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ABSTRACT

Efficient Soft Decoding Techniques for Reed-Solomon Codes

Farnaz Shayegh, PhD.

Concordia University, 2010

The main focus of this thesis is on finding efficient decoding methods for Reed-

Solomon (RS) codes, i.e., algorithms with acceptable performance and affordable complex-
ity. Three classes of decoders are considered including sphere decoding, belief propagation
decoding and interpolation-based decoding.

Originally proposed for finding the exact solution of least-squares problems, sphere

decoding (SD) is used along with the most reliable basis (MRB) to design an efficient soft
decoding algorithm for RS codes. For an (N, K) RS code, given the received vector and the
lattice of all possible transmitted vectors, we propose to look for only those lattice points
that fall within a sphere centered at the received vector and also are valid codewords. To

achieve this goal, we use the fact that RS codes are maximum distance separable (MDS).
Therefore, we use sphere decoding in order to find tentative solutions consisting of the
K most reliable code symbols that fall inside the sphere. The acceptable values for each
of these symbols are selected from an ordered set of most probable transmitted symbols.
Based on the MDS property, K code symbols of each tentative solution can be used to

find the rest of codeword symbols. If the resulting codeword is within the search radius,
it is saved as a candidate transmitted codeword. Since we first find the most reliable code

symbols and for each of them we use an ordered set of most probable transmitted symbols,
candidate codewords are found quickly resulting in reduced complexity. Considerable cod-
ing gains are achieved over the traditional hard decision decoders with moderate increase

in complexity.

Due to their simplicity and good performance when used for decoding low density
parity check (LDPC) codes, iterative decoders based on belief propagation (BP) have also
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been considered for RS codes. However, the parity check matrix of RS codes is very dense
resulting in lots of short cycles in the factor graph and consequently preventing the relia-
bility updates (using BP) from converging to a codeword. In this thesis, we propose two
BP based decoding methods. In both of them, a low density extended parity check matrix
is used because of its lower number of short cycles. In the first method, the cyclic struc-
ture of RS codes is taken into account and BP algorithm is applied on different cyclically
shifted versions of received reliabilities, capable of detecting different error patterns. This
way, some deterministic errors can be avoided. The second method is based on information
correction in BP decoding where all possible values are tested for selected bits with low
reliabilities. This way, the chance of BP iterations to converge to a codeword is improved
significantly. Compared to the existing iterative methods for RS codes, our proposed meth-
ods provide a very good trade-off between the performance and the complexity.

We also consider interpolation based decoding of RS codes. We specifically focus on
Guruswami-Sudan (GS) interpolation decoding algorithm. Using the algebraic structure of
RS codes and bivariate interpolation, the GS method has shown improved error correction
capability compared to the traditional hard decision decoders. Based on the GS method, a
multivariate interpolation decoding method is proposed for decoding interleaved RS (1RS)
codes. Using this method all the RS codewords of the interleaved scheme are decoded
simultaneously. In the presence of burst errors, the proposed method has improved correc-
tion capability compared to the GS method. This method is applied for decoding 1RS codes
when used as outer codes in concatenated codes.
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Chapter 1

Introduction

Reed-Solomon (RS) codes were invented in 1960 by Irving S. Reed and Gustave Solomon
[1] and separately by Arimoto [2]. They are non-binary linear block codes with many
interesting properties such as random error correcting capability, burst error correcting ca-
pability and erasure recovery capability. RS codes have been widely used in commercial
applications including optical and magnetic storage systems, satellite and deep-space com-
munication and mobile data communication. They have been employed in various digital
communication standards including terrestrial digital multimedia broadcasting (T-DMB)
[3] and digital video broadcasting (DVB) [4]. Data storage devices such as compact discs
(CDs) and digital versatile discs (DVDs) have concatenated RS codes [5] and RS prod-
uct codes [6] as their error correcting codes. Today, storage systems are implemented in
many devices including digital music players, cell phones, digital cameras, high definition
TVs and so many more. RS codes concatenated with convolutional codes are the standard

channel codes for satellite transmission. They have also been widely used in wireless com-
munication systems because of their ability to correct burst errors. They are outer codes in
the third generation (3G) wireless standard and CDMA2000 [7]. As another application,
paper bar codes such as Postbar use RS error correction to correct for encoding errors on
paper [8].

Recently, modern coding techniques such as LDPC codes [9] and Turbo codes [10]
have become popular because of their capacity approaching capabilities. The problem with
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these codes is the uncertainty of their performances at high signal to noise ratios (SNR's)
especially in applications where burst noise is present. On the other hand, classic RS codes
have very good burst error correction capability and their performance at high SNR's is
determined. Also, there have been considerable recent developments in decoding RS codes

[11] [12] [13]. Therefore, RS codes remain very relevant today. If modern codes were to
be used in communication standards, RS codes will still be needed as outer codes to cure

their error floor problems.
Despite their wide areas of applications, soft decision decoding of RS codes still rep-

resents an open issue. In this thesis, we present efficient decoding techniques for RS codes
including a soft decision decoder based on sphere decoding [14], two iterative techniques
based on belief propagation (BP) decoding [9] and a collaborative interpolation decoder
based on Guruswami-Sudan decoding method [H].

In this chapter, we present RS codes including their definition, characteristics and
decoding. A comprehensive literature review is given on soft decision decoding techniques
used for RS codes. Finally, the organization of the thesis concludes the chapter.

1.1 Reed-Solomon Codes

Denote the ring of polynomials over the Galois field GF(q) in a variable X by F9[X]. The
support set of GF{q) is defined as the set of all its non-zero elements:

D= {Xl,x2,...,xN} cGF(q) (1.1)

where N = q — I. RS codes are obtained by evaluating certain subspaces of Fq[X] in the
support set D. Specifically, an RS code of length N and dimension K is defined as follows:

Cq(N, K)= (1.2)
{(/(*!), /(X2), .... /(Xn))Ix1, X2, -, Xn G D, /(X) G Fq[X],deg/(X) < K)

where 'deg' refers to the degree of a polynomial. The minimum distance of this RS code is
dmin — N — K + 1. It should be noted that RS codes satisfy the Singleton bound [15] with
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equality and are therefore maximum distance separable (MDS). In this thesis we especially
consider RS codes over GF(2P) with ? > 3. This means that every symbol of an RS
codeword can be represented with ? bits.

The first efficient decoding algorithm for RS codes has been proposed by Berlekamp
[16] and Massey [17]. Today, it is known as the Berlekamp-Massey (BM) algorithm [6].
The error correction capability of any Reed-Solomon code is determined by its redundancy
N-K. Using the BM decoder, any combination of errors and erasures in an RS codeword
can be corrected as long as the following inequality is satisfied:

2E + S < N - K. (1.3)

Here, E is the number of symbol errors and S is the number of symbol erasures in the RS
codeword. RS codes are especially well-suited to applications where errors occur in bursts.
This is because multiple bit errors in a symbol are only considered as a single error.

1.2 Literature Review on Reed-Solomon Decoding

Decoding RS codes is the problem of reconstructing univariate polynomials from their
noisy evaluations. This is a task best performed using maximum likelihood (ML) decod-
ing. Guruswami and Vardy have shown that the ML decoding of RS codes is NP-complete
[18]. They have considered the following problem:

Problem: ML decoding of RS codes.
Instance: An integer ? > 0, a set D = {??, x2, ..., xn} of N distinct elements of Galois
field GF(2P), a positive integer K, a target vector y e GF(2P) and an integer w > 0.
Question: Is there a codeword c € C2p{N, k) such that the Hamming distance d(c, y) < wl

They have proved that the above problem is NP-complete meaning although we can quickly
verify any given solution to such a problem, there is no known efficient method to find a
solution in the first place. In fact, the main characteristic of NP-complete problems is that

3



no fast solution to them is known. That is, as the size of the problem increases, the time
required to solve the problem using any currently known algorithm increases very quickly.

As mentioned before, BM algorithm [6] has been the first efficient hard decision

decoding method for RS codes. It involves calculating the syndromes, finding the error

locator polynomial and finally determining the error values. The complexity of BM algo-
rithm is 0(N ? dmin). It is capable of successfully decoding any hard decision vector with
a Hamming distance no greater than half of the minimum distance of the code (dmin) from

the transmitted codeword. The error correction capability of BM algorithm for an (JV, K)
RS code over GF(2P) is defined as

N-K
t = (1.4)

The probability of error and failure of the BM algorithm for RS codes with BPSK modula-
tion is

JL /?? „ .
(1-5)pe = ? - ¿ (?? sN-j(i - syj=0 ^ J '

where

(1 - Q(v/2rñ))p, AWGN Channel
Flat Fading Channel (fading known at the receiver).I (i - ^r (1.6)

Here, 7 is the signal to noise ratio, R is the code rate and S is the probability of receiving
one symbol of the RS codeword correctly.

As mentioned at the beginning, RS codes have the capability of erasure recovery.
BM algorithm is able to perform error-erasure decoding. In the presence of ? erasures, the

probability of error and failure of BM method is
Í1

e—erasure S
N-v

3
sN~v-j(i - sy (1.7)

N-K-v J-where t\ = [- 2
Lots of works on the improvement of BM hard decision decoding have been done

such as Euclid's algorithm for the determination of the error locator polynomial [19] and
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the work of Berlekamp-Welch that allows for decoding without the need for syndrome
computations [20].

Although hard decision decoding methods have low complexity, they do not use the
channel reliability information which causes considerable performance loss. The best per-
formance possible is that of ML soft decision decoding. As discussed earlier, the complex-
ity of ML decoding is prohibitive especially for long RS codes that are used in practical
systems. So, one of the current issues about RS codes is to find decoding methods with
performance as close as to that of the ML decoding method and at the same time keep
the complexity affordable. In the following, we will give a comprehensive review on soft
decision decoding methods for RS codes.

First we mention two old and still popular soft decision decoding methods for RS
codes. In 1966, Forney invented generalized minimum distance (GMD) decoding [21].
In GMD decoding, based on channel reliabilities, some symbols may be erased and then
fed into an algebraic error-erasure decoder. Different erasing patterns are considered using
an erasure-choosing algorithm which relies on soft information from the channel. The
algorithm is terminated when a codeword satisfying a certain distance criterion is found.
In 1972, Chase [22] proposed a soft decoding algorithm for general block codes. In Chase
decoding, a test set of hard decision vectors is developed using reliability information. To
construct the test set ? least reliable coordinate locations are determined and vectors with
all possible symbols in these locations are considered. Each of these vectors is applied
to the hard decision decoding algorithm. Among all the successfully decoded codewords,
the one with the highest a posteriori probability is chosen as the decoder output. Chase
decoding provides moderate coding gain over hard decision decoding and its complexity is
exponentially increasing in ?. Both Chase and GMD decoding methods provide moderate
coding gain over hard decision decoders with reasonable complexity. Other related soft
decoding algorithms include the Chase II algorithm [22], the simple extension of Chase
algorithm [23] and the combined Chase II-GMD algorithm [24].

Vardy and Be'ery [25] have proposed ML decoding of RS codes using their binary
image expansion by decomposing RS codes into BCH subfield subcodes. However, their
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algorithm is practically applicable only to small RS codes.
The ordered statistics decoding (OSD) algorithm by Fossorier and Lin [26] has first

been proposed for binary linear block codes. It sorts the received bits with respect to
their reliabilities. Then, the columns in the generator matrix corresponding to the most

reliable bits are reduced to an identity submatrix. Using order— to reprocessing, up to w bits
are systematically flipped on the most reliable (information) basis (MRB). The modified
generator matrix is then used to generate (permuted) codewords using these most reliable
basis. Using the binary image of RS codes, OSD method and its variations [27] [28] can be
used for RS codes. OSD based algorithms are efficient for practical RS codes. However, to
improve the performance, w should be increased resulting in high complexity.

In 1 999, Guruswami and Sudan [11] showed that hard decision decoding of RS codes

beyond their traditional capability (half the minimum distance) is possible. Their method,
now called the GS algorithm, is a polynomial time algebraic list decoding method. It
interpolates a bivariate polynomial Q(x, y) from the channel output that passes through all
received values with multiplicity at least m. The y-linear factors of this polynomial contain

all the codewords within a decoding radius t > çhfk from the hard decision vector. It is
shown that GS algorithm can correct any fraction of r < 1 - VR errors for an RS code of
rate R.

In 2003, Koetter and Vardy [29] developed an algebraic soft decision decoding (ASD)

method for RS codes, now called the KV algorithm. It is based on GS algorithm but
it uses the reliability information at the channel output to construct Q(x,y). While GS
algorithm forces Q(x,y) to pass through all received values with equal multiplicity, KV
method allows Q(x,y) to pass through received values with a multiplicity dependent on
each coordinate's reliability. KV algorithm has been shown to outperform GS method
at a comparable decoding complexity. There are alternative ASD algorithms with better
performance compared to KV method. They include the Gaussian approximation algorithm
by Parvaresh and Vardy [30] and the algorithm by El-Khamy and McEliece [31] based on
Chernoff bound.

Soft decision decoding of linear block codes based on sphere decoding (SD) [32]
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[14] has been investigated in [33] and [34]. As we know, ML decoding of error correcting
codes is actually a search for the closest point to the received vector in the lattice formed
by the symbol space of the code. SD is a method that can perform ML decoding without
an exhaustive search over the entire lattice. Its search for the closest point to the received

vector is limited to only those lattice points that fall within a sphere centered at the received
vector. This results in a considerable reduction in complexity of ML decoding. In [33], the
concept of sphere decoding for joint ML detection and decoding of linear block codes on
Gaussian vector channels has been investigated.

Iterative belief propagation (BP) decoding is the basis for another class of RS soft
decoders. BP decoding has first been proposed by Gallager [9] for decoding low density
parity check (LDPC) codes. Although iterative BP decoding in its standard form is not suit-
able for high density parity check codes such as RS codes, lots of attempts have been made
to adopt BP decoding for RS codes [35] [36] [37]. The main problem is the large num-
ber of short cycles in the factor graph [38] of RS codes which causes correlation between
the messages and error propagation. The first successful iterative decoding method for RS
codes was proposed by Jiang and Narayanan in 2004 [12]. It is referred to as the adaptive
parity check (ADP) algorithm and uses the binary image of the RS parity check matrix to
implement BP decoding. In ADP algorithm, each BP iteration is run on an adapted parity
check matrix with columns corresponding to the least reliable independent bits reduced
to an identity submatrix. At the end of each BP iteration, hard decisions are made from
the updated reliability information and passed to a hard decision decoder. ADP method
compares favorably with other soft decision decoding algorithms for RS codes. In 2006,
Elkhamy et. al. [13] used ADP algorithm to improve the reliability of the symbols at the
beginning of the KV algorithm. Their algorithm has impressive coding gains over previ-
ously known soft decision decoding algorithms for RS codes. The problem with the ADP
method is the high complexity of adopting the parity check matrix at each BP iteration.
Recently, more decoding methods based on BP algorithm have been proposed for general
linear block codes [39-43] . In [44] multiple-bases belief propagation for linear block codes
with dense parity check matrices has been proposed. It makes use of the fact that a code
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has many structurally diverse parity check matrices, capable of detecting different error
patterns.

1.3 Thesis Outline

So far, we have reviewed RS codes, their properties and exiting soft decision decoding
techniques for them. The rest of the thesis is organized as follows:

In Chapter 2, "Background", the required background information that is the basis
for the work done in this thesis is presented. We investigate three classes of low com-
plexity decoding methods including sphere decoding (SD), message passing decoding and
interpolation-based decoding. The basis of sphere decoding is explained and further is used
in Chapter 3 to implement a soft decision decoder for RS codes. Then, a subclass of mes-
sage passing decoding, belief propagation, is presented. Later in Chapter 4, we introduce
BP based algorithms for efficient iterative decoding of RS codes. Finally, the GS interpo-
lation decoding algorithm is explained in detail. In Chapter 5, the basis of GS algorithm is
used for collaborative decoding of interleaved Reed-Solomon (1RS) codes.

In Chapter 3, "Efficient Soft Decoding of RS Codes based on Sphere Decoding",
a novel soft decision decoding method for RS codes using sphere decoding is proposed.
With sphere decoding, instead of considering all of the possible transmitted codewords to
determine the most probable one, one can only consider the codewords whose distance from
the received signal is smaller than a specific search radius. This results in a considerable

reduction in the complexity. Because we need to find points inside the sphere that are also
valid codewords of an (N, K) RS code, the sphere decoder algorithm first selects a tentative
solution consisting of the K most reliable and independent code symbols whose distance
from the corresponding symbols in the received vector is less than the search radius. The
acceptable values for each of these K code symbols are determined based on the ordered
set of most probable transmitted symbols. Each time K code symbols are selected using
the sphere decoder, they are re-encoded and if the resulting codeword is within the search
radius, we add it to the list of the candidate transmitted codewords. The ordering that was
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discussed earlier will help finding the candidate codewords quickly. Our method results in
considerable improvement of the performance of RS codes compared to the hard decision
decoding with a moderate increase in complexity. The performance is also superior or
comparable to some popular soft decision decoding methods.

In Chapter 4, "Efficient Iterative Techniques for Soft Decision Decoding ofRS Codes",
two new iterative soft decision decoding methods for RS codes are proposed. These meth-
ods are based on bit level belief propagation decoding. In order to make BP decoding
effective for RS codes, we use an extended binary parity check matrix with a lower den-
sity and reduced number of 4-cycles compared to the original binary parity check matrix
of the code. In the first proposed method, we take advantage of the cyclic structure of

RS codes. Based on this property, we can apply the belief propagation algorithm on any
cyclically shifted version of the received symbols with the same binary parity check matrix.
For each shifted version of received symbols, the geometry of the factor graph will change

and deterministic errors can be avoided. This method results in considerable performance
improvement of RS codes compared to hard decision decoding. The performance is also

superior to some popular soft decision decoding methods. The second method is based
on information correction in BP decoding. It means that we determine least reliable bits
and by changing their channel information, the convergence of the decoder is improved.

Compared to the first method, this method needs less BP iterations (less complexity) but
its performance is not as good.

In Chapter 5, "Collaborative Algebraic Decoding of Interleaved RS Codes", we de-

rive and analyze an algorithm for collaborative decoding of heterogeneous Interleaved
Reed-Solomon (1RS) codes. They are generated by interleaving several codewords from

different RS codes with the same length over the same Galois field. The basis of the decod-
ing algorithm is similar to the GS decoding method. However, here multivariate interpola-
tion is used in order to decode all the codewords of the interleaved scheme simultaneously.

In the presence of burst errors, we show that the error correction capability of this algo-
rithm is larger than that of independent decoding of each codeword using the standard GS
method. In the latter case, the error correction capability is equal to the decoding radius
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of the GS algorithm for the RS code with the largest dimension. Also, generalized con-
catenated (GC) codes using 1RS codes as their outer codes and binary linear block codes

as their inner codes are considered. Assuming ML decoding of the inner code, we derive

upper and lower bounds for the word error probability of GC codes over AWGN channel
with BPSK modulation for both cases of independent and collaborative decoding of the
outer 1RS codes. We show that collaborative decoding provides considerable coding gain
compared to independent decoding.

Finally, in Chapter 6, "Conclusions and Future Works", we summarize the contribu-
tions of this thesis and give suggestions for future works.
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Chapter 2

Background

In this chapter, we investigate three classes of complexity-reducing methods. They include
sphere decoding (SD), message passing decoding and interpolation-based decoding. In the
next chapters, we use these methods to develop efficient decoding techniques for RS codes.

Sphere decoding is a low complexity method used to find the exact solution of least-
squares problems. In communication systems, it has been used for multiple input multiple
output (MIMO) detection [45], joint detection and decoding of linear block codes over
Gaussian vector channels [33] and so on. In the first part of this chapter, we explain the

basis of sphere decoding (SD). The application of SD for MIMO detection is investigated
and a new method for reducing the complexity of SD is proposed.

Message passing decoding [38] is a general technique to compute marginal functions
in a factor graph. Belief propagation is a subclass of message passing decoding and has
been used in coding theory for decoding LDPC codes, Turbo codes and so on. In the
second part of this chapter, belief propagation iterative decoding of binary linear block
codes is explained. The binary image of RS codes is introduced and a popular iterative RS
decoding method is presented.

The first interpolation-based decoding method used for RS codes is the Berlekamp-
Massey (BM) algorithm [6]. It decodes the hard decision received signal using univariate
polynomial interpolation. The Guruswami-Sudan (GS) method [11] can provide higher
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correction capability compared to the BM algorithm using Invariate polynomial interpola-
tion. The Koetter-Vardy (KV) method [29] can incorporate the soft information from the
channel into the GS method to improve the performance of decoding. In the third part of
this chapter, we briefly explain both the GS method and the KV method.

2.1 Sphere Decoding

The concept of sphere decoding (SD) in mathematics has been first introduced in [14]. It
is used to calculate vectors of short length in a lattice. While, the standard methods use a
reduction procedure followed by considering all vectors in a suitable box, the SD method
only looks for those vectors lying in a suitable ellipsoid having a much smaller volume than
the box. Therefore, sphere decoding is more efficient than the standard methods.

The SD method have been used to find the exact solution of least-squares problems
in many applications. In communication systems, we usually deal with a system of linear

equations where the coefficients of the matrix and the given vector are real numbers but
those of the unknown vector are integers. In cases like this, the least-squares problem is
reduced to:

argmin ||x-#s||2 (2.1)
s£Zm

where ? is the given ? ? 1 real vector, fi is the ? ? m real matrix, s is the unknown

m ? 1 integer vector and Zm denotes the m-dimensional integer lattice. Since s spans an
m-dimensional lattice Zm, Hs spans a skewed lattice. Therefore, the integer least-squares
problem is to find the closest lattice point of this skewed lattice to x.

The basic idea of sphere decoding is to search over only lattice points s that lie in a
certain sphere of radius d around the given vector ? (Figure 2.1). This reduces the search
space and, hence, the required computations [32]. Using sphere decoding, the least-squares
problem is reduced to

||a: - Hs\f < d2. (2.2)
In order to do sphere decoding, asuming ? > m, at first QR factorization of H is
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Figure 2.1: The basic idea of sphere decoding

H = Q (2.3)

performed:
R

v(n—m)xm

where, Q is an ? ? ? orthogonal matrix and Ris mm ? m upper triangular matrix. After
replacing the QR factorization of H in Equation (2.2) and some mathematical simplifica-
tions, the problem in Equation (2.2) becomes equivalent to

\\R{8-mA<#-\w + \\m=< (2.4)

Here, Is = R^1QIx, Qi is the first m orthonormal columns of Q and V denotes Hermitian
matrix transposition. The above equation can be written as

i,m\Sm sm) + rm-l,m-l\S"i-l sm-l '

+ ...<<£

Tm- 1,p
Tm—\,m—l

~\fim Sm))

(2.5)

where r¿j is the (i, j)th entry of R. The first term of the above inequality depends only on
sm, the second term on sm and sm_i, and so on. A necessary condition for Hs to lie inside

the sphere is that r^^Sm - sm)2 < dßm. From this condition, a bound for sm is found:

< Sm < Sm T (2.6)

13



Here, f.] and [.J denote respectively rounding to the nearest larger and the nearest smaller
element in the set of numbers that spans the lattice. Of course, this bound is not sufficient.
For every element sm of this bound, we can define d^_i = $m- r^ m(sm — sm)2 and use
the first two terms in Equation (2.5) in order to find a bound for sm_i:

dm-l
-1 \°m °m)J

Tm—l,m—l '"to— l,m— 1
< Sm-I

< Tm- l,m ? » \\ . ^m-I
%— 1 ~ \ßrn S7n)) t

Gt?-?,t?— 1
(2.7)

Tm- ?,t?— 1

This process can be continued in a similar fashion for sm_2, sTO_3 and so on until
obtaining all lattice points inside the sphere satisfying Equation (2.2). Among these points,
the one that minimizes \\x - Hs\f is the solution to the least-squares problem. The com-
plete algorithm of sphere decoding is given in [32].

In order to reduce the complexity of sphere decoding, each time a point is found
inside the sphere we can replace our search radius with the distance of that point from the
received vector. Adjusting the search radius results in considerable complexity reduction
because each time a point is found inside the sphere we reduce our search radius and it is
clear that with smaller d we have less complexity.

In the following, we consider a popular application of the SD method for ?G??
detection. We also propose a new modified SD method with less complexity compared to
original sphere decoding. Later in Chapter 3, we use this new technique for efficient soft
decision decoding of RS codes.

2.1.1 MIMO Detection using Sphere Decoding

Standard maximum likelihood (ML) detection of MIMO signals is very complex. Sphere
decoding has been considered as a reduced complexity ML detector for ?G?? systems
[45]. For an M ? N MIMO system, the received signal can be written as

? = Hs + ? (2.8)

where s is the MxI transmitted vector with entries from a complex-valued constellation, H
is the N ? M channel matrix with independent and identically distributed (i.i.d) entries from
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H = (2.12)

a circularly symmetric complex Gaussian distribution with zero mean and unit variance, ?
is the N ? 1 noise vector with entries from a zero mean complex Gaussian distribution with
variance of s2 and ? is the N ? 1 received vector.

The goal of a MIMO detector is to find the transmitted vector s knowing the received
vector ? and the channel Matrix H. To state the ML detection as an integer least-squares

problem, we first find the real-valued equivalent of the equation ? = Hs + v. To this end,
let m = 2M, ? = 2N and

s = [Re{s)T Im(s)T]T (2.9)
x= [Re{xf Im(x)Tf (2.10)
v= [Re(v)T Im(v)T]T (2.11)

Re(H) Im(H)
-Im(H) Re(H)

Then the real valued equivalent of our equation can be written as ? = Hs + ? with the
new x, s, ? and H. It can be seen that the vector dimensions have been doubled in the new

equation.
ML detector checks all of the possible transmitted vectors to find the one that min-

imizes \\x - Hs\\2. So, its complexity is exponential in the number of transmit antennas
and constellation points. However, the SD method only yields the set of points s such that
||x — Hs ||2 < r2. The search radius r has to be selected very carefully. If r is too small
the complexity will be very low but we may obtain no points inside the sphere. If r is too
large there will be too many points inside the sphere and the complexity remains exponen-
tial in size. The search radius r can be chosen based on the statistical properties of the
noise. From Equation (2.8), ||i;||2 = \\x - Hs\\2 is a ?2 random variable with ? degrees
of freedom. So the radius is selected to be a scaled variance of the noise r2 = ana2 (for

a properly chesen a) in such a way that with a high probability at least one point is found
inside the sphere [32]. The probability of finding at least one point inside the sphere is [32]

? ?"/2"1
Pfp -L G(?/2)

-xdX (2.13)

where T' denotes the Gamma function.
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2.1.2 Ordered Sphere Decoding

Here, a reduced complexity sphere decoding method [46] is explained. First, a linear re-
ceiver such as zero forcing (ZF) [47] is used to provide an estimate for the response of the
MIMO detector. This estimate is used as a reference signal by the SD method. Then each
time we find a bound for an element of the transmitted vector s, we sort the elements of this

bound based on their distance from the corresponding element of the reference signal such
that we always start from the most probable element and we continue the same way [46].
So, we always start from the output of the linear receiver that is a good initial point and in
many cases the ML point. This method combined with adjusting the search radius results in
considerable complexity reduction because the candidate responses are found very quickly
due to ordering.

2.1.3 Ordered Sphere Decoding with Channel Ordering

In this section, we propose a new low complexity sphere decoding method. We suppose
that the number of transmit antennas are equal to the number of received antennas (M ? M
MIMO) and the coded data in the transmitter is modulated by a 2P-QAM modulation.

Using the real-valued received signal ? and the real-valued channel matrix H, a linear
receiver such as zero forcing (ZF) provides a soft-output estimate for the response of the
MIMO detector,

szf = Hlx (2.14)
where H1 is the pseudo inverse [48] of the channel matrix. We are looking for the real-
valued transmitted vector s. For each element of s, we find an ordered set of all possible
transmitted elements I sj1 , s\ , --,¿1 \, i = 1, ...,m, based on their distance from the
corresponding element of szf such that

s(i) 8zf{i)\ < U(2)\s) S2/ (z) < ... < î(p)êr-szf{i) (2.15)
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From these ordered sets, we can define a reliability measure for each element of the trans-
mitted vector:

S(2)LLR(S1)= §r>- szf(i) \\-\W> -szf(i)î(l) (2.16)

In order to reduce the complexity of detection, we start detecting the transmitted vector s
from its most reliable element. To this end, we arrange the reliabilities in an increasing

order. This ordering will define a permutation ?. The elements of the reference signal S2/
and also the columns of the channel matrix H are permuted according to ?:

s7f = szf{X), (2.17)

Hord = H(:,\). (2.18)
Therefore, the detected vector will also be permuted according to the same permutation
such that si = A(s). In the end, the actual transmitted vector can be obtained by permuting
the components of the detected vector using the inverse permutation ?-1.

Now, we can detect the transmitted vector using the ordered sphere decoder with the
new channel matrix Hord and the new reference signal s^d. The proposed sphere decoding
algorithm is summarized in Figure 2.2.

In order to reduce the complexity, each time we find a vector Si inside the sphere,

we replace the search radius r with ||x - ffordsi||. After finishing the algorithm, we have
a list of permuted candidate transmitted vectors. We will choose the one that minimizes

||x — Hordsi ? as the response of sphere decoding. The actual transmitted vector is

s = A^(Ii). (2.19)

In this method, we start detecting the transmitted vector from its most reliable element
and for each element, we start from the most probable transmitted symbol based on the
information from the reference signal. This kind of ordering will help finding the candi-
date transmitted vectors quickly. By finding the candidate transmitted vectors early and
replacing the search radius by their distances from the received vector, there will be less

points inside the sphere that satisfy ||x — A-07^s ||. This results in reducing the complexity
17



Data: Received signal x, permuted reference signal s°Jd, permuted channel matrix
Hord and the search radius r.

Result: A list of permuted signals Si's inside the sphere of radius r around the
received signal x.

begin
Initializations: m = 2M, k = m, d(k) = r, A= [00...0.JiX7n.
[Q R]: QR factorization of H^.
s2(k) = äff(k)
? = d(k)/R(k, k)
ub(k) = [min(abs(z) + s2(k),sqrt(2p) - I)J
lb(k) = \max(-abs(z) + s2(k), -{sqrt(2p) - 1))]
Bound for Si(fc): cd = lb(k) : 2 : ub(k)
Lx(k) = length(cd)
Sorting the elements of cd based on their distances from s^d(k): Permutation Xk
cdTd{k, :) = cd{Xk)
if k = m + 1 then

|_ stop.
ifi4(fc) + l < Lx (h) then
L S1(A;) = cdord(Jfc,i4(ife) + 1), A(k) = A{k) + 1.

else
L Go to 14.

if k = 1 then
L save S1

else
fc = fc-1,
s2(k) = s?f(k) - Ztk+i(R(k,l)/R(k,k)) ? (S1(Z) - s?f(l))
d(k)2 = d{k + I)2 -R{k + l,k + I)2 ? (Si(A; + 1) - S2(A; + I))2
Go to 3.

k = k + l,A(l:k-l) = zeros(l, k - 1), Go to 10.
end

Figure 2.2: Ordered Sphere Decoding with Channel Ordering
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of the sphere decoder specially for low signal to noise ratios without compromising the
performance of ML detection.

2.1.4 Simulation Results

A 4 ? 4 MTMO system is simulated assuming a systematic feedback convolutional code
(rate 1/2) and 16-QAM modulation. At the receiver, the SD method is used for MEMO

detection and a Viterbi decoder [49] is used to decode the convolutional code (see Figure
2.3). We have used random interleaver/deinterleaver. In the transmitter, the interleaver

reorders input symbols using random permutation and in the receiver, the deinterleaver
restores ordering of input symbols using inverse permutation. Sphere decoding is used
to perform ML detection of MIMO signals with reduced complexity. For standard ML
detection, all the possible transmitted signals (164 = 216 = 65536) should be considered
to find the one with the highest probability of happening. Therefore, the standard ML
detection algorithm has high complexity. Using sphere decoding, the number of the lattice
points that should be considered for detection is really less than that of the ML detecting
method resulting in lower complexity.

In Figure 2.4, the complexity of different SD methods are compared with each other
and also with that of the standard ML detection method. The total complexity is charac-
terized using the average number of floating point operations. As a complexity measure,
instead of the complexity itself, it is useful to use the complexity exponent ec [50] such that

Average # of floating point operations = m€c (2.20)

where m = IM and M is the number of transmit antennas.

In our simulations, the scale a is selected such that P¡p = 0.9999 (Equation (2.13))
and from that the search radius will be 5.66. For all of the three SD methods, the search

radius is adjusted every time a point is found inside the sphere. From Figure 2.4, the
complexity of the standard SD method is lower than that of the standard ML method but in

low signal to noise ratios (SNR's) the complexity is still high. The ordered SD method has
lower complexity compared to the standard SD method. Finally, the ordered SD method
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Transmitter:

Source! Convoluti mal
Encoder Interi eaver 16-QAM

Modulation.
-<s

Receiver:

4x4 MIMO

Sink Vi tèrbi
Channel Decoder De-interieaver

MIMO Detector
Sphere Decoding "* Hs+v

Figure 2.3: The block diagram of the MIMO system with sphere decoding as the MIMO
detector.

with channel ordering has even lower complexity especially at low SNR's. An interesting
property of all these SD methods is that the complexity reduces as the SNR increases. All

of these three SD methods have the same performance as the standard ML method.

2.1.5 Discussions and Conclusions

Sphere decoding has been introduced as an efficient method for finding the exact solution of
least-squares problems. The application of sphere decoding for MIMO detection has been
investigated. The ordered SD method has been presented as a method with lower com-

plexity compared to the standard SD method. We have also proposed a modified ordered
SD method based on channel ordering. From simulation results, our proposed method
has lower complexity compared to the ordered and the standard SD methods especially at

low SNR's. Sphere decoding can be used to perform efficient MIMO detection without
compromising the performance of ML detection.

As we mentioned at the beginning of this chapter, sphere decoding can be used to

solve general least-squares problems. In Chapter 3, we use the idea of our modified ordered

SD method based on channel ordering and we propose a new efficient method for decoding
RS codes.
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Figure 2.4: The average complexity exponent of different sphere decoding methods used
for ?G?? detection.
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2.2 Message Passing Decoding

A factor graph is a bipartite graph that shows how a global function of many variables can
be factored into a product of local functions. The sum product algorithm [38] uses a simple
computational rule and performs distributed message passing in the graph to compute var-
ious marginal functions (exactly or approximately). Specific examples of factor graphs are
Bayesian networks [51], Markov random fields [52] and Tanner graphs [53]. Specific ex-
amples of the sum product algorithm are the forward/backward algorithm [54], the Viterbi
algorithm [49], the iterative turbo decoding algorithm [10], Pearl's belief propagation al-

gorithm [55] for Bayesian networks and so on.
In coding theory, the first appearance of the sum product algorithm is Gallager's de-

coding method [9] for low density parity (LDPC) codes, now called belief propagation (BP)

decoding. Tanner [53] generalized Gallager's bipartite graph approach to low complexity
codes.

It has been shown that iterative decoders perform close to the Shannon capacity for
long codes with sparse factor graphs. Therefore, it would be ideal if Reed-Solomon codes
are suitable for this class of decoders.

In this section, we first explain BP decoding for general linear block codes. Then,
we investigate the application of BP decoding for RS codes and introduce one of the most
successful modified BP methods, called the ADP method, for decoding RS codes.

2.2.1 The Basis of BP Decoding for Linear Block Codes

The bipartite graph [38] of an (n, k) linear block code is formed using its parity check
matrix H which is an (n — k) ? ? matrix (Figure 2.6). In this graph, there are two types
of nodes: (n — k) check nodes and ? variable nodes. For any codeword c of this code
we have HcT = 0 where 'T' denotes the transpose operation. This equation specifies the
set of linear constraints satisfied by the codeword bits. In the bipartite graph, the set of
variable nodes represents the codeword bits and the set of check nodes represents the set

of parity-check constraints satisfied by the codeword bits. There is also a set of edges that
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connect every check node with all the variables nodes involved in its check equation. We
denote the number of the check equations that a variable node i,i — 1, 2, ..., ? is involved
with by dvi and refer to it as the degree of that variable node. Also, we denote the number
of the variable nodes that are involved in a check equation i, i = 1, 2, ..., (? — k) by dc¿ and
refer to it as the degree of that check node. The (edge) degree distributions of the code are
defined as

X(x) = J2 ?***-1.
2=1

dCmax

p(x) = J2 Pix''1. (2.21)
Here A¿ (p¿) is equal to the fraction of edges that connect to variable (check) nodes of degree
i.

BP decoding is an iterative decoding method that receives the reliabilities of code-
word bits from the channel and performs message passing (from variable nodes to check

nodes and vice versa) using the bipartite graph of the code to update the reliability infor-
mation based on the parity check constraints.

In order to explain the algorithm of BP decoding, we define Nei as the set of variable
nodes participating in check equation i and Nvj as the set of check nodes that variable
node j is involved with. The log-likelihood ratio (LLR) of the jth variable node given the

information about all parity check nodes except node i is shown by Qij and the LLR that
check node i is satisfied when variable node j is fixed to 0 and 1 respectively is shown
by Rij. Given the vector pm of initial LLR's, the BP algorithm (Figure 2.5) outputs the
extrinsic LLR's px [13].

The stopping criterion could be when all the checks are satisfied or when we reach the

maximum number of iterations. Using the extrinsic LLR's at the output of the algorithm,
we can perform hard decision decoding using the BM algorithm to decode the received
signal.
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Data: Received LLR's pin and the parity check matrix H.
Result: Updated LLR's px.
begin

V(i,j),H(i,j) = l:
? Initialization: Qitj = p™
2 while stopping criterion is not met do
3 Horizontal step (check nodes updates):

Rij = 2tanh-1(nkeNci\jtanh(Qitk/2))
Vertical step (variable nodes updates):
QiJ = Pj + /-,keNvjXi-R-kj

Pj =EkeNvjRkjJ = 1,2,..., ?
end

Figure 2.5: Belief Propagation Decoding

2.2.2 Standard Belief Propagation decoding of RS Codes

The parity check matrix of an (N, K) RS code over the Galois field GF(2P) can be repre-
sented by

/i

H

a

2a

a

a

a(JV-I) \
2(7V-I)

1 <*(""*> aW-V

a

a(N-K)(N-l) .

(2.22)

where a is a primitive element of GF(2P). For any codeword c of the RS code, HcT = 0.
Since any element /3 G GF(2P) has a ? tuple representation, we can show any codeword of
length N in binary form as

cb — (^1,1,01,2, .--,CiJ,, C2,l, ¦¦¦,C2tP, ...,C^i, ...,C/v,p). (2.23)

For decoding RS codes using belief propagation, we consider RS codes over an ex-

tension field of GF(2). We denote a primitive polynomial of GF(2P) over GF(2) by
p(x) = a0 + a\x + ... + ap_!Xp_1 + xp. We also suppose that a is a root of p(x) and there-
fore a primitive element in GF{2P). For p{x), there is a ? ? ? companion matrix which is
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(2.24)

given as

/ O ... O a0 \

Ip-I '¦

\ V-i J
where /p_i is a (p — 1) ? (? — 1) identity matrix [56]. A field isomorphism can be defined
by the mapping a% -> clp,i = {0, 1, ...}. Based on this mapping, each element of the parity
check matrix of the code is replaced with a ? ? ? binary matrix resulting in a binary parity
check matrix i7¡, of size (N — K)p ? Np. Such a mapping results in ??,?? = 0. From this
binary parity check matrix, a bipartite graph with Np variable nodes and (N — K)p check
nodes can be formed for the binary image of RS codes. Using the BP algorithm in Figure
2.5, BP decoding can be used for RS codes.

Standard BP iterative decoding is not suitable for high density parity check codes
such as RS codes, because for these codes, the large number of short cycles (Figure 2.6)

in the factor graph will cause correlation between the messages and consequently error
propagation. Low reliable, erroneous bits can significantly affect the value of high reliable
bits and extra errors might be generated. Due to the message passing in BP decoding,

these error are propagated and won't let the decoder converge to a codeword. Based on
this fact, different modified BP decoding methods have been proposed to overcome the

problem of short cycles in the bipartite graph of RS codes. The most popular BP based
iterative decoding method for RS codes is the adaptive parity check (ADP) method which is
explained in the next section and will be used as a reference throughout the thesis (Chapter
4).

2.2.3 Adaptive Parity Check Algorithm for Decoding RS Codes

The first successful iterative decoding method for RS codes was proposed by Jiang and
Narayanan in 2004 [12]. This method is referred to as the adaptive parity-check (ADP)

algorithm. In this algorithm, BP is run on the parity check matrix after reducing its in-
dependent columns corresponding to the least reliable bits to an identity submatrix. Since
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Figure 2.6: Bipartite graph of an (n,k) linear block code. A cycle of length 4 is also shown
in this graph using solid lines.

(N — K)p least reliable bits are not involved in any cycles, the performance of BP decoding
is improved. The ADP algorithm is described in Figure 2.7.

In the original ADP method, the decoder D in ADP algorithm (Figure 2.7) is one of
the following:

1- HD: Perform hard decisions (HD) on the updated LLR's. If the results satisfies the parity
check equations, then a decoding success is signaled.

2- BM: Run the Berlekamp-Massey (BM) algorithm [6] on the LLR's after hard decisions.
If the BM algorithm finds a codeword, a decoding success is signaled.

The stopping criterion in ADP algorithm (Figure 2.7) is when a decoding success
is signaled by the decoder D or when the number of iterations is equal to the maximum
number of iterations. Of course the performance largely depends on the decoder D and the
stopping criterion used. For example, in [13], Koetter-Vardy (KV) soft decision decoder

[29] has been used as the decoder D in ADP algorithm (Figure 2.7) resulting in impressive
coding gains over previously known soft decision decoding algorithms for RS codes.

2.2.4 Discussions and Conclusions

The basis of BP decoding for general linear binary block codes has been explained. Then,
the binary image of RS codes has been introduced in order to perform iterative BP decoding
for these non-binary block codes. The difficulties of BP decoding of RS codes have been
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Data: Channel LLR's pch, the binary parity check matrix Hb, the ADP damping
factor 0 < a < 1 and the number of inner iterations Hh

Result: A list of candidate codewords c.
begin

? Initialization step: ps = pch
2 while Stopping criterion not satisfied do
3 Sort ps in ascending order of magnitude and store the permutation ?.

Pin = Kps)
4 Rearrange the columns of Hb based on ?: Hp = Hb(:, X).
s Gaussian elimination (GE) on HP from left to right such that the first

independent (N — K)p columns in Hp are reduced to an identity sub-matrix
->Hp

6 Run BP decoding algorithm (Figure 2.5) with inputs Hp and pm for a
maximum number of Hh iterations. The output: extrinsic LLR's px.

7 Update the LLR's: pq = pin + apx and ps = ?-1(?*)·
8 Decode ps using the decoding algorithm D to find a candidate codeword c.

end

Figure 2.7: Adaptive Parity-Check (ADP) Decoding Method for RS Codes

discussed and a popular modified BP based method (ADP) for effective decoding of RS
codes has been presented.

The disadvantage of the ADP method is the high complexity of performing Gaussian
elimination on the binary parity check matrix at every iteration. In Chapter 4, we use the
basis of BP decoding to develop efficient iterative decoding methods for RS codes.

2.3 Interpolation-based Decoding of RS Codes

Decoding RS codes is equivalent to the problem of reconstructing univariate polynomials
from their noisy evaluations. This is a task best performed using ML decoding. How-
ever, as mentioned in Chapter 1, ML decoding of RS codes is NP complete. Conventional
Berlekamp-Massey (BM) decoding [6] tries to solve this problem using univariate poly-
nomial interpolation. If a codeword c = (f(xi), ffa), ¦··, /(xn)) of an (N, K) RS code
over GF(q) was transmitted and a vector y = (2/1,1/2, -,2Mr) S GF(q)N was received,
BM algorithm tries to construct a univariate polynomial of degree less than K that passes
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through as many as possible of the received points y\, y%, ¦¦¦, Vn-
Guruswami and Sudan [11] have improved the performance of the BM algorithm

by introducing bivariate polynomial interpolation. Their method is referred to as the GS
method. In general, the hard decision decoding task consists of finding the codeword e e
RS(N, K) such that the Hamming weight wt(e) of the error vector e = y - c is minimized.
The BM algorithm is used to do this if wt(e) < ^?- with dmin = TV - K + 1 the minimum
distance of the code. The GS method is a polynomial-time algorithm that achieves error
correction substantially beyond half the minimum distance of the code.

In the following, we describe the GS decoding algorithm. Then an algebraic soft
decision decoding method, called the KV method [29], that is based on the idea of the GS
method is explained.

2.3.1 Guruswami-Sudan (GS) Decoding of RS Codes

Given the hard decision received vector y = {yi,?/2, ---,Vn] G GF(q) and the corre-
sponding support set D = {x\,X2, —,xn} C GF(q), we consider the set of pairs P =
{(??,?/?), (x2,2/2), ···, (%n, Vn)] as points in a two-dimensional space. The GS algorithm
has two major steps:

1. Interpolation step: Given the set P and a positive integer m, compute a nontrivial
bivariate polynomial Qp(X, Y) of minimal (1, K - I)- weighted degree that passes
through all the points in P with multiplicity at least m. Koetter's interpolation algo-
rithm [57] can be used to find Qp(X, Y).

2. Factorization step: Given the bivariate polynomial QP(X,Y), identify all polyno-
mials f(X) of degree less than K such that Qp(X, f(X)) = 0. The output of the
algorithm is a list of the codewords that correspond to these polynomials. This task
is best performed using the Roth-Ruckenstein algorithm [58].

Among the list of the codewords obtained in the factorization step, the one with
lowest Hamming distance from the received vector y is chosen as the response of the GS
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decoding algorithm. The error correction capability of the GS method is

w_^^(i + ì)-ìw N m' m (2.25)

As the multiplicity m —» oo, the algorithm corrects any fraction of t < 1 — J^jf1 erro-
neous positions.

2.3.2 Koetter-Vardy (KV) Algebraic Soft Decision Decoding

In many situations, the decoder can be supplied with probabilistic reliability information
concerning the received symbols. A decoding algorithm that utilizes such information is
generally referred to as a soft decision decoding algorithm. In this section, we present a soft
decision decoder called the Koetter-Vardy (KV) method. It is based on the GS algorithm
but it uses the reliability information at the channel output to construct Qp(X, Y). While
the GS algorithm forces Qp(X, Y) to pass through all received values with equal multiplic-
ity, the KV method allows Qp(X, Y) to pass through received values with a multiplicity
dependent on each coordinate's reliability.

Given the vector y = {yíy y2, ¦¦¦, y?} observed at the channel output, we compute

p*,,· = Pr(C7- = oüIj/j), i = l,2, ...,q,j = 1,2,..., N (2.26)

where qj's are the elements of the Galois field GF(q). Let p be the q ? N matrix with
entries 7r¿¿ defined above, p is called the reliability matrix and is considered as the input to
the KV soft decision decoding algorithm.

A soft decision decoder works directly with the probabilities compiled in the reliabil-
ity matrix p. If the decoder is algebraic, it must somehow convert these probabilities into
algebraic conditions. The algebraic KV method converts the reliability matrix into a choice
of interpolation points and their multiplicities [29].

In order to work with the interpolation points and their multiplicities, Koetter and
Vardy have introduced the multiplicity matrix. A multiplicity matrix is a q ? N matrix M
with nonnegative integer entries m¿j. Thus the first step of the decoding algorithm consists
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of computing the multiplicity matrix from the reliability matrix [29]. From there, the soft
decision decoder proceeds as in the GS method [H]:

1. Soft interpolation step: Given the point set D and the multiplicity matrix M =
[m^j], compute a nontrivial Divariate polynomial Qm[X, Y) of minimal (1, K — I)-
weighted degree that has a zero of multiplicity at least m¿¿ at the point (a¿, y¡) for
every i, j such that m¿¿ f 0.

2. Factorization step: is identical to the factorization step of the GS algorithm, described
in the previous section.

The KV soft decoding algorithm outperforms the GS hard decoding method by a substantial
margin. In the next chapters, we use the KV method as a reference for comparison.

2.3.3 Discussions and Conclusions

We have introduced interpolation based decoding of RS codes including the hard decision
GS method and the soft decision KV method. Using the soft information from the channel,

the KV method has shown considerable coding gain compared to the GS method.
In Chapter 5, we use the idea of the GS method and propose a collaborative decoding

strategy for interleaved RS codes. In the presence of burst errors, this collaborative method

provides higher error correction capability compared to the GS method.
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Chapter 3

Efficient Soft Decoding of RS Codes

based on Sphere Decoding

In this chapter, a novel soft decision decoding method for RS codes based on sphere de-

coding [32] [14] is proposed. In the presence of error correcting coding, the symbol space
forms a sparse lattice and ML decoding is actually a search for the closest point in the
sparse lattice to the received vector. Sphere decoding is a complexity reducing method that
can solve the closest point search without performing an exhaustive search over the entire
lattice. It only considers those lattice points that fall within a sphere centered at the received

vector and among them identifies the one with minimum distance from the received vector
which is actually the ML point. This results in a considerable reduction in complexity. In
[33], the concept of sphere decoding for joint ML detection and decoding of linear block

codes on Gaussian vector channels has been investigated. The basis of sphere decoding and
two methods for reducing its complexity have been explained in Chapter 2, Section 2.1.

In this chapter, we use sphere decoding and the most reliable basis (MRB) to design
a decoding algorithm for RS codes on AWGN and Rayleigh fading channels. Two types
of ordering are used to make the sphere decoding faster and therefore less complex. In our
proposed algorithm, we try to find those lattice points that fall within a sphere centered
at the received vector and also are valid codewords. In order to consider only the lattice
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points that are valid codewords of an (N, K) RS code, the search using the sphere decoder
first selects a tentative solution consisting of the K most reliable basis (code symbols)
(MRB) whose distance from the corresponding symbols in the received vector is less than
the search radius. The acceptable values for each of these K code symbols are determined
based on the ordered set of most probable transmitted symbols. Since RS codes are max-
imum distance separable (MDS), each time the sphere decoder selects K code symbols,
they can be used to find the rest of RS symbols. If the resulting codeword is within the
search radius, it is saved as a possible transmitted codeword. In the end, a list of codewords
inside the sphere is found. Among these codewords, the one with minimum Euclidean

distance from the received vector is chosen as the output of the decoding algorithm.
The search radius of sphere decoding should be selected carefully. We set the search

radius to be the distance between the hard-decision decoded codeword (with Berlekamp-
Massey (BM) algorithm [6]) and the received signal. Our algorithm works based on the
Euclidean distance which means that we start from the hard-decision decoded codeword

and we try to find more probable codewords with smaller distances from the received signal.
In cases where the BM decoding is not successful, the radius has to be selected large enough
in such a way that with high probability at least one codeword fits inside the sphere.

For short RS codes, our proposed algorithm can perform ML decoding with consid-
erable reduction in the complexity. However, for long RS codes, in order to reduce the
decoding complexity, we have to apply some limitations on our algorithm which lead to a
suboptimum decoder with moderate complexity and very good performance compared to
the hard decision decoding.

The rest of this chapter is organized as follows. In Section 3.1, the system model
for RS encoding and transmission is introduced. Then, the algorithm for soft decision de-
coding of RS codes using sphere decoding is presented in Section 3.2. The complexity
analysis of the proposed method is provided in Section 3.3. The modified version of the
proposed method for the case of BPSK modulation is presented in Section 3.4. We also
propose bit-level sphere decoding of RS codes using their binary image in Section 3.5.
Simulation results and discussions are provided in Section 3.6 where the performance of
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different RS codes over different channels with different modulations is considered. We ex-

plore the amount of coding gain that our algorithm provides on different channels. Finally,
conclusions are presented in Section 3.7.

3.1 System Model and Problem Statement

We consider an (N, K) RS code over Galois field GF(2P) with JV = 2" - 1. A vector b
of K information symbols is encoded using the systematic generator matrix of the code,
denoted by G, to form a codeword c of length N. The encoding process is given by

c = bG (3.1)

where the matrix multiplication is done over GF(2P). To simplify the explanation of our
decoding algorithm in the next sections, we choose the QAM modulation with a constella-

tion size equal to the size of the Galois Field. Later, in Section 3.4, we consider the case of
BPSK modulation. The modulated signal ? can be written as

? = /(c) (3.2)

where / denotes the mapping from the code symbols to the constellation symbols. Here,
we consider both the AWGN channel and the Rayleigh fading channel. The received signal
at the output of the Rayleigh fading channel can be written as

Vi = OiXi + Zi, i=l,2,...,N (3.3)

where ? is the 1 ? TV transmitted vector with entries from a complex-valued 2P-QAM
constellation, a¿, i = 1,2, ..., N are independent and identically distributed (i.i.d.) fading
coefficients from a circularly symmetric complex Gaussian distribution with zero mean and
unit variance, ? is the 1 ? iV noise vector with entries from a zero mean complex Gaussian
distribution with variance s2 and y is the 1 ? TV received vector. For an AWGN channel,
we simply write y, = x¿ + z¿, i = 1, 2, ..., N.
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For ML decoding of the Reed-Solomon code, we should solve the following problem:

argmax p(y\b) (3.4)
beGF(2P)K

which is equivalent to

argmin \\y - Hx\\2 (3.5)
b£GF{2P)K

where ? = f(bG). So, for ML decoding we should consider all the possible information
vectors to determine the most probable one which is of prohibitive complexity especially
for long RS codes that are used in practical systems. One of the popular methods to reduce
the complexity of ML decoding is sphere decoding. In the following section, we introduce
an algorithm using sphere decoding for soft decision decoding of RS codes.

3.2 RS Decoder Algorithm using Sphere Decoding

In this section, using the basis of sphere decoding, we present a soft decoding method
for RS codes. Assuming the fading coefficients are known at the receiver, our proposed
algorithm is explained with the following steps:

Step 1: The hard-decision decoded codeword is generated using the Berlekamp-
Massey (BM) algorithm [6].

Step 2: The received vector y has N elements. For each of them, a set of probable
transmitted symbols (x¿s) is determined. When short RS codes are considered, for each
element of the received vector, we consider all of the possible transmitted symbols. How-
ever, when the RS code is long, in order to avoid high complexity, only a small set of most
probable transmitted symbols is considered for each received element. This can be done by
solving

hi - aiXiW < re. (3.6)

The radius re can be adjusted in order to consider the desired number of transmitted sym-
bols. The set of candidate symbols for each received element will be ordered from the

most probable one to the least probable one. For example, the ordered set with s elements
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corresponding to y¿ is

{síVr,..·,^}
such that

Vi - OiiX\(i) < Vi - CHiX;
(2) < ... < Vi - ctiX,

W

(3.7)

(3.8)

Step 3: Similar to binary codes [22] [26], here we can use only the two most probable

symbols from step 2 to define the reliability of each received element as

LLR(Vi) Vi - (XiXi
(2) y% - (XiXi(1) (3.9)

Using this reliability measure, the symbols of the received signal are arranged in decreasing

order of reliability. This ordering defines a permutation ??· So, the new received signal can
be written as [26]

W = X1(V). (3.10)

Since RS codes are maximum distance separable, the first K elements of w correspond to
the most reliable and independent positions of the RS codeword. They are called the most
reliable basis (MRB).

Step 4: The columns of the generator matrix G of the code and also the fading coef-
ficients are also permuted according to X1:

G1 = X1(G),

a1 = ?? (a)

(3.11)

(3.12)

where a is the IxN vector of fading coefficients. If we denote the code generated by G
with C and the one generated by Gi with C1, we have C1 = X1(C).

Step 5: Because of the MDS property of RS codes, every K columns of G1 are

independent. Therefore, we can convert G1 to the systematic form Gsys using elementary
row operations. This way, the first K columns corresponding to the most reliable and
independent positions of the codeword are reduced to an identity matrix.

Step 6: Now, we are ready to decode the received signal using sphere decoding.
Our algorithm works based on the Euclidean distance. It means we try to find probable
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transmitted codewords (c's) with small Euclidean distance from the received signal such
that

\\y - a ¦ xf < r2 (3.13)
or equivalently

\\w - a1 ¦ ??\\2 < r2 (3.14)
where ? = /(c), X1 = /(C1) and '·' denotes the component-wise multiplication. When
the hard decision BM algorithm [6] in step 1 is successful, we denote the hard-decision
decoded codeword by chd ar»d its modulated version by xhd, then the search radius r of
sphere decoding is set to

r=\\y-a-xHD\\. (3.15)

However, when the BM algorithm is not successful, the radius should be selected in such a

way that with high probability at least one codeword fits inside the sphere. From Equation
(3.3), Zi = iji — CXiXi, i = 1, ...,N and each z, has the variance of s2. If r2 is selected as a
scaled variance of the noise, we can be confident that at least one codeword fits inside the

sphere. Therefore, we choose
r = 2xVÑ¿*. (3.16)

A higher value should be chosen for r in situations that no codeword exists inside the
sphere with the above radius. We have confirmed with simulation that these situations have

a really low (almost zero) probability of happening.
From Equation (3.14), we have

JV

£|«;fc- UkE1(A)I2^r2. (3.17)
We are looking for X1 's that satisfy the above equation and are also valid RS codewords.
Therefore, we first try to find the first K components of X1 considering only the first K
terms of the above inequality,

\wx - O11X1(I)I2 + \w2 - a&(2)|2 + ... + \wK - Ot1XX1(K)I2 < r2. (3.18)
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Each time we find the K components of X1 that satisfy (3.18), they can be encoded using
Gsys to find the rest of RS symbols (based on the MDS property of RS codes). Equation
(3.18) is similar to, but simpler than Equation (2.5). The first term only depends on Xi(l),
the second term only on £i(2) and so on. Considering the first term of this inequality,

|wi-aí¿i(l)|2<cZ(l)2 (3.19)
with d(l) = r, we try to find X1(I). In order to do this, the ordered set of most probable
transmitted symbols < x\ , x[ , ..., x\ > from step 2 is considered. The elements of this
set that satisfy (3.19) are considered as the acceptable values for xi(l). Because of the
ordering in step 2, these acceptable values are ordered from the most probable one to the
least probable one. For each of them we can define d(2)2 = d(l)2 — \wi - a^??(1)| and
use the first two terms in inequality (3.18) in order to find acceptable values for Xi(2):

\w2 - a^?(2)|2 < d{2f. (3.20)
Similarly, we use the ordered set of most probable transmitted symbols from step 2,

< X2 , X2 , ·¦-, x2 \, and the elements of this set that satisfy (3.20) are considered as the
acceptable values for X1 (2). We continue this process for £?(3), ¿i(4) and so on until we
obtain all the lattice points inside the sphere that satisfy (3.18). The whole process is shown

in Figure 3.1. From this figure, when we select a value for Ot1(J) at step j, we go to step
j + 1 . For each acceptable value of X1 (J ) , there is a list of acceptable values for X1 (j + 1) at
step j + 1. Each time we go from step j — 1 to j, we start with the first acceptable value for
X1 (j) which has the highest probability of being sent. Then we continue with less probable
ones. In general when there is no more acceptable value for x\(j) at step j, we go back to
step j' — l and find the next acceptable value that has not been checked yet for X1(J — 1).
Then, we return to step j.

Each of the lattice points that satisfies (3.18) contains K symbols of an RS codeword.
These K symbols can be encoded using Gsys to find the other N-K symbols. If the
resulting codeword C1 satisfies (3.14), it will be saved as a candidate transmitted codeword.
A summary of sphere decoding algorithm for RS codes is given in Figure 3.2.
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Figure 3.1: Sphere decoding of RS codes. The process of finding the first K elements
of the permuted transmitted signal X1 = /(C1) that satisfy the following inequality:
S?-=? \u>k - al£i(k)\ < r2. The index T on the lines in each step indicates the highest
probable transmitted symbol, the index '2' the second highest probable transmitted symbol
and so on.
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Data: permuted fading coefficients a1, systematic permuted generator matrix Gsys,
search radius r, permuted received signal w and s(k) the number of the
elements of the ordered set corresponding to w(k).

Result: A list of permuted codewords ci's inside the sphere of radius r around the
permuted received signal w.

begin
Initialization: k = 1, d(k) = r,A = [00...0]iXÄ-.
if k = 0 then

|_ stop.
else
L Go to 3.;

if A(k) + 1 < s(fc) and wk - a\xfk)+1 * < d(kf then
L x1(k) = xi(h)+1,A(k) = A{k) + l.

else
L Go to 6.;

Hk = K then

6i=/_1 (£i(l : K)), C1 = bxGsys.
if \\w -a1 · /(Ci)H2 <r2 then

|_ save a?.
else

k = k + l,;
d{kf = d{k - I)2 - |wfe_i - al^x^k - 1)|2.;

Go to 2.;
fc = k - 1, i4(fc + 1 : K) = zeros(l, K - k), Go to 2.

end

Figure 3.2: Sphere decoding of RS codes

39



In order to reduce the complexity of sphere decoding algorithm (Figure 3.2), each
time we find a codeword ¿ì inside the sphere, we replace the search radius r with \\w — a1 ¦ /(¿?)
and change vector d in the algorithm accordingly. After finishing the algorithm, we have
a list of permuted candidate codewords that satisfy (3.14). We will choose the one that

minimizes \\w — a1 ¦ /(¿?)|| as the response of sphere decoding. The actual transmitted
codeword will be

C = A1-1COi). (3.21)
The ordering that was discussed earlier will help us to find the candidate codewords

quickly, because we first decode the K most reliable code symbols and for each of them
we start from the most probable transmitted symbol. By finding the candidate codewords
early and replacing the search radius by their distance from the received vector, there will

be less choices of the first K elements of X1 that satisfy £}fe=1 \wk — a\£i(k)\ < r2. This
results in reducing the complexity of the algorithm.

Another feature of the proposed algorithm is that when the BM algorithm or the
sphere decoder finds the correct transmitted codeword, the search radius will be the distance

of that codeword from the received vector and therefore the algorithm can not find any
codeword closer to the received vector and stops quickly.

If each ordered set in step 2 contains all of the possible transmitted symbols, the
above algorithm can do ML decoding. This is perfect for short RS codes. However, it
is still complex for long RS codes. In order to avoid high complexity, we have to apply
some limitations on our algorithm which lead to a suboptimum decoding method. These
limitations are:

1 . For each received symbol, we only consider a small set of most probable transmitted
symbols (for example s symbols) instead of all the possible symbols.

2. We denote the number of the elements of the ordered set corresponding to w(k) with
s(k) which at the beginning is the same for all k's and is equal to s. However, if

2

Wk — cx\xk > d(k)2 (line 3 of SD algorithm in Figure 3.2), it means that in
most of the cases we should not go beyond xk ' ' and we can set s(k) = A(k). If in
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some cases s(k) = 0, it means that there will be no other points inside the sphere and
we will stop the algorithm.

3. As we discussed above, the kind of ordering we used in our algorithm helps us to
find the candidate codewords quickly. Every lattice point satisfying (3.18) contains
K code symbols that can be used to find an RS codeword. If this RS codeword
lies inside the sphere, it is considered a candidate transmitted codeword. Therefore,
for signal to noise ratios (SNR's) of our interest, if we don't find the best codeword

after considering a specific number of codewords (lattice points satisfying (3.18)), it
means that we have bad noise realizations. In such cases, it is not worth to search for

more points inside the sphere and we stop the algorithm. Then, among the candidate
codewords found by the algorithm we choose the best one. In cases this limitation is

applied on the decoder, the specific number of lattice points (codewords) considered
by the algorithm before being stopped is determined from simulation.

By introducing these limitations, we have made a trade-off between the performance and
the complexity of our proposed method. It means that adding any of these limitations will

degrade the performance of decoding from ML decoding but will also reduce the com-
plexity considerably. Compared to hard-decision decoding, our method can improve the
performance of RS codes considerably with a moderate increase in complexity.

3.3 Complexity Analysis of the Proposed Algorithm

The proposed algorithm for decoding an (TV, K) RS code assuming 2P-QAM modulation
(N = 2P - 1) consists of the following steps where the required complexity for each of
them is considered:

1. Finding the ordered sets for all received symbols: Using Equation (3.6), by adjusting
re, we can find the desired s most probable code symbols. Calculating the probability
of s symbols for all of the TV received elements has the time complexity of O(Ns).

41



Using "Mergesort" [26], sorting s symbols for all of the N received elements has the

time complexity of 0(Nslog2s).

2. Sorting the received elements based on their reliabilities: Calculating the reliabilities

for N received elements has the time complexity of O(N). Using "Mergesort", or-
dering of the received sequence based on reliabilities is achieved with about Nlog2N
floating point operations [59].

3. Systematizing the generator matrix of the code using elementary row operations in
such a way that the first K columns corresponding to the most reliable and indepen-
dent positions of the codeword are reduced to an identity matrix: At this step, the

required number of finite field operations over GF(2P) is [60] [26]

0((min {N - K, ?})2 ? N). (3.22)

As we can see, the complexity of the this step of the algorithm which is a Gaussian-

elimination process is dominant compared to the first two steps.

4. Sphere decoding: we represent the complexity of sphere decoding using the average

number of codewords (lattice points satisfying (3.18)) that are considered with our
proposed algorithm. It should be mentioned that by increasing the SNR, the average
number of considered codewords and consequently the complexity of the method are

decreased. This is because at higher SNR's, the first K most reliable positions of
the codeword have higher reliabilities which makes it faster for the sphere decoder

to find the acceptable codewords especially the correct transmitted codeword. As
mentioned before, after finding each acceptable codeword, the radius of the sphere is
reduced which makes the sphere decoder even faster.

In Section 3.6 that we present simulation results, we provide the average number of
the codewords considered by the decoder for different SNR's.
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3.4 RS Decoder Algorithm using Sphere Decoding for BPSK
Modulation

In this section, we consider the case of BPSK modulation. For simplicity of explanation,
we choose the AWGN channel.

Since any element ß G GF(2P) has an ? tuple representation, we can show any
codeword of length N in binary form:

cb = (Cl,l, Cl,2, ···, Ci)P, C2il, ..., C2,p, ..., Cjy.l, ···, C/v,p). (3.23)

Assuming BPSK modulation, the transmitted signal can be written as ? = — 2q, + 1. The
received signal of length Np at the output of an AWGN channel is

y = ? + ? (3.24)

where entries of ? are from a zero mean Gaussian distribution with variance s2. The

reliability of the received vector can be expressed in terms of the log likelihood ratios
(LLR's) that are given by pch = 2y/a2.

The proposed decoding algorithm has been described assuming 2P-QAM modulation.

We have to make some changes to our algorithm in order to be used for BPSK modulation.
An RS codeword contains, non-binary symbols each having ? bits. So, we have to divide

the received sequence into N groups each containing ? elements. For each group, we
determine an ordered set of most probable sequences with ? elements from {+1, —1}· For
example, if we denote a group with g, its ordered set will be {gi,g2, ---,gs} suchthat

\\9-9i\\2<\\g-92\\2<...<\\9-9s\\2 (3.25)

where the maximum value for s is 2P. From this list we can also define the reliability of
each group as

LLR(g) = \\g - g2f - \\g - gif . (3.26)
Based on these ordered sets and the reliabilities, our proposed decoding algorithm can

be applied on BPSK modulated RS codes over the AWGN channel. However, as we will
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see in simulation results, the average number of the codewords (lattice points satisfying
(3.18)) considered by the algorithm is rather high specially at low signal to noise ratios.
This results in high complexity. Also, the coding gain is not as good as the case of ??-
QAM modulation.

Here, we explain what might causes these problems. With BPSK modulation, we
have the reliabilities for bits at the receiver. We group every ? reliabilities to calculate
the reliability for every symbol. We arrange the reliabilities of symbols for soft decision
decoding. Therefore, there might be low reliable bits in a high reliable symbol and vice
versa. As a result, the algorithm has to consider a lot of lattice points inside the sphere

before finding the correct transmitted codeword. Also, there is a higher chance that we do
not find the correct codeword at all (assuming some of the three limitations introduced in
section 3.2 are applied on the decoding method) which degrades the performance. In order
to improve the performance of decoding for the case of BPSK modulation, we propose to

use the binary image of the RS code.

3.5 Bit-level Decoding of RS Codes using Sphere Decoding

In this section, we explain how to use the binary image of RS codes for bit-level decoding
in cases that we have BPSK modulation. The parity check matrix of an (N, K) RS code
over GF(2P) is denoted by H. For any codeword c of the RS code, RcF = 0.

Here for the decoding, we consider RS codes over an extension field of GF(2). From
Chapter 2, Section 2.2, each element of the parity check matrix of the code can be replaced
with a ? ?? binary matrix resulting in a binary parity check matrix Hf, of size (N— K)p? Np
[56]. If the binary form of the codeword c is denoted by c&, we have H^cJ = 0.

The binary parity check matrix H\, can be converted to the systematic from using
elementary row operations such that

Hb-sys = [P\I(N-K)p] (3.27)

where P is an (N — K)p ? Kp matrix and / is an (N - K)p ? (N — K)p identity matrix.
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Then the generator matrix of the binary image of the RS code can be written as

G = [lKp\PT] ¦ (3.28)
We use this binary generator matrix and using the same algorithm based on sphere decoding
we decode the received vector to a binary image codeword. The difference here is that the
code length is Np and the code dimension is Kp. Also, since the binary image of the RS
code is no longer an MDS code, step 5 of the algorithm has to be modified as follows.

Step 5: The reliability of the ith element of y corresponds to the zth column of the
code generator matrix G. In this step, we rearrange the columns of Gi to generate another
matrix G2 such that the first Kp columns of G2 be the Kp linearly independent columns of
Gi with largest associated reliability values and also maintain the decreasing order of their
reliability values. The remaining (N — K)p columns of Gi are also arranged in the order
of decreasing their associated reliability values and form the remaining (N — K)p columns
of G2. This process defines another permutation A2 [26]. So, the new received signal, the
new code generator matrix and the new fading coefficients are

? = X2(w), (3.29)

G2 = A2(Gi), (3.30)

a2 = A2(C*1). (3.31)
If we denote the code generated by G2 with G2, we have G2 = A2(Ai(G)). Now, we are
ready to convert G2 to the systematic form Gsys using elementary row operations. This
way, the first Kp columns corresponding to the most reliable and independent positions
of the codeword are reduced to an identity matrix. The required binary operations for this
process can be shown as

0((min{(N - K)p,Kp})2 ? Np). (3.32)

In SD algorithm (Figure 3.2), instead of w and a1, we should use ? and a2. The permuted
candidate codewords are also denoted by C2 's. Finally, the actual transmitted codeword is
¿ = ArW(C2)).
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3.6 Simulation Results and Discussions

In this section, we explore the amount of soft-decision gain that our algorithm provides
on different channels. In Sections 3.6.1 and 3.6.2, Rayleigh fading channels and AWGN
channels are considered respectively.

We compare our algorithm with the BM hard decision decoding [6] method and also
the algebraic soft decision decoding algorithm proposed by Koetter and Vardy [29] that
will be mentioned by the KV algorithm. We especially use the simulation results of the KV
algorithm from [61] and [13] for comparison. The BM hard decision decoding has the time
complexity of 0(Ndmin) where dmin = N — K + 1 is the minimum distance of the RS
code. To have an idea about the complexity of KV algorithm, it should be mentioned that
it has four major steps. Calculating the reliability matrix has a time complexity of 0(N2).
Multiplicity assignment has also a time complexity of 0(N2). Solving the interpolation
problem has the best complexity of 0(N2X4) [62] where ? = (-1 + y/1 + 8 \M\ /N) ¡2
and \M\ is the interpolation cost of the multiplicity matrix M. Finally, efficient fac-
torization algorithm proposed by Roth and Ruckenstein [58] has a time complexity of
0((l ? log2l)K(N + I ? logq)) where q = N + 1 and I is an upper bound on the KV
list size and is determined by ?.

In order to have an idea of the complexity of the proposed algorithm, we refer the
reader to Section 3.3. The total complexity of the proposed decoding algorithm is described

using the average number of floating point operations. As a complexity measure, instead
of the complexity itself, it is useful to use the complexity exponent ec [50] where

Average # of floating point operations = Ne° (3.33)

and N is the code length.

For each simulation in this section, we provide a table of the average number of the
codewords that are checked by the sphere decoder for different SNR's. Also, the total com-

plexity exponent of the proposed algorithm is measured for different SNR's and compared
with that of the KV method.
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3.6.1 Rayleigh Fading Channel

1- RS(15,11) code and 16-QAM modulation: In Figure 3.3, we compare the performance
of different decoding algorithms. We use our proposed decoding algorithm for both ML
and suboptimum decoding. In suboptimum decoding, we only apply the second limitation
mentioned before on our algorithm. Suboptimum decoding provides slightly better perfor-
mance compared to the KV algorithm while ML decoding using our algorithm provides
about 1 dB coding gain compared to the KV algorithm with mmax = 100. We should
mention that mmax = [X\ and the higher its value, the higher the complexity of the KV
method [61]. At codeword error rates of 10-3 and lower, ML decoding using the proposed
algorithm provides a coding gain of more than 7.5 dB compared to the conventional hard
decision decoding.

The average number of the codewords that are checked by the algorithm for both

cases of ML and suboptimum decoding is given in Table 3.1. As we can see, adding the
second limitation to the algorithm degrades the performance but at the same time reduces
the number of codewords that should be checked by the algorithm which means less com-

plexity. In Figure 3.4, the total complexity exponent of the proposed method for both ML
and suboptimum decoding has been compared with that of the KV algorithm for two cases
(mmax = 4, 100). As we can see, our algorithm provides better performance and at the
same time less complexity compared to the KV method. An interesting property of our
method is that the complexity decreases as the SNR increases.

Table 3.1 : Average number of the codewords that are considered for ML and suboptimum
decoding of RS(15,1 1) with 16-QAM modulation on a Rayleigh fading channel

Eb/N0(dB) 5 7 9 11 13 15
Average number of the codewords, 753 375 133 18 8 3

ML decoding
Average number of the codewords, 104 51 29 15 5 1

Suboptimum decoding

2- RS(255,239) code and 256-QAM modulation: As we mentioned before, in order

to avoid increase in decoding complexity of this long RS code, we apply all of the three
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Figure 3.3: Performance of the proposed algorithm for ML and suboptimum decoding of
RS (15,11) with 16-QAM modulation on a Rayleigh fading channel.
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Figure 3.4: Complexity exponent of the proposed algorithm for ML and suboptimum de-
coding of RS (15,1 1) with 16-QAM modulation on a Rayleigh fading channel.
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limitations discussed before on our algorithm. For each received element we only consider
a small set of most probable transmitted symbols (4 in this case). The number of codewords
(lattice points) considered by the algorithm before being stopped is limited to 8000. Per-
formance of this code is shown in Figure 3.5. At codeword error rates of 1O-3 and lower,
suboptimum decoding using the proposed algorithm provides a coding gain of more than
3 dB compared to the BM hard decision decoding method, 0.3 dB compared to the KV
method with mmax = 100 and 1.3 dB compared to the KV method with mmax = 4.

Table 3.2 shows the average number of the codewords that are considered by the

algorithm. Our proposed method can do suboptimum soft decoding for this long RS code
by checking a relatively small number of codewords which results in moderate complexity.

In Figure 3.6, the total complexity exponent of the proposed method has been compared
with that of the KV algorithm for two cases (mmax = 4, 100). Except for low SNR's, our
method has lower complexity than the KV method with mmax = 4.

Table 3.2: Average number of the codewords that are considered for suboptimum decoding
of RS (255,239) with 256-QAM modulation on a Rayleigh fading channel

Eb/N0(dB) 23 24 25 26 27
Average number 4038 1144 508.21 107.6 40.92
of the codewords

3.6.2 AWGN Channel

In this section, we consider the case where BPSK modulated bits are transmitted over the
AWGN channel.

1- RS(15,1 1) code: In Figure 3.7, we compare the performance of different decoding
algorithms. Here, we only apply the third limitation discussed before on our algorithm. The
number of codewords (lattice points) considered by the algorithm before being stopped
is limited to 10000. We can see from Figure 3.7 that at codeword error rate of 10-3,
symbol-level suboptimum decoding provides more than 0.5 dB coding gain compared to
the asymptotic performance of the KV algorithm and 1.7 dB compared to the conventional

hard decision decoding. In this figure, the performance of bit-level sphere decoding using
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Figure 3.5: Performance of the proposed algorithm for suboptimum decoding of RS
(255,239) with 256-QAM modulation on a Rayleigh fading channel.
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Figure 3.6: Complexity exponent of the proposed algorithm for suboptimum decoding of
RS (255,239) with 256-QAM modulation on a Rayleigh fading channel.
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the binary image of the code is also shown. We can see that bit-level decoding provides
a coding gain of 0.7 dB compared to the symbol-level decoding at codeword error rates
of 1O-3 and lower. Actually, the performance of bit-level sphere decoding is 0.2 dB away
from the best performance possible which is of ML simulation.

From Table 3.3, the bit-level decoding method requires to check considerably less
codewords compared to the symbol-level decoding specially at low signal to noise ratios.
Therefore, in the case of BPSK modulation, bit-level decoding using the binary image of
RS codes provides better performance and at the same time less complexity compared to
symbol-level decoding. The total complexity exponent (Figure 3.8) of both symbol-level
and bit-level decoding is less than that of the KV method with mmax = 11.

Table 3.3: Average number of the codewords that are considered for suboptimum decoding
of RS(15,1 1) code with BPSK modulation on an AWGN channel

Eb/NO (dB) 3 4 5 6 7
Symbol-level decoding 4314.1 1279 180.55 20.91 3.38

Bit-level decoding 1517.2 576.12 120.5 18.5 3.2

2- RS(31 ,25) code: In Figure 3.9, we compare the performance of different decoding
algorithms. In suboptimum decoding of this code using the proposed algorithm, we apply
the second and the third limitations discussed before on our algorithm. The number of
codewords (lattice points) considered by the algorithm before being stopped is limited to
20000. Symbol-level decoding provides slightly better performance (about 0.12 dB coding
gain) compared to the KV algorithm. Also at codeword error rates of 10~3 and lower, it
provides a coding gain of about 1 dB compared to the conventional hard decision decoding.
Bit-level decoding has better performance compared to symbol-level decoding (about 0.6
dB at codeword error rate of 1O-3).

From Table 3.4, the number of codewords that are considered by symbol-level de-
coding is very high at low signal to noise ratios. Again, using the bit-level decoding, we
need to check much less codewords meaning less complexity. Except for low SNR's, the
total complexity exponent (Figure 3.10) for both symbol-level and bit-level decoding is less
than that of the KV method with mmax = 7.
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Figure 3.8: Complexity exponent of the proposed algorithm for suboptimum decoding of
RS (15,1 1) with BPSK modulation over an AWGN channel.
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RS (31,25) with BPSK modulation on an AWGN channel.
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Table 3.4: Average number of the codewords that is considered for suboptimum decoding
of RS(3 1 ,25) with BPSK modulation on an AWGN channel

Eb/NO (dB) 3 4 5 6 7
Symbol-level decoding 11720 4210 546.06 71.55 12.55

Bit-level decoding 3220.1 986 276.13 52.3 11.32

We can see that our algorithm using sphere decoding can provide equal or in some
cases better performance compared to the KV algorithm with less complexity. In all of
the considered cases, by applying the proper limitations discussed in section 3.2, we could
provide acceptable performance with moderate complexity.

3.7 Conclusion

We have used the basis of sphere decoding to form an efficient soft decision decoding al-
gorithm for RS codes. The concept of most reliable basis (MRB) and two types of ordering

have been used in our algorithm in order to increase the speed of sphere decoding. Our
original algorithm can be used for ML decoding. However, its complexity is too much for
long RS codes. So, we have introduced three limitations to be applied on our algorithm in
order to reduce its complexity. In fact, we have made a trade-off between the performance
and the complexity of our proposed method. Depending the code, the modulation and the
channel, we have applied one, two or all of the limitations on our algorithm in order to
have good performance and at the same time moderate complexity. For the considered
cases, it has been shown that our method can provide considerable coding gain compared
to the hard decision decoding with a moderate increase in complexity. Its performance is
also comparable or in some cases even better than the KV algorithm. In the case of BPSK
modulation, we have seen from simulation results that bit-level sphere decoding using the

binary image of the code can provide better performance and less complexity compared to
symbol-level decoding.
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Chapter 4

Efficient Iterative Techniques for Soft

Decision Decoding of RS Codes

Belief Propagation (BP) iterative decoding has first been proposed for decoding low-density
parity check (LDPC) codes [9]. It has been shown that iterative decoders for very long
codes with sparse factor graphs can achieve performances close to Shannon capacity [63].
Therefore, it would be ideal if RS codes are suitable for this class of decoders. The basis of

BP decoding has been explained in Chapter 2, Section 2.2. For belief propagation decoding
of RS codes, they should be considered over an extension field of GF(2). The binary image
of RS codes has also been described in Chapter 2, Section 2.2.

As discussed in Chapter 2, standard BP iterative decoding is not suitable for high
density parity check codes like RS codes. For these codes, there are a large number of
short cycles in the factor graph [38] which cause correlation between the messages and
error propagation. In [37], the cyclic structure of RS codes is used and BP decoding is

applied to a random shift of the received vector at each iteration to avoid error propaga-
tion. For short RS codes, the coding gain is significant but it diminishes for long codes.
Another bit-level decoding method based on belief propagation has been proposed in [35],
but it is only efficient for very low rate RS code. In [36], an algorithm for removing all
the 4-cycles in the factor graph of linear block codes has been introduced. This method
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improves the suitability of iterative decoders for short low rate RS codes. The adaptive
parity-check (ADP) algorithm [12] has been the first successful bit-level iterative decoding
method for RS codes. In ADP, in order to make BP decoding effective for a dense RS parity
check matrix, Gaussian elimination is performed on the binary parity check matrix before
each iteration such that the variables of lowest reliability connect into the graph only once.
This algorithm has very good performance compared to other soft decision decoding algo-
rithms for RS codes. The problem with the ADP algorithm is that the required Gaussian
elimination of the parity check matrix at each iteration is very complex. In [44], multiple-
bases belief propagation for linear block codes with dense parity check matrices has been
proposed. It makes use of the fact that a code has many structurally diverse parity check
matrices, capable of detecting different error patterns. Other BP based decoding methods
for general linear block codes have been proposed in [39-^43].

In this chapter, for efficient iterative decoding of RS codes, we use a fixed binary
parity check matrix. This matrix is the extended version of the original parity check matrix
with lower density and less number of 4-cycles [64]. This parity check matrix represen-
tation is better suited for iterative decoders. Parity check matrix extension is only applied
in the receiver for the decoding without affecting the RS code itself (i. e. the transmitter).
Even using the extended parity check matrix, the performance of standard BP decoding is
not very good. In order to improve the performance of standard BP decoding, we propose
two new bit level iterative soft decision decoding methods for RS codes using the fixed
extended binary parity check matrix.

The first algorithm uses the cyclic structure of RS codes. Based on this property,
we can apply the BP algorithm on any cyclically shifted version of the received symbols
with the same binary parity check matrix. For an (N, K) RS codeword, each of N shifted
versions of the received symbols leads to a different distribution of reliability values and
deterministic errors can be avoided. Simulation results demonstrate that the performance
of this method is superior or comparable to some popular methods including ADP method.

The second algorithm uses the information correction in BP decoding. Based on the
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updated reliabilities at the end of each iteration, we can determine the bits with lowest re-

liabilities such that changing their channel information improves the convergence of the
decoder to a codeword [65]. In this method, a few steps of information correction are per-
formed which help improving the performance of normal BP decoding. The performance
of this method is not as good as the first algorithm, but it is less complex because it needs
less number of BP iterations.

The rest of this chapter is organized as follows. In section 4.1, the system model
is introduced. In section 4.2, we first briefly review the BP decoding. Then we explain
low density extended binary parity check matrices for RS codes. After that we investigate
the performance of BP decoding with different binary parity check matrices over binary
erasure channels (BEC). In section 4.3, using the extended parity check matrix, two algo-
rithms for soft decision decoding of RS codes based on belief propagation are presented.
First, iterative decoding based on the cyclic structure of RS codes is introduced. We also

give a geometric interpretation of the proposed algorithm. Then, iterative decoding using
information correction is introduced. In section 4.4, we present the complexity analysis of
the proposed algorithms. Simulation results and discussions are in section 4.5 where the

performance of different RS codes over the AWGN channel is considered. We explore the
amount of soft-decision gain that our algorithms provide for different RS codes. Finally,
conclusions are presented in section 4.6.

4.1 System Model

We use an (N, K) RS code over Galois field GF(2P) where N = 2P- 1. Denoting the parity
check matrix of the code by H, for any codeword c of the RS code, we have HcT = 0.
Since any element ß G GF(2P) has a ? tuple representation, we can show any codeword c
of length N in binary form as

Cb= (ci,i,c1>2,...,clip,c2jl,...,C2!p, ...,cNtl,...,cNiP). (4.1)
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We assume BPSK modulation ? = — 2c& + 1 over an AWGN channel. So, the received

signal is
y = ? + n (4.2)

where ? is the AWGN vector with variance s2. The reliability of the received vector can
be expressed in terms of the log likelihood ratios (LLR's) that are given by pch = 2y/a2.

For the decoding, we consider the binary image of RS codes. As discussed in Chapter
2, Section 2.2, for a primitive element a of GF(2P), there is a ? ? ? binary companion
matrix cp (Equation (2.24)) [56]. A field isomorphism can be defined by the mapping

a1 —> clp, i — {0, 1, ...}. Based on this mapping, each element of the parity check matrix of
the code is replaced with apxp binary matrix resulting a binary parity check matrix H^ of
size (N — K)p ? Np. Such a mapping results in Hbc[ = 0. This equation specifies the set
of linear constraints satisfied by the codeword bits. These constraints can be represented
using a bipartite graph [38] where the set of variable nodes represents the codeword bits
and the set of check nodes represents the set of parity-check constraints satisfied by the
codeword bits. There is also a set of edges that connect every check node with all the

variables nodes involved in its check equation.
Using the binary image of RS codes, standard BP decoding (Figure 2.5) can be used

for decoding the received signal to a binary RS codeword.

4.2 Iterative Decoding of RS Codes using Belief Propaga-
tion

4.2.1 Standard Belief Propagation decoding of RS Codes

In the bipartite graph of the binary image of an (N, K) RS code, there are (TV — K)p
check nodes and Np variable nodes. Given the vector pch of initial channel LLR's and the
bipartite graph defined by if¡>, the BP algorithm updates the reliability information of the
bits for an specific number of iterations (Figure 2.5). The stopping criterion could be when
all the checks are satisfied or when we reach the maximum number of iterations. Standard
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BP iterative decoding is not suitable for RS codes. The binary parity check matrix of these
codes is very dense and there are a large number of short cycles in the factor graph which
cause correlation between the messages and consequently error propagation.

4.2.2 Low Density Parity Check Matrices for RS Codes

The total number of short cycles in the factor graph of RS codes increases exponentially
with the parity check matrix density. The density of the binary image of the parity check
matrix given in Equation (2.22) is around 50% for different RS codes which leads to a large
number of short cycles. So, one step is to find a low density binary parity check matrix for
an (N, K) RS code. This is equivalent to finding the (N — K)p codewords of low Hamming
weight that span the binary image of the dual code of the RS code which is also an RS code.
We may construct these low weight codewords by considering the subcodes of the binary
image of the dual code consisting of codewords that are nonzero only on a subset of the
Np coordinate positions [64]. In order to construct these subcodes, for a given parameter
s < p, we define a support set R as

R={iui2,...,is}c{l,2,...,p}. (4.3)

We look for any codeword b = {b1A, ..., feljP, O2, i, ·¦·, b2,P, &jv,i, ···, bN}P} of the dual code
which is zero outsize the defined support set R:

bij = 0,(iJ)E{l,2,...iN}xR (4.4)

where R= {1, 2, ...,p} \ R. Codewords satisfying the above constrains (if they exist) may
be obtained from the appropriate linear combinations of the rows of Hf, [64]. We repeat
this procedure for different support sets and among the codewords we obtain, we choose
the ones with lowest weight that span the binary image of the dual code [64].

If the low weight codewords don't span the binary image of the dual code, we arrange
the rows of the systematic Hb in an increasing order of their Hamming weight. We start
from the first row and select the ones that help to complete the span of the dual code. The
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density of the new parity check matrix for different RS codes is around 30% which leads
to less short cycles compared to the original Hf,.

4.2.3 Extended Parity Check Matrix for RS Codes

In order to reduce the number of 4-cycles in the factor graph of the RS code, we can extend
the low density parity check matrix by rows and columns [64]. At first, we select the two
rows (checks) with maximum variable nodes in common denoted by row i and row j. We
form a new row with ones in variable overlap positions of the two checks. In order for this
new row to be a check equation, we have to add a new variable (column) with single one at
the new row and zero elsewhere to the parity matrix to ensure even parity of the new check.
We add this new check to row i and row j and replace them with the results [64]. By doing
so, all the 4-cycles among variables associated with row i, row j and this new row will be
eliminated. This process has been shown in Figure 4.1. Then we select next two checks
with maximum variable overlap and repeat the previous procedure to add a new row and
a new column. After completing this process, the extended parity check matrix will have
re= (N- K)p+(N - K)p/2 rows and ne = Np + (N- K)p/2 columns. The density of
the new extended parity check matrix is around 15% for different RS codes which means
considerably less short cycles. Since we never actually transmit these new variables, we
consider them as erasures (zero LLR's) during the decoding. Iterative BP decoding using
this extended binary parity check matrix is called phantom decoding [64].

4.2.4 Performance Analysis over Binary Erasure Channels

Because of its simplicity, we investigate the performance of belief propagation decoding of
RS codes over a binary erasure channel (BEC) with erasure probability equal to e. Due to
the binary form of the messages, BP decoding on the erasure channel can be done much
easier as follows [66]:

1. Set the values of all check nodes to zero.
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Figure 4.1: Extending the binary parity check matrix by adding rows and columns.

2. If a variable node is received correctly, add its value to the values of all adjacent
check nodes (binary addition) and remove the variable node and all its edges from
the graph. Repeat this for all variable nodes.

3. If there is a check node with degree one, substitute its value into the value of its
unique neighbor (variable node). Repeat step 2 for this variable node and repeat step
3. This step is repeated until all the erased bits are recovered. If at some point there
is no check node with degree one, the algorithm can not proceed further causing
decoding failure.

Similar to low density parity check (LDPC) codes, for a given degree distribution pair (?,
?) from Equation (2.21) and e e [0, 1], we define /(e,z) = e?(1 - p(l - x)). Then the
threshold is defined as [67]

e*(\, p) = sup{e G [0, 1] : ? = /(e, x)has no solution ? in (0, 1]} . (4.5)

A critical point is a point at which f(e*, x) - ? tangentially touches the horizontal axis. It
has been proved [67] that for unconditionally stable graphs (for which ?' (O)p' (1) < 1) with
only one critical point (a:*), the block error probability curves of a code of fixed length N
can be approximated in the waterfall region (around the asymptotic threshold) by

Pb = Q(-
a

-){1 + 0{N-^3)) (4.6)
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where Q is the Q-function. Knowing the degree distributions \{x) and p(x), we can com-
pute the covariance term a and the shift parameter ß [67].

In defining the threshold, it is supposed that the messages coming from the check
nodes are independent as well as the messages coming from the variable nodes. However,
when there are cycles in the factor graph, this assumption is not always true. So, the results
in this section are not exact but they give us a good estimate to investigate the performance
of BP decoding of RS codes over the BEC.

It should be mentioned that the performance of BP decoding of a specific code de-
pends largely on the parity check matrix that is used for decoding. Here, we consider three
different parity check matrices for RS(31,25):

1. The original binary parity check matrix with density around 50% and e* = 0.065.

2. The low density parity check matrix with density around 30% and e* = 0.0911.

3. The extended parity check matrix with density around 15% and e* = 0.155.

The performance of BP decoding of RS(31,25) over the BEC using these three different
binary parity check matrices has been shown in Figure 4.2. For the case of extended parity
check matrix, newly added variable nodes are considered as erasure and therefore the era-
sure probability used in the formula is more than the real erasure probability. Even doing

so, the performance of BP decoding using the extended parity check matrix is still much
better than the others. As it can be seen from this figure, by reducing the density of the
parity check matrix and therefore the number of cycles, the erasure probability threshold
increases and the performance of BP decoding improves largely. Therefore, in the next sec-
tion that we propose new methods for iterative decoding of RS codes, we use the extended
binary parity check matrix for BP decoding.

4.3 Efficient Iterative Decoding of RS Codes

Using the extended parity check matrix discussed previously, we can perform phantom
decoding [64] of RS codes using standard BP iterations. However, the performance will be
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Figure 4.2: Performance of belief propagation decoding of RS(31,25) over the BEC using
three different binary parity check matrices.
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far away from the performance of the ML decoder because there are still a large number of
cycles in the factor graph of the code. Therefore, in this section we present two methods to
improve the performance of phantom decoding.

4.3.1 Method A : Iterative Decoding of RS Codes Based on Their Cyclic
Structure

Since RS codes are cyclic, any cyclically shifted version of a codeword c is also a valid

codeword. Therefore, we can consider a cyclically shifted version of the received signal
y by f symbols (f G [0, N — I]) as the received signal when a shifted version of c by f
symbols which is also a valid codeword has been transmitted. Based on this fact, we can

apply the BP algorithm on any cyclically shifted version of the received reliabilities with
the same binary parity check matrix [37]. In the end, the updated reliabilities are shifted
back to their original positions.

Since for each cyclically shifted version of the reliabilities, their values are differently
distributed, some deterministic errors can be avoided. So, the idea is to have outer rounds

during the decoding. During each outer round, a different cyclically shifted version of the
received reliabilities is generated and then used as the input to the BP decoding algorithm.
Denoting the low density extended parity check matrix by H, the proposed algorithm is
summarized in Figure 4.3. The maximum number of outer rounds, c¿t_OTax, can be chosen

to be equal N-I such that all the possible cyclically shifted versions of the received
reliabilities are considered as the input of the BP decoding algorithm. Most of the time,
our algorithm finds the response very soon (during the first or the second outer round) and
is terminated. So, there is no need to complete all of the outer rounds.

In the proposed algorithm, we use both BP decoding and hard decision BM decoding
[6]. At the end of each BP iteration, the hard decision version of updated reliabilities is
used as the input to the BM decoding algorithm. Even in situations that BM algorithm
can recover a codeword, we do not stop the algorithm just save that codeword. In the
end, if the BP decoding was not successful, we choose one of the saved codewords with
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Data: The low density extended binary parity check matrix H, channel reliabilities
„ch and

= och.

?"" = IyIs , the damping factor T, maximum outer rounds cit_
maximum inner BP iterations BPit_max.

Result: A list of candidate transmitted codewords.
begin

Initialization step: cit = 0, BPit = 0.
Outer rounds:
While Cit < Cit-max do

f = Cit-
Cyclically shifting the channel LLR's by ? symbols: /0ch-s/lî/t
pBP« = [00...0}ix{Np+iN„K)p/2) and pBP-(l : Np) = ¡p-*»**.
Inner BP iterations:
while BPit < BPit_max do

Belief Propagation: feed pBPit and H into the BP algorithm (Figure 2.5)
and generate extrinsic LLR's for each bit: px .
Update the LLR of each bit:
pBP-+\ci) = pBP-(ci) + 9px(ci).
Hard Decisions, for i = 1, 2, ..., Np:

0 pßp«+1(ci)>0
1 pBPit+1{ci) < 0 ·

if c satisfies all the check equations then
shift the decoded bits back to their original position: c = c{—ip), save
c, terminate the algorithm and go to line 13.

else
BM hard decision decoding [6]: c¿m = BM(c).
if a decoding success was signaled then

L cbm = c¿m (-</>) and save C¿M
BPit = BPit + 1.

cu = Cit + I, BPit = 0
Among all the codewords that have been saved throughout the algorithm, choose
the one with minimum Euclidean distance from the received vector.

end

Ci =

Figure 4.3: Method A: Iterative Decoding of RS Codes based on Their Cyclic Struc-
ture
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minimum Euclidean distance from the received vector as the response of the proposed
iterative decoding method. Therefore, the block error rate of the method can be written as

Pb = Pb-bm ? Pb-bp (4.7)

where Pb-bm is the block error rate of BM decoding method and Pb-bp is the block error
rate of BP decoding with cyclic shifting of reliabilities.

In order to reduce the average number of required BP iterations, a stopping criterion
is introduced. We define a radius r = ^??s2. Each time there is a decoding success at the
output of the BM decoding method (Figure 4.3), we check the distance of that codeword
from the received vector, d = \\xbm — y\\, where xBM — -Ic-bm + 1- If d <= r, we
terminate the algorithm and go to line 13 of Method A (Figure 4.3). We refer to this
process as the extra stopping criterion (d < r). Of course, by doing so, the performance of
our proposed algorithm will be slightly worse than before. Therefore, we have a trade-off
between the performance and the complexity.

As we will see in simulation results, the performance of iterative decoding using the
cyclic property of RS codes is very good and even for short RS codes close to the ML
performance. However, the disadvantage is that for low signal to noise ratios we need to
perform a large number of BP iterations leading to high complexity. In the next section, we
present another method for efficient decoding of RS codes. Although the performance of
this new method is not be as good as method A, but it requires much less BP iterations.

4.3.1.1 Analysis of Cyclic Shifting: Geometric Interpretation of Method A

We define the potential function J as [12] [68]
TIq — /Cg Tie — /Cg 77g

J(H, T) = - S 7, = - S ? TP (4-8)
J=I J=I p=l,H(j,p)=l

where J is a function of both the (ne — ke) ? ne parity check matrix H and the received
soft information T such that

T= [T1, T2, ...,TnJ = [V(P(C1)),..., V(P(CnJ)). (4.9)
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Here, the operator ? : [—co, co] —>¦ [—1, 1] is a mapping from the LLR domain to the tanh
domain:

v(p) = tanh(|) = i±|£. (4.10)
When all the checks are satisfied, we have reached a valid codeword and the potential
function J is minimized. In this case, \Tj\ = 1 for j — l,...,ne and Jmin = — (ne — fce).
In the case of RS codes, even using the extended parity check matrix, the density is still
high and applying the iterative decoding might lead to some local minimum points called
pseudo-equilibrium points. These point are not corresponded to valid codewords and the
iterative algorithm gets stuck at them. Actually, there are a few unreliable bits which do
not let J to be minimum.

Because J is a function of both H and T (bit reliabilities), different arrangements
of the reliabilities with the same H result in different values for the potential function J.
The proposed algorithm uses this fact and when a pseudo-equilibrium point is reached,
we change the arrangement of bit reliabilities using cyclic shifting by f symbols (? =
0, ..., N — 1). This way, the update might proceed rather than getting stuck at the pseudo-
equilibrium point. In Figure 4.4, we have shown the potential function J versus the number
of iterations for three outer rounds of method A while decoding RS(15,11) with BPSK

modulation over the AWGN channel with ^| = 4 dB. As it can be seen in this figure,
during the first outer round, BP decoding gets stuck in a pseudo-equilibrium point and
can not converge to a codeword. However, by cyclically shifting the reliabilities by one
symbol during the second round, BP decoding converges to the correct codeword. Here,
for RS(15,1 1), the extended parity check matrix is an re ? ne matrix with re — (N — K)p+
(N — K)p/2 and therefore Jmin = —re = —24 that has been reached during the second
outer round.
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Figure 4.4: Potential function versus the number of iterations for three outer rounds of
method A while decoding RS(15,1 1) with BPSK modulation over the AWGN channel with
fü=4dB.

4.3.2 Method B: Iterative Decoding of RS Codes Based on Informa-
tion Correction

In this section, we introduce another iterative method to improve the standard BP decoding
of RS codes. As we mentioned before, even using the extended binary parity check matrix,
there will be a big gap between the performance of BP decoding of RS codes and that of
ML decoding. This is because of the large number of 4-cycles in the factor graph of the
code.

The new method is based on information correction in the BP decoding algorithm
[65]. In this method, first normal BP decoding is performed for BPit_max iterations. During
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these iterations, the average LLR's are recorded as
-. Dr.it— max

P?£-max(cj) = ññ S ¿?* J = !.-,"e (4.11)-C* * it—max ¦ -,1=1

where p%{cj) is the reliability of the jth bit after i iterations and ne = Np + UIzIDp- if
a codeword is reached during these iterations, we terminate the algorithm. However, if
decoding was not successful at the end of BPit_max iterations, ICmax steps of information
correction are performed:

• Step 1. Based on the average LLR's, we select the least reliable bit:

cp = argmin \?^~™* (cj)\ . (4.12)

Changing the channel information of the selected bit very likely improves the con-

vergence of the decoder to a codeword. Therefore, we perform two tests by setting

pch(cp) = ±m/ and for each case we continue BP iterations with the new channel
reliabilities for additional BP0M iterations. During these iterations, we also record
the average LLR's:

1 BPit~ma,x+BPaili
P^(Cj) = „?- S ^i)' 3 = l>-,ne. (4.13)&*add -DD ,?

At the end of each test, we select one least reliable bit based on the average LLR's.

We assume these bits are at positions h and k for the case pch(cp) = +inf and
pch(cp) = —inf respectively.

Step 2. At the second step, we perform four tests by setting pch(cp) = +inf,pch(ch) =
±m/ and pch(cp) = —inf, pch(ck) = ±inf. For each of the new channel reliabil-
ities, we continue BP iterations from BPit_max for additional BPa¿d iterations and

record the average LLR's based on Equation (4.13). Finally, four least reliable bits
are selected.

In general, step j of the algorithm for 2 < j < ICmax will be as follow:
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• Step j. For each of the 2J_1 bits selected at step j — 1, two tests are performed. For
each of the 2J tests, BP iterations are continued with the new channel reliabilities for
additional BPa(¡d iterations and 2j bits are selected.

If a valid codeword is reached at any step, the decoding is terminated. Here, similar to
method A, at the end of each BP iteration, we perform BM decoding using the updated
reliabilities. If the BM decoding is successful, we do not stop the algorithm just save that
codeword. In the end, we choose one of the saved codewords with minimum Euclidean

distance from the received vector as the decoding response.
Using the information correction strategy, we can enforce the correct values on the

selected bits and eliminate pseudo-codewords. Therefore, the chance of BP iterations to
converge to a codeword is improved significantly. It should be noted that by increasing the
signal to noise ratio, the information correction technique is more effective because there
are less bit errors at the channel output.

As we mentioned before, there are considerable short cycles even in the factor graph

of the extended parity check matrix. Therefore, there will be correlation between the mes-
sages and the values of high reliable bits may be affected significantly by the values of low
reliable bits. To avoid this, we can select the highest reliable bits using a threshold value r:

Ch = {cj,\pch(cj)\>r}. (4.14)
We then fix the values of these selected bits using hard decision and do not update them
during the BP iterations:

pch(Cj) = sign(pch{Cj)) ? inf, Vc,- G Ch. (4.15)

If the threshold is selected appropriately, the selected bits will have correct channel infor-
mation with high probability. This way, high reliable correct bits are safe and their values
are not affected in any ways.

In method B, we also add the extra stopping criterion used in method A in order to
reduce the number of required BP iterations.
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4.3.2.1 Analysis of Information Correction: Geometric Interpretation of Method B

Here, we use the potential function J defined in (4.8). It is a function of both the parity
check matrix H and the received soft information. In method B, at each step of infor-
mation correction, the reliabilities of some bits are changed. Different reliabilities result in

different values for the potential function J. Therefore, when a pseudo-equilibrium point is
reached, changing the bit reliabilities allows the update to proceed. In Figure 4.5, we have
shown the potential function J for three steps of information correction while decoding

RS(31,25) with BPSK modulation over the AWGN channel with f| = 4 dB. As it can be
seen in this figure, during initial iterations and also the first step of information correction,
BP decoding gets stuck in a pseudo-equilibrium point and can not converge to a codeword.

However, in the second step of information correction, BP decoding converges to the cor-
rect codeword. Here, for RS(31,25), the extended parity check matrix is an re ? ne matrix
with re = (N — K)p + (N- K)p/2 and therefore Jmin = —re = —45 that has been
reached during the second step of information correction.

4.4 Complexity Analysis of the Proposed Algorithms

For both algorithms, the extended parity check matrix is used. The complexity of belief

propagation in each iteration is proportional to the number of nonzero elements in the
parity check matrix of the code. Because the density of the extended binary parity check
matrix is around 15%, the time complexity of each BP iteration is

0(0.15 ? re ? ne) (4.16)

where re = (N - K)p + (N- K)p/2 and ne = Np + (N- K)p/2.
In the ADP method, the original parity check matrix with the density around 50%

is used. Each iteration involves 0(Np ? log2(Np)) floating point operations for sort-
ing, 0(Np ? min(K2p2, (N — K)2p2)) binary operations for Gaussian elimination and
0(0.5 ? (N - K)p ? Np) floating point operations for BP. Therefore, the complexity of
each iteration of our methods is much less than the ADP method.
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Figure 4.5: Potential function versus the number of iterations for three steps of information
correction of method B while decoding RS(31,25) with BPSK modulation over the AWGN
channel with f| = 4 dB.

The maximum number of BP iterations in method A based on cyclic shifting of RS
codes is

^it—max X JJ-L it—max· V*·*-')

However, most of the times, we find the response very soon (during the first or the second
outer round) and we terminate the algorithm. So, the actual complexity will be much less
than the maximum complexity.

The maximum number of BP iterations in method B based on information correction

is

" ' (4.18)S 2j
Again, most of the times, we find the response very soon and the actual complexity is much
less than the maximum complexity.

In the next section that we present simulation results for different RS codes, we
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provide tables of the average number of required BP iterations for different signal to noise
ratios.

4.5 Simulation Results and Discussions

In this section, simulation results for decoding RS codes using the proposed algorithms are

presented. For all the simulations, we assume BPSK transmission over AWGN channel.
In method A, the maximum number of BP iterations for the inner rounds is set to 60.

So, the maximum number of iterations will be 6ON. For method B based on information
correction, the maximum number of initial BP iterations is set to BPit-max = 60. We

will have 4 steps of information correction and BPadd = 10. So, the maximum number
of iterations using Equation (4.18) will be 360. It is clear that the maximum number of
iterations in the second algorithm is much less than the first one.

We compare our algorithms with the Berlekamp-Massey (BM) hard decision decod-
ing method [6] and also the algebraic soft decision decoding method proposed by Koetter
and Vardy [29] [13] that will be mentioned as the KV algorithm. We will also compare our
results with those of phantom decoding [64] and ADP method [12]. It is also important
to compare our algorithms with the best performance possible, which is that of the ML
decoder. The weight enumerator of an RS code under a specific binary image expansion
is not known. The averaged ensemble of an RS code can be found by averaging over all
possible binary expansions [69]. The averaged binary weight enumerator can then be used
by Divsalar simple bound [70] to bound the ML error probability [12].

4.5.1 RS(15,11) code

In Figure 4.6, we have shown the performances of our proposed methods. From this fig-
ure, at codeword error rate of 10~3, decoding using method A provides a coding gain of
more than 1 .5 dB compared to the asymptotic performance of the KV algorithm, 2.7 dB
compared to the BM algorithm and 1.7 dB compared to phantom decoding. This method
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Table 4.1: The average number of required BP iterations forRS(15,ll)
Eb/N0(dB) 2 3 4 5~

____________Method A 422 174 52 6
Method A 253 97 24 5

with extra stopping criterion (d < r)
Method B 99 47 13 2

with extra stopping criterion (d < r)

has also about 0.5 dB coding gain compared to the performance of ADP-BM (5,1) [12].
The performance of method B has also been shown in this figure which is almost the same
as method A with extra stopping criterion (d < r). It has 1 .4 dB coding gain compared
to phantom decoding. In order to consider the complexity, Table 4.1 shows the average
number of required BP iterations for both methods. By comparing the complexity and the
performance of method A with and without extra stopping criterion, we see that adding the

extra stopping criterion (d < r) causes about 0.2 dB performance loss and at the same time
reduces the average number of required BP iterations considerably. Therefore, for longer
RS codes, we always add this extra stopping criterion. From Table 4.1, we can also see

that the complexity of method B is much less than method A. Finally from Figure 4.6, the
performance of method A is very close to the performance of ML simulation.

4.5.2 RS(31,25) code

From Figure 4.7, decoding using algorithm A with the extra stopping criterion (d < r)

provides a coding gain of more than 1 .5 dB compared to the asymptotic performance of the
KV algorithm, about 2.5 dB compared to the BM algorithm and 1 dB compared to phantom
decoding at codeword error rate of 10-4. Also, method A has about 0.5 dB coding gain
compared to ADP-BM (5,1) and 0.2 dB compared to ADP-BM (20,1). From this figure,
at codeword error rate of 10~4, method B has 0.5 dB coding gain compared to phantom
decoding. The performance of method B is not as good as method A and it is close to the
performance of ADP-BM (5,1). However, as we can see in Table 4.2, the complexity of
method B is much less than method A especially at low signal to noise ratios.
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Figure 4.6: Performance of the proposed algorithms (A and B) for RS(15,1 1)
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Figure 4.7: Performance of the proposed algorithms (A and B) for RS(31,25)
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Table 4.2: The average number of required BP iterations for RS(31,25)
Eb/N0(dB) 3 4 5 5.5
Method A 1139 331 41 11

with extra stopping criterion (d < r)
Method B Ï64 102 22 7~

with extra stopping criterion (d < r)

4.5.3 RS(63,55) code

From Figure 4.8, at codeword error rate of 1O-3, method A provides better performance
(about 0.2 dB coding gain) compared to ADP-BM (5,1) algorithm. Also it provides a cod-
ing gain of about 1 .75 dB compared to the BM algorithm and 0.75 dB compared to phantom
decoding. The performance of method A is about 0.25 dB away from the performance of
ADP-BM (20,3). Method B has about 1.35 dB coding gain over the BM algorithm and 0.3
dB over phantom decoding.

Table 4.3: The average number of required BP iterations for RS(63,55)
Eb/N0(dB) 4 4.5 5 5.5
Method A 2012 1089 373 29

with extra stopping criterion (d < r)
Method B 205 147 90 42~

with extra stopping criterion (d < r)

4.5.4 RS(255,239) code

From Figure 4.9, at codeword error rate of 10~4, method A provides better performance
(about 0.15 dB coding gain) compared to ADP-BM (5,1) algorithm. Also it provides a
coding gain of about 1.05 dB compared to the BM algorithm, 0.5 dB compared to the KV
algorithm and 0.7 dB compared to phantom decoding. Method B has about 0.65 dB coding
gain over BM algorithm, 0.2 dB over phantom decoding and its performance is very close
to the performance of KV algorithm. The performance of method A is about 0.25 dB away

from the performance of ADP-BM (20,3) at codeword error rate of 1O-3. However, as
discussed in Section 4.4, the complexity of our methods is much less than the ADP method
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Figure 4.8: Performance of the proposed algorithms (A and B) for RS(63,55)
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RS(255,239), BPSK Modulation, AWGN Channel
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Figure 4.9: Performance of the proposed algorithms (A and B) for RS(255,239)

mainly because we do not perform Gaussian eliminations at every iteration.
From Tables 4.1, 4.2, 4.3 and 4.4, we can see that by increasing the signal to noise

ratio, the number of required BP iterations and therefore the complexity of the iterative
algorithms are reduced. Also, the average number of required BP iterations is much less
than the maximum number of BP iterations for both methods. The other result is that,

keeping the same number of information correction steps in method B, the larger the code
length, the higher the difference between the performances and also complexities of method
A and method B.
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Table 4.4: The average number of required BP iterations for RS(255,239)
___________Eb/NO (dB) 5 5.5 6 6.5

Method A 8894 1986 58 3
with extra stopping criterion (d < r)

Method B 264 158 17 2~
with extra stopping criterion (ci < r)

4.6 Conclusion

We have proposed two soft decision decoding algorithms (A and B) based on bit level belief
propagation decoding for RS codes. The advantage of our methods over the ADP method
is that they work with the fixed parity check matrix. In both methods, we have used an
extended binary parity check matrix with lower density and reduced number of 4-cycles
compared to the original binary parity check matrix of the code. We have investigated
the performance of normal BP decoding with different binary parity check matrices over a
binary erasure channel and realized that the extended binary parity check matrix provides
better performance. Method A is based on the cyclic structure of RS codes and its geometric
interpretation has also been presented. Simulation results have shown that method A has
significant coding gain over hard decision decoding. Its performance is also superior to
some other popular soft decision decoding methods including the KV method and the ADP
method. Method B is based on information correction in BP decoding. Compared to

method A, method B needs less BP iterations but its performance is not as good. We
have also presented complexity analysis for both methods.

84



Chapter 5

Collaborative Algebraic Decoding of
Interleaved RS Codes

Interleaved Reed-Solomon (1RS) codes have a wide range of applications in data process-

ing, data transmission and data storage systems. 1RS codes have been the topic of several
studies recently [71-74]. They are generally effective in applications where burst errors

happen at the channel and affect all words of the interleaved scheme simultaneously. In a
similar scenario, 1RS codes can be used as outer codes in Generalized Concatenated (GC)

codes for channel models with statistically independent random errors. Proposed by Blokh

and Zyablov [75], GC codes consist of a number of outer codes whose code symbols are
protected by an inner code. Using 1RS codes as outer codes of a GC code, the inner decoder
generates correlated burst errors at the input of the outer RS decoders.

In this chapter, we consider general 1RS codes where each codeword is an M ? N
matrix consisting of M rows (codewords) from M RS codes of length N and dimensions
Ki, K2, ..·, Km- If all the M dimensions are equal, the code is called a homogeneous 1RS
code, otherwise, it's called a heterogeneous 1RS code.
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In traditional applications, each RS codeword of an 1RS codeword is decoded in-
dependently. The classic method for hard decision decoding of RS codes is Berlekamp-
Massey (BM) algorithm [6] with error correction capability equal half the minimum dis-
tance of the code. Collaborative decoding of 1RS codes based on BM algorithm has been
proposed in [76] assuming errors in the received signal occur in bursts. This collaborative
decoding strategy locates the errors jointly in all RS codewords instead of locating them
independently in the several words. Up to t errors can be located uniquely, in many cases
even if ? is larger than half the minimum distance of the RS code with the largest dimension.

In 1999, Guruswami and Sudan (GS) [11] proposed a new method to improve the er-
ror correcting capability of RS codes beyond their traditional capability (half the minimum
distance). Later, Parvaresh and Vardy [77] proposed multivariate interpolation decoding
of RS codes based on GS algorithm and showed that if errors happen simultaneously for
multiple codewords of an RS code, errors beyond GS algorithm can be corrected.

In this chapter, we derive and analyze an algorithm for collaborative decoding of het-
erogeneous 1RS codes in the presence of burst errors based on multivariate interpolation
decoding of RS codes [77]. Similar to GS algorithm, our method has two steps: interpo-
lation and factorization. We find the error correction capability of the proposed algorithm
and show that it is larger than the decoding radius of GS algorithm for the RS code with
the largest dimension. Then, we analyze the performance of concatenated codes using 1RS
codes as their outer codes. We derive upper and lower bounds for the word error probability
of GC codes over AWGN channel with BPSK modulation for both cases of independent

and collaborative decoding of the outer 1RS codes. We will show that using collaborative
decoding, the word error probability is better compared to the case of independent decod-
ing.

The rest of this chapter is organized as follows. In section 5.1, interleaved Reed-
Solomon codes are introduced. The proposed collaborative decoding of 1RS codes based
on GS algorithm [11] is explained in detail in section 5.2 including the interpolation step
and the factorization step. The error correction capability of the proposed method is also
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derived in this section. In section 5.3, the use of 1RS codes in concatenated codes is dis-

cussed and the performance of GC codes over AWGN channel with BPSK modulation is
considered. Also, lower and upper bounds on the performance of GC codes are derived.
Numerical results and discussions are presented in section 5.4. Finally, conclusions are
given in section 5.5.

5.1 Interleaved Reed-Solomon Codes

As discussed in Chapter one, an RS code of length N and dimension K over the Galois
field GF(q) with support set D = {??, x<¿, ···, xn} C GF(q) is defined as

C9(N, K)= (5.1)
{(f(xi),f(x2),..,fM)\xi,X2,...,XN e DJ(X) G Fq[X],degf(X) < K}

where Fq[X] is the ring of polynomials over the Galois field GF(q) in a variable X. RS
codes are maximum distance separable (MDS) and therefore from any set of K correct
symbols, an RS codeword can uniquely be reconstructed. An interleaved Reed-Solomon
code is now obtained by taking M Reed-Solomon codes over the same Galois field GF(q)
and grouping them row-wise into a matrix. The codewords of an 1RS code are matrices
whose rows are the codewords of the Reed-Solomon codes. We denote these M Reed-

Solomon codes by RS^, RS®, ..., ÄS(M) where RS® = RS(N, Ku d¡), i = 1, 2, ..., M
and di = N - Ki + 1. Now, an interleaved RS code denoted by IRS(N, K1, K2, ..., KM)
is defined as

I / ci \
C2

IRS(N,K1,K2,...,KM) = {

[\cM J

,de RS®, i el, M > - (5.2)

If all the M Reed-Solomon codes are equivalent, i.e., RSW = RS^ = ... = RS^M\
the 1RS code is called homogeneous. Otherwise, we say that the 1RS code is heterogeneous.

Figure 5.1 shows a typical 1RS codeword.
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Figure 5.1: Interleaved Read-Solomon Code
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5.2 Collaborative Interpolation Decoding of 1RS Codes

The basis of GS decoding algorithm [11] has been explained in Chapter 2, Section 2.3.
In this section, we use the basis of GS algorithm and introduce collaborative decoding of
1RS codes assuming burst errors. In this method instead of decoding each RS codeword
independently, we try to decode all the codewords simultaneously. In the end, we show
that we can increase the error correction capability of GS algorithm using this method of
decoding.

Suppose that one codeword (c1, c2, ..., cM)T of an IRS(N, K1, K2, ..., KM) code,
corresponding to evaluations of the polynomials /1PO, P[X), —, fM(X) over GF(q)
with degrees less than K1, K2, ..., Km respectively, is transmitted over a hard decision
channel and received as

/yl\

\yM J

/M / ei \

+

V cM J \eM j

(5.3)

where c\ y% and e\ i = 1, ..., M are vectors with N elements (symbols). In the case of
1RS codes, one codeword which is a matrix is transmitted across the channel column-by-
column. In the presence of burst errors in the channel, we can assume there are at most
t synchronized errors meaning the error matrix has at most t nonzero columns. In this
case, the M Reed-Solomon codewords may have erroneous symbols at the same positions
(columns).

Each codeword can be decoded separately at the decoder using the GS algorithm.
From Chapter 2, Section 2.3, the asymptotic (m —>¦ oo) error correcting capability of the
GS decoder for an (N, Ki) RS code is U = N(I - ^/(K1 - I) /N) . Therefore, if each
codeword of the 1RS code is decoded independently using GS algorithm, the error correct-

ing capability for the 1RS code is

tg = min{ti,i = 1,2, ..., M} = N(I- J(K -1)/N) (5.4)
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where K — max {Ki, i = 1,2, ..., M}. However, since errors happen at the same posi-
tions, a collaborative decoding strategy can be applied to decode all the codewords at the
same time. This may allow for correcting up to t synchronized errors with t > tg.

For collaborative decoding, we follow the basis of GS algorithm. First, we show

each of the received vectors y1, i = 1, 2, ...,M with {y\,y2, ---,2/V)- Given the support set
D = [X1, X2, .--,Xn] of GF(q), we consider the following set of points P in an (M + I)-
dimensional space:

P = {(xi,y\,yì, ¦¦-,yìl),{.x2,yl,yl,---,y¥),---AxN,y1N,y2N,---,y%)} ¦ (5.5)

The collaborative decoding algorithm has two major steps (interpolation and factorization)
that will be explained in the following.

5.2.1 Interpolation step

In this step, given the point set P in GF(q)M and a positive integer m, we try to compute a
nontrivial (M + Invariate polynomial Qp(X, Y1, Y2, ..., YM) of minimal (1, K1 -1,K2-
1, ...,KM — 1) -weighted degree over GF(q) that passes through all the points in P with
multiplicity at least m.

The weighted degree of a polynomial can be defined as the weighted degree of its
leading monomial. The (1, ^T1 — 1,K2 — 1, ..., Km — l)-weighed degree of the monomial
X^)yl(il)...yM(iM) is defined as

wdegX^Yllil) ...YM'iM) =i0 + (K1 - I)I1 + ... + (KM - l)iM. (5.6)

The weighted degree can be extended to monomial ordering -<w if augmented with the lex
order [62]. We define w-lex order as

if either iQ + (K1 - I)I1 + ... + (KM - l)iM < j0 + (K1 - I)J1 + ... + (KM - l)jM or
¿0 + (K1 - I)I1 + ... + (KM - l)iM = jo + (K1 - I)J1 + ... + (KM - l)jM and i0 < j0 or
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i0 + (K1 - IJi1 + ... + (KM - l)iM = io + (K1 - I)J1 + ... + (KM - í)jM and i0 = J0
and I1 < J1 or · · · .

In order to find the (M + Invariate polynomial Qp, we use the Hasse derivatives
[62]:

Sao,ai,...,aM[Qp(X,Y >Y , --,Y )} =
OO (X) / ¦ \ / · \

S- S r)---(*")^i1...w^-^îrl(il""1)···^""""3 (5·8>¿?=a? ÌM—a-?

where g¿oil...ÍM is the coefficient of the monomial X^Y11^ . ..YMliu) of QP. It is proved
that Qp passes through (x0, %\, ---,Xm) with multiplicity m if

àao,au...,aM[Qp]\{x0,xu...,xM) = O, V(Oq1O1, ...,a?) : O < O0 + Q1 + ... + aM < m. (5.9)

Lemma 1.

wdegQp(X,Y\Y2,...,YM)<
M+-^N(K1 - 1).-(KM - l)m(m + l)...(m + M) (5.10)

Proo/ Equation (5.9) is actually a system of linear constraints on the coefficients of Qp.
Based on this equation, in order for Qp to pass through each point of P with multiplicity

m, C£^f) constraints should be satisfied. Because P has N points, the total number of
constraints will be

c(N,M,m) = ?(^++?^. (5.11)
We mention c(N, M, m) as the interpolation cost. We denote the number of (M + In-
variate monomials with weighted degree at most s by Num(a). We can say that there
exists a polynomial Qp of weighted degree at most s that passes through all the points in
P with multiplicity at least m if

Num(a) > c(N: M, m). (5.12)
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In order for the weighted degree of a monomial shown in Equation (5.6) to be smaller than
s, {io, ii, ···, ìm} should satisfy the following inequalities:

¿o>0,zi >0,...,iM >0,io + (Ki-l)ii + ... + (KM-l)iM <s. (5.13)

The above ranges define a pyramid with M + 1 sides in the M + 1 dimensional space. We
can say that

1 s?+1
Num(a) > volume(Pyramid) = {M + 1)\{Ki-i){K2-l)...{KM -1)' i5M)

Therefore, we can say that QP exists if volume(pyramid) > c(N, M, m). Using equations
(5.11) and (5.14), we have

s > M+yN[K1 - l). ..{?? - l)m(m + I)... (m + M) (5.15)

Knowing that s is an upper bound for the weighted degree of QP, the upper bound in Equa-
tion (5.10) satisfies Equation (5.15) with equality which proves the Lemma. ¦

Theorem 1. Suppose that one codeword {cl,c2, ..., cM)T of an IRS(N, K11K2, ...,KM)
code, corresponding to evaluations of the polynomials /1(X), P(X), -, fM(X) over
GF(q) with degrees less than K1, K2, ¦¦¦, KM respectively, is transmitted over a hard
decision channel and at most t synchronized errors happen. The expression P(X) =
QP(X, /1PO, P(X), ..., fM(X)) = 0 is satisfied if

V ^ lmnsr. \NN N m m mm
(5.16)

Proof. Since there are at most t synchronized errors, P(X) has at least m(N - i) zeros.
Also, the degree of P(X) cannot exceed wdegQP(X, Y1^2, -,YM). From these two
facts and using the bound in Equation (5.10), in order for P(X) to be an all zero poly-
nomial, the following condition should be satisfied based on the fundamental theorem of
algebra:

"+VN[K1 - I)... (Km - l)m(m + l)...(m + M)] - 1 < m(N - t). (5.17)
92



From the condition in Equation (5.17), the expression in (5.16) is concluded. ¦

tmax in Equation (5.16) is called the error correction capability of multivariate interpo-
lation algorithm. The algorithm that is used to find Qp(X, Y1, Y2, ···, YM) is explained in
detail in the following section.

Lemma 2. For an IRS(N, A1, K2, ..., KM) code, assuming the asymptotic case of m ->
co, if we denote the error correction capability of multivariate interpolation algorithm with
tmax and the error correction capability of independent decoding with tg, we have

''max -^ "g· (5.18)

Proof. As m —> co, the error correction capability of multivariate interpolation algorithm
can be written as

Lr, N-N K1-IK2-I K1M

N N N (5.19)

The expression for tg is also given in Equation (5.4). From these two formulas and using
K = max {Ki, i = 1, 2, ..., M}, we have

tmax <L N-N
M+iK-lK-l K-I

? N N
> N-N

K-I
N

Af+l

"H^) = t<?¦¦ (5.20)

We should mention that the lower the rates of RS codes in the structure of an 1RS

code, the higher the difference between tmax and tg.

5.2.1.1 Collaborative Interpolation Algorithm

We use the basis of Koetter's interpolation algorithm [57] with some modifications and
extend the algorithm proposed in [77]. The inputs to the algorithm are the point set P,
multiplicity m and the weighted-degree monomial order defined in Equation (5.6). The
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output will be a Grobner basis for the ideal of all the (M+Invariate polynomials over
GF(q) that pass through all the points in P with multiplicity m. We denote this ideal with
Im[P)- We first initialize the Grobner basis:

g(°) = {g?,g°,...,g£} =
( M

I yl(a1) yM(aM) : V(aia2) )aM) g NM suchthat J2(h - IK < ^n
k i=l )

(5.21)

where

s??? = min {s : s > [ ^N(K1 - 1)...(#? - l)m(m + I)... (m + M)J } (5.22)
The interpolation algorithm has c(N, M, m) iterations to impose each of the c(N, M, m)
linear constraints one at a time. At iteration I of the algorithm corresponding to the point
(xj, y\ , .-.,yf4) G P, we have to perform the following steps:

• Compute discrepancies ?5- =<5a?,ß1?...|ß??[ß5~1]|(?<?„??...??), j = 1,2,...,L. If ?3- = 0
for all j = 1, 2, ...,L, stop.

• Among the set G^"1) = {G'f1, G^-1, ..., G;L-1}, find the least weighted degree (with
respect to -<?) polynomial with nonzero discrepancy denoted by G^-1.

• For all j = 1, 2, ..., L except j = t:

Gj = G^"1 - -T2G^1 "no increase in the weighted degree" (5.23)

For j = t:

G\ = [X - Xi)Gl'1 "weighted degree increased by 1 " (5.24)

By the end of c[N, M, m) iterations, the set G = {Gì, G2, ..., G¿} returned by the
above iterative interpolation algorithm is a Grobner basis for Im[P)- After arranging the
polynomials in G in an increasing order with respect to -<?, we can take the least weighted
degree polynomial G1[X, Y1, ...,YM) as the interpolation polynomial Qp(X, Y1, -,Ym).
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5.2.2 Factorization step

In this section, given the multivariate polynomial Qp(X, Y1, ...,YM), we try to identify all
polynomials P(X), P(X), -, fM(X) of degrees less than Kx, K2,..., KM respectively
such that

Qp(X, f (X), P(X),..., fM (X)) = 0. (5.25)
The output is a list of the codewords corresponding to these polynomials. The problem
here is the difficulty of such task especially for large M. From [77], we present a method
for the case M = 2 which with proper changes can be extended for M > 3.

In order to explain the factorization process, first we need to define the resultant of
two polynomials. We assume two polynomials A(x) and B(x) over a field such that

A(x) = a0xl H ha/, a0 f 0
B(x) = b0xm + ... + bn, bo^O.

The Sylvester matrix of A and B with respect to x, denoted by SyI(A, B, x), is the follow-
ing (I + t?) ? (I + m) matrix [78]:

a0 0 ·-· 0 b0 0 ·¦· 0
a? a0 ' · · ¦ ¦ · bi b0

Ü2 ai '¦¦ 0 &2 h '·· 0
: '·· a0 : b0

: aa : òi
bm- 1

"m "m— 1

/

SyI(A, B, x) =

\

ai-i

ai a¡-i

0 ax 0 b„

V
• . a(_? :

0 ai 0

' · bm_i
0 bm

(5.26)

The resultant of A and B with respect to x is the determinant of the Sylvester matrix
[78],

Res(A,B,x) =det(Syl(A,B,x)).
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Assuming A and B both have positive degrees, there exist two polynomials C(x) and D(x)
over the same field as A and B such that [78]

Res(A, B, x) = AC + BD. (5.28)

Using the Grobner basis obtained in the interpolation part, we take two least weighted
degree polynomials G1(X, Y1, Y2) and G2(X, Y1, Y2) and find their resultants [78]:

R1(X1Y1) = Res(GliG2,Y2),
R2(X, Y2) = Re8(G1, G2, Y1). (5.29)

From Equation (5.28), if G1(X, f\X), f2(X)) = 0 and G2(X, f(X), f2(X)) = 0, then

R1(XJ1W) = O, (5.30)
R2(XJ2(X)) = 0. (5.31)

Therefore, we can use Roth-Ruckenstein algorithm [58] to factor R1(X1Y1) in order to
find all polynomials f1 (X) with degrees less than K1 and factor R2(X, Y2) in order to find
all polynomials f2(X) with degrees less than K2.

As we mentioned before, if we only use d = Qp for the decoding, the error correc-
tion capability will be tmax from Equation (5.16). However, for the factorization process
described here, we also use G2. In order for G2(X, P(X)J2(X)) = 0, the weighted de-
gree of G2 should satisfy O2 - 1 < m(N - t) based on what was explained in the proof of
Theorem 1. Here, we extend Lemma 5 in [77] to find a bound for d2.

Lemma 3. Let O1 and S2 denote the weighted degrees of G1 (X, Y1 , Y2) and G2(X, Y1, Y2)
respectively, then:

Proof. The deltaset ? of an ideal J of polynomials is defined as the set of all monomials
that are not the leading monomials of the polynomials in the ideal. If I7n(P) denote the
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ideal of all the (M+ Invariate polynomials (M = 2) over GF(q) that pass through all the
points in P with multiplicity m, then \A(Im(P))\ = c(N, M, m) (for proof, see [79]).

From Lemma 1, for M = 2, the number of monomials with weighted degree smaller

than d is approximately equal to 3,,K _f)(K _1). Therefore, the number of monomials with
weighted-degree smaller than d2 in A(Im(P)) is almost equal to the number of monomials
with weighted-degree smaller than d2 (3l(K _?(? _10 minus the monomials that Gi carves
out the deltaset (3!(^- _7vg _i))· F°r more details, see the proof of Lemma 5 in [77]. ¦

Now, we are ready to find the error correction capability of collaborative decoding
of a heterogeneous 1RS code with two RS codewords using the factorization process ex-
plained above.

Theorem 2. Suppose that one codeword (c1, ê)T of an IRS(N, Ki, K2) code, correspond-
ing to evaluations of the polynomials /1OX"), P(X) with degrees less than A1, K2 respec-
tively, is transmitted over a hard decision channel and at most t synchronized errors have
happened. The expressions G1(X, P(X), P(X)) = 0 and G2(X, P(X), f2(X)) = 0 are
satisfied if

t <tmax2 N
N K

N N y mJK m'
1/2

1 + *-?*-?(1 + 1)(1 + 1)N N v myv m'

-1/2 1
m

(5.33)

Proof. Using Equation (5.32) and the bound for d? expressed in Equation (5.10), we find a
bound for d2 as follow.

d?
^yI1+ /4 Nm(m + l)(m + 2){?? -I)(K2-I) _ 1

3 (5.34)
» 3 ¿i

As we mentioned before, in order for G2(X, fx(X), f2(X)) = 0, the weighted degree of
G2 should satisfy d2 - 1 < m(N — t). Combining this expression with the bound in Equa-
tion (5.34), expression in (5.33) is concluded. ¦

97



We have checked tmax2 and realized that the value of tmax2 for different cases is almost
the same as the value of tmax especially as the code rate increases. As a result, using
G2[X, Y1 , Y2) for the decoding does not change the error correction capability of the col-
laborative decoding.

We should mention that when Gi and G2 have common factors with positive degrees
in Y1 and Y2, their resultants become zero [78]. In order to deal with situations like this,

the factorization process should be modified as follows [77]:

1. Initializations: H1 = Gi, H2 = G2, j = 3.

2. H1 = QCd[H17H2) ? Fi, H2 = CCd[H11H2) ? F2.

3. If CCd[H11H2) is only in X, use Roth-Ruckenstein algorithm [58] to factor R1 =
Res[Hu H2, Y2) and R2 = Re8[H1, H2, Y1) in order to find all f[X) and f2[X)
with degrees less than K1 and K2 respectively.

4. If CCd[H1, H2) has positive degrees in Y1 or Y2, use Roth-Ruckenstein algorithm
[58] to factor R1 = ReS[F1 , F2, Y2) and R2 = ReS[F1, F2, Y1) in order to find all
f1 [X) and f2[X) with degrees less than K1 and K2 respectively.

5. H1 = gcd[Hi,H2), H2 = Gj, j = j + 1 and go to step 2.

Here, 'gcd' represents the greatest common divisor. As it can be seen from the above
factorization process, we might need to use G¿'s, i > 2 in order to find all the possible
/1PO and f2[X) with degrees less than K1 and K2 respectively. Therefore, the error
correction capability might be less than tmax2. However, we have verified using simulation
that in most of the cases up to tmax2 simultaneous errors can be corrected. Therefore, the
performance using simulation is almost the same as the bound obtained from tmax2. As
an example, we have considered the decoding of IRS(15,9,7) over a 256-ary symmetric
channel. Each codeword is sent column by column where each column can be seen as
a symbol over G.F(256). As we know, in a q-ary symmetric channel, a symbol is either
received unchanged with probability 1 — ? or it is received as one of the other q — 1 symbols
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Figure 5.2: Performance of heterogeneous IRS(1 5,9,7) over a 256-ary symmetric channel.
Collaborative and also independent decoding have been considered.

with probability -^- . With this scenario, we can be sure that errors happen simultaneously
for codewords of the 1RS scheme. From Figure , there is a slight difference between the
performance from simulation and the bound using imax2·

5.3 1RS Codes in Concatenated Code Design

Interleaved RS codes are usually used as outer codes in concatenated code designs. If the
decoding of each RS codeword is performed independently, the special interleaved struc-
ture is not taken into account by the decoder. In this section, we investigate collaborative
interpolation decoding of 1RS codes in concatenated code designs. Simple concatenated
schemes with outer 1RS codes and inner binary linear block codes are considered where
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columns of 1RS codewords are protected by the inner code. In this scenario, a decoding
error at the output of the inner decoder will affect one whole column of the 1RS codeword
(similar to burst errors) and therefore we will have synchronous errors at the input of the
outer decoder.

We consider an 1RS codeword c over GF(2P). Each column a,·, j = 0, 1, ...,N-I of
c is transformed into a binary vector of length Mp and encoded using a binary linear block
inner code of length Nin and dimension Kin = Mp. In the end we will end up with an
Nin ? JV binary matrix Cc which is the codeword of our concatenated code and is shown
as

Cc = [????,? (5.35)
where c^· G GF(2). We assume that the concatenated code is transmitted over an AWGN
channel with BPSK modulation. The transmitted matrix is

X=MXiJ = -^j + l]NtnXN· (5-36)
We denote the received matrix by Y with yitj = Xij + n¿¿ where n¿¿'s are independent
Gaussian random variables with zero mean and variance s2. The rate of the concatenated

code is
_ (K1 + K2 + ... + Km)p _ Kin K1 + K2 + ... + KM

NinN Nin NM ^?,)
Using the code rate, we are able to characterize the AWGN channel by its signal to noise
ratio:

W0 = w^- (5·38)
At the receiver, first we need to decode Y with respect to the inner code for which we use
a maximum likelihood (ML) decoder. The inner decoder response can be shown by an
MxN matrix d over GF(2P). Any row of ? can be decoded independently with respect
to the corresponding RS code. However, since an erroneous decision of the inner ML
decoder may affect a complete column of the matrix c", it might be more efficient to apply

the collaborative decoding strategy. In this case, the word error probability PML at the
output of the inner decoder will be the column burst error probability at the input of the
collaborative decoder for the outer 1RS code.
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Unfortunately, the exact analytical calculation of ML performance is generally not
possible. However, there are several known upper and lower bounds. Here, we use Poltyrev's
Tangential Sphere Bound (TSB) [80] for the upper bound. To bound the ML performance
from below, both Shannon's sphere packing Bound (SPB) [81] and Seguin's L2-Bound [82]
are used. The latter is tight for high signal to noise ratios. Therefore,

PL = max(PsPB,PL2) (5.39)
Pu = Ptsb (5.40)

0 < Pl < PML <Pu<l- (5.41)

5.3.1 Bounds on the Word Error Probability of Concatenated Codes

In this section, we consider the performance of the collaborative decoding of 1RS codes in
a concatenated design. We focus on the asymptotic case where the multiplicity m tends to
infinity. From Equation (5.19), the maximum number of errors tmax that can be corrected
using collaborative interpolation is calculated. The word error probability at the end of the

outer decoder can be expressed as

PC= S (")?'(1-?)?-* (5·42)
where ? is the column burst error probability at the input of the outer decoder which is
equal to PML, the codeword error probability of the inner decoder. From Equation (5.41),
we have

Pl(I - Puf-' < p\l - p)N-* < P¿(1 - PL)N-\ (5.43)
which results in the following lower and upper bounds for the probability of word error
under collaborative decoding of the outer code:

S (^)PHl- Puf'* <P°< S (^)^(l-ft)"-*· (5-44)
As we mentioned before, the asymptotic error correction capability of independent

decoding of 1RS codes is shown by tg form Equation (5.4). Replacing tmax with tg in
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under independent decoding of the outer code.error

5.4 Numerical Results and Discussions
fcto section » consider sonte «pies of concatenated codes with different inner and" Por fRS cCes, we compare the error correction capa«, ofzz*«- —— *¦—-- show tat if "" happTm;"decoding wi rnrrpcted using collaborative decoding.i« for »11 RS codewords, more errors can be corrected using cG? I!re G, Pfl,e show ,„at the correcdon capability of our mediod based ·»GSagorithmisbetter ,ha» that »,collaborative decoding based on BM algorithm. We alsoGS algonthm collaborative and also independent decodingcompare ,he performance of GC codes ^

of their outer 1RS codes. For all examples, we assume GC codes are
sent over the AWGN channel. ^.

Eiampie fi): The inner code is a binary (23, 12) Oolay coatio„ Xlay code is ,now. Therefore, we can estimate „s U, permane,,-<
„ „.,,TRScodes meerrorcorrectioncapabmtyofeachRScodeunaerFormeIRScodes d, ^-1. For comparison, me error correcuon
with asymptotic t, and W are ^^^^
capabilities of collaborative (W-bm) and indep ^ ^
algorithm [76] are also shown. The expresses for these correction
as

_ Nj1K1 (5.45)tg-BM — O

tmax-BM y[ _j_M_(iv-x) (5·46)
? M (5.47)

i=l

Prom ,able M. GS conaborative decoding of the homogeneous 1RS(63,43,43) can
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„ lh rSmaependentdecoding.Fortheheterogeneous—emoreerrorscompared o*e«* decoding can corree, more
code, 6 ex» errors can be— M. ^ ^_ rf__
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Figure 5 3· Lower and upper bounds for the probability of word error of a concate-
nated code (The inner code: (23, 12) binary Golay code. The outer code: heterogeneous
IRS(63,54,43) over GF(64)), under collaborative and also independent decoding of the
outer 1RS codes.
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Upper Bound, BM Independent Decoding
Upper Bound, BM Collaborative Decoding
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Figure 5.4: Lower and upper bounds for the probability of word error of a concate-
nated code (The inner code: (23, 12) binary Golay code. The outer code: homogeneous
IRS(63,43,43) over GF(64)), under collaborative and also independent decoding of the
outer 1RS codes.
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collaborative (tmax_BM) and independent (ís_bm) decoding based on BM algorithm [76]
are also shown in table 5.2. For both homogeneous and heterogeneous cases, collaborative
GS decoder can correct more than 3 extra errors compared to the collaborative BM decoder.

The lower and upper bounds for the probability of word error under collaborative
and also independent decoding of the outer 1RS codes are shown in Figures 5.5 and 5.6.
For the case with heterogeneous 1RS outer code, large coding gains are achieved using GS
collaborative decoding compared to independent GS decoding. For the homogeneous case,
the coding gain of less than 1 dB might be possible.

Table 5.2: Error correction capability of GS and BM decoding of RS codes and also col-
laborative and independent GS and BM decoding of 1RS codes over GF(256)

RS RS 1RS 1RS 1RS 1RS
(255,239) (255,191) (255,239,191) (255,239,191) (255,191,191) (255,191,191)

GS GS GS GS" GS GS
Decoding Decoding Independent Collaborative Independent Collaborative

8 34 8 29 34 45
BM BM BM BM BM BM

Decoding Decoding Independent Collaborative Independent Collaborative
8 32 8 < 26 32 < 42

5.5 Conclusion

In this chapter, based on the GS decoding method, an algorithm for collaborative decoding
of heterogeneous 1RS codes in the presence of simultaneous errors has been derived and
analyzed. We have shown that when errors happen simultaneously for all the codewords of
an 1RS code, decoding all the RS codewords collaboratively can provide an error correc-
tion capability larger than the decoding radius of the GS algorithm for the RS code with
the largest dimension. As an example, we have analyzed the performance of concatenated
codes using 1RS codes as their outer codes where a decoding error at the output of the inner
decoder would affect one whole column of the 1RS codeword (similar to burst errors). We

have derived upper and lower bounds for the word error probability of concatenated codes
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Figure 5.5: Lower and upper bounds for the probability of word error of a concate-
nated code (The inner code: (31, 16) binary BCH code. The outer code: heterogeneous
IRS(255,239,191) over GF(256)), under collaborative and also independent decoding of
the outer 1RS codes.
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Figure 5.6: Lower and upper bounds for the probability of word error of a concate-
nated code (The inner code: (31, 16) binary BCH code. The outer code: homogeneous
IRS(255,191,191) over GF(256)), under collaborative and also independent decoding of
the outer 1RS codes.
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over AWGN channel with BPSK modulation for both cases of independent and collabora-

tive decoding of the outer 1RS codes. We have shown through numerical results that using
collaborative decoding, the word error probability is lower compared to the case of inde-
pendent decoding. We have also compared our algorithm with the collaborative decoder
based on the BM method and realized our method can correct more synchronous errors.
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Chapter 6

Conclusions and Future Works

In this thesis, we have investigated soft decision decoding of Reed-Solomon codes. Despite
their wide areas of applications, efficient soft decoding of RS codes still remains open. In
recent years lots of improvement has been made in decoding RS codes. For example, Gu-
ruswami and Sudan (GS) [11] have proposed a new hard decision algorithm with higher
decoding capability compared to the traditional error-correction capability, half the mini-
mum distance. Koetter and Vardy (KV) [29] have further improved the GS algorithm by
utilizing the soft information from the channel. Also, several iterative decoders based on
belief propagation have been introduced for RS codes [12] [13] [64].

In order to find efficient decoding techniques for RS codes, we have investigated three
classes of complexity-reducing methods including sphere decoding (SD), belief propaga-
tion (BP) decoding and interpolation-based decoding. In Chapter 3, the concept of SD has
been used to implement a soft decision decoder for RS codes. In Chapter 4, we have in-
troduced two BP based algorithms for efficient iterative decoding of RS codes. Finally, in
Chapter 5, the basis of the GS interpolation decoding algorithm has been used for collabo-
rative decoding of interleaved Reed-Solomon (1RS) codes.

Here, we present the major contributions of this thesis and suggestions for future
research.
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6.1 Major Contributions

First, we have presented a novel soft decision decoding method for RS codes based on
sphere decoding. The main idea of this method is to look for lattice points inside a sphere
centered at the received signal that are also valid codewords of an (JV, K) RS code. The
sphere decoder algorithm first selects the K most reliable code symbols that fall inside the
sphere. The acceptable values for each of these K code symbols are determined based
on the ordered set of most probable transmitted symbols. Each time K code symbols are
selected using the sphere decoder, they are used to find the rest of RS symbols. If the re-
sulting codeword is within the search radius, it is saved as a possible transmitted codeword.
Two kinds of ordering is used to improve the speed of sphere decoding. Firstly, we try to
find the K most reliable code symbols and secondly, for each of them we use an ordered
set of most probable transmitted symbols. This method provides considerable coding gain
compared to the hard decision decoding with a moderate increase in complexity.

Then, based on BP decoding, we have proposed two new iterative soft decision de-
coding methods for RS codes. A low density extended binary parity check matrix has been
used for BP decoding. The first proposed method uses the cyclic structure of RS codes. We
apply the BP algorithm on cyclically shifted versions of the received symbols. For each of
them, the geometry of the factor graph will change and deterministic errors can be avoided.
The performance of this method is considerably better than hard decision decoding. The
performance is also superior to the KV method and the ADP method. The second method
is based on information correction. We determine least reliable bits and by changing their

channel information, the convergence of the decoder is improved. Compared to the first
method, this method is less complex but its performance is not as good.

Finally, based on GS decoding, an algorithm for collaborative interpolation decod-
ing of heterogeneous interleaved Reed-Solomon (1RS) codes has been derived. All the
codewords of the interleaved scheme are decoded at the same time using multivariate inter-

polation. In the presence of burst errors, the error correction capability of this algorithm is
larger than that of independent decoding of each codeword using the standard GS method.
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We have used 1RS codes as the outer codes in generalized concatenated (GC) codes. We
have found upper and lower bounds for the word error probability of GC codes over AWGN
channel with BPSK modulation for both cases of independent and collaborative decoding
of the outer 1RS codes. Collaborative decoding provides considerable coding gain com-
pared to independent decoding.

6.2 Future Works

In this section, based on the research completed in the thesis, we present potential future
goals:

• In the proposed soft decoding technique based on sphere decoding, two types of
ordering have been used to reduce the complexity. However, the main complexity
issue is the Gaussian elimination of the generator matrix. One may look for possible
alternative methods to perform sphere decoding of RS codes without the need for
Gaussian elimination.

• For BP based decoding algorithms, at the end of each iteration, a BM algorithm
has been used to perform hard decision decoding on the updated reliabilities. One
can consider other choices of decoding algorithms such as the GS hard decision
decoding, the KV soft decision decoding and so on. As another future goal, one
may look for more suitable binary parity check matrices with lower number of short
cycles.

• Our proposed method for collaborative interpolation decoding of 1RS codes is based
on the GS hard decision decoding algorithm. As a future goal, it is of great value to
extend the collaborative method to soft decision decoding using the approach of KV.
This way, it might be possible to outperform the standard KV method in the pres-
ence of burst errors. One may also look into efficient implementation of multivariate
polynomial interpolation and factorization. The factorization process has only been
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explained for the case of 1RS codes with two codewords. One may investigate the
problem for larger 1RS codes with more than two RS codewords.

In order to find upper and lower bounds on the performance of collaborative decoding
of outer 1RS codes in a concatenated design, we have used ML lower and upper
bounds on the performance of the inner code. For the ML lower bound, we have
used Shannon's sphere packing bound (SPB) [81] and Seguin's L2 bound [82]. The
first one is tight at low SNR's and the second one is tight at high SNR's. In [83],
an efficient algorithmic ML lower bound has been proposed which is tighter than L2
bound and its computation time is shorter. One may use this bound in order to find
tighter upper and lower bounds for the performance of the concatenated code.

• RS codes have been used in cooperative communications. One may replace the stan-
dard BM decoding method with the proposed decoding techniques and investigate
the performance gains that are provided. Since the proposed methods have higher
complexity compared to the BM method, the trade-off between the performance and
the complexity should be taken into account.
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