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ABSTRACT

Optimization Design of Mth-Band FIR filters with Application to Image

Processing

Guanqun Chen

Cone programming (CP) is a class of convex optimization technique, in which a linear

objective function is minimized over the intersection of a set of affine constraints. Such

constraints could be linear or convex, equalities or inequalities. Owing to its powerful op-

timization capability as well as flexibility in accommodating various constraints, the cone

programming finds wide applications in digital filter design. In this thesis, fundamentals

of linear-phase Mth-band FIR filters are first introduced, which include the time-domain

interpolation condition and the desired frequency specifications. The restriction of the in-

terpolation matrix M for linear-phase two-dimensional (2-D) Mth-band filters is also dis-

cussed by considering both the interpolation condition and the symmetry of the impulse

response of the 2-D filter. Based on the analysis of the Mth-band properties, a semidef-

inite programming (SDP) optimization approach is developed to design linear-phase 1-D

and 2-D Mth-band filters. The 2-D SDP optimization design problem is modeled based on

both the mini-max and the least- square error criteria. In contrast to the 1-D based design,
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the 2-D direct SDP design can offer an optimal equiripple result. A second-order cone pro-

gramming (SOCP) optimization approach is then presented as an alternative for the design

of Mth-band filters. The performances as well as the design complexity of these two de-

sign approaches are justified through numerical design examples. Simulation results show

that the performance of the SOCP approach is better than that of the SDP approach for 1-

D Mth-band filter design due to its reduced computational complexity for the worst-case,

whereas the SDP approach is more appropriate for the 2-D Mth-band filter design than the

SOCP approach because of its efficient and simple optimization structure. Moreover, the

designed Mth-band filters are proved useful in image interpolation according to both the

visual quality and the peak signal-to-noise ratio (PSNR) for the images with different levels

of details.
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Chapter 1

Introduction

1.1 Background

An ever-increasing trend of research activities in the area of multirate signal process-

ing calls for the development of highly efficient interpolators and decimators. A multirate

system including a decimator and an interpolator, which is characterized by sampling rate

conversion, can be employed in a wide range of engineering fields, such as linear interpo-

lation, perfect reconstruction filter banks, and speech and image processing. Among such

a system, Mth-band filter is the core factor which is utilized before a compressor to avoid

the aliasing in the decimation as well as after an expander to reconstruct the sequence in

the interpolation. The block diagram of this multirate system is illustrated in Figure 1.1,

where Md and Mu represent the factor of the sampling rate compressor and expander, re-

spectively. Hi(z) and H2(z) are both low-pass Mth-band filters with cutoff frequencies

specified by n/Md and p/?„. If the Mth-band filter has an ideal frequency response, a
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perfect interpolation and decimation performance would be achieved.

Decimator Interpolator

Figure 1.1: The multirate system of decimation and interpolation

An ideal low-pass Mth-band FIR filter has a time-domain property, i.e., its impulse

response h[n] gives a zero-crossing every M samples, namely, h[nM] = jjS[n]. This

property is referred to as the interpolation condition since the output signal of an Mth-

band filter is constructed by inserting M-I samples between every two consecutive input

samples while leaving the original input samples unchanged. Thus, it can be employed to

reconstruct the sequence in the interpolator as shown in Figure 1.1. On the other hand,

in the frequency-domain, it is derived from the interpolation condition that the cutoff fre-

quency of an Mth-band filter is exactly at p/M. Due to this cutoff frequency property,

if a signal is downsampled by a factor of M, it is necessary to be prefiltered by an Mth-

band filter to limit its bandwidth within the interval of [—p/M p/?], then the aliasing can

be prevented. Although the interpolation condition is a natural characteristic of an ideal

Mth-band filter, it is not easy to be realized by a practical filter, since the existing design

methods do not support or accommodate this feature. In the last three decades, numerous

papers were published on filter design to obtain an approximation to the ideal frequency re-

sponse. However, most of those findings were hardly useful in satisfying the time-domain

constraints of the designed filter, such as the interpolation condition of Mth-band filters.



In late 90s, the cone programming, a relatively new subfield of optimization technique,

has been introduced in filter design and quite a few related software packages have been

available for research purposes. Since then, some special constraints could be implemented

in the design. With the fast development in this area over the past decade, the semidefi-

nite programming (SDP) and the second order cone programming (SOCP) have become a

widely-recognized important technique for digital filter design.

1.2 State of the Art Techniques

The FIR filter design can be classified as noniterative or iterative methods [I]. The

former usually means the window method which obtains the approximation of an ideal

filter by truncating the ideal impulse response with a window function. It is the simplest

way of FIR filter design and entails a relatively small amount of computation. However, the

window method fails to accommodate the interpolation condition of Mth-band filter since

the window function is governed by certain specifications. For example, the Kaiser window

has a pair of parameters: the length N and the shape parameter ß, which can only provide

the designed filter with the trade-off between the transition band width, error ripples and

filter length. Moreover, the window method leads to the suboptimal design category where

the order of the designed filter that has to satisfy the prescribed specifications may not be

the lowest. On the other hand, iterative methods can obtain the optimal approximation to

a desired filter based on an optimization criterion. Moreover, this class of design method

is particularly important when extra conditions, such as the time-domain condition of the
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Mth-band filter, has to be met by the designed filter. As such, we will review some typical

optimal design methods for Mth-band filters.

As early as 1970s, the idea of optimal filter design was proposed and developed to a

large extent for general FIR filters. In such a design, an error function, also known as ob-

jective function, is formulated for the desired frequency response under certain criterion

and is then minimized by using an optimization algorithm to get the best approximation to

the desired filter. Two commonly employed criteria are the mini-max and the least-square

error. In those years, the most frequently used optimization algorithm was Remez exchange

algorithm, which led to a great deal of mini-max design methods, including the classical

weighted-Chebyshev method [2] and the powerful Parks and Mclellan program [3]. Al-

though this type of methods can offer optimal equiripple solutions for a large family of

linear-phase FIR filters, none of them can directly deal with the time-domain constraints.

This motivated researchers to seek out the indirect way for the design of Mth-band fil-

ters, where the time-domain interpolation condition is realized by the extra operation after

obtaining the optimal approximation to the desired filter.

Perhaps, the first attempt for Mth-band filters can be traced back to 1982, when the

time-domain interpolation condition and the related frequency property of the Mth-band

filter was presented systematically by Mintzer [4]. In Mintzer's design, an optimal ap-

proximation H(ej") to the desired Mth-band filter is obtained via the Parks and Mclellan

program. However, H{e^) is actual not the Mth-band filter, since the time-domain inter-

polation condition cannot be satisfied. In particular, the coefficients represented by h[nM]

which are supposed to be zero are very small values. Thus, in order to strictly satisfy the
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interpolation condition, Mintzer reset the coefficients h[nM] to zero except h[Ö\ = I/M

while leaving other samples of h[n] unchanged. Thus, the Mth-band filter designed by

Mintzer's method is not truly optimal and is in a loss of the equiripple feature. However, as

the earliest method for the design of Mth-band filters, Mintzer's work triggered subsequent

research in this area.

A more reliable indirect way to satisfy the interpolation condition is on the basis of the

precise transformation, as proposed by Vaidyanathan and Nguyen [5] in 1987. The idea of

Vaidyanathan's design is to define a lower order prototype filter, from which the Mth-band

filter can be constructed. They have deduced a specific relationship between the frequency

response of the Mth-band filter and that of the prototype filter. The "trick" of this method is

that the impulse response of an Mth-band filter determined by the prototype filter exactly

satisfies the interpolation condition. Vaidyanathan gave detailed computation steps from

the impulse response of the prototype filter to that of the Mth-band filter, and therefore, the

problem is simplified to the design of a lower order prototype filter, which can be achieved

easily by the general optimal method such as Parks and Mclellan program. The advantages

of the Vaidyanathan's work over the Mintzer's method is that it is considerably faster and

provides the equiripple results. However, the designed Mth-band filter also fails to be truly

optimal since there exists a distortion in the computation process.

The other significant contribution of Vaidyanathan and Nguyen has been to introduce

the eigenfilter approach [6] [7], which is able to cope with the time-domain constraints as

well as the frequency-domain specifications. It is an optimal least-square design approach,
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in which the objective function formulated as the sum of the quadratic passband and stop-

band errors is given in the form of hTPh, where h is a vector related to the unknown

coefficients of the designed filter, and P is a real, symmetric and positive-definite matrix.

By minimizing the objective function, the optimal impulse response coefficients can be ob-

tained as the eigenvector corresponding to the smallest eigenvalue of the matrix. The key

factor of this approach is the vector h which is defined according to different time-domain

constraints. For example, in the Mth-band filter design presented by Wisutmethangoon in

1999 [8], the vector is composed by unknown impulse response excluding the elements

that are structurally zero, then the obtained optimal non-zero coefficients and the zeros are

interleaved to construct the designed filter. Although the resulting filter satisfies the inter-

polation condition exactly, this method is not optimal considering the frequency-domain

specifications and the interpolation condition as a whole, since the interpolation condition

was not directly involved in the optimization process. As such, the objective of this research

is to develop a direct design method in which all the impulse response coefficients of the

designed filter are accommodated in the optimization problem such that the resulting filter

can satisfy both the desired frequency response and the interpolation condition without any

additional processing.

1.3 Research Motivation and Objectives

In the previous two sections, some existing optimal methods for the design of FIR dig-

ital filters have been reviewed. It was shown that neither the Parks and Mclellan program
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nor the eigenfilter approach can offer a direct design of Mth-band filters, since the time-

domain interpolation condition cannot be satisfied exactly. In these methods, actually, an

Mth-band filter can only be obtained indirectly, where the filter coefficients related to the

interpolation condition are reset to zero in the post-processing when the filter is designed.

Hence, it is imperative to develop efficient optimal approaches that can design Mth-band

filters directly. Fortunately, with the development of advanced optimization algorithms,

some optimal design methods have been proposed to make the designed filter satisfy var-

ious requirements. Among them, the semidefinite programming [9] [10] [11] is primarily

concerned with the design of FIR digital filters owing to the following features. (1) It is a

generic tool for the design of a wide variety of digital filters, regardless of 1-D or 2-D, FIR

or HR, mini-max or least-square design. (2) It can accommodate extra constraints, such as

the interpolation condition and flatness in the form of a linear inequality or equality. (3) It

is sufficiently accurate since highly efficient and user-friendly software is available for the

design. In addition, second order cone programming [12] [13] as a special case of the SDP

has also attracted lots of researchers. Although it is less general than SDP, it also has all of

the above advantages. Thus, it seems that both SDP and SOCP are suitable for the design
of Mth-band filters.

Having the above observation in mind, the present thesis will focus on a direct opti-

mal design of Mth-band filters. The SDP approach is presented first with an emphasis on

its flexility of accommodating the time-domain interpolation condition. Next, the SOCP

approach will be studied and compared with the SDP approach towards the design com-

plexity. Moveover, both methods are extended for the design of two-dimensional (2-D)
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Mth-band FIR filters. Finally, the ???-band filters designed by the proposed approaches

will be applied to image interpolation.

1.4 Organization of the Thesis

The thesis is organized as follows:

Chapter 1: The proceeding chapter provides an overview on the existing optimization

methods for the design of FIR digital filters. It is shown that neither the Parks and Mclellan

program nor the eigenfilter approach can offer a direct design of Mth-band FIR filters,

which supports the motivation of the proposed work.

Chapter 2: Fundamentals of three classes of Mth-band filters are introduced, includ-

ing 1-D, 2-D rectangular and 2-D diamond-shaped Mth-band filters. Both the time- and

frequency-domain constraints for each case are given in detail. Moveover, the restriction

of the interpolation matrix M for the 2-D linear-phase diamond-shaped Mth-band filters is

discussed by considering the constraint and symmetry of 2-D impulse responses.

Chapter 3: An efficient optimazation approach, known as the semidefinite program-

ming (SDP) approach, is investigated for the design of linear-phase Mth-band FIR filters

with an emphasis on the 2-D direct SDP design. Both mini-max and lease-square error

criteria are employed in the SDP optimization design problem. The performance of the

SDP approach is evaluated in terms of the maximum error as well as the execution time

by several design examples. The designed Mth-band filters are finally applied to image

interpolation to confirm their interpolation property.
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Chapter 4: A second-order cone programming (SOCP) approach is studied as an alter-

native for the design of linear-phase Mth-band FIR filters based on both the mini-max and

the least-square error criteria. The SOCP approach is compared with the SDP approach

towards the design performances as well as the computational complexity through numer-

ical examples. The Mth-band filters designed via the SOCP approach are also applied as

interpolation filters for image resizing.

Chapter 5: The final chapter summaries all the research work of this thesis and points

out the possible research directions for future work.

1.5 Contributions

The main contributions of the the thesis are summarized as follows:

1 . The possible choices of the interpolation matrix M for 2-D linear-phase diamond-

shaped Mth-band filter are addressed by incorporating the interpolation condition and the

quadrantal symmetry of the 2-D impulse response.

2. Two optimization approaches are investigated for the design of linear-phase 1 -D and

2-D nonseparable Mth-band filters. The way of accommodating the interpolation condition

in the optimization design problem is proposed in detail. It is shown that both of the two

approaches are useful in offering equiripple optimal or nearly optimal linear-phase Mth-

band filters. More specifically, the performance of the SOCP approach is better than that

of the SDP approach for 1-D Mth-band filter design due to its reduced computational
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complexity for the worst-case, whereas the SDP approach is more appropriate for 2-D Mth-

band filter design than the SOCP approach because of its efficient and simple optimization

structure.

3. The Mth-band filter designed via the SDP and SOCP approaches are applied to

image resizing. The high interpolation quality of the resized images indicates that both of

the two approaches can make the designed filters, regardless of 1-D or 2-D, exactly satisfy

the time-domain interpolation condition.

10



Chapter 2

Fundamentals of Mth-band FIR Filters

2.1 Introduction

In the area of digital signal processing, FIR filter plays a key role in view of its inher-

ent stability, linear-phase and no feedback property. It has found extensive applications

in various engineering fields such as telecommunications, electronics, speech and image

processing. Among these applications, some FIR filters are required to achieve much more

complex and selective designs, for example, filters applied in the decimator and interpolator

are Mth-band FIR filters which should satisfy the time-domain constraint h(nM) = j¿5(n)
besides its frequency property. The time-domain property makes Mth-band filters partic-

ularly useful in image interpolation and perfect reconstruction. However, the interpolation

condition is in general difficult to be realized directly by most of the existing optimal design

methods, including the famous Parks and Mclellan program and eigenfilter approach, since

it cannot be involved in the optimization process. Thus, the properties of Mth-band filters
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are proposed in this chapter to prepare for the development of two optimization algorithms

for Mth-band filters in the following chapters.

In this chapter, we will first review the properties of 1-D Mth-band filters, where its

frequency-domain constraint is derived explicitly from the property h(nM) = -^ d (ri).
Subsequently, the 2-D rectangular Mth-band filter is proposed as an direct extension of the

1-D case. Since the rectangular pattern is a specific interpolated version, we then develop

a more general case, the 2-D diamond-shaped Mth-band filter, which is appropriate for a

wide range of interpolation matrix M. However, we will show that the frequency-domain

constraint of this case is much more complicated than the rectangular one.

2.2 Linear-Phase Mth-Band FIR Filters

2.2.1 Linear-Phase Property

In general, linear-phase is the desirable property of a FIR filter, where the group delay

of the filter is constant. This property implies that all frequencies have equal delay times,

resulting in no phase distortion. The lack of phase distortion is a major advantage in many

engineering applications. Thus, only the linear-phase Mth-band FIR filter is considered in

this thesis. Before the in depth study of Mth-band filters, it is necessary to briefly review

the linear-phase property at first. It is well known that the linear-phase property can be

realized by ensuring that the impulse response is symmetrical about the center point [I].

Denote h(n) to be the impulse response of an JV-tap FIR filter, then its corresponding
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frequency response is given by

H{en = S h(n)e-J"n = hT[c(W) - js(u)} (2.1)
n=0

where h = [Zi(O) /?(1) · · · h(N - 1)]T, f) = [1 cos ? · · · cos (N - 1)?}t, and s(w) =

[0 sin ? · · · sin (N - 1)?]?'. If this FIR filter has the linear-phase property and N is an odd

number, h(n) should be symmetrical about the sample L-(N- l)/2, namely, h(n) =

h(N — 1 — n). Therefore, H(ejíü) can be simplified as

L

H(e^) = e~jujL S K(k) cos uk (2.2a)
Jc=O

where

ha(0) = h(L), ha(k) = 2h(L - k), (2.2b)

Obviously, the group delay is a constant equaled to L, and the amplitude response can be

expressed individually as

L

?(?) = S ha(k) cos uk = hj ce(w) (2.3)
fc=0

where ha = [h(L) 2h(L - 1) · · · 2h(Q)f, and c0(w) = [1 cos ? ¦¦¦ cos (^)?]t.
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2.2.2 Mth-Band FIR Filters

The discussion in the previous chapter has shown that a zero-phase Mth-band filter

h(n) should satisfy the time-domain constraint, namely, h(n) gives a zero-crossing every

M samples, i.e.,

(2.4)h(nM) = -i(„).

Owing to this property, Mth-band filter is employed in signal interpolation, where the

output signal is generated by inserting M-I new samples between every two consecutive

input samples but the original set of input samples is preserved in the interpolated signal.

Hence, the property in (2.4) is also denoted as the interpolation condition.

Corresponding to the interpolation condition (2.4), there should be some restrictions on

the frequency-domain which can be directly derived from (2.4). We start our derivation

with the definition of Fourier transform [4] [14],

M-I M-I

S H{e^-2*k'Mï) = Y^J2h{n)e-^-27Îk^n.
fc=0 fc=ü ?

(2.5)

By exchanging the order of summations, (2.5) can be rewritten as

M-I

k=0

j(u-2nk/M) ) = J>(n)e-
M-I

Y^ eJ2irkn/M
fc=0

(2.6)

It can be verified that the term inside the square brackets is always zero except that ? is

an integer multiple of M. Meanwhile, according to the interpolation condition h(nM) =

jj d (n), when ? is the integer multiple of M, h(n) equals to zero except for h(0). Thus,
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? = O is the only term that makes the above equation hold. By substituting ? = 0 in (2.6),

it follows that
M-I

~~" " " =M x /i(0) = 1, (2.7)
M-I

Y^ //(eJ'("-27rfc/M)-j
fc=0

which is the frequency-domain constraint of Mth-band filter. However, (2.7) can not be

easily formulized by the designed methods, therefore, it is further processed via the specific

examples to obtain an equivalent but more convenient condition. Consider the simplest

case, half-band filter of which M equals 2, then (2.7) becomes

77(ß??) + #(ß?<?-'G)) = 1. (2.8)

This shows that the summation of H(ejuJ) and its shifted copy from the origin to the point

, f/(e"") , //(¿("-?)

^L·
?(€??)+?(ß'(?-"))

3p
"T

3p

T

Figure 2.1: Frequency responses of the half-band filter H(ejuJ) and its shifted version
H(ej^~^), as well as their summation.
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p is unity for all ?. In other words, if H(ejw) refers to a low-pass filter, (2.8) implies that

the frequency response has an antisymmetry with respect to p/2 shown in Fig. 2.1, i.e.,

the center frequency of transition band is the half-band frequency p/2 [14] [15]. Certainly,

there should exist similar condition for an arbitrary Mth-band filter when M > 2. Let us

consider an extension of our analysis to the fourth-band filter, where M = 4, then (2.7)

becomes

?(?>?) + ?{e^?-*/2?) + ?{ß^?~t)) + H(ej{uj-37r/2)) = 1. (2.9)

It is intuitive in Fig. 2.2 that the frequency response of the fourth-band filter is antisym-

metric around the point p/4, that is, the center frequency of the transition band is the

fourth-band frequency p/4. By parity of reasoning, we can summarize that the frequency-

?(e'?) H(eii"'"'2>) H(eJ("-"') H{e'^-'lnl1'>)

3ir 3p
T

y«(e'(""'!))
-¿L.

7p 7p
T

Figure 2.2: Frequency responses of the fourth-band filter H(ej") and its shifted versions
^gj(u-7Tfc/2)^ as wejj as Jj16J1. summation.

domain constraint of a zero-phase Mth-band low-pass filter can be satisfied by making its
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transition-band center frequency exactly at the Mth-band frequency p/?. Suppose that uic

represents the center frequency of the transition band, and ?? and ?8 represent the cutoff

frequencies of the passband and the stopband, respectively. From the preceding discussion,

?0, ?? and ujs have the following relationship

?? + ?s p?? = —^ = ttî (2.10)2 M' v '

which is often denoted as the cutoff frequency constraint. In a specific design problem,

ujc is obtained by predefining the ?? and us to be equally away from p/?. Although the

cutoff frequency constraint (2.10) obeys to the zero-phase property, its derivation proce-

dure is easy to understand and also appropriate for the linear-phase case. It will be shown

that the same cutoff frequency constraint can be obtained even though the time-domain

interpolation condition is imposed together with the linear-phase property.

Recall that the impulse response hun(n) of a linear-phase Mth-band filter is the actual

L-shifted version of h(n) in (2.4). Thus, it is easy to obtain the linear-phase frequency

response //¿,„(eJW) from H(ejuJ) in (2.7) according to the Fourier shifting theorem, that

is, Hiin{ePu) = e~iuLH{e:iuJ). Then, the frequency-domain constraint of a linear-phase

Mth-band filter can be given by

M-I M-I

Y^ j{<*-**k/M)LHiinijj{U-2*k/M)} = ? #(ei(«-2^/M)) = ^ (2 j 1}
fc=0 fc=0
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It is equivalent to
M-I

V^ e-i{2TTk/M)LHteJ{uj-{2i,k/M))\ = g-jwL _ (2.12)
fc=0

In order to know if (2.12) can lead to the same cutoff frequency constraint as the zero-phase

case, it is better to observe the amplitude response constraint which is obtained by taking

the absolute value of (2.12), i.e.,

M-I

S 4„(? - (2nk/M)) = 1. (2.13)
fc=0

Comparing (2.13) with (2.7), we can conclude that the center frequency of the transition

band of a linear-phase Mth-band low-pass filter is exactly at p/?, i.e., uic = (??+?8)/2 =

p/M. For this case, the time-domain interpolation condition is in general given by

h(Mn + L) = -S(n). (2.14)

Moreover, the above derivation about the cutoff frequency constraint is extended to the

high-pass and band-pass Mth-band filter [16]. With a similar processing from (2.5) to (2.7)

?(ß>? )

-p -?, -?~?? ?? o)c ü)s p

Figure 2.3: Frequency response of the high-pass Mth-band filter

and from (2.1 1) to (2.13), we find that both high-pass and band-pass Mth-band filters have
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the same frequency-domain constraint (2.13) as the low-pass case. However, they employ

different cutoff frequency constraint to realize (2.13). For a high-pass Mth-band filter in

Fig. 2.3, it is easy to verify from (2.13) that the transition-band center frequency is exactly

at (M - 1)p/?, i.e.,
?? + ?3 (M-I)

UJr
M (2.15)

The band-pass case is more complicated since it has two transition bands. The center

frequency of the first transition band, uCl , depicted in Fig. 2.4, is obtained by using the same

cutoff frequency principle as the low-pass case. Then, the center frequency of the second

transition band, uC2, can be determined by the bandwidth principle that the bandwith of a

band-pass Mth-band filter should be equal to p/?. The desired linear-phase band-pass

filter is illustrated in Fig. 2.4, where ???, ??2, uSl and uS2 are cutoff frequencies, and ?,Cl

and wC2 are center frequencies of the two transition-bands, respectively. If the summation

Figure 2.4: Frequency response of the band-pass Mth-band filter

of ?{&?) and its M-I shifting versions is equal to 1, then we have the cutoff frequency
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constraint of band-pass Mth-band filters, i.e.,

WpI + WS1 7G^d = -^- = ^, (2.16a)
.c2 = ^^=u,cl + ^ (2.16b)

Same as the low-pass filter, the equations (2.15) and (2.16) can be held by predefining the

values of ?? and us in the specific deign problem.

2.3 2-D Linear-Phase Rectangular Mth-Band FIR Filters

2.3.1 Quadrantal Symmetry Property

Before giving the specific interpolation condition of linear-phase 2-D rectangular Mth-

band filters, we first derive the transfer function of the filter we would like to design. It is

well known that the impulse sequence of 2-D filters can have various types of symmetry

to reduce the design and implementation complexity [17] [18]. In this thesis, we will

consider to design the case of which the impulse sequence /?.(n) has quadrantal symmetry.

If the center of symmetry is at original, i.e., the designed filter is zero-phase, then we have

/i(n) = Zi(T1 n) = Zi(T2 n) = Zi(Ti T2 n) (2.17a)
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where

Ti =
1 O

O -1

-1 O

O 1

Note that TiT2 = —I. An example of such a h(n) is illustrated in Fig. 2.5. It is clear

9 8 7 8 9·

6 5 4 5 6·

3 2 12 3·

6 5 4 5 6·

9 8 7 8 9·

Figure 2.5: Quadrantally symmetric /i(n)

from Fig. 2.5 that the quadrantal symmetry is a combination of the ni-axis reflection, the

n2-axis reflection and the centro symmetries [19] [20], therefore, ft(n) can be expressed

by the quatre quadrant of itself. This compact expression is particularly useful in the 2-D

filter design. Recall that in general the frequency response of a 2-D FIR filter with impulse

sequence supported on region ?(2?G?+1)?(2?G2+?) js given by

2Ni 2N2

H[JUJ1Ju2) = S S ???> «2) exp(-ju;ini - ju)2n2) = gfHg2 (2.18)
ni=0 n2=0

where g! = [1 e~jui ß^'2?? ··· ß-^2?G?>??]G, g2 = [1 e~^2 e^'2"2 ¦·¦ e-^2N2^2]T, and

H G r(2íVi+i)x(2¿v2+i) js Jj16 matrix expression of /?(p?, n2). In order to derive the compact
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expression of /?(p?, ?2), H is partitioned as

H

"lu **u "ru

h; /icn hr (2.19)

If the designed impulse sequence H is assumed to possess the quadrantal symmetry, re-

ferred as shown in Fig. 2.5, it is easy to find that the vectors hu and hd e RNl xl are

reflection symmetrical about the /I1 -axis, the vectors h; and hr e Rlx"2 are reflection sym-

metrical about the n2-axis, and the matrices Hn,, Híd, H¡„, and Hrd e RNlXN2 possess

the ni-axis reflection , the n2-axis reflection, and the centro symmetry, respectively. As a

consequence, the compact expression of h(n\, n2) is obtained as

H,

2hd 4Hrd
(2.20)

Then, the frequency response of a linear-phase 2-D quadrantally symmetric FIR filter, i,e,.

the center of the quadrantal symmetry at the point (N1, N2) [21], can be expressed as

H(M1Jw2) = e -?(????+?2?2) C1(W1)7H0C2(W2) (2.21)

where c¿(w¿) = [1 cosw¿ ··· cos iV¿w¿]T, for i = 1, 2. Furthermore, we would like

to present C1(W1)7HcC2(W2) as the form of h^c^Wi, w2), which will efficiently reduce the
complexity of the design as well as the implementation of 2-D filters. If hia e R(^+1IW+1)"1
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is a column vector generated by stacking the columns of Hc [21], then Ctn(Wi, ?2) should

be the same dimensional-column vector as hia, which is given by stacking cp given below

from ? = 0 to ? = N2, i.e.,

cta(wi, U2) = [c0(wi, ?2) Ci(CJi, UJ2) ¦¦¦ Cn2(U1, U2)] (2.22a)

where

Cp(cJi, U2) = cos ? U2 ¦ [l coseni cos2cji · · · cosA^cji] (2.22b)

for O < ? < N2

As a consequence, the frequency response is finally simplified to

H(M,jcj2) = e-W^+^i&Ctaiu,!, CJ2) (2.23)

This compact expression is particular useful and widely applied in the design problems.

Based on the above analysis, we will give the interpolation condition and its related frequency-

domain constraint for linear-phase rectangular Mth-band filters.

2.3.2 Properties of 2-D Linear-Phase Rectangular Mth-Band Filters

In analogy with the 1-D Mth-band, we start our analysis with the zero-phase filters. It

is easily to verify from the above analysis that the impulse responses h(ni, n2) of a 2-D

zero-phase rectangular Mth-band filter with quadratical symmetry can be obtained as the
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vector product of two 1-D impulse responses, i.e.,

h(ni, n2) =hr(ni)hf(n2) (2.24)

where hr(ni) and R represent the impulse responses of two 1-D zero-phase Mth-band

filters with the different interpolated coefficients M1 and M2, respectively. Thus, the inter-

polation condition of h(ni, n2) is given by

H(M1Ti1, n2) = 0 for(m, n2) + (0, 0)

Kn1, M2U2) = 0 for(m, n2) ^ (0, 0)

?(??, Ti2) = 1/(M1 ? M2) for (ni, n2) = (0, 0)

(2.25)

Fig. 2.6 demonstrates the case for M1 = 3 and M2 = 2, where black dots represent the

zero-crossings. According to this interpolation condition, the frequency-domain constraint

o

o

• O

• O ·

-·—?—»

• O f

6\

O

O

O

O

O

O

? O ?—t—?-

O

O

O

O

O

O

Figure 2.6: Rectangular interpolation for the designed impulse signal

24



can be derived by the definition of the 2-D Fourier transform (2.18),

Mx-IM2-I

SS"(J(^i-
2-Kk1

), ?(?2
2nL·

))
fc1=0 Zc2=O

M1-IM2-I

S S SS?(??,?2)ß'
Zc1=O fc2=0 ni n2

Mi JV M2

j[(iJl-2xfci/Mi)ni + (ii;2-27rfc2/M2)n2

(2.26)

By changing the order of sums, it follows that

Mi-I M2-I

S S m<*
fc1=0 fc2=0

SS^1' n^e
ni n2

2p?;1? ., 2p/?2
M1

-j(wini+W2ri2)

Jl^2 Mo ))
M1-I M2-I

Egjîïïfcini/Mi V^ eJ27rfc2n2/M2
L fci=o fe2=o

(2.27)

Obviously, the terms in the square brackets are always zero except that H1 and n2 are the

integer multiples of M1 and M2, simultaneously. Meanwhile, considering the interpolation

condition (2.25), the only term that makes the equation (2.29) hold is /i(0, 0). Substituting

h(0, 0) = 1/(M1 ? M2) into (2.29) yields

M1-IM2-I

SS*(?(«.-^)·?^-^)) = ?
Zc1=O Zc2=O M1 M2 (2.28)

Similarly, the frequency-domain constraint of a 2-D linear-phase rectangular Mth-band

filter with quadratical symmetry can be obtained from (2.28) by employing the relationship
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Hun(Ju1, JtO2) = e^N^+N^H(Ju1, Ju2), namely,

M1-IM2-I

J2 ^e-Ä^/M,««)^^^^^·^.?*)) (2.29)Js1=O Zc2=O 1 2
e-j(N1u)1+N2iv2)

By taking the absolute value of (2.29), it follows that

Mi-IM2-I

J2 S Aíin{^i - 2Kk1JM1), (?2 - 2-Kk2JM2)) = 1 (2.30)
Ze1=O Zc2=O

This means that the amplitude response A(U1, ?2) and its shifted versions add up to unity

for the entire plane of (U1 ,U2). Intuitively, a possible choice for the passband and stopband

cutoff frequencies can be obtained based on (2.30) as follows

??? + uls p /TO1S?^ = —Y- = m¡1 (2-31a)
_ ?2? + u2s p ,,-1MW2c - -^2— - W2 (231b)

With the interpolation condition (2.25) and the related cutoff frequency constraint (2.31),

we will develop a SDP-based design for the nonseparable 2-D linear-phase rectangular

Mth-band FIR filters.
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2.4 2-D Linear-Phase Diamond-Shaped Mth-Band FIR Fil-

ters

2.4.1 Restriction of Interpolation Matrix

It is well known that the 2-D signal has many different sampling versions. Due to

this property, a more generalized definition of 2-D Mth-band filter is given by defining a
TTT. 1 7719

nonsigular matrix M = . Thus, a 2-D filter with impulse response /i(n) is referred

as to an Mth-band filter [22] if

Zi(Mn) = O, ? ^O (2.32)

where ? G Af = {(ni, n2) : -Nx < nx < N1, -N2 < n2 < N2). The set of all vectors

Mn for ? G TV" in (2.32) is called the lattice LAr(M). It is generated by the integer linear

combinations of the column vectors of M. LAT(M) show different interpolation shapes for

various M. For example, the lattices in Fig. 2.7(a) and 2.7(b) represent the well-known

hexagonal pattern when M
? ?

2 -2

1 1

-1 -1
In, or the quincunx pattern when M =

analogy with the rectangular case, this kind of filter can also be employed to interpolation,

where the original set of input simples is preserved as the lattice points in the interpolated

version. Thus, M is also called the interpolation matrix of a 2-D Mth-band filter. How-

ever, not every nonsingular M is appropriate for the 2-D linear-phase Mth-band filter with

quadrantal symmetry. The quadrantal symmetry property can be regarded as a restriction

on M. In other words, possible choices of M should ensure that the impulse sequence h(n)
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(a) (b)

Figure 2.7: (a) Hexagonal interpolation, (b) Quincunx interpolation

satisfy the interpolation condition and the quadrantal symmetry simultaneously [23], i.e.,

h{M ? + Nc) = Zi(T1 M ? + Nc) = Zi(T2 M ? + Nc) = /?(-? ? + Nc) = 0 (2.33)

where Nr N1

N2 is the symmetrical center of linear-phase property. In order for the

above equation to hold, regardless of the linear shift Nc, it is observed that four matrices M,

TiM, T2M, and —M are requested to generate the same lattice for neJV, i.e., LAT(M)=

LAT(T1M)= LAL(T2M)= LAT(-M). From the lemma about the nonuniqueness of the

lattice-generator [22], it is well known that LAL(M) is identical to LAL(M Q) if, Q is a 2 ? 2

unimodular integer matrix. Here, a matrix is defined as unimodular one if its determinant

equals ±1. Obviously, — M always satisfies the lemma for arbitrary M. As such, M can be

determined from

T1M = MQ1,

T2M = MQ2

(2.34a)

(2.34b)
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where Q1 and Q2 are unimodular integer matrices. Premultiplying the matrix Ti on the

both sides of (2.34a), we can have

TiT1M = TjMQ1 (2.35)

Then, substituting M =
mi raí

ni3 ni4 and T1 =
i o

0 -1 in (2.35) yields

m3 m4

mi ni2

—??3 —rrii

Qi (2.36)

Since the determinant of Q1 should be ±1, it is easy to find two possible choices of Q1

that ensure the matrix M to be nonsingular, namely, the anti-diagonal matrices
? ?

1 0
and

0 -1

-1 0 . The former leads to Wi1 = m2, and 777,3 = — 7714, while the latter gives m.\ = — m2,

and m3 = 7774. This implies that when the elements of M has the property of f —f
, or

F -f
, the lattices generated by M and TiM are identical. Fortunately, this class of

matrices M is also proven appropriate for (2.34b), where we have T2M = M
0 1

1 0
, or

T2M = M
0 -1

-1 0 . As such, we can conclude that an nonsingular matrix M can be

used as the interpolation matrix for the design of 2-D linear-phase Mth-band filters with

quadrantal symmetry if M is chosen as

f —f
or (2.37)

f —f
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It is interesting note that several commonly used sampling matrices satisfy the condition

(2.37). For instance, both the hexagonal sampling matrix M =
? ?

2 -2 , and the quincunx

sampling matrix M =

such a filter.

? ?

1 -1 can be employed as the interpolation matrix in the design of

2.4.2 Frequency Specification

The frequency specification derived from the interpolation condition (2.4) is denoted

as the cutoff frequency constraint of the 1-D Mth-band filter. In the 2-D case, we have a

similar cutoff frequency constraint such that the passband is restricted to a certain region

to avoid the aliasing. We already study the Mth-band filter with the rectangular passband.

Now we would like to find an appropriate passband of the 2-D Mth-band filter with M

defined in (2.37).

Besides the rectangular pattern, it is well known that the other typical class of 2-D

low-pass filters has a diamond-shaped passband. In such a filter, the passband is in gen-

eral bandlimited to the region of the symmetric parallelepiped SPD p\t, where V is the

sampling matrix. It is proved in [22] [24] that an ideal 2-D filter with passband on SPD

(p?~t) has the Mth-band property. In other words, the region SPD (p?"G) generated by
the interpolation matrix M can be used as the passband in the design of Mth-band filters. In

order to better understand the symmetric parallelepiped (SPD), we first impose the defini-

tion of fundamental parallelepiped (FPD). For a given 2x2 nonsingular matrix U, FPD(V)

denotes an parallelogram area including all the points of the set Ux where ? , with

0 < Xi, X2 < l-Thus, the edges of the parallelogram area are determined by the column

30



Figure 2.8: The fundamental parallelepiped FPD(V)

2 -2

3 2vectors of U. For example, a sketch of FPD(V) for a specific sampling matrix U =

is demonstrated in Fig. 2.8. Compared to FPD(V), the symmetric parallelepiped SPD(V)

is defined to include all the points of the set Ux for -1 < x0, ?? < 1. Hence, it is obtained

as the union of FPD(V) and its shifted copies around the origin. The relation between

5PD(U) and FPD(V) is demonstrated in Fig. 2.9 for U -? ?

2 2 Bearing this idea in

FPD(U)
0 < X1 , *2 < 1

/ *\ -1 < X1 < O

-1 11

/

\
\

y
SPD(U)

/
/

/ ?

(a) (b)

Figure 2.9: The relation between SPD(U) and FPD(U)
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mind, it is easy to determine the passband of a 2-D diamond-shape Mth-band filter for a

specific M. Recall that both the hexagonal sampling matrix M
? ?

2 -2 , and the quincunx

sampling matrix M
? ?

1 -1 are appropriate to be the interpolation matrix in our design.

Hence, we choose these two sampling matrices as the examples here to demonstrate their

SPD (p?t) region in Fig. 2.10(a) and 2.10(b), respectively. It is worth mentioning that

p ?, p ?0

(a) (b)

r-T\ ?„_ ? ? :„. !_.:„„ /un rnm.w-TvFigure 2.10: (a) SPD(wM ) for hexagonal interpolation, (b) SPD(nM~T) for quincunx
interpolation

the passband determined by SPD (p?"t) reduces to the interval of [p, -p] when M is a
scalar. This is consistent with the 1-D cutoff frequency constraint, which indirectly proves

the feasibility and correctness of employing SPD (p?~t) as the passband. In summary,
the region determined by SPD (p?"G) plays a crucial role in the 2-D Mth-band design.

32



2.5 Conclusion

In this chapter, we started with an analysis of 1-D linear-phase Mth-band filters, which

focuses on the derivation of the cutoff frequency constraint from the time-domain inter-

polation condition. As an direct extension of the 1-D case, the 2-D linear-phase rectan-

gular Mth-band filter is then deduced to prepare for the nonseparable filter design. The

2-D linear-phase diamond-shaped Mth-band filter with quadrantal symmetry is finally pro-

posed, where the possible choices of the interpolation matrix M and the related passband

region have been given explicitly. In the following chapters, we will investigate to design

the Mth-band filters via the SDP and the SOCP approach.
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Chapter 3

Design of Mth-band FIR Filters via the

SDP Approach

The conventional optimization methods for the design of Mth-band filters are aimed

at the frequency-domain constraint and hardly take into account the time-domain inter-

polation condition. However, by realizing the interpolation condition, one can design a

high-quality Mth-band filter and thus enhance its performance in the interpolation and

decimation applications.

In this chapter, an efficient optimization approach is investigated for the design of

linear-phase Mth-band FIR filters, known as the semidefinite programming (SDP) ap-

proach. It can efficiently accommodate both inequality and equality constraints. The in-

terpolation condition h(nM) = jjô(n) is therefore incorporated in the design problem as
the equality constraint, while the error function between the designed filter and desired one

is formulated as the inequality constraint. By considering the equality and the inequality
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constraint as a whole in the optimization problem, the SDP will give an filter with both the

optimal frequency response and the exact interpolation condition satisfied.

The SDP optimization problem for the Mth-band filter design will be modeled based-

on the mini-max and the lease-square error criteria, respectively. Moreover, two types of

methods are developed for the design of the 2-D rectangular Mth-band filter, termed as

the direct and indirect design. The direct design, which is also applicable to the 2-D filters

with other shapes, generates an nonseparable 2-D filter as the best approximation to the 2-D

desired filter via the SDP approach. In contrast, the indirect design results in a 2-D filter

that is synthesized by two 1-D constituent filters. The performance of the SDP approach

will be demonstrated by numerical examples in terms of the maximum error as well as

the design complexity. Besides, the designed Mth-band filters will be applied to image

interpolation.

3.1 Semidefinite Programming (SDP) and Its Application

to Filter Design

3.1.1 SDP Basics

Semidefinite programming (SDP) is a convex optimization technique, where a linear

objective function is minimized over the intersection of an affine set and the cone of positive
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semidefinite matrices [9] [12]. In general, the linear programming (LP) and quadratic pro-

gramming (QP) can be modeled as the special cases of SDPs. Many primal-dual interior-

point methods [25] have been proven efficient for solving the SDP problems over the past

decade.

The standard form of a SDP problem can be expressed as [10] [26]

minimize C-X (3.1a)

subject to A9 -X = bg for g = 1, 2, · · · , m (3.1b)

X^O (3.1c)

where X e Rnxn is the optimization variable, and C G Rnxn, A3 G Rnx" and bg G R
are given parameters. Moveover, X, C, A3 are symmetric matrices, the inequality X^O

denotes that X is positive semidefinite, and · denotes the matrix inner product defined by

? ?

C-X = Y^CijXij. (3.2)
¿=1 j=l

(In some other papers, the inner product is also expressed as C · X = tr(CX), where tr(CX)

denotes the trace of the matrix product CX). Obviously, C · X is a linear function of the

elements ??·. Hence, we conclude that (3.1) is totally represented as a SDP problem in

which a linear objective function of variable X is minimized over the intersection of m

affine linear equality constraints A9 · X = bg, for g = 1, · · ¦ ,m and the positive semidef-

inite matrix X X 0. In general, (3.1) is referred to as the primal SDP problem. Similar to
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the linear programming, there exists a dual SDP problem corresponding to (3.1), which is
given by [10]

maximize bTy (3.3a)
m

subject to C S VaAg t 0 for g = 1, 2, · · · , m (3.3b)
9=1

where b = [^1, b2, ¦ ¦ ¦ , bm]T and y = [^1 , y2) ¦ · · , ym]T. The duality theorem [27] [28]

states that if the primal SDP problem has an optimal solution X*, then the dual SDP prob-

lem also has an optimal solution y*, and moveover C X* = bTy*. In general, a SDP

optimization problem can be solved from two perspectives, the primal or the dual problem.

3.1.2 Typical SDP Problem for Filter Design

The minimization problem corresponding to (3.3) can be written as

minimize — bTy (3.4a)
m

subject to C- Y^ ygAg XO for g = 1, 2, ¦ ¦ -, m (3.4b)
9=1
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Then, with substitutions -b -> c, y -> ?, C ->· F0, and -A9 -> F¿, the typical SDP

problem for the filter design purpose is given by

minimize cTx (3.5a)

subject to F(x) y 0 (3.5b)
?

F(x) = F0 + ^xzF, (3.5c)
!=1

where the optimization variable is ? G Rn, the vector e e R" and the symmetrical matrices

F¿ € Rmxn (i = 0, 1, 2 · · · , n) are the given parameters. Noticing that F(x) is an affine

set of x, and F(x) ^ 0 implies that F(x) is positive semidefinite at x. In (3.5), a linear

function of the optimization variable ? is minimized subject to the convex constraint that a

combination of the affine symmetrical matrices is positive semidefinite [9]. For a specific

filter design problem, since the optimization variable ? in (3.5) is related to the impulse

response of the designed filter, the convex constraint F(x) y 0 can be determined by the

error function between the designed filter and the desired one. Depending on the error

criteria used in the optimization, the SDP problem has different forms. We will consider

the mini-max and lease-square SDP design of the linear-phase Mth-band FIR filters.
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3.2 Design of Mth-Band FIR Filter via SDP

3.2.1 Mini-Max Error Criterion Based Design

In an equiripple mini-max type design, the error function em is defined by

em=\H(e^)-Hd{e^)\ (3.6)

where H(ejw) is the frequency response of the filter to be designed, and Hd(eji0) is the

desired frequency response. Recall that H(ejlv) = hT[c(w) — js(ui)} as shown in (2.1). Our

aim is to find the optimal h which minimizes the maximum value of the weighted error em,

with — p < ? < p [29], namely,

(3.7)

for ? G [-p, p]

where W(?) represents the weighting function. If we denote by Sm the maximum value of

the square of weighted em, then (3.7) can be rewritten as

minimize 8m (3.8a)
h

subject to 5m - W{oj)2\H(eju) - Hd(ejul)\2 > 0 (3.8b)
? e [—p, p]

minimize
h W(u)\H(e?u) - Hd{e>u)\
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Comparing (3.8a) with (3.5a), it is observed that S7n is the objective function of the opti-

mization problem, i.e., cTx = 5m. If we define ? = [5m hT], and c = [1 0 · · · 0]T,
the inequality constraint (3.8b) is naturally affine with respect to x. Next, we would like to

express (3.8b) as a positive semidefinite matrix. Denoting the desired frequency response

Hd(ei») as

Hd(en = Hdr(uj)-jHdi(Lj) (3.9)

where Hdr{u) and jlldi(u>) are the real and imaginary parts of Hd(e?u), respectively, it
follows that

W(u)2\H{e?») - Hd(en\2 = W(u)2 [hrc(^) - Hdr(u)}2 + [hTs(u;) - Hdi(u)}2 (3.10)

Then, O7n - W{uf\H{e^) - Hd(eju)\2 > 0 is equivalent to [29] [30]

TM =

6m hTcw(u) - Hdrw(uj) hTs™(u;) - Hdiw(u)
1I7C11, (?) - Hdrw(u) 1 0
117Su1(O;) - Hdiw{u) 0 1

hO (3.11)

where C11, (?) = W(uj)c(uj),sw(oj) = W(u)s(u), Hdrw(u) = W(u)Hdr(uj),¡md Hdiw{u) =

W{u])Hdi(u). It is clear from (3.11) that T (?) is a 3 ? 3 symmetric matrix, and T(?) >: 0

means that ?(?) is positive semidefinite matrix on x. Note that (3.11) is hold for all ?

which belongs to — p < ? < p. In this thesis, the range of ? is defined as a set of points

distributed uniformly in the interval of [-p, p], i.e., ? G {?t = 2nr/R, r = 1, 2, · · · , R}.

When R is large enough, ur are sufficiently dense in [-p, p]. Since ?(?) at each wr should
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be semidefinite positive, then the mini-max SDP problem can be summarized as

minimize cTx (3.12a)

subject to F(x) ^ 0 (3.12b)

where c = [1 0 · · · 0]t, ? = [6m hT}T, and F(x) = diag (T(^1), ?(?2), · · · , ?(??)}.
F (?) is called the tridiagonal matrix [29] which ensures the realization of every positive

semidefinite matrix constraint ?(?t) >r 0 for r = 1, 2, · · · , R. Obviously, F(x) is affine

with respect to x. The problem in (3.12) is a general mini-max SDP problem for filter

design.

Furthermore, we impose the linear-phase property on the general mini-max SDP prob-

lem. The frequency response Hd{eiu) of an idea linear-phase filter is defined as

Hd(eju) = e-MN-D/2 Ad(u) (313a)

with

f 1, ? e (0, ??)Ad(uj) = ? (3.13b)
^, ?£ (?8, p)

where iV is an odd number representing the length of the filter, ?? and ?8 are the passband

and stopband cutoff frequencies, and their relationship should satisfy that ??+?3 = 2p/?.
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Then, substituting (3.13b) and (2.2) into error function (3.6) yields

em = ?(?) - Ad{u) = h^ca(w) - Ad(u) (3.14)

In such a design, the optimization variable in (3.12a) is simplified to ? = [Sm h( N-I'

2h(^ - 1) ¦ · · 2h(0)]T, and the constraint matrix F(x) in (3.12b) is thus given by

F(x) = diag{ Tun(U1), ???(?2), ¦¦¦ , Tlin(uR)}

5m W(<j)(haCa{u) - Ad(u))
W(u)(haCa(uj)-Ad(uj)) 1

T¿m (?)

(3.15a)

>: 0 (3.15b)

It should be noticed that the SDP problem (3.15) is regarded as incomplete when it is

used to design the Mth-band filters, since the time-domain interpolation condition (2.14)

has not been incorporated. In general, the interpolation condition is formulated as a linear

matrix equality constraint in the design problem [31], therefore, it can be formulated as

Gx = q (3.16)

where q is a vector representing the right side of the interpolation condition ha(Mn) =

d(?)/?, and G is a selection matrix which is used to pick up the vector representing

the left side of the interpolation condition, i.e., [Zi0(O), K[M), ha(2M), ¦ ¦ ¦}, from the

optimization variable x. Since the size and content of q and G vary with M, it is better to
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illustrate q and G for a specific M. For instance, the interpolation condition of an linear-

phase half-band filter is realized through the following expression

0 10 0

0 0 0 10

0 0 10

0 0 10·

MO)

Mi)

K(L)
0

(3.17)

Without the loss of generality, the time-domain constraint of a linear-phase fourth-band

filter is given by

0 10 0

0 0 0 0 0 1

0 0 1

(3.18)

Similarly, the interpolation condition of an arbitrary linear-phase Mth-band filter can be
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easily derived. Thus far, the mini-max SDP optimization problem for the design of linear-

phase Mth-band filters is established as

minimize crx (3.19a)

subject to F(x) h 0 (3.19b)

Gx = q (3.19c)

where ? = [S7n h^]T is the optimization variable, c = [1 0 · · · 0]T, F(x) y 0 is the
matrix inequality constraint in (3.15), and Gx = q is the matrix equality constraint similar

to those in (3.17)and (3.18).

3.2.2 Least-Square Error Criterion Based Design

In an equiripple least-square type design, the weighted least-square error function eL is

defined as [32]

e, = / p(?)\?{ß>?) - Hd(e>")\2du (3.20)Jn

where O e [—p p}. Letting S¡ be the maximum value of e¡, we can obtain the first inequality

constraint in the least-square SDP problem [29],

S1- f W{u)\H{ePu) - Hd{e^)\2 > 0 (3.21a)Jn
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where

N-I

H{eiu) = S h(n)e~jun = hT g(ejüJ) (3.21b)
n=0

with g(é>u) = [1 e-*" ß~?2? ¦¦¦ ß^'(??-1)?]t. By defining

U= [ W(uj)g{e?u)gT(e>u)(L· (3.22a)Jn

U= f W (uj)g(ejuJ) H^)(Iu (3.22b)
a= i W(u)\Hd{eju)\2du (3.22c)Jn

(3.21) can be rewritten as

S1 - (hTUh - 2hTu + a) > O (3.23)

Since U is positive semidefinite on O, there exists a symmetric square root U1^2 = U7^2,

such that U = U1/2U1/2. Hence, (3.23) is equivalent to

5,-||U1/2h-in1/2u||2 + A>0 (3.24a)

where

||uV2h _ u-i/2u||2 = (,,T11IZ2 _ u^u-i/2) (ui/2h _ u-i/2u) (324b)
? = U21IT1U - a (3.24c)
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Furthermore, (3.24) is equivalent to a positive semidefinite matrix, i.e.,

A(w)
S1 + X Ji7U1/2 - U7U-1/2

U1/2h - U"1/2u I
^O (3.25)

where I is an identity matrix. It is clear that ?(?) is affine w.r.t. 5¡ and h. When the filter

is of linear-phase, (3.25) can be modified as

????(?) =
d? + Xl "G ???? hTU1/2 - uT ?G1/2"a V Un ???*-???

?/2 !/2,Ulinba-lW U1
^Q (3.26)

where U/in = /O VK(w)ca(w)ca(w)Tc/a;, ulin = Jn¡> W(u)Ad(u)ca(uj)du, alin = JQp W (?)
Ad(u>)2du), and Xun = \\W[in u;in||2 — a¡¿„. Note that O? represents the passband interval

[-?? ??).

Besides, in order to achieve the equiripple design, the passband and stopband errors

should also be taken into consideration. If we denote by d? and òs the maximum values of

the squared amplitude response errors of the passband and stopband, respectively, then the

other two inequality constraints for the least-square SDP design can be obtained as

d? - W (?)2 [?(?) - ??{?)]2 > 0 for ? G [-?? ??] (3.27a)
d8 - W(üj)2A(oj)2 > 0 for ? 6 [-p ?ß] U [?ß p] (3.27b)
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Similar to the manner we process (3.8b), it can be shown that (3.27) is equivalent to

??(?) =

T5(w)

d? W{u)(haca(<jj)-Ad(uj))
W(u)(haca(u)-Ad(u;)) 1

dß W(W)(H0C0(U/))
W(üj)(haca(u)) 1

^O

h 0 (3.28a)

(3.28b)

Obviously, ?(?), Tp(w), and Ts(w) are all affine w.r.t ha. We now determine the objective

function for the eqiripple least-square design in order to find the optimal h0 that minimizes

the errors d?, d?, and d8, simultaneously. Considering that d?, d?, and Ss are all positive

real numbers, we employ the summation of d?, d?, and d3 as the objective function for the

optimization problem.

Similar to the mini-max design, the interpolation condition should be incorporated in

the least-square design as the equality constraint. Combining all the inequality and equality

constraints, the equiripple least-square SDP optimization problem for the design of linear-

phase Mth-band filters can be summarized as

minimize c ?

subject to F(x) y 0

(3.29)

Gx = q

where c = [1 1 1 0 · · · 0]t, ? = [S1 d? d, hTa\T , and F(x) = diag {???{?), Tp(W1),
Tp(w2), · ¦ · ,Tp(wñp), Ts(wi), Ts(w2), · ¦ · , Ts(wñJ}. Note that Rp and Rs denote the
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number of ? in passband and stopband, respectively. In the next section, we will extend the

SDP approach for the design of 2-D Mth-band filters.

3.3 Design of 2-D Linear-Phase Mth-Band Filters via SDP

3.3.1 Design of 2-D Rectangular Mth-Band Filters Based on 1-D Fil-

ters

By a simple analysis, it is known that 2-D rectangular Mth-band filters can be obtained

by designing 1-D filters. In such a design, two Mth-band filters (M could be different in

the two 1-D filters) are designed separately via the SDP approach in Section 3.2. Then, as

we mentioned in Section 2.3.2, the 2-D impulse responses can be obtained as the vector

product of the two 1-D impulse responses, i.e.,

h(n1,n2)=hr(n1)h^(n2) (3.30)

where K(U1) G R(27^+1)*1 and R(2JV2+1)x Represent the impulse responses of two 1-D
Mth-band filters, respectively. The filter designed by this manner is also known as the

separable filter. Note that if both hr(ni) and hc(n2) have the linear-phase property, i.e,

they are symmetrical about their center point TV1 and N2, respectively, then h(n1; n2) G

R(2iv1+i)x(27v2+i) has a quadrantal symmetry about its center point (N1, N2). Although
the 1-D based design is easy to implement, it is impossible to get an equiripple frequency

response since the error functions of the two 1-D Mth-band filters are minimized separately
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via the SDP approach. Moreover, it can not be used to design a 2-D Mth-band filter with

arbitrary shapes of passband. As such, we would like to investigate the direct 2-D SDP

design for arbitrary shaped 2-D Mth-band filters.

3.3.2 Direct SDP Design of Arbitrary 2-D Mth-Band Filters

A. Mini-Max Design

The direct SDP design for the nonseparable 2-D Mth-band filter is much more com-

plicated than the 1-D based design because the optimization process is subject to the con-

straint composed by the quadratic error function between the desired and the designed 2-D

filters [33] [34]. Following a simple analysis of the 2-D linear-phase property, the fre-

quency response of an ideal linear-phase 2-D quadrantally symmetric Mth-band FIR filter

is given by

??(e?>·?? = e-^"1+^) A11(U1, u2) (3.31a)

with

G 1, (??, U2) G O??
??(??, U2) = < (4.26b)

1^ 0, (ui, U2) e üts

where Rp denotes the passband region and Rp denotes the stopband region. Note that for

the rectangular filter Ütp = {u : -uip < u¡ < uip, i = 1,2} and iita = {u : (-p <

u% < —uis) U (uis < Ui < p), i = 1, 2}, while for the diamond-shaped case the passband
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region is determined by the interpolation matrix M, i.e., SPD (p?"t). This reflects the first

"arbitrariness" of the direct approach in the sense that it can be used to design a filter with

an arbitrary passband region. Recall that the ideal 2-D frequency response with an arbitrary

passband can be expressed as H(Ju1Ju2) = e-j^NlU'1+N2U1^hJacta(ul, u2), therefore, the
weighted quadratic error function of the mini-max design is given by

etm = A(U1, U2) - Ad(uu u2) = H^c40(W1, u2) - Aj(W1, u2) (3.32)

Let 5tm be an upper bound of the square of weighed error etm. Then, the SDP problem

aimed at minimizing 5tm can be written as

minimize cTx (3.33a)

subjectto Stm - W(UuU2)2IhJ11Ct0(U1, u2) - Ad(uu u2)}2 >0 (3.33b)
Ui G [—p p] for i = 1,2

where c = [1 0 · · · 0]T and ? = [6tm h[a]T. Note that the search for 5tm is on the

region of üt = {u : -p < u¿ < ?, i = 1, 2}. In our design, (??, u2) is replaced by a

set of grid points distributed uniformly in üt, i.e., Clt = {(u[r\ ?^G)),?^ = 2-nr/R,r —
1,2,···,/?}. Therefore, the constraint (3.33b) has the following discrete form,

Ft(x) = (Ua6(T(Wi1U^), · · · , r(u[R\4R))} h 0 (3.34a)
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where

?(??,?2)
àtm h^Cto(wi, W2) -Ai(Wi1W2)

l»^cta(wi, W2) - A(wi,w2) 1
^O (3.34b)

Clearly, Ft(x) is affine w.r.t x, and it is positive semidefinite. Note that the weighted func-

tion is defined as W(lj>i,oj2) = 1 in the above expression for all available ?? and ?2. In

analogy with the 1-D case, the interpolation condition should be incorporated in the SDP

problem as a linear matrix equality constraint, i.e.,

GiX = qt (3.35)

Since ? = [Stm h¡a]T, the purpose of (3.35) is to pick up the coefficients of hta e
R(M+i)(jv2+i)xi^ wnicn are SUpp0secj t0 be zero, an¿ reset them to zero. Recall that hta
is a column vector generated by stacking the columns of the compact impulse response

Hc e rW+1)* W+1) in (2.21). If Hc represents a rectangular Mth-band filter, it should
satisfy the interpolation condition in (2.25). Otherwise, for the diamond-shaped filter, the

2-D interpolation condition in terms of Hc can be expressed as Hc(Mn) = 0, for ? f 0.

Thus, we can employ a series of selection matrices Gu for i = 0, 1 · · · , N2 to determine

the coefficients which are supposed to be zero of each column of Hc, then the same coef-

ficients in hta are determined by stacking these matrices as a block diagonal matrix, i.e.,

Gt = diag{Gi0, Gii, · · · , GiAr2). qf in (3.35) is obviously an all-zero vector except for
the rectangular case with qt(0) = l/|det(M)|. Now we explain how to define Gt through
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the specific example. Consider the interpolation condition of a 17 ? 17 2-D linear-phase

rectangular Mth-band filter with Mx = 4 and M2 = 2. The graphical illustration of the

compact impulse response Hc is demonstrated in Fig. 3.1, where black dots represent the

coefficients which are supposed to be zero. According to Fig. 3.1, (3.35) becomes
?
gO#0#0*0·
??·?·?·?·

??·?·?·?·

??·?·?·?·

??·?·?·?·

??·?·?·?·

??·?·?·?·

Figure 3.1: Interpolation sample points of Hc

G«, 0

0 Gn 0

0 G;t8

Otm

0

(3.36a)

where Gi0 is used to determine the first column of Hc which includes Hc(l, 1) = 1/8,
where

G.Í0

0100000000

0000010000

0000000001

(3.36b)
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It is observed that the columns 1, 3, 5, and 7 have the same interpolation version that the

periodic zero-coefficients are separated by 4 samples. Therefore, their selection matrices

Ga for i = 1, 3, 5, 7 are of the same form,

000010000

000000001
for i = 1, 3, 5, 7 (3.36c)

Similarly, the columns 2, 4, 6, and 8 in Fig. 3. 1 are all-zero columns, thus the corresponding

selection matrices Gti for i = 2, 4, 6, 8 are identity matrices, i.e.,

Gu

1 0 0

0 1 0

0 0 0 1

for i = 2, 4, 6, (3.36d)

For the diamond-shaped Mth-band filter, the interpolation conditions of some interpolation

patterns are the same as that of the 1-D Mth-band filter, where the coefficients which are

supposed to be zero are separated by a fix number of the samples, such as the hexagonal

interpolation, while other interpolation patterns have the similar situation as the rectangular

filter. Here, we can find the second "arbitrariness" of the direct approach that the arbitrary

interpolation condition can be realized by (3.35). Thus far, the mini-max SDP optimization
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problem for the design of linear-phase 2-D Mth-band FIR filters can be formulated as

minimize cTx (3.37a)

subject to Ft(x)H (3.37b)

Gtx = q( (3.37c)

where ? = [5tm h^]Tis the optimization variable, c = [1 0 · · · 0]T, Ft(x) ^ 0 is the matrix
inequality constraint in (3.34), and Gtx = qt is the interpolation condition realized by the

similar form of (3.36).

B. Least-Square Design

The weighted L2 error function for 2-D linear-phase filters is defined as

e«; = / / W(u1} u2)[hjacta(ui,u2)- Ad(ui,u2)]2duidu2 (3.38)

where O( is a square region denoted as [—p, p}2. By some simple manipulations, (3.38)
can be rewritten as

e« = hfaUihta - 2hiaut + at (3.39a)
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where

U4 = / / W {??? W2)Cf0(Wi, w2)cto(wi, Oj2YdLJ1(IuI2 (3.39b)
J JQt

Ut= W{oJi, W2)Ai(W1, W2)Cj0(W1, W2)^w1CiW2 (3.39c)J J ilip

°t = / / W{cj)Ad{LJi, ?2)2??1??2 (3.39d)

If we denote by da the maximum value of etì, then the L2 error inequality constraint is

defined by da — et¡ > 0, which is equivalent to

At(w1; W2) =
Su + x, hfavy2-urv;1/2

vy\a - U^2Ut
^o (3.40)

1/2where U/ is the symmetric square root of Ui; I space is the identity matrix, and Xt =
— 1/2

||Ut U2 Il —at. Besides, the equiripple property can be achieved by imposing the following
constraints

Hp VK(W1, W2)2^(W1, w2) -Ad(U1, W2)]2 >0 (W11W2)GHtP (3.41a)
Sts - W {??, W2)M(W1, w2)2 > 0 (W1, w2) G Q1 (3.41b)

Note that the frequencies in passband and stopband are defined as { (wj(rp) , Srp)? ?2 lì 1 <r„<

Rp] and ((W1 \ ?^"'), 1 < rs < Rs }, respectively. Analogously, (3.41) can be expressed
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as the matrix form

T¿P(wi, W2)
Hp htacía(wi, OJ2) - Ad(u>i, ?2)

Tts (??, W2)

hta Ci0(CJ1, UJ2) - Ad(ui, W2)

¿is htocía(wi, W2)

htacta(wi, ?2) 1
^O

>~0

(3.42a)

(3.42b)

where the weighted function is denoted as W(W1, ?2) = 1 for all available w¿ for i = 1, 2.

Since there are three inequality constraints corresponding to Sti, 5tp and Sta, respectively,

the optimization variable in the SDP problem should contain the three errors, thus, the

objective of this optimization problem is to find hia that minimizes the sum of these three

errors. In summary, the equiripple SDP design for the 2-D linear-phase Mth-band filters

based on the L2 error criterion can be described as the same optimization model of (3.37),

but with the optimization variable and the related parameters given by

x = [da Stp St. h[a}T

C=[IIlO · · · 0]r

F(x) = diag^ At(W1, w2),

(3.43a)

(3.43b)

(3.43c)
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where ?(a>?, ?2) in (3.40), ??? and Tts are in (3.42). Besides, the interpolation condition

can be met the same as the 2-D mini-max design through the similar form of (3.36).

Compared to 1-D based design, the complexity of the direct SDP approach is much

higher and thus needs longer computational time. However, the direct 2-D design is a

general method that can design arbitrarily shaped 2-D Mth-band filters. Moveover, it can

offer equiripple frequency response for the designed filter.

3.4 Numerical Examples

In this section, several linear-phase Mth-band filters are designed via the proposed SDP

approach. The performance of our design is evaluated in terms of the maximum error as

well as the computational time. Our examples show the superiority of the SDP approach in
different aspects.

All the SDP optimization problems in this chapter are implemented by a user-friendly

MATLAB package Self-Dual-Minimization (SeDuMi) [35]. A complete SDP optimization

problem in SeDuMi can be defined through five functions, which are the initialization of

the SDP problem, the declaration of the optimization variables, the declaration of the liner

matrix equality constraints, the declaration of the linear matrix inequality constraints, and

the declaration of the linear objective function. For a feasible SDP problem, SeDuMi often

generates both the primal and the dual optimal solutions.

Example 3. 1

In the first example, a linear-phase low-pass half-band FIR filter with an odd length
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of 113 is designed based on the mini-max SDP problem (3.37). According to the cutoff

frequency constraint of the low-pass Mth-band filter (2.10) that (?? + ua)/2 = p/2, we

set an narrow transition band of 0.05p, i.e., ?? = 0.475p and us = 0.525p. The ideal

amplitude response is thus given by

f 1, ? E (0, 0.475p)Ad{é") = I (3.44)
U, we (0.5257G, p)

The resulting amplitude response of the designed filters are depicted along with this ideal

amplitude response in Fig. 3.2(a). Since the maximum error is minimized, it is observed

from Fig.3.2(b) that our design yields equiripple error both in passband and stopband. The

amplitude response in dB and the linear phase response in rad are plotted in Fig. 3.3(a) and

3.3(b), respectively. The maximum amplitude approximation error of this design is 0.0028

and the execution time is 1.7969 seconds, which demonstrate that our design can offer a

really optimal performance with a relatively small computational time, even for the critical

frequency specifications.
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Figure 3.2: The half-band filter designed in Example 3.1. (a) Actual amplitude response
vs. the ideal specification, (b) Passband and stopband amplitude errors.
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Figure 3.3: The half-band filter designed in Example 3.1. (a) Amplitude response in dB.
(b) Linear-phase response in rad.
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Example 3.2

In this example, we design a 53-tap fourth-band high-pass filter. The objective is to

demonstrate an equiripple SDP design in the least-square sense. According to the cutoff

frequency constraint of the high-pass Mth-band filter (2.15), i.e., (?? + ?8)/2 = 3p/4, the

frequency specifications are set as ?? = 0.7p and ?8 = 0.8p. The related simulation results

are shown in Fig. 3.4(a), 3.4(b), 3.5(a) and 3.5(b). It is observed from Fig. 3.4(b) that both

passband and stopband have the nearly equiripple property. The maximum least-square

error of this high-pass filter is 0.5424 and the maximum pass-band and stop-band approx-

imation errors are 0.012 and 0.017, respectively. The execution time is 1.7035 seconds.

Example 3.3

Now, we investigate the design of a 51 ? 43 2-D rectangular Mth-band filter with the

interpolation coefficients given as Mi = 3 and M2 = 5. According to 2-D cutoff frequency

constraint (2.26), we set that ?1? = p/3 - 0.05, u>la = p/3 + 0.05, ?2? = p/5 - 0.05, and
U2S = p/5 + 0-05. The frequency response of the ideal 2-D linear-phase Mth-band filter is

defined by

H(M1JW2) = <^ (3.45)

Both the 1-D based design and the direct 2-D design are employed in this example. The

amplitude responses plots of the 2-D filters designed by the two methods are shown in Fig.

3.6(a) and 3.6(b), respectively. Table 3.1 summarizes the design results and execution time
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Figure 3.4: The fourth-band high-pass filter designed in Example 3.2. (a) Actual amplitude
response vs. the ideal specification, (b) Passband and stopband amplitude errors.
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Figure 3.5: The fourth-band high-pass filter designed in Example 3.2. (a) Amplitude
response in dB. (b) Linear-phase response in rad.
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of the two approaches. Although the overall result of the 1-D based design is obtained as the

synthesis of the optimal constituent 1-D filters, it is not considered optimal in the mini-max

sense. Moveover, the maximum error of the overall frequency response is 0.0051 + 0.0044

which is much bigger than 0.0058. However, the execution time of 1-D based design is

much smaller than the direct approach.

Table 3.1 : Comparison of maximum errors and execution time for the 2-D Mth-band filter
in Example 3.3 designed via the direct and the 1-D based approaches

Filter

size

Maximum error

Direct

approach
1-D based

design

Execution time (seconds)
Direct

approach
1-D based

design
N1 = 15, N2 = 15 0.0563 0.0290 0.0273 14.7056 2.3601

N1 = 25, N2 = 21 0.0096 0.0049 0.0096 41.2541 2.5310

N1 = 35, N2 = 27 0.0037 8.8111e-004 0.0034 126.0973 2.7040

Example 3.4

Now, we design a 23 ? 19 2-D rectangular Mth-band filter with M1 = 4 and M2 = 2

by the direct SDP approach in the least-square sense. As such, the frequency specifications

are ?1? = 0.2p, ?1ß = 0.3p and ?2? = 0.4p, u2s = 0.6p. The maximum least-square,

passband and stopband errors are 3.0786, 0.0721 and 0.0412, respectively. The execution

time is 41.8860 seconds. The amplitude response is plotted in Fig. 3.7. This simulation

result confirms the feasibility of the SDP least-square approach for the direct design of 2-D
Mth-band filter.
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Figure 3.6: Amplitude responses of the 2-D rectangular Mth-band filter in Example 3.3.
(a) Using the direct approach, (b) Using the 1-D based design.
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Figure 3.7: The Mth-band filter designed in Example 3.4. (a) Amplitude response in linear
value, (b) Amplitude response in dB.
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Example 3.5

Here, a 2-D diamond-shaped Mth-band filter with the hexagonal interpolation, i.e.,

, is directly designed via the SDP mini-max design. Recall that the passband

of such a filter is determined by SPD (p?"G). We choose the edge of SPD (p?~t) as the
center of the transition band which is given as the gray region in Fig. 3.8. The simulation

results are shown in Fig. 3.9. The maximum error of this example is 0.0117 and the

computational time is 4.5157 seconds, which prove that the SDP approach can be employed

to directly design the 2-D Mth-band filter with other shapes besides the rectangular pattern.

p/2 ?2
0.18;r

p ??

Figure 3.8: Transition band (gray region) for the 2-D diamond-shaped Mth-band filter with
hexagonal interpolation
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Figure 3.9: The Afth-band filter designed in Example 3.5. (a) Amplitude response in linear
value, (b) Amplitude response in dB.
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3.5 Application in Image Interpolation

Digital images are often zoomed or shrunk for various purposes by scaling its spatial

resolution/ size. The spatial resolution of a digital image is represented by the number

of pixels. Image shrinking can be achieved easily by deleting the related pixels, whereas

image zooming is a difficult task since the processed image needs to be interpolated with

unknown pixels [36]. The well known methods for image zooming are the nearest neighbor

interpolation and the bilinear interpolation, both of which cause considerable blurring in

the image. Here, the Mth-band filter is applied in image interpolation and is expected to

yield a better resolution due to its interpolation condition [37] [38]. As well as shown, the

Mth-band filter designed via the SDP approach exactly satisfy the interpolation condition.

In order to ensure a high accuracy, we now use the multirate system in Fig. 1.1 to

resize a test image. More specifically, in decimator, a test image with the resolution of

512x512 is first prefiltered by a half-band filter with the unity amplitude response to avoid

the aliasing, and then downsampled by a factor of 2 to generate an image with the resolution

of 256 ? 256. The lower resolution image is subsequently processed in the interpolator for

upsampling by 2, plus a half-band interpolation filtering with the amplitude response of 4

to obtain an interpolated image with the original resolution. Note that the test images which

have different level of detail are respectively resized by a 1-D 35-tap half-band filter and

2-D 35 ? 35 nonseparable half-band filter. The passband and stopband cutoff frequencies

of these half-band filters are all set as 0.4p and 0.6p. Note that the interpolation process

by employing the 1-D half-band filter involves two steps, i.e., (1) a 1-D half-band filter is
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first employed to interpolate the pixels of a test image in the horizontal direction; (2) the

same 1-D half-band filter is then applied to get the pixels in the vertical direction. This

process acts as a 2-D separable half-band interpolation filtering. The interpolated images

are depicted in Fig. 3.10, 3.11 and 3.12, respectively. The qualities of the interpolated

images are evaluated in terms of the peak signal-to-noise ratio (PSNR), as shown in Table

3.2. It is observed that both 1-D and 2-D Mth-band filters designed via the SDP approach

can provide a high interpolation quality.

Table 3.2: Comparison of PSNR for the interpolated images achieved through the 1-D and
2-D Mth-band filter designed via the SDP approach

The peak signal-to-noise ratio (PSNR)
Test image 1-D Mth-band filter 2-D Mth-band filter

Lena 35.1429 34.8058

Girl (Elaine) 32.9976 32.7953
Fishing Boat 30.9908 30.8304

3.6 Conclusions

The SDP approach for the design of linear-phase Mth-band filters has been proposed

in this chapter. Both the mini-max and the least-square criteria have been studied for the

SDP design of 1-D and 2-D Mth-band filters with an emphasis on the formulation of the

interpolation condition. It has been shown through various design examples that the SDP

approach has the sufficient accuracy and flexibility. More specifically, we can conclude

that (1) it gives the nearly optimal performance even for the design of filters with critical
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Figure 3.10: The interpolated image with a low level of detail, (a) Using 1-D Mth-band
filter, (b) Using 2-D Mth-band filter.
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Figure 3.1 1: The interpolated image with a medium level of detail, (a) Using 1-D Mth-
band filter, (b) Using 2-D Mth-band filter.
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Figure 3.12: The interpolateci image with a relatively large amount of detail, (a) Using 1-D
Mth-band filter, (b) Using 2-D Mth-band filter.
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frequency specifications; (2) it can design the equiripple 2-D Mth-band filters with arbi-

trary passband shape and amplitude response in the mini-max and or the lease-square sense.

The designed Mth-band filters have also been applied to image interpolation, showing the

application value of the proposed design approach.
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Chapter 4

Design of Mth-band FIR Filters via the

SOCP Approach

In this chapter, another optimization technique, known as the second order cone pro-

gramming (SOCP), is investigated to design the Mth-band FIR filters. As a special case of

the SDP, the SOCP has been proven less general but more efficient than the SDP in some

applications. This chapter is organized as follows. We will first review the basic theory of

the SOCP, including its relation to the SDP. The specific SOCP problems for the design of

linear-phase Mth-band filters, in which the equality or inequality constraints are expressed

as the form of the second-order cone constraints, are then developed in detail. Finally,

numerical examples for Mth-band filter design via the SOCP approach are provided and

compared to those from the SDP approach in terms of the design performance as well as

the computational complexity.
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4.1 Second-Order Cone Programming

4.1.1 Second-Order Cone Constraint

Second-order cone is a simple type of closed convex pointed cone, which is also called

the quadratic, ice-cream, or Lorentz cone. A second-order cone constraint of dimension ?

is defined to restrict a vector formed by ? variables to the second-order cone [39]. Specif-

ically, the first variable of the vector is greater than or equal to the Euclidean norm of the

subsequent ? — 1 variables, with the standard form shown as

-{Sconen = «Me yf,eeR,yeRn-l e > Il y I (4.1)

where [e y] denotes the vector including ? variables, and || · || denotes the standard

Euclidean (L2) norm, i.e., ||y|| = \/yTy. Fig. 4.1 demonstrates the geometry of the second-

order cone of dimension three. Note that when the dimension is less than three, there

exist two special cases. For ? = 2, the second-order cone constraint reduces to a linear

Figure 4. 1 : Second-order cone constraint of dimension 3
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inequality constraint, i.e.,

Scone2 = I [e y}T, e,y GR e>y\ (4.2)

We will show that this case is particularly useful in the mini-max design. Furthermore,

when ? = 1, the second-order cone constraint is degenerated to restrict the variable to be

nonnegative, i.e.,

Sconei = {eGR| e>0}. (4.3)

An alternative form of the second-order cone is also commonly used in the SOCP,

known as the rotated quadratic cone, which is obtained by rotating the second-order cone

over an angle of forty-five degrees [13]. The rotated quadratic cone constraint of dimension

? is given by

Rconen = Ue1 e2 y]T, eue2 G R, y G Rn-2 ei + e2 > O, exe2 > -||y| (4.4)

This means that the vector [ei e2 y ]T has the property that the summation of its fist two

variables are greater than or equal to zero, and the product of them is greater than or equal

to the subsequent n-2 variables. The expressions (4.1) and (4.4) reflect the variety of the

second-order cone constraint, which makes the SOCP problems sufficiently flexible.
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4.1.2 SOCP and Its Relation to SDP

SOCP is a class of convex optimization technique that minimizes a linear objective

function over the intersection of an affine set and the Cartesian product of second-order

(quadratic) cones [12] [13]. Due to the variety of the second-order cone constraint, several

common convex optimization problems can be cast as SOCPs, such as the linear program-

ming (LP), quadratic programming (QP), quadratically constrained convex quadratic pro-

gramming (QCQP) and so on. The SOCPs can also be efficiently solved by the primal-dual

interior-point methods, the same as SDP.

The standard form of a SOCP problem can be described as

minimize q ?

subject to II AjX + s¿|| < rf? + í¿ for i = 1, · · · , N,

(4.5a)

(4.5b)

where ? e R™ is the optimization variable, and the given parameters are q 6 R", A¿ e

R(mi_1)x", Si E Rm,_1, r¿ G R", and U e R. An equivalent cone expression of (4.5b)
then given by

is

A*
X + G Scone„ (4.6)

where m¿ denotes the dimension of the second-order cone for i = 1, · · · , N.

In general, the SOCP is regarded as a special case of the SDP since it is included by

the SDP [12] [40]. This is because the second order cone is equivalent to a cone of positive
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semidefinite matrix, i.e.,

e > xll
e ?'

? e/

^O (4.7)

According to (4.7), the SOCP problem in (4.5) can be converted to an SDP problem with
the following form,

minimize qTx

subject to
rfx + ti (Aix + sl)T

A¿x + s¿ (if? + U)I
>¦ 0

(4.8a)

(4.8b)

However, it is not advisable to solve the SOCP problem via the SDP due to the computa-

tional complexity concern. The interior-point methods often provide a much better worst-

case complexity for a SOCP problem (4.5) than its SDP counterpart (4.8) [41]. Besides, it

is proven that the computational amount per iteration required by the interior-point meth-

ods to solve the SOCP is less than that required to solve the SDP [12]. The computational

savings of the SOCP over the SDP becomes more significant when the dimension ? of the

second-order cone constraint is larger. An independent study of the SOCP approach for the

design of Mth-band filters is therefore necessary.
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4.2 Design of Mth-Band FIR Filters via SOCP

4.2.1 Mini-Max Error Criteria Based Design

Recall that the objective of the mini-max filter design is to find the optimal h that

minimizes the maximum error representing the difference between the designed filter and

the ideal filter [42], namely,

minimize
h W(uj)\H(e>u) - Hd(&¦ju\ (4.9)

? e [—p, p]

where W(?) is the weighting function. Here, we denote by (m an upper bound of the

weighted error, and consider that the designed iV-tap filter has the frequency response

H(e?u) = hT[c(w) - js(uj)}, and the ideal filter has Hd{e>") = ??t{?) - jHdi{oj), then we
can have

minimize ?„ (4.10a)

subject to Cm > W{oj){{hTc{u;) - Hdr{uj)]+ [hTs(w) - Hdi(u)]2}1/2 (4.10b)
? G —p, p

Defining a vector,

C(w) = W(?)
h c(u) - Hdr(uj)

hTs(w) - Hdi(u)

80

(4.11)



then we can obtain W(u){[(hTc(u)-Hdr(u)}2 + [(hTs(u)-Hdi(u)}2}1/2 = ||C(w)||. The
constraint in (4.10b) is thus equivalent to (m > ||C(w) ||, which is a standard second-order
cone constraint. Note that this second-order cone constraint holds for all available ? within

the interval [—p p]. Similar to the SDP design ? is replaced by a set of discrete points

distributed uniformly in [-p, p], i.e., ? € {ur = 2nr/R, r = 1, 2, · · · , R}. As such, the

mini-max SOCP problem for the design of a general FIR filter is given by

minimize q ?

subject to qTx > |[ [hTc(wr) - Hdr{ur) hTs(wr) - Hdi{u]r)}'j
for r = 1, 2, · · · , R

(4.12a)

(4.12b)

where ? = [(m /i(0) h(l) ¦ ¦ ¦ h(N - 1)]T are the optimization variable, and the given

parameters are q = [1 0 · · · 0]T, c(wr) = [1 coswr · · · cos (N - 1) ?t]t, and s(ur) =

[0 sin ?,- ¦ · · sin (N — l)u>r]T. In order to explicitly indicate the second-order cone

property, we give an equivalent cone expression of (4.12), namely,

minimize q7 ?

subject to [0 cT(ur)\

[0 ST(LUr)}

0

Hdr(ur)

Hdi(ur)

G Scone3

(4.13a)

(4.13b)

for r = 1, 2, · · · , R
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By imposing the linear-phase property, that is H(eiu)) = e~j^N-^/2\iTaca(u) and i/d(eJW) =

e~Jui-N- V/2?(?) (?(?) could be the arbitrary amplitude response), (4.13) is simplified to

minimize q ?

subject to
[0 <*{<+)] A(u>r

E Scone2

(4.14a)

(4.14b)

for r = 1, 2, · · · , R

where x= [Cn ha(0) ha(l) ··· ha(Z=±)]T,q = [1 0 ¦·· 0]T, andca(w) = [1 cos ?

cos (^1)?]t. Notice that (4.14b) is actually an inequality constraint as we discussed be-
fore.

Next, we consider to incorporate the interpolation condition in the above SOCP prob-

lem. Similar to the SDP, the coefficients of ha(Mn) can be selected from the optimization

variable ? by a selection matrix G (which is introduced explicitly in Section (3.2.1)) de-

termined by M. Then, these selected coefficients should be set to be zero except ha(0) =

l/M. This case is in general classified as the free vector constraint in the SOCP problem.

The free vector constraint of dimension ? specifies that the ? variables formed this vector

are restricted to be zero. In order to be consistent with the above cone expression, the free
vector constraint in this thesis is defined as follows

Fcone„ = {f GR" |f = On}. (4.15)
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where On = [O O · · ¦ 0]r denotes an ?-dimensional all-zero vector [43]. The free vector

constraint is not only used to restrict the variables to be zero, it also allows for arbitrary

equality constraints. For example, ha(0) = 1/M can be regarded as an free variable con-

straint from the perspective of ha(0) - 1/M = 0. Thus, the interpolation condition of a

linear-phase M-band filter in the SOCP problem can be described as

Gx G Fconc (4.16)

where G € Rmx(-N 1^2+2 is the selection matrix. For example, when M = 3, it has the
form of

0 10 0

G =

0 0 0 0 1 0

0 0 1

(4.17)

By incorporating the free vector and the second-order cone constraints, the mini-max SOCP

optimization problem for the design of linear-phase Mth-band filters can be defined as

minimize q ?

subject to
G On

G (Fconem ? Scone^ )

(4.18a)

(4.18b)
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where

(4.18c)

It is observed from (4.18) that the SOCP problem has a property that the free vector and the

second-order cone constraints are stacked in a structure, in which they are distinguished by

specifying the dimensions and the cones they belong to [44] [45].

4.2.2 Least-Square Error Criteria Design

In the SOCP least-square design, if we denote by (¡ an upper bound of the square root of

the weighted least-square error, then we can obtain the the first inequality constraint based

on this error criterion as follows

Ci > ( J W(u)\H(e?u) - Hd(eju)\2doj) (4.19)

[O Cl(U1)]
qT

[O C^2)]

[0 c>*)]

0

0

??(?2)

0

Ad(uR)

84



where O e [-p p], and H(ejuJ) = hTg(e·^) in (3.21b). We already proved in the SDP
design that (4.19) can be equivalent to [46]

C1 > V|lu1/2ii -U-1Z2UlI2 -? (4.20)

where U1/2 e RNxN, u G R^, and ? are shown in (3.22) and (3.24). Since ? is a scalar,
(4.20) can be further written as

Ci > Il [(u1/2h - IT1Z2Uf (-xy'Y (4.21)

Through the above a series of manipulations, we can now see that the least-square error

constraint (4.19) is a second-order cone, which has the cone expression as

C/

U1/2h

0

0

IT1Z2U

(-?)1/2

G Scone¿v+2 (4.22)

Since our designs focus on the linear-phase filter, then (4.22) is further simplified to

U1/2h TT-1/2???? Ulin

-hin) '

e Sconejv+2 (4.23)
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where \Un = \\\]J u/in||2-a,¿„,U,in = Jn iy(w)ca(w)ca(w)Tdw,u;¿„ = /n W(u)Ad(,?
ca(u)du, and aUn = Jn^ W (?) ??(?)2?? .

Besides, both the passband and stopband errors should be taken into consideration to

achieve the equiripple property. The second-order cone constraints based on the passband

and stopband errors according to (4. 1 3) are given by

[0 h^ca(ov)]

[0 h^ca(a;sr)]

0

Ad{üJpr)
0

Ad{usr)

e Scone2 x Scone2 (4.24)

where uw for r = 1, 2, · · · , R1 and usr for r = 1, 2, · · · , R2 denote the passband

and stopband frequencies, respectively. The objective of the eqiripple least-square design

is to find the optimal ha which minimizes the errors 0, ??, and (s, simultaneously. Since

Ci, ??, and (s are all positive real scalars, the minimization of each of them accounts to

the minimization of their sum. By incorporating these three second-order cone constraints

and the interpolation condition, we obtain the equiripple least-square SOPC optimization

problem for the design of linear-phase Mth-band filters below,

minimize q ?

subject to

G

? —

On

V

A

(4.25a)

G (Fconem ? Sconew+2 x Sconef1+ña)) (4.25b)
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where ? = [O ?? ?ß h„]T is the optimization variable, and q = [1 1 1 0 · · · 0]T, and
On = [O 0 · · · 0]T. The second-order constraint based on the least-square error is given by

Ci =

qf

[O3U*

O

IA V = Tr1/2.,

(-Xun)1/2

(4.25c)

where q1 = [1 O O · · · 0]T, O3 = [O O O], UjV2, ulin and \Hn are given in (4.35). The
second-order constraints based on the passband and stopband errors are given by

q?

[O3 cnM]

tf

[O3 <£(a/???)]

qí

[O3 <?(??)]

qí

[O3 ¿Í{USR2)

A =

O

O

Ad(UpR1)
O

??(?3?)

O

Ad(uSR2)

(4.25d)

where q2 = [O 1 O · · · 0]T, q3 = [O O 1 · · · 0]T. In the next section, we would like extend

the SOCP approach to the design of 2-D linear-phase A/th-band filters.
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4.3 Design of 2-D Linear-Phase Mth-Band Filters via SOCP

4.3.1 2-D Mini-Max SOCP Design

The SOCP can also be employed to directly design the 2-D linear-phase Mth-band

filters with the quadratical symmetry. Recall that the ideal response of such a filter in

general is given by

??(e?"?? = e-iW"!+***) ??(??, U2) (4.26a)

where

( 1, (U1, U2) e Cltp
Ai(wi, OJ2) = < (4.26b)

^ O, (??, U2) E Cits

where Cltp and Clts denote the passband and the stopband, respectively. Let H(JWi1Jw2)

be the frequency response of a (2JV1 + 1) ? (2N2 + 1) filter to be designed. By using the

quadratical symmetry, we have H(JcJ11Jw2) = e ^'(????+?G2?2)1?^C40(W1, ?2). Let (tm be an

upper bound of the quadratic error function between the desired and the designed frequency
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responses, then the SOCP optimization problem without considering the interpolation con-

dition can be described as [47]

minimize (tm
hta

subject to (¿m > W(uuu2) [h£cta(wi, u2) - Ad(uuu2)
Ui G [—p, p] for i = 1, 2

Since (4.27b) is a simple inequality constraint, it is equivalent to

minimize q ?
hta

subject to
htoCio(wi, U2) Ad{ux, U2)

<E Scone2

(4.27a)

(4.27b)

(4.28a)

(4.28b)

where W(Wi1W2) = 1, q = [1 O · · · 0]r, and ? = [Çtm hJa]T. Note that the seconder-order

cone constraint (4.28b) should hold for every available set of (wi, w2). As usual, (wi, w2)

is represented by O = {(w|r , ?£ ), r = 1, 2, · · · , R}. In analogy with the 1-D design,
the interpolation condition can be realized by defining the coefficients which are supposed

to be zero of hta belong to the free variables, namely,

Gtx G Fcone^ (4.29)
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where G¡ is the selection matrix, of which the formulation is described explicitly in Section

3.3.2 and a specific example is given in (3.36). In summary, the mini-max SOCP optimiza-

tion problem for the design of linear-phase 2-D Mth-band FIR filters can be formulated as

minimize q ?

subject to
O,

At
G (Fconem ? Sconeí¡ )

(4.30a)

(4.30b)

where

[0 «£(?G, 4r))]
A4 =

a i, ,(r) , Srh

for r = 1, 2, R.

(4.30c)

4.3.2 2-D Least-Square SOCP Design

In the 2-D equiripple least-square SOCP problem, the objective is to determine the

impulse response hia such that the total squared error in the passband and stopband is

minimized. The total weighted squared error can be written as

e« = / / W(^i, W2)[U^c40(Wi, W2) - Aj(Wi, ?2)]2??1??2
hfaUthta - 2Hf0Ui + at (4.31a)
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where at G R, Ut G RN'*N*, ut G RN" are in (3.39) with Ns = (JV1 + I)(N2 + 1). Since Ut
has a symmetric square root U1/2 G RN'xN\ i.e., U = U1/2U1/2 and U1/2 = UT/2, (4.31a)
can be further converted to

||TTl/2, »t- V2 II2 \ (4.32)

where A¿ = HU; 1/2u2||2 - at. In the SOCP design, we denote ?a as an upper bound of the
square root of the eti to form the first second-order cone constraint, i.e.,

r -^ /1!TT1^u TT-1/2 II2C« > ?/ Ui hía-U¡ Ui -Xt) (4.33)

which leads to

C« > Il [WXa - ur1/2utf (-A4)1/2] (4.34)

Then, the equivalent cone express is given by

?a

TI1/2hut nia Ur172U,

(-a);1/2

G SconeWs+2 (4.35)

Let Cp and Cp be the upper bounds of the passband and the stopband errors, respectively. The

second-order cone constraints which are formulated based on the passband and stopband
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errors can be written as

Ctp

[0 l&CtaU"), O«]
Cts

[0 btTaCtaM(r*) ,Xr3), W2 ')]

0

4 ? Xrp) , ,{rP)\

0

4^rs), 4rs))

G Scone2 x Scone2 (4.36)

where the frequencies in passband and stopband are defined as {(ui^ , ?2 ), 1 < rp <
Rp] and {(?|Gß\ W2), 1 < rs < i?s}, respectively. Note that minimizing the Cu, (tp, and
Ci« separately here amounts to minimizing their sum. As such, the equiripple least-square

SOCP design for 2-D linear-phase Mth-band filters is finally given by

minimize q ? (4.37a)

subject to

'—im

On

vt

At

tä+R'.he (Fconem ? Scone,/vs+2 x Scone2 p ) (4.37b)
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where ? = [C; Cp Cs nta]T *s tne optimization variable, q = [1 1 1 0 ¦·· 0]T, and

On = [O O · · · O] . The second-order cone constraint with respect to the quadratic least-

square error is given by

Qi

[O3 vy2]
0

V¿

0

Ur172U,
(-A.)172

(4.37c)

where q1 = [1 0 0 · · · 0]T, O3 = [O 0 0], and U(1/2, u, and ?, are given in (4.35). The
second-order constraints with respect to the passband and stopband errors are expressed as

-'im
[O3 cTM

qi
¦G?>"> ,,Mp), ^2 })]

qi

[O3 c>i-\ ?™)]

At
???? , ?2 )

0

Ad[U1 , U2 )

(4.37d)

where q2 = [0 1 0 · · · 0]r, q3 = [0 0 1 · ¦ · 0]t.

In summary, the SOCP problems for the design of linear-phase Mth-band filters based

on the mini-max and least-square error criteria have been thus far established. Although the

SOCP approach as we mentioned earlier is supposed to be better than the SDP approach

owing to its better worst-case complexity for the second order cone constraint, it is observed

from the above analysis that the SOCP formulation for the filter design is more complex

than that of the SDP. All the constraints in a SOCP problem should be formulated in a
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structure, which could increase the computational complexity, especially for the 2-D Mth-

band filter design. We will verify if the SOCP approach is better than the SDP approach

through several examples.

4.4 Numerical Examples

In this section, several linear-phase Mth-band filters are designed via the proposed

SOCP approach. Some of the design results are compared with those achieved via the SDP

approach in terms of the maximum error as well as the computational complexity. The

designed filters will also be used as interpolation filters for image resizing.

The SOCP optimization problems are also implemented by the SeDuMi package under

the MATLAB circumstance [27]. When a SOCP filter design problem is modeled as the

standard form of (4.13), (4.25), (4.30), or (4.37), SeDuMi provides a structure K to accom-

modate all the cone constraints and differentiate them through the following instructions:

(1) K.f denotes the dimensions of the free vector constraints (4.15).

(2) KX denotes the dimensions of the linear inequality constraints (4.2).

(3) K.q denotes the dimensions of the second-order cone constraints (4.1).

(4) K.r denotes the dimensions of the rotated quadratic cone constraints (4.4).

(5) K. s denotes the dimensions of the positive semidefiniteness constraints.

Notice that the free vector constraint is always put on the top in the whole constraint

structure, such as in (4.13), (4.25), (4.30), and (4.37). With this constraint structure, several

convex optimization problems can be cast as the SOCP problems and then solved efficiently
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by the SeDuMi. However, the SOCP formulation is much difficult than that of the SDP in

the SeDuMi, since all the constraints in the K structure should be stacked in order and

without overlaping or dislocation.

Example 4. 1

In this example, we employ both the SOCP and the SDP approach to design the same

fifth-band filter with different taps to demonstrate the priority of the SOCP approach. The

designed filter has the frequency specifications as: ?? = 0.15p and ?8 = 0.25p. The max-

imum errors and execution time of the half-band filters with different taps designed via the

SOCP and the SDP approaches are given in Table 4.1. As expected, the SOCP approach

gives the same maximum errors but with the considerable savings on the computational

time as compared to the SDP approach. The amplitude response of the 55-tap filter de-

signed via the SOCP are depicted along with the ideal amplitude response in Fig. 4.2(a)

and 4.2(b). The plots of the amplitude response in dB and linear phase response in rad are

given in Fig. 4.3(a) and 4.3(b), respectively.

Table 4.1: Comparison of maximum errors and execution time for fifth-band filters de-
signed via the SDP and the SOCP approaches

Filter

length
N = 37

N = 57

N = 77

N = 97

N = 117

Maximum error

SDP

0.0121

0.0022

3.9789e-004

7.7114e-005

1.5477e-005

SOCP

0.0121

0.0022

3.9789e-004

7.7034e-005

1.5399e-005

Execution time (seconds)
SDP

1.1560

1.2344

1.2343

1.5156

1.5316

SOCP

0.3438

0.3906

0.6563

1.0469

1.0938
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Figure 4.2: The fifth-band filter designed in Example 4.1. (a) Actual amplitude response
vs. the ideal specification, (b) Passband and stopband amplitude errors.
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Figure 4.3: The fifth-band filter designed in Example 4.1. (a) Amplitude response in dB.
(b) Linear-phase response in rad.
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Example 4.2

Here, we employ the SOCP approach to design a 53-tap linear-phase third-band band-

pass filter based on the least-square error criterion. According to the cutoff frequency con-

straint of band-pass Mth-band filter (2.16), i.e., (??1 + wal)/2 = p/3 and (??2 + ?32)/2 =

2p/3, the frequency specifications are set as u>si = p/3 — 0.05, ??? = p/3 + 0.05,

??2 = 2p/3 — 0.05, and ?32 = 2p/3 + 0.05. The design results are depicted in Fig.

4.4(a), 4.4(b), 4.5(a) and 4.5(b). The maximum least-quare error for this band-pass design

is 0.6164 and the maximum pass-band and stop-band approximation errors are 0.0039 and

0.0043, respectively. The execution time is 0.4688 seconds. It can be conclude that the

equiripple least-square SOCP design is appropriate for various Mth-band filters.
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Figure 4.4: The third-band band-pass filter designed in Example 4.2. (a) Actual amplitude
response vs. the ideal specification, (b) Passband and stopband amplitude errors.
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Figure 4.5: The third-band band-pass filter designed in Example 4.2. (a) Amplitude re-
sponse in dB. (b) Linear-phase response in rad.
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Example 4.3

In this example, we would like to demonstrate that the proposed approaches can be used

to design 2-D filters with arbitrary amplitude responses. Thus, the 2-D linear-phase 41 ? 37

Mth-band filters with different amplitude responses are directly designed via the mini-

max SOCP approach and compared with those met by the mini-max SDP approach. For

convenience, we choose the same interpolation coefficients as Example 3.3, i.e., M1 = 3

and M2 = 5. The frequency specifications are thus given as ??? = p/3 — 0.05, ?\3 =

p/3 + 0.05 and ?2? = p/5 - 0.05, u2s = p/5 + 0.05. The simulation results confirm that

both the SOCP and the SDP approaches are appropriate for the design of 2-D linear-phase

Mth-band filters with arbitrary amplitude responses. The plots of the different amplitude

responses are depicted in Fig. 4.6 and 4.7, respectively. It is observed from the Table 4.2

that the simulation results of the SDP design is better than the SOCP design. In order

Table 4.2: Comparison of maximum errors and execution time for the 2-D Mth-band filters
designed via the SDP and the SOCP approaches

Amplitude
response
Ai = I
A„

Ad = 3

Maximum error

SDP SOCP

0.0297

0.0595

0.0892

0.0303

0.0606

0.0908

Execution time (seconds)
SDP

31.1459

35.4846

30.5912

SOCP

65.5469

65.5313

65.4688

to further confirm this view, the filter of the unity amplitude response is designed by the

two approaches with different sizes. The data in Table 4.3 show that the SDP approach can

produce a nearly optimal filter with better maximum errors but less computational times
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than the SOCP approach. Furthermore, when the filter size is bigger, the difference of the

execution times between these two approaches is more obvious. Based on this analysis,

we can conclude that the SOCP is not competitive to design 2-D Mth-band filters from the

perspective of the design complexity and the performance of the frequency responses.

Table 4.3: Comparison of maximum errors and execution time for the 2-D Mth-band filters
designed via the SDP and the SOCP approaches

Filter

size

W1 = 10, N2 = 12
TV1 = 15, N2 = 15
N1 = 20, N2 = 18
N1 = 25, TV2 = 21

Maximum error

SDP SOCP

0.1113

0.0563

0.0297

0.0096

0.1139

0.0580

0.0303

0.0131

Execution time (seconds)
SDP

8.1717

14.7056

31.3903

41.2541

SOCP

8.3125

23.4375

65.5469

135.8906

Example 4.4

Although the SOCP does not seem to be better than the SDP in 2-D Mth-band filter

design, we still give an example to demonstrate the feasibility of the 2-D equiripple least-

square SOCP design. The same filter designed in Example 3.4 is considered here again,

i.e., the interpolation coefficients are M1 = A and M2 = 2. The frequency specifications

are set as ?1? — 0.2p, ?1ß = 0.3p, ?2? = 0.4p, and ?2, = 0.6p. The simulation results are

shown in Fig. 4.8. The maximum least-square, passband and stopband errors are 3.0846,

0.0809, and 0.0288, respectively, which are similar to the SDP design. However, it spents

more time than the SDP, that is 55.8906 seconds.
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Figure 4.6: Amplitude response of 2 for the 2-D Mth-band filter in Example 4.3. (a) Usin£
the SOCP approach, (b) Using the SDP approach.
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Figure 4.7: Amplitude response of 3 for the 2-D Aith-band filter in Example 4.3. (a) Using
the SOCP approach, (b) Using the SDP approach.
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Figure 4.8: The Mth-band filter designed in Example 4.4 via the SOCP. (a) Amplitude
response in linear value, (b) Amplitude response in dB.
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Example 4.5

Here, both the 1-D and 2-D Mth-band filters designed via the SOCP approach are

applied in the multirate system in Fig. 1.1 to resize a test image. We employ the same

frequency specifications and test images as in Chapter 3. The PSNR of the interpolated

images in Table 4.4 confirms that the Mth-band filters designed via the SOCP approach

also have a good interpolation property. The interpolated images are depicted in Fig. 4.9,

4.10 and 4.11, respectively.

Table 4.4: Comparison of PSNR for the interpolated images achieved through the 1-D and
2-D Mth-band filter designed via the SOCP approach

The peak signal-to-noise ratio (PSNR)
Test image 1-D Mth-band filter 2-D Mth-band filters

Lena 35.1429 35.1318

Girl (Elaine) 32.9976 33.0011
Fishing Boat 30.9903 30.9746

4.5 Conclutions

In this chapter, the SOCP optimization method has been studied for the design of Mth-

band filters, showing its better computational complexity for solving the second-order cone

constraint. The SOCP optimization problems have been modeled based on both the mini-

max and least-square error criteria. The performance of this approach in the design of

1-D and 2-D Mth-band filters has been evaluated, and the simulation results have been

compared with the SDP approach. It has been demonstrated that the SOCP approach can
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Figure 4.9: The interpolated image with a low level of detail, (a) Using 1-D Mth-band
filter, (b) Using 2-D Mth-band filter.
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(a)

(b)

Figure 4.10: The interpolated image with a medium level of detail, (a) Using 1-D Mth-
band filter, (b) Using 2-D Mth-band filter.
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Figure 4. 1 1 : The interpolated image with a relatively large amount of detail, (a) Using 1-D
Mth-band filter, (b) Using 2-D Mth-band filter.
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achieve the same maximum error but needs much less execution times for the 1-D Mth-

band filter design as compared to the SDP approach. On the other hand, the SDP approach

is preferable in the design of 2-D Mth-band filters due to its high efficiency and easy

formulation. Finally, it has been shown that both 1-D and 2-D linear-phase Mth-band

filters designed via the SOCP approach have good interpolation property.
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Chapter 5

Conclusions and Future Work

5.1 Summary

In this thesis, the convex cone optimization technique has been investigated for the de-

sign of linear-phase Mth-band FIR filters, owing to its powerful optimization capability

as well as flexibility in accommodating the time-domain interpolation condition. The de-

signed filters have been evaluated in terms of the approximation accuracy of their frequency

responses and their application in image interpolation. It has been verified through com-

puter simulations that the proposed approaches result in a designed filter having optimal or

nearly optimal frequency responses and satisfying the exact interpolation condition.

The first chapter has reviewed some existing optimization methods for the design of

FIR digital filters. It has been shown that neither the Parks and Mclellan program nor

the eigenfilter approach can offer a direct design of Mth-band filters, which is the main

motivation of the proposed work.
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Chapter 2 has introduced fundamentals of three classes of Mth-band filters, including

the time-domain interpolation condition and the cutoff frequency constraint. The relations

between the interpolation condition and the frequency specifications for each class have

been explained in detail. Besides, the restriction of the interpolation matrix M for the 2-D

linear-phase diamond-shaped Mth-band filters have been given based on the interpolation

condition and the symmetry of 2-D impulse responses.

In Chapter 3, a semidefinite programming (SDP) optimization approach has been de-

veloped for the design of linear-phase Mth-band FIR filters with an emphasis on accom-

modating the interpolation condition. The SDP optimization design problem has been for-

mulated based on both the mini-max and the least-square error criteria. It has been shown

through several design examples that the SDP approach can offer optimal or nearly op-

timal frequency responses of designed filters with a considerably reduced computational

complexity. Besides, the designed Mth-band filters have been applied to image interpo-

lation. The high perceptual quality of the interpolated images indicates that both 1-D and

2-D linear-phase Mth-band filters designed via the SDP approach have good interpolation

property.

Finally in Chapter 4, a second-order cone programming (SOCP) approach has been

studied as an alternative for the design of linear-phase Mth-band FIR filters. The SOCP

optimization problem has been also modeled based on both the mini-max and the least-

square error criteria. The design performance as well as the computational complexity

of the SOCP approach as compared to the SDP approach have been investigated through

numerical examples. It has been demonstrated that the SOCP approach can achieve the
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same maximum error but needs much less execution time in the 1-D Mth-band filter de-

sign as opposed to the SDP approach. However, the SDP approach is preferable in the

design of 2-D Mth-band filters due to its high efficiency and easy formulation. Moveover,

the Mth-band filters designed via the SOCP approach have also shown a high subjective

interpolation quality in image resizing.

5.2 Future Research

On the basis of the SDP and the SOCP optimization problems modeled for the design

of linear-phase Mth-band filters, the future work could target on how to extend the SDP

and the SOCP approaches for the design of nonlinear-phase Mth-band filters, or even other

classes of filters with specific requirements. Moreover, employing the SDP and the SOCP

to directly design the multidimensional Mth-band filters is perhaps another interesting but

challenging task.
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