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ABSTRACT 

Optimal Surrender and Asset Allocation Strategies For Equity-Indexed 

Insurance Investors 

Wenxia Li 

Equity-indexed annuity (EIA) products are becoming more and more popular since 

they were first introduced in 1995. The growing popularity stems from the fact that 

the EI As allow investors to earn part or all the equity accumulated and enjoy a 

minimum guaranteed growth rate on the principal. An EIA investor may consider 

surrendering the contract before maturity and invest in the stock index in order to 

earn the full stock growth. He may also invest in a risk-free asset for protection from 

downside risk. 

We consider an EIA policyholder who seeks the optimal surrender strategy, and asset 

allocation strategy after surrender, in order to maximize his expected discounted 

utility at expiration of the contract that is either the maturity or his time of death, 

whichever comes first. We derive the Hamilton-Jacobi-Bellman equations, satisfied by 

the optimal value function, and derive the optimal strategies. We find that the optimal 

surrender strategies appear in the form of a continuation region or two surrender 

boundaries. That is, the investor stays in the contract when the contract value is 

within the region. We also study the impact of product features, market assumptions 

and individual behavior patterns on the surrender boundaries. 
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Introduction 

Since first introduced in 1995, equity-indexed annuities (EIAs) have enjoyed signifi­

cant growth. In 2009, more than $30 billion of EIA products were sold in the USA 

(AnnuitySpecs.com, Indexed Sales k, Market Report, 4Q2009), a 470% increase over 

the 2000 level of around $5.25 billion. EIAs are regulated and distributed in the same 

way as fixed annuities. An EIA is a type of fixed annuity and thus provides the ad­

vantages that most fixed annuities offer. Moreover, EIAs always protect policyholders 

from downturns in the market while offering upside interest crediting potential based 

on a stock index, like the S&P 500. Because of this feature, EIAs are a conservative 

product suitable for managing retirement money. 

EIAs have received significant attention in the actuarial literature ever since they 

were introduced. Brennan and Schwartz (1976), and Boyle and Schwartz (1977) are 

the first to extend the Black- Scholes framework to equity-linked insurance prod­

ucts. The pricing and reserving of EIAs are examined by Tiong (2000), Gerber and 

Pafumi (2000), Imai and Boyle (2001), Lee (2003), Gerber and Shiu (2003), Fung 

and Li (2003), and Lin and Tan (2003). Chen and Huang (2007) explore the rela-
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tionship between wealth share dynamics and relative risk aversions. In Young and 

Zariphopoulou (2002), the dynamic method is applied to study the equity-indexed life 

insurance assuming the insurance risks are independent of the financial risks. Moore 

and Young (2003) price equity-indexed pure endowments using utility theory, as in­

troduced by Gerber (1976), in a dynamic setting. Young (2003) applies the principle 

of equivalent utility to price and reserve equity-indexed life insurance. Cheung and 

Yang (2005) study the optimal EIA surrender strategy in a discrete-time model with 

regime-switching. Moore and Young (2005) study the optimal design of a perpetual 

equity-indexed annuity based on the buyer's utility. Moore (2009) determines the 

optimal time for an individual to surrender a given EIA. 

This thesis investigates the optimal investment strategy of EIA investors using utility 

theory in a dynamic setting. The optimal investment strategy is in the form of sur­

render boundaries within which the investor should keep the contract. The optimal 

asset allocation strategy is also taken into account. The criteria in determining the 

optimal strategy is to maximize the expectation of the present value of the policy­

holder's terminal utility. 

In Chapter 1, we introduce the stock price dynamics and commonly used actuarial 

notation. Utility theory and utility functions used are also presented. We define 

the optimal value function and then derive the Hamilton-Jacobi-Bellman equation it 

satisfies. The optimal investment dynamics are then investigated to see how various 

features impact investors' strategies without insurance risk. Chapter 2 incorporates 
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insurance risk with financial risk by considering a perpetual equity-linked life insur­

ance. We study the value function with insurance risk to find the optimal surrender 

thresholds for policyholders. In Chapter 3, we focus on an equity-indexed annu­

ity with fixed maturity and investigate the impact of the maturity on the investors' 

surrender boundaries. 
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Chapter 1 

Models and Notation 

In this chapter, we derive the optimal asset allocation strategy for an investor. Using 

utility theory, we maximize the investor's expected discounted utility at the investor's 

time of death. We first present the wealth dynamics of the investor, which are based 

on risky and risk-free assets. Then, fundamental actuarial notation are introduced 

afterwards. Next, we introduce utility theory in Section 1.3. In Section 1.4, we ob­

serve that the optimal value function, which is the goal of the investment, satisfies a 

Hamilton-Jacobi-Bellman equation from which the optimal dynamic portfolio strat­

egy is extracted. 

1.1 Wealth Dynamics 

Geometric Brownian motion (GBM) has widely been used to model stocks and indices. 

In this thesis, we assume that the underlying stock's stochastic process follows a 
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continuous GBM. A stochastic process {S(t) : t > 0} is a GBM if it satisfies the 

following stochastic differential equation: 

dS(t) = iiS(t)dt + aS(t)dB(t), 
(1.1) 

5(0) = s > 0. 

Equation (1.1) means that the stock price follows a GBM with a drift \x and diffusion 

a under the initial condition S(0) = s > 0. In finance, the coefficients \x and a are 

interpreted as the mean of return and the volatility of the underlying stock price, and 

they are both supposed to be given as positive constants. The process B is a stan­

dard Brownian motion {B(t) : t > 0} on a probability space (J?, J , P). The standard 

Brownian motion, also called Wiener process, is characterized by: 

(1) 5(0) = 0, 

(2) B is almost surely continuous, 

(3) for any t > s, the increments B(t) — B(s) are independent and follow a normal 

distribution with mean 0 and variance t — s, denoted by N(0,t — s). 

A standard Brownian motion is a continuous-time stochastic process which is not 

differentiable anywhere. According to Oksendal (2003), the quadratic variation of 

standard Brownian motion is given by (B(t), B(t)) = t. 

The stochastic differential equation for GBM can be viewed as a linear ordinary differ­

ential equation dS(t) = S(t)(ndt + adB(t)) which would have an exponential solution 

if it were deterministic, according to Bjork (2004). We follow a similar approach to 

solve the stochastic differential equation. First define a new process {Z(t) : t > 0} by 
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Z(t) = ln(S(t)) assuming S(t) is a solution to (1.1) that is strictly positive. Applying 

Itffs formula (Oksendal, 2003) to Z(t) = ln(S(t)), we have 

1 . „ , , 1, 1 
dZ(t) =^dS(t) + -(--—)(dS(t)) 2 

S(t) w 2V S(t) 

—(/xcfe + adB(t))S(t) + h--L-)a2S(t)2(dB(t))2 

S(t)»" w / w 2" S(t)2J w v w ' ( 1 .2) 

= (//oft + adB(t)) - -a2dt 

= (fi- -a2)dt + adB(t). 

Thus the new process Z(t) follows the stochastic differential equation 

( 
dZ(t) = (n- \a2)dt + adB{t), 

Z(0) = ln(S(0)) = Ins. 

(1.3) 

Integrating (1.3) gives 

1 
Z(t) = Z(0) + (fi- ^a2)t + oB{t). 

Since Z(t) — ln(S(t)), we have 

S(t) = 5(0) exp {(fi - \a2)t + uB{t)}. 

Recall that B(t) = B(t) — B(0) follows a normal distribution with mean 0 and vari­

ance t. Therefore, S(t) follows a lognormal (LN) distribution and E[S(t)] = S{jS)e>*. 

The return factor — ~ LN(/j,s,a2s). This result can be used to simulate the 

stock prices. 

Now consider an investor with total wealth W(t) at time t. His investment con­

sists of two parts: a risk free asset (for example, a treasury bill) and a risky asset (for 

example, a stock index). Let ir(t) denote the dollar value invested in the risky asset at 
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time t. Thus the dollar value invested in the risk free account is n°(t) = W(t) — 7r(t). 

Assume that the portfolio is self-financing, i.e., after the initial investment the in­

vestor does not make additional deposits or withdrawals from the portfolio. In this 

way, the investor's only strategy is to dynamically reallocate the shares in both assets. 

Assume that the constant r is the rate of return of the risk-free asset, compounded 

continuously. The rate r is also referred to as the force of interest. Given the rate of 

return, the growth in the risk-free asset over a time interval dt is measured by rdt. 

Further assume that \x > r > 0. The investor's overall rate of return is the weighted 

average of the rates of return in the stock and the risk-free asset: 

dW*(t) =n°(t)rdt + 7r(t)^-

= [Wn(t) - n(t)]rdt + n(t)(iidt + adB(t)) 

= [rWn(t) + (fi- r)ir(t)]dt + an(t)dB(t). 

Here Wn(t) represents the wealth at time t from using strategy 7r(t). When there is 

no confusion about the strategy being used, we drop the superscript n. 

Given the initial investment w, the total wealth of the investor follows the stochastic 

differential equation: 

dW*(t) = [rWn{t) + (/i - r)n(t)]dt + air(t)dB(t), 
(1.4) 

Wn(0) = w. 

In the next section we introduce some actuarial notation that shall be needed in the 

remainder of the thesis. 



1.2 Actuarial Notation 

Let X denote the lifetime of an individual. Then X is a continuous random variable 

because of the uncertainty of the individual's time of death. Its cumulative probability-

function and probability density function are defined as 

Fx(t) = Pr[X < t] and fx(t) = dFx(t). 

Define the survival function as 

s(t) = Pr[X>t] = l-Fx(t). 

The force of mortality A(i), also called hazard rate or morality rate, represents the 

annualized instantaneous rate of mortality at a certain age. It can be interpreted as 

the probability the individual dies at the instant t given that he is alive at this time. 

That is 

Then we can express s(t) and fx(t) in terms of the force of mortality: 

s(t) = e-R*a)da and fx(t) = A(t)e"£*(-)*. 

Table (1.1) shows several frequently used mortality models. In this thesis, the con­

stant mortality and Gompertz model will be used. 
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Model 

constant 

de Moivre (1729) 

Gompertz (1825) 

Makeham (1860) 

Weibull (1939) 

\(x) 

a 

l 
W—X 

aebx 

c + aebx 

axb 

s(x) 

e-ax 

1 - - , 0 < x < w 

exp( - fe t e ) ,x > 0 

exp(-cx - |e6 x) 

e x P ( - ^ ^ + 1 ) 

Parameters 

a>0 

w>0 

a>0,b>0 

a > 0,6 > 0, c > -a 

a> 0,b> 0 

Table 1.1: Mortality models 

Let (x) denote an individual at the age of x and rd be his future lifetime, given 

survival at age x. The cumulative distribution function of T<I is given by 

FTd(t) = Pr[X -x<t\X>x] = l - ^ j ^ - = tqx, 
s[x) 

which is the probability that (x) dies within t years. Let tpx denote the probability 

that (x) survives t years: 

s(x) 

Therefore, the probability density function of r^ is 

frM = KM -
dFx(x + t) f(x + t) 

s(x) s{x) 

The force of mortality is 

x W s^o s l-FTd(t) s(x + t)/s(x) v ' 

The probability that (x) dies between time u and u +1 is 

u\tQx — PT{U < Td < U + t\ — upx tQx+u — uVx — u+tPx — u+tPx ~ uQx 



1.3 Utility Function 

In utility theory, investors seek to gain profits in order to satisfy their preferences. 

The satisfaction, though abstract, can be measured quantitatively by the concept of 

utility. Utility function describes one individual's relative satisfaction from wealth, 

various products or even services. Higher utility values imply higher satisfaction lev­

els. Utility can be evaluated with different functions which are dependent on variables 

like wealth or price of goods. Different types of utility functions describe different 

human behavior patterns. In this thesis, we only consider utility as a function of 

the wealth an investor possesses. In general the more wealthy a person is, the more 

satisfied. Therefore, utility is an increasing function of wealth. In addition, the utility 

function is assumed to be differentiable. 

There are three behavior pattens in financial markets: risk neutral, risk averse and 

risk seeker. 

• A risk neutral investor has constant marginal utility. Same increases in wealth 

always bring the same increases in satisfaction for any initial wealth. Risk neutral 

investors have linear utility functions. In real markets, most people are not risk neu­

tral. 

• A risk averse investor has decreasing marginal utility. Same increases in wealth 

bring smaller increases in satisfaction when the investor is more wealthy. This shows 

that risk averse investors have concave utility functions. Most people are risk averse 

10 



in financial markets. They like profits but want to avoid risks. 

• A risk seeker has increasing marginal utility. Same increases in wealth bring large 

increases in satisfaction when the investor is more wealthy. They have convex utility 

functions. Unlike risk averse investors, they take on risks because of the potential 

high profits they bring. 

In this thesis, we consider that all investors are risk averse. For these investors, 

the utility function u : R —• R is increasing, concave, and differentiable. The concept 

of risk aversion is used to measure the reluctance of an investor to accept a bargain 

with an uncertain payoff rather than another bargain with a more certain, but pos­

sibly lower, expected payoff. We also assume that the utility function has constant 

relative risk aversion (CRRA). In other words, the percentage of wealth the investor 

is willing to expose to risk remains unchanged as wealth changes. Denote the level of 

VJ U' \V0] 
relative risk aversion by 7. Then by definition, 7 = —— and hence the utility 

u'(w) 

function is given by u(w) = , 7 > 0 and 7 ^ 1, according to Moore (2009). 
1 - 7 

1.4 Optimal Investment Strategy 

The goal of the investor is to optimize his expected discounted utility at the time 

of death given his current wealth by taking a dynamic investment strategy within a 

family A = {ir(t)}. The reason why the discounted utility is preferred to the util­

ity is that the utility function does not stay the same over time for each individual. 
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Humans usually prefer a reward which arrives sooner than later. An investor would 

rather receive one dollar today than tomorrow. Thus utility is discounted at the in­

vestor's subjective discount rate which is denoted by p. Every person has his own 

subjective discount rate. A higher subjective discount rate implies a more impatient 

individual. 

1.4.1 Hamilton-Jacobi-Bellman Equation 

Given that the investor's total wealth is w at time t, his goal is to maximize 

E[e-p(Td-T)u(Wn(rd)) \ W{r) = w], 

where rd is the time of death. 

Define the value function as 

V*(w, T) = E[e-p{Td-T)u{Wn(rd)) | W(T) = w]. (1.5) 

Our main interest is to maximize this value function with respect to investment 

strategies ir(t) to get the optimal value function: 

V*(W,T) = E[e-"(T"-*)w(H^*(rd)) | W(T) = w] 
(1.6) 

where n is the optimal investment strategy. The family A is the set of all admissible 

strategies n(t) which are ^-measurable. 2ft is a filtration The admissible policies are 

the ones satisfying the following conditions: 

(1) w*{t) = 7r(t) + ir°(t), for r < t < rd; 
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(2) The portfolio is self-financing, which means there is no exogenous infusion or 

withdrawal of money; 

(3) E[JJd Tr2{t)dt] < +00. 

The value function VK{W,T) is the expected discounted utility using the investment 

strategy ir(t) £ A over the time interval [r, TJ\ given the wealth is w at time r. The 

optimal value function gives the optimal expected discounted utility over the same 

time period under the same initial conditions. Therefore V"*(W,T) is the optimal 

among all the value functions V^iw.r). 

Proposition 1.4.1. Assume that there exists an optimal strategy and the optimal 

value function V7' is smooth, then the function Vn satisfies the Hamilton-Jacobi-

Bellman (HJB) equation 

VT + rwVw + max»(T)64[(/i - r)-K(r)Vw + -O-2TT(T)2VWW} + XS(T)U(W) = V[p + Ax(r)] 

V(w,Td) =u(w). 

In order to simplify the notations, VT and Vw are used to represent partial deriva-

dV dV d2V 
tives —— and ——. Similarly, Vww is used to represent second derivative -?—T-

or ow owz 

Proof. The optimal value function V"(W,T) is the solution of the optimal control 

problem 

V*(W,T) = supVn(W,T) subject to ?r(t) G A. 

The value of Vn(w,r) is controlled by the dynamic strategy ir(t) over the time 

period [r,Td]. Consider two strategies over this time interval. One is optimal, 
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called Strategy I and denoted by 717. The other one is not optimal on time in­

terval [r, r + h] and optimal afterwards. It is called Strategy II and denoted by 

7f («) t e [r, r + h) 

TT(£) te(r + h, rd] 

irn(t) = < 

• Under Strategy I, 717 (£) = n(t), and Vni(w,r) = V*(W,T). It is trivial by the 

definition of the value function. Under the optimal strategy, the value function is 

optimized. 

• Under Strategy II, there are two outcomes. If the individual dies during [r, r + h], 

V*" is given by E{e-^Td'T)u{W*{Td)) \ W(T) = w\. Otherwise he dies after r + h, 

Vn" is equal to the value function discounted to time r since strategy II is optimal 

after r + h. So over the entire time period, V*11 is given by 

V*»(w, T) = E[ I{Td>T+h}e-rhV*(W*(r + h),r + h) 
(1.8) 

+I{rd<T+h}e-«T*-MW*(Td)) I W(T) = w], 

. 1 if A is true 
where I{A} = 

0 otherwise 

Since Strategy I is optimal, the inequality Vni(w,r) > V7r//(ty,r) must hold. From 
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(1.8), we have 

V*(w, T) > E[I{Td>T+h}e~PhV*(W*(T + h),r + h) 

+I{Td<T+h}e-*r*-Th(W*(Td)) | W(T) = w] 

> E[/{Td>T+fc}e-^V*(Wr*(T + fc),T + /0 

+I{rd<r+h}e-phu(W*{Td)) I W(T) = w] 

= e-£
+hx*®dte-',hE[V*(W*(T + h),r + h)\ W{r) =w,Td>r + h] 

+(1 - e- K+h'x^dt)e-"hE[u(W%{Td)) \ W{T) =w,Td<r + h}. 

Multiplying e^ ^(t)dteph o n ^ t h sides, 

e/T
T+h\z(t)dtephVii(WtT) > E\V*{W*{T + h),r + h)\ W(T) = w,rd>T + h] r+h 

**w,-e''"K'"(w,T) > .tt|V",(W"(T + / i ) , r + /i) | W(r) = w,rd > r + ti\ 
(1.9) 

+(e/;
+hA,(t)A _ i)£[u(w*(rd)) | W(T) = w,Td<r + h}. 

Since V*(U>,T) is assumed to have continuous partial derivatives, Ito's formula can 

be applied using (1.4). It leads to 

V*(W*(T + h),r + h)= V*(w,r) + fT
+h V*(W*(t),t)dt + JJ+h V£(W*{t),t)dW*{t) 

1 
2 

+\£+hvL(w*(t)>W{w*,w*)t 

= V*(w, T) + fT
+h V?(W*{t),t)dt + fJ+h[rW*(t) 

+{p - r)*(t)]V*(W*{t),t)dt + fr
+h™{t)V*{W*{t),t)dB(t) 

+1-j;+ha^(tyv:w(w^t),t)dt 

= v*(w,T)+jT
T+h{vTnw*(t),t) 

+ [ r ^ ( i ) + (/x - r)n(t)]V:(W*(t),t) 

+\^(t)2V:JW"(t),t)}dt + fr
r+h an(t)V:(W*(t\t)dB(t). 
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Substitute (1.10) into (1.9) 

eS:+hxx(t)dt+Ph y*(Wj r ) > E[V*(w,r) + f;+h{V?(W*(t),t) 

+[rW*(t) + 0i- r)Tr(t)]V:(W*(t),t) 

+\°2m2V:w(WHt),t)}dt (1-11) 

+ /T
r+h an(t)V:(WHt),t)dB(t) \ W(r) = w,rd>r + h] 

+(efT
r+h Mt)dt _ i)E[u(W*(rd)) | W(T) =w,Td<r + h}. 

Since <jTt(t)V*(Wn(t),t) is ^-measurable, we further assume that 

/ 

r+h 

<77f(t)V£(W*(t),t)<ft<+00. 

Then the stochastic integral JJ cr;n-(t)V*(W"n(t),t)dB(t) is a martingale and its 

expectation is equal to fT<77r(t)V*(Wn(t),t)dB(t) = 0. The stochastic integral term 

in (1.11) vanishes, leaving us with the following inequality: 

(e/;
+,txx{t)dt+Ph _ -g v * ^ r ) > E[$l+h{v?{w*{t)tt) 

+[rW*(t) + (// - r)it{t)]V*(W*(t),t) 
(1.12) 

+ 2°2Ht)2V:w(W* (t), t)}dt I W(r) =w,Td>r + h} 

+(e/ ; + h Mt)* _ l )E[t i (^ s ( r d ) ) | W(r) = w,rd < r + /i]. 

Next divide both sides by h, move h within the expectation and let h tend to zero. 

The left hand side of (1.12) gives 

lpfT+h 

l im^o h 
rr+h 

= [\x(T)+P}V*{w,T)\iTah^eK+hx*Vdt+Ph (1.13) 

= [K(T) + P]V*(W,T) 

On the right hand side, we have rd —>• r as h —> 0 implying that Wn(Td) —> W(r) = u>. 
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So the last term of (1.12) has the following limit 

lim ^ }-E[u(Wn(Td)) | W{T) = w,Td<r + h]= XX(T)U(W). (1.14) 
h—»0 tl 

Assume that 

p-h{V*(W*(t),t) + [rW*(t) + (/x - r)n(t)]V*(W*(t),t) + j g W ^ f l ^ f t ) , *)}<** 

is dominated by some integrable function. By the dominated convergence theorem, 

h m ^ o i ^ j;+h{VT*(W*(t),t) + [rW*(t) + (*t - r)*(t)]V*{W*(t),t) 

+laH(tyV*w(W*(t),t)}dt] 

= E p i m ^ I j;+h{V*(W*(t), t) + [rW*(t) + (/* - r)7r(*)]V*(W*(t), t) 

+^a7r(t)2V^(W^(t)>t)}rft] (1-15) 

= E\V*{W*{T),T) + [rW*(r) + (// - r)7f(r)]yj(W#(r),r) 

= V ? K r) + [ra + (// - r )* (r)] Vj(w, r) + ^ 2 T T ( r ) 2 ^ ( ^ , r) 

Plugging (1.13), (1.14) and (1.15) into (1.11), we have 

[A,(r) + p]V* > V* + [rw + (p - r)%(r)]ltf + ^{rfV^ + Xx(r)u(w). (1.16) 

Since the controlling strategy 7r(r) G .A is arbitrary, (1.16) holds for all strategies 

7r(r). If 7r(r) is equal to the optimal one #(r), Strategy II is optimal over the entire 

time period thus it is identical to Strategy I and the equality in (1.16) is attained. 

Thus the optimal value function Vn(w,r) satisfies the following equation: 

VT + rwVw + max[(p - r)^[r)Vw + ~(T2IT(T)2VWW] + \X(T)U(W) = [Ax(r) + p)V(l.l7) 
7T(T) Z 
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If the initial time r is equal to the time of death r^, by definition the value function is 

given by V"*(w,r) = VW(W,T) = u(w). It is independent of the investment strategy. 

Therefore the optimal value function is also equal to the utility of the initial wealth. 

This gives the boundary condition V(w, r^) = u(w) in the HJB equation. 

D 

Bjork (2004) gives a theorem stating that the if the HJB equation (1.7) has a 

unique and smooth solution which follows the strategy that obtain the supremum 

involved in the equation, the optimal value function exists and it equals to the unique 

solution. The strategy at which the supremum involved is obtained is the optimal 

strategy. 

By the verification theorem in Clarke, Ledyaev, Stern and Wolenski (1998), the above 

Hamilton-Jacobi-Bellman equation has a unique viscosity solution which is equal to 

the optimal value function denned in (1.6). In the rest part of this thesis, we assume 

that the optimal value function V is smooth. Otherwise we can always work with 

sub-differentials do instead of classic differentials d. 

In order to find the optimal control strategy which we denote by #, consider the 

following problem 

max[(// - r)n{r)Vw + -G2TX(T)2VWW\. (1.18) 
7T(T) Z 

Notice that this is an optimization problem of a quadratic function of 7r(r). If we 

are given Vww < 0, the optimal 7r(r) could be found using the first-order necessary 
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condition. In fact, the linearity implied by the wealth process together with the 

concavity of the utility function u(w) indicate that the optimal value function V(w, r) 

is concave with respect to w, i.e. Vww < 0 under the smoothness assumption of V. 

Therefore, the maximum in (1.18) is attained at 

*M = -^LVL- (1-19) 
® V WW 

The optimal investment strategy in the risky asset is 

*W = «W {T)>T) = -^-vuw*(T),Ty (L20) 

in which WW(T) is the optimal wealth process based on the optimal strategy process 

7r(r) instead of 7c(t). 

Using this optimal strategy, the Hamilton-Jacobi-Bellman equation can be rewrit­

ten as 

VT + rwVw - I^—P^-^- + Xx(r)u(w) = (Ax(r) + p)V. (1.21) 
A O Vww 

This is a regular partial differential equation. In order to solve (1.21), Moore (2009) 

proposed that the solution could be in the form of 

V(W,T)=£(T)U(W). (1.22) 

1-7 

7 

w 
Recall that the utility function is given by u(w) — . Plugging (1.22) into (1.21): 

1 —7 2 a2 z{~Tw 7 ) 1 — 7 1—7 

irfl + ̂  +
 lJ±zll^-, + K{r)fl = (Ai(r) + p)ifl 

1 — 7 2 jcr2 1 — 7 I — 7 
1 (/x - rf 
2 7<r2 

& + [r + o ^ - T - ] ( l - 7)C + A,(r) = (Ax(r) + p)£. 
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Therefore £ satisfies the ordinary differential equation 

1 (/x ~ rf 
2 7a2 £r = [A,(r) +p-(r + ^ ^ 7 T ^ ) ( 1 - l)}£ - Ax(r). (1.23) 

with the boundary condition f (r^) = 1. 

Since V is given by (1.22) and %(t) is given by (1.20), we have 

fi-r £{T)V!(W*(T)) 

<T2 £(r)u"(W*(T)) (1U) 

H-r W*{T)~I 

where W ^ T ) is the optimally controlled wealth process. Here the optimal strategy 

ii — v 
is to keep — of the total wealth in the risky asset. This result comes from the 

7<r2 

assumption of constant relative risk aversion. If an investor has a constant relative 

risk aversion, the proportion of total wealth he is willing to expose to risk is indepen­

dent of total wealth. Also note that, as the risk aversion increases, as measured by 7, 

the ratio invested in the risky asset decreases. An investor with higher relative risk 

aversion is more reluctant to expose his investment to risk. 

Now that the optimal strategy is a constant ratio of total wealth, we can write the 

optimal wealth dynamic: 

dW*(t) = [rW*(t) + (n- r)ir(t)]dt + an(t)dB(t) 

= [r + ( / X ~ r ) \W*{t)dt + ^—^-W*{t)dB{t). 
7<r2 70" 

(1.25) 

(1.25) could be rewritten into 

dW*{t) . (fi-r)2,, / i - r , „ . , , 
T„ft,V = k + 0 ]dt + - dB{t). 1.26 
Wn(t) L 7<72 i 70- w v ' 
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The above stochastic differential equation shows that Wn(t) is a geometric Brownian 

motion. Using the same approach as in Section 1.1, we have 

2 o—TT~\d t "• ' 
7a2 2 Ya 1G 

dln(W*(t)) = [r + ̂ 4 ^ - =^-^-\dt + ^rdBit). (1.27) 

The solution of the above stochastic differential equation with the initial condition 

Wn(r) = w is given by 

W*(t) = «,exp{[r + {-^—^- - \{j^^-]{t - r) + ^—^B(t - r )} . (1.28) 
7<72 2 72cr2 7<j 

Prom the definition in (1.6) of V, we have that 

V*(w, T) = E[e-P^-T^u{W*d) | W(T) = w] 

e-^l[WeM(r + ^ - i^)(rd -r) + ^B{rd - r)}}^ = E 
7 

1-7 

1 - 7 

= M ( ^ ) E [ e - ^ - ^ e [ ( r + ^ - ^ i ^ ) ( T d - T ) + ^ ! : B ( T d - T ) 1 ( 1 - 7 ) ] 

= u(w)f(r), 

where 

( M - < - ) 2 1 (M-r)2 

£(r) = E [ e - ^ - r ) e l ( r + ^ ^ ^ ^ " ) ( T d - T ) + ^ : B ( r ' i - T ) 1 ( 1 - 7 ) ] . (1.29) 

In order to find Vn(w,r) we only need to obtain £(r) numerically. There are two 

ways to evaluate £(r). One is to solve the ODE (1.23) with the boundary condition 

and the other is to simulate the expectation (1.29). 
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1.4.2 Numerical Illustration 

In this section, we illustrate the result of the previous section with numerical examples. 

We compare the optimal strategies to see the impact of the parameters to the portfolio. 

Since the optimal investment in the risky asset is a constant ratio of the total wealth, 

they follow the same stochastic pattern but with different initial value. Because of 

this linear relationship, their expectation and variance are related: 

E&M = ^ ^ ( M Var[*(t)) = {j^^Var[W%t)]. 

Since the optimal investment in the risky asset is a fixed portion of the total wealth, 

its expected value and volatility are fixed portions of those of the total wealth. 

We choose the following parameters as the base scenario: 

• The rate of return on the risk free asset r = 0.04; 

• The rate of return on the risky asset /z = 0.08; 

• The volatility on the risky asset a — 0.2; 

• The relative risk aversion 7 = 2; 

• The initial total wealth w = 1. 

The optimal wealth dynamic (1.25) becomes 

dW*(t) = 0.06W*(t)dt + Q.\W*{t)dB{t) 

W*(0) = 1 

and the optimal investment process (1.24) becomes 

n(t) = 0.5W?. 
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In the base scenario, the optimal investment strategy is to keep 50% of the total 

wealth in the risky asset. That is, the risky asset and the risk-free asset have the 

same value. The total wealth follows a GBM with drift 0.06 and diffusion 0.1. All 

the dynamics are simulated using an 1-year horizon on a daily basis (365 days). 

Example 1.4.1. JX=0. 08 versus ji=0.1 (Fig. 1.1). 

CO 

00 

d 

d 

— Total wealth-base scenario 
— - Strategy-base scenario 
- - Total wealth-compared scenario 

— Strategy-compared scenario 

\ . , . . A ' ^ 

• " - • " " ' V _ ' 

r~- >• 

, ^ - v , . , - ' 

~1 T" 
0.0 0.2 

- 1 1 1 r~ 
0.4 0.6 0.8 1.0 

Time 

Figure 1.1: Base Scenario: ^=0.08 versus Compared Scenario: /z=0.1 

In this example, we increase /JL from 0.08 to 0.1. The drift and volatility of the 
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wealth dynamic both increase: 

dW*{t) = 0.085W*(t)dt + Q.15W*(t)dB(t); 

it{t) = 0.75W*(t). 

Under higher returns of the risky asset, the exposure to risk not only takes a 

larger portion of total wealth but also has greater volatility, as shown in Fig. 1.1. 

Particularly, when the return of the risky asset gets as high as 0.12, the optimal 

investment strategy is to put all the money into the risky asset. 

Example 1.4.2. a=0.2 versus a=0.15 (Fig. 1.2). 

In this example, the volatility of the risky asset a drops from 0.2 to 0.15. However, 

in spite of this decrease, the volatility of total wealth increases due to the greater 

growth in the share of the risky asset. 

dW*(t) = 0.0756W*(t)dt + 0.1333W*(t)dB(t); 

n{t) =0.8889W*(t). 

One special case is that when — = 1 the optimal strategy is to keep all the money 
7cH 

in the risky asset. In this example, it occurs when a reduces to V0T02 ~ 0.1414. 

Example 1.4.3. ^=2 versus ^=4 (Fig. 1.3). 

In this example, we compare two investors with different relative risk aversion co­

efficients (Fig. 1.3). 
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Figure 1.2: Base Scenario: cr=0.2 versus Compared Scenario: cr=0.15 

dW*{t) = 0.05W*(t)dt + 0.05W*(t)d£(t); 

#(*) = 0.25W#(t). 

In the same financial market with everything being equal, an investor with higher 

relative risk aversion (RRA) has lower portfolio volatility since the percentage he is 

willing to expose to risk is lower. This is because a higher RRA implies a greater 
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Figure 1.3: Base Scenario: 7=2 versus Compared Scenario: 7=4 

reluctance to risk exposure. The optimal strategy for an investor with a unit RRA is 

to put all the money in the risky asset. 

Example 1.4.4. . r=0.04 versus r=0.06 (Fig. 1.4) 

In this example, the expected return of the risk-free asset increases from 0.04 to 

26 



Is 

d 

o 

— Total wealth-base scenario 
• - Strategy-base scenario 
• - - Total wealth-compared scenario 
- • Strategy-compared scenario 

*^^/ Kr , 

—1 1 1 1 1 " 

0.0 0.2 0.4 0.6 0.8 

Time 

1.0 

Figure 1.4: Base Scenario: r=0.04 versus Compared Scenario: r=0.06 

0.06. 

dW*{t) = 0.065W*(*)d* + 0.05W*(t)dB(t); 

n(t) = Q.25W*(t). 

Fig. 1.4 shows that when the return of the risk-free asset increases, it is more 

attractive to investors, thus the share in the risky asset decreases. Since the risk-free 

asset, which is less volatile dominates the portfolio, the volatility of total wealth drops 

as the return of the risk-free asset increases. 
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Chapter 2 

Equity-Linked Life Insurance 

2.1 Introduction 

Equity-linked products are insurance policies with payoffs linked to the performance 

of an underlying financial instrument. This kind of insurance contract contains not 

only mortality risk but also financial risk. Equity-linked products are popular among 

investors since they provide returns linked to the financial market. 

In addition to the above common features, equity-linked insurance contracts may 

include some other options such as the option to surrender the contract, a guaranteed 

minimum maturity or a death benefit which provides higher benefits than a given 

level. In this thesis, we investigate the surrender option which gives policyholders the 

right to terminate the contract before the maturity date set in the contract. This is 

the possibility of withdrawing the value of the contract with certain penalties. 
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In this chapter, we will apply the results of Chapter 1 to study the surrender strate­

gies of the policyholders. 

2.2 Optimal Value Function 

We consider a perpetual equity-linked life insurance policy. The perpetual product 

enables the policyholder to surrender the contract before his time of death. If he 

chooses to surrender, the contract terminates and the investor receives a surrender 

benefit. A death benefit is received upon death if the contract is never surrendered. 

The benefits are related to the stock index. 

Suppose that the investor is aged x when he enters the contract at time 0. He 

receives an equity-linked death benefit D(S(T(I),TCI) at the time of death r = T<J. The 

total value of the contract S(r) is related to the underlying risky asset. At the time of 

surrender TS, the investor receives a surrender benefit B(S(TS),TS) which is also linked 

to the risky asset. This benefit will then be moved to financial markets such that the 

discounted utility is maximized using the optimal investment strategy described in 

(1.24). After the policyholder surrenders the insurance contract, the only risk that 

remains is the financial risk, since the insurance contract is terminated. 
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2.2.1 Optimal Value Function After Surrender 

In order to determine the optimal time to surrender the contract, we need to in­

vestigate the optimal value function when the investor is in the contract. He should 

consider what strategies he will take after surrender to determine an optimal one over 

the entire horizon. To do that, we first need the optimal value function after surrender. 

Since the only risk that remains after the policyholder surrenders the contract is 

the financial risk, we are in the same setting as in Chapter 1. Since there is no confu­

sion, we simply use the notation V to represent the optimal value function V" which 

is obtained by using the optimal investment strategy n. Then at any time r < rs the 

investor's optimal value function is defined as in (1.6): 

V(W,T) = sup E[e-p{Td-T)u(Wn(Td)) | W(T) = w}. 
n(t)eA 

It satisfies the HJB equation (1.21) 

VT + rwVw - \^—pL^- + Xx(r)u(w) = [Xx(r) + p}V. 

Therefore the optimal investment strategy (1.24) is 
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2.2.2 Optimal Value Function Before Surrender 

Before surrendering the contract, the investor could decide at any time T < rd whether 

to surrender the contract or continue his position. If he chooses to surrender the 

contract, he receives the payoff B(S(TS),TS) and invests the money optimally in the 

financial market. His wealth at the time of surrender is B(S(TS),TS), so his optimal 

value function is V(B(S(TS),TS),TS), which is given in Section 2.2.1. If the investor 

dies prior to surrender, i.e. rd < rs, he receives the death benefit D(S(Td),Td) and 

the utility is u(D(S(Td)),rd). Thus the optimal value function prior to surrender is 

given by 

U(S,T) =supTsE[ I{Ts<Td}e-^-r)V(B(S(Ts),Ts),Ts) 
(2.1) 

+I{rd<Ts}e-^-MD(S(rd),rd)) | S(T) = s}. 

If TS = r < rd, I{T<Td} — 1, I{rd<T) — 0, and (2.1) is reduced to 

U(S, T) = supTs E[V(B(S(T),T), T) I S(r) = s] 
(2.2) 

= V(B(S,T),T). 

Surrendering at the initial time r for B(S, r) and then following the optimal strat­

egy to obtain V(B(S, T),T) is one trajectory among all possible strategies. It is not 

necessarily the optimal one ,allowing surrender option afterwards. Therefore the op­

timal value function before surrender U(S, r ) must be higher or equal to V(B(S, T),T). 

Using the approach in Section 1.4.1, we subdivide the time interval into two parts: 

[T,T + h] and (r + h,oo), for h close to zero, and compare the strategy which is 
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sub-optimal over (r + h, oo) to the optimal strategy. We get the following inequality: 

U(S, T) > E[I{Td>T+h}e-»hU(S(T + h),r + h) 

+I{Ti<T+h}e-p{rd-T)u(D(S{Td),Td)) | S{r) = s] 
(2.3) 

> e-f:
+h

e-P
hE[U{S(T + h),r + h)\ S(T) =s,Td>T + h] 

+(1 - e-frT+h**Wt)e-PhE[u(D(S(rd),Td)) \ S(r) = s,rd<r + h]. 

Reorganizing (2.3), we have the inequality 

e/T
T+" A*(t)*epfctf ( £ r ) > E[U(S(r + h),r + h)\ S(T) = s,Td>r + h} 

+ ( e / ; + h A x W d t _ i)E[u(D(S(Td),Td)) (2-4) 

\S(T) = S,Td<T + h]. 

In order to transform the first term in the above inequality, we apply Itb's formula to 

U(W,T) and have 

U(S(r + h),T + h) = U(S,r) + JJ+hUT(S(t),t)dt + ^+hUs(S(t),t)dS(t) 

+l-f:+hUss(S(t),t)d(S,S)t. 

(2.5) 

2 

Recall that the stock price S(t) follows a geometric Brownian motion in (1.1). Sub­

stitute it into (2.5): 

U(S(r + h),r + h)= U(S, r) + j;+h[UT(S(t),t) + »S(t)Us(S(t),t) 

+la2S2(t)Uss(S(t),t)}dt + fT
+h *S(t)Us{S(t),t)dB(t). 

(2.6) 

2 

With this equation, inequality (2.4) is transformed into a partial differential inequality 

for U(S,T): 

(efr
T+h^t)dtePh-l)U(S,T) 

> E[f;+h{UT(S(t),t) + nS(t)Us(S(t),t) + ±a2S2(t)Uss(S(t),t)}dt 

+ £+haS(t)Us{S(t),t)dB{t) | S(T) = s,rd>T + h] 

+ ( e / ; + h A , ( ^ _ i)E{u(D(S(rd),Td)) | S(T) = s,rd <r + h). 
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Divide both sides by h, move it within the expectation and let it go to zero. By 

I'HopitaUs rule, the left hand side has the limit 

(ef:
+hx'(.t)dtePh-l)U(S,T) ,. d(eJThMt)<V/>_i) 

hm = hm — -UiS.T) 
h^O h h^Q dh 

= [Xx(r)+p}U(S,r). 

Similarly to Section 1.4.1, the right hand side of the inequality becomes 

UT(S, T) + pSUs(S, r) + ^a2S2Uss(S, r) + XX(T)U(D(S, T)). 

Based on the above transformations, the inequality (2.4) is simplified to the partial 

differential inequality 

[XX(T) + p]U(S,T) > UT(S,T) + nSUs(S,T) + ^a2S2Uss(S,r) + XX(T)U(D(S,r))(2.7) 

Similarly to the optimal value function after surrender V, the optimal value function 

before surrender U satisfies the inequalities 

[Xx(r) + p]U > UT + fiSUs + ^a2S2Uss + Xx(r)u(D(S,T)), (2.8) 

U(S,T) > V(B(S,T),T). (2.9) 

In (2.9), if U(S,T) > V(B(S,T),T), the expected utility from keeping the equity-

linked contract is strictly greater than the expected utility from surrendering the 

contract. Thus the investor should not surrender the contract. However as the value 

of (S, T) varies, the inequality in (2.9) switches to equality at some points. The set of 

such paired values are defined as the surrender boundary. In the no-surrender region, 

U(S,T) is free which means its value is not restricted by V(B(S,T),T). Moreover, 
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since U(S,T) is optimal by definition and the inequality (2.8) holds arbitrarily, the 

equality of (2.8) holds when U is free. Therefore the equality holds in at least one of 

(2.8) and (2.9). 

Because we are interested in the surrender boundaries at which investors can surrender 

at no loss in terms of utility, we want to investigate the non-surrender region before 

it hits the boundaries. Then instead of studying two inequalities at the same time, 

we only need to solve 

( 1 
[Ax(r) + p]U >UT + [iSUs + -a2S2Uss + XX(T)U(D(S, r)) 

U(S,r)>V(B(S,r),r) 
(2.10) 

{U(S,T)-V(B(S,T),T)} 

x |[Xx(r) + p]U -UT- vSUs - ^a2S2Uss - Xx(r)u(D(S,r))\ = 0 

The third equation in (2.10) shows that at least one of the two inequalities must hold. 

2.2.3 Solving For Boundaries 

In order to solve (2.10), we implement the Projected SOR algorithm suggested by 

Wilmott et al. (2000). The Projected SOR algorithm is an iterative method for 

solving partial differential equations subject to an inequality constraint. We first 

solve (2.10) on a domain containing the boundary and then find the boundary from 

the inequality. The boundary points are the points where the inequality switches to 

equality. The details of the solution are given in the Appendix. 

34 



Before applying the algorithm explained in the appendix, we first transform the prob­

lem (2.10) into the form of (.21). 

Let t = T — r, v = \nS where T is a fixed large number. Let h(v,t) = U(S,T). 

Thus we have the differentials 

dh dt 
Ur=aid; = -ht> 

_ dh dv _ 1 
Us ~ fodS ~ Shv> 
TT l U lU l - l (U h\ 
Uss — ~~F2~hv + —hyj,— — -~^{hvv — nv). 

Plugging the differentials into (2.10), the problem is transformed into 

' 1 
[XX(T -t)+ p]h > -ht + fihv + -a2(hvv - hv) + XX(T - t)u(D(ev, T - t)) 

h>V(B,T-t) 
(2.11) 

{h-V(B,T-t)}x 

J [AS(T - t) + p]h + ht- fihv - ^a2(hvv - hv) - XX(T - t)u(D)\ = 0 

Next we approximate the terms of partial differentials by finite differences on a regular 

mesh with step sizes At and Av. We solve the problem within v £ [v\, v2] and 

t G [0, T] where V\ ss ln(0) and v2 ~ ln(oo). Then intervals are truncated such that 

vi = NiAv < v = nAv < N2Av = v2, 

0 = Mi At < t = mAt < M2At = T. 

We use the general finite-difference approximation 
Lm+l _ um 

ht=
 n

 At
 n +0(At), 

i,m+l um+1 

K= n+1
Ay

n +0(Av), 
urn+l oi .m+1 i um+1 

hvv = ^y2 + 0{{AvY) 
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where h™ = h(nAv,mAt). 

Let I™ denote the solution of the finite-difference approximation to the exact solution 

to h™. The condition h(v,t) > V(B,T- t) implies that 

C > V™ for m > 1 (2.12) 

where V™ = V(B(enAv,T - mAt),T - mAt). 

We want that U(S,T) > V(B(S,T),T). By definition of these two optimal value 

functions, they must satisfy three conditions 

U(S,T) = V(B(S,T),T) = h(v,0), 

U(0, T) = V(B(0, T),T) = h(-oo, t), (2-13) 

U(OO,T) = V(B(OO,T),T) = h{oo,t). 

Thus the boundary and initial conditions for I are 

Using the finite-difference approximation, the other condition [\X(T — t) + p]h > 

—ht + \xhv + -a2(hvv — hv) + \X(T — t)u(D(ev, T — £)) is approximated by 

- C + lZ+1[At(\x(T ~(m + l)At) + p) + l + ^ ( / x - \a2) + a , 2 ] 

- AtXx(T - (m + 1) At)u(D(enAv, T-(m + I) At) > 0, 

W h e r e a = ( ^ 

Let lm denote the vector of approximate values at time-step mAt and V m be the 
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vector representing the constraint at the same time: 

lm 

17TI 

lm 
\LN2-lJ 

JVi+1 

, v m = 

The terms Vfii and l^ are not included because they are determined explicitly by 

conditions (2.14). We further define 

bm 

b m = 

-Wi+i 

\bN2-lJ 

where bm is defined as 

bm = C + AtXx(T - (m + l)Ai)w(£>(en^, T - (m + l)At). (2.16) 

Let d°, c?+1 and d 1 represent the coefficients of I™, l™+l and 1™_X correspondingly: 

d° = At(Xx(T - (m + l)At) + p) + 1 + ^ ( / i - \<J2) + aa2, 
Av 2 

d 1 = —^aa2 1 
2* 

we then have the coefficient matrix for lm 

/ 

C = 

d° d+1 0 ••• 0 

d-1 d° d+1 • 

\ 

o d-1 d° 

0 

0 cT1 d° 
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which is a (N2 — Ni — 2)-square tridiagonal matrix. The Problem (2.11) can be 

rewritten into matrix form 

c r + 1 - bm > o, r + 1 - v m + 1 > o, ( r + 1 - vm + 1)(cim + 1 - t>m) = o. (2.18) 

This is the general form of the constrained matrix problem. To solve it, we apply the 

Projected SOR algorithm in the Appendix. More specifically, we choose the param­

eters as Av = 0.01, At = 0.1, u> = 1.8 and the tolerance level e = 0.00001. 

2.3 Numerical Illustration 

In this section, we consider a policyholder that invests in a perpetual equity-linked 

life insurance. We assume that he is aged 50 and his force of mortality follows the 

Gompetz (exponential) model: 

\x(t) = - exp ( J , (2.19) 

with 6 = 9 and m = 90 as in Moore (2009). His expected future lifetime is 35.3 years. 

The equity-linked insurance products specify the surrender benefit and death benefit 

in the contract. They often include guaranteed minimum benefits. In this section, we 

follow Bernard and Lemieux (2008) and assume the following death benefit function: 

D(S(rd),rd) =dw0m^((l + ~gy*,^\ , (2.20) 

assuming the participation rate is 1. Here g is the guaranteed minimum growth rate. 

When the policyholder dies he receives the higher of the guaranteed rate and stock 

38 



price growth rate on a proportion d of the premium w0- This could be used to model 

the death benefit the investor receives at the time of death while the contract is not 

terminated. 

Also assume that the surrender benefit function is given by 

B{S(T.),T.) = awomax ^(1 + ^ , ( 1 _ / ( T - ) ) ^ ^ (2.21) 

where g is the guaranteed minimum growth rate for surrender benefits which is usually-

equal to g. The surrender benefit that the investor receives at the time of surrender 

is the higher of the guaranteed rate and the return of the stock, less a penalty on 

a proportion s of the premium w0. The function / ( r s ) is a time dependent penalty, 

or the surrender charge. When death occurs before surrender, the penalty is waived. 

The parameters s, d, g and g are specified in the contract. 

We choose the parameters r, /x, a, and 7 as in the base scenario of Section 1.4.2. 

In addition, the base scenario has the following parameters, which are similar to the 

base scenario studied in Moore (2009). 

• The proportion of the initial premium returned upon death d = 1; 

• The proportion of the initial premium returned upon surrender s = 1; 

• The guaranteed minimum return rate upon surrender and death g = g = 0.03; 

• The subjective discount rate p = 0.04; 

• The initial premium invested w0 = 1; 

• The initial stock price S(0) = 1; 

• The surrender charge f(rs) = 0. 
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Under the above assumptions, the contract payoff at the time of surrender is 

B(S(TS),TS) = max(1.03T%S(rs)) (2.22) 

and the death benefit is 

D(S(rd), rd) = max (1.03Td, S(rd)). (2.23) 

As explained at the end of Section 2.2.2, in order to study the surrender boundaries 

we need to first find the optimal value function after surrender V(S,T), and further 

solve (2.10) for the optimal value function before surrender U(S,T). Since by our as­

sumption V(S, T) = £(T)U(S), the first step is to calculate £(r) numerically by solving 

(1.23) or calculating the expectation in (1.29). 

Fig. 2.1 shows the optimal value function U (solid) with contract and the con­

straint function V o B (dashed) without contract for t = 5,10,15 and 20. The value 

of U must be no less than the value of V o B, which is the optimal discounted ter­

minal utility given the surrender benefit as initial wealth. The surrender boundaries 

Sl and Su are the points at which the inequality in U > V o B switches to equality 

.For example, when t — 5, the lower boundary Sl « 1.1388 and the upper bound­

ary Su & 1.6000. For S G (Sl,Su), the expected discounted utility from holding 

the equity-linked insurance exceeds the expected discounted utility from surrender­

ing the contract. The investor should not surrender the contract when the stock price 

is between Sl and Su. When out of the non-surrender region, the investor should 

surrender the contract. 
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Figure 2.1: The value function U and the constraint function VoB 

Fig. 2.2 shows the evolution of the surrender boundaries for t G (0,30). The upper 

surrender boundary increases from Su « 1.39 at time t = 0 to Sw « 4.18 at time 

t = 30. This means that the investor is less likely to surrender at high stock prices in 

the long run. The lower surrender boundary increases from Sl « 0.99 at time t = 0 

to Sl ~ 2.16 at t — 30. The investor is less likely to surrender at low stock prices in 

the short term. However, note that the lower surrender boundary starts from 0.99 

which is very close to the initial stock price 5(0) = 1, there's a great chance that the 
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Figure 2.2: The evolution of the free boundary for the base scenario 

surrender occurs very soon. 

In the examples that follow, we investigate the impact of changing product features. 

We vary the parameters and then compare them with the above base scenario. 

Example 2.3.1. Impact of changing the relative risk aversion, 7 = 2 vs. 7 = 1.2 vs. 

7 = 4 (Fig. 2.3). 

The change in the relative risk aversion 7 influences the surrender boundaries by 
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Figure 2.3: The impact of 7 on surrender boundaries 

the way of £(r). We consider the following three scenarios: 

• Scenario 0: Base scenario: 7 = 2; 

• Scenario 1:7 = 1.2; 

• Scenario 2: 7 = 4. 

In Fig. 2.3, we see that in a common financial market, everything else being equal, 

the investor with higher RRA is more likely to surrender at lower stock prices, espe­

cially on the long run. For an investor with 7 = 4, there is not even a lower threshold. 
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Since he is very reluctant to expose to risk, when the market goes down he can always 

enjoy the guaranteed minimum return provided by the equity-linked product. In this 

way the investor is protected from downward markets. 

For the investor with the lowest RRA, the no-surrender boundary is the narrow­

est at all times, although the region tends to widen over time. This result again 

reflects the fact that the investors with lower RRA are more willing to be exposed to 

risk. 

Example 2.3.2. Impact of changing the guaranteed minimum growth rates (Fig. 

24). 

In this example, we investigate the impact of changing the guaranteed minimum 

growth rate g and g. Fig. 2.4 contrasts the surrender boundaries for the following 

three scenarios: 

• Scenario 0: Base scenario: g = g = 3%; 

• Scenario 1: g = g = 0%; 

• Scenario 2: g = g — 4%. 

In Fig. 2.4, we can see that although the boundaries have different trends for three 

scenarios, the boundaries at t = 0 are the same. Both the upper and lower boundary 

decrease in this scenario, though there is a small increase in the upper threshold 

between the eighth and tenth year. When the minimum guaranteed growth rate is 

non-zero, both the upper and lower boundaries increase over time. The higher the 
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guaranteed rate, the faster the boundaries increase. High stock prices are required to 

give up the high minimum guaranteed rate. 

0 5 10 15 20 25 30 

time 

Figure 2.4: The impact of guaranteed minimum growth rate on surrender boundaries 

Example 2.3.3. Impact of changing the surrender charge (Fig. 2.5). 

In the base scenario, we did not consider any penalty upon surrender. However, 

there is always a surrender charge for real equity-linked products with surrender op­

tions. In this example we examine the impact of the surrender charge on the free 
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Figure 2.5: The impact of surrender charge on surrender boundaries 

boundaries under two scenarios: 

• Scenario 0: Base scenario: f(r3) = 0; 

0.005(10 -TS) 0<TS< 10; 

0 TS> 10. 

Scenario 1: f(r3) = < 

Scenario 2: / ( r s ) 
0.01(10 -Ta) 0<TS< 10; 

Ts > 10. 

In Scenario 1, the surrender charge starts at 1% and reduces linearly to 0 in ten 
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years. In Scenario 2 the initial surrender charge is 5% and also reduces to 0 in ten 

years. The incorporation of the surrender charge influences the surrender boundaries 

by the way of the surrender benefit. 

Fig. 2.5 shows the lower and upper surrender boundaries for these scenarios. We 

see that they have the same boundaries after the tenth year because the surrender 

charge only applies for the first ten years. During the first ten years when the penalty 

is applicable, the surrender boundaries are higher in order to compensate the surren­

der charge. The higher the penalty is the higher the boundaries are. Moreover, there 

is no upper surrender threshold in Scenarios 1 and 2, during the first eight years. 

The investor will not surrender the contract regardless how high the stock price goes, 

while the surrender charge is also high. Finite upper surrender boundaries appear 

between the eighth and ninth year in Scenario 1 and close to the end of the tenth 

year in Scenario 2. 
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Chapter 3 

Equity-Indexed Annuity 

3.1 Introduction 

An equity-indexed annuity (EIA) is an investment product that is linked to financial 

markets. Its return is based on the changes of an underlying equity index (e.g. S&P 

500). Moreover, an equity-indexed annuity provides a guaranteed rate such that the 

investor receives a minimum guaranteed payments, even if the financial market is not 

performing well. By offering a minimum guaranteed return, an equity-linked prod­

uct provides investors with downside protection as well as potential upside return. 

Because of the secured returns and their strong ties with financial markets, equity 

linked insurance products are becoming more and more popular with investors. 

The key features of EIA contracts usually includes an indexing method. The index­

ing method is how the return is measured. There are two commonly used indexing 
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classes: annual reset and point-to-point. In this thesis, we use the point-to-point 

method. With this method, the interest rate used is based on the difference between 

the equity index value at the end and the beginning of the term and it is credited at 

maturity. 

The rate of return used to credit interest is proportional to the equity index re­

turn [i. The ratio is called the participation rate, usually denoted by p. Although 

the participation rate can be any number between 0 and 100%, set by the issuing 

company, in most cases it is set to 100% making the crediting rate of return equal to 

the return of the linked equity index. 

In addition to the indexing method and the participation rate, EI A contracts can 

also specify features like a minimum guaranteed rate of return, a maximum rate of 

return, usually called a cap, and a spread which is a maintenance fee. 

Upon entering an EIA contract, the investor is offered with the option to surren­

der the contract anytime before maturity. If he chooses to surrender the contract, 

he will receive a surrender benefit linked to the value of the EIA contract, less a 

surrender charge. 

In Chapter 2 we considered the perpetual equity-linked product which the investor 

may surrender at any time or continue with the contract indefinitely. Although it 

provides qualitative behavior of the surrender boundaries, it is not a realistic prod-
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uct. In reality, most products have a fixed maturity date. In this section, we will 

consider an EIA product with fixed maturity date. The analysis can be adapted from 

the derivation in Chapter 2. 

3.2 Value Functions and Surrender Boundaries 

Throughout the investment horizon, the investor seeks to maximize the expectation 

of the present value of his utility at the time of death or at maturity. After surrender, 

the investor starts a new investment with the surrender benefits, in this case his opti­

mal value function is given as the function V defined in the Chapter 1. However prior 

to surrender, the investor must decide at every instant t < T^ whether to surrender 

the contract or keep his position. If he surrenders, say at time rs, he receives the sur­

render benefit and then continues with the optimal investment strategy nt to obtain 

the optimal value function V. Otherwise, if he dies before surrender he receives the 

death benefit. 

Consider an investor aged at x with an initial wealth WQ. We assume that his utility 

function follows the constant relative risk aversion model 

u(w) = £ 1 (3.1) 

where 7 is the coefficient of the constant relative risk aversion. 

Suppose that the investor pays wQ for the EIA contract which earns participation 
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rate p of the stock return rate. The net premium is 

w0 = (1 - f0)w0, (3.2) 

where f0 is the initial spread fee charged at the beginning of the contract. Most 

of the time, the initial fee is waived, i.e. /o=0. In addition to /o, the investor is 

also required to pay the maintenance fee fa each year. This spread is assumed to be 

collected continuously. Let At denote the value in the EIA account which is also the 

total wealth of the investor at time t. Then the value in the EIA follows a stochastic 

process {A(t) : t ^ 0} 

dA(t)_dS(t) 
A(t)-pS(t) hM

 ( 3 3 ) 

A(0) = w0. 

Equation (3.3)shows that the rate of return of the EIA contract is p times the rate of 

return of the stock less the annual maintenance fee, assuming that the annual main­

tenance fee is paid continuously. 

The stock price is assumed to follow a geometric Brownian motion as described in 

equation (1.1) where the constants \x and a are the expected return and volatility of 

the stock. Thus, reorganizing (3.3), we have the wealth process 

dA(t) = (p/i - fa)A(t)dt+paA{t)dB(t) 
(3.4) 

A(0) = w0. 

Note that the wealth in the EIA contract is also a geometric Brownian motion with 

drift pjj, — fa and volatility pa. 
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We consider a fixed maturity EI A instead of perpetual products. Suppose that the 

investor enters the contract at time 0 and the maturity date of the contract is T. 

Before maturity, the investor can choose to surrender the contract and receives the 

surrender benefit 

B(A(ra), TS) = max{s(l + g)T'wQ, (1 - f(rs))A(rs)} (3.5) 

at the time of surrender. The investor is forced to surrender at maturity. 

If death occurs before the expiration, the contract pays the death benefit 

D(A(rd), rd) = max{d(l + g)Tdw0, A(rd)}. (3.6) 

The parameters s, d, g, and g are the same as in Chapter 2. The function / is the 

surrender penalty charged at the time of surrender. 

With the maturity fixed at T, the investor seeks to maximize the expected present 

value of his utility at maturity. Then the optimal value function without EIA is 

V(w, r) = sup £[e-p«TdAT)- r )u(W r(rd A T)) | W(T) = w], r<T, (3.7) 
ir(t)eA 

which is the same with (1.6) except that the termination time is the maturity T or 

the time of death rd, whichever comes first. The time interval is subdivided into two 

intervals: [r,T + h] and (r + h,T]. Then V(w,T) satisfies 

V(w, T) > E[I{Td>T+h}e-ohV{W{r + h),r + h) 
(3.8) 

+I{Td<T+h}e-^-^u(W(rd)) | W(T) = w], 
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which is exactly the same inequality for V(W,T) on perpetual horizon. Therefore 

the function V(w,r) solves the Hamilton-Jacobi-Bellman equation (1.7) and has the 

optimal strategy (1.24). 

Substituting the optimal wealth process (1.28) into the definition of V(W,T), we 

have 

V(w, T) = E[e-P^TdAT^-^u(W*(Td A T)) | W(T) = w] 

e-p((rdAT)-r) 
= E{ 1 - 7 [Wexp{(r + ^ - - | ^ - ) ( ( r d A T ) - r ) 

+^B((r,AT)-r)}]H} 
(3.9) 

= U ( W ) ^ [ e - / ' ( ( ^ A T ) - r ) e [ ( r + ^ - | ^ ) ( ( r ( i A T ) - r ) + ^ B ( ( r d A T ) - r ) ] ( l - 7 ) ] 

= U(W)£(T). 

Then the function £ can be found by calculating the expectation 

£(r) = E [ e - ^ ^ A T ) - T ) e [ ( r + ^ " ^ i ^ ) ( ( r d A T ) " T ) + ^ ! : B ( ( T d A r ) " T ) 1 ( 1 _ 7 ) ] , (3.10) 

the same as (1.29).Moreover, as discussed in Chapter 1 we can also solve the function 

£ from the equation (1.23). 

Now that we know how the policyholder would invest and his optimal value func­

tion after surrender, we can study his value function before surrendering the contract 

and see the optimal surrender time. 
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The optimal value function with insurance risk is defined as 

U(W,T) = sup0<Ts<TdE[ I{Ts<TdAT}e-^-^V(B(A(rs),rs),Ts) 

+I{rs>rd,rd<T}e-^-MD(A(Td),Td)) (3.11) 

+I{T.>T,Td<T}e-«T-MB(A(T),T)) I A(T)=W]. 

Also consider two intervals [r, r + h] and (r + h, T] and let h be close to zero. Then 

we can find the inequality for U(w,r): 

U(w,T) > £;[/{Td>T+Me-^t7(A(r + h),r + h) 
(3.12) 

+I{Td<T+h}e-^-^u(D(A(rd),rd)) | A(r)=w] 

which is the same as with (2.4) except that U is a function of value in EIA product 

while U is a function of stock price. 

Following the same approach as in Section 2.2.2 and employing the wealth process 

(3.4), the function U(W,T) satisfies the inequalities: 

/ _ _ 1 
[Ax(r) + p]U >UT + (pfi - fa)wUw + -p2a2w2Uww + \x(r)u(D(w, r)) , 

U(W,T)>V(B(W,T),T), 

(3.13) 
{U-V(B,r)} 

X j [K(T) + p]U -UT- (p[l - fa)wUw - ^P2(T2W2UWW ~ XX(T)U(D) 1 = 0 

If U(W,T) > V(B(W,T),T), the expected utility from keeping the EIA contract ex­

ceeds the expected utility from surrendering. Thus the investor should not surrender. 

The surrender boundary is defined as the values of (W,T), where the inequality in 

U(W,T) > V(B(W,T),T) switches to equality. 
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The projected SOR algorithm presented in the Appendix will be used to solve the 

problem (3.13). First (3.13) needs to be rewritten in terms of matrices. This is done 

by discretization, using the finite-difference approximation. 

Let t = T — r and v = mtu, where T is a fixed large number. Using the same 

approximations as in Section 2.2.3, the conditions of the problem are discretized into 

-r™ + l^[At(Xx(T -.t) + p + l + ^(pn-fa- \p2a2) + p^a] 

-At\x(T - (m + l)At)u{D(enAv, T-(m+ I)At)) > 0; 

C > v;m for m > i; 

7D T/0 1m T/m im T/ 
ln — Vm LNi — VNX > lN2 ~ VI 

The vectors are defined as 

rm 
'N2-

yn 

'JVi+1 

\lN2-lJ 

(- \ 

yn 

Vi JVi+1 

\VE-v 

b m = 

v^2-v 

(3.14) 

where b™ is defined as 

b™ = C + A*AX(T - (m + l)At)u(D(en*\ T-(m + I)At)) (3.15) 

The coefficient of lm is a (N2 — Ni — 2)-square, tridiagonal matrix 

C 

dP d+1 

d-1 d° 

o J-1 

0 •• 

d+1 •• 

<P •• 

• 0 

• 0 

• 0 

• '•• o 

0 J"1 d° 

55 

(3.16) 

file:///VE-v


where 

<P = At(Xx(T -t)+p+l + ^(Pfi~fa- i p V ) + p2a2a, 

d+1 = - [ ^ ( P / x - fa + \p2°2) ~ \p2°2*l 

and 

d'1 = --p2a2a. 

Now that problem (3.13) has a general matrix form: 

CTm+1 - b m > 0, Tm+1 - V m + 1 > 0, (Tm+1 - V m + 1 ) (Cl m + 1 - bm) = 0, (3.17) 

we can use the Projected SOR method in the Appendix to solve the problem. The 

parameters are chosen to be the same as in Section 2.2.3. 

3.3 Numerical Illustration 

In this section, we investigate the impact of the participation rate on surrender bound­

aries and compare the surrender boundaries of fixed maturity EIA products with those 

of the corresponding perpetual products. We choose r, //, <r, 7, s, d, g, g and p, w0 to 

take the same values as in the base scenario of Section 2.3 and the other parameters 

of the base scenario are as follows. 

• The participation rate p — 0.9; 

• The time of maturity T = 10; 

• The initial spread is /0 = 0; 
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• The annual maintenance fee is fa = 0; 

{ 0.01 ( 1 0 - r , ) 0 < r s < 1 0 ; 

0 TS > 10. 

Under the above assumptions, the surrender benefit is given as 

B(A(rs),rs) = max(1.03Ts, (1 - f(rs))A(rs)) (3.18) 

and the death benefit is 

D(A(Td),Td) = max(1.03Td, A(rd)). (3.19) 

The value in the EIA contract follows the following dynamics 

dA(t) = 0.072W(t)dt + 0.3QA(t)dB(t) 
< (3.20) 

W(0) = 1. 

Example 3.3.1. Fixed maturity T—10 vs. perpetual EIA (Fig. 3.1). 

Fig. 3.1 shows the surrender boundaries for a 10-year product and the perpetual 

product. We see that the lower boundaries are close in early years. Near the maturity 

time T = 10, there is less uncertainty about the fund value and the mortality risk 

over the remaining horizon for the fixed maturity product. So the minimum guarantee 

and death benefit are less valuable for the fixed maturity EIA than for the perpetual 

product. Therefore the investor is more likely to surrender the fixed maturity product 

near the maturity date. 
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Figure 3.1: The surrender boundaries of a fixed maturity EIA with T = 10 and 

perpetual EIA 

Example 3.3.2. Impact of changing the participation rate (Fig. 3.2). 

In this example, we investigate the impact of changing the participation rate p. 

Fig 3.2 contrasts the boundaries for the following scenarios: 

• Scenario 0: Base scenario: p = 0.9; 

• Scenario 1: p = 1; 

• Scenario 2: p = 0.5. 
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Figure 3.2: The impact of changing the participation rate 

Fig. 3.2 shows the impact of different participation rates on the surrender bound­

ary of a 10-year fixed maturity EIA product. It shows that the no-surrender region 

is wider when the participation rate is higher. With higher participation rates, the 

index growth contributes more to the EIA product, so the investor is more inclined to 

hold the contract. The no-surrender region narrows over time as the surrender charge 

decreases such that the investor becomes more likely to surrender the contract. 

59 



Example 3.3.3. Impact of changing the annual fee (Fig. 3.3). 

< 
LU 
_c 
0 

CD > 

q 
co 

m 
CM' 

o 

in 

in 
o 

time 

Figure 3.3: The impact of changing the annual fee 

In this example, we examine the impact of changing the annual maintenance fee 

fa- We consider the following two scenarios: 

• Scenario 0: Base scenario: fa = 0; 

• Scenario 1: fa = 1.5%. 

Fig. 3.3 contrasts the surrender boundaries with different annual maintenance fees. 

We see that the no-surrender region is wider when the annual fee is smaller. Higher 
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annual fees imply higher costs of holding the EI A contract, thus the investor is more 

likely to surrender. 

Example 3.3.4. Impact of changing the initial spread (Fig. 3.4)-
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Figure 3.4: The impact of changing the initial spread 

In this example, we examine the impact of changing the initial spread /o. We 

consider the following three scenarios: 

• Scenario 0: Base scenario: /o = 0; 
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• Scenario 1: /0 = 5%. 

• Scenario 1: /0 = 10%. 

The charge of the initial spread changes the effective initial investment only. Denote 

the initial investment by wo. Then the effective initial investment is given by WQ = 

w0(l — /o). The corresponding effective initial investments in the three scenarios are 

• Scenario 0: w0 = 1; 

• Scenario 1: w0 = 0.95; 

• Scenario 2: w0 = 0.9. 

Fig. 3.4 contrasts the surrender boundaries with different initial spreads. Since 

the change in the effective initial investment does not affect the product itself, the 

surrender boundaries change with the effective initial investment. When the initial 

spread increases, the effective initial investment shrinks thus the surrender boundaries 

shrink respectively. In Fig. 3.4 we see that both the upper and lower thresholds shrink 

and the shrinkage reflects the rate of the initial spread. 
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Conclusion 

From the figures presented in the thesis, we can see that for an investment in both 

risky and risk-free assets, the optimal investment strategy is to keep a fixed percentage 

of the total wealth in the risky asset. This maximizes his expected discounted utility 

at the time of death, which is called the value function. The ratio of the amount 

invested in the risky asset to the total wealth is a constant which depends on the 

financial market performance. The ratio is related to the return of the risk-free asset, 

the expected return and the volatility of the stock index, as well as the investor's 

coefficient of relative risk aversion. 

When the expected return of the stock index rises or the volatility drops, the risky 

asset is more attractive to the investors. Thus the share invested in the risky asset 

increases and the total wealth has greater volatility. Similarly, when the return of 

the risk-free asset increases, the risky asset becomes less attractive to the investors 

so the share invested in the risky asset decreases as does the volatility of the total 

wealth. On the other hand, even if in the same market, different investors may have 

different optimal investment strategies. The optimal share invested in the risky asset 
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of an investor with a higher coefficient of relative risk aversion is smaller than that 

of an investor with a lower coefficient of relative risk aversion. This is because higher 

coefficients of RRA imply more reluctance to risk exposure. 

The idea of maximizing the value function can also be applied to determine the 

optimal surrender strategies for policyholders of equity-indexed insurance products. 

Given the optimal strategy the policyholder would take, he can find the optimal sur­

render boundary such that his expected discounted utility at his time of death is 

maximized. Between the upper and lower boundaries is the non-surrender region. 

When the stock price falls in the non-surrender region, the policyholder should not 

surrender the contract and stays invested in the contract. Otherwise, the investor 

should surrender the contract when the value of contract hits the boundaries. The 

non-surrender region changes over time depending on the product features and the 

policyholder's behavior pattern. The coefficient of RRA affects the surrender bound­

aries more on the long run. The increase in the surrender charge raises the surrender 

boundaries since the cost of surrendering increases. 

Extending the above analysis to a more realistic product, the equity-indexed annuity 

(EIA), we obtain similar results. Instead of expiring at the time of death, the EIAs 

usually have fixed maturities. Thus the expiration time of EIAs is either the poli­

cyholder's time of death or the maturity set in the EIA contract, whichever comes 

first. The fixed maturity shrinks the non-surrender region such that the policyholder 

is more willing to surrender both at upper and lower thresholds. The participation 
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rate represents how much of the stock index is to be credited to the investor. Higher 

participation rates imply higher rates of return when the market performs well, thus 

is more attractive to investors. In this case policyholders are less willing to surrender 

the contract and the non-surrender region for higher participation rates are wider 

than others. In addition to the value of the contract, the policyholders also need to 

pay annual fees and an initial spread. The charge of these fees reduces the attractive­

ness of the EIAs. Therefore the higher the fees are, the narrower the non-surrender 

region is. However, the initial and annual fees affect the boundaries in different ways. 

The initial fee shrinks the boundaries linearly since the initial fee only changes the 

effective initial investment. The shrinkage reflects the rate of the initial spread. The 

influence of the annul fees is greater at the beginning of the contract and decreases 

over the investment horizon. 

For insurance companies, knowing when the policyholders would surrender the con­

tract may help evaluate the present value of the EIAs and therefore effectively price 

and reserve for EIAs. However, since people have different coefficients of RRA and 

subjective discount factors, companies may need to identify customers' behavior pat­

terns. 
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Appendix A 

The acronym SOR is short for Successive Over Relaxation which is a method used 

to solve certain classes of matrix equations. The projected SOR is a modified SOR 

method to solve constrained matrix problems. 

Consider a general problem: 

Ax > b, x > c, (x - c) • (Ax - b) = 0, (.21) 

where A is a given matrix and b and c are given vectors. Assuming only that the 

matrix A is invertible and that it is positive definite (i.e. x • (Ax) for any x ^ O ) , 

then there is one and only one solution vector x for this problem. 

The algorithm for finding the solution is iterative. Start with an initial guess x° > c 

(the algorithm may not converge if x° < c). During each iteration we form a new 

vector 

xfc+1 = (sJ+\ xk
2

+\ ..., xk
n

+l), (.22) 
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from the current vector 

X = ( X j , X2, • ••, Xn), (.-^<jj 

by the following two-step process. For each % = 1, 2, ..., n we sequentially form the 

intermediate quantity yf+1, given by 

Vl+l = 4-(jH- Ej-'iA**}*1 - ^SU-iA**?) (-24) 

and then define the new x*+1 to be 

^ + 1 = max(Q, x\ + u(y?+1 - *?)). (.25) 

Note that it is important to perform these two steps in sequence; we need the new 

value of x^l in order to find x^+1. The only difference between this method and 

the classical SOR method is the test to make sure that x*+1 > Ci. The constant 

ui is called a relaxation parameter, and provided that x° < c and 0 < u < 2, the 

method converges. (It can be shown that the convergence be optimized by choosing 

a particular value of a; e (1,2) which depends on the matrix A.) 

At each iteration this defines a new vector xfe+1 > c; as A; —> oo xfe —> x, the so­

lution of the problem. In practice, naturally enough, we do not iterate forever. We 

stop once we have satisfied a condition of the form 

| x f c + i _ x f c | < e (_26) 

where e > 0 is some pre-chosen small tolerance. We then take xfc+1 as the solution. 
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