
A FRAMEWORK FOR ANALYZING CHANGES IN
HEALTH CARE LEXICONS AND NOMENCLATURES

Arash Shaban-Nejad

A thesis

in

The Department of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Doctor of Philosophy

Concordia University
Montreal, Quebec, Canada

April 2010

©Arash Shaban-Nejad, 2010

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-67378-2
Our file Notre reference
ISBN: 978-0-494-67378-2

NOTICE:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par i'lnternet, prefer,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Arash Shaban-Nejad
Entitled: A Framework for Analyzing Changes in Health Care Lexicons and

Nomenclatures

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards
with respect to originality and quality.

Signed by the final examining committee:

Chair

Dr. Brigitte Jaumard

External Examiner

Dr. Reda Alhajj

Examiner

Dr. Greg Butler
Examiner

Dr. Olga Ormandjieva

• Examiner

Dr. Justin Powlowski

Supervisor
Dr. Volker Haarslev

Approved
Chair of Department or Graduate Program Director

20

Dr. Robin A.L. Drew
Faculty of Engineering and Computer Science

u

ABSTRACT

A Framework for Analyzing Changes in Health Care Lexicons and Nomenclatures

Arash Shaban-Nejad, Ph.D.

Concordia University, 2010

Ontologies play a crucial role in current web-based biomedical applications for capturing

contextual knowledge in the domain of life sciences. Many of the so-called bio-

ontologies and controlled vocabularies are known to be seriously defective from both

terminological and ontological perspectives, and do not sufficiently comply with the

standards to be considered formal ontologies. Therefore, they are continuously evolving

in order to fix the problems and provide valid knowledge. Moreover, many problems in

ontology evolution often originate from incomplete knowledge about the given domain.

As our knowledge improves, the related definitions in the ontologies will be altered.

This problem is inadequately addressed by available tools and algorithms, mostly

due to the lack of suitable knowledge representation formalisms to deal with temporal

abstract notations, and the overreliance on human factors. Also most of the current

approaches have been focused on changes within the internal structure of ontologies, and

interactions with other existing ontologies have been widely neglected.

In this research, after revealing and classifying some of the common alterations in a

number of popular biomedical ontologies, we present a novel agent-based framework,

RLR (Represent, Legitimate, and Reproduce), to semi-automatically manage the

evolution of bio-ontologies, with emphasis on the FungalWeb Ontology, with minimal

human intervention. RLR assists and guides ontology engineers through the change

iii

management process in general, and aids in tracking and representing the changes,

particularly through the use of category theory.

Category theory has been used as a mathematical vehicle for modeling changes in

ontologies and representing agents' interactions, independent of any specific choice of

ontology language or particular implementation. We have also employed rule-based

hierarchical graph transformation techniques to propose a more specific semantics for

analyzing ontological changes and transformations between different versions of an

ontology, as well as tracking the effects of a change in different levels of abstractions.

Thus, the RLR framework enables one to manage changes in ontologies, not as

standalone artifacts in isolation, but in contact with other ontologies in an openly

distributed semantic web environment. The emphasis upon the generality and

abstractness makes RLR more feasible in the multi-disciplinary domain of biomedical

Ontology change management.

IV

ACKNOWLEDGEMENTS

I wish to express my heartily gratitude to my supervisor, Dr. Volker Haarslev, whose

patience, guidance, comments, and continuous support enabled me to complete my study.

I appreciate his confidence in my work, which encouraged me to pursue my research

goals and overcome several obstacles.

I would like to thank my friends and colleagues for their comments, discussions,

encouragements and friendship.

My deepest appreciation goes to my family for their unconditional support and love.

To my parents who waited so long for this moment. To my lovely wife who bore the

burden of managing everyday life with patience. To my brother who supported me in

many ways and made me feel strong. To my adorable sisters who constantly cheered me

up and gave me confidence and pride.

Furthermore I am deeply indebted to people who taught me anything at any stage of

my life, people who gave me assistance in different situations, as well as people who

gave me wounds, pain and sorrow, which in some cases was a prime motivation.

v

To

My Son

Nickan

- Is it true, said Codes, what you say?
- What?
- That you have killed him [the eagle]?
- And that we are going to eat him? ...

Do you doubt it? said Prometheus. Have you looked at me? — When
he was alive, did I dare to laugh? - Was I not horribly thin?

- Certainly.
- He fed on me long enough. I think now that is my turn.
- A table! Sit down! Sit down! Gentlemen!

If he had made me suffer less, he would have been less fat; less fat,
he would have been less delectable.

Andre Gide (1869-1951), "Prometheus Illbound" translated by L.
Rothermere, London, Chatto and Windus 1919

V I I

TABLE OF CONTENTS

LIST OF FIGURES XIV

LIST OF TABLES XVIII

LIST OF ABBREVIATIONS XIX

I. INTRODUCTION AND THESIS STATEMENT 1

1.1 INTRODUCTION 2

11.1 Motivation 5

11.2 Problem/Objective of Research 6

11.3 Research question 7

11.4 Approach 8

11.5 Contributions and Publications 9

11.6 Thesis Overview and Organization 12

II. ONTOLOGY MAINTENANCE: SCOPE, REQUIREMENTS & CHALLENGES 14

11.1 KNOWLEDGE REPRESENTATION, THE SEMANTIC WEB AND ONTOLOGIES 15

II 1.1 Knowledge Representation 75

II 1.2 Semantic Web and Ontologies 16

II 1.3 Biomedical Ontologies and Controlled Vocabularies 17

II 1.4 Formalisms for Ontological Knowledge Representation 21

II 1.4.1 Description Logics 21

II 1.4.2 The OWL Web Ontology Language 22

II 1.5 Summary of Section III , 23

11.2 PHILOSOPHICAL FOUNDATIONS 24

II 2.1 Change and Philosophy. : 24

112.2 Identity, Change, and Time 27

112.3 Change and Philosophical Problems in Knowledge Representation 29

II 2.4 Philosophy, Linguistics, and Change 31

II 2.5 Summary of Section II.2 32

H.3 ONTOLOGY CHANGE MANAGEMENT - REQUIREMENTS AND CHALLENGES 33

II 3.1 Ontology Engineering and Maintenance 33

II 3.2 Ontology Evolution and Change Management 34

II 3.3 Ontology Change Management and Sub-Fields 35

II 3.3.1 Ontology Mapping 36

Vill

II 3.3.2 Ontology Matching and Alignment 37

II 3.33 Ontology Translation 37

II 3.3.4 Ontology Debugging 37

II 3.3.5 Ontology Versioning 38

II 3.3.6 Ontology Integration 38

II 3.4 Challenges for Ontology Change Management 39

II 3.4.1 Backward and Forward Compatibility 40

II 3.4.2 Traceability 41

II 3.4.3 Querying Over Multiple Versions 41

II 3.4.4 Metamorphosis 42

II 3.4.5 Controlling Belief Revisions 42

II 3.4.6 Structural and Semantic Dependency 43

II 3.5 Summary of Section II. 3 43

H.4 HUMAN FACTORS IN CHANGE MANAGEMENT PROCESS 45

II 4.1 Human Factors in Dynamic e-health Environments 45

II 4.2 Types of User-Driven Changes 48

II 4.3 Human Error in Clinical Systems and Change Management. 48

II 4.4 Safety 50

II 4.5 Trust and Security Issues 57

II 4.6 User Interface Issues 51

II4.7Participative Change Management 53

II 4.8 Summary of Section II.4 54

11.5 CHANGE MANAGEMENT IN DATABASE AND SOFTWARE ENGINEERING 56

II 5.1 Database Schema Evolution 56

II 5.2 Database Evolution vs. Ontology Evolution 57

II 5.3 Software Evolution and Change Management , 58

II 5.4 An Ontology Driven Software Application 62

II 5.5 Challenges in Software Change Management and Schema Evolution 63

II 5.6 Summary of Section II. 5 64

11.6 STATE OF THE ART AND RELATED WORKS 65

II 6.1 Biomedical Ontologies and the Editorial Procedure - State of the Art 65

II 6.1.1 The Gene Ontology (GO) 66

II 6.1.2 UMLS Semantic Network 69

II 6.1.3 Clinical terms version 3 (The Read Codes) 70

II 6.1.4 GALEN 71

IX

II 6.1.5 National Cancer Institute Thesaurus (NCIT) 73

II 6.1.6 Health Level 7- Reference Information Model (HL7-RIM) 75

II 6.1.7 Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) 78

II 6.1.8 The Foundational Model of Anatomy (FMA) 79

II6.1.9TerminoIogiaAnatomica(TA) 80

II 6.1.10 Different Types of Changes in Biomedical Ontologies 80

II 6.1.11 Challenges in Maintaining Existing Bio-Ontologies 83

II 6.2 Existing Tools to Support Ontology Change management 84

II 6.3 Employing Logics for Ontology Maintenance 88

II 6.3.1 Description Logics and Ontology Evolution 89

II 6.3.2 Description Logics and Temporal Reasoning 89

II 6.3.3 Fuzzy Logics: Towards Finding a Solution to the Old Puzzle 90

II 6.3.4 Fuzzy Description Logic 91

II 6.4 Change Management for RDFS/OWL Ontologies 92

II 6.4.1 Change in names 93

II 6.4.2 Changes in Metadata 93

II 6.4.3 Dynamic OWL for handling the changes 94

II 6.5 Summary of Section 11.6 95

III. THE FRAMEWORK FOR CHANGE MANAGEMENT 97

III.l EVOLUTIONARY TAXONOMY OF FUNGI: A MOTIVATIONAL SCENARIO 98

III 1.1 Fungi Phytogeny and Evolution 98

III 1.2 The FungalWeb Ontology 99

III 1.3 Name changes in Fungal Taxonomy 100

III 1.4 Changes and Revisions in Taxonomic Structure 103

III 1.5 Summary of Section III.l 105

II1.2. THE MULTI AGENT BASED FRAMEWORK 106

III 2.1 On the AlCompleteness of Change Management for Biomedical Ontologies 106

III 2.2 Multi-Agent Systems and Patterns of Change 107

III 2.3 The RLR Framework 109

III 2.3.1 Change Capture Agents 113

III 2.3.2 Learner Agent 115

III 2.3.2.1 Models of learning 116

III 2.3.2.2 Anomaly Pattern Analysis 118

III 2.3.3 Reasoning Agent 119

111 2.3.4 Negotiation Agent 120

HI 2.4 Agent communications 122

x

Ill 2.5 The Change Analysis Model in RLR 124

III 2.5.1 The RLR Dialectic Change Management 126

III 2.5.2 Identity Preservation in RLR 127

III 2.5.3 The Rule-based Recommender System for Change Management 128

III 2.6 Summary of Contributions in Section III. 2 131

IH.3 CATEGORY THEORY AS KNOWLEDGE REPRESENTATION FORMALISM 133

III 3.1 The Problem of Representation of Change 133

III 3.2 Categorization and Categorical Representation 135

III 3.3 What is Category Theory? 136

III 3.3.1 Category Theory, Logic, and Set Theory 138

III 3.3.2 Why Category Theory? 140

III 3.3.3 Applications of Category Theory 141

III 3.3.4 Tools Supporting Category Theory 142

III 3.3.5 Categories, Conceptual Data Modeling, and Ontologies 143

III 3.4 Categories for Dynamic Systems: The Birdwatching Approach 146

III 3.5 Category Theory as an Algebraic Formalism for the RLR 149

III 3.5.1 The Category Class 150

III 3.5.2 Operations on the Class 151

III 3.5.3 Categories Operation and States 152

III 3.5.3 The Category Ontologies 154

III 3.5.4 Operations on Ontologies 154

III 3.5.4.1 Alignment and Mapping between Ontological Structures 155

III 3.5.4.2 Categorical Constructors for Ontology Merging and Integration 162

III 3.5.5 Category Theory for Representing and Tracking Changes 167

III 3.5.5.1 Exploring the Similarities 167

III 3.5.5.2 Tracking the Changes and their Impacts 168

III 3.5.6 Category Theory for Representing Agents' Interactions 176

HI 3.5.6.1 Analyzing a Multi-Agent Framework in Different Levels of Abstraction 177

III 3.5.6.2 Representation of Agents' Rule Compositions and Transformations 180

III 3.5.6.3. Modeling Argument Trees 186

III 3.6 Summary of Contributions in Section III.3 190

II1.4 A GRAPH-ORIENTED FORMALISM FOR CHANGE MANAGEMENT 192

HI 4.1 Graphs and Ontology Research 194

III 4.1.1 RDF Graph Representation (Micro-Level) 196

III 4.1.2 Lattice-Like Graph Representation (Macro-Level) 198

HI 4.2 Incorporating Time within RDF Structures 199

XI

HI 4.3 Graph Transformation 207

III 4.3.1 Graph Transformation and Category Theory 204

III 4.3.1.1 Double-Pushout Approach for Graph Transformation (DPO) 205

III 4.3.1.2 Single-Pushout Approach for Graph Transformation (SPO) 207

III 4.3.2 Ontological Transitions in the Shade of Graph Transformation 207

III 4.4 Change Analysis during Conceptual Model Transformation 210

HI 4.5 The Transformation in Action 213

III 4.5.1 Employing Hierarchically Distributed Graph Transformation 213

III 4.5.2 Analyzing Events and Actions in Rule-Based Model Transformation 218

III 4.5.3 Transformation Rules for Changes in Ontologies 221

III 4.5.4 Formalizing the Ontology Change Model in Distributed Environments 224

III 4.5.4.1 Distributed Change Management within the RLR Framework 225

III 4.5.4.2 Synchronization and Coordination 227

III 4.5.4.3 Rule-based Patterns for Transformations 230

III 4.5.4.4 Similarity Checking and Traceability 234

III 4.5.5 MAS and Graph Transformations 235

HI 4.6 Summary of Contributions in Section 111.4 239

IV. APPLICATION SCENARIOS & CASE STUDIES 242

IV. 1 CASE STUDY 1: MANAGING EVOLVING STRUCTURE OF AN ONTOLOGY FOR CLINICAL FUNGUS.. 243

I V.2 CASE STUDY 2: MANAGING REQUIREMENT VOLATILITY IN AN ONTOLOGY-DRIVEN LIMS 252

IV 2.1 MYCO-LIMS Requirements Overview 255

IV2.2 LIMS Functional Requirements (FRs) 257

IV 2.3 LIMS Nonfunctional Requirements (NFRs) 259

IV 2.4 Integrating FRs and NFRs into an Ontological Framework 260

IV 2.5 Generic Categorical Representation of Requirements and their Traceability 263

IV 2.6 Categorical representation of FRs, NFRs hierarchies and their interdependencies 265

IV 2.7 Categorical representation of the Solution Space.... 266'

IV.3 CASE STUDY 3: ANALYZING THE EVOLUTIONARY RELATIONSHIPS BETWEEN SPECIES.269

IV 3.1 Introduction on Taxonomies and Phytogenies 269

IV3.2 Phylogenetic Systematics (Cladistics) 271

IV3.3 Issues in Cladistic Analysis 274

IV 3.4 Formal Ontology, Taxonomy and Phylogenetic Analysis 274

IV 3.5 Ontology Learning for Managing Evolving Taxonomies 276

IV 3.6 Categorical Phylogenetic Analysis 279

IV 3.7 Structural Transformations and Functors 281

XI1

IV 3.8 Challenges and Limitations in Phylogenetic Analysis 283

V. DISCUSSION, CHALLENGES AND FUTURE WORKS 284

V.l SUMMARY OF THE THESIS 285

V.2 HIGHLIGHTS OF MAJOR CONTRIBUTIONS 289

V.3 CHALLENGES AND LIMITATIONS 292

V.4 POTENTIAL IMPROVEMENTS AND FUTURE WORK 294

REFERENCES „ 298

xiii

LIST OF FIGURES

FIGURE 1.1: A SCHEMATIC REPRESENTATION OF THE PROPOSED APPROACH 9

FIGURE 2.1: MULTI-DISCIPLINARY NATURE OF RESEARCH ON ONTOLOGY CHANGE MANAGEMENT 25

FIGURE 2.2: THE DECISION MAKING MECHANISM FOR USER-CENTRIC CHANGE MANAGEMENT 54

FIGURE 2.3: ISO/IEC MAINTENANCE PROCESS ACTIVITIES 59

FIGURE 2.4: OLSON'S PROPOSED MODEL FOR SOFTWARE CHANGE MANAGEMENT 60

FIGURE 2.5: EVOLUTION CHART IN GO ONTOLOGY 68

FIGURE 2.6: SOME OF THE NCI's RETIRED CONCEPT 74

FIGURE 2.7(A): NUMBER OF NEW ACTIVE CONCEPTS ADDED TO EACH RELEASE OF UMLS 78

FIGURE 2.7(B): NUMBER OF DUPLICATE, AMBIGUOUS AND RETIRED CONCEPTS IN UMLS 78

FIGURE 3.1: THE FUNGAL WEB ONTOLOGY AND ITS MAJOR RESOURCES 100

FIGURE 3.2: SIMPLE CHANGE IN TAXONOMICAL STRUCTURES OF THE FUNGALWEB ONTOLOGY 104

FIGURE 3.3: AN ABSTRACT VIEW OF THE INTERACTIONS BETWEEN USERS AND A TYPICAL MAS 108

FIGURE 3.4: THE RLR FRAMEWORK 109

FIGURE 3.5: A GENERIC TRANSITION SYSTEM IN A MULTI-AGENT SYSTEM 111

FIGURE 3.6: CHANGE MANAGEMENT USING AGENTS THROUGH AN ARGUMENTATION FRAMEWORK 112

FIGURE3.7: THE COOPERATION BETWEEN THE CHANGE CAPTURE AGENTS 114

FIGURE 3.8: THE ALIGNMENTS BETWEEN SOME CONCEPTS IN TWO ONTOLOGIES O, AND02 115

FIGURE 3.9: A SIMPLE LEARNING MODEL FOR AGENTS BASED ON NASH EQUILIBRIUM 117

FIGURE 3.10: RELATIONSHIPS AMONG INSTANCES AND GENERALIZATIONS 119

FIGURE 3.11: A SERVICE ONTOLOGY PROVIDING CONSENSUS BETWEEN AGENTS 121

FIGURE 3.12: INTERACTIONS BETWEEN DIFFERENT TYPES OF AGENTS FOR CAPTURING CHANGES 122

FIGURE 3.13: ADDING NEW CONCEPTS TO AN ONTOLOGY 129

FIGURE 3.14: DELETING A CONCEPT FROM AN ONTOLOGY 130

FIGURE 3.15: THE PARTIAL MERGING BETWEEN ONTOLOGIES O AND O' 131

FIGURE 3.16: CATEGORICAL CONCEPTS REPRESENTATION137

FIGURE 3.17(A): THE WORLD FROM THE SET THEORY PERSPECTIVE 139

FIGURE 3.17(B): THE WORLD FROM THE CATEGORY THEORY POINT OF VIEW 139

FIGURE 3.18: SCREENSHOT REPRESENTING A HIERARCHICAL TREE BY GDCT 143

FIGURE 3.19: A KNOWLEDGE BASE REPRESENTING THE DOMAIN OF FAMILY USING DL AXIOMS 145

FIGURE 3.20: THE CATEGORICAL REPRESENTATION OF THE FAMILY KNOWLEDGE BASE 145

FIGURE 3.21: A SERIES OF ACTIVITIES IN BIRDWATCHING 147

FIGURE 3.22: A MAP FROM CATEGORY OF TIME POINTS TO CATEGORY OF POSITIONS IN SPACE 148

FIGURE 3.23: A TEMPORAL DIAGRAM FOR STUDYING THE BEHAVIOR OF ONTOLOGIES 149

FIGURE 3.24: ARROWS AND OBJECTS IN CATEGORY THEORY 151

xiv

FIGURE 3.25: OPERATION ARROW OP, DENOTES A VALID OPERATION IN THE DEFINED CATEGORY 151

FIGURE 3.26: ADDING A CLASS TO THE AVAILABLE STRUCTURE, BASED ON CATEGORICAL OPERATION. 152

FIGURE 3.27(A): ADD A RELATIONSHIP 152

FIGURE 3.27(B): DROP A RELATIONSHIP 152

FIGURE 3.28: CATEGORY OPERATION 153

FIGURE 3.29: ONTOLOGY 0(C, R) TRANSITS TO DIFFERENT STATES 153

FIGURE 3.30: A DIAGRAMMATICAL REPRESENTATION OF CATEGORICAL PRODUCT 157

FIGURE 3.31: AN EXAMPLE, DEMONSTRATING THE CATEGORICAL PRODUCT IN CATEGORY OF SETS 157

FIGURE 3.32: A DIAGRAMMATICAL REPRESENTATION OF CATEGORICAL COPRODUCT 158

FIGURE 3.33 : Two ONTOLOGIES COVERING A SPECIFIC DOMAIN WITH DIFFERENT GRANULARITIES 159

FIGURE 3.34: Two CATEGORICAL CONSTRUCTORS (A) PUSHOUT, (B) PULLBACK 161

FIGURE 3.35(A): AN EXAMPLE, DEMONSTRATING THE PUSHOUT 161

FIGURE 3.35(B): AN EXAMPLE, DEMONSTRATING THE PULLBACK 161

FIGURE 3.36: ONTOLOGY INTEGRATION PROCESS 163

FIGURE 3.37: A DIAGRAMMATICAL REPRESENTATION OF INITIAL (/) AND TERMINAL (T) OBJECTS 164

FIGURE 3.38: A REPRESENTATION OF A CONE TO A DIAGRAM D 165

FIGURE 3.39: DIAGRAMMATICAL DEFINITION OF (A) LIMITS AND (B) COLIMITS 165

FIGURE 3.40: INTEGRATION OF TWO ONTOLOGIES, WHICH ARE ALIGNED VIA W-ALIGNMENT 166

FIGURE 3.41: A DIAGRAMMATICAL REPRESENTATION OF FUNCTOR FOR TWO CATEGORIES A, AND B. .. 170

FIGURE 3.42: USING FUNCTOR 171

FIGURE 3.43: A TYPICAL VERSION GRAPH 171

FIGURE 3.44: DIAGRAMMATICAL REPRESENTATION OF A NATURAL TRANSFORMATION 172

FIGURE 3.45 : MEASURING COUPLING 173

FIGURE 3.46: THE CATEGORICAL ILLUSTRATION OF STATES FOR ONTOLOGY MERGING SCENARIO 178

FIGURE 3.47: CATEGORICAL MODEL OF STATES FOR AN ALTERNATIVE MERGING SCENARIO 179

FIGURE 3.48: A GENERIC CATEGORICAL REPRESENTATION OF DIFFERENT PREPOSITIONS IN A MAS.... 180

FIGURE 3.49: COMPOSITION OF 2 INITIAL AGENTS' ACTION GRAPHS VIA CONJUNCTION & ADJUNCTION 181

FIGURE 3.50: THE INTEGRATION OF RULES DESCRIBED IN TWO TRANSITION DIAGRAM 182

FIGURE 3.51: DEMONSTRATION OF THE SEMANTIC UNITY OF THE CHANGES OF THE RULES 183

FIGURE 3.52: CATEGORICAL REPRESENTATION OF RULE TRANSFORMATIONS 183

FIGURE 3.53: MAS TRANSITIONS TO DIFFERENT STATES 185

FIGURE 3.54: THE TOULMIN'S LAYOUT FOR ARGUMENTATION 186

FIGURE 3.55: A TREE-LIKE DIALECTICALLY GROUNDED ARGUMENTATION STRUCTURE 187

FIGURE 3.56: CATEGORICAL REPRESENTATION OF THE ARGUMENTATION NETWORK 189

FIGURE 3.57(A): THE EVOLVING STRUCTURE OF A STANDALONE ONTOLOGY 196

FIGURE 3.57(A): EVOLVING A LATTICE CONSISTING OF SEVERAL INTERCONNECTED ONTOLOGIES 196

FIGURE 3.58: A DIRECTED GRAPH REPRESENTING AN RDF TRIPLE 196

xv

FIGURE 3.59: AN RDF GRAPH DESCRIBING A FUNGAL SPECIES FROM THE FUNGAL WEB ONTOLOGY 197

FIGURE 3.60: A RULE BASED GRAPH TRANSFORMATION FOR A DYNAMIC SYSTEM 202

FIGURE 3.61: THE DOUBLE PUSHOUT APPROACH FOR GRAPH TRANSFORMATION 203

FIGURE 3.62: AN EXAMPLE REPRESENTING THE GRAPH TRANSFORMATION USING DPO 207

FIGURE 3.63: TRANSFORMATION BY MEANS OF SWITCHING THE DOMAIN AND RANGE OF RELATIONS ...211

FIGURE 3.64: TRANSFORMATION BY DECOMPOSING A PROPERTY 212

FIGURE 3.65: A SCHEMATIC REPRESENTATION OF A DISTRIBUTED GRAPH 215

FIGURE 3.66: A HIERARCHICAL GRAPH FOR MANAGING DISTRIBUTED ONTOLOGIES 217

FIGURE 3.67: ADDING A NEW CONCEPT TO AN INDIVIDUAL ONTOLOGY 219

FIGURE 3.68: THE HIERARCHICAL DISTRIBUTED GRAPH PRODUCTION "ADD CONNECTOR" 221

FIGURE 3.69: PL AND P, SPECIFY SETS OF LATTICE AND INTERNAL TRANSFORMATION RULES 227

FIGURE 3.70: REPRESENTATION OF A CHANGE IN FUNGAL WEB USING GRAPH TRANSFORMATION231

FIGURE 3.71: TRANSFORMATION OF AN ONTOLOGY BY THE RULE "DELETE A PARENT NODE" 233

FIGURE 3.72: COMMUNICATION BETWEEN EXPLORER AND LOG READING AGENT 236

FIGURE 3.73: A GENERIC TRANSFORMATION RULE FOR DESCRIBING THE PRE- AND POST STATES 237

FIGURE 3.74(A): PRE/POST STATE REPRESENTATION BEFORE/AFTER MERGING TWO STATES 238

FIGURE 3.74(B): THE REPRESENTATION OF CONCURRENCY OF TWO PARALLEL STATES 238

FIGURE 4.1: CHANGING THE FUNGI NAME CAN CHANGE THE RELATED DISEASE NAME 245

FIGURE 4.2: THE ALIGNMENT BETWEEN "FUNGAL DISORDER" AND "DISEASES" ONTOLOGIES 246

FIGURE 4.3: DETERMINING THE MEDICAL SPECIALITY FOR A DISESASE THROUGH PRODUCT 246

FIGURE 4.4: A DIAGRAMMATIC REPRESENTATION OF PORTION OF THE FUNGAL WEB APPLICATION247

FIGURE 4.5(A): PART OF FWO FOR IDENTIFICATION OF ENZYMES ACTING ON POLYGALACTURONIC 247

FIGURE 4.5(B): PART OF FWO FOR IDENTIFICATION OF ENZYME VENDORS, THE CHARACTERISTICS 248

FIGURE 4.6: A MERGING PROCESS BASED ON THE COMMON ELEMENTS IN FUNGAL WEB ONTOLOGY ..248

FIGURE 4.7: INTERRELATED DISTRIBUTED ONTOLOGIES IN BIOMEDICAL DOMAIN 249

FIGURE 4.8: A CLASS DIAGRAM FOR FUNGAL WEB REPRESENTING TRANSITION BETWEEN STATES ...250

FIGURE 4.9: A DISTRIBUTED TRANSFORMATION RULE, DIFFERENT INTERCONNECTED ONTOLOGIES251

FIGURE 4.10: GENERAL VIEW ON OUR APPROACH FOR MANAGING REQUIREMENT VOLATILITY 254

FIGURE 4.11: THE FUNGALWEB INFRASTRUCTURE 256

FIGURE 4.12: LIMS USE CASE DIAGRAM 257

FIGURE 4.13: ILLUSTRATION OF MYCO-LIMSFRTRACEABILITY MODEL 258

FIGURE 4.14: ILLUSTRATION OF MYCO-LIMSNFRTRACEABILITY MODEL 260

FIGURE 4.15: ILLUSTRATION OF MYCO-LIMSNFRS/FRS DEPENDENCIES HIERARCHICAL MODEL 261

FIGURE 4.16: MYCO-LIMS REQUIREMENTS ASSOCIATIONS' REFINEMENT 262

FIGURE 4.17: GENERIC CATEGORICAL FRAMEWORK FOR REQUIREMENT TRACEABILITY 264

FIGURE 4.18: FR, NFR HIERARCHIES, AND RELATIONS IN A CATEGORICAL FRAMEWORK 266

FIGURE 4.19: TRACING THE CHANGES TO THE STATE SPACES, CLASSES, AND METHODS 267

XVI

FIGURE 4.20: THE REPRESENTATION OF EVOLVING MYCO-LIMS FRS AND NFRS 267

FIGURE 4.21: TRACKING DIFFERENT OPERATIONS AND THEIR COMPOSITIONS AND THEIR STATES 268

FIGURE 4.22: A SAMPLE DATA MATRIX FOR ANALYZING MAJOR FUNGI CLADES 273

FIGURE 4.23: FRAMEWORK FOR ONTOLOGY LEARNING AND POPULATION 278

FIGURE 4.24: DOMAIN MODEL OF FUNGAL TAXONOMY 278

FIGURE 4.25: THE CATEGORICAL REPRESENTATION OF ONTOLOGY INFERRED PHYLOGENY 280

FIGURE 4.26: THE COMPARISON BETWEEN THE SKELETON OF BIRD AND HUMAN 282

xvn

LIST OF TABLES

TABLE2.1: SOME CHANGES IN DATA ELEMENTS OF HL7 FROM VERSION 2.1 TO 2.2 77

TABLE 2.2: SOME CHANGES IN DATA ELEMENTS OF HL7 FROM VERSION 2.2 TO 2.3 77

TABLE 2.3: COMMON CHANGES IN SOME OF THE EXISTING POPULAR BIO-ONTOLOGIES 81

TABLE 2.4: SOME OF THE ONTOLOGY EDITORS AND MANAGEMENT TOOLS 85

TABLE 3.1: A PARTIAL LIST OF THE PAIRS OF CONCEPTS IN CATEGORY THEORY AND SET THEORY 139

TABLE 3.2: EXAMPLES OF GRAPH TRANSFORMATION RULES FOR PART OF FUNGAL WEB ONTOLOGY 223

XVlll

LIST OF ABBREVIATIONS

In alphabetical order:

A-Box: Assertion Box (assertions about individuals)
AI: Artificial Intelligence
API: Application Programming Interface
CDA: Clinical Document Architecture
CDR: Communicable Disease Reporting
COTS: Commercial Off-The-Shelf
CUI: Concept Unique Identifier
CVS: Concurrent Versions System
DAG: Directed Acyclic Graphs
DL: Description Logic
ELR: Electronic Laboratory Reporting
FMA: The Foundational Model of Anatomy
FOWL: Fuzzy OWL
FR: Functional requirement
FWOnt: FungalWeb Ontology
GALEN: Generalized Architecture for Languages, Encyclopedia and Nomenclatures
GO: Gene Ontology
GUI: Graphical User Interface
HD Graph: Hierarchical distributed graph
HL7: Health Level 7
HLR: High-Level Replacement
ICD: The International Classification of Diseases
KR: Knowledge Representation
LIMS: Laboratory Information Management System
MAS: Multi-agent system
MeSH: Medical Subject Headings
NCIT: National Cancer Institute Thesaurus
NFR: Non-Functional Requirement
NLM: The National Library of Medicine
NLP: Natural language processing
OBO: Open Biological Ontologies
OWL: The Web Ontology Language
RACER: Renamed Abox and Concept Expression Reasoner
RDF: Resource Description Framework
RLR: Representation, Legitimation and Reproduction
SKDON: Skin Disease Ontology
SPARQL: SPARQL Protocol and RDF Query Language
SWRL: The Semantic Web Rule Language
TA: Terminologia Anatomica
T-Box: Terminological Box (axioms about class definitions)
UMLS: The Unified Medical Language System
W3C: The World Wide Web Consortium
WWW: World Wide Web
XML: Extensible Markup Language

xix

I. Introduction and Thesis
Statement

This introductory chapter presents a general overview of the
thesis organization and the proposed approach. In addition, it
explains the motivation, the main problems, objective of the
research and major contributions and questions addressed in
the thesis.

1.1 Introduction

Nobody steps into the same river twice.
The same river is never the same,
because that is the nature of water.

"Heraclitus on Rivers," Derek Mahon,
1991, quoted Jaybook, August 1997

Using clinical vocabularies and lexicons has a long history in medicine and life science.

However, a new trend is emerging to use ontologies, as defined by Gruber [Gru93]

("specification of a conceptualization") to provide an underlying discipline of sharing

knowledge and modeling biomedical applications by defining concepts, properties and

axioms. Ontologies are widely used as a vehicle for knowledge management in current

biomedical applications, for sharing common vocabularies, describing semantics of

programming interfaces, providing a structure to organize knowledge, reducing the

development effort for generic tools and systems, improving the data and tool integration,

reusing organizational knowledge, and capturing behavioral knowledge.

The main components of ontologies are concepts (classes), relations (properties),

individuals (instances) and axioms. Concepts represent a set or class of entities within a

domain. Relations describe the interactions between individuals of those concepts.

Individuals are the "things" that exist in the real world, represented by a concept. Axioms

are being used to constrain values for concepts or individuals. Ontologies capture

knowledge from a domain of interest in order to share it between both machines and

humans. When the knowledge changes, then definitions will be altered. A formal

ontology is dynamic such as a living organism. It is evolving over time in order to fix

2

errors, reclassify the taxonomy, add/remove concepts, attributes, relations and instances.

As ontologies are changing over the time, one of the most challenging issues in ontology

change management is keeping ontologies consistent when changes occur. The topic of

change continues to be a source of much debate, as it brings together various issues that

are central to philosophy, logic, cognitive science, neural networks, linguistics and

physics including identity, persistence and time [Was06].

This research aims to provide an answer to the following questions: what is actually

changed during the evolutionary process of a biomedical ontology? How this non-stop

evolution can be controlled and managed with minimum human intervention? What

formalisms are suitable to capture, represent and analyze the ontological alterations? To

answer these questions, we present a novel multi-agent-based approach, RLR (Represent,

Legitimate, and Reproduce) to manage the evolving structure of biomedical ontologies in

a consistent manner. The RLR framework aims to assist and guide ontology engineers

through the change management process in general, and aids in tracking and representing

the changes, particularly through the use of graph transformation empowered with

category theory as a mathematical notation, which is independent of any specific choice

of ontology language or particular implementation.

As an application scenario, we consider the FungalWeb Ontology [BSS+06], an

integrated formal bio-ontology in the domain of fungal genomics. The Fungal taxonomy

is not stable. Most of the alterations are changes in names and taxonomic structure and

relationships. Fungal names reflect data about the organisms; thus, as our understanding

of the relationships among taxa improves, these names will need to be changed, as they

will no longer convey the correct information to the user [Cro05]. Most fungi names are

3

currently based on phenotypes (visible characteristics of an organism). These name

changes may cause confusion and affect the validity of different queries. For example,

eyespot disease in cereals and the issues related to naming its associated fungi are

actually represented in [CGG03]. The morphological conceptualization of fungi is not

sufficient, and will no longer work because all of the names based only on morphology

must be re-evaluated. In addition, the phylogenetic-based conceptualization has its own

limitations, since the decision of where to draw the line between different species is not

always easy to make [Cro05]. To manage this process of continuous change, one needs to

refer to the nature of ontological structure, where names in a taxonomy are only

meaningful and valuable once linked to descriptive datasets, which are extracted and

managed from various databases and literature in an integrated environment. Through

advances in molecular biology, one can also expect changes in taxonomical structure and

relationships. For example, by studying some molecular, morphological and ecological

characteristics, Glomeromycota was discovered in 2001 [SSW01] as a new fungal

phylum. Another example is the sedge parasite, Kriegeria eriophori, which has never

been satisfactorily classified. As another example, ribosomal RNA gene sequences and

nucleus-associated ultrastructural characters were analyzed separately and combined to

define the new subclass Microbotryomycetidae [SFM99].

A small percentage of discovered fungi have been linked to human diseases,

including dangerous infections. Treating these diseases can be risky because human and

fungal cells are very similar. Any medicine that kills the fungus may also damage the

human cells. Therefore, greater knowledge of fungi and correct identification of each

species is crucial to improving the quality of fungal-based products and identifying new

4

and better ways to treat serious fungal infections in humans. In order to update the

ontological structure of the Fungal Web Ontology for the annotation of fungal genes, we

need to improve the content of the ontology regularly. As an example, the older version

of the FungalWeb Ontology did not have sufficient terminology to annotate genes

involved in Malassezia infections. To meet this new requirement, the updated version of

the ontology has gained 26 additional terms addressing these infections.

RLR takes a building blocks approach towards the development of a fully automatic

ontology change management framework. What is presented in this thesis is a rather

theoretical research, which uses insights and ideas from semantic web, software

engineering, category theory, intelligent agents and the theory of graph transformation.

11.1 Motivation

After Implementing the FungalWeb Ontology we have reached a stage where we wish to

develop a change management strategy to update ontological knowledge. Ontologies

evolve all the time and each change in ontological structure or nomenclature can have

crucial impacts on the inferred knowledge. Especially in a heterogeneous environment

like the Web with vast amount of interdependencies, even simple changes on ontological

elements can trigger a domino effect and sometimes it is really hard to guess all impacts

of a simple change. Different versions of an ontology behave differently in response to

the posed queries. If one works with a system based on frequently changing ontologies

how one can even ask queries and be sure about the logical and scientific correctness of

the answer. The issues arising from ontology evolution can affect validity of information

in applications which are tightly bound to concepts in a particular ontological context.

5

The fact that the problem of ontology evolution has existed for the past decade in the

field of knowledge representation and artificial intelligence and despite many efforts in

this area, there are no trustable and widely accepted tools and algorithms available and

also there is not any clear sign of progress in the attempts to solve the problem of changes

in the conceptualization. These observations motivated us that there is a need to direct

our attention to more diverse theories and disciplines which seem to propose an

alternative set of concepts able to reveal and solve these fundamental problems.

11.2 Problem/Objective of Research

This study attempts to achieve the following objectives:

1. To identify the effects of changes in bio-ontologies in general and in the

FungalWeb ontology and its dependent artifacts in particular (Section II.6, Section

III.l, and Section IV.l);

2. To identify the factors influencing the consistency of evolving ontologies, and

propose a method to deal with this issue (See Section II 3.3, Section 11.4, Section

II.6, Section III 2.3.3, Section III 3.5.5.2, Section III 4.5 (specifically III 4.5.4.2),

and Section (V.3);

3. To analyze changes in distributed biomedical ontologies (See Section III 4.5, and

Section IV.l);

4. To design an agent-based framework to capture, represent and analyze changes in

bio-ontologies with minimum human intervention (See Section III.2);

5. To examine category theory as a formalism for ontological change management

(See Section III.3);

6

6. To introduce a representation formalism to support agent interactions and analysis

of evolving structures using graph transformation (Section III 3.5.6, Section III.4,

and Section (III 4.5.5).

11.3 Research question

The major research question in this research is: "Which mechanisms and methods can be

used to build a framework to handle changes in ontologies, especially the ones in the

biomedical domain?" This general question can be detailed into some smaller questions:

1. What are the specific natures and characteristics of ontological changes? (see

Chapter II (specifically Section II.2, Section II.3, and Section II.6))

2. What is actually changed during the evolutionary process of an ontology? (See

Section II.2, Section II.3, and Section II.6)

3. How this non-stop evolution can be controlled and managed with minimum

human intervention? (See Section 11.4, and Section III.2)

4. What formalisms are suitable to capture, represent and analyze the ontological

alterations? (Section III.3, and Section III.4)

5. How changes can be captured, tracked and represented and how a representation

can be changed? (Section III.2, Section III.3, and Section III.4)

6. What variables determine the quality of the changed ontology, and to control

consistencies during the evolution process? (See Section II 3.3, Section II.4,

Section II.6, Section III 2.3.3, Section III 3.5.5.2, and Section III 4.5)

7. How can we manage and monitor the frequently changing ontologies in a

distributed environment? (Section III 4.5, and Section IV. 1)

7

8. Is it possible to extend the usage of the proposed framework into different

domains? (Section IV. 1)

In our research we attempt to explain how the state-of-the-art research and

development in the Semantic Web and bioinformatics can help in addressing these

issues.

11.4 Approach

By analyzing the context of the problem and reviewing other existing techniques for

change management in some existing ontologies, we propose an agent-based framework

for maintaining changes in bio-ontologies through the notions of graph transformation

and category theory.

As an experiment we have focused on changes in the FungalWeb Ontology which

can potentially alter the related artifacts in an integrated biomedical system. In contrast to

some of the existing works on ontology evolution, we specifically focus on changes in

distributed ontologies, not as standalone artifacts but in contact with other ontologies in

an open Semantic Web environment. The introduced formal representation framework,

based on hierarchical distributed graph transformation and category theory, is expressive

enough to capture the evolutionary behavior of dynamic ontologies in a distributed

environment. Our proposed method offers a multidisciplinary framework in which

different approaches from various disciplines can be plugged in to define a

comprehensive change management mechanism. To provide some evidence of the

usability of our framework, we will consider some case studies to apply some of the

proposed techniques to show the technical correctness and feasibility of our approach.

8

Biomedical Ontologies

Fig. 1.1.' The RLR framework aims for protecting biomedical ontologies from the undesired effects of
changes due to human actions, environments and alteration in other linked resources. RLR is an integrated
multi-agent framework, which is formalized using category theory and graph transformation.

11.5 Contributions and Publications

In order to achieve the research objectives and answer to the questions raised in Section I

1.3, this thesis offers the following key contributions.

• Introducing and reviewing basic definitions (Section II.1), major tasks and

challenges in ontology evolution from several perspectives including philosophical

and linguistics (Section II.2), artificial intelligence (Section II.3), software

' This figure demonstrates our emphasize on a controlled method for applying changes in ontologies
(analogous to water absorption of the tree roots rather than watering through uncontrolled scattered
showers).

9

engineering and database (Section II.5), as well as issues relating to human

intervention (Section II.4);

• Studying of change management in several bio-ontologies (Section II 6.1), along

with revealing and classifying the most common alterations in their structure (Table

2.3), as well as reviewing the available tools and algorithms (Section II 6.2);

• Analyzing the FungalWeb Ontology and classifying the changes in its terminology

and hierarchical structure, along with presenting actual examples of such changes

(Section III. 1);

• Modeling RLR, a cooperative Multi-agent framework, to capture, represent, track

and analyze changes within ontological structures through a rule-based reactive and

proactive behavior with minimum human intervention acting along with an

integrated argumentation framework (Section III.2). RLR, with its associated

formalisms, tends to provide a blueprint for modeling a realistic algorithm for

managing changes in biomedical knowledge-based systems.

• Formalizing the RLR framework through category theory (Section III.3) and graph

transformation (Section III.4);

• Employing category theory as a mathematical representation vehicle for analyzing

changes within biomedical ontologies and performing a number of editorial

operations in various abstraction levels, which can be used to address several

problems including scalability and complexity issues in large biomedical ontologies

through operations such as composition (Section III.3);

10

• Utilizing categories to support agents' communication, negotiation, state

transitions, compositions and transformations in different levels of abstractions

(Section III 3.5.6);

• Presenting an extended graph-oriented semantics for analyzing temporal distributed

biomedical ontologies by means of hierarchical distributed graph transformation

(Section III 4.5), which supports consistent transitions, and coordinates the

communications and interactions between different agents to perform concurrent

and parallel actions (Section III 4.5.4, and Section HI 4.5.5);

• Focus on breadth of coverage to reflect the interdisciplinarity in our research as

much as possible. To this end we have tried to address both computational and non-

computational problems in ontology change management;

• Emphasis upon the generality and abstractness, which makes our approach more

feasible in the multi-disciplinary domain of biomedical ontology change

management;

• Demonstrating the applicability of our approach through a series of case studies in

various domains, such as biomedical ontologies evolution (Section IV. 1),

requirement engineering for agile application modeling (Section IV.2) and

exploring the evolutionary relationship between different species through

phylogenetic analysis (Section IV.3).

The details of our contributions for each part of our research can be found at

the end the related sections. Our efforts have been mostly reflected in our

publications in refereed journals and conference proceedings [SHIOa, SHI Ob,

SOK+09, SH09, SH08a, SH08b, SH08c, SH07a, SH07b, SH07c, SH07d, SH06a,

11

SH06b, BSS+06]. The following chapters and sections are partially written based

on our published papers.

• Chapter II is partially based on [SHIOa] (Section II.4), [SH09] (Section II.6 and

Section II 2.1), [SH06a] (Section II.5), and [SH06b] (Section II.2, and Section

H.3);

• Chapter III is partially based on [SHIOb] (Section III.4), [SH08a] (Section III

2.2), [SH07a, SH07b, SH07d] (Section III 3.5 and Section III 1.1), [SH07c]

(Section III 2.3), [SH06a] (Section III 3.5.5.2), and [BSS+06] (Section Hl.l);

• Chapter IV is partially based on [SOK+09] (Section IV.2), [SH08a, SH07b]

(Section IV. 1), [SH08b, SH08c, SHI Ob] (Section IV.3), and SH07c (Section

IV.2).

11.6 Thesis Overview and Organization

This thesis proceeds as follows: Chapter II introduces the primary definitions, which are

used throughout the thesis, of knowledge representation, the Semantic Web, ontologies

with focus on ontologies in the domain of life science. We also look at the problem of

change through the lens of other disciplines, such as philosophy and linguistics, with

emphasize on the philosophical foundations for "change" "from ancient time till now. In

addition we review some of the well known maintenance approaches in software

engineering and database domains. Then we go on and will look at the major

requirements and challenges in ontology change management, which need to be

addressed in this field. We provide a comprehensive survey on the state of the art of

12

change management in biomedical ontologies. We also address some of the issues related

to human intervention in dynamic systems.

After a motivational scenario on the FungalWeb Ontology and its evolving structure,

Chapter III will utilize our designed agent based ontology change management

framework along with the categorical formalism needed to represent the agents'

communication and analyzing changes in ontological structures. The discussion on the

formalism will be continued in Chapter III by describing our graph oriented approach for

representing model transformations and ontological transitions using hierarchical

distributed graph transformation. The applicability of our approach will be shown in

different application areas throughout a series of case studies in Chapter IV. Finally

Chapter V concludes the discussion by giving a summary of our achievements and

highlighting our scientific contribution and the plan for future work.

13

II. Ontology Maintenance: Scope,
Requirements & Challenges

This chapter includes six sections, which respectively provide
reviews on knowledge representation, the Semantic Web and
ontologies, philosophical foundations for change mangement,
general requirements for a successful ontology change
management, challenges back to human factors, the
established practices for change management in database and
software engineering, and state of the art in biomedical
ontologies maintenance.

14

II. 1 Knowledge Representation, the Semantic
Web and Ontologies

/ know that you believe you understand
what you think I said, but I'm not sure
you realize that what you heard is not
what I meant.

Robert McCloskey (1914-2003)

II 1.1 Knowledge Representation

Knowledge representation (KR) as a multi-disciplinary area in AI is concerned with

formally representing and analyzing a meaning in a domain of discourse within the

natural world by adding metadata to the content and using logical reasoning, which

allows inference [DSS93]. In summary, KR, as stated by Sowa [SowOO], can be defined

as an "application of logic and ontology to the task of constructing computable models

for some domain". The term "computable model" in this definition is what distinguishes

KR in computer science from philosophy2. A broad range of major knowledge

representation frameworks have been modeled based on frames, rules, logics, semantic

networks and graphs, Prolog, SQL, Java, Petri nets, and object-oriented languages

[SowOO]. Sowa indicates [SowOO] four essentials for any knowledge representation

language, namely vocabulary, syntax, semantics, and rules of inference. Since the

development of the World Wide Web (WWW) and its advance as a core part of the daily

lives of many people around the world, the way in which information is transmitted,

2 http://www.formalontology.it/index.htm

15

http://www.formalontology.it/index.htm

stored, and accessed has been revolutionized. In order to effectively represent knowledge

out of the huge quantity of available data in the Web, W3C supported what is called the

Semantic Web—as opposed to the syntactic Wei)—to move the Web towards being both

human and machine understandable. The primary idea behind the Semantic Web has

been defined as an "extension of the current Web in which information is given well-

defined meaning, better enabling computers and people to work in cooperation. It is

based on the idea of having data on the Web defined and linked such that it can be used

for more effective discovery, automation, integration, and reuse across various

applications" [HBM02]. The Semantic Web generally uses URIs (Uniform Resource

Identifier) to represent data in triple based structures such as "Resource Description

Framework" (RDF)3 syntaxes, which were built for metadata modeling.

II 1.2 Semantic Web and Ontologies

To overcome the problem of miscommunication between humans and computers,

ontologies have been employed as basic building blocks of the Semantic Web to reuse

and share the common consensus of knowledge of a domain in the real world. The term

ontology is originally borrowed from philosophy and, as stated by Smith in [Smi03.b],

ontologies have been employed in computer science to solve the so-called "Tower of

Babel" problem in databases, which refers to the lack of a standard (due to historical,

cultural, technical, behavioral, or linguistic reasons) in representing information in

different databases, where a unique concept may be represented with several dissimilar

labels and vice versa. Gruber describes an ontology in the context of knowledge

3http://www .w3.org/RDF/

16

http://www
http://w3.org/RDF/

representation as "the specification of a conceptualization" [Gru93]. He defined

"conceptualization" in his paper [Gru95] as "an abstract, simplified view of the world

that we wish to represent for some purpose. Every knowledge base, knowledge-based

system, or knowledge-level agent is committed to some conceptualization, explicitly or

implicitly". Later, to distinguish between ontology in philosophy and in computer

science, the term "formal" was added to Gruber's definition to emphasize the

computability feature: "an ontology is a formal, explicit specification of a shared

conceptualization" [SBF98]. Stumme and Maedche [SM01] defined an ontology as a

tuple 0."= (C, is_a, R, a) with C is a set of concepts, is_a as a partial order on C (i. e.,

a binary relation is_a c C xC which is reflexive, transitive, and anti-symmetric), K is a

set of relations, and a: K -» C+ is a function which assigns to each relation name its

arity. Another algebraic definition of an ontology was presented in [KS03] as: "a pair O

= (Si A), where S is the ontological signature - describing the vocabulary- and A is a set

of ontological axioms- specifying the intended interpretation of the vocabulary in some

domain of discourse".

II 1.3 Biomedical Ontologies and Controlled Vocabularies

Biomedical informatics is an emerging multi-disciplinary field that aims to integrate

computer science techniques with applications derived from medicine and biology. It

talks about different computational problems in the integration of biomedical databases,

spatial and temporal patterns of mRNA expression, protein structure, laboratory

management, clinical outcomes, publication records, and so forth [SWL+03]. There are

some issues in biomedical informatics that motivate us to use ontologies as the basic

17

building blocks of knowledge representation methods in this area. Some of these issues

are:

• Multidisciplinary nature of the domain: Needs a common shared language

between different agents (human or machine). The ontology provides a shared

understanding, so different parties using the same interoperable ontology can

recognize the meaning of the same resource.

• Mass production of data: Biomedical applications usually produce and use

massive quantities of data (e.g., all genes in a genome, all transcripts in a cell, all

metabolic processes in a tissue, and all data involved in protein-protein

interactions) [SWL+03], so we need some formal methods to deal with these data,

and to annotate and process them for use by biologists.

• Complexity of data: Biological data are complex in terms of the types of data

stored and the richness and constraints working upon relationships between those

data [BBB+98]. Ontologies in these complex structures facilitate data, information,

and knowledge exchange.

• Distribution of data: Bioinformatics is an inherently integrative discipline,

requiring access to data from a wide range of sources and the ability to combine

these data in new and interesting ways [AGM+90], Hundreds of differet data

resources and analysis tools are used in bioinformatics [CBB+00].

• Volatility of data: Biological data are not static. As knowledge about biological

entities changes and increases, so the annotations of data resources will be changed

[SWL+03].

18

• Heterogeneity of data: Most knowledge and data in the area of biology are both

syntactically and semantically heterogeneous [Enz84], Individual concepts, such as

gene, have many different, but equally valid, interpretations.

These issues cause great difficulties for both curators of bioinformatics resources and

their users. Some of the difficulties are knowing which resources to use in a task,

discovering instances of those resources, and knowing how to use each of those

resources, how to link their content, and how to transfer data between resources

[SWL+03]. Therefore, computational support is required for storing, exploring,

representing, and exploiting biological knowledge as well as knowledge in the minds of

domain experts.

Biological classification has a long history, dating back to Aristotle's scala naturae

[Ver08] (scale of nature), which was a very simple method of dividing organisms into

groups, ranging from the simple species to more complex ones, based on their

appearance. In the 17th century, Carl Linnaeus (1707-78), who is often referred to as the

father of modern taxonomy, developed his classification system called Systema Naturae4

for the naming and classification of all organisms. Linnaeus represented his classification

method based on binomial nomenclature, "the combination of a genus name and a single

specific epithet to uniquely identify each species of organism"5 (e.g., humans are

identified by the binomial Homo sapiens). In his system, all species were categorized in

three kingdoms, namely Plantae, Animalia, and a group for minerals and organized based

on their structural similarities in a five-rank hierarchy as Kingdom, Class, Order, Genus,

and Species.

4 http://www.linnaeus.uu.se/online/animal/l_l.html
5 http://en.wikipedia.org/wiki/Linnaean_taxonomy

19

http://www.linnaeus.uu.se/online/animal/l_l
http://en.wikipedia.org/wiki/Linnaean_taxonomy

Later, as the understanding of the relationships between organisms changed,

taxonomists converted the five ranks into the seven-rank hierarchy by adding the two

ranks of "Phylum" (between Kingdom and Class) and "Family" (between Order and

Genus). Change in the taxonomic ranks is still an ongoing process. Due to advances in

knowledge and the influence of Darwinian evolution as the mechanism of biological

diversity and species formation, taxonomists needed a new classification scheme to

reflect the phylogeny of organisms. Also, recruiting new criteria other than structural

similarities, such as genetic codes and molecular features, and advances in tools and

techniques resulted in the discovery of various organisms, forming three new kingdoms,

Archaea, Bacteria, and Fungi. These three kingdoms, plus Plantae and Animalia, formed

the popular five-kingdom scheme. The biomedical classifications have been organized in

several models as Controlled Vocabularies, Thesauri, Taxonomies, and Ontologies.

According to Hedden [Hed08]:

• Controlled Vocabularies: are restricted lists of words or terms used for labeling,

indexing, or categorizing and cross-referencing, which evolve under central

control over the changes based on defined policies.

• Thesauri: are a more structured kind of controlled vocabulary, providing

information about each term and its relationships with other terms.

• Taxonomies: are a type of controlled vocabulary that has a tree structure

hierarchy (broader term/narrower terms), but not necessarily containing the

related-term relationships and other requirements of a standard thesaurus.

Many of the so-called biomedical ontologies are in fact controlled vocabularies,

thesauri, or taxonomies, as they do not follow the essential requirements of formal

20

ontologies. Several efforts for migrating available biomedical terminologies to a formal

ontological framework are still ongoing. In Section II.6, we will look at some of the

popular existing ontologies and controlled vocabularies in the area of life science.

II 1.4 Formalisms for Ontological Knowledge Representation

There are different ontology languages [ZK05] for the representation of conceptual

models, with varying characteristics in terms of their expressiveness, ease of use, and

computational complexity [SGBOO]. The current languages range from natural language-

based representations to frame-based and logic-based languages. To support the available

ontology languages, several tools and editors [CFG03] are available to aid the ontologist

in building, editing, managing, querying, and visualizing ontologies, as well as checking

their consistency and reasoning.

II 1.4.1 Description Logics

Description logics (DL) [BCM+03], as a family of knowledge representation languages,

provide formal semantics and terminology for describing ontologies. DLs describe

knowledge in terms of concepts and relations that are used to automatically derive

classification taxonomies. Description logic is also being used for ontology validation.

The validation of an ontology by a DL-based classifier such as RACER6 [HM01], Pellet7,

and FaCT++8 allows compliance with certain rules of classification, and it also brings

other benefits in terms of coherence checking and query optimization. The basic building

6 http://www.racer-systems.com/
7 http://clarkparsia.com/pellet
8 http://owl.man.ac.uk/factplusplus/

21

http://www.racer-systems.com/
http://clarkparsia.com/pellet
http://owl.man.ac.uk/factplusplus/

blocks used to represent knowledge in description logics are called Tbox (Terminological

box: axioms about class definitions), Abox (Assertional box: axioms about individuals)

and Rbox (axioms about roles).

II 1.4.2 The O W L W e b Ontology Language

OWL is a W3C9 recommendation and a de facto standard designed for use by

applications that need to process the content of information instead of just presenting

information to humans [OWL04]. In comparison with XML (Extensible Markup

Language) and RDF, OWL adds more vocabulary [OWL04] for describing properties and

classes, such as relations between classes, cardinality, equality, richer typing of

properties, characteristics of properties, and enumerated classes. The OWL has three

types: (i) OWL-Lite: supports basic hierarchical representation with simple constraints,

which make it easier to provide tool support; (ii) OWL-DL: supports maximum

expressiveness without losing computational completeness (all entailments are

guaranteed to be computed) and decidability (all computations will finish in finite time)

of reasoning systems [OWL04]; (iii) OWL-Full: supports maximum expressiveness and

the syntactic freedom of RDF with no computational guarantees, which makes it difficult

to be supported by reasoning tools [OWL04]. The rich expressivity of OWL and its

ability to use description logics, which facilitate formal reasoning, make it a fine

candidate to model the complexities of biomedical applications.

9 http://www.w3.org/

22

http://www.w3.org/

II 1.5 Summary of Section II.l

In this Section, we have reviewed basic definitions, which we will use in the rest of the

thesis, of knowledge representation, Semantic Web, and ontologies. In addition, the roles

of ontologies and controlled vocabularies for sharing a common understanding between

human and machines in computer science and biomedicine have been briefly introduced.

23

11.2 Philosophical Foundations

Artificial Intelligence cannot avoid
philosophy. If a computer program is to
behave intelligently in the real world, it
must be provided with some kind of
framework into which to fit particular facts
it is told or discovers. This amounts to at
least a fragment of some kind of
philosophy, however naive.

John McCarthy, Mathematical Logic in AI.
Daedalus 117(1): 297-310, Winter 1988.

This section discusses how we can gain valuable perspectives on our research by viewing

it through the lens of other disciplines, such as philosophy and linguistics.

II 2.1 Change and Philosophy

Designing a framework for ontology evolution by using available methods in the area of

knowledge representation (KR) is the main strategic plan in the Semantic Web

community. However, since the problem of change management is not completely

computational, it seems necessary to incorporate complementary techniques from other

disciplines such as philosophy, mathematics, biology, neural networks, semiotics,

linguistics, and psychology (to study the behavioral affects) for the ontology evolution

process (cf. Figure 2.1). The topic of change, particularly changes in ontologies, brings

together various issues that are central to philosophy, including identity, persistence and

time [Was06].

24

Discussion about change is as old as philosophy itself. Heraclitus (535^75 BCE),

for example, argued that "All is flux," and everything is changing all the time, so that it is

impossible to step into the same river twice. Parmenides (b. 510 BCE) and Zeno of Elea

(490-430 BCE) were not in agreement with Heraclitus's statement; they believed in the

constancy and stability of the world. Parmenides had stated that "reality is one, and this

one, which only is, is unchanging" [Mag99]. Zeno of Elea also believed all changes and

motions are in fact illusions of the senses [HG04], and to show the paradoxical nature of

change and motion, he summarized his philosophy into several paradoxes, including The

Dichotomy, Achilles and the Tortoise and The Arrow [Kem06].

- What is "being*?
-What is is'?
•What is "change"?

- Social impacts
- Social networks and change
- Security

• User behaviour
• Human mental model

- Validation of change
- Representation of change

- Formalizing Change
- Reproducibility
- Proofs

Mathematics

- Lexical and Grammatical change
- Linguistics Pattern for change

DB & Software'
Eng.

• Database Schema versioning
• Software Maintenance.

(_ ^ Biology J)

- Biological Changes and Processes
- Theory of Evolution
- Phylogenetic Analysts.

- Abstraction
- Public approval

Perceiving evolving knowledge

- Changes in subject-predicate-object
- Switching signify and signifier

- Memory and remembering
Neural Networks) - Simulation in human brain

- Dynamic Human-Brain interface

Fig. 2.1. Multi-disciplinary nature of research on ontology change management.

25

Plato (427-347 BCE) in his allegory of the Cave tried to overcome this issue by

separating the world into the visible world, which is uncertain and changes frequently,

and the intelligible or real world, which is stable, arose from reason and includes the

timeless unchanging "Forms". Husserl (born 1859) tried to define the concept of changes

by considering the notion of time, saying, "Things are always intended toward

something, and are always 'about' something," which shifts the notion of ontology from

studying "being" towards studying "becoming".

It has been commonly acknowledged that a change happens in relation to time.

However, Aristotle (384-322 BCE) in his book Physics IV (10) argued that since change,

unlike time, occurs at different rates, it is distinct from time [HG04]. The nature of

change may appear to be contradictory and a source of inconsistency, as "it requires both

sameness and difference" in parts and attributes [Was06] and deals with contrary facts

about the identity of things. Consider a cup of tea that changes from hot to cold as it

remains on a table. The hot tea must be the same as the cold tea or else the tea does not

change. The hot tea is also not exactly the same as the cold tea. More information on

change, persistence, and identity can be found in Leibniz's Law at [Was06], Theseus's

paradox at [Coh04], and the heap paradox (Sorites) at [Zal05]. A classical example to

demonstrate the change-driven issues of identity was described in the heap paradox. This

paradox is usually presented as chains of conditions as following [Zal05]:

-1 grain of wheat does not make a heap.
- If 1 grain of wheat does not make a heap then 2 grains of wheat do not.
- If 2 grains of wheat do not make a heap then 3 grains do not.

- If 999,999 grains of wheat do not make a heap then 1,000,000 do not.

1,000,000 grains of wheat do not make a heap.

Or more formally:

26

Fa,
If Fa\ then Fa2

If Fa2 then Fa3 or Fa,
V«(Fa„-»/s£i„+,)

If Fan then Fa,

Fctf (where i can be arbitrarily large) \fnFan

Where "F" represents the predicate (e.g., "does not make a heap"), "a„" (« is a

natural number) represents a subject expression in the series with regard to which "F" is

soritical (e.g., "w grain(s) of wheat"). Thus, the argument is that since one grain of wheat

does not build a heap and adding one more grain does not make any difference for

building a heap (for any number n, if n grains of wheat do not make a heap, n+1 grains

won't either). These rules of inference are endorsed by modern and classical logic

[Zal05]. The heap paradox can be applied to any situation that one can make minute

changes to. Unger, in his paper entitled "I Do Not Exist" [Mac79], applied the heap

paradox to himself, removing one cell at a time. This puzzle becomes very important

once we try to apply meaning and semantics to the logical symbols because many

frequently used words, such as few, a lot, big, small and like, as well as colors and

sounds, may be used to generate a heap paradox [Wil94].

II 2.2 Identity, Change, and Time

Due to the paradoxical nature of change, change in a thing causes various problems,

including the problem of the consistency of change. Some have said that the only way to

make sense of change is through inconsistency [Var05]. Many philosophers believe that

studying and reasoning about change only make sense when things extend through

"time". This means the temporal parts of a changing "concept" can have different

properties at different times [Var05]. In other words, one may think of time as another

27

dimension along which objects extend, just as they extend across the three spatial

dimensions.

For example, when we say a cup of tea is placed here but not there, by the passage of

time and the changing tea temperature, we can say that the tea is cold now but it was not

a couple of minutes ago, insofar as the current temporal part of the tea is cold but the

previous part is not. We have got the same object (the same tea), but its temporal parts (as

well as spatial parts) are not quite alike [Var05]. So for ontologies to capture the

scientific picture of the real world, things should be studied in four-dimensional models

[Miz04], considering time as the additional dimension to traditional three-dimensional

models.

In order to talk about the identity of objects, ontologists need to distinguish between

Continuants/Occurrents, Dependents/Independents, and Universals/Particulars [SWS03].

According to [SWS03], Continuants (objects) are things that continue to exist through

time and their identities remain unchanged. Occurrents (processes) are time-dependent

entities whose identities unfold at different points in time. The existence of a

"Dependent" depends on the existence of other things (e.g., a bodily injury is dependent

upon the injured organ), in contrast to an "Independent", whose existence does not

necessarily depend on other things (e.g., atoms, molecules). Also, "Universals" can be

considered classes or groups of things (e.g., "student") while "Particulars" are "instances"

of those classes (e.g., a specific student). In Chapter III, we will consider "time" as a

primary factor in our approach to analyzing changes in temporal biomedical ontologies.

In debates on distinguishing between "Dependent" and "Independent" entities in the

real world, the two concepts of Ontological Philosophy and Dialectic Change attracted

28

our attention. The concept of Ontological Philosophy [Scr99] focuses on the wholeness

and unity10 of the world and considers change as an aspect of substances in the real

world. From the other side, the concept of Dialectical Change [Hol98] tries to represent a

change as new forms built upon the old and by combining the new and the old without

total replacement, implying both newness and continuity. In this theory, any change

needs a cause and can be placed through a process. Holsti [Hol98] used the Marxist

idiom, the synthesis, as a metaphor for this processes. However, unlike synthesis in

Marxist vocabulary, which is defined as the process arising from the contradictions

between old forms and always leads to a "higher" form, a change process can also denote

reversal, corruption, or decline [Hol98]. Change also can be studied as a Transformation,

which results from quantitative changes accumulated over a period of time and generates

a new form out of old patterns (coexistence of both old and new) [Hol98]. It means a

concept may remain structurally similar, but its semantic changes (e.g., the concept of

monarchy in England has changed from ruling to symbolic) [Hol98].

II 2.3 Change and Philosophical Problems in Knowledge Representation

Hansson [Han03] described several philosophical problems in dealing with change and

revision, focusing on the AGM model of belief change [AGM85]. Hansson classified

these problems, which are mostly applicable in the areas of knowledge representation and

semantic web, under ten categories [Han03]:

1. Can stricter cognitive limitations than finiteness be represented in an interesting way?

2. How can modal and conditional sentences be represented?

10 "We live in exactly one world, not two or three or seventeen." [Sea95]

29

3. What is the {formal and informal) relationship between the two notions of degree of

belief: confidence and resistance to change?

4. What is the relation between vulnerability/resistance and justificatory structure?

5. Which is the best way to change the AGM model to achieve categorical matching?

6. To what extent are retrieval and change operations interchangeable?

7. How should ordinary, non-pure contraction be represented?

8. Are there atomic operations in terms of which all belief changes can be represented?

9. What are the roles of intermediate non-committed and intermediate inconsistent belief

states?

10. What is the relation between decision-prevision and expansion^consolidation?

As can be seen, half of the problems are explicitly related to representation, while the

rest of the problems are implicitly affected by the issues in representation. In Chapter III,

we focus on the problem of representation in dynamic ontologies from two broad

perspectives: how to represent a change and how to change the representation.

30

II 2.4 Philosophy, Linguistics, and Change

If words are not things, or maps are not the
actual territory, then, obviously, the only
possible link between the objective world and
the linguistic world is found in structure and
structure alone."

Alfred Korzybski (1879-1950)

Changes in all aspect of a language (words, syntax, grammar, meanings, and

pronunciation) are constantly taking place throughout the passage of time. Sentences like

"/ logged on to my account with my Blackberry and sent her an emaiF would have been

incomprehensible nonsense only a few years ago. There is a famous issue in linguistics,

known as the Saussurean paradox [Ferdinand de Saussure (1857-1913)], which states: "if

a language is primarily an orderly system of relations, how is it that a language can

change without disrupting that system?" [TM05]. In other words, "how can a language

continue to be used effectively as a vehicle for expression and communication while it is

in the middle of a change, or rather in the middle of a large number of changes?"

[TM05]. Just imagine a court, where laws are changing during a trial; or a tennis match

with frequently changing rules during a match [TM05].

In linguistics, there is still no consensus for using words like news, people, and law

as plural or singular [FR98]. The answer may lies in "variation", which is "the vehicle of

change" and means "all accepted forms of one word can be accepted and used side by

side. When a change is in progress, the older and newer forms coexist, and almost all the

users and applications are familiar with both forms, even if some people use only one or

the other. Over time, the older form becomes less and less frequent, and the newer one

31

becomes ever more frequent, until, one day, there is no one left alive still using the older

form, and the change is complete" [TM05]. For example, one may choose between

telephone and phone, between gymnasium and gym, between omnibus and bus, and after

a while, one form is no longer used at all, as has now happened with omnibus [TM05].

The study of variation in language is called sociolinguistics [Cry97, LabOO].

II 2.5 Summary of Section II.2

Several sub-disciplines in artificial intelligence, software engineering, cognitive science,

philosophy, and so forth have considerable overlaps in their outcomes, which should be

considered for a successful ontology change management process. In summary, one can

distinguish different kinds of problems related to changes in ontologies. Many of them

are philosophical and linguistics problems. Inspired by the philosophical perspectives

explained in this section, we ground our proposed techniques for ontology change

management. One of the distinguishing features of our study is doing broad research in

several interrelated domains on performing successful ontology change management.

32

II.3 Ontology Change Management - Requirements
and Challenges

The fluttering of a butterfly's wings
can effect climate changes on the
other side of the planet.

Paul Erlich

II 3.1 Ontology Engineering and Maintenance

Knowledge engineering has been defined by Sowa [SowOO] as "the application of logic

and ontology to the task of building computable models of some domain for some

purpose". Ontology engineering, as an essential part of the knowledge engineering

process, consists of ontology modeling (e.g., defining author concept descriptions,

relations, and axioms), managing changes, refining the ontology, managing errors, and

reusing and integrating different ontologies [Hor07]. Ontology maintenance is

traditionally focused on two aspects of ontology engineering, namely ontology change

management and integration in dynamic environments.

Due to the dynamic nature of biomedical knowledge-based applications, the need for

change management can be seen in their entire developmental life cycles. For example, a

typical clinical application must frequently deal with new information on a timely basis,

such as drug-related and similar data from patients in a hospital setting, or in a

biomedical research lab, where the knowledge essentially grows and changes over time.

Capturing, representing, tracking, and applying the changes, along with discovering all

33

the consequences of even small changes in such dynamic environment, are far from

trivial.

II 3.2 Ontology Evolution and Change Management

Ontology change management can be studied as the process of changing an ontology in

response to a set of particular requirements [FMK+08]. Considering the definition by

Studer et al. [SBF98] of an ontology as "a formal, explicit specification of a shared

conceptualization" in a domain of interest in the real world, researchers distinguish

different rationales for changes in an ontological structure:

• Changes may happen in the formal representation (formalization) of the ontology

from one version to another (e.g., from DAML+OIL11 to OWL). These changes

mostly affect the syntax of the representation of the ontological axioms, without

altering the semantics or terminologies. Formalization change is the subject of

"ontology translation" [DMQ05] studies.

• Specifications and granularities can be altered because of changes in the target

application, changes in potential users' requirements [HS05], or changes in the

original ontological structure by adding newly discovered knowledge or fixing

errors [PT05] or inconsistencies [FHP+06].

• The domain of interest [SMS+03] as well as views on the domain may change

[NK04].

• The conceptualization might also change if it cannot convey a shared consensus

of meaning in the real world, which may happen due to changes in view of the

11 http://www.damI.org/2001/03/daml+oiI-index.html

34

http://www.damI.org/200

world or in usage perspective [NK04]. In fact, the conceptualization changes as

the knowledge about the domain grows [HHL99].

In distributed Semantic Web environments, where ontologies are developed based on

several inter-related components [KN03] and meant to be reused as much as possible in a

collaborative fashion [NCL+06], the high coupling between different ontologies can

cause a domino effect (a chain reaction caused by a small initial change, which leads to a

series of changes in the objects nearby (Wikipedia)) in dependent ontologies and

knowledge sources. Also, reusing the ontologies gives rise to issues like ontology

matching, mapping, merging, alignment, and integration [PGM99].

II 3.3 Ontology Change Management and Sub-Fields

As mentioned in the previous section, the iterative [HHL99], collaborative nature of an

ontology development life cycle requires that ontologies go through one or more

processes, such as matching, mapping, merging, alignment, integration, debugging, and

versioning [PGM99], which often impose changes on one or more components of the

ontological structure. Ontology change management consists of all activities and

processes that are required for consistently maintaining an ontology in response to a

particular change in the ontological structure. It may consist of several steps depending

on the complexity of the ontology and its application, as well as the degree of coupling

between the ontology structure and other dependent artifacts.

For example, this process has been described in six phases by [SMM+02] for

iterative change management: (i) change capturing (determining the required changes),

(ii) change representation (formally encoding the changes), (iii) semantics of change

35

(analyzing the sources and effects of changes and resolving the problems caused by the

changes), (iv) change implementation (applying the changes to the ontology), (v) change

propagation (propagating the changes and the related consequences in the dependent

artifacts), and (vi) change validation (assessing the target ontology for consistency).

The current state of ontology evolution, as well as a list of existing tools, can be

found in [FMK+08] and [DM08]. Flouris et al. (2008) [FMK+08] presents a comparative

survey for clarifying the borders for each of the mentioned ontology change management

sub-fields. Despite their efforts, it is not always easy to draw a clear line between these

fields. For example, defining where ontology mapping ends and ontology alignments

start still seems far from trivial.

II 3.3.1 Ontology Mapping

Ontology mapping is defined [KS03] as "the task of relating the vocabulary of two

ontologies in such a way that the mathematical structure of ontological signatures (the

terminologies) and their intended interpretations, as specified by the ontological axioms,

are respected". There are also less formal definitions, such as [ES04], which describes the

mapping of a given ontology A to B as follows: "for each concept (node) in ontology A,

we try to find a corresponding concept (node), which has the same or similar semantics,

in ontology B and vice versa." The tasks of finding and measuring semantic similarities

between the concepts in different granularities are the subject of several research projects

(e.g., in biomedical ontologies, see [CSC07]).

36

II 3.3.2 Ontology Matching and Alignment

Ontology matching is described as "the process of finding relationships or

correspondences between entities of different ontologies" [ES07], and its result, which

can be used for purposes such as ontology merging, integration, translation, and

interoperability management, is called ontology alignment, which expresses "with

various degrees of precision the relations between the ontologies under consideration"

[ES07].

An extensive list of ongoing projects and infrastructures for ontology matching can

be found at http://www.ontologymatching.org/projects.html.

II 3.3.3 Ontology Translation

Translation takes place when an ontology or its parts need to be reused with a tool or

algorithm that uses a language different from that of the ontology [Cor05]. In this

situation, one must deal with several mismatches in language level (differences in

ontology languages, syntaxes, and logical notations) and model level (differences in the

way a domain is conceptualized and interpreted) [KleOl]. Several tools and techniques,

such as OntoMorph [ChaOO] and ODEDialect [CG07], focus on ontology translation.

II 3.3.4 Ontology Debugging

Ontology debugging is defined as the "process of identifying and removing undesirable

logical contradictions (inconsistencies/incoherencies) from an ontology" [FMK+08].

Most of the existing ontology inference engines can report errors like unsatisfiable

concepts or inconsistencies in ontologies without clarifying the reason and source of

37

http://www.ontologymatching.org/projects.html

these errors. A prompt and precise debugging service is a vital part of a safe and effective

change management system [KPS+06]. As an example, a debugging framework for

OWL-DL ontologies using the Pellet12 [SPG+07] description logic inference engine has

been described in [Kal06].

II 3.3.5 Ontology Versioning

Ontology versioning has been defined [KF01] as "the ability to handle changes in

ontologies by creating and managing different variants of it." In other words, ontology

versioning [HHL99, HP04] deals with "the process of managing different versions of an

evolving ontology, maintaining interoperability between versions and providing

transparent access to each version as required by the accessing element (data, service,

application or other ontology)" [FMK+08].

II 3.3.6 Ontology Integration

Ontology integration is defined as the process of "building an ontology in one subject

reusing one or more ontologies in different subjects" [PGM99]. This process is often

performed by the aggregation and combination of source ontologies, and usually involves

changes, such as extension, specialization, or adaptation [PM01]. To reuse ontologies in

one consistent integrated structure, they need to be aligned, which means that they have

to be brought into mutual agreement, and then mapped by relating similar concepts or

relations from different sources to each other by an equivalence relation [KleOl].

12 http://clarkparsia.com/pellet

38

http://clarkparsia.com/pellet

The integration process is usually done in two steps: data/semantic integration and

reconciliation. The data integration is comparable to data integration as studied in

databases, with the one major distinction being that while in database integration it is

assumed that each source is basically a logical theory with a single model, such an

assumption is not made in ontology integration, where an ontology is an arbitrary logical

theory that may convey several models [CGL01]. The most common issue in ontology

integration is mismatching between ontologies on language and model levels [KleOl].

The language level mismatches mostly deal with problems in syntax, semantics, and

expressivity of different ontology languages. To fix this problem, one usually needs to

utilize some translation techniques alongside the integration method. The model level

mismatches involve interpretation and conceptualization mismatches, and differences in

the way the conceptualization is specified [KleOl]. The second issue is much more

challenging, since many of the effecting parameters cannot be fit in a computational

model. Some of the available approaches in ontology integration that also deal with

problems of ontology alignment and matching are FCA-MERGE [SMOla], COMA++

[ADM+05], ILIAD [UGM07], and DINO [NLH+08].

II 3.4 Challenges for Ontology Change Management

There are major challenges in this field of research, going back to the theoretical

foundations and practical implementations as categorized by [Nov07b]. Lack of

appropriate formalism for representation of ontology changes, tracking and analyzing

logical consequences of different changes, analyzing semantic changes and the relation

between syntactic and semantic changes, and consistency management in dynamic

39

ontologies are all issues related to the theoretical foundations. From the implementation

perspective, Novacek [Nov07b] highlights some of the main issues concerned. For

example, most of the few ontology change management models are analogical to schema

version management and software evolution, with little focus on ontological features.

Efficient implementation of the existing methodologies to explicitly address ontology

evolution is still challenging. Also, one must rely on advances in other related fields (e.g.,

NLP techniques for automatic ontology learning from text) for dynamic knowledge

acquisition in evolving ontologies. In addition, any successful approach should address

the human factor as an essential part of an interactive Semantic Web environment. Some

other challenges in an ontology change management process are highlighted below.

II 3.4.1 Backward and Forward Compatibility

A major process in any ontology maintenance framework is managing different versions

of an ontology and checking the compatibility between them to determine if one version

can be used as an alternative to other versions in a consistent way. The compatibility can

be analyzed based on a set of requirements that a version of an ontology should fulfill

[Ple06] with regard to backward (or downward) and forward (or upward) directions.

Backward compatibility [Kle04] checks if the newer version of an ontology uses a

data source that conforms to the older version and ensures that the changes in new

version do not affect the existing definitions (e.g., monotonic additions of concepts or

relations [HHOO]). As an example, according to [HHOO], the version management service

in SHOE 3 can assist agents and query systems in discovering and specifying the

divergence and backward compatibility between the versions of an ontology. The forward

13 Simple HTML Ontology Extensions (SHOE): http://www.cs.umd.edu/projects/plus/SHOE/index.html

40

http://www.cs.umd.edu/projects/plus/SHOE/index.html

compatibility verifies that the data source in an ontology version can be used in a newer

version of the ontology and the changes in existing version do not change the validity of

the future, upgraded version (e.g., deletion of a standalone concept). Determining forward

compatibility is not always possible, since foreseeing the complexity, semantic richness,

users, and usages of the future versions might not be feasible.

II 3.4.2 Traceability

Traceability is another critical task in change management, which provides transparent

access to different versions of an evolving ontology. Traceability also aids in

understanding the impact of a change, recognizing a change and alerting upon

occurrence, improving the visibility, reliability, auditablity, and verifiability of the

system, propagating a change [SDK+03], and reproducing results for (or undoing effects

of) a particular type of change. Advances in impact analysis gained by traceability

facilitate predictability in the post-change analysis stage in an ontology maintenance

framework.

II 3.4.3 Querying Over Multiple Versions

Queries over different versions of an ontology may return different results, which in

many cases may not be desirable. Consider a court trial, for example: how could we try a

case in court if the laws were constantly changing during the trial? For successful

querying over evolving ontologies with multiple versions, we need an approach for

unifying and filtering all data in different versions. In database schema management, one

solution for this problem is following the "view approach" by creating a view per version

41

that maps each version into a universal document, which can hold all the information

from every version [BOS+05]. However, the problem seems much more complicated in

ontology evolution.

II 3.4.4 Metamorphosis

Metamorphosis is defined as a marked change in appearance, character, condition, or

function , which often appears as a sort of radical temporal discontinuity in one species.

For example, a caterpillar becomes a moth or a butterfly, or a tadpole becomes

amphibious. In ontology engineering, dealing with metamorphosis gives rise to many

issues relating to conceptual identity (recall Leibniz's law, Theseus's paradox, and Sorites

in Section II.2).

II 3.4.5 Controlling Belief Revisions

The concept of belief revision [Dra97] refers to consistently changing a belief during the

revision of a knowledge base in response to a change [KL07]. From the logical point of

view (i.e., from the DL perspective [QY08]), this problem deals with detecting and

resolving logical inconsistencies caused by a revision and providing necessary

justification to maintain the "truth" [BH90]. According to [AGM85], belief changes can

be found in three forms: (i) expansion (adding a fact and its logical consequences), (ii)

contraction (deleting a fact, which may involve the elimination of other dependent

elements), and (iii) revision (consistently adding a new fact and its logical consequences,

and retracting the knowledge base in case of an inconsistency). Control over belief

14 Online Free Dictionary: http://www.thefreedictionary.com/metamorphosis

42

http://www.thefreedictionary.com/metamorphosis

revision guarantees that new information gained through the learning process does not

contradict the conceptualizations and specifications associated with the existing

knowledge base system [G2r90].

II 3.4.6 Structural and Semantic Dependency

Due to the interoperability of different ontologies and their versions and the tight

coupling between their elements, there are usually dependencies (implicit or explicit)

between the effects of a change. This issue is most challenging in the change propagation

stage, and requires some synchronization processes [OliOO] to ensure that the chain of

changes is maintained consistently and coherently.

Employing modularization techniques [WHB07] in ontology engineering aims to

address some of the challenges related to unintended and unexpected domino effects due

to dependencies between ontological elements. Therefore, analyzing the dependency

graphs, which represent the dependencies between ontological elements, is a starting

point in managing updates and revisions in modular ontologies [SK03].

II 3.5 Summary of Section II.3

Ontology maintenance and change management consists of several interrelated tasks for

refining ontologies, managing the errors and inconsistencies, (partially) reusing

ontologies, and performing mapping, translation, merging, matching, alignment, and

integration on different ontologies. These tasks are extremely challenging and

interconnected, and need comprehensive methods along with logics, formalisms, tools,

and infrastructure support in a collaborative environment. We will look at some of the

43

existing tools, methodologies, and practical solutions for ontology maintenance, as well

as state of the art of change management in some popular biomedical ontologies in

Section II.6.

44

II.4 Human Factors in Change Management
Process

Metathesiophobia: The persistent, abnormal,
and unwarranted fear of change. Symptoms
usually include shortness of breath, rapid
breathing, sweating, nausea, irregular
heartbeat, and overall feelings of dread.

Phobia list, Wikipedia

II 4.1 Human Factors in Dynamic e-health Environments

During the last two decades, many advances in healthcare have required the development

of artificial intelligence (AI) techniques in the biomedical domain. Several integrated

health knowledge management systems, such as Acute Care Systems, Medical Decision

Support Systems, Educational Systems, Quality Assurance and Administration,

Laboratory Systems, Medical Imaging, and so forth, are recruiting large knowledge-bases

and ontologies as their backbone to facilitate human-machine communication and capture

knowledge from the domain of interest. Biomedical knowledge based systems, especially

the ones dealing with human health, require fast responses and real-time decision

making. Human intervention can be seen in the whole life cycle of biomedical systems.

In fact, relations between the system maintainers, patients, nurses, lab technicians, health

insurers, and physicians are crucial in such systems, and should be encouraged when

necessary. From the other side, many of the editorial decisions on performing a change in

a system need to be made by humans. Man-machine interaction problems are not purely

computational and need a deep understanding of human behavior.

45

As mentioned in Chapter I dealing with change is mainly a social, linguistic, and

philosophical problem, rather than a computational one. A key issue in managing current

dynamic biomedical systems relates to users' behavior and the cultural and disciplinary

assumptions [For98], which can determine the success or failure of a system. The change

management phase in current systems is largely addressed implicitly, and followed with

human supervision and intervention. The human contribution improves rationality and

plays an important role in controlling the quality of the results. However, there are

several applications where human intervention is difficult, impossible, or simply

undesirable [FPA06] (e.g., due to security issues). Also, differences in background

knowledge, views, or preferences are other obstacles for consensus between people. In

this sense, a result might not be accurate or reproducible. In addition, the system's

outcome might be highly dependent on human behavior, which makes it difficult for

evaluation in terms of efficiency or correctness.

The existing well-known biomedical systems and digital libraries usually affect large

and heterogeneous groups of people, with different levels of background knowledge and

dissimilar interests. Therefore, an efficient user-centered approach, along with

psychological and organizational proficiency should be taken to reduce the behavioral

side-effects and successfully manage changes in healthcare applications. An ideal e-

health system should be able to automatically coordinate human factors, processes, tools

and knowledge-bases while coping with different changes. There are some issues that

affect the successful implementation of such infrastructures. In this section, we review

and survey the potential issues related to the human factor in an integrated dynamic

biomedical system composed of several interrelated knowledge bases, and bio-ontologies

46

by looking at different theories in social science, psychology, and cognitive science, and

we address the following issues:

• The organizational and social impacts of human-driven changes in e-health systems;

• Different sources of change;

• Human errors due to change and alteration;

• Responding to change in a dynamic e-health environment;

• Safety;

• User interface issues;

Lorenzi and Riley [LROO] presented an overview of change management efforts in

information systems showing the roles of people and the organizational issues (i.e., the

interruption of a known routine) that were counterproductive to the implementation and

management of major information systems. Based on their research, the main reasons for

system failure can be categorized under miscommunication, cultural barriers,

underestimation of complexity, inadequate or low-quality training, lack of organizational

change management strategies, and weak leadership. Considering the dynamic nature of

current knowledge bases, which need real-time decision-making and proper action from

human agents, the concept of change and the ability to cope with various alterations play

important roles in biomedical knowledge bases. Lewin [Lew47], with his social

psychology perspective, focused on the motivations for an individual's behavior. He

believed that psychological needs in humans cause tension until they are fulfilled. Lewin

indicated three major conflict situations: the choice between two positive goals of equal

strength, two equally negative goals, or opposing positive and negative forces of different

strengths. Lewin's field theory, commonly used in healthcare systems, allows one to

47

identify different types of conflict situations and to analyze the effect of a change in a

knowledge-based environment [LR03.a].

II 4.2 Types of User-Driven Changes

Watzlawick et al. [WWF74, LROO] used two theories to explain first-order and second-

order changes, namely the theory of groups and the theory of logical types, from

philosophy and logic. A first-order change (improving a system) is defined as the logical

extension and incremental improvements of past and current practices in a given system,

leaving the system's core belief relatively unchanged (Examples include recovery from

system failure, and generating new reports). If a system itself is changed, then a second-

order change happens (deep alteration in a system). This change usually "involves a

redefinition or re-conceptualization of the ideas, tasks, domains, or roles in an

organization" (i.e. the change from paper-based medical records to electronic medical

records in biomedicine) [LROO].

For any alteration in a system, users, designers and developers can play various roles,

which will influence their conceptualization about the change and their reaction to it

[LROO]. So, in making decisions and taking action within dynamic biomedical systems,

the users' behavioral aspects associated to each role should be controlled.

II 4.3 Human Error in Clinical Systems and Change Management

Studies [LROO] on people working with health-related systems imply that due to high

stress and pressure in the field they are relatively more resistant to being confronted with

changes. Changes can potentially increase the chance of errors in a system by routine

48

disruption. One factor urging system change is the need to deal with human errors,

present in all stages of a system's life cycle. Human error should be considered in clinical

application development's life cycle, along with many other aspects of design. Studying

human error provides valuable information for analyzing human behavior and reveals

user requirements and misunderstandings. Human error is defined by Barfield [Bar93] as

an error caused in some way by the user of the system, in contrast to a system error,

where there is a physical fault in the system. Based on the user's mental model, he

grouped the errors into two categories: errors of action (error in the translation between a

user's intention and their action) and errors of intention (the user doing the wrong thing

on purpose). This classification is comparable with Norman's categorization of errors

[Nor88] into mistakes and slips: if a person has intent to act that is inappropriate, it is a

mistake; if the action was not what was intended, it is a slip. In order to deal with human

error, Norman highlighted the needs for better consistency in describing the errors and

better feedback for capturing and reporting them [LR94]. In dynamic environments with

several external and environmental parameters such as evolving e-health systems, the

rates of unintentional errors can increase greatly. Bes in [Bes97] and Decortis in [Dec93]

have worked on the effects of temporal characteristics on users' activities in dynamic

environments. Decortis stated that temporal errors can originate from incorrect estimates

about the sequence or duration of actions and/or failure in choosing the right time to act,

in anticipation of an event or in synchronization of collective actions [Dec93]. In

addition, De Keyser [Dek95] identified other sources of temporal errors, such as the

absence of high-quality indicators to highlight the change, the presence of micro-changes

too short to be received, and the existence of distracters capturing the users' attention

49

[Bes99]. [HL02] made the distinction between two methods for change management: the

technical method that can be understood and addressed with available knowledge (mostly

used for managing first-order change) and the adaptive method that is beyond the existing

and available techniques of operation. Several efforts such as [For98, LR94, LROO,

LR03.a] have been made for applying knowledge of human and organizational behaviors

derived from psychology, sociology and cognitive science to the implementation and

management of healthcare systems.

II 4.4 Safety

The six principles were defined by the Committee on Quality of Healthcare in America

[ComOl], to be followed by any e-health knowledge-based system to provide high-

quality services, with focus on safe, effective, patient-centered, timely, efficient,

equitable environments. User and patient safety is a challenging issue that needs to be

addressed with proper real-time control and feedback mechanisms in the systems. User

interfaces can play a vital role in this case by providing appropriate forms of messages

and warnings in a timely manner. The number of potentially hazardous errors can be

reduced by employing intelligent safety devices, accurate alerts, and effective user-

friendly interfaces. To cope with changes in the constantly evolving knowledge-based e-

health environments, one must have a formal model of human reactions to change,

enabling cognitive error analysis. Beitler et al [BFK+95] designed an interface that

provides a virtually simulated multimodal user control environment, based on the

knowledge of a reactive planner to allow "autonomous planning as well as planning

through human-machine interaction". The system acts like a human agent and can be

50

used in situations unsafe for people. This approach is especially useful in assisting people

to perform repetitive tasks, which potentially increase the chance of error for humans.

II 4.5 Trust and Security Issues

Kini et al. [KC98] observed various aspects of human trust in computer-dependent

systems, according to personality theory, sociology, economics, and social psychology.

They defined trust as "a belief that is influenced by the individual's opinion about certain

critical system features". Their study relies only on human as the "truster" (instead of

system) and does not support the problem of trust between humans and processes

involved in knowledge-based interactions. Gambetta [GamOO] defined trust as an

estimation that can be determined by the probability of an action being successfully

performed. Josang et al. [JIB07] look at trust in a user-centered framework where 'one

party is willing to depend on something or somebody in a given situation with a feeling of

a relative security, even though negative consequences are possible'. In this sense,

human-agent interactions play important roles in the security process, which usually

includes authentication, authorization, and confidentiality. Relying only on human factors

in the security process, especially in complex health systems, may lead to unpredictable,

inaccurate, and inconsistent results that often may not be reproducible. So, in modern e-

health knowledge bases, security management must be carried out automatically, with

minimal human intervention.

II 4.6 User Interface Issues

Since biomedical knowledge bases and applications are most often used by lab

51

technicians, nurses, and physicians, a formal logical language is not well-suited for

representing the interactions. Therefore, special attention is given to the design of the

operational user interface, based on natural language processing and intuitive graphical

representations. Currently available tools do not provide complete support for dealing

with the complexity of evolving medical systems, which go beyond the capabilities of

existing user interfaces. One method for dealing with the representation of changes in

user interfaces is to employ ontologies in capturing the knowledge about evolving

concepts. In this way, changes to the user interface can be made by changing the

underlying ontology. [TMM+96] and [GMZ99] undertook two efforts devoted to

modeling user interface for biomedical applications. Pohl et al. [PRW07], Leitner et al.

[LAH07], and Carrigan et al. [CGC+07] also recently demonstrated their advances in the

usability of user interfaces of available information systems in medicine and healthcare.

In general, a user interface based on human factors is a key to the acceptance of a system

[Nie93] in medicine. In creating a graphical user interface (GUI), the level of expertise

and the operational habits of the medical staff should be considered.

Hartson et al. [HB93] specified behavioral and construction domains for

implementing a user interface. The behavioral domain includes the design and

development of the interactive part of an interface, and the construction domain includes

the development of the graphical environment. The development process of a usable GUI

is not possible without active participation of physicians, psychologists, and other end-

users of an e-health system. It also requires the consideration of important human factors,

such as intuitiveness, functionality, accessibility, flexibility, and adaptability of the user

interface. However, design criteria based on human factors do not automatically

52

guarantee a solid, usable interface [TMM+96]. As the GUI development for dynamic

environments is always an iterative process [HB93], it requires the occasional

modification of initial system specifications based on new requirements or newly

obtained knowledge.

II 4.7 Participative Change Management

A dynamic health knowledge-base usually deals with spatial and temporal data, metadata,

documents, and data warehouses while working in an integrated web-based system that

includes databases, ontologies, and software agents. To overcome some of the existing

challenges in current knowledge-based systems, researchers try to design systems based

on human behavior and needs [BT94, DH96].

In our approach we emphasize on the role of human factor in maintaining changes in

a consistent way. For detecting any behavioral change, we first need to specify behavioral

patterns to capture current behavior, the behavior upon change, and the advantageous

replaced behaviors. For this purpose, we introduce our agent-assisted framework (RLR),

meant to assist humans in performing changes (semi)automatically. Figure 2.2

demonstrates the interactions between human user/administrator, intelligent agents,

environmental parameters and existing knowledge bases involved in a decision making

process for performing a change in our proposed RLR framework.

53

Environmental and External Parameters

t < = ^
RLR

Chang^C aphm
Ageiat

Rratoniag
Agmti

Negotiation

Lmnur
AgpnU

/£novrl«dgabic«/'' \

Decision Makin g Un it

Fig. 2.2. The Decision making mechanism for user-centric change management.

The details on this framework and associated agents will be explained in Chapter III.

II 4.8 Summary of Section II.4

Hidetora: I am lost...
Kyoami: Such is the human condition.

Ran (1985) by Akira Kurosawa

A large body of literature exists on the importance of human-machine interactions in

various domains of interest. Life science and biomedical fields are challenging domains

in knowledge management. Biomedical data are highly dynamic, and the large

biomedical knowledge sources contain complex interrelated elements, with various levels

of interpretation. Considering the dynamic nature of current volatile digital libraries,

which need real-time decision-making and proper action from human agents, the concept

54

of change and the ability to cope with various alterations play important roles in

biomedical knowledge bases.

In this section, we reviewed some of the issues relating to human intervention in

maintaining biomedical systems and knowledge bases. Later we will investigate the

potential of some advanced formalisms in the Semantic Web context (such as using

intelligent agents to assist computational inferencing) to assist the human user in

decision-making and dealing with changes. We will return to the concept of participative

change management as the collaboration between human and software agents for (semi-)

automatic ontology evolution in Chapter HI, where we will see how an interactive

diagrammatic formalism facilitates human-computer interaction, reasoning and problem

solving.

55

II.5 Change Management in Database and
Software Engineering

Management is doing things right;
leadership is doing the right things.

Peter F. Drucker (b. 1909)

II 5.1 Database Schema Evolution

Since databases are characterized as one of the fundamental components in many

software applications, experts in this field are faced with two issues: schema evolution

and versioning. Software applications operate in a world of constant change. The changes

particularly apply to the underlying schema, as it needs to be adapted to ever-changing

requirements [BSH+06]. Dynamic schema evolution (DSE) is defined as the ability of the

database schema to handle changes to its structure without losing the existing data and

without interrupting the regular operations of the database [RS03]. While most of the

popular database systems maintain a few simple change operations (e.g., adding/deleting)

automatically, handling complex changes needs a precise, future-oriented strategy. A

successful schema evolution process includes the study of the sources of change and the

analysis of effects of different changes on the data and schema for coherent management

of different versions [NK04].

The issues and potential of schema evolution are well studied and a large body of

literature exists on the topic (for instance, see the surveys in [Rod95], and [RS03]).

Generally, schema evolution consists of three [RS03] interrelated activities: core schema

evolution (detecting and applying the changes while keeping the schema consistent),

56

version management, and application management (keeping the applications that benefit

from the database in working order). Some systems focus only on maintaining multiple

versions [MS92, CLR04], while others consider all three aspects in their design model.

A comprehensive summary of the different research activities on schema evolution

can be found in [RS03]. Most efforts on this topic have been focused on studying changes

in single stand-alone databases, and evolution in distributed, heterogeneous sets of

databases has not received enough attention. Another challenging problem in this domain

relates to database integration issues, particularly semantic integration. One of the

common operations during database schema evolution is the integration process, defined

as "merging a set of given schemas into a single global schema" [DH05], which is

usually performed in two phases: data and semantic integration. A brief survey on

semantic integration research in the database community can be found in [DH05].

Comparing different types of database schemas, the XML databases, considering the

semi-structured characteristics of XML, allow maximum flexibility in coping with

schema changes and extensions1 by enabling loose coupling through schema variation

and evolution [BOS+05].

II 5.2 Database Evolution vs. Ontology Evolution

Despite important differences between schema evolution and ontology evolution

stemming from different usage paradigms, the presence of explicit semantics and

different knowledge models [NK04], there are also similarities that allow some of the

studied techniques to be reused for the ontology evolution process.

, s The extendibility feature refers to the term "extensible" in Extensible Markup Language (XML).

57

Generally speaking, the content, structure, usage, and underlined semantics of

ontologies are usually more complex than that of database schemas, and the set of

potential alterations for ontologies is much more diverse than the possible set of changes

in database schemas [BKK+87, Kle04]. In addition, the distinction between schema

versioning and schema evolution, as described in [Rod95], is not fully applicable to

ontologies because it is often far from trivial to find and capture similarities and

differences between various ontology versions. Also, in ontologies, compatibilities

between different versions are defined not only in terms of preservation of instance data

(as it is with databases), but also in terms of preservation of the conceptual and

ontological structure [NK04]. Conceptualization changes in ontologies, caused by

alterations in perceived knowledge from the real world, are comparable [NK04] to

changes in database schemas caused by changes in the real world [VH91].

II 5.3 Software Evolution and Change Management

A software application is continuously evolving to meet frequently changing

requirements. Software maintenance and change management are crucial tasks in the

software development life cycle and often take place after the application has released its

first version. Improving the quality of the maintenance process reduces the associated

costs. Software maintenance encompasses the contributions of human factors—for

planning and scheduling—along with algorithms, heuristics, and formal methods to

support the evolution process, while considering correctness to be the main concern

[HKL05]. Software change management is a vital step in project management, which

aims to maintain the reliability of the software products during their entire life cycle by

58

deciding which changes to allow, support, or prevent, based on project goals, schedule,

and budget [PCC+93]. Software change management processes have been traditionally

studied under two general tasks, namely software maintenance [IEEE98, BBE91] and

software configuration management (SCM) (i.e., handling changes during the software's

Hfecycle)[Pre01,SN01].

Process Implementation

Prrihlam SiMfvlifira m/Affoinlr'S ni*a

1 J M i p i O

i i

Retirement Migration

Fig. 2.3. ISO/IEC Maintenance Process Activities (adapted from [SN01]).

The maintenance process activities developed by ISO/IEC 14764 are illustrated in

Figure 2.3 [SN01]. Each activity consists of several sub-actions. For example, Problem

and Modification tasks can be broken down into these steps: performing initial analysis,

verifying the problem, developing options for implementing the modification,

documenting the results, and obtaining approval for the modification option. As another

example, Software Retirement tasks include developing a retirement plan, notifying users

59

of retirement plans, conducting parallel operations, notifying users that retirement has

started, and ensuring that old data is accessible [SN01].

Olsen [01s93] proposed a model for software change management based on

considering the entire development process to be, metaphorically, "a dynamically

overloaded queue, which can be described mathematically." In fact, Olson's model

(Figure 2.4) is an abstraction that encompasses all activities performed by the software

developer (i.e., enhancements like adding new features, revisions due to bug reports,

filling out forms, etc.) as changes. Therefore, the model can be used for both software

development and maintenance. Based on this model, change requests come from users,

stakeholders, change managers, and test units in the forms of suggestions.

Funding

Sponsors

Suggestions

Users

Change Managers

mgirseersng

N»
Quaiity Training

Manage Change

Support Market ing

Production

Schedule
».
Sponsors

Products
- — • " " " " " »

Users
Potential
Changes

Approved
Changes

Engineers

ImpSement Software

Exetutables

Doturaents

Engineers

Test Code

Engineers

Inspect Paper

Fig. 2.4. Olson's proposed model for software change management (adapted from [Ols93]).

60

Changes in Olsen's model have been defined in a highly abstract manner, which

makes it difficult to distinguish between different types of changes [MakOO]. Lehman in

[LRW+97] formulated the eight Laws for Software Evolution. In Lehman's context,

software evolution is managed in a feedback-driven and controlled maintenance process

[Leh96]. He believed that the functionality and quality of software applications need to

be constantly improved over their lifetimes to meet users' needs and satisfaction [Leh96].

Lieberherr and Xiao [LX93] gave the motivation for using an ontological structure for

managing changes in software systems by proposing propagation patterns—a set of

programs wherein all class members are connected through part-of and inheritance

relationships—for interpreting object-oriented applications at a higher level of

abstraction.

The so-called AGILE software development methodologies [ASR+02], are another

effort for developing software with futuristic perspective. Some of the main principles16

behind an agile method are: (i) Incremental development (iterative, minimal planning,

small releases in fast intervals); (ii) Cooperative and negotiative framework (strong

collaboration and communication between designers, developers, customers and end-

users along with contract negotiation); (iii) Accessible (well-documented, available, easy

to learn and change); (iv) adaptive (can accommodate scheduled or non-scheduled

modifications and changing circumstances); and (v) simplicity.

16 Agile Manifesto principles: http://www.agilemanifesto.org/principles.html

61

http://www.agilemanifesto.org/principles.html

II 5.4 An Ontology Driven Software Application

In our research, we have focused on ontologies not in isolation but as artifacts that are

part of a software system and used to specify, model, or document these systems.

Currently, there are some ongoing efforts in applying ontological concepts and concept-

centric [HKL05] approaches to support software maintenance and evolution [DD04].

Emphasis on object-oriented and component-based architectures in software engineering

allows for modularization, encapsulation, and distribution of units of program code

[OHE96]. A vast amount of research [XS04, ACC01, XS06] in software evolution has

focused on object-oriented systems. Using ontologies that aim to provide a common

vocabulary to represent useful knowledge for software developers is a new trend to

manage the inherent complexity of large software systems. Ontologies define a common

shared understanding about a software application domain and associated tasks, and

provide an underlying discipline of modeling software applications by defining concepts

and properties. They can describe software architectures and requirements, which are

difficult to model with object-oriented languages [DD04]. Ontologies are also useful in

software applications for describing the semantics of programming interfaces, providing

a structure to organize knowledge, reducing development effort for generic tools,

improving the data and tool integration, facilitating requirement elicitation by providing a

common vocabulary, reusing organizational knowledge [SVS04], and capturing

behavioral knowledge [DD04]. In addition, ontological commitment in software plays an

important role in increasing the accessibility, maintainability, integrity, and transparency

of application software based on the ontologies [Gua98]. An ontology-driven object-

oriented application, in our context, is defined as an architecture created from a shared

62

domain model that includes several interrelated knowledge sources, which are connected

with some object-oriented components for user interface and control components

[KOT+06]. Due to the reusability of ontologies, the overall cost and effort for creating

and maintaining ontology-driven applications will be reduced. Thus, consistently

modifying and adjusting the underlined ontologies in response to changing data or

requirements play significant roles in the maintenance of the knowledge-based systems.

II 5.5 Challenges in Software Change Management and Schema
Evolution

Several challenges in software evolution and change management have been addressed in

[MWD+05], including the needs for improved software quality to deal with software

aging, common software evolution platforms, techniques to support higher levels of

abstraction for supporting co-evolution between different representations of software

artifacts, new theories, mathematical models, and formalisms for representing software

evolution, a formal programming language to explicitly support software evolution,

support for multi-language systems, evolution benchmarks, increasing managerial

awareness, improving versioning systems, advanced predictive models, more

comparative studies and empirical research, runtime evolution (maintaining evolution in

continuously running systems), and advances in accessing, retrieving, integrating, and

analyzing editorial data from various sources (i.e., historical data in change logs, bug

reports, change requests, source code, versioning repositories, execution traces, error

logs, documentation, and so on) [MWD+05].

These challenges are often interrelated and sometimes more than one problem can be

addressed with the same proposed solution. For example, employing language

63

independent methods for software change management can deal with several problems,

including supporting model evolution and supporting multilingual systems. As another

example, studies on evolution-supporting tools contribute to answering challenges related

to empirical researches and theory of software evolution [MWD+05].

II 5.6 Summary of Section II.5

Despite many differences between ontology, database and object-oriented modeling

[IBM], in some sense, an ontology can be viewed as a hierarchical structure of classes

and objects in a software conceptual design phase. Therefore, some rules and definitions

are applicable for both, so we can benefit from the research in database schema evolution

and software change management for managing changes in ontologies.

64

II.6 State of the Art and Related Works

"Criticism is an indirect form of self-boasting"

Emmet Fox (1886-1951)

Based on our recent literature review for ontology evolution, changes are being studied

on three different levels: the domain, the specification, and the conceptualization [KF01].

The problems in the first level are partially similar to database schema evolution [VH91],

and the second level mostly involves conversion and translation (of both syntax and

semantics) of different ontology representation languages [CGOO], but there is no clear

detailed analysis of the effect of specific changes in conceptualization on the

interpretation of data in the ontology evolution process [KF01]. This issue might lead to

data and semantic inconsistencies. In our research, we have studied different editorial

procedures for change management in existing biomedical ontologies, along with

available tools and techniques.

II 6.1 Biomedical Ontologies and the Editorial Procedure -
State of the Art

There are currently a growing number of ontologies and controlled vocabularies in

various areas of life sciences. In this section, we review the state of the art of change

management in some available bio-ontologies. It is not a surprise that many of them do

not sufficiently meet the requirements to be considered a formal ontology [Gua95]. Most

ontologies in the biomedical domain are recognized to be acutely defective from both

terminological and ontological perspectives [KS03a, Smi03, KSS04, GSG04, CSK+04,

65

SR04, CS06, SC06, Smi06]. A list of open-source ontologies used in life sciences can be

found on the Open Biological Ontologies (OBO) website17. Many of the available

ontologies are still under active development, revision and improvement, and are subject

to frequent changes. The following ontologies and controlled vocabularies have been

selected for a study of their change management mechanism based on several criteria,

such as availability, popularity, and complexity of and accessibility to the source and

documentation. The Gene Ontology (GO) [ABB+06] is a community standard and the

Unified Medical Language System (UMLS) [HLS+98] is quite popular, with its rich

collection of biomedical terminologies. Clinical Terms Version 2 [Cim96a, BR99] deals

with actual patient care records and the Generalized Architecture for Languages,

Encyclopedia and Nomenclatures in medicine (GALEN) [Bee] which is a formal

description logic based ontology. We also look at HL7 [HLR], FMA [RM03], the NCI

thesaurus (NCIT) [SCH+07], SNOMED [SCC97] and Terminologia Anatomica (TA)

[Whi99] to see different examples of potential changes.

II 6.1.1 The Gene Ontology (GO)

The Gene Ontology (GO) is a collaborative project [ABB+06] that intends to provide a

controlled vocabulary to describe gene and gene product attributes in existing organisms

based on their associated biological processes, cellular components and molecular

functions. The Gene Ontology has been modeled and implemented based on three distinct

ontologies, represented as directed acyclic graphs (DAGs) or networks consisting of a

number of terms, represented by nodes within the graph, connected by relationships that

are represented by edges [LSB+03]. The current GO term count as of April 27, 2010 at

17 http://obo.sourceforge.net/

66

http://obo.sourceforge.net/

14:00 (PST)18 is 30350 terms with 1434 obsolete terms. The GO consortium makes cross

links between the ontologies and the genes and gene products in the collaborating

databases [SklOO]. The Gene Ontology is currently available in Flat File, FASTA,

MySQL, RDF-XML, OBO-XML and OWL formats. Members of the consortium

contribute to updates and revisions of the GO. Changes in GO occur on a daily basis and

a new version of GO is published monthly. As GO becomes larger and complexity arises,

it also becomes more difficult to control and maintain. To ensure consistency of the

modified ontology, all changes are coordinated by a few biologists in the GO editorial

office staff, who have write access to the Concurrent Versions System (CVS) [Ced]

repository in which GO files are maintained. The users can make requests for

modifications through an online system that tracks the suggestions and manages the

change requests. All tracking information about requests and changes are archived and

several curator interest groups have been established with associated actively archived

mailing lists [Har05]. The GO editorial staff notifies others of the changes via monthly

reports19 to the users (by email), or at the GO site. Different sources of suggested changes

in GO, as described by [Har05], are advances in biology that alter the knowledge of gene

and protein roles in cells; joining new groups that require new terms and relations; fixing

errors; completing unfinished parts of the ontology; updating legacy terms and improving

the formal representation of the ontology by identifying missing or misplaced

relationships and terms. One of the problems in Gene Ontology maintenance is related to

the versioning tool. CVS repositories, which currently handle versioning in GO, work

based on syntactic differences between ontologies. For instance, CVS is not able to

18 http://www.geneontology.org/GO.download s.shtml
19 http://www.geneontology.org/MonthlyReports

67

http://www.geneontology.org/GO.download
http://www.geneontology.org/MonthlyReports

differentiate class versions, being able only to differentiate text/file differences

[VEK+05]. The research on conceptualization change over time [VEK+05] is still

promising. The following statistics presented in [HKR08] show the average number of

added/deleted/obsolete changed concepts per month in the period from May 2004 to Feb

2008.

Ontology Addition Deletion Obsolete
GeneOntology 200 12 4

- Biological Process 146 7 2
- Molecular Function 36 3 2

'Biological process ™°™-Molecular function "*-™Cellular components

Fig. 2.5. Evolution chart in GO Ontology (Source: [DGL08]).

Also, some information about the rate of change in each one of the three sub-

ontologies of GO has been provided by [HKR08] in the same period, and through 44

versions.

68

Ontology |C|(startru |C|(latest) grow
GeneOntology 17368 25995 1.50

- Biological Process 8625 15001 1.74
- Molecular Function 7336 8818 1.20
- Cellular Components 1407 2176 1.55

II 6.1.2 UMLS Semantic Network

The Unified Medical Language System (UMLS) [MN95] is a composite of about 100

source vocabularies that contain 870,853 concepts and 2.27 million terms [UML08]. It

was created by the National Library of Medicine (NLM) to facilitate the development of

computer systems that behave as if they "understand" the meaning of the

biomedicine/health language. To that end, the NLM produces and distributes the UMLS

knowledge sources (databases) and associated software tools (programs) to system

developers for use in informatics research and in building or enhancing electronic

information systems that create, process, retrieve, integrate, and aggregate

biomedical/health data and information. The UMLS Knowledge Sources are multi

purpose, and can utilize a variety of data and information, such as patient records,

scientific literature, guidelines and public health data [UML08]. Due to the popularity

and multi-purpose nature of the UMLS, it seems to be a perfect candidate to study change

management. The UMLS Semantic Network covers different levels of granularities,

which have a key effect on interpreting the meaning that has been assigned to the

Metathesaurus concepts [FSU06]. Changes in the UMLS are usually recommended by

|C|(start) and |C[(end) are respectively indicating the number of concepts in first and last versions ; and
"grow" denotes the ratio between them [HKR08].

69

the UMLS contractors and others who have experimented with the previous versions of

the ontology. UMLS terms that share the same conceptual meaning are linked by a

concept unique identifier (CUI) [COS+98]. Two files called DELETED.CUI, which lists

deleted concepts, and MERGED.CUI, which lists all pairs of CUIs that were merged, are

associated with each new release of the UMLS [OET+96]. These files help users to

determine whether a CUI that is no longer present in the new version was removed due to

a deletion of the concept, or due to a merger of the concept with another concept

[OSS+99].

II 6.1.3 Clinical terms version 3 (The Read Codes)

The Clinical Terms Version 3 (CTV3)21 [OPR95, NHSOOa] or Read Codes are a set of

coded terms arranged in a hierarchical structure for use in clinical practice, with such

applications as viewing a patient's record from different perspectives (e.g., clinical audit,

producing reports, meeting central returns, research, etc.). The CTV3 classifies chemicals

by their name, i.e., alphabetically. The first version of Read Codes (CTV1) was initially

developed to provide a terminology for describing relevant clinical summaries and

administrative data for general practice. It is known as the 4-Byte Set since each code is

four characters long. In the next version (CTV2), the codes were subsequently adapted

for use in hospitals, and were extended to allow more detail. To hold more detailed

information, a supplementary alphanumeric character was included in the Read Codes (5-

Byte Sets) [NHSOOb]. CTV2 uses the code to specify a class and its unique place within

the taxonomy, which has a limited, fixed number of levels. The CTV3, with its flexible

structure unlike the previous versions, allows more changes in terminology [JMY04].

21 http://www.nhsia.nhs.uk/terms/pages/

70

http://www.nhsia.nhs.uk/terms/pages/

The Read Codes have been changed in each version (based on strict protocol under

central control of NHS) by adding terms and codes to fix the errors and reflect the newly

discovered knowledge (mostly to enrich the descriptions). Further alterations include

changes to qualifiers and atoms (semantic definitions), the hierarchical structure and the

mapping files [NHSOOa]. CTV1 and CTV2 changed relatively little between releases, due

to their rigid file structure that was limited to five levels of offspring, and about 60

siblings. The CTV3 "Description Change File" (DCF) [NHSOOa] shares the entire change

management procedure between "terminology providers" and "terminology users" (i.e.,

clinicians). The DCF starts by recommending a new code for any terminology discovered

to be incorrectly classified and suggesting that the user replace it. The process continues

by labeling the obsolete concepts as "extinct". An example from [NHSOOa] describes the

deletion of the relation between the terms 'Cardiac rupture' and 'Myocardial infarct',

which turned out to have the same code in CTV2, and the addition of a new code to

'Cardiac rupture' in CTV3.

We also consider some other popular controlled vocabularies in life science in the

following.

II 6.1.4 GALEN

Generalized Architecture for Languages, Encyclopedia and Nomenclatures in medicine

(GALEN)22 [RN94] has been modeled to represent clinical information to support

clinicians and is intended to "put the clinical into the clinical workstation" by generating

a formal multilingual coding system for medicine [Bee]. It originally evolved from the

Pen&Pad electronic medical record system [RNK91], which was modeled using

22 http://www.opengalen.org/

71

http://www.opengalen.org/

Structured Meta Knowledge (SMK), in the way that terms were described through

relationships to other terms. The core of GALEN is an ontology, the Common Reference

Model, formulated in a specialized description logic, GRAIL, that does not support the

use of disjunction or negation [RBG+97]. The GALEN community tries to enable the

system to recognize concepts with different GRAIL descriptors that are equivalent in

meaning. GALEN achieves expressiveness (the ability to represent the concepts

formally) by providing a compositional representation of concept representations. It

provides abstraction (defining generic categories of the concepts and the relations

between them) by allowing formal logical classifications of the concepts and supports

scalability and maintainability by using formal algorithms for consistency control

[RR05]. GALEN has been employed as a basis for studying nursing terminologies

[HR01], surgical vocabularies [TRR+00], anatomy [Don05], and decision support

systems [KarOl].

The major strengths of GALEN are the formal representation of clinical information

and the use of a formal structure based on description logic. GALEN also allows

"multiple views of relevant detail as needed" [Smi05]. From another point of view,

GALEN is not fully developed and it is not a comprehensive, stable ontology. In its

current state, GALEN contains some errors (e.g., Vomitus contains carrot [Smi05]),

which are not prevented by description logics. Also, many of the relations in GALEN

need to be reconstructed [RG04].

72

II 6.1.5 National Cancer Institute Thesaurus (NCIT)

The NCI Thesaurus23 (NCIT) [SCH+07] is an integrated description logic-based

terminology for supporting reliable coding and cross-translation research, based on

cutting edge molecular and clinical cancer-related information. The NCIT contains about

100,000 terms (divided among several taxonomies), 34,000 concepts, and more than 50

types of role relationships for describing diseases, abnormalities, drugs, chemotherapy

regimens, anatomy, gene, and proteins [CHS+04]. It was originally implemented using

Apelon24 and is now available in OWL (DL and Lite) format. The NCI uses the UMLS

Metathesaurus as a basis for its NCI Metathesaurus (published monthly). It includes

different cancer-oriented terminologies (prevention, treatment, and research), and assists

users in finding appropriate terms and translations corresponding to related biomedical

terminologies. A terminological and ontological analysis performed by Ceusters et al.

[CSG05] revealed several inconsistencies in the terms and their definitions in NCIT.

Some of the terminology errors have been inherited from the definitions in original

sources, particularly some of the characteristic inconsistencies of the UMLS [CSG05].

The updates in NCIT take place weekly for internal and monthly for external

baselines [CHS+04]. The editorial changes in NCIT are limited to the following actions:

creation, modification (addition/deletion), splitting, merging, and retiring [HFO+03].

Some of the NCI's retired concepts can be seen in Figure 2.6.

http://nciterms.nci .nih .gov/NCIBrowser/Dictionary .do
http://www.apelon.com/

73

http://nciterms.nci
http://www.apelon.com/

* Retired Concepts
o Breast Cancer Carboxv-Termiaal Domain
o S-uraical Adjuvant
o Monocyte Chemoaltractant Protein-1
o F A D P
o Chemokine C Motif X C Receptor 1
a GLI1 Gene
o HLH Motif
o Anti-inflatrjmatorv Agent
o G 12 13 Alpha
o Commercial or Non-CTBP I M P agent
o Physiologic Reproductive Process
o BR3C Protein
o Trefoil Farraiv Gene
o Physiologic Process
o Canton and Enderbary Islands
o Monoclonal Aatjbodv Therapeutic
o 14 3 3 Sigma Gene
o H M G Motif Genes
« Gold Coast
o Antiangiogenesis
D BCL2-Related Protein I Short Isoform
o Histocompatibifity Antigen Class I
o Neurodegenerative Disease Gene
o ^Kovel Ery$hropQiesis Stiremlatins; Protem
a TACC2 Protein
o Receptor Mediated Permeabffizer Agent

Fig. 2.6. Some of the NCI's retired concept25.

NCI Thesaurus is maintained on a COTS (Commercial Off-The-Shelf) basis for

terminology editing with public domain customizations as needed, mainly through the

publishing tools from Apelon [CHS+04], including:

• TDE26 (Terminology Development Environment): enables periodic exports of

change sets, conflict resolution, and publishing of new baselines. It logs

information related to creation, modification, and deletion. For managing changes

in NCIT, the TDE has been extended to support split and merge, and deletion has

been substituted with retirement [HFO+03].

• DTS27 (Distributed Terminology Server): enables data normalization, code

translation, comparisons of concept extensions, tracking, and localization (adding

25 Resource: www.mindswap.org/2003/CancerOntology/htmls/retired_kind.html
26 http://www.apelon.com/products/tde.htm
27 http://www.apelon.com/products/dts.htm

74

http://www.mindswap.org/2003/CancerOntology/htmls/retired_kind.html
http://www.apelon.com/products/tde.htm
http://www.apelon.com/products/dts.htm

concepts, synonyms, codes, etc.). It has been extended by including a DTS history

API28 to facilitate NCIT's history tracking [HFO+03].

The mechanisms for updating the NCI Metathesaurus and managing concept changes

over time by history tracking in the NCIT has been described in [NCI06, HFO+03]. Here

is the NCI's revisions statistics based on [HKR08] in the period of May 2004-Feb 2008.

Ontology Addition Deletion Obsolete

NCI Thesaurus 627 2 12

Ontology jC|(start) |C|(btest) grow

NCI Thesaurus 35814 63924 1.78

II 6.1.6 Health Level 7- Reference Information Model (HL7-RIM)

HL729-RIM is a set of standard vocabularies that aims to provide a UML-based standard

for the exchange, management, and integration of data to support clinical patient care and

the management, delivery, and evaluation of healthcare services. HL7 was adopted by

Oracle as basis for its Electronically health record (HER) support programs. It embraced

as US federal standard and also considered as a central part of a multi billion dollars

program for integration of all UK hospital information systems [Smi05]. HL7 has been

also accepted as the mandatory standard30 by Canada Health Infoway31. The relevant

healthcare information in the RIM has been organized into the six classes, namely: Act,

Entity, Role, Participation, Act-Relationship and Role-Link [HLR]. The ontological and

logical analysis performed in [Smi05b] and [VSC04] address several problems in HL7-

RIM, such as the problems of Circularity (some definitions fall into infinite regressive

28 Application Programming Interface
29 http://www.hl7.org/
30 HL7 Canada: http://sl.infoway-inforoute.ca/content/dispPage.asp?cw_page=infostand_h]7can_about_e
31 http://www.infoway-inforoute.ca/

75

http://www.hl7.org/
http://sl.infoway-inforoute.ca/content/dispPage.asp?cw_page=infostand_h%5d7can_about_e
http://www.infoway-inforoute.ca/

loops)32, logical incoherencies [VSC04], logical contradictions [Smi05], neglecting

objective states of affairs and real processes, also the failure to distinguish properly

between acts and documents [Viz04].

To be considered as a universal standard HL7 - with several known and unknown

problems and incoherencies - needs to go through constant rigorous revisions. In respect

to this issue, the HL7 standard includes a protocol version ID in all HL7 messages. The

mechanism for controlling the changes in HL7 has been described [HLS] as: addition of

new transactions or data elements to HL7, which are caused by changes in the Standard

or due to legitimate changes in the local implementation. Considering some defined

Encoding Rules, "new fields can be added first to the sending or source system; the

receiving system will ignore the new fields until it has been updated to use them" [HLS].

Often, these rules also facilitate changing the receiving system first. Until the sending

system is changed, the receiving system will find the new data field 'not present' and deal

with this according to its rules for data not present. Similarly, the HL7 Encoding Rules

support changes in data field sizes. Tables 2.1 and 2.2 demonstrate some of the new

added features and changes in HL7 standards, in transition from version 2.1 to 2.2 and

from version 2.2 to 2.3 respectively.

32 For example defining "person" as "a person with document" (i.e. An A is an A which is B) makes it
impossible to refer to As which are not Bs (e.g. to an undocumented person) [Smi05].

76

Table 2.1. Some changes in data elements of HL7 from version 2.1 to 2.2 (Source : Health Level Seven
Implementation Support Guide for HL7 Standard Version 2.3)

Segment/S*q
MSH-5
MSH-7
MSH-9
MSH-12
MSH-15

MSH-16

MSH-17
MSA-6
ERR-1
QRD-1
QRD-6

QRD-7
QRF-2

Nam*
Receiving Application
Date/Time of Message
Message Type
Version ID
Accept Acknowledgement
Type
Application
Acknowledgement Type
Country Code
Error Condition
Error Code and Location
Query Date/Time
Deferred Response
Date/Time
Quantity Limited Request
When Data Start

New

X

X

X

X

Change
X

X

X

X

X

X

X

X

X

Description
Length changed from 15 to 30
Length changed from 19 to 26
Datatype changed from ID to CM
Datatype changed froraNM to ID

Datatype changed from ID to CM
Length changed from 19 to 26
Length changed from 19 to 26

Length changed from 1.9 to 26
Length changed from 19 to 26

Table 2.2. Some changes in data elements of HL7 from version 2.2 to 2.3 (Source : Health Level Seven
Implementation Support Guide for HL7 Standard Version 2.3)

Segment/Sent
MSH-3

MSH-4

MSH-S

MSH-6

MSH-11

MSH-5 8
MSH-19

QRD-8

QRD-9

QRD-10

QRF-4
QRF-5
QRF-6
QRF-9
URD-3

URD-4

URD-5

Name
Sending application

Sending facility ID

Receiving application

Receiving facility

Processing ID

Character set
Principal language of
message
Who subject filter

What subject filter

What department data code

What user qualifier
Other QRY subject filter
Which date/time filter
When quantity/timing filter
R/U who subject definition

R/U what subject definition

R/U what department code

!few

X
X

X

Change
X

X

X

X

X

X

X

X

X
X
X

X

X

X

Description
Length changed from 15 to ISO. Data
type changed from ST to HD
Length changed from 20 to 180, data
type changed from ST to HD
Length changed from 30 to 130, data
type changed from ST to HD
Length changed from 30 to 180, data
type changed from ST to HD
Length changed from 1 to 3. data type
changed from ID to PT

Length changed from 20 to 60, data
type changed from ST to XCK
Length changed from 3 to 60, data type
changed from ID to CE
Length changed from 20 to 60, data
type changed from ST to CE
Length changed from 20 to 60
Length changed from 20 to 60
Table - remo\red value CAN

Length changed from 20 to 6G, data
type changed from ST to XCN
Length changed from 3 to 60. data type
changed from ID to CE
Length changed from 20 to 60, data
type changed from ST to CE

http://www.hl7.org.gr/assets/hl7implementationguide/HL7_implementation_guide.pdf
http://www.hI7.org.gr/assets/hl7implementationguide/HL7_implementation_guide.pdf

77

http://www.hl7.org.gr/assets/hl7implementationguide/HL7_implementation_guide.pdf
http://www.hI7.org.gr/assets/hl7implementationguide/HL7_implementation_guide.pdf

II 6.1.7 Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT)

SNOMED CT was generated by merging SNOMED Reference Terminology (RT)

[SCC97] with Clinical Terms Version 3 (CTV3). According to [NS08], SNOMED CT

includes 311,313 concepts (84% primitive and 16% fully defined) and 920,146 defining

relationships. SNOMED CT can be used in various browsers35 and is available in

different formats36, such as IHTSDO37 support format, containing the original flat tables

with information to concepts, descriptions, and relationships; description logic format

[BSK+07]; and Metathesaurus format in UMLS (April 2009)38. A list of ontological and

logical problems in SNOMED CT, which force the changes, can be found in [SSB07].

Spackman [Spa05] studied the rates of change in six subsequent releases over a period of

three years (July 2002 to Jan 2005). The diagrams [Spa05] in Figures 2.7.a and 2.7.b

illustrate the number of new active concepts added to each release and the number of

duplicate and ambiguous concepts identified and retired in each release respectively.

80O0

7000

6000 •

5000

4000 •

3000

2000 •

1000 -

-

-- —

Jul 02 Jan 03 Jul 03 Jan 04 Jul 04 Jan 05

3 Duplicate OAmbiguous

1800

1600

1400

1200

1000

800

600

400

200

0

-
...

i

I
— —

'

<

1

1 *

IT" "
Jul 0? Jon 03 Jul 03 Jan 04 Jul 04 Jan 05

00 0»)

Fig. 2.7. The number of (a) new active concepts added to each release; (b) duplicate and ambiguous
concepts identified and retired (Source: [Spa05]).

35 http://www.nlm.nih.gov/research/umls/Snomed/snomed_browsers.html
36 http://www.nlm.nih.gov/research/umls/Snomed/snomed_faq.html
37 The Int'l Health Terminology Standards Development Organisation (IHTSDO) (http://www.ihtsdo.org/)
38 http://www.nIm.nih.gov/research/umls/licensedcontent/snomedctfiles.html

78

http://www.nlm.nih.gov/research/umls/Snomed/snomed_browsers.html
http://www.nlm.nih.gov/research/umls/Snomed/snomed_faq.html
http://www.ihtsdo.org/
http://www.nIm.nih.gov/research/umls/licensedcontent/snomedctfiles.html

SNOMED is available as various snapshots of the current component status at a

specific release date. The original SNOMED CT history mechanism could not support

change tracking procedures for subsets and their membership [RefS06]. To solve this

problem, a "Reference Set specification" (RefSet) has been defined, which is an

extension of the original subset to enhance the change tracking mechanism, handle

different user preferences, and use cases and issue recommendations for the evolution of

other SNOMED CT elements [RefS06]. The ability to track each RefSet member and its

property over time will improve "incremental updates of SNOMED's content since last

synchronization, and facilitate time-sensitive queries for point in time retrieval of the

status of each component" [RefS06].

Recently, a system called Terminology Version (TV) Manager [IB08] has been

proposed for "searching and navigating in synchronized presentations of selected

versions of SNOMED CT" based on comparisons of the sub-trees of interest.

II 6.1.8 The Foundational Model of Anatomy (FMA)

FMA39 is a frame-based ontology (developed in Protege) that represents an evolving

source of explicit declarative knowledge about human anatomy and claims to be the most

complete ontology of canonical human anatomy in a high granularity from the

macromolecular to the macroscopic levels [RM03]. It primarily aims to expand the

anatomical content of UMLS, by consisting of over 70,000 concepts and 110,000

anatomical terms along with 168 relationship types, which cover over 1.5 million

relations between its concepts [CZ06]. FMA has been recently translated to OWL (DL

39 http://sig.biostr.washington.edu/projects/fin/AboutFM.html

79

http://sig.biostr.washington.edu/projects/fin/AboutFM.html

and Full) [NR08]. FMA includes three models, namely (i) the ontological model

(represents classes); (ii) the structural model (describes spatial and topological

relationships); and (iii) the transformational model (represents morphological changes)

[CZ06].

The FMA has been recruited in applications such as the Biolucida system [WB05] to

improve the capability of content authoring and knowledge presentation tools, functional

computer-administered exam systems, study aids, and an injury propagation modeling

environment, as well as haptic applications, such as surgery simulation [WB05].

II 6.1.9 Terminologia Anatomica (TA)

Terminologia Anatomica [Whi99] is a standard controlled vocabulary on human

anatomical terminology, developed by the Federative Committee on Anatomical

Terminology (FCAT). The TA's structure has been represented "through hierarchies of

headings, varied typographical styles, indentations, and an alphanumeric code implies

specific relationships between the terms embedded in the list" [RosOO]. All the changes in

TA can be granted by decision and approval of the FCAT members [RosOO].

II 6.1.10 Different Types of Changes in Biomedical Ontologies

Based on our research of the literature, observing different releases of ontologies,

surveys, and interviews with several domain experts and ontology engineers, we

distinguished about 74 different types of changes that frequently occur in life cycles of

existing bio-ontologies. These changes can be classified under 10 general terms: addition,

80

deletion, retirement (obsoletion), merging, splitting, replacement (edit or rename),

movement, importing, integration, or changes to file structure.

Table 23. Common changes in some of the existing popular bio-ontologies.

Type of
change

A
dd

iti
on

D

el
et

io
n

R
et

ir
em

en
t

(O
bs

ol
es

ce
nc

e)

M
er

gi
ng

Definition

Improving ontological structure by adding
one or more components to the available
makeup. The most common additions in the
observed bio-ontologies are of the
following elements: Namespace, identifier
code, concept, attribute, abbreviation,
super-class, sub-class, attribute value,
synonym, constraint (cardinality, type and
min/max, inverse roles, default value),
associative relationships (relationships to
other individuals), annotation description,
class-status (hidden/public), and instance.

Erasing the selected element(s) when it does
not reflect the ontological 'truth' anymore.
The most common deletions are of the
following elements: Namespace, identifier
code, concept, synonym, abbreviation,
annotation (description), constraint
(cardinality, type and min/max), attribute
value, super-class, sub-class, constraint
(cardinality, type and min/max, inverse
roles, default value), associative
relationships, annotation description, class-
status (hidden/public), and instance.

Deprecating an older element when a
newer, more functional element or meaning
supersedes it. The older version can be kept
somewhere for future use, but its usage will
be discouraged [Cim96a]. The retirement
can usually be seen for me concepts,
attributes, identifier codes, instances and
relationships.

The process of creating a consistent and
coherent ontological element that includes
information from 2 or more basic elements.
It can be seen as following: Merging two or
more concepts into one of the concepts or
into a new concept [Cim96a], two or more
attributes into one of the attributes or into a
new attribute, two or more associative
relations into one of the relations or into a
new relation, two or more identifier codes
into one of the codes or into a new code.

Observed
Ontology

Gene
Ontology

(GO)

Gene
Ontology

(GO)

Health
Level 7
(HL7)

Health
Level 7
(HL7)

Example

The curators at MGI, who were reviewing the
existing terms for comprehensive annotation of
mammalian genes involved in the regulation of
blood pressure, realized that the existing GO
terms were not sufficient to annotate genes
involved in the various processes that regulate
blood pressure. They then proposed 43 new GO
terms, which were discussed and refined with
other GO curators through the GO discussion
forum. They efforts yielded new annotations for
mouse genes directly involved in the process of
blood pressure regulation [GON06, GOB].

The GO terms must characterize biological
entities (i.e., functional activities that are
catalyzed by enzymes). The terms classified as
"Unknown" violated this principle, so the
decision was made to delete the following terms:
biological process unknown; GO:0000004,
molecular function unknown; GO:0005554 and
cellular component unknown; and GO:0008372
from the ontology. The new annotations signify
that a given gene product should have a
molecular function, biological process, or
cellular component, but that no information was
available as of the date of annotation [GON07b].

In the release 2.0 of HL7, the components:
ClinicalDocument.copyTime, MaintainedEntity,
CodedEntry, inkHtml.name,table.border, table,
cellspacing and table.cellpadding are retained for
backwards compatibility with HL7 Clinical
Document Architecture (CDA), Release 1.0, and
have been retired. Further use of these
components is discouraged [DAB+04].

In HL7, the purpose of the header is to enable
clinical document exchange across and within
institutions, facilitate clinical document
management, and facilitate compilation of an
individual patient's clinical documents into a
lifetime electronic patient record [DAB+04]. In
HL7's Clinical Document Architecture (CDA),
Release 2.0, two concepts in the header
(serviceactor and servicetarget) have been
merged [DAB+04].

81

Sp
lit

tin
g

R
ep

la
ce

m
en

t
(E

di
t,R

en
am

e)

M
ov

em
en

t
(T

ra
ns

iti
on

)
Im

po
rt

in
g

In
te

gr
at

io
n

C
ha

ng
e

to
 R

el
ea

se
 F

il
e

(F
ile

 S
tr

uc
tu

re
)

An ontological element may be split into
two or more new elements. This means that
a concept can be split into two or more new
concepts, an attribute into two or more new
attributes, an associative relationship into
two or more new relationships, or an
identifier code into two or more codes.

This process is for editing available labels
and values. This editing mostly happens to
change namespace, concept name, concept
definition, attribute value, attribute name,
attribute definition, and concept role.

The transition of one or more ontological
elements across the ontological hierarchy.
This transition can happen to identifier
codes, concepts, attributes, super-class, sub
class, associative relationships, and
instances.

Importing refers to the process of bringing
an existing ontology (a tree) or parts of an
existing ontology (sub-tree) into another
ontological structure.

In data integration, process data is extracted
from different sources with different data
formats, and then normalized into a
consistent syntactic representation and
semantic frame of reference [BCC+02]. The
semantic integration is more complex than
data integration.

By the advancement of technology for
storing and retrieving data files and the
emergence of new standards, the format of
file structures can be changed.

Terminologia
Anatomica

(TA)

Health
Level 7
(HL7)

Gene
Ontology

(GO)

Gene
Ontology

(GO)

Foundation
al Model of
Anatomy
(FMA)

Read
Codes

In TA, terms that share an id code are treated as
synonyms. But, this does not hold for sexually
dimorphic anatomical parts, such as 'Ovarian
artery' and 'Testicular artery'. These two share
the same TA code (A 12.2.12.086) and therefore
might be thought of as synonyms, but the two
arteries are distinct and have different
connections and other spatial relationships
[Whi99]. So, they have to be modeled as two
separated concepts, it means the code
A12.2.12.086 can be split into A12.2.12.086-1
for 'Ovarian artery' and A 12.2.12.086-2 for
'Testicular artery'.

A typical scenario [DAB+04] from HL7 Release
2.0 is a simple replacement of Clinical
Documented "1.2.345.6789.266" replacing
ClinicalDocumentid "1.2.345.6789. 123"

GO terms representing transporter activity in the
Molecular Function are gradually being
overtaken to better represent current scientific
knowledge. A new high-level term called
"transmembrane transporter activity"
(GO:0022857) was introduced. So, the related
child terms and sub-classes have been moved
under GO terms that describe the activity of the
transporters, such as channel activity, active
transporter activity, and symporter, antiporter
and uniporter activity [GON07c].

In 2001, the GO developers imported the first
pass40 annotation from SW1SS-PROT, trEMBL
and Ensembl [GOM01]. Also, 7316 GO
annotations were imported from Proteome and
literature associations [GOM01].

In order to meet the need for an expressive
ontology in neuroinformatics, the FMA
developers have integrated the extensive
terminologies of NeuroNames and Terminologia
Anatomica into FMA. They have enhanced the
FMA to accommodate information unique to
neuronal structures, such as axonal input/output
relationships [MRM+03].

In Read Codes, Ver. 1.0 four character codes
determined the position of a term in a hierarchy
(4-Byte Set). The restrictions imposed by only 4
levels of hierarchy led to the development of a 5-
Byte Set, which expanded the set to support
secondary and tertiary care. This set was released
in two structurally different versions. Ver. 1.0
has shorter terms and keys than Ver. 2.0. The
more complex Ver. 3.0 structure is a superset of
all old versions, and supports the character
structures of both Ver. 1.0 and Ver. 2.0
[RCS+97].

The annotations, which are derived with minimal human control and validation (e.g. initial results for a
sequence similarity) and produced with various annotation programs such as tRNA Scan, Blast, etc.

82

After monitoring the alterations in several popular biomedical ontologies one can see

that most of the changes are additions and deletions. For example, in the period May

2004 to Feb 2008, the changes in popular community standard Gene Ontology were

almost 92.6% additions41, and 5.6% deletions (see Figure 2.5), and for NCIT almost

97.8% additions, and 0.31% deletions (see Section II 6.1.5). The significant percent of

additions is quite natural, since most of the biomedical ontologies are still under active

development and ontology curators are adding new knowledge to their structure. These

percentages may differ when the ontologies enter the maintenance phase.

II 6.1.11 Challenges in Maintaining Existing Bio-Ontologies

We found out from the current state-of-the-art of change management in existing

ontologies in life science that formal change models with clear semantics are typically

not employed. The change management in current systems is mostly addressed implicitly

and takes place under human supervision. No matter how successful these change models

are, for the purposes for which they were designed, they all have problems in maintaining

their rapidly evolving structure because lack of formality and predictability. Most bio-

ontologies that were built according to the existing formal knowledge representation

models have not found widespread use in life science and health care applications

[OSS+99]. Current bio-ontologies are built for a particular purpose, such as literature

retrieval and there has been no goal to conform to a model that is useful for other

applications. Therefore, due to inconsistencies among change models of different

Although the given statistics is based on three types of changes in GO and NCIT, namely addition,
deletion, and obsolescence, but it is a good indication to show the large number of additions in compare
with other editorial activities in these ontologies.

83

ontologies, it is difficult to merge or share their content, therefore, it is not feasible to

track the effect of changes in one ontology on other ontologies in an integrated system.

II 6.2 Existing Tools to Support Ontology Change management

There are a few tools [HS04, Sto04] to manage changes in ontologies. These tools

include but are not limited to available ontology editors such as Protege [NFMOO] and

OntoEdit [SAS03], and TopBraid Composer [Top07]. Despite their differences, they all

assist users in implementing, updating and managing elementary changes in ontologies.

According to [Sto04, SM02], the most critical requirements for ontology editors in order

to be more robust in a changing environment are related to functionality, customizability,

transparency, reversibility, auditing, refinement and usability. Other available tools

include but are not limited to Concurrent Version System (CVS) [CedJ, CONCORDIA

[OS00], KAON [MS03, GSV04] Ontology management tool, OntoView [KFK+02],

OntoManager [SSG+03], TextToOnto [MV01], SWOOP [KPS+06b], DogmaModeler

[Jar05], SemVersion [VEK+05], and DINO [NLH+08]. Table 2.4 represents some of the

popular ontology editors and management tools with their descriptions.

84

Table 2.4. Some of the ontology editors and management tools.

Tool

Pr
ot

eg
e

[N
FM

O
O

]
(v

er
. 4

.0
 b

et
a

w
ith

 w
eb

 2
.0

 s
up

po
rt)

T
op

B
ra

id
 C

om
po

se
r

[T
op

07
]

SW
O

O
P

[K

PS
+0

6b
]

Description

A popular ontology design environment with support for RDF and OWL
ontologies. It provides some editing facilities such as:
adding/deleting/renaming ontological elements, undo/redo of changes and
version archiving [LAS05]. Protege also includes plug-ins such as
PROMPT for managing multiple ontologies. It can compare versions of the
same ontology, merge two ontologies into one and extract part of an
ontology [NM03]. PromptDiff [NM04] also can determine the changes
between two versions. Recently a new ontology reviser plug-in for Protege
4.0 has been introduced in [RW08], which helps performing some
contraction and revision operations in DL ontologies. The reviser has been
implemented using the OWL API42 and the OWL DL reasoner Pellet
[RW08].

A commercial ontology editor that supports editing RDF Schemas and
OWL Ontologies, as well as executing rules and queries in the SPARQL
Protocol and RDF Query Language (SPARQL) [Bec06] and the Semantic
Web Rule Language (SWRL) within a multi-user environment. It manages
multiple versions of ontologies by using the following set of rules. Any
changes to the statements are written into the source ontology. If the
change is "overtyping" an entry, it will be saved in the original ontology as
an update. In case of the "deletion" of an entry and then the "addition" of a
new one, the deletion would be done in the original file and the new triple
would be saved in the existing file. Also, by changing any class, the
composer scans to see if there are any other ontologies that import this
class. It keeps a log of the changes that is accessible from the Change
History view. Unsaved changes can be undone. To prevent accidental
changes, a file can be defined as "read only".

A web ontology browser and editor, built based on the Model-View-
Controller (MVC) paradigm [GHV04] for OWL ontologies. SWOOP
consists of a version control unit, which aims for managing different
versions by defining a set of annotation classes (i.e. ontology changes),
logging all changes and processing the logs. Within the SWOOP OWL
API each possible change type has a corresponding Java class, which is
subsequently applied to the ontology and allow for the representation of
changes, as well as metadata about the changes [KPS+06b].

http://owlapi.sourceforge.net/

85

http://owlapi.sourceforge.net/

C
on

cu
rr

en
t

V
er

si
on

 S
ys

te
m

(C

V
S)

43

[C
ed

]

C
O

N
C

O
R

D
IA

[O

S0
0]

o
5 >

o °.
•v o
* * (Z)

O
nt

oV
ie

w

[K
FK

+0
2]

Supports basic version control functionality and maintains a history of the
changes. CVS can reveal syntactical and textual differences between two
files. It mostly works on the syntactic level. Since ontology versioning and
change management need operations on the conceptual level rather than
the syntactic level, CVS might not seem an appropriate tool for ontology
change management [VG06]. However, CVS can provide basic support for
managing structural changes in RDF and OWL files.

A model for managing divergence in concept-based terminologies,
developed to facilitate the study of synchronization in health care
terminologies. CONCORDIA uses the models of Medical Subject
Headings (MeSH) [NJH01], ICD-9-CM [Cim96a], and ICD-10. It enables
one to manage 27 different kinds of changes, such as adding, deleting,
retiring, or merging concepts, terms or attributes [OS00]. CONCORDIA
does not provide any services to log motivations for the changes [CS06].

An integrated open-source ontology management system targeted at
semantics driven business applications, KAON components can be divided
into 3 layers: (i) The applications/services layer realizes user interface
applications and provides interfaces to non-human agents; (ii) The API,
which is the major part of KAON, checks the validity of change sequences,
and also requests user approval for performing a change, justifies the
necessity of a particular change, executes the modifications, reverses the
effect of some undesirable changes and keeps a history of changes; (iii)
The data and remote services layer provides data storage facilities. See
[GSV04] for more information.

A web-based system that assists users in handling ontology evolution. The
system helps to keep different versions of web-based ontologies
interoperable by maintaining the transformations between ontologies and
the relations between concepts in different versions. OntoView was
inspired by and can be considered a Web interface for CVS. OntoView
compares ontologies at a conceptual level, analyzes effects of changes
(e.g., by checking consistency and highlighting the places in the ontology
where conceptually changed concepts or properties are used) [KFK+02])
and utilizes changes.

www.nongnu.org/cvs
http://kaon.semanticweb.org/

86

http://www.nongnu.org/cvs
http://kaon.semanticweb.org/

O
nt

oM
an

ag
er

[S

SG
+0

3]

T
ex

tT
oO

nt
o

[M
V

01
]

•3-•—
11

"« , ,

« °*
S ^
b*
o

Q

Se
m

V
er

si
on

[V

E
K

+0
5]

D

IN
O

[N

L
H

+0
8]

Has been designed to assist ontology managers in managing ontologies
according to the users' requirements. The technique used to evaluate users'
needs depends on the information source by tracking user interactions with
the application in a log file. The OntoManager consists of three modules:
(i) The data integration module, which aggregates, transforms, and
correlates the usage data; (ii) The visualization module that presents the
integrated data in a comprehensible visual form; and (iii) The analysis
module, as the major part of the change management, provides guidance
for adapting and consistently improving the ontology with respect to the
users' requirements. This module keeps track of the changes and has the
ability to undo any action taken upon the ontology.

A tool suite built upon KAON in order to support the ontology engineering
process by text mining techniques. Since TextToOnto does not keep any
references between the ontology and the text documents it has been
extracted from, it does not allow for mapping textual changes to the
ontology. Therefore data-driven change discovery is not supported by this
tool.

DogmaModeler is an ontology modeling tool based on Object Role
Modeling (ORM) [HalOl]. It is intended to be used for modeling,
browsing, and managing domain and application axiomatizations,
automatic composition of axiomatization modules, verbalizing
application axiomatizations into pseudo natural language and other
tasks described in [Jar05].

SemVerion |VEK+05] is an RDF-based ontology versioning system that
separates the management aspects of the problem from the versioning core
functions [FMK+08]

Dynamic INtegration of Ontologies (DINO) aims for integration of the
knowledge in data-intensive and dynamic biomedical domains based on the
negotiation of agreed alignments, inconsistency resolution and natural
language generation methods. [NLH+08].

As can be seen from the current state-of-the-art change management in existing

ontologies in life sciences, the current biomedical ontologies do not follow any standard,

consistent, formal change models with clear semantics. Most of the available tools are

just simple ontology editors with a few extended features. Some parts of ontology

evolution, such as the change representation and conceptualization change, are not

http://www.jarrar.info/Dogmamodeler/

87

http://www.jarrar.info/Dogmamodeler/

satisfactorily managed by existing tools and they are left to be handled by the users. The

major issues in available ontology management tools can be summarized as: (i) Too

much reliance on human decisions due to lack of fully automatic ontology change

management tools and too much dependency of the existing systems on the human factor

[HS04], which both give rise to several issues relating to complexity, accuracy, security

and reproducibility [FI0O6]; (ii) Representation and tracking of complex changes using

available technologies are limited; (iii) Lack of formal evaluation methods, which makes

the comparison and evaluation of different algorithms extremely difficult [FI0O6]; (iv)

Little or no support for conceptualization change management; (v) Change models that

have been designed based on time/space independent ontologies; and (vi) Lack of a

precise benchmark forecast for anticipating nature changes; (vii) Representing knowledge

in dynamic environments is still challenging; (viii) The consequences of a change cannot

be represented. An important open question about ontology evolution is: How can a

machine decide on the best solution to implement a change from different available

alternatives?

II 6.3 Employing Logics for Ontology Maintenance

Logics provide frameworks to describe the underlying semantics of ontologies. Two

families of logic which are broadly being used in knowledge representation are

Description logics and Fuzzy Logics. This section presents a quick review of these two

and provides an introduction to the new compound logic, Fuzzy-DL and its relation to the

ontology evolution tasks.

88

II 6.3.1 Description Logics and Ontology Evolution

In order to analyze effects of changes, one can use a DL reasoner such as RACER to

automatically verify the changes and the specified conceptual relations between versions.

RACER can help for checking the consistency of the ontology and look for unexpected

implied relations. The authors in [RSS02] and [LLM+06] present interesting implications

for updating dynamic DL-based knowledge bases.

II 6.3.2 Description Logics and Temporal Reasoning

Knowledge representation needs theories, applications and tools for expressing structured

knowledge, accessing and reasoning with it [FVK+00]. In order to formalize time-based

domains one can use description logics for temporal reasoning as proposed by Schmiedel

[Sch90, Sch91]. The DL system BACK [Pel91] was inspired by this idea. Later,

following the standard approaches in the representation of time, both interval-based and

point-based approaches have been studied, specifically focusing on the decidability and

complexity of the reasoning problems [BCM+03]. An interesting application of temporal

description logics for reasoning about temporal conceptual models has been presented in

[Art04]. Also a survey of temporal extensions of DL can be found in [AE01].

One of the main issues in temporal DLs is related to reasoning. Reasoning in

temporal description logics that discriminate between past and future changes is generally

undecidable [ALT07]. A multi-dimensional description logics has been proposed in

[ALT07] by combining the modal logic with the description logic to support reasoning

about change - without discriminate the past and future changes - by allowing to express

the changes in concepts and roles over time [ALT07].

89

II 6.3.3 Fuzzy Logics: Towards Finding a Solution to the Old Puzzle

Recalling the discussion about Sorites in Section II.2 (Philosophy), philosophers tried to

combine sets and logic in order to analyze language. One common idea is that the

predicates of our language correspond to sets. So the predicate "is a heap" corresponds to

the set of all heaps [Aub90]. What the Sorites tells us is that there will always be a

questionable case about whether something is a heap. Apart from threatening the attempt

to analyze predicates of a language, the Sorites throws a doubt on the ability of

propositional and predicate calculus to describe the way the world is. The law of identity

(a=a) and the law of non-contradiction '-(p&'-p) are two fundamental axioms of classical

logic. The Sorites challenges both. It challenges the law of identity because it seems to

come up with the result that something that is a heap is also not a heap. For the same

reason it also challenges the law of non-contradiction [Rom99].

To answer this paradox, contemporary thinkers reconsider the classical logic's

principle which says that truth is binary: true and false. Fuzzy set theory (and before,

multiple-valued logics proposed by Lukasiewicz [Tom99] in 1918) has modified this rule

by stating that a degree of truth is an abstract notion that cannot be directly measured as

such [DP97]. Then, one can think of sentences as being very "true", "fairly true",

"reasonably false", "completely false" and so on. Multiple-valued logics [Tom99] and

fuzzy logics [Zad65] are created based on this new idea. The notion of a fuzzy set has

been introduced by L. Zadeh [Zad65] in order to formalize the concept of gradedness in

class membership, in connection with the representation of human knowledge. As an

example in fuzzy logic it is true to say of an oval that "it is round" and to say the same of

a rectangle, despite the fact that neither is really round. One of the challenges in

90

conceptualization change management is comparing different versions of ontologies and

finding similarities and differences. One way to do this is to get benefit from fuzzy logics

to find the various degrees of similarities between new and old conceptualizations. In

other words, one can find the "degree of truth" in ontologies represented by fuzzy

propositions [DP97].

II 6.3.4 Fuzzy Description Logic

With advances in technology about fuzzy and uncertain knowledge management there are

many efforts to apply these techniques in description logics [GL05, GL02, StrOl,

BDG06, Yen91] to represent uncertain and vague knowledge in the Semantic Web

[LS06]. The main motivation of using fuzzy techniques in DL is to identify concepts and

notions that cannot be properly defined with an "exact" numerical bound [BCM+03]. For

example, the concept of "Acting in low pH" cannot be always defined with an exact

boundary for low pH, but must be represented with a membership or degree function

[BCM+03], which expresses low/high pH in a continuous way.

It seems an interesting initiative to extend OWL using fuzzy technologies. Ding et al.

[DP04] also extends OWL using probabilistic knowledge. In fact, uncertain knowledge or

vague concepts is as important as probabilistic knowledge in the real world. In [Str05] the

authors try to extend OWL by encoding fuzzy constructors, axioms and constraints

(denoted FOWL) and map semantics of new fuzzy terms to fuzzy description logic. The

extended OWL can directly resolve fuzzy inference questions by a constraint propagation

calculus. A fuzzy description logic and constraint propagation calculus, fuzzy

constructors, axioms and constraints in RDF/XML and also a set of translation rules from

91

OWL to FOWL can be seen in [Str05, GL02]. Fuzzy description logic can present vague

concepts and roles (from the point of fuzzy sets [DP04]) as well as interoperates in these

concepts and roles. Reasoning algorithms are also provided for computing fuzzy

subsumption within the framework of tableau-based methods [BCM+03].

A reasoner called FuzzyDL [Str] has been recently developed for fSHIN(D). It is a

free Java/C++ based reasoner for fSHIN(D) with concrete fuzzy concepts. FuzzyDL aims

to provide a procedure to compute the maximal degree of subsumption and instance

checking with respect to a general TBox and Abox [Str]. It supports Zadeh's semantics,

Lukasiewicz semantics and is backward compatible with classical description logic

reasoning [Sat]. The efficiency of FuzzyDL is still under investigation. For syntax and

some examples of FuzzyDL one can refer to [Str].

II 6.4 Change Management for RDFS/OWL Ontologies

There are three main activities involved in managing ontology change. Firstly we need to

identify changes, secondly describe these identified changes, and finally describe and

implement the changes. Standard languages for encoding ontological knowledge on the

web, such as the RDF schema (RDFS) [Bri04] and the Web Ontology Language (OWL)

[BVH+04] provide some basic mechanisms for managing the evolving structure of

ontologies. In [Kal06], a framework for change management in RDFS/OWL ontologies

has been proposed. Also [Cha-1] and [Cha-2] provide studies for RDFS/OWL ontology

evolution in two aspects: change in names and change in metadata with focus on OWL

Full with maximum expressiveness but lack of full computational support.

92

II 6.4.1 Change in names

Currently changes in names for RDFS/OWL ontologies and ontology versions are

handled by assigning a URI to the ontology, and also to each "snapshot" or "version" of

the ontology. Two examples of name changes have been studied in the wine and the food

ontologies [Cha-1].

II 6.4.2 Changes in Metadata

Metadata provide annotation for existing data. Creating metadata can support change

management for RDFS/OWL ontologies [Cha_2] and control versioning. In current OWL

ontologies two types of metadata are widely used:

I. OWL Annotation Properties: OWL facilitates ontology classes, properties and

instances to be annotated with various pieces of metadata. These metadata are mostly

being used to keep auditing or editorial information. For example, some predefined

OWL annotation properties are comments, versionlnfo, label, seeAlso and

isDefinedBy. When we use a description logics based reasoner such as RACER all

annotation properties are ignored and considered as comments by the reasoner.

OWL-DL which is the selected language for The FungalWeb Ontology, supports

maximum expressiveness without losing computational completeness and

decidability of reasoning systems, but unlike OWL-Full it has some restriction for

using annotation properties [BVH+04]. The sets of different properties (object,

datatype and annotation properties) must be disjoint. It means, for example,

owhversionlnfo is not allowed to be defined as a datatype and an annotation property

93

at the same time. Also annotation properties must not be used in property axioms.

So, specifying domain or range constraints and sub-properties for annotation

properties is not allowed.

II. Dublin Core Metadata: The Dublin Core [Dub] can be used to specify a set of

metadata elements that can be used to annotate various elements of an ontology with

information such as 'creator', 'date', 'language', 'publisher', 'title', 'modified',

'issued'. These annotations can be use for change management purpose.

II 6.4.3 Dynamic O W L for handling the changes

A Dynamic OWL (DOWL) language [AY03] has been proposed for describing ontology

changes. DOWL can be represented in the RDF abstract syntax which enables one to

describe the effects of a change in a more formal manner. This formalism can provide the

basis for an automated ontology change management system. It is claimed that DOWL

provides a necessary and sufficient set of operators for expressing changes in an OWL

ontology. DOWL formalism is set in the context of the OWL by extending the RDF

compatible model theoretic syntax and semantics for OWL [AY05].

Despite all the efforts, creating a standard web ontology language to capture and

represent the evolving structure of ontologies remains a difficult challenge [HVD02].

Another effort in OWL-DL ontology change management is OWLMeT (OWL-

MetricTime) [KLG+07], which is grounded on the Metric temporal description logic with

a temporal query language. It aims to trace the changes of each ontological element

through time and determine the status of the ontological elements at a specific time point.

94

It introduces the special sort of a nominal (temporal nominal) for ontology versions

[KLG+07] and uses an extended version of the DL-reasoner Pellet for temporal querying.

II 6.5 Summary of Section II.6

Biology and medicine are known as two fields with continuous evolution. Many

healthcare applications must deal with the problem of change in order to keep their

scientific knowledge up-to-date and valid. One of the important activities in knowledge

representation and bioinformatics is properly responding to changes and coping with the

ontological evolution. Research on ontology change management is an ongoing effort

that is still in its early stages. In this section, we reviewed some of the available tools and

techniques for maintaining biomedical ontologies and we have shown that they still have

long road ahead to be considered for practical usage due to following issues:

- Lack of formal change models with clear semantics

- Inconsistencies among change models and log models

- Too much reliance on human decisions

- Reproducibility of the results cannot be guaranteed

- Little or no support for the representation of complex changes

- Lack of formal evaluation methods

- Little support for handling changes in conceptualization

In addition, we presented different types of potential changes in biomedical

ontologies, and we tried to show actual evidence of these changes in some of the most

popular ontologies in health science. Knowing different types of changes can help

knowledge engineers model their ontologies accordingly. Through these insights into

95

what can actually be changed in a typical bio-ontology, we begin to find an answer as to

how we can manage and control this non-stop evolution. One of the issues in the

ontology evolution process is the lack of formal change models with clear and

comprehensible semantics. We will discuss this issue further in Chapter III.

96

III. The Framework for Change
Management

The purpose of this chapter is to describe and analyze our
proposed agent-based framework, namely RLR, for change
management in biomedical ontologies. Moreover, in this
chapter we explain the formalism chosen to support our
framework and its potential to represent and analyze evolving
ontologies in various levels of abstraction, independent of
domain and implementation language. The use of category
theory and hierarchical distributed graph transformation for
realizing the semantics of evolving distributed ontologies in
RLR will be utilized.

97

III.l Evolutionary Taxonomy of Fungi: A
Motivational Scenario

"The hierarchy of relations, from the molecular
structure of carbon to the equilibrium of the
species and ecological whole, will perhaps be
the leading idea of the future."

Joseph Needham (1900-1995)

III 1.1 Fungi Phytogeny and Evolution

Fungi are widely used in industrial, medical, nutritional and biotechnological

applications. They are also related to many human, animal and plant diseases, food

spoilage and toxigenesis [BAP+02]. Fungi are also interesting because their cells are

surprisingly similar to human cells [MRC06]. The reason for this is that fungi split from

animals about 1.538 billion years ago—nine million years after plants did—therefore

fungi are more closely related to animals than to plants [NHI94]. It is estimated that there

are about 1.5 million fungal species [Hey95] on the earth, but only about 10% of those

are known and only a few of the known fungi have an identified usage, such as yeast for

making bread, beer, wine, cheese and some antibiotics [MRC06]. A small percentage of

discovered fungi have been linked to human diseases, including dangerous infections.

Due to the similarities between human and fungal cells, treating the fungal diseases can

be risky. Any medicine that kills the fungus can also damage the human cells. Thus,

knowing more about fungi and the correct identification of each fungal species is crucial,

and can improve the quality of fungal-based products and help to identify new and better

98

ways to treat serious fungal infections in humans. Fungi are also the main source of

agricultural and plant diseases, so identifying them will aid us in tracking and controlling

these diseases [MRC06].

Typically, fungal evolution studies have been based on comparative morphology,

cell wall composition [Bar87], ultrastructure [Hea86], cellular metabolism [LeJ74], and

the fossil records [HKS+95]. Recently, by advances in cladistic and molecular

approaches, new insights have emerged [GGS99]. Some other new identification methods

are based on immuno-taxonomy and polysaccharides [GGS99], which are highly suited

antigens for the identification of fungi at the genus and species level [NDW+88]. The

following fungal chemical substances are also used as complementary characters to the

classical morphological taxonomy of fungi: proteins, DNA, antigens, carbohydrates, fatty

acids and secondary metabolites. One can find a review of the methods for employing the

substances in [FBA98]. These substances are very valuable at many taxonomic levels,

and they play an increasing role in the clarification of the phylogeny (a classification or

relationship based on the closeness of evolutionary descent) of fungi [NDW+88]. At the

moment, the phylogenetic relationships between fungal taxa are still uncertain and

controversial [GGS99].

I l l 1.2 The FungalWeb Ontology

For the application scenario, we have applied our method for managing changes to the

FungalWeb Ontology [SBH+05]. The FungalWeb Ontology is a formal ontology in the

domain of fungal genomics, which provides a semantic web infrastructure for sharing

knowledge using four distinct sub-ontologies: enzyme classification based on their

99

reaction mechanism, fungal species, enzyme substrates and industrial applications of

enzymes. The ontology was developed in OWL-DL by integrating numerous online

textual resources, interviews with domain experts, biological database schemas (e.g.,

NCBI [WCL+00], EC, NEWT [PPF+03], SwissProt [BaiOO], Brenda [SCE+04]) and

reusing some existing bio-ontologies, such as GO and TAMBIS [BBB+98].

* /
omott* X
" " I T " WUANCK

MIAMO tnrtm ms

Vmimfi KMpiw

BRENDA
rzvs; .;£>.«-; *<».i;i--J;n

Smmmm
WMDA feSssssPS

K&GO
KCfi! kscRumy cfei 8 «

imm
Qoxmnml Etsyw Vtattes

imimm
[—^—_

nm
W>m

0
*i

Cswqrf*
' 35
211

H~l3¥~"
L 22-

6

Fig. 3.1. The FungalWeb Ontology and its major resources.

I l l 1.3 Name changes in Fungal Taxonomy

Most fungal names are not stable and change with time. Fungal names reflect information

about organisms, and as our understanding of the relationships among taxa increases,

names will be forced to change so that they do not implicitly contradict the data [Cro05].

Most names are currently based on the phenotype (visible characteristics of an organism).

100

As more data become available, however, we run into various problematic issues, such as

convergent evolution, seen as the evolution of the same form in different families and

even orders, so that similar anamorphs (the imperfect (asexual) state of a fungus) may

have completely different, unrelated teleomorphs (the sexual stage in the life cycle of a

fungus, considered the perfect stage). These names then have to change, as they no longer

convey the correct information to the user [Cro05]. These name changes may cause

confusion and affect the validity of different queries. Take for instance Acremonium

Link, a simple anamorph morphology which is known to have affiliations to more than

20 different teleomorph genera [GBP+96], or as another example consider Cladosporium

Link, which probably includes more than 20 different genera (Crous, unpublished data).

Verticillium Nees [ZGC00], Coniothyrium Corda [LSG+04] and Mycosphaerella

Johanson / Sphaerulina Sacc. [CGM+04] and a few more links [Cro05] are some other

examples, which face with this issue. A more specific example about eyespot disease in

cereals and issues related to naming its associated fungi has been described in [CGG03].

The morphological conceptualization is not sufficient, and will no longer work

because all names based only on morphology have to be re-evaluated. In addition, the

phylogenetic-based conceptualization has its own limitations, as sometimes the decision

of where to draw the line between different species is not easy to make [Cro05]. Another

issue in fungal taxonomies is dual nomenclature (two names for one organism) due to the

anamorph/teleomorph debate [Cro05]. This is caused by the fact that it is frequently

impossible to say when an asexual state belongs to a specific sexual state without the

backup of molecular data. A study on revision of the fungi names [LSM+98] shows that

101

between 1960 and 1975, 212 names of foliicolous lichenized fungi were described or

used by A.C. Batista and co-workers.

Managing name changes: We are currently in the middle of a revolution in fungal

taxonomy [Cro05]. Names are linked to data. Older names are mostly classified based on

small data sets (largely phenotypic), and therefore they are subject to change. How can

biologists deal with this process of continuous change? To answer this question, one

needs to refer to the nature of ontological structure, where names in taxonomy are only

meaningful and valuable once linked to descriptive datasets that were extracted from

various databases and literatures and managed in an integrated environment. The

incorporation of DNA data is also needed to ensure stability in names and reliable species

recognition. Through future advances in the technology, biologists hope to preserve the

fungal taxonomy from change by using unique DNA signatures and species identifier

numbers to recognize the species rather than using the names [CG05]. There are currently

databases such as MycoBank [CGS+04], which link fungi names to their DNA sequence

data, pleomorphic states, herbarium specimens, descriptions, illustrations and related

publications, etc.

By 2005 only about 16% of 100,000 known fungal species have been represented by

DNA sequence data [Cro05], which is approximately 1.1% of the estimated 1.5 million

species on Earth, thus it seems that a very low percentage of the already discovered

fungal species are in fact being preserved from the change [Haw04]. The changing

nomenclature of medically important fungi is often very confusing. Currently, some of

the pathogenic fungi have a very unstable taxonomy. For instance, the name of the fungi

Allescheria boydii, which can cause various infections in humans, was changed to

102

Petriellidium boydii and then to Pseudallescheria boydii within a short time [OAD+92].

Consequently, the infections caused by this organism were referred to as allescheriasis,

allescheriosis, petriellidosis, and pseudallescheriosis in the medical literature [OAD+92].

In order to manage the changes in fungal names and clarify the ambiguities, the

Nomenclature Sub-Committee of the International Society for Human and Animal

Mycology (ISHAM) published its regulations for mycosis nomenclature [OAD+92,

OR95]. Based on these regulations, a disease should be given a meaningful, descriptive

name, while in the traditional disease taxonomies, the names "fungus+sis" indicate only a

causative fungal genus that could be highly influenced by the taxonomic changes.

Additionally, under the new regulations, the value of names of the "pathology A due to

fungus B" construction was emphasized [OR95], e.g., "subcutaneous infection due to

Alternaria longipes" [GGS99].

I l l 1.4 Changes and Revisions in Taxonomic Structure

Through advances in molecular biology and changes to the fungal nomenclature, one can

expect changes in taxonomical structure and relationships. Here are some examples:

Example 1; Glomeromycota was discovered in 2.001 .[SSWO 1] as a new fungal phylum.

The arbuscular mycorrhizal (AM) fungi and the endocytobiotic fungus, Geosiphon

pyriformis, are analyzed phylogenetically by their small subunit rRNA gene sequences.

By studying their molecular, morphological and ecological characteristics, it is

discovered that they can be separated from all other major fungal groups in a

monophyletic clade [SSW01]. Consequently, they are removed from the polyphyletic

Zygomycota, and relocated to a new monophyletic phylum, the Glomeromycota, with

103

four new orders: Archaeosporales, Paraglomerales, Diversisporales and Glomerales

[SSW01].

Example 2: The sedge parasite Kriegeria eriophori has never been satisfactorily

classified, because a number of its characters at the gross micromorphological and

ultrastructural levels appeared to be autapomorphic [SFM99]. By advances in the

nucleotide sequence data approach that provides more information than standard

morphological approaches, some of the ultrastructural characters were discovered to be

synapomorphies for a group containing K. eriophori and Microbotryum violaceum. These

characters serve to define the new subclass Microbotryomycetidae [SFM99].

Figure 3.2 represents how the place of the concept "pH optimum" has been changed

within the FungalWeb taxonomy (ver. 2.0) by adding the new concept "Functional

Property".

Enzyme
has

-•jpH-Opfaum

M0»t Version 1

Enzyme has
9-

1 •WOnt Version 2

Functional Prop,

T
pH-0pinwn

Fig. 3.2. A simple change in taxonomical structures of two consecutive versions of the FungalWeb
Ontology (FWOnt).

The problem of Unspecified Fungi: As mentioned before only a small portion

(around 100000) of 1.5 million fungi species are described. It means almost 1.4 million

fungi are still unspecified due to the lack of knowledge. Clearly, as the knowledge about

fungi species grows and new methods become available by discovering new species

104

[HR97], one can anticipate a fundamental change in the current fungal taxonomy

structure. In the meantime using reliable approaches to ensure stability of fungal

taxonomy by describing the names based on verifiable data and not on opinions and

statements is still promising.

Ill 1.5 Summary of Section III.l

For the meantime, the categorization of fungi is controlled by the International Code of

Botanical Nomenclature (ICBN) [GBB+94] as adopted by each International Botanical

Congress. ICBN primarily aims to provide a reliable scheme for naming taxonomic

groups, avoiding and rejecting names which may cause error, vagueness, or any

confusion [GGS99]. Any proposed changes to the Code are published in Taxon, the

official journal of the International Association for Plant Taxonomy, and then discussed

in the Congress for approval [GGS99]. The strict application of the Code frequently leads

to name changes for nomenclatural rather than scientific reasons [Haw93]. This causes

confusion among users, who do not usually understand the reasons for the changes.

The changing nomenclature of fungi of biotechnological, industrial and medical

importance is often tremendously confusing for workers in the applied field [Sam91].

Many of the pathogenic fungi have a very unstable taxonomy, which may cause fatal

errors in highly critical medical knowledge based systems. In the rest of this chapter we

will introduce our formal agent-based approach for consistently managing this non-stop

evolution.

105

III.2. The Multi Agent Based Framework

It has been said that man is a rational
animal. All my life I have been searching
for evidence which could support this.

Bertrand Russell (1872-1970)

III 2.1 On the AI Completeness of Change Management for
Biomedical Ontologies

The term Al-complete46 (or Al-hard) [SA07] is commonly applied to certain

computational problems in artificial intelligence whose difficulty is equivalent to solving

the central artificial intelligence problem, i.e., making computers as intelligent as

humans. Some such problems can be found in computer science when one deals with

topics like computer vision, planning, natural language understanding, and so on. One of

the classic Al-complete problems occurs when one needs to manage unexpected

situations and deal with changes while planning for a real world critical system. Critical,

in this case, means when the failure or malfunction of the system may result in severe

loss [Ave09]. One may find excellent examples of life support critical systems based on

massive integrated knowledge bases in health science, dealing with the health and life of

a patient, the failure of which is intolerable.

As bio-ontologies are constantly being revised, each revision potentially makes the

ontology more susceptible to future changes. Moreover, the biomedical knowledge bases

are extremely dynamic [ECP+02], as they tend to be openly reused, and integrated by

46 Wikipedia: http://en.wikipedia.org/wiki/Al-complete

106

http://en.wikipedia.org/wiki/Al-complete

other existing knowledge based systems in the distributed dynamic semantic web

environment, where new pieces of elements connect and existing parts are removed, and

the representation formalisms and the governing rules themselves are unpredictably

volatile. Auditing and controlling all these change in large complicated biomedical

ontologies, as seen in Section II.4, is simply beyond human ability. In this section,

software agents are proposed as a remedy to assist the human factor (here, the ontology

engineer) in overcoming this issue.

Ill 2.2 Multi-Agent Systems and Patterns of Change

According to Wooldridge [Woo09], agents act to meet their design objectives by carrying

out autonomous actions in their environments. They achieve their goal through their

actions: reactivity (perceiving the environment and responding in a timely fashion to

changes that occur, in order to satisfy their design objectives); proactiveness (exhibiting

goal-directed behavior by taking the initiative to satisfy their design objectives); and

sociability (interacting with other agents and possibly humans to satisfy their goals). In

addition, mobility and learning aptitude are other capabilities that are important for

agents in several application areas. An integrated system consisting of several agents that

are communicating and interacting with each other through a unified communication

channel is generally referred as a Multi-Agent System (MAS). A multi-agent system is a

network of multiple autonomous agents cooperating to solve a problem when each agent

has incomplete and limited knowledge. Data is decentralized, there is no global system

control, and the computation is asynchronous [JSW98]. A MAS can address some of the

challenges in human-computer interaction mentioned in Section II.4 so that an intelligent

107

environment supports collaborative maintenance and change management. Figure 3.3

represents a general overview of interactions between a typical MAS and the users.

HAS Architecture

\£/
A
User

Fig. 3.3. An abstract view of the interactions between users and a typical multi-agent based framework.
The MAS is capable of controlling the changes in the knowledge bases through a set of defined rules. A
service ontology also provides sufficient knowledge for the interaction between the agents. Finally, the
users can pose their query via a high-end user interface to communicate with the MAS.

Intelligent agents have the ability to perceive changes in the real world and find,

identify, and collect desired information from multiple resources about various actions

under changing conditions [DevOl]. Agents are also able to work rationally in order to

capture changes in dynamic and heterogeneous environments, and to respond properly to

these changes [LWY05], ideally in real time. Traditionally, agents in semantic web are

classified under three categories [SWK+02], namely service providers (which present

different kinds of services, such as searching, locating, and querying), service requesters

(which ask the provider for a service), and middle agents (which help other agents

perform their tasks). The middle agents seek out appropriate provider(s) to fulfill a

108

particular request, issued by the requesters), through the process called matchmaking. In

a typical MAS, different types of links and relationships connect agents and represent

dependencies, constraints, and dialogue paths between them. The research on intelligent

agents and their interactions is already mature enough to be used and trusted in many

autonomous systems, in areas such as medicine, supply chain management, auctioning,

advertising, trip/vacation management, stock market analysis, and so forth.

I l l 2.3 The RLR Framework

The RLR framework aims to Represent, Legitimate, and Reproduce the changes and their

effects (Figure 3.4). It helps to capture, track, represent, and manage the changes in a

formal and consistent way, enabling the system to generate reproducible results.

Diagrammatical ̂ ^ ^ Formal

Agents

Learning
Theories

Fig. 3.4. The RLR framework: The arrows in the diagram denote the iterative nature of change
management process. The representation of changes can be done through formal representation languages
or via diagrammatical (semi-formal) representation methods or combination of both. The legitimation can
be performed by experts and by public users. Also, logical validation is carried out using a logical reasoner.
Intelligent agents with their learning ability contribute to reproduce the results of changes, when necessary.

• Representation: This phase is responsible for consistently updating the

representations of new knowledge. Many of the problems in ontology evolution are

basically problems about the nature and representation of change. The concerns

about the problem of representation in dynamic systems seem to be twofold

109

[Hey90]: firstly, how the changes can be represented, and secondly, how the

representation can be changed. For the formal representation of changes, we use

description logics, and for diagrammatical representation, we employ a method

based on discrete state model and category theory [SH07b]. Since a representation

has been defined as "an abstract structure which is related through certain

operations with external, physical phenomena" [Hey90], the abstractness of

categories can help us to represent the dynamic interactions that happen in

ontological structures through a set of operations in various discrete states.

• Legitimation: in our context, is defined as the verification of the legitimacy and

consistency of a change in the domain of interest. This phase assesses the impact of

a potential change before the change is actually made. Experts and logical

reasoners should study a change based on its consistency with the whole design,

including changes in the inferred assertions, in various degrees of granularity.

Then, the final approval is needed from end-users. Logical legitimation can be

obtained by the reasoning agents, which work in close collaboration with the

negotiation agents.

• Reproduction: Overreliance on human factors is a problem in current change

management methodologies. Despite the advantages of maintenance, including

higher rationality, human intervention does not guarantee the reproducibility of

results of a change [FI0O6]. To overcome this issue, we propose using intelligent

agents that discover patterns for different forms of changes and their consequences.

The final outcome, which has been generated through a rigorous argumentation

process over generally accepted arguments, has an implicit link to the archived

110

historical processes that can be reused to choose a proper pattern in the reproduction

phase (Figure 3.5).

Transition unit

St, St«j S t s J St.

O—
-N
[mm o

Pattern Repository

Fig. 3.5. A generic transition system in a multi-agent system. A system changes its state from St/ to 5/?
via a transition unit and a rigorous argumentation process between the agents to choose proper patterns
from the change pattern repository for implementing a certain type of change.

In RLR framework, various ontological changes can be represented in either formal

or diagrammatical ways. Each change will be legitimated and validated logically, then

approved publicly and by experts. To reproduce the results of changes and automate the

change management process, agents are recruited to learn change patterns (the pattern of

change of ontological elements and constraints during the certain period of the ontology

life cycle) and their consequences. The change patterns depict editorial activities, assist

consistency control, and help predict the system's behavior and consecutive feedbacks.

Several studies on change pattern have focused on representing change patterns to

automatically infer likely changes [KNG07], revealing error patterns [LZ05] and aspect

patterns to identify cross-cutting changes [BZ06], and extracting change patterns. One of

the techniques for discovering and extracting change patterns is through hierarchical

clustering with a sample change history [FGG08], which considers transformations in a

matrix with the change types as the rows and method versions (extracted by

111

ChangeDistiller [FWP+07, GFP09]) as the columns. This process continues by dividing

the change history of the system into fractions (e.g., yearly quarters, months, weeks, etc.)

and creating a matrix for each of these fractions. The final step includes analyzing and

comparing the change type patterns of each of the fraction clusters among each other and

with those of the full cluster [FGG08]. The change patterns will be employed later as the

basis for detecting and identifying the editorial activities and making automatic

recommendations for performing different actions to deal with the applied changes.

RLR recruits four types of agents that act in a collaborative environment, namely:

Change Capture Agents (CCA), Learner Agents (LA), Reasoning Agents (RA), and

Negotiation Agents (NA). Figure 3.6 demonstrates the interactions between these agents.

Argumentation Framework

—-~~. Change Capture Agents«

Clvsnge
Log -f

Changs
Request

Orissnal Ontology J'

ChaneeModell

to
" -I Output

m ' — *

, , Reasoning Went
ropppals

Application User Ontology Engineer

\ /

't
Learner

agent

EP = Evaluated Proposal

Response

Fig. 3.6. The change management process using agents through an argumentation framework.

112

Ill 2.3.1 Change Capture Agents

Having the ability to detect and capture a change or any stimulation indicating an

alteration in an ontological structure is not trivial; this is confirmed by the fact that

existing change management approaches have so far managed to detect, capture, and

represent only a small portion of ontological changes, mostly at the syntactical level. The

change capture agent family in RLR is responsible for discovering, capturing, and

tracking the changes in ontology, by processing one or more change logs. They detect

real-world alterations and report them as new facts with which to update the knowledge

base of an agent. Changes can occur on a random or scheduled basis. The change capture

agents act like triggers in a database. We have defined the following three different types

of change-capture agents:

• Action Control Agents (ACA): The action control agents consist of user

activities and legal operations, which together capture changes such as deletion,

insertion, and updates to ontology elements, and can store all the data related to

different types of changes in change logs.

• Explorer Agents (EA): The explorer agents capture changes by processing and

reading change logs in parallel, in a specified time range. By logically

determining transactions, the explorer agents generate the appropriate messages

for the corresponding services. They also assist in extracting a pattern of changes

by exploring whether a particular change or a category of interconnected changes

appears frequently, and whether it implies specific actions.

113

Log-Reading Agents (LRA): The log-reading agents read the log files in a

specified time period. This information will be passed on to a learning agent in

order to create patterns for different changes. Later, the information can be used

to Undo or Redo a change.

Action Control Agents (ACA)

Explorer Agents (EA)

Log-Reading Agents (LRA) Nt

Change Logs

Fig. 3.7. The cooperation between the change capture agents

Together, these agents (Figure 3.7) monitor all the alterations and determine which

ontological elements have been changed. To capture ontological changes, we also use

annotation properties such as: Timestamps, Version and Status on ontological elements.

Moreover, since the popular biomedical ontologies have been organized in a

hierarchical manner, it would be reasonable to employ the change capture agents to

compute the changes by comparing old and new versions of the knowledge source and

reducing the problem to that of finding a "minimum-cost edit script" [CRG+96] that

gives us the necessary operations for transforming one hierarchy to another, or using the

"fixed-point algorithm" presented in PROMPTD1FF [NM02]. As an example, in Figure

3.8, consider two taxonomies related to ontologies Oi (source ontology) and O2 (target

ontology), where each node represents a concept, which is identified with a label along

114

with a set of corresponding attributes. After discovering similarities and differences

between these two taxonomies, we need to find a proper transformation that has been

transformed Oi to O2. To start this procedure, the two taxonomies need to be aligned and

brought into a mutual agreement, based on the matching concepts (the ones that affected

less in the transformation) within the ontologies. The matching will be computed based

on the degree of similarities between two concepts.

O i - - ' ' ~ - > O2

L_

Ca
J _ _ _ ->C2

±-
Ci „ - - - - • - - J 7 I

Fig. 3.8. The alignments between some concepts in two ontologies Oi and O2.

Detecting changes by comparing the old and new versions can also be performed by

some available tools, such as PROMPDIFF [NM02]. The problem of comparing two

hierarchical structures will be redefined in Section III.4 while exploring isomorphisms in

their structures. We will also show how the use of graph transformations helps us

discover the set of operations that transforms the hierarchy indicating the old version of

an ontology into the hierarchy indicating the new one.

I l l 2.3.2 Learner Agent

As an application is used and evolves over time, the change logs can accumulate

invaluable data and information about various types of changes. A learner agent can use

these historical records of changes that occur over and over in a change process to derive

115

a meaningful pattern. After several changes, possibly from various releases, it would be

feasible to estimate the rate and direction of possible future changes for a system by

generating rules or models. In RLR, the reasoner and negotiation agents can change the

generated rules, and send modifications to the adaptive learning agent. Changing the rules

is a main adaptation principle [RL04] for learning in RLR framework. The learning agent

starts with limited, uncertain knowledge of the domain, and tries to improve itself, relying

on adaptive learning based on semantics provided by the ontological backbone. The

adaptive learner agent plays an important role in the reproduction phase, where we look

for patterns to bootstrap the process of change management. The discovery of temporal

patterns for event-based data is addressed by P.S. Kam, et al. [KFOO], while Hoppner

tackled the problem with the discovery of informative temporal rules for defining

temporal patterns in [H6p03]. Learning rules for discovering temporal patterns is

described by L. Sacchi, et al. [SBL+05, SLC+07] for extracting temporal rules to learn

patterns of evolving ontological data [SBL+05]. In RLR based on the extracted rules, we

use a mathematical model to assist users in anticipating certain actions when the agents

are faced with a specific type of changes in the knowledge based system.

I l l 2.3.2.1 Models of learning

By determining the tradeoffs between losses and benefits that can result from agents'

actions, we will be able to have a mathematical model to foresee the agents' (software or

human) behavior. A state of "Nash equilibrium" [Osb03] is one of the popular

approaches in evolutionary game theory for modeling the most beneficial (or least

harmful) set of actions for a set of intelligent agents. For the sake of prediction, Nash

equilibrium can be understood as "a potential stable point of a dynamic adjustment

116

process in which individuals adjust their behavior to that of the other players in the game,

searching for strategy choices that will give them better results" [HR04]. Nash's theory

has been found applicable in several dynamic domains, such as climate change [DR04],

explaining economical and biological evolutions, where there is always the need to make

a choice during a set of repetitive events and actions until agents reach an equilibrium.

Intelligent agents decide on the proper actions and are able to change and improve

their decisions based on what they learn. Based on [Wan06], as shown in Figure 3.9, for

each learner agent, we define an internal state b; a function/that shows how an agent

decides and chooses actions based on its internal state (decision-making); the functions

showing the payoff dominance (loss/benefit); and a state update function g, specifying

how an agent updates its state based on the payoff received from previous iterations. The

state of each agent depends on the probability distribution over all the possible situations

[Wan06], and the one with the highest probability can specify the final decision. The

update function can be computed based on different loss/benefit algorithms.

S
<n

£

13
•a
a.
3

Loss/Benefit Calculation Unit

Action 1
V7
j? < Action n

AgentAi Agent At

!

Fig. 3.9. A simple learning model for agents based on Nash equilibrium.

117

Another technique for automating the learning process is through inductive bias. The

inductive bias of learning [Mit90] in neural networks is a set of assumptions, given as

input, that the learner uses to predict and approximate the target outputs (even for unseen

situations) through a series of training instances and their generalization. As stated by

Mitchell [Mit90], in order to describe and represent the inductive bias learning, there is

the need for a generalization language, so that each generalization denotes the set of its

related instances (e.g., in Figure 3.10, gj and g2 are two generalizations and each matches

a different subset of the instances). The language that "allows describing every possible

subset of these instances" is called an unbiased generalization language [Mit90].

Instances Generalizations

Fig. 3.10. Relationships among Instances and Generalizations (adapted from [Mit90])

III 2.3.2.2 Anomaly Pattern Analysis

Intelligent agents also detect and generate patterns of anomalies, either syntactic or

semantic, by assessing and analyzing consistent common errors that occur through

different revisions. After the anomalies have been flagged by change capture agents, the

learner agent can then be taught the proper route for performing the revisions through a

set of pattern mining algorithms (see [CM05] as an example of techniques for mining

dynamic patterns). This task is crucial in a wide variety of applications, such as

biosurveillance for disease outbreak detection [WMC+03] using Bayesian network

118

analysis and cancer diagnosis. The learner agents not only enable the RLR framework to

manage potential, expected, and prescheduled changes, but also prepare it for dealing

with random and unexpected alterations. However, human supervision and participation

will be anticipated for the former case.

I l l 2.3.3 Reasoning Agent

A reasoning agent is a software agent that controls and verifies the logical validity of a

system, revealing inconsistencies, hidden dependencies, redundancies, and

misclassifications. It automatically notifies users or other agents when new information

about the system becomes available. We use RACER [HM03] as a description logic

reasoner agent, along with other semi-formal reasoners in the RLR framework. When the

agent is faced with a change, it ought to revise its conceptualization [CCS05] based on

the new input by reasoning about the consistency of the change using both prior and new

knowledge. Several attempts [Poi86, GLT89, Pav96, KKR06] have been made, to

provide reasoning services for category-based systems. We also use a semi-automated

reasoning system for basic category-theoretic reasoning based on a first-order sequent

calculus [KKR06]. It captures the basic categorical constructors, functors, and natural

transformations, and provides services to check consistency, semantic coherency, and

inferencing [KKR06]. The reasoning agent in this framework uses the predefined

constraints and axioms, given as input, to reason about the possible states of a certain

ontology.

Another face of the reasoning agent in RLR will be revealed when it acts as a

supplementary query engine (in cooperation with negotiation and learning agents) to

119

reason and assess how the change in an ontology affects the state, quality, range, and

depth of possible answers to some queries, which are posed at different time points. Just

recall the incomplete nature of ontological knowledge that usually unfolds through the

time. We may need to make some assertion about temporal situations without specifying

the exact time (e.g., in response to the question, "Is the patient's heart rate at rest less

than some value x?" one may expect an answer like, "No, should I notify you when it

is?").

I l l 2.3.4 Negotiation Agent

Negotiation happens when agents with conflicting interests desire to cooperate [RRJ+03].

In the RLR framework, the negotiation agent acts as a mediator allowing the ontology

engineer and other autonomous agents to negotiate the proper implementation of a

specific change while maximizing the benefits and minimizing the loss caused by such

change. A human expert may then browse the results, propose actions and decide whether

to confirm, delete, or modify the proposals, in accordance with the intention of the

application. In our framework, negotiation is defined based on the conceptual model of

argumentation [VGH96]. In this context, an argument is described as a piece of

information that allows an agent to support and justify its negotiation stance or influence

that of another agent [RRJ+03, JPN+98] through a negotiation protocol, which formally

provides necessary rules for negotiation dialogue among participants. These rules may

include rules for admission, withdrawal, termination, proposal validity, or commitment

[JPN+98]. In our approach, we adapted the architecture of the argumentative negotiating

120

agent described at [ARL07]. We also assume the argumentation process is performed in a

tree-like structure within the so-called "argumentation tree" [OT09].

Employing argumentation to analyze belief revision [FKS02, PC04, OT09] with the

intention of updating an agent's knowledge has been studied in [CCS05] based on

dialectical databases. Belief revision commonly refers to the situation where agents

change their initial positions and statements because of a new conceptualization achieved

by new inferred knowledge. To reach an agreement among the agents and provide a

common understanding, a service ontology (Figure 3.11) is needed, so that updating this

ontology generates a new understanding for the software agents, which can then update

and adjust their beliefs based on new knowledge.

o c
(General P

Change Capture Learner
Agent Agent

Service V
hitology

rotecol Agre

Reasc
Age

Argumentation Framework

emeitt]

1} 4

aiflg Negotiation
•nt Agent

Argument
Generator

Fig. 3.11. A service ontology providing consensus between agents.

121

Employing service ontologies to automatically provide a service profile to describe

the supported services and the related communicative transactions and invoke the

services for service-seeking agents is currently being considered as a solution to

overcome some of the issues related to overreliance on human intervention. However,

these ontologies will not remain static and unchanged throughout their life cycle, and

managing their dynamic structure would be part of the whole problem itself.

A software agent (Req-A) sends a request to the change capture agent (CCA-B) to

check for the possible changes in an ontology while Req-A is interacting with other

agents and the CCA-B responds to the Req-A by sending the list of changes (Figure

3.12).

Fig. 3.12. Interactions between different types of agents for capturing changes. The solid lines represent the
main interactions and the dotted line denote the marginal interactions.

Il l 2.4 Agent communications

Using a common language (syntax) is a necessary condition for communication and

knowledge exchange in an MAS, but not sufficient by itself. The agents should also use a

common semantics, using a generic consensus ontology. The consensus between the

agents can be achieved either through a negotiation process, which supports future

changes, or by determining a pre-consensus ontology for cases where changes to the

122

core-ontology have been limited. Two standards, both founded on speech act theory

[Sea72], are more commonly used for creating communication channels between

intelligent agents, namely FIPA-ACL (standardized by FIPA47) and KQML48 [FFM+94].

However, there are other communication languages offered by organizations such as

KIF49 (based on first-order predicate calculus) and OMG50 (and its agent working

group)51 that are less popular in the field. In addition, to adapt agent communication

languages to industrial needs, several attempts have been made to combine the

aforementioned standards, i.e., the cooperation between FIPA and OMG to adapt the

communication language with an object-oriented modeling paradigm. Following the

FIPA+OMG approach, by extending UML, a formalization called "Agent UML"

[BMO01] was proposed to describe interactions within an MAS. This formalism uses

UML diagrams such as interaction diagrams (sequence and collaboration diagrams), state

diagram and activity diagram to model dynamic behavior of agents52. It also benefits

from the object constraint language (OCL)53 to add constraints (i.e., pre- and post

conditions of operations) to the UML models. The "Agent UML" combines features of

sequence diagrams with state diagrams to describe the interaction protocols [BMO01]

and generate communicative patterns. The interaction protocols consist of "agent lifeline"

(determines the time frame for the existence of an agent), several agent-roles (which

satisfy certain properties and service descriptions, and assist in dynamic classification in

47The Foundation for Intelligent Physical Agents: http://www.fipa.org/repository/aclspecs.html
48 Knowledge Query and Manipulation Language
49 KIF: Knowledge Interchange Format: http://www.ksl.stanford.edu/knowledge-sharing/kif/
50 Object Management Group: http://www.omg.org/
51 http://www.objs.com/isig/wg-agents06-minutes.html
52 Interaction diagrams are more appropriate to model how several objects collaborate and behave without

representing the behavior's details. The state diagrams are more suitable to monitor a specific object's
behavior [FSOO].

53 For more information on OCL specifications see: http://www.omg.org/docs/ad/97-08-08.pdf

123

http://www.fipa.org/repository/aclspecs.html
http://www.ksl.stanford.edu/knowledge-sharing/kif/
http://www.omg.org/
http://www.objs.com/isig/wg-agents06-minutes.html
http://www.omg.org/docs/ad/97-08-08.pdf

a way that an agent can change its role and place in the UML classification), and

proposed semantics for UML messages to define the agents communication patterns in a

more efficient way through parameters, cardinalities, and so on [BMO01].

In RLR each agent has been defined to have a lifeline indicating its existence from

creation to destruction (e.g., the Action Control Agents (ACA) for each session can be

created upon an alteration in a system and can be destroyed after storing the change in the

change logs). A lifeline may split into two or more lifelines to express the different

alternatives that an agent has for responding to the received messages, or different

lifelines may merge together at some point to represent an agreement or concurrency

[BMO01]. Ideally, an agent communication language must allow flexible message

exchanges with abstract semantics. In our approach (Section III.4), we extend the existing

semantics by incorporating concepts from category theory in order to define more formal,

reusable communicative patterns for agents' communications (i.e., message exchange54).

This expressive categorical framework enables us to describe the interactions within an

MAS and impose several restrictions and constraints, which are essential for reproducing

agents' actions and responses using the defined rules. By this method, the ontology

engineers can model the system with insights gained from foreseeing the changes and

possible confrontations.

Ill 2.5 The Change Analysis Model in RLR

Our change analysis model is composed of a set of states that are linked to their

predecessors and successors through some defined relationships. This allows us to check

54 In classic UML-based agent communication formalisms, the message flow between agents can usually be
represented using protocol diagrams [ODB00].

124

backward and forward compatibilities for one specific ontological structure from a given

state. This is determined by defining various conditions and constraints for an event. The

conditions can later be used to restore the previous state based on the insights gained for

each event. Somehow it means a revision or review of the past, or an attempt to define an

alternate (parallel) past [May83]. Since ontological assertions are based on open world

assumptions, neither past nor future knowledge about the world is complete. One can

always ask questions (e.g., "Could that mutation, under those circumstances, lead to the

species X or Y?") and draw a different path from the previous states to the subsequent

states. This iterative process of switching between the future, current, and revised past

states has been regarded in [May83] as the process of "rolling back to some previous

state and then reasoning forward" in the form of queries such as, "Is there some future

time in which p is true?" [May83].

To deal with forward and backward compatibility, in our research we have employed

graph transformation techniques, which enable us to analyze different states of the graphs

based on the given initial states and the transformation rules. If the framework remained

limited to only traditional graph transformation, no significant improvements would have

been accomplished. Indeed, graph transformation offers many benefits, as will be

outlined in Section III.3, but lacks sufficient expressivity and semantics to deal with all

aspects of ontology change management. Our approach for this issue can be improved by

recruiting a formal mathematical representation such as category theory. The

enhancement can be done in two aspects: 1) the rules can impose restrictions on ontology

transformation in the way that, for example, some alteration can be prohibited, or some

changes, which have less impact on ontological elements, can be excluded in the related

125

change analysis (e.g., the transition of a fungus from one genus to another does not affect

its physical appearance); 2) the changes in states can be scheduled to occur

simultaneously, sequentially, or in parallel.

HI 2.5.1 The RLR Dialectic Change Management

Recall the concept of "dialectical changes" from Section II.2, where a change is defined

as new forms built upon the old. Using this concept as a metaphor, we have introduced

our formal agent-based argumentative framework, where "synthesis" takes place, for

studying ontology evolution and shifting as model transformation. This transformation

results from quantitative changes accumulated over a period of time and generates a new

form out of old patterns ("coexistence of both old and new") [Hol98]. In fact, most of the

changes that occur in an ontological structure, which lead to a new state, emerge from the

preceding states55. In other words, the change lies within the system [Gil06]. Therefore,

"learning" about different actions in different states of a system seems to be a key factor

for starting a successful change management mechanism.

In a typical scenario within the RLR argumentative architecture, a user (human or

agent) initially sends a request to an ontology engineer for a particular change in the

ontological structure. Based on the system's background knowledge and the choice of the

ontology engineer, various options are available to implement a change. The negotiation

agent, along with the reasoning agent, provides arguments for the acceptance or rejection

of a change proposal. The "Argument Generator" (Figure 3.6) determines appropriate

responses based on the negotiation rules. Different arguments attack each other to enforce

A "state" in this manuscript is being used to express a situation describing a part of the real (dynamic)
world in a specific instance of time.

126

their rules and defeat their peers by sending counter-arguments. The inferred arguments

can increase the possibility of higher quality agreements [CCS05, ARL07]. The

Negotiation Protocols in the RLR architecture contain the rules that dictate a protocol. As

the knowledge base is used and evolves, the historical information about different

changes will be accumulated in the change logs. This information will be used by the

learner agent, which acts as a basis for a recommender system56, to propose different

alternatives for the implementation of future changes.

The reasoning and negotiation agents can change the rules if necessary and send

modifications to the learning agent. In order to maintain agents' argumentation for

automation of ontology evolution, we employ the "dialectical databases" [CCS05]. In

argumentation-based multi-agent systems, a dialectical database tends to improve the

speed of inference responses by storing pre-compiled knowledge about potential

dialectical trees [BK08]. The dialectical trees represent sets of possible dialectical

confrontations between the arguments to accept or deny a proposal to deal with a

particular change [CCS07].

I l l 2.5.2 Identity Preservation in R L R

The identity of a concept can be determined by those properties and facts that remain

stable through time, even during multiple ontological changes. If ontologies are able to

maintain their conceptual stability, they can better preserve their intended truth. To this

end, the RLR framework employs a defensive mechanism to prevent harmful changes

and reduce the risk of potentially dangerous actions by incrementally adapting to the

56 The ability to generate (infer) appropriate recommendations is considered as one of the key
functionalities in RLR. The level of the system's automaticity is highly depends on the quality of these
recommendations.

127

changes at different levels. If a destructive change is about to happen in the ontology

(e.g., deleting a concept, such as "fungi", when other dependent concepts, such as "fungal

infection", exist), a warning signal will be sent to the agents based on the knowledge

within the ontology (e.g., "fungi are the cause of fungal infections") to infer the potential

threat and prepare them to plan for a proper action. This mechanism works much like the

self-awareness system inside rational animals, which helps them avoid possible dangers

without actually experiencing their life threatening influences. For example, as pointed

out in [Hey90], a person who is confronted with fire does not have to experience the

burning and can run away as a counteraction, since the person has been taught that smoke

indicates fire and that fire can kill humans.

Il l 2.5.3 The Rule-based Recommender System for Change Management

As mentioned, RLR is applied to capture and describe changes (syntactical, semantical,

or environmental) and respond promptly by generating adequate knowledge for other

agents involved to propose recommendations or by making decisions about actions based

on a set of pre-defined rules. For example, consider the deletion of a concept, C, from

ontology O, which can be done using the RLR framework with various degrees of effort

depending on the location of C (e.g., terminal concept (leaf), a parent concept with

children and with or without siblings, a top concept (root)). As another example, we have

defined the following rules for adding a concept to an ontology structure with a pure

subsumption taxonomy:

"Rate 1: Check whether the concept to be inserted is an initial concept (the only one) in

the ontology. In this case, just add the concept and associate its attributes.

128

l&de 2: If the concept is not an initial concept, add is-a relationship to its parent concept,

which is usually determined as the one with the most similar derived and

primitive properties, to form the hierarchy (Figure 3.13).

addition

Fig. 3.13. Adding new concepts to an ontology.

There are of course cases where we want to replace a concept with a new one. In this
case:

"Ride 3: Check whether the change only affects the concept's name or not. If the old and

new concepts follow the same semantic (same definition, attributes, and

relationships) but carry two different names, the replacement task will be

reduced to editing the old concept's name and the related offspring can stay the

same or its name can be changed accordingly (in the case of a dependency

between the names of parent and child).

T^de 4: If the old and new concepts are not equivalent, the old concept should be deleted

and then the new one must be added.

To delete a concept from a hierarchy, several cases can be anticipated:

TRaie 5: If the concept is the only concept in the ontology, it can be safely removed.

129

T&de 6.- If the concept is a terminal concept (leaf) within the hierarchy, the deletion can

be done by removing the concept and the is-a relation that connects it with the

parent concept.

7: If the concept has offspring, they should be deleted first, along with their

taxonomical relationship (Figure 3.14).

Each of the above rules may be decomposed into several simpler rules.

Deletion ofojjfepririg and the
taxonomical relationships

$

Fig. 3.14. Deleting a concept from an ontology.

One way of studying the process of merging between two ontologies from the same

domain is through the union of their algebraically represented hierarchies [LM04]. Figure

3.15 demonstrates the partial merging between ontologies O and O'. We will model

ontology merging in Section 111.4 using the notion of co-product in category theory.

130

S3
»»•«

WD us.

Q Concept from Ontology O

4) Concept from Ontology O'

O Concept from Ontology O"

Fig. 3.15. The partial merging between ontologies O and O'.

I l l 2.6 Summary of Contributions in Section III.2

As it has been pointed out in Section II.4, and Section II.6, the overreliance on human

factors is one of the challenges in current change management practices. Despite the

advantages of human intervention in the process of ontology maintenance, including a

relative increase in the overall rationality of the system, it does not guarantee

reproducible results of a change. Also, it is far beyond the capability of a human to deal

with all changes and their impacts in large complex biomedical knowledge-based

systems, which are usually integrated from several knowledge sources. Another issue that

we mentioned in Section II.6 is inconsistencies among different change models, which is

largely originated from miscommunication, and lack of proper conflict resolution

mechanism.

131

In order to address these issues we have made the following contributions in this

Section.

• Modeling RLR, a Multi-agent framework, to capture, represent, track and

analyze changes through a rule-based reactive and proactive behavior with

minimum human intervention;

• Proposing an integrated argumentation framework that enables the different

types of agents in RLR to communicate with each other within a dialectic

environment to manage the changes and resolve the conflicts.

• Defining a set of evolution rules for generating patterns, which increase the

learning capacity, assist in estimating the direction of potential changes, and

thus improve the ability for reproduction of the results

In Section III.3, and Section III.4 we will describe how we employ category theory

and graph transformation for representation and analysis of the changes in biomedical

ontologies, modeling agents' dynamic behavior, and providing a formal semantic for

communications, interactions, and operations within the RLR framework.

132

III.3 Category Theory as Knowledge Representation
Formalism

"We often forget that we just made the
categories up. Then we treat them as
though nature created them with such
specificity. Nature didn't."

Curran J., and Takata, S.R., Categorical
Thinking, 200257

Several attempts have been made in last two decades to provide a formal foundation for

conceptual representation and modeling. In this section, along with some terminological

clarification, we discuss the appropriateness of category theory with its mathematical and

logical basis for representing dynamic knowledge and tracing changes in ontological

structure. In order to orient the reader with a precise definition of categories and some

important introductory definitions, we refer to [AL91]58 for additional information.

Ill 3.1 The Problem of Representation of Change

Knowledge Representation (KR) as a discipline within Artificial Intelligence is generally

concerned with the representation and management of knowledge. The existing

knowledge representation languages have not been properly adapted to respond to the

interactivity and evolvability requirements. Many biomedical ontologies and controlled

vocabularies face various challenges when it comes to changing their compositional

terminologies and expressions [EBL+03] that usually describe a time-dependent event or

Available at: http://www.students.uwp.edu/academic/criminal.justice/catthink01 .htm
Readers can access the entire book freely at:
ftp://ftp.di.ens.fr/pub/users/longo/CategTypesStructures/book.pdf (Accessed on 10 March 2010)

133

http://www.students.uwp.edu/academic/criminal.justice/catthink01
ftp://ftp.di.ens.fr/pub/users/longo/CategTypesStructures/book.pdf

process (i.e., the term consumingmedicinexaftermeal in a drug-food interaction

knowledge base).

Set theory, being a powerful, significant, and flexible mathematical formalism, has

been widely used for conceptual modeling. However, sets are abstract entities, which

exist beyond the realms of time, space, and causality [DHH+01]. Therefore, in order to

deal with objects in the world of flux, sets should be accompanied by other

complementary frameworks [DHH+01].

A diagrammatic representation is a possible alternative for capturing the behavior of

dynamic systems. Diagrams have the ability to intuitively resemble a structural

correspondence with the fact (entity or event) they represent, be it visual, propositional

(only describes the domain model), or analogical (mimics the domain model). In

diagrammatic representations meaning can be conveyed via the diagrams' shape.

Diagrammatic representation and reasoning as surveyed in [AB09] have also been used

extensively in various application domains, such as: arrow diagrams in algebra and

category theory [Pie91]; Euler and Venn diagrams in set theory and logic; circuit, state,

and timing diagrams in hardware design [JBA96]; UML diagrams in software modeling;

higraphs in specification [Har88]; visual programming languages [Cha90] and visual

logic and specification languages [APR98], [HTI90], [OT00]; transition graphs in model

checking [BBF+01]; ER-diagrams and hyper-graphs in databases [FMU82]; semantic

networks in AI [RN02]; and icons and other pictorial devices in GUIs and information

visualization [MS94, Tuf90, War04]. The problem in diagrammatical representation

languages is that they are not expressive enough to represent all the behaviors of dynamic

ontological structures.

134

Therefore, due to the limitations of the set theory-based knowledge representation

formalisms (including the popular web ontology languages RDFS and OWL) for

dynamic conceptual modeling, we have decided to use another type of formalism based

on category theory, which is a powerful vehicle to model abstract systems, yet expressive

enough to demonstrate their evolutionary behaviors.

I l l 3.2 Categorization and Categorical Representation

The idea of categorization is central to many disciplines in AI, machine learning,

cognitive science, and so on. Categorization is defined in cognitive science as "the

process of dividing the world into categories, and usually involves constructing concepts

that provide mental representations of those categories" [TF05], and can be done for both

observable concepts (e.g., humans, limbs) and non-observable concepts (e.g., genes,

disease agents, a process such as injection). In the case of categorizations for non-

observables, the process also involves creating concepts for unambiguous rationalization

of the real world [TF05]. More formal categorization is also referred to as "any

systematic differential interaction between an autonomous, adaptive sensorimotor59

system and its world" [Har05b]. In this definition, the term "systematic" has been used to

exclude arbitrary interactions (e.g., the effects of the wind blowing on the sand) and an

"autonomous, adaptive sensorimotor system" means a dynamic system that interacts and

changes in time through adaptive changes in the states of the system. "Differential"

implies that the categorization process generates a different kind of output with a

different kind of input [Har05b].

59 For more information on sensorimotor activities and systems, see: Rowlands, M. (2006) Sensorimotor Activity.
Psyche 12(1), March 2006. http://psyche.cs.monash.edu.au/symposia/noe/Rowlands.pdf

135

http://psyche.cs.monash.edu.au/symposia/noe/Rowlands.pdf

As can be seen in this definition, categorization has to deal with adaptive state

changes across time60. In the real world, all the perceptions, experiences, and beliefs,

which may be categorized in several specific domains, link up with one another and

together shape the webs of our beliefs. In other words, different categories interact with

each other firstly because they exist as parts of a single, seamless world view, and

secondly, due to reciprocal interaction between the categories, it is not practical to reduce

either type to the other [Bev03]. From this insight, one can see that categorization is a

natural way to deal with conceptual changes.

I l l 3.3 What is Category Theory?

Category theory is a relatively new domain of mathematics, introduced and formulated in

1945 [EM45]. Employing formalisms based on logics and mathematics in order to move

the Web from being only human understandable to being both human and machine

understandable is the known goal of Semantic Web, defined by W3C [CCV+04].

Category theory is closely connected with computation and logic [Whi97], which allows

an ontology engineer to implement different states of design models to represent the

reality. Categorical notations consist of diagrams with arrows. Each arrow /• X-*Y

represents a function. A Category C includes:

• A class of objects and a class of morphisms ("arrows"), and for each morphism /

there exists one object (A) as the domain off, and one object (B) as the codomain

(Figure 3.16 (a)).

60 To put it simply, the exact same input will not produce the exact same output across time, every time, the way it does
in the interaction between wind and sand ("whenever the wind blows in exactly the same direction and the sand is in
exactly the same configuration"). Categorization is accordingly not about exactly the same output occurring
whenever there is exactly the same input [Har05b].

136

• For each object A, an identity morphism, which has domain A and codomain A

("IDA") (Figure 3.16(b)).

• For each pair of morphisms/A—>B and g:B—>C, (i.e., cod(/) = dom(g)), a composite

morphism, g o f. A—>C exists (Figure 3.16 (c)).

Representation of a category can be formalized using the notion of a diagram.

(a) (b) (c)

Fig. 3.16. Categorical concepts representation

Category theory has been also defined as:

A branch of abstract algebra devoted to investigating transformations and

compositions of transformations in a highly abstract form [Sym08].

- A toolbox of techniques for illuminating relationships between distinct domains

of mathematical investigation [Sym08].

Moreover, the categorical representation of sets unifies the two ancient

philosophical problems of continuity and discreteness [Bel06], by offering a deep

insight into the shared features of different phenomena. Here are some examples61 of

categories:

Set: the category of sets and set functions.

Graph: the category of graphs and graph morphisms.
Cat: the category of categories and functors.
The category ofstateful objects and dependencies (object diagram).
The category of states and messages (state diagram).

61 The examples are taken from: Category Theory in Haskell theoretical foundations Wiki:
http://www.haskelI.org/haskellwiki/Category_theory

137

http://www.haskelI.org/haskellwiki/Category_theory

Some of the primitive constructors of category theory [Mac71] that we use in our

framework for ontology change management are as follows: Products, Co-products,

Functors, Natural Transformation, Pushout and Pullback. More information on these

categorical notions can be found in [AL91].

I l l 3.3.1 Category Theory, Logic, and Set Theory

Based on [LS81], the traditional "development of logic in an elementary course proceeds

with (i) the propositional calculus; (ii) the predicate calculus and (iii) the theory of

identity"; however, this definition has been open to criticism [LS81]. There are tight

connections between logics and category theory, as studied by Lambek [Lam89] and

others [Poi86b, G0IO6], and many categorical structures can be studied under logical

interpretations. From the logical perspective, a category can be studied as "a deductive

system of the objects as formulas and of the arrows as deductions". Today, the study of

categorical logic [LS86, PitOO] is quite common between logicians. The categorical

framework offers a rich conceptual background for logical and type-theoretic

constructions, for representing both syntax and semantics by a category, and a semantic

interpretation by a functor [Awo09]. Jacobs also presented some of the relations between

categorical logics and equational logic and first order and higher order predicate logic

[Jac99]. In addition, many basic concepts of category theory are comparable with the set

of notions in set theory. Table 3.3.1 shows some of these pairs of concepts [Gra84].

138

Table 3.1. A partial list of the pairs of concepts in category theory and set theory (adapted from [Gra84]).

Category Theory
Object

Morphism
Monomorphism
Epimorphism
Isomorphism

Product
Co-product

Set Theory
Set

Function
One to one function

Surjection
Bijection

Cartesian product
Disjoint Union

Figure 3.17 (adapted from [Che04]) demonstrates the world from different perspectives

of category and set theories.

(a) (b)

Fig. 3.17. (a) The world from the set theory perspective; and (b) The world from the category theory point
of view (adapted from [Che04]).

The declarative approach offered by category theory describes objects only in terms

of their relationships and interactions with other objects, without the necessity of

knowing about the internal structure of objects. This is one of the distinct features of

categories in comparison with sets or logic theories [Gog91, DC94]. For more

139

information on the interaction between category theory and set theory, one may refer to

[Bla84].

I l l 3.3.2 Why Category Theory?

Using categories, one can recognize certain regularities to distinguish a variety of objects,

capture and compose interactions and identify patterns of interacting objects in a

declarative way and extract some invariants in their action, or decompose a complex

object into basic components [EV06]. They offer a graphical yet formal notation for

knowledge representation. Categories are also able to identify patterns that recur over and

over in a changing system [KKR06]. Some other reasons for using category theory in our

framework, as stated by Adamek, et al. [AHS90], are abundance, precise language, and

convenience of symbolism for visualization. Categories can be found in many places in

mathematics (e.g., sets, vector spaces, groups, and topological spaces all naturally give

rise to categories). It also provides a language to precisely describe many similar

phenomena that occur in different mathematical fields with an appropriate degree of

generality. For example, it allows one to precisely make distinctions via the notion of

natural isomorphism. It also provides a unified language to describe topological spaces

via the notion of concrete isomorphism [AHS90]. In addition, Categorists have developed

a symbolism for visualizing complicated facts by means of diagrams.

In a category, one can only have access to the processes, the arrows (similar to an

API in software engineering terms), and it is not necessary to know what the available

objects are made of or how they have been created [Alp07]. This is important if operating

in an interactive semantic web (or Web 2.0) environment, where the potential users do

not usually have direct and transparent access and control over the existing objects. In

140

fact, categorically, the behavior of the objects is much more important than their

identities; this is why definitions in category theory are usually very abstract and

conveyed through isomorphisms (if two objects behave the same way in an API, they

must be considered similar based on the given definition of similarity). The abstractness

of the definition can facilitate reusing the definitions in different contexts. In addition,

employing the concept of isomorphism enables us to generalize the definition of

similarity [Alp07]. As well, categorical entities are "subject to a constant process of

enrichment, which bears a certain resemblance to evolution" [Kai05].

For these reasons, category theory has great potential to be used as an abstract

mathematical vehicle to represent, track, and analyze changes in ontologies, without

considering the type of underlying knowledge representation formalism or any

implementation language (representation independence [Gog91]).

I l l 3.3.3 Applications of Category Theory

Category theory has been extensively used in a wide range of applications. It is already

being applied in physics, linguistics, philosophy, and different disciplines in computer

science, including XML semantic analysis [CD02] and XML database engineering

[Tot08]; object databases and the Semantic Web [Gut04]; conceptual modeling [HLW97,

WH99, CHR08]; ontology and knowledge-base modeling [HC06, KHE+05, JR08];

designing multi-agent systems [Pfa07b]; neural networks' architecture [HOY+09];

knowledge engineering and cognition [HC04]; analyzing living systems [MCF81,

Kai05]; biology [Ros58, MCF81, MacOl, EV06, LSA+06, Din08]; theoretical

neurobiology [Pfa07a]; neural modeling and graphical representations [HeaOO];

philosophy [Per06]; linguistics [Van06]; software engineering [WH99, Fia04]; object

141

oriented visual modeling [DW08]; managing software specifications [WE98]; managing

software component dependencies [Guo02] and model merging [SNS+07]; cognitive

development [HW80]; data refinement [JNP09]; machine semantics [Hin08]; and so

forth.

I l l 3.3.4 Tools Supporting Category Theory

As mentioned, category theory provides an abstract formalism, which does not pay

much attention to the operational details and internal interactions of a system. This

feature is one strength of this formalism, but the high level of abstractness makes the

actual usage of category theory and its constructors in software tool applications tricky

[Men99].

There are some tools, however, such as Specware62 [MA01], which has been used in

[WHOO] for software maintenance at the requirements level, and GDCT63 [BRG+06], that

are available to study a category and answer queries about isomorphism, product,

coproduct, pushout, pullback, creating sum and product, checking the equality of arrows,

testing whether an object is initial or terminal, and so on (Figure 3.18). Also, there are

software packages for implementing categorical concepts and structures in Haskell64 (an

advanced, purely functional programming language) [HHJ+07]. For instance, category-

extras65 [Men04] offers a collection of modules implementing various constructors

inspired by category theory.

http://www.kestrel.edu/home/prototypes/specware.html
http://mathcs.mta.ca/research/rosebrugh/gdct/
The Haskell Home Page: http://haskell.org/
http://hackage.haskell.0rg/cgi-bin/hackage-scripts/package/category-extras-O.l

142

http://www.kestrel.edu/home/prototypes/specware.html
http://mathcs.mta.ca/research/rosebrugh/gdct/
http://haskell.org/
http://hackage.haskell.0rg/cgi-bin/hackage-scripts/package/category-extras-O.l

VGJvl-Olc

file Algorithms Edit Properties

Mouse Action:

-*• Create Nodes v Create Edges

•^ Select Nodes v Select Edges

v Select Nodes or Edges

Viewing Offset

Y u

Scale; 1
Scale / 2 J Scale-1 | Scate * 2 j .;

Viewing Angles

theta 0

bhi90

Node 4 Node 6 Node 8 NqfieM Z Node 10

Plane: ' - * v j _xzj J g j

| Ja \a Applet Window
N

Fig. 3.18. A Screenshot representing a hierarchical tree structure [Source: from the introduction to
Graphical Database for Category Theory (GDCT)66].

Ill 3.3.5 Categories, Conceptual Data Modeling, and Ontologies

The concept of ontology is based on the categorization of things in the real world.

Category theory, with its logical and analytical features, has the potential to be

considered as a vehicle for representation of ontologies. An ontology can be viewed in an

interconnected hierarchy of theories as a sub-category of a category of theories expressed

in a formal logic [HC06]. In fact, we use category theory to represent ontologies as a

modular hierarchy of domain knowledge. Ontological relationships represented using

category theories are considered to be directed [KHE+05] to show the direction of

information. These "relationships", which preserve the conceptual hierarchies and the

relations, are known as "morphisms".

66 http://www.eng.auburn.edu/department/cse/research/graph_drawing/manual/tree.gif

143

http://www.eng.auburn.edu/department/cse/research/graph_drawing/manual/tree.gif

The research presented in [BM99] employed categories for algebraic specifications

and the representation of ontologies via morphisms. The authors in [CDJ01] described a

categorical method for formalizing the relationship of abstraction and refinement for

abstract models of enterprise information systems and for managing databases (e.g.,

through view updates [JR01]). Kent [Ken04] presented a categorical axiomatization of

the first-order model theory67 for representing ontologies as hypergraphs with respect to

formal concept analysis (FCA)68. Hitzler et al. [HEK+06] proposed an approach for

analyzing the alignment between ontologies using category theory. Johnson and

Rosebrugh [JR08] recently applied their method based on universal algebra and category

theory to the analysis of interoperability between ontologies using the notions of "view"

and "view update".

We now present the basic ideas concerning the generic ontological representation in

a categorical frame. Here is a simple intuitive example: consider a world consisting of

categories of families, with persons as objects and the family relations that exist between

them as morphisms. One may use family.owl69 knowledge base for the purpose of initial

conceptualization. Figure 3.19 shows the related T-Box, A-Box along with the set of role

assertions for this example (adapted from [HMW04]).

See: First-order Model Theory. Stanford encyclopedia of Philosophy. First published Sat Nov 10, 2001;
substantive revision Tue Apr 28,2009. http://plato.stanford.edu/entries/modeltheory-fo/
http://www.upriss.org.uk/fca/fca.html
http://www.owldl.com/ontologies/family.owl

144

http://plato.stanford.edu/entries/modeltheory-fo/
http://www.upriss.org.uk/fca/fca.html
http://www.owldl.com/ontologies/family.owl

Role Declarations:
tran»itive(hasjJescendanl)
attributz{age, integer)
feature (has.father)
feature(hag-motlier)

T-box:
hasjchild C hasjdescendanl

invJias-child = inv(ha$jchild)
has^father C invJias-cktid
ha$-rnothe.r C mvJiasjzhild

•man C jmrson
woman Q person
brother C man
parent = per nan n {3ha$jdvild.person)
mother = woman f\ parent

grandmother = moifeern

A-box:
«.><?«"}«« (a/fce), woman(betty). brotheri diaries'),
(< lhas sibling) (char les), hasjsister{eve,darts),
hasjdiUd(alice, beity), hasjzhild(alice„ charles). hasjchildibstty, doris).
hasjshild(betty.eve), ha$-$ibling(ckarles,betty), hasjnster{doris} eve)

Fig. 3.19. A knowledge base representing the domain of family using DL axioms (adapted from
[HMW04]).

The categorical representation for the Smith family by considering people as the objects

and the family relationships as morphisms can be illustrated as shown in Figure 3.20.

Fig. 3.20. The categorical representation of the family knowledge base.

As it can be seen in Figure 3.20 both identity and composition laws are valid; for

example there is an identity morphism for object Doris such that Doris —> Doris, or

145

"Doris is Doris", which is a true statement. Also the composition for the following

diagram for example:

Doris hasmo"Kr > Betty hasjno,her > Alice yields to Doris *"-g»*w*»' > Alice.

As you may noticed by now, this representation resembles the A-box diagram in

description logics sense, which enables one to do some sort of assertions. In dealing with

internal structures of the objects, categories might not fully reveal their capabilities

however, category theory, as we will see throughout this chapter, has a set of universal

constructors that help us in dealing with more general and abstract problems.

I l l 3.4 Categories for Dynamic Systems: The Birdwatching
Approach

"When you know what the habitat and the
habits of birds are watching them is so
much more interesting."

The Beginners Guide to Bird Watching

Since the existing biomedical knowledge bases are being used in various organizational

and geographical levels (i.e. institutional, local, regional, national and international), any

change management framework should be able to address this decentralization and

distribution nature. As mentioned in Section II 3.4.2, one of the critical tasks in any

change management framework is traceability. To explain our proposed method for

change management in RLR more intuitively we use a conceptual metaphor based on

Birdwatching activity. Birdwatching as a recreational and social activity is the process of

observation and study of birds through a particular time frame using different auditory

70 http://birdwatchingforbeginners.info/

146

http://birdwatchingforbeginners.info/

devices . F igu re 3.21 shows a s equence of typical act ivi t ies r e c o m m e n d e d for

Bi rdwatch ing :

KeepYourEye Estimate General Look for Wing StndyMovement Describe Habitat, Region,
on the Bird Size and Shape Bats & Tail Shape &Ftight Patterns and Climate

I Listen for Calls MakeNote of Facial ObserveLeg Determine Feeding Record Your
J and Song Markings andBill Color &Length Habits Observations
I Characteristics
1

Fig. 3.21. A series of activities in Birdwatching.

Looking at the above list one can discover that the central idea of Birdwatching,

which is tracking the position of the birds at different time points and predicting their

path by deriving a flight pattern based on recorded observed information, is quite close in

spirit to monitoring any dynamic spatial-temporal system. Inspired by this metaphor we

can explain how the functionalities within the RLR framework can assist to fulfill the

Birdwatching's goal. In RLR the change capture agents are responsible for tasks 1 and 2

(in Figure 3.21), the changes logs store the information about the changes (task 4), the

learning agents starts with limited knowledge (task 5 and 6) and tries to improve itself by

gaining inferred knowledge (tasks 8 and 9) based on the semantics provided by the

ontological backbone. Moreover the learning agents along with negotiation agents and

reasoning agents can derive a pattern of changes using the information stored in the

change logs and the background and derived knowledge (task 7). Using this pattern one

can achieve a practical estimate for expected changes (task 3). Finally the result of the

observation will be stored to be used for future inferencings (task 10), and to choose an

appropriate pattern (task 7) in the reproduction phase.

71 Bird Watching Tips for Beginners: http://animals.about.com/od/birding/tp/birdidtips.htm

147

http://animals.about.com/od/birding/tp/birdidtips.htm

The Galileo's dialogue72 for explaining motion for the first time stated that for

capturing and tracking a moving object one needs to record the position of that object in

each instance of time. Categorically speaking [LS09], studying any motion and

dynamism needs an analysis on mapping from a category of times to a category of

spaces. Figure 3.22 demonstrates such mappings.

The role of time is not usually taken into account in current ontology evolution

studies. Considering time in ontologies can increase the complexity and needs a very

expressive ontology language to represent it. In our approach, as we will show in Section

HI 3.5.5.2, we represent conceptualization of things indexed by time and we use

categorical constructors for capturing the states of ontologies at different time points.

Fig. 3.22. A map from category of time points to category of positions in space for describing a bird's
flight in categorical perspective [LS09].

Similarly, the behavior of an individual ontological element (state) can be monitored

by function g, which maps the time points to the set of positions for the element in the

ontology. Time s*>«"^-b<h™<" > Ontology

Moreover an ontology has different states and behaves in a distributed semantic web

environment. State < ihas-s""e Ontology hbehar,es > Semantic Web

Galileo, G. (1632) Dialogue Concerning the Two Chief Systems of the World - Ptolemaic and Copenican.
http://www.gap-system.org/~history/Extras/GaIileo_Dialogue.html

148

http://www.gap-system.org/~history/Extras/GaIileo_Dialogue.html

Composing these diagrams one can see that a behavior of an individual ontological

element should be studied in close relations with time, the state and the behavior of the

whole ontological structure in a semantic web environment (Figure 3.23).

Time
I g:element's_behavior

State < '•*«»-**« ontology hMu™* > Semantic Web

Fig. 3.23. A temporal diagram for studying the behavior of ontologies.

Ill 3.5 Category Theory as an Algebraic Formalism for the RLR

Category theory facilitates representing, tracking, and analyzing changes in ontologies. It

can also be considered as a supplementary formalism alongside other formalisms to

capture the full semantics of evolving bio-ontologies. Categorical constructors allow one

to describe different relationships between the entities of a dynamic system, as well as

offering a formal ground for representing various changes, actions, and operations, such

as addition/deletion, merging/splitting, mapping, alignment, and integration. Category

theory puts most of its effort into describing the relations between elements of a dynamic

system (morphisms) rather than the system's elements (objects). Depending on the level

of abstraction, different types of categories (i.e., categories of classes and properties in

the lower level of abstraction, and categories of ontologies and contexts in the higher

level) can be defined for modeling ontological structures.

149

Il l 3.5.1 The Category Class

Classes can be defined as a set of properties (attributes and methods) shared by a set of

individuals within an equivalence class. Whitmire [Whi97] was one of the few who

identified a model based on category theories for object oriented applications

measurement. Here we follow his approach for demonstration of ontological elements.

We can define the category Class with attribute domains as objects and set-theoretic

functions as arrows. We can also define some operations for a class. In ontology, a

concept or an instance can transit from one state to another based on its behavior in

response to a change. An event can be formally modeled as an ordered pair E = <St;,

St2> [EV06]. Sti is the start state and St2 is the end state. Sti and St2 are not necessarily

distinct and they might refer to the same state [Wan89] (when an event does not change

state). The category Class is defined with three types of objects and three types of arrows.

The three types of objects are [Whi97]:

1- The state space for the class, labeled with the name of the class.

2- The domain sets for the attributes in the class, labeled with the name of the domain.

3- The steady states (a situation in which the relevant variables are constant over time)

for objects of the class, labeled with the name for the state used in the domain.

Three types of arrows are: projection (71), selection (o), and operation arrows.

150

St,

A I m A4
°> X0<;

A" = C

(«)

fty"
%y

-+aj

(b)

Fig. 3.24. (a) Representation of the n attribute domains, and the state space of class C (An), when 7tn

determines the value of n,h attribute (adapted from [Whi97]); (b) a, has been defined to select a state (here
jth state) from the state space [Whi97]; n^ retrieves the value of ith attribute in state j ; which also can be
inferred directly from Oy = a, O 7t;r As it can be seen this inference causes the triangle at the right side to
commute.

The projection arrow for each attribute is drawn from the state space to the attribute

domain and labeled with the name of the attribute. The value of the /th attribute is

provided by 7ij. A selection arrow for each state is drawn from the state space to the state

and labeled as <rx where x is the name of the state [Whi97]. An operation arrow for each

event E = <Stj, St2> drawn from St/ to St2 and labeled with the name of the method to

which the operation corresponds (Figure 3.25). One can select a state using the selection

function a, which gives the /th state.

op,
SL SL

Fig. 3.25. Operation arrow opi denotes a valid operation in the defined category and demonstrates a
transition of an object from one state to another (e.g. from Stt to S(2). This operation is only valid within the
determined state.

I l l 3.5.2 Operations on the Class

Most common operations during ontology evolution are adding a class, deleting a class,

combining two classes into one, adding a generalization relationship, adding an

association relationship, adding/deleting a property, and adding/deleting a relationship.

151

Figure 3.26 represents adding a class to our available structure and Figures 3.27 (a) and

Figure 3.27 (b) demonstrate adding and deleting a relationship respectively.

Q

A3 9
The designed class C

wants to relate
Classes A, B

Classes A, B and their
attribute domains

Combining 2 diagrams and jhe Integrated Result
adding aggregation (part-of) Diagram

relationship from A to B

Fig. 3.26. Adding a class to the available structure based on categorical operation following Whitmire's
approach (adapted from [Whi97]). The represented aggregation73 relation between the classes A and B
implies the part-of relationship between them. The classes A, B, C in the left hand side has been
represented in the higher level (external view), while during the rest of the operations their attributes and
internal structures have been demonstrated.

at

A B

02
/

as at
*
\

— • A-

/
a* ai

(a)

/

as
/ / /

*B
\

\
«

a*

at a*

\ /
X / '

/ \
ai a*

(b)

ai
\

\
A

/
/

(12

/
B
\

Fig. 3.27. (a) ADD a Relationship between two classes A and B (b) Drop a Relationship (adapted from
[Whi97])

III 3.5.3 Categories Operation and States

We define the category Operation with the set of defined operations and attributes as

objects and the relationships between them as morphisms. The morphisms can be

73 There are different types of relations in an ontological structure such as subsumption (parent-child
relationship), association (relationships between individuals of different classes), and aggregation (a
type of association relation, which causes the semantic enrichment of the related classes; i.e. part-whole
relation).

152

considered as pre/post conditions, which allow an operation to be executed. For example,

as demonstrated in Figure 3.28, an object Opi can be related to other objects A/ and A2

(indicating attributes) through morphisms prei and pos2 (indication pre- and post

conditions). It is also useful to add other morphisms such as message links, for

communication and comment exchange purposes.

Ai~ *A2

Fig. 3.28. Category operation with operation/attributes as objects and messages/conditions as morphisms.

The message links may also pass parameters to other operations and therefore

constribute in the definition of pre/post conditions for that operation. In addition, we

define the category State with states74 of ontologies as objects and the operations, which

determine the behavior of an evolving structure, as morphisms.

C t = X
R, = Y R, = Y*

Cj = X'
Rj = Y"

Fig. 3.29. Ontology 0(C, R)75 transits to different states due to the different operations. One specific set of
concepts and relationships from this ontology may have different values in different states.

Figure 3.29 represents an example of transition of an evolving ontology through

different states. Since our primary purpose for defining this category is to trace an impact

of a change, through different versions of one ontology, here we only consider consistent

74 By state we mean the situation, in which a system is consistent and stable.
75 C and R are representing classes and relationships respectively.

153

states; however we can extend our definition to cover both consistent and inconsistant

states for the sake of conflict detection and inconsistency resolution. Another extension is

also possible through defining functors, which let us analyze the behavior of a system

while for example mapping two different categories of state. More on functors can be

found in Section HI 3.5.5.2.

The introduced categories (operation and state) together assist us to analyze the

behavior of an evolving structure, and monitor the impact of one particular change based

on the complexity and coupling of this structure.

I l l 3.5.3 The Category Ontologies

The category Ontologies can assist in analyzing different behaviours and interactions

with other ontologies, be they independent or various versions of the original ontology.

The category Ontologies can be represented either by simple categorical notation, with

ontologies as objects and the links between them as morphisms, or in a nested fashion,

using a special categorical constructor called "functor".

I l l 3.5.4 Operations on Ontologies

As we noted in Section II 3.3, ontology change management is composed of several sub-

fields, including ontology alignment, mapping, merging, and integration, which are

inevitable in a distributed environment. In this section, we discuss how category theory

can be used as a visual formalism to model some of these processes. However, it is not so

easy to generalize the categorical approaches, whose descriptions are mostly

mathematical, in the context of practical ontology change management, and one needs to

have a preliminary familiarity with this formalism. We try to limit our approach to the

154

most common categorical notions from a computer science perspective rather than purely

mathematical techniques. The reader can refer to [AL91, Awo06, and LS09] for more

information on category theory. For this section, we consider the category "U representing

the ontologies76 (Oj, O2, •.., On) as the object and the transition functions between these

ontologies as the morphisms. In this setting, categorical composition and identity

morphisms can be understood through the notions of transitivity and reflexivity,

respectively. The internal structures of objects are entirely ignored in this categorical

representation. In the rest of this section, we will show that despite the simple appearance

of a category, the semantics and derived results of categorical elements employed for

ontology change management are amazingly rich, and often can represent the entire

knowledge about a set of its defined objects (here, ontologies).

I l l 3.5.4.1 Alignment and Mapping between Ontological Structures

Basically, two ontologies can be aligned by first specifying the most similar

(syntactically and semantically) components in both ontologies, through a binary relation.

A categorical framework has been proposed by [BEE+04] to describe alignments in

ontologies. Categorically, their analysis began with the assumption that there exists an

object a and a pair of morphisms to the two ontologies O and O' in such a way that a is

the most specific ontology that approximates both O and 0 \ Then the morphisms,

representing binary relations that describe an alignment, are defined as a set of pairs of

entities, which represents one entity from ontology O and another from ontology O' via a

pair of projection functions (711,712) [ZKE+06].

76 This approach is not limited to formal ontologies and we can use any hierarchical controlled vocabularies
as object.

155

o

7T>Q

When analyzing two ontologies, two types of taxonomical relationships may be seen in

their subsumption structures, namely the parent-child relationship and equivalency (or

isomorphism). A map/: A —» B is called an isomorphism [LS09] if there exists g: B —* A

(inverse off) for which g o f= WA and fo g = Ids. In this c a s e / A —» B is called

invertible [Mac71]. The objects A and B are called isomorphic (equivalent) if there is at

least one isomorphism/: A —> B. The functions that change one ontology into another can

be considered morphisms between these two ontologies. Regardless of the type of these

change functions, the identity function and the composition of the change function can

always be defined. The isomorphism between ontologies can be studied by applying the

knowledge, implied by the change functions, backward and forward between the

ontology versions.

In [JPV+98] and [ZKE+06], ontology alignment has been addressed through

Cartesian products (resembling the intersection between two structures). Products [AL91]

in category theory generalize the notion of a Cartesian product of sets, but unlike the sets,

they focus on morphisms and their properties rather than the internal structure of the

objects. Products in category theory are generalization of the notion of Cartesian product

of sets, and are defined [AL91] as follows:

Let C be a category, and consider a and b as two objects in this category. The

product of a and b is an object P representing (axb) together with two morphisms pa: P

—• a and pi,: P —* b, such that for any object X e C and each pair of maps/- X —+ a and g:

156

X —> b, there exists exactly one (unique) map h: X—*- P for which both/= Pah and g =

Pbh holds (means the following diagram in Figure 3.30 commutes). Two maps pa and pb

are called projection maps for the product and we may refer to them as 7ta and n\,

respectively.

X

f /h

a*
#-

\ 8

— p ^D
P a (axb) P b

Fig. 3.30. A diagrammatical representation of categorical product.

As an example of product in the category of sets, assume two sets a: {x, y, z} and b:

{1, 2} based on the definition. The following diagram (Figure 3.31) represents the

categorical product P: axb.

Fig. 3.31. An example, demonstrating the categorical product in the category of sets.

The product is useful for analyzing the alignment of two ontological structures, but it

is not fully appropriate for ontology merging. It seems that another categorical

constructor called Coproduct, which performs a sum (or union) operation between

ontological structures, would be better suited for merging.

157

Definition (Coproduct) [AL91]: Let C be a category, and consider a, b to be two objects

in this category. The Coproduct of a, b is an object q together with two morphisms qa: a

—» q, qi>: b —> q such that for any object X e C and each pair of maps/- a —» X and g: b

—• X, there exists exactly one (unique) map h: q —* X in the way that the following

diagram commutes (Figure 3.32).

X

f / h X g

a >q+—.——u
qa (a + b) qb

Fig. 3.32. A diagrammatical representation of categorical coproduct.

The categorical coproduct is also unique up to isomorphisms77. As an example, for

obtaining coproduct in the category of sets one can consider the disjoint union between

the sets.

Mapping by means of binary relations can be achieved for ontologies d and O2. As

shown in [ZKE+06], categories can be recruited for ontology alignments on the abstract

level in two forms, V-alignment (for simple alignments) and W-alignment (more

expressive for more complex alignments). A V-alignment between two ontologies O-i and

O2 has been defined as a triple <0, pi, p2> such that O is an ontology, and pi: O—>Oi and

P2: O—>C>2 are two refinement functions. In a W-alignment, a set of bridge axioms

[BEF+06], for defining a bridge ontology between the two ontologies to be aligned, and

77 "An object A having a certain property <p(A) is unique upto isomorphism if given any other object B
such that q>(B), there exists an isomorphism / between A and B" [Enc04] (e.g., in category theory
terminal objects are unique upto isomorphism).

158

two V-alignments , for aligning each of the two ontologies with the bridge ontology,

have been employed to cover more types of relationships [ZKE+06].

Ontology 0 2

(partofMeSh)

Bacterial Infections and Mycoses fCOll

Bagtaat&fectfa>nsfC0l,2S21 +

Bran Abscess fCOI.3231 +

Central Nervosa System Infections [CO 1.3951 +

Infection fCOI.5391 ±

P- Mycoses [C01.7031

AtperailonsfC01.703.0781 +

Blastomycosis 'CO i .703.1281

_ „ ^Candidas; fCO 1.703.1601

Candidiasis, Chronic Mucocutaneous fCD1.703.160.165';

Candidiasis. Cutaneous fC01.703.160.1701

Candidiasis. Oral fC01.703.160.180]

Candidiasis. Vulvovaginal rC01.703.160.1901

Central Nervous SystemFuig3lMectionsfC01.703.i811 +

Coccidioidomycosis rC01.703.2031

Cryptococcosis fC01.703.2481 r

Dermatoiaycoses rC01.703.2951 +

Fig. 3.33. Two ontologies covering a specific domain with different granularities.

Figure 3.33 demonstrates two ontologies Oi and O2 that are simply representing part

of the FungalWeb and MeSH ontology, respectively. These two taxonomical structures

can be linked together via a mediator ontology, which is built based on the similarities in

both ontologies Oi and O2. As noted before, the two projection mappings a —> Oi and a

—• O2 give us the intended alignment in its simplest situation (V-alignment). When there

are matching concepts in both ontologies, for example, the existence of two synonymous

concepts, "haole rot" in one ontology and "tinea versicolor" in the other, each of these

concepts can be considered as a gluing point between two ontologies. When there is no

exact match for an entity from ontology O} into ontology O2, we may need to consider

1 If one needs to obtain the alignment between more than two ontologies, the number of simpler
alignments (i.e., V-alignments) and composed alignments (i.e., W-alignments) would increase
accordingly.

Ontology Oi

{part of FungalWeb)

- fungi
- fungal disease

* human disease
candidiasis •
chytridiomycosis
coccidioidomycosis
cryptococcosis

'Anima! disease
0 Plant disease

159

http://AtperailonsfC01.703.0781
http://fCD1.703.160.165'
http://fC01.703.160
http://SystemFuig3lMectionsfC01.703.i811
http://rC01.703.2031
http://fC01.703.2481
http://rC01.703.2951

other closely related elements that share the most similar properties with that entity. For

example, the concept "tinea versicolor''' in the extended version of the FungalWeb

Ontology may not have an exact equivalent in the "Human disease ontology"79, but there

is a concept "fungal infection" in the "Human disease ontology" that can be considered a

parent class for the concept "tinea versicolor''' in the FungalWeb ontology. This

subsumption (parent-child) relationship between two concepts would be later considered

as one of the major gluing points for merging (partially) the two ontologies. One

possibility for merging these ontologies is through an artificial gluing concept (e.g., the

concept "fungal infection v tinea versicolor in the mediator ontology. By creating the

mediator ontology (Om) and employing the so called W-alignment [ZKE+06], we can use

the composition condition in category theory to generalize the notion of alignment in

such a way that if there are alignments between O] and Om and between Om and O2, then

one can get the alignment between Oiand O280.

Here let us look at two important categorical notions called Pushout and Pullback.

The pushout for two morphisms/: A—>B & g: A—>C is an object D, and two morphisms

*/: B—>D & if. C—>D exist such that the square commutes (Figure 3.34 (a)). D is the

initial object in the full subcategory of all candidates D' (i.e., for all objects D' with

morphismsy'y andj2, there is a unique morphism from D to D'). The pullback (also known

as "Cartesian square") for two morphisms/- A—»C and g: B—>C is an object D, and two

morphisms //: D—>A and i?. D—>B, such that the square commutes. Here D is the terminal

object in the full subcategory of all such candidates D' [Eas98] (Figure 3.34 (b)).

1 http://obo.cvs.sourceforge.net/*checkout*/obo/obo/ontology/phenotype/human_disease.obo
1 Categorically speaking, consider a and p as the alignments between Oi and Om and between Om and 0 2

respectively, then the alignment between a and P can be described as y = a o p.

160

http://obo.cvs.sourceforge.net/*checkout*/obo/obo/ontology/phenotype/human_disease.obo

(a) (b)

Fig. 3.34. Two categorical constructors (a) Pushout, (b) Pullback.

For example as represented in Figure 3.35 (a) in the category of sets pushouts can be

defined as union of pairs of elements from B and C that are the images of the same

element in A, plus the rest of the elements of B and C. The pullback of can be defined

dually81 (Figure 3.35 (b)).

A B D A

(a) (b)

Fig. 3.35. An example, demonstrating (a) the pushout for two morphisms A—>B and A—>C in the category
of sets (adapted from [Eas98]); and (b) the pullback for two morphisms A—*C and B—->C.

The dual notion for a theorem can be achieved by reversing the morphisms.

161

If a given diagram composing /• A—»B and //: B—>D can be completed such that

diagram represented in Figure 3.34 (a) is a pushout diagram, then we call C (in Figure

3.34 (a)) together with morphisms g: A—>C and iV C—>D a pushout complement of ij.f.82

In many cases, where one has to deal with composition and decomposition of different

evolving structures, finding a pushout complement for a given state is a primary task.

One can find details on using pushout and pullback for ontology alignment and merging

[HKE+05, ZKE+06]. Specifically, the V-alignment and W-alignment approaches in

[ZKE+06] have been described in terms of the pushout construction. Several researchers,

including [JPV+98, HEK+06, ZKE+06], employed categorical pullback to model the

composition of alignments. Also, to obtain different types of alignments (based on the

level of granularity) and to ensure the minimality of the results, one can use the

intersection or union (achieved by pushout of the intersection [S0IO6]) of different

alignments or their compositions.

Ill 3.5.4.2 Categorical Constructors for Ontology Merging and Integration

The ontology merging process transforms two or more ontologies into a single ontology.

Ontology merging in its simplest situation (when ontologies are totally separate) can be

represented by their disjoint union, but in real world applications, the ontologies to be

merged usually have some elements in common and overlap (syntactically or

semantically) in some areas. As a result the merging process can be seen as gluing the

non-aligned part of one ontology to the aligned subpart of another one. Therefore, the

pushout operator in category theory, which resembles the merging operation, can be

82 For simplification C is usually refer to as the pushout complement without mentioning the morphisms.

162

employed [SRP02, BEE+04, HKE+05, ZKE+06]. Pushouts model the merging between

two aligned structures without any restrictions due to dependency on any implementation

language. The initial attempt for merging and integrating two ontologies (see Figure 3.36)

in existing approaches starts with creating a mediator ontology using the notion of

approximation83 and entailment between the two ontologies [HP04b, Ken04].

Fig. 336. Ontology integration process (Adapted from [Ken04]). In the first step two ontologies O, and 02

are being aligned using a bridge ontology Om and a set of refinement morphisms and bridge axioms. Then
two mediator ontologies Bj and B2 are merged84 into the ontology O. The final integration phase consists of
deriving two direct morphisms from the two initial ontologies by composing the morphisms in the previous
states.

There are several possibilities to use categories as a basis for merging and integrating

ontological elements. Besides pushouts and pullbacks, other categorical notations, which

are commonly employed for performing integration, are limits and colimits. Before

defining these notions here we need to present some introductory definitions of other

categorical constructors such as initial and terminal objects, diagrams, and cones.

Definition (initial and terminal objects): an initial object of a category C is an object I

of this category such that for every object O in C, there exists exactly one morphism I —>

O. In another words 1 is an initial object if for each object O there is exactly one map

' As defined in Wikipedia, approximation "is an inexact representation of something that is still close
enough to be useful". For more information on approximation in OWL-DL ontologies, we refer the reader
to [PT07].
1 In the set theoretical sense, one may describe this process with a special sum of Bi and B2.

163

from I to X. For example, in the category of sets an empty set is an initial object. In the

following diagram / denotes an example of initial objects (Figure 3.37)

y

Fig. 3.37. A diagrammatical representation of initial (/) and Terminal (T) objects in category C.

The terminal object (T in Figure 3.37) is defined dually as follows: T is terminal if

for every object O in C there exists a single morphism O —* T85. As an example a

singleton set is a terminal object. If an object is both initial and terminal, it is called a

zero object or null object.

Definition (diagram) [AL91]: A diagram D in a category C is a directed graph whose

vertices i el are labeled by objects dt and whose edges e e E are labeled by morphisms

fe. Later on in Section III.4 we will see that we can define a categorical diagram as a

graph homomorphism.

Definition (cones and co-cones) [AL91]: Let C be a category and D a diagram with

objects dj, iel. Then as represented in Figure 3.38 a cone to D is an object c and a family

of morphisms {fi e Cfc, dj \ ielf6 such that V/je/, V e e £ fe e C[d„dJ then fe ° fi =fj.

85 This definition of terminal object closely resembles the conception of "Thing" in OWL.
86 The brackets in Cfc, dj are representing the domain and co-domain of a morphism in C (i.e. c —> d,).

164

Fig. 338. A representation of a cone to a diagram D, which is an object c e C and arrowsy*. c —»dj, df e C
such that for each arrow di —>djthe diagram, commutes.

Co-cones are defined dually, such that a co-cone for a diagram D is an object c and a

family of morphisms {fi e C [di, c] \ i&I} such that the generated diagram commutes.

Definition (limits and coiimits) [Awo06]: A limit for a diagram D in category C is a

cone {fi: c —• dj} such that if {/',: c' —• dj} exists, then there a unique map u: c' —• c exists

that causes the following diagram for every dt in D commutes (cf. Figure 3.39 (a)).

\s mm wm *••• ** " " i ^ \ ^ \^ *Q"* *•• *••» *"•• »"»^?

dj dj

(a) (b)

Fig. 3.39. Diagrammatical definition of (a) limits and (b) coiimits.

Coiimits are also defined as dual of limits. A colimit of D is a co-cone {fr. di —• c)

such that if {/"',: dt —-> c'} exists, then there is a unique map u: c —* c' exist cause the

following the diagram in Figure 3.39 (b) commutes for every dt in D. It is some how

inferable [LS09] that limits as a universal construction generalize notions such as

165

terminal objects, intersections, products, pullbacks; while colimits generalize notions

such as initial objects, sums, coproducts, disjoint unions, and pushouts87.

After aligning the ontologies, using a bridge ontology, a set of bridge axioms, and

the mediating ontologies (the initial ontologies after applying the bridge axioms), a

categorical colimit can be used [ZKE+06] to model the merging88, through a series of

successive pushouts. For example if two ontologies are aligned using W-alignment then

three pushouts can compute the merging between the ontologies (Figure 3.40). By

increasing the number of ontologies and composing different alignment methods

together, the number of pushouts, which are used for computing the merge increases

accordingly.

Fig. 3.40. Integration of two ontologies Oi and 02, which are aligned via W-alignment technique, using
colimits and three pushouts (adapted from [ZKE+06]). Ai and A2 are the alignments and B is the bridge
ontology and O'I and 0'2 are the initial ontologies plus the added bridge axioms and finally M represents
the final integration result.

87 For example, initial objects can be defined as colimits of empty diagrams, coproducts are colimits of
diagrams indexed by discrete categories, and pushouts are colimits of a pair of morphisms with common
domain [Lim09].

88 For example, categorically speaking one can describe the integration described in Figure 3.32 to be the
colimit of the specified alignment diagrams.

166

I l l 3.5.5 Category Theory for Representing and Tracking Changes

Categorical representation enables the progressive analysis of ontologies. After

describing the ontological concepts within categories representing a modular hierarchy of

domain knowledge, we employ category theory to analyze ontological changes in the

following ways.

I l l 3.5.5.1 Exploring the Similarities

One of the major tasks in performing ontology alignment and mapping is finding

similarities (structural or semantical) between the ontologies. Finding semantic

similarities in a network structure gives rise to several computational, psychological

[Tve77], and philosophical issues, including the problem of identities and essence. As we

discussed in Section III 3.5.4.2, similarity checking in ontology engineering can be

studied under the notion of approximation [MME+06, PT07]. An approach for measuring

semantic similarity that generates similarity scores based on trees [GGW03] and a graph-

based algorithm [MME+06] for managing semantic similarities in ontologies are

examples of some of the efforts in the area of similarity measurement for hierarchical

structures. Recently, research [AN09] on measuring semantic similarity for concepts

within biomedical ontologies and a review of different approaches in this domain

[PFF+09] has been conducted.

The semantic similarity can be studied as finding logically equivalent classes and

relationships that may differ in name while performing the same function. In fact, one of

the significant uses of categories is analyzing different objects with some degree of

167

similarity in their underlying structure . Employing category theory enables us to deal

with this problem of logical equality in evolving hierarchies using isomorphic reasoning

[MazOTJ. In set theory, two ordered sets are defined to be equivalent90, iff there exists a

third set, the members of which being ordered pairs such that (i) the first member of each

pair is an element of A and the second is an element of B, and (ii) each member of A

occurs as a first member and each member of B occurs as a second member of exactly

one pair. In summary, a bijective order-preserving (monotonic) function should exist

between A and B. These structure-preserving functions are a typical form of morphisms

in category theory [HKE+05]. In categories, we do not focus on the internal structures of

categories (i.e., the names of elements of a set are not important in the categorical

approach) and instead all attention will be focused on the morphisms (representing the

relations between objects), the composition of morphisms, and the cardinalities of

categories of sets.

The definition of equivalence of categories has been given in [Sel05, AL91], and we

will return to this problem in Section IV.3 on the case studies.

Ill 3.5.5.2 Tracking the Changes and their Impacts

The tracking mechanism keeps track of ontological structures over time. A chosen

ontological structure (or element) can be monitored in a certain time interval, and its

behavior in response to various changes can be captured and marked. In this way, after a

while, the elements with a high chance of alteration will be highlighted and can be used

89 As an example described in [Hea07], one may consider an architectural plan of a building that includes
several details about forms. The shape and measurements of the building may exist in different forms,
such as a hand-drawn or printed form on a paper, or a digital version in a computer.

90 Adapted from: "set theory." Encyclopaedia Britannica. 2009. Encyclopaedia Britannica Online. 12 Nov.
2009 <http://www.britannica.com/EBchecked/topic/536159/set-theory>.

168

http://www.britannica.com/EBchecked/topic/536159/set-theory

for detecting the possible change couplings [GHJ98, DLR09] through backward tracing.

In our approach using categorical morphisms, we make an explicit connection between

different versions of an ontological structure, which enables us to analyze and generalize

dependencies and monitor the impact of different operations on the parts affected. The

categorical representation enables the progressive analysis of ontologies. Category theory

is being used to represent the evolutionary structure of ontologies and provides facilities

for tracking changes and analyzing the impact of these changes as follows.

I. Comparing a previous state of a class with a later state: A categorical model

[Whi97] is able to describe the state space (set of all possible states for a given state

variable set) for a class as a cross product of attribute domains and the operations of

a class as transitions between states. It also allows the definition of message passing

and method binding mechanisms. Category theory has a special type of mapping

between categories called functor. Functors are defined as morphisms in the category

of all small categories (where classes are defined as categories) [Awo06]. In other

words they are structure-preserving maps between categories. As defined in [Oos02],

we assume A, B are two categories, so a functor F: A —* B is a pair of mappings

(Figure 3.41) that associates to each object x in A an object F(x) in B; and also maps

each morphism of A onto a morphism of B, such that the identities and composition

are preserved. The preservation of identities means if, for example, x is an A-

identity, then F(x) is a B-identity; and the preservation of composition means that

considering/and g as two arrows in A, then one can find the following statement

valid in B [Eas98].

91 Change coupling in an application can be defined as the implicit relationship between two or more
components that frequently change together during the systems' evolution [DLR09].

169

V / ' g e A => F(/-°g>=F(/)°F(g)eB

As it can be seen in this definition, functors not only transform the objects but

also represent an associated transformation of the structures (morphisms) [Ryd85]. A

categorical model can represent transitions between different states of an ontological

structure. As mentioned in Section III 3.4, following our Birdwatching allegory to

capture and track this kind of transition, we represent the conceptualization of things

indexed by time. For example, from the FungalWeb Ontology, "'enzyme

has_property_x at f is rendered as "enzyme-at-t haspropertyx". As another

example, in the higher level, we can consider that an ontological structure O at time t

has a certain feature. Then we represent a set of time-indexed categories using

functors to capture different states of the ontological structure at different points in

time. The category O at time t (Ot) models the state of the ontologies and all related

interactions at this time. A functor can represent the transition from O, to O,- (Figure

170

3.42) where the time changes from t to t'. In addition, each subontology A can be

modeled by the series of its successive states A, from its 'Creation' to 'Destruction''

[EV06].

(Ot)

Fig. 3.42. Using Functor

It is quite common in software engineering to represent the relations between

different versions of an application through a version graph [MDSOO] consisting of

nodes and arrows representing a version of the application pointing towards the

successor versions (Figure 3.43).

Fig. 3.43. A typical version graph [MDSOO] composed of different branches representing the
relationships between different versions and revisions of an ontology through a set of solid (shows a
direct offspring and successor version) and dotted (shows the inheritance of some features) arrows.

It would be also natural to use categorical functors to represent and analyze the

relationships between different versions of ontologies, organized in a version graph,

171

within a specific life cycle. Here we extend the use of functor in ontology change

management by introducing another categorical constructor called Natural

Transformations, which describes the maps between functors (morphism of

functors). Given two functors S, T, which represent two different transformations

from category A into category B (S, T: A —> B), a natural transformation between

these two functors (S —• 7) is a morphism / which assign to each object x o f A a

morphism t(x): S(x) —* T(x) ofB in such a way that every morphism/- x —*• x' yields

the following commutative diagram (Figure 3.44).

/
•+-X

S(x)

t(x)

T(x)

S(fj

W

'S(x')

t(x'j

'T(x')

Fig. 3.44. Diagrammatical representation of a Natural Transformation between two functors S, T.

In fact natural transformation acts as a vehicle to represent transformation of one

structure (modeled by a functor) into another structure (represented by another

functor) within a temporal environment. So, it makes it feasible to model and track

the relations between different revisions of one model. For example, considering

another functor H in the natural transformation, depicted in Figure 3.44, which

represents a map to the second revision of an evolving structure, one can obtain a

composition of natural transformations [BW05].

II. Measuring coupling: As knowledge based systems become more complex, the new

trends lean towards describing their architecture and behavior with more abstract

172

representations. Category theory not only supports high-level abstraction, but also

treats these complex interconnected infrastructures with a more intuitive style.

Categorical representation also improves the readability of the complex ontological

structure by omitting some of the irrelevant details of the internal structures.

Coupling specifies the extent of the connections between elements of a system and it

can identify the complexity of an evolving structure. Measuring coupling is useful

for predicting and controlling the scope of changes to an ontological application.

Often, a change in one class can cause some changes to the dependent classes. When

the coupling is high, it indicates the existence of a large number of dependencies in

an ontological structure, which must be checked to analyze and control the chain of

changes. Different types of couplings can be defined for ontologies, e.g. structural

coupling, semantic coupling, message coupling and so forth. Especially structural

coupling for ontological elements can be described by a number of connections and

the links between them. Therefore, we focus on arrows in category theory to study

these connections.

Oi

Mfcy)

Dpi Precondition = 3

A , Postcondition = 2 ~—*-A -

Fig. 3.45. Measuring Coupling as defined by [Whi97].

For analyzing a conditional change, we followed the formal model described in

[Whi97] by identifying three types of arrows in the category operation: precondition,

173

post-condition and message-send arrows. The type of message is determined by the

types of changes caused by a method. In the category shown in Figure 3.45, the

coupling for the operation Opi is a nonnegative number (> zero) that can be

calculated by counting the three types of arrows (post-conditions, preconditions, and

M(x,y)). The message-send arrows can be excluded from this calculation, if they do

not pass any parameters, thus do not have any operational affect on other ontological

structures, or on other operations.

III. Analyzing dependencies to control co-evolution: Dependency analysis generally

means exploring and tracing the dependencies and couplings between different units in

a system. Analyzing ontological dependencies [DMM07], ranging from an individual

concept to an entire ontology, facilitates the study of potential relations between an

ontological element and its context through a set of constraints. When a change occurs

in an ontological element, the other dependent elements will be changed accordingly

to keep the ontology valid and consistent. This leads to a new version of the ontology.

Similarly, when the ontology O evolves into the new version O', this evolution should

be reflected in the other interconnected ontologies as well. These reflections - or co-

evolution - should be formalized and supervised in a consistent way. In our approach,

this problem will be addressed in the next sections by defining different levels of

abstraction (micro and macro) in our analysis. Dependency analysis has been studied

in [WH92] to maintain object-oriented programs and change impact analysis [AB96]

by means of external dependency graphs (EDGs) and clustering methodologies. A

classification of different dependencies in object-oriented programming, which is

organized in a dependency graph, has been introduced in [WH92] as: Class-Class

174

dependencies (e.g., Ci is a direct parent of C2); Class-Method dependencies (e.g., class

C inherits method M); Class-Message dependencies (e.g., C understands message);

Class-Variable dependencies (e.g., i is an instance of class C); Method-Variable

dependencies (e.g., V is a parameter for method M); Method-Message dependencies

(e.g., method M sends message M'); and Method-Method dependencies (e.g., method

Mi invokes method M2). The nodes and arcs in the dependency graph may represent,

respectively, ontological elements and different types of dependencies between these

elements. Using category theory as described in Parts I and II helps not only in

tracking changes but also assists in tracing the dependencies between ontological

elements. Tracing the dependencies provides more information for agents and makes

the negotiation process more realistic, the conflict resolution more effective, and the

outcome more consistent with the intended purpose of the ontology.

175

I l l 3.5.6 Category Theory for Representing Agents' Interactions

"The meaning of things lies not in the
things themselves, but in our attitude
towards them"

Antoine de Saint Exupery (1900-44)

One of our primary research objectives in the RLR framework is to reduce human

intervention in ontology change management life cycles. To this end, a mathematical

knowledge representation formalism is necessary to support agent communications and

interactions. As highlighted in [RM07], despite worldwide efforts in this domain, no

proven formal frameworks, methods, and tools for modeling automatic agent interactions

and argumentation yet exist. The interaction protocols, which consist of a set of steering

rules to manage the interactions, are commonly represented using UML [LinOl], Petri net

[PCN+04], State-charts [DCP05], state-transition diagrams, or finite state machines

[FC03]. A key feature of our contribution has been the extension of existing agent

modeling techniques using category theory to provide a formal yet intuitive

diagrammatical representation for RLR. RLR employs categorical notions as a basis for

modeling an agent communication language. The categorical framework is expressive

enough to model the agents' behaviours, yet abstract enough to represent the generality of

the protocols. RLR benefits from the algebraic power gained by using an abstract

categorical representation of agents' interactions to increase the autonomy of

argumentations in the change management framework. Category theoretical

representation, with its ability to derive formal inference out of a diagrammatic

representation, is independent of the type of interactions and their details, so its generality

can be used to describe different types of protocols, study a MAS framework in different

176

levels of abstraction, analyze rule transformations (yielding a practical image of adaptive

learning agents and their semantics), and formalize dialectic trees for argumentation.

I l l 3.5.6.1 Analyzing a Multi-Agent Framework in Different Levels of Abstraction

Recalling the zoom-in and zoom-out notions in conceptual modeling, we define different

types of categories based on different local and global perspectives. Each agent can be

considered a category, with states of the agent as objects and the actions that cause an

agent to change its state as morphisms. More generally, we can define a category of

agents, with agents as objects and the different types of communication and interaction

channels between agents as (functor) morphisms. In the same way, one can for example

define the services given by agents as a category, with agents as objects and the

composition relations between the agents (representing different interactions,

communications, message passing, or sharing attributes between agents) as morphisms,

or, alternatively, the category of services, with agents' services as objects and the

mapping between the services as (functor) morphisms. Moreover, by changing the level

of abstraction, we define a multi-agent system as a category92 consisting of services as

objects and the relations between them as morphisms, as well as the category of multi-

agent systems, with each system composed of several agents providing different services

as an object and the different communication channels between two or more distributed

multi-agent systems as (functor) morphisms. This viewpoint about the categorical

conceptualization of MAS structures in different levels of abstractions leads us towards

Based on different conceptualizations, one may consider a multi-agent system to be a category with agents as objects
and the relations between them as the morphisms.

177

defining a formal semantic for various interactions occurring between agents in evolving

environments.

In an integrated multi-agent-based framework such as RLR, functors and their

compositions are powerful abstraction mechanisms for analyzing the relations between

different categories (e.g., relations between categories of agents, relations between a

category of agents and a category of services, or a category of multi-agent systems and a

category of states, etc.). As an example, consider a scenario for the alignment of two

ontologies, by considering state as a category with the different states of an agent (i.e.

initial state (IniS); requesting merge (Req_M); receiving the merge result (RecM) and

checking for validity (ChkV)) as objects and the message passing between the states

(i.e. issuing alert, change notice, ontology ID, and so on) as morphisms (Figure 3.46).

change state

Ontology IDs /' \

ignore change^ ini_S) *\ Req_Mj

y
(new) Ontology ID

issue alert

Rec :_M)

change notice r

Fig. 3.46. The categorical illustration of states for the ontology merging scenario.

The above categorical diagram might be changed to demonstrate different options for

performing ontology merging. For example one may want to check whether two

ontologies are from the same domain or not (ChkD) and if they are not from the same

domain, cancel the merging and move back to the initial state (Figure 3.47).

178

change state

Fig. 3.47. The categorical illustration of states for an alternative ontology merging scenario.

Considering the first model represented in Figure 3.46 as Category OSti and the

modified version represented in Figure 3.47 as category OSt2 in the category of states

using the composition law and a functor, we are able to represent the transition between

Sti and St2 through the functor F representing "Check Domain": F: Sti —* St2.

In a similar way different associations between different types of objects (e.g.

various cognitive units [And81] described in the categorical sense) can be modeled. For

example93, one can describe a set of prepositions as objects within the category of

prepositions and the relations between them as the morphisms in this category. Figure

3.48 represents a typical diagrammatic representation of such interactions for the

following prepositions.

1. Agent AG_1 received a message.

2. Agent A G 1 has perceived a change request through the message.
3. The perceived change request is a delete request.
4. The delete request is issued to be performed on ontology Oi.
5. The target for the deletion is concept Cx within Ontology Oi.
6. Ontology Oi is currently being used by KBi.
7. The concept Cx is being reused in a process Pr_l .

93 Oue example is inspired from the communication between the cognitive units presented in [And81].

179

8. The concept Cx has three sub concepts Cxi, CX2, Cx3.
9. Two concepts Cxi and CX2 are currently being used in a process Pr_l.
10. The controller agent of KBi should be notified about the request.
11. The negotiation for loss/benefit has been performed.
12. Based on the negotiation outcome the delete request is postponed
13. The notification to the agent AG_1 is sent.
14. AG_1 ignored the change request.

Fig. 3.48. A generic categorical representation of different prepositions in an agent based framework
dealing with a "delete request" message.

As can be seen in Figure 3.48 several concurrent interactions may be performed

through the compositions between the morphisms. Also several inferred knowledge can

be gained94 through this categorical approach, which can later on be used in the learning

phase. Upon successful completion of the negotiation process in RLR, the ontology will

either remain unchanged or be modified to convey the new knowledge based on the

outcome.

I l l 3.5.6.2 Representation of Agents' Rule Compositions and Transformations

Intelligent agents perform actions in a context by using rules that guide interactions. In

order to perform an action, which may lead to a state transition, often two or more sets of

94 As an example of this inferred knowledge, one may notice the simple composition of morphisms in
Figure 33.27 such that for instance: 1 —> 2 —> 3 implies 1 —* 3.

180

rules may be combined and integrated, ideally in an automatic fashion. The manual

combination of rules is neither desirable nor feasible in many circumstances (i.e., when

dealing with large sets of rules). The mathematical power of categories can deliver a

formal guidance for combining these sets of rules, which are usually described in a

diagrammatic representation95. For example, in the RLR framework, the agents follow

certain rules, some simple and some complex ones (in the case of multiple options

leading to different decision points, e.g., adding concepts, which needs the combination

of several rules to find a place, check the validity, and so on). As shown in Figure 3.49,

the two graphs 1 and 2, respectively denoting the (partial) state diagrams of agents Ai and

A2 with nodes, represent the state and edges symbolizing the transitions. These two

agents have their own opinions about the set of states in a change management process,

which may differ with each other in some particular cases. To achieve the compositions

of the two agents' views on performing a task, one can follow several options including

conjunction or adjunction [CS01].

Composition / OR

a «*-

C2

Fig. 3.49. The composition of two initial agents' action graphs through conjunction (C ;) or adjunction (C2).
As can be seen in Q emphasizes are on common paths within the two action graphs, while in C2 the focus is
on sum of the available paths.

95 They may be represented by UML, state transition diagrams, Petri nets, or finite state machines, to name a few
possibilities.

181

As the above figure shows in these types of compositions, the origin of arrows might

not be preserved. As another example, Figure 3.50 demonstrates the merging of two

simplified transition diagrams Di and D2, respectively corresponding to the rules

specifying state spaces Si (location finding) and S2 (adding an object), into the diagram

D, which can be used in a typical algorithm for finding the shortest path [Fra08]

(determining the closest node accessible from a particular node) in an agent based

system.

Dl: (ayLcSyL® D: (S^-4^-^-Q

b.e

Fig. 3.50. The integration of rules described in two transition diagram Di and D2 using the categorical
product D] x D2 to obtain one compound state diagram, which can be used in a typical shortest path
algorithm (adapted from [Fra08]).

This approach can also be generalized for merging more than two rules with more

complex structures through bridge-rules, which glue the rules based on their common

features (similar to bridge axioms described in Section III 3.5.4).

As mentioned in Section III 2.3.2, RLR considers the change of the rules as a

primary adaptation principle for learning. For describing our adaptive agents, we follow

the formalization method used by G. Resconi in [RL04]. Each rule includes a finite or

infinite semantic unity96, which can be symbolized as Si, IN, Pi, and OUT. These

symbols represent the input statement, the domain of the rule, the rule, and the range of

the rule (denoting the value of an agent's action), respectively. Generally, when we work

in a static environment, we deal with only one family of rules for each context. However,

96 Semantic unities represent the conceptual map between a set of concepts within a specific context through rules
[RL04].

182

when the environment is dynamic, it is very likely that these rules change into other rules.

Therefore, a single change in an ontological element triggers other changes in rules and

contexts. As an agent gradually learns the different rules for various contexts, there is the

need for a communication channel between these rules, as well as between different

agents. Such changes are demonstrated in [RL04] as follows (Figure 3.51).

IN

IN

i m
T
+
X,

1

i ' W

Context 1 Rule Xi

Pi

P2

^ O U T ,

X*

• p u b \z

Context 2 Rule X2

Fig. 3.51. Demonstration of the semantic unity of the changes of the rule X| in the context 1 into the rule
X2 in the context 2 (adapted from [RL04]).

From the point of view of category theory, we consider the category of rules with

semantic unities as objects and the mappings between them as morphisms. We then use

category theory, along with General Systems Logical Theory (GSLT, described in

[RH96]), to describe agents' communication. For example, the communication between

different semantic unities can be represented as follows:

Fig. 3.52. Categorical representation that demonstrates how rules Pi and P2 enable the transformation of
the rule X] into the rule X2 (adapted from [RL04]).

183

Using categories to enhance the learning process has been also addressed in

[FFG+95] by measuring and comparing the relative sizes of classes of inferable sets of

functions based on inductive inference. To define the semantics of agents' protocols, we

describe a set of pre- and post-conditions that need to be satisfied before/after the

occurrence of a particular action or actions. Then the categorical semantics can be used to

model different interaction protocols within a general dialectic framework. Few

approaches attempt in defining categorical semantics for agent interactions including the

one that can be seen in [JMP05], where they focus on denotational semantics, considering

the protocols abstracted away from the type and the nature of the interaction results.

Pfalzgraf [Pfa04a] has proposed a distributed logical ground based on category theory,

the concept of logical fiberings [Pfa04b], and many-valued logics [Got07] for modeling

multi-agent communications. In summary, the idea in this approach is to allocate a local

logic (logical fiber) to each agent and make the fibering (global logical state space) out of

the group of all the fibers over the base space of agents.

In the RLR framework the semantics of an evolving agent-based system can be

captured through a category of states and a set of operational transitions Op: Stm —* St„,

representing that the state Stm can change into St„ by performing an operation Op. As

illustrated in Figure 3.53 each individual agent (e.g. Ai...A„) can make a transition using

a function (e.g./,, g„, . . .) , which force the transition of MAS to the new states through

the operation arrows (e.g./org).

184

Fig. 3.53. The representation of a multi-agent system (MAS) transitions to different states using different
operations and in different levels of abstractions.

The interactions in RLR can be studies through a category with a set of states (St)

denoting the points, a set M of possible message expressions, and a transition morphism

T (product of states and massages). The current existing formalisms seem sufficient to

model the interaction protocols for a relatively small set of interactions, but as the

number of messages, exchanged expressions and potential interactions between multiple

levels of nestings increase, it is far from trivial to manage all the prospective

arrangements.

Categories support the agents' rule interactions with no need for deep architectural

and procedural nesting. As a simple example, let us once again look at the composition

operation (o), which can be used to formalize the declarative rule interactions for agents.

For instance, one may need to define a situation in which an agent should decide about

the deletion of a node in an ontology. Since the rules are not isolated in RLR by using the

composition operation (o), we can represent: Rs o RP o RR o RD where Rs is a

morphism denoting "select node command", Rp is "parent checking condition", RR is

"remove child morphism", and RD is the action (i.e., deletion) to be taken in the next

move.

185

I l l 3.5.6.3. Modeling Argument Trees

Analyzing the dependencies and legitimacy of a claim in an argument should be

performed within a logical structure. Toulmin [Tou58] described an argument based on

the Claim and Data supporting this Claim, a Warrant to infer the Claim from the Data and

Backing to support the materials that support the Warrant, a Qualifier to represent the

soundness of an argument with uncertainty, and a Rebuttal (Reservations) to represent the

exceptional cases (Figure 3.54).

Fig. 3.S497. The Toulmin's layout for argumentation, with C, D, W, B, R and Q denote respectively Claim,
Data, Warrant, Backing materials, Rebuttal, and Qualifiers.

Since Toulmin's description of argumentation trees have been adopted as one of the

preferred vehicles for representing an argumentation framework through two or more

contradicting structures where the roots, the nodes, and the edges respectively denote a

claim, the grounds (supporting information), and the warrants (rules). Many of the

uncertain and arguable grounds can be considered sub-claims, which are supported by a

set of nodes (grounds). Figure 3.55 represents an example of such a tree.

97 Adapted from: "A Description of Toulmin's Layout of Argumentation"
http://www.unl.edu/speech/comml09/Toulmin/layout.htm

186

http://www.unl.edu/speech/comml09/Toulmin/layout.htm

Fig. 3.55. A partial representation of a tree-like dialectically grounded argumentation structure. In this
structure C represents the claims (e.g. Ontology O is a formal Ontology); G denotes grounds (e.g. Ontology
O is written in OWL-DL); and R represents the warrants or rules (e.g. OWL-DL ontologies are formal
ontologies).

As it can be seen in the tree shown in Figure 3.55, each branch has been associated

with an argument about the claim (root) and its interactions with other branches (other

arguments) form the argumentation structure. Currently several tools are available for

creating such argument diagrams (e.g., Araucaria [RR04]). Toulmin argumentation

diagrams mainly focus on the static representation of arguments, but they have been also

extended to reflect the evolving nature of argumentations in various domains (e.g., the

dialogue game [Ben98, BGLOO]). In RLR, we also define categories of arguments with

each category including the arguments as objects interacting within an argumentation

framework (Figure 3.56) and the interactions between them as morphisms. Our initial

plan to design a categorical model for RLR agent protocols starts with creating a graph

for potential messages exchanged by the agents. Consider the category Communication with

a set of time points as objects and message expressions, usually placed in argumentation

protocols, as morphisms. The morphisms represent the expression needs for

argumentation between two time points (simply denoting the start and end of an

187

argumentation). Thus, a communication for a protocol in the argumentation framework

can be simply modeled by a sequence of morphisms and their compositions. Recall the

use of functors and natural transformations to define different assignments between

various categories. Here we are also able to generalize the communications between

different protocols (e.g., two categories Ccomm, Dcomm) using functors (i.e. F: Ccomm.—*

Dcomm)- In existing agent languages such as FIPA-ACL (see Section III 2.4), the

messages exchanged between the agents may consist of requests and notifications, for

example, without the possibility to define any combination rules; while in our approach

we can define the rules' compositions in various levels of abstractions. This observation

has been also studied in [PS08] from a different angle9 , where every MAS diagrammatic

topology has been interpreted as a category PATH where the nodes are the objects and

every sequence of consecutive arrows (a path which may include more than one single

arrow) in the diagram is a morphism". Based on [PS08], a base diagram, which is a

category PATH, has been associated with each MAS to represent the general attributes

and organization of related communication channels (arrows) for that MAS.

As mentioned in the introduction, the arrows in the category of agents (morphisms)

convey a communicative operation of forwarding a message from one agent to another. A

category of such arrows together implies an argument framework starting with an initial

action and ending with a final decision (i.e. one may consider the classical example of

auctioning). The set of rules provides sufficient expressiveness for the argument

framework (e.g., winningbid > startingbid). Each communication protocol can be

considered a reusable pattern, which is "formally defined and abstracted away from any

98 In the study performed in [PS08] the authors focused on the communications between different MASs
rather than the dialogues between individual agents.

99 This actually implies the composition of morphisms.

188

particular sequence of execution steps" [WJKOO], and can be applied to other frameworks

with different purposes. The categorical representations along with the graphical

transformation greatly resemble UML representations (specifically state and activity

diagrams) while providing more expressivity in terms of the underlying semantics.

For agent negotiation, we also assumed that one may consider two options for

merging two ontological elements A and B: simply by the product AxB (all possible

pairs <element from A, element from B>) or the co-product of the objects A+B (all

elements from A and all elements from B). The negotiation agent can select the best

method of merging and integration out of several alternatives for both categorical objects

and arrows (denoting ontological elements). Assume we define following arguments for

the integration and merging of ontological structures:

ar- AxB, ai\ A+B, ay. A, a4: B

"<3i defeats 02" can be represented by an arrow from the domain a\ to the co-domain

aj (Figure 3.56). By following the categorical representation, an argumentation network

will be generated that can be used to formally describe negotiations and speed up

inferences.

Fig. 3.56. Categorical representation of the argumentation network.

189

The categorical representation focuses on the behavior in which arguments interact

(i.e. the argument ai defeated the argument afi instead of focusing on details of their

internal structures. This categorical formalism can be used as a basis for conflict

resolution in a recommender system based on dialectical databases [CCS05]. An

algebraic semantics based on category theory has been also introduced in [Amb96] for

argumentation, which provides proof of soundness and reliability for the structures based

on "Logic of Argumentation" [KAF92].

Ill 3.6 Summary of Contributions in Section III.3

Category theory facilitates the analysis of the process of structural relationships and

structural change in living and evolving systems. Categories have been extensively used

in mathematics and theoretical computer science to assist in separating the levels of

abstractions and integration of generic components. The categorical method to study and

measure changes and to test several hypotheses and certain effects on developmental

change between two time points has been applied in biological and social analysis as well

as in psychological [AAG05] domains. However, the applications of category theory in

biomedical Ontology change management are extremely rare. Category theory provides a

universal algebra for the representation of highly abstract concepts. We use category

theory to explore systematic changes in ontologies and study various dependencies

between the ontological elements, as well as formalizing agents' interactions and

communications in the RLR framework. The following is a summary of our main

contributions in this section.

190

• Defining a method based on a metaphor taken from a recreational activity,

Birdwatching, to highlight the temporal aspects of ontologies by representing

conceptualization of things indexed by times, which enables one to control

forward and backward compatibilities for taxonomic revisions.

• Introducing the potential of category theory as a formal representation vehicle

for analyzing changes within biomedical ontologies in different levels of

abstraction.

• Utilizing different categorical constructors and notations to assist in different

tasks for the ontological change management process such as: performing

change operations on ontological structures (e.g. add/delete, merge); exploring

the similarities between different versions; tracking an ontological structure

through its different states to monitor changes; measuring coupling and

analyzing dependencies to control co-evolution. To this end, we have defined

several categories to analyze classes, ontologies, operations, and states.

• Extending the semantics for change management process within RLR, by

defining a categorical framework to support agents' communication, negotiation

(i.e. formalizing dialectic trees), state transitions, compositions and

transformations (i.e. rule transformation) in different levels of abstractions

(agents and MAS). For this purpose we have defined several categories

including categories of agents, multi-agents systems (MAS), services, states,

rules and prepositions.

In the next section we extend our use of categories for managing evolving

biomedical ontologies in the context of graph transformation.

191

III.4 A Graph-Oriented Formalism for Change
Management

"/ love fishing. You put that line in the
water and you don't know what's on the
other end. Your imagination is under
there."

Robert Altman (1925-2006)

Advances in the World Wide Web, leading to the Semantic Web, Web 2.0, and Web

3.0,100 have made a considerable impact on almost everything. The Semantic Web has

been known for its complex and heterogeneous environment with highly volatile and

non-deterministic interactions between its components, which are tightly coupled to each

other. All of these features make the change management process for ontologies as basic

blocks of the Semantic Web far from trivial. An enormous number of components,

connected semantically and syntactically, are interacting with each other via several

available knowledge bases, ontologies, databases, tools, and applications within the open

distributed heterogeneous web environment. In such a situation, analyzing various

changes requires a formalism with higher abstraction levels, which can simplify complex

notions and representations to allow the study of changes in various levels. Despite the

fact that employing the power of mathematical notation and mathematical proofs of

formal methods has been studied in computer science for a long time [Wor99], in general,

the current formal methods do not offer sufficient support for change management in

terms of representation and verification (i.e. it is not yet formally verifiable that an

100 Shannon, V. (26/06/2006). "A 'more revolutionary' Web". Int'I Herald Tribune.
http://www.iht.com/articles/2006/05/23/business/web.php

192

http://www.iht.com/articles/2006/05/23/business/web.php

implementation satisfies the initial defined specification). According to [MWD+05], "The

formal methods need to embrace change and evolution as an essential fact of life. Besides

the need for existing formal methods to provide more explicit support for software

evolution, there is also a clear need for new formalisms to support activities specific to

software evolution."

In order to deal with several issues of ontology change management, we chose to use

several areas to reflect the interdisciplinary nature of the topic. In this attempt, after

considering graphs as a generic notation for information representation and link data

[BHB09] in the web, we employ graph transformation [EPT04] and category theory to

study ontological transitions and changes in different levels of abstractions. Using graphs

enables researchers to study structural evolution and changes in a rule-based manner. The

transformation rules assist in modeling the change operations. Moreover, we use graph

transformation to support dependency analysis through structural and semantical changes.

We then proceed by using graph transformation to propose more specific semantics for

ontology change management in the context of distributed hierarchical systems. Because

of the tight coupling between ontological elements within typical biomedical ontologies

and the sophisticated, complex relationships between dependent ontologies in Semantic

Web, the change management strategies that mainly focus on changes in individual

ontological elements might not seem to be very realistic or appropriate. In order to

increase the flexibility and practicality of our approach, we consider the representation of

change, independent of any implementation language, and defined algorithms. In fact,

our method mostly focuses on the representation of changes in the distributed ontological

193

compositions in different topological models rather than changes in an individual

ontological element.

After applying the categorical concepts, some of the consequences will be formally

derived and their formal interpretations will be given. Subsequently, we present a report

on our approach towards categorically modeling the RLR multi-agent communication

channel. In Section III 4.3, the description of graph transformations along with the

categorical double-pushout method is given. In Section III 4.5 we represent our approach

based on hierarchical distributed graph transformation as an extension of traditional

graph transformation.

Il l 4.1 Graphs and Ontology Research

Graph representation has been used extensively to build formalisms and algorithms for

supporting different change management tasks such as dependency analysis [Mos90,

WH92, AB96], traceability analysis [Boh95, LWS+00], and impact analysis [AB96,

Lee98]. [Men99] also employed labeled typed graphs and conditional graph rewriting

[Hec95] technique formalized with categories to represent the evolution in software

components. Graphs enable us to model the dynamic behavior of a system (e.g., UML

state diagrams) in terms of transformations, in a wide variety of application domains.

Petri nets, Entity-Relationship (ER), UML, and flow diagrams are all examples of graphs,

some of which have been employed extensively for semi-formal ontology modeling.

Some of the preliminary concepts and definitions in graphs and graph transformation as

introduced in [KKK06] and [Rei05] are as follows:

194

- Directed Graph (Digraph): A directed graph is a pair G = (V, E) of sets of

vertices (nodes) V and edges (arcs) E c VxV. A pair (v, v') e E is called an edge

from v to v', with v named the initial node and v' the terminal node. If a graph has

attributed nodes and edges, it is called an attributed graph [Rei05].

Graph Morphisms: A morphism m between two graphs G and H, represented as

m: G —> H, is a pair of structure-preserving mappings (mv /nE) where mv: VG—*

VH and m^. EQ —> EH- The image of G in H from the morphism m is called a

match of G in H, which means the match of G is the subgraph m(G) c H with

respect to the morphism m [KKK06].

- Graph Homomorphisms: A homomorphism between two graphs G and H is a

mapping / VG—>• VH such that for any (a, b) G EG =>Xa)/(b) G EH. Given a graph

TG, called a type graph, TG-typed (instance) graph G can be defined if there is a

homomorphism g: G -»• TG [HC04b].

Graphs have proven themselves to be an appropriate formalism for representing

network of hierarchical structures. They not only represent the relationships between

ontological elements in a natural and diagrammatic fashion (see [MGH+09] for some

examples), but also enable us to intuitively describe key concepts in ontology evolution,

such as dependencies, couplings, transformations, traceability, and impact analysis.

Considering the graphical representation of ontologies, we study ontological

structures at two levels, namely Micro-level (zoom-in approach), for analyzing the

changes in internal structure of an ontology (Figure 3.57 (a)), and Macro-level (zoom-out

approach), for exploring changes in a world consisting of interrelated ontologies (Figure

3.57(b)).

195

(a) (b)

Fig. 3.57. (a) The evolving structure of a standalone ontology; (b) An evolving arbitrary lattice-like
structure consisting of several interconnected ontologies.

At the first level, we consider an ontology consisting of several related RDF (OWL)

graphs represented in a formal framework.

I l l 4.1.1 RDF Graph Representation (Micro-Level)

Following the RDF graph-based assumption, the digraph representation of an RDF101102

triple, consisting of the predicate that relates the subject to the object, has been

demonstrated in Figure 3.58. For the sake of flexibility, the subject and object can be left

unspecified, indicating the blank nodes. A typical ontology consists of several collections

of related RDF triples that form a generic graph-like structure as well.

Predicate
•

Fig. 3.58. A directed graph representing an RDF triple.

http://www.vv3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-mt/

196

http://www.vv3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-mt/

For example, assume we have the following information: there is a fungus identified

by a particular URI, its name is "Aspergillus nidulans", its NCBI Taxonomy ID is

"162425", and it has a synonym "Emericella nidulans". The corresponding graph-like

structure for these triples can be visualized as Figure 3.59.

Fig. 3.59. An illustrated example of an RDF graph describing a fungal species from the FungalWeb
Ontology.

Graphical representation of RDF and its associated operations (e.g., union,

intersection, merging, mapping and so on) has been discussed in literature. According to

[GHM04], the mapping between two RDF graphs Gi and G2, is defined as: Gi—» G2; the

union of the graphs (Gi u G2), is defined as the set theoretical union of their sets of

triples; and the merging of the graphs (Gi + G2) is the "union Gi u G'2, where G'2 is an

isomorphic copy of G2 whose set of blank nodes is disjoint with that of Gi, and Gi + G2

is unique up to isomorphism".

An OWL graph is a subset of RDF graphs, however, the reverse is not always

correct. The W3C OWL working group103 [PH04] proposes a set of transformation rules

for mapping and translating the abstract ontological syntax to OWL (with an emphasis on

OWL DL) and RDF triples. RDF is considered the exchange syntax for OWL [PH04],

thus the semantics of OWL ontologies in RDF can be determined from the corresponding

103 http://www.w3.Org/TR/owl-semantics/mapping.html#transfonriation

197

http://www.w3.Org/TR/owl-semantics/mapping.html%23transfonriation

RDF graph organized by the collection of triples, obtained from the parsing of related

documents. An RDF graph is an OWL-DL ontology (in graph structure) if it is equal to a

result of the given transformation to triples and satisfies certain conditions (see [PH04]

for more details on definitions of OWL-DL and OWL-Lite ontologies in RDF graph

form).

Because RDF and OWL graphs are naturally attributed graphs104 [TFH03], it is

feasible to adapt AGG [Tae04] to perform the graph transformation [EPT04] for

RDF/OWL Ontologies.

Il l 4.1.2 Lattice-Like Graph Representation (Macro-Level)

Instead of an individual analysis of ontologies to find out the changes in their internal

structure, we use categories to study changes in different linked ontologies (as objects

within the category) algebraically. In this view, ontologies are specified in an abstract

way based on their relations to other ontologies. As mentioned in Sections I1I.2 and III.3,

we are able to identify various types of categories in different levels of abstraction. As

well, using the functor (a structure-preserving mapping between categories) facilitates the

modeling of nested structures and the coexistence of several complex structures.

There are both differences and similarities between the ways we deal with objects

and morphisms on the micro and macro levels, but the difference of terms primarily

reflects the changes in our perspective. There is also another possibility to define an

intermediate level between these two levels to analyze ontologies and their relevant

segments [SR06] in a modular manner.

104 An attributed graph is usually made based on a graph structure and the data about this structure, which
makes it comparable with ontologies hierarchical structures with related set of attributes and
cardinlaities.

198

I l l 4.2 Incorporating Time within RDF Structures

As mentioned before, considering time as an important factor in change management has

several benefits for dealing with chronological data and knowledge scattered in different

log files and for accessing different versions of ontologies. Upon changing a specific

element in an ontology, several changes in the related triples in the RDF graph can be

foreseen, which leads the graph to change its state through time frequently. To

incorporate temporal reasoning, several frameworks including [GHV07] have been

proposed for analyzing temporal RDF105 graphs, which allow metadata description,

navigation, and querying across time.

As an example (based on the approach given in [GHV07]) to reflect the temporal

feature in the FungalWeb ontology, consider ti as the initial time when the ontology is in

its initial state Sti and assume we add a new type of enzyme as concept CenZyme at time t2.

This newly added concept has its own properties that affect several related concepts in

the ontology, beginning at time 13 when the service is offered by the new concept, and at

time t4, when new relations will be offered based on the newly added concept. By

deleting a concept at time tn, the associated properties and relations would be removed as

well. There is a problem in traditional ontological modeling, namely that when an

ontology goes through a sequence of different changes (e.g., insertion, deletion, and/or

replacement of concepts or properties), the answer to queries regarding the previous state

might return no valid answers. Despite the fact that many approaches are available for

different query languages for RDF [HBE+04], the temporal aspects of RDF graphs have

not been sufficiently studied. Visser in [Vis04] reviewed some of the requirements that

105 Recall that the RDF is naturally built in an extensible format.

199

are necessary for annotating and querying temporal knowledge bases, and then he

described their approach by representing the so-called "qualitative abstraction of time".

Several issues related to the temporal extension of RDF have been discussed in [GHV07],

including decisions about different mechanisms for incorporating time (e.g., time

labeling, snapshot capturing, considering time points or intervals, etc.) into regular RDF

graphs, constructing temporal query languages, and temporal entailment106 (logical

implication).

In our approach, based on different levels of abstraction, we use timestamping

(indexing the ontological structures with the time at which a certain event/change

occurred) and snapshotting (denoting different states of the ontology) methods for

temporal analysis of our hierarchy. To represent the temporal triples, we can index each

triple with time. A series of related temporal triples form a temporal ontological graph.

The time index can either be defined as constant or variable (to represent unknown or

incomplete temporal information) [GHV07]. In this way, we can offer bitemporal107 data

analysis, which allows the query agents to perform temporal rollbacks and chronological

information retrieval. According to the ordinary temporal knowledge-based systems, time

itself can be studied in points or intervals (e.g., an axiom about ontology is legitimate in

specific time period [ti, t2] when ti < 12). In the FungalWeb Ontology, the initial graph at

time t] can go through a series of changes in different timestamps, therefore any query

would only be meaningful during a particular time range (e.g. [t3, t„.i]). For example, the

period fo, t6J may indicate that the triple graph (Enzyme, has, propertyx) is only valid

The entailement between RDF grphs is indicated by <=, and we can say Gi •= G2 iff there is a map from
G2 to a closure of G, [GHV07].
(see also: W3C on RDF Semantics: http://www.w3.Org/TR/rdf-mt/#entaii_)

107 In temporal databases, bitemporal tables support both "valid time", capturing the history of a changing
reality, and "transaction time", capturing the sequence of states of a changing table [Sno99].

200

http://www.w3.Org/TR/rdf-mt/%23entaii_

during the time period between t3 and t6, and in t7 it might not be valid any more.

Accordingly, the ontological elements can be indexed with their period of validity, which

allows movement between the time periods and access to the different states (past and

present) of the system. Since in temporal ontologies, unlike temporal databases [JS95],

the union of all of the corresponding snapshots (taken at different time points) does not

always yield the whole ontology, a check for the logical implication (entailment) (which

in RDF/OWL graph sense may be reduced to satisfiability checking) [HP04b] would be

necessary. Considering the graphical structure of ontologies, we continue our study of

transitions and changes in ontologies in the context of graph transformation, which has a

great potential to deal with temporal graphs [Kos09] and their transformations [GPS98,

YTT+05].

Ill 4.3 Graph Transformation

In order to overcome some of the limitations of the traditional rewriting methods (i.e.,

Chomsky grammars and term rewriting) for expressing the non-linear structures, graph

transformation has been proposed [PR69] in the context of web grammars. There are

various types of graph transformation methods, which can be classified in two general

categories: the methods, which use the gluing condition [EKL90] and pushout

constructor, and those based on nodes and subgraph replacement [ER97]. There are also

two major formalisms for describing graph transformations based on category and set

theories.

In this section, we briefly describe the rule-based graph transformation, and

introduce some of its important notions along with some of the existing formal methods,

201

such as single- and double-pushout approaches for graph transformation. The rule-based

graph transformation can be studied based on the following three activities [Hec06]:

- Creating the conceptual generalizations of the reality and transferring them from

"reality" to its representation in a model;

- The definition of rules as specifications of state transformations;

- Using graphs as a means to represent snapshots, concepts, and rules.

Generally, as shown in Figure 3.60 applying a transformation rule (production) p: (L,

R) denotes finding a proper match of L (Left hand side) in the source graph and replacing

L by R (Right hand side), leading to the target graph of the graph transformation.

v

P." (L,R) f <^

~^ 1 \
It. "Vi

1 / / - ^. ~"V

Fig. 3.60. A rule based graph transformation for a dynamic system (adapted from [EP05]).

The major question in graph transformations is how to delete L from a source graph

and connect R with the context in the target graph [EEP+06]. Following the double-

pushout approach [EPS73] (see Section III 4.3.1.1), a transformation rule (or production)

is defined [DHP02] as a pair /:£<—/—»•/? of morphisms I: I—* L and r: I—* R such that

/ is injective108, where the graphs L and R are called the left and right-hand sides

respectively, and / is called the interface or gluing graph. It is not necessary for the

morphism r: I —> R to be injective, which allows one to identify different nodes or edges

in various transformations. Also, the injectivity of/: I—* L ensures the uniqueness of the

108 One to one: every unique argument produces a unique result.

202

results in backward tracing in a transformation. The rule t transforms a graph O G into a

graph OH, denoted by O G =>, OH if there is an injective occurrence morphism m: L —*• O G ,

and two pushouts of the following form:

/ . r
L + I • • R

0) (n)

o; K "*0
Fig. 3.61. The Double Pushout approach for graph transformation.

The morphism m, which models an occurrence of L in O G is called a match. The

transformation, which is performed by the specified rule, represents the change of the

graph 0 G to the graph OH. In more complex transformations we usually see a sequence of

simpler transformations and a set of several transformation rules. As stated in [EKL90],

by considering the dangling points (those points in L, a subgraph of 0 G ; that are the

source or target of arcs in O G minus L) and the identification points (those points in L

that are identified in O G) in the transformation of O G , the gluing points of L (identified by

KL) can be identified if both dangling and identification conditions are satisfied. These

two conditions together form the gluing condition, which ensures the transformation is

valid.

Dangling condition U Identification condition c: Gluing Condition

Based on the previous definitions, the pushout exist iff m satisfies the dangling

condition with respect to /, and in this case O G , /, and m determine OH uniquely up to

isomorphism. A graph transformation system is usually defined as a set of transformation

203

rules (productions) P. Graph transformation deals with the rule-based modification of

graphs in such a way that "the core of a rule p = (L, R) is a pair of graphs (L, R) known

as the left-hand side L and the right-hand side R. Applying the rule p = (L, R) means to

find a match L in the source graph and replacing L by R, thus leading to the target graph"

[EP05].

There are currently some available tools and programming languages to perform and

visualize graph transformation such as: AGG109 [Tae04], Fujaba110, Grace1" [KBK01],

and Progres112 [HJK+95]. To find more information on some preliminary definitions and

terminologies of graph transformation for the readers, we refer to [KKK06, EEP+06].

I l l 4.3.1 Graph Transformation and Category Theory

Several formalisms have been used to represent graph transformations, including set

theory, algebra logics, and category theory [Roz97]. Category theory along with channel

theory and situation theory are the most popular mathematical theories for representing

semantic information flow (IF) [SK03] in dynamic systems. The concept of

"homomorphism", borrowed from abstract algebra, means the transformation of structure

(as morphism) and composition (as object) [BelOl]. Several research attempts have been

inspired by this embedded ability for representing transformation. Category theory has

been used to represent the semantic backbone for graph transformation since 1979

[Ehr79]. It provides an abstract framework for efficiently generalizing and transferring

conceptual structures with the ability for reasoning about basic concepts in different

109 The Attributed Graph Grammar System: http://user.cs.ru-berlin.de/~gragra/agg/
110 http://wwwcs.uni-paderborn.de/cs/fujaba/
111 GRAph and rule CEntered specification language
112 PRogrammed Graph REwriting Systems

204

http://user.cs.ru-berlin.de/~gragra/agg/
http://wwwcs.uni-paderborn.de/cs/fujaba/

levels of abstractions. Using the abstraction power of categories considerably reduces the

proofs [Men99] and facilitates the parallel representation of different behaviors (either as

a whole or in part) in complex and nested structures. The categorical method to graph

transformation is a prominent generic method for studying the behavior of a dynamic

system through modern representation languages. It is highly generic because all the

proofs and constructions are valid and applicable for different kinds of graphs (e.g.,

node/edge, labeled/unlabeled) [Sch08a, Sch08c]. To maintain categorical graph

transformations, Schneider [Sch08c] recently proposed a roadmap for implementing

some of the categorical constructors in Haskell113, to support functional programming

[Bir98] through interactive categories of sets and of graphs. Generally, two categorical

methods are frequently used for graph transformation based on single-pushout (SPO)

[Rao84, L6w93] and double-pushout (DPO) [EPS73]. One of the differences [EHK+97]

between these two methods is this requirement for DPO to have additional dangling and

identification conditions. Moreover other categorical constructors such as pullbacks

[Bau95, BJOla] (as the dual construction of pushouts) can be used for modeling the

transformations in the context of double-pullbacks [HEWO 1].

I l l 4.3.1.1 Double-Pushout Approach for Graph Transformation (DPO)

The double-pushout approach (DPO) [EPS73] and its variations, defined by different

researchers, are among the most common methods for modeling graph transformations.

We also follow this approach for studying graph transformation in our framework. As

mentioned in Section III 4.3 in this method, any legitimate transformation should satisfy

the gluing condition, composed of identification and dangling conditions, so it can assist

113 http://www.haskell.org/

205

http://www.haskell.org/

in identifying which component is changed and substituted by which other component

and whether a transformation is valid or not. In DPO the source graph G of a graph

transformation G => H via the rule L <— I —> R is given by the gluing of L and an

intermediate graph K via /, written G = L +/ K (pushout I in Figure 3.61), and the target

graph H is given by the gluing of R and K via I, written H = R+/ K (pushout II in Figure

3.61). As shown in Figure 3.61, applying graph morphisms I —> L, I —• R, and I —> K

shows how I is included in L, R, and K. In summary DPO should be performed through

the following steps when a rule L <— / —• R is given.

1. Find the elements of L in the given graph G, i.e. a match m: L —* G.

2. Delete from G all the elements specified in L, which are not in the gluing graph /.

This means to find a graph K and graph morphisms K —* G, and / —> K such that

the square is a pushout.

3. Add to graph K all the elements of R, which are not in the gluing graph / and create

the second pushout and obtain a derived graph H.

As an example, consider the following graph transformation, which transforms graph

G to H using the rule p: L <— / —* R (Figure 3.62).

206

L

X* *X5

\ / \
Xi *-Xs

\ f H

Fig. 3.62. An example representing a graph transformation using DPO. The upper part represents the
transformation rule (L <— I —> R), and at the bottom left there is a given graph G. Graph H is the result of
applying the transformation rule on the given graph G, which has been obtained by following the three
steps in DPO.

Il l 4.3.1.2 Single-Pushout Approach for Graph Transformation (SPO)

The single-pushout (SPO) [Rao84, L6w93] is another categorical approach for graph

transformation that, unlike the DPO, has a single morphism in the transformation rule

(production) p, which is a morphism in the category of graph with partial graph

morphisms as arrows p: L —> R. In contrast with DPO, the transformation can be

represented by a single-pushout diagram and there is no interface between the source

graph G and the target graph H.

I l l 4.3.2 Ontological Transitions in the Shade of Graph Transformation

Specifying of the transformations between different versions of an ontology is one of the

primary concerns in ontology change management research, which can be gradually

analyzed through the changes between different versions of an ontology since its

creation. Studying the rationale behind these transformations can reduce some of the

evolution's side effects (e.g., divergence and loss of information through different

207

G

versions). Graph transformations have been efficiently used for describing dynamic

changes of networked and hierarchical structures [KP02]. Some efforts to specify

conceptual model transformations using the notion of type graph and conditional graph

rewriting has been presented in [DM07] with emphasis on critical pair analysis for

conflict detection [LEO06]. Recalling the graph-based origins of ontological models, the

graph transformation techniques can offer several benefits in managing ontologies

including: representing the operational semantics of evolving ontologies via an intuitive

visual graphical syntax; offering a means for studying states of concurrent and distributed

systems [KKK06]; providing a clear realization of complex context dependency operators

and coupling between different components, which facilitate their comparison, matching,

and alignment; and providing reasoning facilities for conflict detection and resolution

[DM07] as well as modularization frameworks [ADM+07] for capturing knowledge.

Most of the graph transformation languages support the basic operations for

node/edge addition and deletion. Also many available transformation approaches are

highly application-dependent and informal, and have been proposed fqr specific

purposes. Tools such as OwlDotNetApi114 can assist us in creating a directed-linked

OWL graph for a given ontology file. More information on the classes and interfaces

available in this tool can be found in its web site"5. COE116 [HES+05] is another

RDF/OWL ontology viewing/composing/editing tool that has been built on top of the

IHMC CmapTools117 concept mapping package. Users can use COE for importing

OWL/RDF ontologies and rendering them into graphical representation, as well as

114 http://users.skynet.be/bpelIens/OwlDotNetApi/owldotnetapi.html
115 http://mach.vub.ac.be/~bpellens/OwlDotNetApi/index.html
116 http://coe.ihmc.us/groups/coe/
117 http://cmap.ihmc.us/conceptmap.hhnl

208

http://users.skynet.be/bpelIens/OwlDotNetApi/owldotnetapi.html
http://mach.vub.ac.be/~bpellens/OwlDotNetApi/index.html
http://coe.ihmc.us/groups/coe/
http://cmap.ihmc.us/conceptmap.hhnl

performing regular editorial operations such as adding/deleting/moving nodes and edges,

and dragging, navigating, exporting, and so forth.

In our model, changes in ontologies can be performed through a set of consecutive

transformations (ideally autonomous) via transformation rules, performed on the initial

graph representation of an ontological structure. We start our analysis by considering

changes in a single ontological element, which can shift the state of the ontology to

another state. By considering graphs and the associated formalism for abstract syntax

representation of ontologies, we represent the changing ontological structure within the

RLR framework through the graph transformation process, operating on the source

ontology (initial graph) along with a set of rules or productions (operations) transforming

the initial ontology to its target version. An ontology Otl can be transformed into another

conceptual framework Ot2 through the transformation T, shown as: T: Otj —> Ot2, where

O,, and Ol2 are ontologies at times ti and t2 respectively, represented as an OWL graph,

and the arrow indicates a transformation, which may consist of a set of simple

transformations of the graph's elements. For example, adding a node to the graph is a

composite transformation, which consists of several elementary operations such as

adding corresponding edges for that node or assigning matching attributes and

characteristics for satisfying the ontology axioms and facts. When dealing with

ontologies conveyed in very expressive languages with rich semantics, one should always

keep in mind that the complete transformation of all elements to the graphical

representation might not be straightforward.

By defining a set of constraints within the transformation rules one can differentiate

between different relations between ontological elements (e.g. subsumption relationships

209

(hierarchical relations) and association relationships (non-hierachical relations)). The

dependencies between elements and editorial operations can be specified in the

transformation rules by monitoring the states before (L) and after (R) applying the ru\ep:

L—> R [DM07]. When an ontology is being implemented collaboratively and used by

different users and groups, there may be cases where different editorial activities can

cause inconsistencies and conflicts (syntactical or semantical). The conflict arises in cases

of incompatible modifications of a component (e.g., nodes or edges) through different

transformations. Graph transformation along with some techniques such as critical pair

analysis [LEO06, DM07] and tools such as AGG [Tae04] can be beneficial in

automatically detecting possible conflicts for each of the defined transformation rules.

I l l 4.4 Change Analysis during Conceptual Model Transformation

Graphs are a powerful vehicle for analyzing model transformations. Various types of

model transformations have been surveyed in [MG06], including horizontal versus

vertical [HCE+96], endogenous versus exogenous, and syntactical versus semantical

transformations. In a "horizontal" transformation, the source and target models stay at the

same abstraction level (e.g., refactoring, migration,) while in a "vertical" transformation,

they reside at different levels (e.g., incremental refinement). If the source and target

models have been expressed in the same language, the transformation is called

"endogenous"; otherwise, it is "exogenous". In the syntactical transformation, only the

syntax will be transformed (e.g., model import or export), unlike the semantical

transformation, which also take the semantics of the model into account [MG06].

210

Different changes that occurred to each ontological element can be passed along the

chain of dependent elements. Our proposed framework supports the conceptual

transformations between different versions of ontologies, as well as maintaining the links

and relationships between the versions. In fact, sequences of horizontal and vertical

transformations in ontological structures occur during the evolution process. Several

ontology transformations can be studied during ontology evolution. These

transformations include, but are not limited to, transformations in relationships and

properties (data type or object) (see Figure 3.63 and Figure 3.64), concepts, domain,

cardinalities, and constraints. In addition, the transformation can be partial, which affects

only a limited part of the ontological element or structure (i.e., part of the taxonomy) or

complete (e.g., in the case of metamorphosis).

Hj*a|jse-

'%&0lase?

?MrafeB«s

Zigmyetia «8i:1ffitfi9

Fig. 3.63. Transformation by means of switching the domain and range of an associative relationship.

211

HjrtrelMK3

- > pH_SUbilily

;Ox«l0!»lftl6jaKS

111 Transformed into

Hydrolases

Protein" „ »„

f
has__specification

jfamftrasir j > ^ I i s _ a

Q»*iC>r*(hlstas«s . , _ „ , , , . (, j

I 's_a

pH_Stability

Fig. 3.64. Transformation by decomposing a property.

We consider "transformation" as a specification of the series of actions and

operations that make an aiteration in an ontologicai structure and cause the ontology , „

change state. For example, a change in a constrain, or the addition/deletion of a concept

or a property can be shown as action A on ontologicai eiemen, a, action B on ontologicai

element „, and so on. A change can be defined as the mapping between two specif*

definitions from one ontology or different ontologies, or from different versions of one

ontology. For example, 0,(„) - 0,(6) may be read as ontologicai element a from

ontology , has been replaced by 6 f rom o n t o l o g v 2 . ^ (r a c e s , h e c h a n g e s ^ ^

ontology and its transformations, and uses the information employed for each

transformation for the reproduction phase, i f necessary.

212

Ill 4.5 The Transformation in Action

Here we employ an adapted type of graph transformation, namely a hierarchically

distributed graph transformation to maintain the hierarchically structured knowledge in

the Semantic Web environment. In this framework, the graph transformation rules can

describe the structural changes placed during a knowledge base operation.

HI 4.5.1 Employing Hierarchically Distributed Graph Transformation

Changes in an area due to technical, industrial, cultural, or social matters force the

existing systems and applications to adapt themselves to the new state. Particularly, large

systems and knowledge bases built upon smaller reusable sub-systems are in greater

danger and should be continuously monitored to ensure the correctness and consistency

of the entire infrastructure. Graphs can be seen as appropriate vehicles to represent such

hierarchical systems with nesting and layered relationships. In an ontological sense,

concepts in an ontology naturally match with nodes of a graph, while the relationships in

an ontology correspond to edges. Several biomedical systems and applications currently

deal with complex graphs, with millions of nodes and edges and likely a large number of

different rules. These graphs need to continuously evolve and transform to supply the

revised and valid knowledge for the systems. The graph-based representation of the

biomedical ontologies has a great tendency to become large, complex, and hard to grasp,

understand, or maintain in a very short time. In applications dealing with compound

graphs in layered organizations, the notion of graph can be extended to hierarchical

graph. Hierarchical graphs attract broad attentions in theoretical computer science (e.g.,

object oriented design [EJ03], database [EN07], and computational molecular biology

213

[MV08]), mostly for representing semantically complex and interrelated network

structures. Despite the popularity of hierarchical graphs in different domains, there is no

common data model available; however, most of the existing models support treelike

structures. This is one of the factors that make the hierarchical graph transformation

techniques an appropriate option for analyzing hierarchically organized ontologies.

Different models, including the ones in [ES95, EROO, DKK+99, BKK05], have been

studied concerning the issue of hierarchical transformation of dynamic complex graphs,

and several models ([Hof99], [DHP02], [Pal08]) have been implemented using the rule-

based approaches.

In order to mimic the actual nested hierarchical structure of the Semantic Web,

where information is distributed in the nodes (graphs) and edges (relations between the

graphs), we employ hierarchical distributed graphs [Tae99] for our approach. The

hierarchical graphs have richer semantics and are more expressive in comparison with

regular flat graphs. In addition, they reduce the complexity of representation of large

interrelated systems by allowing one to describe a system on a more abstract level

through hiding the irrelevant details in encapsulated sub-graphs [ES95]. Hierarchical

graph transformation can be performed along with the algebraic and categorical graph

grammars, using the extended double-pushout notion to represent various aspects of

dynamic structures (e.g., the rearrangements of some temporal parts, describing the

changes in relations, creation/deletion of communication channels, and performing

operations such as "splitting" a graph into two or more graphs or "joining" distributed

graphs into one graph [Tae94]). The categorical graph grammar [Sch89] supports the

flexible change of complex interrelated compositions while providing explanations for

214

corresponding actions performed by graph transformation. Various states can be

produced by internal or external actions, and their communications can be modeled and

simulated using graphs and state transitions, then represented and described by means of

graph transformation. The double-pushout technique has been extended from flat to

hierarchical graphs [DHP02], where the associated transformation rules can be applied at

all hierarchical levels. This facilitates changes of the graph's entries (i.e., by insertion or

deletion) regardless of their size and configuration, with adaptation of the "dangling

condition" from the flat graphs transformations [DHP02].

We use the concept of hierarchical distributed graphs to be able to perform graph

transformation on different levels of abstraction. As defined by [TKF+99] distributed

graphs distinguish between two levels, namely local (internal), and network (external or

lattice) (Figure 3.65).

Lattice (Network, External)

nterface

Internal graphs and
Morphssms (Local)

Fig. 3.65. A schematic representation of a distributed graph.

In our model, the hierarchical graph (the lattice) consists of a set of internal graphs

(which may be hierarchical graphs as well), the root of the hierarchy, and a set of edges

215

that relates the internal graphs to each other. Each editorial action is expressed through a

graph transformation and every state of the ontological structure is modeled in a graph

with the nodes denoting objects and the edges representing the connections linking them.

The compound state of the entire system can be known by analyzing several other

internal graphs, each having an internal state and behavior. There are also lattice-like

dependency graphs representing the dependencies between different internal graphs. In

the process of change management for the lattice-like structure, several concerns related

to sequential, parallel, or concurrent evolution of its components arise.

Different ontologies in Semantic Web are usually connected in a lattice-like structure

and interact with each other through one or more interfaces. This lattice can be modeled

as a directed graph with individual ontologies (internal graphs) as its nodes and the links

between these ontologies as its edges. The described configuration is analogous to what is

called a hierarchically distributed graph (HD-graph) [Tae94], where each of the links

connecting the internal graphs contains a graph morphism specifying the relation between

two internal states. When the internal graphs are faced with any change (e.g.,

adding/deleting a concept or relation), their state would be changed, which would affect

other dependent graphs, and a synchronization unit within the RLR framework, which

stores all the states in the change logs, forces the lattice-like structure and the mediator

interface to change their states accordingly. Following the approach given in [Tae94], this

structure can be modeled in two different but related planes, namely conceptual (shows

all existing and potential relations, paths, and their revisions) and operational (shows only

actual existing nodes and relations).

216

/ " I

Fig. 3.66. A hierarchical graph for managing distributed ontologies representing the relations between
different states of a lattice-like structure consisting different distributed ontologies. The changes can be
performed in an interface graph that consists of all the nodes which have a matching node in the related
internal graphs. In this way, the transformation of objects and morphisms allow the change of an evolving
structure by changing its interfaces.

The synchronization unit needs to check certain conditions, namely connection and

network conditions, to ensure the consistency of distributed graph transformations. The

connection condition [TKF+99] determines that: i) the objects of source graphs should

not be deleted without first deleting the related local mappings into target graphs; ii) the

local nodes and edges, which have corresponding elements in interfaces should not be

deleted; iii) to extend source graphs (upon insertion) first the new graph objects need to

be mapped to the related target graphs; and iv) The attributes of graph objects, which

have correspondence in interfaces should not be changed. The network condition

[TKF+99] regulates that: i) if a network node needs to be removed, its associated local

graph has to be completely known by the rule; ii) if a network edge needs to be removed,

217

the local graph of its source node and the local morphism have to be completely known

by the rule; and iii) if a new network edge needs to be added, the local graph of its source

node has to be completely known by the rule.

In order to categorically analyze the distributed transformations we employ the

category of distributed graphs DGRAPH with distributed graphs as objects and

distributed graph morphisms as arrows118 to define a transformation using an adapted

version of double pushout approach described in [Tae99]. For the details of proofs and

other related categorical notions in distributed graph transformation one may refer to

[Tae99, EOP06].

I l l 4.5.2 Analyzing Events and Actions in Rule-Based Model Transformation

In order to analyze different events that trigger actions during the ontological evolution

process, we consider events as part of the rule condition in a graph transformation. The

actions as mentioned before (Section III 4.4) are described by productions and the events

will occur if certain predefined conditions are assessed to be true. To formalize graph

transformation, we employ the notion of double-pushout from category theory, which

needs certain requirements to compute production (describes actions in graph grammar)

and its corresponding element in other graphs. One of the requirements is satisfying the

gluing condition to derive a new graph by finding a match of the left side of the rule in

the given graph, then deleting it (except the gluing point) and adding the right side of the

rule (see [EKL90] for the details).

By following the approach proposed in [Tae94], we use hierarchical distributed

graph rules covering both internal and external production describing the internal and

118 Notice the similarities with the functor categories.

218

external actions respectively. Since the lattice-like structure covering the internal graphs

is less likely to be changed by internal actions, which affect mostly internal graphs, the

external graph is transformed through an identical production that preserves the external

graph nodes. A typical example, illustrated in Figure 3.67, is the addition of an

ontological element (i.e., a concept) to an existing ontology, which causes the state of the

ontological structure (internal graph) to be changed. This action does not have a

significant effect on the lattice-like structure (external graph).

l' UStl^USt2
Fig. 3.67. Adding a new concept to an individual ontology that is part of a lattice made from several
interconnected ontologies.

As represented in Figure 3.67, the hierarchical graph production "concept addition"

demonstrates an internal action that transforms the ontological structure O from state Sti

to state St2. This production will not alter the external graph represented in Figure 3.66. If

one wants to delete an ontological element that has referenced a relation from other

distributed ontologies in the lattice, then an external action needs to be performed. The

external actions are capable of transforming the external graph. Controlling these

transformations is a central task in the ontology engineering domain, since they can easily

219

give rise to different types of inconsistencies, especially in cases that involve several

parallel actions and transformations.

As long as the actions (e.g. deletion, insertion) do not violate the defined conditions

in the production rules several actions can be executed in parallel at the local level (e.g

deletion/creation of internal elements). As mentioned, the external lattice production

describes the structural changes of the external graph, and we can model the external

actions using a hierarchical distributed graph production in such a way that a unique

production for the internal graphs of every node of the external graph (individual

ontological structures) must be performed. If the stated predefined conditions for

insertion/deletion of the nodes in the internal graphs are satisfied, then the hierarchical

distributed graph production can be applied at the external (lattice) level (for

adding/deleting edges, a set of morphisms will be described instead).

An example of alterations in the lattice is the insertion of connective internal graphs

(nodes) between two or more other internal graphs (nodes). For instance, it is known that

"a daily cup of yogurt significantly reduces the risk of Candida infection and

colonization" [HIA92], but this diet might not seem appropriate for lactose intolerant

patients. Also, some studies show that some nutrition is beneficial to reduce the risk and

severity of Candida infections if consumed in a proper diet.

220

Fig. 3.68. The hierarchical distributed graph production "add connector" is represented in a way that the
state of the graph "fungal infection" is now related to the graph "diet", rather than "nutrition".

Some of the examples119 are Probiotics (up to 900 mg daily of beneficial bacteria),

Fructooligosaccharides (up to 4 g daily), Goldenseal (250 to 750 mg daily), Lactoferrin

(300 mg daily), Topical tea tree oil (based on the prescription), Oil of oregano (460 mg

daily), Garlic (600 mg daily), and Boric acid (600 mg daily for 2-3 weeks, shown

effective in 65% of women with vaginal Candida infections [SCN+03]). In order to

conceptualize these facts in an ontological framework, we use a connecting node (internal

graph) "diet" to connect two structure fungal infections and "nutrition" through the

hierarchical distributed graph production "add connector" (Figure 3.68).

Ill 4.5.3 Transformation Rules for Changes in Ontologies

The transformation rules in ontology evolution determine what types of changes are

allowed and can be performed on the ontological elements and axioms. Padberg [Pad08]

'|l> Fungal Infections (Candida). Life Extension Electronic Magazine:
http://www.lef.org/protocols/infections/fungal_infections_candida_01.htm

221

http://www.lef.org/protocols/infections/fungal_infections_candida_01.htm

describes the notion of rule-based refinement as an extension of transformations with

added refinement morphisms alongside the rules, which can be applied for maintaining

component-based applications. We found that the ontology evolution process, through

subsequent refinements, is generally analogous and compatible with rule-based

hierarchical graph transformation and refinement. Generally, in a double-pushout

approach, a rule-based transformation indicates the changes of OG to OH based on the

defined rule (see Section III 4.3). The rules can be atomic120 or compound121 and will be

examined to ensure the compatibility and consistency122 of the transformations.

Our proposed rule-based transformation method for ontologies determines the

circumstances under which an ontological element can be changed or refined. Table 3.2

represents some examples123 of graph transformation rules, which can transform a typical

graph such as Industry (Diagram 2). Diagram 3 represents the establishment of the

relation "is being used in" to connect two graphs, "Fungi" and "Industry". Diagrams 4

and 5 show the rules that specify the internal structure of the food industry. By applying

these transformation rules, Diagram 6 is obtained, which gives us two potential matches

(baking and wine industry) on the left.

For example, in a DL sense, a rule with a single literal in the head can be counted as atomic [FT05].
121 A compound rule is made by combing the effects of two or more rules (atomic or non-atomic).
122 In fact using graph transformation as the underlying formalism can guarantee the consistency of the results

[TGM98]. This is an important point, since the distributing nature of evolving structures gives rise to
different types of inconsistencies.

123 For demonstrating the transformation rules in our model (Table 3.2), we employed the diagrammatical
notions introduced in [Pal04].

222

Table 3.2. Some examples of the graph transformation rules for part of the FungalWeb Ontology.

Industry

Two individual graphs Fungi
and Industry are in their initial
state

industry

Transforming the Industry
graph (R) to the new version
(L) to cover more detailed
information (adding child)

Defining the relation "is being
used in" to connect the two
graphs Fungi and Industry.

Adding a child node to specify
the internal structure of the
food industry.

Food industry

L
food industry

R

Adding another child node to
specify the internal structure
of the food industry.

The two potential matches
(baking and wine industry)
can be chosen from the left
hand side.

223

A graph transformation can be defined to be conditional [HHT96] in such a way that

under certain conditions, the graph production (rules) transform a source graph into the

target graph. These conditions, which impose a set of restrictions on the transformation

processes, can help one to avoid inconsistencies and conflicts (e.g., the conflicts due to

dangling edges).

Ill 4.5.4 Formalizing the Ontology Change Model in Distributed
Environments

The hierarchical distributed graph can be used for analyzing dynamic distributed models

and their transitions by describing the initial state, internal and external actions and

defining communicating channels for synchronization. Category theory can be used as a

complementary formalism for supporting graph grammar describing the initial graph and

a set of all hierarchical graph productions modeling various actions (e.g., additions,

modification of relations, and so on) in a distributed system. The double-pushout

approach to graph transformation as a constructor within the categorical framework is

comprehensively described in [Ehr79, EOP06] for directed and labeled graphs. This

method has been generalized to so-called high-level replacement (HLR) systems in

[EHK+90, EEP+06] by abstracting the results into arbitrary objects and morphisms124. It

has been proven [Tae94] that the hierarchical distributed graph transformation is a highly

appropriate scenario for HLR systems. Reflecting this approach into our framework, we

consider the lattice L consisting of all interacting ontologies as a hierarchical distributed

graph, with a set of transformation rules (e.g., rules for node addition/deletion), which is

defined [Tae94] as a functor HD: L —» G, where G is the category of all labeled graph

124The theory of HLR has been developed for different graphs, e.g. hyper-graphs, attributed and typed
graphs, various Petri net classes, elementary nets, place/transition nets, and Colored Petri nets [Pad08].

224

and LeG. To define the HD-morphism we can use natural transformations, which are

simply the morphisms in the category of functors.

A transformation rule can determine conditions such as: 'the deletion of a lattice

node should be performed after deleting its corresponding internal graphs'. The

hierarchically distributed graph transformation provides a means for dynamically

analyzing model transformations in a distributed environment that consists of several

hierarchically organized ontologies. Categorically speaking, the ontological structure can

be considered as objects and the links between them, which shape the lattice structure, as

morphisms. This approach allows one to study the behavior of evolving categorical

systems in different layers (analogous to the modular definition of ontologies) and

different levels of abstraction.

I l l 4.5.4.1 Distributed Change Management within the RLR Framework

In our approach, we adapted the graph transformation methods for realizing the problem

of specifying changes in distributed ontologies in two levels of abstractions, namely

micro level (changes in internal structure of an ontology, e.g., adding/deleting a concept

to/from an ontology) and macro level (when the internal changes spread out to an

interrelated ontological organization, e.g., changing the state of an ontology or

adding/deleting an ontology to/from interrelated system). The propagation of changes

may need to be performed during the runtime of many critical systems (e.g., knowledge

bases supporting robotic surgeries or aviations); therefore, these two levels always need

to interact closely to ensure the success of a change management strategy. We use

distributed graph transformation to represent the dynamic nature of distributed

225

ontologies, and to model a framework for describing the changes in an ontological

structure and their effect on the other dependent artifacts organized within a lattice-like

environment, such as the Semantic Web. The distributed graph transformation can act on

different levels of abstractions, ranging from explaining the details of local actions to the

rule-based analysis of different interactions and operations (e.g., inter-communication,

migration, and synchronization) [TGM98] before or after a transformation. In order to

successfully manage changes in a specific dynamic system, it would be essential to know,

or at least have a reasonably accurate guess, about all the possible states of that system at

different times. The fact that the dynamic system acts in a distributed environment makes

this need more vital. Several studies [KM90, KM98, TGM98] have been done on

managing the coordination between structural and state changes in software engineering.

The concept of distributed graphs has been defined in [CMR+97, TGM98] as

networked compound graphs with a set of internal graphs as the nodes expressing a

internal state of the system, and a set of graph morphisms as the edges connecting the

nodes (internal graphs) to each other. Distributed graph transformation aims to mediate

between these two levels of abstractions (networks and nodes) and can be used to model

many different types of dynamic network reconfiguration [TGM99] by applying a set of

rules for each of the levels (Figure 3.69) The rules contain the instructions for performing

different changes (either in the network topology or in the nodes) and transformation in a

dynamic system via defined actions at different levels of a distributed graph. The rules

also determine whether or not a change operation is eligible to occur.

226

R.- Lattice transformalionrule

L R

Fig. 3.69. P/and P/ respectively specify sets of lattice and internal transformation rules.

The communication between lattice and internal rules performed within a

coordinated channel can be used to synchronize different actions in node and lattice

levels.

I l l 4.5.4.2 Synchronization and Coordination

Managing several concurrent internal and external actions is also vital in the Semantic

Web domain. Considering the Semantic Web as a hierarchically organized graph-like

structure, each action on a graph has consequences in its modified consecutive version,

which helps in tracing the events while preserving the reference state, or in some cases

reconstruction of the past, if it has been removed from the original version. A hierarchical

distributed graph production can be used for synchronization purposes by checking

whether the external production is identical (or compatible) with what is performed by

internal actions [Tae94]. More precisely, it checks if the lattice nodes and edges, in

coordination with internal actions, have been identically replaced in the interface with

respect to the gluing condition. For example, a graph production can describe a

synchronous communication channel [Tae94] between two different versions of an

internal graph by highlighting the revisions in the original state and the current state

through the use of an interface graph. Later on, the action that causes a change in the

227

internal graph needs to be synchronized with other actions on dependent internal graphs

and finally with the actions that alter the external graph. In real world applications, this

synchronization usually results in a series of mappings between the previous and current

states. To manage the interaction between the actions on different levels, we generalize

the change model proposed in [KM90, KM98, TGM98] for the software engineering

domain to classify the changes in a dynamic network at nodes and network levels. The

distributed Semantic Web environment can be conceptualized in a hierarchical lattice-like

structure, composed of several ontologies as nodes and the links between them as edges.

The changes in a lattice-like structure can be performed at the nodes (e.g., replace/rename

a node), edges (e.g., replace an edge) or hierarchical structure (e.g., adding/deleting one

or more nodes).

The agents in the RLR framework interact with each other through a set of

communication channels to control actions at different levels. This control assures the

consistency and integrity of changes by defining quiescent125 nodes and states. The nodes

are assumed to be in a quiescent state (non-active/passive state) when changes occur at

the lattice level. According to [KM90], a quiescent state for a node is a state wherein the

whole system is consistent and no active communication exists between the nodes or

within their environment. The notification for changing the node's state from active to

passive (and vice versa) is given through the established communication channel between

the defined abstraction levels. In RLR, upon detection of the alterations by the set of

change capture agents, the current state of the system would be assigned to the newly

This strategy is similar to "locking" in database research.

228

affected elements (e.g., newly added nodes) and an alert would be sent to the other

involved components to inform them about the latest state of the system.

The state of a system should be determined and declared by an agent to allow some

actions to be performed in a proper state of the system, to postpone them for later states,

or to prevent them from acting on some of the preserved elements. For example, in the

case of deleting or splitting a node, it acts like the lock mechanism in the database. The

synchronization begins with assigning the states to each element, starting with the initial

state upon its creation and continuing until the final state is assigned upon its termination.

RLR controls the changes by incorporating the transformation rules (at different levels)

along with other pre-defined consistency conditions. The synchronization of two different

nodes (internal graphs) in a distributed graph can be performed through an interface

[TGM98] that connects these nodes together. The transformation is performed by a

sequence of simpler transformations, each meeting certain conditions to ensure the target

graph is still a distributed graph and to avoid any side-effects (explicit or implicit) on the

graph structure. Some of these conditions are as follows [TGM98]:

- Gluing condition of the double-pushout approach for the rules at different levels;

- Connection condition, which prevents the deletion of the nodes and the edges if they

are being used by other components.

Also some other conditions and restrictions may be applied to each distributed rule,

depending on its function. The main context conveyed by the lattice may be defined as

protected to keep it unchanged. If the different actions and changes that are executed at

the node's level have minimal or no interference with each other, they can operate in

parallel. Assume a set of related ontologies, each with the ability to manage the changes

229

in its own structure and each change potentially affecting other ontologies. An agent can

initiate an action for changing each ontology in the lattice, based on imposed rules. This

action can then be spread throughout the entire lattice. The distributed graph

transformation can be used to model real-time changes, such as the insertion or deletion

of ontologies. This is important since many changes and updates, unseen in the design

phase, can be applied when the system is in operation if they do not cause any

interruption. If we consider changing a node, it should be flagged as an inactive state, so

it will not update the system's knowledge upon a change (neither initiate an update nor

service any update request [TGM98]).

I l l 4.5.4.3 Rule-based Patterns for Transformations

After each change, the system needs to be verified for consistency. In order to

preserve the ontological elements' identities and guarantee the consistency and integrity

of the changes, we can define a set of pre- and post-conditions to be satisfied. If all the

conditions within a distributed graph transformation rule are satisfied, then the result of

transforming an initial distributed graph would be a legitimate distributed graph as well.

Consider the three ontologies (Oi, O2, and O3), connected to each other in a lattice-like

structure. Each node of the lattice represents an ontology and each edge signifies a graph

morphism. The information about the state of each ontology and its relations with other

ontologies in the lattice is stored in an interface node. The diagrams in category theory

intuitively reflect the feasibility of our method, by demonstrating the interactions between

the states and the information related to the changes. By following the method given in

[TGM98], Figure 3.70 demonstrates the changes in industrial applications within the

230

FungalWeb Ontology (as an internal graph in a whole integrated lattice), which consists

of the concepts "enzyme" and "product", with the relation "uses". The figure depicts the

effect of changes and the state of the ontology (starting from initial inactive state) in the

lattice-like environment, along with its predecessor and successor versions, using the

following distributed graphs:

Uses
Product \ J Enzyme

Industrial App.

I BD-Craph
morphUm

Industrial
App.

I Industrial
1 App,

Operation

Operation n

Interface

t Operation 2

<
FungalWeb

Industrial
App.

HD-Gmph
morphism

Produces
Product

Uses
L-ompany Enzyme

Industrial App. (after change)

Fig. 3.70. Representation of a change in a part of the FungalWeb Ontology using graph transformation.

In the Figure 3.70, assume an update (internal action) starts at the FungalWeb

Ontology to delete the existing relation "Uses" and add the new concept "Company" and

the new relations "Uses" and "Produces" to relate the newly added concept with concepts

231

"Enzyme" and "Product" respectively. We apply the following rules to perform this

update:

Add interface node ("FungalWeb Interface"),

Operation 1: Add ontological element Concept (FungalWeb, "Company ");

Operation 2: Delete ontological element Relation (FungalWeb, "Uses");

Operation 3: Add ontological element Relation (FungalWeb, ""Company", "Product", "Produces");

Operation 4: Add ontological element Relation (FungalWeb, ""Company", "Enzyme", "Uses").

To hide unnecessary details, the change processes and related interactions are

performed via interfaces126 (cf. Figure 3.70). As mentioned in Section III.2, in using

category theory, we focus on the interactions between objects rather than their internal

structure. In summary, in our categorical representation of a hierarchical graph

organization, anything other than nodes and edges (e.g., attributes such as data type

properties for ontologies) are supposed to be marginal and not essential [BKK05]. Thus,

the notion of graph transformation can be defined [BKK05] as G,R => C,E, with G, R, C,

E respectively indicating a category of graphs, a category of rules, a category of control

conditions, and a category of graph expressions (cf. [BKK05] for more information).

Modeling the notion of graph transformation in an abstract way is significant in the sense

that it hides the marginal information, which does not explicitly contribute in the

transformation process. As an example, a transformation using the double-pushout (DPO)

has been shown in Figure 3.71 for part of the FungalWeb taxonomy. The transformation

rule determines a condition for a consistent deletion operation within an ontology by

specifying that if a parent-node has to be deleted its children should be deleted as well.

126 "Interface generally refers to an abstraction that an entity provides of itself to the outside. This separates
the methods of external communication from internal operation, and allows it to be internally modified
without affecting the way outside entities interact with it." [MVM10].

232

The double-pushout approach, constructed based on categorical pushout, in our example

has been generally represented as the gluing of two graphs via a common interface.

Deleted elements Gluing points Adding elements

J* ^

• '

A *

o

O
C,Q

:
•

CK V
o> O

K

/

c'0

' *

*A
Fig. 3.71. The transformation of part of an ontological structure following the rule "deletes a parent node".
The upper part represents the transformation rule, and the bottom left shows a given graph and the bottom
right demonstrate the result of the transformation, which has been obtained by following the three steps in
DPO (see HI 4.3.1.1)

As shown in Figure 3.71, the left side indicates a pattern127 to be located in the

original graph (G); the right side represents the requested transformation, which

transforms the original graph (G) to the transformed graph (H); and the middle section

represents the gluing point(s) (Ci and C2), which are identified by L 0 R.

In the RLR Framework the agents generalize the behaviors by systematically

monitoring the transformations and encapsulating the changes from one point to the

subsequent position to extract rules and generate the patterns. The patterns can be

In order to define a pattern to be always applicable it would be sufficient to leave the left side of the
associated rule empty.

233

repaired, improved, and evolved through an intensive didactic teaching128 process, which

enables the agents to derive rules from a sequence of trial state changes129.

I l l 4.5.4.4 Similarity Checking and Traceability

A graph comparison methodology has been presented in [DHP02] to compare the

contents of two graphs by considering the number of nodes and edges. The comparison

has been performed based on applying the rules while considering the hierarchical

dangling condition, to check whether a specific sub-graph exists or not130. This approach

has been later used to perform hyperedge replacement and substitution. RLR intends to

audit and monitor very large, heterogeneous, evolving biomedical ontologies and

nomenclature scattered across the Web by highlighting changes between different

versions of an ontology. In order to facilitate the change tracking process, we employ

diagrammatic features on graph representation along with category theory, which enable

us to represent the system's activity in different levels of abstraction. Our approach is

similar to the tracking graph transformation approach [BKK05], which models the rules'

internal structure by means of LHS (left-hand side) and RHS (right-hand side) graphs and

a partial morphism between them, which facilitates the tracking of preserved graph

components between two versions of a graph through a set of consistency constraints to

check matching morphisms.

Coleman, A. Didactic Teaching. http://www.resus.org.uk/pages/IDnpP_AC.pdf
The idea of extracting rules as general behavior descriptions from sample state transformations is called
programming by example and represents the main didactic tool of the Stage-Cast environment [Hec06].
This can be performed when one attempts to delete a graph.

234

http://www.resus.org.uk/pages/IDnpP_AC.pdf

I l l 4.5.5 MAS and Graph Transformations

The transformation rules can be used to determine and model agents' behaviors and

operations in MAS [KK99, DHKOO]. They also capture the effects of different agents'

actions and operations on local or network levels, thus as a representation method, these

rules enable modeling the agents' cooperation and interactions. When we consider graph

transformation for formalizing agents' interactions and cooperation by means of

communication with the other agents within a specific MAS or between different MAS

systems and with their environment, it can be used for representing the transformation of

the agents' communication network. To analyze changes in relations between a set of

cooperative agents within a generic multi-agent system (MAS), considering the category

of MAS, a transformation mechanism based on DPO can be defined by finding a pushout

complement for a particular state through examining the gluing condition.

Considering the challenges for modeling changes in distributed systems, which

involve several issues including traceability and synchronization, RLR utilizes a

distributed graph transformation technique, which explicitly supports the synchronization

and concurrency processes. For the sake of consistent change management, a process

within the RLR model needs to be synchronized with its adjacent processes in order to

evolve coherently. For example, if two operations want to act on a common ontology

through specific actions and conditions, these actions should act under a consensus

agreement so they can both perform and evolve coherently. To coordinate the potential

changes in the processes, a set of synchronization requests are issued at each abstraction

level. These requests need to follow certain transformation rules and conditions, which

235

are compatible with each other131, in such a way that they support the concurrent

evolutions of different parts of the system autonomously based on the consensus

agreement. To ensure the consistency of the transformations, we enforce certain types of

reactions and behaviors (preferably among several options) for agents in certain states,

when the conditions are applicable (determined by L in the rule Z, <— / —» ic). The overall

effect of an action within a scenario (e.g., select a node to be deleted) is described by a

pair of instance diagrams132, modeling the before/after states [DHK02]. Sequences of

transformations represent the changes in the states' agents and their behavior, and model

their interactions within the communication channels in a MAS133. For example using the

method presented in [DHK02], we consider the communications between the Explorer

Agent (EA) and the Log-Reading Agent (LRA), in RLR (described in Section III 2.3.1)

to capture the type of change operation (Figure 3.72).

EA: Explorer Agent IRA: Change log 1 LRA: Change log 2

T
OPtl :Change Operation 1 i i i

_ ^ changetype lookupQ | |

| ' *j |
, , Change type lookup () ,

I Propose change type j} I 1
f5"~—: '— 1 l
1 ' Propose change type () '

| Acceptthe proposal {} | |
I ~\ Reject the proposal () i

(. _ — _ _ — . j — _ . _ ^

Fig. 3.72. The communication between explorer and log reading agents to specify the type of a change
operation. These communications can be placed during the negotiation phase.

131 The compatibility here refers to this fact that the combinations of these transformation rules should keep
the entire system in a consistent state.

132 In UML, instance diagrams (object diagrams), are useful for exploring "real world" examples of objects and the
relationships between them, while the type diagram reflects a given Use Case. [UML2]

133 In agile object oriented modeling , This usually is represented by UML sequence diagrams [UML3].

236

Due to the ability of graph transformation for handling temporal representation

[GVH03], we have used the rule-based graph transformation [DHK02] to describe the

pre- and post-states of an agent-based model (Figure 3.73), grounded on the

communication diagram demonstrated in Figure 3.72. In this figure, the Explorer Agent

(EA) reacts to alterations that appear in the environment (e.g., a change operation) and

tries to affect the environment by locating the change and determining its type based on

different proposals. In the same way, one can define other rules for rejecting the

proposals, storing the proposals for future decisions, or aborting all the communications.

Change
Operation

Asks_ queryJrom

EA: Explorer Agent

A$ks_ query Jrom

IRA: Change tog 2

URA: Change toy 1

i Change type
lookup

Ask$_query_fiom

Proposed
change type
from LRAl

Picked
EA: Explorer Agent

IRA: Change log 2

A$ks_query_Jrom '
Accepted by

IRA; Change M?g,|

— r
Proposed by

Fig. 3.73. A generic transformation rule for describing the pre- and post states in an agent-based model
transformation based on the communication diagram demonstrated in Figure 3.72.

By noticing the fact that many of the current dynamic agent models are represented

by sequence and state diagrams, which have been studied here under a graph-oriented

approach as well, we can extend our approach to study agents' model transformations in

237

more complex situations. For example, by following some of the object-oriented

principles like differentiation between instance and type graphs (diagrams)134 ([CMR96],

[BH04]), we can model the typed graph transformations [HCE+96, GPS98] by means of

refactoring [SPL+01, MED+05, Men05] the state diagrams (adding/removing, merging,

or decomposing the states) and conceptual models of ontological structures.

St!

,-J

St.

• - . r -

St»

1 _ J

'—
Sta

'—. !
Sb

1 _ J 1 _

St*

SI Is

'
su-

• •
Sts

X
stE

JL
St.

Sti

- i L ,
Sfc

1

S1

_ J

t i - - *

' . ,
st< $u

i

.. X
Sts 4 Sf,

•

X
St,

St*

^ L ,

St;

1 '
St=,4

«!>

r.i *
St. St.

1
<!>

JL
st?

;

JL
Str,

(a) fl>)

Fig. 3.74. (a) pre/post state representation before/after merging two states; (b) the representation of
concurrency of two parallel states.

As an example, following the approaches presented in [BSF02] and [Men05], we

may merge the two states St3 and St4, which respectively represent the state of the RLR

system after querying to determine the type of change and receiving the proposed

answers, into one merged state St3;4 (Figure 3.74 (a)). As another example, Figure 3.74

(b) demonstrates the transformation of a state diagram to the new diagram, representing

134 In conceptual modeling a type graph models a class diagram and an instance graph models the objects
(instance) diagram.

238

the concurrencies between the two states St5 (validation of the accepted response), and

state St6 (ask permission to put the results into an action). In fact, we would be able to

model various aspects of agents in the RLR model, such as agents' networks, topology,

properties, interactions, and cooperation based on the agreed goal in the negotiation

process. Also, due to the rule-based nature of this framework, we can formally model the

structure and behavior of an evolving system and anticipate certain types of

transformations and re-configurations upon future changes.

Ill 4.6 Summary of Contributions in Section III.4

In Section HI.3 a formal framework for managing changes in ontologies based on

category theory has been defined. On top of this formalism, we defined a graph

transformation approach to manage ontological changes by means of model

transformation. In this method, graphs correspond to the evolving ontological structures

and graph transformation has been employed to model their evolution. Semantic web is

considered as hierarchical graphs with the ontologies composed of RDF/OWL triples'

graphs as its nodes and the relations between these ontologies as its edges135. Therefore,

we can naturally use graph transformation to define the changes in an ontology (or a

series of related ontologies) and control the consistency of the result by imposing the

rules and conditions to guarantee that the transformation result is a valid hierarchical

graph as well.

Graph transformation offers the means for analyzing updates and changes in graph

like structures. As well, there is a vast amount of theoretical studies with promising

135 The relation between the OWL/RDF triples also represent edges for the ontology graphs.

239

outcomes readily available. The transformation rules can be used to describe merging and

integration of internal graphs (analogous to the concatenation operation presented in

[DHP02]). An approach for verification of whether a transformation indicated by a

double-pushout rule is consistent or not has been shown in [BKK05], by demonstrating

that every rule in a rule-based graph transformation can satisfy the path-checking and

root-checking (due to root-level morphisms) conditions. In contrast to other existing

methods, we do not limit ourselves to the specific type of implementation language.

Moreover, our model is equipped with a category theory formalism and rule-based

transformation mechanism, which enables us to represent the dynamic nature of

ontological elements not only in isolation but also considering their interactions with

other dependent components and artifacts in a distributed Semantic Web environment.

Also the purpose and domain of our approach differs from other currently ongoing efforts

in this area. In summary in this section we have presented the following major

contributions.

• Providing a graph-oriented semantics for analyzing temporal biomedical

ontologies;

• Extending the existing graph-based analysis for RDFS/OWL ontologies, by means

of hierarchical distributed graphs, which enables one to deal with nested distributed

ontologies in the real world applications;

• Employing category theory along with graph transformation to represent, and

analyze changes in distributed biomedical ontologies in different levels of

abstraction, independent of any implementation language;

240

• Defining transformation rules for evolving ontologies that ensures the consistency

of the results and coordinates the communications and interactions between

different agents for concurrent and parallel actions.

In the next chapter we demonstrate the feasibility of our approach through a series of

experimentations on different application scenarios.

241

IV. Application Scenarios &
Case Studies

The applicability of our proposed method for managing
change in ontologies has been already demonstrated
throughout several examples in Chapter III. In Chapter IV we
represent that the techniques presented in our proposed RLR
framework can be joined together to serve as a blueprint for
designing practical algorithms for maintaining changes in
several domains. With the extensive popularity of biomedical
ontologies in modern knowledge bases in healthcare, we
believe our method is not only applicable for managing
evolving biomedical ontologies, but also appropriates for
many other topics, including requirement engineering and
model analysis, and phytogeny evolution, where formal
representation and analysis of changes are key to overcome
parts of the big problem of bootstrapping the evolution
process.

242

IV. 1 Case Study 1: Managing the Evolving Structure
of an Ontology for Clinical Fungus

There's a tiresome young man of Bay Shore
When his fiancee cried: "I adore
The beautiful sea!"
He replied, "I agree;
It's pretty, but what is it for?"

Morris G. Bishop (1893-1973)

Life sciences constitute a challenging domain in knowledge representation. Biological

data are highly dynamic, and bioinformatics applications are large and there are complex

interrelationships between their elements with various levels of interpretation for each

concept. At this time, we are applying the proposed methods for managing changes in the

FungalWeb Ontology which is the result of integrating numerous biological databases,

web accessible textual resources and interviews with domain experts and reusing some

existing bio-ontologies. To use the FungalWeb framework more practically in the

medical domain to support dermatological practice and enhance the accuracy of clinical

knowledge management, we have also modeled the SKin-Disease ONtology (SKDON),

an integrated OWL-DL ontology with focus on medical mycology for dermatologists. In

our work, we have concentrated on disorders of the skin and related tissues, such as hair

and nail due to fungi. SKDON is created from several distributed resources, including

structured/unstructured texts, online databases, and existing controlled vocabularies, such

as MeSH [NLM94], ICD-9136, SNOMED137 and Disease database138. Cross referencing

between the FungalWeb ontology, SKDON and MeSH "Chemicals & Drugs" category

http://www.cdc.gov/nchs/icd9.htm
http://www.snomed.org/
http://www.diseasesdatabase.com/

243

http://www.cdc.gov/nchs/icd9.htm
http://www.snomed.org/
http://www.diseasesdatabase.com/

provides valuable information about the disease, the involved fungus and the drugs

prescribed. Change in any of the resources can alter the definitions in the target ontology.

Recalling our discussion in Section I1I.1, as the knowledge about fungi species grows

and new methods become available one can anticipate a fundamental change in the

current fungal taxonomy structure. From the other way since skin disorders have been

historically categorized by appearance rather than scientific and systematic facts

[PCB+04], the existing taxonomy of fungal diseases must be also modified based on the

new knowledge to update the ontological truth. Many terms in current medical mycology

vocabularies describing skin disorders originate as verbal descriptions of appearance,

foods, people, mythological and religious texts, geographical places, and acronyms

[AAR+03]. Many names and terms are highly dependent on individual or regional

preferences, causing redundancy, vagueness, and misclassification in current

vocabularies. Thus, we study various alterations in both fungal taxonomy and fungal

disease classification. As an example of changes in fungal terminologies, one can see

several changes in the name of pathogenic fungi Trichophyton family (i.e. Trichophyton

Soudanense, Trichophyton megninii, and Trichophyton equinum) in relatively short

period of time. As another example, the pathogenic fungus Candida glabrata is now

called Torulopsis glabrata [CS05b]. Usually changes in fungi taxonomy alter the related

disease name and description (Figure 4.1). For instance, the name of the fungus,

Allescheria boydii which can cause various infections in humans, was changed to

Petriellidium boydii and then to Pseudallescheria boydii within a short time [OAD+92].

Consequently, the infections caused by this organism were referred to as allescheriasis,

allescheriosis, petriellidosis, andpseudallescheriosis in the medical literature [OR95].

244

Fungi

Is a

Phylum

t Is a

h s a
Genus

Is a

Species

Skin Disease

I s a

Skin Disease due to Fungi

I s a

K
Causes

SD1

Is a

SD2

Fig. 4.1. Changing the fungi name can change the related disease name.

139 Fungal Meningitis is an infectious disease caused by three types of fungi (Candida

albicans, Cryptococcus Neoformans, and Histoplasma). Cryptococcal Meningitis is

caused by fungus Cryptococcus Neoformans140 and is typically seen in patients with

immune deficiency (Immuno-lncompetent) such as AIDS. It usually results from an

infection that spreads to patient's brain from another part of her body. This disease has

been a subject for study in both dermatology [Leu90] and neurology [ST95] for a long

time. The knowledge about this disease (i.e. symptoms, causes, etc.) are scattered in

several existing ontologies and knowledge bases, which need to be aligned. As described

in Section III 3.5.4.1 and also pointed out in [ZKE+06], and [CH07] we can model the

alignment of two taxonomical structures {Ox and 02) by means of a pair of mappings

from an ontology O (Figure 4.2).

139 Meningitis Research Foundation of CANADA:
http://www.meningitis.ca/en/whatjs_meningitis/fungal.shtml

140 Here is the lineage of Cryptococcus neoformans in the FungalWeb Ontology:
Fungi; Dikarya; Basidiomycota; Agaricomycotina; Tremellomycetes; Tremellales; Tremellaceae;
Filobasidiella; Cryptococcus neoformans (Filobasidiella neoformans).

245

http://www.meningitis.ca/en/whatjs_meningitis/fungal.shtml

o, o7

Fungal Infection
~ c8

Tinea Versicolor
• c 2

Funaal Meninaitis

Disease
C'o

cs
Nexiro-Derma Disorder

c \
Cryptococcal Meningitis Disease in Immuno-Incompetent Patients

Fig. 4.2. The diagrammatic representation of the alignment between the two taxonomies from Oi (Fungal
disorders), and 02 (Diseases) using a set of mappings from ontology O (using the format given in [CH07]).

In order to achieve a composite knowledge of the disease's properties we have used

the categorical product to represent this integrated view (Figure 4.3). As can be seen in

the Figure 4.3 medical specialty is the product arrow of the two branches in medicine,

which includes the attributes of both domains.

Fungal Meningitis

Branch
medical

(MS)

Dermatology
•4

specialty

Neurology

****•.. Branch

Neurology
— •

MS j Dermatology MS 2

Fig. 43. Determining the medical specialty for a particular disease through product.

As mentioned in Section III 3.5.4.2 in order to merge two unrelated ontologies we

can simply perform the disjoint union (or co-product). In our domain, we need to update

and improve the ontological structure of the FungalWeb and SKDON Ontologies

regularly for the annotation of fungal genes and analyzing the role of the fungi species in

various diseases. For example, the older version of the FungalWeb Ontology did not have

sufficient terminology to annotate genes involved in Malassezia infections. To meet this

246

new requirement, the updated version of the ontology has gained 26 additional terms

addressing these infections.

As we represented in our research, category theory within the RLR framework has a

significant potential to be considered as a supplementary tool to capture and represent the

full semantics of ontology driven applications and it can provide a formal basis for

analyzing complex evolving biomedical ontologies. Figure 4.4 demonstrates a portion of

the structure of the FungalWeb application in a diagrammatic representation.

/

Functional
Parameter

Industrial and
environmental process

Can be / 'is using
s x used ml '

\ \ \ Ik . \ V I J Has been reported lo be found in N <ongs to^ V I'' y \
• " » ' i ^ — • i <

KM Value
pH Optimum

Fig. 4.4. A diagrammatic representation of portion of the FungalWeb application.

As one can see in Figure 4.4 many of the nodes can be considered as one individual

graph within the whole ontological structure, with several dependencies to different

objects. Figure 4.5 represents this interconnect!vity between different ontological

components.

247

Key hf i r i tn l i Oases

tmm
2^.

%%*tAftapaA^t

~^~~ fnaja»«aM_Baasts.tte.)(B»' 7 " ^)

ft IIIII i i i . i ..i i 1*1 ' i nm r i .'.»

(a)

— . ^ s_

<b)

Fig. 4.5. (a) A portion of the FungalWeb Ontology representing the conceptual frame supporting the
identification of enzymes acting on polygalacturonic acid, (b) Conceptual frame supporting the
identification of enzyme vendors, the characteristics and application domains of their products [BSS+06].

The FungalWeb Ontology as an integrated structure consists of several parts from

other knowledge resources, which combined through their aligned components and

merged into a consistent framework. Figure 4.6 represents an example of partial merging

of two conceptual models (in the left) via a common component Substance/Product.

y
| (^jname~~^)

Cnn.be tvssd

>

'" /industrial and\ i

\ processes / !

''"Process name^) ;

Fig. 4.6. A merging process based on the common elements between two parts of the FungalWeb
Ontology.

248

http://Cnn.be

The representation of a change in a part of the FungalWeb Ontology using graph

transformation has been already shown in Section III 4.5.4.3 (see Figure 3.70). Also some

examples for defining transformation rules and applying the double-pushout approach

have been demonstrated in Table 3.2 and Figure 3.71 respectively. In fact ontologies are

not isolated structures, but they tend to be reused as much as possible. The Semantic Web

ultimate vision is to bring the existing ontologies, knowledge bases, controlled

vocabularies, thesauri, databases and linked data sources under one umbrella, in such a

way that they can communicate with each other and with users in a coordinated

interactive manner. As mentioned earlier in Section III.l, the FungalWeb ontology is in

close contact with other resources such as Gene Ontology, TAMBIS, SwissProt,

BRENDA, and etc (Figure 4.7).

l"mrn>i^imj\ Newt

I oasoi-EyEPs j J

N̂

">^

/SiMa ******* i

\
X I CttBt

NEW!
^

NEW
\ jOBSotgrEo;]

Fig. 4.7 . Interrelated distributed ontologies, knowledge bases and data sources in the FungalWeb project.

141 For the visualization purpose, we used the format presented at W3C "Linking Open Data" project.
http://esw.w3.Org/SweolG/TaskForces/CommunityProjects/LinkingOpenData#dbpedia-Iod-cloud

249

http://esw.w3.Org/SweolG/TaskForces/CommunityProjects/LinkingOpenData%23dbpedia-Iod-cloud

It is highly desirable that all changes within a resource can be tracked and all the

impacts of such changes as well as their directions can be recognized and indentified. In

our approach changes to each part of the ontology can cause the conceptual design

changes its state, which may cause alterations to other dependent artifacts. In order to

represent different states of our conceptualization, we use a categorical discrete state-

model, which describes the states and events in the ontological structure using a

diagrammatical notation. The discrete state-model can be specified by a state space (all

potential states), a set of initial states and a next state function. Based on our application

we designed our class diagrams following the method described in [Whi97] (Figure 4.8).

The Op; arrows in this figure represent the operations performed on the ontological

structure. In this case, the operation or event opi causes an object in state St] to transition

to state St2. The operation Opi has no effect upon the object if it is in any other state,

since there is no arrow labeled Opi which originates in any other state.

Fig. 4.8. A Class diagram for part of the FungalWeb class structure that represents the transition between
states.

250

The object 0 in the diagram is the null state. The create arrow represents the creation

of the object by assigning an identifier to the object and setting its state to the initial

defined state, and the destroy arrow represents its destruction [Whi97].

As we described in Section III 4.5.1 the hierarchical graph transformation can be

used to analyze the changes in interrelated biomedical resources in the sense of a

sequence of transitions and transformations. These transformations assist for studying

changes in the micro level (in the nodes of each internal graph) and the macro level

(changes in lattice structure). Defining appropriate transformation rules, such as what is

represented in Figure 4.9, is the first step towards performing a transformation. As

mentioned earlier (III 4.3.1.1) finding proper pushout complements is one of the key

point in categorical graph transformation.

TransformationRule
P : L — — — - R

Fig. 4.9. A distributed transformation rule, which regulates the transformation of different interconnected
ontologies in two abstraction levels, namely internal and lattice.

Recalling the definition of category DGRAPH in Section 4.5.1 and using the

approach proposed in [Tae99] a pushout over distributed graph morphisms with

251

respecting to both lattice (network) and internal (local) morphisms can be constructed,

which enables us to apply the defined pushout-based transformation rules (see Section III

4.3) to describe changes in the distributed ontologies.

IV.2 Case Study 2: Managing Requirement Volatility
in an Ontology-Driven LIMS

In an ideal situation, the requirements for a biomedical system should be completely and

unambiguously determined before design, coding, and testing take place. The complexity

of bioinformatics applications and their constant evolution lead to frequent changes in

their requirements: often new requirements are added and existing requirements are

modified or deleted, causing parts of the software system to be redesigned, deleted, or

added. Such changes lead to volatility in the requirements of biomedical applications. In

this section, which is partially based on our published journal paper [SOK+09]142 and

conference paper [SH07c], we deal with an important problem of requirements volatility

in the context of an ontology-driven clinical Laboratory Information Management System

(LIMS) [Mcd93, AMFOO]. A LIMS is a software application for managing information

about laboratory samples, users, instruments, standards, and other laboratory functions

and products. It forms an essential part of electronic laboratory reporting (ELR), and

electronic Communicable Disease Reporting (CDR). ELR is a key factor in public health

surveillance, improving real-time decision making based on messages reporting cases of

notifiable conditions from multiple laboratories [OSM01]. Combining these reports with

clinical experiments and case studies makes up a CDR system [WC05]. This framework,

142 The definitions of the requirements' refinement models and the effects of various requirements on each
other were contributed by the two co-authors.

252

along with the active participation of physicians specializing in fungal infectious

diseases, infection control professionals, and lab technicians, is aimed at generating

automated online reporting from clinical laboratories to improve the quality of lab

administration, health surveillance, and disease notification. It provides security,

portability, and accessibility over the Web, as well as efficiency and data integrity in

clinical, pharmaceutical, industrial, and environmental laboratory processes.

Research Problem: Requirements volatility is: "a measure of how much program

requirements change once coding begins" [ED07]. Bioinformatics applications with

frequently changing requirements have a high degree of volatility, while projects with

relatively stable requirements have a low one [MD99]. Higher requirement volatility will

result in higher development and maintenance costs, the risk of schedule slippage, and an

overall decrease in the quality of the services provided. Therefore, requirement volatility

is considered one of the major obstacles to using a LIMS. In this section, we propose an

innovative approach for the automatic tracing of volatile requirement changes based on

their formal representation in an ontological framework and using category theory as a

solid mathematical foundation.

Approach: Investigating the factors that drive requirement change is an important

prerequisite for understanding the nature of requirement volatility. This increased

understanding will minimize that volatility, and improve the process of requirement

change management. One of the most important volatility factors is the diversity of

requirement definitions in the application domain, which may lead to confusing and

frustrating communication problems between application users and software engineers

[Wie03]. Conceptualization of the requirements using an ontology minimizes the

253

requirement volatility by providing a deep and common understanding of the

requirements [DS06], which is essential in order for bioinformatics application

developers to manage the changes successfully. In this section we apply our proposed

approach to model LIMS requirements with an emphasis on nonfunctional requirements,

their dependencies and interdependencies using category theory. The resulting categorical

model represents the functional requirements (FRs) and nonfunctional requirements

(NFRs) based on an investigation of their dependencies and interdependencies, which is

considered critical to success in tracing requirement changes. Requirement traceability,

defined as "the ability to describe and follow the life of a requirement in both a forwards

and backwards direction" [GF94] is an essential part in performing requirement

maintenance and change management processes. Moreover, the extent to which change

traceability is exploited is viewed as an indicator of system quality and process maturity,

and is mandated by existing standards [ANR+06]. These changes have to be monitored

for consistency with the existing categorical framework in the LIMS context. After

capturing the LIMS requirements in an ontological framework - to provide a common

shared understanding of the requirements - empowered with category theory, we recruit

our RLR framework for handling volatile requirement identification, integrated change

management and consistency monitoring in a LIMS (Figure 4.10).

_ „ Change
.oSxua. Conceptualization X ^ X x J O V Management

J? &(

RLR

MnM-Agent

Framework

Change

Traceability

< $ = > s — w
Categorical Requirement

Traceability Model

Ontological Requirements Model
empowered -with Category Theory LIMS Requirement

Fig. 4.10. General view on the proposed approach for managing requirement volatility

254

The RLR framework then assists and guides the software developer through the

change management process.

IV 2.1 MYCO-LIMS Requirements Overview

The Mycology Laboratory Information Management System (MYCO-LIMS) is our

modeled experimental application for managing information about laboratory samples,

users, instruments, standards, and other laboratory functions and products, and provides

security, portability, and accessibility over the Web, efficiency, and data integrity in

clinical, pharmaceutical, and industrial laboratory processes. MYCO-LIMS is an

ontology-driven object-oriented application for a typical fungal genomics lab performing

sequencing and gene expression experiments in the domain of medical mycology. In our

context, the conceptual framework for requirement management outlines possible courses

of action and patterns for describing a system's specifications and requirements. In

complex biomedical systems development, a requirement change typically causes a ripple

effect and forces the categorical requirements model to be altered as well. MYCO-LIMS

is used in the FungalWeb integrated system to respond to queries regarding the clinical,

pharmaceutical, industrial, and environmental processes related to pathogenic fungal

enzymes and their related products. It is estimated that laboratory data account for 60-

80% of the data generated during the entire clinical trial process [Kra07].

255

Externa! Applications

Mutation
Miner

MYCO-OS MYCO-LIMS

Server

jForm Query

1 nHQLQueiyj

OMoIQ
Qaery

OntoNLP
Query

VlsCraph
Query

X ^ 1/S

8 rt
tructural Analysis &
Term Extraction

SI
fWWfJ l l » 4 l H

! I "»W i I

i l _ _

, Service Ontology Domain Ontology
(FuugalWeb + SKDON)

¥
•s

- r - '•
• Ddta Warehouse •

i*-

Fig. 4.11. The Fungal Web infrastructure.

literature Repository

Scientific Computational
Servers

Databases

The Fungal Web semantic Web infrastructure (Figure 4.11) consists of the

FungalWeb Ontology, SKin Disease Ontology (SKDON), a text-mining framework and

intelligent agents. In addition several external applications such as MYCO-LIMS,

MYCO-LIS, and Mutation Miner [BW06] have been designed for knowledge exchange.

Microarrays are produced in different proportions, depending on the specific

requirements of the gene expression study being initiated. A typical microarray may

include thousands of distinct cDNA probes [JF02]. Preparation of an array begins with

the clone set deliverance in the form of plates or tissue samples (with associated data)

from a vendor or other source [JF021. MYCO-LIMS will be able to maintain the

taxonomy for each plate or sample in the system, such that a user can easily see the life

cycle of the entity. The LIMS is based on MGED-specified [MGE] microarray data

exchange standards, such as MIAME [MIM] or MAGE-ML [MAG]. Software in general

256

and MYCO-LIMS in particular are characterized both by their functional behavior (what

the system does) and by their non-functional behavior (how the system behaves with

respect to some observable attributes like reliability, reusability, maintainability, etc.).

Both aspects are relevant to software development and are captured correspondingly as

functional requirements (FRs) and non-functional requirements (NFRs).

IV 2.2 LIMS Functional Requirements (FRs)

MYCO-LIMS is a Web-based system capable of providing services such as

managing microarray gene expression data and laboratory supplies, managing patients,

physicians, laboratories supplies or vendors' information, managing and tracking samples

information, and managing orders.

A
Application User,

Administrator

LIMS

LIMS Technician

Fig. 4.12. The LIMS use case diagram.

257

Figure 4.12 summarizes some of the main actors and services of MYCO-LIMS

application in a standard Use-Case Diagram. MYCO-LIMS is capable of receiving

multiple orders or cancelation requests at the same time. It requires its users to have a

certain level of privileges to access any of the functionalities, except when searching for a

product. The privileges are granted automatically upon successful authentication.

Here, we choose one functional requirement, "Manage Order", and decompose it into

two more specific requirements, "view orders" and "place order", which each of them

decompose to more detail requirements. Figure 4.13 presents the functional model, and

shows that an FR is realized through the various phases of development by many

functional models (e.g. in the object-oriented field, a use-case model is used in the

requirements engineering phase, a design model is used in the software design phase,

etc.).

^Manage^
Order

FR
Hierarchy

Events
(Artifacts)

Enter order
number

Visualize order

Select product

Place a payment

Methods
(Solution Space)

viewOrderSession.view(order)

orderCatalogue.view(order)

placeOrderSession.makeOrder

orderCatalogue.makeOrder

Fig. 4.13. Illustration of MYCO-LIMS FR traceability model.

258

Each model is an aggregation of one or more artifacts (e.g. use case and sequences of

events representing scenarios for the use-case model, classes and methods for the design

model). For instance, the View Order use case is refined to a sequence of events <enter

order number, visualize order> illustrating an instance of View Order service; each event

is refined as a method (viewOrderSession.view and viewCatalogue.view

correspondingly) in the design phase. Modeling FRs and their refinements in a

hierarchical way gives us the option of decoupling the task of tracing FRs change from a

specific development practice or paradigm. Figure 4.13 visualizes the FR hierarchical

model for the chosen case study through the hierarchy graph that forms a primary

taxonomy for analyzing ontological relationships between requirements.

IV 2.3 LIMS Nonfunctional Requirements (NFRs)

The use-case diagram shown in Figure 4.12 specifies the FRs of MYCO-LIMS services.

Dealing with NFRs, such as performance, scalability, accuracy, robustness, accessibility,

resilience, and usability, is one of the most important issues in the software engineering

field today. NFRs impose restrictions by specifying external constraints on the software

design and implementation process [KS98], and therefore need to be considered as an

integral part of the process of conceptual modeling of the requirements. Here we propose

a formal approach to NFR modeling, and traceability.

259

NFR
Hierarchical

Model

Solution Space
(methods implementing

operationalizations)

Fig. 4.14. Illustration of MYCO-LIMS NFR traceability model

In this approach as represented in Figure 4.14 a LIMS' NFR is decomposed into

more specific NFRs. Let us consider the requirements of "managing orders with good

security" and "maintain the users' transactions with good performance". The security as

an NFR may refer to a quite general domain and may need to be broken down into

smaller specific parts such as integrity, confidentiality, and availability. In the security

example, each sub-NFR has to be satisfied for the security NFR to be satisfied. The sub-

NFRs are refined (operationalized) into solutions that will satisfy the NFR (e.g. for

confidentiality, can be achieved either through implementing authorization or the use of

additional ID).

IV 2.4 Integrating FRs and NFRs into an Ontological Framework

Each software requirement usually intracts with other requirements and in this interaction

they affect each others in various ways. Understanding FR/NFR relations is necessary for

260

consistent change management of the requirements. When an application is in action, it is

somehow clear to check whether a particular FR has been met or not, as it can be

explicitly specified in its definition. But, it is not that simple for NFRs since they can be

defined based on different quantitative and descriptive statements, which are not always

easy to process. The NFRs often have been modeled with correspondence to FRs in the

design process.

i i

Fig. 4.15. Illustration of MYCO-LIMS NFRs/FRs dependencies hierarchical model.

Despite the importance of the traceability, it has been widely neglected in operational

NFRs change models. This area needs a special attention, because NFRs are subjective in

nature and have a broad impact on the system as a whole. Here, we illustrate our

approach towards finding an effective method for conceptualizing NFRs based on their

hierarchy and interrelations with FRs in the MYCO-LIMS invoicing system case study.

For example, associating response time NFR to the View Order use case would indicate

that the software must execute the functionality within an acceptable duration (see

association Ai, Figure 4.15). Another example is associating security NFR to the

"Manage order" FR, which would indicate that the interaction between user and the

261

software system in the "Manage order" service must be secured (see association A2,

Figure 4.15), which also precisely implies that the user interface for other interactions is

not required to be secured.

If an association exists between a parent NFR and a functionality (e.g. association A2

between security and manage order, or A} between performance and manage order)

(Figure 4.15), there will be an association between operationalizations derived from

NFRs and methods derived from the functionality (e.g. authorize derived from security,

and placeOrderSession.makeOrder derived from manageorder) (Figure 4.16). Figure

4.16 illustrates the refinement of the interactions. The complete change management

model would require the refinement of performance and scalability into

operationalizations and methods, and the identification of the associated interaction

points to which they are mapped.

Fig. 4.16. MYCO-LIMS Requirements associations' refinement

262

A change in FRs or NFRs can be authorized if and only if that change is consistent

with the existing requirements model. This process can be improved using the RLR

framework by defining a set of consistency rules based on a formal presentation of the

FR and NFR hierarchies and their relations, and these rules will be controlled

automatically before a change is authorized. The conceptualization of FR and NFR

hierarchies and their interconnections form the bases for analyzing ontological

relationships between requirements in the Service Ontology (Figure 4.11). The NFR/FR

ontological framework introduced in this section can be visualized through a categorical

hierarchical graph, which makes it possible to keep track of the required behavior of the

system using dynamic views of software behaviors from requirements elicitation to

implementation. The following section introduces a generic categorical model of

requirements with an emphasis on NFRs and their interdependencies and refinements

through using category theory as a mathematical formalism, independent of any

programming paradigm.

IV 2.5 Generic Categorical Representation of Requirements and
their Traceability

As mentioned in our study (Chapter HI), categorical analysis offers a great potential for

managing structural changes in evolving hierarchical structures. In order to explicitly

reason about the impact of NFRs and their refinements on the project throughout the

software development process, we explicitly represent NFRs, FRs, and their

dependencies and refinements using category theory. Figure 4.17 captures the generic

view on the requirements modeling process where Requirements Group, Hierarchical

Model, Artifacts, and Solution Space are categories representing the project

263

requirements, the analysis models, the refined representations of the project requirements,

and the requirements implementation respectively. The arrows are morphisms, which

capture the refinement processes; namely, decomposition, operationalization, and

implementation defined as shown in Figure 4.17.

/ " ^~ ~ \ refinement^—-^operationalization^ implementation

Fig. 4.17. Generic categorical framework for requirement traceability.

Figure 4.17 shows that a requirement is realized through consecutive refinements by

hierarchical models, where each model is an aggregation of one or more artifacts. The

implementation arrow refines the artifacts into solutions in the target system that will

satisfy the requirements. These solutions provide operations, processes, data

representations, structuring, and constraints in the target system to meet the requirements

represented in the Requirements Group. High-level FRs are refined in the requirements

analysis phase into more specific sub-FRs (use cases and their relations, e.g. FR

Hierarchy Mode), which are then operationalized as use-case scenarios describing

instances of interactions between the actors and the software, and modeled as events

(Artifacts), which are implemented as methods (Solution Space). More general NFRs are

refined into an NFR hierarchy where the offspring NFRs can contribute fully or partially

towards accomplishing a goal for the parent. The sub-NFRs are operationalized into

solutions (Artifacts) in the target systems, which will sufficiently satisfy the NFR.

264

The requirement refinements are then expressed formally in terms of the composition

operator °, assigning to each pair of arrows / and g, with cod /= dom g, a composite

arrow g °f. dom/-> cod g (cod/is a notation for a codomain, and dom/is the notation

used to indicate the domain of a function f). In this case, each requirement object

belonging to the Requirements Group category will be refined to its implementation

belonging to the Solution Space. The resulting solution forces preservation of the

requirements and their relations, which are modeled with the trace arrows. The

consistency between the solution and the original requirements can be guaranteed by the

composition of categorical arrows representing morphisms. As a result, each change to a

requirement or its refinement belonging to the domain of/will be traced to its refinement

belonging to the codomain of g by means of the composition of the corresponding trace

arrows.

IV 2.6 Categorical representation of FRs, NFRs hierarchies and
their interdependencies

The category FR, NFR hierarchies, and relations (Figure 4.18) consists of objects

representing FRs and NFRs, their decomposition into sub-FR and sub-NFR (which are

also FR and NFR correspondingly), and their impact associations; above concepts are

treated jointly and in an integrated fashion. Four areas have been defined for impact

detection in which NFRs require change management support: (i) impact of changes to

FRs on NFRs (inter-model integration); (ii) impact of changes to NFRs on FRs (inter-

model integration); (iii) impact of changes to NFRs on sub-NFRs and parent NFRs (intra-

model integration); and (iv) impact of changes to NFRs on other interacting NFRs (intra-

model integration).

265

Impact FR
toFR Impact NFR to FR

Impact NFR
to NFR

Fig. 4.18. FR, NFR hierarchies, and relations in a categorical framework

IV 2.7 Categorical representation of the Solution Space

The Solution Space category contains State Space SS (all potential states including initial

states), State Transition ST (next state function), Class C categorical objects, and

Methods arrows. The trace implementation morphism traces the effect of the changes to

Artifact objects on the Solution Space objects. In Figure 4.19, for instance, we illustrate

the refinement of an event from the Artifact category to a state transition object ST.

Fig. 4.19. Tracing the changes to the state spaces, classes, and methods

Moreover, each state transition ST is defined on the state space SS (arrow STSS)

linked by a function STC: ST—* C to a class C. The state transitions are implemented by

methods captured with the function STM: ST —*• APM, and belonging to a class C (see

266

function M_C). The above functions support the tracing mechanism and are captured

formally in Figure 4.19. The changes are then represented formally in terms of the

composition operator °; for instance, EST ° STSS °ST_C will trace a change in dom

EST (which is AEvent) to the codomain of STC (which is Class Q .

As we mentioned in Section III.2 category theory can be used for the taxonomical

representation of requirements to help in the study of the ontological relationship between

the various nodes within the hierarchy. Category theory has been used in RLR to

integrate time factor, and represent and track changes in ontological structure in time

through using the notion of state capturing an instance of a system's FRs, NFRs and

associations at certain period of time. For example, a change in the Authorize Method

would affect the method "placeOrderSession.makeOrder" in state Sti of the system,

which will be traced to changes in state St2 (Figure 4.20).

Fig. 4.20. The representation of evolving MYCO-LIMS functional requirements (FR) and nonfunctional
requirements (NFRs).

267

Generally speaking, changes to each NFR would lead to changes in the conceptual

framework. As mentioned in Section IV 2.5, we are monitoring the effect of FR or NFR

changes through their refinement relations, that is: (1) identifying the "slice" of the

conceptual framework that will be affected by the change; (2) applying the consistency

rules to make sure the change does not introduce any inconsistencies in the "slice"; and

(3) implement the change, if authorized. Explicitly capturing of the temporal evolution of

the requirements can aid MYCO-LIMS developers and maintainers to deal with

requirements change management in highly dynamic clinical applications.

The RLR change management framework is modeled as an intelligent control loop,

which has one state for each of the above stages (1), (2), and (3), the events modeling the

change of state. Considering the requirements to be organized in a lattice-like ontological

framework, in order to represent the various states of our conceptualization, we use a

categorical discrete state model (explained in Section III 3.5), which describes the states

and events in the ontological structure using a diagrammatical notation (Figure 4.21).

'"'"dp* op2 op~~~~-*
S t l , _+ S t 2 >st^—m+st^

*«.>.. °Pr
••..;•" • Opr • -

Opr

Fig. 4.21. Tracking different operations and their compositions along with their states in an evolving
structure, which can be used to generate patterns for the learning agents.

After studying the changes in FRs and NFRs in one conceptual model we can extend

our analysis to monitor the changes in requirements of several interrelated applications

268

following our hierarchical distributed graph transformation (explained in section III 4.5.1,

and III 4.5.2).

IV.3 Case Study 3: Analyzing the Evolutionary
Relationships between Species

In this section, which is partially based on our published papers [SH08b, SH08c], we

propose the use of our introduced methodology to provide an underlying formalism for

capturing and analyzing the evolutionary behavior of the fungi phylogeny. In an

experiment we have employed ontologies rather than cladistics, to reconstruct phylogeny

trees and to analyze the evolutionary relationships between species. Also the lexical

chaining technique has been used for the incremental population of evolving ontological

elements. We also present some of our ideas about using adjoint functors to analyze

structural transformation in phylogenetic trees, which can be pursued as a possible

direction in our future work.

IV 3.1 Introduction on Taxonomies and Phylogenies

The major efforts to reorganize taxonomies of species over time can be summarized as

the dynamic identification of essential classifying properties for a class and the collection

of all beings that share values for these properties into that class [PST04]. It is commonly

believed that all species are descended from a common ancestral gene pool through

gradual divergence [Fut05] and form different kingdoms in the tree of life.

In this process of constant evolution, Fungi were promoted from one subclass in the

Plant kingdom to a kingdom of their own based on gene mutation. A gene mutation,

269

whether hereditary or new is a permanent change in the DNA sequence that makes up a

gene [MAH08]. These changes, which can be insertions, deletions or rearrangements of

genetic information happen in relation to time and alter the evolutionary taxonomies of

different species. Thus, through several changes (based on mutations), the fungal classes

are promoted, moved, folded, deleted, merged, and renamed as more is discovered about

life on Earth. One of the primary goals of taxonomists is to reflect evolutionary history

(phylogeny) in the biological classification [Tax99]. Phylogenetic trees demonstrate how

a group of species are related to one another. To analyze the evolutionary relationships

between groups of organisms for the purpose of constructing family trees, biologists

currently use a method called cladistics or "phylogenetic systematics". Through this

method, organisms are classified based on their evolutionary relationships; to discover

these relationships, primitive and derived attributes should be analyzed [Clo96]. An

extensive collection of evidences for the importance of systematics and taxonomy (with

emphasis on fungal taxonomy) in biological research recently became available, provided

by researchers from the British Mycological Society143. In summary, cladistics is based

on the following assumptions [Phy]:

1. Any group of organisms is related by their descent from a common ancestor. Thus,

there is a meaningful pattern of relationships between all collections of organisms.

2. The taxonomic trees should be binary, which means that new organisms may come

into existence when currently existing species divide into two groups.

3. Changes in attributes occur in lineages over time.

http://vvww.parliament.uk/parliamentary_cornmittees/lords_s_t_select/evidenceselect.cfm

270

http://vvww.parliament.uk/parliamentary_cornmittees/lords_s_t_select/evidenceselect.cfm

The third statement is the most important rule in cladistics. In fact, only when

attributes and characteristics change one can recognize various lineages or groups [Phy].

Cladistic analysis has proved useful for analyzing evolutionary trees, but it does face

several issues, mostly addressed in [Clo96], and [Rob86].

In order to overcome some of the issues that affect the cladistic inferencing, we have

employed the FungalWeb Ontology, as a conceptual backbone to provide a common

formal specification for each species in the fungal evolutionary tree. "Lexicon chaining"

as a natural language processing (NLP) technique has been proposed for dynamically

populating the ontology. To analyze the temporal fungal phylogeny, we also use category

theory. In the following, after discussing the cladistic technique for studying evolutionary

trees and the related issues, the relations between ontology, taxonomy and phylogenies

will be utilized. Then we explain our categorical method along with an ontology-driven

technique, to facilitate semi-automatic phylogeny construction and analyzing

evolutionary relations between species.

IV 3.2 Phylogenetic Systematics (Cladistics)

As mentioned in Chapter II the taxonomical classification has a long history in biology;

since the time of Darwin (1809-82) and his theory of natural selection [WDB] there have

been debates between two groups of taxonomists [Tax99]:

1. Classical taxonomists working on "Linnaean classification" [Bru97], a system based

on a hierarchy of formal ranks (family, genus, etc.) and binomial nomenclature.

271

2. Cladists working on phylogenetic classification or cladonomy [Bru97], which is a

clade-based classification system, without any formal ranks, including the genus, and

no binomial nomenclature [Bru97], [DG92].

Cladistic approaches are being used to analyze the evolutionary trees based on

primitive and derived attributes. Primitive attributes (plesiomorphic) are those attributes

of a fungus that are shared by all members of the group. Having "fruiting body" is a

primitive attribute for all species of Basidiomycota (a major phyla in the fungi kingdom),

which has been inherited from their common ancestor. Primitives are not very helpful for

analyzing the relationship between organisms in a specific group [Clo96].

When we try to construct a family tree for all Basidiomycotas, it is not helpful to

note that they all have fruiting bodies, and it does not help us in determining the

relationships between different species. Derived attributes (apomorphic) are advanced

features that only appear in a number of members [Clo96]. In fact, the derived attributes

are crucial to construct evolutionary relationships. For example, the shared derived

attribute that defines the Ascomycota is the ascus [WK92]. Nuclear fusion and meiosis

occur inside the ascus where one round of mitosis follows meiosis to leave 8 nuclei, and

8 ascospores [WK92], [TSB06]. Accordingly, Fungi can be divided into two biological

groups: without ascus and with ascus. The intersection of these two groups (a node) can

be represented in an evolutionary diagram (cladogram) as a point at which a new species

(with ascus fungi) evolved [Clo96]. Having ascus is a synapomorphy (a derived attribute

shared by two or more taxa) of the Ascomycetes group. In cladistic method

synapomorphies are used to construct phylogenies. A synapomorphy of one group might

be primitive for another group. By analyzing sufficient attributes cladistics aims to

272

generate a family tree where either all members are descended from a single, common

ancestor (monophyletic) or from several common ancestors (polyphyletic) [Clo96]. If the

group includes some, but not all, of the descendants of a single common ancestor, it is

called paraphyletic [Nat]. Cladistic analysis is currently performed using various software

applications such as PHYLIP (Phylogeny Inference Package) [Fel05], PA UP [Swo] and

MacClade [MM].

A data matrix similar to the one demonstrated by Figure 4.22. provides the input for

cladistic analysis. This matrix simply summarizes the answers to questions such as: does

a fungus have a set of attributes, or not? The answers are short and simple ([yes, no] or

[1, 0]). The more species and the more attributes one puts in an analysis, the more likely

it gets close to the accurate family tree [Clo96].

1- Cell walls composed of glucan and chitin: Yes (1), No (0)
2. Has non-septate vegetative hyphae: Yes (1), No (P)
3. Hasascus:Yes(l),No(0)

4. Has fruittingbody: Yes (1), No (0)

Attribute No. 1 2 3 4

Glomeromycota Q
Chytridiomycota \
Zygomycota 0
Basidiomycota 0
Ascomycota Q

0
0
1
0
0

0
0
0
0
1

0
0
0
1
0

Fig. 4.22. An example of a sample data matrix for analyzing major fungi clades (Ascomycota,
Basidiomycota, Zygomycota, Chytridiomycota and Glomeromycota.

273

IV 3.3 Issues in Cladistic Analysis

There are some known issues in cladistic analysis [Clo96]:

I. Convergent evolution: If one defines having a fruiting body as an attribute of fungi

basidiomycota, and considering that many plants have also fruiting bodies, should

basidiomycota be considered closer relatives of plants than of the ascomycota fungi?

The answer is negative. In fact, basidiomycota and ascomycota have a number of

—• shared derived attributes that closely link them. Convergent evolution produces

homoplasies. A homoplasy [Sim61, Wak91] can be defined as: "a resemblance

between taxa that can be ascribed to processes other than descent from a common

ancestor and which implies phylogenetic relationships that conflict with the best

estimate of phylogeny for the taxa" [CW01]. By providing and analyzing as many

different attributes as possible this problem can be reduced [Clo96].

II. Reversals can cause problems: As an example, whales unlike all the mammals do

not have fur, because the fur of their mammalian ancestors has been lost in an

aquatic environment [Clo96, Mam].

III. Considering fossils with missing parts: In this case, the attributes associated with

those missing parts are represented by question marks and ignored when generating

the cladogram.

IV 3.4 Formal Ontology, Taxonomy and Phylogenetic Analysis

Taxonomy in knowledge representation is considered as a collection of terms or entities

organized in a hierarchical structure (implying parent-child relationships). Ontologies in

274

the context of semantic web consist of "taxonomies and a set of inference rule" [BHL01].

There may be more than one taxonomy for an ontology in a domain of interest, based on

the granularity and the chosen subsets of ontological characteristics.

Ontologies in the real world evolve over time as we fix errors, reclassify the

taxonomy, and add or remove concepts, attributes, relations, and instances. Consistently

modifying and adjusting the hierarchical structure of ontologies in response to changing

data or requirements can provide new insight for studying evolutionary changes (or

mutations in evolutionary phylogenies) in biological taxonomies occuring over time.

Ontologies follow the open world assumption, which asserts that the captured knowledge

is always incomplete, therefore if something cannot be inferred from what is defined in

the knowledgebase, it is not necessarily false. The open world assumption is especially

important when we represent knowledge with a dynamic system, which is gradually

improved as we discover new facts. In cases such as the real world phytogeny analysis

our knowledge is always incomplete and the facts described by the system can never be

fully known. Due to the evolutionary nature of cladistics, it is possible to study the way in

which attributes change (the direction in which attributes change, and the relative

frequency of the change) over time within groups [Zan02] in an ontological framework.

In order to study various changes in an ontologically inferred phylogenetic tree one can

focus on ontology evolution and change management techniques.

Our ontology change management framework as introduced in Chapter III aims to

maintain the dynamic structure of ontologies and controlled vocabularies, to preserve the

validity and consistency of ontological knowledge. Analyzing the evolving fungal

taxonomy within the FungalWeb framework, as discussed in Case study 1, facilitates

275

ontological inferencing - which provides a valuable source of information for clarifying

the explanations of complex evolutionary scenarios for fungi species - rather than

cladistics inferencing. The ontology inferencing allows us looking at the diversity of the

species within different groups by comparing the descendants of an ancestor to find out

the patterns of origin and extinction. It also empowers biologists to examine different

hypotheses about adaptation [WDB], [Zan02]. Currently, there is a need for a

comprehensive methodology to describe how chronological alterations in ecological and

environmental conditions [And95] have formed the adaptive evolution of fungal clades.

IV 3.5 Ontology Learning for Managing Evolving Taxonomies

By changing the knowledge, ontologies need to be incrementally updated to provide valid

information for the human/agent learner. In our approach, we have used the Lexical

chaining method to (semi-) automatically construct and populate the FungalWeb

ontology by extracting relevant terms and relations from a structured or unstructured text

corpus or other types of data. The Lexical chaining algorithm [HS98] reads a text corpus

and places words in a related chain based on semantic similarity, using a set of reference

dictionaries such as WordNet144 3.0, Integrated Taxonomic Information System (ITIS)145

and TreeBase146 (a database of phylogenetic knowledge). As an example, based on one of

our experiments focused on patient information leaflets to populate the medical subset of

the FungalWeb Ontology, consider the following patient information:

http://wordnet.princeton.edu/
http://www.itis.gov/
http://www.treebase.org/treebase/

276

http://wordnet.princeton.edu/
http://www.itis.gov/
http://www.treebase.org/treebase/

Patient A, a white male, nine years old, has recently found multiple, widespread

scaly redpatches on his_ abdomen, chest, face, and arm. The physician diasnosed

his disease as "Rosacea " and prescribed antibiotics.

Using the lexical chaining algorithm described at [BE99], one can distinguish several

possible chains such as:

{Patient A, nine years old, male, white, his, abdomen, chest, face, arm};

{Multiple, widespread, scaly, red, patches};

{Physician, diagnose, disease, Rosacea, prescribed, antibiotics}.

The chain of words together indicates a topic related to particular concepts in the

related ontology. Different algorithms may generate different chains. For the evaluation

some criteria such as reiteration, density and length of the chain [MH91] can be

considered. Then using the RLR agent-based framework, the related ontologies - which

provide the underlying knowledge for the learner agent - can be dynamically populated

and validated using a description logics reasoner (e.g. RACER) (Figure 4.23).

If some species have similar properties and genomes, it is very likely that they

evolved from a common ancestor. The similarity of genomes is computationally

measured based on the number and likelihood of different mutations (insertion, deletion,

duplication or substitution of base pairs) [Mat02]. We have used the FungalWeb

Ontology to determine the taxonomic provenance [BSS+06] for fungal species, in order

to study the evolutionary relationships based on logical and ontological inferencing.

277

Databases & Dictionaries

Q
Fusri Thesaurus

Structural
Analysis

Lexical
Chaining
T—

I — - * •

f Term | Ontology
" * lEirtractfonJ Engineer

Unstructured Test

RLR Malti Agent Framework

Representation Legitimation Reproduction!
(Races:)

t I
^>tog*£*K-»%fe» &to#tffba&qfo * */f

The FungalWeb Ontology

•»•••• • T m n g

<r~® Fungi
"¥-• SAseomycota
\ #--•• #Aseomyeota_incertae_s6drs
I $r ^ Mitosporic_Ascotnycota
j #-•••# N«olectomyc«t»s

&>-• # PezizomycotJna
ef- H? Pneumocysttdomycetes
^ Saccrtaromycottna
T •" schizosacenaromyeetes

*? Scftizosaccriaromycetales
** Schizosaccrtaromycetaceae

Tapritinotnycetes
: Unelas3ified_Aseomycota

•r Basldlomycota
* Hymenomycetes

•!' Heterot>astdlomy«etes
» Heterobasidiomycetidae

•» ' Auricutartales
s» Daerymycecaies

&> Tremeltomyeetidae
Unclassifled_HeteroDasidiomycetes

&* Homobasldlomycetes
s* Hymenomycete5_Jneertae_sedis
>• Mitosporic_Hymenomycetes

Unclas5ified_Hymenomycetes
Mitosporie_Basldlomyeota

~ Unclassified_Basidtomycota
Uredmiomycetes
Ustilaginomycet«s

Chytrtdiomycota
FungMr»certae_sedis

l> Giomeromycota
I M i c r o s p o r i a
^ Unciassrfied_Fungi
I'Zygomycota

Fig. 4.24. Domain model of fiingal taxonomy Fig. 4.23. Framework for ontology learning and
population

By querying the FungalWeb Ontology the enzymologist can find the related fungal

species: Pichia stipitis and Saccharomyces cerevisiae. Identifying the common lineage

between the found organisms requires identifying the highest taxonomic group that unites

all species known to produce the enzyme of interest, akin to finding a common ancestor

[BSS+06]. Within the FungalWeb Ontology, a fungal taxonomy is represented in a deep

hierarchy of taxonomic units/concepts. The defined key properties between "fungi" and

"enzyme" allow for the identification of species found to produce 2-deoxyglucose-6-

phosphatase. One can identify the common lineage for these fungal species by using the

description logic reasoner, the RACER, via the command instance types, which retrieves

the concepts that instantiate each fungal species individual. A simple example of such

queries is shown in Query 1. The common lineage of "2-deoxyglucose-6-phosphatase"-

278

producing fungi, is a family of yeast in the order Saccharomycetales called

Saccharomycetaceae, known for its reproduction by budding and use to ferment

carbohydrates (WordNet definition).

Query 1: This query uses RACER command "Instance types" to retrieve results for all

fungi that produce the enzyme 2-deoxyglucose-6-phosphatase (EC# 3.1.3.68) as well as

their ancestors. The common subset identifies the common lineage between the species:

«:?X :http://a.com/ontology#Fungi:>
«:?X :http://a.com/ontology#Ascomycota:>
«:?X :http://a.com/ontology#Saccharomycotina:>
«:?X:http://a.com/ontology#Saccharomycetes:>
«:?X:http://a.com/ontology#Saccharomycetales:>
«:?X :http.7/a.com/ontology#Saccharomycetaceae:>

Analyzing and managing both syntactic and semantic changes in the fungal

taxonomy can be used to derive a a meaningful pattern of relationships between the

species, which assists automating the phylogeny tree reconstruction.

IV 3.6 Categorical Phylogenetic Analysis

After constructing the ontological structure one can also employ category theory and

graph transformation to represent, analyze, and track the changes in the evolutionary trees

in the same way that we used it for analyzing evolving biomedical ontologies. In an

ontology-driven phylogenetic tree changes, actions (or mutations), and transitions can be

formally modeled through our introduced framework as described in Section III 3.5 to

capture the full semantics of evolving hierarchies.

279

http://a.com/ontology%23Fungi
http://a.com/ontology%23Ascomycota
http://a.com/ontology%23Saccharomycotina
http://a.com/ontology%23Saccharomycetes
http://a.com/ontology%23Saccharomycetales
http://http.7/a.com/ontology%23Saccharomycetaceae

Fig. 4.25. The categorical representation of ontology inferred phylogeny for yeast Saccharomyces
cerevisiae which depicts the transition between various evolutionary states.

Category theory is also capable of solving problems related to reverse analysis

(mentioned in cladistics method) through recursive domain equations [SP82]. Categorical

constructors also may be used for analyzing the bifurcating pattern of cladogenesis [Phy],

through pushouts and pullbacks. Placing an organism in a phylogeny tree and associating

a set of roles based on its evolutionary characteristics may sometimes lead to redundancy

in the taxonomy. One of the major issues in phylogeny analysis is finding and identifying

equivalent classes and relationships. Category theory enables us to deal with the problem

of logical equality [Maz07] by using isomorphism, which has been introduced in Section

III 3.5.4.1 and Section III 3.5.5.1 147

Bijections in the category of sets are examples of isomorphism

280

IV 3.7 Structural Transformations and Functors

One of the interesting subjects in phylogenetic analysis is comparing two morphological

structures and finding their similarities and differences, in order to study their

transformations and find a common origin or to place them into their appropriate ranks

(e.g. finding a common lineage between humans and birds, which leads to Amniota148).

The transformations of evolving structures can be studied in terms of functors, or

more accurately adjoint, simple adjoint, and weak adjoint functors [BS73], where the

adjointness relation between two structures embodies a link and similarity between them.

As an example from life science taken from [BS73], the scientific findings explain the

similarities between the nuclei of cells of some of the derived species in different stages

of their life cycles. This similarity can be represented in an abstract way using "an

isomorphism between the sets of temporal events in the two similar nuclei, together with

an isomorphism between the sets of possible transformations (differentiations) of the

equivalent totipotent nuclei" [BS73]. These isomorphisms are examples of an adjointness

between equivalently similar nuclei of different cells, which can be considered dynamic

living structures. If the isomorphisms have been restricted only to specific subsets of

temporal events, or subsets of possible transformations (differentiations), we can talk

about simple adjointness; otherwise, if in an adjointness we substitute epimorphisms149

for isomorphisms, the weak adjointness will be obtained [BS73].

For more information see : http://tolweb.org/amniota
Epimorphism is any morphism in a concrete category whose underlying function is surjective [Rei70].

281

http://tolweb.org/amniota

Fig. 4.26. The comparison between the skeleton of Bird (lest) and Human (right) based on the Belon's
book150 of birds (1555).

An evolving hierarchical structure [BS73] can be analyzed within a commutative

categorical diagram consisting of a set of objects within this structure; the state space,

which varies (unlike traditional definitions of evolving systems) according to the

transformation rules, along with the collection of of all temporal events that produce the

changes from one given stage to the next. Categorically the changes in this evolving

structure can be studied [BS73] as a series of functors from the state space to a category

of numbers indicating the states. Following this model, starting from an initial state, we

can determine the number of possible states, necessary for performing a specific change

to an evolving ontological structure, by transformation rules, and for analytical

simplicity, we consider it fixed for a given system. The abstract categorical framework at

each state, along with the transformation rules, which provide the appropriate links from

150 L'histoire de la nature des oyseaux, avec leurs descriptions, & naifs portraicts. (The history and nature
of birds) par Pierre Belon du Mans published in 1555.

282

one state to another one, diagrammatically demonstrate the dependency of different

elements at given states of an evolving structure. We consider further research on this

part as our future work.

IV 3.8 Challenges and Limitations in Phylogenetic Analysis

Some of the challenges that we faced in applying our approach are as following: In the

task of employing lexical chaining algorithm we had the problem of non-cohesive [BE99]

text corpuses which dramatically reduce the efficiency of our approach. Therefore we

decided to start with the assumption that the target text is cohesive. Another problem is

due to ontological incompleteness. Although the use of ontology inferred phylogeny is a

very useful way forward, its success highly depends on taxonomic expertise and the

availability of rich consistent collections of defined concepts for accurate and precise

inferencing.

283

V. Discussion, Challenges and
Future Works

This chapter concludes our research, highlights our
contribution to the field, and discusses some of the limitations
of the proposed approach along with suggestions for the
direction of future research.

284

V.l Summary of the Thesis

"First comes thought; then organization
of that thought, into ideas and plans; then
transformation of those plans into reality.
The beginning, as you will observe, is in
your imagination."

Napoleon Hill (1883-1970)

Biomedical knowledge is constantly expanding in volume, scope, and granularity to

cover different aspects of the domain and all advances in the field. This growth creates

new opportunities and new challenges for researchers, physicians, nurses, lab technicians,

patients, health policy makers, and agencies. Ontologies, which provide the conceptual

backbone for many of the existing knowledge-based systems, generally must change to

update their ontological 'truth'. The heterogeneity of biomedical ontologies and the

volatility of their knowledge sources increase the odds of different structural alterations.

Our research aims to assist a biomedical ontology engineer in capturing, tracking, and

analyzing the changes in ontologies within the distributed semantic web environment.

One issue in the domain of ontology evolution is the lack of formal change models

with clear, comprehensible semantics. Due to the limitations of set theoretic based

knowledge representation languages (including the popular web ontology languages

RDFS and OWL) for dynamic conceptual modeling, we examined the applicability of

categorical representation for ontology change management and agile application

modeling. The semantic web can be conceptualized as an interconnected collection of

categorically described ontologies and the progressive modification of their descriptions.

Categorical logic [Law63] offers valuable insights for modeling the declarative semantics

285

of ontologies, which are stratified structures distributed in the heterogeneous semantic

web environment. The functorial semantics can be employed as the categorical

generalization of operational semantics for studying various ontological states and

analyzing pre/post conditions for ontological transitions, independent of any specific

choice of knowledge representation language. It also provides agile access to the

magnifying function (zoom-in/zoom-out) over interconnected ontologies in the

distributed and heterogeneous semantic web environment.

Another issue in this area is overreliance on the human factor in different stages of

decision making to perform a change. To remedy this issue, we have introduced a novel

multi-agent framework to handle changes in bio-ontologies with minimum human

intervention, while still benefitting from human rationality where necessary. Using

category theory with its dynamic nature as a complementary knowledge representation

tool facilitates the capture of the full semantics of evolving bio-ontologies and provides a

formal basis to represent agent interactions.

The third issue, a crucial one, is how to ensure consistency of evolving ontologies.

This issue itself can give rise to several other problems related to security, trust,

provenance, and so forth. It has been partially addressed using a rule-based hierarchical

distributed graph transformation approach to define consistent transitions between the

states with the ability to reveal conflicts and inconsistencies.

Besides demonstrating the usability of our method in managing alterations in

biomedical ontologies, we have also explored the potential of our proposed approach to

solve other computational problems, such as managing requirement volatilities (with

emphasis on non-functional requirements) and reconstructing evolutionary phylogenies in

286

bioinformatics. Using our category-based framework, we defined a change management

strategy to monitor and maintain non-functional requirements (NFRs) in a software

development life cycle. Ontologies represented in categorical depiction can describe

abstract NFRs, which are difficult to model with object-oriented languages. The NFR's

hierarchy volatility can be managed using our RLR framework. In addition, we have used

our method to handle formal ontological inferencing, rather than cladistics, to reconstruct

phylogeny trees and analyze the evolutionary relationships between species. The major

efforts for the reorganization of taxonomy over time can be summarized as the dynamic

identification of essential classifying properties for a class and the collection of all beings

that share values for these properties into said class. For our experiments, we focused on

the Fungal Web Ontology and phylogeny of fungi, but the method can be generalized for

all other species and domains.

Although the problems discussed in this thesis are sometimes of a more

philosophical and linguistic nature, our focus on the "formalization" and

"operationalization" aspects as two distinct features of a scientific approach [Hey90],

along with the use of a mathematically sound theory (category theory) and graph

transformation method, helped us to deal with the computational side. In fact our

introduced approach, based on the insights from category theory, can be employed to

develop algorithms and tools to assist ontology change management. In the end, we hope

our attempt will be seen as a process towards providing a workflow for the

implementation of a generic all-in-one algorithm and model for biomedical Ontology

change management.

287

Throughout this thesis we have accomplished our research objectives in different

extents and managed to answer many of our motivating questions.

• As mentioned in Section I 1.2, the first objective was to identify the effects of

changes in bio-ontologies with emphasis on the FungalWeb ontology. We have

addressed this by studying different biomedical ontologies and their editorial

procedure in Section II.6. We have also classified different types of changes in the

FungalWeb Ontlogy, with their origins and their effects on the ontology (Section

III.l) as well as the impact on the related disease ontology in sections (IV. 1).

• The second objective has been partially accomplished by studying the factors

affecting the consistency of evolving ontologies (Section II 3.3, Section II.4, and

Section 11.6), and proposing a method to deal with this issue using RLR (Section III

2.3.3) and employing category theory (Section III 3.5.5.2), along with graph

transformation method (Section III 4.5 (specifically HI 4.5.4.2)).

• To analyze changes in distributed biomedical ontologies, which was the third

objective, we employed hierarchical distributed graph (HD graph) transformation,

and utilize our approach in several examples including the case study in (Section

IV.l);

• To deal with the overreliance on human factor in current practices in ontology

evolution (Objective 4), we designed RLR (Section III.2) an agent-based

framework to capture, represent and analyze changes in bio-ontologies with

minimum human intervention, which formalized using category theory and graph

transformation.

288

• To achieve the fifth objective, which was examining category theory as a formalism

for ontological change management, we have used categories extensively from

studying changes in bio-ontologies within RLR (See Section III 3.5) to model agent

interactions and protocols (Section III 3.5.6). We have also employed the

categorical approaches for graph transformation to consistently manage changes in

a rule-based manner in distributed environments.

• In order to address the sixth objective, our proposed approach has been used for

modeling agent communications (Section III 3.5.6, Section III 4.5.4, and Section III

4.5.5) and analysis of ontology evolution by means of distributed graph

transformation (Section III.4). The potential of our approach has been shown

through several scenarios in Chapter IV.

The sections, which address the research questions, can be found in detail in Section (I

1.3).

V.2 Highlights of Major Contributions

The healthcare industry deals with large-scale integrated projects, including a variety of

information services, resource allocation modules, planning, education, and production

lines. From the ontological perspective, biomedical knowledge bases are highly

heterogeneous and dynamic. In this thesis, we have presented an approach to incorporate

categorical representations and graph transformations into an agent-based configuration,

289

yielding an integrated framework to analyze and manage changes in biomedical

ontologies. In particular, we have presented the following contributions'51:

i. A semantics for evolving ontologies within a distributed semantic web environment,

in terms of the semantics of transformation of nested graphs (Section III 4.5) ;

ii. A study of change management in some of the popular biomedical ontologies, the

existing challenges, as well as the available tools and algorithms (Section II 6.1, and

Section II 6.2);

iii. The modeling of a collaborative multi-agent framework (RLR) for managing

changes in biomedical ontologies with minimum human intervention, and with the

ability to generate reproducible results, through an argumentive structure, whenever

necessary (Section III.2);

iv. Formalizing the agents' interactions and communications using category theory and

graph transformation within the RLR framework. (Section III 3.5.6, Section III 4.5.4,

and Section III 4.5.5);

v. The introduction of a categorical syntax to analyze changes in evolving biomedical

ontologies and to incorporate change in terms of temporal states into our proposed

agent-based framework (Section III 3.4, and Section III 3.5);

vi. A sketch of an ontological model transformation through a rule-based graph

transformation approach (Section III 4.5.3, and Section III 4.5.4);

vii. An extension of hierarchically distributed graph transformation rules to coherently

manage changes in distributed evolving ontologies at different levels of abstraction

(III 4.5, and IV 4.1);

151 The details of contributions can be found at the end of the related sections.

290

viii.An analysis of the practical usage of our framework in three different domains:

knowledge representation (biomedical ontologies), software engineering

(requirement management), and bioinformatics (phylogenetic analysis) (Chapter IV).

As mentioned in Chapter I, the goal of the RLR framework is to assist an ontology

engineer in performing change management in a more effective manner, including

reproducing the results of a change and ensuring the consistency of the affected

ontology. In summary, in this research we addressed the management of changes in

temporal biomedical ontologies, both as an individual standalone unit and as a unit

interacting with other existing elements within the distributed semantic web

environment, by studying human behavior and modeling an adaptive agent-based

framework to minimize human intervention, as well as by introducing a representation

formalism to support this framework using category theory and hierarchical distributed

graph transformation. We have also used categorical formalisms to specify and

represent changes in a declarative fashion, which can be used to define the

transformation rules. Moreover, understanding the nature of human behaviour and

agents' communications in a typical MAS can save time and effort in the design

process. From our experience so far, some of the concrete advantages of our introduced

model are:

- The representation of events, time, actions, and operations employed in different

scenarios of a dynamic ontological framework is an effective way to trace model

changes;

291

- The independency of the framework from any particular domain, algorithm,

protocol, or implementation language and its abstractness makes it more flexible for

reuse in many application domains that use different formalisms and platforms;

- Employing transformation rules to perform changes ensures the consistency of the

evolving ontologies in different states;

- Following the double-pushout approach for defining model transformation, which

isolates the parts that remain unchanged, enables concurrent changes within an

integrated knowledge-based system with minimum interruption to the system's

operation.

- The abstract categorical notions and their ability to specify objects and their relations

in different levels of granularities, together with graph oriented semantics, enable us

to describe the complex evolving structure in a consistent manner, which is beyond

the capability offered by OWL's single semantic structure.

V.3 Challenges and Limitations

One of the characteristics that distinguishes our research is the focus on breadth of

coverage. In order to model a comprehensive change management mechanism, we had to

deal with several concepts, issues, and challenges from different domains (cf. Chapter II)

in this thesis. Thus, extra efforts have been made to grasp the key concepts from different

areas. However, this is the nature of multi-disciplinary research such as computational

biology and health informatics.

292

In the process of employing category theory as the core formalism for the RLR

framework, we had to deal with a variety of challenges, including the reasoning issues

and management of conceptualization changes.

However, we are able to provide basic reasoning and inferencing for categories,

though we still must improve the reasoning capability to cover more advanced services.

The representation of conceptualization changes is another challenge, especially for

abstract concepts and notions. To overcome this, we plan to work on grammatical change

algorithms in linguistics and language evolution. In the same way, one can see that in

general the formal representation still faces bottlenecks in several domains, including

agent negotiation processes, cost/benefit estimations, and prediction of all effects of a

change. Minimizing human intervention is another issue in the "Reproduction" phase,

although improvement of the learning and negotiation algorithms for the agents may

reduce the problem.

In order to manage complex situations in ontology change management, we still need

to add more expressivity to the underlying formalism. For example, we need to define

more constraints and induce several conditions to enrich the RLR semantics. Using

sketches [Wel93, BW05], which are categorical constructors, is a potential solution that

can be used as graphs with some commutative diagrams (conditions) to specify a set of

conditions and constraints on a structure, along with specifying the objects that are

limits/colimits with some conditions. In this way, one can precisely determine the

expected outcome for the category of agents.

Another challenge is related to the implementation of the framework. Since the tools

(and GUI) supporting automatic ontology change management are not yet fully available,

293

we hope to continue our research towards the tool development. Althought, despite its

advantages, the abstractness and minimalism of categorical formalism decreases the

degree of expressivity, which necessitates more efforts for implementation of complex

applications. Last but not least, there is the challenge of choosing a standard hierarchical

graph model. Despite the existence of vast amount of researches and literature in this

domain, still no common standard model exists [BKK05]. Different researchers have

defined different concepts and models based on their application scenarios. We also tried

to adapt some of the available models into our framework to reflect the hierarchical

nature of ontologies and their compositions in a semantic web environment.

V.4 Potential Improvements and Future Work

Our proposed approach has still room for improvement in several areas, some of which

have been considered for future work. As far as future work is concerned, further effort is

necessary to incorporate this framework into an implemented operational ontology

development tool and explore its implications when confronting rigorous changes in the

real world.

Incorporating new knowledge in an ontology, must be in a way that it should not

contradict the existing 'truth'. Therefore as a vital part of ontology maintenance one

should always watch for the consistency and coherency of the evolving ontologies.

During the agents' collaboration and negotiation in RLR, each action is evaluated for its

potential consequences on the detected and identified inconsistencies in each context.

Then, either the action should be banned or the inconsistencies must be resolved. Ideally

these processes should be examined every time the state transition has occurred to ensure

294

that the ontological consistency still holds. The consistency management in our model

includes several options including:

- Enforcing the actions for prohibiting the alterations that may lead to inconsistencies

that often inherit to different versions and endure over the substantial part of the

ontology's life cycle. This has been done by defining a set of conditions on

transformations. Checking consistency of the graph transformation and whether a

sound graph structure exists or not, along with controlling the consistency conditions

have been broadly addressed by Heckel & Wagner [HW95].

- Employing tools such as AGG [Tae04] for automatically checking the consistency of a

transformation.

- Isomorphic Reasoning and Commutative Inference: In order to validate the categorical

diagrams the partial isomorphism in the semantic web environment can be defined

based on the similarity in structural relationships between syntax, semantics, and the

resources of the knowledge in ontological frameworks. From a categorical point of

view, the simplest type of isomorphic reasoning involves an explicit and continuous

mapping of the correspondences and similarities at the syntactic level while ignoring

the semantics. This method enables us to perform reasoning about the dynamic

structure of ontologies. For example, in the case of context change in ontology

evolution, since the applicability of specific knowledge in one context does not

automatically indicate the validity of the reasoning in the new context, thus the

isomorphism between different states of the ontological structures and the knowledge

they implied needs to be carefully analyzed. A common sense approach to get insight

into a categorical diagrammatic structure and trace its various states, is to follow and

295

chase the diagrams depicting the objects and morphisms, to check whether the

diagram is commutative or not and ensure the equality of the compositions. A diagram

is commutative "iff whenever p and p' are paths with the same source and target, then

the compositions of morphisms along these two paths are equal" [Gog91]. Putting two

commutative diagrams together yields another commutative diagram. The diagram

chasing along with commutative inference allow us the state space analysis to examine

all the potential state transitions based on a derived transformational pattern.

Therefore, one of the fundamental functionalities in ontology engineering that is the

traceability of isomorphic reasoning processes through time from an initial ontology

version to its current operational version can be performed.

- Using the semi-automated reasoning system introduced in [KKR06] for basic

category-theoretic reasoning, which captures the basic categorical constructors,

functors, and natural transformations, and provides services to check consistency,

semantic coherency, and inferencing, is another option

In order to fully utilize the potential of reasoning and consistency checking in our

framework, we are still working on this part as our ongoing research.

Categorical logic provides a reasoning service for changing ontologies, although for

better analysis of changes within the states, it needs to be extended. Such an extension

might be achieved, through our future work, by imposing some constraints, as proposed

in [May83], on the occurrence of events and then deriving the appropriate state

description. In addition, we plan to generalize our usage of category theory along with

other formalisms such as colored Petri nets and Named graphs to improve the

visualization of the changes. Also, to address some of the issues related to changes in

296

conceptualizations and to improve the negotiation and learning processes, we want to

extend the RLR framework towards inclusion of an NLP engine to deal with changes

from a linguistic point of view. Based on our experience in dealing with category theory,

we feel that this formalism still has plenty of potential left to be used for ontology change

management; thus, the categorical constructors such as sketches, n-categories, and

enriched categories are due for examination in future work.

In the employed graph transformation approach, we restricted ourselves to using

typed labeled graphs; however, in order to increase the expressivity of the graph

representation, one may want to employ hypergraphs instead. Although using

hypergraphs increases the expressivity of our formalism, it also induces a tremendous

amount of complexity on the reasoning process (comparable with using OWL Full as the

representation language). In addition, extending the types of interactions between

different change actions at the internal and external levels of our introduced HD graphs

could be another possible enhancement. Moreover, modeling a rule-based query engine

that enables us to pose complex queries to changing knowledge bases is another possible

task to be pursued.

297

References

[AAG05] Ato, M., Ato, E., and Gomez, J. (2005) Analyzing change among developmental stages with

categorical models. Quality and Quantity 39(1): 87-108.

[AAR+03] Al-Aboud, K., Al-Hawsawi, K., Ramesh, V., Al-Aboud, D. and AL-Githami, A. (2003) An

Appraisal of Terms Used in Dermatology. SKINmed 2(3): 151-153.

[AB96] Arnold, R., and Bohner, S. (1996) Software Change Impact Analysis. Wiley-IEEE Computer

Society Press; Is' edition.

[AB09] Arkoudas, K., Bringsjord, S. (2009) Vivid: An AI framework for heterogeneous problem

solving. Artificial Intelligence, 173(15): 1367-1405.

[ABB+06] Ashburner, M, Ball, C.A., Blake, J.A., Botstein, D. et al. (2000) Gene Ontology: tool for the

unification of biology. Nat Genet., 25: 25-29.

[ACC01] Antoniol, G., Canfora, G., and Casazza, G. (2001) Andrea De Lucia: Maintaining traceability

links during object-oriented software evolution. Softw., Pract. Exper. 31(4): 331-355.

[ADM+05] Aumueller, D., Do, H.H., Massmann, S., and Rahm, E. (2005) Schema and ontology matching

with COMA++. In Proc. of the ACM SIGMOD int'l conference on Management of data,

Baltimore, Maryland, pp. 906-908.

[ADM+07] d'Aquin, M., Doran, P., Motta, E., and Tamma, V.A..M. (2007) Towards a Parametric

Ontology Modularization Framework Based on Graph Transformation. In Proc. of WoMO'07,

CEUR315.

[AE01] Artale, A., and Franconi, E. (2001) A survey of temporal extensions of description logics.

Annals of Mathematics and Artificial Intelligence, 30(1-4): 17-210.

[AGM85] Alchourron, C.E., Gardenfors, P., and Makinson, D. (1985) On the Logic of Theory Change:

Partial Meet Contraction and Revision Functions. J. of Symbolic Logic, 50: 510-530.

[AGM+90] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local

alignment search tool.J. Mol. Biol., 215: 403^110.

[AHS90] Adamek, J., Herrlich, H., and Strecker, G.E. (1990) Abstract and Concrete Categories: The Joy

of Cats. J. Wiley & Sons.

[AL91] Asperti. A., and Longo, G. (1991) Categories, Types, and Structures: An Introduction to

Category Theory for the Working Computer Scientist. The MIT Press.

[Alp07] Alpheccar's blog (2007) Category Theory and the category of Haskell programs: Part 1,

(Accessed 10 Dec 2009) http://www.alpheccar.org/en/posts/show/74

[ALT07] Artale, A., Lutz, C, and Toman, D. (2007) A Description Logic of Change. In Proc. of the 20,h

Int'l Joint Conference on Artificial Intelligence (IJCAI'07), Hyderabad, India, Jan 6-12, pp.

218-223.

298

http://www.alpheccar.org/en/posts/show/74

[Amb96] Ambler, S. (1996) A Categorial Approach to the Semantics of Argumentation. Mathematical

Structures in Computer Science 6(2): 167-188.

[AMFOO] Avery, G., McGee, C, and Falk, S. (2000) Implementing LIMS: A 'How-To' Guide.

Analytical Chemistry, 72(1): 57-62.

[AN09] Al-Mubaid, H., and Nguyen, H.A. (2009) Measuring Semantic Similarity Between

Biomedical Concepts Within Multiple Ontologies. IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews, 39(4): 389-398.

[And95] Andersen, N.M. (1995) Cladistic Inference and Evolutioanry Scenarios: Locomotory Structure,

Function, and Performance in Water Striders. Cladistics, 11(3): 279-295.

[And81] Anderson, J. R. (1981) Concepts, propositions, and schemata: What are the cognitive units? In

J. Flowers (edi.) Nebraska Symposium on Motivation. Lincoln, Nebraska: Uni. of Nebraska.

[ANR+06] Aizenbud-Reshef, A., Nolan, B.Y., Rubin, J., Shaham-Gafhi, Y. (2006) Model Traceability.

IBM System Journal, 45(3): 515-526.

[APR98] Agusti, J., Puigsegur, J. and Robertson, D.S. (1998) A visual syntax for logic and logic

programming. Journal of Visual Languages and Computing, 9(4): 399-427.

[ARL07] Ashri, R., Rahwan, I., Luck, M. (2007) Architectures for Negotiating Agents. In Proc. of the 3rd

Intl. Central & Eastern European Conference on Multi-Agent Systems and Applications

(CEEMAS'03), Prague, Czech Republic, LNCS 2691, Springer, pp. 136-146.

[Art04] Artale, A. (2004) Reasoning on temporal conceptual schemas with dynamic constraints. In

Proc. of 11th Int. Sympo. on Temporal Representation and Reasoning (TIME'04), Tatihou

Island, Normandie, France, IEEE Comp. Soc, pp. 79-86.

[Aub90] Aubin, J.P. (1990) Fuzzy differential inclusions, Problems Control Inform. Theory 19: 55-67.

[Ave09] Aven, T. (2009) Identification of safety and security critical systems and activities. Reliability

Engineering & System Safety, 94(2): 404-411.

[Awo06] Awodey, S. (2006) Category Theory. Oxford University Press.

[Awo09] Awodey, S. (2009) Categorical Logic. Lecture notes.

http://www.andrew.cmu.edu/user/awodey/catlog/

[AY03] Avery, J., Yearwood, J. (2003) DOWL: A Dynamic Ontology Language. In Proc. of IADIS-

ICWT03, pp. 985-988.

[AY05] Avery, J., and Yearwood, J. (2005) A formal description of ontology change in OWL. In Proc.

of the 3rd Intl. Conf. on Information Technology and App. (ICITA'05), Vol. 2, IEEE Comp.

Society, pp. 238-243.

[BaiOO] Bairoch, A. (2000) The ENZYME database in 2000. Nucleic Acids Res, 28: 304-305.

[BAP+02] Bernabe, M., Ahrazem, O., Prieto, A., and Leal, J.A. (2002) Evolution of Fungal

Polysaccharides F1SS and Proposal of Their Utilisation as Antigenes for Rapid Detection of

Fungal Contami nants. E. Journal of Env., Agr. & Food Chem. 1(1): 30-45.

299

http://www.andrew.cmu.edu/user/awodey/catlog/

[Bar87] Bartnicki-Garcia, S. (1987) The cell wall in fungal evolution. In Evolutionary biology of the

fungi. Cambridge University Press, New York, N.Y., pp. 389-403.

[Bar93] Barfield, L. (1993). The User Interface Concepts and Design. New York: Addison Wesley, pp.

108-112.

[Bau95] Bauderon, M. (1995) A uniform approach to graph rewriting: the pullback approach. In Proc.

of the 21st Int'l Workshop on Graph-Theoretic Concepts in Comp. Scie. (WG'95), Aachen,

Germany, LNCS 1017, Springer, pp. 101-115.

[BBB+98] Baker, P.G., Brass, A., Bechhofer, S., Goble, C, Paton, N., Stevens, R. (1998) TAMBIS-

Transparent Access to Multiple Bioinformatics Information Sources. Proc Int'l Conf Intell Syst

Mol Biol, 6: 25-34.

[BBE91] Bjerknes, G., Bratteteig, T., and Espeseth, T. (1991): Evolution of Finished Computer Systems:

The Dilemma of enhancement, Scandinavian Journal of Information Systems, 3: 25-46.

[BBF+01] B'erard, B., Bidoit, M, Finkel, A., Laroussinie, F., Petit, A. et al. (2001) Systems and Software

Verification. Model-Checking Techniques and Tools, Springer.

[BCC+02] Buttler, D., Coleman, M., Critchlow, T., Fileto, R. et al. (2002) Querying Multiple Bioinformatics

Data Sources: Can Semantic Web Research Help? SIGMOD Record 31(4): 59-64.

[BCM+03] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., and Patel-Schneider, P.F. (2003) The

Description Logic Handbook: Theory, Implementation, and App. Cambridge University Press.

[BDG06] Bobillo, F., Delgado, M., and Gomez-Romero, J. (2006) A Crisp Representation for Fuzzy

SHOIN with Fuzzy Nominals and General Concept Inclusions. In Proc. of the 2nd Workshop

on Uncertainty Reasoning for the Semantic Web (URSW'06).

[BE99] Barzilay, R. and Elhadad, M. (1999) Using lexical chains for text summarization. In: I. Mani,

M. T. Maybury (eds.) Advances in automatic text summarization, Cambridge, MA, The MIT

Press, pp. 111-121.

[Bee] Bechhofer S. GALEN Documentation, frequently asked questions. (Accessed 16 Dec 2009)

http://www.opengalen.org/faq/faq 1 .html

[Bec06] Beckett, D. (2006) SPARQL RDF Query Language Reference v 1.8. (Accessed 10 Jan 2009)

http://www.dajobe.org/2005/04-sparqI/SPARQLreference-1.8.pdf.

[BEE+04] Bouquet, P., Ehrig, M., Euzenat, J., Franconi, E., Hitzler, P., Krotzsch, M., Serafini, L. et al.

(2004) Specification of a common framework for characterizing alignment. Knowledge Web

Deliverable 2.2. Iv2, University of Karlsruhe.

http://www.aifb.uni-karlsruhe.de/WBS/phi/pub/kweb-221 .pdf

[BEF+06] de Bruijn, J., Ehrig, M., Feier, C, Martins-Recuerda, F. et al. (2006) Ontology Mediation,

Merging, and Aligning. In: Davies, J., Studer, R., and Warren, P. (eds.) Semantic Web

Technologies. J. Wiley & Sons.

[BelOl] Bell, J.L. (2001) Observations on Category Theory. Axiomathes, 12(1-2): 151-155.

300

http://www.opengalen.org/faq/faq
http://www.dajobe.org/2005/04-sparqI/SPARQLreference-
http://www.aifb.uni-karlsruhe.de/WBS/phi/pub/kweb-22

[Bel06] Bell, J.L. (2006) Abstract and Variable Sets in Category Theory. In Giandomenico Sica (ed.)

What is Category Theory? Polimetrica Publisher, Italy, pp. 9-16.

[Ben98J Bench-Capon, T.J.M. (1998) Specification and implementation of Toulmin dialogue game. In

Proc. of Legal Knowledge-Based Systems. JURIX: The 11th Conference, pp. 5-19.

[Bes97] Bes, M.O. (1997). Analysis of a human error in a dynamic environment: The case of air traffic

control. In Proc. of the Workshop on Human Error and Systems Development, Glasgow.

[Bes99] Bes, M.O. (1999). A case study of a human error in a dynamic environment. Interacting with

Computers, 11(5): 525-543.

[Bev03] Bevir, M. (2003) Notes toward an Analysis of Conceptual Change. Social Epistemology,

17(1): 55-63.

[BFK+95] Beitler, M., Foulds, R., Kazi, Z., Chester, D., Chen, S., and Salganicoff, M. (1995). A

Simulated Environment of a Multimodal User Interface for a Robot. In Proc. of the RESNA 95

Annual Conference, Vancouver: RESNA95,490-492.

[Bri04] Brickley, D. (editor) (2004) RDF Vocabulary Description Language 1.0: RDF Schema, W3C

Recommendation 10 February. http://www.w3.org/TR/rdf-schema/

[BGL00] Bench-Capon, T.J.M., Geldard, T., and Leng, P.H. (2000) A method for the computational

modelling of dialectical argument with dialogue games. Artificial Intelligence and Law, 8(2-3):

233-254.

[BH90] Bridgeland, D.M., and Huhns, M.N. (1990) Distributed Truth Maintenance. In Proc. of 8th

National Conf. on Artificial Intelligence (AAAI'90), Boston, MA, pp. 72-77.

[BH04] Baresi, L., Heckel, R. (2004) Tutorial Introduction to Graph Transformation: A Software

Engineering Perspective. In Proc. of the 2nd Infl Conference on Graph Transformations

(ICGT'04), Rome, Italy, LNCS 3256, Springer, pp. 431^133.

[BHB09] Bizer, C, Heath, T., and Berners-Lee, T. (2009) Linked Data - The Story So Far. International

Journal on Semantic Web and Information Systems, 5(3): 1-22.

[BHL01] Berners-Lee, T., Hendler, J., and Lassila, O. (2001) The semantic web. Scientific American,

pp. 30-37.

[Bir98] Bird, R. (1998) Introduction to Functional Programming using Haskell, 2nd edi. Prentice Hall.

[BJ01 a] Bauderon, M., and Jacquet, H. (2001) Pullback as a Generic Graph Rewriting Mechanism.

Applied Categorical Structures 9(1): 65-82.

[BK08] Bryant, D., and Krause, P (2008) A review of current defeasible reasoning implementations.

Knowledge Eng. Review 23(3): 227-260.

[BKK+87] Banerjee, J., Kim, W., Kim, H.J., and Korth, H.F. (1987) Semantics and implementation of

schema evolution in object-oriented databases. ACM S1GMOD Record, 16(3): 311-322.

[BKK05] Busatto, G., Kreowski, H.J., and Kuske, S. (2005) Abstract hierarchical graph transformation.

Mathematical Structures in Computer Science 15(4): 773-819.

301

http://www.w3.org/TR/rdf-schema/

[Bla84] Blass, A. (1984) The Interaction Between Category Theory and Set Theory. Mathematical

Applications of Category Theory, 30, Providence: AMS, 5-29.

[BM99] Bench-Capon, T.J.M., and Malcolm, G. (1999) Formalising Ontologies and Their Relations. In

Proc. of the 10th int'l conference on Database and Expert Systems Applications (DEXA'99),

Florence, Italy, LNCS 1677, Springer, pp. 250-259.

[BMO01] Bauer, B., Mliller, J.P., and Odell, J. (2001) Agent UML: A Formalism for Specifying

Multiagent Software Systems. International Journal of Software Engineering and Knowledge

Engineering 11(3): 207-230.

[Boh95] Bohner, S.A. (1995) A graph traceability approach for software change impact analysis. Ph.D.

thesis, George Mason University.

[BOS+05] Beyer, K.S., Ozcan, F., Saiprasad, S., and Van der Linden, B. (2005) DB2/XML: designing for

evolution. In Proc. of the ACM SIGMOD Conference on Management of Data, Baltimore,

Maryland, USA, ACM press, pp. 948-952.

[BR99] Bailey, P.S., and Read, J. (1999) Software implementation of clinical terminologies: The use of

component technology (tutorial), AMIA '99 Annual Symposium. Washington, DC.

[BRG+06] Bradbury, J.S., Rutherford, I., Graves, M., Tweedle, J., and Rosebrugh, R. (2006) User Guide

for Graphical Database for Category Theory 3.0. Mount Allison Uni. 30 pp. (Accessed 25 Feb

2010) http://mathcs.mta.ca/research/rosebrugh/gdct/pdf/userguide/userguide.pdf

[Bru97] Brummitt, R.K. Taxonomy versus cladonomy, a fundamental controversy in biological

systematic. Taxon, vol. 46,1997, pp. 723-734.

[BS73] Baianu, I., and Scripcariu, D. (1973) On adjoint dynamical systems. Bulletin of Mathematical

Biology, 35(4): 475-486.

[BSF02] Boger, M., Sturm, and Fragemann, P. (2002) Refactoring Browser for UML. In Proc. of

NetObjectDays'02, LNCS 2591, pp. 366-377.

[BSH+06] Bossung, S., Sehring, H.W., Hupe, P. and Schmidt, J.W. (2006) Open and Dynamic Schema

Evolution in Content-intensive Web Applications. In Proc. of the 2nd Intl. Conf. on Web

Information Systems and Technologies (WEBIST06), pp. 109-116.

[BSK+07] Bodenreider, O., Smith, B., Kumar, A., and Burgun, A. (2007) Investigating subsumption in

SNOMED CT: An exploration into large description logic-based biomedical terminologies.

Artificial Intelligence in Medicine, 39(3): 183-195.

[BSS+06] Baker, C.J.O., Shaban-Nejad, A., Su, X., Haarslev. V., Butler G. (2006) Semantic web

infrastructure for fungal enzyme biotechnologists. Journal of Web Semantics 4(3), 168-180.

[BT94] Brazier, F.M.T., and Treur, J. (1994). User Centered Knowledge-Based System Design: a

Formal Modelling Approach. EKAW'94, LNCS 867, Springer, 282-302.

[BVH+04] Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks et al. (2004) OWL Web Ontology

Language Reference. Feb 2004 http://www.w3.org/TR/owl-ref/

302

http://mathcs.mta.ca/research/rosebrugh/gdct/pdf/userguide/userguide.pdf
http://www.w3.org/TR/owl-ref/

[BW05] Barr, M., and Wells, C. (2005) Toposes, Triples and Theories. Originally published on 1985 by

Springer, Reprints in Theory and Applications of Categories, No. 1,2005, pp. 1-289.

[BW06] Baker, C.J.O., and Witte, R. (2006) Mutation Mining - A Prospector's Tale. Information

Systems Frontiers, 8 (1): 47-57.

[BZ06] Breu, S., and Zimmermann, T. (2006) Mining Aspects from Version History. In Proc. of the

21st IEEE/ACM Int'l Conference on Automated Software Engineering (ASE'06), 18-22 Sep,

Tokyo, Japan, pp. 221-230.

[CBB+00] Discala, C, Benigni, X., Barillot, E., and Vaysseix, G. (2000) DBcat: A Catalog of 500

Biological Databases. Nucleic Acids Research, 28(l):8-9.

[CCS05] Capobianco, M., Chesfievar, C.I., and Simari, G.R. (2005) Argumentation and the Dynamics of

Warranted Beliefs in Changing Environments. Autonomous Agents and Multi-Agent Systems

11(2): 127-151.

[CCS07] Capobianco, M. R., Chesfievar, C. I., and Simari, G. R. (2007) On the construction of

Dialectical Databases. Inteligencia artificial, 35: 89-100.

[CCV+04] Caldwell, B., Chisholm, W., Vanderheiden, G., and White, J. (2004) Web Content Accessibility

Guidelines 2.0. W3C Working Draft 11 March 2004.

http://www.w3.org/TR/2004/ WD-WCAG20-20040311/

[CD02] Cabral, C.H., and Duarte, C. (2002) A Logico-Categorical Semantics of XML/DOM. In Proc.

of the 2nd Web dynamic Workshop at WWW'02, Honolulu, Hawaii, USA.

[CDJ01] Colomb, R.M., Dampney, C.N.G., and Johnson, M. (2001) Category-theoretic fibration as an

abstraction mechanism in information systems. Acta Inf. 38(1): 1^14.

[Ced] Cederqvist P, Version Management With CVS Copyright 1993-2005 Free Software Found Inc.

http:// ftp.gnu.org/non-gnu/cvs/source/stable/1.11,22/cederqvist-1.11.22.pdf. (Accessed 15 Nov

2009).

[CG00] Corcho, O. and Gomez-Perez, A. (2000) A roadmap for ontology specification languages., 12th

Intl' Conference on Knowledge Engineering and Knowledge Management (EKAW-2000),

France, Springer.

[CG05] Crous, P.W., and Groenewald, J.Z. (2005) Hosts, species and genotypes: opinions versus data.

Australas Plant Path 34(4):463^170.

[CG07] Corcho, O., and Gomez-Perez, A. (2007) ODEDialect: a Set of Declarative Languages for

Implementing Ontology Translation Systems. J. UCS, 13(12): 1805-1834.

[CGC+07] Carrigan, N., Gardner, P.H., Conner, M., and Maule, J. (2007) The impact of structuring the

interface as a decision tree in a treatment decision support tool. In Proc. of the 3rd Symp. of the

HCI and Usability for Medicine and Health Care, USAB'07, Graz: Springer, pp. 273-288.

[CGG03] Crous, P.W., Groenewald, J.Z., Gams, W. (2003) Eyespot of cereals revisited: ITS phylogeny

reveals new species relationships, European J. Plant Pathol. 109: 841-50.

303

http://www.w3.org/TR/2004/
http://
ftp://ftp.gnu.org/non-gnu/cvs/source/stable/1.11,22/cederqvist-1.11.22.pdf

[CGL01] Calvanese, D., de Giacomo, G., and Lenzerini, M. (2001) A Framework for Ontology

Integration. In the The Proc. of the 1st Semantic Web Working Symposium (SWWS'01),

Stanford University, California, USA, pp. 303-316.

[CGM+04] Crous, P.W., Groenewald, J.Z, Mansilla, J.P., Hunter, G.C., Wingfield, M.J. (2004)

Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs occurring on

Eucalyptus. Studies in Mycology, 50: 195-214.

[CGS-K)4] Crous, P.W., Gams, W., Stalpers, J.A., Robert, V., and Stegehuis, G. (2004) MycoBank: an

online initiative to launch mycology into the 21st century. Studies in Mycology 50: 19-22.

[CH07] Cafezeiro, I., and Haeusler, E.H. (2007) Semantic Interoperability via Category Theory. In

Proc. Challenges in Conceptual modeling in the 26th intl. conference on Conceptual Modeling

(ER'07), Auckland, New Zealand, Nov 5-9, CRPIT 83 Australian Comp. Soc, pp. 197-202.

[Cha90] Chang, S.K. (ed.): 1990, Principles of Visual Programming Systems, Prentice Hall, New York.

[ChaOO] Chalupsky, H (2000) OntoMorph: A Translation System for Symbolic Knowledge. In Proc. of

7th int'l conf. on Principles of Knowledge Representation & Reasoning (KR'00),

Breckenridge, Colorado, USA, Morgan Kaufmann Pub., pp. 471^182.

[Cha-1] Change Management for RDFS/OWL Ontologies, part 1:

http://isegserv.itd.rl.ac.uk/cvs-public/~checkout~/swbp/vm/change-management/partl.html

[Cha-2] Change Management for RDFS/OWL Ontologies, part 2:

http://isegserv.itd.rI.ac.uk/cvs-public/~checkout~/swbp/vm/change-anagement/part2.html

[Che04] Cheney, J. (2004) Category Theory for Dummies (I). (Accessed 15 Nov 2009)

http://homepages.inf.ed.ac.uk/jcheney/presentations/ct4d 1 .pdf

[CHR08] Cafezeiro, I., Haeusler, E.H., and Rademaker, A. (2008) Ontology and Context. In Proc. of 6th

IEEE Intl. Conf. on Pervasive Computing and Communications (PerCom'08), 17-21 March,

Hong Kong, pp. 417-422.

[CHS+04] de Coronado, S., Haber, M.W., Sioutos, N , Turtle, M.S., and Wright, L.W. (2004) NCI

Thesaurus: using science-based terminology to integrate cancer research results. In Proc. of

Medinfo. 2004; ll(Ptl): 33-7.

[Cim96a] Cimino J J. (1996) Formal descriptions and adaptive mechanisms for changes in controlled

medical vocabularies. Methods of Information in Medicine, 35(3):202-210.

[Clo96] Clos, L.M. (1996) What is cladistics? Fossil News, Journal of Avocational Paleontology.

http://www.fossilnews.eom/l 996/cladistics.html

[CLR04] Chen, S., Liu, B., and Rundensteiner, E.A., (2004) Multiversion-based view maint-enance over

distributed data sources. ACM Trans. Database Syst. 29(4): 675-709.

[CM05] Chung, S., and McLeod, D. (2005) Dynamic Pattern Mining: An Incremental Data Clustering

Approach. J. Data Semantics, 2: 85-112.

[CMR96] Corradini, A., Montanari, U., and Rossi, F., (1996) Graph processes, Fund. Inform. 26(3,4):

241-266.

304

http://isegserv.itd.rl.ac.uk/cvs-public/~checkout~/swbp/vm/change-management/partl.html
http://isegserv.itd.rI.ac.uk/cvs-public/~checkout~/swbp/vm/change-anagement/part2.html
http://homepages.inf.ed.ac.uk/jcheney/presentations/ct4d
http://www.fossilnews.eom/l

[CMR+97] Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., and L5we, M. (1997) Algebraic

Approaches to Graph Transformation - Part I: Basic Concepts and Double Pushout Approach.

Handbook of Graph Grammars, Vol 1: Foundations. World Scientific, pp. 163-246

[Coh04] Cohen SM (2004) Identity, Persistence, and the Ship of Theseus. Department of philosophy,

University of Washington, http://faculty.washington.edu/smcohen/320/theseus.html

[ComO 1] Committee on Quality of Healthcare in America Institute of Medicine. (2001) Crossing the

quality chasm: a new health system for the 21st century. Washington, DC: National Academy

Press.

[Cor05] Corcho, O. (2005) A Layered Declarative Approach to Ontology Translation with Knowledge

Preservation. Frontiers in AI & Applications! 16, IOS Press, pp. 20.

[COS+98] Campbell, K.E., Oliver, D.E., Spackman, K.A., and Shortliffe, E.H. (1998) Representing

Thoughts, Words, and Things in the UMLS. J Am Med Inform Assoc, 5(5):421^t31.

[CRG+96] Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., and Widom, J. (1996) Change Detection in

Hierarchically Structured Information. In Proc. of the ACM SIGMOD int'l conference on

Management of data, Montreal, Quebec, Canad, pp. 493-504.

[Cro05] Crous, P.W (2005) Plant pathology is lost without taxonomy. Outlooks on Pest

Management 6:119-123.

[Cry97] Crystal, D. (1997) The Cambridge Encyclopedia of Language. 2nd edi. Cambridge Uni. Press.

[CS01] Chechik, M., and Easterbrook, S. (2001) Reasoning about Compositions of Concerns. In Proc.

of the Workshop on Advanced Separation of Concerns in Software Eng. at ICSE'01.

[CS05b] Cushion, M.T., Stringer, J.R. (2005) Has the Name Really Been Changed? It Has for Most

Researchers. Clinical Infectious Diseases, 41, 1756-1758 (2005)

[CS06] Ceusters, W., and Smith, B. (2006) A Realism-Based Approach to the Evolution of Biomedical

Ontologies, in Proceedings of AMI A Annual Symposium.

[CSC07] Couto, F.M., Silva, M.J., and Coutinho, P.M. (2007) Measuring semantic similarity between

Gene Ontology terms. Data & Knowledge Engineering, 61 (1): 137-152.

[CSG5a] Ceusters, W., Smith, B., and Goldberg, L. (2005) A Terminological and Ontological Analysis

of the NCI Thesaurus. Method Inform Med 44:498-507.

[CSK+04] Ceusters W, Smith B, Kumar A, Dhaen C (2004) Ontology-Based Error Detection in

SNOMED-CT. In Proc. of the 11th World Congress on Medical Informatics; MEDINFO04,

IOS; 482^186.

[CW01] Collard, M., and Wood, B. (2001) Homoplasy and the early hominid masticatory system:

inferences from analyses of extant hominoids and papionins. J. of Human Evolution, 41(3): 167-

194.

[CZ06] Cimino ,JJ., and Zhu, X. (2006) The practical impact of ontologies on biomedical informatics.

Yearb Med Inform. 2006:124-35.

305

http://faculty.washington.edu/smcohen/320/theseus.html

[DAB+04] Dolin, R.H., Alschuler, L., Boyer, S., Beebe, C, Behlen, F.M., Biron, P.V., Shabo, A. HL7

Clinical Document Architecture, Release 2.0 (Last Published: Sun 12/12/2004. http://www.e-

ms.ca/documents/pdf_v3balIotCDA_ 2005Jan.pdf

[DC94] Diskin, Z., Cadish, B. (1994) Algebraic Graph-Oriented = Category Theory Based. Manifesto

of categorizing database theory. Tech. Report # 9406, Frame Info. Sys., Latvia.

http://citeseerx.ist.psu.edu/viewdoc/summary ?doi=l 0.1.1.51.5787

[DCP05] Dunn-Davies, H.R., Cunningham, J., and Paurobally, S. (2005) Prepositional Statecharts for

Agent Interaction Protocols. Electr. Notes Theor. Comput. Sci. 134: 55-75.

[DD04] Deridder, D., and D'Hondt, T.A. (2004) Concept-Centric Approach to Software Evolution. In

Proc. of ACM OOPSALA'04 workshop, Vancouver, Canada.

[Dec93] Decortis, F. (1993). Operator strategies in a dynamic environment in relation to an operator

model. Ergonomics Special issue: Cognitive processes in complex tasks, 36(11), 1291-1305.

[DHK02] Depke, R., Heckel, R., and Kuster, J.M. (2002) Formal agent-oriented modeling with UML and

graph transformation. Sci. Comput. Program. 44(2): 229-252.

[DHP02] Drewes, F., Hoffmann, B., and Plump, D. (2002) Hierarchical Graph Transformation. J.

Comput. Syst. Sci. 64(2): 249-283.

[Dek95] De Keyser, V. (1995). Time in Ergonomics. Ergonomics, 38(8), 1639-1661.

[DevOl] Devedzic, V. (2001) Knowledge Modeling - State of the Art. Integrated Computer-Aided

Engineering, 8(3): 257-281.

[DG92] De Queiroz, K., and Gauthier, J. (1992) Phylogenetic taxonomy. Ann. Rev. Ecol. Syst., 23:

449-^80.

[DGL08] Ontology Evolution in the Life Sciences Project (2008) Database Group Leipzig.

http://dbs.uni-leipzig.de/research/projects/bioinformatik/ontology_evolution/gosubontologies

[DH96] Duribreux-Cocquebert, M., and Houriez, B. (1996). A user-centered methodology for

knowledge-based systems development: MODESTI. In Proceedings of the IEEE International

Conference on Systems, Man, and Cybernetics, 2,1208-1213.

[DH05] Doan, A., and Halevy, A.Y. (2005) Semantic Integration Research in the Database

Community: A Brief Survey. AI Magazine 26(l):83-94.

[DHH+01] Degen, W., Heller, B., Herre, H., and Smith, B. (2001) GOL: toward an axiomatized upper-

level ontology. In Proc. of 2nd Int'l Conf. on Formal Ontology in Information Systems

(FOIS'01), Ogunquit, Maine, USA, ACM press, pp. 34-46.

[DHKOO] Depke, R., Heckel, R., and Kuster, J.M. (2000) Agent-Oriented Modeling with Graph

Transformation. In Proc. of AOSE'OO, LNCS 1957, Springer, pp. 105-120.

[Din08] Dini, P. (2008) Notes on Relational Biology and Elementary Category Theory. In Proc. of the

2nd Int'l OPAALS Conference on Digital Ecosystems, Tampere, Finland, 7 - 8 October.

http://matriisi.ee.tut.fi/hypermedia/events/opaals2008/article/opaals2008-article25.pdf

306

http://www.e-
http://citeseerx.ist.psu.edu/viewdoc/summary
http://dbs.uni-leipzig.de/research/projects/bioinformatik/ontology_evolution/gosubontologies
http://matriisi.ee.tut.fi/hypermedia/events/opaals2008/article/opaals2008-article25.pdf

[DKK+99] Drewes, F., Knirsch, P., Kreowski, H.J. et al. (1999) Graph Transformation Modules and Their

Composition. In Proc. of AGTIVEe99, LNCS 1779, Springer, pp. 15-30.

PLR09] D'Ambros, M, Lanza, M., and Robbes, R. (2009) On the Relationship Between Change

Coupling and Software Defects. In Proc. of 16th Working Conference on Reverse Engineering

(WCRE'09), IEEE Comp. Soc. pp. 135-144.

[DM07] De Leenheer, P., and Mens, T. (2007) Using Graph Transformation to Support Collaborative

Ontology Evolution. In Proc. of the 3rd Intl. Sympo. on App. of Graph Transformations with

Industrial Relevance (AGTIVE'07), Kassel, Germany, LNCS 5088 Springer, pp. 44-58.

[DM08] De Leenheer, P., and Mens, T. (2008) Ontology Evolution, in Hepp, M., De Leenheer, P., de

Moor, A., and Sure, Y (Eds.) Ontology Management, Semantic Web, Semantic Web Services,

and Business Applications. Semantic Web And Beyond Computing for Human Experience

Vol. 7 Springer, pp. 131-176.

[DMM07] De Leenheer,P., de Moor, A., and Meersman, R. (2007) Context Dependency Management in

Ontology Engineering: A Formal Approach. J. Data Semantics, 8: 26-56.

[DMQ05] Dou, D., McDermott, D.V., and Qi, P. (2005) Ontology Translation on the Semantic Web. J.

Data Semantics, 2:35-57.

[Don05] Donnelly, M. (2005) Containment relations in anatomical ontologies. 2005 AMIA Fall

Symposium, pp. 206-210.

[DP97] Dubois, D., Prade, H. (1997) The three semantics of fuzzy sets. Fuzzy Sets and Systems 90

(1997)141-150.

[DP04] Ding, Z., Peng, Y. (2004) A probabilistic extension to ontology language OWL. In Proc. of the

37th Hawaii Inl. Conference on System Sciences, (HICSS-37), 10 pp.

[DR04] Dutta, P.K., and Radner, R. (2004) Self-enforcing climate-change treaties. PNAS, 101(14):

5174-5179.

[Dra97] Dragoni, A.F. (1997) Belief revision: from theory to practice. The Knowledge Engineering

Review, 122(2):147-179.

[DS06] Dobson, G., and Sawyer, P. (2006) Revisiting Ontology-Based Requirements Engineering in

the age of the Semantic Web. In Proc. of the Intl. Seminar on Dependable Requirements Eng.

of Computerised Systems at NPPs, Norway.

[DSS93] Davis, R., Shrobe, H., Szolovits, P. (1993) What is a Knowledge Representation? AI Magazine,

14(1): 17-33.

[Dub] The Dublin Core Metadata Initiative (DCMI) http://dublincore.org

[DW08] Diskin, Z., and Wolter, U. (2008) A Diagrammatic Logic for Object-Oriented Visual

Modeling. Electronic Notes in Theoretical Comp. Sci., 203(6, 21):19-41.

[Eas98] Easterbrook, S. Category theory for beginners, Tutorial given at ASE'98, Oct 1998.

http://www.cs.toronto.edu/~sme/presentations/catl01.pdf

307

http://dublincore.org
http://www.cs.toronto.edu/~sme/presentations/catl01.pdf

[EBL-HB] Elkin, P.L., Brown, S.H., Lincoln, M.J., Hogarth, M., and, Rector, A. (2003) A formal

representation for messages containing compositional expressions. Int'l J. of Medical Infor,

71(2-3):89-102.

[ECP+02] Estrin, D., Culler, D., Pister, K., and Sukhatme, G. (2002) Connecting the Physical World with

Pervasive Networks. IEEE Pervasive Computing, 1(1): 59-69.

[ED07] Eisenbarth, M, and D6rr, J. (2007) Facilitating Project Management by Capturing

Requirements Quality and Volatility Information. In Proc. of Workshop on Measuring

Requirements for Project and Product Success (MeReP'07), Palma de Mallorca, Spain,

[EEP+06J Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. (2006) Fundamentals of Algebraic Graph

Transformation. Monographs in Theoretical Computer Science. An EATCS Series, Springer.

[EHK+90] Ehrig, H., Habel, A., Kreowski, H.J., and Parisi-Presicce, F. (1990) From Graph Grammars to

High Level Replacement Systems. In Proc. of the 4th int'l workshop on Graph-Grammars and

Their App. to Comp. Sci. Bremen, Germany, LNCS 532, Springer, pp. 269-291.

[EHK+97] Ehrig, H., Heckel, R., Korff, M., Lowe, M. et al. (1997) Algebraic Approaches to Graph

Transformation - Part II: Single Pushout Approach and Comparison with Double Pushout

Approach. Handbook of Graph Grammars, World scientific, pp. 247-312.

[Ehr79] Ehrig, H. (1979) Introduction to the algebraic theory of graph grammars (a survey), in proc. of

int'l workshop on Graph-Grammars and their Application to Com. Sci. and Biology, Bad

Honnef, Germany, LNCS 73, Springer, pp. 1-69.

[EJ03] Van Eetvelde, N., and Janssens, D. (2003) A Hierarchical Program Representation for

Refactoring. Electr. Notes Theor. Comput. Sci. 82(7):91-104.

[EKL90] Ehrig, H., Korff, M., and Lowe, M. (1990) Tutorial Introduction to the Algebraic Approach of

Graph Grammars Based on Double and Single Pushouts. In Proc. of 4lh Int'l Workshop Graph-

Grammars and Their App. to Comp. Sci., Bremen, Germany, LNCS 532, Springer, pp. 24-37.

[EM45] Eilenberg S, Mac Lane S (1945) General Theory of Natural Equivalences. T Am Math Soc

58:231-294.

[Enc04] Encyclopedia Everything, unique up to isomorphism, Jan 16 2004

http://everything2.com/title/unique+up+to+isomorphism

[Enz84] Enzyme nomenclature Recommendations (1984) of the nomenclature committee of the int'l

union of biochemistry. Academic Press, Orlando/NY 1984. pp. 646.

[EN07] Elmasri, R., and Navathe, S.B. (2007) Fundamentals of Database Systems. 5th Ed.. Addison

Wesley.

[EOP06] Ehrig, H., Orejas, F., and Prange, U. (2006) Categorical Foundations of Distributed Graph

Transformation. In Proc. of 3rd int'l Conference on Graph Transformations (ICGT'06), Natal,

Rio Grande do Norte, Brazil, LNCS 4178, Springer, pp. 215-229.

[EP05] Ehrig, H., Prange, U. (2005) Modeling with Graph Transformation. In Proc. of InterSymp'05.

HAS. Baden-Baden, Germany. http://tfs.cs.tu-berIin.de/pubIikationen/Papers05/EP05.pdf

308

http://everything2.com/title/unique+up+to+isomorphism
http://tfs.cs.tu-berIin.de/pubIikationen/Papers05/EP05.pdf

[EPS73] Ehrig, H., Pfender, M. and Schneider, H. J. (1973) Graph grammars: An algebraic approach. In

Proc. of 14* Symposium on Foundations of Comp. Science, Iowa City, Iowa, IEEE Comp

Society, pp. 167-180.

[EPT04] Ehrig,H., Prange, U., and Taentzer, G. (2004) Fundamental Theory for Typed Attributed Graph

Transformation: Long Version, at: http://iv.tu-berlin.de/TechnBerichte/2004/2004-09.pdf

[ER97] Engelfriet, J., and Rozenberg, G. (1997) Node Replacement Graph Grammars. In: Handbook

of graph grammars and computing by graph transformation: volume I. foundations, World

Scientic Publishing Co., pp.1-94.

[ER00] Engels, G., and Heckel, R. (2000) Graph Transformation as a Conceptual and Formal

Framework for System Modeling and Model Evolution. In Proc. of ICALP'00, Geneva,

Switzerland, LNCS 1853, Springer, pp. 127-150.

[ES95] Engels, G., and Schiirr, A. (1995) Encapsulated hierarchical graphs, graph types, and meta

types. Electr. Notes Theor. Comput. Sci. 2: 101-109.

[ES04] Ehrig, M., and Sure, Y. (2004) Ontology mapping - an integrated approach, in: 1st European

Semantic Web Symposium (ESWS'04), Heraklion, Greece, LNCS 3053, Springer, pp. 76-91.

[ES07] Euzenat, J., and Shvaiko, P. (2007) Ontology Matching. Springer-Verlag, Berlin.

[EV06] Ehresmann AEC, Vanbremeersch JP (2006) The Memory Evolutive Systems as a Model of

Rosen's Organism-(Metabo!ic, Replication) Systems. Axiomathes, 16: 137-154.

[FBA98] Frisvad, J.C., Bridge, P.D., Arora, D.K. (1998) Fungal chemical taxonomy. Marcel Dekker,

Inc., New York-Basel-Hong Kong.

[FC03] Fornara, N. and Colombetti, M. (2003) Defining Interaction Protocols using a Commitment

BasedAgent Communication Language. In Proc. of AAMAS'03, ACM Press, pp. 520-527.

[Fel05] Felsenstein, J. PHYLIP (Phylogeny Inference Package) ver. 3.6. Distributed by the author.

Department of Genome Sciences, University of Washington, Seattle, 2005.

[FFG+95] Fortnow, L., Freivalds, R., Gasarch, W.I., Kummer, M. et al. (1995) Measure, Category and

Learning Theory. Proc. of the 22nd Colloq. on Automata, Languages and Programming

(ICALP95), Szeged, Hungary, LNCS 944 Springer, pp. 558-569.

[FFM+94] Finin, T.W., Fritzson, R., McKay, D.P., and McEntire, R. (1994) KQML As An Agent

Communication Language. In Proc. of the 3rd Int'l Conf. on Information and Knowledge

Management (CIKM'94), Gaithersburg, Maryland, pp. 456-463.

[FGG08] Fluri, B., Giger, E., Gall, H. (2008) Discovering Patterns of Change Types. In Proc. of the 23rd

Intl. Conf. on Automated Soft. Eng. (ASE'08), 15-19 Sep 2008, L'Aquila, Italy, pp. 463-466.

[FHP+06] Flouris, G., Huang, Z., Pan, J.Z., Plexousakis, D., and Wache, H. (2006) Inconsistencies,

Negations and Changes in Ontologies. In Proc. of 21s1 National Conf. on Artificial Intelligence

and the 18th Innovative Applications of Artificial Intelligence Conference, July 16-20, Boston,

Massachusetts, AAAI 2006.

309

http://iv.tu-berlin.de/TechnBerichte/2004/2004-09.pdf

[FKS02] Falappa, M., Kern-Isberner, G., and Simari, G.R. (2002) Explanations, belief revision and

defeasible reasoning, Artificial Intelligence, 141(1-2): 1-28.

[Fia04] Fiadeiro, J.L. (2004) Categories for Software Engineering," Springer, 1st edition

[Flo06] Flouris G (2006) On Belief Change and Ontology Evolution. Ph.D. thesis in the Department of

Computer Science, University of Crete.

[FMK+08] Flouris G, Manakanatas D, Kondylakis H, Plexousakis D, Antoniou G (2008) Ontology

change: classification and survey. Knowl Eng Rev 23(2):117-152.

[FMU82] Fagin, R., Mendeizon, A., and Ullman, J. (1982) A simplified universal relation assumption

and its properties, ACM Trans, on Database Systems 7(3):343-360.

[For98] Forsythe, D.E. (1998). Using ethnography to investigate life scientists' information needs. Bull

Med Libr Assoc., 86(3), 402-9.

[FPA06] Flouris, G., Plexousakis,D., and Antoniou, G. (2006) Evolving Ontology Evolution. In

Proceedings of the SOFSEM 2006. Merin, Czech Republic, Springer, 14-29.

[FR98] Fromkin, V., and Rodman, R. (1998) An introduction to language, 6lh edition. Fort Worth:

Harcourt Brace.

[Fra08] Frank, A.U. (2008). Shortest Path in a Multi-Modal Transportation Network, KI Kunstliche

Intelligenz, 3:14-18.

[FSU06] Fact Sheet of Unified Medical Language System (UMLS) Semantic Network (2006) last

updated on 28 Mar 2006. http://www.nlm.nih.gov/pubs/factsheets/umlssemn.html. Accessed

10 Jan 2009.

[FT05] Franconi, E., and Tessaris, S. (2005) A unified logical framework for rules (and queries) with
ontologies. In proc. of W3C Workshop on Rule Lang, for Interoperability, Washington, D.C.,
USA.

[Fut05] Futuyma, D.J. (2005) Evolution. Sunderland, Massachusetts: Sinauer Associates, Inc.

[FVK+00] Fensel, D., Van Harmelen, F., Klein, M., Akkermans, H.,Broekstra, J., Fluit, C. etal. (2000)

Ontoknowledge: Ontology-based Tools for Knowledge Management, eBusiness and eWork,

2000, Madrid, October.

[FWP+07] Fluri, B., Wursch, M., Pinzger, M., and Gall, H.C. (2007) Change distilling: Tree differencing

for fine-grained source code change extraction. IEEE Transactions on Software Eng. (TSE),

33(11): 725-743.

[GamOO] Gambetta. D. (2000). Can We Trust Trust? In D. Gambetta (ed.), Trust: Making and Breaking

Cooperative Relations. Oxford: University of Oxford, Chapter 13.

[Gar90] Gardenfors, P. (1990) Knowledge in Flux: Modeling the Dynamics of Epistemic States. MIT

Press, Cambridge, MA, 1990.

[GBB+94] Greuter, W., Barrie, F.R., Burdet, H.M., Chaloner, W.G. et al. (1994) International code of

botanical nomenclature (Tokyo Code) adopted by the 15th Intl. Botanical Congress,

Yokohama, Aug-Sep 1993. Regnum Veg. 131. Koeltz Scientific Books, Konigstein, Germany.

310

http://www.nlm.nih.gov/pubs/factsheets/umlssemn.html

[GBP+96] Glenn, A.E., Bacon, C.W., Price, R., and Hanlin, R.T. (1996) Molecular phylogeny of

Acremonium and its taxonomic implications. Mycologia 88:369-383.

[GF94] Gotel, O.C.Z., and Finklestein, A.C.W. (1994) An analysis of the requirements traceability

problem. In Proc. of the 1st Int'l Conference on Requirements Engineering (ICRE'94),

Colorado Springs, CO, USA, pp.94-101.

[GFP09] Gall, H.C., Fluri, B., Pinzger, M., (2009) Change Analysis with Evolizer and ChangeDistiller.

IEEE Software, 26(1): 26-33.

[GGS99] Guarro, J., Gene', J., and Stchigel, A.M. (1999) Developments in fungal taxonomy. Clinical

Microbiology Reviews, 12(3): 454-500.

[GGW03] Ganesan, P., Garcia-Molina, H., and Widom, J. (2003) Exploiting hierarchical domain

structure to compute similarity. ACM Trans. Inf. Syst. 21(1): 64-93.

[GHJ98] Gall, H., Hajek, K., and Jazayeri, M. (1998) Detection of logicalcoupling based on product

release history. In Proc. of Int'l IEEE Conference on Software Maintenance (ICSM'98), pp.

190-198.

[GHM04] Gutierrez, C, Hurtado, C.A., and Mendelzon, A.O. (2004) Foundations of Semantic Web

Databases. In Proc. of the 23rd ACM SIGACT-SIGMOD-SIGART Sympo. on Principles of

Database Systems (PODS'04), Paris, France, pp. 95-106.

[GVH03] Gyapay, S., Varro, D., and Heckel, R. (2003) Graph Transformation with Time. Fundam.

Inform. 58(1): 1-22.

[GHV04] Gamma, R.J.E., Helm, R., and Vlissides, J. (2004) Design patterns: Elements of reusable

object-oriented software, Addison-Wesley.

[GHV07] Gutierrez, C, Hurtado, C.A., and Vaisman, A.A. (2007) Introducing Time into RDF. IEEE

Trans. Knowl. DataEng. 19(2): 207-218.

[Gil06] Gilbert, M.C. (2006) The Dialectics of Knowledge Management.

http://news.gilbert.org/DialecticsKM

[GL02] Giugno, R., Lukasiewicz, T. (2002) P-SHOQ(D): A Probabilistic Extension of SHOQ(D) for

Probabilistic Ontologies in the Semantic Web. pp. 86-97.

[GL05] Gao, M., and Liu, C. (2005) Extending OWL by Fuzzy Description Logic. In Proc. of ICTAF05,

pp. 562-567.

[GLT89] Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University Press (1989)

[GMZ99] Gupta, A., Masthoff, J., and Zwart, P. (1999). Improving the User Interface to Increase Patient

Throughput. In Proceedings of the First Workshop on Human Error and Clinical Systems

(HECS'99), Scotland: Glasgow, 15-17 April.

[GOB] GO Browser representing blood pressure terminologies. (Accessed 10 Jan 2009)

(http://www.informatics.jax.org/searches/GO.cgi?id=GO:0008217)

[Gog91] Goguen, J. (1991) A Categorical Manifesto. Mathematical Structures in Comp. Sci., 1(1): 49-67.

[Gol06] Goldblatt, R. (2006) Topoi; The Categorial Analysis of Logic. Mineola, NY, Dover Publications.

311

http://news.gilbert.org/DialecticsKM
http://www.informatics.jax.org/searches/GO.cgi?id=GO:0008217

[GOM01] GO Meeting collected notes, July 14-15,2001, Hosted by Judy Blake and the Jackson Lab in

Bar Harbor, ME. compiled by L. Reiser.

http://www.geneontoIogy.org/minutes/collected_minutes.txt

[GON06] GO Newsletter, Issue No. 1 May 2006.

(http://www.geneontology.Org/newsletter/archive/200605.shtml#bp)

[GON07a] GO Newsletter, No. 4 February 2007.

http://www.geneontology.org/newsletter/archive/200702.pdf

[GON07b] The Gene Ontology Newsletter, Issue No. 5 May 2007.

http://www.geneontology.org/newsletter/archive/200705.pdf

[GON07c] GO Newsletter, Issue No. 6 Aug. 2007.

(http://www.geneontology.org/newsletter/current-Newsletter.shnnl)

[Got07] Gottwald, S. (2007) Many-Valued Logics. In: Handbook of the Philosophy of Sciences. Vol.

5: Philosophy of Logic (D. Jacquette ed.), North-Holland: Amsterdam, pp. 545-592. available

at: http://www.uni-leipzig.de/~logik/gottwald/SGforDJ.pdf

[GPS98] GroBe-Rhode, M.., Parisi-Presicce, F., and Simeoni, M. (1998) Spatial and Temporal Refinement

of Typed Graph Transformation Systems. In Proc. of MFCS'98, LNCS 1450, Springer, pp. 553-

561.

[Gra84] Gray, J. W. (1984) Mathematical Applications of Category Theory. American Mathematical

Society, p. 11.

[Gru93] Gruber, T.R. (1993) A translation approach to portable ontologies. Knowledge Acquisition

5(2): 199-220.

[Gru95] Gruber, T. R. (1995) Toward Principles for the Design of Ontologies Used for Knowledge

Sharing. International Journal of Human and Computer Studies, 43(5/6):907-928.

[GSG04] Grenon P, Smith B, Goldberg L (2004) Biodynamic ontology: Applying BFO in the

Biomedical Domain, in Pisanelli DM (ed). Ontologies in Medicine. Proceedings of the

Workshop on Medical Ontologies, Rome, IOS Press, Studies in Health Technology and

Informatics, vol 102:20-38.

[GSV04] Gabel, T., Sure, Y., and Voelker, J. (2004). KAON - ontology management infrastructure.

SEKT informal deliverable 3.1.1 .a, Inst. AIFB, Uni. of Karlsruhe.

http://www.aifb.uni-karlsruhe.de/WBS/ysu/publications/SEKT-D3.1.1 .a.pdf

[Gua95] Guarino N (1995) Formal Ontology, Conceptual Analysis and Knowledge Representation. Int J

Hum-Comput St 43(5/6):625-640.

[Gua98] Guarino, N. (1998) Formal Ontology and Information Systems. In Proceedings of FOIS'98,

Trento, Italy, IOS Press, pp 3-15.

[Guo02] Guo, J. (2002) Using Category Theory to Model Software Component Dependencies. In Proc.

of the 9th IEEE Intl. Conf. on Engineering of Computer-Based Systems (ECBS'02), 8-11 April,

Lund, Sweden, pp. 185-194.

312

http://www.geneontoIogy.org/minutes/collected_minutes.txt
http://www.geneontology.Org/newsletter/archive/200605.shtml%23bp
http://www.geneontology.org/newsletter/archive/200702.pdf
http://www.geneontology.org/newsletter/archive/200705.pdf
http://www.geneontology.org/newsletter/current-Newsletter.shnnl
http://www.uni-leipzig.de/~logik/gottwald/SGforDJ.pdf
http://www.aifb.uni-karlsruhe.de/WBS/ysu/publications/SEKT-D3

[Gut04] Giittner, J. (2004) Object Databases and the Semantic Web. Ph.D. Thesis, Brno University of

Technology.

[HalOl] Halpin, T. (2001) Information Modeling and Relational Databases. Morgan-Kaufmann.

[Han03] Hansson, S.O. (2003) Ten Philosophical Problems in Belief Revision. J. of Logic and

Computation, 13(1): 37-49.

[Har88] Hard, D. (1988) On visual formalisms., Communication ACM, 31(5):514-530.

[Har05] Harris, MA. (2005) Why GO there? Ensuring that the Gene Ontology Meets Biologists' Needs.

The Gene Ontology Consortium and EMBL-EBI, Wellcome Trust Genome Campus, Hinxton,

UK.

[Har05b] Harnad, S. (2005) To Cognize is to Categorize: Cognition is Categorization, in Cohen, H., and

Lefebvre, C. (eds.) Handbook of categorization in Cognitive Science. Elsevier, pp. 19-43.

[Haw93] Hawksworth, D.L. (1993) Name changes for purely nomenclatural reasons are now avoidable.

Systema Ascomycetum 12:1-6.

[Haw04] Hawksworth, D.L. (2004) Fungal diversity and its implications for genetic resource

collections. Stud Mycol 50:9-17.

[HB93] Hartson, H., and Boehm-Davis, D. (1993). User interface development processes and

methodologies. Behavior & Information Technology, 12(2), 98-114.

[HBM02] Hendler, J., Berners-Lee, T., and Miller, E. (2002) Integrating Applications on the Semantic

Web. Journal of the Institute of Electrical Engineers of Japan, 122(10): 676-680.

[HBE+041 Haase, P., Broekstra, J., Eberhart, A., Volz, R. (2004) A Comparison of RDF Query

Languages. In Proc. of the 3rd Infl Semantic Web Conference (ISWC'04), LNCS 3298,

Springer, pp. 502-517.

[HC04] Healy, M.J., Caudell, T.P. (2004) Neural Networks, Knowledge and Cognition: A

Mathematical Semantic Model Based upon Category Theory. Tech Report EECE-TR-04-020,

Uni. of New Mexico. https://repositorv.unm.edU/dspace/bitstream/l 928/33/2/EECE-TR-04-

020.pdf

[HC04b] Heckel, R., and Cherchago, A. (2004) Application of Graph Transformation for Automating

Web Service Discovery. In Proc. of Language Engineering for Model-Driven Software

Development 2004, Dagstuhl Seminar Proceedings 04101.

[HC06] Healy, M.J., and Caudell, T.P. (2006) Ontologies and Worlds in Category Theory: Implications

for Neural Systems. Axiomathes 16:165-214.

[HCE+96] Heckel, R., Corradini, A., Ehrig, H., and Lowe, M. (1996) Horizontal and Vertical Structuring

of Typed Graph Transformation Systems. Mathematical Structures in Comp. Science 6(6):

613-648.

[Hea86] Heath, LB. Nuclear division: a marker for protist phylogeny. Prog. Protis.1988, 1:115-162.

313

https://repositorv.unm.edU/dspace/bitstream/l

[HeaOO] Healy, M.J. (2000) Category Theory Applied to Neural Modeling and Graphical

Representations, in Proc of the Proceedings of the IEEE Intl. Joint Conference on Neural

Networks, (IJCNN'OO), Como, Italy, July 24-27,2000, Volume 3, pp. 35-40.

[Hea07] Healy, M J. (2007) Category Theory as a Mathematics for Formalizing Ontologies.

http://johnsymons.files.wordpress.com/2007/10/healy-tao-r3.pdf

[Hec06] Heckel, R. (2006) Graph Transformation in a Nutshell. Electr. Notes Theor. Comput. Sci.
148(1): 187-198.

[Hed08] Hedden, H. (2008) Controlled Vocabularies, Thesauri, and Taxonomies. The Indexer, 26(1): 33-34.

[HEK+06] Hitzler, P., Euzenat, J., Krotzsch, M., Serafini, L., Stuckenschmidt, H. et al. (2006) Integrated

view and comparison of alignment semantics. Tech Rep. D2.2.5, AIFB, Uni. of Karlsruhe.

http://www.aifb.uni-karlsruhe.de/Publikationen/showPublikation_english?publ_id=1125

[HES+05] Hayes, P.J., Eskridge, T.C., Saavedra, R., Reichherzer, T., Mehrotra, M., and Bobrovnikoff, D.

(2005) Collaborative knowledge capture in ontologies. In Proc. of the 3rd Int'l Conference on

Knowledge Capture (K-CAP'05), Banff, Alberta, Canada. ACM, pp. 99-106.

[Hey90] Heylighen, F. (1990) Representation and Change. A Metarepresentational Framework for the

Foundations of Physical and Cognitive Science, (Communication & Cognition, Gent), 200 p.

[Hey95] Hey wood VH (ed.) (1995) Global Biodiversity Assessment. Cambridge Uni. Press.

[HFO+03] Hartel, F.W., Fragoso, G., Ong, K., and Dionne, R. (2003) Enhancing quality of retrieval

through concept edit history. 2003 AMIA Annu Symp Proc, pp. 279-83.

[HG04] Hardie RP, Gaye RK (translators) (2004) Physics by Aristotle. eBooks@Adelaide, Adelaide

University: http://etext.library.adelaide.edu.aU/a/aristotle/a8ph/index.html

[HH00] Heflin, J., Hendler, J.A. (2000) Dynamic Ontologies on the Web. In proceedings of

AAAI/IAAI 2000, pp. 443-449.

[HHJ+07] Hudak, P., Hughes, J., Jones, S.P., and Wadler, P. (2007) A history of Haskell: being lazy with

class. In Proc. of the 3rd ACM SIGPLAN conf. on History of programming language. San

Diego, CA,pp.l2-l-12-55.

[HHL99] Heflin, J., Hendler, J., and Luke, S. (1999) Coping with changing ontologies in a distributed

environment. In Proc. of the Workshop on Ontology Management at the 16th National Conf. on

Artificial Intelligence (AAAI'99), Berlin, AAAI Tech. Report WS-99-13, pp.74-79.

[HHT96] Habel, A., Heckel, R., and Taentzer, G. (1996) Graph Grammars with Negative Application

Conditions. Fundam. Inform. 26(3/4): 287-313.

[HIA92] Hilton, E., Isenberg, H.D., and Alperstein, P. (1992) Ingestion of yogurt containing

Lactobacillus acidophilus as prophylaxis for candidal vaginitis. Ann Intern Med, 116:353-7.

[Hin08] Hines, P. (2008) Machine semantics. Theoretical Computer Science, 409(l):l-23.

[HJK+95] Heimann, P., Joeris, G., Krapp, C.A., Westfechtel, B. (1995) A programmed graph rewriting

system for software process management. Electr. Notes Theor. Comput. Sci., 2: 127-136.

314

http://johnsymons.files.wordpress.com/2007/10/healy-tao-r3.pdf
http://www.aifb.uni-karlsruhe.de/Publikationen/showPublikation_english?publ_id=1125
http://etext.library.adelaide.edu.aU/a/aristotle/a8ph/index.html

[HKE+05] Hitzler, P., Krotzsch, M., Ehrig, M., and Sure, Y. What is ontology merging? - a category

theoretic perspective using pushouts. (2005) In Proc. of the 1st Intl. Workshop on Contexts &

Ontologies: Theory, Practice and Applications (C&O), AAAI Press, pp. 104-107.

[HKL05] Harman, M., Korel, B., Linos, P.K. (2005) Special issue on software maintenance and

evolution. IEEE Transactions on Software Engineering, 31(10): 801-803.

[HKR08] Hartung, M., Kirsten, T., Rahm, E. (2008) Analyzing the Evolution of Life Science Ontologies

and Mappings. In Proc. of the 5th Int'l Workshop in Data Integration in the Life Sciences

(DILS'08), Evry, France, LNCS 5109, Springer, pp. 11-27.

[HKS+95] Hawksworth, D.L., Kirk, P.M., Sutton, B.C., and Pegler, D.N. (1995) Ainsworth and Bisby's

dictionary of the fungi, 8th ed. Intern. Myco. Institute, Egham, UK.

[HL02] Heifetz, R.A., Linsky, M. (2002). Leadership on the Line: Staying Alive Through the Dangers

of Leading. Boston: Harvard Business School Press, 1st edition.

[HLR] Health Level 7 Reference Information Model

http://healuiinfo.med.dalxa/hl7intro/CDA_R2_noiTOativewebedition/infrastructure/rim/rirn.htni

[HLS+98] Humphreys BL, Lindberg DAB, Schoolman HM, and Barnett GO (1998) The Unified Medical

Language System An Informatics Research Collaboration. J Am Med Inform Assoc 5(1):1-11.

[HLW97] ter Hofstede, A.H.M., Lippe, E., and van der Weide, T.P. (1997) Applications of a categorical

framework for conceptual data modeling. Acta Informatica, 34(12): 937-963.

[HM01] Haarslev V, Moller R. RACER System Description. In Proceedings of the First International Joint

Conference on Automated Reasoning (IJCAR01), Siena, Italy, June 18-23,2001, p.701-706.

[HM03] Haarslev, V., Moller, R.: Description Logics for the Semantic Web: Racer as a Basis for

Building Agent Systems. KI 17(3) 10-15 (2003)

[HMW04] Haarslev, V., Moller, R., and Wessel, M. (2004) Querying the Semantic Web with Racer + nRQL.

In Proc. of KI'04 Int'l Workshop on Applications of DLs (ADL'04), Ulm, Germany, Sep. 24.

[Hof99] Hoffmann, B. (1999) From Graph Transformation to Rule-Based Programming with Diagrams.

In Proc. of AGTIVE'99, LNCS 1779, Springer, pp. 165-180.

[Hol98] Holsti, K.J. (1998) The Problem of Change in International Relations Theory. Paper No. 26

from CIR Working Paper Series.

[H6p03] Hoppner, F.: Knowledge discovery from sequential data. PhD thesis, Technical University

Braunschweig, Germany, (2003).

[Hor07] Horrocks, I. (2007) Ontology Engineering: Tools and Methodologies. Tutorial in SemanticDays07.

(www.comlab.ox.ac.uk/people/ian.horrocks/Seminars/download/SemanticDays07-tutorial.ppt)

[HOY+09] Healy, M.J., Olinger, R.D., Young, R.J., Taylor, S.E., Caudell, T., and Larson, K.W. (2009)

Applying category theory to improve the performance of a neural architecture.

Neurocomputing, (Article in Press)

[HP04] Heflin, J., Pan, Z. (2004) A model theoretic semantics for ontology versioning. In Proc. of the

3rd Int'l Semantic Web Conf. (ISWC'04), Hiroshima, Japan, LNCS 3298, Springer, pp. 62-76.

315

http://healuiinfo.med.dalxa/hl7intro/CDA_R2_noiTOativewebedition/infrastructure/rim/rirn.htni
http://www.comlab.ox.ac.uk/people/ian.horrocks/Seminars/download/SemanticDays07-tutorial.ppt

[HP04b] Horrocks, I., Patel-Schneider, P.F. (2004) Reducing OWL entailment to description logic

satisfiability. J. Web Sem. 1(4): 345-357.

[HR97] Hawksworth, D.L., Rossman, A.Y. (1997) Where are all the undescribed fungi?

Phytopathology. 87: 888-891.

[HR01] Hardiker, N.R., Rector, A.L. (2001) Structural validation of nursing terminologies. J Am Med

Inform Assoc, 8(3):212-221.

[HR04] Holt, C.A., and Roth, A.E. (2004) The Nash equilibrium: A perspective. PNAS, 101(12):

3999-4002.

[HS98] Hirst, G., and St-Onge, D. Lexical chains as representations of context for the detection and

correction of malapropisms," In: Fellbaum, C. (ed.): WordNet: An Electronic Lexical

Database. MIT Press, Cambridge, MA, 1998.

[HS04] Haase, P., and Sure, Y. (2004) D3.1.1.b State-of-the-Art on Ontology Evolution. Institute

AIFB, University of Karlsruhe, Deliverable D3.1.1.b, EU-IST Project IST-SEKT.

http://www.aifb.uni-karlsruhe.de/WBS/ysu/pubIications/SEKT-D3.l.l.b.pdf

[HS05] Haase, P., and Stojanovic, L. (2005) Consistent evolution of OWL ontologies. In Proc. 2nd

European Semantic Web Conference (ESWC'05), LNCS 3532, Springer, pp. 398^112.

[HTI90] Hirakawa, M., Tanaka, M. and Ichikawa, T. (1990) An iconic programming system, HI-

VISUAL, IEEE Transactions on Software Engineering, 16(10): 1178-1184.

[HVD02] Heflin, J., Volz, R., and Dale, J. (2002) Requirements for a Web Ontology Language.

http://www.w3.org/TR/2002/WD-webont-req-20020307/

[HW95] Heckel, R., and Wagner, A. (1995) Ensuring Consistency of Conditional Graph Grammars - A

Constructive Approach. Electronic Notes in Theoretical Computer Science, 2:118-126.

[HW80] Halford, G.S., and Wilson, W.H. (1980) A category theory approach to cognitive development.

Cognitive Psychology, 12(3):356-411.

[IB08] Ingenerf, J., and Beisiegel, T. (2008) A version management system for SNOMED CT. Stud

Health Technol Inform., 136:827-32.

[IBM] What is ontology? IBM: http://www.aIphaworks.ibm.com/contentnr/semanticsfaqs

[IBMH] Healthcare 2015: Win-win or lose-lose? A portrait and a path to successful transformation,

IBM. http://www-03.ibm.com/industries/healthcare/us/detail/landing/G883986O04888I88.html

[IEEE98] IEEE 1998, IEEE STD 1219. IEEE standard for software maintenance. IEEE Standard

collection:

http://standards.ieee.org/reading/ieee/std_public/description/se/1219-1998_desc.html

[Jac99] Jacobs, B. (1999) Categorical Logic and Type Theory. North-Holland, Elsevier, Amsterdam.

[Jao06] Jao (2006) Programmers go bananas, March 17. Available at:

http://programming-musings.org/2006/03/17/programmers-go-bananas/

[Jar05] Jarrar, M. (2005) Towards Methodological Principles for Ontology Engineering. Ph.D. theis,

Faculty of science, Vrije Universiteit Brussel.

316

http://www.aifb.uni-karlsruhe.de/WBS/ysu/pubIications/SEKT-D3
http://www.w3.org/TR/2002/WD-webont-req-20020307/
http://www.aIphaworks.ibm.com/contentnr/semanticsfaqs
http://www-03.ibm.com/industries/healthcare/us/detail/landing/G883986O04888I88.html
http://standards.ieee.org/reading/ieee/std_public/description/se/
http://programming-musings.org/2006/03/17/programmers-go-bananas/

[JBA96] Johnson, S.D., Barwise, J., and Allwein, G. (1996) Towards the rigorous use of diagrams in

reasoning about hardware, in Allwein, G., and Barwise, J. (editors), Logical Reasoning with

Diagrams, Oxford University Press, pp. 201-223.

[JIB07] J0sang, A., Ismail, R., and Boyd, C. (2007). A survey of trust and reputation systems for online

service provision. Decision Support Systems, 43(2):618-644.

[JMY04] Jurisica I, Mylopoulos J, Yu ESK (2004) Ontologies for Knowledge Management: An

Information Systems Perspective. Knowl Inf Syst 6(4): 380-401.

[JPN+98] Jennings, N.R., Parsons, S., Noriega, P., and Sierra, C. (1998) On argumentation-based

negotiation. In Proc. of Intl. Workshop on Multi-Agent Systems (IWMAS98), Boston, USA.

[JNP09] Johnson, M., Naumann, D., Power, J. (2009) Category Theoretic Models of Data Refinement.

Electronic Notes in Theoretical Computer Science, 225:21-38.

[JPV+98] Jannink, J. and Pichai, S. and Verheijen, D. and Wiederhold, G. (1998) Encapsulation and

Composition of Ontologies. In: AAAI Workshop on AI and Information Integration, July 27,

Madison, WI. http://ilpubs.stanford.edu:8090/309/

[JR01] Johnson, M., and Rosebrugh, R.D. (2001) View Updatability Based on the Models of a Formal

Specification. In Proc. of Int'I Sympo. of Formal Methods Europe (FME'01) pp. 534-549.

[JR08] Johnson, M., and Rosebrugh, R. (2008) Ontology engineering, universal algebra, and category

theory, (book chapter) http://www.mta.ca/~rrosebru/articIes/oeua.pdf

[JS95] Jensen, C.S., and Snodgrass, R.T. (1995) Semantics of Time-Varying Attributes and their Use

for Temporal Database Design. In Proc. of OOER'95, Gold Coast, Australia, LNCS 1021,

Springer, pp. 366-377.

[JSW98] Jennings, N.R., Sycara, K.P., and Wooldridge, M. (1998) A Roadmap of Agent Research and

Development. Autonomous Agents & Multi-Agent Systems 1(1):7-38

[KAF92] Krause, P., Ambler, S., and Fox, J. (1992) The Development of a "Logic of Argumentation". In

Proc. of IPMU'92, Palma de Mallorca, Spain, LNCS 682, Springer, pp. 109-118.

[Kai05] Kainen, P.C. (2005) Category Theory and Living Systems. In Proc. of Int'I Conference

"Charles Ehresmann : 100 ans", Universite de Picardie Jules Verne a Amiens, 7-9 Oct.

http://pagesperso-orange.fr/vbm-ehr/ChEh/articles/Kainen.pdf

[KaI06] Kalyanpur, A.(2006) Debugging and Repair of OWL Ontologies. Ph.D. thesis in University of

Maryland, USA.

[KarOl] Karlsson, D. (2001) A design and prototype for a decision support system in the field of

urinary tractinfections - application of OpenGALEN techniques for indexing medical

information. Medinfo., pp. 479-83.

[KBK01] Kreowski, H.J., Busatto, G., and Kuske, S. (2001) GRACE as a unifying approach to graph-

transformation-based specification. Electr. Notes Theor. Comput. Sci. 44(4): 1-15.

[KC98] Kini, A., and Choobineh, J. (1998). Trust in Electronic Commerce: Definition and Theoretical

Consideration. In Proc. of the 31s' Intl. Conf. on System Sciences, IEEE, pp. 51-61.

317

http://ilpubs.stanford.edu:8090/309/
http://www.mta.ca/~rrosebru/articIes/oeua.pdf
http://pagesperso-orange.fr/vbm-ehr/ChEh/articles/Kainen.pdf

[Kem06] Kemerling G (2006) The Origins of Western Thought, Kemerling philosophy page, last update

on Dec 20, 2006. (http://www.philosophypages.eom/hy/2b.htm#hera)

[Ken04] Kent, R.E. (2004) The IFF Foundation for Ontological Knowledge Organization. Cataloging &

Classification, 37(1): 187 - 203.

[KFOO] Kam, P.S., Fu, A.W. Discovering temporal patterns for interval-based events. In: Kambayashi,

Y., Mohania, M.K./Tjoa, A.M. (eds.) DaWaK 2000. LNCS 1874, Springer, pp. 317-326.

[KF01] Klein, M.C.A., Fensel, D. (2001) Ontology Versioning for Semantic Web. In Proc. of 13th Intl'

Semantic Web Working Workshop (SWWS'OI), Stanford.

[KFK+02] Klein MCA, Fensel D, Kiryakov A, Ognyanov D (2002) Ontology Versioning and Change

Detection on the Web. In proceedings of EKAW 2002, LNCS: 197-212.

[KHE+05] Krotzsch, M., Hitzler, P., Ehrig, M., and Sure, Y. (2005) Category Theory in Ontology

Research: Concrete Gain from an Abstract Approach. Tech. Report, AIFB, Uni. of Karlsruhe.

[KK99] Knirsch, P., and Kreowski, H.J. (1999) A Note on Modeling Agent Systems by Graph

Transformation. In Proc. of AGTIVE'99, LNCS 1779, Springer, pp. 79-86.

[KKK06] Kreowski, H.J., Klempien-Hinrichs, R., and Kuske, S. (2006) Some Essentials of Graph

Transformation. Esik, Z., Martin-Vide, C, Mitrana, V. (Eds.) Recent Advances in Formal

Languages & App. Studies in Computational Intelligence Vol. 25 Springer, pp. 229-254.

[KKR06] Kozen, D., Kreitz, C, Richter, E. (2006) Automating Proofs in Category Theory. In: Furbach,

U., Shankar, N. (eds.) IJCAR'06. LNCS, vol. 4130, Springer, pp. 392-407.

[KL07] Kang, S.H., and Lau, S.K. (2007) Ontology Revision, An Application of Belief Revision

Approach, in Sharman, R., Kishore, R., and Ramesh, R. (eds.) Ontologies, A Handbook of

Principles, Concepts and Applications in Information Systems. Springer, pp. 297-318.

[KleOl] Klein, M. (2001) Combining and relating ontologies: an analysis of problems and solutions. In:

Gomez-Perez, A. et al. (eds.), Workshop on Ontologies & Info. Sharing, IJCAI'01, Seattle, USA.

[Kle04] Klein M (2004) Change Management for Distributed Ontologies. Ph.D thesis, Vrije University.

[KLG+07] Keberle, N., Litvinenko, Y., Gordeyev, Y. and Ermolayev, V. (2007) Ontology evolution

analysis with OWLMeT. In Proc. of Int'l Workshop on Ontology Dynamics (IWOD'07),

Innsbruck, Austria, pp. 1-12

[KM90] Kramer, J. and Magee, J. (1990) The Evolving Philosophers Problem: Dynamic Change

Management. IEEE Transactions on Software Engineering 16(11):1293—1306.

[KM98] Kramer, J., and Magee, J. (1998) Analysing dynamic change in software architectures: a case

study. In Proc. of the 4th int'l Conference on Configurable Distributed Systems, pp.91-100.

[KN03] Klein MCA, Noy NF (2003) A Component-Based Framework for Ontology Evolution. In

Proceedings of the UCAI-03, CEUR-WS, vol. 71.

[KNG07] Kim, M., Notkin, D., and Grossman, D. (2007) Automatic inference of structural changes for

matching across program versions. In Proc. of Int'l 29lh IEEE Conf. Software Eng. (ICSE'07),

Minneapolis, MN, USA, May 20-26, pp. 333-343.

318

http://www.philosophypages.eom/hy/2b.htm%23hera

[KOT+06] Knublauch, H., Oberle, D., Tetlow, P., and Wallace, E. (2006) A Semantic Web Primer for

Object-Oriented Software Developers, W3C Working Group Note 9.

[Kos09] Kostakos, V. (2009) Temporal graphs. Physica A 388:1007-1023.

[KP02] Kreowski, H.J., and Plump, D. (2002) Appligraph: Applications of Graph Transformation.

(Final report) available at: http://www.informatik.uni-bremen.de/theorie/appligraph/

[KPS+06] Kalyanpur, A., Parsia, B., Sirin, E., and Grau, B.C. (2006) Repairing Unsatisfiable Concepts in

OWL Ontologies. In Proc. of the 3rd European Semantic Web Conf. (ESWC'06), Budva,

Montenegro, June 11-14, LNCS 4011 Springer, pp. 170-184.

[KPS+06b] Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C., and Hendler, J.A. (2006) Swoop: A Web

Ontology Editing Browser. J. Web Sem. 4(2):144-153.

[Kra07] Krasovec, E.D. Limber Labs, 2007. http://www.starlims.com/lCT_Autumn_2007.pdf

[KS98] Kotonya, G., Sommerville, I. (1998) Requirements Engineering: Processes and Techniques. J.

Wiley & Sons.

[KS03] Kalfoglou, Y., and Schorlemmer, M. (2003) Ontology mapping: the state of the art. Knowl.

Eng.Rev., 18(1):1-31.

[KS03a] Kumar A, Smith B (2003) The Unified Medical Language System and the Gene Ontology,

KI2003: Advances in Artificial Intelligence, LNCS 2821:135-48.

[KSS04] Kumar A, Schulze-Kremer S, Smith B (2004) Revising the UMLS Semantic Network. In Proc.

of the 11th World Cong, on Medical Informatics MEDINFO'04. IOS Press, 1700-4.

[LabOO] Labov, W. (2000) Principles of Linguistic change. Volume II: Social Factors. Oxford:

Blackwll.

[LAH07] Leitner, G., Ahlstrom, D., and Hitz, M. (2007). Usability of Mobile Computing in Emergency

Response Systems - Lessons Learned and Future Directions. In Proceedings of the 3rd

Symposium of the HCI and Usability for Medicine and Health Care, USAB2007, Graz:

Springer, 241-254.

[Lam89] Lambek, J. (1989) On some connections between logic and category theory. Studia Logica,

48(3): 269-278.

[LAS05] Liang Y, Alani H, Shadbolt N (2005) Ontology Change Management in Protege. In

Proceedings of the 1st AKT Doctoral Symposium.

[Lee98] Lee, M.L. (1998) Change Impact Analysis of Object-Oriented Software. PhD Thesis, George

Mason University.

[Leh96] Lehman, M.M. (1996) Laws of Software Evolution Revisited. In Proc. of the 5th European

Workshop on Software Process Technology, LNCS: 1149, pp. 108-124.

[LeJ74] LeJohn, H. B. 1974. Biochemical parameters of fungal phylogenetics. Evol. Biol. 7:79-125.

[LEO06] Lambers, L., Ehrig, H., and Orejas, F. (2006) Efficient Detection of Conflicts in Graph-based

Model Transformation. Electr. Notes Theor. Comput. Sci. 152:97-109.

[Leu90] Leung, C.Y. (1990) Antifungal Therapy in Dermatology. Journal of the Hong Kong Medical

319

http://www.informatik.uni-bremen.de/theorie/appligraph/
http://www.starlims.com/lCT_Autumn_2007.pdf

Association, 42(4): 203-205.

[Lew47] Lewin, K. (1947). Frontiers in Group Dynamics 1. Human Relations 1, 5—41.

[LG06] Lorence, D.P., and Greenberg, L. (2006) The Zeitgeist of Online Health Search: Implications

for a Consumer-Centric Health System. J Gen Intern Med. 21(2): 134-139.

[Lim09] Limit (category theory) (2009, June 8). In Wikipedia, The Free Encyclopedia. Retrieved, Nov

17,2009, from

http://en.wikipedia.org/w/index.php?title=Limit_(category_theory)&oIdid=295110702

[LinOl] Lind, J. (2001) Specifying Agent Interaction Protocols with Standard UML. In Proc. of

AOSE'OI, LNCS 2222, Springer, pp.136-147.

[LLM+06] Liu, H., Lutz, C, Milicic, M., and Wolter, F. (2006) Updating Description Logic ABoxes. In

Proc. of the 10th Int'l Conference on Principles of Knowledge Representation and Reasoning

(KR'06), Lake District of the United Kingdom, June 2-5, AAAI Press, pp. 46-56.

[LM04] Lammari, N., Metais, E. (2004) Building and maintaining ontologies: a set of algorithms. Data

Knowl. Eng. 48(2): 155-176.

[Low93] Lowe, M. (1993) Algebraic approach to single-pushout graph transformation. Theoretical

Computer Science, 109(1-2): 181-224.

[LR94] Lorenzi, N. M., and Riley, R. T. (1994). Organizational Aspects of Health Informatics:

Managing Technological Change. New York: Springer-Verlag.

[LR00] Lorenzi, N. M., and Riley, R. T. (2000). Managing Change: An Overview. J Am Med Inform

Assoc, 7(2), 116-124.

[LR03.a] Lorenzi, N.M., and Riley, R.T. (2003). Public Health Informatics and Organizational Change.

In O'CarrolI, P.W., Yasnoff, W.A. et al. (Eds.) Public Health Informatics and Information

Systems. London: Springer, 179-198.

[LRW+97] Lehman, M.M., Ramil, J.F., Wemick, P.D., Perry, D.E., and Turski, W.M. (1997) Metrics and

Laws of Software Evolution - The Nineties View. In Proc. of the 4th International Symposium

on Software Metrics. IEEE Computer Society, pp. 20-32.

[LS81] Lambek, J., and Scott, P.J. (1981) Intuitionist type theory and foundations. Journal of

Philosophical Logic, 10(1): 101 -115.

[LS86] Lambek, J., and Scott, P.J. (1986) Introduction to Higher Order Categorical Logic. Cambridge

University Press, Cambridge, UK.

[LS06] Lukasiewicz, T., and Straccia, U. (2006) An overview of uncertainty and vagueness in

description logics for the Semantic Web. INFSYS Research report 1843-06-07.

[LS09] Lawvere, F.W., Schanuel, S.H. (2009) Conceptual Mathematics: A First Introduction to

Categories. 2nd edition, Cambridge University Press. (The lsl ed. published on 1997)

[LSA+06] Letelier, J.C., Soto-Andrade, J., Abarzua, F.G., Cornish-Bowden, A., and Cardenas, M.L.

(2006) Organizational invariance and metabolic closure: analysis in terms of (M,R) systems. J

Theor Biol. 238(4):949-61.

320

http://en.wikipedia.org/w/index.php?title=Limit_(category_theory)&oIdid=295110702

[LSB+03] Lord, P.W, Stevens, R.D., Brass, A., Goble, C.A. (2003) Semantic similarity measures as tools

for exploring the Gene Ontology. Pacific Symposium on Biocomputing, 8:601 -612.

[LSG+04] Lennox, C.L., Serdani, M., Groenewald, J.Z., Crous, P.W. (2004) Prosopidicola mexicana gen.

et. sp. nov., causing a new pod disease of Prosopis species. Studies in Mycology 50: 187-94.

[LSM+98] Lucking, R., Serusiaux, E., Maia, L.C., Pereira, E.C.G. (1998) A Revision of the Names of

Foliicolous Lichenized Fungi Published by Batista and Co-workers Between 1960 and 1975.

The Lichenologist, March 1998,30(2):121-191.

[LWS+00] Lukoit, S., Wilde, N., Stowell, S., and Hennessey, T. (2000) TraceGraph: Immediate Visual

Location of Software Features. In Proc. of International Conference on Software Maintenance

(ICSM'00), San Jose, California, USA, pp. 33-39.

[LWY05] Li, L., Wu, B., Yang, Y. (2005) Agent-Based Approach for Dynamic Ontology Management.

KES (3), Springer, pp. 1-7.

[LX93] Lieberherr, K.J., and Xiao, C. (1993) Object-Oriented Software Evolution. IEEE Transactions

on Software Engineering, 19(4): 313 - 343.

[LZ05] Livshits, V.B., and Zimmermann, T. (2005) DynaMine: finding common error patterns by

mining software revision histories. In Proc. of ESEC/SIGSOFT FSE 2005, Lisbon, Portugal,

Sep. 5-9,2005. ACM Press, pp. 296-305.

[MAO 1] McDonald, J., and Anton, J. (2001) SPECWARE - Producing Software Correct by

Construction. Kestrel Institute Tech. Rep. KES.U.01.3., March 2001.

ftp://ftp.kestrel.edu/pub/papers/specware/specware-jm.pdf

[Mac71] MacLane S (1971) Categories for the Working Mathematician (corrected 1994), Springer.

[Mac79] MacDonald, G.F. (ed.) (1979) I do not Exist, in Perception and Identity, London: Macmillan.

[MacOl] Mack, G. (2001) Universal Dynamics, a Unified Theory of Complex Systems. Emergence,

Life and Death. Commun. Math. Phys. 219, 141 - 178.

[Maz07] Mazur, B. (2007) When is one thing equal to some other thing? Available at:

(http://www.math.harvard.edu/~mazur/preprints/when_is_one.pdf)

[MAG] MAGE-ML: MicroArray Gene Expression Markup Language:

http://xmI.coverpages.org/MAGEdescription2.pdf

[Mag99] Magee J (1999) The Problem of change. In the website of Thomistic Philosophy at the Center

for Thomistic Studies at the University of St. Thomas, Houston, Texas, last update on 1999.

http://wvw.aquinasonline.com/Topics/change.html. Accessed 10 Jan 2009.

[MAH08] Mutations and Health from Genetics Handbook, Genetic Home Reference. Available:

http://ghr.nlm.nih.gov/. June 20,2008.

[MakOO] Makarainen, M. (2000). Software change management processes in the development of

embedded software. PhD thesis, Espoo: VTT Publications.

http://www.vtt.fi/inf/pdf/pubIications/2000/P416.pdf

[Mam] Mammal Encyclopaedia Article: http://www.naturalresearch.org/Mammal/encyclopedia.htm

321

ftp://ftp.kestrel.edu/pub/papers/specware/specware-jm.pdf
http://www.math.harvard.edu/~mazur/preprints/when_is_one.pdf
http://xmI.coverpages.org/MAGEdescription2.pdf
http://wvw.aquinasonline.com/Topics/change.html
http://ghr.nlm.nih.gov/
http://www.vtt.fi/inf/pdf/pubIications/2000/P416.pdf
http://www.naturalresearch.org/Mammal/encyclopedia.htm

[Mat02] University of Virginia, CS201J Course material, Fall 2002, Available:

http://www.cs.virginia.edu/cs20 lj-fall2002/ problem-sets/ps4/

[May83] Mays, E. (1983) A Modal Temporal Logic for Reasoning about Change. In Proc. of 21st

Annual Meeting of the Association for Computational Linguistics (ACL) Cambridge, MA, US,

pp. 38-43.

[Mcd93] Mcdowall, R.D. (1993) A Matrix for the Development of a Strategic Laboratory Information

Management System. Analytical Chemistry, 69(20): 896A-901A.

[MCF81] MacFarlane, A.I.: Dynamic structure theory: A structural approach to social and biological

systems. Bulletin of Mathematical Biology. 43(5), 579-591 (1981).

[MD99] Malaiya, Y.K., and Denton, J. (1999) Requirements volatility and defect density. In Proc. of

the 10th Int'l Symp. on Software Reliability Engineering, pp. 285-294, Boca Raton, FL, USA.

[MDS00] Meta Data Services Programming (SQL Server 2000). Available at:

http://msdn.microsoft.com/en-us/library/aal 79133(SQL.80).aspx

[MED+05] Mens, T., van Eetvelde, N., Demeyer, S., and Janssens, D. (2005) Formalizing refactorings

with graph transformations. Journal of Software Maintenance 17(4): 247-276.

[Men99] Mens, T. (1999) A Formal Foundation for Object-Oriented Software Evolution. Ph.D. Thesis,

Vrije University Brussel.

[MenOl] Mens, T. A Formal Foundation for Object-Oriented Software Evolution, in proceedings of the

IEEE Intl. Conf. on Software Maintenance (ICSM'01), Florence, Italy, 2001, pp. 549-552.

[Men04] Menendez, D. (2004) category-extras.

http://hackage.haskell.Org/cgi-bin/hackage-scripts/package/category-extras-0.l

[Men05] Mens, T. (2005) On the Use of Graph Transformations for Model Refactoring. In: Proc. of

GTTSE'05, LNCS 4143, Springer, pp.219-257.

[MG06] Mens, T., Gorp, P.V. (2006) A Taxonomy of Model Transformation. Electr. Notes Theor.

Comput. Sci. 152:125-142.

[MGE] Microarray and Gene Expression Data - MGED (http://wwwjnged.org/index.html)

[MGH+09] Motik, B., Grau, B.C., Horrocks, I., and Sattler, U. (2009) Representing Ontologies using,

Description Logics, Desctiption Graphs, and Rules. Artif. Intell. 173(14): 1275-1309.

[MH91] Morris, J., and Hirst, G. (1991) Lexical cohesion computed by thesaural relations as an

indicator of the structure of text. J. Computational Linguistics. 17(1) (March 1991), 21^15.

[MIM] Minimum Information about a Microarray Experiment:

http://www.mged.org/Workgroups/MIAME/miame.html

[Mit90] Mitchell, T. M. (1990). The need for biases in learning generalizations. In: Shavlik, J.W., and

Dietterich, T.G. (eds.) Readings in machine learning. Morgan Kaufmann, pp. 184-191.

[Miz04] Mizoguchi, R. (2004) Tutorial on Ontological Engineering: Part 3: Advanced Course of

Ontological Engineering. New Generation Comput. 22(2): 193-220.

322

http://www.cs.virginia.edu/cs20
http://msdn.microsoft.com/en-us/library/aal
http://hackage.haskell.Org/cgi-bin/hackage-scripts/package/category-extras-0.l
http://wwwjnged.org/index.html
http://www.mged.org/Workgroups/MIAME/miame.html

[MM] Maddison, D.R., and Maddison, W.P. MacClade: a computer program for phylogenetic

analysis, published by Sinauer Associates, Avilable at: http://macclade.org/index.html

[MME+06] Maguitman, A.G., Menczer, F., Erdinc, F., Roinestad, H., and Vespignani, A. (2006)

Algorithmic Computation and Approximation of Semantic Similarity. World Wide Web 9(4):

431^156.

[MN95] McCray, A.T., and Nelson, S.J. (1995) The representation of meaning in the UMLS. Method

Inform Med 34 (1/2):193-201.

[Mos90] Moser, L.E. (1990) Data Dependency Graphs for Ada Programs. IEEE Transactions on

Software Engineering, 16(5): 498-509.

[MRC06] McLaughlin, D., Rinard, P., and Cassutt, M. (2006) Discovery about evolution of fungi has

implications for humans. University of Minnesota, 20 Oct, 2006.

[MRM+03] Martin, R.F., Rickard, K., Mejino, J.L.V., Agoncillo, A.V., Brinkley, J.F., Rosse, C. The

Evolving Neuroanatomical Component of the Foundational Model of Anatomy. In Proc. of

American Med. Info. Assoc. Fall Symp. 2003, p. 927.

[MS92] Monk, S.R., and Sommerville, I. (1992) A Model for Versioning of Classes in Object-Oriented

Databases. In Proc. of the 10th British National Conference on Databases (BNCOD'92),

Aberdeen, Scotland, LNCS 618, Springer, pp. 42-58.

[MS94] Mullet, K., and Sano, D. (1994) Designing Visual Interfaces: Communication Oriented

Techniques, Prentice Hall.

[MS03] Maedche A, Staab S (2003) KAON-The Karlsruhe Ontology and Semantic Web Meta Project.

Kiinstliche Intelligenz (KI) 17(3): 27-30.

[MV01] Maedche A, Volz R (2001) The ontology extraction and maintenance framework text-to-onto.

In Proc. of the ICDM'01 Workshop on Integrating Data Mining and Knowledge Management,

San Jose, CA, USA.

[MV08] Mason, O., and Verwoerd, M. (2008) Graph Theory and Networks in Biology. arXiv:q-

bio/0604006vl. avilable at: http://arxiv.org/abs/q-bio/0604006vl

[MVM10] Miller, F.P., Vandome, A.F., and McBrewster, J. (2010) Interface (computer science):

Interface, Abstraction (computer science), Polymorphism in Object- oriented Programming,

Indirection, User Interface. Alphascript Publishing.

[MWD+05] Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., and Jazayeri, M. (2005)

Challenges in Software Evolution, in Proc of 8th IEEE Intl. Workshop on Principles of

Software Evolution (IWPSE'05), Lisbon, Portugal, pp. 13-22.

[Nat] The Nature Journal Glossary:

http://www.nature.eom/nrg/journal/v3/n 11 /glossary/nrg929_glossary .html

[NCI06] NCI Metathesaurus User Guide 2.2 (2006)

ftp://ftpI.nci.nih.gov/pub/cacore/EVS/NCI_Metathesaurus/NCIMetaphraseUserGuide.pdf

323

http://macclade.org/index.html
http://arxiv.org/abs/q-bio/0604006vl
http://www.nature.eom/nrg/journal/v3/n
ftp://ftpI.nci.nih.gov/pub/cacore/EVS/NCI_Metathesaurus/NCIMetaphraseUserGuide.pdf

[NCL+06] Noy, N.F., Chugh, A., Liu, W., and Musen, M. (2006) A Framework for Ontology Evolution in

Collaborative Environments. In Proc. of the 5th International Semantic Web Conference

(ISWC'06), Athens, GA, USA, LNCS, Springer, pp. 544-558.

[NDW+88] Notermans, S., Dufrenne, J., Wijnands, L.M., and Engel, H.W. (1998) Human serum

antibodies to extracellular polysaccharides (EPS) of moulds, Journal of Medical Veterinary

Mycolology 26: 41-48.

[NHI94] Nikoh, N., Hayase, N., Iwabe, N., Kuma, K., and Miyata, T. (1994) Phylogenetic relationships

of the kingdoms Animalia, Plantae and Fungi, inferred from 23 different protein species. Mol.

Biol. Evol. 11:762-768.

[NHSOOa] NHS Information Authority (2000) The Clinical Terms Version 3 (The Read Codes):

Introduction and Overview. Ref# 1999-IA-166 vl .0. (the Accessed to the following url on 10

Jan 2009).

http://www.connectingforhealth.nhs.uk/systemsandservices/data/readcodes/docs/chapl.pdf.

[NHSOOb] NHS Information Authority (2000) The Clinical Terms Version 3 (The Read Codes):

Managing Change: Description Change File. Ref# I999-IA-173 vl .0.

[NFM00] Noy, N.F., Fergerson, R.W., Musen, M.A. (2000) The Knowledge Model of Protege-2000:

Combining Interoperability and Flexibility. In Proc. of 12th Intl. Conf. on Knowledge Eng. and

Management (EKAWOO), French Riviera, pp. 17-32.

[Nie93] Nielsen, J. (1993). Iterative user interface design, Computer, 26(11), 32-41.

[NJH01] Nelson, S. J., Johnston, D., and Humphreys, B. L. (2001) Relationships in Medical Subject

Headings. In: Bean, Carol A.; Green, Rebecca, editors. Relationships in the organization of

knowledge. New York: Kluwer Academic Publishers,171-184.

[NK04] Noy, N.F., and Klein, M.C.A. (2004) Ontology Evolution: Not the Same as Schema Evolution,

In: Knowledge and Information Systems, 6(4):428^t40.

[NLH+08] Novacek, V., Laera, L., Handschuh, S., and Davis, B. (2008) Infrastructure for dynamic

knowledge integration—Automated biomedical ontology extension using textual resources.

Journal of Biomedical Informatics, 41(5):816-828.

[NLM94] National Library of Medicine, Medical Subject Headings, Bethesda, MD, 1994.

[NM02] Noy, N.F., and Musen, M.A. (2002) PROMPTDIFF: A Fixed-Point Algorithm for Comparing

Ontology Versions. In Proc. of AAAI/IAAI 2002, Edmonton, Alberta, pp. 744-750.

[NM03] Noy, N.F., and Musen, M.A. (2003) The PROMPT Suite: Interactive Tools For Ontology

Merging And Mapping. Int J Hum-Comput St 59(6): 983-1024.

[NM04] Noy, N.F., and Musen, M.A. (2004) Ontology versioning in an ontology management

framework. IEEE Intelligent Systems 19(4) 6-13.

[Nor88] Norman, D.A. (1988). The Psychology of Everyday Things. London: Basic Books.

[Nov07b] Novacek, V. (2007) KWTR: ontology maintenance. Available at:

http://semanticweb.Org/wiki/KWTR:_ontology_maintenance

324

http://www.connectingforhealth.nhs.uk/systemsandservices/data/readcodes/docs/chapl.pdf
http://semanticweb.Org/wiki/KWTR:_ontology_maintenance

[NR08] Noy, N.F., and Rubin, D.L. (2008) Translating the Foundational Model of Anatomy into OWL.

Web Semantics, 6(2):133-136.

[NS08] Nystrom, M., and Sundvall, E. (2008) Statistics for SNOMED CT January 2008 International

Core. Dept. of Biomedical Engineering, Linkoping University.

http://www. imt.1 iu.se/~erisu/2008/04-Iund/Snomed-jan2008-size-v3 pdf

[OAD+92] Odds, F.C., Arai, T., Di Salvo, A.C., Evans, E.G.V, Hay, R.J., Randhawa, H.S., Rinaldi, M.G.,

Walsh, T.J. Nomenclature of fungal diseases, A report from a Sub-Committee of the IntF

Society for Human and Animal Mycology (ISHAM). 1992.

[OET+96] Olson, N.E., Erlbaum, M.S., Turtle, M.S. et al. (1996) Exploiting the metathesaurus update

model. In Proc. of 18th Symp. on Computer App. in Medical Care. Philadelphia: Hanley &

Belfus, 902.

[OHE96] Orfali, R., Harkey, D., and Edwards, J. (1996) The Essential Distributed Objects Survival

Guide. New York: John Wiley & Sons.

[OliOO] Oliver DE (2000) Change management and synchronization of local and shared versions of a

controlled vocabulary, Ph.D. thesis, Stanford University.

[01s93] Olsen, N.C. (1993) The Software Rush Hour. IEEE Software, 10(5): 29-37.

[Oos02] Van Oosten, J. (2002) Basic Category Theory. Lecture Notes (83 pp). BRICS Lecture Series

LS-95-01, last update 2002. http://www.math.uu.nl/people/jvoosten/sylIabi/catsmoeder.ps.gz

[OPR95] CNeil, M.J., Payne, C, Read, J.D. (1995) Read Codes Version 3: A User Led Terminology.

Meth Inform Med; (34): 187-921.

[OR95] Odds, F.C., and Rinaldi, M.G. (1995) Nomenclature of fungal diseases. Curr. Top. Med.

Mycol. 6:33-46.

[OS00] Oliver, D.E., and Shahar, Y. (2000) Change management of shared and local versions of

health-care terminologies. Method Inf Med 39(4/5):278-290.

[Osb03] Osborne. M.J. (2003) Nash Equilibrium: Theory. A chapter in "An Introduction to Game

Theory", Oxford University Press, http://www.economics.utoronto.ca/osborne/igt/nash.pdf

[OSM01] Overhage, J.M., Suico, J., and McDonald, C.J. (2001) Electronic laboratory reporting: barriers,

solutions and findings. Journal of Public Health Management Practice, 7: 60-66.

[OSS+99] Oliver D, Shahar Y, Shortliffe EH, Musen MA (1999) Representation of change in controlled

medical Terminologies. Artif Intell Med 15:53-76.

[OTOO] Ogawa, T. and Tanaka, J. (2000) CafePie: A Visual Programming System for CafeOBJ, Cafe:

An Approach to Industrial Strength Algebraic Formal Methods, Elsevier, pp. 145-160.

[OT09] Okuno, K., and Takahashi, K. (2009) Argumentation System with Changes of an Agent's

Knowledge Base. In Proc. of IJCAI'09, Pasadena, California, USA. available online at:

http://ijcai.org/papers09/Papers/IJCAI09-047.pdf

[OWL04] OWL Web Ontology Language Overview. 10 Feb 2004. http://www.w3.org/TR/owl-features/

[Pad08] Padberg, J. (2008) Integration of Categorical Frameworks: Rule-Based Refinement and

Hierarchical Composition for Components. Applied Categorical Structures, 16(3): 333-364.

325

http://www
http://iu.se/~erisu/2008/04-Iund/Snomed-jan2008-size-v3
http://www.math.uu.nl/people/jvoosten/sylIabi/catsmoeder.ps.gz
http://www.economics.utoronto.ca/osborne/igt/nash.pdf
http://ijcai.org/papers09/Papers/IJCAI09-047.pdf
http://www.w3.org/TR/owl-features/

[Pal04] Palacz, W. (2004) Algebraic hierarchical graph transformation. Journal of Computer and

System Sciences, 68(3): 497-520.

[Pal08] Palacz, W. (2008) Hierarchical graph transformations with meta-rules. Annales UMCS

Informatica AI VIII, 2: 89-96.

[Pav96] Pavlovic, D. (1996) Maps II: Chasing Diagrams in Categorical Proof Theory Logic Jnl IGPL,

March 1996; 4: 159- 194.

[PC04] Paglieri, F., and Castelfranchi, C. (2004) Revising beliefs through arguments:bridging the gap

between argumentation and beliefrevision in MAS. In Proc. of ArgMAS'04, LNCS 3366,

Springer, pp.78-94.

[PCB+04] Papier, A., Chalmers, R.J.G., Byrnes, J.A. and Goldsmith, L.A. (2004) Framework for

improved communication: the Dermatology Lexicon Project. J. of the American Academy of

Dermatology, 50 (4): 630-634.

[PCC+93] Paulk, M.C., Curtis, B., Chrissis, Chrissis, M.B., and Weber, C. (1993) Capability Maturity

Model for Software, Version 1.1. IEEE Software, 10(4): 18-27.

[PCN+04] Purvis, M., Cranefield, S., Nowostawski, M., and Purvis, M. (2004) Multi-Agent System

Interaction Protocols in a Dynamically Changing Environment. An Application Science for

Multi-Agent Systems, Springer, pp. 95-111.

[Pel91] Peltason, C. (1991) The BACK System - An Overview. SIGART Bulletin 2(3): 114-119.

[Per06] Peruzzi, A. (2006) The Meaning of Category Theory for 21st Century Philosophy.

Axiomathes, 16(4): 426-459.

[Pfa04b] Pfalzgraf, J. (2004) On Logical Fiberings and Automated Deduction in Many-valued Logics

Using Grobner Bases. RACSAM, Rev. Real. Acad. Ciencias, Ser. A. Mat., 98(1): 213-227.

[Pfa07a] Pfalzgraf, J. (2007) ACCAT and Theoretical Neurobiology: On a Network Structure Modeling

Approach. Talk given at the 2nd ACCAT'07 workshop, at ETAPS-2007, March 24-April 1,

Braga, Portugal

[Pfa07b] Pfalzgraf, J. (2007) The Base Diagram of a Multiagent System: A Categorical Model of the

General Communication Structure. Talk given at Symposium on Multiagent Systems, Robotics

and Cybernetics: Theory and Practice.

[PFF+09] Pesquita, C, Faria, D., Falcao, A.O., Lord, P., and Couto, F.M. (2009) Semantic similarity in

biomedical ontologies. PLoS Comput Biol. 2009 Jul;5(7):el000443. Epub 2009 Jul 31.

[PGM99] Pinto, H.S., Gomez-Perez, A., and Martins, J.P. (1999) Some issues on ontology integration. In

Proc. of the Workshop on Ontologies and Problem-Solving Methods at 16th Int'l Joint Conf. on

Artificial Intelligence (IJCAI-99).

[PH04] Patel-Schneider, P.F., and Horrocks,I. (eds.) (2004) OWL Web Ontology Language Semantics

and Abstract Syntax Section 4, Mapping to RDF Graphs. http://www.w3.org/TR/owl-

semantics/mapping.html#transformation

326

http://www.w3.org/TR/owl-

[PR69] Pfaltz, J.L., and Rosenfeld, A. (1969) Web Grammars. In Proc. of the 1st Int'l Joint Conference

on AI (IJCAI'69), Washington, DC, W. Kaufmann, pp. 609-620.

[Phy] Phylogenetic systematics, a.k.a. evolutionary trees. The centre for understanding evolution,

Berkeley University, http://www.ucmp.berkeley.edu/clad/cladl.html

[Pie91] Pierce, P. (1991) Basic Category Theory for Computer Scientists, MIT Press.

[PitOO] Pitts, A. M. (2000) Categorical Logic. Chapter 2 of Abramsky, S., Gabbay, D.M., and

Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, Vol 5. Algebraic and

Logical Structures, Oxford Uni. Press

[Ple06] Plessers, P. (2006) An Approach to Web-based Ontology Evolution. Ph.D. Thesis, Vrije

Universiteit Brussel.

[PM01] Pinto, H.S., and Martins, J.P. (2001) Ontology Integration: How to perform the Process. In

Proc. of IJCAI2001's Workshop on Ontology and Information Sharing.

[Poi86] Poigne, A.(l 986) Elements of Categorical Reasoning: Products and Coproducts and some

other (Co-) Limits. In: Pitt, D.H., Abramsky, S., Poigne, A., Rydeheard, D.E. (eds.) CTCS'85.

LNCS, vol. 240, pp. 16-42.

[Poi86b] Poigne, A. (1986) Category theory and logic. In Proc. of CTCS'85, Guildford, UK, LNCS 240.

Springer, pp. 103-142.

[PPF+03] Phan, I.Q.H., Pilbout, S.F., Fleischmann, W., and Bairoch, A. (2003) NEWT, a new taxonomy

portal, Nucleic Acids Res 31(13):3822-3823.

[PreOl] Pressman, R. (2001) Software Engineering- A Practitioner's Approach. 5* ed. McGraw-Hill.

[PRW07] Pohl, M., Rester, M., and Wiltner, S. (2007). Usability and Transferability of a Visualization

Methodology for Medical Data. In Proc. of the 3rd Sympo. of the HCI and Usability for

Medicine and Health Care, USAB07, Graz: Springer, 171-184.

[PST04] Pinto, H.S., Staab, S., Tempich, C. (2004) DILIGENT: Towards a fine-grained methodology

for Distributed, Loosely-controlled and evolving Engineering of oNTologies. In Proc. 16'

Eureopean Conference on Artificial Intelligence, (ECAI'04), Valencia, pp. 393-397.

[PT05] Plessers, P., and de Troyer, O. (2005) Ontology change detection using a version log. In Proc.

of the 4lh Int'l Semantic Web Conference (ISWC'05), Galway, Ireland, LNCS 3729, Springer,

pp. 578-592.

[PT07] Pan, J.F., and Thomas, E.D. (2007) Approximating OWL-DL Ontologies. AIn Proc. of

AAAI'07, Vancouver, British Columbia, Canada, pp. 1434-1439.

[QY08] Qi, G., and Yang, F. (2008) A Survey of Revision Approaches in Description Logics. In Proc.

of 21st Int'l Workshop on Description Logics (DL2008), Dresden, Germany, 353 CEUR-

WS.org.

[Rao84] Raoult, J.C. (1984) On Graph Rewriting. Theoretical Computer Science, 32:1-24.

327

http://www.ucmp.berkeley.edu/clad/cladl.html
http://WS.org

[RBG+97] Rector, A., Bechhofer, S., Goble, C, Horrocks, I., Nowlan., W, and Solomon, W. (1997) The

GRAIL concept modeling language for medical terminology. Artificial Intelligence in

Medicine, 9(2):139-171.

[RCS+97] Robinson D, Comp D, Schulz E, Brown P. et al. (1997) Updating the Read Codes: User-

interactive Maintenance of a Dynamic Clinical Vocabulary. J Am Med Inform Assoc 4(6):

465^172.

[RefS06] SNOMED Clinical Terms Reference Sets, July 2006.

http://www.ihtsdo.org/fiIeadmin/user_upload/Docs_01/Technical_Docs/reference_sets.pdf

[Rei70] Reid, G.A. (1970) Epimorphisms and surjectivity. Inventiones Mathematicae, 9(4): 295-307.

[Rei05] Reinhard, D. (2005) Graph Theory. Third edition, Springer.

[RG04] Rector, A.L., and Rogers, J. (2004) Patterns, Properties and Minimizing Commitment:

Reconstruction of the GALEN Upper Ontology in OWL. In Proc. of the EKAW04 Workshop

on Core Ontologies in Ontology Engineering, Northamptonshire (UK).

[RH96] Resconi, G., Hill, G. (1996) The Language of General Systems Logical Theory: A Categorical

View. In Proc. of the Third European Congress on Systems Science, Rome, pages 1091-1096.

[RL04] Resconi, G., and Jain, L.C. Intelligent Agents: theory and applications. Vol. 155 of Studies in

Fuzziness and Soft Computing, Springer-Ver. Berlin, 2004.

[RM03] Rosse, C, and Mejino Jr, J.L.V. (2003) A reference ontology for bioinformatics: the

Foundational Model of Anatomy. J Biomed Inform 36:478-500.

[RM07] Rahwan, 1., McBurney, P.(2007) Guest Editors' Introduction: Argumentation Technology.

IEEE Intelligent Systems 22(6): 21-23.

[RN94] Rector, A.L., and Nowlan, W.A. (1994) The GALEN project.Comput Methods Programs

Biomed, 45(1-2): 75-8.

[RN02] Russell, S. and Norvig, P. (2002) Artificial Intelligence: A Modern Approach, Prentice Hall,

Upper Saddle River, NJ.

[RNK91] Rector, A.L., Nowlan, W.A., and Kay S. (1991) Foundations for an electronic medical record.

Methods Inf Med, 30(3): 179-86.

[Rob86] Robinson, H. A Key to the Common Errors of Cladistics. Taxon, 1986,35(2):309-311.

[Rod95] Roddick, J.F. (1995) A Survey of Schema Versioning Issues for Database Systems.

Information and Software Technology, 37(7):383-393, 1995.

[Rom99] Romerales, E. (1999) Amounts of Vagueness, Degrees of Truth. Sorites, 11:41-65.

[Ros58] Rosen, R. (1958) The Representation of Biological Systems from the Standpoint of the Theory

of Categories, Bulletin of Mathematical Biophysics 20:245—260.

[RosOO] Rosse, C. (2000) Terminologia Anatomica; Considered from the Perspective of Next-

Generation Knowledge Sources. Clinical Anatomy 14:120-133.

[Roz97] Rozenberg G. (ed.) (1997) Handbook of Graph Grammars and Computing by Graph

Transformations, Vol. 1: Foundations. World Scientific.

328

http://www.ihtsdo.org/fiIeadmin/user_upload/Docs_01/Technical_Docs/reference_sets.pdf

[RR05] Rector, A.L., and Rogers, J.E. (2005) Ontological & Practical Issues in using a Description

Logic to Represent Medical Concepts: Experience from GALEN. University of Manchester

School of Computer Science Preprint CSPP-35.

[RRJ+03] Rahwan, I., Ramchum, S.D., Jennings, N.R., McBurney, P., Parsons, S., Sonenberg, L. (2003)

Argumentation Based Negotiation. Knowledge Engineering Review 18(4): 343-375.

[RRZ+03] Rector, A.L., Rogers, J., Zanstra, P.E., and Van Der Haring, E. (2003) OpenGALEN.

OpenGALEN: open source medical terminology and tools. AMIA Annual Symp. Proc. p. 982.

[RS03] Ram, S., and Shankaranarayanan, G. (2003) Research issues in database schema evolution: the

road not taken. University of Arizona, Working Paper #2003-15.

[RSS02] Roger, M., Simonet, A., and Simonet, M. (2002) Toward updates in description logics. In

Proc. of the 15,h Int'l Workshop on Description Logics (DL'02), Toulouse, France, CEUR-WS

Vol. 53.

[RW08] Ribeiro, M., and Wassermann, R. (2008) The Ontology Reviser Plug-In for Protege. In Proc. of

3rd Workshop on ontologies and their applications (WONTO'08), October 26th, Salvador,

Bahia, Brazil. http://www.cin.ufpe.br/~wonto2008/wonto2008_arquivos/Wonto08.pdf

[Ryd85] Rydeheard, D.E. (1985) Functors and Natural Transformations. In Proc. of CTCS'85, LNCS

240, Springer, pp. 43-50.

[SA07] Shahaf, D., and Amir, E. (2007) Towards a theory of Al completeness. In Proc. of 8th Int'l

Sympo. on Logical Formalizations of Commonsense Reasoning (Commonsense'07), in AAAI

Spring Sympo., California, USA.

[Sam91] Samson, R.A. (1991) Problems caused by new approaches in fungal taxonomy. Mycopathologia,

116:149-150.

[SAS03] Sure Y, Angele J, Staab S (2003) OntoEdit: Multifaceted Inferencing for Ontology

Engineering. Journal on Data Semantics (LNCS) (1): 128-152.

[Sat] Sattler, U. Description Logic Reasoners: http://www.cs.man.ac.uk/~sattler/reasoners.html

[SBF98] Studer, R., Benjamins, V.R., and Fensel, D. (1998) Knowledge engineering: Principles and

methods. Data and Knowledge Engineering, 25(1-2): 161—197.

[SBH+05] Shaban-Nejad A., Baker C.J.O., Haarslev V., and Butler G. (2005). The FungalWeb Ontology:

Semantic Web Challenges in Bioinformatics and Genomics. In Proc. of the 4th Intl' Semantic

Web Conf. (ISWC'05)Nov. 6-10, Galway, Ireland, LNCS Springer, Vol. 3729, pp. 1063-1066.

[SBL+05] Sacchi, L., Bellazzi, R., Larizza, C, Porreca, R., Magni, P.: Learning Rules with Complex

Temporal Patterns in Biomedical Domains. In: Miksch, S., Hunter, J., Keravnou, E.T. (eds.)

AIME'05. LNCS 3581, pp. 23-32. Springer (2005)

[SC06] Smith B, Ceusters W (2006) HL7 RIM: An Incoherent Standard. Studies in Health Technology

and Informatics 124:133-138.

[SCC97] Spademan, K.A., Campbell, K.E., Cote, R.A. (1997) SNOMED RT: A reference terminology

for healthcare, in Proc of 1997 AMIA Annual Fall Symposium, pp. 640-644.

329

http://www.cin.ufpe.br/~wonto2008/wonto2008_arquivos/Wonto08.pdf
http://www.cs.man.ac.uk/~sattler/reasoners.html

[SCE+04] Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, et al. (2004) BRENDA, the enzyme

database: updates and major new developments. Nucleic Acids Res 32(DB issue):431-433.

[Sch89] Schneider, H.J. (1989) Describing distributed systems by categorical graph grammars, in proc

of 15th int'l workshop on Graph-Theoretic Concepts in Comp. Sci. (WG'89) Castle Rolduc,

The Netherlands, LNCS 411, Springer 121-135.

[Sch90] Schmiedel, A. (1990) Temporal Terminological Logic. AAAI, pp. 640-645.

[Sch91] Schmiedel, A. (1991) Integrating Time into Terminological Logics. Description Logics, pp.

105-108. -••

[SCH+07] Sioutos, N, de Coronado, S, Haber, M.W., et al. (2007) NCI Thesaurus: a semantic model

integrating cancer-related clinical and molecular information. J Biomed Inform. 40(l):30-43.

[Sch08a] Schneider, H.J. (2008) Graph Transformations: An Introduction to the Categorical Approach.

(Online bok draft)

http://www2.informatik.uni-erlangen.de/EN/staff/schneider/gtbook/index.html

[Sch08c] Schneider, H.J. (2008) Implementing the Categorical Approach to Graph Transformations with

Haskell. Book Chapter draft: http://www2.informatik.uni-

erlangen.de/Personen/schneide/gtbook/appendix-a.pdf?language=en

[SCN+03] Sobel, J.D., Chaim, W., Nagappan, V., and Leaman, D. (2003) Treatment of vaginitis caused

by Candida glabrata: use of topical boric acid and flucytosine. American Journal of Obstetrics

and Gynecology, 189(5): 1297-1300.

[Scr99] Scribner, P. (1999) Introduction to Ontological Philosophy. http://www.twow.net/MclOtaI.htm

[SDK+03] Smith, M J., Dewar, R.G., Kowalczykiewicz, K., and Weiss, D. (2003) Towards Automated

Change Propagation; the value of traceability. Technical Report, Heriot Watt University.

http://www.macs.hw.ac.uk:8080/techreps/docs/files/HW-MACS-TR-0002.pdf

[Sea72] Searle, J. (1972). Chomsky's Revolution in Linguistics". Harman, Gilbert, (editor), 1974. On

Noam Chomsky, Anchor Books, New York.

[SeI05] Selinger, P. (2005) Course notes for MATH 4135/5135: Introduction to Category Theory,

FALL 2005. Dalhousie University. (Accessed on 12 February 2010)

http://www.mscs.dal.ca/~selinger/4135/handouts/notes-2up.pdf

[SFM99] Swann, E.C., Frieders, E.M., and McLaughlin, D. J. (1999) Microbotryum, Kriegeria, and the

changing paradigm in basidiomycete classification. Mycologia 91: 51-66.

[SGB00] Stevens, R., Goble, C.A., Bechhofer, S. (2000) Ontology-based Knowledge Representation for

bioinformatics. Briefings in Bioinformatics 1(4): 398-414.

[SH06a] Shaban-Nejad, A., Haarslev, V. (2006) Representation of Changes in Ontology Driven Object

Oriented Software using Categories. In the proc. of 5th Int'l Semantic Web Conf., 1SWC06

Workshop on Semantic Web Enabled Software Engineering (SWESE'06), Athens, GA, USA.

330

http://www2.informatik.uni-erlangen.de/EN/staff/schneider/gtbook/index.html
http://www2.informatik.uni-
http://www.twow.net/MclOtaI.htm
http://www.macs.hw.ac.uk:8080/techreps/docs/files/HW-MACS-TR-0002.pdf
http://www.mscs.dal.ca/~selinger/4135/handouts/notes-2up.pdf

[SH06b] Shaban-Nejad, A., and Haarslev, V. (2006) Some Issues in Ontology Change Management.

Position paper for Canadian Semantic Web Working Symposium (CSWWS 2006), June 6,

2006, Quebec City, QC, Canada.

[SH07a] Shaban-Nejad A, Haarslev V (2007) Managing Conceptual Revisions in a Temporal Fungi

Taxonomy, In Proc. of the 20* IEEE International Symposium on Computer-Based Medical

Systems (CBMS 2007), Maribor, Slovenia, pp. 624-632.

[SH07b] Shaban-Nejad A, Haarslev V (2007) Categorical Representation of Evolving Structure of an

Ontology for Clinical Fungus. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007.

LNCS, vol. 4594, Springer, Heidelberg, pp. 277-286.

[SH07c] Shaban-Nejad, A., and Haarslev, V. (2007) Towards a Framework for Requirement Change

Management in HealthCare Software Applications. In Proc. of the 22nd Annual ACM

SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA'07), Montreal, QC, Canada, pp. 807-808.

[SH07d] Shaban-Nejad, A., Haarslev, V. (2007) Simulation of Conceptual Representation of Evolving

Medical Vocabularies, Presented at COMPMED (Computer Simulation In Medicine), MAY

16-18, 2007, Montreal, Canada. Published in Simulation in Healthcare: The Journal of the

Society for Simulation in Healthcare, ISSN 1559-2332, Volume 2, Issue 2, Summer 2007.

[SH08a] Shaban-Nejad, A., and Haarslev, V. Incremental Biomedical Ontology Change Management

through Learning Agents. In Proc. of the 2nd KES Intl. Symposium on Agent and Multi-Agent

Systems: Technologies and Applications (KES-AMSTA 08), March 27-28, Incheon, Korea,

Springer Volume 4953 / 2008: 526-535.

[SH08b] Shaban-Nejad, A., and Haarslev, V. (2008) Ontology-Inferred Phylogeny Reconstruction for

Analyzing the Evolutionary Relationships between Species: Ontological Inference versus

Cladistics". In Proc. of 8th IEEE Int'I Conf. on Biolnformatics and BioEngineering (BIBE'08),

8-10 Oct, Athens, Greece, pp. 1-7.

[SH08c] Shaban-Nejad, A., and Haarslev, V. (2008) Web-based Dynamic Learning through Lexical

Chaining: A Step Forward towards Knowledge-Driven Education". In Proc. of 13 Annual

SIGCSE Conf. on Innovation and Technology in Comp Sci. Education, ITiCSE'08, Madrid,

Spain, June 30- July 2, pp.375.

[SOK+09] Shaban-Nejad, a., Ormandjieva, O., Kassab, M., and Haarslev, V. (2009) Managing

Requirements Volatility in an Ontology-Driven Clinical LIMS Using Category Theory,

International Journal of Telemedicine and Applications, vol. 2009, Article ID917826, 14

pages, 2009. (PubMed ID: 19343191).

[SH09] Shaban-Nejad, A., and Haarslev, V. (2009) Bio-medical Ontologies Maintenance and Change

Management, in Sidhu, A.S., and Dillon, T.S. (eds.) Biomedical Data and Applications.

Studies in Computational Intelligence, vol. 224, Springer, pp.143-168.

331

[SHIOa] Shaban-Nejad, A., and Haarslev, V. (2010) Human Factors in Dynamic E-Health Systems and

Digital Libraries. To appear in Pease, W., Cooper, M., Gururajan. R. (eds.) Biomedical

Knowledge Management: Infrastructures and Processes for E-Health Systems. IGI Global.

Information Science Reference - ISR series.

[SHIOb] Shaban-Nejad, A., and Haarslev, V. (2010) Towards Autonomous Management of Changes in

Distributed Ontologies, Controlled Vocabularies and Linked Data in Biomedical Domain. The

7th Annual Conference of the MidSouth Computational Biology and Bioinformatics Society

(MCBIOS'10), Jonesboro, Arkansas, Feb 19-20.

[Sim61] Simpson, G.G. Principles of Animal Taxonomy. New York: Columbia University Press, 1961.

[SklOO] Sklyar, N. (2001) Survey of existing Bio-ontologies, Technical Report 5/2001, Department of

Computer Science, University of Leipzig.

[SK03] Stuckenschmidt, H., and Klein, M.C.A. (2003) Integrity and Change in Modular Ontologies. In

Proc. of Proceedings of the 18th Int'l Joint Conference on Artificial Intelligence (IJCAI'03),

Acapulco, Mexico, August 9-15, pp. 900-908.

[SLC+07] Sacchi, L., Larizza, C, Combi, C, Bellazzi, R. (2007) Data mining with Temporal Abstractions:

learning rules from time series. Data Mining Knowledge Discovery 15(2): 217-247.

[SM0I] Stumme, G., and Maedche, A. (2001) Ontology Merging for Federated Ontologies on the

Semantic Web. In Proc. of the IJCAI-01 Workshop on Ontologies and Information Sharing,

Seattle, USA, August 4-5, CEUR-WS/Vol-47, pp. 91-99.

[SMOla] Stumme, G., and Maedche, A. (2001) FCA-MERGE: Bottom-Up Merging of Ontologies. In

Proc. of UCAI 2001, Seattle, Washington, USA, pp. 225-234.

[SM02] Stojanovic L, Motik B (2002) Ontology Evolution within Ontology Editors. In Proceedings of

the International Workshop on Evaluation of Ontology-based Tools (EON'02), CEUR-WS-62.

[Smi03] Smith B (2003) Realism, Concepts and Categories or: how realism can be pragmatically useful

for information. Talk in OntoQuery at Copenhagen Business School, May 18-22, 2003.

[Smi03.b] Smith, B. (2003) Ontology, in L. Floridi (ed.), Blackwell Guide to the Philosophy of

Computing and Information, Oxford: Blackwell, 2003,155-166.

[Smi05] Smith, B. (2005) Ontologies in Biomedicine: The Good, The Bad and The Ugly. Talk at

"Knowledge based bioinformatics Workshop 2005", Montreal, Canada.

[Smi061 Smith B (2006) From concepts to clinical reality: An essay on the benchmarking of biomedical

terminologies. J Biomed Inform 39(3):288-298.

[SMM+02] Stojanovic L, Maedche A, Motik B, Stojanovic N (2002) User-Driven Ontology Evolution

Management. In Proceedings of the 13th Intl. Conf. on Knowledge Eng. and Knowledge

Management (EKAW02), Siguenza, Spain, LNCS: 285-300.

[SMS+03] Stojanovic L, Maedche A, Stojanovic N, Studer R (2003) Ontology evolution as

reconfiguration-design problem solving. In Proceedings of the 2nd Intl. Conf. on Knowledge

Capture (K-CAP'03), Sanibel Island, FL, USA, ACM, pp.162-171.

332

[SN01] Scott, J.A., and Nisse, D. (2001). Software configuration management. In: Guide to Software

Engineering Body of Knowledge, Chapter 7. Retrieved March 10,2009

http /̂vvww.swebok.org/stoneman/version_1.00/SWEBOK_w_correct_copyright_web_site_version.pd

[SNS+07] Sabetzadeh, M., Nejati, S., Easterbrook, S. and Chechik, M. (2007) A Relationship-Driven

Framework for Model Merging, in Proceedings of the Int'l Workshop on Modeling in Software

Engineering. ACM press.

[Sol06] Solomon, A. (2006) Pushout: A Mathematical Model of Architectural Merger, in proc of 6th

Int'l Perspectives of Systems Informatics (PSI'06), LNCS 4378, Springer, pp. 389-399.

[SowOO] Sowa, J.F. (2000) Knowledge Representation: Logical, Philosophical, and Computational

Foundations. Brooks Cole Publishing Co., Pacific Grove, CA.

[SP82] Smyth, M.B., and Plotkin, G.D. The Category-Theoretic Solution of Recursive Domain

Equations. SIAM J. on Computing (SICOMP), 1982, 11(4):761-783.

[Spa05] Spackman, K.A. (2005) Rates of Change in a Large Clinical Terminology: Three Years

Experience with SNOMED Clinical Terms. 2005 AMIA Annu Symp Proc. pp. 714-718.

[SPG+07] Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., and Katz, Y. (2007) Pellet: A practical OWL-

DL reasoner. J. Web Sem. 5(2): 51-53.

[SPL+01] Sunye, G., Pollet, D., Le Traon, Y. and Jezequel, J.M. (2001) Refactoring UML Models, in:

«UML» 2001 — The Unified Modeling Language. Modeling Languages, Concepts, and Tools.

LNCS 2185, Springer, pp. 134-148.

[SR04] Smith, B., and Rosse, C. (2004) The role of foundational relations in the alignment of

biomedical ontologies. In Proc. of 11th World Congress on Medical Informatics; MEDINFO'04,

IOS Press, 444-448.

[SR06] Seidenberg, J., and Rector, A.L. (2006) Web ontology segmentation: analysis, classification

and use. In Proc. of WWW'06, pp. 13-22.

[SRP02] Schorlemmer, M., Robertson, D., and Potter, S. (2002) Automated Support for Composition of

Transformational Components in Knowledge Engineering. Technical Report EDI-INF-RR-

0137, School of Informatics, The University of Edinburgh, http://eprints.aktors.org/138/

[SSB07] Schulz, S., Suntisrivaraporn, B., and Baader, F. (2007) SNOMED CT's Problem List:

Ontologists' and Logicians' Therapy Suggestions, in Proc. of Medinfo 2007 Congress, Studies

in Health Technology and Informatics (SHTI-series). IOS Press.

[SSG+03] Stojanovic L, Stojanovic N, Gonzalez J, Studer R (2003) OntoManager - A System for the Usage-

Based Ontology Management. In Proceedings of CooplS/DOA/ ODBASE 2003, Catania, Sicily,

Italy, LNCS: 858-875.

[SSW01] SchuBIer, A., Schwarzott, D., Walker, C. (2001) A new fungal phylum, the Glomeromycota:

phylogeny and evolution, Mycol. Res. 105 (12): 1413-1421.

[ST95] Slavoski, L.A., and Tunkel, A.R. (1995) Therapy of fungal meningitis. Clin Neuropharmacol.

18(2): 95-112.

333

http://eprints.aktors.org/138/

[Sto04] Stojanovic, L. (2004) Methods and Tools for Ontology Evolution. PhD. thesis in University of

Karlsruhe

[Str] Straccia, U. fuzzyDL: A DL Reasoner supporting Fuzzy Logic reasoning.

http://gaia.ish\cnr.it/~straccia/sofrware/fuzzyDL/fuzzyDL.html

[StrOl] Straccia, U. (2001) Reasoning within Fuzzy Description Logics. Artif.Intell.Res, 14:137-166.

[Str05] Straccia, U. (2005) A fuzzy description logic for the Semantic Web. In Sanchez, E., ed.:

Capturing Intelligence: Fuzzy Logic and the Semantic Web. Elsevier, pp. 73-90

[SVS04] Santos, G., Villela, K., Schnaider, L., Rocha, A., and Travassos, G. (2004) Building Ontology

Based Tools for a Software Development Environment. In Proc. of 6th Intl. Workshop on

Advances in Learning Soft. Organizations (LSO'04), LNCS 3096, Banff, Canada, pp. 19-30.

[SWK+02] Sycara, K.P., Widoff, S., Klusch, M., Lu, J. (2002) Larks: Dynamic Matchmaking Among

Heterogeneous Software Agents in Cyberspace. Autonomous Agents and Multi-Agent Systems

5(2): 173-203.

[SWL+03] Stevens, R., Wroe, C, Lord, P., and Goble, C. (2003) Ontologies in bioinformatics. in Staab,

S., and Studer, R. (eds). Handbook on Ontologies in Information Sys., Springer, pp. 635-657.

[Swo] Swofford, D. PAUP (V. 4.0) A tool for inferering and interprtting phylogenetic trees.

http://paup.csit.fsu.edu/

[SWS03] Smith B, Williams J, Schulze-Kremer S (2003) The ontology of the gene ontology. In Proc. of

AMIA2003 Annual Symposium; 609-13.

[Sym08] Symons, J. (2008) Review of Giandomenico Sica (ed.) What is Category Theory? (DRAFT)

Studia Logica 89 (2): 285-289.

[Tae94] Taentzer, G. (1994) Hierarchically Distributed Graph Transformation. In Proc. of the 5th Int'l

Workshop on Graph Grammars and Their App. to Comp. Sci. (TAGT'94), Williamsburg, VA,

USA, LNCS 1073, Springer, pp. 304-320.

[Tae99] Taentzer, G. (1999) Distributed Graphs and Graph Transformation. Applied Categorical

Structures 7(4): 431^162.

[Tae04] Taentzer, G. (2004) AGG: A graph transformation environment for modeling andvalidation of

software. In Proc. of Applications of Graph Transformations with Industrial Relevance

(AGTIVE'04), LNCS 3062, Springer, pp. 446^153.

[Tax99] Taxonomy, Classification, and the Debate about Cladistics, From an appendix in Shinners &

Mahler's Illustrated Flora of North Central Texas; 1999, BRIT & Austin College.

http://artemis.austincolIege.edu/acad/bio/gdiggs/taxonomy.html

[TF05] Thagard, P., and Toombs, E. (2005) Atoms, Categorization and Conceptual Change, in Cohen,

H., and Lefebvre, C. (editors) Handbook of categorization in Cognitive Science. Elsevier, pp.

243-254.

334

http://gaia.ish/cnr.it/~straccia/sofrware/fuzzyDL/fuzzyDL.html
http://paup.csit.fsu.edu/
http://artemis.austincolIege.edu/acad/bio/gdiggs/taxonomy.html

[TFH03] Telea, A., and Frasincar, F., and Houben, G.J. (2003) Visualisation of RDF(S)-based

Information. In Proc. of 7th Inf 1 Conf. on Information Visualization (IV'03), London, UK.

IEEE, pp. 294-299.

[TKF+99] Taentzer, G., Fischer, I., Koch, M., and Voile, V. (1999) Distributed Graph Transformation

with Application to Visual Design of Distributed Systems, In: Ehrig, H., Kreowski, H.-J. et al.

(eds.) Handbook of Graph Grammars and Computing by Graph Transformation, Vol 3:

Concurrency and Distribution, World Scientific.

[TGM98] Taentzer, G., Goedicke, M., and Meyer, T. (1998) Dynamic Change Management by

Distributed Graph Transformation: Towards Configurable Distributed Systems. In Proc. of 6th

Int'l Workshop on Theory and App. of Graph Transformations (TAGT'98), Paderborn,

Germany, LNCS 1764, Springer, pp. 179-193.

[TGM99] Taentzer, G., Goedicke, M., and Meyer, T. (1999) Dynamic Accommodation of Change:

Automated Architecture Configuration of Distributed Systems. In Proc. of ASE'99, pp. 287-

290.

[TM05] Trask, R.L, and Mayblin, B. (2005) Introducing Linguistics. Totem Books, USA.

[TMM+96] Taboada, M., Marin, R., Mira, J., Otero, R. P. (1996). Integrating Medical Expert Systems,

Patient Data-Bases and User Interfaces. J. Intell. Inf. Syst., 7(3), 261-285.

[Tom99] Tomassi, P. (1999) Logic, London: Routledge.

[Top07] TopBraid Composer, Getting Started Guide Version 2.0. TopQuadrant, Inc. (2007) July 27lh.

http://www.topbraidcomposer.com/docs/TBC-Getting-Started-Guide.pdf. Accessed 10 Jan

2009.

[Tot08] Toth, D. (2008) Database Engineering from the Category Theory Viewpoint. In Proc. of Intl.

Workshop on DAtabases, TExts, Specifications and Objects, Desna, Czech Republic, April 16-

18, 2008. CEUR Workshop Proceedings 330.

[Tou58] Toulmin, S. (1958) The Uses of Argument, Cambridge University Press.

[TRR+00] Trombert-Paviot, B., Rodrigues, J.M., Rogers, J.E., Baud, R., et al. (2000) GALEN: a third

generation terminology tool tosupport a multipurpose national coding system for surgical

procedures. Int J Med Inform, (58-59):71-85.

[TSB06] Taylor, J.W., Spatafora, J., and Berbee, M. Ascomycota. Sac Fungi. Version 09 Oct. 2006.

Avialable: http://tolweb.org/Ascomycota/20521 /2006.10.09) in The Tree of Life Web:

Project: http://tolweb.org/

[Tuf90] Tufte, E. R.: 1990, Envisioning Information, Graphics Press.

[Tve77] Tversky, A (1977) Features of similarity. Psychological Review, 84(4):327-352.

[UGM07] Udrea, O., Getoor, L., Miller, R.J. (2007) Leveraging data and structure in ontology

integration. ACM SIGMOD Conf. Int'l Conference on Management of Data, Beijing, China,

pp. 449-460

[UML2] UML 2 Object Diagrams http://www.agilemodeling.com/artifacts/objectDiagram.htm

335

http://www.topbraidcomposer.com/docs/TBC-Getting-Started-Guide.pdf
http://tolweb.org/Ascomycota/20521
http://tolweb.org/
http://www.agilemodeling.com/artifacts/objectDiagram.htm

[UML3] UML basics: The sequence diagram: http://www.ibm.eom/developerworks/rational/library/3101 .html

[UML08] UMLS documentation (2008) Accessed 10 Jan 2009.

http://wwwjilm.nih.gOv/research/umls/umlsdoc_intro.html#sl_0.

[Van06] Van Polanen Petel, H.P. (2006) Universal Grammar as a Theory of Notation. Axiomathes,

16(4): 460-485.

[Var05] Varzi, A.C. (2005) Change, Temporal Parts and the Argument from Vagueness. Dialectica

59(4): 485-498.

[VEK405] Volkel, M., Enguix, C.F., Kruk, S.R., Zhdanova, A.V., Stevens, R., and Sure, Y. (2005)

Sem Version-Versioning RDF & Ontologies. EU-IST Network of Excellence (NoE) KWEB

Deliverable D2.3.3.vl (WP2.3)

[Ver08] Verhagen, F.C. (2008) Worldviews and Metaphors in the human-nature relationships: An

Ecolinguistic Exploration through the Ages. Language & Ecology, 2(3)

http://www.ecoling.net/worldviews_and_metaphors_-_final.pdf

[VG06] VQlkel, M, and Groza, T. (2006) Sem Version: An RDF-based ontology versioning system, in

Proceedings of 1ADIS Intl. Conf. on WWW/Internet, vol(l): 195-202.

[VGH96] Van Eemeren, F.H., Grootendorst, R.F., Henkemans, F.S.: Fundamentals of Argumentation

Theory: A Handbook of Historical Backgrounds and Contemporary Applications, L. Erlbaum

Associates, NJ, USA (1996).

[VH91] Ventrone, V., and Heiler, S. (1991) Semantic Heterogeneity as a Result of Domain Evolution.

SIGMOD Rec (ACM Special Interest Group on Management of Data) 20(4): 16-20.

[Viz04] Vizenor, L. (2004) Actions in Health Care Organizations: An Ontological Analysis. In Proc.

of Medinfo'04. http://ontology.buffalo.edii/medo/HL7_Vizenor.pdf

[VSC04] Vizenor, L., Smith, B., and Ceusters, W. (2004) Foundation for the Electronic Health Record:

An Ontological Analysis of the HL7's Reference Information Model.

http://ontology.buffalo.edu/medo/HL7_2004.pdf

[Wak91] Wake, D.B. (1991) Homoplasy: the result of natural selection, or evidence of design

limitations? Am Nat, 138: 543-567.

[Wan89] Wand, Y. A. (1989) A Proposal for a Formal Model of Objects in Object-Oriented Concepts,

Databases, and Applications. In Kim, W., and Lochovsky, F.(eds.), ACM Press Frontier

Serie:537-559.

[Wan06] Wang, J. (2006) Computational Approaches to Linguidtic consensus. Diddertation at

University of Illinois at Urbana-Champaign.

[War04] Ware, C. (2004) Information Visualization: Perception for Design, 2nd ed., Morgan Kaufmann.

[Was06] Wasserman, R.: The Problem of Change. Philosophy Compass 1 (2006): 48-57.

[WB05] Warren, W., and Brinkley, J.F. (2005) Knowledge-Based, Interactive, Custom Anatomical

Scene Creation for Medical Education: The Biolucida System. AMIA Annu Symp Proc, pp.

789-793.

336

http://www.ibm.eom/developerworks/rational/library/3
http://wwwjilm.nih.gOv/research/umls/umlsdoc_intro.html%23sl_0
http://www.ecoling.net/worldviews_and_metaphors_-_final.pdf
http://ontology.buffalo.edii/medo/HL7_Vizenor.pdf
http://ontology.buffalo.edu/medo/HL7_2004.pdf

[WC05] Wurtz, R., Cameron, B J. (2005) Electronic Laboratory Reporting for the Infectious Diseases

Physician and Clinical Microbiologist. Clinical Infectious Diseases, 40(11): 1638-1643.

[WCL+00] Wheeler, D.L., Chappey, C, Lash, A.E., Leipe, D.D., Madden ,T.L. et al. (2000) Database

resources of the National Center for Biotechnology Information. Nucleic Acids Res 28(1): 10-4.

[WDB] Why Do Biologists Need Cladistics? http://www.Ucmp.berkeley.edu/cIad/clad5.html

[WE98] Wiels, V., and Easterbrook, S. (1998) Management of evolving specifications using category

theory. In Proc. of 13* IEEE Int'l Conf. on Automated Soft. Eng., Honolulu, USA, pp. 12-21.

[Wei06] Weil, B. (2006) Building an Effective eCRM Strategy in Healthcare. Sep. 21,2006.

http://www.envision-ebusiness.com/piicm.asp?itemid=23&recordid=2&submit=getrecord

[Wel93] Wells, C. (1993) Sketches: Outline with References.

http://www.cwru.edu/artsci/math/wells/pub/pdf/sketch.pdf

[WH92] Wilde, N., and Huitt, R. (1992) Maintenance Support for Object-Oriented Programs. IEEE

Trans. Software Eng. 18(12): 1038-1044.

[WH99] Williamson, K., and Healy, M. (1999) Industrial applications of software synthesis via

category theory. In Proc. of the 14th IEEE Intl. Conf. on Automated Soft. Eng., Oct 1999,

Cocoa Beach, FL, USA, pp. 35^13.

[WH00] Williamson, K., and Healy, M. (2000) Deriving engineering software from requirements.

Journal of Intelligent Manufacturing, 11(1):3—28.

[WHB07] Wang, Y., Haase, P., and Bao, J. (2007) A Survey of Formalisms for Modular Ontologies. In

Int'l Joint Conf. on Artificial Intelligence (IJCAI'07) Workshop SWeCKa. Hyderabad, India.

http://www.aifb.uni-karlsruhe.de/WBS/ywa/publications/wang07IJCAIWS.pdf

[Whi97] Whitmire SA (1997) Object Oriented Design Measurement, John Wiley & Sons.

[Whi99] Whitmore I (1999) Terminologia Anatomica: new terminology for the new anatomist. Anat

Rec (New Anat.) 257:50-53.

[Wie03] Wiegers, K.E. (2003) Software Requirements. 2nd Edition, Microsoft Press.

[Wil94] Williamson, T. (1994) Vagueness. London: Routledge. (dedicated to Sorits Reasoning).

[WJK00] Wooldridge, M., Jennings, N.R., and Kinny, D. (2000) The Gaia Methodology for Agent-

Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems 3(3): 285-312.

[WK92] Wu, C.G., and Kimbrough, J.W. Ultrastructural studies of ascosporogenesis in Ascobolus

immerses. Mycologia, vol. 84,1992, pp. 459-466.

[WMC-K)3] Wong, W.K., Moore, A.W., Cooper, G.F., Wagner, M. (2003) Bayesian Network Anomaly

Pattern Detection for Disease Outbreaks. In proc of 20th Int'l Conf. on Machine Learning

(ICML'03), Washington, DC, USA, AAAI Press, pp. 808-815.

[Woo09] Wooldridge, M. (2009) An Introduction to MultiAgent Systems. 2nd edition, J. Wiley & Sons.

[Wor99] Wordsworth, J.B. (1999) Getting the best from formal methods. Information and Software

Technology, 41(14):1027-1032.

[WWF74] Watzlawick, P., Weakland, J. H., and Fisch, R. (1974). Change: Principles of Problem

337

http://www.Ucmp.berkeley.edu/cIad/clad5.html
http://www.envision-ebusiness.com/piicm.asp?itemid=23&recordid=2&submit=getrecord
http://www.cwru.edu/artsci/math/wells/pub/pdf/sketch.pdf
http://www.aifb.uni-karlsruhe.de/WBS/ywa/publications/wang07IJCAIWS.pdf

Formation and Problem Resolution. New York: Norton.

[XS04] Xing, Z., and Stroulia, E. (2004) Understanding Class Evolution in Object-Oriented Software.

In proceedings of IWPC'04, pp. 34-45.

[XS06] Xing, Z., and Stroulia, E. (2006) Understanding the Evolution and Co-evolution of Classes in

Object-oriented Systems. Int'l Journal of Software Engineering and Knowledge Engineering

16(1): 23-52.

[Yen91] Yen, J. (1991) Generalizing Term Subsumption Languages to Fuzzy Logic. In Proc. of

IJCAP91, pp. 472-477.

[YTT+05] Yamamoto, M., Tanabe, Y., Takahashi, K., and Hagiya, M. (2005) Abstraction of Graph

Transformation Systems by Temporal Logic and Its Verification. In Proc. of VSTTE'05,

LNCS 4171, Springer, pp. 518-527.

[Zad65] Zadeh, L.A. (1965) Fuzzy sets, Information and Control, 8: 338-353.

[Zal05] Zalta EN (ed.) (2005) Sorites Paradox. Stanford encyclopedia of philosophy. First published on

Jan 17,1997; substantive revision on Aug 15, 2005.

[Zan02] Zander, R.H. On the Present Revolution. Buffalo Museum of Science Website, June 2002,

http://www.mobot.org/plantscience/resbot/Phil/Revolution.htm

[ZGCOO] Zare, R., Gams, W., Culham, A. (2000). A revision of Verticillium sect. Prostrata I.

Phylogenetic studies using ITS sequences. Nova Hedwigia 71: 465-80.

[ZK05] Zhdanova, A.V., and Keller, U. (2005) Choosing an Ontology Language. In Proc. of WEC'05,

Enformatika, pp. 47-50.

[ZKE+06] Zimmermann, A., Krotzsch M, Euzenat, J., and Hitzler, P. (2006) Formalizing Ontology

Alignment and its Operations with Category Theory. In Proc. of the 4th Intl. Conf. on Formal

Ontology in Info. Sys. (FOIS'06), vol. 150 of Frontiers in AI & App., IOS, pp. 277-288.

338

http://www.mobot.org/plantscience/resbot/Phil/Revolution.htm

