
A New Geometric-and-Physics Model of Milling and An 

Effective Approach to Medial Axis Transforms of Free-form 

Pockets for High Performance Machining 

Qiang Fu 

A Thesis 

In the Department 

of 

Mechanical and Industrial Engineering 

Presented in Partial Fulfillment of the Requirements 

For the Degree of Doctor of Philosophy at 

Concordia University 

Montreal Quebec, Canada 

May 2010 

© Qiang Fu, 2010 



1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

395 Wellington Street 
OttawaONK1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
OttawaONK1A0N4 
Canada 

Your file Vote reference 
ISBN: 978-0-494-71161-3 
Our file Notre r&ference 
ISBN: 978-0-494-71161-3 

NOTICE: AVIS: 

The author has granted a non
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, prefer, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

Conformement a la lot canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

1+1 

Canada 



ABSTRACT 

A New Geometric-and-Physics Model of Milling and An Effective Approach to Medial 

Axis Transforms of Free-form Pockets for High Performance Machining 

Qiang Fu, Ph.D. 

Concordia University, 2010 

Mechanical part quality and productivity depend on many parameters in CNC 

milling processes, such as workpiece material, cutters, tool paths, feed rate, and 

spindle speed, etc. To pursue high performance machining, the cutting parameter 

optimization is in high demand in industry, though it is quite challenge. This 

innovative research successfully addresses some essential problems in optimizing 

the cutting parameters by developing a new geometric-and-physics integrated 

model of milling and proposing an effective approach to the medial axis transforms 

of free-form pockets. 

In this research, an original geometric model of 2Vz- and 3-axis CNC milling is 

developed and integrated with a well-established mechanistic model. A main 

research contribution is that this integrated model can predict complex milling 

processes in higher fidelity with instantaneous material remove rates, cutting forces 

and spindle powers, compared to prior machining models. In the geometric model, 

an in-process workpiece model is introduced by using a group of discrete Z-layers 

and applying the B-Rep scheme to represent the workpiece shape on each layer, in 

order to accurately represent instantaneous cutter-and-workpiece engagement in 
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2%- and 3-axis milling. Hence, the un-deformed chip geometry can be found even 

for complex part milling, which is then fed to the mechanistic model to predict 

instantaneous cutting forces. By using this integrated model, cutting parameters can 

be optimized for profiling, pocketing, and surface milling to ensure steady cut and 

the maximum material removal rates. This model has been verified by experiments, 

and will be implemented into a software tool for Bombardier Aerospace. 

Another important research in this work is to propose aggressive roughing of 

free-form pockets for ultimately high cutting efficiency. For this purpose, an 

accurate, efficient approach to the medial axis transforms of free-form pockets and 

an optimal approach to multiple cutters selection and their path generation are 

proposed. The main contributions of this research include (1) a new mathematical 

model of medial axis point, (2) an innovative global optimization solver, the hybrid 

global optimization method, (3) an optimization model of selecting multiple cutters 

for the maximum material removal rate. This research can substantially promote 

aggressive roughing in the machining industry to increase cutting efficiency of free-

form pockets. The technique has been validated using considerable number of 

cutting tests and can be directly implemented into commercial CAD/CAM software. 
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Chapter 1 Introduction 

1.1 Research Problems 

Computer numerical control (CNC) milling machine tools are widely used in 

the manufacturing industry. Milling is a process of removing the excess material 

from the workpiece in the form of small individual chips by a rotating cutting tool 

moving along predetermined tool paths. These chips are formed by the intermittent 

engagement of cutting edges or teeth of the milling cutter with the workpiece. The 

term CNC is defined as a self-contained numerical control (NC) system for a single 

machine tool that uses a dedicated computer controlled by stored instructions in the 

memory to implement some or all of the basic NC functions [1]. With the application 

of the CNC technology, considerable improvements of accuracy, repeatability and 

productivity are achieved; setup time and lead time are greatly reduced; most 

importantly, curved profiles and surfaces can be cut by the computer guided cutter, 

and complex 3D parts are relatively easy to manufacture. 

The CNC milling process depends on many parameters, including tool path 

strategy, stock geometry, cutter geometry, feed rate, spindle speed, and etc. 

Selecting proper cutting parameters to safely and effectively run the CNC machine 

tools is a major concern in industry. The common practice in machine shops is to 

select cutting parameters from machining handbooks, and to verify the tool paths 
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using geometric simulation software. Since the machining handbooks only provide 

ranges of recommended values for simple steady cutting conditions, such as slot and 

shoulder cutting, the selection of cutting parameters for general applications still 

heavily depends on the user's experience; consequently, conservative values are 

often used to ensure safety. The geometric simulation software used in industry, 

which only verify the geometric correctness of tool paths and machined parts, 

cannot provide sufficient information for the optimization of cutting parameters. To 

facilitate the selection of optimal cutting parameters, it is essential to develop 

systems that are capable to predict the physics characteristics of the machining 

process, including material remove rate, cutting forces, torque, power and 

vibrations, rather than the simple geometric verification of tool paths. 

Cutting forces modeling [2-4] is one of the classic research areas of 

machining processes. The empirical cutting force models consider that cutting 

forces vary as a function of cutting conditions, normally including undeformed chip 

geometry (thickness, width), material properties and etc. For certain cutting tool 

versus workpiece material, the cutting forces coefficients can be identified by 

mechanistic modeling methods. The existing mechanistic models are well 

established for cutting forces prediction of simple machining operation with fixed 

cutting conditions. 

In reality, because of the increasing complexity of the part geometry, manual 

part programming has become extremely cumbersome and expensive. Commercial 

Computer Aided Manufacturing (CAM) software is used to generate tool paths for 
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complex mechanical parts. Since the generated tool paths are composed of many 

segments, including straight lines, circular arcs and spline curves, transient cuts 

frequently occur. Even in the simple steady machining operations, such as slot and 

shoulder milling, transient cuts still occur when the cutter engages with and 

disengages from the workpiece. For more complicate 3-axis milling of sculptured 

surface parts, several stages, including roughing, semi-finish, finishing and clean-up, 

are involved. After each stage, the cusp shape left on the workpiece will influence 

the cutter and workpiece engagement in the following process. For example, the 

stairs-like shape generated by the z-level rough machining strategy will significantly 

affect the engagement in the finish machining. The challenge in the milling process 

simulation is to predict cutting forces, torque, and power while the cutter and 

workpiece engagement varies along the tool paths. Since the well established 

cutting forces models can be used to predict cutting forces at discrete cutting edge 

elements, the key issue in the accurate process modeling is to find out the 

instantaneous cutter and workpiece engagement geometry. 

Another part of this dissertation stems from our previous research on the 

cutter sizes selection and tool path generation for 2%-axis pocket milling [5,6]. After 

the cutter size is determined, the pocketing tool paths can be generated for roughing 

and finishing. In the stage of roughing, the objective is to get rid of raw materials as 

fast as possible. In the stage of finishing, the objective is to achieve the satisfied 

surface quality and the tolerance. The machining efficiency and the tool path pattern 

rely on the size of the cutter. Generally, a big cutter can reach a high machining 

efficiency by reducing the number of tool paths through adopting a larger distance 
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between two adjacent tool paths; and its high rigidity can reduce the tool vibration. 

But big cutters are prone to gouging and interference. 

Figure 1.1 A pocket and its MAT 

The medial axis transform (MAT) has emerged as an automatic shape 

interrogation tool for pocket milling [7,8]. The medial axis of a planar shape 

provides a compact representation of its geometric and topological characteristics. 

In planar domain, the medial axis (MA) of a close profile is the locus of centers of 

circles which are maximal within the profile, together with the limit points of the 

locus. The MAT is the medial axis together with the associated radius function which 

can calculate the radius of the maximal circle at any given point on the MA. By 

definition, the MAT fully describes the maximal circles that can be fitted into any 

location of the pocket profile to be machined, as shown in Figure 1.1. This geometric 

property provides an excellent cue to facilitate cutter size selection and gouging free 

tool paths generation. Efficient and accurate algorithms to calculate the MAT of free-
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form curve boundaries will greatly benefit the process planning of the 2V2-axis 

pocket milling operations. 

1.2 Research Objectives 

The first objective of this research is to develop efficient, accurate process 

modeling methodologies for the CNC milling. To achieve this objective, it is essential 

to model the material removal process to obtain the accurate in-process chip 

geometry. One goal of the research is to make the geometric model as generic as 

possible so the methodology can be applied to 2Y2- and 3-axis milling. And it is 

necessary to experimentally verify the developed process modeling system. 

The second objective is to investigate and develop a computational efficient 

methodology to calculate the MATs of pockets with boundary of piecewise 

connected free-form parametric curves. The application of the MAT is to facilitate 

cutter size selection and gouging free tool paths generation for pocket machining. 

Overall, this research is aimed at developing efficient and robust techniques 

and software tools to facilitate the selection of optimal cutting parameters for the 

CNC milling process. 

1.3 Dissertation Organization 

The remaining sections of this dissertation are organized as follows. Chapter 

2 reviews the current technologies of geometric modeling, mechanistic modeling, 

CNC interpolator, medial axis transform and pocket machining. Chapter 3 presents a 
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geometric modeling methodology for 2%-axis milling with flat end mills. 

Experiments are conducted to verify the correctness and effectiveness of the 

developed milling process modeling system. Chapter 4 presents applications of the 

process modeling on optimal machining parameter selection, including steady cut 

optimization and automatic feed rate selection for pocket machining. Chapter 5 

presents a geometric modeling methodology for 3-axis sculptured surface milling 

using general APT cutter. Chapter 6 develops a new, efficient geometric approach to 

approximate the MATs of general pockets with boundaries represented as piecewise 

connected free-form parametric curves. Chapter 7 proposed a new roughing tool 

path strategy based on the MAT, and a GA based algorithm is developed to identify 

an optimal set of cutter sizes. Chapter 8 summarizes this work. 
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Chapter 2 Literature Review 

This chapter reviews the state-of-the-art technologies of geometric modeling, 

mechanistic modeling, CNC interpolator, medial axis transform and pocket 

machining. The limitations of the current methods are also discussed. 

2.1 Geometric Modeling of the Milling Process 

2.1.1 Cutter Swept Envelop 

Extensive research has been carried out in geometric modeling of machining 

processes by studying cutter swept envelops, which represent the volumes being 

removed when the cutter moves along tool paths. According to their methodologies, 

the proposed methods normally can be classified into two categories: the 

mathematical formulation and computer graphics techniques. 

Martin and Stephenson [9] initially applied the envelope theory from 

differential geometry to find volumes swept by surfaces. The swept surface is found 

by solving a system of implicit equations. Abdel-Malek et al. [10,11] refined this 

method by adopting the Jacobian rank deficiency method in swept volume 

calculation. A generalized method for determining swept volume for geometric 

entities with two or more parameters is carried out. Blackmore et al. [12,13] 

introduced a sweep-envelope differential equation (SEDE) method, which computes 
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swept volumes for three-dimensional smooth objects undergoing arbitrary smooth 

motions by employing a boundary flow formula. The grazing points only need to be 

computed at the initial point of the object, thus reduce the computational 

complexity. 

The above mathematical formulation methods provide a general framework 

for calculating cutter swept envelopes. Several vector methods have been proposed 

as approximations based on the envelop theory. Chiou and Lee [14,15] developed an 

explicit representation of the swept profile for generic APT (Automatically 

Programmed Tools) cutter by applying a tangency function derived from the 

property that the cutter surface normal vector at a grazing point is perpendicular to 

the instantaneous moving direction at that point. Roth and Bedi et al. [16] compute 

grazing curve on a toroidal cutter by slicing the torus into two circles and calculating 

grazing points on each circle by a cross product method. Mann and Bedi [17] extend 

the same method to general surfaces of revolution. In above methods, the grazing 

points are connected to form a piecewise linear approximation to the grazing curve, 

and then these grazing curves are connected to form the swept surface. Weinert and 

Du et al. [18] applied the same tangency function to find the swept profile, and then 

approximated the swept volume with a NURBS (Non-uniform rational B-spline) 

surface representation. 

Compared to modeling the cutter swept volume, several researchers have 

investigated the milling process by using swept sections. Sarma [19] studied flat-

ended tool swept sections for five-axis CNC machining. The swept section here is 
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defined as the profile formed by the tool passing through the plane perpendicular to 

the tool path. Partial swept sections are calculated based on the plane-circle 

intersection in this work. Bohez and Minh et al. [20] used the sweep plane approach 

to approximate the swept volume at discrete cutter locations. The APT cutter 

intersects with a large number of flat planes, and general polygon clipping algorithm 

is used to build a geometric model of the swept volume. Accuracy is determined by 

slice polygons and distance between slice planes. This algorithm is implemented 

using the computer graphics technique. 

2.1.2 In-Process Workpiece Geometric Model 

Since the cutter swept volumes only represent the space being occupied 

during the tool motion, the instantaneous workpiece geometry during machining is 

also required for modeling the cutter and workpiece engagement (CWE) geometry. 

For geometric modeling of the 2y2-axis milling process with flat end mills, 

there are two types of methods that have been discussed most: the analytical 

formulation and solid modeler based technique. Gupta and Saini et al. [21] described 

a geometric algorithm to extract continuous closed-form function of the cutter 

engagement based on analytical techniques for a given workpiece and a cutter path. 

However, their method is restricted to parts with linear and circular edges, and the 

cutter path only consists of linear and circular moves. In practice, parts maybe more 

complex, and the spline tool path already becomes a standard function of modern 

CNC machine tools. Compared to the analytical approach, the solid modeler based 

solutions can deal with more general machining operations. Spence and Altintas 
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[22] presented a Constructive Solid Geometry (CSG) based milling process 

simulation system for 2V2 dimensional parts. The cutter-part intersection and an 

analytic mechanistic milling process model are used to predict cutting forces and re

schedule the feed rate. The CSG based approach is limited to strict 2V2D milling with 

constant axial depth of cut. Actually, even in 2V2D milling with flat end mills, the 

engagement along the cutter axis may not be constant in the following situations: (a) 

cutting a non-prismatic stock obtained from a primary process such as forging and 

casting; (b) cutting region previously machined at a different depth; (c) cutting with 

different cutter sizes; (d) cutting one part with different setups. Yip-Hoi and Xuemei 

[23] addressed part of these problems by applying a feature-based approach to 

characterize the cutter/workpiece engagement extracted from a solid modeler in 

2y2-axis end milling. Unfortunately, their work only deals with orthogonal 

engagement features. 

For 3-axis sculptured surfaces milling, due to the complexity of workpiece 

geometry changes during machining, it is impractical to get the analytical solution of 

instantaneous cutter and workpiece intersection. Two types of approximate 

methods, solid modeling and discrete modeling, have been applied to the milling 

process simulation. Mounayri and Spence et al. [24] applied the CSG approach to the 

simulation of 3-axis milling of complex parts. Imani and Sadeghi et al. [25] 

developed a simulation system for 3-axis ball-end milling of sculptured surfaces by 

using a commercial solid modeler ACIS. The major problem of the solid modeling 

approach is the computational expense. The cost of simulation using the CSG 

approach is reported to be proportional to the fourth power of the number of tool 
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movements, 0(A^) [26]. The solid modeling based simulation systems found in the 

literature only deal with related simple milling operations. It is impractical to use 

the CSG approaches on multi-axis sculptured surfaces milling with generic cutters. 

Among discrete modeling approaches, the Z-map model is the most widely 

used model for NC verification [27]. Like the Z-buffer algorithm developed for 

computer graphics hidden surface removal, the Z-map model is a discrete non-

parametric surface representation in which the heights at grid points are stored in a 

two dimensional array. Researchers have applied the Z-map to the machining 

process simulation. Yun and Hoon Ko et al. [28] developed a moving edge-node Z-

map model for the cutting process simulation in transient cuts. Kim and Cho et al. 

[29] calculated cutting forces in 3-axis ball-end milling of sculptured surface by 

using a Z-map method to find the cutter contact area, but tool motions are limited to 

ramping and contouring of slanted surfaces. Zhu and Kapoor et al. [30] developed a 

mechanistic modeling approach to predicting cutting forces for multi-axis ball end 

milling employing the Z-map method. A typical problem with the Z-map model is 

that it cannot describe the cutter boundary between grids. If the cutter movement 

distance is less than the grid size, there is no node point in the machining region, 

which will result in substantial error. To increase the accuracy of the Z-map method, 

the number of nodes must be increase, which will increase the computational load 

consequently. 
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2.2 Mechanistic Modeling 

Cutting forces modeling is one of the classic research areas of machining 

processes, and extensive research has been carried out [2,3,31-33]. The empirical 

cutting force models consider that cutting forces vary as functions of cutting 

conditions, normally including undeformed chip geometry (thickness, width), 

material properties and etc. The linear edge force model [4] is a widely used force 

model for the milling process. In this model, the instantaneous tangential (Ft~), radial 

(Fr) and axial (Fa) cutting forces are modeled as 

F,=Ktcbh + K,eb 

Fr=Krcbh + Kreb (2.1) 

Fa=Kacbh + Kaeb 

where b is the width of cut, h is the uncut chip thickness, Ktc, Krc, Kac are the cutting 

coefficients contributed by the shearing action in tangential, radial and axial 

directions, respectively, and Kte, Kre, Kae are the edge coefficients due to the rubbing 

of the tool flank against the workpiece. 

For certain cutting tool versus workpiece material, the cutting forces 

coefficients can be identified by the orthogonal to oblique cutting transformation 

method or the mechanistic modeling method. The orthogonal to oblique 

transformation method uses orthogonal cutting parameters such as shear angle, 

shear stress, and friction coefficient to determine oblique milling constants. This 

method can be applied to a variety of milling cutter geometries, e.g. Lee and Altintas 

[34] obtained the cutting force coefficients for a ball-end mill from a set of 
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orthogonal cutting tests at various cutting speeds and feeds. Another advantage of 

this method is that the cutting constants of a cutter can be predicted even before the 

real cutter being manufactured, as long as the design of the cutter and 

corresponding orthogonal cutting database are available. However, some cutting 

tools may have complex cutting edges, and creating a time-consuming orthogonal 

cutting database may not be possible. In such cases, a quick method of calibrating 

the cutting constants, the mechanistic modeling approach, is used. 

Mechanistic modeling of flat-end milling has been the focus of many studies 

[4,35-37]. Generally, for flat-end mill with constant helix angle, the cutting 

coefficients are constant values which can be identified from the average cutting 

forces per tooth period measured from a set of milling experiments conducted at 

different feed rates but constant immersion and axial depth of cut. 

For more general cutting tools, such as ball-end, bull-nose and tapered end 

mill, the helical angle can be designed arbitrarily and may vary from cutter to cutter. 

Popular designs include constant lead and constant helix angle [38]. Mechanistic 

modeling methods have been developed to identify cutting force coefficients for 

general cutters. Feng and Menq [39,40] presented a mechanistic model for the 

prediction of cutting forces in the ball-end milling process. The cutting coefficients 

for the cutting edges on the ball part are approximated by polynomial expressions 

along the axial direction. Azeem and Feng et al. [41] developed a simplified method 

to calibrate the empirical force coefficients of a ball-end mill by performing a single 

half-slot cut experiment. Gradiek and Kalveram et al. [42] presented expressions for 
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semi-empirical mechanistic identification of specific cutting and edge force 

coefficients for a general helical end mill from milling tests at an arbitrary radial 

immersion. Wan and Zhang et al. [43] presented a unified approach to identify the 

cutting forces coefficients together with the cutter runout parameters for general 

end mills. The cutting forces are analyzed and separated into two terms a nominal 

component independent of the runout and a perturbation component induced by 

the runout. The instantaneous cutting force coefficients are calibrated from the 

nominal component, and the runout parameters are determined from the 

perturbation component. 

2.3 CNC Interpolator 

During machining, the relative velocity between the cutter and workpiece is 

related with the machine kinematics and controller functions. For accurate process 

modeling, the real-time CNC interpolators need to be studied and integrated into the 

simulation system for accurate evaluation of cutter locations along the tool paths. In 

practice, tool paths are transferred to the CNC machine tool as part programs, 

sometimes called G-code. The motion commands of the part program are processed 

in real-time by the CNC interpolator, in order to generate the reference commands 

for the control loop to drive the machine tool movements [44]. 

The CNC interpolator operates at a small sampling time interval, which is a 

constant dependent on the control loop's sampling rate. It is common to have a CNC 

that generates motion commands in 0.002s intervals for today's machine tool. For a 
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general curve, given the desired feed rate along the curve and current reference 

point on the curve, the task of the real-time interpolation algorithm is to find the 

next reference point in one sampling interval to which the tool will be driven to at 

the desired feed rate. Interpolation algorithms based on the first order Taylor's 

approximation are widely used in the implementation of parametric interpolators 

[45-48]. 

X 

ia i xa i 

Figure 2.1 Trapezoidal velocity profile for real-time interpolator 

To prevent mechanical shock, different types of acceleration/deceleration 

schemes are used to control the feed rate along the tool path. Trapezoidal velocity 

profile is a simple and widely used scheme with constant acceleration and 

deceleration [49,50]. Because of the automatic acceleration and deceleration applied 

at the beginning and end of each tool path segment, the actual feed rate along a tool 

path is not constant. If the segment is too short, it may never reach the desired feed 

rate. 

To apply a velocity profile, the CNC interpolator begins with calculating the 

length of the tool path segment, and then calculates the acceleration/deceleration 

time and the total motion time according to the given feed rate. The velocity profile 
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is used to determine the velocity at any sampling time. Finally, the real-time 

interpolation formula (based on the first-order Taylor's approximation) is used to 

calculate the increase of parameter value. This approach is integrated in our 

simulation system to calculate the actual cutter location. 

2.4 Medial Axis Transform 

The medial axis concept was first proposed by Blum [51] in 1967 to 

characterize biological shapes. Since then, it has been actively developed and used in 

many fields, such as NC milling, image processing, computer vision, solid modeling, 

and mesh generation, etc. 

The differential and topological properties of the MAT were studied [52,53] 

and then a general framework for developing practical algorithms to calculate the 

MAT is rendered. For profiles with piecewise-linear/circular boundaries, whose 

bisectors are conies and can be solved analytically, algorithms have been developed 

to construct the exact MAT. Culver et al. [54,55] presented a tracing algorithm to 

compute the exact medial axis for polyhedral. Their algorithm applies modular 

arithmetic, floating point filters, lazy evaluation, and spatial subdivision techniques. 

This approach is accurate and robust; however, its computation time is long, and it 

is limited to geometry with known bisectors. For pocket shape with free-form curve 

boundaries, because there is no simple exact solution to general curve/curve 

bisectors, exact computation of the MAT is difficult, sometimes impossible. 

Consequently, most practical algorithms approximate the MAT in different ways. 
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The Voronoi diagram based approaches have been developed by many 

researchers to approximate the MAT. Computing the Voronoi diagram of a group of 

point sites has been extensively studied in computational geometry [56,57]. Several 

efficient algorithms with 0(n log(«)) complexity are available even with free 

program source codes [58]. It has been proposed by researchers that the medial axis 

of a shape can be computed using the Voronoi diagram of discrete sample points of 

the shape boundary and the Voronoi vertices converge to the medial axis for a curve 

in 2D as the sample density approaches infinity. Brandt [59] examined the finite 

approximations of the continuous-domain skeleton and showed that the Voronoi 

diagram converge appropriately when the Voronoi function of the shape boundary 

is a continuous function. Dey and Zhao [60,61] proposed an algorithm that 

approximates the medial axis straight from the Voronoi diagram in a scale and 

density independent manner with convergence guarantees. Their approach does not 

pay any special attention to poles, but rather computes a sub complex from the 

Voronoi diagram that lies close to the medial axis and converges to it as sampling 

density approaches infinity. 

Driven by the need for applications, the research of Voronoi diagram has 

been extended to sites of free-form curved objects. Chou [62] developed a tracing 

algorithm to calculate Voronoi diagram for planar, simply connected, closed shape 

with boundaries composed of free-form curve segments. The algorithm generates 

the Voronoi diagram by tracing the bisectors starting from terminal points, such as 

convex corners and centers of the maximal, positive local curvatures. Ramamurthy 

and Farouki [63,64] presented an incremental approach to computer Voronoi 
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diagrams based on thorough investigation of point/curve and curve/curve 

bisectors. They described the similarities and differences between the Voronoi 

diagram and the medial axis, and obtained a medial axis from a Voronoi diagram by 

removing certain edges of the diagram that do not belong to the medial axis, and 

adding certain edges that do belong to the medial axis but are absent from the 

diagram. Helmut et al. [65] presented a randomized incremental algorithm to 

compute the Voronoi diagram of curved objects by breaking up the curves into 

"harmless" pieces, which include line segments, circular arcs and spiral arcs. 

Beside Voronoi diagram based approaches, the wave-front propagation and 

divide-and-conquer methods have been published [66-69]. Gursoy and Patrikalakis 

[66,67] proposed a wave-front propagation method of the MAT through 

determining inward offset distances and the associated branch points at which the 

topology of the contour changes. Their method analytically defines the MA in terms 

of conic sections, and free-form boundary curves are approximated within a 

prescribed tolerance using line and circular arc segments. Likewise, Hassouna and 

Farag [68] presented a wave front propagation method. The front propagates at 

each object point with a speed that is proportional to its Euclidean distance from the 

boundary. The motion of the front is governed by a nonlinear partial differential 

equation and is solved using level set methods. Then the medial axis is computed by 

tracking the propagating front points with the maximal positive curvature. Choi et 

al. [69] presented an approximation algorithm based on the domain decomposition 

lemma. A tree data structure and its related operations are developed to keep track 

of the information produced by the domain decomposition procedure. This 
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algorithm adopts a "from within" approach to calculate contact circles of medial 

axes. 

2.5 Pocket Machining 

Pocket machining is one of the most common operations in NC machining 

applications. This is due to the facts that most mechanical parts consist of boundary 

faces parallel or normal to a reference plane, and more complicated free-form parts 

are usually produced from a raw stock by 2y2-axis roughing and 3/5-axis finishing. 

This machining process includes first rough pocketing for higher cutting efficiency 

and second finish machining for better pocket accuracy. 

Conventional tool path strategies for pocket machining can be classified into 

two major types, direction-parallel and contour-parallel, see Figure 2.2. These two 

tool path strategies are provided by most commercial CAM software. 

(a) Direction-parallel path 
One way 

(b) Direction-parallel path 
Zigzag 

(c) Contour-parallel path 

Figure 2.2 Conventional pocketing tool path strategies 

The direction-parallel tool path is generated from straight line segments 

parallel to an initial reference line. According to the connection between line 

segments, direction-parallel path can be further classified into one-way and zigzag. 
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The one-way path can maintain a consistent up milling or down milling. One 

drawback of the one-way path is that a significant amount of time is used for the 

cutter to return to the start position of each path. Thus the machining efficiency is 

reduced. The zigzag path can reduce the non-productive time, but the alternative up 

and down milling cut may lead to problems such as short tool life and poor 

kinematic of the machine tool. The contour-parallel tool path is derived from the 

pocket contour. The pocket area is milled in a spiral-like fashion cutting along offset 

curves to the contour and stepping outwards or inwards for the next pass. The 

cutter is kept in contact with the workpiece material most of the time, and a 

consistent up or down milling can be maintained. Generally, less idle time is spent in 

the contour-parallel path than the direction-parallel path, and the contour-parallel 

strategy is widely used for pocket machining. 

In present machining companies, for roughing a pocket, a large tool is 

selected subjectively by NC programmers to generate direction-parallel or contour-

parallel tool paths with CAM software; for finishing the pocket, a small tool is 

selected conservatively and tool paths are planned by offsetting the pocket 

boundary curves. The size of the end mill cutter chosen for machining the given 

pocket has a significant impact on the machining time. With the availability of high

speed automatic tool change mechanisms in modern CNC machines, tool change can 

be achieved within seconds. To take full advantage of the high-speed tool change 

capability, multiple cutters can be selected to achieve higher efficiency. However, 

due to the complicated pocket shape, it is difficult to automatically select the optimal 
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cutter sizes. Several researchers have addressed the topic of using multiple cutters 

in pocketing. 

Hatna et al. [70] conducted a review of literature on pocket machining 

published before 1998. The paper shows the relationships between the shape, 

cutter, machine tool, and cutting conditions in the process of optimizing the cost of 

and leading time of pocket milling. This paper also mentioned an important method 

of planning tool paths using Voronoi diagram. Among the Voronoi diagram based 

articles published until now, Held [7] firstly established a mathematical theory of 

introducing Voronoi diagram in pocketing. Further, Veeramani and Gau [71,72] 

employed a concept called the Voronoi mountain to calculate the material volume 

that can be removed by a specific cutter size, and a dynamic programming approach 

was used for optimal selection of cutter sizes on the basis of the process time. 

Hinduja and Sandiford [73] developed a procedure to determine the optimum pair 

of tools in terms of the cutting conditions and tool path length. The geometrical 

constraints including minimum concave radius, bottleneck width and the entry 

distance are determined from the Voronoi diagram. Nadjakova and McMains [74] 

described an approach to finding an optimal set of cutter radii for machining a 

pocket by using the Voronoi diagram. Elber et al. [8] provided a scheme to generate 

trochoidal tool paths for high speed machining of free-form pockets, based on its 

Voronoi diagram. Chen and Zhang [6] used the maximum circle radius graph with 

regard to the medial axis to find the largest cutter to finish cut the pocket free-form 

boundary without gouging and interference. 
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Besides the Voronoi diagram based methods, several other methods have 

been proposed. Li et al. [75] investigated various feasible tool path patterns for a 

single tool to cut sculptured parts layer by layer in 2Y2D rough machining. An 

intelligent approach to automatically identifying the most productive tool path 

pattern for a given cutting layer was introduced. Yang et al. [76,77] decomposed 

pockets into regular features to best fit multiple cutters of various sizes so that they 

can efficiently cut their corresponding features without overcut, and then Joneja et 

al. [78] applied this greedy technique to different layers of pockets with sculptured 

surfaces. Lim et al. [79,80] developed a method for determining a theoretical 

optimal combination of cutting tools given a set of 3D volumes or 2D profiles of the 

selected machining features. Optimal tools can be selected by considering residual 

material that is inaccessible to oversized cutters and the relative clearance rates of 

cutters that can access these regions. Yao et al. [81,82] presented a geometric 

algorithm for finding an optimal set of milling cutters for machining a given set of 

parts. The problem of finding an optimal sequence of cutters is represented as a 

least-cost path problem, and is solved using Dijkstra's algorithm. Zhang and Li [83] 

tried to select multiple tools to achieve the optimal roughing of pockets with 

arbitrary shape in terms of least machining time and the maximum material 

removal rate. They improved the scan-line filling algorithm to compute the 

cumulative cutting area for every tool to estimate the contribution of different tool 

diameters. Narayanaswami and Choi [84] provided a grid-based 3D navigation 

algorithm for generating NC tool-path for three-axis CNC milling of general pockets 

with sculptured bottom surfaces. The pocket surface is discretized by defining a grid 
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and the navigation algorithm plans the tool motion. The grid size and the cutter 

diameter are chosen so that a predefined tolerance for surface roughness is satisfied. 

Shih and Chuang [85] proposed a robust method to generate tool paths for NURBS-

based machining of arbitrarily shaped freeform pockets with islands. Although the 

input and output are all of higher degree NURBS curves, only one simple category of 

geometric entities, i.e., line segments, is required for initial offsetting and for 

detecting and removing self-intersecting loops. Furthermore, using those linear non-

self-intersecting offsets as the legs of NURBS control polygons, NURBS-format tool 

paths can be smoothly reconstructed with Gl-continuity, no overcutting, no cusps, 

and global error control. D'Souza et al. [86] developed a method to find the lowest 

cost tool sequence for rough machining free-form pockets. The free-form pocket is 

approximated to within a predefined tolerance of the desired surface using series of 

2.5-D layers of varying thicknesses that can be efficiently removed with flat-end 

milling cutters. A graph-based method is used to find an optimal sequence of tool for 

rough machining the approximated pocket. 

2.6 Summary 

In this chapter we reviewed current techniques closely related to this 

research, including geometric modeling of the cutter swept envelop and the in-

process workpiece model, mechanistic cutting forces modeling of the milling 

process, CNC interpolator, medial axis transform algorithms and pocket machining. 

Some of the current methods still suffer certain limations. In the following chapters, 

new methods for modeling the cutter workpiece engagement geometry and its 
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integration with existing mechanistic cutting force models are presented for 2 Vi

and 3-axis milling operations, and a new efficient algorithm for calculating medial 

axis of planar shapes with free-form boundaries is developed. 
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Chapter 3 Process Modeling for 21/2-Axis 

Milling 

3.1 Introduction 

In the 2%-axis CNC milling process, the cutter stays at the same height in Z 

direction when it machines on a layer parallel to the worktable, the X-Y plane. For 

the term 2y2-axis, "2" means the X- and Y-axis motions while cutting, and "Vz" 

indicates the discrete Z-axis motion which step-by-step positions the cutter on 

different machining planes. Most of the 2y2-axis milling is carried out on 3-axis CNC 

milling machines. Due to the high material removal rate and the rigid setup, the 2y>-

axis milling is widely used for rough machining. 

Figure 3.1 Parts machined by 2V2-axis milling 

This chapter presents a geometric modeling methodology for 2y2-axis milling 

with flat end mills. A Z-layer B-Rep model is proposed to represent the in-process 
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workpiece of a part, and an innovative geometric approach is used to find the 

engagement geometry of different tool motions. The Z-layer B-Rep model is created 

from the initial workpiece geometry and updated after each cut during machining. 

The proposed approach can handle complicated multiple cutter-workpiece 

engagements and can accurately compute the chip thickness. By integrating the 

geometric modeling results with a mechanistic cutting force model, a 2y2-axis 

milling process simulation system is developed. The developed system is 

experimentally verified by comparing the simulation results with cutting forces data 

collected from actual cutting tests. 

3.2 Geometric Model of the Chip Geometry 

3.2.1 In-Process Model Definition 

The in-process model is defined as the intermediary state of the workpiece 

during the machining process. Since the intersection between the cutter and the 

workpiece varies along the tool path, the in-process model changes accordingly. In 

this work, it is generated by slicing the initial workpiece stock into layers by 

horizontal planes at different z levels. Each layer contains a z position, height and a 

2D profile which represents the shape of this layer. A layer can be treated as a disc 

of stock material, and all layers stack together to form the in-process workpiece 

model. The planes used to slice workpiece stock are determined by taking into 

account both part geometry and 2y2-axis tool path property. Three types of slicing 

planes are used to determine the z levels. 
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Figure 3.2 In-process model layers determined by tool paths 

[Type 1] Typical 2Vz\) tool path cycle includes three stages, which are approaching 

vertically, machining at horizontal plane, and retracting. At each horizontal 

machining stage, the flat end mill moves at a plane parallel to X-Y plane, this plane is 

used to slice the workpiece. 

Figure 3.3 In-process model layers determined by stock geometry 

[Type 2] If the initial workpiece stock only has boundary faces parallel or normal to 

the XY-plane, each face parallel to XY-plane will determine a layer, except the top 

surface of the stock, because there is no material above. 

For rectangular prismatic workpiece stocks, the layer based in-process 

model is exactly the same as the input workpiece stock geometry. But sometimes 

stock obtained from primary processes such as forging and casting may not always 

be rectangular shape. A discretization method is used to deal with this situation. 
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Figure 3.4 Discrete in-process layers for non-prismatic geometry 

[Type 3] If the initial workpiece stock has geometric features which are neither 

parallel nor normal to the XY-plane, a discretization technique is applied to slice 

these features into a number of horizontal layers. The number of layers is controlled 

by the desired accuracy. 

Once the slicing planes are determined, the initial 2D profile for each layer is 

calculated by intersecting the slice plane with the stock geometry. While the part is 

being machined by a cutter moving along tool paths, the 2D profile represents the 

boundary of material left on each layer. In order to deal with real machining, the 

data structure of the 2D profile should have the following properties: 

• Islands may exist due to the previous cut or initial stock with islands. Then, 

one or more loops are required to describe one layer of the complex 

workpiece shape during machining. 

• Circular holes may exist due to drilling processes before milling, or irregular 

shape holes due to primary process (forging or casting). Inner loops are 

required to describe the holes. 

• In order to represent material side and empty space side, the direction of 

each loop must be defined properly. The outer loops are defined as counter-
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clockwise and the inner loops are defined as clockwise. Then the material 

always lies on the left side of the loop boundary. 

• There is no self-intersection at each layer. 

< — 

1 / S S - "' 
/// Material-occupied space 

Figure 3.5 B-Rep data structure of the layer profile 

Based on the above geometry and topology properties, a B-Rep data 

structure (see Figure 3.5) is used to describe the layer profile, which is defined as a 

set of outer counter-clockwise loops with zero or several clockwise loops inside. For 

the computational efficiency, a polygon is used to represent each loop. 

3.2.2 Cutter Workpiece Engagement Geometry 

The process of extracting cutter workpiece engagement geometry includes 

three steps. The first step is to find the layers whose z position is equal to or higher 

than the z position of the cutter location. These are the layers which are machined 

and will be processed in the following steps. Then, a semi-circle, which represents 

the cutter frontier, moves along the tool path to extract the cutter/workpiece 
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engagement profile at each machined layer. Finally, the engagement geometry is 

obtained by combining all extracted layer engagement profiles with their z position 

and height. The result engagement geometry has the same data structure as the in-

process model, a Z-level B-Rep representation. The material removal rate (MRR) can 

be estimated from the volume of the removed material. 

At each layer, the advancing semi-circle method is illustrated in Figure 3.6. At 

one cutter location point O, the cutter circle can be divided into two parts by a line 

perpendicular to the cutting direction and passing through the center of the cutter. 

The semi-circle facing the cutting direction is defined as the cutter frontier. Then, 

the next cutter location O' is determined by moving the cutter along the tool path 

while it rotates one revolution. In practice, tool paths are transferred to the CNC 

machine tool as part programs, and are processed in real-time by the CNC 

interpolator. In order to obtain the cutter location accurately, the real-time 

interpolator algorithms reviewed in Section 2.3 are integrated into our simulation 

system for calculating the next cutter location O'. 
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Figure 3.7 Cutter frontier swept profiles 

When the cutter moves from O to O', the cutter frontier generates a swept 

profile. There are three types of tool motions provide by CNC machine tools: linear, 

circular and NURBS. By represent each tool path segment as a parametric curve, the 

radius of curvature can be calculated at any location [87]. For linear tool path, 

Figure 3.7 (a), the cutter swept profile composes two line segments AA', BB' and a 

half circle A'B' (the cutter frontier at O'). For circular or NURBS tool path, if the 

radius of curvature is larger than the cutter radius, Figure 3.7 (b), the swept profile 

composes AA' ,BB' (offset curves of segment 00') and cutter frontier A'B'; if the 

radius of curvature is smaller than the cutter radius, Figure 3.7 (c), the swept profile 

composes two segments, AA' and A'B', where B(B') is the intersection point of two 

cutter circles at O and O'. 

The cutter workpiece engagement profile can be extracted by calculating the 

intersection points between the in-process workpiece profile and the cutter frontier 

swept profile. At the same time, the in-process profile is updated after the 

corresponding stock material is removed. In the case shown in Figure 3.6, first, the 

pair of intersection points A and P' are found between the cutter frontier profile and 

31 



the in-process workpiece profile. Then, the in-process profile is updated by 

replacing the polygon segment between A and P' with segment AA'P' (the portion of 

the cutter frontier swept profile between points A and P1). The engagement profile is 

created by combining the removed portion APP' from the workpiece profile and 

AA'P' of the cutter frontier swept profile. Since the in-process workpiece profile is 

represented with polygons, the arc segment AT' is converted to a polygon based on 

the desired accuracy before being inserted into the workpiece profile. 

Figure 3.8 Extraction of multi-engagements 

More complex engagement situations, such as the multi-engagements in 

Figure 3.8, can be handled by arranging intersection points in pairs and updating the 

workpiece profile respectively. 

3.2.3 Undeformed Chip Thickness 

In conventional methods [31], the chip thickness is approximated as 

32 



h(j) = fcsm0 (3.1) 

where fc is the feed per tooth and </> is the instantaneous angle of immersion. This 

approximation is good when the cutter moves along a straight line. For curve tool 

motions, especially curves with large curvature, this approximation is not valid 

anymore. 

In this work, we calculate the undeformed chip thickness from the extracted 

cutter/workpiece engagement geometry at any instantaneous immersion angle. 

Since the cutter can move along any tool paths, the part coordinate system is used as 

the reference. To determine the chip thickness along the radial direction, the 

extracted engagement profile is intersected with a ray, which starts from the cutter 

center and inclines at the immersion angle <j>. The distance between two intersection 

points A and B represents the thickness of the material removed in this revolution. 

Then, the undeformed chip thickness function h((j>) is calculated as: 

h(0) = \AB\/N (3.2) 

where TV is the number of flutes. 
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Figure 3.9 Undeformed chip thickness 

3.3 Mechanistic Model of 21/2-Axis Milling 

In order to calculate the cutting forces, the end mill cutter is modeled by 

several helical flutes wrapped around the cutting surface, and is divided into a 

number of small differential discs along the cutter axis. A cutting disc at axial height 

z is shown in Figure 3.10. 

dz^ 

H-ai 
Directum 

flute 
dFridz) 

ute 0 

flute 2 

Figure 3.10 Mechanics of end milling 
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An end mill with helix angle /?, radius R and TV number of flutes is used. The 

immersion angle </> at the bottom end of one flute is used as the reference, then the 

bottom end points of other tooth are at </)j =</> + j-(j)p, y=0,l,...(7V-l), where the 

cutter pitch angle tf>p = 2TT/N . At axial height z the lag angle is y/ = z • tan fifR. For the 

j'th flute, the angular position at axial height z is 0. {z) = (f> + jfip-y/, and the 

differential tangential {dFtj), radial [dFrj) and axial (dFaj) cutting forces are 

calculated using the linear edge force model: 

dFlj(z) = [Ktchj(^j(z)) + Kte]dz 

^ ( z ) = [KreA,(^(z)) + K„]& (3.3) 

dFaJ(z) = [KJj(^j(z)) + Ka dz 

where hj {6. (z)) is the undeformed chip thickness, dz is the differential flute 

element height, Ktc, Krc, Kac are the cutting coefficients contributed by the shearing 

action in tangential, radial and axial directions, respectively, and Kte, Kre, Kae are the 

edge constants. The undeformed chip thickness function h{(f) is evaluated 

geometrically from the cutter/workpiece engagement geometry, see Eq. (3.2). 

The instantaneous cutting torque on the spindle is 

dTc{z) = R-YJdFlj{z) (3.4) 

The forces are then projected to the Cartesian tool coordinate system 
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dF* J (Z) = ~dFU COS t (Z) - dFr,j Sil1 tj (Z) 

dFyJ ( z ) = dFtj s i n ^ / (z) - ^ j c o s ^ (z) (3.5) 

a J 

The total cutting forces Fx, Fy, Fz and torque Tc can be obtained by integrating 

the differential elements along the cutter axis. The axial integration limits for each 

flute are determined from the cutter workpiece engagement area obtained by 

combining all engaged layers, as shown in Figure 3.11. 

Depth of cut 
• Cutting flute 1-4 

engagement area u 

Figure 3.11 Cutter and workpiece engagement area 

271 

The resultant blending force on the cutter is defined as the vector summation 

of the x, y forces, which has a magnitude 

F =JF7^K- (3-6) 

The cutting power draw from the spindle is calculated as 

P=2nn-Tj 60 (3.7) 

where n (rev/min] is the spindle speed. 
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3.4 Computer Implementation 

The proposed methodology has been implemented on personal computer by 

using the C++ programming language for calculation and OpenGL for visualization. 

The implementation is a process simulation system for 2y2-axis end milling. The 

inputs to the system include tool paths, workpiece geometry, CNC interpolator 

parameters, cutter geometry and cutting constants, and the outputs are cutting 

forces, torque, power, material remove rate, chip and workpiece geometry at each 

instantaneous moment. By adopting industrial standard file formats, including APT 

files for exchange tool paths with CAM software and IGES files for exchange 

geometry with CAD software, the system can be easily integrated with commercial 

CAD/CAM software packages. 

Two examples, shown in Figure 3.12, illustrate the system's capability to 

extract cutter/workpiece engagement geometry for different machining situations. 

Figure 3.12(a) shows a rectangular workpiece machined by an end mill along 

curved tool paths. The axial engagement remains constant while the radial 

engagement varies. Figure 3.12(b) shows a non-prismatic workpiece being 

machined. The engagement geometry changes in both axial and radial direction 

when the cutter passes the cylindrical feature. 
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Figure 3.12 Illustrations of CWE geometry 

3.5 Experimental Verification 

Instantaneous cutting forces and torque can be predicted from the extracted 

CWE geometry. In order to verify the developed system, experimental verification is 

performed by comparing the simulation results with the cutting forces measured 

from actual cutting tests. 
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3.5.1 Experimental Setup 

The cutting tests are conducted on a Makino A81M-5XR horizontal machining 

center. The cutting forces are measured along the x, y and z axis by a Kistler 9255B 

3-axis dynamometer connected to a Kistler 5011B charge amplifier. The data 

acquisition is done by a laptop computer equipped with a National Instruments 

DAQCard-AI-16E-4 data acquisition card. 

Figure 3.13 Experimental setup for cutting forces measurement 

39 



A solid carbide flat-end mill cutter with 4 flutes, 30 degree helix angle and 

19.05mm diameter is used to cut aluminum alloy A17075 workpiece material with 

cutting fluid. The spindle speed used in all experiments is 1000 RPM. The data 

acquisition sampling frequency used is 10000 Hz, which gives 600 sample points per 

cutter revolution. 

3.5.2 Determining the Cutting Force Coefficients 

The cutting forces coefficients of the experimental cutter are determined 

through a set of full immersion slot cutting at a constant axial depth of cut {5mm) 

and different feed rates (200-700 mm/miri). Linear regressions of the average cutting 

forces measured are shown in Figure 3.14, and the calculated cutting force 

coefficients are given in Table 3.1. 
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Figure 3.14 Linear regressions of average cutting forces 
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Table 3.1 Cutting forces coefficients of the experimental cutter machining 
Aluminum alloy A17075 with cutting fluid 

Ktc 

Krc 

Kac 

960.580 N/mm2 

401.660 N/mm2 

-133.994 N/mm2 

Kte 

Kre 

Kac 

12.295 N/mm 

9.21 N/mm 

0.149 N/mm 

3.5.3 Comparing Experimental and Simulation Results 

Three experiments are conducted using the above setup. The developed 

simulation system is used to predict cutting forces for each experiment, and 

simulation results are compared to the measured cutting forces. 

Experiment 1 - End milling with constant depth of cut 

/ 
J* 

Half immersion 

Down milling \ 

» < 

y 

/' 

A.:.-.-.,.. 

Variable 
immersion 

: A &f • --

Up milling : ^^•••iiiWHWiK^BI 

(a) Tool paths (b) Machined part 

Figure 3.15 Experiment 1 - Constant depth of cut 

Three tool path segments are performed at 5mm axis depth of cut, and the 

feed rate is 500 mm/min. During the first two paths, half immersion up/down milling, 

the CWE geometry remains constant; and simulated and measured cutting forces of 

one cutter revelation are plotted in Figure 3.16. The cutting forces along the circular 

arc tool path are shown in Figure 3.17, and two instantaneous sample locations are 

shown in Figure 3.18. 
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Figure 3.17 Experiment 1 - Cutting forces of the circular arc tool path 
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Experiment 2 - End milling with variable depth of cut 
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Figure 3.19 Experiment 2 - Variable depth of cut 

A non-prismatic stock is machined by two tool paths at different depth of cut 

[4mm and 8mm), and the feed rate is 500mm/min. The engagement area of the first 

path is a non-orthogonal shape, see Figure 3.20. The engagement of the second path 

changes along the tool path; the cutting forces are plotted in Figure 3.21. The 

instantaneous CWE geometry and cutting forces of two sample locations on the 

second path are shown in Figure 3.22. 
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Figure 3.21 Experiment 2 - Cutting forces of path#2 
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Experiments - Free-form contour pocketing 

$ / 

(a) Tool paths generated by CATIA (b) Machined pocket 

Figure 3.23 Experiment 3 - Pocketing 

A pocket of free-form curve contour is machined. The tool paths are 

generated using CATIA V5. The axial depth of cut is 2.54mm, and the feed rate is 

400mm/min. 
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Figure 3.24 Experiment 3 - Cutting forces 
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Figure 3.25 Experiment 3 - Instantaneous CWE geometry and cutting forces 

From the above figures, we can see that the simulated cutting forces are in 

good agreement with the experiments. Since the simulation considers no tool wear 

and cutter runout (eccentricity of the tool rotation), the peak forces encountered by 

each flute are identical in the simulation results. While in the experiments, these 

setup errors are unavoidable, which lead to uneven distribution of chip load and 

cutting forces on each flute in one revolution. Since the same cutter has been used 

for all experiments in this report, similar phenomenon occurs in all experiments. 

Especially for the pocketing experiment, see Figure 3.25, there is almost no chip 

load on one tooth. This is due to the small depth of cut [2.54mm) compared to the 

tool wear on one flute, a crack of length close to 3mm, see Figure 3.26(a). 
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(a) Tool wear on the experimental cutter (b) Cutter runout 

Figure 3.26 Experimental setup errors 

For different instantaneous cutter location, the average resultant force 

during one revolution of the simulation results are within 10% of the experimental 

results. 

3.6 Summary 

In this chapter a geometric modeling methodology for 2V2-axis milling with 

flat end cutter is presented. The in-process workpiece is represented using a Z-layer 

B-Rep model, and both rectangular and non-prismatic stock shapes can be handled 

properly. The CWE geometry is extracted by calculating the intersection between 

the cutter frontiers swept profile and the in-process workpiece layer profile, and 

complex engagement situations, such as multi-engagements, can be handled by 

arranging intersection points in pairs and updating the workpiece profile 

respectively. Then, the extracted CWE geometry is integrated with a mechanistic 
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force model for predicting cutting forces, torque and power. The accuracy of the 

developed simulation system is demonstrated through experimental verifications. 

Several cutting tests, including constant depth of cut, variable depth of cut and 

general pocketing, have been conducted, and the simulated cutting forces are in 

good agreement with the experimental results. Applications of the developed 

system are presented next in Chapter 4. 
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Chapter 4 Applications of 21/2-Axis Milling 

Process Modeling 

The 2%-axis milling process modeling system developed in previous chapter 

can provide useful information for understanding the effect of different cutting 

parameters, and therefore optimal cutting parameters can be selected. Two 

applications, including steady cut optimization and automatic feed rate selection for 

pocket machining, are presented in this chapter. 

4.1 Optimal Cutting Parameters Selection for Steady Cut 

In the roughing operations, especially for aerospace structural parts, a lot 

material needs to be removed layer by layer. At each layer, during most time the 

cutting is steady with constant MRR. To determine the optimal feed rate, the radial 

and axial depth of cut in order to achieve the maximal MRR within the machine 

tool's capability is the main concern in industry. The MRR [mm3/s) of steady cut can 

be formulated as 

MRR = WHf/60 (4.1) 

where W (mm) is the radial depth of cut, H (mm) is the axial depth of cut, and f 

(mm/min) is the feed rate, as show in Figure 4.1. In order to achieve high machining 
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efficient, the MRR need to be maximized, while the cutting power draw from the 

spindle cannot exceed the machine tool's limitation. For this cutting parameters 

optimization problem, the object function is defined as Eq.(4.1), and the constraint 

is the spindle power. Other constraints, such as tool life and dynamic properties of 

machine structure [chatter vibrations), are not discussed in this research. 

Figure 4.1 Steady cut with constant MRR 

4.1.1 Optimal Cutting Parameter Selection Method 

The optimization problem involves three variables, which are the feed r a t e / 

axial depth H and radial depth W of cut. The value of these variables should be 

determined such that the MRR is maximized while the spindle power is equal to the 

given maximum value. To solve this problem, the methodology proposed here 

involves two steps. 

The first step is to find the maximum MRR and corresponding axial depth 

and radial depth of cut for a given feed r a t e / For a constant feed rate, the Eq.(4.1) is 
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a monotonically increasing function of Wand H, whose maximum value is always on 

the boundary of the function domain. This boundary is determined by the spindle 

power constraint, which can be formulated as 

/power {W,H) = Pm ( 4 . 2 ) 

where^,ower is the max spindle power expressed as a nonlinear function of Wand H, 

and Pmax is the given max spindle power limitation. By using the developed 

simulation program to evaluate the nonlinear function 7p0Wer, the Eq. (4.2) can be 

solved numerically. So the optimal Wand H, which produce the maximum MRR, can 

be found on the boundary through Eq.(4.1). 

The second step is to change the feed r a t e / so the maximum MRR changes 

accordingly. At an optimal feed rate/max, the MRR reaches the maximum value. Thus, 

the ^ x and corresponding axial depth and radial depth are the solution to the 

cutting parameter optimization. 

4.1.2 Illustrative Example 

An illustrative example is presented in this section to explain the process of 

the proposed method. A solid carbide flat-end mill cutter with 19.05mm diameter, 4 

flutes, 30 degree helix angle and 38.1mm flute length is used to cut aluminum alloy 

A17075 workpiece material. The cutting coefficients with cutting fluid on are 

identified in Table 3.1. The spindle speed is fixed at 3000RPM, while the feed r a t e / 

axial depth Hand radial depth W of cut are the variables. The instantaneous cutting 

forces and spindle power in one revolution for a set of input cutting parameters, 
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W=13mm, H=5mm, and f=1000mm/min, are shown in Figure 4.2. The maximum 

instantaneous spindle power can be found in the spindle power curve. 
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Figure 4.2 Cutting forces and spindle power 
[W=l3mm, H=5mm, f— lOOOmm/min) 

By changing axial and radial depth of cut within the domain bounded by the 

geometric constraints, cutter diameter and cutting flutes length, the maximum 

spindle power can be calculated for each pair of inputs; therefore a graph 

representing the maximum spindle power using axial and radial depth of cut can be 

obtained. Figure 4.3 shows a maximum spindle power graph at the feed rate 

lOOOmm/min. 
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Figure 4.3 Maximum spindle power graph at feed rate lOOOmm/min 

The Eq. (4.2) can be solved numerically by intersecting the maximum spindle 

power graph with a horizontal plane at the height PmWL. The intersection curve 

represents the boundary of spindle power constraint. By mapping the boundary to 

Eq.(4.1), the maximum MRR and corresponding axial depth and radial depth of cut 

can be found. Two examples are shown in Figure 4.4: (a) set Pmax=2000W, the 

maximum MRR [1542.4 mm3/s] can be achieved at full immersion (radial depth equal 

to cutter diameter) and axial depth 7.8 mm; (b) set Pmax=4000W, the maximum MRR 

{3271.8 minis) can be achieved at radial depth 7.63 mm and axial depth 25.7 mm. 
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(a) Pmm=2000W: MRR=1542.4mm3/s, H=7.8mm, W=19.05mm 

(a)PmaK=4000W:MRR=3271.8mm3/s, H=25.7mm, W=7.63mm 

Figure 4.4 Finding the maximum MRR at feed ra te /= 1 OOOmm/min 

From the machining handbooks, ranges of recommended feed rates for 

different workpiece materials can be obtained. In this example, the range of feed 

rate / is set to 100~2500mm/min. Assume the maximum spindle power for the 

machine is 5000W. By setting Pmax=5000W and following the procedure described 

above, the maximum MRR at each feed rate can be calculated. The relation of feed 

rate and corresponding maximum MMR is shown in Figure 4.5. In this case, the 

highest MRR is achieved at the highest feed rate, 2500mm/min. 
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Figure 4.5 Relations of feed rate and maximum MRR [Pm^=5000W) 

The relation diagram also shows that the increasing rate for the maximum 

MRR is smaller at higher feed rate. From 1000 to 2500 mm/min, the increase 

maximum MRR is less than 9%. This result can served as guidance for selection 

optimal cutting parameters. By combining with other constraints, such as the 

dynamic properties of the machine tool, smaller feed rate, such as WOOmm/min may 

be selected over the higher values, since the increase of efficiency is not big. 

4.2 Automatic Feedrate Selection for Pocket Machining 

Pocketing is one of the most common operations in NC machining 

applications. For example, in aerospace industry, most structure parts are produced 

with pocket machining with the support structure leaved between pockets. 

Generally, a pocket is described as a closed profile in CAD software, sometimes with 

islands. Two major approaches, contour parallel and direction parallel, are used in 

commercial CAM software to generate pocketing tool paths. The CAM software only 

generates tool paths based on the pocket geometry; while the feed rate is still 

specified as one constant value for all path segments, and is heavily depended on the 

user's experience. Although the axial depth of cut remains constant for pocket 
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machining, the radial depth of cut still changes along the tool paths due to the 

changing in-process workpiece geometry; therefore the cutting load changes 

accordingly. At certain locations cutting load may be too small and the machine tool 

is not utilized at its full capacity; while at some locations cutting load may be too big 

and may exceed the machine tool limit. Thus, for more efficient and safe pocket 

machining, it is required to regulate the cutting load while machining. 

The cutting load regulation can be achieved by adjusting the feed rate of each 

tool path segment, so the spindle power can be maintained at a specified value. The 

developed 2%-axis milling process modeling system can provide useful information 

of the pocket machining process, including instantaneous cutter engagement, 

cutting forces, and maximum spindle power consumed. An automatic feed rate 

adjustment method based on the process simulation result is presented in this 

section. 

4.2.1 Optimal Feed Rate Selection Method 

For the pocket machining where the axial depth of cut is constant, the radial 

depth of cut and feed rate are considered as the variables. Under the assumption 

that no complex multi-engagement occurs in the pocket machining, a simplified chip 

load model is described in Figure 4.6, where a is the cutter engagement angle and W 

is the radial depth of cut. 
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Figure 4.6 Chip load model of pocketing 

The max spindle power can be considered as a nonlinear function of the feed 

rate/ -and the engagement angle a. For certain feed rate and engagement angle, the 

max spindle power can be calculated using the simulation program by considering 

only one revolution. The calculation is similar to the steady cut with the same radial 

depth of cut W, as shown in Figure 4.2. By changing both radial depth of cut and feed 

rate, the maximum spindle power can be calculated for each pair of inputs; 

therefore a graph representing the maximum spindle power using feed rate and 

engagement angle can be obtained. 

For example, a solid carbide flat-end mill cutter with 19.05mm diameter, 4 

flutes and 30 degree helix angle is used to cut aluminum alloy A17075 workpiece 

material. The cutting coefficients with cutting fluid on are identified in Table 3.1. 

The spindle speed is fixed at 3000RPM, and the axial depth of the pocket is 10mm. By 

changing the feed rate in the range 600-2400 mm/min, the max spindle power graph 

is obtained in Figure 4.7. 
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Figure 4.7 Maximum spindle power graph at 10mm depth of cut 

For a specified maximum spindle power limit Pmax, a horizontal plane is 

constructed at the height Pmax and intersects with the spindle power graph. The 

intersection curve is the iso-spindle power curve, which represents the engagement 

angle and corresponding feed rate when spindle power is equal to Fmax. The iso-

spindle power curve is used for automatic feed rate selection. By given an 

engagement angle, the maximum feed rate can be found on the iso-spindle power 

curve. Shown in Figure 4.8 is the iso-spindle power curve for Pmax=5000W. For 

engagement angle 100 degree, the maximum feed rate can be selected is 1885mm/min; 

for engagement angle 140 degree, the maximum feed rate is 1199 mm/min. 
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Figure 4.8 Iso-spindle power curve for automatic feed rate selection 

4.2.2 Tool Paths Optimization Procedure 

Given a pocket and the cutter size, the initial tool paths can be generated 

using existing CAM software. For a user specified maximum spindle power, the tool 

paths optimization process involves the following steps. 

1) Construct the iso-spindle power curve for the given pocket depth, cutter size, 

and maximum spindle power. 

2) One feed rate value is assigned to the initial tool paths, and the developed 2Vz-

axis milling simulation system is used to predict cutting forces and power. 

3) Scan on the simulation results. If dramatic changes of chip load are detected 

along a tool path segment, the tool path segments can be further split into two or 

more shorter segments. By considering the kinematic properties of the machine 

tool, short segments are avoided in the tool path splitting process. 

4) Determine the feed rate of each tool path segment based on the peak 

engagement angle along the path. The iso-spindle power curve is used to 

calculate optimal feed rate for each segment. 
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4.2.3 Illustrative Example 

To demonstrate the effectiveness of the proposed method, a pocket 

machining example is presented in this section. The example uses the same cutter 

{19.05mm diameter, 4 flutes and 30 degree helix angle) and axial depth of cut {10mm) 

mentioned in previous section. The pocket to be machined is shown in Figure 4.9, 

and the initial tool paths consist 22 segments including linear, circular and NURBS 

tool path segments. By setting the max spindle power Pmax=5000W, the iso-spindle 

curve can be obtained, see Figure 4.8. 

A constant feed rate 1500 mm/min is assigned to all segments, the developed 

2y2-axis modeling system is used to simulate the pocketing process. The simulation 

results are shown in Figure 4.10, and the total machining time is 26.01s. The results 

show that the max spindle power is beyond Pmax(5000W) which is not acceptable; 

while most parts of the tool paths are below 4000W, which is not efficient. 

(a) Pocket to be machined (b) Initial tool paths, 22 segments 

Figure 4.9 Pocket and initial tool paths 
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Figure 4.10 Simulation results at feed rate 1500mm/min 

By scanning the maximum spindle power, six splitting locations are 

determined according to the change of chip load, and corresponding splitting points 

on the tool paths are calculate (see Figure 4.11 and Figure 4.12). 
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Figure 4.12 Tool paths after splitting, 28 segments 
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Figure 4.13 Simulation results of the optimal tool paths 

The 2%-axis milling process simulation system records the instantaneous 

chip geometry along the tool paths. By collecting the peak engagement angle for 

each segment, the optimal feed rate can be obtained from the iso-spindle power 

curve (Figure 4.8). The simulation results of the adjusted tool paths are shown in 

Figure 4.13. The total machining time is reduced to 24.97s, and the maximum 

spindle power is kept around 5000W. 

64 



4.3 Summary 

This chapter presents applications of the 2y2-axis milling process modeling 

on optimal machining parameters selection. Effective and practical algorithms are 

proposed for steady cut optimization and automatic feed rate selection for pocket 

machining. 

The proposed graph based method is a general framework that can be 

extended to other applications. Both applications presented in this chapter use the 

maximum spindle power as the constraint for cutting parameters optimization. For 

application considering the tool deflection, where the primary concern is the 

resultant blending force, the same methodologies can still be applied. By replacing 

the maximum spindle power constraint with maximum resultant blending force, the 

developed methodologies can be used to optimize cutting parameters in order to 

maintain certain cutting force. 
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Chapter 5 Process Modeling for 3-Axis 

Milling of Sculptured Surfaces 

5.1 Introduction 

Sculptured surfaces are widely used in mechanical products, especially in the 

die and mold, aerospace, automotive and appliances industries. Thanks to the 

advanced CAD technology, complex sculptured surfaces can be easily designed by 

using commercial CAD packages. Generally, the free-form surface is defined 

mathematically as a collection of interconnected and bounded parametric patches. 

Several types of parametric surfaces, including Bi-cubic, Bezier, Non-Uniform 

Rational B-Spline (NURBS), and Coons surfaces [88], are used in CAD software. 

Multi-axis CNC milling machines, including 3- and 5-axis machines, are used to 

produce these sculptured surface parts. 

To machine a sculptured surface in 3-axis finish milling, theoretical tool path 

curves are discretized into a number of cutter location (CL) points. During 

machining, the cutter cuts through the stock material from one CL point to the next, 

sweeping a 3D envelope surface. The stock material contained in the cutter swept 

envelop is removed and a furrow patch is formed on the machined surface, see 

Figure 5.1. 
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Figure 5.1 3-axis milling of sculptured surface 

Due to the complexity of sculptured surfaces, simple geometries of the 

standard cutting tools and limited types of tool motions provided by CNC machine 

tools, accurately machining these surfaces with less costs and shorter time has 

become a challenging job. 

In this chapter, we do not adopt the conventional differential equation of 

cutter swept volumes; instead, we study the basic mechanism of removing stock 

material in three-axis milling operation. The fundamental concept is that the profile 

at a layer of workpiece stock is formed by the cutting tool pass through this layer 

along a predetermined tool path. First, the geometric model of the cutter swept 

envelope, which is a simple 2-D, not a 3-D swept profile, is presented, and the 

mathematical formula of the profile is derived for APT cutter geometry and different 

tool motions. Second, a Z-level B-Rep model is used to represent the in-process 

workpiece model, and an innovative geometric approach is used to extract the CWE 

geometry. Then, an existing cutting forces model is adopted to predict the cutting 
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forces. The implementation is a process simulation system for 3-axis surface milling. 

Finally, the developed system is experimentally verified by comparing the 

simulation results with actual forces data collected from machining a test part. 

5.2 Geometric Model of Cutter Swept Profile in 3-Axis Milling 

The general geometry of end mill is defined as APT tool [89], and the 

standard cutters such as flat, bull-nose, ball, and taper end mills are special cases 

(see Figure 5.2). In order to find the generic model of the cutter swept profile, the 

APT tool is adopted in our research. 

(b) (c) (d) (e) 

Figure 5.2 (a) APT tool, (b) flat end mill {a=0, p=0, R2=0), (c) bull-nose end 
mill {a=0, fi=0), (d) ball end mill {a=0, /3=0, R^O), (e) taped end mill [a=0) 
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During machining, the cutting tool rotates about its axis, forming a revolving 

surface called cutting surface. The geometry of a cutting tool can be regarded as a 

number of thin disks piled up along the tool axis, and all disks have the same 

number of cutting edges as the tool. Since the cutting speed is much larger than the 

feed rate during machining, the trochoidal trajectory of each cutting edge point can 

be approximated as circle. Thus, the cutter is regarded as many cutting circles along 

the tool axis during machining. Based on the parameters defined Figure 5.2(a), the 

radius of a cutting circle at axial height h can be represented as 

RcW = 

h 
(0 < h < \ ), lower conic surface tan or 

Rx + ^Rf-(hR-hf ( \ < h < h2), toroidal surface (5.1) 

n R? +(h-hR) sin/? , . 
Rl H— (At, < h), upper conic surface 

cos/? 

where hi=hR-R2- cos a, and h1=hR-R2-sm/3. 

In 3-axis tool motion, all cutting circles move along the same tool feed 

direction to remove the stock material. Figure 5.3 shows an APT tool moving from 

location one to location two in a certain time period. To study the process of 

removing stock material, a horizontal layer of workpiece material, n in Figure 5.3, is 

examined closely. At the beginning, the cutting circle 1 is aligned with the layer, and 

all the material at inside the cutting circle has already been removed. When the tool 

moves along the tool feed direction, the cutting circle 1 leaves the layer and a cutting 

circle beneath it reaches this layer and removes material inside it. As all the cutting 

circles reach the layer consecutively, the outside envelope of all these cutting circles 
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forms a 2D profile on this layer, and all the material inside the profile is removed. By 

intersecting the profile with the original shape of the part on this layer, both the 

shape of removed material and the machined shape on this layer after this tool 

motion can be obtained. 

~ r-rr .. A layer of the workpiece 
Feed direction J , r 

material 

Figure 5.3 Envelope of cutting circles 

Based on the mechanism of removing stock material on the horizontal layer, 

a close form equation of the three-axis cutter swept profile, the envelope of cutting 
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circles, can be derived. Suppose on a 3-axis vertical CNC milling machine, an APT 

tool moves from one location CI^ =[x1,j;I,z]]
7 to another location CL2 =[x2,y2,z2]

1 

in the part coordinate system (XP, YP, Zp). A local cutter coordinate system (XQ YC, 

Zc) is set up at CLi. The Xc-axis is defined parallel to the vector CZ, CL2, which is 

the projection of CL^ CL2 on plane Xp Op 7/>; the Zc-axis is defined parallel to the ZP-

axis; and the 7c-axis is defined by the right-hand rule, as shown in Figure 5.4. 

Figure 5.4 Part and local cutter coordinate system 

The transformation matrix from the local cutter coordinate to the part 

coordinate system is 

T -
AC-P 

cos(^) -sin(^) 0 x, 

sin (7) cos(^) 0 yt 

0 0 1 z, 

0 0 0 1 

(5.2) 
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where 71s the angle between Xp-axis and CZ,' CL2. And the coordinates of CLj and 

CL2 in the local cutter coordinate system are 

CZ, c = [0,0, Of ,CL2C = [x2 c , 0 , z 2 C ] 7 (5.3) 

where x2C = J(x2 —x{) + {y2~y\) ar>d z2 c =z2-zx. So the generic equation of the 

envelope of the cutting circles can be found in the local coordinate system, and then 

is transformed to the part coordinate system using Tc-p. 

Oc 

Figure 5.5 Formulation of cutter swept profile 

To find the generic equation of the envelope of the cutting circles in the local 

coordinate system, a horizontal plane n is set up at zn, as shown in Figure 5.5. While 

the cutter moves from CLj to CL2, the (x, y) coordinate of the cutter tip can be 

calculated as functions of its z coordinate 
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2,C 
\X = — — - Z 

'2,C ( 0 < z < z 2 C ) (5.4) 

\y = 0 

The point (x, y) also represents the center of the cutting circle on plane EL 

Based on Eq. [5.1), the radius of cutting circle at plane n can be calculated as a 

function of cutter tip's z coordinate 

* , « = 

tana 
(zn-hl<z<zn) 

R
i+iR2-(hR-zn+zf {zn-h2<z^zu-hx) (5-5) 

R^R1HzR-z-hE)^nl {z<Zn_hi) 

cos/? 

Therefore, the equation of the cutting circle on plane n is 

JC = -
V2,C 

"2,C 

z + Rc(z)-cos0 (<d<0<2-n) 

y = Rc(z)-sinff 

z = zr 

(5.6) 

where 0 is the parameter of the circle. When z varies in the interval 

ro ,min(z 2 r , z n )1 , Eq. (5.6) represents a family of circles on plane IT The necessary 

condition for the envelop of the plane curve family [x{6,z),y{0,z)^ is that the 

Jacobian of the function x,y must vanish along a locus [90] 

dx dy dx dy 

8z 36 d6 dz 
= 0 (5.7) 
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Solving Eqs. (5.5)(5.6) and (5.7), the relation between variables 6>and z can be found 

as 

cos 0 = 
5RC z2,c 

dz x2C 

(5.8) 

where 

dz 

1 

tana 
-(hR-zn+z) 

yJR2
2-(hR-zn+z)2 

-tan/? 

(zu-h1<z<zn) 

(zn-h2<z<zn-hl) 

(z<zn-h2) 

(5.9) 

By plugging 6 into Eq.(5.6), the generic formula of the envelope curve at plane n is 

obtained as 

x = 
V 2 .C 

-2,C 

'-*c(z) 
dR z. 2,C 

dz x2C 

y=±KAz>^ 
( 

dz y2_c 

^ 
(0<z<min(z 2 C , z n ) ) (5.10) 

Eqs. (5.5) (5.9) and (5.10) can be used to calculated the cutter swept profile at any 

location zn , when z2 c > 0 (cutter moving upwards) or z2 c < 0 (cutter moving 

downwards). I fz2 C=0, the feed direction is horizontal, and the envelope on a 

horizontal layer is swept by a cutting circle with constant radius moving along a line 

segment, which can be solved directly. Figure 5.6 illustrates swept profiles 
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calculated at three different heights using the swept profile equations while cutter 

moving upwards and downwards. 

6 0 - . . . 50p 

50'- 4 0 -

4 0 - 30 — • : : 

f • 

30p 20 • 

2 0 r . . . - . . . • m l -

(a) cutter moving upwards (b) cutter moving downwards 

Figure 5.6 Cutter swept profile samples 

5.3 Geometric Model of 3-Axis Milling 

The cutter swept profile described above is based on the material removal 

mechanism on a horizontal layer, which is perpendicular to the tool axis in three-

axis milling. To work with this horizontal swept profile, a Z-level B-Rep model is 

proposed to represent the instantaneous workpiece geometry during machining. 

Then, the CWE geometry is extracted by calculating the intersection between the 

workpiece layer profile and the cutter swept profile. 
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5.3.1 In-Process Model Definition 

The in-process model is defined as the intermediary state of the workpiece 

during the machining process. In this work, it is generated by slicing the initial 

workpiece stock into layers by a number of planes perpendicular to the tool axis. 

The accuracy of the model can be adjusted by changing the distance between the 

slicing planes. Each layer contains a 2D profile which represents the shape of this 

layer and its height. The B-Rep data structure of the layer profile is the same as the 

model defined in Figure 3.5 for 2%-axis modeling. Figure 5.7 shows a sculptured 

surface part, the stair-like workpiece shape after roughing and the layer-based in-

process model generated from the roughing geometry. 

— i i l i i i i 

i •: Sculptured 
\,.•„.'! surface part 

Workpiece 
after roughing 

Figure 5.7 In-process workpiece model 
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5.3.2 Cutter Workpiece Engagement Geometry 

The CWE geometry is extracted by moving the cutting tool along the tool 

path while it rotates one revolution. In practice, tool paths are transferred to the 

CNC machine tool as part programs, and the motion commands of the part program 

are processed in real-time by the CNC interpolator. In order to obtain the cutter 

location accurately, the real-time interpolator algorithms reviewed in Section 2.3 

are integrated into our simulation system for calculating tool moving steps. 

The process of extracting cutter workpiece engagement geometry includes 

three steps. First, at each tool movement, by comparing the cutter location and the 

in-process model, all layers inside the cutter swept range can be found during this 

motion. Then, the cutter swept profile on each layer can be calculated using the 

derived equations. By calculating the intersection between the cutter swept profile 

and workpiece layer profile, the material removal profile on each layer can be 

calculated, as shown in Figure 5.8. At the same time, the in-process model layer 

profile is updated to reflect the material removal. Finally, the 3D engagement 

geometry model is obtained by combining all extracted layer engagement profiles 

with their location and thickness. The result engagement geometry has the same 

data structure as the in-process model, a Z-level B-Rep representation. The material 

removal rate can be estimated from the volume of the removal material. 
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Feed in one 
revolution 

In-process 
workpiece model 

Figure 5.8 Cutter workpiece engagement model 

The undeformed chip thickness is calculated from the extracted CWE 

geometry at any instantaneous immersion angle <f>. As shown in Figure 5.8, the 

extracted engagement layer profile is intersected with a ray, which starts from the 

cutter center and inclines at the immersion angle <f). The distance between two 

intersection points A and B represents the thickness of removal material along the 

horizontal plane. The undeformed chip thickness normal to the cutting surface is 

calculated as 

h{(f) = \AB\- cos co IN (5.11) 
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where N is the number of flutes and co is the angle between the horizontal plane and 

cutting surface normal vector n. For APT tool defined in Figure 5.2, co can be 

represented as a function of the axial height z 

co w= 
n/2 - a lower conic surface 

arccos ({hR - z)JR2) toroidal surface (5.12) 

P upper conic surface 

5.4 Mechanistic Model of 3-Axis Milling 

In the force calculation, the cutting tool is modeled by several helical flutes 

wrapped around the cutting surface. The helical angle of the cutting flute depends 

on the cutting surface geometry. For the flat-end mill, the helical angle is usually 

constant. For ball-end, bull-nose and tapered end mill, the helical angle can be 

designed arbitrarily and may vary from cutter to cutter. For one flute, the lag angle 

y/ at axial height z is depended on the cutter's design. Popular designs include 

constant lead and constant helix angle. The geometric models of these two type 

designs for general milling cutter can be found in reference [38]. Another way to get 

the lag angle for a particular cutter is through measurement. By using mathematical 

formula or measurement, the lag angle along the tool axis can be represented as a 

function yAz). 

Assume a cutter with N number of flutes working at spindle speed n 

(rev/min). At time t, the immersion angle (fit) of the bottom end of one flute is used as 
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the reference. For the y'th flute, the angular position at axial height z can be 

calculated as 

4(z) = 0(O+.M>-y(z) (5-13> 

where the cutter pitch angle <f>p = 2;r/JV and reference immersion angle 

0(t) = 27rnt/60. Then, the differential tangential [dFtj], radial {dFrj) and axial (dFaj) 

cutting forces at a cutting flute element can be calculated using the linear edge force 

model 

dFlJ(z) = [Ktchj(^(z)) + Kte]dz 

dFrJ(z) = [Kmhj^j(z)) + Kie]dz (5.14) 

dFaJ(z) = [KJj(^j{z)) + Kae]dz 

where /?y(^. (z)) is the undeformed chip thickness which can be evaluated from 

Eq.(5.11), dz is the differential flute element length, Ktc, Krc, Kac are the cutting 

coefficients contributed by the shearing action in tangential, radial and axial 

directions, respectively, and Kte, Kre, Kae are the edge constants. These coefficients 

can be identified for a particular cutter vs. workpiece material by using existing 

orthogonal to oblique cutting transformation method or mechanistic modeling 

method. Related methods have been reviewed in Section 2.2. Generally, for flat-end 

mill with constant helix angle, the cutting coefficients are constant values; for cutter 

with changing helical angle, such as ball-end mill, the cutting coefficients are 

considered as a function of the axial location z. 
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Figure 5.9 Mechanics of APT tool in 3-axis milling 

The differential forces are projected to the local Cartesian cutter coordinate system 

dFxj(z) = -dFt j cos0j(z) — \dFry cosco{z)-dFa . sinco{z)\sin^.(z) 

dFyJ (z) = dFt j sin $. (z) -{dFrj cos 6>(z) - dFaj sin <y(z) j cos ̂ y. (z) (5.15) 

dFz j(z) = dFr . sin co(z) + dFa . cos <y(z) 

The instantaneous cutting torque on the spindle is 

N-\ 

dTc{z) = Rc(z).YjdFtj{z) 
y=0 

(5.16) 

The total cutting forces Fx, Fy, Fz and torque Tc can be obtained by integrating the 

differential elements along the cutter axis. The axial integration limits for each flute 
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are determined from the cutter workpiece engagement area, which is obtained from 

the geometric simulation, as shown in Figure 5.9. The total cutting forces can be 

transferred to the part coordinate system using Tc.p of Eq.(5.2). 

The resultant bending force on the cutter is defined as the vector summation 

of the x,y forces, which has a magnitude 

F = ^FX
2+Fy

2 (5.17) 

The cutting power drawn from the spindle is calculated as 

P = 2jm-TjW (5.18) 

5.5 Implementation and Verification 

The proposed methodology has been implemented on a personal computer 

by using the C++ programming language for calculation and OpenGL for 

visualization. The implementation is a process simulation system for three-axis 

milling. The inputs to the system include tool paths, workpiece geometry, CNC 

interpolator parameters, cutter geometry and cutting constants, and the outputs are 

cutting forces, torque, power, material remove rate, chip and workpiece geometry at 

each instantaneous moment. By adopting industrial standard file formats, including 

APT files for exchanging tool paths with CAM software and IGES files for exchange 

geometry with CAD software, the system can be easily integrated with commercial 

CAD/CAM software packages. 
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Experimental verification is performed by using the developed system to 

predict the cutting forces of a surface milling process and comparing the results 

with actual forces measured from machining the test part. A solid carbide flat-end 

mill cutter with 4 flutes, 30 degree helix angle and 19.05mm diameter is used to cut 

aluminum alloy A17075 workpiece material on a Makino A81M-5XR horizontal 

machining center. A Kistler 9255B three-axis dynamometer is used for measuring 

the cutting forces along the x, y and z axis, see Figure 3.13 for experimental setup. 

The cutting coefficients with cutting fluid on are identified in Table 3.1. 

The test part with a sculptured surface is machined using one-way sweeping 

finishing tool paths. First, a layer based 2y2-axis roughing is applied to the 

rectangular stock. Then, the finishing tool path is applied to the stair-like workpiece 

shape after roughing, see Figure 5.10. The spindle speed is 1000RPM and the feed 

rate is 400 mm/min. The measured cutting forces of the second path are compared 

against simulation results in Figure 5.11. The simulated cutting forces are in good 

agreement with the experiment. The CWE geometry and cutting forces during one 

revolution at two sample locations are shown in Figure 5.12. The difference in the 

plots is attributed to the errors in the experimental setup, e.g. tool wear of 

experimental cutter and cutter runout. For different instantaneous cutter location, 

the average resultant force during one revolution of the simulation results are 

within 10% of the experimental results. 
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(a) Designed surface and 
finishing tool path 

(c) Machined part 
(b) Stock after roughing 

Figure 5.10 Test part for 3-axis milling 

time (s) 

(a) Measured cutting forces 
time (s) 

(b) Simulated cutting forces 

Figure 5.11 Cutting forces of tool path #2 
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Figure 5.12 Instantaneous CWE geometry and cutting forces of 3-axis milling 
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5.6 Summary 

This chapter presents an efficient, accurate approach to extracting the 

cutter/workpiece engagement geometry of 3-axis milling of sculptured surfaces. In 

our research, a basic geometric modeling of chip removal in three-axis milling is 

investigated, and an effective model is proposed to represent the cutter swept 

profile. Computationally efficient, closed-form formulations are derived for general 

APT cutter geometry. A Z-level B-Rep model is adopted to represent the in-process 

workpiece model, and the CWE geometry is extracted as intersection between the 

cutter swept profile and the workpiece layer profile. By integrating the CWE 

geometry with an existing mechanistic force model, instantaneous cutting forces, 

torque and power can be predicted. A surface milling test is conducted, and 

measured cutting forces are in good agreement with the simulation results. 
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Chapter 6 Medial Axis Transforms of 

Free-form Pockets with Islands 

6.1 Introduction 

Our interest in MAT stems from our previous work on cutter selection and 

tool path generation for 2Vz axis NC machining. In CAD/CAM systems, part 

boundaries are normally represented as parametric curves, including straight lines, 

circular arcs and Non-Uniform Rational B-Spline (NURBS) curves. In this chapter, 

we present a new, efficient algorithm for calculating the MATs of general pockets 

whose boundaries are represented as piecewise connected free-form parametric 

curves. The proposed approach is based on the idea of boundary tracing and 

decomposition. By studying the geometric properties of contact circles and their 

center points on MA, a mathematical model of the contact circle is formulated, and a 

hybrid optimization method, the integration of the particle swarm optimization 

(PSO) and local optimization methods, is proposed to solve this problem. The 

contact circle algorithm is used extensively in the boundary tracing process. The 

contact circle at a boundary point is determined from the perpendicular direction of 

the tangent vector, which is very sensitive on the curvature perturbation of the 

boundary. To make our algorithm robust, this instability is handled by inserting 

compensate points on the other side of the boundary being traced. Our algorithm 
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starts with the computation of MAT for a pocket without islands, whose boundary is 

represented as a closed composite curve. While travelling along the boundary, the 

boundary profile is divided into simpler sub-profiles when a branch circle is 

reached, and the same boundary travelling scheme is applied to each sub-profile. By 

following this process recursively, the whole profile can be broken into a number of 

simple profiles, which contain only one single MA segment. A tree data structure is 

developed to keep track of the boundary decomposition process. Then we extend 

our method to deal with pockets with islands by introducing a profile splitting 

procedure. A pocket profile with islands can always be divided into several simple 

profiles without islands, and the MAT can be calculated by combining the MAT of 

each simple profile. Finally, implementation, illustration samples and comparison 

with existing methods are presented to demonstrate the advantages of the proposed 

approach. 

6.2 Geometric Properties of Medial Axis 

This section presents different types of points on the MA and a geometric 

property that gives an up bound of the contact circle. This geometric property is 

important to the algorithm introduced in the next section. 

6.2.1 Boundary Representation 

For the purpose of discussion, the representation of the pocket boundary 

needs to be defined before studying the properties of its MAT. It is common practice 

in CAD/CAM software systems to use parametric curve representatives. A 
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parametric curve in planar domain can be represented with parameter u, which is 

generally defined as 

C(u) = [x(u) y(u)f (6.1) 

where u e [umin wmax]. Different types of parametric curves, including straight lines, 

circular arcs and Non-Uniform Rational B-Spline (NURBS) curves, are used to design 

mechanical parts. A complex pocket profile is usually defined by connecting several 

curve segments together. In order to treat a group of certain individual constituent 

entities into one logical unit, the composite curve data structure is introduced to 

describe the profile. A composite curve is defined as an ordered list of parametric 

curve entities. It is a directed curve, and each constituent curve entity has the same 

direction. For a closed profile, the start point of the composite curve coincides with 

its end point. 

In this work, the composite curve is defined under the assumption that each 

constituent curve entity has at least continuous first order derivative with respect to 

the parameter u (>C; continuity). So the whole composite curve is differentiable 

except at finite number of connecting points, where both the left and right 

derivatives can be calculated from the connected parametric curve entities. 

Practically, this assumption can be easily satisfied in current CAD systems by 

breaking C° continuity curve into several smooth segments (>C7) at points with 

tangent discontinuity. 
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Since islands may exist in mechanical designs, one or more closed profiles 

are required to describe boundaries of islands. In order to represent the material 

side and empty space side, the direction of each profile must be defined properly. 

Then, a general pocket shape is defined as one outer counter clockwise closed 

composite curve with zero or several clockwise closed composite curves inside. So 

when travelling along the outside boundary or inside island boundary, the material 

is always on the right side. This data structure is inclusive enough to cover all 

practical pocket shapes. 

6.2.2 Medial Axis Points 

By definition, the MA is the locus of centers of circles which are locally 

maximal inside the profile. A circle is locally maximal if there are no other circles 

inside the profile that contain it. The point on the MA is referred as the medial axis 

point, and the associated maximal circle is called the contact circle. A contact circle 

may touch the profile boundary at one or several points or arcs, which are called 

contact components. Based on the number of contact components of a contact circle, 

the associated medial axis point can be classified into three types: 2-contact point, 

branch point and terminal point. 

The whole MAT can be viewed as a graph, as shown in Figure 1.1, where 

branch points and terminal points are connected by simple MA segment curves. A 

simple MA segment only contains 2-contact points, and is limited by branch points or 

terminal points. The 2-contact point is the basic element of the MA segment curve. 
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Figure 6.1 shows a 2-contact point and the associated contact circle touching the 

boundary at two points. 

2-Contact 
Circle 

Medial Axis 

Figure 6.1 Contact circle with 2 contact points 

Figure 6.2 Branch circle with 3 contact points 

A branch point has a contact circle touching three or more separate 

components on the boundary. Topologically, if a contact circle has n contact 

components, the branch point is where n medial axis segments connected together, 

see Figure 6.2. In general case, a branch point has three medial axis segments 
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connected to it. A branch point with n > 3 may be viewed as a form of geometric 

degeneracy. 

The terminal point of medial axis has only one contact component. By 

checking the geometry property of the piecewise connected parametric boundary 

curves, terminal points can be identified at corner points, circular arc segments and 

local maximal positive curvature points of free-form curve segments. 

A boundary point is a corner if the tangent direction discontinues at the point 

(only GO continuity). For the composite curve used in this work, both sharp corners 

and dull corners can be identified at connecting points between constituent curve 

entities. If the interior angle (the angle between the left and right tangent vectors) is 

strictly less than n, the corner is a sharp corner, if the interior angle is larger than n, 

it is called dull corner. The contact circle at a sharp corner is degenerated to a point, 

and the sharp corner point itself is a terminal point of the MA. 

The center point of a circular arc boundary segment is a terminal point if the 

whole circle of the arc is inside the profile. The arc boundary segment itself is the 

only one contact component, as shown in Figure 6.3(a). For a free-form curve 

boundary segment, the osculating circle at point with local maximal curvature can 

be used to determine the terminal point. If the whole osculating circle is inside the 

profile, the center of the osculating circle is a terminal point of the medial axis, see 

Figure 6.4(a). 
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(a) Circle inside the profile (b) Circle outside the profile 
Center = terminal point Center t terminal point 

Figure 6.3 Determine terminal point from circular arc boundary segment 

(a) Osculating circle inside the profile 
Center = terminal point 

(b) Osculating circle outside the profile 
Center * terminal point 

Figure 6.4 Determine terminal point from osculating circle 

6.2.3 Up Bound of a Contact Circle 

The diameter of the contact circle at any boundary point is less than the 

distance between the boundary point and the first "visible" point along the normal 
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direction. This geometric property is obtained from the observation of the contact 

circle, and can be proofed by the definition of the MA. 

Pi'(Qi) 

—.—9 • - . . 

" 0 ; 

Figure 6.5 The up bound of contact circles at boundary points 

Let P be a point on the profile boundary. A ray can be casted from P inwards 

along the normal direction at P. The ray will intersect with the profile at least once. 

The first "visible" point Q is the intersection point closest to P. A contact circle can 

also be drawn at P and touches the other side of profile at point P'. By the definition 

of medial axis, the contact circle is the largest circle inside the profile, and no 

boundary point will be inside the maximal circle. Therefore, the point Q, which is a 

point on the boundary, cannot be inside the contact circle. Since TQ is along the 

normal direction, the center point of the contact circle O is on PQ. Because Q is 

outside the circle, the length \OQ\ is larger than the contact circle radius. Therefore, 

the length \PQ\, which represents the distance between the boundary point and the 

first "visible" point, is larger than the contact circle diameter. At some boundary 
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point, such as Pj in Figure 6.5, the first "visual" point Qi is coincident with the other 

contact pointP/. The length \PyQx\ is equal to the contact circle diameter. 

The distance between the boundary point and the first "visible" point along 

the normal direction gives a very useful up bound, which serves as a constraint to 

reduce the searching domain and increase the efficiency of our implementation 

algorithm. 

6.3 Contact Circle Algorithm 

The most fundamental problem in the MAT calculation is to find the contact 

circle at any location along the profile. In this section, a mathematical model of the 

contact circle is formulated, and a hybrid optimization method, the combination of 

the particle swarm optimization (PSO) and local optimization methods, is proposed 

to solve this problem. 

6.3.1 Mathematical Model of the Contact Circle 

Given a free-form profile represented as a parametric curve 

C(w) = [x(w) y(u)] , let P = \x{up) y{uP)~\ be a point on the profile, and the 

corresponding unit normal vector np = \nxp nyP~\ can be calculated. The first 

"visible" point Q is calculated as the closest intersection between the ray along the 

direction np and the profile. Let CQ denote the circle tangent with the profile at P 

and passing point Q, and its center point O0 = is the midpoint of line 
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segment PQ. As discussed in the previous section, the contact circle at point P is 

smaller than the circle CQ. In other words, all points of the contact circle are inside 

the circle CQ, except the point P, where two circles are tangent at. 

Then, select another profile point r = C(w), where u^up and the point is 

inside the circle CQ. The criterion that a point is inside a circle can be expressed as 

the distance from the point to the center of the circle is less than the radius of the 

circle. The mid-section line of vector PT intersects with the line along the normal 

vector np at point Or- Define a circle centered at OT and passing through both 

profile points P and T (see Figure 6.6), and the radius of the circle can be formulated 

as 

•(«) = 
j _ (x(u)-xP) +(y(u)-yP) 

2 (x(u)-xp)-nxP+(y(u)-yp)-ny 

(6.2) 

Figure 6.6 Mathematical model of contact circle 
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By testing all profile points inside the circle CQ, a serial of testing circles can 

be obtained using the above equation. At one special testing point, the radius of the 

testing circle is the minimum, where the testing point T is a tangent point between 

the profile and the circle. This minimum testing circle is the contact circle at point P. 

Therefore, the contact circle searching problem can be formulated as 

Minimize r(u) = 

Subject to 

1 (x(u)-xp) +(y(u)-yP) 

u^u 

2 (x(u)-xpynxj+(y{u)-ypyn 
(6.3) 

Local 
Minimum 

Figure 6.7 Example of the global optimization problem 
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The above model is a global optimization problem due to the high non-

linearity of the free-form curve boundary, as the example illustrated in Figure 6.7. In 

this work, a hybrid optimization method is developed to solve this problem. 

6.3.2 Hybrid Global Optimization Method 

The particle swarm optimization (PSO), genetic algorithm, and simulated 

annealing methods are often used to solve global optimization problems. Since these 

solvers employ the stochastic technique, they can be slow in finding the global 

solution within a small tolerance. The well-established local optimization methods 

are quick to converge at a local solution with a given start point; however, they 

could not find the global solution. By taking the advantages of these two types of 

methods and overcome their drawbacks, a hybrid method is proposed, which 

includes two steps. First, the PSO method is employed to search for the local 

solution region where the global optimum locates; then, a Newton method is applied 

to find the global optimum. 

The PSO method is featured with population-based search by imitating a 

swarm of scattered particles exploring the problem domain in order to find the 

global solution to a complicated optimization problem [91,92]. The problem domain 

of the contact circle searching problem is the parametric space of the boundary 

curve, which is a one dimensional continuous domain. Since the goal of the PSO 

method is to find a start point for the local optimization, a discrete PSO searching 

method is adopted to increase efficiency. By setting a small step value, the PSO 

solver only evaluated the object function r(u) at discrete points whose parameter 
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values are integral times of the step value. Thus the continuous problem domain is 

represented as a fairly large number of discrete points. The initial swarm of 

particles are scattered around the discrete problem domain; at each iteration, new 

locations of the particles are adjusted to the closest discrete parameter values. The 

population size, the inertia weight, and the acceleration coefficients are crucial to 

efficiency and convergence of the PSO method; however, these parameters are 

dependent on different problems, and there is no fixed rule for them. In this work, 

the population size is determined according to the number of discrete points of the 

parameter domain, specifically, 20 particles per 1000 discrete points. The initial 

inertia weight is 0.9, the final inertia weight is 0.2, and acceleration constants are set 

to 2.0. It has been verified that with above parameters, the PSO method can 

effectively solve the global optimization problem. 

After the PSO method converges to a location which is the global minimum 

among all points of the discrete parameter domain. This parameter value is used as 

the start value for the following Newton method to find the accurate local solution. 

A function is formed from the dot product of two vectors 

f(u) = C'(u)-fa, 
(6.4) 

= x'-[xp+r-nxP-x) + y'\yP + r-nyF-y) 

The object function r{u) is minimum when equation f(u) = Q, which can be solved 

by the Newton method. Let w, be the parameter obtained at the rth Newton iteration, 

then 
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U.l=u.-JM (6.5) 

where 

/ ' (u) = x" • (xp + r • nxP - x) + x' • (r' • nxP - x') 

+y" -{yp+f ny,P -y)+y- {r' • "y,P - y') 

and 

>iu\= (*-Xp)-x' + {y-yP)y' 

(x-xp)-nxP+(y-yP)-nyP 

{x-xP)2+(y-yPfj-(nxP-x' + nyP-y') 

(6.6) 

(6.7) 

2-[(x-xp)-nxJ> + (y-yp)-nyP~] 

The convergence criterion is given by 

\C(uM)-C(u,)\<£ (6.8) 

where e is the predefined tolerance. 

6.3.3 Comparison of Computational Efficiency 

The contact circle searching algorithm is developed based on the above 

hybrid optimization method. To demonstrate its higher computational efficiency, 

the hybrid method is compared to a previous developed method [93], which adopts 

a binary searching based method and utilizes the point projection function of an 

existing geometric kernel software. Both methods are implemented using C++ 

programming language and are applied to the test profile shown in Figure 6.7. The 
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total length of the test profile is 995mm, and the boundary is divided into 2000 

discrete locations in the PSO method. For calculating the contact circles at 1000 

testing points evenly distributed along the profile, the previous developed method 

takes 4286ms, and the hybrid method only takes 1919ms. The result shows that the 

hybrid method is more efficient in solving the complex global optimization problem 

in this work. 

6.4 Branch Circle Algorithm 

To find a branch circle while traveling along the boundary, the first step is to 

detect whether branch circles exist between two successive sample points. Then a 

searching algorithm is developed to find the number of branch circles and location 

of each branch circle within the specified tolerance. 

Let uo be the parameter value of the first sample point and the next sample 

point is uh as shown in Figure 6.8. By applying the contact circle algorithm on u0 and 

u/, the other two contact points and corresponding parameter values u'o and u'j can 

be calculated, respectively. Assume the parameter value increases along the 

traveling direction. If there is one or more medial axis terminal points between u'i 

and u'o, there is at least one branch circle between uo and uj. This criterion is derived 

from the graph topology of the MAT. 

It needs to be notices that the above criterion only determines the existence 

of branch circle(s) between two sample points. The number of branch circles is 
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determined by recursively dividing the input parameter range. Detail steps are 

described in the following algorithm. 

Traveling direction 

(a) Only one branch circle between two sample points 

(b) More than one branch circles between two sample points 

Figure 6.8 Searching for the branch circle 

Brach Circle Searching Algorithm 

Input: Two successive points on the boundary, parameter values u0 and uj 
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Output: Branch circle center point and radius; parameter values of all contact 
point on the boundary 

Steps: 

1) Apply the contact circle algorithm to u0 and uj. Calculate two other contact 

points and corresponding parameter values u'o and u'i. 

2) Find all terminal points between the parameter range {u'i, u'0) on the 

boundary. Let v} be the parameter value of the terminal point nearest to u'i, 

and v„ be the parameter value of the terminal point nearest to u'o. 

3) If no terminal points are found between (u'i, u'o), terminate the algorithm and 

return with no branch circle between to uo and ut. 

4 ) Setwm,n=w0,and «„,„=«,• 

5 ) S e t w = ( M m a x + W m v n ) / 2 . 

6) Apply the contact circle algorithm to u, calculate the parameter value u' of the 

other contact point and center point O of the contact circle. 

7) Let Oprev denote the contact circle center point calculated in previous 

iteration. If \0 — Oprev\<s, where e is the predefined tolerance, output the 

contact circle as the result and terminate the algorithm. Otherwise, proceed 

to the next step. 

8) If u'&{u[,v,), as shown in Figure 6.8(a), set urmx=u and go to Step 5); if 

u' e(y„,u'0), set utmx - u and go to Step 5). 
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9) If u' e (v„vn), as shown in Figure 6.8 (b), there is more than one branch circle 

between Wmm and «max- Call the branch circle searching algorithm recursively 

with input parameters (u0 = u^n,ux = u) and (u0 =u,ux = M ^ ) . 

One prerequisite of the above algorithm is that parameter values of all the 

terminal points of the whole boundary need to be calculated and stored beforehand. 

6.5 Boundary Tracing Algorithm for a Closed Profile 

This section presents the boundary tracing algorithm that extracts the medial 

axis graph of a closed profile without islands. The basic strategy is to divide the 

profile into simpler sub-profiles where a branch circle is reached while travelling 

along the boundary. A tree data structure is developed to keep track of the boundary 

decomposition process. The developed contact circle searching algorithms are used 

extensively in the boundary tracing algorithm. 

6.5.1 Data Structure 

The whole MAT is organized in a tree. Each node contains a profile 

represented as a closed composite parametric curve. To construct the tree, the input 

closed profile is taken as the root node. Two operations are applied to the node to 

introduce new nodes: 

• if there is any branch circle inside the node profile, one of the branch circles 

is used to divide the node into n child nodes, where n is the number of 

contact components; 
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• if no branch circle is found inside the profile, the MA segment curve is stored 

in the node. 

Repeat the above operations recursively until all MA segment curves are 

included in the tree. The result tree has branch circles as internal nodes and MA 

segment curves as terminal nodes. For a node profile with more than one branch 

circles, no particular order is specified while selecting a branch circle to divide the 

node. Consequently, different tree structures can be constructed from the same 

profile. A sample profile with 5 MA segments and 2 branch circles is shown in Figure 

6.9, and two possible tree structures are constructed. The example shows that the 

tree structure reflects the sequence of the boundary decomposition process. 
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(b) Tree structure #1 (c) Tree structure #2 

Figure 6.9 Tree data structure 

6.5.2 Boundary Tracing Algorithm 

Before starting tracing along the boundary, a circular list of all terminal 

points needs to be constructed. The terminal points are identified according to the 

geometric properties discussed in Section 6.2. Then, the tracing starts from one of 

the terminal points and goes along the counter clockwise direction. A user defined 

sampling distance, usually a small length, is used to evenly distribute the sample 

points along the boundary. For general free-form parametric curves, numerical 

methods [94,95] for arc length parameterization can be used to calculate the 

increment of parameter value according to the arc length increment. The contact 

circle searching algorithm is used at each sample point to calculate the contact circle 
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center point. The MA curve is obtained by interpolating the contact circle center 

points along the sampling sequence with a B-spline curve. Detail steps are described 

in the following algorithm. 

Boundary Tracing Algorithm 

Input: A closed composite curve 

Output: MAT represented in a tree data structure 

Steps: 

1) Create the root node from the input profile, and the status is untraveled. 

2) Set the current node to the root. 

3) Start boundary traveling at the current node. If it is the root, any terminal 

point can be used as the start point. Otherwise, the terminal point 

corresponding to the branch circle of its parent node is used as the start 

point. 

4) If a branch circle with n contact points is detected between two successive 

sample points, break the current profile at the contact points and create n 

child nodes. One of these child nodes is a terminal node because its MA 

segment points have already been calculated during the travelling. The rest 

of the child nodes are untraveled. Set current node to one of them, then go to 

Step 3). 

5) If a dull corner P is reached, two normal vectors, n_ and «+, can be calculated 

from connected two parametric curves. Apply the 2-contact circle algorithm 

along n_ and n+, two contact circles (center points O. and 0+, contact points 
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P'_ and P[) can be calculated. Stop the current travelling at P. A new 

travelling starts from P+' and follows the same decomposition scheme 

described in the following steps. Eventually, the new travelling stops at P'_, 

and the medial axis between 0+ and O. is calculated. Then, resume the 

original travelling at P. The above process is illustrated in Figure 6.10. 

Figure 6.10 Dull corner tracing scheme 

6) If a medial axis terminal point is reached and no branch circle is found during 

the traveling, the current node is a terminal node. Save the MA segment curve 

to the node and set its status to travelled. Then, set the current node to its 

parent node and proceed to the next step. 

7) Check status of all child nodes of the current node. If there is any untraveled 

child node, set the current node to one of the untraveled child nodes, then go 

to Step 3). 
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8) If all child nodes of the current node have been travelled and the current node 

is the root, stop traveling and output the MAT tree. Otherwise, set the current 

node to its parent node, then go to Step 7). 

An example is shown in Figure 6.11 to illustrate the boundary tracing and 

decomposition process. Total 5 MA segments and 2 branch circles are found and 

organized in a tree structure. 

Stop 

Figure 6.11 Boundary tracing and decomposition process 
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Because the contact circle is determined from the perpendicular direction of 

the tangent vector at a boundary point, the result MA curve is very sensitive on the 

curvature perturbation of the boundary. To overcome this instability, extra 

compensating points are inserted into the other boundary side of the medial axis 

being traced. As shown in Figure 6.12, A and B are two successive sample points, 

and the arc length of AB is equal to the sampling distance As. Contact circles can be 

calculated at 0A and OB, and the corresponding contact points are A' and B'. If 

A'B1 >2-As, the number of sample points to be inserted between A' and B' are 

determined as 

TI = floor I A'B' I As) - 1 (6.9) 

where floorQ is a function that returns the largest integer that is less than or equal 

to the input. The compensating points are evenly distributed between A' and B', and 

points Oj...O„ are calculated and inserted to the MA segment curve. 
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Figure 6.12 Compensating curvature perturbation 

6.6 Computing MAT of a Pocket with Islands 

The basic strategy to compute the MAT of a pocket with islands is to split the 

boundary profile into several simpler profiles without islands. For a close profile 

with one or more islands, the procedure to split the profile is described as the 

following steps. 

1) Select one island of the input profile as the reference. 

2) Compute the point with maximum y-coordinate value on the boundary of the 

reference island, and construct a contact circle at this point. If the contact 

circle touches the outer boundary, e.g. Figure 6.13(a), proceed to the next 

step. Otherwise, the contact circle touches another island, e.g. Figure 6.13(b). 

Then construct another contact circle at the maximum y-coordinate point of 
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the island being touched. Repeat this operation until the contact circle 

touches the outer boundary. 

3) Compute the point with minimum y-coordinate value on the reference island, 

and perform the similar operation as the previous step. 

4) Collect all contact circles found in Step 2) and 3), and use these circles to split 

the profile into two parts. 

5) Check both two profiles. If anyone has one or more islands inside, apply Step 

1) to 5) to the profile. 

6) Repeat the above steps recursively until all profiles contain no island. 

Different set of simple profiles can be obtained because no particular order is 

specified while selecting the reference island, as illustrated in Figure 6.13. After the 

original profile has been broken down in to a number of simple profiles, the 

developed boundary tracing algorithm is used to calculate the MAT for each of them. 

Finally, the complete MAT is obtained by connecting the simple MATs together. For 

the case that produces different sets of simple profiles, the final MAT results are the 

same. 
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Figure 6.13 Split pocket profile with islands into a set of simple profiles 

6.7 Implementation and Verification 

The algorithms described in pervious sections have been implemented on a 

personal computer by using the C++ programming language and the OpenCASCADE 

[96] geometric kernel, which provides the implementations of the required general 

geometric algorithms, such as line/curve intersection, point to curve projection, arc 

length parameterization and B-Spline interpolation. The IGES interface module of 

the geometric kernel is utilized to import boundary geometry from commercial CAD 

software. The developed program has been quantitatively validated against 

different shapes with varying complexity. Several examples are shown in Figure 

6.14 with MAT calculated. The default precision value of the OpenCASCADE 

geometric kernel for checking coincidence of two points is le-7, which is used in the 

113 



developed program for the testing shapes. The computation times shown in Table 

6.1 are obtained by setting the sampling distance to 1 and executing the program on 

a Windows PC with an AMD Althlon 2.7GHz CPU. 

Figure 6.14 MAT of test shapes 
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Table 6.1 Execution time for the test shapes (sampling distance = 1) 

Shape 

(a) 

(b) 

(c) 

(d) 

(e) 

(f> 

(g) 

(h) 

Length(mm) 

553 

1119 

556 

1068 

453 

855 

590 

1677 

Sample points 
3 2 2 

4 6 6 

3 1 6 

604 

2 7 9 

5 1 3 

3 3 0 

8 9 5 

Execution time (ms) 
2028 

1045 

2246 

3619 

3135 

517 

2075 

11903 

MA segn 

19 

7 

7 

11 

19 

20 

28 

31 

The above examples demonstrate the robustness and effectiveness of the 

proposed algorithms when dealing with complex shapes. Further study is conducted 

to verify the accuracy of the proposed algorithms. The accuracy of the MA points 

calculated at the sampling points is bounded by the precision value (7e-7) of the 

geometric kernel, and the accuracy at other locations is determined by the 

interpolated curve. At any point P on the MA curve, point C; and C2 are obtained by 

projecting P onto the two sides of the boundary curve, as shown in Figure 6.15(a). 

The difference of [PCjand iPQlis defined as the error for evaluating the accuracy 

of the calculated MA curve. 

An airfoil shape with only one medial axis is examined closely. Figure 6.15 

shows the error of the calculated MA curve when the sampling distance is 5. Total 

40 sample points (35 points on the side been traced, 4 inserted on the other side to 

compensate the curvature perturbation) are determined in the boundary tracing 

algorithm. A number of tests are conducted at different sampling distance, and 

results are shown in Table 6.2. 
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(b) Error along the MA curve, sampling distance = 5 

Figure 6.15 Verify the accuracy of the calculated MAT 

Table 6.2 Max errors for the airfoil shape 

Sampling distance (mm) Sample points Execution time (ms) Max error 

20 

15 

10 

5 

2 

1 

0.5 

11 

15 

21 

40 

98 

196 

390 

15 

16 

31 

78 

171 

343 

717 

3.99 

2.08 

0.099 

0.0058 

0.000168 

1.08e-5 

8.11e-7 

As been discussed in the literature review that the medial axis of a shape can 

be computed using the Voronoi diagram of discrete sample points of the shape 
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boundary and the Voronoi vertices converge to the medial axis for a curve in 2D as 

the sample density approaches infinity. The Voronoi diagram based method is used 

to construct the MAT of the testing airfoil shape. Using sampling distance 5, the 

airfoil shape is discrete into 82 points; the medial axis shown in Figure 6.16 is 

obtained from the Voronoi diagram of discrete points by removing Voronoi edges 

that do not belong to the medial axis. The maximum error of the calculated medial 

axis vertices is 0.2919, and the location is shown in Figure 6.17. The accuracy of the 

Voronoi diagram based method can be increased by increasing the number of the 

sample points. A number of tests are conducted at different sampling distance, and 

results are shown in Table 6.3. 
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Figure 6.16 MA obtained from Voronoi diagram (82 points) 
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-15 -10 -5 0 5 10 

Figure 6.17 Maximum error location of 82 sample points 

Table 6.3 Max errors of the Voronoi Diagram based method 

Sample 
distance [mm) 

10 

5 

2 

1 

0 . 5 

0 . 2 

0 . 1 

0 . 0 5 

Sampling points 
on the profile 

41 

82 

2 0 3 

405 

807 

2014 

4026 

8050 

MA points/Voronoi 
vertices 

3 9 / 6 7 

8 0 / 1 3 6 

2 0 1 / 3 4 3 

4 0 3 / 6 8 6 

8 0 5 / 1 3 7 0 

2 0 1 2 / 3 4 2 9 

4 0 2 4 / 6 9 3 1 

8 0 4 7 / 1 4 2 7 4 

Max error 

0 . 9 2 2 3 7 1 

0 . 2 9 1 9 0 2 

0 . 0 7 5 3 6 6 

0 . 0 3 1 8 2 3 

0 . 0 1 2 3 7 4 

0 . 0 0 4 3 4 3 

0 . 0 0 1 7 8 9 

0 . 0 0 0 9 0 6 

By comparing the results of Table 6.2 and Table 6.3, it is shown that our 

algorithm can achieve higher accuracy with fewer sample points than the method 

based on the Voronoi diagram of discrete sample points. 

118 



Another problem encountered with the Voronoi diagram method is the 

numerical instability of the float point number when sampling density is very high. 

In general, computational geometry algorithms are designed with the assumption 

that all numerical computations are exact. However, the computer represents real 

numbers using fixed-precision arithmetic by IEEE standard. When sampling 

distance is very small, the Voronoi vertex calculated using double precision number 

is not accurate. For example, some portion of the Voronoi diagram of 4026 sample 

points is shown in Figure 6.18. 

58.5 -

58 -

57.5 h 

56.5 h 

56 - : , ^_____ _, L . 
12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 

Figure 6.18 Numerical instability of fixed-precision arithmetic 

This problem can be solved by using exact geometric computation methods 

[97,98] at the cost that the computation is much slower than the fixed-precision 

arithmetic. Since our algorithm employs optimization methods for calculation and 

fewer sampling points are required, robust computation can be achieved with the 

fixed-precision arithmetics. 

57 r 
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6.8 Summary 

This chapter presents a new, efficient geometric approach to approximate 

the MATs of free-form pockets with islands. The core part of the proposed method is 

the mathematical model of the contact circle, which is solved using a hybrid 

optimization method. Based on the boundary tracing and decomposition, the 

proposed boundary tracing algorithm can handle general pockets with/without 

islands. The developed algorithms have been quantitatively validated against 

different shapes with varying complexity. By comparing to the Voronoi diagram 

based method, it is shown that our approach can achieve higher accuracy with fewer 

sample points. Since the implementation is based on general geometric algorithms, 

which are available in popular geometric kernel software, the proposed 

methodology can be easily integrated with existing CAD/CAM systems. 

The MAT can be used in pocketing milling to facilitate tool path generation 

and cutter selection. Applications of the MAT on roughing tool paths and cutter 

selection are presented next in Chapter 7. 
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Chapter 7 Aggressive Roughing Tool Path 

with Multiple Cutters for Pocket 

Machining 

7.1 Introduction 

Pocket is an important feature of mechanical parts. Due to advanced 

CAD/CAM techniques, pockets with closed free-form boundary curves have been 

widely adopted in mechanical design and are often cut with 2y2-axis CNC milling. 

Because of the big portion of stock material removed in the pocket machining, 

roughing is crucial to the productivity, which could simply take more than 60% of 

the total machining time. Thus, a reduction in roughing time with efficient tool path 

strategy can considerably increase productivity. 

The purpose of roughing is to remove as much material volume as possible 

and leaving a small amount of un-cut allowance for semi-finishing or finishing. 

Although the conventional tool path strategies work fine in general pocket 

machining, they are not the most efficient roughing cuts. In this research, the 

aggressive pocket roughing is defined as using large standard end-mills to remove 

stock material inside the pocket with full immerse. The advantages of the aggressive 

roughing include: (1) the largest cutters are much more rigid and strong and can cut 
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with greater depths of cut and higher feed rates, and (2) the multiple cutters are 

employed to access the complex pocket without overcuts. Since it only takes about 

ten seconds to change a tool in present CNC machine centers, tool change time is not 

a concern when using multiple cutters in aggressive roughing. Therefore, its 

material removal rate and cutting efficiency can reach the maximum. However, due 

to the complicated geometries such as the free-form curve profiles used in the 

design of mechanical parts, it is quite challenging to calculate the optimum cutter 

sizes and sequence for efficient machining. 

To significantly reduce complex pocket machining time, multiple optimal 

cutters are selected and their tool paths are generated for aggressive roughing in 

this chapter. First, the MAT developed in previous chapter is used to generate 

gouging free tool paths for free-form pockets. This automatically generated tool 

path is especially suited for narrow and long pocket shapes that are difficult to 

machine even using conventional tool path strategies. Then, an optimal model of 

finding multiple largest cutters in terms of the maximum area covered by the tools is 

established, and the genetic algorithm (GA) is applied to solve this problem. Finally, 

two examples are presented to demonstrate the advantages of this approach over 

the conventional method. 

7.2 Aggressive Roughing Tool Path Strategy 

In geometry, the MA of any pocket is the "middle" paths of the domain 

constrained by the pocket boundary. The MA of a prismatic pocket is regular; 
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however, for pockets with free-form boundary, their shapes are more complicated, 

so their MAs are irregular. Regardless of the pocket shape complexity, more space in 

the domain is available for objects located along the MA without intersecting the 

boundary. Thus, if the MA is adopted as tool paths for rough-machining the pocket, 

larger tools can be used to cut the pocket for higher productivity and without 

overcutting the pocket. To take advantage of this outstanding feature of the MA, a 

new strategy of planning tool path is proposed in this work for aggressive rough 

machining of pockets. The MA curves of the pocket are employed as reference tool 

paths, which can provide very important information for tool selection and path 

planning. 

7.2.1 Properties of the Reference Tool Path 

For any pocket shape, its MAT can be calculated using the algorithm 

developed in previous chapter. The reference tool paths and their radius functions 

can be obtained from the MAT as a compact representation of the pocket geometric 

and topological characteristics. The feature of the reference tool paths is illustrated 

with an example shown in Figure 7.1. In this example, a pocket is in a shape with 

three legs and its boundary is composed of several B-spline curves. Its MAT is 

calculated using the developed algorithm and plotted in the figure. The MA includes 

3 terminal points (Vj, V2, V3), one branch point [VB). Three references tool paths [Alt 

A2, A3} and their radius functions can be attained by retrieving the related 

information from the tree data structure of the MAT. 
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Figure 7.1 A sample pocket shape and its reference tool paths 

More specifically, for reference tool path Aj between Vj and VB, the radius 

function graph is plotted. For a point on the graph, its abscissa value refers to the arc 

length of a path point from Vi, and its ordinate value refers to the radius of the 

locally maximal contact circle centered at this path point. The first point of the graph 

indicates the maximum circle with radius of 5.30985mm at point Vlt whose arc length 

is zero. Similarly, the last point of the graph indicates the maximum circle with 

radius of 15.4848mm at point VB, whose arc length is 48.3801mm. It is evident that 

this radius function is nonlinear along path Aj. In the same figure, path A2 between 

VB and V2 and path A3 between VB and V2 are plotted, together with the 

corresponding radius function graphs. Therefore, the pocket topology is clearly 

interpreted with the reference paths, and the pocket domain is completely 

represented by the radius functions. 
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To conduct aggressive rough machining of a pocket for the highest cutting 

efficiency, the cutting tools have to be as large as possible and are fully immersed in 

the stock material along their paths. However, larger cutters are prone to local 

gouging and global interference with the pocket, and inappropriate tool paths can 

cause longer machining time. Fortunately, as an automatic geometry interrogation 

tool, the pocket MAT is able to easily and accurately identify the maximal circle that 

best fits into the domain at any MA point. Therefore, the reference tool paths and 

their radius functions provide excellent guide for selecting maximum cutters and 

their effective paths for full tool-and-stock engagement and without local-and-global 

overcuts in machining. 

7.2.2 Tool Path Generation for a Specific Cutter 

According to the above-mentioned properties, it is a principle of planning 

tool paths for aggressive pocket roughing that the tools cut along the reference 

paths. This always ensures that each tool has the largest accessible space, thus 

larger tools can be used and their effective tool paths can be generated accordingly. 

As an important issue in planning tool paths, detecting local gouging and global 

interference of tools can be easily conducted with help of the radius functions. In 

this work, the criterion to identify tool gouging and interference is simply that the 

radius function value in terms of a cutter location (a MA point) is less than the tool 

radius. This is easy to understand. If the maximum cutter accessible space, the 

locally maximal contact circle, at a location is smaller than the tool circle, the tool 

geometrically intersects with the pocket boundary, which means that the tool 

125 



gouges or interferes with the pocket and scrapes the part. In practice, the principle 

and the criterion can be implemented in planning tool paths in the following way. 

Here, tool path planning includes two main steps: (1) to retrieve the 

reference tool paths and their radius functions from the MAT tree data structure, 

and (2) to find the intersection points between each radius function graph and a 

horizontal line representing a specific cutter radius. According to the criterion, 

compared to this cutter radius, the reference path points with larger values of the 

radius function define the tool paths for this cutter. To illustrate the path planning 

process, an example is shown in Figure 7.2. An L-shaped pocket bounded with free-

form curves, its reference tool path and the radius function graph are plotted in this 

figure. Suppose an end-mill with radius of 20mm is to cut the pocket. To find its tool 

path, a horizontal line of the cutter radius is drawn on the radius function graph. 

This line intersects with the function curve at two points s} and S2, which correspond 

to two points on the reference tool path, Oj and 02- Since the function values of the 

points between sj and S2 are all greater than the cutter radius, their corresponding 

points on the reference tool path are the valid cutter locations, which is the segment 

between Oj and O2. The shaded area in the pocket is the area covered by the cutter 

when it moves along the planned tool paths. Furthermore, the horizontal line could 

intersect with the radius function graph at more than two points (see Figure 7.3); if 

this case, the cutter has several tool paths, each of which is between two adjacent 

points and having larger radius function values. 
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Figure 7.2 One tool path segment calculated from the radius function 
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Figure 7.3 Two tool path segments calculated from the radius function 

For a sharp corner or a round corner with radius smaller than the cutter 

radius, the cutter touches the pocket boundary before reaching the terminal point. If 

the contact circle radius R, at a terminal point O is larger than the cutter radius Rc, 

after the cutter reaches this point, more stock material remains and can be cut by 
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moving the cutter forward, as shown in Figure 7.4. Here, the tool path is extended 

along its tangent direction at point O to point O', at which the cutter touches the 

pocket boundary. The length of the extra line segment is d = Rl-Rc. 

Left material after 
reaching O 

/ ^ To be removed 
after extending to O ' 

Figure 7.4 The extended tool path at a MA terminal point 

In this work, multiple cutters are consecutively used from large to small in 

roughing a pocket. Usually, the tool paths of a larger cutter Rj directly connect with 

the tool paths of a smaller cutter Ri+1. During machining, the smaller cutter starts at 

the same point where the larger cutter stops. Due to the larger region covered by 

the larger cutter, the smaller cutter cannot remove stock material at beginning until 

it leaves the machined region. To get rid of the non-cutting tool path of the smaller 

cutter, a piece of the tool path of the smaller cutter is truncated. This method is 

illustrated in Figure 7.5. At the end O, of the larger tool path, draw a circle with 

radius of r -Rt —RM • This circle intersects the smaller tool path at point Oi+]. Thus, 

the smaller tool path starts at this point, and the path piece OtOM is eliminated. 
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Figure 7.5 Diagram of tool paths adjustment at the starting point 

7.2.3 Area of Machined Region and Thickness of Remaining Stock 

The main objective of the pocket rough machining is to efficiently remove 

stock material as much as possible by using a reasonable number of large cutters. 

Also, it is often required that the thickness of remaining stock inside the pocket is 

within a specified value. To evaluate the volume of the material removed in 

roughing, an alternative way is to calculate the area of the region covered by the 

cutting tools. First, given an end-mill, its tool path can be found by using the 

approach introduced in the previous section. When the end-mill cuts the pocket 

along the path, the region covered by the tool is defined with a closed boundary, 

which comprises the path offsets on both sides by the tool radius and the semi

circles at the path ends and tangent to the offsets. Second, for multiple end-mills, 

their tool paths can be found. The region(s) covered by each cutter can be identified 

with their boundaries. Then, all the regions are merged with a Boolean operation -
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union - for the whole machined region, thus, its boundary can be found. Finally, a 

well-established method is adopted to compute the area of a closed region 

according to its boundary. Meanwhile, the maximum thickness of the remaining 

excessive material in the pocket can be found by calculating the maximum distance 

between the boundaries of the pocket and the region covered by the cutters. The 

above procedure has been implemented on top of the OpenCASCADE geometric 

kernel, which provides geometric algorithms for computing area of close profiles 

and distance between curves. 

Figure 7.6 Region(s) covered by each cutting tool 
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7.3 Optimized Multiple Cutters for Aggressive Roughing 

7.3.1 Optimization Problem of Multiple Cutters Selection 

Due to the complex shape of the free-form pocket, the locally maximal 

contact circles of different MA points change dramatically, which means the tool 

accessible spaces at different tool locations on the path vary at large. Consequently, 

a large cutter cannot uniquely complete the pocket aggressive roughing. Although a 

small tool can access more regions inside the pocket and roughly cut the pocket, the 

cutting efficiency is significantly reduced. Therefore, to balance larger tools and 

various accessible pocket spaces, a good solution is to employ a reasonable number 

of optimal tools to efficiently rough the pocket without gouging and interference. In 

this research, the optimization problem of multiple cutters selection is defined in 

the following. 

Suppose we are given a pocket profile and a library with Nr end-mills in 

different size that are available for machining the pocket. Referred with their radii 

i^ (j = l,2,---,NT), the end-mills are listed in a decreasing order, i.e., i?; >RM. From 

the cutter library, N cutters are selected to rough cut the pocket using the proposed 

aggressive roughing tool path strategy. The number of selected cutters TV is properly 

determined so as to trade off the tool change time and the material removal volume. 

The maximal thickness of remaining stock in the pocket is specified, which is usually 

a small value. For the following finish cut, it is supposed to remove a little stock for 

high pocket accuracy. Therefore, the optimization problem is to find the best cutter 

sizes combination that will maximize the volume of stock material removed and 
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ensure that the thickness of the remaining stock is not greater than the specified 

maximum value. 

The optimization problem of multiple cutters selection is a complicated 

global problem. The problem variables are the radii of the N end-mills and its 

objective function is not represented in simple formula. Thanks to all tools in the 

library being standard end-mills, the radii of the cutters for pocket roughing, which 

are selected from the library, are discrete variables. To find the optimal multiple 

cutters, by taking into account the features of this problem, the genetic algorithm 

method is adopted. 

7.3.2 Basic of Genetic Algorithm 

The genetic algorithm (GA) became a popular search technique through the 

work of John Holland [99] in the 1970s. The GA is a class of evolutionary algorithm 

inspired by natural genetic populations to evolve solutions to problems. There is no 

requirement to formulate a mathematical equation for the objective function. The 

basic idea is that a population of chromosomes, which represent candidate solutions 

to an optimization problem, evolves over time toward better solutions. A 

chromosome is usually represented in binary as strings of zeros or ones with a finite 

length. Each bit of the chromosome is called a gene. A population includes a selected 

number of chromosomes and the population at a given time is a generation. A fitness 

function is defined over the chromosome representation and measures the quality of 

the represented solution. The evolution usually starts from an initial population of 

randomly generated chromosomes. In each generation, the fitness of every 
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chromosome in the population is evaluated, and multiple chromosomes are 

stochastically selected based on their fitness to be modified by genetic operators in 

order to form a new population for the next iteration. Crossover, inversion and 

mutation are the three main genetic operators used for global searches. Commonly, 

the algorithm terminates when either a maximum number of generations has been 

produced, or a satisfactory fitness level has been reached for the population. 

7.3.3 Genetic Algorithm Solver to Optimized Cutter Sizes Selection 

In this work, a new technique of representing the discrete variables, the radii 

of the selected tools, is proposed. Since the N tools have to be selected from the 

standard end-mills in the library, a set of the variables values in the cutters selection 

model can be simplified and converted into a binary string, which refers to a 

chromosome in the GA. More specifically, because of the NT standard end-mills 

arranged in a size decreasing order in the library, each chromosome is composed of 

a string of NT genes. One gene uniquely represents one tool, and all the genes from 

left to right are mapped to all tools from large to small. Moreover, the gene value of a 

chromosome string is a binary, i.e., one or zero. For a tool in the library, if selected, 

its corresponding gene is one; otherwise, it is zero. Therefore, each chromosome 

consists of a string of NT genes; N genes are one, and the rest are zero, e.g., 

00---1- -1--00 For a given chromosome, by searching for genes with value of one, 

the selected cutters and their radii can be easily attained. 

133 



As a building block of solving the complex optimization problem, the 

algorithm of evaluating the objective function and the constraints is reiterated here. 

Based on a chromosome, the radii of the N selected end-mills can be found. After 

planning tool paths for these tools, the area of machined region and the maximum 

thickness of the remaining stock can be calculated. The area of the machined region 

is the value of the objective function, and the constraint is evaluated by comparing 

the calculated thickness against the specified maximum value. This algorithm is 

important, for it is repetitively employed in each searching iteration. Following the 

GA procedure, the eight steps in the process of solving the optimization problem of 

selecting multiple cutters are listed here. 

1) According to the optimization problem, specify an appropriate population 

size of chromosomes, and the chromosomes of a generation are randomly 

created, each of which represents a set of cutters assumed to be selected and 

a candidate solution. 

2] For each chromosome, the objective function value is calculated and the 

constraint is checked. Among all the chromosomes, the one with the 

maximum objective function value and subject to the constraint is the best in 

the generation. 

3) The objective function values of this best chromosome and the best in the 

prior search process are compared, and if the best in the new generation is 

better, the best in the prior search is updated with the new best. 
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4) To create a new generation, based on the objective function values of the 

chromosomes, two chromosomes are selected with the roulette wheel 

selection method. 

5) The crossover of the genes of these two chromosomes is randomly carried 

out according to the crossover rate. 

6) The mutation is performed by going through all bits of the chosen 

chromosomes and flipping bits randomly according to the mutation rate. 

7) Repeat from step 4) to 6) until a new population has been created. 

8) Repeat from step 2) to 7), until meets one of the stopping criteria: a) a 

maximum number of generations have been produced; or b) best objective 

function value does not change over a number of generations, which is 

defined as stall generations. 

The population size, crossover rate, and mutation rate are crucial to efficiency 

and convergence of the GA method; however, these parameters are dependent on 

different problems, and there is no fixed rule for them. In this work, the population 

size is 100, the crossover rate is 0.7, and the mutation rate is 0.001. It has been 

verified that with above parameters, the GA method can effectively solve the cutter 

selection optimization problem. 

7.4 Illustrative Examples 

The proposed tool path strategy and the GA based searching algorithm have 

been implemented on top of the developed MAT program using C++ programming 
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language. This section illustrates the proposed methodology using two examples. 

The first example demonstrates the roughing tool path strategy's capability of 

dealing with complex pocket shape; the second example shows the effectiveness of 

the multiple cutters selection algorithm using a general pocket part with islands. 

7.4.1 Aggressive Roughing of a Complex Pocket Shape 

The pocket part to be machined is modeled using CATIA V5 (Figure 7.7), 

which is the first character of the Chinese word of "Canada" or "machining". The 

pocket is to be carved in a workpiece of material 6061 T5 aluminum and size 

101.6mm by 101.6mm by 50.8mm. The machining is carried out on a DECKEL MAHO 

DMU 60T machining centre. 

Figure 7.7 The CATIA model of a Chinese character 

Due to the small pocket of the character and the small set of end mills 

available in the university machine shop, by using our approach, an end mill [R3.086) 

of radius 3.086mm is selected for rough machining this character, and then an end 
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mill [Rl.5875mm) of radius 1.5875mm is selected to finish cut it. To conduct 

aggressive roughing, the medial axis tool paths for the end mill R3.086 are generated 

and plotted in Figure 7.8(a), and the machining simulation is conducted with the 

result shown in Figure 7.8(b). The depth of cut is 2.54mm, which is the depth of the 

pocket, and the feed rate is 254mm/min. The roughing time is 30 seconds, and the 

machined part is displayed in Figure 7.8(c), which complies with the simulation 

result. In finish machining, because of the small tool R1.5875, the depth of cut is 

1.27mm, a half of the depth of cut for R3.086; and the feed rate is 177.8mm/min. In 

Figure 7.9, the paths for the end mill R1.5875 to finish the pocket are plotted, and the 

finishing machining simulation result and the actual machined part are displayed. 

The finish machining time is 3 minutes. Therefore, the total machining time is 3.5 

minutes. 

To compare our approach to the conventional method, using one end mill of 

radius 1.5875mm to cut the character, the tool paths of this cutter are planned using 

CATIA V5. Due to the small tool, the depth of cut is 1.27mm, and the feed is 

177.8mm/min. In Figure 7.10, the tool paths are plotted, and the machining 

simulation result and the actual part after machining are displayed. The total 

machining time is 13 minutes. It is evident that the machining time is 277% longer 

than that using our new approach. 
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(a) Roughing tool paths (b) Simulation result 

(c) Result of actual rough machining 

Figure 7.8 Aggressive roughing with cutter R3.086mm 
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(a) Finishing tool paths 
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(b) Simulation result 

(c) Result of actual finish machining 

Figure 7.9 Finish machining with cutter Rl.5875mm 
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(a) Tool paths generated by CATIA (b) Simulation result 

(b) Result of actual machining 

Figure 7.10 Machining with cutter Rl.5875mm using CATIA V5 
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7.4.2 Multiple Cutter Selection for Aggressive Roughing a Pocket 

A typical mechanical part with a free-form pocket with two islands is 

designed using CATIA V5, see Figure 7.11. The pocket boundary consists of some 

lines, some circular arcs and a B-Spline curve. 

Figure 7.11 Mechanical part with a free-form pocket 

By using the developed MAT program, the MAT of the pocket is calculated 

and shown in Figure 7.12. The reference tool paths and corresponding radius 

functions are obtained. The maximum and minimum contact circles can be found 

from the radius functions, and their radii are 30.86mm and 4mm, respectively, which 

are plotted in Figure 7.12. 
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Rmin=4mm 

Figure 7.12 Medial axis of the free-form pocket with two islands 

Assume the cutter library includes 17 cutters for roughing the pocket, and the 

radii are arranged in the descending order as 34, 32, 30, 28, 26, 24, 22, 20,18, 16,14, 

12, 10, 8, 6, 4 and 2mm. The developed GA based multiple cutters selection program 

is used to find the optimal set of cutter sizes. 

Suppose two end mills will be used to roughly cut the pocket, by using our 

method, the cutters with radii of 18 and 10 mm are the optimal solution of using two 

cutters in aggressive roughing. The tool path lengths of cutters R18 and RIO are 

205.02 and 420.33 mm, respectively. The maximum area covered by these cutters is 

18821.39 mm2. The tool paths and the areas covered by the tools are plotted in 

Figure 7.13. By using the conventional way, two cutters R20 and R8 are selected 

based on a NC programmer's experience. In the rough cut, the pocket area covered 

by the two cutters is 16846.42 mm2 and the path length is 660.67 mm, which is longer 
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than the path length of the two optimal cutters (see Table 7.1). Thus, the cut by 

using the optimal two cutters is 11.7% more efficient, compared to the cut with the 

manually selected tools. 

Figure 7.13 Tool paths and areas covered by the optimal two cutters 

Table 7.1 Results of two cutters determined with the GA optimizer and the 
conventional way 

Optimal 
method 

[2 cutters) 

#1 (R18) 

#2 (RIO) 

Total 

Tool path 
length 
[mm] 

2 0 5 . 0 2 

4 2 0 . 3 3 

6 2 5 . 3 4 

Tool covered 
area 

[mm ) 

1 0 8 9 0 . 9 4 

7 9 3 0 . 4 5 

1 8 8 2 1 . 3 9 

Conventional 
way 

[2 cutters) 

#1 (R20) 

#2 (R8) 

Total 

Tool path 
length 
[mm) 

1 2 5 . 7 9 

5 3 4 . 8 8 

6 6 0 . 6 7 

Tool covered 
area 

[mm ) 

8 8 1 9 . 9 2 

8 0 2 6 . 5 

1 6 8 4 6 . 4 2 
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If three end mills are to be used for aggressive roughing of the pocket, our 

method is applied, and the optimal cutters are tools with radii of 18,12 and 10 mm. 

The tool path lengths of cutters R18, R12 and RIO are 205.02, 320.54 and 95.79 mm, 

respectively. The maximum area covered by these cutters is 20059.06 mm2. The tool 

paths and the areas covered by the tools are plotted in Figure 7.14. In the 

conventional way, three cutters R24, R16 and R8 are subjectively selected. In the 

rough cut, the pocket area covered by the three cutters is 17705.89 mm2 and the path 

length is 592.67 mm (see Table 7.2). Although this path length is 4.89% shorter than 

the path length of the three optimal cutters, the cut by using the optimal three 

cutters is 13.3% more efficient, compared to the cut with the manually selected tools. 

Figure 7.14 Tool paths and areas covered by the optimal three cutters 
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Table 7.2 Results of three cutters determined with the GA optimizer and the 
conventional way 

Optimal 
method 

(3 cutters) 

#1 (R18) 

#2 (R12) 

#3 (RIO) 

Total 

Tool path 
length 

{mm) 

2 0 5 . 0 2 

3 2 0 . 5 4 

9 5 . 7 9 

6 2 1 . 3 4 

Tool covered 
area 

{mm ) 

1 0 8 9 0 . 9 4 

7 9 0 2 . 9 6 1 

1 2 6 5 . 1 5 3 

2 0 0 5 9 . 0 6 

Conventional 
way 

(3 cutters) 

#1 (R24) 

#2 (R16) 

#2 (R8) 

Total 

Tool path 
length 
{mm) 

5 5 . 9 1 

2 0 4 . 4 6 

3 3 2 . 3 0 

5 9 2 . 6 7 

Tool covered 
area 

{mm ) 

4 0 5 2 . 6 7 

9 2 8 8 . 7 4 

4 3 6 4 . 4 7 

1 7 7 0 5 . 8 9 

If four end mills are to be used for aggressive roughing of the pocket, our 

method is applied, and the optimal cutters are tools with radii of 20,16, 12 and 10 

mm. The tool path lengths of cutters R20, R16, R12 and R10 are 125.79,130.58, 235.19 

and 95.79mm, respectively. The maximum area covered by these cutters is 

20539.78mm2. The tool paths and the regions covered by the tools are plotted in 

Figure 7.15. If four cutters R24, R16, R10 and R8 are selected manually, the pocket 

region covered by the four cutters is 18905.32mm and the total path length is 

602.67mm, which is longer than the path length of the four optimal cutters (see Table 

7.3). It is evident that the cut by using the optimal four cutters is 8.6% more efficient, 

compared to the cut with the manually selected four tools. 
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Figure 7.15 Tool paths and areas covered by the optimal four cutters 

Table 7.3 Results of four cutters determined with the GA optimizer and the 
conventional way 

Optimal 
method 

(4 cutters) 

#1 (R20) 

#2 (R16) 

#3 (R12) 

#4 (RIO) 

Total 

Tool path 
length 
{mm) 

1 2 5 . 7 9 

1 3 0 . 5 8 

2 3 5 . 1 9 

9 5 . 7 9 

5 8 7 . 3 4 

Tool covered 
area 

[mm ) 

8 8 1 9 . 9 2 2 

5 2 0 1 . 7 8 5 

5 2 5 2 . 9 2 4 

1 2 6 5 . 1 5 3 

2 0 5 3 9 . 7 8 

Conventional 
way 

(4 cutters) 

#1 (R24) 

#2 (R16) 

#3 (RIO) 

#4 (R8) 

Total 

Tool path 
length 

{mm) 

5 5 . 9 1 

2 0 4 . 4 6 

3 2 4 . 9 8 

1 7 . 3 2 

6 0 2 . 6 7 

Tool covered 
area 

{mm ) 

4 0 5 2 . 6 7 

9 2 8 8 . 7 5 

5 5 2 0 . 7 3 

4 4 . 1 7 

1 8 9 0 5 . 3 2 
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7.5 Summary 

In this chapter, a new roughing tool path strategy for aggressive pocket 

roughing is proposed. The key of the proposed strategy is to use using large 

standard end-mills to remove stock material inside the pocket with full immerse. 

The MAT of free-form pocket can be found using the approach introduced in 

Chapter. Based on the MAT, the gouging free roughing paths are generated along the 

MA curves. This automatically generated tool path is especially suited for narrow 

and long pocket shapes. Then, a genetic algorithm based method is developed to 

optimize multiple cutters selected from a library of standard cutters in terms of the 

area covered by the cutters. This approach is practical and can be directly 

implemented in the existing CAD/CAM software in order to reduce roughing 

machining time in making complex pockets in the manufacturing industry. 

The optimization problem discussed in this chapter is to maximize the 

volume of stock material removed for a fixed number of cutters. The total machining 

time is not considered. If the optimization goal is to minimize total roughing time 

while the number of cutter is also a variable, the following information will be 

required: optimal feed rate for each cutter, rapid motion speed, distance from 

workpiece to cutter changing position and cutter changing time. The GA based 

optimization method can still be applied to this new problem. The only modification 

is to evaluate the fitness value based on the total machining time, which can be 

calculated with all the input information. 
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Chapter 8 Conclusions and Future Work 

In this research, new methods have been developed for geometric modeling 

of the 2Y2- and 3-axis milling process and constructing MAT of planar shapes with 

free-form curve boundaries. The major contributions of this research are 

summarized as follows: 

• A layer based discrete geometric model is proposed to represent the in-

process workpiece. A 2D profile is used to represent the shape of material 

left on the layer. By approximate the 3D workpiece model with a number 

of 2D layers, the 3D problem of extracting CWE geometry is solved in a 

series of 2D problems. The developed Z-layer B-Rep model can deal with 

complex CWE geometry in both 2V2- and 3-axis milling. Both in-process 

model and extracted chip geometry is represented using the same model. 

• Effective and practical algorithms are proposed for steady cut 

optimization and automatic feed rate selection for pocket machining. The 

proposed optimization methods are based on the spindle power graph 

generated by the developed 2y2-axis milling process modeling system. 

The methodology is easy to implement and can be extended to include 

other machining parameter constraints. 
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• The geometric model of the 2D cutter swept envelope in 3-axis milling is 

proposed from the study of the basic mechanism of removing stock 

material on a horizontal layer. The mathematical formula of the profile is 

derived for APT cutter geometry and different tool motions. The 

approach is efficient and accurate to model the CWE in 3-axis milling, 

compared to the existing swept-volume methods. 

• A new, efficient approach to approximate the MATs of free-form pockets 

with islands is developed. A mathematical model of the contact circle is 

derived and solved efficiently using a new hybrid optimization method. 

Based on the boundary tracing and decomposition scheme, the developed 

boundary tracing algorithm can handle free-form pockets with/without 

islands. 

• A new roughing tool path strategy is proposed on top of the MAT. 

Gouging free full immersion tool path is generated along the MA curve. 

And a genetic algorithm based method is developed to optimize multiple 

cutters selected from a library of standard cutters in terms of the area 

covered by the cutters. 

Computer implementation and experimental tests show the effectiveness of 

the developed methodologies. The techniques presented in this dissertation can be 

used to guide the selection of optimal cutting parameters for the CNC milling 

process. 
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For future research, following topics are suggested to expand the present 

research work: 

• Developing methods for optimal cutting parameters selection for 3-axis 

sculptured surface milling; 

• Conducting experimental verifications of 3-axis milling with general 

cutters (bull-nose or ball-end mills); 

• Extending the geometric modeling methodology to virtual 5-axis milling 

with general cutter; 

• Developing more applications of the MAT, a promising application is 

using MAT to generating plunge milling tool path; 

• Integration of the proposed methods with CAD/CAM system. 
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