describing distributed systems by categorical graph grammars, in proc 

of 15th int'l workshop on Graph-Theoretic Concepts in Comp. Sci. (WG'89) Castle Rolduc, 

The Netherlands, LNCS 411, Springer 121-135. 

[Sch90] Schmiedel, A. (1990) Temporal Terminological Logic. AAAI, pp. 640-645. 

[Sch91 ] Schmiedel, A. (1991) Integrating Time into Terminological Logics. Description Logics, pp. 

105-108. -•• 

[SCH+07] Sioutos, N, de Coronado, S, Haber, M.W., et al. (2007) NCI Thesaurus: a semantic model 

integrating cancer-related clinical and molecular information. J Biomed Inform. 40(l):30-43. 

[Sch08a] Schneider, H.J. (2008) Graph Transformations: An Introduction to the Categorical Approach. 

(Online bok draft) 

http://www2.informatik.uni-erlangen.de/EN/staff/schneider/gtbook/index.html 

[Sch08c] Schneider, H.J. (2008) Implementing the Categorical Approach to Graph Transformations with 

Haskell. Book Chapter draft: http://www2.informatik.uni-

erlangen.de/Personen/schneide/gtbook/appendix-a.pdf?language=en 

[SCN+03] Sobel, J.D., Chaim, W., Nagappan, V., and Leaman, D. (2003) Treatment of vaginitis caused 

by Candida glabrata: use of topical boric acid and flucytosine. American Journal of Obstetrics 

and Gynecology, 189(5): 1297-1300. 

[Scr99] Scribner, P. (1999) Introduction to Ontological Philosophy. http://www.twow.net/MclOtaI.htm 

[SDK+03] Smith, M J., Dewar, R.G., Kowalczykiewicz, K., and Weiss, D. (2003) Towards Automated 

Change Propagation; the value of traceability. Technical Report, Heriot Watt University. 

http://www.macs.hw.ac.uk:8080/techreps/docs/files/HW-MACS-TR-0002.pdf 

[Sea72] Searle, J. (1972). Chomsky's Revolution in Linguistics". Harman, Gilbert, (editor), 1974. On 

Noam Chomsky, Anchor Books, New York. 

[SeI05] Selinger, P. (2005) Course notes for MATH 4135/5135: Introduction to Category Theory, 

FALL 2005. Dalhousie University. (Accessed on 12 February 2010) 

http://www.mscs.dal.ca/~selinger/4135/handouts/notes-2up.pdf 

[SFM99] Swann, E.C., Frieders, E.M., and McLaughlin, D. J. (1999) Microbotryum, Kriegeria, and the 

changing paradigm in basidiomycete classification. Mycologia 91: 51-66. 

[SGB00] Stevens, R., Goble, C.A., Bechhofer, S. (2000) Ontology-based Knowledge Representation for 

bioinformatics. Briefings in Bioinformatics 1(4): 398-414. 

[SH06a] Shaban-Nejad, A., Haarslev, V. (2006) Representation of Changes in Ontology Driven Object 

Oriented Software using Categories. In the proc. of 5th Int'l Semantic Web Conf., 1SWC06 

Workshop on Semantic Web Enabled Software Engineering (SWESE'06), Athens, GA, USA. 

330 

http://www2.informatik.uni-erlangen.de/EN/staff/schneider/gtbook/index.html
http://www2.informatik.uni-
http://www.twow.net/MclOtaI.htm
http://www.macs.hw.ac.uk:8080/techreps/docs/files/HW-MACS-TR-0002.pdf
http://www.mscs.dal.ca/~selinger/4135/handouts/notes-2up.pdf


[SH06b] Shaban-Nejad, A., and Haarslev, V. (2006) Some Issues in Ontology Change Management. 

Position paper for Canadian Semantic Web Working Symposium (CSWWS 2006), June 6, 

2006, Quebec City, QC, Canada. 

[SH07a] Shaban-Nejad A, Haarslev V (2007) Managing Conceptual Revisions in a Temporal Fungi 

Taxonomy, In Proc. of the 20* IEEE International Symposium on Computer-Based Medical 

Systems (CBMS 2007), Maribor, Slovenia, pp. 624-632. 

[SH07b] Shaban-Nejad A, Haarslev V (2007) Categorical Representation of Evolving Structure of an 

Ontology for Clinical Fungus. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. 

LNCS, vol. 4594, Springer, Heidelberg, pp. 277-286. 

[SH07c] Shaban-Nejad, A., and Haarslev, V. (2007) Towards a Framework for Requirement Change 

Management in HealthCare Software Applications. In Proc. of the 22nd Annual ACM 

SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and Applications 

(OOPSLA'07), Montreal, QC, Canada, pp. 807-808. 

[SH07d] Shaban-Nejad, A., Haarslev, V. (2007) Simulation of Conceptual Representation of Evolving 

Medical Vocabularies, Presented at COMPMED (Computer Simulation In Medicine), MAY 

16-18, 2007, Montreal, Canada. Published in Simulation in Healthcare: The Journal of the 

Society for Simulation in Healthcare, ISSN 1559-2332, Volume 2, Issue 2, Summer 2007. 

[SH08a] Shaban-Nejad, A., and Haarslev, V. Incremental Biomedical Ontology Change Management 

through Learning Agents. In Proc. of the 2nd KES Intl. Symposium on Agent and Multi-Agent 

Systems: Technologies and Applications (KES-AMSTA 08), March 27-28, Incheon, Korea, 

Springer Volume 4953 / 2008: 526-535. 

[SH08b] Shaban-Nejad, A., and Haarslev, V. (2008) Ontology-Inferred Phylogeny Reconstruction for 

Analyzing the Evolutionary Relationships between Species: Ontological Inference versus 

Cladistics". In Proc. of 8th IEEE Int'I Conf. on Biolnformatics and BioEngineering (BIBE'08), 

8-10 Oct, Athens, Greece, pp. 1-7. 

[SH08c] Shaban-Nejad, A., and Haarslev, V. (2008) Web-based Dynamic Learning through Lexical 

Chaining: A Step Forward towards Knowledge-Driven Education". In Proc. of 13 Annual 

SIGCSE Conf. on Innovation and Technology in Comp Sci. Education, ITiCSE'08, Madrid, 

Spain, June 30- July 2, pp.375. 

[SOK+09] Shaban-Nejad, a., Ormandjieva, O., Kassab, M., and Haarslev, V. (2009) Managing 

Requirements Volatility in an Ontology-Driven Clinical LIMS Using Category Theory, 

International Journal of Telemedicine and Applications, vol. 2009, Article ID917826, 14 

pages, 2009. (PubMed ID: 19343191). 

[SH09] Shaban-Nejad, A., and Haarslev, V. (2009) Bio-medical Ontologies Maintenance and Change 

Management, in Sidhu, A.S., and Dillon, T.S. (eds.) Biomedical Data and Applications. 

Studies in Computational Intelligence, vol. 224, Springer, pp.143-168. 

331 



[SHIOa] Shaban-Nejad, A., and Haarslev, V. (2010) Human Factors in Dynamic E-Health Systems and 

Digital Libraries. To appear in Pease, W., Cooper, M., Gururajan. R. (eds.) Biomedical 

Knowledge Management: Infrastructures and Processes for E-Health Systems. IGI Global. 

Information Science Reference - ISR series. 

[SHIOb] Shaban-Nejad, A., and Haarslev, V. (2010) Towards Autonomous Management of Changes in 

Distributed Ontologies, Controlled Vocabularies and Linked Data in Biomedical Domain. The 

7th Annual Conference of the MidSouth Computational Biology and Bioinformatics Society 

(MCBIOS'10), Jonesboro, Arkansas, Feb 19-20. 

[Sim61] Simpson, G.G. Principles of Animal Taxonomy. New York: Columbia University Press, 1961. 

[SklOO] Sklyar, N. (2001) Survey of existing Bio-ontologies, Technical Report 5/2001, Department of 

Computer Science, University of Leipzig. 

[SK03] Stuckenschmidt, H., and Klein, M.C.A. (2003) Integrity and Change in Modular Ontologies. In 

Proc. of Proceedings of the 18th Int'l Joint Conference on Artificial Intelligence (IJCAI'03), 

Acapulco, Mexico, August 9-15, pp. 900-908. 

[SLC+07] Sacchi, L., Larizza, C, Combi, C, Bellazzi, R. (2007) Data mining with Temporal Abstractions: 

learning rules from time series. Data Mining Knowledge Discovery 15(2): 217-247. 

[SM0I] Stumme, G., and Maedche, A. (2001) Ontology Merging for Federated Ontologies on the 

Semantic Web. In Proc. of the IJCAI-01 Workshop on Ontologies and Information Sharing, 

Seattle, USA, August 4-5, CEUR-WS/Vol-47, pp. 91-99. 

[SMOla] Stumme, G., and Maedche, A. (2001) FCA-MERGE: Bottom-Up Merging of Ontologies. In 

Proc. of UCAI 2001, Seattle, Washington, USA, pp. 225-234. 

[SM02] Stojanovic L, Motik B (2002) Ontology Evolution within Ontology Editors. In Proceedings of 

the International Workshop on Evaluation of Ontology-based Tools (EON'02), CEUR-WS-62. 

[Smi03] Smith B (2003) Realism, Concepts and Categories or: how realism can be pragmatically useful 

for information. Talk in OntoQuery at Copenhagen Business School, May 18-22, 2003. 

[Smi03.b] Smith, B. (2003) Ontology, in L. Floridi (ed.), Blackwell Guide to the Philosophy of 

Computing and Information, Oxford: Blackwell, 2003,155-166. 

[Smi05] Smith, B. (2005) Ontologies in Biomedicine: The Good, The Bad and The Ugly. Talk at 

"Knowledge based bioinformatics Workshop 2005", Montreal, Canada. 

[Smi061 Smith B (2006) From concepts to clinical reality: An essay on the benchmarking of biomedical 

terminologies. J Biomed Inform 39(3):288-298. 

[SMM+02] Stojanovic L, Maedche A, Motik B, Stojanovic N (2002) User-Driven Ontology Evolution 

Management. In Proceedings of the 13th Intl. Conf. on Knowledge Eng. and Knowledge 

Management (EKAW02), Siguenza, Spain, LNCS: 285-300. 

[SMS+03] Stojanovic L, Maedche A, Stojanovic N, Studer R (2003) Ontology evolution as 

reconfiguration-design problem solving. In Proceedings of the 2nd Intl. Conf. on Knowledge 

Capture (K-CAP'03), Sanibel Island, FL, USA, ACM, pp.162-171. 

332 



[SN01] Scott, J.A., and Nisse, D. (2001). Software configuration management. In: Guide to Software 

Engineering Body of Knowledge, Chapter 7. Retrieved March 10,2009 

http /̂vvww.swebok.org/stoneman/version_1.00/SWEBOK_w_correct_copyright_web_site_version.pd 

[SNS+07] Sabetzadeh, M., Nejati, S., Easterbrook, S. and Chechik, M. (2007) A Relationship-Driven 

Framework for Model Merging, in Proceedings of the Int'l Workshop on Modeling in Software 

Engineering. ACM press. 

[Sol06] Solomon, A. (2006) Pushout: A Mathematical Model of Architectural Merger, in proc of 6th 

Int'l Perspectives of Systems Informatics (PSI'06), LNCS 4378, Springer, pp. 389-399. 

[SowOO] Sowa, J.F. (2000) Knowledge Representation: Logical, Philosophical, and Computational 

Foundations. Brooks Cole Publishing Co., Pacific Grove, CA. 

[SP82] Smyth, M.B., and Plotkin, G.D. The Category-Theoretic Solution of Recursive Domain 

Equations. SIAM J. on Computing (SICOMP), 1982, 11(4):761-783. 

[Spa05] Spackman, K.A. (2005) Rates of Change in a Large Clinical Terminology: Three Years 

Experience with SNOMED Clinical Terms. 2005 AMIA Annu Symp Proc. pp. 714-718. 

[SPG+07] Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., and Katz, Y. (2007) Pellet: A practical OWL-

DL reasoner. J. Web Sem. 5(2): 51-53. 

[SPL+01] Sunye, G., Pollet, D., Le Traon, Y. and Jezequel, J.M. (2001) Refactoring UML Models, in: 

«UML» 2001 — The Unified Modeling Language. Modeling Languages, Concepts, and Tools. 

LNCS 2185, Springer, pp. 134-148. 

[SR04] Smith, B., and Rosse, C. (2004) The role of foundational relations in the alignment of 

biomedical ontologies. In Proc. of 11th World Congress on Medical Informatics; MEDINFO'04, 

IOS Press, 444-448. 

[SR06] Seidenberg, J., and Rector, A.L. (2006) Web ontology segmentation: analysis, classification 

and use. In Proc. of WWW'06, pp. 13-22. 

[SRP02] Schorlemmer, M., Robertson, D., and Potter, S. (2002) Automated Support for Composition of 

Transformational Components in Knowledge Engineering. Technical Report EDI-INF-RR-

0137, School of Informatics, The University of Edinburgh, http://eprints.aktors.org/138/ 

[SSB07] Schulz, S., Suntisrivaraporn, B., and Baader, F. (2007) SNOMED CT's Problem List: 

Ontologists' and Logicians' Therapy Suggestions, in Proc. of Medinfo 2007 Congress, Studies 

in Health Technology and Informatics (SHTI-series). IOS Press. 

[SSG+03] Stojanovic L, Stojanovic N, Gonzalez J, Studer R (2003) OntoManager - A System for the Usage-

Based Ontology Management. In Proceedings of CooplS/DOA/ ODBASE 2003, Catania, Sicily, 

Italy, LNCS: 858-875. 

[SSW01] SchuBIer, A., Schwarzott, D., Walker, C. (2001) A new fungal phylum, the Glomeromycota: 

phylogeny and evolution, Mycol. Res. 105 (12): 1413-1421. 

[ST95] Slavoski, L.A., and Tunkel, A.R. (1995) Therapy of fungal meningitis. Clin Neuropharmacol. 

18(2): 95-112. 

333 

http://eprints.aktors.org/138/


[Sto04] Stojanovic, L. (2004) Methods and Tools for Ontology Evolution. PhD. thesis in University of 

Karlsruhe 

[Str] Straccia, U. fuzzyDL: A DL Reasoner supporting Fuzzy Logic reasoning. 

http://gaia.ish\cnr.it/~straccia/sofrware/fuzzyDL/fuzzyDL.html 

[StrOl] Straccia, U. (2001) Reasoning within Fuzzy Description Logics. Artif.Intell.Res, 14:137-166. 

[Str05] Straccia, U. (2005) A fuzzy description logic for the Semantic Web. In Sanchez, E., ed.: 

Capturing Intelligence: Fuzzy Logic and the Semantic Web. Elsevier, pp. 73-90 

[SVS04] Santos, G., Villela, K., Schnaider, L., Rocha, A., and Travassos, G. (2004) Building Ontology 

Based Tools for a Software Development Environment. In Proc. of 6th Intl. Workshop on 

Advances in Learning Soft. Organizations (LSO'04), LNCS 3096, Banff, Canada, pp. 19-30. 

[SWK+02] Sycara, K.P., Widoff, S., Klusch, M., Lu, J. (2002) Larks: Dynamic Matchmaking Among 

Heterogeneous Software Agents in Cyberspace. Autonomous Agents and Multi-Agent Systems 

5(2): 173-203. 

[SWL+03] Stevens, R., Wroe, C, Lord, P., and Goble, C. (2003) Ontologies in bioinformatics. in Staab, 

S., and Studer, R. (eds). Handbook on Ontologies in Information Sys., Springer, pp. 635-657. 

[Swo] Swofford, D. PAUP (V. 4.0) A tool for inferering and interprtting phylogenetic trees. 

http://paup.csit.fsu.edu/ 

[SWS03] Smith B, Williams J, Schulze-Kremer S (2003) The ontology of the gene ontology. In Proc. of 

AMIA2003 Annual Symposium; 609-13. 

[Sym08] Symons, J. (2008) Review of Giandomenico Sica (ed.) What is Category Theory? (DRAFT) 

Studia Logica 89 (2): 285-289. 

[Tae94] Taentzer, G. (1994) Hierarchically Distributed Graph Transformation. In Proc. of the 5th Int'l 

Workshop on Graph Grammars and Their App. to Comp. Sci. (TAGT'94), Williamsburg, VA, 

USA, LNCS 1073, Springer, pp. 304-320. 

[Tae99] Taentzer, G. (1999) Distributed Graphs and Graph Transformation. Applied Categorical 

Structures 7(4): 431^162. 

[Tae04] Taentzer, G. (2004) AGG: A graph transformation environment for modeling andvalidation of 

software. In Proc. of Applications of Graph Transformations with Industrial Relevance 

(AGTIVE'04), LNCS 3062, Springer, pp. 446^153. 

[Tax99] Taxonomy, Classification, and the Debate about Cladistics, From an appendix in Shinners & 

Mahler's Illustrated Flora of North Central Texas; 1999, BRIT & Austin College. 

http://artemis.austincolIege.edu/acad/bio/gdiggs/taxonomy.html 

[TF05] Thagard, P., and Toombs, E. (2005) Atoms, Categorization and Conceptual Change, in Cohen, 

H., and Lefebvre, C. (editors) Handbook of categorization in Cognitive Science. Elsevier, pp. 

243-254. 

334 

http://gaia.ish/cnr.it/~straccia/sofrware/fuzzyDL/fuzzyDL.html
http://paup.csit.fsu.edu/
http://artemis.austincolIege.edu/acad/bio/gdiggs/taxonomy.html


[TFH03] Telea, A., and Frasincar, F., and Houben, G.J. (2003) Visualisation of RDF(S)-based 

Information. In Proc. of 7th Inf 1 Conf. on Information Visualization (IV'03), London, UK. 

IEEE, pp. 294-299. 

[TKF+99] Taentzer, G., Fischer, I., Koch, M., and Voile, V. (1999) Distributed Graph Transformation 

with Application to Visual Design of Distributed Systems, In: Ehrig, H., Kreowski, H.-J. et al. 

(eds.) Handbook of Graph Grammars and Computing by Graph Transformation, Vol 3: 

Concurrency and Distribution, World Scientific. 

[TGM98] Taentzer, G., Goedicke, M., and Meyer, T. (1998) Dynamic Change Management by 

Distributed Graph Transformation: Towards Configurable Distributed Systems. In Proc. of 6th 

Int'l Workshop on Theory and App. of Graph Transformations (TAGT'98), Paderborn, 

Germany, LNCS 1764, Springer, pp. 179-193. 

[TGM99] Taentzer, G., Goedicke, M., and Meyer, T. (1999) Dynamic Accommodation of Change: 

Automated Architecture Configuration of Distributed Systems. In Proc. of ASE'99, pp. 287-

290. 

[TM05] Trask, R.L, and Mayblin, B. (2005) Introducing Linguistics. Totem Books, USA. 

[TMM+96] Taboada, M., Marin, R., Mira, J., Otero, R. P. (1996). Integrating Medical Expert Systems, 

Patient Data-Bases and User Interfaces. J. Intell. Inf. Syst., 7(3), 261-285. 

[Tom99] Tomassi, P. (1999) Logic, London: Routledge. 

[Top07] TopBraid Composer, Getting Started Guide Version 2.0. TopQuadrant, Inc. (2007) July 27lh. 

http://www.topbraidcomposer.com/docs/TBC-Getting-Started-Guide.pdf. Accessed 10 Jan 

2009. 

[Tot08] Toth, D. (2008) Database Engineering from the Category Theory Viewpoint. In Proc. of Intl. 

Workshop on DAtabases, TExts, Specifications and Objects, Desna, Czech Republic, April 16-

18, 2008. CEUR Workshop Proceedings 330. 

[Tou58] Toulmin, S. (1958) The Uses of Argument, Cambridge University Press. 

[TRR+00] Trombert-Paviot, B., Rodrigues, J.M., Rogers, J.E., Baud, R., et al. (2000) GALEN: a third 

generation terminology tool tosupport a multipurpose national coding system for surgical 

procedures. Int J Med Inform, (58-59):71-85. 

[TSB06] Taylor, J.W., Spatafora, J., and Berbee, M. Ascomycota. Sac Fungi. Version 09 Oct. 2006. 

Avialable: http://tolweb.org/Ascomycota/20521 /2006.10.09) in The Tree of Life Web: 

Project: http://tolweb.org/ 

[Tuf90] Tufte, E. R.: 1990, Envisioning Information, Graphics Press. 

[Tve77] Tversky, A (1977) Features of similarity. Psychological Review, 84(4):327-352. 

[UGM07] Udrea, O., Getoor, L., Miller, R.J. (2007) Leveraging data and structure in ontology 

integration. ACM SIGMOD Conf. Int'l Conference on Management of Data, Beijing, China, 

pp. 449-460 

[UML2] UML 2 Object Diagrams http://www.agilemodeling.com/artifacts/objectDiagram.htm 

335 

http://www.topbraidcomposer.com/docs/TBC-Getting-Started-Guide.pdf
http://tolweb.org/Ascomycota/20521
http://tolweb.org/
http://www.agilemodeling.com/artifacts/objectDiagram.htm


[UML3] UML basics: The sequence diagram: http://www.ibm.eom/developerworks/rational/library/3101 .html 

[UML08] UMLS documentation (2008) Accessed 10 Jan 2009. 

http://wwwjilm.nih.gOv/research/umls/umlsdoc_intro.html#sl_0. 

[Van06] Van Polanen Petel, H.P. (2006) Universal Grammar as a Theory of Notation. Axiomathes, 

16(4): 460-485. 

[Var05] Varzi, A.C. (2005) Change, Temporal Parts and the Argument from Vagueness. Dialectica 

59(4): 485-498. 

[VEK405] Volkel, M., Enguix, C.F., Kruk, S.R., Zhdanova, A.V., Stevens, R., and Sure, Y. (2005) 

Sem Version-Versioning RDF & Ontologies. EU-IST Network of Excellence (NoE) KWEB 

Deliverable D2.3.3.vl (WP2.3) 

[Ver08] Verhagen, F.C. (2008) Worldviews and Metaphors in the human-nature relationships: An 

Ecolinguistic Exploration through the Ages. Language & Ecology, 2(3) 

http://www.ecoling.net/worldviews_and_metaphors_-_final.pdf 

[VG06] VQlkel, M, and Groza, T. (2006) Sem Version: An RDF-based ontology versioning system, in 

Proceedings of 1ADIS Intl. Conf. on WWW/Internet, vol(l): 195-202. 

[VGH96] Van Eemeren, F.H., Grootendorst, R.F., Henkemans, F.S.: Fundamentals of Argumentation 

Theory: A Handbook of Historical Backgrounds and Contemporary Applications, L. Erlbaum 

Associates, NJ, USA (1996). 

[VH91] Ventrone, V., and Heiler, S. (1991) Semantic Heterogeneity as a Result of Domain Evolution. 

SIGMOD Rec (ACM Special Interest Group on Management of Data) 20(4): 16-20. 

[Viz04] Vizenor, L. (2004) Actions in Health Care Organizations: An Ontological Analysis. In Proc. 

of Medinfo'04. http://ontology.buffalo.edii/medo/HL7_Vizenor.pdf 

[VSC04] Vizenor, L., Smith, B., and Ceusters, W. (2004) Foundation for the Electronic Health Record: 

An Ontological Analysis of the HL7's Reference Information Model. 

http://ontology.buffalo.edu/medo/HL7_2004.pdf 

[Wak91] Wake, D.B. (1991) Homoplasy: the result of natural selection, or evidence of design 

limitations? Am Nat, 138: 543-567. 

[Wan89] Wand, Y. A. (1989) A Proposal for a Formal Model of Objects in Object-Oriented Concepts, 

Databases, and Applications. In Kim, W., and Lochovsky, F.( eds.), ACM Press Frontier 

Serie:537-559. 

[Wan06] Wang, J. (2006) Computational Approaches to Linguidtic consensus. Diddertation at 

University of Illinois at Urbana-Champaign. 

[War04] Ware, C. (2004) Information Visualization: Perception for Design, 2nd ed., Morgan Kaufmann. 

[Was06] Wasserman, R.: The Problem of Change. Philosophy Compass 1 (2006): 48-57. 

[WB05] Warren, W., and Brinkley, J.F. (2005) Knowledge-Based, Interactive, Custom Anatomical 

Scene Creation for Medical Education: The Biolucida System. AMIA Annu Symp Proc, pp. 

789-793. 

336 

http://www.ibm.eom/developerworks/rational/library/3
http://wwwjilm.nih.gOv/research/umls/umlsdoc_intro.html%23sl_0
http://www.ecoling.net/worldviews_and_metaphors_-_final.pdf
http://ontology.buffalo.edii/medo/HL7_Vizenor.pdf
http://ontology.buffalo.edu/medo/HL7_2004.pdf


[WC05] Wurtz, R., Cameron, B J. (2005) Electronic Laboratory Reporting for the Infectious Diseases 

Physician and Clinical Microbiologist. Clinical Infectious Diseases, 40(11): 1638-1643. 

[WCL+00] Wheeler, D.L., Chappey, C, Lash, A.E., Leipe, D.D., Madden ,T.L. et al. (2000) Database 

resources of the National Center for Biotechnology Information. Nucleic Acids Res 28(1): 10-4. 

[WDB] Why Do Biologists Need Cladistics? http://www.Ucmp.berkeley.edu/cIad/clad5.html 

[WE98] Wiels, V., and Easterbrook, S. (1998) Management of evolving specifications using category 

theory. In Proc. of 13* IEEE Int'l Conf. on Automated Soft. Eng., Honolulu, USA, pp. 12-21. 

[Wei06] Weil, B. (2006) Building an Effective eCRM Strategy in Healthcare. Sep. 21,2006. 

http://www.envision-ebusiness.com/piicm.asp?itemid=23&recordid=2&submit=getrecord 

[Wel93] Wells, C. (1993) Sketches: Outline with References. 

http://www.cwru.edu/artsci/math/wells/pub/pdf/sketch.pdf 

[WH92] Wilde, N., and Huitt, R. (1992) Maintenance Support for Object-Oriented Programs. IEEE 

Trans. Software Eng. 18(12): 1038-1044. 

[WH99] Williamson, K., and Healy, M. (1999) Industrial applications of software synthesis via 

category theory. In Proc. of the 14th IEEE Intl. Conf. on Automated Soft. Eng., Oct 1999, 

Cocoa Beach, FL, USA, pp. 35^13. 

[WH00] Williamson, K., and Healy, M. (2000) Deriving engineering software from requirements. 

Journal of Intelligent Manufacturing, 11(1):3—28. 

[WHB07] Wang, Y., Haase, P., and Bao, J. (2007) A Survey of Formalisms for Modular Ontologies. In 

Int'l Joint Conf. on Artificial Intelligence (IJCAI'07) Workshop SWeCKa. Hyderabad, India. 

http://www.aifb.uni-karlsruhe.de/WBS/ywa/publications/wang07IJCAIWS.pdf 

[Whi97] Whitmire SA (1997) Object Oriented Design Measurement, John Wiley & Sons. 

[Whi99] Whitmore I (1999) Terminologia Anatomica: new terminology for the new anatomist. Anat 

Rec (New Anat.) 257:50-53. 

[Wie03] Wiegers, K.E. (2003) Software Requirements. 2nd Edition, Microsoft Press. 

[Wil94] Williamson, T. (1994) Vagueness. London: Routledge. (dedicated to Sorits Reasoning). 

[WJK00] Wooldridge, M., Jennings, N.R., and Kinny, D. (2000) The Gaia Methodology for Agent-

Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems 3(3): 285-312. 

[WK92] Wu, C.G., and Kimbrough, J.W. Ultrastructural studies of ascosporogenesis in Ascobolus 

immerses. Mycologia, vol. 84,1992, pp. 459-466. 

[WMC-K)3] Wong, W.K., Moore, A.W., Cooper, G.F., Wagner, M. (2003) Bayesian Network Anomaly 

Pattern Detection for Disease Outbreaks. In proc of 20th Int'l Conf. on Machine Learning 

(ICML'03), Washington, DC, USA, AAAI Press, pp. 808-815. 

[Woo09] Wooldridge, M. (2009) An Introduction to MultiAgent Systems. 2nd edition, J. Wiley & Sons. 

[Wor99] Wordsworth, J.B. (1999) Getting the best from formal methods. Information and Software 

Technology, 41(14):1027-1032. 

[WWF74] Watzlawick, P., Weakland, J. H., and Fisch, R. (1974). Change: Principles of Problem 

337 

http://www.Ucmp.berkeley.edu/cIad/clad5.html
http://www.envision-ebusiness.com/piicm.asp?itemid=23&recordid=2&submit=getrecord
http://www.cwru.edu/artsci/math/wells/pub/pdf/sketch.pdf
http://www.aifb.uni-karlsruhe.de/WBS/ywa/publications/wang07IJCAIWS.pdf


Formation and Problem Resolution. New York: Norton. 

[XS04] Xing, Z., and Stroulia, E. (2004) Understanding Class Evolution in Object-Oriented Software. 

In proceedings of IWPC'04, pp. 34-45. 

[XS06] Xing, Z., and Stroulia, E. (2006) Understanding the Evolution and Co-evolution of Classes in 

Object-oriented Systems. Int'l Journal of Software Engineering and Knowledge Engineering 

16(1): 23-52. 

[Yen91] Yen, J. (1991) Generalizing Term Subsumption Languages to Fuzzy Logic. In Proc. of 

IJCAP91, pp. 472-477. 

[YTT+05] Yamamoto, M., Tanabe, Y., Takahashi, K., and Hagiya, M. (2005) Abstraction of Graph 

Transformation Systems by Temporal Logic and Its Verification. In Proc. of VSTTE'05, 

LNCS 4171, Springer, pp. 518-527. 

[Zad65] Zadeh, L.A. (1965) Fuzzy sets, Information and Control, 8: 338-353. 

[Zal05] Zalta EN (ed.) (2005) Sorites Paradox. Stanford encyclopedia of philosophy. First published on 

Jan 17,1997; substantive revision on Aug 15, 2005. 

[Zan02] Zander, R.H. On the Present Revolution. Buffalo Museum of Science Website, June 2002, 

http://www.mobot.org/plantscience/resbot/Phil/Revolution.htm 

[ZGCOO] Zare, R., Gams, W., Culham, A. (2000). A revision of Verticillium sect. Prostrata I. 

Phylogenetic studies using ITS sequences. Nova Hedwigia 71: 465-80. 

[ZK05] Zhdanova, A.V., and Keller, U. (2005) Choosing an Ontology Language. In Proc. of WEC'05, 

Enformatika, pp. 47-50. 

[ZKE+06] Zimmermann, A., Krotzsch M, Euzenat, J., and Hitzler, P. (2006) Formalizing Ontology 

Alignment and its Operations with Category Theory. In Proc. of the 4th Intl. Conf. on Formal 

Ontology in Info. Sys. (FOIS'06), vol. 150 of Frontiers in AI & App., IOS, pp. 277-288. 

338 

http://www.mobot.org/plantscience/resbot/Phil/Revolution.htm

