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ABSTRACT

Video Object Extraction in Distributed Surveillance Systems

Mohammed Asaad Ghazal

Recently, automated video surveillance and related video processing algorithms

have received considerable attention from the research community. Challenges in

video surveillance rise from noise, illumination changes, camera motion, splits and

occlusions, complex human behavior, and how to manage extracted surveillance in-

formation for delivery, archiving, and retrieval. Many video surveillance systems focus

on video object extraction, while few focus on both the system architecture and video

object extraction. We focus on both and integrate them to produce an end-to-end

system and study the challenges associated with building this system.

We propose a scalable, distributed, and real-time video-surveillance system with

a novel architecture, indexing, and retrieval. The system consists of three modules:

video workstations for processing, control workstations for monitoring, and a server

for management and archiving. The proposed system models object features as tem-

poral Gaussians and produces: an 18 frames/second frame-rate for SIF video and
static cameras, reduced network and storage usage, and precise retrieval results. It is

more scalable and delivers more balanced distributed performance than recent archi-

tectures. The first stage of video processing is noise estimation. We propose a method

for localizing homogeneity and estimating the additive white Gaussian noise variance,

which uses spatially scattered initial seeds and utilizes particle filtering techniques to

guide their spatial movement towards homogeneous locations from which the estima-

tion is performed. The noise estimation method reduces the number of measurements

required by block-based methods while achieving more accuracy.

Next, we segment video objects using a background subtraction technique. We

generate the background model online for static cameras using a mixture of Gaussians
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background maintenance approach. For moving cameras, we use a global motion es-
timation method offline to bring neighboring frames into the coordinate system of
the current frame and we merge them to produce the background model. We track

detected objects using a feature-based object tracking method with improved detec-

tion and correction of occlusion and split. We detect occlusion and split through the

identification of sudden variations in the spatio-temporal features of objects. To de-

tect splits, we analyze the temporal behavior of split objects to discriminate between

errors in segmentation and real separation of objects. Both objective and subjective

experimental results show the ability of the proposed algorithm to detect and correct

both splits and occlusions of objects.

For the last stage of video processing, we propose a novel method for the detection

of vandalism events which is based on a proposed definition for vandal behaviors

recorded on surveillance video sequences. We monitor changes inside a restricted

site containing vandalism-prone objects and declare vandalism when an object is

detected as leaving the site while there is temporally consistent and significant static

changes representing damage, given that the site is normally unchanged after use. The

proposed method is tested on sequences showing real and simulated vandal behaviors

and it achieves a detection rate of 96%. It detects different forms of vandalism such

as graffiti and theft.

The proposed end-to-end video surveillance system aims at realizing the potential

of video object extraction in automated surveillance and retrieval by focusing on both

video object extraction and the management, delivery, and utilization of the extracted
information.
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Chapter 1

Introduction

Video has become an integral part of many applications such as educational, en-

tertainment, medicine, databases, surveillance, and even wireless applications. Due

to increasing security concerns, video surveillance applications and its related video
processing algorithms continue to draw the attention of both academia and industry.
Developing an automated and fast video surveillance system is a challenging task,
but one with many promising applications. Many video surveillance systems either
focus on video processing algorithms or system architecture, while few systems ad-

dress both issues. In this thesis, we develop an end-to-end surveillance system by

integrating automated video object extraction in a scalable, distributed, system ar-
chitecture. The result is a functional distributed surveillance system with fast object

and event extraction and indexing that facilitates viewing, archiving, and retrieval of
surveillance video and information. Through this integration, the thesis also studies

the challenges associated with both the extraction of video objects and behavior in-
formation and the delivery and utilization of this information towards the end goal

of automated surveillance. Moreover, the resultant system creates a framework for

testing video processing algorithms and identifying the bottlenecks of their use.
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1.1. BACKGRO UND AND OBJECTIVES

1.1 Background and objectives

An end-to-end surveillance system has two main tasks. The first is to automati-

cally extract objects of interest in a surveillance video sequence. Extracting video
objects is a three stage process of: 1) finding video objects; 2) tracking them; and 3)
identifying behaviors of interest by those objects. For example, to check if a person
abandoned a bag next to a restricted area in an airport. The second surveillance
system main task is to manage extracted surveillance information (e.g., archiving it
for retrieval). These two main tasks must be performed fast. Many algorithms are
not fast, operating at a low frame rate (e.g., five frames per second) in the hope that
future advances to processing speed will eventually improve the frame rate. Recently,

CPU manufacturers are focusing on the number of processors in a CPU instead of

faster processors. There are other challenges towards performing these two tasks.

The challenges facing the first task of extracting video objects rise from difficulties
in its three stages. Finding objects of interest in a surveillance video is called object

segmentation. The objective of segmentation is to classify all pixels in one frame to
ones belonging to objects and ones belonging to the background. A fast method to
accomplish this is to subtract background pixels and threshold the difference. There

are obstacles to this approach. The background frame may become outdated as

illumination changes due to the passing, of time, noise, or camera movement.

Tracking the objects after they are detected is also challenging. Objects may
appear in front of other objects in a scene captured by a single camera, leading

to pixels of objects being masked or lost. This is called occlusion. Also due to
segmentation errors, one object may appear separated into multiple groups of pixels.

This is called split. A tracker must detect these cases and handle them. Also, objects
often have similar features. The tracker must not be confused by such situations

in order to yield reliable tracking information which can be used to analyze object
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1. INTRODUCTION

behaviors and detect events of interest.

The event detection process is difficult because object behavior can be unpre-

dictable. Also, there is a complexity gap between features extracted by humans and

quantitative features extracted by an automated algorithm. Humans select which

features give them the best semantic message, while automated algorithms extract

the semantic message from fixed low-level quantitative features such as motion and
spatial features. These low-level features are sometimes insufficient to extract the

event reliably. The more high-level the event, the harder it is to define how it appears

on video. For example, the automatic detection of vandalism in surveillance video

signals is a challenging task because of: 1) the complex and unpredictable nature of
a vandalism act and the speed at which it may occur; 2) the underlying difficulty of
finding a unique definition for vandalism which may vary based on social contexts
and applications; 3) the difficulty in distinguishing between normal and vandal inter-
action between persons and vandalism-prone objects or sites; and 4) the lack of real
and publicly available vandalism test video sequences.

The challenges facing the second main surveillance system task of managing ex-

tracted surveillance information are associated with the delivery, transmission, pre-

sentation, archiving, and retrieval of the collected information and video. Some of

these challenges are: 1) functionally distributing the surveillance system tasks to re-
duce processing loads; 2) communicating extracted surveillance information and video
to reduce network load; 3) displaying extracted surveillance information and video
with efficient alerting mechanism to reduce response time; and 4) storing surveillance
information and video, to enable retrieving them on demand, with reduced storage

requirements.

To achieve our main objective of integrating video object extraction in a dis-
tributed architecture and build an end-to-end surveillance system, we must study

and address these challenges. We can break the main objective into smaller objec-
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tives. First, we design a distributed surveillance system architecture that can easily

scale and analyze and tune the performance of this architecture. Second, we develop

a video object extraction core for this architecture that includes:

• A segmentation algorithm that can handle noise, changing illumination, and

moving cameras

— To handle noise, we need to model it and estimate it. Block-based noise

estimation techniques have shown promise in their accuracy and fast per-

formance, but they still require a full search of the image. We aim at

improving the efficiency of block-based noise estimation without losing its

accuracy using particle filtering techniques in homogeneity localization.

— To handle changing illumination we integrate background subtraction with

mixture of Gaussiane background update. Background subtraction tech-

niques are widely used in segmentation due to their low complexity and

accurate segmentation. Their good performance, however, is based on the

assumption of a fixed background model. We aim at maintaining their

accurate and fast performance on changing illumination using the back-

ground update.

— To handle moving cameras, we use motion compensated local frames to

generate a background model of the current frame and use background

subtraction for segmentation. This approach is computationally complex.

We aim at reducing its complexity while producing comparable accuracy

to background subtraction with no camera motion.

• A multiple video object tracking algorithm which can cope with partial and

total occlusions and handle object split

— To perform multiple video object tracking, we use a voting-based feature
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matching object tracking. To cope with partial and total occlusion, we aim
to use a two stage approach of detection and handling. Detection is based
on identifying sudden changes in the spatio-temporal features of objects
and correction is done by separating them.

— To cope with split we use a similar two stage approach of detection through
identifying sudden changes in object features and handling through merg-
ing of objects.

• A vandalism detection algorithm that combines both the detection of abnormal
behavior of vandals and the detection of the vandalism damage.

1.2 Motivation

A reliable and fast automated surveillance system has many applications. Examples

are automated security and traffic monitoring. Some security application include:

1) intrusion detection for restricted areas; 2) vandalism detection, which we use in
our work as an application; 3) detecting abandoned objects in public transportation
areas such as airports and bus stops; and 4) home surveillance, e.g., detecting if a
child is playing in a dangerous area of the house. A fast surveillance system over
IP can be accessed from mobile devices, thus enabling surveillance from anywhere.

For example, when an alert is sent to a mobile device, a security personnel who is
away from the security monitors has immediate access to the surveillance feed and
to archived information and can act faster. Another area of applications is traffic

monitoring. Some of the traffic monitoring applications are: 1) detecting traffic
violations such as a speeding car or driving in the wrong direction: and 2) detecting
traffic congestion.

Note that research and improved performance in automated surveillance systems

requires researching and improving the performance of used video processing algo-
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rithms such as noise estimation, video object segmentation, tracking, and event de-
tection, which have many applications of their own. Therefore, the benefits of im-

proving the performance of these video processing algorithms extends beyond their

application to video surveillance in this thesis.

Fast and accurate noise estimation is needed in many video processing algorithms

such as noise reduction, edge detection, global motion estimation, video coding, and

video object segmentation. For example, inaccurate noise estimates in noise reduction

lead to blurring of high structure areas, which leads to missing important edges in

edge detection. Inaccurate noise estimation also leads to inaccurate global motion

parameters increasing the mean absolute error in compensated frames, which leads

to needing more bits to code these errors.

Video object segmentation is needed by many video processing algorithms, some

of which include video coding, video indexing and retrieval, and video authoring and
editing. Many of these algorithms aim to operate in real-time under varying real-

world conditions. Therefore, there is a major interest in fast and accurate object
segmentation techniques.

Video object tracking is the core of video surveillance applications. Another appli-

cation of tracking is supporting segmentation. Segmentation is affected by erroneous
object merging (i.e., occlusion) and splitting (i.e., fragmentation). Reliable tracking
provides a feedback loop to segmentation allowing it to fix those errors. Tracking also

facilitates high-level behavior analysis such as vandalism detection. It is also used in

robotics and in face detection and recognition.

Vandalism is a major problem. According to the Canadian Centre of Justice

Statistics, vandalism in 2004 accounted for up to 36% of all reported crimes [H]. In
the year 1991, over two million incidents of vandalism against private property have

occurred in the UK [12]. The cost of vandalism is not only financial, but also social.
According to a poll for The Times, vandalism is regarded by people as one of the most
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important problems facing their families [12]. The deployment of intelligent video
surveillance systems able to detect and report vandalism as it happens is, therefore,
becoming popular. There is a growing trend of fitting public transport vehicles (e.g.,
buses, trains and taxis) with surveillance cameras and eventually having a city-wide
surveillance network for detecting vandalism [13].

1.3 Contributions

Research in video surveillance has grown rapidly and a huge number of publications
exist. The following list highlights the original parts of the thesis to the best knowl-

edge of the author.

• A new scalable, distributed and real-time surveillance system with indexing and

retrieval of surveillance information. The proposed system can be used to realize

many surveillance applications. The novelty here is three fold: 1) a scalable
system architecture with extensible, and reliable distributed modules; 2) real-
time indexing and retrieval of object- and event-based surveillance information

and video; and 3) reduced network and storage requirements through reduction
of features sampled over time.

• A new method for homogeneity localization using particle filters with applica-
tion to noise estimation. The proposed noise estimation method reduces the

number of block homogeneity measurements needed by block-based approaches

by eliminating the need for a full search on the noisy image. It starts by defin-
ing uniformly distributed scattered initial seeds and then uses particle filtering
techniques to guide those seeds towards nearby homogeneous areas. The nov-

elty in this part is in: 1) reducing the number of.homogeneity measurements in
block-based techniques while retaining or exceeding their accurate performance
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in different noise-levels; 2) proposing a dynamic model and a Laplacian-based
homogeneity observation model for particle filtering to allow blocks to move
towards nearby homogeneous areas; and 3) proposing an adaptive robust esti-
mator to compensate for the reduction in the number of estimation blocks.

• A new algorithm for segmentation under global motion. The novelty in this part
is in: 1) a new method for background, generation using segmentation-oriented
global motion estimation and a mixture of Gaussians based motion-compensated

frames merging, which brings significant reduction in computations compared
to a recent method; and 2) a new segmentation method using the generated
background models from the previous step, which combines color-based object

segmentation and morphological post-processing to retain the quality of the
recent method while being less complex.

• A new algorithm for the real-time detection and correction of occlusion and

split in object tracking for surveillance applications. The novelty in this parts

is in: 1) a new method for analyzing the spatio-temporal features of objects to
detect sudden variations indicating a possible occlusion; 2) a new method for
correcting multiple occlusions by systematically separating occluded objects;

and 3) a new method for split detection, which in addition to the analysis of
spatio-temporal changes in objects features, analyzes the temporal behavior of
split objects to discriminate between errors in segmentation and real separation

• of objects, such as in a deposit event.

• A new method for vandalism detection in surveillance video sequences by mon-

itoring and evaluating changes inside predefined restricted sites as objects enter
or exit these sites. The novelty here lies in a new fast approach to vandalism de-
tection, which does not require training, can handle different forms of vandalism
such as damage, graffiti, and theft.

8



1. INTRODUCTION

Some of these contributions appear in the research papers' [14-18].

1.4 Thesis Outline

The thesis is divided into five chapters each dealing with a specific objective towards

building the surveillance system. An overview of the proposed system linking the

different chapters together is shown in Fig. 1.1. In Chapter 2, we present the particle

filtering based homogeneity localization method and its application to additive white

Gaussian noise variance estimation. In Chapter 3, we zoom into a major component

of the surveillance system, i.e., segmentation, and present the two methods used for

fast segmentation with fixed camera, and segmentation with global motion. In Chap-

ter 4, we présent the proposed tracking method with occlusion and split detection

and correction. We present the proposed vandalism detection method in Chapter 5.

Finally, we present in Chapter 6 the proposed surveillance system as a whole while

focusing on the system architecture. Chapter 7 concludes the thesis.
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Figure 1.1: Overview of the proposed system linking the chapters together. s? is
the estimated noise standard deviation. F; is the current frame and Bt is the binary
frame.
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Chapter 2

Homgeneity Localization in Noise
Estimation

2.1 Introduction

This chapter proposes a method for localizing homogeneity and estimating additive

white Gaussian noise (AWGN) variance in images. The proposed method uses spa-
tially and sparsely scattered initial seeds and utilizes particle filtering techniques to

guide their spatial movement towards homogeneous locations. This way, the proposed

method avoids the need to perform the full search associated with block-based noise

estimation methods. To achieve this, the chapter proposes for the particle filter a

dynamic model and a homogeneity observation model based on Laplacian structure

detectors. The variance of AWGN is robustly estimated from the variances of blocks

in the detected homogeneous areas. A proposed adaptive trimmed-mean based ro-
bust estimator is used to account for the reduction in estimation samples from the

full search approach. The performance measures for noise estimation algorithms are

accuracy and computational complexity. Our results show that the proposed method
reduces the number of homogeneity measurements required by block-based methods
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while achieving exceeding or retaining their accuracy.

2.2 Review of Related Work

Accurate estimation of noise is important to many image and video processing algo-

rithms such as motion estimation, edge detection, object segmentation, and denoising.

These algorithms are able to adapt their techniques to the noise-level to achieve bet-

ter performance. Homogeneity localization or measurement is key for accurate and

reliable estimation of noise to prevent outliers due to structure from affecting the

estimation process.

While there are algorithms, e.g. [19], that consider the effect of non-additive noise
which depends on the intensity level, in this thesis, we assume the common an ad-

ditive white Gaussian noise (AWGN) [20] and accordingly categorize algorithms for
estimating the noise variance to temporal [21,22] or spatial [1-4,23-29]. Temporal
methods have to deal with object or global motion using motion detection or mo-

tion compensation leading them to be more computationally expensive than spatial

methods. Spatial methods [1-4,23-29] are challenged by high or low noise levels and
images that are dominated by structure. These algorithms seek to strict estimation

to regions with the lowest intensity variations. They can be further categorized into
smoothing-based, wavelet-based, and block-based methods. Smoothing-based algo-

rithms such as [23] estimate noise from the difference of the noisy and smoothed
signal, the difference being an approximation of the noise. The algorithm in [23]
limits estimation to homogeneous areas by thresholding the image gradient, but tend
to overestimate the noise variance in low noise signals.

Wavelet-based methods [3, 24, 25] use the wavelet transforms to isolate the noise
in the diagonal band coefficients and robustly estimate the noise variance from the
absolute value of those coefficients. Wavelet based methods deliver more accurate

12



2. NOISE ESTIMATION

estimation for noisy or high structure images than block-based methods, but are less

accurate in low noise levels or low structure images. A similar technique to wavelet

methods is used in [4, 26] in which Laplacian-based pseudo residuals are calculated
to measure homogeneity and a robust least median of squares or least trimmed of

square estimator is used to obtain the noise variance. This approach behaves similar

to wavelet-based methods, i.e., is more accurate when noise is the most dominant

element in the signal.

Block-based methods such as [1,2,28,29] locate homogeneous regions and estimate
the noise from blocks in those regions. They vary in how they detect homogeneous

regions. The method in [28] extracts vertical and horizontal detail components and
uses histogram information for noise estimation, but is more computationally expen-

sive due to the used optimization. The method in [29] improves upon [28] and uses
the Laplacian operator to detect homogeneity. The algorithm in [1] uses elements
from [23] and [30]. It uses the minimum block variances to locate homogeneity and
estimates noise from the difference between the noisy and smoothed signals over ho-

mogeneous blocks. The variance is not always a reliable measure of homogeneity,

especially in high noise levels. The performance of [1] depends on the amount of
smoothing performed. The algorithm in [2] uses a Laplacian-based homogeneity test
composed of a number of high-pass directional operators. The variance of the noise is

estimated from the local variances of the blocks selected to be the most homogeneous.

The methods in [1,2,28,29] require a full search of the image to locate homogeneous
areas. The full search allows these methods to observe homogeneity in all areas and

have higher probability of locating the most homogeneous regions. Nevertheless, they

also find non-homogeneous areas due to the influence of noise on homogeneity mea-

surements. Computations can be reduced by establishing spatial separation between

blocks at the expense of a loss in accuracy due to the loss in search resolution.

The proposed method reduces the number of block homogeneity measurements
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needed by block-based approaches by eliminating the need for a full search on the

noisy image. Reducing the number of homogeneity measurements reduces the com-

plexity of the algorithm. The aim is to reduce the complexity to a level where real-time

and accurate noise estimation is achieved. It starts by defining uniformly distributed

scattered initial seeds and then uses particle filtering techniques to guide those seeds

towards nearby homogeneous areas. The contributions of the proposed method are:

reducing the number of homogeneity measurements in block-based techniques while

retaining or exceeding their accurate performance in different noise-levels; proposing

a dynamic model and a Laplacian-based homogeneity observation model for particle

filtering to allow blocks to move towards nearby homogeneous areas; and propos-

ing an adaptive robust estimator to compensate for the reduction in the number of

estimation blocks.

The remainder of the chapter is as follows. Sections 2.3 presents the proposed

approach. Results are discussed in Section 2.4, and Section 2.5 summarizes the chap-

ter..

2.3 Proposed Algorithm

We start by presenting our framework for locating homogeneous areas using particle

filtering. We then move to present how we utilize multiple seeds and use their associ-

ated final homogeneous locations to collect estimation samples (i.e., block variances)
and robustly use these samples to find the final estimate.

2.3.1 Locating homogeneous areas using a particle filter

Let Fn be a noisy image defined as

FV = F + V,
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where F is the original noise-free signal and ? is the added AWGN component. We

denote a single pixel in Fn by Fv(i, j) where i and j are the spatial coordinates. We
extract blocks from F71 in the estimation process, denoted B^, using

Bij = {Fr){iij)\{i,j)e^ij\\

% = {»-¥<*<<+¥. (2·2)

where F^ is the set of spatial coordinates making the block of size W2 (W is odd)
surrounding the center 2D point (¿, j) E Fn, and 7% is the set of pixel values at those
coordinates. Obtaining a reliable estimate of the noise variance s2 requires finding
the set of spatial locations most homogeneous in terms of intensity. Let ? = {i,j)T
be one of those intensity homogeneous locations (T is the transpose). Limiting the
estimation to homogeneous areas is important to prevent outliers caused by spatial
structure from affecting the estimation process.

We can regard localizing homogeneity as the estimation of the system state using
a sequence of noisy measurements made on the system. Our goal is to recursively find
the posterior density p(xt|zi:t) of the homogeneous location xt conditioned on a series
of homogeneity observations z1:t = (zi,..,zt), where t is the iteration number (we
perform R iterations). p(xt|zi:t) is calculated recursively from incoming observations
in two phases: a prediction phase followed by an update phase. When modeling the
spatially-varying state x¿ as a first-order Markov process, ?(?<|?1:?) becomes,

p(xt|zi:i) = /C-P(ZtIXt)P(XtIz1^i), (2.3)
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where ? is a normalizing constant and p(xt|zi:t_i) is calculated using

í»(xí|zi:í_i) = / p(xí|xí_i)p(xi_i|zi:í_i)cíxí_i, (2.4)

where p(zt|xt) is the likelihood function, p(xt|xt_i·) dictates the dynamic model and
p(xt|z1:t_1) is the prior given previous measurements.

Particle filtering implements, using Monte Carlo simulations, a recursive Bayesian

filter [31,32] and have been widely used recently for visual tracking in different appli-
cations [33,34]. The posterior density p(xt|zi:t) is approximated by a set of N particles
and their weights, or {{q\? , ?\f )}^Li, where q¡ is a possible homogeneity location
and u¡n' is the weight assigned to it as a discrete sample of the p(zt\xt = çt ). We can
now estimate the state at each iteration t from {{q\ , u¡n')}^=1, which is propagated
according to the system dynamic (see (2.6)) model over the iterations.

The particle filtering algorithm can be summarized as follows:

From {(¿°?,???))}^=1 at iteration t - 1 (1 < t < R):

1. Resample {(<£>, afí)}^ to produce {(«fi, ^))I1 [35].
2. Dynamically propagate each q't_( by the dynamic model

p(x|xt_i = q't-l) and obtain {(çt , jf)}n=i- Propagation is governed
by xt = f(xt-i) 4- v, where /() is the dynamic or prediction model, and ?
is Gaussian noise.

3. Weight each q¡n' by p(zt|xt = q[n') to obtain {(qt ,^t )}n=i- Weighting
is governed b)' zt = h(xt) 4- g. where h() is the observation function
and g is the measurement noise.

4. Find the most homogeneous location using

? = argmin (qt ) (2.5)

Algorithm 1: Homogeneity localization using particle filtering
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Dynamic Model of the Particle Filter

In essence, the proposed method drives the particles towards homogeneous areas
in the image and away from structure guided by a proposed system dynamics and
homogeneity observation models. We use the system dynamics model p(x.t\-xt-i)
(describing the transition from xt-\ to xt) given by

p(xt|xo:t-i) = M(Xt, Zxt - xt-i, Sß), (2-6)

where M stands for Gaussian distribution, and S? is its covariance matrix. Equation

2.6 predicts the current location xt as the sum of the current location, the displace-
ment Xi — xt_i and a zero mean Gaussian noise. This way, the dynamic model pushes

particles in the direction where homogeneity was found in the previous iteration.

Observation Model for Homogeneity

We use an observation model based on [2]. Let (x be the homogeneity at location ?
calculated using

D W-I

Cx = ? V Ei^-1W*) - S Fv(x + Mí)l . (2-7)L> X L,max d=i m=1

where M^ is a set of W — 1 vectors (indexed. by m) in the direction d starting from
? and ending in a neibhouring location, and D is the number of directions used. We
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use eight directions specified using

Mj1 = {(0,-1), (0,-2), (0,1), (0,2)};

M2m = {(-1,0), (-2,0), (1,0), (2,0)};
Mi = {(-2, -2), (-1,-1), (1,1), (2,2)};
M4m = {(-2, 2), (1,-1), (1,-1), (2, -2)};
M5m = {(-1,0),(-2,0),(0,1),(0,2)};
M6m = {(-1, 0), (-2,0), (0,-1), (0,-2)};
M7m = {(1,0),(2,0),(0,1),(0,2)};
M8m = {(1,0), (2,O)1(O5-I), (0,-2)}, (2.8)

These directions are the horizontal, vertical, two diagonals and four corner directions.

Note that in (2.7) we take the average of directional homogeneity by multiplying
with i and normalize our homogeneity measure by multiplying with -r^— , where

(max = (W- 1) x 255, where 255 is assumed to be the maximum gray level in the
image.

Our observation model is described by

p(zt|xi)=AA(Cx;(Cre/-Cx)2,^), (2.9)

where £re/ is our target homogeneity, i.e., Çref = 0, and s? = 10~3 is the measurement
error variance. With noise in the image, it is not possible to reach the target homo-

geneity of (ref = 0, however, it drives the particles towards the most homogeneous
areas (closest to Cre/)-

After R iterations, we calculate our block mean and variance from the final location

18



2. NOISE ESTIMATION

?, or location (i,j) G F^· of (2.2) using

S Fv(i,j)

E (F,(i¿)-MB„)a (2.10)
(<j)e»¿

W2-l

The variance s\.. in a homogeneous region is an estimate of the noise variance.

The block variance s%.. can also be used as an alternative approach to measuring
homogeneity. When using the block variance to measure homogeneity, we set £x =
sß^/255 in (2.9) and keep (re/ = 0. This variance-based homogeneity measurement
requires more computations than the the Laplacian-based homogeneity measurement.

Starting from a random point (or seed) in the image, the proposed method uses
particle filtering to either: 1) move away from structure towards homogeneity if the
seed is in a structured area; or 2) stay in the homogeneous areas and not move
towards structure if the seed is in a homogeneous area. We can observe the move to

homogeneous areas in different noise levels in Fig. 2.1. The square in Fig. 2.1(a)
and (b) represent the starting points (or seed) in a structured area for 30 dB and
25 dB noise, respectively. The circles represents the final locations after the end of
iterations.

M

(b) 25 dB noise
JÍ''É¡¿™

(a) 30 dB noise
Figure 2.1: Detected homogeneous location (circle) starting from a seed in a struc-
tured areas (square) in different noise levels.
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2.3. PROPOSED ALGORITHM

2.3.2 Application to Noise Estimation

If we seed the proposed method to localize homogeneity with a location surrounded
by structure, it attempts to move away towards a nearby homogenouous location.
If we seed it with a location surrounded by homogeneity, it attempts to remain in

that location until the end of iterations. Some images are highly structured. The

number of iterations used may not be enough to move a seed in the middle of a large
structured area towards homogeneity. Moreover, one sample of the block variance as

in (2.10) is not enough to yield a reliable estimate of the noise variance.

To reduce this problem, we use a set S of seeds uniformly distributed (see Fig.

2.2) over the image. An alternative approach is to use the posterior knowledge (final
seed locations) from one video frame in case of video signals as the prior knowledge
(initial seed locations) for the next frame. This is, however, problematic in case
of moving objects or cameras as it can potentially increase the distance the blocks
have to move to reach homogeneity. Thus, using uniformly distributed seeds is more
reliable since the same number of iterations is performed for both cases. Each seed

s G S is modeled as

?(3)=??(3,S3). . (2.11)

We then use the set of final locations from each seed {xs} and calculate the block
variance around them using (2.10) to produce the set of candidate estimation 'blocks

{s| }. We also calculate the peak signal to noise ratio (denoted P) from each variance
to produce (Pi5 }·

Finally, we use a robust estimator on {s| } to find the final estimate s^. The
robust estimator is based on the trimmed mean. For trimming, we need to define a

threshold and a reference estimate so we can average estimates which do not deviate
from the reference estimate more than the threshold. We define the reference estimate

and the threshold in the P domain, this way the threshold when converted back to the
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Figure 2.2: The initial seeds evenly distributed on the image. Using random seeds
does not improve the performance for noise estimation.

variance domain, naturally increases for noisy signals and decreases for less noisy ones.

In [2], a large number of candidate estimates are used, hence the natural decrease in
the peak signal to noise ratio threshold (i.e., 3 dB) is sufficient to produce a reliable
final estimate for all noise levels. In the proposed method, the number of candidate
blocks is reduced significantly and the 3 dB threshold can lead to over estimation
of noise for less noisy images. Therefore, we adapt it to an initial estimate of noise
Pimi by decreasing it to 1 dB for less noisy images (e.g., P¿nií > 33 dB). We use a

However, we also adapt the reference estimate to P¿„¿t due to the significant decrease

in the candidate estimates. In noisier images (e.g., Pinit < 33 dB), underestimates of
noise exist due to operating in small blocks and not having enough samples to reflect

the true value of noise. Therefore, for noisier images we use the median of the least

10% candidate variances.

For Pina, we use the peak signal to noise ratio of the seed with the minimum
variance

/ 2552 ?
Pîmt = 101og , , (2.12)\mm{{aiJ)J
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2.3. PROPOSED ALGORITHM

With Pinit calculated, we define our robust estimator as one which selects a subset Q

of {Pis } (by removing outliers) with

Q
{Pxs '¦ |Pxs ~ Pre/il < PrftiJ : Pinzi > 33

{??, : |Pxs - Pre/2 1 < PrZ12) : otherwise
(2.13)

where Pre/i is the median of the three least variances, Pre/2 the median of the least
10% variances, PrZi1 = 1 dB and Pxh2 — 3 dB. Finally, s2? is estimated as the average
variance calculated from Q, i.e.,

— T\n\ Z^
2552

(2.14)

The benefits of the proposed adaptation to noise is shown in Fig. 2.3, which
shows the average estimation error in the 30 to 40 dB band for the noise-adaptive

and non noise-adaptive robust estimation. Adapting the robust estimation threshold

and reference to noise decreases the error for less noisy images. The proposed noise

estimation algorithm can be summerized using Algorithm 2.

? 3S|

\dsal

With (Dise aiutai
Without vo teeadaptetb

True PSNR of noise

Figure 2.3: Adapting the robust estimation stage to noise reduces errors in the 30-40
dB range. A curve closer to the ideal line is more accurate.
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1 . Select a set of uniformly distributed seeds S.

2. Locate a homogeneous location ? from each s E S. To do this, repeats
steps 3-6 for R iterations:

3. Resample {(q£\M-\)}%=i for iteration t - 1 to produce {{q'¿\, jf)}„=v
4. Dynamically propagate each q't_{ by the dynamic model

p(x|xt_i = q'^l) and obtain {(q¡n) , ¿)}^=1 using (2.6).
5. Weight each q¡n' by p(zt\xt — q^"') to obtain {(% ,^t )}^=i using (2.9).
6. Find the most homogeneous location from that seed using (2.5).

7. Calculate the set of block variances s%. from {xs} using (2.10).
8. Estimate s2 from {c|ft } robustly using (2.14).

Algorithm 2: Proposed noise estimation algorithm.

2.4 Results

2.4.1 Parameters and Limitations

We use five particles (i.e., N = 5), 6 iterations (i.e., R = 6) and 100 seeds locations
(see Fig. 2.2). This leads to a total of 3 ? IO3 homogeneity measurements. We use
S? = [0.1 ? IO2, 0; 0,0.1 ? IO2] (see (2.6)) and Es = [0.15 ? IO2, 0; 0,0.15 ? ??2] (see
(2.11)). We use a block size of VK = 5 for homogeneity measurement and calculate
the block variance with a block size of W = 7. The price of eliminating full search

while retaining estimation accuracy is the need to define new parameters governing

the dynamic movements of blocks such as the number of seeds and the number of

iterations R. While the number of seeds appears to be a new parameter, it is not.

It relates to the block separation parameters that are commonly defined in other

block-based methods (e.g. [2]). On the Other hand, the number of iterations R = 6
is found to be experimentally sufficient for most blocks to reach homogeneous areas.

Robust estimation removes blocks which did not have enough time to reach nearby
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homogeneity.

The proposed approach takes advantage of the fact that most images have suf-
ficient homogeneous areas for estimation. If an image is highly structured, not all
particles will reach homogeneous areas. The proposed robust estimation reduces this
problem, but can be sensitive in the initial estimation threshold area due to the hard
threshold.

2.4.2 Objective and Subjective Results

The aim of the proposed algorithm is to retain or exceed the accuracy of block-based

methods (e.g., [2]) while eliminating the need for a full search for homogeneity. We
compare the proposed method to the wavelet-based method in [3], the robust estima-

tion method in [4], the block-based method with the Laplacian structure detectors
in [2], and the block-based method with the variance structure detector in [I]. Block-
based methods are faster than wavelet-based or robust estimation based methods

because they operate on blocks instead of pixels. The proposed method reduces the

complexity of [2] further by increasing the spatial separation between the blocks, while
making these blocks seek nearby homogeneity. Other low complexity methods [30,36]
tend to overestimate the noise variance in low or high noise. We calculated the

number of homogeneity measurements (as a measure of complexity) required by the
proposed and the block-based methods [1,2] to process a 512 ? 512 image. The results
is summarized in Table 2.1.

Table 2.1: Reduction in the number of homogeneity measurements between proposed
and referenced block-based methods. [1] uses a block height of 3 to limit the number
of lines to cache in the memory.

Algorithm # Measurements Measurement Type Reduction % Block size
Proposed 3 ? IO3 Laplacian - 5x5

¡2} 1.04 ? IO4 Laplacian ~ 71% 5x5 "
[?] 6.72 ? 103 Variance 55% | 13 ? 3

24



2. NOISE ESTIMATION

?

y*

(a) 100 seeds

t^Sl '?'??!

a?-'

£*&¦$*¦ ¿Er?--

400 seeds before robust estimation

'at'".'
TfJ

¡S **3rm.'•Li. ? tf;ß* j ,TcB**

(e) 400 seeds after robust estimation
IT OC ?. f

Barbara. More homogeneous areas are detected by increasing the number of seeds,
which leads to more homogeneous blocks for the noise estimation stage, but it also
significantly increase the number of measurements. Note that for every marked final
location in (a) and (b), the algorithm checked 30 blocks (5 particles and 6 iterations)
to find it.

To test the performance of the proposed method we use the images in Fig. 2.5

which represent an increasing level of structure. The images are overlaid with AWGN

noise ranging from 20 (s? = 25.5) to 40 dB (s? — 2.55).
First, we examine the effect of increasing the number of seeds from 100 to 400. As

seen in Fig. 2.4(b), more homogeneous areas are detected by increasing the number
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(a) Cos2 (b) Lena (c) Field (d) Barbara (e) Kiel (f) Trees (g) Baboon
Figure 2.5: Images used for testing

of seeds, which leads to more homogeneous blocks for the noise estimation. While

this also leads to more outliers with the only R iterations, the robust estimator

further reduces the outliers before estimation as seen in Fig. 2.4(c). Next, we test the
effect of changing the homogeneity measurement types. We test two types, namley:

1) the Laplacian-based with W = 5; and 2) the variance-based with W = 5 and
W = 9. We choose a seed in a structured area (see the square in Fig. 2.1) and run
the proposed algorithm with the homogeneit}' measurement types 250 times for 20,

30 and 40 dB Barbara. The results are shown in Figs. 2.6 and 2.7. The performance

of the Laplacian-based homogeneity measure improves for less noisy images. The

variance-based measure performs similarly for all noise levels, but is not as responsive

to structure as the Laplacian-based. Increasing the block size from W = 5 to W = 9,

does not seem to affect the performance of the variance-based structure detector as

seen in Figs. 2.6(b) and 2.7.

The number of iterations used, i.e., R = 6, is not enough in all attempts to move

the seeds to homogeneous areas for the Lapacian-based measure for the 20 dB case,

however, the majority of particles still move to homogeneity (note how they spread
to the left towards homogeneity more than the right towards structure). Increasing
the number of iterations to R = 10 reduces this problem as seen in Fig. 2.8.

Fig. 2.9 shows the detected homogeneity locations for test images. In all cases,

the majority of particles reach homogeneous areas by the end of iterations. Robust

estimation then removes the outliers particles from the final estimation process as

seen in Fig. 2.10.

The accuracy of the proposed method for noise estimation is measured as the

26



2. NOISEESTIMATION

error in dB between the estimated noise peak signal to noise ratio P7, and the true

value P7,. This is depicted in Fig. 2.11 for the proposed and referenced methods
and different noise levels ranging from 20 dB to 40 dB (a curve closer to the ideal
line indicates more accuracy). The mean and variance of the error are shown in Fig.
2.12. The performance of the proposed method is more consistent than referenced
methods.

We tested the the proposed method on a JPEG compressed noise-free Lena with a

q-factor of 40 in Fig. 2.13(b). The proposed method is able to find the homogeneous
areas in the compressed image, however, since compression artifacts cannot be mod-

eled as Gaussian, the variance óf the blocks in the found homogeneous regions does

not correlate with the level of artifacts. When adding noise to a compressed image,

the proposed noise estimation method works within expected performance bounds as

in Fig. 2.13(a).

2.5 Summary

This chapter proposed a method to use particle filtering for homogeneity localization

in noisy images, and applied this method to the problem of estimating the variance

of additive white Gaussian noise. The proposed method starts from uniformly dis-

tributed spatial seeds and uses particle filtering techniques to guide those seeds to
nearby homogeneous locations. The proposed method estimates the AWGN variance
using a robust estimator over the block variances in homogeneous locations. The pro-

posed method adapts the robust estimation stage to noise to reduce the estimation

error for less noisy images. Our results show that the proposed method reduces the
number of homogeneity measurements required by conventional block-based methods
while improving the performance. Note that the accuracy level achieved by the pro-
posed method is less than 3 dB making it suitable for the subsequent video processing
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algorithms (i.e., segmentation) [2].
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Figure 2.6: Selecting a seed in a structure area (see the square in Fig. 2.1), the result
of running the algorithm from this seed 250 times for (a) the Laplacian-based and
(b) the variance-based homogeneity detector with W = 5 for 20 dB Barbara (top
row), 30 dB (middle row), and 40 dB (bottom row) . The Laplacian-based is more
responsive to structure in less noisy images.
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Figure 2.7: Selecting a seed in a structure area (see the square in Fig. 2.1), the result
of running the algorithm from this seed 250 times for the variance-based homogeneity
detector with W = 9 for 20, 30, and 40 dB Barbara. Increasing the block size from
W = 5 to W — 9 does not improve the performance of the variance-based detector.
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Figure 2.8: In a 20 dB Barbara image, increasing the number of iterations from
R = 6 to 10, allows the Laplacian-based structure detector to move most of the seeds
towards ñomogeneity.
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Figure 2.9: The detected homogeneous locations by the particle filters (before robust
estimation) from test images at different noise levels. In all cases, a sufficient number
of particles reach homogeneous areas. Note that for visualization purposes, the circles
used are 11 pixels in diameter. The actual blocks are squares of size 5 ? 5 at the center
of the circles. The initial seeds used for all images are the same as the ones shown in
Fig. 2.2.
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Figure 2.10: For 20 dB Baboon and 25 dB Kiel, (a) the locations, marked with circles,
detected to be homogeneous by particle filtering, and (b) the locations, marked with
squares, used in noise estimation after the robust estimator removes outliers.
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Figure 2.11: Accuracy of the proposed method compared to the block-based method
in [1] with variance homogeneity measurement, the block-based method in [2] with
Laplacian-based homogeneity measurement, the wavelet-based method in [3], and the
pseudo residuals followed by robust estimation method in [4]. A curve closer to the
ideal line is more accurate.
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Figure 2.12: The mean and variance of the estimation error over all test images in
Fig. 2,5 and noise levels (i.e., 20-40 dB). The proposed method is consistently more
accurate than the referenced methods on used test images. A curve closer to the ideal
line is more accurate.
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Figure 2.13: Testing on compressed images: (a) noise estimation result from adding
noise to compressed Lena image, (b) located homogeneous areas on a compressed
Lena image.

35



Chapter 3

Object Segmentation with Fixed

and Moving Cameras

3.1 Introduction

Segmentation, in this thesis, is the process of classifying pixels to foreground or back-
ground based on motion. The classification accuracy, temporal stability, and compu-
tational complexity are the key performance measures. In this chapter, we propose a

fast segmentation approach based on the integration of a gray-level background sub-
traction technique with a mixture of Gaussians background maintenance approach.

The fast segmentation approach retains on average 96% of the accuracy of the back-
ground subtraction technique, while eliminating its reliance on a fixed background
model. This chapter also proposes a segmentation approach for video sequences with

global motion. The approach starts by estimating and compensating the global mo-
tion of neighboring frames to create multiple observations of the current frame with
the objects of interests moving to reveal background areas. The observations are used
to estimate the parameters of a mixture of Gaussians model and extract a background
frame using less computation than a recent median-based technique. We further re-

36



3. OBJECT SEGMENTATION

duce the complexity of the recent technique by alternating between full background
model estimation using multiple motion-compensated neighbours, and single motion
compensation of the previous frame's generated background model. Generated back-
ground frames are used by a color based background subtraction technique followed
by global thresholding and morphological post-processing to obtain the final segmen-

tation output. The proposed method is several times faster than a recent technique,

while retaining or exceeding its accuracy.

3.2 Review of Related Work

Many video object segmentation methods are presented over the years. The type of
video object segmentation used is dictated by the application requirements. Some of
the major requirements affecting which method to use are: 1) real-time operation;
2) adaptation to environmental conditions; and 3) accuracy. For example, fast video
surveillance systems must run in real-time and account for illumination changes in

case, of outdoor surveillance.

We can divide object segmentation techniques into two categories [37]: motion
segmentation and change detection. Motion segmentation classifies motion vectors

into groups that fit particular motion models. This leads to one object with articu-
lated motion to become segmented into multiple parts (each fitting a model). In some
applications, e.g, articulated object tracking, this is a desired result, while in other
applications, e.g., rigid object tracking, it further complicates the tracking problem.

3.2.1 Segmentation with fixed camera

Segmentation by change detection methods have the different objective of labeling
pixels in the frame as changed or unchanged. This is usually done in two stages.

The first stage is background subtraction [38-43], which is followed by thresholding
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[44-50]. The performance of change detection methods is reliant on the accuracy of
the background model. For example, for indoor surveillance with a fixed camera and

lighting conditions, background subtraction followed by thresholding produces good

results. With outdoor surveillance, the background model changes over time and

requires adaption for accurate results.

Many algorithms are presented over the years to adapt the background model.

These algorithms can be classified according to [51] into temporal median [52], single
Gaussian [53], mixture of Gaussians [54-58], and kernel density estimation [59,60].
The main idea is to find pixels deviating from an updated background model. In the

simplest case of a temporal median filter [52], foreground pixels are considered outliers
rejected by the median operation. However, the size of the median filter and the speed

of the moving objects affect the performance. There is also the added computational

cost of performing the median operation on all pixels in the frame. In the single

Gaussian case [53], the background pixel is assumed to temporally follow a Gaussian
distribution. If an observed pixel value significantly deviates from this model, it is

considered a foreground pixel and is rejected. The single Gaussian method does not

take into account dynamic backgrounds such as ones resulting from water waves or

the effect of wind on trees. This motivates the use of the mixture (or multiple) of
Gaussians,model [54-58]. In this model, the background is represented by more than
one Gaussian. Note that the Gaussian and mixture of Gaussians approaches require a

period of training to estimate the model parameters. Kernel density estimation tech-

niques [59,60] are nonparametric as they estimate the density function from observed
pixels regardless of their actual distribution. Background adaptation or modeling

techniques [53-60] are followed by thresholding of the probability density function to
label pixels as changed or unchanged. In other words, they are segmentation methods

in their own right.

In summary, change detection followed by thresholding yields connected blobs that
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are suitable for object tracking provided the background or reference frame is fixed.

This is not the case with outdoor surveillance. The statistical mixture of Gaussians

based background modeling methods are better suited for outdoor surveillance, be-

cause they handle dynamic backgrounds. However, the blobs produced often appear

fragmented due to similarity between the colors of the objects and backgrounds lead-

ing to wrong classification of foreground pixels as background. We aim at integrating

the two methods to produce a segmentation method that results in suitable blobs for

tracking under varying illumination conditions.

3.2.2 Segmentation with global motion

Change detection is a more challenging problem if the camera is moving. The case

of a moving camera is identical to that of static camera if motion is estimated and

compensated for [61], e.g., using [62,63]. The method in [63] is more oriented to
video object segmentation since there is a feedback loop from segmentation to motion

estimation for the mutual benefit of both algorithms. The segmentation method

used in [63] identifies local motion outliers and the global motion estimation and
compensation method reduces frame differences due to global motion. Note that, in

case of a moving camera, frame subtraction is used instead of background subtraction.

Frame subtraction suffers from the aperture problem, i.e., when a homogeneous area

appears to be static when it is in fact moving. The effect of the aperture problem

is reduced using spatial techniques such as in [64], nevertheless, it remains of major
influence on the performance.

A class of methods [6, 65, 66] use sprite generation to create a better model of
the background. The main idea of [6] is to estimate the global motion between a
number of neighboring frames and the current frame and then warp or project these

frames into the current frame. During the projection and using median filtering,

the foreground object is removed (to a degree) from the current frame effectively
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producing a background frame. Background subtraction and thresholding are then
used to produce the segmentation results. These algorithms have found promising
application in video coding. It can also be helpful in video surveillance processing,

however, the computational cost for fast video surveillance is significantly high due
to the multiple global motion estimations for every frame. Another approach is to

impose restriction on the type of camera motion to handle and accept some loss

of segmentation accuracy to gain real-time performance. The method in [67] is an
example of such approach. The authors of [67] estimate and compensate for global
motion using feature points in the current and reference frames.

The outline of the chapter is as follows. Sections 3.3 and 3.4 present the pro-

posed segmentation methods for fixed and moving cameras, respectively. Section 3.5

presents the results, and Section 3.6 summarizes the chapter.

3.3 Proposed Segmentation with Fixed Camera

For fast segmentation with no global motion, we integrate the background subtraction

based approach in [68] and the background maintenance approach in [5] as summa-
rized in Fig. 3.1. This integration starts by generating a difference frame D¡ between

the current frame Fi and a background model Gi, i.e., D¡ = Ji7J — Gi\. We use the
method in [5] to generate Gi. The details of background generation are discussed
in Section 3.4 presenting the segmentation under global motion method. The differ-

ence between background generation in the fixed and moving camera case are: 1) the
means in the background update approach for fixed cameras are initialized to 128,

whereas the means for the background update for moving cameras are initialized to
the pixels in the current frame for faster convergence to background pixels; 2) the
hysteresis thresholds for the fixed camera case are higher than in the moving cam-
era case since the frames are perfectly aligned due the lack of motion; and 3) when
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3. OBJECT SEGMENTATION

compensating for motion, we may get black regions around object boundaries which
are rejected in the moving camera case. Di may be degraded by three main factors;
noise, motion instability, and local changes such as shadow and object velocity. Noise

introduces globally scattered artifacts in D¡ whereas both motion instability and local
changes lead to holes and gaps in the detected moving regions. We reduce noise and
limit the gray-levels (i.e., motion difference) in Di.

[Component
Initialization

Background update

Pixel
Matching

Matched
Component Update

Background/Foreground
Classification

Segmentation
-Updated background moößl

. J Frame
"!Differencing

Low-pass
Filtering

Global
Stabilization

Maximum
Filter

Rôîïsë
Estimation Adaptive Thresholding

Bmary mask

Figure 3.1: Block diagram of the segmentation method with fixed camera.

First, Di is low-pass filtered to reduce the effect of noise using

Df = LP(F1 - G1), (3.1)

where LPQ is a 5 ? 5 low-pass (i.e., moving average) filter. Then, we limit the
differences in the noise-reduced difference frame Df (µ here denotes the result from
finding the mean value of neighbors within a block surrounding the current pixel) to
a gray-level limit glim. This step is necessary to globally stabilize (or filter) the high
motion in D¡. High motion may be caused by 1) local changes and 2) object textures
and velocities. Setting gum low (e.g., 31) increases the sensitivity to artifact caused
by non-motion related factors (such as shadow) and produces larger regions, but is
good for low illumination or low contrast video sequences. A high giim (e.g., 63) is
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3.3. PROPOSED SEGMENTATION WITH FIXED CAMERA

good for frames with low noise-levels as it achieves more accurate object boundaries.

It is important to establish a lower-bound on gum. This is because a too low gum

will cause many pixels in Di to be wrongly classified as white (moving) pixels in the
binary frame Bi. To establish such a lower-bound, let Pn be the Peak Signal to Noise

2

Ratio (PSNR) defined by P77 = 101Og10^f31, where gmax is the maximum possible
gray- level (e.g., 255) and s? is the variance of the additive white Gaussian noise. We
condition P9£™ (the PSNR of D^ obtained with a given gum) to be larger than Pn or

PSr= 10 log10 J^7 >P„ (3.2)
where MSE^ is the mean-square error (MSE) between noisy Di and its noise-reduced

approximation Df . When a 3 ? 3 averaging filter is applied to get Df, it can be shown
that MSED>> = ?^s? [69]. Let giim = a.gmax, (3.2) is rewritten as

P%f = 10 log10 ^f + 10 log10 72a2 > P7,. (3.3)

From (3.3), we get a > 0.1179 and g%™ > 30. From (3.2), we note that Pg™ is
calculated from gnm instead of gmax = 255. This is because after globally stabilizing

Di, all gray-levels will be limited to gum. Since giim < gmax-, Pf&" will be lower than
Pg£¡?x . Obtaining Bi from Di is sensitive to global or local changes, therefore it may
fail for low quality videos. To get accurate B¡, the P^)T should be as high as possible. .

After stabilizing the high motion in difference frames, a maximum filter is applied

to reduce small holes, gaps, and granular blobs inside the moving regions and cause

stability around the boundaries between the moving and the static regions. D¡ is

then adaptively thresholded. First, a spatial threshold tf is obtained using a robust
thresholding method [70], which is adapted to noise to obtain tj' according to

t? = tf + 7a2, ?<1. (3.4)
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t¡ is quantized to one of three levels to obtain tf in order to stabilize thresholding.
This is done using

t?=<

t? < ???
ímid . ivriin ^ íV <¦ ¿mid (3.5)

??a? : otherwise

to obtain the final frame threshold U used to produce the binary frame Bi, tg¡ is
adapted to temporal changes using

ti = <t,_i
t9

t? < trin

t? < t/_i
otherwise

(3.6)

More details on this thresholding schemes are in [68].

Next, we apply morphological edge detection and contour tracing to the binary

output of the previous step. We use the object contour chain codes to perform contour

filling. Contour filling allows us to traverse object pixels from left to right and from
top to bottom to extract key features such as dominant color and area. It can also

be used to generate a color histogram of the object pixels without the background

outliers associated with taking the histogram of the object's minimum bounding box.

Let Q° be the sequence of spatial points in the object contour with coordinates (Q°,
Q°). For every Q°x for a given Q° we keep a label indicating if the contour's chain
code as traversed clockwise is increasing, decreasing or zero as in

??+1Lqo = sgn(sgn(Q° - Q0'1) + Sgn(Qf1 - QPx)) (3.7)

We then use every Q°x for a given Q° and its label Lqo and keep filling until an-
other point is reached with the complement label —Lqo. After contour filling, we
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3.3. PROPOSED SEGMENTATION WITH FIXED CAMERA

obtain a list of image objects in the current frame. This list is used as one of the

inputs to tracking in Chapter 5. We use gray-level background subtraction instead

of color based background subtraction (which we later use for segmentation with
global motion) because it yields connected blobs, due to the use of the maximum
filter, eliminating the need for morphological post-processing. Moreover, generated

blobs are more temporally stable due to the quantization of binary thresholds. While

the segmentation output of the color-based background subtraction is more accurate

than that of the gray-level segmentation around object boundaries, the temporally

stable connected blobs produced by the gray-level approach are more advantageous to

tracking. This is illustrated in Fig. 3.2 which shows the tracking results for an online

outdoors sequence with the color and gray-level segmentation techniques. While the

track is lost due to temporal instability for the color segmentation case, the track is

maintained for the gray-level case. This could be attributed to the lack of contrast

in the video. We measure temporal stability using the derivative of white pixel count

(i.e., object area) over time. We can see that the gray-level segmentation is more
stable from the plot of the derivative than the color-based segmentation.

To show the importance of accurate noise estimation in adapting segmentation to

noise, we show the visual output and F-measure (i.e., objective measure using ground
truth defined later) comparison for 25 dB noisy Hall Monitor sequence at different
levels of noise estimation errors in Fig. 3.3. As the estimation error increases, the

segmentation accuracy decreases. The segmentation accuracy decreases for even 1 dB

error. This goes to show the importance of accurate noise estimation to segmentation.
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Figure 3.2: Temporal instability in segmentation causes track loss in the case of color
segmentation in low contrast compared to the gray-level segmentation case. Temporal
stability is measured using the derivative of object area (white pixel count) in (c) and
shows how the gray-level segmentation is more temporally stable.

3.4 Proposed Segmentation with Global Motion

We divide the process of segmentation with global motion into the three stages in

Fig. 3.4. In the first stage, the current frame Ft and its neighboring frames are
used to generate a background frame Gi. Gi is then used with F¡ in the second
stage of segmentation to generate an initial binary frame, which is post processed to
generate the final binary frame B¡ showing extracted objects. Our approach is based
on [6]. Our background generation differs from [6] in two areas: 1) we use a mixture
of Gaussians technique to generate the background model instead of their median
based technique; and 2) we alternate between a full background model estimation
using multiple neighboring frames and motion compensation of the previous frame
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3.4. PROPOSED SEGMENTATION WITH GLOBAL MOTION

(a) O dB estimation error (b) 2 dB estimation error (c) 3 dB estimation error

(e) F-measure at different levels of noise estimation error
Figure 3.3: Sensitivity of segmentation to noise estimation error: (a), (b), and (c)
show visual output at different levels of noise estimation errors for 25 dB noisy Hall
Monitor sequence; (e) the F-measure comparison using ground truth segmentation.
Accurate noise estimation is important to segmentation.

background model as illustrated in Fig. 3.5. Our segmentation differs from [6] in
the use of color compensation in generating difference frames and how the adaptive
global thresholds are computed.

Background
Generation

G..
Segmentation Post Processing

Figure 3.4: Block diagram showing the three stages of the proposed segmentation
with global motion method.

In the first stage of the proposed method, i.e., the background generation stage,

we use a modified mixture of Gaussiane technique to the one in [5] to generate a back-
ground model of the frame. We later use the generated background model to perform
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Figure 3.5: In the background generation stage of the proposed segmentation with
global motion method, we alternate between full background model estimation using
multiple neighboring frames and motion compensation of the previous frame back-
ground model.

color-based background subtraction followed by adaptive thresholding to generate
the binary frame. The mixture of Gaussians technique assumes a stationary camera

and cannot be used as is with moving cameras. We use a video object segmentation

based global motion estimation technique to estimate the affine motion parameters
describing the camera motion. Then, for each frame Fi, we compensate its neigh-

boring frames Fí+r, where r G {— JV7., ..., — 2, -1, 1,2, ..., JVr} and Nr is the size of
the neighborhood, using Ft as the reference. In other words, we warp neighboring
frames to the coordinate system of the current frame (e.g., as in Fig. 3.6). Thus,
we obtain estimated observations of the current frame taken at different times during

which the objects of interest are moving. We use these observations to estimate the
parameters of the mixture of Gaussians background model G¡, which is the output of
this background generation stage detailed in Fig. 3.7. We measure the quality of G¡
by comparing it to Ft using the approach in [6]. As we add neighboring frames, we
monitor the derivative of the quality measure to stop the process when adding more

frames no longer improves the quality of G¡. In [6], the median is used to generate
the background model from compensated neighboring frames Fir.

For global motion estimation (GME), we use a method largely based on [63] to
estimate the affine global motion model parameters. We differ from [63] in propa-
gating the short term motion parameters to obtain the long term ones. The purpose
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Figure 3.6: Top Row: frames neighboring frame 210. Bottom row: neighboring frames
aligned to the current frame through motion compensation. Note how the bottom
row represents different observations of frame 210 with the object (the tennis player)
moving and revealing the background behind him (i.e., the referee).
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Figure 3.7: Block diagram of the background generation method. The segmentation
block marked with (*) is later detailed in Fig. 3.9

of a motion model is to describe the real motion between consecutive frames F; and

Fi_x of a video sequence at time instances I and I — I. Based on this model, motion

parameters are estimated. In GME, a single model applies to the whole frame (com-

pared to block-based local motion estimation). There are different parametric motion
models used to describe and estimate GM such as the affine, the projective and the

bilinear models. Depending on the selected model, we can control the level of detail
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of the estimated motion. The 6-parameter affine model is described by

1 dXi = a-i + a2Xi + a3yi,

dyi = a4 + a5Xi + a6y¿,

where (x¿,y¿) is the location of the ith pixel in the current frame Fi, (dxi,dyi) is the
motion vector of the corresponding pixel from the previous frame F;_i to Fi, and

O1, a2, O3, a4, a5, and a6 are the affine global motion parameters, which we group using

vector a. We use the affine model in all simulations because it can describe the

projected 2D motion of most camera motions.

With the motion model defined, we incorporate it into the Displaced Frame Differ-

ence (DFD) estimation criterion, which is based on the constant-intensity assumption.
This assumption states that the intensity remains constant along motion trajectories.
The error Edfd based on the DFD is defined as

N

EDfd{s) = ]P \Fi-Áxi + dxii Vi + dVi) - Fi(xi> Vi)\S > (3·9)
t=l

where N is the total number of pixels in Fi and s = 1 in case of the Sum of Absolute
Difference (SAD) or s = 2 in case of the Sum of Square Difference (SSD). To search
for the best set of parameters to describe the global motion, we minimize Edfd{&), or

simply E(a), using the Gauss-Newton optimization method. For increased accuracy
and improved computational cost, a multi-resolution representation, or hierarchical
representation, of an image or video frame, is used. Using this representation, the

original frame is rebuilt like a pyramid where the finest level is the original frame.
Then, the resolution between successive levels is reduced by half. After the frame
pyramid is built, the estimation of the parameters a starts at the coarsest level and

progresses to the next finer level until it reaches the finest level. The result from
the previous coarser level is projected to the next finer level as an initial solution
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or search point. We use the method in [63] for outliers rejection. Using an initial
estimate for the translation parameters, we reduce the number of iterations required

by the Gauss-Newton optimization method to reach a local minimum. Normally, we

use 3-step search for initial estimation in the first six frames and motion parameters

prediction from the seventh frame onward. Motion parameters prediction is faster

than the 3-step search. However, this scheme of 3-step search followed by prediction

is usable when performing GME on consecutive frames. When direct estimation is

used to bring non-immediate neighboring frames to the coordinate system of the

current frame, a larger search radius is needed in the initial estimation and motion

parameters prediction cannot be used. To still benefit from the computational savings

of the motion parameters prediction and avoid re-estimation of GM parameters, we
propagate the motion parameters for far (i.e., non-immediate) neighboring frames,
also known as long-term parameters, using the estimated consecutive parameters,

known as short-term parameters, until we reach the current frame. We demonstrate

this in Fig. 3.8. The long term parameters for the example in Fig. 3.8 are propagated

using

a[-2^1 = 4 + 4~14 + 44~1;
a2

Z-2->/ = 44 x + 44 x;
4~2^' = 44~1 + 44~1;
a'-2-' = 4 + 4 *4 + 4 *4;
a[-^1 = a?2-'a? + a?5-?;
4"2^' = 4"X + 44 - (3-10)

After 2Nr + 1 observations of the current frame become available, we use them

to estimate the parameters of the mixture of Gaussiane model. We represent each
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Fut Ft-T F1

Figure 3.8: Long-term motion parameters are propagated from short-term motion
parameters.

pixel in F/ as a random vector Z of three color components (e.g., RGB). Consider r
to be the index of the sequence of observations of the current frame Fi1. obtained by
compensating the motions in neighboring frames. Any pixel in Fy belongs to a class

k G {1,2,..., ?}, where K is the number of different classes we wish to consider. We
use K = 3.

We estimate which class k lead to the current pixel observation ? C Z. This is

now a pattern classification problem of obtaining the maximum posterior probability

Pr(k\z) governed by Bayes 's theorem

Pr(k\z) = Pr(z\k)Pr{k)
P&) : (3.11)

where PT{z\k) is the likelihood probability of ? corresponding to k, Pr{k) is the prior
probability of a class k and Pr(z) is a scaling factor. We use a Gaussian model for
the distribution of Z given a class k

Pr(z\k)
1

(2p)t|S*)?.|*
re -OMz-ßk^V^Zriz-ßKr) (3.12)

where µ*.G and S&.G are the mean and covariance of Pr(z\k) at r, D is the dimension of
Z, and T is the transpose. Pr(k) is a weighting related to the frequency of a certain
color A;. We assume S*·.G = s\? , where / is the identity matrix, to avoid the expensive
matrix inversion at the expense of some loss in accuracy. With this formation, the

51
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distribution of the next pixel Z in the observation Fir is characterized by a mixture

of Gaussians model. To form the class probabilities Pr(k), we use a weighting factor
cjfc which records how many pixels where matched to class k. As we get new pixel

values, we classify them into a given class k and use their value to update our model.

The classification is done using

max [\F«ed(Xl, yi) - µ*?\, \F°™{xu y,) - µ%?>\, |F^e(x¿, y,) - µ^\}< A1**,
AFRed,Green,Blue^ y¿) _¿ ^ (3 -^

where F^ed{xiì y^), F^reen{xiì y¿), F^lue(xi, y¿) are the red, green, and blue components
of the pixel, respectively, µ^e/, µ^ee? , µ?^ are the means of the kth Gaussian model
of the pixel color components, Ai = 2 is a hysteresis based variance threshold, and

ak,T is the standard deviation of the kth model. We stop matching when the condition
is met and update the components using

ßuf = ßt-i + Ot[F^(Xi, yi) -^1]; (3.14)
fâT. = ßt-? + «lFiGrreen(^yi)-vte™y, (3.15)
µ?? = µ^? + a^^?^?^-µ^]; (3.16)

Ck,r — CFk,r-\ + OL „„ „I T7iRed,Green,Blue / \ Red,Green,Blue \ /n -, «\max\Flr . [XuVi)- µ^t' \-akr-\ (3.17)
^k,r — <¿k,r-l + 1- (3.18)

where a = 0.005 is the update factor. If the pixel does not match with any of

the already formed classes, it is used as the mean for a new class that replaces the

least probable class. To reduce computations, hysteresis use is limited to the situation

when a match with the first background component is found. Meaning, we update the
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parameters of the background or first component subject to the following condition

max [\F^d(xh Vl) - µ«?\, \F^een(xlyyt) - µ%?»\, ¡F^^yJ - µ««|] < X2ahr
? F^GT^Blue{x^yi) f 0(3.19)

where Ä2 = 1 is the second hysteresis based variance threshold. We initialize the

means of the first model to the observation Fi and impose the condition Flre ' reen' ue(xi,yi) f
0 to avoid the weights of black pixels around the border of the compensated frames

from exceeding those of actual pixels and thus appearing in the background model.

This is an advantage over using the median as black pixels around the border move

from being outliers rejected by the median to being part of the background model.
This situation happens for large neighborhood sizes, which is needed for slow moving

objects. Another advantage is related to the progressive addition of compensated

frames. If we judge the quality of the produced background model to be insufficient

and require adding more compensated frames, we use the same already developed

mixture of Gaussiane model and update it with the new observations.

After the background model G¡ is generated, we use it with the current frame F¡
for color based segmentation as shown in Fig. 3.9. First, we produce the difference

frames Dj , Dj, and Dj in each of the three color channels Y, U and V. Next, we use
color information in Df and D]' to compensate the gray-level differences in Dj for
cases when the luminance value of the object surface is close to that of the background.

Finally, we threshold the compensated Dj . For thresholding, we begin by applying an
empty frame detection method. If the frame is empty, we use significance thresholding

to calculate an empty-frame threshold, denoted tf , to binarize the frame. If the
frame contains regions of change (ROC), we calculate separate thresholds for ROC
blocks, denoted t[, and non-ROC blocks, denoted tf. Local block-based tf and t[
thresholds are then averaged to produce the global threshold, denoted t. Because
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of propagated motion estimation errors, Dj contains more errors than is normally
found in background subtraction with fixed cameras. This tends to raise t and causes

erroneous white pixels in Bi. We compensate for this increase in t by multiplying it
with an experimental gain a = 0.7 and use the adjusted value to binarize the color-
compensated difference frame Dj and produce the binary frame Bi. More details on
the color based background subtraction and the adaptive thresholding techniques are
found in [42,49], respectively.
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Figure 3.9: Proposed segmentation by integrating color change detection followed by
global thresholding with MoG background generation.

Due to the errors from motion estimation, Bi contains many erroneous small
blobs. Another motivation for using color background subtraction instead of the
gray-level background subtraction used for fast processing is that when using the
gray-level background subtraction technique, the maximum filter connects these blobs

forming larger errors. These large errors are misclassified as object pixels. The color
background subtraction technique does not use a maximum filter, but because of color
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compensation leads to less holes and gaps inside the objects.' We post process Bi using

morphological opening, closing, and by holes filling to remove the errors from the final

output of color segmentation. Noise can interfere with the global motion estimation

process leading to inaccurate global motion parameters. This leads to misaligned

compensated frames and to eventually reduces the quality of the background model.

While we use a global motion estimation method [63] which is more robust to noise
than other GME methods (e.g., [62]), the propagation of motion parameters from
short term to long term parameters aggravates the errors.

3.5 Results

3.5.1 Parameters and Limitations

For the fast segmentation method, we use gum = 63 and quantization levels 80, 120,

and 200 for thresholding [68], which produce temporally stable objects for tracking
in normal illumination and contrast conditions.

For the segmentation with global motion, we use a maximum neighborhood size

of Nr = 10. Increasing Nr reduces the quality of the generated background models

due to accumulated estimation and compensation errors. Lowering it is not enough

to completely remove objects from the background model. Both the proposed and

reference approaches rely on detecting the background behind the objects as they

move. When these objects move very slowly or remain static, they essentially become

part of the background and both algorithms cannot detect the details behind them.

Relying on spatial techniques like inpainting can help solve this problem.
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3.5.2 Measuring Accuracy

We measure accuracy using the statistical F-measure. It incorporates both precision

and. recall. Precision is defined as the number of relevant results retrieved by a search

divided by the total number of results retrieved by that search. Recall is defined as

the number of relevant results retrieved by a search divided by the total number of
existing relevant results. Precision and recall are calculated using

TP TP
Precision=—— —— , Recall = -—-——— , (3.20)TP + FP' TP + FN' K '

where TP is true positive, and FP is false positive, and FN is false negative. F-

measure is calculated from precision and recall using

_, „ Precision ? Recall ,„^-,sF-measure = 2 · — -. (3.21)Precision + Recall

It is used to compare the segmentation output of a method to that of another method

or to the ground truth segmentation to evaluate its accuracy [6].

3.5.3 Segmentation with fixed camera

The performance of the fast segmentation method with a fixed background is eval-

uated in [68] and the performance of the background update technique in [5]. In-
tegrating both methods removes the restrictions of a fixed background from [68] by
updating the background. We verify that the performance of [68] is retained after inte-
grating the background update technique using the statistical F-measure. We use the

F-measure to compare the output of the fast segmentation method with the ground

truth background to that with the automatically generated background model. We

use the sequences Survey, SlTl, Occlusion Vandalism, Intelligent Room, Guy, and

Campus in Fig. 3.10 for testing segmentation with fixed camera. The F-measure com-
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parison results are shown in Fig. 3.11. We also compare the segmentation outputs

visually in Figs. 3. 12-A.4. The accuracy (F-measure) is on average 96% indicating
that the performance of the method in [68] was retained after the background up-
date technique is integrated. This can also be confirmed visually in Figs. 3. 12-A.4.

In Fig. 3.12, because of temporal averaging in background generation, less errors

are produced in the segmentation output for the automatic background case for the

Survey sequence. In Fig. 3.13, the automatically generated background in the last

frame produce less false negatives for the far object for the SlTl sequence. It also

produce less false positives for the Vandalism Occlusion sequence in Fig. A.l in the

appendix. The results for the sequences Intelligent Room, Guy, and Campus in Figs.

A. 2, A. 3, and A.4 in the appendix are visually similar. In Chapter 5, we demonstrate

the benefits of integrating the background update technique from the point of view

of tracking and event detection.
CTS BiS
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Figure 3.10: Video sequences used for testing segmentation with fixed camera.
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Survey
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Campus

Figure 3.11: Objective comparison of the fast segmentation method with the ground
truth background compared to the segmentation with the automatically generated
background model using [5]. The accuracy is on average 96% indicating the per-
formance of the fast segmentation method is retained after its integration with the
background update method.
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Figure 3.12: Subjective comparison of the fast segmentation method with ground
truth and automatically (using [5]) generated background models for frames I = 0 to
100 of the Survey sequence.
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Figure 3.13: Subjective comparison of the fast segmentation method with ground
truth and automatically (using [5]) generated background models for frames I = 0 to
100 of the SlTl sequence.
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3.5.4 Segmentation with global motion

We use the eleven video sequences in Fig. 3.14 to evaluate the performance of the

proposed segmentation method with global motion. The Stefan sequence shows a

tennis player. We show the results for the part of the video sequence in which the

object (tennis player) moves very fast to hit the ball. The sequences Lab and Guy
Zoom show pure translation and pure zoom motions, respectively. The sequence

Mountain is part of a BBC documentary and shows a leopard in fast irregular camera

motion. The sequence Race shows kart racing with the objects moving towards the

camera. The sequence Football shows a game of American football with fast tracking

motion. The sequence Biathalon shows an object in a high texture environment. The

sequences Figure Skating and Soccer show objects in homogeneous environments.

The sequences Formula 1 and Hockey show fast pan camera motion. Note that

sequences like Mountain, Football, Figure Skating, Soccer, Biathalon are extracted

from compressed video sequences.
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Figure 3.14: Video sequences used for testing segmentation with moving camera.

We can separate the process of segmentation with global motion to two phases.

The first is background generation followed by the second which is segmentation. We
start by fixing the segmentation method to that of [6] and compare the segmentation
outputs obtained using the backgrounds generated by proposed and reference [6]
methods. The results in Fig. 3.15 show that the proposed background generation
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method improves the segmentation accuracy.

We now fix the background generation method to the proposed one and vary

the segmentation technique. The results are shown in Fig. 3.16. The proposed

segmentation method retains or exceeds the accuracy of the reference segmentation

method for all sequences except the Guy Zoom sequence due to the similarity between

the street and cars colors and low contrast, while being less computationally complex.

We finally compare the segmentation output of using the proposed method and the

method in [6] (with [62] for GME) as a whole in Fig. 3.17. The propoáed method as
a whole retains or exceeds the accuracy of the reference method especially during fast

motion (e.g., Stefan), while reducing its complexity in both background generation
and segmentation.

We visually compare the backgrounds generated by the proposed and reference

methods in Figs. 3.18-3.20. In Fig. 3.18, both the proposed and reference [6] methods
produce visually accurate background models. The proposed method handles the

frame corners better than the reference method in Fig. 3.19 and causes less blurring

as seen in the Football sequence. In Fig. 3.20, the proposed method handles the fast

motion in the Formula 1 sequence better than the reference method. It also generates

a cleaner background model for the Figure Skating sequence.

We visually compare the segmentation outputs in Figs. 3.21-A.7. The segmen-

tation output for the Stefan video sequence in Figs. 3.21, 3.22 shows the proposed

method produces more connected regions than the reference method. It also produces

less false positives. Both the proposed and reference methods produce accurate object

masks for the Race sequence with slow camera motion in Figs. 3.23, 3.24, however,

the proposed method handles fast motion better (generates less false positives) than

the method in [6] as seen in Figs. 3.25,3.26 for Formula 1 sequence, in Figs. 3.27,
3.28 for the Football sequence, and in Figs. 3.29, 3.30 for the Hockey sequence. Both

the proposed and reference methods correctly detect the leopard in the Mountain
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sequence in Figs. 3.31, 3.32, but the proposed method does not produce artifacts

around the frame boundaries and corners. Both methods are challenged with the

similar colors of the cars and street in the Guy Zoom sequence in Figs. 3.33, 3.34,

but the proposed method produces less false negatives. In the Biathalon sequence in

Figs. 3.35, 3.36, the reference method produces less false negatives around the left

leg area of the object, but it misses the ski poles which the proposed method detects.

In Figs. 3.37, 3.38, the proposed method produces less false negatives than the refer-,

enee method for the Lab sequence. This can also be observed with the FigureSkating

sequence in Figs. A. 5, A.6, and Fig. A. 7 with the Soccer sequence in the appendix.

A main contribution of the proposed method is reducing the complexity of the

reference method in [6], while retaining or exceeding its segmentation accuracy. The
complexity is mainly due to repeated background generation with an increasing neigh-

borhood size. Recall that iVr is the maximum neighborhood size and let q be the

preliminary neighborhood size. So, we start from q and move our way up to Nr and

as we go from one. g to the next, the number of frames merged to produce the back-

ground model is 2q + 1 (considering frames before, after and including the current
frame). In the worst case scenario, the total number of frames merged in [6] is

Nr Nr M2 + /VC=^2g+l = 2^g + l = 2 T r+l, (3.22)
9=1 9=1

while in the proposed method, we do not need to merge frames from the previous step

as they are already included in our model and we just need to supply the background

generation step with the additional observations from the current step. Thus, the

number of frames merged for the proposed method is C = 2Nr + 1. The method

in [6] uses the median to produce the background frame which has a complexity

of 0(Clog(C)), while the proposed method uses linear search to find the Gaussian
model best matching the new pixel observation which has the linear complexity 0(C).
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Substituting C and including the frame size N since it is the other factor affecting

complexity, the complexity of the technique in [6] is 0(NN^log(Nr)) compared to
that of the proposed method 0(NNr).

Since we already have the motion parameters describing the motion between Fi

and Fi_i, and given that consecutive background models are highly similar, another

major reduction in complexity comes from alternating between full estimation using

neighboring frames for odd I and compensating the motion of B\_\ to produce B\

otherwise. This further reduces the complexity. Note that further complexity reduc-

tion can be achieved if we use background model compensation more than once in

between full estimations, however, this reduces segmentation accuracy on the frame
boundaries.

We measured the time needed by the proposed and reference methods to generate

the color background model from motion compensated CIF frames (e.g., the Ste-
fan in Fig. 3.18) sequence on a Dual-Core AMD Opteron 1000 MHz Processor and
Linux. The proposed background generation technique is more than 5 times faster

than that of [6] due to eliminating the need for repeated median blending and to al-
ternating between full background model estimation and previous background model

compensation. The proposed segmentation is 3.7 times faster than the segmentation

of [6].

3.6 Summary

This chapter proposed first a fast video object segmentation method with no global

motion by integrating a gray-level background subtraction followed by thresholding
technique with a mixture of Gaussiane background update technique. The proposed

method retained on average 96% of the accuracy of the background subtraction tech-

nique while eliminating its reliance on a fixed background model.
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The chapter then proposed a video object segmentation method with global mo-

tion. The proposed method starts by using short-term consecutive motion parameters

estimated using a segmentation-oriented global motion estimation method to calcu-

late the long-term motion parameters. It then used the long term motion parameters

to warp neighboring frames into the coordinate system of the current frame, thus cre-

ating multiple observations of the current frame with the objects of interest moving

to reveal the background behind them. The proposed method used the observations

to estimate the parameters of a mixture of Gaussiane model and extract the back-

ground model several times faster than the median based approach of a recent method.

Further complexity reduction over the recent method was achieved by alternating be-

tween full estimation of the background model using multiple observations and motion

compensation of the previous frame background model. The generated background

models are then used by a color based background subtraction technique followed by

adaptive thresholding to produce the binary outputs, which are post-processed using

morphological operations to produce the binary outputs. The proposed segmentation

with global motion method retained or exceeded the performance of a recent segmen-

tation technique, while being faster in background generation and segmentation.
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Figure 3.15: Objective F-measure comparisons for Stefan, Lab, Guy Zoom, Mountain,
and Kart Race sequences between the proposed and reference background generation
techniques using the segmentation of [6] .
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Figure 3.16: Objective F-measure comparisons for Stefan, Lab, Guy Zoom, Moun-
tain, and Kart Race sequences between the proposed and reference [6] segmentation
techniques using the proposed background generation method.
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Stefai

Frame Number
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Figure 3.17: Objective F-measure comparisons for Stefan, Lab, Guy Zoom, Mountain,
and Kart Race between the proposed and reference [6] methods.
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Figure 3.18: Visual comparisons of the generated backgrounds between the proposed
and reference methods [6] for the Stefan, Lab, and Guy Zoom sequences
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Figure 3.19: Visual comparisons of the generated backgrounds between the proposed
and reference methods [6] for the Mountain, Race, and Football sequences
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Figure 3.20: Visual comparisons of the generated backgrounds between the proposed
and reference methods [6] for the Biathalon, Formula i, and Figure Skating sequences
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Figure 3.21: Visual comparison of the segmentation output for frames I = 212 to 227
of the Stefan sequence between the proposed and reference [6] methods.
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Figure 3.22: Visual comparison of the segmentation output for frames / = 230 to 245
of the Stefan sequence between the proposed and reference [6] methods.
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Figure 3.23: Visual comparison of the segmentation output for frames I — 42 to 57
of the Race sequence between the proposed and reference [6] methods.
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Figure 3.24: Visual comparison of the segmentation output for for frames I
75 of the Race sequence between the proposed and reference [6] methods.
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Figure 3.25: Visual comparison of the segmentation output for for frames / = 1
27 of the Formula 1 sequence between the proposed and reference [6] methods.
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Figure 3.26: Visual comparison of the segmentation output for frames I = 30 to 45
of the Formula 1 sequence between the proposed and reference [6] methods.
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Figure 3.27: Visual comparison of the segmentation output for frames I = 10 to 15
of the Football sequence between the proposed and reference [6] methods.
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Figure 3.28: Visual comparison of the segmentation output for frames I =
of the Football sequence between the proposed and reference [6] methods.
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Figure 3.29: Visual comparison of the segmentation output for frames I = 40 to 50
of the Hockey sequence between the proposed and reference [6] methods.
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Figure 3.30: Visual comparison of the segmentation output for for frames / = 52 to
62 of the Hockey sequence between the proposed and reference [6] methods.
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Figure 3.31: Visual comparison of the segmentation output for frames I = 22 to 32
of the Mountain sequence beUveen the proposed and reference [6] methods.

81



3.6. SUMMARY

¦
VJi « ,

Ir

Mountain

Proposed

Reference

Figure 3.32: Visual comparison of the segmentation output for frames / = 34 to 44
of the Mountain sequence between the proposed and reference [6] methods.
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Figure 3.33: Visual comparison of the segmentation output for frames I = 770 to 775
of the Guy Zoom sequence between the proposed and reference [6] methods.
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Figure 3.34: Visual comparison of the segmentation output for frames / = 776 to 781
of the Guy Zoom sequence between the proposed and reference [6] methods.
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Figure 3.35: Visual comparison of the segmentation output for frames Z = 10 to 15
of the Biathalon sequence between the proposed and reference [6] methods.
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Figure 3.36: Visual comparison of the segmentation output for for frames I = 16 to
21 of the Biathalon sequence between the proposed and reference [6] methods.
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Figure 3.37: Visual comparison of the segmentation output for frames I = 302 to 319
of the Lab sequence between the proposed and reference [6] methods.
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Figure 3.38: Visual comparison of the segmentation output for frames / = 320 to 335
of the Lab sequence between the proposed and reference [6] methods.
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Chapter 4

Object Tracking with Occlusion

and Split Handling

4.1 Introduction

Tracking is the process of creating temporal links between objects in consecutive

frames. Reliability and computational complexity are two important performance

measures for tracking. Reliable trackers maintain for each tracked object a unique

identity during its lifetime in the scene. This chapter proposes a novel algorithm for

the real-time detection and correction of occlusion and split in object tracking for

surveillance applications. The detection and correction of occlusions is referred to

in this thesis as handling occlusion. The chapter assumes a feature-based model for

tracking and is based on the identification of sudden variations of spatio-temporal
features of objects to detect occlusions and splits. The detection is followed by a

validation stage that uses past tracking information to prevent false detection of oc-

clusion or split. Special care is taken in case of heavy occlusion, when there is a

large superposition of objects. For the detection of splits, in addition to the analysis
of spatio-temporal changes in objects features, our algorithm analyzes the tempo-
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ral behavior of split objects to discriminate between errors in segmentation and real

separation of objects, such as in a deposit event. Both objective and subjective ex-
perimental results show the ability of the proposed algorithm to detect and correct,

both, split and occlusion of objects. The proposed algorithm is suitable in video

surveillance applications due to its good performance in multiple, heavy, and total

occlusions, its ability to differentiate between real object separation and faulty object

split, its handling of simultaneous occlusion and split events, and its low computa-
tional complexity. The algorithm was integrated into an online video surveillance

system and tested under several conditions with promising results.

4.2 Review of Related Work

Successful tracking of objects is a critical step in any automated video surveillance

application. Object tracking can be defined as the process of establishing unique

correspondences between objects in a video sequence. Establishing of such corre-

spondences provides necessary information to extract high-level semantics from the

video sequence such as events and behaviors of objects.

The tracking process is challenged by incidents of occlusion and split. Occlusions

occur either due to real occlusion (i.e., one or more objects mask or overlap regions
of other objects in the 2D image plane) or due to limitations of the segmentation
algorithm used (e.g., when an object is split into segments). Events of partial or total
occlusion are common in real video sequences with multiple objects. Splits occur

either because of real split (e.g. an object deposits another object or two or more
objects physically move apart or separate) or because of errors in the segmentation
algorithm due to illumination changes, shadows and noise.

A good object tracker detects both real and erroneous types of occlusion and split

and corrects the tracked object features according^. Many tracking algorithms have
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dealt with these problems [7,8,10,71-78]. In most of the cases, the detection and
correction of occlusion and split is dictated by how tracking is performed.

Tracking algorithms can be categorized into template-based, region-based, and

feature-based. They can also be categorized into segmentation-based or without prior

segmentation. Template-based trackers do not require object segmentation as op-

posed to region and feature based trackers. In template-based tracking [71-73], the
features of tracked templates are learned in the initialization phase of the tracking

process. The tracker then searches the frame for these features. Occlusion is detected

by the absence of the template features in the frame beyond a certain threshold.

Objects in such algorithms are not tracked during occlusion but after object reap-

pearance. While such algorithms work well for tracking of single objects, they fail

to robustly track multiple objects during occlusion. Split is not explicitly detected,

however, if the object is split, the minimization of the template's feature-comparison

function chooses to which portion of the split object the match is made.

Particle filters [79-83] have recently gained popularity in the implementation of
template based trackers. They offer good results for the case of single or limited multi-

ple object tracking. However, particle filter-based tracking methods are challenged by

the nonlinear characteristics of objects and of the observation model, which requires

them to often run at high update rates [82]. Moreover, in many applications, the prior
information available for the environment is limited. The complexity of the tracking

process increases with multiple objects and multiple cameras. This is especially true

in a video surveillance setting with objects frequently entering, leaving and occluding

in the scene. With multiple objects, particle filter tracking is hard and the perfor-

mance highly depends on the ability to account for all statistically significant modes

with enough samples [84]. Particle filters are known to handle partial short-duration
occlusion, but sometimes lose some objects when multiple objects are involved or

when the occlusion is heavy or total as the features of the objects are increasingly
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missing from the scene. When objects are lost due to an occlusion, updating the
models can pose a problem for the tracker later when occlusion ends [83].

A layer-based tracking algorithm is presented in [85]. It divides the frame into
multiple depth-ordered layers. Occlusions are detected by defining the pixel-wise layer
visibility used to make the system aware of the pixels in the outer most foreground
layer that are occluding pixels in one or more foreground or background layers. Han-
dling of occlusion is through prevention of object update during occlusion. The main
drawback of this method is associated to the high computational cost of computing
and maintaining layer information.

Region-based algorithms [8, 74] divide objects into spatial or motion consistent
regions. Region descriptors are projected into and corrected in the next frame. Oc-

clusion is detected when a set of pixels is found to belong to two or more regions
and is corrected by separating the occluding objects. Split is detected when a dis-
connected region is found with region descriptors matching a previously connected
object region. Split objects are merged to the object with minimum region descriptor
difference [74] or closest in terms of distance [8].

Feature-based tracking algorithms [7, 10, 75-77] model objects using a set of ex-
tracted features such as object shape, contour, motion, color or histogram. Tracking
is performed by solving the object matching problem. Occlusion in such algorithms
is detected as a sudden change in object features and is corrected by temporal filter-
ing. Kaiman filtering is often used for temporal object prediction [76]. Feature-based
tracking algorithms are sometimes confused by object disappearance in case of total
occlusion. The method in [10] identifies and handles long-lived occlusions by creating
a group that contains the information from the occluded objects. Once the occlusion

is finished the algorithm identifies a split and correctly label the separated objects.

In this chapter, we propose a novel algorithm for the real-time detection and
correction of occlusion and split in object tracking for surveillance applications. We
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assume a feature-based model for tracking and analyze the spatio-temporal features of
objects to detect sudden variations indicating a possible occlusion or split. Detection
is followed by a validation stage using past tracking information to prevent false

detection of occlusion or split. In the detection and correction of occlusions we take

special care in treating heavy occlusion, when there is a large superposition of objects.
In this case the system avoids updating the video objects features with unreliable

(e.g. shape and motion) information. Occlusion is corrected by separating occluded
objects. For split detection, in addition to the analysis of spatio-temporal changes
in objects features, our algorithm analyzes the temporal behavior of split objects to
discriminate between errors in segmentation and real separation of objects, such as
in a deposit event. Split is corrected by physically merging the split objects.

The remainder of the chapter is organized as follows. Section 4.3 gives an overview
of the proposed algorithm. Section 4.3.1 introduces the proposed scheme for occlu-
sion detection and handling. Section 4.3.2 introduces the proposed scheme for split
detection and correction. Section 4.4 presents objective and visual simulation results,
and Section 4.5 summarizes the chapter.

4.3 Proposed object tracking

The terms Image Object and Video Object are used extensively throughout this sec-
tion. Image Object (IO) identifies a closed contour in the current frame Fn. The
main characteristic of this entity is that it does not include temporal information

of the object. An image object lives only in the current frame. Video Object (VO)
refers to a temporally consistent object with temporal information, such as motion,
trajectory, or visibility. A video object is updated at the end of the tracking process

with the information of the matched image object. A Video Object lives throughout
the video sequence. Two other concepts frequently used in this section are those of
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Stable Objects and Active Objects. A Stable Object refers to a Video Object that has
been in the scene enough time (normally more than one second for people surveillance
applications) to have temporally stable features. This means that features like size,
shape and position have little variation (less than ±10% from frame to frame) in time.
An Active Object is one that is currently in the scene. An object becomes inactive
when it exits the scene, or it becomes completely occluded by another object.

The proposed algorithm receives as input a list of image objects {10¿}n detected
in the current frame Fn and described by closed contours. The image object is labeled
by i 6 {1, 2, .., Nn] with Nn being the number of image objects in frame Fn. It also
receives as input a set of video objects (VO7 }n_i from the previous frame Fn_i. The
video objects are labeled by j e {1,2, ..??_?} with Nn_i denoting the total number of
video objects detected and still active in the previous frame Fn_i. The output of the

algorithm is the updated set of video objects {VOj)n after matching and correction
of occlusion and split. To avoid simultaneous split and occlusion errors, at the end
of the occlusion and split correction steps, we validate all matches between image
and video objects. The validation stage consists of evaluating the confidence level
for each match based on a confidence threshold. Only the matches that have a large
confidence (larger than 80%) are considered good matches and are kept for the next
stage. The matches that do not classify as good matches (confidence below 80%) are
removed and we repeat the process of occlusion and split detection. Two or three

iterations are normally sufficient to solve all the problems of simultaneous split and

occlusion.

The main steps of the proposed algorithm are (see Fig. 4.1):

1. Match objects in {IO¿}„ to objects in {VOj}n_i based on feature similarity
using [7], where image and video objects are characterized by a set of simple
features (e.g. size, shape, position, and, for the video object, trajectory and
motion). The previous frame is represented in Fig. 4.1 by a one frame delay
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(i.e., ?-1).

2. Detect and fix occlusions and update {IO¿}„ (see Section 4.3.1).

3. Detect and fix split and update {10.¡}n (see Section 4.3.2).

4. Validate correspondences between objects in {IO¿}„ and {VO¿}n_?-

d. If validation fails, go to step 1 (possible simultaneous split/occlusion).

6. Construct the new {VOj}„ using {VOj}n_i, the corrected {IO¿}„ and the vali-
dated matches.

Adaptive
Thresholding

Contour and feature
extraction

Motion
detection

Matching

(VCyn

Figure 4.1: Block diagram of tracking algorithm [7], where the proposed occlusion
and split handling are integrated to test their effectiveness.

In the matching step a video object is compared to near-by image objects and

a confidence level is assigned to each comparison (or correspondence). An image
object is near a video object if it is located inside a spatial neighborhood whose size

and center are determined using the size, center and previous motion of the video

•object. The image object with the best correspondence wins the match to that video

object. While building the correspondence each feature of the image and video objects

contributes some votes to the correspondence, increasing or decreasing its confidence

level.
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4.3.1 Occlusions detection and correction

Occlusion detection

The detection of occluded objects is based on the detection of significant deviations
in object features from the previous state of the tracking algorithm. The main idea

is to find which object in the current frame has deviated enough from its previous

features to trigger the occlusion detection process. This detection process will take

into account the previous tracking state as well as the information from the current

frame. To accomplish this, a set of occlusion detection rules are defined to find video

objects VO; and VOfc that are active in the video object list {VO¿}„_i of the previous
frame and that have occluded to form the image object I0OCC in the image object list

{I0¿}„ for the current frame. Every image object I0¿ in the current frame matched
to a stable video object VOi is considered a candidate for occlusion and is checked

for compliance with all the presented rules ('and' operation).

Rule 1 The video object VO; is stable, active and matched to an image object I0¿

in the current frame Fn. This video object VO; belongs to the set {VO;}poCc of
possible occlusions if:

VO; e {??,-}?_! ?
< a(VO,)>Tage ? , (4.1)

3î e {1 Nn] I match ( VO;, I0¿ ) > Tcorr?

where a ( · ) returns the age (number of frames) of the objects and Tage is an age
threshold defining the minimum age an object stays in the scene to be considered

stable. The matching function match ( ·, · ) returns the confidence level of the
match between the considered video and image objects. This confidence level

is then compared to the match- or correspondence-confidence threshold Tcorr to

decide if the match is accepted. All objects in this list are checked with rules
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2-5 to verify occlusions.

Rule 2 There is a significant outward change at one of the sides of the Minimum
Bounding Box (MBB) of the matched video object VO/. In order to verify if
there is a significant outward change at a given side of the MBB, we use a

direction function r (D) which returns a logical value indicating a change at
the corresponding side.

, m . ,TUp(D)-Tn0(D)I > Tchg ?r(D) = { , (4.2)
o(D)(mc(D)-mp(D)) > O

where D e {Left, Right, Up, Down} is a side in the object's MBB. The motions
rrip = (mXp,myp) and rac = (mXc,myc) are, respectively, the previous motion
of the video object VO/, and its estimated motion at the current frame. The

function o (D) returns 1 or — 1 depending on which side is verified for an
outward change (possible occlusion):

Riqht V Down
(4-3)

Left V Up

This o ( · ) function is introduced to take into account the fact that an outward

change in the direction of the axis (Right or Down) is positive, while an outward
change in the opposite direction (Left or Up) is negative. Motion rac(D) is
the motion of the corresponding side of the object's MBB. The threshold Tchg
defines the amount of change in the motion of a side that we consider a deviation
from a normal behavior.

Rule 3 There is a unmatched object VO¡t G {VOj}„_i close to a side D of the
object VO; under consideration (the matched object) where a change has been
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detected, i.e.

3VOfc I {

match ( VOfc, IOi ) < Tcorr Vz G {1, . . . , Nn) ?
d(VOfc,VÒi) < Tdist ? > (4-4)
P(VO^VOk) = D ?
r (D) = true

where the function d ( ·, · ) refers to the Euclidean distance between two objects
and Tdist is a distance threshold used to decide when two given objects are close

to each other. The function ? (VO;, VOfc ) returns the relative position of VOfc
with respect to VO;.

Rule 4 The area A of the image object resulting from the occlusion I0OCC is larger

than the area of the smaller of the two objects ( VOfc and VO;).

' A ( I00CC ) > min{A ( VOfc ) , A ( VO/ )). (4.5)

Rule 5 The unmatched object VOfc has also experienced, like the matched object

VO/ (see Rule 2), a significant change in the corresponding side of the MBB if
matched to the same image object I0OCC.

r(D) = true for VOfc if r(D) = true for VO; , (4-6)

where D refers to the side of the MBB directly opposite to D.

Declaration of occlusion

Once we have analyzed a candidate occluded object and decided that it is occluded, we
declare an occlusion event containing the identification of the involved video objects,

the identification of the image object and the estimated positions (only the MBBs)
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of the occluded video objects in the current frame as

Occ¿ - {I0occ, VO¿, VOfc, MBB(Z, n), MBB(A:, n)}, (4.7)

where I0OCC is the image object (in the current frame) that contains the two occluded

video objects VO* and VOfc. The estimated MBBs, MBB(Z, n) and MBB(fc,n), re-
spectively designate the estimated Minimum Bounding Boxes of video objects VO/
and VOfc in the current frame Fn.

We distinguish between two different cases for the estimation of the position of

the occluded video objects VO; and VOfc in the current frame:

1. The occlusion produces a small overlapping of the involved objects. In this
case, the occluded objects preserve most of their shape, making their extracted

features, including motion, reliable. We estimate the new positions by using the
last known motion of each object, i.e. the motion in the previous frame Fn_i,

MBB(Jk, n) = MBB(A;, n -l)+mp(Vu*),
___:. (4-8)
MBB(Z, n) = MBB(Z,n-l)+mp(VO¿),

where mp(VOk(i)) is the motion of the video object VOk(I) in the previous frame
Fn_i. The "+" operation in this context means that the MBB of the video

object in the previous frame is moved based on the motion of the object in the

previous frame.

2. The occlusion involves significant parts of the objects (heavy occlusion). In this
case, when the overlapping of objects is very high, it is possible to temporarily
"lose" one of the objects. If the unmatched object VOfc is previously "lost" , its
features, especially its motion, are unreliable. Using those features to estimate

the new position on the object could result in an inaccurate estimation. In
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this case we make use of the average motion of the object before the occlusion

started. This way we avoid using inaccurate motion in the prediction stage.
The estimation of the new positions in case of heavy occlusion is then

MBB(A;, n) = MBB(A;, L) + (n - L)mL(VOk),
. (4-9)
MBB(J, n) = MBB(¿,n-l) + mp(VOi),

where L is the last frame where the object was not occluded (n — 1 if the object
is not "lost"). The motion m¿ refers to the average motion of the video object
in frame Fi1. and is multiplied by the time difference to account for the time
the object is "lost". Once the heavy occlusion is finished, objects recover their

normal shape. The motion is then re-estimated based on the position of the
objects before the occlusion started and the new position after the occlusion.

At the end of the occlusion detection process we have a list OLn = {Occ,}n i G
{1, . . . , On) of occlusion events each containing the necessary information to handle
the occlusion. On is the number of occlusion events in the current frame. It is

important to note that there is an occlusion event for each unmatched video object
VOfc in the previous frame that is detected as occluded in the current frame. The

number of occlusion events On may then be different from the number of image objects
in the current frame Fn containing occluded video objects. These two numbers differ
in case of multiple occlusions as we explain in the following section.

Multiple occlusions

The proposed set of rules (1-5) return a list of occlusion events related to video objects
from the previous frame that are occluded into a single image object in the current
frame. In the simplest case, two video objects are occluded into a single image object.
This case is easily handled by separating the image object into two objects that may
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be matched to the two occluded video objects. It is also possible, however, to have a

case of multiple occlusions.

Multiple occlusions happen when more than two video objects are occluded into

a single image object. In this case we detect several occlusion events each including
the common image object I0OCC, the video object that is matched to it VO/, and one
of the unmatched but occluded video objects VO^. The occlusion list OLn contains

one occlusion event for each unmatched video object that is detected to be occluded.
An example of multiple occlusion is depicted in Fig. 4.2. In this figure three video

objects from the previous frame (VOi, VO2 and VO3) are occluded to form the image
object IOi in the current frame.

match

?
m

VO 1

Hä

JG. TOr : JVO3

?-1 ?

Figure 4.2: Multiple occlusions example.

The occlusion list OLn corresponding to this case will be composed of two occlusion
events:

OcC1 = {I01; VO2, VO1) Occ2 = 0O11VO25VO3) , (4.10)

where the common video object VO2 is the one matched to 1O1.

In order to handle the multiple occlusion cases, we modify the occlusion events

OcCj in such a way that the matched video object is not repeated in the events of the
occlusion list. We transform the multiple occlusion events list which always involves

an image object and the matched video object into a list of occlusions between two
video objects. This transformation facilitates handling of the occlusion events. For
example, in Fig. 4.2, where the matched video object VO2 is present in both occlusion
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events, we need to modify the events to ensure that the matched object VO2 is only

present in one of the events. The events of Eq. (4.10) are then modified to:

Oc^1 = (1O15VO21VOiUVO3) 0^c2 = 0O17VO11VO3) , (4-11)

The estimated MBB for the second video object (VO1) in the first event (OcC1)
accumulates the estimated MBBs of all the other objects involved in the occlusion.

In general, for a given occlusion event OcC7-, the MBB of the second object in the
event contains the MBBs of all the other video objects appearing in the list that

share the same image object. Let J and Jm be, respectively, the first and last index

in the occlusion list 0L„ of the occlusion events involving image object I00CC, then
the MBBs in the occlusion events are transformed as:

OcCj-MBB(I) = OcCj_!.MBB(2) Vj G {J+ 1, . . . , JM}, (4.12)

OcCi.MBB(2) = (J OcCi.MBB(2) Vj e{J,...,JM- 1), (4.13)

where Occ¿.MBB(2) is the MBB of the second video object involved in the occlusion
OcCj. The purpose of following this path will become clear in the next section, but the
main idea behind modifying the occlusion events is to reduce the multiple occlusions
to a series of two objects occlusions.

Occlusion correction

To correct detected occlusions, we scan the modified occlusion list OLn of the current
frame and correct one occlusion at a time. Since the list was modified in such a

way that each occlusion event involves just two video objects and one image object,
correcting an occlusion event reduces to separating the image object into two objects
based on the estimated positions of the video objects involved in the occlusion event.
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The correction strategy we propose is to extract one video object in each correction

step. The extracted object is the one matched to the common image object. The

steps of the occlusion correction process are:

1. We pick an occlusion event Occ¿ from the occlusion list OLn. This event involves

an original image object I0occ, the video object VO; matched to it and an

occluded video object VOfc containing the accumulated MBBs of all the other

occluded objects in case of multiple occlusions.

2. We extract from the image object I0OCC in the current frame the part that

corresponds to the matched video object V0¡ and the rest of the image object

becomes a new image object I0OCCi2·

3. This new image object I0occ,2 is then assumed to be matched to VOfc (the
unmatched object in the first occlusion event).

4. If the next occlusion event Occi+i involves the same image object I00CC, we

update the event with the new image object I0OCCi2 and handle the occlusion
OcCj+i. The occlusion event Occ¿+1 involves the new image object I00CCi2, the
second object from the previous occlusion event VOfc (now matched to this
image object) and an object that represents all the remaining video objects in
the multiple occlusion. This is achieved by going to step 2

5. When the next occlusion event involves a new image object, we restart the

process from step 1.

6. The process finishes when there is no more occlusion events in the list.

In Fig. 4.3 we depict the process of correcting the occlusion in the example shown

in Fig. 4.2. In this figure the first step is to extract VO2, which is the matched

object. The resulting image object contains the information for VOi and VO3. In

103



4.3. PROPOSED OBJECT TRACKING

the second step we extract VOi and VO3, resulting in three image objects that are
then matched to the corresponding video objects. In Fig. 4.3, the extracted image
objects are depicted with dashed lines while solid lines represent the MBBs.
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Figure 4.3: Correction of the occlusion scenario in Fig. 4.2

At the end of the occlusion correction stage, we have as many new image objects as
video objects from the previous frame that were found to be occluded (and without
a match in the current frame). Each video object that is matched have a unique
correspondence with an image object and vice-versa.

4.3.2 Split detection and correction

Split detection

The proposed algorithm differentiates between real splits (e.g., due to object deposit)
or splits due to segmentation errors (e.g., when one object is fragmented). The
detection of split objects is based on a set of rules (1-5) that find an image object
10; that have split from the image object IOfc which is matched to video object VOfc.

Rule 1 Every unmatched image object is considered as a possible split object. A list

{10¿}pspt of possible split image objects is build with all unmatched objects

{10,}pspt = J match (10,,VOi) < Tcorr Vi G {1, . . . ,Nn-i} |4·14)
Rule 2 There is a matched image object IO/t close to the unmatched image object
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io,.

d(IOfc,IOí)<Tdiet ?3 ??* I <( (4.15)
3ke {1,...,?^_?}| mateÄ (IOfc,VOfc) > Tcorr

Rule 3 If the MBBs of the two image objects 10; and 10*, overlap, we check if there is
an overlapping between the unmatched object 10; and the motion-compensated
matched video object in the current frame MBB(fc, n) as defined in Eq. 4.8.

IOjnlOfc^O ? ??, ? MÍ3B(¿;,n) ^ 0, (4.16)

where MBB(fc,n) is the estimated MBB of the matched video object VO fc in
the current frame.

Rule 4 If the MBBs of the two image objects 10/ and 10/. do not overlap, we check
if there is a significant inward change at one of the sides of the MBB of image
object 10;

„ ? (IO*, 10;) = D ???; ? IOfc = 0 ? <(¦ V U , (4.17)
r ( D) = true for IO;

where

, m . \mp(D)-mc(D)\ > Tchg ?r(D) = <( , (4.18)
o{D){mc{D)-mp{D)) < O

Rule 5 If the split event is consistent over a time period, (same position, similar area)
and the detected image objects are separating, the split, event is confirmed as a
real separation. In this case, a new video object is created and matched to the

unmatched image object 10;.
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Split declaration

When rules 1, 2 and either 3 or 4 are satisfied, we declare the unmatched image object
as part of the matched one that is fragmented by the segmentation method. If rule 5
is verified then the split event is changed to a real separation and the split correction
is not carried out.

Once we have verified all the objects in the current frame to detect the fragmented
objects, we construct a list SL = {SplJn i e {1, . . . , Sn) of split events, where the
split event Spl¿ = {IO/,IOfc} contains the necessary information to fix the segmen-
tation error. This split list is then passed to the correction algorithm to merge the
fragmented objects into one.

Split correction

Once we have detected that two or more image objects in (1On) belong to the same
video object, we proceed to merge these image objects into one. We process the split
event list SL and correct splits by merging two objects each time. In the case of an
image objects that is split into several image objects, we make several merges. The
process is accomplished by drawing a solid line connecting the closest points of the

contours. Let IOi and 1O2 denote the objects to merge. To facilitate merging, for each

contour (imagé object) we identify the points that lie on the sides of the bounding
box (MBB). We keep and store two points for each side of the MBB, the points closer
to the corners of the MBB. Those eight points are labeled: Top-Left, Top-Right,
Bottom-Left, Bottom-Right, Left-Top, Left-Bottom, Right-Top, and Right-Bottom.
Fig. 4.4 shows an example of correction of split. In Fig. 4.4 (a) we show the two
objects before correcting the split while in Fig. 4.4 (b) we show the merged object.
We merge two image objects by finding the contour point in each one that is closest
to the other (i.e., points CPl and CP2) in Fig. 4.4. Then, we draw lines from the
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(a) Before correcting (b) After correcting
Figure 4.4: Example of correction of split between two objects

points before and after CPl and CP2 connecting the two objects.

4.3.3 Validating Recovery from Occlusions

We investigated the use of invariant wavelet features to validate object matching post

occlusions. To achieve this, for every VOj, we create a new bounding box BBvo using

BB«>idth = max(MBB^i/l, MBBve¿f') , (4.19)
BBjgf* = max(MBBv^\ MBB^f), (4.20)

(4.21)

where MBB^gf is the width of the minimum bounding box of VOj, MBBvSf* is its
height, and MBByQier is its center. We perform this step to get a square image of
the object required by the subsequent transformations. The next step is to nullify

the background texture effect. To do that, let Fn(ni, n2) denote the pixel at spatial
position (Ti1, H2) and frame ? of size ./V1 ? N2. We set to zero all pixels in BByo and
not in VOj using contour filling (see Fig. 4.5), i.e.,

Fn(Ti1, Ti2) = 0, V(m, Ti2) e BBVOj- - VOj, (4.22)

Note that we apply contour filling on the binary image of the object from segmen-
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tation, then apply the result to the normal image.

After the previous preprocessing steps, we extract the invariant wavelet features

of the sub-image Fn(rii, n2) (ni,n2) G BByo., using [86] to obtain the feature vector
for VOj. The reason we use invariant wavelet features is to tolerate a degree of
deformation in the object shape from one frame to another. The process of extracting
the invariant wavelet features begins by transforming the object's square sub-image
Fn(ni, n2), (ni, n2) G BByo., using the log-polar transform to obtain an K\ ? K2 log-
polar image lp(ki, k2). Then, we apply the discrete wavelet packet transform (DWPT)
using db4: wavelets to lp(ki, k2) and its one-row circular shift down version to create
an oct-tree. Formally, let i denote the sub-band index (e.g., i G {LL, LH, HL, LL}),
j denote the decomposition level, f denote the scaling function, and f denote the

wavelet function, the DWPT is done by

1 ATi-IJV2-IW¡(j,mi,m2) = -=== S S W*i,*2)4niin2(*i,*2), (4·23)
ni=l «2=1

1 JVi-IJV2-I
Wfamum) = -^? Ê S ^?.*=2)¥>]?????2(??,?2), (4.24)??=1 n2=l

where W^(j,mi, m2) denotes the approximation wavelet coefficients at level j of sub-
band i, and W^(i, mi,m2) denotes the details wavelet coefficients at level j of sub-band
i. The oct-tree is adaptively pruned based on a information cost function in order to

decrease the number of computations.

/C(WJ(J1Tn^m2))= ^ Zn(W](J, Tn^m2)2). (4.25)
n¡,U2

Figure 4.5: MBB expansion and nullifying background texture.

108



4. OBJECT TRACKING

Finally, we compute energy signatures for the sub-band in the pruned tree and the
most dominant (largest) signatures are used as a feature vector. We use the energy
signature function

ES(wl(j,mum2)) = ^- £ |W¿(j,mi,m2)|. (4-26)
«1,712

Post occlusion match validation works by extracting the features from occluding

objects and comparing it to the extracted features post occlusion. We achieved limited
success with this method as we found it to be sensitive to the object contour shape

due to the fact that most of the texture information in video objects comes from

the edges rather than the actual inside of the object, which tends to consist of more
homogeneous than textured regions. Moreover, calculating wavelet features is far
more computationally expensive than calculating color features. There exists other
methods (e.g., [87]) which use directional wavelets in tracking (e.g., Gabor wavelet
transform to track deformation of faces) , but are still computationally expensive for
multiple video object tracking compared to color features.

We investigated color as an alternative method to validate post occlusion matches.
The advantage of color is that no change in the object's minimum bounding box is
necessary. We investigated the same color features used by particle filter trackers [80].
These color features are calculated by finding the 16-pin histograms on the red, green,
and blue channels of the object image after the background is removed using the
segmentation mask. The Bhattacharyya histogram distance DB is computed between
the histograms and the maximum over the three color channels is used to calculate
the probability of a match using

P = e~2DB. (4.27)
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With two object's occlusions, there are two possible matching scenarios (each con-
sisting of two object matches) post occlusion. The probability of a matching scenario
is the product of the probability of its two matches.

4.4 Results

4.4.1 Parameters and Limitations

There are four thresholds used in the proposed algorithm:

Tage: the minimum age (number of frames) of an object to be considered stable. For

typical people monitoring applications we set Tage = 0.5 ? Fr where F7. is the
frame rate in frames per second (fps).

Tcorr: the minimum confidence value for a correspondence (match) to be considered
reliable, typically Tcorr = 0.8. Setting Tcorr too low will result in incorrectly

accepting correspondences with split or occluded objects. Setting it too high will

reject correct correspondences with objects that exhibit little change between

frames.

Tdist.: the maximum distance between two objects to consider them close enough to

suspect occlusion or split. We adapt this threshold to the size of the objects

and the frame rate using:

FRTdist = —- + min (T*fst, max (Wu H1)) (4.28)Fr

where FR = 250 empirically, T¿fst = 30 is an upper limit for Tdist arid Wi and
Hi are the width and height of VOj, respectively.

Tchg: this threshold defines the amount of change in the motion of a side that we
consider a deviation from a normal behavior. This is a dynamic threshold and
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depends on the size of the objects:

Tchg = max (TS8, mm(T£g, 0.3 ? min (Hu W,))) ; (4.29)

where T^g = 2 and T^g = 15 are the minimum and the maximum change
threshold, respectively.

The proposed method is robust in the sense that a small deviation in the mentioned

threshold will not significantly affect the performance, as validated in experiments.

The proposed method can handle partial, heavy and multiple occlusions, but as with

all trackers, is challenged with long-lived and total occlusions and in scenes with ob-

jects of highly varying scales. Another challenging situation happens with occlusions

that take place at the border of the frame as one object exits and another enters due

to the disappearance of one of the objects. This goes to show the difficulty of the

multiple object tracking problem and the need for further research in this area.

4.4.2 Data Set

We have conducted experiments on nine standard and four local surveillance video

sequences with a total of 11125 frames to test the offline performance of the proposed

algorithm. Tested videos include originally compressed video (e.g., Comm2, Meet-
Split-SrdGuy, LeftBag). Table 4.1 summarizes the profile of the test sequences used.

Our method may give inaccurate results when objects significantly change their

motion direction during occlusion. It is also limited when multiple objects enter

the scene occluded (e.g., as a group) and they are identified as one object. When
the. objects eventually separate, the system will attempt to reconnect them as it

interprets what happened as a split event. This is a temporary behavior since the

proposed method will reinterpret the split as a real separation if the split event is
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Name
Comm2

Street Survey
Urbi

Roadl
Hall-monitor

Occlusion Vandalism
Meet-Split-3rdGuy

Ekrlc
Ekrlb

Left bag
CU Hall

Bishop entrance
INRS Hall
CU Hall 2

Environment
Outdoor
Outdoor
Outdoor
Outdoor
Indoor
Indoor
Indoor
Indoor
Indoor
Indoor
Indoor

Outdoor
Indoor
Indoor

Source No. of Frames
~??1
1000
300
300
300
1300
929
587
678
1444
690
1822
655
514

Profile
B
D

A, E
A, E, F

A, F
B

A, E
B, C, D
B, C, D

A1E
B

A, F
F

A, F

unknown
U. Rochester
COST 211
COST 211
COST 211
Concordia

PETS 2004
U. Rochester
U. Rochester
PETS 2004
Concordia
Concordia

INRS
Concordia

A -Occlusions C -Heavy occlusions E
B - Complete occlusions D - Multiple occlusions F

-Small objects
-Split

Table 4.1: Profile of test sequences used,

consistent in time and the distance between the objects is increasing.

4.4.3 Objective evaluation

To measure the performance of the tracking algorithm objectively, we first use the

"motion difference along object boundaries (MDOB)" defined in [88], Section U.C.
The MDOB quantifies how well the estimated object boundaries coincide with actual
motion boundaries:

^QMDOB = £i=ift·™* A.
2-ii=\

exp
W;

rO
(4.30)

where Q is the number of points in the boundary, J¿ measures the difference between

motion vectors inside (v{) and outside (vf) the object at point i of the boundary, and
Wi measures the reliability of the estimated motion vectors. Fig. 4.6 shows the MDOB

measures for the first 114 frames of the Street Survey sequence for the proposed

algorithm and the region-based algorithm [8] as a reference. The average of the MDOB
measure for the first 100 frames of this sequence during which three objects are heavily

occluded is around 0.5 for the proposed method and around 0.9 for the reference

112



4. OBJECT TRACKING

algorithm [8]. In this plot a smaller value indicates that the estimated object boundary
coincides with a real motion boundary, meaning that a smaller value represents a

better performance. It can be seen that the proposed algorithm outperforms the
referenced method.

Motion Difference Along Boundaries (Survey)
t-1

¿¦H.;*! +VI reference [6!*ì proposedT

i -i. .*
+': +

^
+

0.8

Motion Difference

i ¦¦

ii

4

I2I 1 i 1 1 1 1 1
0 20 40 60 80 100 120

frame number

Figure 4.6: Motion difference along object boundaries (MDOB) measure during the
first 114 frames of the Street Survey sequence for proposed and reference methods [8].
A lower value indicates better performance.

We also used two other objective measures: the Average Size Detection Rate

(ASDR) and the Label Tracking Detection Rate (LTDR) defined in [89], to compare
the proposed algorithms with the algorithm in [10]. This algorithm identifies and han-
dles long-lived occlusions by creating a group that contains the information from the

occluded objects. Once the occlusion is finished the algorithm identifies a split and

correctly label the separated objects. This approach is less valid for long-term partial

occlusions such as when two objects enter the scene, occlude, and then continue to

walk or interact with each other for an extended period of time. An example of this

scenario is given in Fig. 4.7 showing the tracking results for the Meet_Split_3rdGuy
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sequence in which two people meet on a hall with very challenging illumination con-

ditions and small objects. Fig. 4.7(a) shows the objects before the occlusion starts.
Fig. 4.7(b, c, d and e) show how the detection and correction of the occlusion by the
proposed algorithm leads to continuity of tracking during occlusion. Fig. 4.7(f) shows
the tracked objects after recovery from occlusion. We cannot guarantee the success-

ful tracking of the group of objects after they occlude if the occlusion takes a lot of

time, especially with other objects getting involved. The continuous detection and

correction of occlusions and splits allows us to continue to have information about

the last known position of an object in case it is lost, which increases the chances of

its successful recovery.
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Figure 4.7: Occlusion detection and correction results. MeeLSpliLSrdGuy sequence.

We used the sequences Ekrlc, Left bag, Comm2, and Street Survey, for which the

ground truth segmentation and tracking information is available and a representative
frame is sho\vn in Fig 4.8. Note that ASDR and LTDR are in [0, 1] with 0 indicating
bad performance and 1 indicating a perfect performance.

Objective results are given in Table 4.2. Both algorithms perform very well at
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Figure 4.8: Representative result frames from test sequences in Table 4.2.

tracking the size of the objects (ASDR). The proposed algorithm outperforms the
referenced in the label tracking detection rate (LTDR) measure, which indicate that
the occlusions and split where solved in a successful way.

Video
Ekrlc
Left bag
Comm2
Street Survey

Proposed
ASDR LTDR
0.967 0.658
0.993 0.983
0.997 0.973
0.949 0.845
0.9765 0.8647

Reference [10]
ASDR LTDR
0.875 0.407
1.000 0.968
0.995 0.948
0.915 0.796

0.9462 0.7797Average

Table 4.2: Comparison of the proposed and the referenced [10] algorithms.
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4o4o4 ' Visual results of occlusion detection and correction

In Fig. 4.9, the occlusion detection and correction is shown for the Comm2 sequence
in which two objects completely occlude. Fig. 4.9(a) shows the tracked objects before
the occlusion takes place. The occlusion starts in Fig. 4.9(b). The proposed algo-
rithm detects and corrects occlusion and enables the tracking of objects during heavy

occlusion as shown in Fig. 4.9(c). Fig. 4.9(d) shows the objects after recovery from
occlusion.
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Figure 4.9: Occlusion detection and correction results. Comm2 sequence.

Fig. 4.10 shows one significant frame from each of the other sequences used to test
the algorithm. We have chosen a frame were the occlusion event is clearly identified.

7?wnnI

,dl ?
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(a) Roadl
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Figure 4.10: Representative result frames from remaining test sequences of Table 4.1.

4.4.5 Visual results of split detection and correction
An example of multiple split correction is shown in Street Survey. The change detec-
tion returns three fragments of one object due to color similarity as in Fig. 4.11(b).
Split is detected and corrected in Fig. 4.11(c). Fig. 4.11(d) shows the improvement
achieved due to split correction.

"y^rys."Mi ?
1"·

ÎXL*?C%JP&V

9?:-%

(a) Original (b) Change detection (e) Split correction (d) Object tracking

Figure 4.11: Split detection and correction results. Street Survey sequence.

4.4.6 Visual results using online captured and processed video
sequences

Fig. 4.12 and 4.13 show sample results using the surveillance system in outdoor and
indoor environments. As can be seen, the proposed algorithms correctly detected and
solved the occlusion events present on these sequences. Note that in these examples

the online output sequences are shown in color and labels identifying major events.

117



4.4. RESULTS

the main output from the online surveillance system, are also shown.
In the first example shown, we applied our algorithm to a sequence captured at

one entrance to a building of Concordia University. In this sequence a bag deposited
near the entrance in Fig. 4.12(a) is first occluded and then completely occluded by
a passing pedestrian in Fig. 4.12(b) and Fig. 4.12(c) respectively. The system never
loses the identity of the bag and the shapes of the two objects are fully recovered in
Fig. 4.12(d).

5%_ JTf

yip! j||¡ säujji -&s¡$
(¡)~Start oclusión (b) Heavy occlusion (c) Heavy occlusion (d) Recovery
Figure 4.12: Occlusion detection and correction. Online Bishop Entrance sequence.

• The second example shows how the online testing system correctly tracks two peo-
ple crossing paths in a hall. The two people are completely separated in Fig. 4.13(a).
They start to occlude each other in Fig. 4.13(b) and the occlusion advances until it
becomes a heavy occlusion in Fig. 4.13(d). The system correctly tracks each object
once the heavy occlusion is finished in Fig. 4.13(d) and the occlusion is finalized in
Fig. 4.13(e) where the two people are again completely separated. Note that tue
system simultaneous handles occlusion and split, e.g., in Fig. 4.13(d) due to the simi-
larities between the man walking to the right and the background the result from the
segmentation algorithm consist of two objects but incorrectly segmented; the system
is still able to detect and correct occlusion and split.

We show in Fig. 4.14 the result of testing the color features for post occlusion
match validation. We show eleven occlusion scenarios in the CU Hall video sequence.
¦Each row shows the matching scenarios along with its probability. We can see from
Fig. 4.14 that in all matching scenarios, the probability of the correct match is higher
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Figure 4.13: Occlusion detection and correction results. Online CU Hall sequence.

than the wrong match. This leads us to conclude that color features are more robust
to changes in object shape and pose during occlusion than texture features and are
far less computationally expensive. Nevertheless, more research is needed to increase
the difference between the probabilities of true and false matching scenarios.

405 Summary

This chapter presented an algorithm for the real-time detection and correction of
occlusion and split in object tracking by monitoring sudden changes in the spatio-
temporal features of objects. The proposed algorithm proves useful for surveillance
applications because of its: 1) good performance in multiple and heavy (or total)
occlusion; 2) low computational complexity; 3) distinction between real split and
split due to faulty segmentation; and 4) handling of simultaneous occlusion and split.
These characteristics were demonstrated using standard surveillance video sequences
containing multiple and heavy occlusions, as well as splits due to faulty segmenta.
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Figure 4.14: Post occlusion match scenarios for 11 cases of occlusions in the CU hall
sequence and their probabilities. The probabilities of the correct matches using color
features are higher than the wrong matches in all incidents.

tion. The proposed occlusion and split handing methods improve the robustness to

segmentation errors in tracking. They still, however, require tracking to be tempo-

rally stable as discussed in Section 3.3, which requires segmentation to be temporally

stable. Temporally unstable tracking leads to difficulty in creating matches between

image and video objects due to major deviations in object features. Robust image

and video object matching is a corner stone to successful tracking.
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Chapter 5

Vandalism Detection

5.1 Introduction

This chapter proposes a novel method for the detection of vandalism events in video

sequences. The method is based on a proposed definition for common vandal be-
haviors recorded on surveillance video sequences. To do this, the method monitors

changes inside a restricted site containing vandalism-prone objects such as a vending
machine, a pay phone, or a street sign. When an object is detected as leaving such

a site, the proposed method checks if the site contains temporally consistent and

significant static changes, representing damage. If there are such changes and given
that the site is normally unchanged after legal use, a vandalism event is declared and

the vandals are tracked. The proposed method is tested on video sequences showing

real and simulated vandal behaviors and it achieves a detection rate of 96%. It de-

tects different forms of vandalism such as graffiti and theft, and can handle sudden
illumination changes, occlusions, and segmentation errors.
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5.2 Review of Related Work

Vandal behaviors are defined in [12] as unlawful destructing or damaging of public or
private property. According to the Canadian Centre of Justice Statistics, vandalism
in 2004 accounted for up to 36% of all reported crimes [H]. In the year 1991, over two
million incidents of vandalism against private property have occurred in the UK [12].
The cost of vandalism is not only financial, but also social. According to a poll for
THe Times, vandalism is regarded by people as one of the most important problems
facing their families [12].

The growth of visual information has created an urgent need for effective methods
for analyzing visual information in the security domain [90]. The deployment of
"intelligent" video surveillance systems [91] able to. detect and report vandalism as it
happens is, therefore, becoming popular. There is a growing trend of fitting public
transport vehicles (e.g., buses [92], trains [93] and taxis) with surveillance cameras
for the purpose of human behavior recognition [94], and eventually having a city-wide
surveillance network for detecting vandalism [13]. Deploying video-based automatic
vandalism detection systems in monitoring and preserving archaeological sites [95] is
also popular.

The automatic detection of vandalism in video surveillance, is a challenging task
because of: 1) the complex and unpredictable nature of a vandalism act and the

speed at which it may occur; 2) the underlying difficulty of finding a unique defini-
tion for vandalism which may vary based on social contexts and applications; 3) the
difficulty in distinguishing between normal and vandal interaction between persons

and vandalism-prone objects or sites; and 4) the lack of real vandalism test video
sequences publicly available for testing.

Few methods have been presented in the literature for the detection of vandal-
ism. They can be categorized into single camera [96-100] and multiple camera meth-
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ods [101, 102]. The method in [97] defines a semi-automatic system to aid an operator
in the detection of vandal acts. The actual detection is done by feeding geometric and

kinematic features to a neural network classifier which is trained to recognize suspi-

cious variations in those features. Some of these features include the coordinates of the

minimum bounding box and center of gravity of tracked objects along with their areas

and perimeters. This approach requires training the classifiers and expects vandals

to follow certain behaviors. The method in [98] detects vandalism by distinguishing
between moving objects and expanding static objects which are caused by vandalism.

The distinction is made using a mean change detection image. The challenge is in

objects moving in the camera direction which may be confused with graffiti. The

method in [99] detects movement and faces of passengers in public transport vehicles
for monitoring of vandal behaviors. It assumes that vandals in such situations move

abnormally (e.g., actively switch seats or have large body motion gestures) relative
to other passengers. This approach is specific to public transport vehicles in which

passengers are normally not moving (e.g., standing or sitting). The method in [100]
uses a time of flight camera which generates distance data to detect graffiti.

Methods using multiple cameras to detect vandalism avoid dealing with occlusion

and can detect vandalism in larger areas. The authors of [101] use multiple cameras
and trackers to build a combined graph of the positions and dimensions of persons in

the scene. The combined graph is then used to recognize vandalism using a temporal

constraint network. The method in [102] distinguishes between temporal and spatial
changes using multi-view change detection.

In this chapter, we propose to detect vandalism by monitoring and evaluating

changes inside predefined restricted sites as objects enter or exit these sites. The
advantages of the proposed method are: 1) detecting vandalism without training; 2)
detecting different forms of vandalism such as damage, graffiti and theft (or removal);
3) detecting and tracking vandals; 4) handling changing illumination conditions, oc-
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elusions, and segmentation errors; and 5) fast approach with high detection rate.

The remainder of the chapter is organized as follows. Section 5.3 presents the

proposed vandalism detection methods theoretically. Simulation results are discussed

in Section 5.4, and Section 5.5 summarizes the chapter.

5.3 Proposed Algorithm for Vandalism Detection

5.3.1 Defining Vandalism

We identify vandalism by detecting permanent changes inside a particular region of

the frame that has been previously classified as background and is of interest from

the point of view of surveillance. Formally, we define vandalism as a video event

instantiated by a video object which inflects temporally consistent static changes (e.g.,
damage) inside a predefined restricted region that is supposedly unchanged by normal
(i.e., legal) interaction with video objects. This temporally consistent change inside
the restricted site in the definition is identified, for example, as a newly appearing

video object satisfying certain conditions such as being static for a long time while
inside the site.

A video object refers to a temporally consistent region (over a short period) in a
video sequence. Video objects have spatio-temporal features such as contour, area,

motion, and trajectory. We detect and track video objects and use information about

their features. For example, a video object has a unique identifier (ID) maintained
by the tracking algorithm during the life-time of an object in the video sequence. A

video event is an interpreted spatio-temporal relationship associating one or multiple

objects (e.g., moving, stay long, and is inside). Video events have information asso-
ciated with them such as the IDs of the video objects involved in the event, the time

at which it is detected, and its duration which is the number of consecutive frames

124



5. VANDALISM DETECTION

the event is detected.

We only consider rigid vandalism-prone objects that do not change over time.

This includes pay-phones, vending machines, and paying stations in parking lots. For

example, vandalism of electronic street signs switching content periodically is not

considered. Also, we expect that the vandalism act alters the normal appearance of

objects. Meaning, after the site is vandalized, there is visible damage (i.e., change)
to the site. We use video object segmentation and tracking. There is no restrictions

relating to which algorithms are used as long as they provide the information necessary

for the proposed algorithm.

5.3.2 Defining Vandalism Targets

We define restricted (i.e., vandalism-prone) sites by marking them in the scene as
in Fig. 5.1 (the white box encapsulating the street sign). This approach allows us
to restrict the vandalism detection process to the important elements in the field

of view of the camera and to reduce alerts for changes to non-important parts of

the image. This is what we call surveillance targets. There is no restriction on

the number of vandalism-prone sites in the same scene. The proposed algorithm is

designed to handle the detection of simultaneous vandalism events. This is helpful,

for example, in detecting which street phone or vending machine is vandalized in
a scene where a number of restricted sites are monitored by the same camera. On

the other hand, defining vandalism targets avoids unnecessary vandalism checks and

significantly reduces false alarms. The proposed method not only detects vandalism,
but also vandals. The detection and tracking of vandals is a key advantage. It can

be used to track the vandal to identify, for example, where the vandal has existed the

room or ally. Note that when changing the context associated with the restricted site

from a vandalism-prone site to an object abandoning site, the proposed method can

be used to detected abandoned objects.
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Figure 5.1: A predefined restricted region R7. with a rectangular box.

We discriminate between all detected changes inside the restricted site and decide

if said changes are from normal usage of the site or due to vandalism. These changes

result from change detection between the current frame and the background frame

because we consider the restricted site as part of the background and is left essentially
in the same state before and after normal use of the site.

The proposed algorithm for vandalism detection is triggered by the event of a video

object entering (or being partially inside) a restricted site and is confirmed when the
video object exits (or is completely outside) a restricted site. We will discuss each
one of the these two events individually in Sections 5.3.3 and 5.3.4, respectively.

5.3.3 Detecting vandalism triggered by enter event

Let R7. denote a predefined restricted site with the identifier r, and VO¿ denote a

video object with the identifier i which has just been detected inside R7.. Formally,

R7. and VO¿ can be viewed as sets of all spatial locations of pixels belonging to R7.

and VOj, respectively. The detection of video event In signaling that VO¿ is inside
or entering R7. is done using

ir?;: R7-P)Vo7 f f, (5.1)

where f is the empty set. This indicates that we initiate vandalism detection even

if a vandal does not fully enter R7- (e.g., a person extending hand into Rr as in Fig.

5.8(a)). The removal of small or temporally unstable objects by the segmentation
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algorithm prevents (5.1) from triggering a vandalism check for erroneous objects due
to noise. In (5.1), we check if there is a number of spatial locations which are common
to both VO¿ and R7.. Alternatively, In can be established by checking the area of the
overlap rectangle between the minimum bounding boxes of VOi and R7..

Detecting In is the first stage in the proposed method. It may later evolve to a
vandalism event if we detect damage in R7.. Ir. is verified with every new frame in
order to determine if it is a normal interaction between V0¿ and R7. or a vandalism

event (i.e., Nn or Vn). We monitor V0¿ while inside R7. to detect one of two possible
scenarios. The first scenario is that In turns out to be Nn signaling normal use of
the restricted region R7. when V0¿ is moving, i.e.,

Nn: InAM', (5.2)

where M' denotes the event that V0¿ is moving at time instant I. In this case, the
information related to In is updated with the current position of the object and the
new frame number I, and the process continues by advancing to the next frame. Event
M' is established by examining the average of the motion of V0¿ in the past K frames.
Meaning, M' is declared as

1 K
M': ^S???'""??>^> (5·3)

fc=l

where ||M¿~fc|| denotes the magnitude of the motion vector of V0¿ in frame Z — k
(I being the current frame number), and tj^ is a threshold for how much apparent

motion constitutes real motion. We adapt K to the frame rate using K = ^, where
F is the frame rate. iM is adapted to the video frame size using Im = W/ 160,
where W is the frame width. We characterize the motion of the video object by the
displacement vector of the center of the minimum bounding box. It is also possible
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to use other methods for representing or estimating the motion of objects [103] or
alternative definitions of M- (e.g., with more robust estimators than the mean).

In the second scenario, VO, stops moving while In is still declared and this situa-
tion is persistent over a long time. The proposed method detects this as an alarming
case of possible vandalism or staying long in a restricted site Ln while being static.
Although this event is not a clear case of vandalism, we declare a vandalism event

because there is a permanent change to the restricted site, and this is an alarming
situation. This could happen for example of an object without entering the scene
throws another object to inflect damage on the vandalism-prone site (e.g., breaking
glass with a stone). Event retrieval can be used to decide later on the course of action
based on the nature of the damage (permanent change) detected. This is governed
by

Ln: InASlA(l^pi>tc), (5.4)
where '-—IM T* > tc states that the area of the overlap between VO¿ and R7. is greater
than tc% of the area of R7., tc is the percentage of change in R7. which constitutes an
alarming level of changes. We set tc to 0.5, which is the default value. tc can also be

set to an exact value for theft applications, because the size of the object monitored
for theft (or removal) is known at the time of defining R7.. Sj is the event that the
video object VO¿ has stayed at the same location for a considerably long time. To
detect Si, we use

S1: U{ A (ÍMlÁ > tT^j A A, (5.5)
where M¿ is the complement or negation of event M¿ indicating that VO¿ is static,

IVL- ?-t?represents the duration of event M¿ (i.e., the number of consecutive frame the
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object has been static), and tx is a threshold that defines the minimum number of
frames that an object must be in the same location to be considered static for a long
time, which we adapt to the frame rate FR using t^ = 4 ? FR. A is the event that

object area is stable. We add it to avoid confusing an object that is not moving in

the camera direction as static. We use the mode on the sign of the area derivative

to establish the A event. We check when the mode is zero, meaning the area is

not increasing or decreasing. First, the discrete temporal difference of area ??- is

calculated using

??< = Ai - Aj-1, (5.6)

where A' is the area of the video object VO¿ at the current frame /. We use K

consecutive differences and create the set Q = {sgn(AAf)}, where k E {1,1 — 1, ..., Í —
K}, and sgn is the sign function. The event A is defined using

A : mode{Q) = 0. (5.7)

After triggering vandalism detection, the process advances to the next stage of

confirming vandalism. Note that it is not difficult to discriminate between stationary

and moving objects or detecting objects that stay for long time at the same loca-

tion since while detecting vandalism we are mostly dealing with humans that move

relatively slowly with respect to standard frame rates (e.g. 30 frames per second).

5.3.4 Confirming vandalism detection by exit event

Once the video object VO¿ has left R7. there are three possible events to consider.

The first event is that there is no change to R.r, i.e., there exists no object VOc inside

R7. (indicating that R7. has not changed). This leads to confirming normal behavior
E7. and In and is governed by
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E7.: (OjC]Rr = f") V?. (5.8)
In this case, the system is returned to its initial state.

The second possible event happens when an Oj enters or is inside R7. as object
V0¿ leaves it as in

N7.. : In ? I7.. ? Mj-. (5.9)

If the newly detected object Oj is moving (i.e., Mj), we release the video object VO¿
from any responsibility. Vandalism detection as in Section 5.3.3 is then restarted for

The third event is confirming vandalism and detecting the vandal (i.e., a complete
vandalism event) when there is at least one object V0C inside R7. which is static and
its area |V0C| is significant with respect to Rr. This case is governed by the conditions

V7,,: (5.10)

TriAlrc AMtA(IVO^t0XlR7-I).

where Mc is the event that V0C is not moving and Vric denotes the vandalism event
with r identifying the restricted site, i the ID of the vandal object, and c the ID

of the damage object. Equation (5.10) tests if a significant static change V0C is
detected inside the site after VO¿ has left. This indicates that there is damage to the
region Rr and since VO¿ was the last object visiting the site, it is held responsible for
this damage. Fig. 5.2 shows the state diagram of the proposed algorithm. Vandalism
detection is started when an object is detected inside the restricted area. If the object
leaves with no other objects inside the restricted area, normal operation is assumed.
If the object stays for too long or leaves behind stationary objects, vandalism is
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declared. If the object leaves while another enters the site, vandalism detection is
restarted for the entering object.

Nrk

M
k=i

NDetecting in ?Normal operation R- for O
k=i

Lrknc

Vandalism (COVandalism (Oc)
No vandalVandal (CU

Figure 5.2: State diagram of the proposed vandalism detection algorithm.

5.3.5 Multiple Vandals

So far, we develop the conditions for vandalism with a single object VOc representing
the change in R7.. It may happen that the change in the site is broken into multiple
objects as in Fig. 5.3(d). In this case, the vandalism event includes the IDs of all
these objects as shown in Fig. 5.3(d). It may also be the case that multiple objects
(or persons) are vandals. If an object enters R7. with multiple objects close by, and
vandalism is detected after the objects leave, then all objects are labeled as candidate

vandals or potential witnesses as in Fig. 5.9. With the proposed multiple object
tracking technique, candidate vandals are tracked until they exit the scene, which

provides information on their trajectory to identify where they exited the scene. If an

object is passing by during an event of vandalism, when vandalism is not confirmed

yet, it is not labeled as a candidate vandal as in Fig. 5.7.
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5.4 Results

5.4.1 Parameters and Limitations

The proposed method uses three thresholds, a frame-size adaptive îm as in (5.3),
a frame-rate adaptive tr as in (5.5), and tc as in (5.4). We give the used value or
adaptation where they are defined. tc is the percentage of change detected in the

restricted site which constitute an alarming level of change. The default value is 0.5

or 50%. tc can also be set to an exact value for theft applications, because the size of
the object monitored for theft is known at the time of defining R7.. In the sequence

in Fig. 5.4, the quantization threshold for the segmentation algorithm in [68] are
lowered to 80, 100, and 120 due to compensate for the low illumination. The gum is

changed to the low setting of 31. The upper limit of the distance threshold for split

detection is lowered for the sequence in Fig. 5.3 to 10 to account for zoomed view.

Our simulations show that the proposed method is effective in detecting different

forms of vandalism, e.g., caused by damage to the site (e.g., graffiti) or by removing
an object from the site (e.g., theft). In both cases, the proposed method detects
vandalism. In other words, the proposed method and definition of vandalism cover

theft as well as long as it leads to temporally consistent change in the restricted site.

The definition of vandalism based on detection of permanent change to a particular

section of the frame is less dependent on the segmentation and tracking algorithms

than vandal detection and tracking. As far as there is a visible change to an static

object it is detected as vandalism. The robustness of segmentation and tracking adds

robustness to vandal detection and tracking. We demonstrate this in Section 5.4.4.

While the proposed algorithm can handle multiple objects, crowded scenes (e.g., in
the street during the day) may lead to false alarms. Usually, vandalism, being a crime,
occurs in a non crowded scene. The chances of false alarms in crowded scenes decreases

if the expected level of damage (e.g., size of restricted area) is disproportional to the
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sizes of object and increases if they are similar. A possible approach to significantly
reduce false alarms in crowded scenes where the size of damage cannot be anticipated

is to use damage object recognition or classification. When investigating vandalism,
the damage object post-vandalism is classified and if its class is found to belong to
common objects like humans or vehicles, vandalism is not declared.

5.4.2 Offline Testing

The proposed method was tested on both offline videos showing real and simulated

vandal behaviors, and using an online surveillance system with a static camera (Sec-
tion 5.4.3). Few real vandalism test video sequences are publicly available. Combining
both online and offline test sequences, we used a total of 50 different incidents of real
or simulated vandalism to obtain a statistically significant detection rate. Note that

sequences in Fig. 5.3 and Fig. 5.4 are originally compressed.

Figs. 5.3-5.7 show the five video sequences used in offline testing scenarios to
evaluate the performance of the proposed method. In each of the figures, we show

annotated video frames before, during and after the event of vandalism. The anno-

tation carries information about the detected events and the tracking IDs of involved

objects. In all the figures, frame 1 shows the bounding box of the restricted area.
Fig. 5.3 shows an outdoor video sequence publicly available in which a hand spray

paints over a street sign to vandalize it. The hand movement is fast and the amount of
change caused by vandalism is high relative to the size of the vandalizing object. The
annotation in frame 108 reads "O-Vandalism With 2 5" indicating object 0 (hand)

vandalizing the restricted area and the result of vandalism are objects 2 and 5.
Fig. 5.4 shows another outdoor video sequence publicly available in which a vandal

removes a large wall sign in bad illumination conditions and throws it on the floor.
For this sequence, we also show the unprocessed video for clarity. Frame 3602 shows
the vandal abandoning the site after vandalism. The annotations in in frame 3291
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read "110- Vandalism with 68" and "111- Vandalism with 68" suggesting that objects
110 and 111 vandalized the restricted area resulting in object 68.

Fig. 5.5 shows two different video sequences (one in each column) captured in
our lab. In Fig. 5.5(a) an actor was asked to approach and interact normally with a
model pay phone hanged on a wall, whereas in Fig 5.5(b) another actor was asked
to tamper with the model pay phone. The annotation in Fig. 5.5(b) frame 643 reads
"15- Vandalism with 0" whereas there is no annotation in Fig. 5.5(a). This indicates
the successful distinction between normal interaction and vandalism.

Fig. 5.6 shows the outcome of a vandalism detection check after a sudden change
in illumination caused by turning on the lights. The background maintenance up-
dated the background model and the new model is used to continue to retain the

performance of the fast segmentation method and correctly track objects and detect
vandalism.

Fig. 5.7 shows vandalism detection in a scene with severe occlusion. An event of

complete occlusion occurs during the vandalism act. The proposed method continues

to track the object correctly until it is heavily occluded. This is when object 0 is briefly
lost. The object is recovered shortly and tracking continues during the remainder of
the occlusion event. Vandalism is detected as the vandal leaves the restricted site.

As can be seen from Figs. 5.3-5.7, the proposed method is able to detect vandalism

in all scenarios and can successfully distinguish between vandal and normal acts. The

proposed method requires on average 74 ms to process a 320x240 frame (including
background update, segmentation, and tracking) when implemented using C++ and
run under an Intel i7 CPU 2.67GHz machine operated by Linux. Thus, the effective

frame rate is about 13 frames/second. This was measured on the all offline video
sequences in Fig. 5.3-5.7 totaling 6850 frames.
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Figure 5.3: Vandalism by spraying over a wall sign. Frame 1 shows the bounding box
defining the restricted area in the scene. Annotated frame 108 reads "O-Vandalism
With 2 5" indicating object 0 (the hand) vandalizing inside the restricted area and
the effect showing in objects 2 and 5.

5.4.3 Online Testing

For online testing, we used four vandalism scenarios. In the first scenario, we hanged

a poster on a corridor wall monitored by a surveillance camera. Actors were asked to

spray paint the poster to simulate graffiti. In the second scenario, a camera filming

a locker was used and actors were asked to place a piece of paper (as a simulation
of damage) on the locker door. In the third scenario, actors were asked to steal a
wireless router from inside a lab monitored by a camera. The third scenario was

repeated for a cell phone in a different lab. In the fourth scenario which is intended
to test for multiple vandal cases, two actors were asked to simulate inflecting damage

to a board in low illumination condition. For the first three scenarios, normal and

vandalism interactions were repeated each ten times (four times by two fixed actors
and two times by a random passer by). For example, for normal interactions actors
were asked to read the poster and leave, take an object from the locker and close it
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Figure 5.4: Vandalism by removal of a large wall sign in bad illumination conditions.
The annotations in frames 3291 read "110- Vandalism with 68" and Ci111- Vandalism
with 68" suggesting that objects 111 (the man) and 110 (the removed sign) are in-
volved in a vandalism event resulting in object 68 (the damage).
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Annotated frame 1 Annotated frame 1
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Isotop

Annotated frame 934
(a)

Annotated frame 643
(b)

Figure 5.5: (a) Normal interaction with a model pay phone (the actor lefts the hand-
set, simulates a call, replaces the handset and leaves), and (b) vandalism of the pay
phone. The annotation in (b) frame 643 reads "15- Vandalism with 0" whereas there
is no annotation in (a) indicating distinction between normal and vandal acts.

before leaving, and enter then exit the lab without stealing the router. The fourth
scenario was repeated five times. In iflg. 5.8 from top to bottom, we snow the frames

before, during and after vandalism for the graffiti and locker scenarios. Note that

Fig. 5.8(a) shows an example in which the overlap between the vandal object and
R7. is very small (i.e., vandal marginally enters the site). Nevertheless, vandalism is
still detected. In Fig. 5.9(a) we show results for one of the theft scenarios. Fig.
5.9(b) shows the case with multiple vandals. Note that in Fig. 5.9(b), both actors
are associated with the vandalism event.

In all normal interactions, vandalism was not detected, i.e., no false alarms. In the

two cases where the proposed algorithm did not detect vandalism, the change inside
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(c) Annotated frame 128 (d) Annotated frame 150
Figure 5.6: Vandalism of a pay phone with sudden illumination change. Annotated
frame 0 shows the first model of the background. The lights are turned on and
the sudden illumination changes the background model. Background maintenance
provides an updated background model in frame 61 and vandalism is detected in
frame 150, which reads "12- Vandalism with 15".

the restricted site was detected moving because of segmentation errors. The proposed
method achieves a detection rate of 96%. The detection rate incoporates both true

positives and false negatives (i.e., statistical recall). Online and offline results are
summarized in Table 5.1.

Table 5.1: Summary of online and offline results.

Scenario
Graffiti
Locker damage
Router theft
Cellphone theft
Board damage
Offline
Total

Detection Rate
10/10
10/10
9/10
9/10
5/5
5/5

48/50
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Figure 5.7: Vandalism event detected after complete occlusion. Object 0 (red) is
correctly tracked during the occlusion despite being briefly lost.

5.4.4 Vandalism Search

In case it is not possible to detect the vandal such as when a static object stays for too
long in the restricted site or when a new object is created due to tracking errors, the
proposed method alerts an operator and a search in the event database is performed
to identify the vandals, if any. This search is done using the archived surveillance
information and related video sequence. Fig. 5.10 shows an example of this search.

To the right of Fig. 5.10, we see in (a) an actor enters the scene with ID 0 and spray
paints over a poster. During vandalism we purposely force a failure in tracking which
leads to loosing object 0 and creating a new object 6 (we can see this new object 6
in the left part of Fig. 5.10). Note that objects 0 and 6 are the same vandal object
but they appear to the proposed system now as multiple vandals. In this case, the

proposed method is unable to determine if the vandal is object 0 or object 6 and two.
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Figure 5.8: Online testing. Part (a) shows the graffiti simulation and the related
annotation reads "1-Vandalism with 6". The object does not significantly enter the
site and only slightly overlaps with it. Part (b) shows the locker damage scenario and
the related annotation reads u0-Vandalism with 2".

events of vandalism are declared separately for each with object 2 being the damage

from vandalism as in Fig. 5.10(b). In this case, the multiple vandals are labeled
and stored in the database and the human operator can then perform a search to

determine the vandal as shown in the left part of Fig. 5.10, thus determining that

objects 0 and 6 are in fact the same object. This also shows that the proposed method

is robust to such tracking errors.
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Figure 5.9: Online testing results. Part (a) shows the theft scenario and the related
annotation reads "0- Vandalism with 2". Part (b) shows the board damage scenario
with multiple vandals detected. The related annotation reads "!-Vandalism with 7"
and "4 -Vandalism with 7"

5o5 Seminary

This chapter proposed a novel vandalism detection method for video surveillance.

Vandalism is detected by monitoring changes inside a vandalism-prone site. The

proposed method declares vandalism when an object enters a restricted area in the

scene and causes an unauthorized change inside it. When the object leaves the site, we

check if the site contains temporally consistent and significant static changes due to

damage. Given that the site is unchanged through normal use, we declare vandalism.

We tested the proposed method on-line and offline and our results show that it can

detect vandalism with a detection rate of 96% while distinguishing between normal
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Figure 5.10: Right: (a) an actor (object 0) vandalizes a restricted site and (b) the
proposed method declares two vandalism events for objects 0 and 6 with object 2
representing the damage, thus, the vandal is undetermined, i.e., could be 0 or 6. This
situation is created by purposely forcing a confusion in the proposed method through
losixiç the track of the orifcssl vsudsd object 0 ard r^.aki^iï t-Jhs track '"?&?t????? ?s "¿sw
object 6.
Left: The search for event vandalism in the event database outputs two vandalism
events or two vandals, object ID 0 and* object ID 6. The human operator can then
view the related· video sequence for verification of details.
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and vandal behaviors. The proposed method integrates efficiently in online video
surveillance systems without significant increase in computations.
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Chapter 6

Scalable and Distributed

Surveillance System

6.1 Introduction

Most surveillance systems presented in the literature focus on the video-processing

algorithms and marginally consider the architecture and challenges of building an

end-to-end surveillance system. This chapter proposes a scalable, distributed, and

real-time video-surveillance system with a novel system architecture, and indexing

and retrieval capabilities. We use indexing to refer to the process of extracting, deliv-

ering, and archiving surveillance information in a database for searching. The chapter
also addresses the challenges faced in building this system, e.g., how to distribute

the processing to achieve a high frame rate and how to index surveillance informa-

tion to reduce storage requirements. The system consists of three modules: video

workstations for signal processing and indexing, web-based control workstations for

monitoring and control, and a server for overall system management, archiving and
retrieval. Video workstations capture, process, encode, and stream surveillance video

and extracted surveillance information over the network. Control workstations dis-
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play received surveillance feeds alongside the information extracted from them. They
also provide, through the server, access to archived object and event based surveil-

lance video and information. The proposed system reduces storage requirements by
modeling object features as temporal Gaussians and uses variations in object fea-
tures to determine the temporal separation between the Gaussians. Our results show

that the proposed system yields real-time video feeds of 18 frames/second for SIF
video, reduced network and storage usage, and precise retrieval results. Results also

show that the proposed system architecture produces more scalability and balanced
distributed performance than recent surveillance system architectures.

6.2 Review of Related Work

Due to increased security concerns, automated real-time surveillance systems receive

considerable attention from academia [91,104-106] and the industry [107]. Utilizing
such surveillance systems is now a necessity in airports, subways, offices and even

homes to aid in detecting events of interest or potential security risks [108, 109]. In
general, desired features of video-surveillance systems are: 1) scalable architecture; 2)
affordable hardware requirements; 3) real-time performance; and 4) reliable alerting
mechanisms. Designing automatic surveillance systems to meet these requirements

promises a significant increase in their deployability [HO].
Recent surveillance systems in the literature can be categorized into specialized

[111-115] and generalized systems [116-119]. The specialized systems in [111-115] are
built for train or railway surveillance [111], traffic or highway surveillance [112,113],
elevator surveillance [114], and home surveillance [115]. These systems are tuned to
specific application needs, hence are less useful for others.

Generalized systems are further categorized into centralized [116, 117] and dis-
tributed systems [118, 119]. Centralized systems deliver lower performance due to
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the high computational burden on the central module [120]. These systems focus
on the video-processing aspect of the system without specific attention to the overall

surveillance system architecture, which leads to unbalanced system load and decreased

scalability. Alternatively, distributed systems [9, 118, 119, 121] make use of commu-
nication protocols to divide the work amongst a network of less powerful computers,

thus balancing the overall system load and increasing scalability. Also, distributed
systems facilitate the implementation of complex video-processing algorithms on ex-
isting hardware resources because of decreased load on the video-processing modules
(e.g., by delegating management, monitoring and control to other modules). Some dis-
tributed architectures, however, can still benefit from further load-balancing features.

For example, the systems in [118] and [119] do not separate between the monitoring,
control, management, and archiving modules. Their architectures consists of a set

of video-processing modules connected to a single server. AU surveillance videos are
displayed at the server side leaving only one point where surveillance information is

accessible. This reduces scalability which is key for practical systems [HO]. In the
work presented in [121], the authors proposed a surveillance system architecture in
which a video processing module streams information to a video monitoring module.
A management server controls permission to view the streams and a media server is

used to store extracted information. In the surveillance architecture presented in [9],
the video processing module is connected directly to a storage server which relays
compressed video sequences to a transmitter to which viewing and control units are

connected. Both systems in [9, 121] can benefit from increased network bandwidth
savings and less processing delays through further task decomposition.

In this chapter, we propose a scalable, distributed and real-time surveillance sys-
tem with indexing and retrieval of surveillance information. The proposed system

can be used to realize many surveillance applications. The advantages of the pro-

posed surveillance system include: 1) a novel and scalable system architecture with
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extensible, and reliable distributed modules; 2) real-time indexing and retrieval of
object- and event-based surveillance information and video; and 3) reduced network
and storage requirements through reduction of features sampled over time.

The remainder of the chapter is organized as follows: Section 6.3 presents the
proposed system architecture. Sections 6.4-6.6 present the proposed system mod-
ules: video workstations, server, and control workstations, respectively. Section 6.7
presents the results, and Section 6.8 summarizes the chapter.

6.3 Proposed Surveillance System Architecture

The proposed system architecture consists of three independent and distributed mod-

ules: video workstation, control workstation, and surveillance server. These modules

and their connections- are depicted in Fig. 6.1.
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Figure 6.1: Architecture of the proposed video surveillance system.

A video workstation captures the MJPEG video signal from one or more cam-

eras and processes (e.g., extracts objects and events) the decoded signal. It further
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MPEG-4 compresses the video signal, and streams it to a multicast network address

using the real-time streaming protocol (RTSP). At the same time, extracted surveil-
lance information (objects and events) from each frame is encapsulated in a user
datagram protocol (UDP) packet and streamed to a different but associated multi-
cast address. Throughout this chapter, we use the term surveillance information to

refer to extracted video object features and detected video events (e.g, the area of an
object or the event an object has vandalized a restricted site).

The server archives, using a database, all communication between video and con-

trol workstations. For example, it archives surveillance information by joining the
group of control workstations listening to the mutlicast addresses to where video
workstations stream surveillance information. Similarly, it stores as MPEG-4 ele-
mentary streams the surveillance video sequences by joining the multicast addresses
to where video workstations are streaming processed surveillance feeds. Other tasks

of the server include maintaining security information about the access privileges of
all control workstations and providing control workstations access to the surveillance
database. A control workstation operator could query this database for object, event,
or combined object and event video sequences or information. Both extracted surveil-

lance information and related video sequences are then returned to the operator.

A control workstation views surveillance feeds and issues commands to one or more

video workstations. It is designed as a web-based application and utilizes standard
embedded media players to view the RTSP surveillance-video streams. Commands are

created in response to graphical user interface (GUI) events (e.g., clicking on the GUI
buttons) and are sent to the server and control workstations as hypertext transfer
protocol (HTTP) requests or TCP packets. We program the control workstations

to respond to receiving high-level surveillance information using a set of alerting
mechanisms. With the control workstation being a web-based application and the
surveillance stream being MPEG-4 compressed, we provide access to both the live
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and archived surveillance video sequences from mobile devices.

Each one of the system modules: video workstations, control workstations, and

surveillance server, is built from a set of modularly designed functional components

(see Fig. 6.2). A video workstation is denoted by V¿, a control workstation by Oj,
and the surveillance server by S. The design of the system architecture is influenced
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Figure 6.2: Block diagram of system modules and their components.

by the steps used in video processing. The main principle is to keep VW focused on

processing by delegating as many of its responsibility as possible to other modules.

For example, this has motivated the use of distributed architecture and a tri-module

system, parallel processing in VW, and the use of multicast to stream surveillance

video and information only once.
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6.4 Video Workstation

Each instance of the video-workstation module, V¿, is built as a set of components
and buffers, i.e.,

Vi = {C?,B^\x,y e {s,p,e,l,Clt},x ¿y,xy = yx}, (6.1)

where C^ stands for a component in the ith video workstation, B^ for a buffer
between components ? and y (or y and x) in the ith video workstation, s for a video
source, ? for processing, e for encoding, I for control, c for communication, and t

for streaming (see Fig. 6,2). Cs captures the video signal and delivers it to Bsp.
Cp grabs frames from Bsp and processes them to label moving objects and extract

surveillance information. Cp writes processed frames to Bpe for Ce to MPEG4-encode
them. Ct streams encoded frames to a multicast address. Ct also streams surveillance

information as UDP packets to an adjacent multicast address.

6.4.1 Video Processing and Indexing

Vi processes s using video-processing algorithms such as object segmentation and

tracking or object classification. It then creates a video index of source s. In this

chapter, the surveillance video index, which we also call surveillance information,

consists of the extracted objects with their features and events with their timing
information (e.g., frame 310 is where object 1 vandalized object 2 or frames 200,
2341, and 9870 are where large objects such as buses appear in the scene). This
index enables us to search and locate parts of the surveillance video with interest

to surveillance such as footage of a vandalism event or footage of object 3 during

its life-time in the scene. The video-processing algorithms required in this chapter
are shown in the UML sequence diagram of Fig. 6.3. In the first motion detection
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step, we use the new frame and the background frame model to classify pixels into

moving or foreground pixels and static or background pixels. Then, we use the binary
frame produced for object detection, in which we extract spatio-temporal features from

blobs converting them into image objects. More details on segmentation is found in

Chapter 3. Next, we pass the image objects to a feature-based object tracker in
the object tracking step, which builds correspondences between them in consecutive

frames creating tracks or video objects. More details on how tracking is performed
is in Chapter 4. Finally, we use the tracking information to detect events such as

vandalism in the event detection step. More details on how we detect vandalism is

in Chapter 5. Any algorithm for motion detection, object detection, object tracking,
and event detection can be used. Obviously, the performance, in terms of frame rate,

accuracy, and storage, of the proposed system depends on the used video-processing

algorithms. Fig. 6.4 visualizes the output of each step of the required video-processing

algorithms.

I Buffer Control 1 1 Motion Detection | Object Detection | | Object Tracking | | Event Detection

New Frame
-------------------------»¦

Surveillance
Information

4

Start

Finish
Start H1

Finish
Start ?
Finish

Start

Finish

Figure 6.3: UML sequence diagram showing processing steps used to index surveil-
lance video signals.

151



6.4. VIDEO WORKSTATION

m

(a) motion detection (b) object detection
^^Sí'-W^ ßm«p

era

HwEn
lE&Hy§lîi£|g

m
SU»!¦?

£&££I IH
feSBBpMiI.ttTWij|| »¦"W^

IH

I???

(e) object tracking (d) event detection (annotated)
Figure 6.4: Example output of each step of the video processing required. Note events
are overlayed on the top left corner of (d).

6.4.2 UML Design of the Multi-threaded Video Workstation

Fig. 6.5 presents the design of the video workstation components and buffers with
a UML class diagram. All components inherit from class Filter which inherits

from class Thread to create a multi-threaded framework. Multi-threading is key
to enable a video workstation to produce fluid video despite significant delays from
video processing and compression. Because buffers are shared resources between

two components, they inherit from class Mutex, which is an operating-system lock
to organize access to the shared resource and ensure the components architecture

are time-safe. The proposed buffers are essentially queues with synchronized access.

Every Filter, or component, has two buffers connected to it. The first buffer is an
input buffer which connects it to the previous functional block. The second buffer is

an output buffer which connects it to the next functional block. Each buffer is aware
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Figure 6.5: UML design of a video-workstation components and buffers. All buffers
are synchronized queues. All components are filters with two buffers for input and
output. Buffers are aware of their input and output components. The VideoPro-
cessor is where one or more video-processing algorithms are realized, e.g., object
segmentation or event detection.

of the two filters connected to it. There is no input buffer for the video-source (C5)
component and no output buffer for the video-streaming component [Ct). We extend
class Buffer one more level down the inheritance hierarchy to produce FrameBuffer

which hosts objects that represent video frames.

The VideoSource class has a generic interface. We extend it to create classes

which define a particular video source. The extension includes specific routines and

variables necessary to access the video source. The VideoStreamer is an interface for
streaming classes. In our realization, we extend the VideoStreamer class to produce
the RTSPStreamer class which will create a multicast group for control workstations

and the surveillance server to join. The VideoEncoder class is an interface to com-
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pression classes. We extend it once to create the MPEG4Encoder class. The core

class of the proposed system is the VideoProcessor class. Extending this class creates
the system video processing engine which defines the overall surveillance functionality

of the system.

The proposed architecture is designed to account for the failure of one or more

components. As can be seen from Fig. 6.5, components have generic interfaces which
allow for real-time component switching in the case of component failure or in response
to operator requests. For example, a number of key components which are prone to

failure (e.g., processing component) are started and kept in a suspended state during
the normal operation of the system. If the main processing component fails, the
thread-scheduling component halts the system until a replacement is integrated.

6.5 Surveillance Server

A video workstation sends the multicast addresses for the surveillance video signal
and information as part of its registration with the surveillance server. The server's

communicator receives this information (see Fig. 6.2) and stores it in the database.
When a control workstation registers with the server, it receives a list of connected

video workstations {V^}.

The server is not the central point in the proposed system, this is different from

traditional surveillance system architectures [9], where the server is central and rep-
resents a single point of failure in the system. A failure in the server does not cause

any of the video workstations to lose the surveillance feeds. The server joins (i.e.,
becomes another receiver) the multicast addresses to which all video workstations
stream video signals and extracted information, and is hence another receiver in the

system specifically tasked with archiving. Therefore, multiple servers can be added

to scale the system. The server stores surveillance video signals in the storage media
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and extracted information in the database. The stream receiver Cr receives the video,
the RTSP depacketizer Ck depacketizes it and the video archiver Cv archives it in the
database and storage media. The communicator Cc receives surveillance information
and the logger C9 stores it in the database.

6.5.1 Delivery of Surveillance Information

We use the surveillance protocol in Table 6.1 for inter-module communication (e.g.,
surveillance events from video to control workstations and control commands from

control to video workstations). The communication takes place between communica-

tion components C^, Cc j and Cf (see Fig. 6.2 and equation (6.1)).

Table 6.1: Structure and examples of surveillance protocol packets.

Message Type Size Source Destination Message
ObjectList 1KB Cj1 Multicast IP Objl, Obj2, ... etc
EventList 500B Cf Multicast IP EvI, Ev2, ... etc
Command | IQOB C°> f fe Csc Move Camera

We send all commands to both the server for logging and the destination video
workstation. There are two types of commands. The first is sent directly from the
control workstation to the cameras such as the PTZ controls as HTTP requests.
Other commands related to video surveillance are sent to the video workstation as

TCP packets and handled there (e.g., the command to change the quality level of the
surveillance video or change how objects are labeled for improved visualization).

6.5.2 Modeling feature variations as temporal Gaussiane

One of the main challenges in a surveillance system is managing a large volume
of extracted surveillance information, here object and event data. The surveillance
server receives up to 18 frames per second of surveillance SIF video. With event and
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object data being received every frame from multiple cameras, we address the problem
of archiving this information. Event information, such as when the event started

and what are the related objects, can be filtered based on the event type. Events

that repeat very often like Move or Stop are less likely to be of interest, whereas

major events such as Vandalism or Stay-Long are often of interest. Therefore, the

main challenge of archiving surveillance information is with object features, which are
present every frame. Moreover, when performing a query involving both objects and
events, objects features exhibited during the life cycle of the event must be available.

The problem of archiving (or sampling) frequent object information can be consid-
ered as an object feature modeling problem. The simplest model is to use all extracted

features of the object in all frames. However, this approach, while it provides the most

accurate object information for any object-event query, keeps the system busy and
has a high storage requirement. In the proposed system, we model object features

as a temporal sequence of Gaussians. Let T = P ? k for k G {0,1,2,...} be the
index of the temporal Gaussians sequence, i.e., T e {0, P, 2P, ...}, and k is the frame
number. P controls the temporal separation between the Gaussians. The mean µ%.
and variance ?!? of one Gaussian in the sequence is calculated from incoming feature
observations using

µ% = ?µ^1 + (1 - p)Ak, (6.2)
?^=??^-? + (1-?){?"-(4)2, (6.3)

where Ak denotes an example object feature in frame k (e.g., area), ? = (N — I) /N is
a scaling factor that is a function of N, and N is the current number of observations

in /x|, and Vj·. When N = P, new µ^ and v? are created and N is reset to 1. Exam-
ple features include area, perimeter, position, and minimum bounding box (MBB).
They are maintained and used to calculate more complex features such as contour
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irregularity. The variance of the temporal Gaussian Vj, measures /ij-'s reliability as
a representative of features over the period P. Small values of Vj. means the object
features remained stable over time possibly because the object stopped moving in

the scene or started moving slowly (e.g., due to traffic light). v\ can be normalized
to create a probability indicator of feature reliability that is returned with µ\ in the
retrieval results.

Selecting a proper value of P depends on the frequency of feature variations.

For example, a car moving perpendicular to the camera has small feature variations

compared to a non-rigid object such as a pedestrian moving towards the camera. We

set P = 10, We motivate our choice for P = 10 from the Nyquist sampling theorem

based on the maximum observed object feature frequency in typical surveillance video

sequences. We can relate the variations of object features over time to one of three

reasons: 1) a gradual increase or decrease in some object features as it moves towards
or away from the camera; 2) a periodic variation of features due to the movement of
arms and legs while walking or running; and 3) random variations due to noise from
local illumination changes or segmentation errors. We can view the gradual variation

of object features as periodic if we consider the movement towards or away from the

camera as part of an imaginary cycle in which the object performs the opposite all

the time (e.g., move towards the camera then move away repeatedly). The variations
due to body motion is largest when the object moves perpendicular to the camera.

We can have a combination of variations due to gradual change and periodic motion,

but the periodic motion causes the change with the highest frequency.

We can observe the periodic-motion high frequency in Fig. 6.6 showing object

binary images taken from the reference test sequences Comm2 (top) and Ekrlb (bot-

tom). Also, Fig. 6.6 shows plots of object area over time from sequences Comm2
(left) and Ekrlb (right). In Comm2, the object moves outdoors far from the camera
and the video is captured at 60 frames/second. In Ekrlb, the object move indoors close
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to the camera at a frame rate of 30 frames/second. Note the semi-sinusoidal pattern
in the object area plots. We consider two cycles in this semi-sinusoid to represent

one period of object movement because the full visual content of an object is revealed

from the camera's point of view after two walking steps to account for asymmetrical

situations (e.g., when an object is holding a bag in one hand). From Fig. 6.6, the pe-

riods of the maximum frequency are 1^60115 = 1.08s and 88^157 = 1.03s, respectively.
Accordingly, Nyquist theorem tells us to sample at a period of 0.5s. We set P = 10

which corresponds to sampling periods 0.16s and 0.33s, respectively, which is below

the Nyquist sampling period of 0.5s. With the proposed sampling scheme, the storage

requirement is significantly reduced. This, however, creates a delay of one third. of a
second for 30 frames per second video sequences between the object features and the

event. This delay is insignificant given the normal speed of objects in surveillance

sequences.

6.5.3 Surveillance Database Design

In the proposed system, surveillance information is archived in a database at the

server, while surveillance video is stored as an MPEG4 elementary stream in a storage

unit connected to the server. The part of the database design related to surveillance
?

information and video is shown in Fig. 6.7. Database tables related to access control,

logging, and other management tasks are not shown due to space limitations. Every

Video Workstation has one or more SurveillanceVideos. Events and objects each span

two tables: the first is VideoObject/EventType for video-wise (or global) information
and the other is Video ObjectFeatures/Events for frame-wise (or local) information.
The two tables are linked by their IDs. Each row of the Video ObjectFeatures table

represents the average (see equation (6.2)) of features over P frames. Complex queries
involving both objects and events require linking their tables (e.g., when trying to
find the features of an object with a particular event). Since object features are not
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Figure 6.6: Change of object area (as a representative of object features) due to
periodic motion over time for test sequences Comm2 (left) and ekrlb (right).

present for every frame due to sampling using equation (6.2), we return features which
minimize the absolute difference between the object and event frame numbers

R = {Obj, Ev : min I^ - k0bjT\}, (6.4)

where R is the set of returned results, Ev and Obj are the query event and the object

features, respectively, and kßv and kobjT are the event and object frame numbers,
respectively. We use the archived event and object timing information to locate,
extract, and return the parts of the surveillance video associated with the object or
event query.
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Figure 6.7: Schema of surveillance system database at the server.

6.6 Control Workstation

Control workstations provide the main form of user interaction in the proposed system

architecture. The main components of the control workstation are: 1) a communicator
Cc to receive surveillance information; 2) an alert component Ca to filter surveillance
information and respond with pre-programmed alerts; and 3) a pipeline for viewing
the video signal consisting of a stream receiver Cr, an MPEG4 decoder Cd, and a
GUI Cn. Cu also receives control commands from the user.

6.6.1 Presentation of Real-time Surveillance Information

We present real-time surveillance information in three panels as shown in Fig. 6.8.

The first panel (top left) shows the real-time surveillance video. Objects (and their
IDs) are optionally shown either inside their MBB or their color is changed (see
an example in Fig. 6.15). Events are shown in the second panel (top right) and
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Figure 6.8: Presentation of real-time surveillance information and video signal.

optionally overlaid on the top left corner of the surveillance video. This allows an

operator to focus entirely on the surveillance video while seeing the full information.

Alternatively, an operator may configure the event list to allocate a certain color

and audio signal to a particular event of interest (e.g., vandalism), which draws the
operator's attention to the surveillance video quickly. Controls are placed in the final

panel below the surveillance feed. The server enables only controls for which the user

has access.

6.6.2 Retrieval of Surveillance Information and Video

The user can retrieve events using their type, camera, or timing information. We

retrieve objects using their camera and timing information and based on a criteria

that puts object features in their context. The following list shows the used search

criteria for objects and its relattion to stored features:

• Area: small, medium, and large.

Position: right, left, center, top, bottom, .. etc.
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• Motion: slow, fast, and too fast.

• Age: short, long, and very long.

The criteria allow us to translate object features and events into contextual queries.

For example, using the area and position features, we can search for buses (large
objects) exiting a street (bottom left) of thè scene. Another example is searching for
cars (medium objects) which violate the speed limit (too fast) or have parked in a
location for a long time (very long age). The specific limits used in the above criteria,
or other criteria, can be designed from specific application needs.

6.7 Results

We test the performance of the proposed surveillance system by focusing on the
performance of indexing, retrieval, delivery, and presentation. We later test the per-

formance of segmentation, tracking, and vandalism detection in their Chapters 4,

5, and 6, respectively. We used the event detection algorithm in [122] to extract
other events. Other algorithms can also be used (e.g., [123]). We first examine the
resource (CPU, network, and memory) requirement of video workstations and the
factors which affect the final frame rate in Section 6.7.1. Then, we compare the pro-

posed system architecture to a recently presented architecture in terms of scalability

and distributed performance in Section 6.7.2. Finally, we present the results of testing
the indexing and retrieval capabilities of the proposed system in Section 6.7.3. To

test the proposed system online, we used the network camera models AXIS213 and

AXIS233D with a 1/4" CCD sensor set to produce 30 frames/second of progressive
SIF video.
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6.7.1 Resource Requirements and frame rate

Video workstations are the resources intensive modules of the system. We tested their

resources utilization over time. The results are shown in Fig. 6.9. In this test, we ran

the system for 15 minutes while monitoring busy morning traffic. We noticed that

the amount of memory used is stable over time. CPU usage over time is shown in

Fig. 6.9(a). The video workstation needs 33% of the processing power (the full CPU3
in 6.9(a)) of a quad-core computer to produce an 18 frames-per-second surveillance
SIF video. A possible lower bound on the frame rate is 10 frames/second. Lower
than 10 frames/second leads to non-fluid surveillance video at the CW side and many
frame drops, which lead to less reliable tracking. The video workstation network

utilization is shown in Fig. 6.9(b). We can observe a steady MJPEG input stream
coming from the camera and a variable output MPEG-4 and surveillance information

streams depending on the complexity of the scene. As can be seen, resources usage

is stable over time.

To test the effect of video content on the frame rate, we use video signals with

variable number of objects and occlusions in the scene. We notice no change in

the final frame rate as more objects are introduced as in Fig. 6.10. We observed

temporary drops in the frame rate when the complexity of the scene increases as

measured by the number of occlusions. The frame rate of the system increases again

when the occlusions end. This expected drop in the frame rate is necessary to achieve

reliable indexing.

The time needed to process one frame in the video workstation can be divided

into three parts associated with components Cs (capture), Cp (processing), and Ct
(streaming). The breakdown of their relative time is shown in Fig. 6.11. Within
processing, the ranking of video processing tasks based on their effect on the frame

rate of the system is as follows: 1) occlusion and split detection and correction; 2)
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Figure 6.9: Resource (CPU and network) utilization over time for video workstations.
Memory usage was stable over time and is not shown.

segmentation; 3) tracking without occlusions and splits; and 4) event detection. We
draw two conclusions from Fig. 6.11: 1) to increase the output frame rate of the

Number of objects

Figure 6.10: Frame rate under different object counts.
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Cp (Processing) Ct (Streaming)

Cs (Capture)

Figure 6.11: Percentage of time used in the three major components of the video
workstation to process one frame. Note that the Cs component includes MJPEG
decoding and the Ct component includes MPEG4 decoding.

Table 6.2: Frame rate using different CPU Types
CPU Type # Cores Core Speed (MHz) Frame Rate

Intel Core i7 920 2670 25
Intel Xeon 3200 18

AMD Opteron 248 2192 10

system, we aim to have the time needed for Cp to match that of Ct or C5; 2) we
can improve the frame rate of the system running on a multiple core computer by

associating Cp with one CPU core and Cs and Ct with another. We can use the second
conclusion to establish that the ideal number of video workstations running on the

IS HSl1JlI ¿HG .Cá'JXlaS'SX OI Oa w COiTGS III CÁlBii COllIipIIGCII VVG GGSo will

in Fig. 6.12 by running one, two, three, and four video workstations consecutively on
the same quad core computer. With the proposed component scheduling scheme, we

do not detect frame rate drops for the first two video workstations. The frame rate

starts to drops when running three video workstations at the same time.

We tested the proposed system ori three different CPUs and conclude that the
type of CPU affects the frame rate as can be seen from' Table 6.2. Note that we used

the Intel Xeon processor (row two), C++, and Linux in all other tests of the system.
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Figure 6.12: Effect of running multiple video workstations on the same quad core com-
puter by associating the Cv components with one core and the remaining components
with another core.

6.7.2 Scalability and Distributed Performance

Scalability and distributed performance are important for surveillance systems. We
quantify those aspects by the impact of adding an additional video workstation or

control workstation on the network bandwidth and the surveillance system frame
rate. The use of multicast instead of unicast in the proposed architecture for commu-
nicating surveillance information and video increases the scalability and distributed
performance of the system. We demonstrate this in Fig. 6.13 in terms of network
bandwidth needs after adding additional video and control workstations. With mul-

ticast, packet duplication is done efficiently at the network router. Increasing the
number of control workstations does not increase the bandwidth requirement of the
video workstation because the surveillance video is sent only once. This is an im-

portant results for systems utilizing many cameras. It also reduces the processing
requirements on video workstations. Also, the proposed system allows for adding ad-
ditional control workstation efficiently, e.g., when using mobile control workstations.

In Fig. 6.14, we examine the effect of adding control workstations on the frame rate
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Figure 6.13: Multicast increases the scalability and network efficiency of the surveil-
lance system. Adding additional control workstations does not increase the bandwidth
requirements of video workstations.

of the proposed system compared to the system in [9]. In this test, we used the same
video processing, streaming, encoding, and archiving used in our system and varied
only the architecture. It can be seen from Fig. 6.14 that since the surveillance server

of the system in [9] is a central point of the system (instead of an non-central point
as in the proposed system) the more control workstation are connected, the lower
the frame rate that the server can deliver to them. This is not a major drawback

in case of a single control workstation. However, adding mobile control workstations
poses a challenge for the system in [9] compared to ours. We tested our proposed
system on a WiFi capable mobile device and show the output in Fig. 6.15. The
system provides access to all features of the control workstations except for access
to multiple surveillance feeds at the same time due to the limited size of the device
display and limited CPU power to decode more than one incoming MPEG4 stream.

6.7.3 Testing the Overall System

We use the precision-recall curve to evaluate the performance of the whole system.
The closer the curve to 1, the better the performance of both the video object extrac-
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Figure 6.14: The effect of adding control workstations on the frame rate of the pro-
posed system and that of [9].

Figure 6.15: Video surveillance on a mobile device.

tion part and the management, archiving, and retrieval of surveillance information
part. Precision is defined as the number of relevant results retrieved by a search
divided by the total number of results retrieved by that search. Recall is defined as
the number of relevant results retrieved by a search divided by the total number of
existing relevant results,

Precision =
TP

TP + FP'
Recall =

TP
TP + FN' (6.5)

where TP is true positive, and FP is false positive, and FN is false negative. An
example object retrieval is as follows: to search for all large objects (e.g., buses)
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passing through the corner (e.g., exiting a street) of the frame as in Fig. 6.16(a).
The resulting precision-recall curve is shown in 6.16(b) with the precision maintained
mostly above 70%. An example event retrieval is to search for all events of objects
being detected inside a restricted area as in Fig. 6.16(c). The inside-event is an
important one which helps localize objects, e.g., in case of vandalism detection, or

for counting objects (e.g., counting cars in highway surveillance). Improved precision
results (maintained above 80%) are obtained for this query. The retrieval result
overall satisfies the requirement of the query [124].

(a) Objects Retrieval

% ;TrS*. f * ^ ^ £*>*«, ^ " /t|f

(c) Events Retrieval
Figure 6.16: Retrieval of objects
performance.

Recall

Precision-recall curve

(d) Precision-recall curve
events. A curve closer to 1 indicates better

In the final experiment, we use our surveillance system to investigate a situation
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in which a number of repeated object occlusions and expositions is detected in front

of a restricted area. This can be viewed as an alarming situation or a possible fight

scenario. First, we use the proposed system to find slow moving objects in the center

of the scene in the last 18 minutes of the video signal. We locate object ID 33. We

then search for occlusion events associated with object ID 33 and observe that as the

two pedestrian closely walked up the street, they occluded a number of times. This

experiment is shown in Fig. 6.17. We can see that the event retrieval results allow
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(b) Events Retrieval
Figure 6.17: Use of the proposed surveillance system in investigating multiple object
occlusions as a sign of fighting in front of a restricted area. Object-based search is
used first to locate slow moving objects in the center of the scene. The ID of the
video object is then used to search for related occlusion events.

us to decide if the situation is not an alarming one.
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6.8 Summary

In this chapter, we proposed a scalable, distributed and real-time surveillance sys-
tem with for indexing and retrieval capabilities. The system architecture consists of

three main modules, namely, video workstations for video processing and indexing,
control workstations for viewing and control, and a surveillance server for system
management and archiving. The video workstation used a series of segmentation,
tracking, and event detection algorithms to index the surveillance video and stream

the surveillance video and extracted information to a mutlicast address joined by the
server for archiving of surveillance information and video and by control workstation
for viewing and control. This increases the scalability and distributed performance of
the system. The proposed system reduced storage requirements by modeling object
features as temporal Gaussiane and used observed variations in object features to find
the temporal separation between the Gaussiane (to sample features). The proposed
system achieves a frame rate of 18 frames/second for SIF video and is real-time due to
the proposed indexing scheme (i.e., extraction, delivery and archiving of surveillance
information). We used the precision-recall curve to evaluate the indexing and retrieval
capabilities of the system. The efficient design of the proposed system enabled us to

run it on mobile devices through wireless networks to provide security personnel with

access to surveillance video and information both real-time and offline on the move.

We compared our architecture with a recently presented one and found that ours is

more scalable, network efficient, and achieves higher frame rates.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Video surveillance has attracted the attention of both academia and the industry.

Many video surveillance systems either focus on the video processing algorithms to

deal with the problems faced towards extracting video objects (i.e., spatio-temporally
localizing them and interpreting their behavior while dealing with the challenges
brought forth by a temporally varying and content rich signal), or on the system
architecture and how to communicate, manage, and index extracted video objects

to achieve automated surveillance and retrieval. Few attempts [125-127] are made
to investigate both video object extraction and the surveillance system architecture
at the same time and study the challenges faced towards building an end-to-end

automated surveillance system. Due to the complexity of video surveillance signals,

many video processing algorithms are needed, leading to many difficulties in bringing
them together. Nevertheless, the end product is not only of industrial value, but
of academic one. It provides a framework for testing and improving the various

algorithms used and reveals the challenges still ahead.

This thesis has developed a video object extraction engine and integrated it into
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a distributed, scalable and fast surveillance system architecture. The result of this
integration is an end-to-end surveillance system, that can be used to realize many
video surveillance applications. One such application demonstrated in this thesis is

vandalism detection. The thesis has studied and proposed solutions to the problems
associated with video object extraction such as noise estimation, segmentation with
fixed and moving cameras, multiple video object tracking with occlusion and split
handling, and high-level behavior interpretation. It has also studied and proposed
solutions to the problems associated with the communication, indexing, and retrieval
of the extracted video objects and the distribution of tasks on the module and com-

ponent level to realize the potential of the video extraction engine in automated
surveillance.

The proposed surveillance system architecture decentralizes the server and stops
it from being a single point of failure in the system, and is hence more reliable than
conventional architectures. It also shifts the responsibility of broadcasting surveil-
lance video and information from the video processing module to the network, and
thus frees the module to focus on processing and achieve higher frame rates. In the
proposed architecture, temporal Gaussiane are used to model object features and
Nyquist sampling theorem is used to decide on the proper separation between the
temporal Gaussians. With the proposed model, the storage requirement is signifi-
cantly reduced. This, however, creates a delay of one third of a second for 30 frames

per second video sequences between the object features and the event. This delay
is insignificant given the normal speed of objects in surveillance sequences, making
the proposed model an improvement over storing extracted objects every frame. Our
study has also revealed that to increase the output frame rate of the system, we must
aim to have the time needed for processing match that of compression and streaming.
We also realized the benefits on the final frame rate coming from running module
components on parallel using a multi-core computer. We conclude that higher frame
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rates can be achieved by researching how to run the video processing algorithms
themselves in parallel, which is becoming an emerging trend. We experimented with
OpenMP, an application programming interface for parallel programming, by running
a processing intensive benchmark test on an 8 core AMD Opteron processor (each
core 1000 MHz) and on a 2 core AMD Opteron processor (each core 2192 MHz). The
test finished on the 8 core slower processor in approximately half the time it needed
to finish on the faster 2 core processor.

From researching noise estimation techniques, we conclude that block-based noise
estimation algorithms combine accuracy and fast performance, but rely on large quan-
tities of blocks and homogeneity measurements to achieve this. Reducing the quantity
of blocks leads to faster performance at the expense of a loss in accuracy. We pro-
posed using particle filtering techniques to reduce the quantity of blocks without
losing accuracy by allowing these blocks to be dynamic as they seek nearby homo-
geneity. We investigated the application of these homogeneity seeking blocks in noise
estimation and they showed promising results. This motivates us to further research

their application in segmentation.

Our fast segmentation approach combines the benefits of both background sub-
traction and background update and yields temporally stable objects for tracking.
The price of this stability is increased sensitivity to shadows, which translates to false

occlusions. These false occlusions are partial in nature and do not pose a challenge
for the proposed object tracking, apart from increased computations. On the other
hand, temporally unstable objects lead to track loss, which is a more serious problem.
Moreover, the proposed approach is not as robust at night as it is during the day be-
cause it is challenged, as most segmentation techniques are, by low illumination and
low contrast sequences. How to pre-process the surveillance signal to improve night
segmentation is an interesting research topic. To handle moving cameras, we used

local frame neighborhoods to generate background models and use them to segment
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objects. This allowed us to achieve accurate segmentation results, but is compu-
tationally expensive for real-time object tracking. We reduced the computational

complexity of the algorithm. Despite this, there exist object trackers that require no
segmentation. These algorithms rely on object detection to initialize tracking, but
assume no global motion. The proposed approach helps in cases where the tracking
needs to be initialized during global motion. There are also other application areas

such as coding where object segmentation in global motion is very crucial.

Multiple video object tracking is a very challenging task, especially in a crowded
scene with different object scales. Both deterministic (e.g., rule-based) and proba-
bilistic trackers have their advantages and disadvantages. The main advantage the
deterministic trackers have over probabilistic trackers is the fact that increasing the
number of objects is far less computationally inexpensive than with probabilistic
tracker due to the increase in dimensionality. This is important for building the
proposed surveillance system. The main advantage of probabilistic trackers is the

fact that they do not require segmentation and can handle moving cameras easily.
Moreover, probabilistic trackers need prior knowledge of the models of objects to
track in the initialization stage. This is often done manually, which is not practical.
Alternatively, a deterministic (i.e., a detection or rule-based) method, like the one
proposed, is needed to identify and track moving objects until they stabilize and then
initialize the probabilistic tracking stage. Therefore, a better approach to tracking is
to perhaps integrate both types of trackers.

Methods for vandalism detection use either the detection of abnormal behavior of

vandals or the detection of changes caused by vandalism. The proposed vandalism

detection method uses both. Since the detection of abnormal or strange behavior may
not be accurate or reliable because of the difficulty in trying to define what constitutes

a strange pattern in the deviations of object features, we base our algorithm on basic

events (e.g., inside, moving, staying for long, etc). At the same time, we also monitor
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the changes caused by vandalism. This is important because suppose, for example,

a sick person is moving close to a restricted site. This may be detected as abnormal

movements or variation of features, however, it is not enough to detect vandalism

without considering the changes to the site.

7.2 Future Work

There are several extensions to our proposed work. In segmentation, a possible ex-

tension is to integrate shadow detection and removal into the segmentation process.

While the fast video object tracking used took advantage of the temporally stable and

clean blobs produced by the fast segmentation approach, this came at the expense

of increased sensitivity to shadows. There are algorithms which can detect and re-

move shadows reducing false occlusions and improving the overall tracking reliability.

Moreover, there have been recent advances in the area of night segmentation by pre-

processing the night time signal before segmentation. Using a fast method to night

segmentation is interesting as it allows automated outdoors surveillance to continue

at night, when it is most needed.

In global motion estimation, a possible extension is to investigate if the output

produced from the proposed global motion segmentation technique can improve the

outliers detection process. Another extension is to investigate how to prevent noise

from interfering with global motion estimation and how to reduce the effect of error

propagation when predicting long-term motion parameters from short-term ones.

In tracking, a possible extension is to produce a hybrid tracking method which

switches from multiple video object tracking to particle filtering based single video
object tracking during global motion, then switches back to the proposed multiple
video object tracking. This allows the tracker to keep objects already tracked during
global motion, but does not initiate tracking for newly appearing objects. The pro-
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posed global motion segmentation method can help detect and initiate tracking for

those newly appearing objects, which motivates us to further investigate reducing its

complexity.

In vandalism detection, a possible extension is the use of face detection and recog-

nition of vandals to prevent repeated vandalism cases. Also, post-vandalism vandal

tracking can be key in providing authorities with crucial information (e.g., the vandal's
car make and model as they flee the scene). This requires switching from multiple to
single object tracking and coordinating camera controls with the output of tracking.

Since vandalism often occurs during the night and the proposed approach for van-

dalism detection relies on segmentation, a robust night segmentation approach will

enable vandalism detection to work at night.
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Appendix A

Visual Segmentation Comparisons
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Figure A.l: Subjective comparison of the fast segmentation method with ground
truth and automatically (using [5]) generated background models for frames I =¦ 650
to 750 of the Occlusion Vandalism sequence.
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Figure A. 2: Subjective comparison of the fast segmentation method with ground
truth and automatically (using [5]) generated background models for frames I = 90
to 190 of the Intelligent Room sequence.
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Figure A. 3: Subjectwe comparison of the fast segmentation method with ground and
automaticalh'' (using [5]) generated background models for frames / = 500 to 600 of
the Guy sequence.
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Figure A.4: Subjective comparison of the fast segmentation method with ground
truth and automatically (using [5]) generared background models for frames I = 85
to 160 of the Campus sequence.
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Figure A. 5: Visual comparison of the segmentation output
the Figure Skating sequence between the proposed and x<

for frames Z = 10 to 13 of
eference [6] methods.

194



APPENDIX A. VISUAL SEGMENTATION COMPARISONS

?

Figure Skating

Proposed

Figure A. 6: Visual coniparison of the segmentation output for frames I = 14 to
the Figure Skating sequence between the proposed and reference [6] methods.
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Figure A. 7: Visual comparison of the segmentation output for frames I = 20 to 30 of
the Soccer sequence between the proposed and reference [6] methods. To compensate
for the captured video being in slow motion, we use Nr = 20 for this sequence.
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