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Abstract 

The Effect of Liquid Viscosity on Polygonal Pattern Instability Observed 

within Hollow Vortex Core 

Amr Mandour 

The dynamics of liquid vortices generated by rotating a flat disc near the bottom of a cylindrical 

tank is investigated experimentally. Several former investigations have found that the main 

parameters affecting the flow behaviour are incorporated in two non-dimensional numbers: 

Reynold's number and the aspect ratio. Despite some evidence of the important role of fluid 

viscosity on the polygonal pattern instability behaviour observed within the hollow vortex core, a 

systematic study has not yet been carried out. This thesis examines the role of viscosity in the 

development, evolution, wave speed propagation and the overall transition of vortex core 

instabilities. The data analysis was performed using the digital image processing technique. 

Increasing the viscosity of the fluid by mixing glycerol with tap water at room temperature, was 

found to significantly decrease the polygonal patterns' limits of endurance and distort their 

geometry until all mode shapes were eventually destroyed and never recognized, beginning with 

high mode shapes progressively until the lower polygonal patterns are reached. Increasing the 

fluid viscosity to 22 times that of water resulted into an up to 25% augmentation of the 

maximum polygonal pattern speed. In all cases, the pattern speed ( f p ) was found to be almost 1/3 

the disc speed (fd), which confirms the pure water results obtained by Vatistas et al. (2008). The 

effect of varying the viscosity on the transitional processes between subsequent polygonal 

patterns is also addressed in this thesis. Alike to the case of pure water, the transition between 

polygonal patterns is found to occur in two stages: a quasi-periodic phase followed by frequency 

locking. 
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Chapter 1 

Introduction 

1.1 General 

Vortex refers to the fluid motion in which the streamlines form concentric circles. 

Everyday vortices can be generated naturally or artificially, and their size may vary from a few 

centimetres to kilometres. Typical naturally occurring vortices include the geophysical vortices 

such as tornadoes, hurricanes, waterspouts, polar vortices, and circulation of oceans as well as 

the general circulation of the atmosphere and convection of clouds. This phenomenon is not 

restricted to Earth, in fact vortices are also observed in planetary atmospheres and in the motion 

of galaxies. The large impact of vortices in nature on human beings, makes it a topic of great 

interest to be explored, and this research eventually applied to industrial processes. In industry, 

vortices are generated by wing tips, cavitation behind propellers, cyclone combustion, vortex 

valves, swirl atomizers, drain holes and many others. Thus the effect of this line of research is far 

reaching and vastly beneficial. 

Vortex dynamics has been a very significant element of fluid dynamics studies for many 

years. Hermann von Helmholtz (1858), the German physician, first introduced the three 

governing laws of vortex motion in his paper on hydrodynamic equations, which has been 

translated and published in English. This was followed by Kelvin's (1869) circulation theorem 

which stated that the circulation around a closed path in an inviscid flow is always conservative. 

Inl878, Alfred Mayer came out with the floating magnets experimental work modeling the 

appearance of electron configurations inside a molecule. By placing a large magnet with its 

South Pole pointing towards a bowl of water containing magnetized needles floating on the 
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surface, he found that the needles formed symmetric polygonal oriented configurations. 

Following Mayer, Lord Kelvin (1878) considered Helmholtz and Mayer's work in introducing 

his Vortex Atom Theory in which he represented atoms as point vortices rotating in a perfect 

fluid (aether). Many followers have contributed to Kelvin's work, but only from the 

hydrodynamic point of interest, to study the vortex dynamics. 

1.2 Swirling flow within cylindrical container 

Vortices and symmetrical pattern formation are also experienced in laboratory 

experiments featuring swirling flows within cylindrical containers. One of the most interesting 

experiments is the one performed by Vatistas (1990) whereby swirling flow was developed 

within a cylindrical container by a rotating disc near its bottom under shallow water conditions. 

Continuous spinning up of the disc resulted in a gradual intensification of the swirling flow of 

the contained water. The flow remains symmetric and laminar at a relatively low rotational speed 

of the disc until a critical speed is reached and symmetry breaking phenomenon takes place. Two 

main flow regimes are speculated in such flow. The first is the rotating azimuthal flow as a result 

of the inertia forces generated by shearing between the rotating disc and the water in contact. The 

second flow is produced by both gravitational and centrifugal forces. The latter pushes the water 

radially outwards, towards the container's stationary side wall, where it rolls up due to the strong 

meridional forces produced by the shear layer flow along the side wall. Finally the water rotates 

back to the axis of symmetry of the flow, and therefore completes a secondary cyclic flow. When 

the vertex of the main vortex core touches the top surface of the disc, a circular portion of the 

disc becomes exposed, as seen from above. As the flow is further intensified, the circular vortex 

core is transformed into a series of progressive vortex core shapes starting from oval, and 
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progressing through triangular, square and pentagonal-like shapes, and terminating with 

hexagonal rotating cores. 

1.3 Polygonal patterns in different studying fields 

The symmetric polygonal patterns observed in the arrangements of the magnetic needles 

in Mayer's experiments (1878) as well as in the hydrodynamics flow (such as the swirling flow, 

Vatistas 1990) were also experienced in many experiments in different physical fields. For 

example in space, Mason (1971) also observed similar shaped trajectories by a floating balloon 

above the South Pole in an attempt to study the global circulation of the atmosphere numerically. 

Ultraviolet stereo graphic images of the South pole of Venus taken from Mariner 10 showed an 

oval vortex cloud which was considered to be different from the rest of Venus cloud cover 

(Suomi & Limaye 1978). Moreover, Godfrey (1988) observed a hexagonal shape composed of 

rotating clouds at the north pole of Saturn at the radio rotation period, which was later explained, 

by Allison et al. (1990), as being a stationary Rossby wave. Numerical simulations done by 

Polvani and Dritschel (1993) on the dynamics of vortices on the surface of a sphere showed point 

vortices with oval (N=2) up to hexagonal (N=6) patterns. Similar polygonal shapes were also 

observed in nature; Max worthy (1973) studied the topology of large scale dust devils and 

tornados using observable analysis. Using a Doppler radar, Bluestein and Pazmany (1999) 

featured asymmetric waves, eye cores, multiple vortices and spiral bands along the edge of the 

eye walls of tornadoes. In addition, Davies-Jones et al. (1986) found that the tangential speed of 

wind inside a tornado is almost linear with the core radius of the tornado, therefore, confirming a 

solid-body rotation for tornadic flows which features Rankine vortex flow. In optical 

experiments, similar polygonal patterns are observed by twisting a light beam along its axis of 
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propagation and projecting it onto a flat surface, a ring of light with dark center is observed 

known as optical vortex. Curtis and Grier (2004) observed polygonal geometries by modulating 

the optical vortices and they were able to observe particle trajectory patterns from oval N= 2 up to 

hexagonal flower shape pattern N= 6. 

In laboratory experiments, Gregory et al. (1955), using a china-clay coated rotating disc, 

recorded traces of six symmetrically oriented vortices. Moreover, Yarmchuk et al. (1979) 

observed and photographed both stationary, symmetric (7V=1 till 5) and distorted, asymmetric 

(N= 6 till 10) polygonal patterns when rotating superfluid helium. Due to the difficult conditions 

experienced near absolute zero they were unable to study the stability of these patterns. Also, on 

their experiments in pure electron plasmas, Driscoll and Fine (1990) were able to represent two 

dimensional vortex dynamics through magnetically confined columns of electrons forming both 

stable and unstable diocotrons modes. Recently, Ellegaard et al. (1998) using high viscous fluids, 

experienced stationary polygonal patterns when a vertical jet of liquid hits a flat ground at high 

Reynolds number. 

1.4 Polygonal patterns in swirling flows 

Swirling flows generated by rotation of one or multiple end walls and/or side walls in 

cylindrical containers have revealed the existence of similar polygonal patterns experienced in 

nature and the other mentioned experiments. The correspondence between both phenomena has 

inspired many investigations by researchers in studying swirling flows. Swirling flows dynamics 

in both closed and open containers depends mainly on two parameters: the Reynolds number 

(flow intensity) and the aspect ratio (height H to radius R ratio). The behaviour of the flow is 

significantly different in shallow and deep liquid conditions (Lopez et al. 2004). On one hand, in 
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deep configurations, {H/R> 1), the symmetry breaking is mainly due to the jet-like shear layer 

near the boundaries which is forced towards the interior of the flow defining an internal solid-

body vortex core rotation (Hirsa et al. 2002). On the other hand, in shallow liquid formation, the 

polygonal bifurcations are due to the extended solid body rotation region which becomes 

dominant to almost half the radius of the container, the boundary layer between the boundary jet-

like shear layer and the interior body rotation is unstable which develops azimuthal rotating 

waves (Miraghaie et al. 2003). Mainly the meridional component of the flow field characterizes 

the flow behaviour; in small radii containers, the weak meridional flow develops the solid body 

rotation while for larger radii, the meridional effects are dominant and form the jet-like 

boundary. Not only the Reynolds number and aspect ratio play an important role in the dynamics 

of the swirling flow, but also the boundary conditions significantly affect the symmetry breaking 

and stability in such flows. Swirling flows in completely enclosed tanks are different from those 

experienced in open free surface counterparts. The first experimental study on swirling flows in 

an enclosed cylindrical container fully filled with liquid was performed by Vogel (1968). He 

observed and defined a stability range, in terms of aspect ratio and Reynolds number, for a 

vortex breaking phenomenon in the form of a bubble along the container's axis of symmetry. 

Escudier (1984) confirmed and further extended the earlier experiment, using laser-induced 

fluorescence technique. By increasing the aspect ratio and changing the working fluid properties, 

he recognised two further stability regions where two and three successive vortex breakdown 

bubbles are observed, respectively. At low Reynolds number the flow is fully axisymmetric. 

Further increasing the swirling flow, vortex breakdown took place followed by fully turbulent 

flow behaviour at high Reynolds number. Spohn et al. (1993) studied the effect of the existence 

of top endwall by reproducing Vogel's (1968) and Escudier's (1984) experiments but in an open 
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free surface cylindrical tank with a rotating bottom and found that the free surface affects 

significantly the formation and location of vortex core break down. Brans et al. (2001) studied 

the spatial properties of such breakdown bubbles. Lopez (1998) and Lopez et al. (2002, 2006) 

studied swirling flows by rotating a cylindrical container completely filled with water with a co-

rotating or counter rotating top endwall, both numerically and experimentally. Generally, at low 

rotational speed whether the top endwall is co-rotating or counter-rotating, the flow structure is 

steady and axisymetric. However as the lid's relative rotational velocity to the cylinder rotational 

speed increases, the flow undergoes different flow behaviours. At high relative velocities, Lopez 

et al. (2002) observed stable azimuthal rotating waves with 4 and 5 lobes co-existing at a specific 

base Reynolds number and aspect ratio extending along a range of relative speeds. As the 

Reynolds number increased, a flow separation took place at the top endwall producing a free 

shear layer that resulted in a symmetry breaking configuration characterized by Hopf bifurcation. 

As mentioned earlier, the general swirling flow is divided into the internal solid body 

rotation and the exterior shear layer jet-like flow. The interaction of both regions at their 

interface defines the behaviour and transitional development of the swirling flow. 

Gallaire and Chomaz (2003), using a Rankine vortex model, were able to predict such 

interactions responsible for producing these instabilities. They showed numerically that Coriolis 

forces affect both regions significantly, leading to inertial Kelvin waves along the boundary of 

the interior core shape, while the exterior shear layer region is prone to dominant centrifugal 

forces which are opposed by radial pressure gradients producing instabilities known as 

centrifugal instabilities. The interactions between both regions undergo a Kelvin-Helmholtz 

instability, where small perturbations grow first to form waves before they roll up into vortices 
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conferring the interface polygonal pattern. Also, they have pointed out a possible coupling and 

resonance between Kelvin-Helmholtz and inertia waves. 

Many experiments on swirling flows in cylindrical containers under shallow water 

conditions were concerned with studying the stability of the shear layer flow known as 

barotropic instability, observed in oceans and atmosphere, as well as the laminar to turbulent 

transitional flow. Hide and Titman (1967) used a cylindrical reservoir with a rotating endwall 

mounted on an independently rotating table and were able to study the stability of shear layer 

eddies formed along the inner cylindrical ring boundary. Below a critical relative rotating speed 

value between the disc and table was reached, the flow was axisymmetric. As the basic flow is 

further intensified, they experienced the formation of a regular rotating pattern with eddies 

located along its shear zone. The number of eddies were found to be decreasing with the rotating 

intensity of the flow. Later, Nino and Misawa (1984) using counter rotating concentric cylinders 

similar to the set-up of Hide and Titman (1967), characterized the flow based on Reynolds 

number and found that the number of eddies formed along the shear zone layer of the inner 

cylinder decrease with increasing Reynolds number. Although this confirmed the results of Hide 

and Titman (1967), they found it opposing to the expected results of the linear stability theory 

which states that the number of eddies or wave number should increase with Reynolds number 

(shear). Another interesting phenomenon eencountered in their experiments was the fact that, as 

soon as the Reynolds number has exceeded a certain critical value, they recognized more than 

one stable, steady formation number of waves for the same Reynolds number on different runs. 

Yasushi (1999) and many others, also studied swirling flows transitions in Taylor (Couette) set 

up where the inner cylinder is rotating and the outer cylinder is stationary. Again, he recognized 

symmetry breaking as the relative rotating speed passed a critical value (Critical Reynolds 
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number). Friih and Read (1999) also performed similar experiments studying the barotropic 

instability using a rotating cylinder filled with water, and both bottom and top endwalls relatively 

rotating and have observed similar shear layer break up forming N azimuthal wave vortices up to 

N= 8. 

The stability of circular shear layer with the thickness of the same order or less than the 

Ekman layer was investigated in the conditions where the effects of the centrifugal and Coriolis 

forces were minor, see Rabaud & Couder (1983) and Chomaz et al. (1988). Their observations 

considered the aspect ratio of the containing reservoir to be the determinant of the flow 

behaviour, the number of experienced rotating vortices, as well as, the transitional behaviour 

which followed two different routes depending on the container radius. 

The recent study by S. Poncet and M.P Chauve (2007) on the shear-layer instability in a 

free surface tank using a rotating disk near the bottom with an inner concentric hub of different 

radii confirmed the results of Chomaz et al.(1988); assigning the Reynolds number, aspect ratio 

and the ratio of concentric cylinders radii as the their control parameters, they visualized and 

recorded clear steady axisymmetric rotating flow until a critical Reynolds number is reached 

where a consistent rotating polygonal pattern with N vortices at its sharp corners appeared. The 

number of N vortices ranging from 2-8 decreased with increasing Reynolds number, aspect ratio 

and radii ratio. At comparably high hub radii values to the disk, the rotating vortices were no 

longer recognized, instead they appeared as stationary point waves attached along the hub 

boundary. Since the number of vortices depends on the Ekman number which is based on the 

fluid depth, they characterized the flow instability being similar to the detached shear layer 

instabilities known as Stewartson shear layers (Stewartson 1957). 
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Poncet and Chauve (2007) experiments with no inner hub (radii ratio = 0) resemble to a 

large extent the ones performed by Vatistas (1990), who first reported an interfacial symmetry 

breaking (between solid (disc), liquid (working fluid) and gas (air)) of the hollow vortex core 

within a cylindrical tank with a rotating disk near its bottom. Both experiments were performed 

with free surface configuration under shallow water conditions. Although both experiments 

exhibited mainly two flow regions, an inner body rotation and an outer shear layer flow, Vatistas 

(1990) reported polygonal patterns with satellite vortices located at its vertices rotating around 

within the inner body rotation region with a dry core. On the other hand, Poncet and Chauve 

(2007) found the polygonal patterns to be the boundary distinguishing between the outer shear 

flow region and the inner two dimensional solid body region. In addition, Vatistas (1990) 

reported an increase in the number of polygonal sides (vortices) as the flow was intensified while 

Poncet and Chauve (2007) found the number of rotating vortices defining the polygonal sides to 

decrease with increasing the rotating disk speed. However, one should take into consideration 

that the ranges of flow speed and aspect ratio are much higher in Vatistas observations than 

Poncet and Chauve (2007). From the difference in flow behaviours stated above and the different 

swirling flows instabilities discussed earlier, one could predict that most likely the instability 

mechanisms leading to the pattern formation in Poncet and Chauve (2007) observations were due 

to Kelvin-Helmholtz instability while in Vatistas' experiments, the mechanism seemed to be the 

inertial instability (Kelvin waves). 

These distinctions between the two experiments might explain the differences in 

bifurcation scenarios, polygonal shapes rotational speed as well as the flow transitional 

behaviour from one steady state (polygonal shape) to the other. The maximum number of waves 

(vortices) observed by Vatistas (1990) were six while Poncet and Chauve (2007) visualized and 
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recorded up to eight steady equally distributed vortices. The polygonal patterns observed in 

Vatistas (1990), Poncet and Chauve (2007) and Chomaz et al. (1988) became unstable when the 

control parameter (Reynolds number) exceeded a certain critical value. During spin up, 

bifurcations from one polygonal shape iV-gon to (N+l)-gon were observed in Vatistas (1990) and 

iV-gon to (N-J)-gon in both Poncet and Chauve (2007) and Chomaz et al. (1988). Chomaz et al. 

(1988) using two dimensional numerical simulation of swirling flows were able to thoroughly 

explain the difference in flow transition from one polygonal pattern to another based on the 

aspect ratio of the flow. For low aspect ratios, where high numbers of vortices were reached, the 

transition occurred in a very short time more like sudden flow behaviour while at high aspect 

ratios, the flow went through bifurcations and symmetrically breaking for the entire flow until it 

receded back to its new stable state. Through flow visualisation and spectral analysis they 

showed that the series of bifurcations were supercritical and they were analogous to the well 

known sub harmonics cascade that leads to turbulence. 

Recent studies by Jansson et al. (2006) and Vatistas et al. (2008) triggered a rejuvenated 

interest in the interfacial symmetry-breaking of hollow vortex core first observed by Vatistas 

(1990). Jansson et al. (2006) who confirmed the earliest observations of Vatistas (1990) 

independently found the rotational speed of the polygonal patterns to vary in a complicated way 

with increasing disc speed, while Vatistas et al. (2008) showed a constant mode-locking speed 

for all patterns at different aspect ratios. Vatistas el al. (2008) also considered the transitional 

processes between different patterns and found them to follow a certain spectral development. 

Both Vatistas (1990) and Jansson et al. (2006) found the initial conditions in their experiments 

having no crucial effects on the flow behaviour other than producing minor hysteresis associated 

with the spin up and spin down sequence of flow transitions. 
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1.5 Motivation of the present study 

Whether in open or closed, single or multiple rotating endwalls and/or side walls, all 

previously discussed studies have considered the Reynolds number and the aspect ratio as being 

the two main (dimensionless) parameters controlling the flow behaviour. Moreover, all studies 

concerning symmetry breaking of axisymetric flows considered the shear to play a crucial role in 

the flow behaviour and transition development. Although the working fluid's viscosity is 

expected to vary the entire shear behaviour along the boundary (Greenspan 1990) between 

different flow regions as mentioned earlier, as well as, the shear layer along the cylinder end and 

side walls, apparently, none of the above mentioned studies considered the kinematic viscosity of 

the working fluid as the primary control parameter which was found to influence the interfacial 

symmetry-breaking of swirling flows in free surface configuration. Using ethylene glycol 

(kinematic viscosity =15 times greater than water) as the working fluid, Jansson et al. (2006) 

observed similar polygons but with no more than three rotating vortices while recording up to 

A/=6-gons when using water instead, under same experimental conditions. Also, Vatistas et al. 

(1992), under same experimental conditions of water, used Shell motor oil (kinematic viscosity 

of two orders of magnitude greater than water) as the working fluid and observed similar but 

unpredictable sequence of rotating vortices with wave numbers up to N=\ 1. A systematic study 

on the effect of viscosity on the symmetry-breaking phenomenon is of great fundamental 

interest. Such study will help to develope the understanding of the phenomenon's mechanism 

and give a broad explanation for the phenomenon's varying parameters. 

1.6 Objective of the present study 

In this thesis, the effect of the working fluid viscosity on the polygonal patterns 
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behaviour is investigated. Experiments were carried out in the set-up similar to Vatistas et al. 

(2008). The apparatus was modified to allow more accurate control and measurements. 

Specifically, the study will analyze, with the aid of image processing, the polygonal patterns 

formation, the limits of endurance, rotational speed variation and finally, the flow transitional 

behaviour between subsequent polygonal patterns 

12 



Chapter 2 

Experimental set-up and measuring techniques 

2.1 Experimental set-up 

The schematic of the experimental set-up used in all experiments is given in figure 1. 

This consisted of a stationary transparent cylindrical container made of plexiglass with an 

internal diameter of 284 mm. A 7 mm thick, 252 mm in diameter aluminum disc was screwed, 

20 mm above the cylinder bottom, to a rotating vertical shaft which rested on a bearing and was 

connected to an electric motor through a rubber V-belt. A flywheel was attached to the shaft to 

enhance the constancy of the disc rotation and to compensate for any inertial losses. All 

components were mounted and supported on a heavy steel table standing on four shock absorber 

pads to minimize vibrational disturbances at high rotational speeds. Experiments with tap water, 

brine and aqueous glycerol mixture, as the working fluids, were conducted at three different 

initial liquid heights (h,) of 20, 30 and 40 mm above the rotating disc. A circular neon light was 

placed concentrically around the transparent vinyl coated cylinder for even distribution of light. 

A digital CMOS high-speed camera (pco.l200hs) with a resolution of 1280 x 1024 pixels was 

placed vertically above the cylinder using a tripod. A ruler was attached to the cylinder's wall for 

measuring the initial liquid height. A plastic beaker was used for measuring the liquid volumes. 

The viscosities of the used mixtures were obtained through technical data provided by a 

registered chemical company (Dow). A mercury glass thermometer was used to measure the 

working fluid's temperature variation before and after experimental runs. 

13 



A kill switch was introduced to the system as a safety precaution in case of emergency. 

For better contrast between the liquid and the disc, the rotating disc was coated with a white 

opaque vinyl sheet and a soluble black dye was mixed with the working fluid before each 

experiment. The disc was rotated in the counterclockwise direction, and its speed was measured 

and controlled using a digital PID controller loop implemented on LAB VIEW environment. The 

wobbling of the rotating disk was measured using a dial gauge and minimized, using a sand 
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sheet, to 30 micro inches axially and 5 micro inches eccentrically. The disc speed, liquid initial 

height and viscosity were the control parameters in this study. 

2.2 Measuring technique 

As the disc started rotating and at low rotational speeds, the liquid started moving 

gradually with the disc motion. The liquid at the axis of symmetry was moved outwards in the 

direction of the cylinder walls due to centrifugal forces and therefore, the liquid height in contact 

with the side wall increased gradually. The interaction between gravitational and centrifugal 

forces resulted in a wide-mouthed bell shaped free surface of the liquid. As the rotational speed 

of the disc, therefore the rotating fluid, went higher the vertex of the bell shaped free surface 

touched the surface of the disc exposing a hollow white portion of the disc. Further increase of 

the disc speed resulted in the formation of a sequence of polygonal patterns, with dry circular 

centers, ranging from oval up to hexagon patterns (see figure 2 for illustration). The CMOS 

camera acquired both coloured RGB and 8-bit gray-scale images, at 30 frames per second, for 

the top view of the formed polygonal patterns. The colored images were used in this thesis for 

better visualization of the patterns structure (as will be discussed in Chapter 4). On the other 

hand, the analysis of the data was conducted using the gray-scale images since they are simpler 

to deal with in image processing (as will be discussed in the next section). To avoid blurred 

images, the shutter speed of the camera was set to a maximum of 1/510 seconds. The shutter 

speed could not be further increased due to lighting limitation. Although the disc speed ranged, 

where all patterns appeared, from 1.7 to 5 Hz, the rotating pattern speed (as will be shown later) 

ranged only from 0.75 to 1.25 Hz and therefore, a sampling frequency of 30 fps was sufficient 

enough for the pattern's rotational speed measuring technique used in this thesis. 



Figure 2 Polygonal patterns observed within hollow vortex core. 

2.2.1 Pattern's speed measurement 

During all experiments, disc speed increments of 1 RPM have been used to ensure 

continuous shear propagation (S. Poncet and M. P. Chauve 2007). Sufficient time has been let 

between increments to ensure stabilized flow. This time was referenced by the Ekman time (re= 

v fd) ) which characterizes the evolution time in swirling flows (Greenspan 1990). For each 

three increments (3 RPM range) of the rotational speed of the disc, 1500 gray-scale images were 

acquired and recorded to a desktop computer. A modified version of an algorithm (Ait 

Abderrahmane 2008) implemented on MATLAB environment using image processing (toolbox) 

technique was used for automatic processing of the acquired images and outputting the pattern's 

frequency. A typical 8-bit gray-scale image acquired by the CMOS camera is shown in figure 

4(a). As shown, the usage of the dark soluble liquid dye and the bright disc background are of 

great benefit in enhancing the contrast and clearness of the line of intersection between the disc's 

bright surface and the dark rotating liquid. 

The first step in the used algorithm was image segmentation, which is converting the 8-

bit gray-scale images to binary (black and white) using a certain threshold value to differentiate 

between the bright and dark portions of the image, being the disc surface and rotating liquid, 

respectively. Finding the best threshold value for such conversion is very important and 
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sensitive. A reasonable initial trial for the threshold value for a certain image segmentation 

process, is selecting a threshold value somewhere between the two grouped accumulations of 

pixels along the gray-scale bins of an image histogram. Although using a constant threshold 

value in image segmentation for a set of images with uniform gray-scale intensities is reasonably 

accurate, there was a difference in frequencies between the camera shutter speed and the 

fluorescent neon light intensity, back to back images had different brightness and therefore 

different gray-scale histograms. Consequently, a histogram matching technique (Gonzales et al. 

2004) was implemented which was simply choosing a reference image (in this case, one of the 

brightest images) and copying its gray-scale histogram to other subsequent images (in this case, 

images of the same set) and therefore, applying a constant threshold value for their binary 

conversion (used in the original reference image). Figures 3(a) and (b) show a dark image and its 

corresponding histogram before and after the histogram copying technique is applied, 

respectively. 
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Figure 3 (a) Dark image and its corresponding histogram; and (b) Same image and its corresponding 

histogram after the histogram copying technique was applied. 

As shown in the above figures, the distribution of the image pixels were extended over 

larger range of the 8-bit gray-scale 255 bins when the copying technique was implemented. By 

moving the two groups of gray-scale pixels further apart from each other, the thresholding 

process became much easier and a constant threshold value could be applied for all images of the 

same set, therefore, confirming constant segmentation quality for all images of the same set. 

Figure 4(b) shows the thresholded (binary) format of the initial gray-scale image (figure 

4a) after applying the threshold. Pixels of the image with gray-scale values equal to or below the 

specified threshold value were assigned 0's (black pixels), on the other hand, pixels with gray-

scale values above the threshold were assigned l ' s (white pixels). 

The second step was to extract the boundary edge of the region of interest. Since the 

intersection of the black region and the white region outlines the boundary of the hollow 
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polygonal patterns, an edge detection function was applied. The extracted boundary (figure 4(c)) 

of the binary image was filtered using a zero-phase filtering function, to avoid any phase 

distortion of the extracted set of contours, before they were proceeded to the next step. To check 

the accuracy of the extracted boundary contours, a random set of images for each run were 

selected and superimposed on their corresponding original gray-scale format images as shown in 

figure 4(d). 

Figure 4 (a) Original 8-bit gray-scale image acquired by camera; (b) Binary format (thresholded); (c) 
Extracted pattern boundary; and (d) Superposition of the extracted boundary on original image. 

It is clearly visible from the image that the extraction technique was of great accuracy 

(a) (b) 

(c) (d) 
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and reliability. To approximately quantify the accuracy of the algorithm, the set of sampled 

images were visually inspected using a pixel measuring tool in MATLAB. The average 

difference between the detected boundary contour and the original region of interest was found 

to be 6 pixels or 2%, measured from the centre of rotation of the disc. The maximum recognized 

error was 4.5% in less than 20% of the sampled images. The next step was extracting the radial 

displacement between the centroid of the extracted region and its edge, for all angular 

orientations (i.e. 0 = 0° to 360°). The MATLAB built in function that develops such extraction is 

known as signature function. The signature function was applied for the whole sequence of 1500 

images for each run and a time series of the displacements was developed for each run at each 

angular orientation (360 time series). Figure 5 shows the corresponding signature plot of the 

sampled contour in figure 4(c). 

Figure 5 Signature of the extracted boundary. 

The extraction starts from 0° degree in the right horizontal direction and proceeds, in the 
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counter clock wise direction, all the way till 360 degrees (back to the initial point of extraction). 

The final step in computing the pattern's rotating speed was using the Fast Fourier Transform 

built-in function which transforms the developed time series data from the time domain to the 

frequency domain. Figure 6 shows a 10 seconds sample from the extracted time series. 

500 

Time (seconds) 

Figure 6 Radial displacement time series at 10° angular orientation. 

The frequency spectra from all 360 time series were then averaged and plotted against the 

signal power which corresponded to the square of the absolute radial displacements extracted in 
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the previous step. A typical power spectrum at a certain height and disc speed is shown below in 

figure 7. 
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Figure 7 Power spectrum of the processed set of images. 

As shown in figure 7, the strongest peak along the frequency span corresponded to the 

pattern's apexes (corners) frequency (with longest radial displacement). Knowing the number of 

apexes (TV) or corners of the polygonal pattern for the computed time series, therefore the most 

powerful frequency fm is related to the actual pattern's frequency fp by fp=fm IN. In this example, 

knowing the number of apexes, being 7V=3, and since the most dominant peak occurred at fm-

3.047 Hz, therefore, the actual pattern's rotational speed using the above mentioned relation is 
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fp=fm /jV=3.047/3= 1.016 Hz. Before applying the same procedure on all acquired sets of images, 

a sampling test has been done to verify the minimum number of images required for computing 

the power spectrum using the FFT technique. The minimum number of images required for the 

dominant frequency to be clearly visible and of relatively strong power, as compared to the 

associated noises, is 750. Therefore, doubling the sampling frequency was sufficient enough for 

obtaining reliable and accurate computations. After verifying the complete algorithm, all mode 

shapes rotational speeds were computed in the same manner. Figure 8 shows a flowchart of the 

algorithm used. 
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Figure 8 MATLAB algorithm flowchart. 
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2.2.2 Disc's speed measurement and control 

The motor speed, therefore the disc's speed, was controlled using a PID controller loop 

implemented on LABVIEW environment (see figure 9). By adjusting the controller inputs (P, I 

and D components), the controller then helps minimizing the induced error, between the desired 

and real time speeds, and therefore, ensures constant speed rotation of the disc. In order to 

measure the actual instant rotating speed of the disc, a reflecting photo sensor was placed facing 

the flywheel edge which is part of the rotating shaft. Twenty-four reflecting strips, 5 mm in 

width, were evenly distributed along the flywheel's circumference. The photo sensor acquired 

the reflecting light signals and transferred them to the desktop computer, via a data acquisition 

board, where the actual RPM of the flywheel (disc) is first calculated and then proceeded to the 

PID controller loop as a feedback input. The controller consisted of four main components, a 

Brush Type Pulse Width-Modulation Servo Amplifier (Advanced Motion Controls), an external 

power source (Philips), a data acquisition board (National Instruments) and a desktop computer. 

The PWM servo amplifier is used to assist controlling the speed of the motor. With a fast on/off 

switching feature, the PWM servo made the voltage passing to the DC Motor to be the average 

value of the voltage over time. The PWM servo amplifier is powered by an external 1OV power 

source and the analog output of the servo amplifier is passed to the motor. The photo sensor 

measures the real time speed and feedback to the desktop computer through the data acquisition 

board. The PID controller loop measures the error between the set point (desired by operator) 

and the real time velocities and the new voltage value signal is passed back to the servo amplifier 

through the data acquisition board to complete the controller circuit. 

Different combinations of P, I and D values were performed until an acceptable design 



was confirmed based on the required accuracy and precision of the conducted experiments. The 

controller had an average error of 0.3%. In addition to constant speeds input, the controller 

allowed different desired input signals to be performed such as rotation in both directions 

signals, ramp input signal, sinusoidal input signal and many others. 

Figure 9 Disc's speed controller loop. 
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Chapter 3 

The effect of liquid viscosity on polygonal instability behaviour 

3.1 Effects of flow parameters on polygonal pattern instability 

Various studies on free surface swirling flows within cylindrical containers have revealed 

many parameters that affect the flow behaviour in many different ways and to different extents. 

These parameters include: disc rotating speed, disc diameter, liquid initial height, working fluid 

properties, boundary conditions as well as initial conditions and the spin up or spin down rate 

(time history). In this chapter, the effects of all mentioned control parameters are summarized 

and the effect of the working fluid kinematic viscosity on the flow behaviour will be studied 

extensively. Increasing the working fluid initial height was observed not only shifting a certain 

pattern's limits of endurance towards higher disc frequency ranges, but also influencing the 

existence of polygonal patterns (Vatistas 1990). In our studied experiments, for small initial 

heights {hi - 20 mm), 7V=3 to N=6 patterns were observed, losing the lowest mode shape (N= 2). 

As the height started increasing, the oval pattern (N= 2) was recognized but higher mode shapes 

disappeared. For example, at /?, = 30 mm, polygonal patterns N= 2 till N= 5 were observed and for 

hi = 40 mm, N= 2 till N=4 were the only observed. In this thesis, experiments were done using 

water at even higher initial heights (up to h, = 120 mm). Patterns N= 2 and N= 3 were the only 

observed and persisted for longer ranges of disc's speed as the height increased, which confirms 

the observations of Jansson et al. (2006) using water in a similar set-up. Not only the liquid 

initial height, but also the rotating disc diameter had influence on the patterns formation and 

limits of endurance (Vatistas 1990). As the disc's diameter increases, the ranges of disc's speed 

where certain patterns existed are shifted towards lower disc frequency values (existed earlier) 
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and lasted longer segments of disc's speeds. The initial liquid height and disc diameter were 

considered together as a general control parameter in the form of aspect ratio (AR=hj/R) in many 

related studies. In barotropic flows, discussed in chapter 1, where concentric cylinders were co-

rotating with relative velocities, varying the aspect ratio had huge influence on shear layer 

instabilities formation and evolution (Chomaz et al. 1988). At low AR's, high number of shear 

layer instability vortices existed which is consistent with interfacial instability phenomenon 

observed in the set-up configuration discussed here. The number of vortices recognized in the 

phenomenon under investigation increased when either the initial height was decreased or the 

disc's radius was increased (Vatistas 1990). 

Attempts of generating swirling flows in different geometrical containers partially filled 

with liquid, therefore varying the boundary conditions, have been studied and revealed different 

flow behaviour than the ones observed in cylindrical containers (Duck et al. 2001). Not only the 

container structure but also the states of the end and side walls have great influence on the 

swirling flow dynamics. Experiments with swirling flows driven by rotating one of the endwalls 

and/or sidewalls have been studied and the effect of the existence of top endwall on the flow 

behaviour has been observed to reveal different flow behaviours and responses (Spohn et al. 

1993). An extensive study on the spin up/down rates in fully filled axisymmetric flows can also 

be found in (Duck et al. 2001). Vatistas (1990) found that the rate of spin up/down of partially 

filled swirling flows has huge influence on the polygonal patterns appearance associated with 

slight hysteresis. This effect was confirmed in the current study, i.e., the higher the jumps in spin 

up/down, the earlier the polygonal patterns appearance and therefore the transition processes 

taking place. The surface tension effects have been considered in Jansson et al. (2006). By 
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introducing a surfactant into a swirling flow partially filled with water, they found that the 

dependence of the polygonal instability phenomenon on the surface tension is almost negligible. 

3.2 The influence of viscosity on polygonal patterns formation and limits of endurance 

Liquids with higher viscosity were found to resemble to great extend similar flow 

behaviour as of water, being the working fluid, but influencing the patterns formation. Jansson et 

al. (2006) found no more than N= 3 polygonal instabilities, using similar set-up and parameters 

condition as of water, but using ethylene glycol as the working fluid (15 times the viscosity of 

water). In this study, a more systematic study on the kinematic viscosity effects on instability 

patterns formation and limits of endurance has been done. Eight different aqueous glycerol 

mixtures were used in the experiments with viscosities varying from 1 up to 22 (0 ~ 75% 

glycerol) times the water's at room temperature (21°C). The detailed points of study were: 1, 2, 

4, 6, 8, 11, 15 and 22 times the water's dynamic viscosity (/(water) at room temperature. Although 

the viscosity of the mixture varied exponentially with the glycerol concentration (figure 10), 

closer points of study were conducted at low concentration ratios since significant effects have 

been recognized by just doubling the viscosity of water as it will be discussed below. The 

temperature of the working fluid was measured and recorded before and just after a typical 

experimental run and was found to be stable and constant (room temperature), therefore, the 

viscosity of the mixture was ensured to be constant and stable with time. Phase diagrams have 

been conducted and showed great approximation in defining the different phase regions for 

existing patterns in terms of disc's speed and initial height within the studied viscosity range. 
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Glycerol Concentration (%wt) 

Figure 10 Kinematic viscosity vs. glycerol concentration. 

3.2.1 Initial height hi = 20 mm 

Figure 11 shows the phase diagram at the lowest initial height in this study (hi = 20 mm) 

where all 5 polygonal patterns are recognized using the current apparatus. This figure starts with 

water as the working fluid where the expected patterns were observed, being Triangle (N= 3), 

Square (N= 4), Pentagon (N= 5) and Hexagon (N= 6). By gradually mixing glycerol with water, 

therefore increasing the mixture kinematic viscosity, the limits of endurance of all four mode 

shapes decreased significantly until the highest mode shape (N= 6) disappeared at viscosity equal 

to 2 times that of water, leaving only N= 5, N=4 and N= 3 patterns. When the viscosity reached 4 
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X /iwater-, both square and pentagon patterns were not observed. Triangular pattern was the only 

persisting equilibrium state but eventually, it was even destroyed as viscosity reached 8 x /uwatcr, 

leaving no polygonal patterns for the rest of the studied viscosity domain. An interesting 

observation from the first phase diagram plot is the fact that, it could have been reasonably 

presumed that increasing the viscosity would dominate the shear forces within the entire flow, 

therefore expecting early arrivals of polygonal patterns in terms of the disc rotating speed. Such 

prediction is clearly confirmed in figure 11. As the viscosity increased, all patterns occurred 

earlier until they eventually vanished. 

• •hexagon 

• •pen tagon 

• • squa re 

triangle 

2 4 6 

Viscosity (x n water) 

10 

Figure 11 Phase diagram for polygonal patterns observed through the viscosity domain at ht = 20 mm. 
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3.2.2 Initial height ht = 30 mm 

Moving to the intermediate initial height (A, = 30 mm) in this study, the phase diagram 

(figure 12) followed almost the same behaviour as in lower initial height. Using water (1 x 

/"water), oval, triangle, square and pentagon patterns were observed as explained earlier. As the 

working fluid viscosity increased, pentagon pattern first disappeared at double the water's 

viscosity followed by the square pattern at 8 x ^Water- Surprisingly, the oval pattern also 

disappeared when viscosity reached 8 x //water, leaving the triangular pattern as the only 

recognized pattern. At the highest aqueous glycerol mixture concentration (22 x yUwater), no 

patterns were recognized. Therefore, it is expected that the triangular pattern is fully destroyed 

somewhere between the studied concentration points (65% and 75% glycerol or 15 and 22 x 

/'water)- It is worth mentioning that the polygonal patterns followed the same trend by appearing at 

lower disc speed range until the triangular pattern became the only recognized instability where 

it followed a different trend and persisted for high RPM range. At high viscosity values, 

unstable, non-defined hollow vortex cores were observed until the triangle (N=3) pattern was 

formed. 
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Figure 12 Phase diagram for polygonal patterns observed through the viscosity domain at ht= 30 mm. 

3.2.3 Initial height ht = 40 mm 

At hi = 40 mm (figure 13), oval (N= 2), triangle (j¥=3) and square (N= 4) polygonal 

patterns were the only experienced ones using water as the working fluid. Gradually increasing 

viscosity of the fluid by adding glycerol, all three mode shapes' limits of endurance decreased 

significantly until the highest mode shape (7V=4) disappeared at viscosity equal 6 x //water, leaving 

only N= 3 and N= 2 patterns as the only persisting patterns for the rest of the studied viscosity 

domain. It is expected that the flow will follow the same behaviour as in lower heights which 

means losing both patterns eventually if the viscosity is increased beyond the studied region. The 

33 



general trend of the early appearance of polygonal patterns was also observed at this initial 

height. 

It is clearly observed from all performed experiments that the triangular pattern is the 

most persisting and stable pattern recognized and it is also associated with the oval pattern at 

high initial heights. A reasonable explanation for such observation might be the fact that as the 

polygonal patterns sides increase, the apexes (corners) become less sharp. Moreover, increasing 

the liquid's viscosity has direct proportionality with the shear forces which in incompressible 

flows governed by Navier-Stokes Equation gives rise to the deviatoric stress tensor of the flow 

which helps flattening pattern's boundary, therefore, distorting its well defined geometry and 

sharp apexes (G.K. Bachelor 2000). These two facts make it clearer why higher mode shapes are 

the first to disappear as the fluid's viscosity was increased gradually. Figure 14, shows oval and 

triangular patterns observed at same speeds and initial heights but different liquid viscosities (1, 

8, 22 x //water)- It can be easily recognized that the patterns boundary became distorted and the 

sharp corners of the polygonal patterns diverged and became much flattened, consequently as the 

viscosity increased. 

So far, the liquid's viscosity was found to have the tendency of initiating the polygonal 

instability patterns at earlier disc's speeds, at the same time, it worked as a destructive parameter 

for the interfacial symmetry breaking phenomenon observed within the hollow vortex core. Both 

conclusions are consistent with experiments done by Jansson et al. (2006) using ethylene glycol 

at equivalent aspect ratios. 
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Figure 13 Phase diagram for polygonal patterns observed through the viscosity domain at h,= 40 mm. 

(a) 
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(b) 

Figure 14 a) Oval pattern at constant parameters condition but three different viscosities; 
and (b) Triangular pattern at constant parameters condition but three different viscosities. 

3.3 Density influence on patterns formation 

Although, the effects of varying the kinematic viscosity of the working fluid on the 

polygonal patterns formation and limits of endurance have been studied, it is important to realize 

that mixing glycerol with tap water would indeed result in varying two individual parameters 

conditions at the same time, namely, the dynamic viscosity and specific gravity of the fluid. 

Therefore, it is important to carry further experiments being able to vary just one parameter at a 

time to analyze their effects on the polygonal patterns instability solely. The maximum change in 

fluids specific gravity in our study was 1.18, when using 75% glycerol in the aqueous glycerol 

mixture, at room temperature. Using brine (salt saturated water) was sufficient enough to slightly 

vary the specific gravity of the fluid, without significantly changing any other fluid's 

characteristics consequently, therefore, accounting for the slight change of density when the 

water/glycerol mixture was used. Saturating water with salt at room temperature resulted in a 

specific gravity of 1.254. Brine was used as the working fluid in three experimental runs at the 

three different heights under investigation. Brine was found to act in almost a similar behaviour 

as water. Varying the specific gravity of the working fluid has slightly influenced the pattern 

36 



formation and limits of endurance. The main observation was the fact that, increasing the 

specific gravity of the working fluid has slightly increased the limits of endurance of high mode 

shapes for all initial fluid heights (see figure 15); making them last longer ranges of disc's 

rotational speeds (fj). No other significant changes did occur when slightly increasing the 

working fluid's density by almost 25.4%. 

Therefore, one can confidently consider the slight change in the working fluid's specific 

gravity, when using a mixture of glycerol and water, is of almost no effect as compared to the 

great influence associated with varying the viscosity of the fluid. 
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Figure 15 Phase diagram for three different heights using water and brine as the working fluids. 
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3.4 Polygonal pattern's frequency variation 

In order to provide further quantification of the phenomenon, more detailed analysis on 

the experimental results obtained at the three different initial liquid heights (20, 30, 40 mm) with 

the 8 different liquid mixtures stated earlier are now discussed. Automatic processing of the 

images was executed using the MATLAB algorithm explained in Chapter 2 and the pattern's 

speed was computed for each set of images. Jansson et al. (2006) using similar set-up have 

observably quantified the polygonal pattern to rotating disc's frequencies with a mode-locking 

ratio of 1/N for all corresponding polygonal TV-sided patterns except for the oval pattern where 

the ratio was 2/3. Vatistas et al. (2008) using water as the working fluid have found that the 

stable pattern's frequency to disc's speed ratio is approximately constant and equal to 1/3 

irrespective of the mode shapes or the water initial height. The observation of Vatistas et al. 

(2008) has been confirmed for the three different heights studied in this thesis using similar 

measuring technique. Figure 16(a) shows a superposition of the triangular pattern power spectra 

at three different initial heights using water as the working fluid. The strongest peaks coincided 

at a frequency ratio (frJfd) of approximately 1/3 as shown in the figure, with a maximum 

deviation of 0.03 Hz or 9%. Similar mode-locking ratio was also confirmed for all other mode 

shapes. Figure 16(b) shows the power spectra for all Argons observed at initial height h,= 40 mm 

using water as working fluid. 
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Figure 16 (a) Power spectra superposition for triangular pattern at three different heights; and (b) Power 
spectra superposition for all mode shapes at h,= 40 mm. 
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Various viscous mixtures were also found to satisfy the same mode-locking frequency 

ratio with 6% average deviation. Figure 17(a) shows a superposition of triangular pattern 

observed using fluids with three different viscosities ranging from one, six and eleven times the 

water's viscosity. It is clearly shown that the normalized pattern frequencies also overlapped at 

the same mode-locking ratio of approximately 1/3. Figure 17(b) also shows the power spectra of 

all patterns recognized using aqueous glycerol mixture with four times the viscosity of water. 
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Figure 17 (a) Power spectra superposition for triangular pattern using three different viscosity fluids; and 
(b) Power spectra superposition at hj = 40 mm for all mode shapes using a mixure with 4 x /<v;ateT. 

All frequencies plotted above corresponded to stable patterns; i.e. steady-state polygonal 

patterns at the beginning of their range of existence. The speeds of the patterns increased linearly 

with the disc's rotational speed for all mode shapes. An abrupt jump in the pattern's frequency 

took place during transitional process from any mode N to a higher N+1 mode shape. Figure 

18(a) shows the relationship between the pattern's speed ( f p ) and the disc's frequency (jd) using 

water at three initial liquid heights. It is found that the pattern's speed for all heights increases 

linearly, with approximately constant slopes for all polygonal patterns, with the disc's speed. The 

sudden jumps in pattern's frequencies correspond to transition processes between two 

subsequent mode shapes (polygonal patterns). As it was discussed in the last section, for initial 
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water height of 20 mm, polygonal patterns N=3 up till N= 6 were observed. As for ht = 30 mm, 

the observed polygonal patterns were N=2 (oval) all the way up to N=5 (pentagon). On the other 

hand, polygonal patterns N= 2, N= 3 and N=4 are the only observed patterns at initial water height 

hi = 40 mm. Therefore, the first growing straight line corresponds to the triangular pattern for the 

lowest height and oval pattern for the other two heights. The vertical jump in the pattern's 

frequency corresponds to the transition to a subsequent higher mode shape, respectively. Linear 

fitted curves for the scattered relationship plot at all initial heights have been plotted (see figure 

18(b)). The zero intercept slopes of the general propagation of the pattern's frequency during the 

entire phenomenon's disc frequency span confirm the mode-locking frequency ratio of 

approximately 1/3 found by Vatistas et al. (2008). 

(a) 
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(b) 

Figure 18 (a) Pattern's frequency propagation with increasing disc's speed (b) Linear fitted slopes for 
frequency propagation. 

Similar relationship curves were developed for higher viscous working fluids. Figure 

19(a) shows the relationship between both frequencies at same initial height of A,- = 40 mm but 

using water and aqueous glycerol mixture with viscosity 4 x //water- It appears obvious that higher 

viscous flow shows relatively faster rotating speeds ( f p ) through the entire disc frequency range 

(fd). Moreover, the earlier transition between all mode shapes is clearly visible here. Figure 19(b) 

shows another plot for the polygonal patterns frequency propagation using working fluids with 

higher viscosities of 15 and 22 x //water, at the same initial height of /z, = 40 mm. 
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Figure 19 (a), (b) Pattern's frequency propagation with increasing disc's speed; and (c) Linear fitted 
slopes for frequency propagation at /?,= 40 mm. 

At these two viscosities, the oval and triangular patterns are the only observed patterns, 

the polygonal frequencies followed similar trend as the one observed at lower viscosities. The 

higher viscous fluid shows faster rotating speeds through the entire disc varied frequency range 

as well as the transition process which also moved toward lower disc speeds confirming the same 

behaviour. 
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Figure 19(e), plots the linear fitted straight lines for all four different viscosity working 

fluids with their corresponding line style. It is clearly shown that the rate of propagation of the 

polygonal pattern's rotational speed increased gradually with increasing liquids viscosity. A 

maximum increase of about 25% in the polygonal pattern's rotational frequency has been 

recorded between the maximum and the minimum viscosity values used in this study. Figure 20 

shows also the linear fitted straight lines for the scattered polygonal pattern speed propagation 

with increasing disc speed at three different viscosities and initial liquid height of ht = 20 mm. 

The rate of polygonal patterns speed up increase gradually as the viscosity is increased. 

Figure 20 Linear fitted slopes for frequency propagation at hf= 20 mm. 
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3.4 Effect of density on pattern's rotating frequency 

The change of the pattern's frequency with increasing disc speed followed almost the 

same trend as using water with mode-locking frequency ratio of approximately 1/3 (see figure 

21(c)). Figures 21 (a) and (b) shows the superposition of the extracted power spectra for triangle 

patterns at the three different studied heights and all mode shapes recognized at hi = 20 mm, 

respectively, using brine as the working fluid. A negligible increase in the polygonal patterns' 

rotational frequencies has been recognised when slightly increasing the working fluid's specific 

gravity. As a result, it could be concluded, that slightly increasing the specific gravity of the 

working fluid has essentially no influence on the polygonal patterns' rotating speeds. 
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Figure 21 (a) Power spectra superposition for triangular pattern using brine at three different heights; (b) 
Power spectra superposition at ht = 20 mm for all mode shapes using brine; and (c) Linear fitted slopes for 

frequency propagation. 
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3.5 Concluding remarks 

In this chapter, the effect of varying the working fluid's viscosity has been analyzed 

based on three main criteria, being the polygonal patterns instability formation, limits of 

endurance and rotational speeds. Phase diagrams defining the observed polygonal patterns at 

three different initial heights and along a certain range of viscosity values have been constructed. 

Two main observations have been recognized. First, it was found that gradually increasing the 

viscosity of the rotating fluid resulted in early developments and transitions of polygonal mode 

shapes in terms of disc's rotational speed. Second, the viscosity has been recognized as a 

destructive parameter of the polygonal instability observed under shallow liquid conditions 

within the hollow vortex core. All mode shapes recognized using water as the working fluid have 

been destroyed and disappeared as the viscosity of the working fluid was increased gradually. 

Triangular patterns were the only long lasting stable shapes for all heights and viscosities values 

studied which might be recognized as the most persisting and stable polygonal pattern observed 

in such symmetry breaking phenomenon. 

The second part of this chapter dealt with analyzing the variation in the rotating 

polygonal pattern's speeds. It has been confirmed that all mode shapes follow a constant 

increasing propagation of rotating frequency of about 1/3 (Vatistas et al. 2008). Furthermore, it 

was found that increasing the viscosity of the fluid resulted in significant increase in the liquids 

rotating speeds (up to 25% increase) for the same disc's speeds. An explanation for such 

observation might be the fact that, increasing the liquid's viscosity intensified the azimuthal 

shear forces experienced in the rotating flow, which has been confirmed by many studies as 
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being the main driving force for the development and propagation of such polygonal instabilities 

observed within a hollow vortex core (Jansson et al.2006, Gallaire and Chomaz 2003). 
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Chapter 4 

Influence of viscosity on the transitional process between polygonal patterns 

4.1 Symmetry breaking in swirling flows 

The identification and characterization of the transition from symmetrical to non-

symmetrical swirling flows is of fundamental interest. As stated in chapter 1, many research 

studies were devoted in studying the mechanism and the nature of the symmetry breaking 

phenomenon observed in swirling flows within cylindrical containers. 

Whether confined or free surface flow, the general conclusion from all studies confirmed 

the fact that, generally, the Reynolds number and aspect ratio (water initial height H / cylinder 

container radius R) are the two main parameters influencing the symmetry breaking 

phenomenon's behaviour. Specifically, the shear forces between working fluids and the endwalls 

and/or between different flow regimes within the swirling flow are the dominant and original 

driving forces for such phenomenon occurrence. In fully filled confined flows, the flow is 

triggered by both sides and end walls while in open cylindrical containers, the top endwall does 

not exist and the surface acts freely. Vogel (1968) and Escudier (1984) studied the transitional 

process in confined flows and found that symmetry breaking occurs when a critical Reynolds 

number was reached for each different aspect ratio. Vogel (1968) used water as the working 

fluids in his study where he observed and defined a stability range, in terms of aspect ratio and 

Reynolds number, for the vortex breakdown phenomenon which occurred in the form of a 

moving bubble along the container's axis of symmetry. Escudier (1984) later extended the study 

by using an aqueous glycerol mixture (3 to 6 times the viscosity of water) and found that varying 

the working fluid viscosity caused changes in the critical Reynold's number values. He also 
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observed that for a certain range of aspect ratio and viscosity, the phenomenon of vorticity 

breakdown has changed in behaviour, revealing more vortices breakdown stability regions than 

the conventional experiments using water as the working fluid. 

Where in open free surface containers under shallow liquid conditions using water as the 

working fluid, Vatistas (1990) studied the transitional flow visually and found that the range of 

the disc's RPM where the transitional process occurs shrink as the mode shapes number increase. 

Jansson et al. (2006) concluded that the endwall shear layers as well as the minute wobbling of 

the rotating disc are the main two parameters influencing the symmetry breaking phenomenon 

and the appearance of the polygonal patterns. Vatistas et al. (2008) studied the transition between 

polygonal patterns from N to N+l, using image processing techniques, with water as the working 

fluid and found that the transition process from N to a higher mode shape of N+l occurs when 

their frequencies ratio (N/N+l ) locks at (N-l/N'), therefore following a devil staircase scenario 

which also explains the fact that the transition process occurs within a shorter frequency range as 

the mode shapes increase. Speculating the transition process as being a bi-periodic state, the only 

way for such system to lose its stability is through frequency locking (Berge et al. 1984). 

Recently, Ait Abderrahmane et al. (2009) studied the transition between equilibrium states under 

similar configurations using nonlinear theory approach and found that the transition occurs in 

two steps being, a quasi-periodic and frequency locking stages. 

Having shown the effect of viscosity on the equilibrium states (i.e. stable polygonal 

patterns), in this chapter, the influence of liquid's viscosity on the swirling flows symmetry 

breaking mainly during the transition of mode shapes from N to N+l pattern will be studied 

using similar image processing approach used in Vatistas et al. (2008). It is interesting to find out 
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whether the liquid viscosity will have influence on the transition process as it the case in fully 

filled swirling flows or not. 

4.2 Transition between equilibrium states using water as the working fluid 

Experiments done by Vatistas et al. (2008) were performed using water at two initial 

heights (aspect ratios) of 30 and 40 mm. Due to the fact that the ranges of disc's RPM shrink 

significantly as the equilibrium states (mode shapes) increase, Vatistas et al. (2008) limited their 

study for the transition processes between modes 2 to 4. In this section, the transition process 

explained by Vatistas et al. (2008) will be confirmed and further extended by using water as the 

working fluid at two different initial heights (40 mm and 20 mm). The latter, allowed the 

transition processes between the rest of the mode shapes (4 to 6) to be captured and further 

analyzed. 

4.2.1 Initial height /i/= 40 mm 

First experiment was done at initial height ht = 40 mm where transitions from N = 2 —> N 

= 3 and N= 3 —> N= 4 were recorded and analyzed using power spectral analysis as described in 

chapter 2. Similar to the procedure used in chapter 3, starting with stationary undisturbed flow, 

the disc speed was set to its starting point of 50 RPM and was then increased with increments of 

1 RPM. Sufficient time was let after each increment for the flow to stabilize. At a disc speed of 

2.43 Hz (146 RPM), the first mode shape (Oval) appeared on top of the disc surface. At the 

beginning of the N=2 equilibrium state, the vortex core is fully flooded. While increasing the 

disc speed gradually, several sets of 1500-bit gray-scale images were captured and recorded. 

Recorded sets ranged 3 RPM in between. Systematic tracking of the patterns speed and shape 

evolution were recorded and the recorded images were processed using the same algorithm 



procedure described in chapter 2. The evolution of the oval equilibrium state shape and rotating 

frequency is shown in figures 22(a-d). Starting with a flooded core at fp = 0.762 Hz in figure 

22(a) where the vertex of the inverted bell-like shape free surface barely touched the disc 

surface, figure 22(b) shows the oval pattern after gaining more centrifugal force by increasing 

the disc speed by 9 RPM; the core became almost dry and the whole pattern gained more size 

both longitudinally and transversely with a rotating frequency of fp = 0.791 Hz. It is clearly 

shown that at this instant, one of the two lobes of the pattern became slightly fatter than the 

other. Figure 22(c) shows shape development and rotational speed downstream the N= 2 range of 

existence. It is important to mention that once the oval pattern is formed, further increase in the 

disc speed - therefore the centrifugal force applied on the fluid- curved up the oval pattern and 

one of the lobes became even much fatter giving it a quasi-triangular shape. Figure 22(d) features 

the end of the oval equilibrium pattern in the form of a quasi-triangular pattern and therefore the 

beginning of the first transition process (N= 2 to N=3). The transition process was recorded, 

processed and the corresponding power spectrum was generated. The power spectral analysis 

revealed two dominant frequencies from the extracted time series function developed from the 

captured images: frequency fm corresponds to the original oval pattern and frequency fs 

corresponds to the growing subsequent wave N= 3, which is a travelling soliton-like wave 

superimposed on the original oval pattern therefore forming the quasi-triangular pattern (Ait 

Aberrahmane et al. 2009). Further increasing the disc speed resulted in forming and stabilizing 

the triangular mode shape (N= 3) with a flooded core; both the troughs and apexes of the 

polygonal pattern receded and the core area shrank significantly. 
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Figure 22 (a), (b), (c) Oval pattern progression and corresponding power spectra; and (d) Oval to 
triangular transition N=2 to N=3 and corresponding power spectrum. 
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Following the same procedure, the development of the triangular pattern and its transition 

to square (N=4) shape were recorded, image processed and analyzed. Figures 23 (a-e) show the 

power spectra plots and their corresponding sample image from the set recorded and used in 

generating each of the power spectra. Similarly, the behaviour of the oval pattern's shape 

development and transition was also respected for the triangular pattern evolution. The pattern's 

spin-up rate shows a linear trend as discussed in chapter 3. 
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Figure 23 (a), (b), (c) Triangular pattern progression and corresponding power spectra; (d) Transitional 
process from triangular to square pattern; and (e) Square pattern and corresponding power spectra. 
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Ait Aberrahmane et al. (2009) has described the transition process in the form of a 

rotating solid body N shape associated with a traveling "soliton" like wave along vortex core 

boundary layer. In this thesis, the evidence of such soliton-like wave is revealed. Figure 23 (a) 

shows the stable triangular pattern just few RPM downstream after the transition process took 

place. The equivalent evolution of the triangular pattern through its existing range is shown in 

figures 23 (a-c). Just before transition took place, colored images were recorded for better 

visualization. The colored images were found very useful in illustrating the observed 

stratification of the hollow vortex core where each colored layer indicates a unique water depth 

within the vortex core. It is worth noticing that the water depth increases continuously as we 

move away from the center of the disk (due to the applied centrifugal force). Starting with the 

central white region which corresponds to a fully dry spot of the core and going gradually 

through different water depth phases until reaching the black color region right outside the 

polygonal pattern boundary layer. Moving to the most interesting part which is the transition 

process, figure 24 features the quasi-square pattern mentioned earlier. Giving a closer look at the 

sequence of images, one could easily identify the following: the three lobes or apexes of the 

polygonal pattern are divided into one flatten apex and two almost identical sharper apexes. 

Keeping in mind that the disc, therefore the polygonal pattern, is rotating in the counter 

clockwise direction and that the sequence of images is from left to right, by tracking the flatten 

lobe, one could easily recognize that an interchange between the flatten lobe and the subsequent 

sharp lobe (ahead) takes place (see third row of images). In other words, now the flatten apex 

receded to become a sharp stratified apex and the sharp lobe gained a more flattened shape. Such 

result visually confirms the fact that transition takes place through a soliton-like wave travelling 

along the vortex core boundary but with a faster speed than the parent pattern. This first stage of 
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the transition process was called the quasi-periodic stage in Ait Abderrahmane et al. (2009) 

study. The quasi-periodic stage takes place in all transitions until the faster travelling soliton-like 

wave synchronizes with the patterns rotational frequency forming and developing the new higher 

state of equilibrium pattern. Vatistas et al. (2008) found that the synchronization process takes 

place when the frequencies ratio of both pattern (N) and the subsequent pattern developed by the 

superimposed soliton wave (N+l) lock at a ratio of (N-1J/N. Therefore, for transition from N= 2 

to N= 3, the synchronization takes place when the frequencies ratio are rationalized at 1/2. And 

the transition N— 3 to N= 4, takes place when the ratio between both frequencies are equal to 2/3. 

In the above illustrated two transition processes, the frequency ratio for first transition was equal 

to fN! fN+I =fm / fs= 1.699/3.047=0.56 ~ 1/2. On the other hand, the second transition took place 

when fN / fN+! = fm I fs = 3.28/4.922=0.666 ~ 2/3. Both results confirm Vatistas et al. (2008) 

observation. 
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4.2.2 Initial height = 20 mm 

Following the same trend, the second experiment was conducted using water at an initial 

height of 20 mm. At this low aspect ratio, transition between higher mode shapes was tracked 

and recorded. Using similar set-up and experimental procedure, the transition from square mode 

(A/=4) to pentagonal pattern (iV=5) and from pentagonal to hexagonal pattern (N=6) were 

successfully recorded and image processed for the first time in such analysis. Following the same 

behaviour, the transition occurred at the expected frequency mode-locking ratio. Figure 25(a) 

shows the third polygonal transition, from N=4 to N= 5. The frequency ratio of the parent pattern 

to the soliton-like wave is fmlfs = 4.102/5.449 == 0.753 ~ 3/4. Similarly, figure 25(b) shows the 

transition power spectrum for the final transition process between polygonal patterns, which is 

from N=5 to N=6 polygonal patterns. The frequency ratio fmlfs = 5.625/6.973 = 0.807 which is 

almost equal to the expected rational value 4/5. With these two experimental runs, the 

explanation of the transition process between polygonal patterns observed within the hollow 

vortex core of swirling flows generated in cylinder containers under shallow water conditions is 

confirmed for all transitional processes. 
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Figure 25 (a) Square to pentagonal transition; and (b) Pentagonal to hexagonal transition. 
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4.3 Transition between equilibrium states using aqueous glycerol as the working fluid 

One of the main objectives of this thesis is finding the influence of the liquid viscosity 

not only on the existence and limits of endurance of polygonal patterns, but also, the transitional 

process from any N mode shape to a higher N+l mode shape. As mentioned in chapter 3, eight 

different liquid viscosities were used in this study ranging from 1 up to 22 times the viscosity of 

water. All transitional processes between subsequent mode shapes were recorded, and acquired 

images were processed. Using the same procedure as in last section, the frequency ratio of the 

parent pattern N to the subsequent growing wave N+l has been computed and tabulated in table 

1 as follows: 

Table 1 Transition mode-locking frequencies for different viscosity fluids. 
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As shown in the table, the maximum deviation (% error) from the expected mode-locking 

frequency ratio ( f m / f s ) always appeared in the first transition (N=2 to ,¥=3). A reasonable 

explanation for such induced error is the fact that, the higher the number of apexes per full 

pattern rotation, the more accurate is the computed speed of the pattern using the measuring 

technique explained before. Therefore, throughout the conducted analysis, the most accurate 

pattern's speed is the hexagon and the least accurate is the oval pattern. Apart from that 

significant deviation, one can confidently confirm that even at relatively higher viscous swirling 

flows, the transition between polygonal patterns instabilities takes place when the parent pattern 

(N) frequency and the developing pattern (N+l) frequency lock at a ratio of (N-l)/N (Vatistas et 

al. 2008). 

4.3.1 Confirmation of the quasi-periodic stage in polygonal patterns transition 

As explained earlier, transition has been found to occur in two main stages being the 

quasi-periodic and the frequency-locking stages (Abderrahmane et al. 2009). In the last section, 

it was found that frequency mode-locking does exist in polygonal patterns transition irrelative of 

the mode shapes, liquid heights and the liquid viscosity (within the studied region). In this 

section, the quasi periodic phase will be further proven and confirmed. Earlier in this chapter, the 

quasi-periodic state in the transition of N= 3 to N= 4, using water as the working fluid, was 

observably described in figure 24. To further analyze the quasi-periodic stage, a technique has 

been developed which animates the actual polygonal patterns instabilities but without the 

existence of the speculated travelling soliton-like wave along the patterns boundary layer. Using 

MAPLE plotting program, all mode shapes replica have been plotted and printed. Table 2 shows 

the plots and their corresponding plotting functions. Printed figures were placed on the rotating 



disc under dry conditions one at a time. The disc was rotated with corresponding pattern's 

expected speeds under normal working conditions. Such technique gave full control of the 

rotating pattern. Therefore, both speed and geometry of the patterns were known at all times. 

Sets of 1500 8-bit images were captured and processed using similar computing procedure. 

Table 2 Patterns replica with corresponding functions. 

N Pattern plot Plot function 

2 Wi r =1+ 0.2 sin(2 0) 

2 - 3 r =1+ 0.2 sin(2 9) + 0.1 sin(3 0 +1) 

3 PI r =1+ 0.1 sin(3 0) 

3 - 4 rs] r =1+ 0.1 sin(3 0) + 0.15 sin(4 0 +1) 
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Power spectra of processed sets of images revealed similar frequency plots. Starting with the 

oval-like shape, the disc was rotated at a constant speed of 1 Hz and the power spectrum was 

generated from the extracted images and plotted as shown in figure 26. 
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Figure 26 Power spectrum for N=2 pattern replica. 

Since the oval pattern speed is controlled in this case (by disc speed), the frequency 
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frequency extracted is shown in figure 26, fm = 1.934 Hz (3.3% error). Following the same 

procedure, other polygonal patterns replica were printed to the disc, rotated, captured and 

processed subsequently. Figures 27 (a) and (b) show the power spectra generated from rotating 

the quasi-triangular and the quasi-square patterns, respectively. 
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Figure 27 Power spectrum of transition processes using patterns replica (a) N=2 to N= 3; and (b) A-3 to 

7V=4. 

Figure 27 (a) shows a power spectrum generated from the set of pictures featuring a 

quasi-triangular pattern captured at 30 fps. The power spectrum revealed two dominant 

frequencies being/,„=3.809 Hz and/,=5.742 Hz corresponding to the oval and triangular patterns, 

respectively. Since the quasi-triangular pattern is stationary and under full control, it could have 

been presumed that the frequency ratio (N/N+l) would have a value of 2/3 since the replica 

pattern is generated by superimposing the oval and triangular functions. The actual extracted 

frequency was fm/fs=3.809/5.742=0.663-2/3. Comparing this frequency ratio with the real 

polygonal patterns mode-locking ratio 1/2 explained earlier in this chapter, it is clear that the 

ratio is totally different which proves that both patterns are not behaving similarly although 

having generally similar instantaneous geometry, therefore, the actual rotating pattern does not 
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rotate rigidly as the pattern replica does, but rather deforms in such a way that the ratio of the 

two frequencies is smaller which confirms the idea of the existence of the fast rotating soliton-

like wave (fs). 

Indeed, moving to the second transition process, triangular to square, as shown in figure 

27(b). The frequency ratio was found to be 3/4 as expected since the function used to plot the 

quasi-square pattern is the superposition of both functions used in plotting the pure triangular and 

square patterns shown in table 2. Comparing this ratio with the actual mode-locking ratio 2/5 

observed with real polygonal patterns, it is clearly obvious that the ratio is still smaller which 

respects the existence of a faster rotating wave along the triangular pattern boundary that 

eventually develops the subsequent square pattern as visualized earlier using the colored images. 

From these two experiments, along with the visual inspection discussed earlier in this chapter, 

the existence of the fast rotating soliton-like wave (N+l) along the parent pattern boundary layer 

(N) is verified, therefore, the quasi-periodic stage. 

4.4 Concluding remarks 

In this chapter, the transition process experienced between polygonal patterns instabilities 

observed within the hollow vortex core of rotating flows in cylindrical container has been 

analyzed. In the experiments of Ait Abderrahmane et al. (2009), the transition between polygonal 

patterns was explained to occur through two main phases. The first phase included a quasi-

periodic behaviour between the two mode shapes included in the transition. The second stage 

included frequency mode-locking of both subsequent patterns when the bi-periodic state loses its 

stability through synchronization of both frequencies (Berge et al. 1984). In this thesis, both 

stages have been considered individually and the explanation of Ait Abderrahmane et al. (2009) 



was further validated and analyzed. First, the quasi-periodic stage was tackled using two 

different techniques, being a natural visually-based technique and an ad-hoc animated technique. 

The first technique was performed by simply recording a sequence of colored images of the 

transitional processes between different polygonal patterns and analyzing the behaviour of the 

varying stratification of the pattern's boundary with time. Although, from the visual point of 

view, the existence of a fast moving wave along the parent pattern boundary confirms 

explanation of Ait Abderrahmane et al. (2009), another method was implemented to further 

enhance that proof. This method considered plotting similar patterns replica using MAPLE 

program, attaching them to the disc's top surface and reproducing similar experiments but under 

dry conditions. Images of the artificial polygonal patterns were captured, processed and finally 

compared with the original experiments considered using real flows. The processed data have 

pointed out a significant conceptual idea that gave a complete meaningful confirmation of the 

first transitional stage. If the real quasi-polygonal patterns were rigidly rotating, the frequency 

ratio of both superimposed wave functions would have been proportional to their number of 

corners which is not the case here. The second part of this chapter dealt with the second stage of 

polygonal instabilities transition which includes frequency mode-locking (synchronization) of 

subsequent polygonal patterns. The frequency mode-locking between any N sided polygonal 

pattern to the subsequent N+l pattern was confirmed to follow a devil staircase scenario 

(Vatistas et al. 2008) following a consistent ratio of N-l/N. Although the liquid viscosity was 

found to vary the existence, limits of endurance and relative speeds of the polygonal patterns, the 

frequency mode-locking ratio of subsequent patterns was found to be respected irrespective of 

the fluid viscosity and mode shapes. In this thesis, the transitions between high mode shapes 
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were captured and further analyzed, therefore completing the extensive explanation done by Ait 

Abderrahmane et al. (2009). 
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Chapter 5 

Conclusion 

The main objective of this research study was to determine the effect of liquid viscosity, 

of the working fluid, on the instability of polygonal patterns observed within the hollow vortex 

core generated by rotating a disc near the bottom of a cylindrical container under shallow liquid 

conditions. The lack of a systematic study in this topic made it of great interest to explore. The 

effect of liquid viscosity has been measured based on three main criteria, the existence and limits 

of endurance of polygonal patterns, the polygonal patterns rotating speed and finally, on the 

transitional behaviour between subsequent polygonal patterns. The viscosity was varied by 

mixing glycerol with tap water. Gradually increasing the liquid's viscosity was found to vary the 

existence and limits of endurance of the polygonal instabilities observed within the hollow 

vortex core. The limits of endurance of all polygonal patterns were found to decrease 

significantly by increasing the liquid viscosity until all mode shapes were eventually destroyed 

and never recognized, beginning with high mode shapes and progressing to lower polygonal 

patterns. For all studied heights, increasing the viscosity initiated the instabilities earlier, 

therefore shifting the whole phenomenon towards lower values of disc speeds, which is 

consistent with the experiments done by Jansson et al. (2006) using ethylene glycol as the 

working fluid. Generally, the oval and triangular patterns were found to be the most persisting 

polygonal instabilities throughout the study. A reasonable explanation for such observation is the 

fact that, governing the swirling flow by Navier-Stokes equation, it is speculated that since the 

viscosity dominates the shear forces in the flow, therefore, it gives rise to the deviatoric stress 

tensor of the flow surface diverging its apexes and therefore distorting its geometry. Since the 



apexes or corners of the polygonal patterns become less sharp as they increase in number, it is 

reasonable that mode shapes will lose their configuration progressively, starting with high mode 

shapes (least sharp) and progressing to low mode shapes (most sharp), as the viscosity is 

increased gradually making the triangular and oval patterns the longest lasting patterns 

recognized. 

Another new finding concerns the polygonal patterns rotational speed variation as the 

disc speed was increased. Gradually increasing the liquid viscosity was found to increase the 

relative speed of the polygonal patterns. A maximum speed increase of 25% was recognized by 

increasing the working fluid viscosity to 22 times the viscosity of water, at initial height of 40 

mm. The general polygonal pattern speed ( f p ) propagation rate with increasing disc speed (fd) 

was found to concise approximately around fp/fd=l/3 which confirms the results obtained by 

Vatistas et al. (2008). 

Mixing glycerol with water has not only increased the liquid viscosity, but its specific 

gravity as well. Brine was used in the experiments as the working fluid to vary the specific 

gravity of the liquid solely without significantly changing any other parameters. It was found that 

increasing the specific gravity of water by 25% had an almost negligible effect on all studying 

criteria as compared to the effect associated with varying the viscosity. 

The effect of varying the working fluid viscosity on the transitional processes between 

subsequent polygonal patterns was addressed in this thesis. In his study, Ait Abderrahmane et al. 

(2009) considered the polygonal patterns transitional process to take place through two 

subsequent phases: a quasi-periodic stage and a frequency mode-locking stage. Both stages have 

been further confirmed and analyzed. The transitional process was analyzed using the same 8 
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different viscosity mixtures. The quasi-periodic stage was first tackled using two different 

techniques, a visual method and an animated method. The deformation of the colored stratified 

boundary layers of polygonal patterns were inspected during transition process of polygonal 

patterns and the existence of a fast rotating wave-like deformation was recognized which 

confirms the idea of the co-existence of a soliton-like wave that initiates the quasi-periodic stage 

at the beginning of the transition. In order to further materialize this observation, experiments 

were re-conducted using fixed patterns replica featuring the quasi-periodic geometry of 

polygonal patterns under dry conditions. Such technique allowed full control of the patterns 

geometry and speed at all time, therefore working as a reference to the real experiment 

performed under wet conditions. The experiments revealed an interesting basic idea that was 

useful when addressing the significant difference in behaviour associated with the real patterns 

transitions. The second part of the transition process included the frequency mode-locking ratio 

of subsequent patterns. Dealing with the first part of the transition process as being a bi-periodic 

state or phase, in order for such state to lose its stability, a synchronization event has to occur 

(Berge et al. 1984). This synchronization has been confirmed to occur when the frequency ratio 

of the parent pattern N to the subsequent pattern N+l rationalized at (N-l)/N value (Vatistas et 

al. 2008). The frequency mode-locking phenomenon was found to be respected even at relatively 

higher viscosity fluids when mixing glycerol with water. 
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5.1 Contribution to knowledge 

Despite some evidences of the important role of the fluid viscosity on the polygonal 

pattern instabilities observed within the hollow vortex core, a systematic study has not yet been 

carried out. This thesis contributed to the understanding of the role of viscosity in the 

development, evolution, propagation speed and transition processes of the polygonal instabilities 

experienced within hollow vortex core. With this study, one could confidently recognize the role 

of the shear stresses experienced within swirling flows on the symmetry breaking and polygonal 

insatiability experienced within cylinder containers by a rotating disc near its bottom under 

shallow liquid conditions. 
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Appendix A 

MATLAB algorithm 

0 / 0 = = = = = = = = = = = = = = = = = = = = 

close all 
clear all 
clc 
i=3; 
fhame=int2str(i); 
fiiame 1 ='F: \h3 3 water\266\pattern_000'; 
fhame=strcat(fhame 1 ,fiiame); 
fiiame=strcat(fhame,'.bmp'); 
im=imread(fhame); 
im=im( 1:1024,1:1200); 
G=imhist(im)/numel(im); 

i=501; 
fiiame=int2str(i); 
fiiame 1 - F :\h=3 0mm water\2.72t\pattem_0'; 
fname=strcat(fhamel,fiiame); 
fhame=strcat(fname,'.tif); 
im=imread(fiiame); 
im=im(l:1024,1:1280); 
G1 =imhist(im)/mimel(im); 

i—1013; 
fhame=int2 str (i); 
fiiame 1 ='F:\h=30mm water\2.72t\pattern 
fhame=strcat(fnamel, fiiame); 
fiiame=strcat(fname,'.tif); 
im=imread(fiiame); 
im=im(l: 1024,1:1280); 
G2=imhist(im)/numel(im); 

K=l; 
for j=l: 1500 

K=K+1; 
%i=0000+G-l); 
H; 

fiiame=int2str(i); 
if i<10 
fiiame 1 ='F:\h3 3 water\266\pattern_000'; 
end 
if i>=10 
fiiamel='F:\h33water\266\pattern_00'; 
end 
ifi>=100 
fiiame 1='F: \h3 3 water\266\pattem_0'; 
end 



ifi>=1000 
fhame l='F:\h33water\266\pattem_'; 
end 
fhame=strcat(fhame 1 ,fhame); 
fhame=strcat(fhame,'.bmp'); 
im=imread(fhame); 
im=im(l: 1024,1:1200); 
im=histeq(im,G); 
im=intrans(im, 'gamma', 0.7); 
if i<400 
im=histeq(im,G); 
end 
if i>=400 

im=histeq(im,Gl); 
end 
if i>730 

im=histeq(im,G2); 
end 

% figure 
% imshow(bim) 
h=fspecial('gaussian',25,25); 
bim=imfilter(im,h, 'replicate'); 
bim=im2bw(bim,37.5/255); 
bim=imfill(bim,'holes'); 
bim=imclearborder(bim); 
%figure; 
%imshow(bim); 
B0=boundaries(bim);d=cellfun('length',B0);[max_d,k]=max(d);b0=B0{k};[M,N]=size(bim); 
al=ones(l,10)/10; 
% figure 
% imshow(im) 
% hold on 
bO=filtfilt(al,l,bO); 

%plot(b0(: ,2) ,b0(:,l));% bO(:,2)=X;bO(:,l)=Y 
%plot(466,390,'k7MarkerSizel,100); 

% pause(0.5) 
[st0(: j),angle0(: j),xO(j),yO(j)]=signature(bO); 
for i=l:max(size(bO)) 

b0(i, 1 )=b0(i, 1 )-x0(2); 
bO(i,2)=bO(i,2)-yO(2); 
end 

%figure,plot(angleO,stO); 
fd=3.105/3; 
Phi=(k-l)*2*pi*fd/30; 
L=[0,0,1]'; 
C=zeros(max(size(b0)), 1)'; 
D=zeros(3 ,max(size(b0))); 
for i=l :max(size(b0)) 
A=[b0(i,2)'; b0(i,l)'; C(l,i)]; 
B=RotVecArAxe(A,L,Phi); 
D(:,i)=B; 
end 
bl=D(2,:)';b2=D(l,:)'; 
b l=[bl b2]; 
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[stl(: j),anglel(:,j),xl(j),yl(j)]=signature(bO); 
[st2(: j),angle2(: j),x2(j),y2(j)]=signature(bl); 
% figure,plot(angle2,st2); 
% hold on 
% plot(b 1 (: ,2),bl (:, l),'r'); 
% pause(O.l) 
% close 
end 
for j=l:360 

[p,f]=spectrum(st2 (j ,2:1:1500),512,256,512,30); 

P(:j)=p(:,2); 
end 
Pm=mean(P'); 

figure(l) 
semilogy(f,Pm,'k') 

a ——===—== o 



Experimental apparatus 



Viscosity of aqueous glycerine solutions 

Table 3 Viscosity of aqueous glycerine solutions 

K B ( R I B H i U K M H S S 
o(1) 1.792 1.308 1.005 0.8007 0.6560 0.5494 0.4688 0.4061 0.3565 0.3165 0.2838 

10 2.44 1.74 1.31 1.03 0.826 0.680 0.575 0.500 - - -

20 3.44 2.41 1.76 1.35 1.07 0.879 0.731 0.635 - - -

30 5.14 3.49 2.50 1.87 1.46 1.16 0.956 0.816 0.690 - -

| 40 8.25 5.37 3.72 2.72 2.07 1.62 1.30 1.09 0.918 0.763 0.668 

50 14.6 9.01 6.00 4.21 3.10 2.37 1.86 1.53 1.25 1.05 0.910 

60 29.9 17.4 10.8 7.19 5.08 3.76 2.85 2.29 1.84 1.52 1.28 

65 45.7 25.3 15.2 9.85 6.80 4.89 3.66 2.91 2.28 1.86 1.55 

67 55.5 29.9 17.7 11.3 7.73 5.50 4.09 3.23 2.50 2.03 1.68 

70 76 38.8 22.5 14.1 9.40 6.61 4.86 3.78 2.90 2.34 1.93 

75 132 65.2 35.5 21.2 13.6 9.25 6.61 5.01 3.80 3.00 2.43 

80 255 116 60.1 33.9 20.8 13.6 9.42 6.94 5.13 4.03 3.18 

85 540 223 109 58 33.5 21.2 14.2 10.0 7.28 5.52 4.24 

90 1310 498 219 109 60.0 35.5 22.5 15.5 11.0 7.93 6.00 

91 1590 592 259 127 68.1 39.8 25.1 17.1 11.9 8.62 6.40 

| 92 1950 729 310 147 78.3 44.8 28.0 19.0 13.1 9.46 6.82 

| 93 2400 860 367 172 89 51.5 31.6 21.2 14.4 10.3 7.54 

94 2930 1040 437 202 105 58.4 35.4 23.6 15.8 11.2 8.19 

95 3690 1270 523 237 121 67.0 39.9 26.4 17.5 12.4 9.08 

96 4600 1580 624 281 142 77.8 45.4 29.7 19.6 13.6 10.1 

97 5770 1950 765 340 166 88.9 51.9 33.6 21.9 15.1 10.9 

98 7370 2460 939 409 196 104 59.8 38.5 24.8 17.0 12.2 

99 9420 3090 1150 500 235 122 69.1 43.6 27.8 19.0 13.3 

100 12070 3900 1410 612 284 142 81.3 50.6 31.9 21.3 14.8 
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