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ABSTRACT 

Magneto-Rheological (MR) Damper for Landing Gear System 

Mahboubeh Khani 

Depending on the different sink speeds, angles of attack and masses; aircraft 

landing gears could face a wide range of impact conditions which may possibly cause 

structural damage or failure. Thus, in hard landing scenarios, the landing gear must 

absorb sufficient energy in order to minimize dynamic stress on the aircraft airframe. 

Semi-active control systems are the recent potential solutions to overcome these 

limitations. Among semi-active control strategies, those based on smart fluids such as 

magneto-rheological (MR) fluids have received recent attraction as their rheological 

properties can be continuously controlled using magnetic or electric field and they are not 

sensitive to the contaminants and the temperature variation and also require lower 

powers. 

This thesis focuses on modeling of a MR damper for landing gear system and 

analysis of semi-active controller to attenuate dynamic load and landing impact. First, 

passive landing gear of a Navy aircraft is modeled and the forces associated with the 

shock strut are formulated. The passive shock strut is then integrated with a MR valve to 

design MR shock strut. 
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Here, MR shock strut is integrated with the landing gear system modeled as the 

2DOF system and governing equations of motion are derived in order to simulate the 

dynamics of the system under different impact conditions. Subsequently the inverse 

model of the MR shock strut relating MR yield stress to the MR shock strut force and 

strut velocity is formulated. Using the developed governing equations and inverse model, 

a PID controller is formulated to reduce the acceleration of the system. Controlled 

performance of the simulated MR landing gear system is demonstrated and compared 

with that of passive system. 
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CHAPTER 1 

INTRODUCTION AND LITERETURE REVIEW 

1.1 Motivations and Objectives 

The aircraft is composed of numerous complex components. All systems in an 

aircraft that are used for taxing, taking off, cruising and landing are vital. Landing gear is 

one of them. Statistics show that more than 50% of the not-fatal accidents occur during 

take-off and landing [1]. 

During touchdown the shock strut and the associated forces are transmitted from 

the ground to the fuselage through the landing gear. The impact energy needs to be 

attenuated to prevent the potential structural damage. When hard landing occurs, fuselage 

might experience more than allowable value of dynamic stress causing structural damage. 

During the landing, a transport aircraft is normally approached to carry out the 

touchdown at a speed of about 6 ft/s (1.8 m/s). However, Navy aircrafts are designed 

to approach at higher sink speeds. Hard landing situation may occur for sink speed above 

these values. The effect of hard landing may be ranging from mild passenger discomfort 

to serious crash landing depending on the level of sink speed. All the potential 

consequences are associated with various levels of severity impacts which are of very 

short duration and furthermore yield high level accelerations. 

In order to minimize structural damage, energy in hard landing situation should be 

absorbed as much and as fast as possible. However, the hard landing situations caused by 

weather conditions, mechanical problems and over-weight aircraft are unavoidable. To 

mitigate landing impact transmitted from the ground to the aircraft fuselage, several well-
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known types of shock absorbers are employed in the landing gear system and invariably 

designed to attain satisfactory performance. When the shock absorber is compressing, a 

soft suspension would be desirable, while in extension it requires stiffer suspension to 

improve landing performance. Therefore, uncontrollable properties of hydraulic dampers 

cause restriction to performance characteristic of the aircrafts with passive gears. 

In the past four decades, several numbers of the variable damping concept based 

on active control approach have been developed to improve riding characteristics of the 

vehicle. This approach has also been experimented for aeronautic applications [2]. 

Among all variable damping concepts, a new and promising method is to make use of 

semi-active control and consequently "smart" magneto-rheological (MR) or electro-

rheological (ER) fluids in the damping system. The main advantage of these fluids is the 

possible continuous low power control of their rheological properties. It becomes obvious 

that with a variable and controllable viscosity of the fluid, the force of the damper also 

becomes variable and controllable. The semi-active approach has been extensively 

developed in automotive application nevertheless; a few aeronautical applications have 

been reported [2]. However, use of ER fluids in the aeronautical application is narrowed 

due to their need to a high voltage source and their narrow operating temperature range 

[3]. MR fluids are much more appropriate for aerospace applications since they need a 

low voltage source and can work in the temperature environment ranging from —40 to 

150°C [3]. 

Therefore, the main objective of this research thesis is to derive and solve a 

mathematical model of the MR landing gear in conjunction with the design of a semi-
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active controller for the proposed model to attenuate the acceleration and stroke of the 

landing gear system. 

The specific objectives of the thesis research are provided below: 

1. Modeling and simulation of aircraft landing gear attached to a rigid mass under 

landing impact as a lump mass model and formulation of the forces acting on the 

landing gear 

2. Formulation of a PID controller for a magneto-rheological (MR) fluid based 

landing gear system with potential application in the commercial aircraft to 

optimize the acceleration encountered during impact. 

3. To prove that an aircraft equipped with a MR landing gear would land normally 

under a sink speed which would otherwise (in case of passive landing gear) cause 

hard landing and consequently possible structural damage 

1.2 Literature Review 

The development of a controller for MR-damper landing gear system requires to 

fully understand the landing gear dynamics, the properties and behaviour of the MR-fluid 

damper and the control concepts. Therefore several studies related to these subjects are 

reviewed to gain the required knowledge and organize the scope of the thesis. The studies 

reported in these areas are presented and discussed in the following sections. 

1.2.1 Developments in landing gear design 

Development of landing gear analysis goes back to 55 years ago [4] when almost 

all aircrafts had tail wheels or skids and when the very simple oleo-pneumatic shock strut 
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was used. Since then, not all aspects of landing gear have been much developed, 

however, some new materials were developed to assist landing gear designers to increase 

the efficiency of the shock absorbers with lower weight and cost in a more compact space 

[4]-

Different sink speeds and angles of attack lead to a wide range of impact 

conditions for aircraft landing gear [2]. The landing gear should attenuate sufficient 

dynamic load in hard landing conditions in order to minimize structural damage. 

Fulfilling this requirement, however, causes reduction in the performance of the less 

severe impact scenarios and consequently may decrease the fatigue life of the aircraft 

components. To introduce an optimum landing gear design and improve landing 

performance, it is required to achieve rapid variation in damping force. A range of 

variable damping concept has been developed to introduce a possible answer to 

conflicting requirements of the landing gear design. The active and semi-active dampers 

applied in landing gear system might represent proper solution for these needs. The active 

control of a landing gear can increase the efficiency of the landing gear system and cause 

significant reduction in ground loads during touch-down and taxiing. It might also result 

in improvement of the passenger and crew comfort. The active control system has been 

widely tested for military aircrafts [4]. Ross and Edson [5] are among the first to design 

active control system for landing gear of a military aircraft in order to attenuate landing 

impact during touch-down and while crossing bomb-damaged landing paths. Daniels [6] 

demonstrated a method for modeling and simulation of a Navy A6-Intruder landing gear 

system and later, Horta et al. [7] have discussed an extension of the work done by Daniels 

[6] to include active controls. This work focuses on the modeling of the main gear of a 
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Navy A6-Intruder. To respond the U.S. Navy need for an aircraft that could work under 

any weather condition, day or night and attack targets on the ground and the sea, the A6 

was developed. To fulfill these needs, eight design proposals were submitted to U.S. 

Navy upon their request among which Grumman's design was selected in 1959. A6-

Intruder could carry both nuclear and conventional weapons, being able to attack in all 

types of weather. It could deliver twenty-eight 500 pounds weapons. The Intruder battle 

was first used in the Vietnam conflict with U.S. in 1965 to 1973 while the last one to Iraq 

in 1993. 

To actively control the motion of the landing gear, high and low pressure tanks 

are used in conjunction with electronically controlled valves to adjust the amount of the 

hydraulic fluid of the shock absorber. The spring and damper in actively controlled 

landing gear system are replaced by a high performance hydraulic actuator with a valve 

and hydraulic power supply. The usage of actively controlled landing gear system can 

cause complexity in the system and considerable rise in weight which is known to be the 

most sensitive criteria in aircraft design. 

The semi-active control system is extensively used in the automotive applications 

but also few aeronautical applications have been proposed thus far [8]. This system is less 

complex, less expensive and lighter than fully active control one since it works using 

variable metering-pin concept. Metering pin with variable cross-section moves through 

the orifice and consequently, changes the orifice diameter which is related to damping. 

Therefore, it can improve the performance of the shock strut by relating damping 

coefficient to the shock strut motion. 
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The semi-active control system offers controllable damping forces with minimal 

power requirements and combines the reliability and fail-safe features of passive system 

with adaptability of the active system. The semi-active control system application in the 

aircrafts has been studied by Choi and Wereley [9]. Choi and Wereley [9] demonstrated 

the effectiveness of ER and MR landing gear systems on attenuating the landing impact. 

They showed that the acceleration and displacement of the shock strut can be attenuated 

by employing a robust sliding mode controller to the ER/MR landing gear system. A 

design methodology to optimize an MR landing gear both in terms of damping and 

magnetic circuit performance was presented by Batterbee et. al. [3]. They designed an 

optimized MR valve in such a way that the semi-active landing gear can achieve an 

optimal performance and produce desirable behavior for a wide range of impact 

conditions. 

The schematics of passive, active and semi-active landing gear system are 

illustrated in Fig 1.1 via single DOF modeling not including tire model. The part of the 

fuselage on each gear can be considered as a rigid mass since the main gears of the 

aircraft are mostly located near the nodal points of the wing bending modes and 

consequently landing gear performance is not affected by the elastic deformation of the 

aircraft structure [10]. As an instance, in landing gear drop tests, the structure of the 

aircraft is typically substituted by a rigid mass. Since the dynamics of the landing gear is 

studied in this work, it is assumed that the landing gear is attached to a rigid mass which 

has single DOF in vertical translation. 
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Fig 1.1 Schematics of passive, active and semi-active landing gears. 

1.2.2 MR fluid 

A MR-fluid is a type of "smart" fluid made from magnetic particles in a carrier 

fluid, usually silicon based oil. These fluids are designed in order to apply controllable 

forces in practical damping problems, where a low response time, low power 

consumption and high reliability is needed [11]. The idea of MR fluid itself goes back as 

early as 1950's, when Rabinow [12] introduced it for the first time. MR fluid is basically 

a fluid that can be responsive to the magnetic field by a change in its rheological 

behaviour. A similar but meanwhile different type of fluid can also be responsive to an 

electric field. In this case the fluid is called ER fluid. The idea of ER-fluid has been 

proposed by Winslow [13] at almost the same time as MR-fluid is known as smart 

material. Fig 1.2 shows schematic of a MR-fluid damper. 

The MR-fluid contains numerous small particles suspended in carrier oil. The 

particles inside the MR-fluid are usually coated with an anti-clustering material. Their 

size must be much smaller than the size of the orifice of the damper to avoid joining of 

the particles and to prevent particle agglomeration. 
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Fig 1.2 Behaviour of MR fluid without (left) and with electric signal (right) being 
applied. Note that the particles are aligned in same direction as the magnetic flux. 

In the absence of a magnetic field ("inactivated"), the MR fluid behaves like the 

carrier oil. When subjected to a magnetic field, the particles that have been normally 

dispersed throughout the oil align themselves along the lines of the magnetic flux. Once 

aligned in this fashion, the chains of the magnetic particles resist against the trend of 

being removed out from their respective flux lines alignment and act as a barrier to the 

fluid flow as illustrated in Fig 1.2. This causes the variation in the viscous and shear 

properties of the fluid which consequently yields changes in the damping force. 

MR fluid can be used in three different modes. The modes of operation are called 

"flow mode", "shear mode" and "squeeze-flow mode". In the case of flow mode, the 

fluid flows as a result of pressure gradient between two stationary plates. This mode is 

used for dampers and shock struts application. In shear mode, fluid flows between two 

plates moving relative to one another. This mode is used in clutches and brakes where 

rotational motion needs be controlled. In the case of squeeze-flow mode, fluid flows 
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between two plates moving in the direction perpendicular to their planes. This mode can 

be used for applications controlling very small movements but involving large forces. 

The areas where the fluid is exposed to magnetic flux are usually referred to as "choking 

points". In the case of a typical MR damper, the MR fluid restricts the fluid flow from the 

one side of the piston to the other side, when the fluid is in the vicinity of the "choking 

points" as mentioned above. 

When varying the strength of the magnetic field, the so called "apparent 

viscosity" of the fluid is changed. The term "apparent" is commonly used as there is no 

change of viscosity regarding the carrier fluid. The stronger the magnetic field applied, 

the higher is the apparent viscosity of the MR fluid (as a whole), thus also resulting in a 

higher damping force. MR fluids can change its state from liquid to near-solid in duration 

below 10 ms [14]. 

1.2.3 MR dampers 

One of the variable damping concepts which was developed to overcome passive 

limitations was to make use of active dampers. However, using such technology leads to 

a significant increase in size, weight and power requirements of the system. A few studies 

have explored more attractive approach which is to implement semi-active energy 

dissipation using MR or ER fluids. 

The need for a controllable damper has been realized by Carlson et al. [15]. His 

ER and MR fluid-based dampers offered changeable damping characteristics within a 

good bandwidth. Since then, the MR-fluid dampers are becoming more interesting for 

engineers as semi-active controllable dampers given that MR fluids offer better potentials 

1 Apparent viscosity, AV, is the viscosity of a fluid measured at a specified shear rate. 
Therefore, In order to measure AV, the shear rate must be stated or defined. 
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using low voltage source and can operate in a wider temperature range and with higher 

yield stress. A wide range of prototype MR dampers are currently being developed in 

civil engineering structures [16] and vehicle suspension [14] but some aeronautical 

applications have also been developed [11]. 

As illustrated in Fig 1.2, the MR fluid damper consists of upper and lower 

chambers which are separated by the piston. The piston consists of magnetic coils which 

are attached to the wall of the annular orifices of the piston. The MR fluid flows through 

the orifice and changes its viscosity when the magnetic flux is generated due to current 

excitation in the coil. This causes changes in the damping force generated by the MR 

damper. A quite beneficial feature of MR dampers is that, in the absence of an external 

field, they can still operate like passive shock struts. Therefore, they have fail-safe mode 

of operation. 

Damping force developed by the MR damper is a function of command current 

generated by the controller. Force-velocity (F-v) characteristics of MR dampers under 

different constant values of command currents have been studied numerically and 

experimentally by many researchers [9, 14, 16-18]. It has been shown that the damping 

coefficient at low velocities in the pre-yield is far higher than the damping coefficient at 

higher velocities in the post-yield and that the response is nonlinear at low velocities. The 

F-v characteristics of a MR damper show hysteresis behaviour which depends on 

frequency and magnitude of the vibration and the values of the command current [14]. 

Hysteresis loop increases with increasing the frequency and the hysteresis width 

increases with increasing the excitation amplitude. Some studies have been done to 

characterize the hysteresis behaviour of the MR dampers using mechanical models. 

10 



Bingham plastic model which is described by Wilkinson [19] is often used to show MR 

fluid behavior. Stanway et al. [20] proposed a model based on Bingham plastic model 

which consists of a viscous damping force and a yield stress related Coulomb friction 

force. This model might not be a proper model for control analysis since it does not give 

a nonlinear F-v response at low velocities [16]. However, such model provides some 

insights on the sensitivity of the performances. A viscoelastic-plastic model proposed by 

Gomota and Filisko [21] is an extension of the model proposed by Stanway et al. [20] 

and describes the behavior of the ER fluids. Bouc-Wen model is also used to show the 

hysteresis behavior of the MR and ER fluids [16]. However, in both Bouc-Wen model 

and the model proposed by Gomota and Filisko [21], the F-v responses do not roll off in 

the area where the velocities are small. A model proposed by Spencer et al. [16] is a 

modified version of the Bouc-Wen model and provides a good estimation of the 

nonlinear F-v response at low velocities. The model proposed by Spencer et al. [16] is 

capable of predicting the behavior of MR damper when the current is continuously varied 

however; all other mentioned models are valid when the applied voltage is held at a 

constant level. Models proposed by Wang et al. [14] and Dominguez et al. [17] can also 

predict the behavior of the MR dampers when the applied voltage and consequently the 

magnetic field is varied. Therefore, they can be used for control analysis. However, the 

experiments or nonlinear optimization needs to be done in order to calculate the 

characteristic parameters of the MR damper. In this work, Buckingham equation is 

written for Bingham plastic model to gain understanding on the relation between yield 

stress and the damping force. 
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1.2.4 Controller schemes for MR damper applications 

A number of semi-active control schemes based on variable damping concepts 

have been formulated to attenuate vibration and dynamic loads. Rakheja et al. [22] 

formulated an on-off control scheme using flow modulation devices in a conventional 

hydraulic damper. Relative position and velocity were measured to produce feedback 

signal. The on-off control scheme would also be used for MR damper by modulating the 

control current which would result in hi-low damping force variation. Lee et al. [23] 

proposed a sky-hook controller scheme for a full-car suspension featuring MR dampers. 

Choi et al. [24] designed a MR damper model for a full-vehicle suspension system and 

then utilized the PID control law to track the desired damping force and attenuate the 

vibration of the system. A quarter car model equipped with a MR damper was studied by 

Lam et al. [25] to formulate a sliding mode controller. A computer simulation has then 

been carried out to estimate the performances and effectiveness of the MR suspension 

system under varying excitation conditions. Wang et al. [14] proposed three different 

controller schemes for quarter car model featuring MR damper in order to generate 

desired damping force. On-off or hi-lo controller, inverse model based hi-lo and sliding 

mode controls were formulated which the later offers an enhanced robustness and 

maintains the stability of the system. 

Batterbee et al. [3] designed and performed optimization of MR landing gear and 

illustrated the effectiveness of the proposed design methodology. Numerical simulations 

were performed for the impact phase of an aircraft's landing and later the performance of 

the MR valve was experimentally validated in another work [26]. Lou et al. [27] 

presented a shear-mode ER based landing gear where a wide number of rotational 
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shearing disks were used to provide control surface area. Translational motion of the 

piston was converted into rotational motion of the shearing disks utilizing a shear-mode 

ER device and then the simulation results illustrated that using an ER fluid can increase 

the energy absorption efficiency of the landing gear up to 100 percent. Berg and 

Wellstead [28] proposed a semi-active vibration control scheme applying a shear/squeeze 

mode ER device which was analyzed in series with a passive landing gear. Choi and 

Wereley [9] synthesized a sliding mode controller applying a flow-mode ER/MR landing 

gear shock strut. The results showed a significant attenuation in acceleration and the 

controlled current function vs. time was achieved. Ghiringhelli et al. [8, 29] formulated a 

semi-active control scheme for the landing gear of a small aircraft by adjusting the orifice 

area. A non-linear PID controller was utilized to attenuate the peak vertical load and 

increase the efficiency of the system. Both passive landing gear and the landing gear 

installed with a semi-active shock absorber were modeled and simulated and the results 

were compared. 

These studies address a particular control goal for the landing gear system, 

including attenuating the acceleration and dynamic loads, optimizing the performance of 

the landing gear, or increasing the landing gear efficiency. In this study the aim of 

implementing a control scheme is to attenuate vibration and dynamic loads and 

consequently decrease the acceleration transmitted to the fuselage during the touch-down 

impact in landing. To achieve this aim, a PID controller is utilized for a landing gear 

system featuring a MR damper. The position of the piston in the MR damper is calculated 

every time and the difference between this measured value and the desired position value, 
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which is considered as the error, is minimized using the controller by adjusting the 

control current input. 

1.3 Current Work 

This work presents the modeling and analysis of a MR damper for a landing gear 

system used in aircraft. Landing gear of a Navy A6-Intruder aircraft is used for modeling 

and simulation. This type of landing gear was used due to the fact that the available 

information about this aircraft enables coherent simulation and comparisons of the 

landing performances with the aircraft equipped with passive damper based landing 

gears. A physical model of the shock strut is introduced and lump mass based 

mathematical models of the landing gear with and without integrated MR damper are 

derived. A detailed description of the passive and open-loop simulation are given and the 

results are discussed and validated. A closed-loop PID controller is then formulated to 

reduce the acceleration encountered during landing. The simulations carried out for 

certain landing condition lead to the conclusion that implementation of MR damping 

systems in conjunction with an appropriate control scheme may suppress the vibration 

induced by landing. 

1.4 Thesis Organization 

Chapter 2 describes the modeling of the landing gear components. The landing 

gear of A6 Intruder is studied in order to obtain the motion equations of the system and 

consequently to analyze the dynamic of the system. The two-DOF model of the landing 

gear, which consists of upper mass, lower mass, damper and spring, is explained. 
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Tire selection and passive shock strut model are discussed, the required changes are then 

made to generate MR shock strut model and finally the forces of the shock strut are 

formulated. 

In Chapter 3, the landing gear system with the passive damper and MR damper 

with different constant current (passive on-mode) is simulated and the results of each are 

compared and discussed for different sink velocities. MR shock strut formulated in 

Chapter 2, is then integrated with the two-DOF landing gear system model, governing 

equations of motion are derived and natural frequency and mode shapes of the system are 

calculated. The inverse model of the MR shock strut relating MR yield stress to the MR 

shock strut force and strut velocity is formulated. Finally simulations are conducted for 

the landing gear system with integrated MR shock strut for different current excitation 

and the results are demonstrated and compared. 

In Chapter 4, a PID controller is formulated using governing equations of the 

landing gear system and the inverse model of the MR damper in order to attenuate 

acceleration of the system. Simulations are conducted for the landing gear system 

associated with a PID controller in the term of acceleration, velocity, displacement, 

damping force and the damping energy of MR the shock strut and the results are 

compared with those of passive shock strut. Conclusion and some recommendations for 

future works are presented in Chapter 5. 
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CHAPTER 2 

MODELING OF LANDING GEAR COMPONENTS 

2.1 Introduction 

A high range of excitation conditions are applied on aircraft landing gear which 

entails variable damping. The magneto-rheological (MR) fluid based damper generates 

variable damping force with the low power consumption. These dampers offer rapid 

variation in damping force which can be effectually used to control vibration in broad 

range of frequency. MR damper has been mainly studied for application in vehicle 

suspension systems and limited study is available regarding their application in landing 

gear system. 

In this chapter, modeling of both passive and MR landing gear of a Navy aircraft 

is investigated in order to simulate the dynamics of the system under varying impact 

conditions. At first, overall landing gear system is modeled and then a linear tire model is 

described and further explored. The passive shock strut is then modeled and the forces 

are formulated. Required changes are made to this passive model in order to create MR 

shock strut model. Finally, proposed MR shock strut model which fulfills the 

requirements of application in the landing gear system is analyzed and the forces are 

formulated. 

2.2 The Landing Gear Model 

This work discusses a development of a retractable main landing gear model for 

which equations of motion are obtained. For practical reason, the employed model has 

been selected as the main gear of a Navy A6-Intruder. Since the specific details of the 
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A6 gear were available through work by Danials [30] and later by Horta et. al [31] , this 

gear was chosen. Number of wheels per strut and their pattern are used to classify the 

landing gears. As shown in Fig 2.1(a,b) (the picture is taken from a A6 Intruder model), 

A6 has a single wheel main gear which makes the analysis less complicated. In the front 

view of the aircraft, it is shown that a linkage connects the shock absorber to the tire, 

(a) 
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Fig 2.1 a) Side and b) front view of A6-Intruder aircraft. 

17 



This linkage is not taken into consideration in the proposed mathematical model and 

consequently, the friction force due to the offset wheel is ignored. 

As previously discussed, the part of the body resting on each gear can be 

considered as a rigid mass since the elastic deformation of the aircraft structure does not 

affect the landing gear performance particularly given the fact that the main gears of the 

aircraft are located near the nodal points of the wing bending modes [32]. Since the 

dynamics of the landing gear system is considered in this work, it is assumed that the 

landing gear is attached to a rigid mass which has single DOF in vertical translation. 

Simplified main gear components are presented in Fig 2.2. Here, mu is the rigid body 

mass which represents aircraft fuselage mass and is attached to the gear which is assumed 

rigid in bending. 

Aircraft structure 

Shock strut 

Wheel axle 

Fig 2.2 Simplified schematic of the landing gear system. 
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The overall system can be expressed as a combination of the aircraft fuselage and 

the landing gear which has two DOF, defined by upper mass, xu, and lower mass, xL, 

vertical displacements. xL represents the tire deflection. The difference between the upper 

mass and the lower mass displacements determines the strut stroke, xs. 

In this chapter the modeling process of the main landing gear components for 

simulation of the landing impact structural dynamics is explained. To start with, the tire 

and passive shock strut are modeled using linear functions. This passive shock strut 

model is adjusted in order to generate the MR shock strut model. As a final point, all the 

forces of the proposed MR shock strut model are formulated. 

2.3 Tire Selection 

Characteristics of tires are mainly affected by the location of main landing gears 

due to changes in the static load on each tire. To place the position of the landing gears, 

most of the main aerospace companies normally provide general characteristics such as 

the maximum gross weight and the Mean Aerodynamic Chord (MAC). MAC is defined 

as that chord of an airfoil that is equal to the sum of all the airfoil's chord lengths divided 

by the number of chord lengths. In the beginning, MAC is superimposed on an aircraft 

side view. Forward and aft center of gravity (e.g.) limits are then placed on the MAC by a 

department concentrating in aircraft weight and balance [4]. The area between these two 

limits is called the e.g. range of the aircraft. The aircraft center of gravity must be placed 

in the e.g. range during the flight. The e.g. may change within this limit, since the weight 

of the aircraft changes due to fuel burn during flight. As a final point, the locations of the 

nose and main gears are determined and then the maximum static loads are calculated. In 

order to calculate maximum main and nose gear loads, minimum distances of the gears 
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from e.g. are considered which are respectively presented by M and JV in Fig 2.3. The 

loads are calculated as illustrated here: 

Maximum main gear load (per strut) in after position of C.G.: Rt = R(F — M)/2F 

Maximum nose gear load in forward position of C.G.: R2 = R(F — N)/F 

where R is the maximum gross weight of the aircraft which is about R — 25099/6. The 

geometric distances are presented in Fig 2.3. 

Aft position of 
center of gravity 

F 

M 

N 

Nose gear ^ Main gear 

— 9 - :• " —Ŝ — 
R2 Forward position of F^ 

center of gravity 

Fig 2.3 Diagram of forces for load calculation. 

The preliminary tire selection is used to decide how many tires will be used on 

each strut and this step can be illustrated below. Aircrafts weighing below 60000 lb have 

two main gear struts and either one or two tires per strut [4]. Since A6-Intruder weights 

below the above-mentioned value, it contains only one tire per strut and consequently 

static single wheel load is equal to R1# The characteristics of the tire are presented in 
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Table 2.1. The tire size is shown with two numbers multiplied together. The first number 

presents tire diameter and the second one presents tire section width. 

Table 2.1 Tire usage: Data of the main gear tire [6] 

Manufacturer 

Grumman 

Name 

A6-Intruder 

Speed 
Mph 

160 

Tire size 
in. 

36 x 11 

Inflation 
Pressure, 
psi 
200 

Weight 
Lbs 

326.2 

The tire is an important element for the analysis of the behavior of the landing 

gear system during impact. A variety of high dynamic and thermal loads partially 

produced by the friction and partly produced by the breaks are applied on aircraft tires 

thus their safety factors have a significant importance for the designer. 

V 
t> Ground 

Fig 2.4 Schematic of tire under vertical loading. 
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Variety of tire models applied in different kind of analysis is found in reported 

studies among which a simplified model is considered in this work. A6-Intruder main 

gear could be modeled as a simple two DOF gear therefore only vertical loading is 

considered in our calculation and no lateral, drag loading and twisting moment are 

required to be taken into account. The schematic of the tire under vertical loading is 

shown in Fig 2.4, where xL is the tire deflection and Ft is the tire force. 

The models considered in this thesis use data extracted from the open literature 

that describes the experiments performed on the specific components of the landing 

gears. A comprehensive set of tests on A6 landing gear have been performed by Daniels 

[30]. In this study, the experimental tests were designed to measure the total system mass, 

the frictional level of the bearings, the mass of the piston, the wheel, the tire, and the fluid 

inside the piston. The results of one of the quasi-static experiments provide data 

concerning the tire load-deflection relationship. The test set-up consists of a landing gear 

system connected to a shaker table through a jack lug allowing the movement of the strut 

by an input displacement. The strut was tested by vigorous shaking of the shaker table. 

The data of quasi-static tests provides the tire spring force, Ftk, as a function of 

deflection, xL, which can be approximately represented by a third order polynomial as 

shown in Fig 2.5. As it can be seen, tire force versus deflection shows nonlinear 

behaviour at initial compression however as deflection increases, tire spring force shows 

linear behaviour around the operating point at 0.0406 m. 

Fig 2.6 shows simple approximation to the tire characteristics by fitting straight 

dashed lines (a) and (b) to the actual spring force-deflection curve. As can be seen, the 

line (a) is achieved by connecting the two points on the curve, (0 m, 580N) and (0.08 m, 
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86980N), and line (b) is obtained by joining the other two points on the curve, (0 m, 

580N) and (0.04 m, 41450N). Since impact moment is considered in our analysis and in 

that time tire mostly operates with deflection greater than 0.04m, line (a) is selected as a 

better approximation. The slope of the selected line can determine the linear tire stiffness, 

kt, which is calculated as kt = 1,080,000 N/m. 

x 10 
9 :-

8 : - tk • 
(-6.8e+007)xj^ + (9.6e+006)x^ + (7.5e+005)xL + 5.8e+002 

7 -

6 -

"a 
o 4 

Tire operating point : 0.0406 m 

0.01 0.02 0.03 0.04 0.05 
Tire deflection [m] 

0.06 0.07 0.08 

Fig 2.5 Tire spring force as a function of deflection. 
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a: Ftk = 1080000 xL + 580 

b: Ftk= 1021750 xL + 580 

Nonlinear tire spring force 
Linear approximation (a) 
Linear approximation (b) 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 
Tire deflection [m] 

Fig 2.6 Approximation to the actual spring force-deflection curve. 

Another test was performed by applying dynamic inputs to the system, such as 

step bumps, ramp inputs, varying sinusoidal inputs, etc in order to identify damping 

coefficient [30]. The landing gear system, which was updated by the static data, was 

simulated and the frequency response to a sinusoidal sweep from a runway input was 

obtained. The gear displacement and the pressure of the upper and lower chambers were 

then plotted and compared with the response of the test gear. The tire damping coefficient 

was adjusted such that the simulation results were in fairly good agreement with the 

results of test gear. The comparison provides us with damping coefficient of the tire, ct, 

which is given ct — 5000 Ns/m . Further details of the experimental setup can be found 

in aforementioned reference [30]. 
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As a final point, the tire vertical force, Ft, is defined as a linear function of the tire 

stiffness and damping which is given as: 

(ctxL + ktxL , xL > 0 
Ft-{ 0 , x L < 0 ^ 

The above tire model comprises the possible loss of contact with the ground due to 

extreme impact force. In this work, it is assumed that tire is always in contact with 

ground. 

2.4 MR Shock Strut Model 

In this section, the passive shock strut model is discussed. The required changes 

are then discussed in order to generate MR shock strut model. The forces of the shock 

strut are then formulated. 

Today, most of the landing gears use oleo-pneumatic shock absorbers since they 

have the highest efficiencies among all liquid, coil spring and pneumatic shock absorbers 

and have also the best energy dissipations. In practice, the efficiency of the oleo-

pneumatic shock absorbers is between 80 and 90% [4]. To design an oleo-pneumatic 

shock absorber, oil is held in the upper chamber whilst the strut is compressed. The 

amount of oil meets the full stroke for which the damper is designed for. The 

compensation for the variation in volume during stroke is carried by the volume of 

nitrogen, N2, which is compressed above the level of the oil in the upper chamber. The 

schematic of a strut is shown in Fig 2.7. The pressurized N2 works as a spring that carries 

the weight of the plane in ground operations. The upper chamber contains hydraulic fluid 

and the compressed gas which is represented by the light grey area in the figure. Upper 

and lower chambers are separated by the orifice plate. When the strut is stroking, the 

hydraulic fluid moves between the lower and upper chambers through the orifice. The 
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orifice along with metering pin, which enables changes in size of the flow orifice, 

controls the damping characteristics of the gear as the pin moves through the orifice. 

Gas 

Metering pin 

Orifice 

Upper chamber 

Lower chamber 

Fig 2.7 Sketch of a passive shock strut. 
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The pressure drop across the orifice also generates a force which resists the closure 

of the shock strut. The gas spring force and the force due to pressure drop across the 

orifice represent stiffness and damping properties of the shock strut respectively. The 

former force is related to the energy stored into the accumulator and the latter is related to 

the energy dissipated by the fluid through the orifice. Therefore two independent terms 

can be formulated and then summed. The gas spring absorbs energy and represents the 

stiffness properties of the shock strut while the dashpot dissipates it at the same time and 

represents the damping properties. 

Fig 2.8 shows the forces generated by the gas spring and the dashpot versus strut 

deflection. Isothermal gas curve represents gas spring gradual compression and 

polytropic gas curve is representative of fast compression [4]. 

As it can be seen from Fig 2.8, the area between the dynamic load and isothermal 

gas spring curve represents the dissipated energy through damping. Fig 2.8 also shows a 

typical landing gear cycle during touchdown. It consists of initial contact at time t — 0 s, 

spin-up, maximum spin-up at time t = 0.05 s, rebound reaction at time t = 0.10 s, 

maximum vertical reaction at time 0.18 s < t < 0.20 s, maximum travel at time 

t ~ 0.30 s and static closure. These events are shown by letters A, B, C, D, E, F and G 

respectively in Fig 2.8. 

The design methodology proposed by Batterbee et al. [3] for MR shock struts is 

selected. This methodology is based upon replacing the orifice plate of the shock strut 

shown in Fig 2.7 with an MR valve. The goal is then to find a way of controlling the 

current in the valve that the landing impact transmitted to the aircraft can be attenuated. 

In the following sub-sections design methodology of a MR shock strut used in landing 
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gear applications is discussed and the forces associated with the shock strut are 

formulated. 
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Fig 2.8 Load-deflection curve and the significant events during the landing cycle [4] 

2.4.1 Design consideration for a MR shock strut 

The metering pin of the shock strut shown in Fig 2.7 is removed and its orifice 

plate is replaced with an MR valve in order to redesign the MR shock strut. The MR fluid 

valve consists of annular orifices with a coil positioned around a bobbin as shown in Fig 

2.9. The MR fluid flows through the orifice and changes its apparent viscosity, AV, when 

the magnetic flux is generated via the DC powering of the coil. This causes changes in 

the pressure drop along the active length of the valve, lmr, where the magnetic flux 

crosses the orifice. 
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Fig 2.9 shows the structure of the fluid inside the MR valve. In this figure the light 

blue region is representing the active fluid region which responds to the magnetic field by 

changing the electric current. On the other hand, the dark blue region is inactive fluid 

section which maintains a constant Newtonian viscosity and does not change viscosity 

due to the changes of magnetic field and thus remains inactive. The length of this inactive 

region of the MR valve is shown in the Fig 2.9 by lt. 

Efforts have been made by some researchers to optimize the geometry of the MR 

valve in order to optimize the damping force and the dynamic range of MR damper. By 

implementing the analytical methods from a magnetic perspective, they have stated that 

the magnetic behavior of the valve is insensitive to the orifice (valve gap) height, Dm. 

However, the nonlinear nature of the fluid interaction, shock strut compression and tire 

deflection are strongly dependent on this factor. According to this difference in 

sensitivity to the geometry, the optimization of damping effect would face some 

difficulties. 

In a much more practical approach, the external geometry of the MR valve (length 

Lt and diameter Dt ) is first determined based on the design properties of an equivalent 

passive device. In the next step, the internal geometry of the MR valve which consists of 

the orifice height, Dm, and the active length, lmr, has to be estimated. For the case 

studied in this research the approximate optimized value of the former parameter is 

determined in Chapter 3. The value of the later parameter is assumed to be nearly half of 

the total length of the valve, Lt, as this assumption is close to what has been assumed as 

the active length to total length ratio in previously mentioned works. The schematic of 

the MR shock strut is shown in Fig 2.10. 
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MR fluid 

Valve gap 

Magnetic 
flux 

a. Schematic of the MR valve 

lmr/2 

b. Velocity profile for a Bingham plastic 
across the orifice 

Fig 2.9 Schematic of the MR valve and the annular orifice featuring Bingham 
plastic model. 

2.4.2 Formulation of the forces 

The determination of the forces generated by MR shock strut are essential 

objectives of present research, since the design of a controller depends on the proper 

knowledge of the forces as function of the electrical current applied on the coils of the 
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MR valve. It should be noted that without accurate knowledge of these forces it would be 

impossible to solve the equations of motion. 

Gas 

Orifice 

Lower chamber 

Upper chamber 

MR valve 

Fig 2.10 Schematic of MR shock strut. 
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During touchdown, the fluid is pressurized from lower chamber to upper 

chamber through orifice which cause increase in gas pressure and consequently produces 

a force known as gas spring force. The pressure drop across the orifice also generates a 

force which resists the closure of the shock strut. The gas spring force and the force due 

to pressure drop across the orifice represent stiffness and damping properties of the shock 

strut respectively. The former force is related to the energy stored into the accumulator 

and the latter is related to the energy dissipated by the fluid through the orifice. Therefore 

two independent terms can be formulated and then summed. 

In addition to gas spring force and the force due to fluid resistance, the friction 

force between wall and cylinder wall contribute to the balance of forces in the strut. 

Friction force is mainly composed of seal friction and friction due to the offset wheel in 

this type of landing gear. However, both frictions are neglected in this study given their 

reduce contribution to the damping phenomenon. The former is assumed to be negligible 

since no drag load is considered in the proposed landing gear model. The later is also 

neglected given that the tire is assumed to be directly connected to the shock strut without 

any linkage connection. The force of the shock strut due to pressure drop across the 

orifice and gas pressure can be expressed by Eq. (2.2). 

Fs = (PL ~ Pu)AL + PgAu =Fp+Fg (2.2) 

where PL and AL are the pressure and the area of the lower chamber and Pu and Au are the 

pressure and area of the upper chamber respectively for the strut shown in Fig 2.10. Pg is 

the pressure of the accumulator which is Pg = Pu. In Eq. (2.2), the force of the shock-

strut, Fs, is expressed as a combination of the force due to pressure drop across the 
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orifice, Fp, which can be written as Fp = (PL — PU)AL and gas spring force, Fg, which is 

Fg = PgAu. The formulation of the forces is presented in the following sub-sections. 

Force due to Pressure Drop Across the Orifice 

To formulate the force due to pressure drop across the orifice, the two active and 

inactive regions of fluids (shown in light blue and dark blue respectively in Fig 2.9-a) 

have to be modeled and analyzed based on reasonable assumptions. The main assumption 

is that the inactive region is filled with Newtonian laminar flow while the active region 

contains a time-independent non-Newtonian fluid. The behavior of the non-Newtonian 

fluid of the active region can be described by the Bingham plastic model. 

Therefore, the overall pressure drop across the orifice can be expressed as a 

combination of the pressure drop across the inactive length of orifice AP0 and the 

pressure drop across the active region of the orifice APmr: 

PL-PU = AP0 + APmr (2.3) 

Multiplying each side of the Eq. (2.3) by AL gives: 

(PL-Pu-)AL = AP0AL+APmrAL 

(2.4) 

where Fp — (PL — PU)AL is the overall force due to pressure drop across the orifice which 

can be written as the sum of the linear passive F0 and nonlinear MR Fmr forces due to 

pressure drops across the inactive and active regions of the orifice, respectively. 

Therefore Eq. (2.4) can be written in the form of: 

Fp = Fmr + F0 (2.5) 

where F0 — AP0AL and Fmr = APmrAL. 
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For very small annular gaps, the flow field may be modeled as flow between 

infinite parallel plates. Therefore, the flow inside the annular gap is modeled as flow 

between stationary infinite parallel plates which is shown in Fig 2.9-b. Pressure drop 

across the inactive region of the orifice, AP0, can be related to the volumetric flow rate 

using well-known Poiseuille equation for incompressible laminar flow between two 

stationary parallel plates as: 

= H ^ M (2.6) 
0 aDm

3 v ' 

where Q is the volumetric flow rate, fi is the Newtonian viscosity, lt is the inactive length 

of the MR valve and Dm is the orifice height, a is the depth of the plate which is equal to 

mean annular perimeter of the valve. This value can be calculated as a = nd where d is 

the mean valve diameter. Considering the mass conservation for an incompressible fluid, 

the volumetric flow rate can be expressed in terms of flow velocity, xs, as: 

Q = ALxs (2.7) 

where AL is the lower chamber area. Substituting Eq. (2.7) into Eq. (2.6) yields: 

A P Q = 1 2 ^ * , ( 2 g ) 

As previously discussed, force due to pressure drop across the inactive region of 

the orifice, F0, is given as the product of the AP0 and AL. Thus: 

b° ~ aD 3 ( 2-9 ) 

The force due to pressure drop across the inactive region of the orifice is a linear 

function in terms of flow velocity given the laminar flow assumption. Further, the force 

due to pressure drop across the active region of the MR valve can also be derived for 

laminar flow. The detailed formulation is given here. 
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As previously discussed, the fluid in active region may be described by Bingham 

plastic model. Bingham plastic flow acts like a rigid material when the shear stress, T, is 

less than a critical value (yield stress,Ty) and once the shear stress exceeds the yield 

stress, it flows as a viscous fluid. This non-Newtonian fluid behaves as a solid plug 

(shown by hatched area with thickness of h in Fig 2.9-b) if the shear stress becomes less 

than a certain value referred to as the yield stress. 

Let us assume xy-coordinates on the bottom wall of the gap as shown in Fig 2.9-b 

where gap height is along the y-axis and velocity of the flow is along the x-axis. y varies 

from 0 to Dm . As it can be seen in Fig 2.9-b, in a region near the axis, where ypi < y < 

ypo and the local shear stress is less than the yield value, ry, the material does not shear. 

However, in the region further from the axis but closer to the walls where ypi > y > 0 or 

Dm > y > ypo (me shear stress is higher than the yield value), the shear rate is non-zero 

and can be described by the following equation: 

an (° ' l T l < M 
/ ( T ) = - = x - s ^ n ^ - | < | T | (2.10) 

where, / ( T ) is the shearing function which is the discontinuous counterpart of a linear 

continuous Newtonian shearing function. The main difference between a Newtonian and 

non-Newtonian flow can be described by this shearing function since it is always a 

continuous function of r in Newtonian fluids and a discontinuous function for non-

Newtonian fluids. TW is the shear stress at the wall, u is the velocity of the flow, — is 

the shear rate and jxp is the Bingham plastic viscosity2. For Fraunhofer AD57 MR fluid 

2 A measure of the internal resistance to fluid flow of a Bingham plastic, expressed as the 
slope of the shear stress/shear rate line above the yield stress. 
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which is assumed to be used in this work, Bingham plastic viscosity is \iv = 0.1 Pa.s 

[26]. 

Pressure drop across the active region of the orifice, APmr, can be related to the 

volumetric flow rate using Buckingham equation for incompressible laminar flow as: 

4 ( ^ _ ) \ - 3 ( ^ f - ) r y + ( l - l ^ r l ) = 0 (2.11) 
\DmAPmrJ y \DmbPmrJ y \ aD m

3 AP m r /
 v > 

where lmr is the active length of the MR valve and is assumed to be lmr = 0.024 m 

which is almost half of the total length of the MR valve. Detailed information can be 

found in Appendix A. 

Eq. (2.11) also relates the pressure drop across the active region of the orifice and 

the yield stress. Substituting volumetric flow rate from Eq. (2.7) into Eq. (2.11) one can 

obtain: 

4 f^i_)3
 T y - 3 (-^-) ry + (l- H^i££) = 0 (2.12) 

\umiirmr J * \DmAPmrS y \ aDm' 
armr ' 

As previously discussed, force due to pressure drop across the active region of the 

orifice, Fm r , is given as the product of the APmr and AL. Thus substituting APmr — 

Fmr/AL into Eq. (2.12), gives: 

4 (i^f T 3 _ 3 CinndL)T + fi - 12*VTV*A = 
\DmFmrJ y \DmFmr) y \ aDm

3Fmr J v ' 

Eq. (2.13) can be solved for Fmr which would depend on xy and xs. In general: 

Fmr = f(xs,ry) (2.14) 

As it can be seen, the force due to pressure drop across the active region of the 

orifice is a nonlinear function which depends on the value of the flow velocity and the 

yield stress. 
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It has been theoretically and experimentally shown that the yield stress is a power-

low function of the magnetic flux density and consequently input current / [18]. The 

relation between yield stress and the input current is assumed as a nonlinear curve shown 

in Fig 2.11 which is provided by the experiments done by Batterbee et al. [26]. 

70:-

Fig 2.11 Yield stress as a function of the input current. 

As it can be seen from Fig 2.11, the data is provided for the current range of 

I = 0 A to ] = 2 A. The experiments shows that function behaves linearly for the currents 

below 0.22 A and as the current increases, the yield stress shows nonlinear behavior. 

In the case of zero field, when the yield stress is zero, Eq. (2.13) reduces to 

Poiseuille equation as described before in Eq. (2.9). In Chapter 4, when the desired MR 
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damping force is estimated, one can substitute it into Eq. (2.13) to obtain the desired yield 

stress. Subsequently, the yield stress/current relationship can be used to estimate the 

corresponding desired input current. 

Gas Spring Force 

As previously discussed, the force of the shock strut consists of the gas spring 

force and the force due to the pressure drop across the orifice. Here, to derive gas 

pressure-strut stroke relation and consequently formulate the gas spring force, polytropic 

gas law for a closed system can be used: 

PgVg71 = P9eV9e
n ^ C (2.15) 

where Pg and Vg are gas pressure and volume at any stroke. Pge and Vge are gas pressure 

and volume at full extension. C is a constant and n is an exponent which depends on the 

rate of compression. For normal ground handling activity, when the rate of compression 

is low, the process is isothermal meaning that n = 1. In the case of dynamic and fast 

compression such as impact phase, polytropic process is applied in which n > 1. Since 

this work focuses on the analysis of the landing gear behavior during impact phase, 

ploytropic process is assumed. For the polytropic process, n is either n = 1.1 or n = 

1.35 [4]. The former is used when the gas and hydraulic fluid are mixed and the latter is 

used when they are separated and the gas is located in an accumulator. As previously 

shown in Fig 2.7, the gas and the hydraulic fluid are separated in the shock strut used in 

this work. Therefore, polytropic exponent of n - 1.35 is chosen for our calculation. 

The gas volume at any stroke, Vg, can be written as a function of stroke, xs, as: 

Vg=Vge-Auxs (2.16) 

where Au is the area of the upper chamber as shown in Fig 2.7. 
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Substituting Eq. (2.16) for Vg in the Eq. (2.15), one can solve for the gas pressure 

at any stroke, Pg, as: 

p _ PgeVge11
 p I Vge \ ^ j -

9 V gt Vge-

As previously disused, gas spring force, Fg, can be expressed as: 

Fg=AuPg (2.18) 

Substituting Pg from Eq. (2.17) into Eq. (2.18), one can obtain gas spring force-stroke 

relation as: 

F =A P (—VS1 ^ 
9 U 9e \vge-AuxJ 

(2.19) 

Pge and Vge are calculated in Appendix B as Pge = 662324.17 Pa and Vge = 0.0074 m3, 

respectively. Au is assumed to be Au — 0.0182 m2 and the fully extended stroke of the 

selected shock strut 5 is assumed to be S = 0.38 m based on the data found from the 

work done by Daniels et al. [30]. 

Fig 2.11 illustrates the effect of the exponent n on the gas spring force. The 

isothermal compression curve for n = 1 and two polytropic compression curves for 

n = 1.1 and n = 1.35 are shown. As it can be seen from the Fig 2.12, for small strokes, 

gas spring force does not change significantly by increasing the exponent. However, for 

larger strokes, gas spring force increases by increasing the exponent. 
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Fig 2.12 Isothermal and polytropic compression curves. 

2.5 Summery 

Overall landing gear model of a Navy aircraft was generated based on series of 

assumptions in order to investigate dynamic analysis under various impact conditions in 

the next chapter. The full model comprising of landing gear components were developed 

and the associated forces were formulated. 

MR shock strut model was created based upon changing the orifice plate of the 

passive shock strut with MR valve. MR damping force was attained as a function of the 

electrical current applied on the MR damper's coils and the gas spring force was 

formulated. 
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CHAPTER 3 

MODELING OF THE LANDING GEAR INTAGRATED 

WITH MR DAMPER 

3.1 Introduction 

In this chapter, MR shock strut, formulated in Chapter 2, is integrated with the 

two-DOF landing gear system model and governing equations of motion are derived. 

Natural frequency and mode shapes of the system are then calculated. The inverse model 

of the MR shock strut relating MR yield stress to the MR shock strut force and strut 

velocity is also formulated. Finally simulations are conducted for the landing gear system 

with integrated MR shock strut for different current excitation and the results are 

demonstrated and compared. Using developed governing equations and inverse model, a 

PID controller will be formulated to reduce the acceleration of the system in the next 

Chapter. 

3.2 Development of Equations of Motion 

In this section, the MR landing gear system is first modeled and the governing 

equations are derived. The equations will subsequently be used to identify the natural 

frequencies and mode shapes of the system. 

As previously discussed in Chapter 2, the MR landing gear system can be studied 

using a simplified two-DOF landing gear model. Therefore, the pitch and roll motions of 

the upper and lower masses are not considered in the model. The whole aircraft body is 

assumed as a rigid body mass (the upper mass) and tire is modeled by a rigid body mass 

(the lower mass), spring and damper. The two-DOF model of the main landing gear 
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system including MR shock strut model and the free body diagram of the lower and 

upper masses are presented in Fig 3.1. As previously discussed in chapter 2, the total 

force in the MR shock strut, Fa, is the combination of the linear damping, nonlinear MR 

damping, and nonlinear gas spring forces which can be expressed as: 

Fa=F0 + Fmr+Fg (3.1) 

where F0 is the linear damping force due to pressure drop across the inactive length of the 

orifice, Fmr is the nonlinear MR damping force due to pressure drop across the activation 

length of the orifice and Fg is the accumulator gas spring force. 

As discussed in Chapter 2, Eq. (2.9), F0 can be expressed as: 

^o = c0xs = c0(xu - xL) (3.2) 

where xu and xL are the displacement of the upper and lower mass respectively, xs is the 

relative displacement of the shock strut and c0 is the constant viscous damping 

coefficient defined as: 

2 

° aDm
3 v 

Also according to Eqs. (2.14) and (2.19) in Chapter 2, Fmr and Fg can be expressed as: 

'mr J \%s> T-y) W - v 

V9e V 
Fg KPge yVgg 

(3.5) 

where relative parameters in Eqs. (3.4) and (3.5) were defined in Chapter 2. 
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Fig 3.1 Two-DOF model of the landing gear system and the free body diagram of the 
upper and lower mass. 

Considering free-body diagram in Fig 3.1, the governing equations of motion for 

the main landing gear model can be expressed as: 

(3.6) ^-xu + Fa-Wu + FL = 0 

^jh-Fa+Ft-WL = Q (3.7) 

where Wu is the airframe weight and WL is the wheel tire weight. It is noted that xu and 

xL are measured from the positions of Wu and WL at the instant t — 0 when the tire first 

contacts the ground. xu and xL are the upper and lower mass accelerations respectively 

and g is the gravitational acceleration. 
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Ft is the tire force studied in chapter 2 Eq. (2.1), and is represented here as: 

_ (ktxL + ctxL , xL > 0 
Ft ~ { 0 , xL < 0 (3-8) 

where kt is the tire stiffness and ct is damping coefficient of the tire which were 

determined as kt = 1080000 N/m and ct = 5000 Ns/m. 

FL is the lift force exerted from the air on the aircraft body and has upward 

direction. During the landing, the lift force varies and can be expressed as a function of 

time by an equation given by Choi and Wereley [9]: 

FL = [1.2 - 0.9 tanh(3i)](Wu + WL) (3.9) 

where t > 0 is the time in seconds. 

The lift force described in Eq. (3.9) is plotted in Fig 3.2 for the time range of 0 to 

0.2 sec. It should be noted that touchdown occurs in less than 0.3 seconds (see Fig 2.8) 

and since the landing impact analysis is investigated in this work, simulation is run for 

the time range of 0 to 0.2 sec. 

As shown in Fig 3.2, the nonlinear lift force in the range of 0 to 0.2 sec can be 

approximated by a linear function with good accuracy. The linear function is achieved by 

joining two selected points of (0.042 sec, 53.5 KN) and (0.161 sec, 39.6 KN) on the 

actual curve. 

Here, the interpolated linear lift force function shown in Fig 3.2 is used in our 

analysis. The function can be expressed as 

h = kLit + FLi (3.10) 

where kLi and FL are constant values and found to be kLi — —120000 N/s and 

FL — 59000 N in order to minimize the error between the approximate linear function 

and the actual lift force. 
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Fig 3.2 Nonlinear and linear lift forces versus time. 

3.2.1 Calculation of the natural frequencies and the normal modes of the system 

To calculate the natural frequencies and the normal modes of the system, let us 

first assume the MR shock strut is in passive mode (no induced current or magnetic 

field). In this case one can substitute for xy — 0 in Eq. (2.13) and derive the following 

relation: 

12nplmrAL
2 . 

aDv 

(3.11) 

where cm is an equivalent MR viscous damping coefficient defined as cm = —£-—^— 
a. Dm 
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In order to simplify the frequencies and mode calculations, the gas spring force is 

interpolated as a linear function. Therefore, the polytropic compression curve for the 

polytropic exponent of n = 1.35, shown in Fig 2.1, is simply approximated by the linear 

functions as shown in Fig 3.3. 
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Strut stroke [m] 

Fig 3.3 Linear and non-linear gas spring force. 

This approximation is obtained by fitting three straight-line segments to the actual 

force-stroke curve in such a way that there will be minimum error between the actual and 

approximated value. The segments are chosen as: one straight-line segment from xs — 0 

to xs — 0.17 m, one segment from xs — 0.17 m to xs = 0.312 m and finally one from 
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xs = 0.312 m to xs = 0.38 m. The error for the first two segments is almost zero. The 

error for the third segment is about %23. 

Thus the gas spring force, Fg, can be described as: 

Fg=kmxs + Fgi (3.12) 

or here 

!

kgixs + Fgi, for i = 1 & 0 < xs < 0.17 m 
kg2xs + Fg2, for i = 2 & 0.17 m < xs < 0.312 m (3.13) 

fe03*s + F53 ' fori = 3 & 0.312 < x5 < 0.38 m 

in which fc„. and Fni are constant values and found to be: 

N N 

k„ =64000— ,ka = 270000—, ka 2500000 N/m 
F5 I = 11000 iV,F52 = -24000N, Fg3 = -720000N 

Now substituting Eqs. (3.2), (3.10), (3.11) and (3.12) into equations of motion given in 

Eqs. (3.6) and (3.7), one can obtain: 

y * u + (cm + c0)(xu - xL) + kg.(xu - xL) = WU- (kLlt + FLJ - Fg. = fx(i) (3.14) 

V**. + (cm + c o ) f e ~ *u) + ^ O L - x") + ct*i + ktxL = WL + Fg. = f2{t) (3.15) 
hi 

where / i ( t ) and / 2 ( t ) are time dependent functions which represent the external forces. 

Casting Eq. (3.14) and Eq. (3.15) in the matrix form, we may write: 

[M]{x] + [C]{x] + [K]{x] = [F] (3.16) 

where {x} is the displacement vector, [M] is the mass matrix, [C] is the damping matrix, 

[K] is the stiffness matrix and {F} is the force vector given as: 
W = £ ] (3.17) 

m = Q 0..8) 

47 



[M] 

[C] 

[K] = 

[^ ol 
9 
0 ^ 

a J 

' (cm + c0) - ( c m +c 0 ) 
- (Cm + C0) (C m + C0) + Ct_ 

kgi -kgi 

ill 9i + kt. 

(3.19) 

(3.20) 

(3.21) 

To obtain the undamped natural frequencies of the system, the free vibration analysis has 

been conducted where fx (t) and f2 (t) are set to be zero in the equations. 

For an undamped system the equations of motion for free vibration can be expressed as: 

0 
9 
0 ^ xL\ + 

k9i 'k-ri: 

k9i k9i + kt 0 = 0 (3.22) 

The solutions to the above differential equation can be assumed in the following 

harmonic forms: 

xu = Xucoso)t (3.23) 

xL = XLcoscot (3.24) 

where Xu and XL are the amplitude of the upper and lower mass, respectively and o> is the 

undamped natural frequency. Substituting assumed xu and xL into Eq. (3.22), we obtain 

(->'+**) k9i 

-K (-Tw2 + *" + *0 = 0 (3.25) 

In order for this equation to have nontrivial solutions, the determinant of the matrix needs 

to be zero. Thus, 

(3.26) 
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Expanding the determinant leads to the following characteristic equation: 

a>4(mumL) + co(-mukg. - mukt - mLkgi) + kg.kt = 0 (3.27) 

where mu — — and mL = —- are the upper and lower mass and assumed to be mu = 

10864.3 lb and mu — 326.2 lb, respectively. The solution of the characteristic equation 

N 

for kgi = 64000 —, when xs < 0.17 m, provides two undamped natural frequencies of 

the system, (o1 = 0.5627 Hz and o>2 = 14.1374 Hz . 

and substituting a^ into the Eq. (3.25), one can obtain 

Xu = 8.6877Xt (3.28) 

Substituting co2 into the Eq. (3.25) and solve for Xu , yields: 

Xu = -0.0035XL (3.29) 

Now setting XL — 1, one can obtain the normal modes of the system, 01 and 02 , as 

follows: 

0 1 = [ £ ] = [B-6877] ( 3 3 0 ) 

0 2 = g - ] = [-0-0035] ( 3 3 1 ) 

3.3 Inverse Model of the MR Damper 

The hysteretic inverse model of the MR damper is derived in this section on the 

basis of the MR damper model developed in Chapter 2. This inverse model is applied to 

track the desired damping force. Force tracking control of the MR damper is 

implemented using PID control scheme which will be discussed in the next Chapter. The 

magnitude of the error between damping force and desired force is calculated to generate 

the derive current. 
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3.3.1 Formulation of an inverse model of the MR damper 

Buckingham equation explained in Chapter 2, can be used to derive the inverse 

model and consequently design the controller. Eq. (2.13) can be written as: 

4 fe^L)3
 T 3 _ 3 fjnzlL) T + (i _ ^ ^ | = 0 (3.32) 

\DmFmrJ y \DmFmrJ y \ aDm
3Fmr J V ' 

where vs = xs is the strut velocity. As it can be seen, yield stress, ry, is a function of MR 

damping force, Fmr, and shock strut velocity, vs, which can be expressed as: 

1y=f(Fmr>Vs) (3.33) 

In order to obtain function / and subsequently xy in terms of Fmr and vs, one 

should solve Eq. (3.32) for xy. Eq. (3.32) is a third degree equation with respect to xy. 

To solve the equation, one may write Eq. (3.32) into following form: 

4 (hnr^f 3 _ 3 fknrAL.) T + f 1 _ ""pW^*,\ = fc 3 + m T + „ = 0 (3 .34) 
\DmFmrJ y \DmFmrJ y \ aDm

3Fmr ) y y v > 

where k, m and n are the coefficients of the Eq. (3.32) defined as: 

k = 4 ( r T L ) 3 (3-35> 

m = ~3 (rr^-) (3-36> 

n = ( l . 2 & ^ ) (3.37) 
V aDm

3Fmr J v y 

It should be noted that, /c > 0, m < 0 and n > 0. Fmr reaches its minimum value at 

n = 0 in which MR damper behaves like a passive damper. Desired damping force can 

be calculated using PID controller scheme. This force can be substituted in the Eq. (3.33) 

to obtain the required yield stress to be generated by the MR damper. 
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As previously discussed in Chapter 2, yield stress is also a function of the 

command current ic as: 

r y = g{ic) (3.38) 

The function g(ic) was shown in Fig 2.11 in Chapter 2. Subsequently knowing desired 

yield stress, one can obtain inverse command current, ic, as: 

ic=g-1(jy) (3-39) 

in order to generate the required yield stress and subsequently desired damping force. 

3.4 Performance Analysis 

In this section, the initial conditions of the landing gear system are first 

determined. The landing gear system with the passive damper and MR damper including 

different constant current is then simulated using MATLAB SIMULINK. The results of 

each are compared and discussed for different sink velocities. 

3.4.1 Initial conditions 

As previously discussed in Chapter 2, in the fully extension position, the shock 

strut is subjected to a preload force due to the initial air pressure of the accumulator. 

Therefore, the shock strut does not begin to deflect at the time of touchdown until this 

force is overcome. Due to this, the shock strut is assumed to be rigid in compression and 

bending and consequently has only one degree of freedom during this time. In order to 

attain the initial conditions required for analysis of the two-DOF system discussed earlier, 

the equations of motion for single DOF system prior to the shock strut deflection are 

derived. 
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During the first phase of the motion prior to shock strut deflection, lower and 

upper mass displacement can be considered as: 

xu = xL — x (3-40) 

where x is the displacement of the mass in single DOF system. Therefore the equation 

of motion for the single DOF can be written as: 

-x = W-kLlt-FLl-ktx-ctx (3.41) 

where W is aircraft and tire mass. Eq. (3.44) can be solved for x and x with the following 

initial conditions: 

x(0) = 0, i(0) = v (3.42) 

where v is the sink velocity of the aircraft. 

Eq. (3.6) for 2 DOF model derived before can also be written as follows considering 

^-x = Wu -FL - Fmr-F0 - Fg (3.43) 

Assuming damping force to be zero, Fmr — F0 = 0, the air spring force to be as its initial 

value in fully extended position, Fg — AuPge. Eq. (3.43) can then be expressed as: 

= Wu-KLlt-FLl-AuPge 

wjg v 

Eq. (3.44) can be solved and the acceleration curve can be achieved as a function of time. 

The point of intersection between this curve and acceleration curve obtained from Eq. 

(3.41) gives the instant when the shock strut begins to deflect, t j . The initial conditions 

for the two-DOF system can subsequently be determined from the response of the single 

DOF system at time td. Therefore, the initial conditions of the two-DOF system can be 

expressed as: 
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xu(td) = xL(td) = x(ta) = x0 (3.45) 

xu(td) = xL(td) = x(ta) = v0 (3.46) 

where x0 and v0 are the upper mass and lower mass initial displacement and velocity 

respectively at t = td. 

3.4.2 Simulation results 

In this section, the equations of motion given in Section 3.2 with the initial 

conditions taken from section 3.4.1 are solved using MATLAB SIMULINK in order to 

analyze the passive landing gear. The MR damping force-strut velocity relation is then 

obtained by solving Buckingham equation for a constant yield stress. Substituting this 

function into the equations of motion, one can solve equations of motion for a constant 

yield stress in order to analyze MR landing gear with constant current. The results of the 

two cases are compared and shown for different sink velocities. 

Navy aircrafts are designed to higher sink speeds than other aircrafts. A navy 

aircraft can withstand 8 ft/s at maximum gross weight. In practice, this sink speed is 

rarely achieved. Here the simulation results are obtained for sink speeds of 2.7 m/s (8.86 

ft/s) and 3.2 m/s (10.5 ft/s) which result in normal impacts. The instant td, in which the 

simulation starts, for the former sink speed is td = 0.0013 sec and for the latter is 

td = 0.0021 sec. 
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Fig 3.4 Time history of shock strut force, v=3.2 m/s : a) 1=0 b) 1=2 A . 

The simulation results for shock strut force, Fa, versus time with sink velocity of v = 

3.2 m/s and current excitations of 0 and 2 A is shown in Fig 3.4.The results are obtained 

for different orifice height to show the effect of this parameter on the shock strut force. 

As it can be seen, changing orifice height has a significant effect on shock strut 

force. For orifice heights lower than Dm < 0.007 m, the shock strut experiences 

significantly larger impact force compared with that for valve with orifice height larger 

than Dm > 0.0085 m. 
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Fig 3.5 Time history of landing gear displacement in case of 1=2 A and v=3.2 m/s 

As it can be seen, for Dm — 0.0078 m, there is no significant variation in the 

shock strut force after reaching its first peak value and also strut does not experience 

large impact force at its first peak. Therefore, orifice height of Dm = 0.0078 m is 

selected as designed orifice height. Comparing Fig 3.4-a with Fig 3.4-b, one can conclude 

that by increasing the current input from 0 to 2A, shock strut force increases. 

Fig 3.5 to Fig 3.7 present the upper mass and lower mass displacements, velocities 

and accelerations respectively at the sink speed of v — 3.2 m/s and applied current 

excitation of / = 2 A. Fig 3.5 shows that as the orifice height increases, the upper mass 

displacement increases and the lower mass displacement decreases. 
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Fig 3.6 Time history of landing gear velocity in case of 1=2 A and v=3.2 m/s . 

Fig 3.6 also shows upper and lower mass velocities with current excitation of 

I = 2 A and sink speed of v = 3.2 m/s. As it can be realized the upper mass velocity 

increases as the orifice height increases. However, the lower mass velocity decreases as 

the orifice height increases up to certain time which after that the lower mass velocity 

also start increasing by increasing the orifice height. Fig 3.7 presents acceleration factor 

which is defined as the acceleration relative to gravitational acceleration. It can be seen 

that as the orifice height increases, the upper mass acceleration decreases and the lower 

mass acceleration increases in the first stage of the impact (at time less then 

approximately 0.04 s). Therefore, orifice heights greater than Dm > 0.0078 m result in 

lower mass accelerations with maximum magnitude higher than 110 m/s2. 
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Fig 3.7 Time history of landing gear acceleration in case of 1=2 A and v=3.2 m/s 

Figs 3.8 to 3.11 demonstrate the variation of shock strut force, upper mass and 

lower mass displacement, velocity and acceleration for different current ( = 0 and 

I — 2 A) with sink velocity of v = 2.7m/s. 

Fig 3.8 shows the variation of total shock strut force, Fa, which is the combination 

of the total damping force, Fp, and the gas spring force, Fg, versus strut stroke for 

different currents. It can be seen that total shock strut force increases as the current 

increases. Since the gas spring force is the same for all current conditions, it can be 

concluded that the overall force due to pressure drop across the orifice or total damping 

force increases by increasing the current. It can also be realized that gas spring force 

contributes only small portion of the total shock strut force initially. However at the last 
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stage of the impact, where the strut displacement is larger, the gas spring force becomes 

the large portion of the total shock strut force. 
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Fig 3.8 Shock strut force versus strut displacement, v=2.7 m/s . 

0.3 

It should be noted that the area between the gas spring force and the total force 

represents the dissipated energy during impact thus by increasing the current, more 

energy can be dissipated and the efficiency can be increased. 
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Fig 3.9 Time history of landing gear displacement, v=2.7 m/s . 

Fig 3.9 shows the displacement of the upper mass and lower mass versus time at 

the sink velocity of v = 2.7 m/s for different current excitations. As it can be seen, 

displacement of the upper mass slightly reduces after t — 0.1 s by increasing the current. 

However, displacement of the lower mass increases after t = 0.02 s, by increasing the 

current. It should be noted that lower mass displacements are within the acceptable range 

of tire deflection as tire force was previously calculated in Chapter 2 for only a range of 

deflection not exceeding xL = 0.09 m . Upper mass displacements are also within the 

acceptable range as shock strut stroke was shown to be xs — 0.38 m in Chapter 2. 

Fig 3.10 presents the upper mass and lower mass velocities under different current 

excitations. As it can be realized upper mass velocity decreases slightly as the current 
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increases. The lower mass velocity does not seem to be considerably changed at time 

before t < 0.1. However, at time after about t > 0.1, it decreases as the current increases. 
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Fig 3.10 Time history of landing gear velocity, v=2.7 m/s . 

Upper mass and lower mass acceleration for sink velocity of v = 2.7 m/s under 

different current excitations are also shown in Fig 3.11. As it can be seen from the figure, 

the magnitude of upper mass acceleration increases noticeably by increasing the current. 

Lower mass acceleration slightly decreases before the peak and then increases after the 

peak by increasing the current. However, in general, it has not been affected noticeably 

by changing the current excitation. 
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Fig 3.11 Time history of landing gear acceleration, v=2.7 m/s . 

Fig 3.12 to Fig 3.15 present the time history of the shock strut force, upper mass 

and lower mass displacement, velocity and acceleration factor, respectively for more 

severe impact condition with sink velocity of v = 3.2 m/s. Similar observation can be 

realized for this sink speed as well. 
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Comparing Fig 3.8 and Fig 3.12, one can state that the total shock strut force 

increases as the sink velocity increases. It should be noted that for the sink velocity of 

v — 3.2 m/s, the upper and lower mass displacement are still within acceptable ranges 

discussed before. 
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Fig 3.15 shows that the peak of the lower mass acceleration factor which occurs at 

about t = 0.02 5, has been increased from around xL — 9 g at sink velocity of v — 

2.7 m/s to about xL — 11 g at sink velocity of v = 3.2 m/s. 
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3.5 Summery 

Two-DOF MR landing gear model was constructed using MR shock strut model 

generated in Chapter 2. Governing equations of motion were derived in order to perform 

dynamic analysis of the system. 

The inverse model of the MR shock strut was formulated to attain MR damping 

force as a function of MR yield stress and strut velocity. The MR landing gear system 

was simulated for different current excitation and impact condition and the results were 

compared. 
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CHAPTER 4 

CONTROLLER DESIGN 

4.1 Introduction 

Depending on the different sink speeds, angles of attack and masses; aircraft 

landing gears could face a wide range of impact conditions which may possibly cause 

structural damage or failure. Thus, in hard landing scenarios, the landing gear must 

absorb sufficient energy in order to minimize dynamic stress on the aircraft airframe. 

However, compromising for this requirement can reduce the performance for less severe 

impact conditions and consequently decrease fatigue life of the aircraft structure. 

Furthermore, damping requirements of landing impact phase conflicts with those of 

taxing phase which result in performance compromise [3]. Fully active and semi-active 

control systems are the possible solutions to overcome these limitations. The fully active 

approach has been widely developed and tested for military applications [5], [30] and 

[31]. However, this approach has not been implemented in the commercial applications 

as they can cause complex systems and a significant increase in size, weight, and power 

requirement. The semi-active approach is a compromise between fully active and passive 

systems. It contains the fail-safe feature of the passive systems and adaptability of the 

active systems with low power consumption. The semi-active control systems have been 

extensively developed in automotive application [14], but few studies of the application 

in landing gear system have been reported [2]. Among semi-active control strategies, 

those based on smart fluids such as magneto-rheological (MR) and electro-rheological 

(ER) fluids have received recent interest as the rheological properties can be continuously 
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controlled using magnetic or electric field. Compared with ER fluids, MR fluids are not 

sensitive to the impurities of the temperature variation and also require lower power. 

As previously discussed in Chapter 2, MR damper was modeled and simulated to 

work in A6 Intruder landing gear system. Governing equations of the landing gear system 

and the inverse model of the MR damper were then obtained in Chapter 3. In this 

Chapter, a proportional-integral-derivative (PID) controller is formulated using governing 

equations of the landing gear system and the inverse model of the MR damper in order to 

attenuate acceleration of the system. Comparing PID and Skyhook control, one can 

conclude that PID control is capable of tracking the target force more precisely. 

Furthermore, PID control is less sensitive to variations in damper temperature and wear 

[33]. One of the limitations of the Skyhook control is that it involves time delay which 

needs to be compensated using a force-tracking control [34]. PID control is consequently 

selected in this work. 

Finally simulations are conducted for the landing gear system for different current 

excitation and the results are compared. A discussion about the most desirable output is 

presented. 

4.2 PID Controller Scheme 

In this section, the proposed block diagram of the landing gear system is given. 

The Laplace transform of the governing equations are then obtained using the block 

diagram and the transfer function equations of the system are consequently formulated. 

The proposed block diagram of the landing gear system is shown in Fig 4.1. 
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Fig 4.1 Proposed block diagram of the landing gear system. 

As it can be seen from Fig 4.1, the target damping force, Fd, is considered as the 

control force and is defined by u(t), which is the first input of the system and output of 

the controller. This force can be measured by utilization of a shock strut measurement 

device called strut's pressure sensor. The sensor can be installed on the shock strut in 

order to measure the pressure spike at the point of impact [35]. The combination of the 

measured pressure spike and the static pressure gives the total pressure at a certain area. 

The product of the total pressure and the area provides the shock strut force. 

The external forces fx (t) and f2 (t) are assumed as the second and third inputs of the 

system which are shown in Fig 4.1. The response of the proposed control system is 

partly excited by the initial conditions or initial state. This excitation signal is shown by 

n(t) in Fig 4.1. Strut displacement, xs(t), is taken as the output of the system. However, 

strut acceleration and velocity are also verified to meet the controller design requirements 

which will be discussed later in this Chapter. As previously discussed in Chapter 2, the 

settling time is assumed to be less than 0.2 Sec, the lower mass displacement should not 
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exceed 0.09 m (maximum allowable deflection of the tire selected for A6 Intruder) and 

the strut displacement should not exceed 0.38 m (fully extended stroke of the selected 

shock strut). In practice, the output of the system is measured by a sensor and fed back to 

the reference value. As shown in Fig 4.1, the strut velocity, vs(t), is obtained using the 

derivative gain and is fed back to the reference signal or desired velocity, r(t). In order 

to achieve r(t), the reference acceleration, , for a system with sink velocity of 

v = 3.2 m/s is assumed to be a curve shown in Fig 4.2. This curve is equivalent to 90 % 

of the strut acceleration of the passive landing gear with the sink velocity of v = 3.2 m/ 

s. The reference velocity and displacement can then be shown as the first and second 

integral of the reference acceleration, respectively. 

o 
ro 

>+— 

o 
5 
a> 
o 
o 

o o 
(7) 

- Reference 

- Passive 

Fig 4.2 Time history of reference and passive displacement and acceleration, v=3.2 m/s . 
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As it can be seen from Fig 4.1, the tracking error of the system e(t) can be 

expressed as: 

e(t) = r(t)-vs(t) (4.1) 

where r(t) is the reference signal and vs(t) is the strut velocity. 

Gp is the plant transfer function. H1 and H2 are the open-loop transfer functions of 

the input / i ( t ) and f2(i) respectively. C is the transfer function of the PID controller that 

is going to be designed. The Gp, H1, H2 and n(i) are determined in the next sub-section 

in order to obtain C. 

On the other hand, it is required to superpose a semi-active constraint on the 

desired damping force since the MR shock strut is a semi-active device. The semi-active 

device will only be able to generate high damping force if shock strut velocity, vs, and 

upper mass velocity, vu, are of similar sign. When vs and vu are of opposite sign, the 

damping force is suppressed. This constraint can be summarized in the following form 

[9]: 

(u if vsvu > 0 
u = \r\ f / n (4-2) 

(.0 if vsvu < 0 

As shown in Fig 4.3, the controller output, tt(t), is the combination of 

proportional P, integral / and derivative D, terms which can be expressed as: 

u(t) = P +1 + D (4.3) 
where 

P = Kpe(t) (4.4) 

/=/f i/0
te(T)dT (4.5) 

D=Kd±e(t) (4.6) 
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and Kp, Kt and Kd are proportional, integral and derivative gain of the PID controller 

respectively. As discussed earlier, the tracking error e(t) represents the difference 

between the desired input value or reference signal r(t) and the actual output value 

vs(t). This error will be sent to the PID controller and the controller calculates the sum of 

recent errors (integral of the error) and the rate at which the error has been changing 

(derivative of the error). The output of the controller u(t) is now equal to weighted sum 

of the error, integral of the error and the derivative of the error as shown in Fig 4.3. 

Control action can be provided for the landing gear system by tuning the three constants 

Kp, Kt and Kd in the PID controller. 

p 

1 

D 

+ T 

+ 1 
e(t) 

C 
u 

Fig 4.3 Block diagram of the PID controller. 

These constants will be computed in the following section. First, transfer functions are 

derived using Laplace Transform of the governing equations. A MATLAB program is 

then written using the transfer function equations in order to design the controller. 

4.2.1 Transfer function equations 

As previously discussed in Chapter 3, the shock strut is subjected to a preload 

force due to the initial air pressure of the accumulator. Therefore, the shock strut does not 
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begin to deflect at the time of touchdown until this force is overcome at instant t = td. 

The system is assumed to have only one degree of freedom during this time. Therefore, 

one can conclude that the shock strut displacement is xs = 0 for time t < td and it is 

xs =£ 0 for t > td. According to this fact, the controller needs to be designed for only 

t > td when the sock strut begins to deflect. 

For a system with sink velocity of v — 3.2 m/s, td was previously calculated as 

td = 0.0013 s in sub-section (3.4.1) . Thus as previously discussed in Chapter 3, initial 

conditions are assumed to be as: 

Xu\td) — xL\.td) — x0 

xu(td) = XL(td) = V0 

(4.7) 

(4.8) 

where x0 and v0 are constant values and found to be x0 = 0.0042 m and v0 = 3.19 m/ 

s. 

mu 
t xu 

Co 

kt 

mL 

H ct 

xL 

Fig 4.4 Two-DOF model of the system. 



The two-DOF landing model is shown in Fig 4.4. As can be seen, the MR 

damping force, Fmr, is substituted with the input u(t) . Therefore u(t) is the force from 

the controller that is going to be designed. Substituting w(t) = Fmr in the equations of 

motions one can get: 

y xu + c0(xu - xL) + kg.{xu - xL) + w(t) =WU- {kLlt + FLl) - Fg. = A(t) (4.9) 

y xL + cQ(xL - xu) + kgi(_xL - xu) + ctxL + ktxL - u(t) = WL + Fg. = /2(t) (4.10) 

By taking Laplace transform of the above equations, one can attain transfer function 

equations. Laplace transform of Eqs. (4.9) and (4.10) can be expressed as: 

mu(s
2Xu - sx0 - v0) + kgi(Xu - XL) + c0s(Xu - XL) =-U + F1 (4.11) 

mL(s2XL - sx0 - v0) - kgi(Xu - XL) - cQs( Xu - XL) + ktXL + ct(sXL - x0) = U + F2 (4.12) 

where Xu, XL, U, Fx and F2 are the Laplace transforms of the xu, xL, u, fx and f2 

respectively and s is the complex angular frequency. mu and mL are the mass of the 

upper mass and lower mass respectively. Eqs. (4.11) and (4.12) can be written in the 

matrix form as: 

? ; + / c t j U J [U + F2 + mL(sx0 + v0) + ctxQ\ 
mus

2 + c0s + kgi -c0s-kgl ] \xn] _ f -U + Fx + mu(sx0 + v0) 

~c0s-kgi mLs2 + s(c0 + ct) + k6 

A 

where A is a newly defined matrix. Using Eq. (4.13), one can solve for Xu and XL . The 

inverse matrix of A needs to be determined in order to solve for Xu and XL. Multiplying 

each side of Eq. (4.13) by the inverse matrix of A, A'1, one can get: 

mLs2 + s(c0 + ct) + kgi + kt c0s + kgi 

c0s + kgi mus
2 + c0s + kg 

-U +F1 +mu(sx0 +v0) 
U + F2 + mL(sx0 + v0) + ctx0 

(4.14) 

where A is the determinant of A and can be expressed as: 
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A= (mus
z + c0s + kgi)(jnLs2 + s(c0 + ct) + kgi + kt) - (c0s + kgi)(c0s + kgi) (4.15) 

A is assumed to be A^ 0 in order for Eq. (4.14) to have unique solution. 

Now the transfer function of the plant, Gp(s), can be written as: 

Q (s-) = Mfl =
 xu(s)-xL(s) 

(4.16) 

Since the system is linear, to compute the transfer function of the plant, we may assume 

Fi = F2 = 0 and also all the initial conditions equal to zero in Eq. (4.14) or, equivalently, 

disregard F l5 F2 and all the initial conditions. 

Thus, Eq. (4.14) can be written as: 

mLs2 + s(c0 + ct) + kgi + kt c0s + kgi 

c0s + kqi mu
s "I" cos + kqi m (4.17) 

Considering Eq. (4.17), Xu and XL can be expressed as: 

Xu = -{mLs2 + s(c0 + ct) + kgi + kt)U + (c0s + kgi)U 

XL = ~(c0s + kgi)U + (mus
2 + c0s + kgi)U 

Substituting Xu and XL from Eqs. (4.18) and (4.19) into Eq. (4.16) yields: 

r fr,\ _ -{mu+mL)s2-cts-kt 
bp{S) -

The open-loop transfer function Gt(s) of the input / i ( t ) , can be expressed as: 

Xu(s)-XL(s) 

(4.18) 

(4.19) 

(4.20) 

Gi(s) = 
Fi(s) 

(4.21) 

Considering input Fl5 one can set U = F2 = 0 and all the initial conditions equal to zero 

in Eq. (4.14) and get Xu and XL as a function of F1. Xu and XL can then be substituted in 

to Eq. (4.21) and G\(s) can be obtained as: 

Ci(s) 
mLs +cts+kt (4.22) 
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In a similar way, the open-loop transfer function G2(s) of the input / 2 ( t ) , can be 

expressed as: 

G2(s) = ^±M^1 (4.23) 
t2{S) 

Considering input F2, one can set U = F1 = 0 and all the initial conditions equal to zero 

in Eq. (4.14) and derive Xu and XL as a function of F2. Xu and XL can subsequently be 

substituted into Eq. (4.23) and finally G2 (s) can be expressed as: 

G2(s)=^f1 (4.24) 

The transfer functions //a(s) and H2(s) in Fig (4.1) can be described as: 

»'«=SS <4-25> 
«2K>=g§ (4.26) 

In order to obtain zero-input response of the system, one can set U = Ft = F2 — 0 in Eq. 

(4.14) and get Xu - XL as: 

X (<:') — X (l) = lm t t (5*o+ yo)] (mLs2+cts+kt) _ [mL(sx0+v0)+ctx0]mus
2 ,. ^ „ , 

Eq. (4.27) can be simplified as: 

Xu(s) - XL(s) = ^voXcts+kt)+muXokts ( 4 2 g ) 

Taking the inverse Laplace of Eq. (4.28), one can get zero-input response, n(t), as: 

*u(0 - * L ( 0 = n(t) = axe
bit+a2e

b2t+aze
b*t + a4e

b4t + a5e
b5t (4.29) 

where ate
bit are exponential functions and at and bt are constant values. The method 

used to calculate these values is given in Appendix C. 
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Considering the above-mentioned transfer functions and the zero-input response, 

the output of the system, xu — xL or xs, due to the inputs u, ft, f2 and initial conditions 

can be given by: 

Xs(s) = Xu(s) - XL(s) = Gp(s)U(s) + G^F^s) + G2(s)F2Q>) + {m^s+k^ (4.30) 
Zero-state response Zero-input response 

Eq. (4.30) shows that the output of the system is partly excited by the inputs u, fx, f2 and 

partly excited by the initial condition v0 which is the sink speed of the landing gear. 

Taking Laplace transform of Eq. (4.3), one can obtain the transfer function 

equation of the controller, C(s), as: 

C M = ^ + & + M = ' * ' * , ' * " ' (4.31) 

Since the use of the PID algorithm for control does not guarantee optimal control of the 

system, we need to verify if the system is implementable. In order for a control system to 

be implementable, every closed-loop transfer function of the system should be proper and 

the system needs to be totally stable. Improper transfer functions are difficult to build in 

practice and amplify high-frequency noise. It can be noted that if the system is not stable, 

it will burn out or disintegrate. 

A transfer function is called proper if the degree of the nominator is less than or 

equal to the degree of the denominator. A system is said to be totally stable if the closed-

loop transfer function of every possible input-output of the system is stable. 

In order to verify the well-posedness (every closed-loop transfer function to be proper) 

and stability of the landing gear control system, one can get the closed loop transfer 

functions from r to xs, G0, from fx to xs, Gx f , from f2 to xs, GXsf2, and from n to xs, 

Gxsn> a s : 
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Gx u (s) - — = TT-^TT (4-34) 

G x n(s) = ^ = G ; W , , (4.35) 
xsn\ J N i+c(s)Gp(s) v ' 

Substituting C{s), Gp(s), ^ ( s ) and H2(s) into the above-mentioned equations, one can 

conclude that the resulting system is well-posed. In order for the system to be totally 

stable, every pole of the above-mentioned closed-loop transfer functions should have a 

negative real part or, equivalently, lay inside the open half s-plane. Routh test method can 

be used to determine the range of control parameters ( Kp, Kp and Kp) in which the 

system is stable [36]. Using Routh test method, one can determine the stability without 

solving for the roots of the denominator. 

Using the block diagram of the control system shown in Fig (4.1) and the obtained 

transfer function equations, a program is written in MATLAB to attain the controller 

gains and subsequently formulate the controller. 

The controller gains are calculated as: 

Kp = 915000, Kt = 430500, Kd = 107150 

Calculation shows that these parameters are within the stability range. 

4.3 Controlled Performance 

In this section, proposed block diagram of the landing gear system is simulated 

using MATLAB SIMULINK and the PID controller is formulated using MATLAB 

programming and consequently the optimized proportional, derivative and integral gains 
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of the PID controller are obtained. Acceleration, velocity, displacement, damping force 

and the damping energy of the shock strut are then presented for the control system. 

Finally the desired current input is presented. It should be noted that the input coil current 

is limited to 2.0 A. 

Figs 4.5 - 4.11 compare the results of closed -loop system using PID controller 

with those of open-loop system in which there is no current applied and the landing gear 

operates as a passive system. Simulation is run within the time range of 0 < t < 0.2 and 

sink velocity is assumed to be v = 3.2 m/s in these figures. 

Fig 4.5 shows the shock strut force versus time. It can be clearly seen from Fig 4.5 

that initially the damping force in the strut is very high compared to the spring force. 

However, this later reduces to very small value (essentially zero). As it can be seen, the 

gas spring force is reduced by employing the PID controller. However the total shock 

strut force is increased. Since the damping force is the difference between the total force 

and gas spring force, one can conclude that the damping force is increased which is 

shown in Fig 4.5. Therefore more energy can be extracted from the damper while using 

the control system. Since the total shock strut force has been increased, it is required to 

ensure that the total force in control system does not exceed the maximum axial load that 

shock strut can carry without buckling . 

The maximum axial load or critical load, Fmax, of the shock strut can be calculated 

using Euler formula as: 

Fmax = f^pr (4.36) 

buckling is a mode of failur and described as a sudden failure of a structural member subjected to high compressive 
stresses. 
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where E is the Young's modulus and determined as E = 211 Gpa for iron rod, / is the 

area moment of inertia and calculated as / = 0.00042345 m4, Lr is the rod length at full 

compression which is given as Lr = 0.405 m and k is rod effective length factor which is 

given as k = 0.5 for a rod with both ends fixed. 

Substituting the above mentioned parameters into Eq. (4.36), one can calculate 

Fmax as Fmax — 213,900,000 N. As it can be seen from Fig 4.5, the maximum shock 

strut force in control system is shown as Fa = 80000 N which is far less than calculated 

Fmax- Therefore, MR shock strut can be implemented in the modeled landing gear system 

without inducing any buckling. 

As it can be seen from Fig 4.6, the total shock strut force and consequently the 

damping force is increased. For energy estimation, the area enclosed between the total 

shock strut force and the gas spring force can be expressed as: 

E = fQFvdxs (4.37) 

where E is the energy dissipated, 5 is the total stroke of the system, xs is the strut 

displacement and Fp is the overall damping force of the system which is the difference 

between the total shock strut and the gas spring force. 
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Fig 4.5 Time history of shock strut force in open-loop and control system, v=3.2 m/s . 

The energy dissipated by the shock strut in open-loop, Ex, and control closed-loop 

system, E2, and their ratio, —, are found as: 
E2 

Ex 11500/ 
86% (4.38) 

E2 13300/ 

Eq. (4.38) shows that the energy dissipated through shock strut in the open-loop system is 

86 % of that dissipated in the MR damper in control closed-loop. Therefore, it can be 

noted that MR fluids improve the efficiency of the shock strut by 16.3 %. The dissipated 

energy versus time is shown in Fig 4.7. As it can be seen for time less than 0.06 s, the 

same amount of energy is dissipated through the shock strut in both systems however as 

the time increases, the difference between the two dissipated energies increases. 
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Fig 4.6 Shock strut force vs. shock strut displacement in open-loop and control system, 
v=3.2 m/s . 

Fig 4.8 shows the lower and upper mass displacement in both open and closed-

loop systems. As it can be seen, the lower mass displacement or tire deflection is 

increased by utilizing the PID controller. 
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Fig 4.7 Time history of energy dissipation in open-loop and control system, v=3.2 m/s 

As discussed before, maximum tire deflection for the tire used in this work is 

0.09 m. This requirement is satisfied in the formulated control system as shown in Fig 

4.8. The result also shows that the upper mass or fuselage displacement is reduced. 

Lower and upper mass velocity versus time is shown in Fig 4.9. Upper mass velocity is 

slightly reduced however, the lower mass velocity is increased before time t = 0.11 s 

and decreased when t > 0.11 s. 
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Fig 4.10 shows the lower and upper mass acceleration factor versus time. As it can 

be seen peak value of the acceleration of the lower mass is significantly reduced by 

employing the PID controller to the MR landing gear system. However, the acceleration 

of the upper mass is slightly increased. As shown earlier (Fig 2.8), the touchdown occurs 

in less than 0.3 s. The primary purpose of formulation of the PID controller for the 

selected landing gear system is to prevent hard landing by minimizing the acceleration of 

the shock strut and consequently acceleration of the lower mass during impact. This 

strategy does not consider the ride comfort of the aircraft and consequently the 

acceleration of the upper mass. Therefore ride quality of the aircraft might be fairly 

deteriorated due to increases in acceleration of the upper mass. In order to prevent hard 

landing and consequently prevent structural damages, the pilot needs to control stability 

of the aircraft in a very short duration of impact. It should be noted that drive stability and 

ride comfort are the criteria which conflict each other while controlling the vibration of 

the landing gear [37]. 

The shock strut displacement and acceleration factor are shown in Fig 4.11. As 

observed in Fig 4.11, the shock strut is in compression phase within the simulation time 

which is t = 0.2 s. As can be seen, the displacement is reduced and is within the 

acceptable range of xs < 0.38 m. Fig 4.11 also shows that the first peak of the shock 

strut acceleration is significantly reduced from 10g to 9g which means 11 % attenuation 

in acceleration. Therefore the vibration due to the landing impact and consequently 

dynamic stress on the fuselage are significantly attenuated by employing the PID 

controller. 
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One can substitute the desired MR damping force and desired shock strut velocity, 

attained from the controller, into Eq. (3.33) and consequently obtain the desired yield 

stress. The desired yield stress values can then be placed in Eq. (3.39) to obtain the 

inverse command current. 
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K 15 - / 
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Time [s] 

Fig 4.12 Time history of control current input, v=3.2 m/s . 

Fig 4.12 presents the control current input for the formulated control system. As 

observed in Fig 4.12, the current is increased steadily as the time passes until t = 0.185 s 

and decreases after that. As can be seen in Figs 4.8 and 4.11, when the current is at its 

maximum level at t = 0.185 5, the tire is coming back to its original shape and the shock 

strut is in compression phase . 

Figs 4.13-4.19 present control performance of the MR landing gear system under 

PID controller with sink velocity of v = 3.7 m/s (12 ft/s). Comparing these figures 

with those presented earlier for the sink velocity of v = 3.2 m/s assists us to study the 
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effect of sink speed increase on aircraft impact. This parameter is considered as the most 

important factor in the severity of the landing impact [35]. 

Fig 4.13 shows the shock strut force versus time. Comparing Fig 4.5 with Fig 4.13, 

one can conclude that the damping force and gas spring force is increased in the system 

with higher sink speed. Fig 4.14 shows the shock strut force versus shock strut 

displacement. Comparing Fig 4.6 with Fig 4.14, the difference between shock strut force 

in open loop system and PID controller is decreased in the system with higher sink speed. 
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Fig 4.14 Shock strut force vs. shock strut displacement in open-loop and control system, 
v=3.7 m/s. 

As observed in Fig 4.15, the dissipated energy is significantly increased because 

the sink velocity is higher than that of Fig 4.7. Applying Eq. (4.36) for maximum 

energies in Fig 4.15 shows that the energy dissipated through shock strut in the open-loop 

system is 89 % of that dissipated in the MR damper in closed control loop. Therefore, it 

can be noted that MR fluids improve the efficiency of the shock strut by 12.3 % which is 

far less than that for sink velocity of 3.2 m/s. 
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Fig 4.15 Time history of energy dissipation in open-loop and control system, v=3.7 m/s 

As it can be seen from Figs 4.16 - 4.18, the lower mass and upper mass 

displacement, velocity and acceleration factor are significantly increased for sink velocity 

of v = 3.7 m/s. As discussed before, maximum tire deflection for the tire used in this 

work is 0.09 m. This requirement is satisfied in the formulated control system as shown 

in Fig 4.16. 
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Fig 4.18 Time history of lower and upper mass acceleration in open-loop and control 
system, v=3.7 m/s . 

The shock strut displacement and acceleration factor are also shown in Fig 4.19. 

As it can be seen, the shock strut displacement is increased and is within the acceptable 

range of xs < 0.38 m. The result also shows that the first peak of the shock strut 

acceleration is significantly reduced from 11.5 g in open-loop system to 10.8$ in 

control system which means 7 % attenuation in acceleration. Therefore, it can be 

concluded that the attenuation percentage is decreased from 11 % (in the system with 

sink velocity of 10.5 tf/s shown in Fig 4.11) to 7 % (in the system with sink velocity of 

12 ft/s shown in Fig 4.19). 

Fig 4.20 presents the control current input for the formulated control system. As 

observed, the current is increased as the time passes until t = 0.13 5 and decreases after 

that. 
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4.4 Summery 

A proportional-integral-derivative (PID) controller was formulated for the selected 

landing gear system. First the design requirements were determined and block diagram of 

the control system was proposed. The transfer function equations of the system were then 

formulated using the proposed block diagram. The control system was simulated and 

acceleration, velocity, displacement, damping force and the damping energy of the shock 

strut were presented. Desired damping force was calculated and was substituted in 

inverse Buckingham equation, in order to obtain desired applied current. The control 

current input was presented. 

It was demonstrated that shock strut displacement and acceleration were 

significantly attenuated during impact by employing a PID controller to the MR landing 

gear system. 

93 



CHAPTER 5 

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

Modeling and analysis of a MR damper for a landing gear system used in aircraft 

was presented. Landing gear of a Navy A6-Intruder aircraft was used for modeling and 

simulation. A physical model of the shock strut was introduced and a lump mass based 

mathematical model of the landing gear upon the governing equations were derived and 

solved. Landing impact was simulated, a detailed description of the simulation was given 

and the results were discussed and validated. A PID controller was further formulated to 

reduce the acceleration encountered during landing impact. The simulations carried out 

for certain landing condition led to the conclusion that implementation of MR damping 

systems in conjunction with an appropriate control scheme would reduce the 

consequences related to condition that according to the present model are classified as 

hard landing. 

It has been demonstrated that the area between the gas spring force and the total 

force, which represents the dissipated energy during impact, is increased by employing a 

PID controller to the MR landing gear system and consequently the efficiency is 

increased. The simulations carried out for certain landing condition lead to the conclusion 

that implementation of MR damping systems in conjunction with the PID control scheme 

increases the damping force and consequently reduces the vibration due to landing 

impact. 

It has also been demonstrated that shock strut displacement and acceleration are 

significantly attenuated by employing a PID controller to the MR landing gear system. 
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In the future, the proposed MR shock strut prototype can be made and its 

performances can be validated in the lab. The model of the MR damper can be improved 

based on temperature of operation. The hysteresis in the damper and the role of that in 

energy absorption can be evaluated. 

The existing model can be extended to an elastic mass for the structure of the 

aircraft and consequently, simulations of various cases can be performed. A non-linear 

controller can also be formulated for the existing model and the results can be compared 

with those of the PID controller. 
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CONTRIBUTIONS 

The major contributions of the thesis are provided below: 

1. A mathematical model of a passive landing gear system of a Navy aircraft is 

developed. The landing gear components are modeled and the forces associated 

with the passive shock strut are formulated. The shock strut's nonlinear stiffness, 

which is identified by gas exponent, is also studied. 

2. The passive shock strut is fitted with a MR valve in order to redesign the MR 

shock strut. The MR shock strut model is consequently proposed which can 

properly express the magneto-rheological behavior of the damper. This model is 

based on Batterbee et al. [3] hysteresis model. Finally the associated forces of the 

MR shock strut are formulated. 

3. A two-DOF, lump mass based model of the MR landing gear system is 

theoretically constructed and the governing equations are derived. The inverse 

model of the MR shock strut relating MR yield stress to the MR shock strut force 

and strut velocity is also formulated. 

4. Passive and MR landing gear models are simulated and the results are 

demonstrated for different current excitation, sink velocity and orifice height. The 

effect of orifice height on the shock strut force is investigated in order to optimize 

the height. 

5. The block diagram of the landing gear system is proposed and the transfer 

function equations of the system are formulated. Using the block diagram and the 
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transfer function equations, a PID controller is further formulated to reduce the 

acceleration encountered during landing impact. 
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APPENDICES 

APPENDIX A: Development of the Pressure Drop across the Active Length of the 

Orifice 

To derive Buckingham equation or consequently the pressure drop across the 

active length of the orifice, we assume non-Newtonian time-independent fluids between 

stationary parallel plates which are separated by distance Dm as shown in Fig A. 1. The 

plates are assumed to be infinite in the z direction, with no variation of any fluid property 

in this direction. As previously discussed, flow is also assumed to be laminar. No slip is 

assumed at the wall. To start with, presume a cubic element with width of y and length of 

L and depth of a as shown in Fig A.l, where variable y changes from 0 to Dm. 

Fig A.l Laminar flow between stationary parallel plates. 
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The balance of forces on the above-mentioned element gives: 

^ = ^ (A.1) 
dy L v ' 

where T is the shear stress on the border of the element and AP is the pressure drop across 

the length of the element as shown in Fig A.l. As it was shown in Eq. (2,10), when 

\xy | < |T | then the shear rate is non-zero and can be described by the following equation: 

du 

dy 
T = Tysgn(u) + tip— (A.2) 

One can substitute x from Eq. (A.2) into Eq. (A.l) and obtain the velocity of the flow, u, 

by direct integration. Thus: 

where ct and c2 are constant values and can be found by using boundary conditions. 

As it can be seen from Fig A. 1, the flow gap is divided into three regions where 

the regions 1 and 3 present the post-yield condition (T > xy) and region 2 presents the 

pre-yield condition (T < xy) of the Bingham plastic flow. The velocity in region 1, 2 and 

3 can be shown by ux, u2 and u3 respectively. 

The boundary conditions for region 1 are ua(0) = 0 and Ui(ypi) = 0. Therefore 

the velocity profile can be expressed as: 

" i = ^ ( y 2 - 2 y P o O (A.4) 

Since velocity is constant in region 2, one can conclude that: 

u2 = ux(ypi) = ~^-LyPi2 (A-5) 
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The boundary conditions for region 3 are u3(D7n) = 0 and u2'{ypo) = 0. Therefore the 

velocity profile can be expressed as: 

M3 = ^L \y2 - D™ + 2ypo(D™ - y)] (A.6) 

Integrating Eq. (A.2), one can obtain shear stress equation for region 2 as: 

r = ^ + c 3 (A.7) 

where c3 is a constant value. The boundary conditions T(yp[) = xy and T(ypo) — Ty yield 

to the following equation: 

VPO -yPi=7K^ = h (A"8) 

Considering Fig (A.l), one can write: 

yPo + YPi = Dm (A.9) 

Using system of Equations (Eq. (A.8) and Eq. (A.9)), one can solve for ypo and ypi as: 

yPi=Bsri <A-1 0> 

and 

ypo = D-^ (A.ii) 

Further, the flow rate, Q, through the orifice can be provided as: 

Q = I°mu(y)ady (A.12) 

The volumetric flow rate in the Eq. (A.9) can be written as the combination of the 

volumetric flow rate for region 1, 2 and 3 as: 

Q = * C u* oo dy+a Z°Uz (y) ady + a CUs (y) ady 

(A. 13) 
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Substituting u l5 u2 and u3 from Eqs (A.4), (A.5) and (A.6), respectively, into Eq (A.14) 

one can obtain: 

Q = ~^lWf) + (yv'ypo - yPi3) + (-2-*f + 2-£f- 2Dm
2ypo + 2Dmyp0

2)] (A.15) 

One can substitute ypi and ypo from Eqs. (A.8) and (A.9) into Eq. (A.15) and get: 

4 ( — f V - 3 ( - U r y + f 1 - i ^ i ) = 0 (A.16) 
\DmAPj y \DmAPj y \ aDm

3AP/ v ' 

Eq. (A.16) is called Buckingham equation which can be written for the active length of 

the orifice as it contains non-Newtonian fluids. Substituting L = lmr and AP = APmr in 

Eq. (A. 18), one can get: 

4 f^H_)3
 T 3 _ 3 j^_) Ty + (l- B^rQ\ = 0 ( A ] 7 ) 

\DmAPmrJ
 y \DmAPmrJ

 y \ aDm
3APmrJ 

Therefore, APmr is achieved in terms of Q and ry. 
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APPENDIX B: Calculation of the Gas Pressure and Volume at Full Extension 

Loads at fully extended, static and compressed positions are first calculated using 

compression ratios4. This process starts with deciding on the value of the compression 

ratios. According to the aircraft manufacturers' code of standard, the following ratios are 

used for large aircrafts [4]: 

Static to extended: 4/1 

Compressed to static: 3/1 

Since A6 Intruder is considered as a large aircraft, the above-mentioned ratios are 

used in our calculation. Having the load at static position, i?l5 which is equal to strut load 

at maximum gross weight and calculated in tire modeling section, one can calculate loads 

at fully extended and compressed positions as 

Load extended: Re = V 4 x 10864.34 = 2716.1 lb 

Load Static: R2 = 10864.34 lb 

Load compressed = Rc = 3 x 10864.34 = 32593 lb 

Static pressure, Pgs, can be calculated by dividing the static load, Rl5 by the upper 

chamber area, Au, as 

p «i = 1 0 8 6 4 3 4 U> = 3 8 4 2 4 7 9 t ( A 2 Q ) 
9S Au 28.2743 in2 r 

Using compression ratios, the fully extended pressure, Pge, and the compressed pressure, 

PgC, can be estimated as 

Pge = V4 x pgs = V4 x 384.2479 psi = 96.0620 psi = 662324.17 Pas (A.20) 

Compression ratio is the ratio of the pressure at one point like fully compressed position divided by the 

pressure at another point such as fully extended position. 
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Pgc = 3 x Pgs = 3 x 384.2479 psi = 1152.7 psi (A.21) 

The displacement D is defined as the product of the total stroke , 5, and the lower 

chamber area, Au 

D = S.AU = 15 in x 28.2743 in2 = 424.1145 in3 (A.22) 

Gas volumes at static extension,Vgs, full extension, Vge, and compressed position, Vgc, can 

be calculated applying polytropic gas law for a closed system: 

Pgs^gs = PgeVge ~ Pgc^gc = C (A.23) 

where C is a constant and n is the polytropic exponent which was assumed to be n = 

1.35 in Chapter 2. 

Substituting for Vgc = Vge — D in the Eq. (A.23), one can solve for Vge as: 

v n _ Pgc(Vge-Q)n _ 1 1 5 2 . 7 ( ^ e - 4 2 4 . 1 1 4 5 ) 1 3 5 

9 e Pge 96.0620 

Thus, Vge can be calculated as: 

Vge = 473.58 in3 = 0.0074 m 3 (A.25) 
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APPENDIX C: Zero-Input Response 

The response of linear systems can always be expressed as a combination of zero-

input response and zero-state response. In this section general properties of the zero-input 

response of the proposed control system are illustrated. The response of the proposed 

control system due to nonzero initial state was given in Eq. (4.27) as: 

(muv0)(cts+kt)+mux0kts 
Xu(s)-XL(s) = (C-l) 

where A was expressed in Eq. (4.14) as: 

A= (mus
2 + c0s + kgi)(mLs2 + s(c0 + ct) + kgi + kt) - (c0s + kgi)(c0s + kgi) (C.2) 

Substituting A from Eq. (C.2) into Eq. (C.l), one can expand Eq. (C.l) as: 

u ' L s-b1 s-b2 s-b3 s-b4 s-b5 
(C.3) 

where at and bt are complex numbers and are calculated in table (C. 1) for a landing gear 

system with the sink velocity of v0 = 4.3 ft/s . 

Table C.l Calculation of the constants at and bt 

Oj 

8606.293 + 5437.405/ 

8606.293 -5437.405J 

-8606.293 - 137678.640i 

-8606.293 + 137678.640/ 

bi 

-61.559 +73.135i 

- 6 1 . 5 5 9 - 73.135i 

-0.996 + 6.674Z 

-0.996 - 6.674; 

As it can be seen from Eq. (C.3), bt are the four roots of the denominator of Eq. 

(C.l) or equivalently the four roots of the A . These roots are defined as the modes of the 

system which govern the form of the zero-input response. 
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The application of inverse Laplace transform to Eq. (C.3) yields: 

xu(f) - xL(f) = n(t) = a1e
blt+a2e

b2t+a3e
b3t + aAeb^ (C.4) 

where n(t) is defined as the zero-input response and aiebit is exponential function. 
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