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ABSTRACT

Overexpression, purification and characterization of diverse oxygenases from fungi

Zhuoxuan Yang

Bacteria and fungi are able to grow using diverse aromatic compounds as sole

sources of energy and carbon (1) (2). These abilities are of interest since many of these

compounds are toxic to higher organisms, which cannot degrade them. While bacterial

enzymes responsible for degradation of aromatics have been quite well studied, relatively

little is known about their fungal counterparts. The aim of this thesis is to expand

knowledge of aromatic compound degradation in fungi.

cDNA libraries from 1 5 diverse fungal species are available from the Concordia

fungal genomics group and within this database there are many BLAST (Basic Local

Alignment Search Tool) hits to genes encoding enzymes involved in aromatic

degradation pathways. Using bioinformatics techniques, DNA sequences encoding

putative mono- and dioxygenases that initiate aromatic compound degradation were

identified. Genes encoding these enzymes were amplified and used to construct

recombinant plasmids for overexpression of the corresponding proteins, which were then

purified, characterized and compared to their bacterial counterparts.

A putative salicylate hydroxylase from L. edodes, the shiitake mushroom, and a

putative phenol hydroxylase and a catechol- 1,2-dioxygenäse from Gloeophyllum trabeum

were expressed in E. coli. The putative salicylate hydroxylase was purified in good yield

using two chromatographic steps. The purified protein contained a 1 : 1 ratio of non-
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covalently bound FAD (flavin adenine dinucleotide). Interestingly, salicylate was a non-

substrate effector, stimulating production of hydrogen peroxide from NADPH and

oxygen, rather than hydroxylated product formation. In contrast, 2-aminobenzoate was

rapidly converted to 2,3-dihydroxbenzoate. Furthermore, spectroscopic probes of

binding indicated that the modes of binding of salicylate and 2-aminobenzoate are quite

different. Together, these results suggest that the enzyme is not a salicylate hydroxylase,

and that the true substrate is an amino aromatic compound. The putative phenol

hydroxylase from G. trabeum was also purified in good yield using two chromatographic

steps and was found to contain 1 mol of FAD per mol of protein. Uncoupling assays and

product analysis results suggest that the enzyme is a resorcinol-specific hydroxylase,

while phenol is a non-substrate effector. The putative catechol- 1,2-dioxygenase was

purified using four chromatographic steps, however, no activity was observed under any

condition.

In summary, potential functions were elucidated for two new fungal flavoprotein

hydroxylases, whose activities were not accurately predicted using sequence comparisons.

Additional work will be required to further examine the activities of the putative catechol

1,2-dioxygenase.
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INTRODUCTION

Aromatic compounds are common environmental contaminants in soil and ground

water, because they are widely used as solvents and intermediates in chemical syntheses

as well as in products such as pesticides and herbicides. Many of these synthetic

compounds cause environmental pollution and human health problems as a result of their

persistence, toxicity, or biotransformation into hazardous intermediates (J). However,

since microbes have evolved to degrade naturally-occurring aromatic compounds as sole

sources of carbon and energy, they often have the capacity to fully or partially degrade

man-made aromatics as well (J) (3), Such activities have the potential to be used to

remove aromatic pollutants from the environment, or to clean up chemical wastes. In

contrast, the ability of humans and other higher organisms to degrade aromatic

compounds other than amino acids is limited, and generally involves cytochrome P450-

mediated oxygenation followed by excretion (4).

In the past 20 years, studies have been performed on both aerobic and anaerobic

treatment of aromatic pollutants by using pure or mixed cultures of microorganisms.

Many microbial species that metabolize natural and synthetic organic compounds have

been isolated, pathways have been elucidated (3) and their enzymes have been studied

(e.g. (5) (6) (7) (8)). As a result of these types of studies, the metabolic strategies that are

used by bacteria for degradation of aromatic compounds are quite well known.
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Common features of microbial aromatic degradation pathways

The common aspect of all microbial aromatic mineralization pathways is the

cleavage of the benzene ring. In anaerobic degradation pathways, the ring is first reduced

and then opened (9). In aerobic catabolic pathways, which will be discussed in more

detail here, the ring is opened by the action of a ring-cleavage dioxygenase. As a prelude

to ring cleavage, the ring is hydroxylated: the catabolism of phenol may be considered as

an example (Figure 1). A hydroxyl group is added to phenol by an enzyme that uses

NADH or NADPH to incorporate one atom of molecular oxygen into the product, while

reducing the other atom to water. Enzymes that catalyze such reactions are called

monooxygenases (10). In the second step, the catechol ring is cleaved to an unsaturated

aliphatic acid by the addition of both atoms of O2 into the substrate. Enzymes that

catalyze such reactions are called dioxygenases and they are metalloenzymes which

require iron or manganese for activity (11) (12).

As is shown in Figure 1, ring cleavage of catechol can occur at either of two

positions: between the dihydroxylated carbons, or adjacent to them. Addition of oxygen

between the dihydroxylated carbons is called ortho or intradiol cleavage, and is catalyzed

by Fe3+ containing dioxygenases which produce eis, cw-muconic acid. Cleavage adjacent
to the dihydroxylated carbons is catalyzed by weta-cleavage (or extradiol) dioxygenases,

which contain Fe2+ and produce 2-hydroxymuconic semialdehyde.
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An example of an orí/20-cleavage enzyme is catechol 1, 2-dioxygenase from

Acinetobacter app., while catechol 2, 3-dioxygenase from Pseudomonas sp. strain CF

600 is an example of a meta-cleavage enzyme (13) (14). While different species of



bacteria use ortho- or meta-cleavage pathways, thus far fungi able to completely degrade

aromatic compounds have only been found to do so via orí/20-cleavage pathways, and no

fungal meto-cleavage enzyme has been reported.

Oxygenases involved in microbial aromatic degradation

In this thesis, the focus is on putative mono- and di-oxygenases involved in

phenol and 2-hydroxybenzoate (salicylate) metabolism in two species of fungi. Although

mammalian monooxygenases are, like cytochrome P-450, predominantly membrane-

bound, heme-containing enzymes, microbial hydroxylases are commonly soluble proteins

that contain flavin or non-heme iron prosthetic groups for the activation of O2 (30).

Electron-donating co-substrates such as reduced nicotinamide adenine dinucleotide or

tetrahydropterine cofactors are always required for monooxygenase-catalyzed

hydroxylation reactions (see step 1, Figure 1), as well as for ring-hydroxylating non-heme

iron dioxygenases such as biphenyl dioxygenase. Ring cleavage dioxygenases do not

require additional electrons for the reactions that they catalyze.

Fungal aromatic degradation-growth on aromatic compounds

Although pathways and enzymes involved in bacterial degradation of aromatic

compounds are the most extensively studied, similar pathways and enzymes have also

been reported in fungi that can grow at the expense of aromatic compounds (15). Fungi

can thrive in challenging environments that are unfavourable for bacterial growth, and

thus their degradative abilities may complement those of bacteria. Furthermore, it is

important to know what the degradative capabilities of fungi and bacteria are as aromatic
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compounds in the environment are degraded by microbial comrnunites, rather than pure

cultures.

Studies of oxygenases involved in benzoate, hydroxybenzoate and phenol

degradation by fungi have been reported. Benzoate-4-hydroxylases have been purified

from Aspergillus niger (16) and Rhodotorula graminis (17) and shown to require NADPH

for activity. The R. graminarus enzyme was stimulated by FAD while the A. niger

enzyme was not. Premkumar et al. reported that 3-hydroxybenzoic acid can be

hydroxylated to 3, 4-dihydroxybenzoic acid by 3-hydroxybenzoate-4-monooxygenase

from Aspergillus niger, the enzyme was found to be a flavoprotein requiring NAD(P)H

for activity (18). Salicylate (2-hydroxybenzoate) is commonly converted to 2, 3-

dihydroxybenzoate in fungi such as Aspergillus nidulans, A. niger, and

Trichodermalignorum (19). However, Haribabu et al. noted that salicylate can be

converted to 2, 4-dihydroxybenzoate in Aspergillus niger and to 2, 5-dihydroxybenzoate

in Trichosporon sp (19). Finally, Gaal & Neujahr (21) reported a NADPH-dependent

flavoprotein, phenol hydroxylase from Trichosporon cutaneum, that could be expressed

in the presence of phenol. The structure of this enzyme, determined using X-way

crystallography, has been published (20).

Some 07-r/zo-cleavage dioxygenases from fungi including enzymes catalyzing the

cleavage of catechol 3, 4-dihydroxybenzoate and 1,3, 4-trihydroxybenzene have also

been studied,. The 3, 4-dihydroxybenzoate-3, 4-dioxygenase from Rhodotorula

mucilaginosa (17) was reported to be able cleave the ring of 3, 4-dihydroxybenzoate to

form 3-carboxy-cw, cw-muconate. This enzyme was found to be a non-heme, iron-

containing protein. Varga and Neujahr purified a catechol- 1, 2-dioxygenäse from
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Trichosporon cutaneum (21), which catalyses the ring-cleavage of catechol to form eis, eis

muconate. Catechol ring cleavage activity has also been found in Aspergillis niger,

Pénicillium spinulosum and Schizophyllum commune. Karasevich et al. (22) reported the

ring cleavage of 1, 3, 4-trihydroxybenzene by 1, 3, 4-trihydroxybenzene 3, 4-dioxygenase

by Candida tropicalis grown on 4-hydroxybenzoate. Gaal and Neujahr (23) reported the

growth of Trichosporon cutaneum on 1, 3-dihydroxybenzene, with the hydroxylation of

the substrate to 1, 3, 4-trihydroxybenzene, which was subsequently cleaved by an

oxygenase. The ring cleavage of 1, 3, 4-trihydroxybenzene was also reported in

Sporotrichum pulverulentum (22), Rhodotorula rubra and Pénicillium citrinum (24).

Some fungal enzymes catalyzing reactions subsequent to ort/zo-cleavage of the

aromatic ring have also been described. 3-CaTbOXy-CW, cz's-muconate lactonizing enzyme

(CMLE) from Neurospora crassa catalyzes the reversible ?-lactonization of 3-carboxy-

cis, cis-muconate by a syn-1, 2 addition-elimination reaction (25). An X-ray structure of

this enzyme has been determined (26). The enzyme functions in the ß-ketoadipate

pathway, which is used in N. crassa and other fungi, yeast and bacteria for degradation of

catechol and protocatachuate in aerobic bacteria, fungi, and yeasts (27).

Although other enzyme activities of the ß-ketoadipate pathway in fungi have been

described, there is little information in the published literature on their characterization.

Aside from the T. cutaneum phenol hydroxylase (EC #: 1.14.13.7) and T. cutaneum and N.

crassa lactonizing enzyme (EC #: 5.5.1.5) sequences, which are directly linked to

enzyme characterization, there is very little sequence information published for aromatic

degaradation.
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Fungal degradation-oxidation of aromatic compounds

In addition to enzymes involved in degrading aromatic compounds that are used

as growth substrates, some fungi are able to oxidize aromatic compounds by virtue of

secreted peroxidases and laceases associated with lignin degradation (29). Lignin is a

nonrepeating heteropolymer of aromatic acids found in plant cell walls. Although it is

generally resistant to microbial attack, some white rot fungi and a small number of

species of bacteria can metabolize lignin by cleavage of linkages between aromatic rings,

and by ring cleavage to form CO2. In addition to lignin, the ligninolytic systems of some

white rot species have been shown to oxidize a very large variety of compounds. For

instance, Phanerochaete chrysosporium can mineralize a variety of persistent

environmental pollutants such as indane, benzo(a)-pyrene, DDT (1, l-bis(4-

chlorophenyl)-2,2,2-trichlorefhane) and 2,3,7,8- TCDD (2,3,7,8-terachlorodibenzo-p-

dioxin) (28). It has been suggested that these lignin-degrading white rot fungi could be

used for applications in environmental bioremediation such as the cleanup of toxic

organic chemicals in soils and waters (29).

Studies also have shown that some species of filamentous fungi hydroxylate

complex polyaromatic compounds using monooxygenase enzymes belonging to the

cytochrome P450 superfamily. Cunninghamella elegans, C. bainieri, Mortierella

isabellina, and Beauveria bassiana have all been shown to hydroxylate one or more

polyaromatic hydrocarbons (PAHs) (30). Bezalel et al. suggested that both lignolytic and

cytochrome P450 enzymes are involved in the degradation of PAHs in vivo. In this

scenario, the cytochrome P450 enzymes perform the initial modification of the aromatic

groups followed by degradation of the PAH derivative by the lignolytic system (30).
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Available fungal cDNA libraries

There are cDNA libraries of over 70000 genes from 15 diverse fungal species

available from the Concordia fungal genomics project. The 15 species of fungi include

Lentinula edodes, Aspergillus niger and Gloeophyllum trabeum. These cDNA sequences

are available at the following website: https://fungalgenomics.concordia.ca. Sequences

used in this thesis are from two species, Lentinula edodes and Gloeophyllum trabeum.

Lentinula edodes is commonly referred to as the shiitake mushroom. Initially,

mycelia burrow through the dead tissue of various hardwoods such as oak, beech, or

chestnut gradually utilizing the wood components to form fungal tissue and eventually

produce basidiospores. Basidiospores are then dispersed by the wind, and eventually

colonize another host (31). Due to the pleasant flavor and its nutritional as well as

medicinal value (32) (33), Lentinula edodes has become the most popular edible

mushroom. Consumption is thought to bestow anti-mutagenic, antibiotic and

immunomodulatory effects (34) (35). L. edodes is also capable of degrading the major

wood biopolymers, including cellulose, hemicellulose and lignin (36) and neutralizing

environmentally persistent pesticide contaminants such as chlorophenols and dioxins (37)

(38) (39).

Gloeophyllum trabeum can be found growing on the surface of dead trees, in

particular on hardwoods in temperate North American forests (40). It is a brown-rot

fungus, meaning that it degrades the cellulosic and hemicellulosic components of wood,

leaving the lignin biopolymers oxidized but intact. The resulting darkening and

deterioration of the wood substrate (41), gives rise to the term "brown rot". In order to
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degrade wood lignocellulose, Gloeophyllum trabeum uses Fenton chemistry to produce

extracellular hydroxyl radicals (42). An extracellular low molecular weight peptide (43)

and two intracelluar quinone reductases (44) are the most important components of this

biodégradation system which can be used in bioremediating polyethylene oxide (45) and

TNT. Gloeophyllum trabeum can also express various cellulose- and hemicellulose-

degrading enzymes, such as endoglucanses (46) (47), ß-glucosidases (46), xylanases (47),

and hemicellulases. When this fungus is grown in media with high carbon and low

nitrogen content, several of these hydrolytic enzymes can reach their maximal expression

level (46). Gloeophyllum trabeum also can cause the mineralization of benzaldehyde

catalysed by intracellular enzymes (48) and chlorophenols by manganese-independent

peroxidase (49).

Flavoprotein monooxygenases

Flavoprotein monooxygenases, such as the phenol hydroxylase shown in Figure 1 ,

use NAD(P)H as the hydride donor to catalyze the hydroxylation of aromatic compounds

in the presence of molecular oxygen. They are classified into two groups: single-

component flavoprotein monooxygenases and two-component flavin-dependent

monooxygenases (50). Single component flavoprotein monooxygenases contain tightly-

bound FAD, which, after reduction by NAD(P)H, activates O2 for insertion into the

aromatic substrate. In a two-component flavin-dependent monooxygenase system, a

flavin reductase produces reduced flavin, which is delivered to the monooxygenase

component to react with O2 and hydroxylate the substrate (50). These two component

enzymes will not be considered further since they are outside the scope of this thesis.
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Single component flavoprotein hydroxylases such as salicylate and phenol

hydroxylases are considered in more detail below. Generally speaking, flavoprotein

monooxygenase-catalyzed reactions involve three chemical steps (50). First, reduction of

the flavin by the hydride donor, NAD(P)H. Second, the formation of the oxygenating

reagent, C4a-flavin hydroperoxide from the reaction of the reduced flavin and O2.

Finally, binding, orienting, and activating the substrate for its oxygenation by the C4a-

hydroperoxide, and release of the second atom of oxygen as water from flavin C4a-

hydroxide. For most of the single-component flavoprotein aromatic hydroxylases that

have been characterized, reduction of the flavin is quite ineffective in the absence of

substrate, because it is often a critical control point for catalysis by flavoprotein

monooxygenases (50). Thus, this feature can be used to prevent the wasteful use of

NAD(P)H which would form reactive oxygen species such as H2O2 and waste reducing

equivalents.

NADPH reduces these flavoprotein monooxygenases and the oxidized product

NADP remains tightly bound. The reduced enzyme-bound flavin then reacts with oxygen

to form a C4a- (hydro) peroxyflavin that is quite stable in the absence of substrates.

Meanwhile, the bound NADP stabilizes the intermediate. As soon as substrate is present,

reaction with the C4a-(hydro) peroxyflavin occurs to yield the oxygenated product (50).

Salicylate hydroxylase

Salicylic acid is a phenolic phytohormone and is found in plants with roles in

growth and development, photosynthesis, transpiration, ion uptake and transport (51).
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Figure 2: Biodegradation of salicylate

Several soil bacteria are able to utilize salicylic acid (salicylate) as the sole source

of carbon and energy for growth. Microbial catabolism of salicylate is initiated by

salicylate hydroxylase to form catechol which can be further oxidized by the ortho

(intradiol) cleavage pathway (Figure 2) or meta (extradiol) cleavage pathway (52).

Bacterial salicylate hydroxylase is a flavin adenine dinuleotide (FAD) containing protein,

which catalyzes the decarboxylative hydroxylation of salicylate to form catechol with

stoichiometric consumption of molecular oxygen and NAD(P)H (53) (54).

Salicylate hydroxylases have been isolated from many different bacterial sources

and characterized. Sze and Dagley reported the purification of a salicylate hydroxylase

from T. cutaneum grown with 4-hydroxybenzoate (55). The enzyme contained FAD and

was monomeric. Salicylate hydroxylase studied by Shozo et al. (5) was isolated from a

strain of Pseudomonas putida and is a monomer with one FAD per 57,000 molecular

weight. Salicylate hydroxylase studied by White- Stevens et.al (7), was also isolated from

a soil bacterium and contained two moles of FAD and two subunits per 91000 molecular

weight.

Í -
'COOH

sOÌÌ O^ ^COOH
VCOOH
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OH
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Figure 3: Reaction catabolised by salicylate hydroxylase

As shown in Figure 3, in the presence ofNADPH one atom of molecular oxygen

(which is indicated in red) is incorporated per molecule of the product, catechol, while
the other atom is incorporated into water. Thus salicylate hydroxylase is a

monooxygenäse (56). In the presence of the substrate salicylate, the enzyme catalyzes the
aerobic oxidation OfNAH(P)H resulting in the hydroxylation of salicylate. In the

absence of salicylate, NAD(P)H oxidation can be also catalyzed by the enzyme to

produce hydrogen peroxide. In the absence of oxygen, it promotes the reduction of FAD
by NAD(P)H in the presence of salicylate (54).

The mechanism of salicylate hydroxylase is shown in Figure 4. The hydroxylation

of salicylate starts with the formation of a substrate-enzyme complex which contains

apoenzyme, FAD and salicylate with the ratio of 1 : 1 : 1 . Then NAD(P)H is oxidized with
the formation of enzyme-substrate-bound FADH2. Subsequently this complex reacts with

molecular oxygen to form the product catechol, CO2, and water (53) (57). In the absence

of salicylate, the holoenzyme is also stoichiometrically reduced by NAD(P)H to form

enzyme-bound FADH2, then this compound reacts with molecular oxygen stimulating the
formation of hydrogen peroxide and enzyme bond FAD. Enzyme-bound FADH2 can

also react in the presence of salicylate to form the product catechol.

12



CATECHOL

SA NADH + H+ Qs. E-FAD
£.PAD — r E-FAD-SA t- E-FADH3-SA t

V / H2O
\ NADH* H* /

' E-FADHa ~—r E-FAD -r HjO2

Figure 4: Mechanism of salicylate hydroxylase reaction
E and SA denote protein moiety of the enzyme and salicylate, respectively. Figure was
taken from reference (58).

The phenomenon of uncoupling has been well studied in salicylate hydroxylase.

For the enzyme characterized by White Stevens et al. (7), salicylate served as the perfect

substrate, with no uncoupling of oxygen to form hydrogen peroxide. When salicylate

was substituted by benzoate, oxygen was reduced in the same fashion as when salicylate

was present, but H2O2 was formed stoichiometrically with NAD(P)H oxidized and

benzoate unchanged. Both salicylate and benzoate thus facilitated NAD(P)H binding.

Benzoate can competitively bind at the salicylate binding site, inhibiting salicylate

binding and permitting NAD(P)H binding and oxidation. Thus benzoate is a

"pseudosubstrate" that utilizes molecular oxygen to produce H2O2 without hydroxylation

of the aromatic substrate, referred to as "uncoupling of oxygen activation from

hydroxylation" (7). Other salicylate analogues such as orcinol (59) and p-

hydroxybenzoate (60) were also tested as substrates. Some of these compounds were

hydroxylated, but some of the oxygen consumption was uncoupled, yielding hydrogen

peroxide. These compounds were bound to the enzyme with a Km higher than the

13



inducer, salicylate, and also facilitated NAD(P)H binding, but less effectively than did

salicylate. Thus the potential for uncoupling of oxygen activation from hydroxylation to

peroxide formation appears to be a general phenomenon for flavin hydroxylases (7).

Phenol hydroxylase

Phenol and its derivatives are widely distributed environmental pollutants, since

they are used in many industrial processes. A number of microorganisms have been

found to degrade phenol and metabolic pathways of degradation have been delineated

(e.g. (6) (61) (8).)

Phenol hydroxylase is a monooxygenase that catalyzes the first step in phenol

catabolism. As shown in Figure 1, in phenol degradation by aerobic bacteria, the

aromatic ring is initially hydroxylated by a phenol hydroxylase at a position ortho to the

pre-existing hydroxyl group to form catechol. This enzyme uses NAD(P)H and O2 as

co-substrates. The second step in phenol degradation in either ortho or meta cleavage

pathway, is catalyzed by catechol 1, 2-dioxygenase or catechol 2, 3-dioxygenase,

respectively. After ortho cleavage of the ring, enzymes convert the product, eis, cis-

muconic acid, to succinyl-CoA and acetyl-CoA, whereas after meta-cleavage, the product,

2-hydroxymuconic semialdehyde, is cleaved to pyruvate and acetaldehyde, and

acetaldehyde is subsequently converted to acetyl-CoA.

Phenol hydroxylase is composed of either one or multiple components. The

phenol hydroxylase from the soil yeast Trichosporon cutaneum (6) and the bacterium

Pseudomonas pickettii PKOl (62) are single component flavoproteins, where the enzyme

from Bacillus thermoglucosidasius A7 studied by Ulrike Kirchner et al. (61) is a two-
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component enzyme, and the phenol hydroxylase from Pseudomonas CF600 studied by

Shingler et a\.(63), is a multicomponent protein. The two component phenol hydroxylase

from Bacillus thermoglucosidasius A7 consists of two homodimeric proteins: an

oxygenase and a flavin reductase. Multicomponent phenol hydroxylases contain three

components (14) (63) (64): one is an oxygenase that binds substrate and oxygen and is

responsible for hydroxylation, while another is a reductase that binds NAD(P)H and is
responsible for electron transfer from NAD(P)H to the oxygenase. The former is

generally an oligomeric protein, while the latter a monomeric iron-sulfur flavoprotein.
An activator protein is the third component (65).

Most relevant to this thesis is the phenol hydroxylase studied by Neujahr et al,

which was purified from the soil yeast Trichosporon cutaneum grown on phenol or

resorcinol as a major carbon source (6) (66) (67). This enzyme contains one mole of FAD

per 148,000 Da subunit. As shown in Figure 5, in the presence ofNADPH, one atom of

molecular oxygen (which is indicated in red) is incorporated into the product, catechol,

while the other atom is incorporated into water. Thus phenol hydroxylase is a

monooxygenase. As has been described for salicylate hydroxylase, some aromatic

compounds are non-substrate effectors and stimulate phenol hydroxylase to form

hydrogen peroxide from NADPH and oxygen. For example, resorcinol is a partially

uncoupled non-substrate effector for the phenol hydroxylase studied by Neujahr et al. (66)

phenol
?G^?0? hydroxylase fT^V0HI J + NADPH + O2 +H+ — -^[I J^11 + NADP+ + H2OOH

NADP+ + H2O2

Figure 5 : Reaction catalyzed by phenol hydroxylase
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CatechoI-1, 2-dioxygenase

The second step in the o/Y/zocleavage pathway of phenol is catalyzed by catechol

1 , 2-dioxygenase. Catechol 1 , 2-dioxygenases have been purified from diverse microbial

sources and are nonheme, Fe -containing enzymes, (e.g. (21) (68) (69)). Also, a number of

crystal structures of catechol 1 ,2-dioxygenases that has been solved (70). The product of

catechol 1, 2-dioxygenase is eis, cw-muconic acid, in which the aromatic ring is split

between the two carbon atoms bearing hydroxyl groups with the incorporation of two

atoms of molecular oxygen into the substrate (69) (71) (Figure 6).

catechol 1,2.dloxye«nctc eniym·* of the
ft -k«totdlp«C« pathway

.O* °l ^-íN«. «ucctnat·

catechol cis,c/c-mueonct·

Figure 6: Reaction catalyzed by catechol- 1, 2-dioxygenase

Figure was modified from reference (69).

Kojima et al (72) purified the catechol 1, 2-dioxygenase from a cell-free extract of

benzoate-grown Pseudomonas arvilla C-I and reported the spectral properties associated

with its catalytic activity. The purified enzyme preparation of catechol- 1, 2-dioxygenase

from A. calcoaceticus had a red color with broad absorption between 390 and 650 run.

The enzyme contained 2 atoms of iron per 80000 Da of enzyme protein (69). Varga and

Neujahr reported purification a catechol 1, 2-dioxygenase with a molecular weight of 109

kDa from the soil yeast, Trichosporon cutaneum (21). Both di- and trivalent iron are
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present in the enzyme. Trivalent rather than divalent iron is the active agent in the

oxygenation reaction. The T. cutaneum enzyme had a pH optimum similar to its bacterial

counterparts as well as similar resistance to oxidizing agents and sensitivity to reducing

agents. However, the specific activity of this enzyme was higher than that of the

enzymes from other sources (21). Significant differences are also found in the absorption

spectra of the purified enzymes. There is a single peak in the ultraviolet region at 280 nm,

a shoulder at 330 nm, and a rather pronounced peak at 560 nm. While the ultraviolet

region shows a great resemblance to the spectra of catechol 1 ,2-dioxygenases isolated

from other microorganisms the visible region is rather different. Instead of the broad

maximum between 400-600 nm, which is usually ascribed to enzyme-bound ferric iron,

the enzyme purified from T. cutaneum has a relatively sharp maximum at 560 nm. This

type of spectrum gives association to a charge transfer complex between ferric iron and

catechol, instead. Similar to other catechol 1 ,2-dioxygenases isolated from other

microorganisms, the characteristic red colour of the active enzyme disappeared upon

inactivation (by iron chelating agents and reducing agents) (21).

Hydroxyquinol-1, 2-dioxygenase

Hydroxyquinol 1 ,2-dioxygenase (1,2-HQD), catalyzes the ring cleavage of

hydroxyquinol (1,2,4-trihydroxybenzene), which is an intermediate in the degradation of

various aromatic compounds (including some polychloro- and nitro- aromatic pollutants)

to 3-hydroxy-cis,cis-muconates (73). Hydroxyquinol 1, 2-dioxygenase is a member of

the aromatic dioxygenase family, a family of mononuclear non-heme intradiol-cleaving

enzymes (73).
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Sze and Dagley reported the purification of a hydroxyquinol 1, 2-dioxygenase

from T. cutaneum (55) grown with 4-hydroxybenzoate. It was shown to be a red ferric

iron-containing enzyme, and it was specific for hydroxyquinol. Catechol and pyrogallol

were oxidized at less than 1% of the rate for hydroxyquinol. The enzyme was reported to

be a dimer with two subunits having molecular weights of 39600 and 38200.

Latus et al. (74) studied a hydroxyquinol 1, 2-dioxygenase purified from the soil

bacterium Azotobacter sp. strain GPl grown with 2, 4, 6-trichlorophenol as the sole

source of carbon. The enzyme was highly specific for 6-chlorohydroxyquinol (6-chloro-

1, 2, 4-trihydroxybenzene) and hydroxyquinol (1,2,4-trihydroxybenzene), and was found

to perform ortho cleavage of the hydroxyquinol compounds, yielding

chloromaleylacetate and maleylacetate, respectively. The addition of Fe ions

significantly activated enzyme activity. The protein was determined to be a dimer with a

molecular weight of 58000, and the protein can be inhibited by metal-chelating agents.

The goal of my project

cDNA libraries of over 70,000 genes from 15 diverse fungal species are available

from the Concordia fungal genomics project and within this database,

https://fungalgenomics.concordia.ca, there are many BLAST hits to enzymes involved in

aromatic degradation pathways. Studies of degradation of aromatic compounds by fungi

has to a large extent focused on oxidation of aromatics by lignin and other peroxidases,

but as discussed above fungi do have the ability to degrade aromatic compounds as sole

sources of carbon and energy, much as bacteria do. In addition to the species and growth

substrates described in the previous sections, other species of fungi are also known to
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have the ability to degrade benzoate and hydroxybenzoates using ortho -cleavage

pathways channeled through 3,4-dihydroxybenzoate (75). Many of the studies of fungal

aromatic degradation pathways and their enzymes were done prior to the ready

availability of gene sequences and gene sequencing technology, so there is very little

information about them that relates structure to function. By contrast, much is known

about structure-function relationships in bacterial enzymes involved in aromatic

degradation and, in fact, this information appears to have been applied extensively to the

annotation of fungal genes. The availability of this cDNA library therefore presents an

opportunity to obtain experimental support for structure-function relationships in fungal

enzymes involved in aromatic degradation pathways.

In this project fungal genes encoding proteins with predicted similarity to bacterial

monooxygenases and dioxygenases involved in aromatic degradation pathways were

selected for further study. The goals of this project were to amplify these genes,

construct recombinant plasmids, overexpress and purifiy the corresponding proteins, and

characterize them. It was expected that this information would expand our knowledge of

fungal enzymes involved in aromatic degradation pathways, and the genes that encode

them.
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MATERIALS AND METHODS

Materials

All chemicals were reagent grade or of the highest available purity.

Oligonucleotide primers for PCR were synthesized by BioCorp Inc. (Montreal, Quebec,

Canada). Pfu DNA polymerase for PCR was purchased from Fermentas. Recombinant

plasmids were constructed using the pETBlue-1 vector (76). For expression of

recombinant proteins, E. coli (DE3) pLac- 1 cells were used (76). Restriction enzymes

were purchased from Fermentas, Promega, Roche or MBI. NADPH and FAD were

purchased from Roche Science and Boehringer Mannheim GmbH, and made up freshly

in 2mM Tris-Cl buffer and distilled water, respectively. The concentration of NADPH

and FAD stock solutions were calculated using 8340= 6220 M'1 cm"1 and 8450= 1 1300M"1
cm"1.

Target sequences

Ledol986, Gtral5l6 and Girai 270 represent the fungal genes used in this study

and were obtained from the Concordia fungal genomics group

(https://fungalgenomics.concordia.ca). The following sequences were translated into

amino acid sequences and used for bioinformatics studies.
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AT SAGCACS 23CSCS CASACAS SGGAC CTCSACSS SS SCGAAATGGTATCCTCAACAAACCCCAAC3S CAAACAACS
CCGCGSGGCAGSAA3SGGSGGAGGSCSSGGAGGSC3CSCSGC3GCCGSCGCSSSGCGSCGSGCSGGTCATCTSGSSG
AAAS3SACGAACGSCGCGACSSCAACGSAGAAGSCGGSGCCSCCASC3C3SGSGCCGCCAASGGAACCCAGSGGCSG
CGAGAAS GGGAAGSAGA3A3SCCCGASA3GAAACC3GSSA3CCS3ASGAAGCSAG3AASGCGCGACSGGGAGAC3GG
AAGGASS CSGAACCAA3ACAACSSGGASAAASASGAG GAGGAA3GGGGAAASGSC3ACAACASG3SACASAGACAAG
ACASGCASGCSACSSSGCSCAAGACCGCGACSSCSCCAGAAGGCAAAGGAACGCCASG3ASAGSGAAAA3CGACCAC
A3 CSGCGAGACAGSCGASSCAGAAGCGGGAACCGSCACGS3CAAAAAS GGSGS SACAGSCAAAGCGGACA3SASCA3
3GGSGCAGA3GG3ASCCGGSCSGSSGSSCGAGGCCAAASCGGGGSCG3ACCGGACASGAAGSCGGCSCCGCAGACG3
GCSASCGCCSSAACGSCAAAAAGSCAGS3G33GACGAACSAGGGCSSG3GAAGSACSCSSASGAGCCAGCSASSCAA
S3CSGGGGSGGSCSSCAAGGGAAAAASGG3CGASCCAAASA33ACAAGA33GSGASGSCGCCGSGS3CSGA3GGAGA
GASCGS3SCCSSCSAS3GCSSSASGCCAACSGAATSGACAAAGCACCACGAAGAGGGCS3SACCS3CGCGGAAGSGC
CAGSA3CAGACGSSAS3 GCCGGACGGSACGACGAACSAGACCCAGAC3GCGSGAACC3GSSGAAAAASSCGGSCGA3
CGGASGCCSSGGCGSC3GSACGS3CACCAACCG3ACGACCGGS GG SSCGCGGGCAACACS SGCASS CSSGGSGASGC
SGCSCASCCCAS GAS GCCCCAC CAGSCSCAAGGCGCGSGSCAAGCSASCGAAGAS GCCGC CGCSCSAGGSASCA3CS
SCSCCGACAAGSACAACSSTACCACAGASGSSACCGCCGGA3SGGCSA3G3ASCAGACAASSCGAAAGCCCAGGGCA
ACCAGAGSACAGSCSGCA3CSGCGCGCGCAACAGAGAA2SSGAACGAGAGGASCGGSSS3ACSAGC3SGACACCSCA
3GACGCGSCCSSAGCSGCSGCSGAGGGAAAASSGACCAS3AAS GAGAS GAACAGCSASAAAAS GCACAASCASASCG
CGACCGAGGSGGACAAGS3AGGAGGSGGAA3GGGCCCSACSASSGCAGSGA3G3GAACGSAAASACAGGACGSCSAG
AG GCAAAGASGGS3GG3SSSGACSSSSCTGGGTGCTGGTGATGAS33ASSÄCGASA3SCCGCGCSGASSGSASSSSC
3SGSSCCCACSCC23SCSCCGAGSSCS SSGGS CGGASSASASGSAASAAAAGSGAAGCACGGSCCCGSGACACCASS
SCSCSCAAAAAAAAAAAAAAAA

Figure 7: DNA sequence ofLedo 1986 (obtained from
https://fiingalgenomics.concordia.ca)
The predicted start codon is indicated in red and the highlighted sequences were used
primers for PCR amplification

G23GAAC3C3CAGCCCGCCCAACATGCCSGTACCCGCCATGAAGGAA3CCGACG3GGA3G3GC3CGS3A3CGG2GCG
GGACCSGCGGGCSSGAS GSGSGCGCAGGGG CS GGCCAGGGCAGGS GSAAASGS CCGGASS G3GGACAAGAGACCAGG
CAAGGSCGCGGCGGGACAGGCS GASGGCAS CCAACCACGCACAASSGAAGSGCSACAGAGCSASGGAC3CGCCGAGC
GACSASS GAAGGAAGGCAACCAAASGCACASGGCAGCASSCSASGACCCCAGCCCCGAAGGAGGAASCCACCGSACA
GGACGAACACCGGACA3CAASGCCCC3ACGGCCCGASSCCCGSSCGAGGSCACCCSCCAS CAG GGCGC GAS CGAGSC
CASASSC3SAGACSGCCSCCGC3CGASGGGGCACGAAGSCGAGCGSCCAGSGGSCCCGGAASCGCSSGAGASCSCAG
ASAACCGAGACGCCS3GAAGGASCCGCAAGCGCGCGCSGSAÄAGGSSG3AC3GAAGCACGSGGACGCACCCGAGGGG
AAAGASACCGAAGSCG33CACGCGAAASACGS3GSCGGCGCAGACGGCGCCCASSCASGGGSGAGGAAACAGC3CGG
CSS3 GCCAS GGAGGGCGAACAAACAGA3SASGSSS GGGGS GSGGS CGACASGASACCC GACACAGAC3 SCC CG GACA
SCCGCAACCGGSGCGCGASCCASSCGAACAACGGCSCASGCASGGS3ASACCGCGCGAAGGGGASGSSG3GAGGSSG
SASASCCASCSSACGGACGAGGACGSCCSAGACGSGACGACSGGSCGCGSSGACACGCAGAAGSGCAGCSCSSAAAA
AS SSCSSSASSSSSCAAASiAS SCSSS CCASCwCSAS CSCASCAASSCAAAGSGC SATASACS SSSGSSSACSASAS
ACASCASSGGSCAGCGCGSGGC3SCAAAGSSC3CAGCGCACGAACGCGSASSCASCGCSGGSGA3GCCSGSCACACG
CASSCSCCCAAAGCCGGÂCAGGGGASGAACGCCAGCA3GAACGA3ACCCACAACC3GA3C3GGAAGSSGACGCASGS
GCSSCGAGGASGGGCGGASAS3SCGCSGCSAAAGACSSACGAGSSGGAGCGCCGAAAGSACGCSCAGGACCSGASCG
CGSS CGACAAAGAGSSCGCC3CACS GS 3SSCCAAGAAGCCGAAGAGCGAAGAGAACCCCGACGGCGSCACACAAGAG
GAASSCGSAGAGGCCSSCCGSACG3SCGGSGGCSSSACGAGCGGCASCGGGASCCACSACGCSCCGSCCACGASCGS
CGACGCAGCCCACCAGGCC3CCGCCSCCAAGCSCASCASCGGCCAGCGSG3GCSCCCGCAGACCG3 CASCCGC GCAG
CCGACGCGCGCCCGSACGAGCSGCAGGACCSCC3SCCCGCCGASACCCGCS3CAAGCSCC3CGSCS3CACGGGCGAC
AS CGGCGCGCCGGAGCAGAAGCGGAAAGSCGACGAACSSGCGAAGCACCS GGAGC GGAAGGAGAGCS3CSSGGGCAG
GSSS GGGGAGCAGAAGAASGASGSGSS CGASGSGSSSGCS G3CSGSC3CSCGAGAAAAGAGGACGSGG3G3ASACSG
ACGS GCCCGAGGSA3SCCGGCCCCACS GG3 CCAAGG33C3CC3CGACGACG3CGA3ACCACGGGCAAGG3CGGCGCG
GGCGSG3ACGAGAAG3S3GG3AS3GGCSCCGAGGGCGCSASSG3CG3AGSCCGGCCGGACGGG3ASGSCGGGAS3G3
3GCGCCSSSGGACGACGSS3CCGSSCSGGAGAGS3ACSSSGCSGGGSSSSSCGCGAAGSCATGACCTGSSGCCCSSG
SGASASC3GAG3CGAGA3CSSSSGCAGS3SGSGS3SAA3AGCAGGSC

Figure 8: DNA sequence of Girai 5 16 (obtained from
https://fiingalgenomics.concordia.ca)

The predicted start codon is indicated in red and the highlighted sequences were used
primers for PCR amplification
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CGACGACAÄGÄAGCCCCTTCAAGCCAAGGCAGSGS CGAACGGCCTTCCGCCT&TGCCTAACCTTGACTTGCCGTACC
CGGACAGACCAGAGCSCArTACGGAGAACCSSCTGAAGITGACCAACSSGArTACCGATGAACGAAAGAAGTACATC
TT CAAGAAT TSAASTACGCASATACACCAATT CAT CAASGAGACAAGTAT CACCACGGACGAASGGAS GAACACCAT
CCAATTT CT GACCCGGACAGGT CAAAS CTGCACGCCCASTCGTCAAGAGTSCATCCTGCTCTCCGACGSCCTCGGCA
TCTCCGCGCTCGSAGACGCACTSAACAACCCCCCAGTCAGCGGCGGGACGGAGAGCAGCGTGCTCGGGCCTTTC3SC
ACSGAGGAC GCTCCCGACGTCAACAACGGCGATTCTASTGCGTCCGAGGGCAAGGGGCAGTACATG3ACGT CGAGGG
GCGTGTAAT CGATACGCACGGGAAGCCAGT CCCGAACGCT CTCAS CGAAACGT GGGAGACAGACGAGTATGGCSSCT
ACGACACGCAATASGCGGACAGAAGCAAACCCGACSGCAGGGGCCGCS SGCGGACGGACAAGGACGGTAGATACGGC
TACCGCGCTGTCGSSCCAGSAGCGSACCCCA3CCCCGGTGACGGCCCCGTCGGAGACTTACSGCTCAT GCS CAACCG
ACACAATAT GCGCCCGAACCATCSGCATAS GATGATCGAG GCACCGGGCTACCAGAAACSCACGACCGCGS TCSACC
CCGAGGGCGASGAGT GGCSS GC GAGCGACGC3 GTT TT CGGCGT CAAGAAATCCCT GGT CGTCACAT TGAAGGATGTG
GACAATGAG CAGGAGGCGCGCAAGCGTGGGTTCCCCAAGGGGAGCCACSTCAAGTSGCTTGAGCAS GATCT CGTGSS
GGSSCCT GAGGCTGAGSCCAAGGCGGCGCGGGAACAGSACGCGAGGGAACASGCTGTSAACAGGAGSAACGAGATTC
aaffr&TftA&GSATGATTTGCGTCTTGgATGASGGGCGGACGTGCCAGTGCAGGCTGTATTATGASAGTTCAACCSGS

CAGGAAT GTASS SCTAS TGCACASC CAAAAAAÄAAAAAAAGAAAAAAAAAAAAAAÄAAAAC

Figure 9: DNA sequence of Gtral270
Inserted start codon is indicated in red and the highlighted sequences were used as
primers for PCR amplification (Gira 1270B). Underlined sequences are the primers used
for Gtral270A

Recombinant plasmid construction and restriction digestion

PCR was performed using standard protocols (77), and Table 1 shows the

parameters used for amplification of each of the genes under study.

Step
Initial Denaturation
Denaturation
Annealing

Extention

Final Extention

Temperature ("C)
94

94

41(forZei/ol986)
51 (forGiral516)
37(forG/ral270A)
40 (for Grral270B)

72

72

Time (min)

0.5

0.5

2.8 (for Ledo 1986)
3.7(forG/ral516)
1.7 (for Girai 270A)
2 (for G/ral270B)

Number of cycles

25

Table 1: PCR settings for Ledol9S6, G/ral516, G/ral270A and Giral270B
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Table 2 shows the primers used for amplification of the target genes. Amplified

fragments were subsequently ligated into the EcoRV site of the expression vector
pETBlue-1 (Figure 10) which was supplied by the manufacturer in the open form. Thus,
the salicylate hydroxylase, phenol hydroxylase or catechol dioxygenase (hydroxyquinol

dioxygenase) coding region was inserted downstream from the T7 promoter (as shown in

Figure 10). Recombinant plasmids then were used for transformation of the E. coli (DE3)

pLac- I strain. Transformants were plated on LB agar plates containing 50 µg/ml
carbenicillin and grown overnight at 37 0C; selected individual transformants were grown

in liquid LB medium with the same concentration of carbenicillin. Plasmid DNA was

purified using a Wizard Miniprep Kit (Promega) and screened for correct insert

orientation by restriction enzyme digestion. Recombinant plasmid DNA was sent to Bio

S&T (Montreal, Quebec, Canada) for sequencing of the insert region. pETBlueUP

primer, TCACGACGTTGTAAAACGAC and pETBlueDOWN primer,
CAATTTAACGATTGCGTCAG were used for DNA sequencing.

Target Gene

Ledol9S6

Gtral5l6

Gtral270A

GtrainOB

Primer Sequence

5'- ATGGTATCCTCAACAAACC-3'

5'- TCATCACCAGCACCCAG-3'

5 ' -ATGCCTGTACCCGCCATGAAGG-3 '

5 '-CAAGGGCAACAGGTCATGACTTCG-3 '

5 '- ATGAACACCATCCAATTTCTG-3 '

5'- CATAATACAGCCTGCACTGG-3'

5'- ATGCCTAACCTTGACTTG-3'

5'- CCATCATACAAGACGCAA-3'

Target Gene Size

1388 bp

1895 bp

844 bp

983 bp

Protein Size

48600 Da

66600 Da

29100Da

35900 Da

Table 2: Primers used for construction of target genes
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Figure 10: Expression vector pETBlue- 1 map
Target gene is inserted into EcoRY restriction site in the multiple cloning site.

Agarose gel electrophoresis

A 0.7 % agarose gel was used to separate and analyze DNA fragments. The
GeneRuler™ 1 kb DNA Ladder Plus was purchased from Fermentas. DNA was

visualised in the gel by addition of ethidium bromide.
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Bacterial growth and protein expression

E.coli strain (DE3) pLacl was employed as the expression host, which carries a
chromosomal copy of T7 RNA polymerase under the control of the lacUV5 promoter and
lac repressor from the compatible pLacl plasmid to ensure repression unless induced (76).
The recombinant plasmids with the genes encoding Ledol986, Gtra\S\6 and GtralllQ
under the control of the T7 promotor were used for transformation. Transformation was

carried out as described (78). Subsequently a single colony was picked, suspended in

300 µ? of LB and the cells were then evenly plated on six LB agar plates containing 50
µg/ml carbenicillin, 34 µg/ml chloramphenicol and 1 % glucose. The plates were then
incubated overnight at 37 0C. Cells were scraped from the plates, resuspended in 50 ml
of LB, and inoculated into 6 L of LB containing 100 µg/ml ampicillin. For protein
expression the cell cultures were grown at 37 0C with shaking (225 rpm) until OD6oo
reached 0.8-1.0, and then IPTG was added to a final concentration of 0.5 mM. The

induced cultures of Ledo\9%6, Gtra\516 and Gtral270 were grown under optimum

induction conditions, which were determined experimentally as described in Results.

Then the cells were harvested by centrifugation and washed once with 50 mM Tris-Cl

buffer, pH 7.5, and the cell pellets were weighed and stored at -8O0C until use.

Optimization of expression condition

In order to determine conditions allowing the highest expression levels of soluble

proteins, small scale (50 ml) IPTG-induced cultures expressing Ledol986, Gtral5l6 and
Grra 1270 were grown for an additional 1, 2 or 3 h at 37 0C, or 3, 6 h and overnight at 20
0C. Then the cells were harvested by centrifugation, resuspended in 50 mM Tris-Cl
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buffer, pH 7.5 (2 ml/ g cells), and subjected to sonication using a Branson Sonifier 250
under 50% full power, output of 4, for 10 bursts of 6 s each. After centrifugation (62000
? g), the expression level of each protein in the supernatant at different induction
condition was examined by SDS-PAGE.

Purification ofLedol9S6

Preparation of crude extract

All procedures were carried out at 0-4 0C. Frozen cell paste was thawed and the
wet bacterial cells (24-30 g) were suspended in cold Tris-Cl buffer (pH 7.5 at room

temperature, pH 7.9 at 40C) (2 ml/ g cells) with DNase (1 mg/ml cell suspension) and
RNase (0.25 mg/ml cell suspension). Batches (30-40 ml) of re-suspended cells on ice
were sonicated using a Branson Sonifier 250 at 50% full power, output of 4, for 15 bursts
of 10 s each. The resulting slurry was centrifuged using a Backman ultracentrifuge at

62000 ? g for 1 h in order to separate the cell-free extract from cell debris. The yellowish
brown supernatant was carefully decanted from the pellet and used as the crude extract.

Fast-Flow DEAE-Sepharose chromatography

Crude extract was applied to the column (20 cm ? 3 cm) equilibrated with 50 rriM
Tris-Cl buffer, pH 7.5, at a rate of 6 ml/min. Once the sample was loaded, the column
was washed (6 ml/min) with about 800 ml 50 mM Tris-Cl buffer pH 7.5, and 200 ml of
the same buffer containing 50 mM NaCl until no protein was detected in the eluate

fractions. A linear gradient (800 ml) from 50 mM to 150 mM NaCl in 50 mM Tris-Cl
buffer was applied at a flow rate of 2 ml/min and the Absorbance of the fractions was
measured at wavelengths of 280 nrn (for protein) and 450 nm (for flavin). The enzyme
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activity in each fraction was also measured. The fractions containing peak enzyme

activity were combined.

HP-Phenyl-Sepharose chromatography

The pooled fractions from the Fast-Flow DEAE-Sepharose column were
concentrated to 2-5 ml using a YM-30 ultrafiltration membrane and brought to 20%

saturation (10.7 g / 100 ml) with ammonium sulfate. The sample was then centrifuged at

15600 ? g for 15 min to remove precipitate, and the supernatant was then loaded on a

High Performance Phenyl-Sepharose chromatography column (15 cm ? 3 cm)

equilibrated with 50 mM Tris-Cl buffer, pH 7.5 containing 20% saturated ammonium
sulfate. A linear gradient (800 ml) from 20% - 0% saturation of ammonium sulfate in 50

mM Tris-Cl buffer, pH 7.5, was applied at a flow rate of 2 ml/min. The Absorbance at

wavelengths of 280 nm and 450 nm as well as enzyme activity, were measured for the
collected fractions. The fractions containing peak enzyme activity were combined.

Purification of Gtral516

Preparation of crude extract

The procedure was the same as described for Ledo 1986.

Fast-Flow DEAE-Sepharose chromatography

The procedure was the same as described for Ledo 1986. The combined fractions

were then applied to an octyl-Sepharose column.
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Octyl-Sepharose chromatography

The combined fractions from the Fast-Flow DEAE-Sepharose column were

concentrated to 2-5 ml using a YM-30 ultrafiltration membrane and brought to 20%

saturation (27.1 g/ 100 ml) with ammonium sulfate. The sample was centrifuged at
15600 ? g for 15 min to remove precipitate, and the supernatant was then loaded on an
octyl-Sepharose chromatography column (10 cm ? 2 cm) equilibrated with 50 mM
Tris-Cl buffer, pH 7.5, containing 20% saturated ammonium sulfate. A linear gradient
(600 ml) from 20% - 0% saturated ammonium sulfate in 50 mM Tris-Cl buffer, pH 7.5,
was applied at a flow rate of 2 ml/min. An additional 300 ml of 50 mM Tris-Cl buffer,
pH 7.5, and then 300 ml of 5 mM Tris-Cl buffer, pH 7.5, was used to elute remaining
proteins. The Absorbance at wavelengths of 280 and 450 nm, as well as enzyme activity,
were measured for the collected fractions. The fractions containing peak enzyme activity

were combined.

Purification of GiralUQB

Preparation of crude extract

The procedure was the same as described for Ledo! 986.

Fast-Flow DEAE-Sepharose chromatography

The procedure was the same as described for Ledol986.

High Performance Phenyl-Sepharose chromatography

The procedure was the same as described for Grral516.
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Octyl-Sepharose chromatography

The procedure was same as described for Girai 5 16. This was followed by gel
filtration chromatography.

Gel Filtration chromatography

The combined fractions from the octyl-Sepharose column were concentrated to 2-5

ml using a YM-30 ultrafiltration membrane. The sample was centrifugea at 62000 ? g
for 15 min to remove precipitate, and the supernatant was then loaded on an S300 gel-
filtration chromatography column (40 cm ? 2 cm) equilibrated with 50 mM Tris-Cl buffer,
pH 7.5. Then 240 ml of 50 mM Tris-Cl buffer, pH 7.5, was used to elute the proteins at a
flow rate of 0.5 ml/min.

Since the purified Gtral270B protein was not active, SDS-PAGE was used to
locate the fractions containing the target protein though-out the purification steps.

Enzyme activity assays

All assays were carried out using a Cary Bio50 spectrophotometer at room

temperature, with 50 mM Tris-Cl, pH 7.5 as the assay buffer, unless indicated otherwise.

For bacterial salicylate hydroxylase, the consumption of NADH is proportional to

the formation of product (S). Thus, enzyme activity for Ledo 1986 was estimated by the
consumption of NADPH (the enzyme was not active with NADH). Each assay was
routinely carried out in 50 mM Tris-Cl buffer, pH 7.5, containing 0.2 µ???? NADPH, 0.15
µ???? salicylate and 2.8 µ? enzyme in a total volume of 1 ml. The activity indicated is
the oxidation of NADPH in the presence of salicylate (i.e. with background NADPH

29



consumption subtracted). One unit of activity is defined as the amount of enzyme

required to oxidize one µ???? of NADPH per min at room temperature, and the specific
activity is defined as enzyme units per mg of protein.

The activity assay for Girai 5 16, a predicted phenol hydroxylase, was as described

for salicylate hydroxylase, but using phenol as substrate instead of salicylate. Assays
were carried out in 50 mM Tris-Cl buffer, pH 7.5, containing 0.2 µ???? NADPH, 0.15

µ???? phenol and 0.8 µ? enzyme in a total volume of 1 ml.

Enzyme activity of GtralllQ (A and B), a predicted catechol-1, 2-dioxygenase,

was determined spectrophotometrically by measuring the increase in Absorbance at 260

nm (79). The assay was carried out in 50 mM Tris-Cl buffer, pH 7.5, containing 0.15

µ???? of catechol and 0.95 µ? enzyme in a total volume of 1 ml at room temperature.

One unit of enzyme activity is defined as the amount of enzyme that produces 1 µ???? of

cis,cis-muconic acid per min under the standard assay conditions. Enzyme activity of

Gira1270 (A and B) was also determined spectrophotometrically as for hydroxyquinol-1,

2-dioxygenase by measuring the increase in absorbance at 245 nm (74). The assay was

carried out in 50 mM Tris-Cl buffer, pH 7.5, containing 0.15 µ???? of hyroxyquinol and

0.95 µ? enzyme in a total volume of 1 ml. One unit of enzyme activity is defined as the

amount of enzyme that produces 1 µ???? of maleylacetate per min under the standard

assay conditions. It is the maleylacetate that absorbs at 245 nm.
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Protein analysis by SDS-PAGE and BCA assay

SDS-PAGE (12 % acrylamide separating in gel) was used to examine the purity of

protein preparations, and estimate subunit molecular weights. The BCA assay (Pierce)

was used to estimate protein concentration, as described by the manufacturer. To remove

interfering substances, TCA precipitation was used in conjunction with the BCA assay

(80). BSA supplied with the assay kit was used as the standard to construct a calibration
curve.

Mass spectrometry

The purified protein was digested by trypsin either in solution or in gel depending

on the purity. Subsequently, the peptides were analyzed by MALDI or ESI-Q-TOF mass

spectrometry (81). Protein mass measurement was done using a Waters CapLC system

coupled to an ESI-Q-TOF 2 mass spectrometer. The CapLC system was equilibrated with

a mixture of 90% solvent A (97% H2O: 3% acetonitrile: 0.1% formic acid) and 10%

solvent B (97% acetonitrile : 3% H2O : 0.1% formic acid). The samples were loaded and

desalted in the Symmetry 300 Cl 8 trap column (0.35 mm ? 5mm) with the equilibration

solvent. Then the proteins were eluted into the mass spectrometer with a gradient of 10%
to 90% solvent B over 30 min.

Thin layer chromatography

Thin layer chromatography was used to identify flavins and the products from

enzymatic reactions. Both n-butanol-acetic acid-water (12: 3: 5) and Na2HP044H20 (5%

in water) (82) were used as solvent systems to separate samples on 0.25 mm silica gel

with fluorescent indicator (Kodak). The quenching of fluorescence of FAD standard,
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FMN standard, enzymatic reaction products and the corresponding standards were

detected under UV light.

High performance liquid chromatography

HPLC was performed on an Agilent 1100 system equipped with a variable-

wavelength UV-vis detector set at 254 run. A Ci8 reversed phase column (4.6 mm ? 150

mm) equilibrated with a solvent mixture containing 2% acetic acid (60%) and methanol
(40%) (83) was used to separated substrate and product at a flow rate of 1 ml/min.
Samples were treated with ZipTip (Millipore) and then injected to the column.

Oxygen consumption assay

For Ledo 1986, reactions were carried out in 50 mM Tris-Cl buffer, pH 7.5,

containing 300 µ? NADPH, 2.8 µ? purified enzyme and 100 µ? aromatic compounds
in a total volume of 1 ml at 25 "C. For Gtra\5\6, reactions were carried out in 50 mM

Tris-Cl buffer, pH 7.5, containing 300 µ? NADPH, 8.3 µ? purified enzyme and 100 µ?

aromatic compounds in a total volume of 1 ml at 25 0C. Oxygen consumption was

measured using an oxygen electrode from Hansatech with a voltage of 1 V, and the

oxygen trace. In order to set 1 V as 100 % oxygen content on the chart and 0 V as 0%,
The voltage was set as 1 V at 100 %, and then sodium dithionite was added to the

reaction chamber containing 1 ml of buffer. For example, when the voltage shows 75

mV and the oxygen content is indicated as 7.5 % on the chart, the machine is well set.
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Fluorescence spectroscopy

An Aminco Bowman series 2 fluorimeter was used for fluorescence measurements.

The emission spectra were scanned from 500 nm to 700 nm following excitation at 280

nm and 530 nm for Ledol9$6 and Gtra\5\6, respectively. Bandwidth and voltage were

set as 4 and 750V, respectively. Samples were placed in 500 µ? cuvette and data were

collected at a scan speed of 1 nm/s. Buffer was 50 mM Tris-Cl, pH 7.5.

Substrate binding study

For Ledol986, 50 mM Tris-Cl buffer, pH7.5 containing 0.56 µ? enzyme was

placed in 500 µ? cuvette and data were collected by titrating the enzyme with gradually

increasing amounts of salicylate or anthranilate. For Girai 5 16, 5 µ? enzyme in 50 mM

Tris-Cl buffer, pH7.5 was placed in 500 µ? cuvette and titrated with gradually increasing

amounts of phenol or resorcinol. Kd values were analyzed by a computerized, weighted

nonlinear regression method with Grafit v4.0 software (Erithacus).

Enzyme kinetics

The kinetic constants, Vmax and KM, for anthranilate and resorcinol were estimated

for Ledo 1 986 and Gtra 1516, respectively. For Ledo 1986, the reactions were initiated by

the addition of different amounts of anthranilate to 50 mM Tris-Cl buffer, pH 7.5,

containing 300 µ? NADPH and 0.56 µ? of the purified enzyme at room temperature.

The reactions were also carried out in 50 mM Tris-Cl buffer, pH 7.5, containing 160 µ?

anthranilate and 0.56 µ? of enzyme with the addition of different amounts of NADPH.

Initial rates corresponding to different concentrations of anthranilate or NADPH
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(corrected for the rates in the absence of aromatic substrate) were converted from
A37o/min to µ????e/???? using an extinction coefficient of 2660 Cm-1M"1, since anthranilate
does not absorb at this wavelength (83). For Girai 5 16, the reactions were initiated by the

addition of different amounts of resorcinol in 50 mM Tris-Cl buffer, pH 7.5, containing

300 µ? NADPH and 0.48 µ? of the purified enzyme at room temperature. The
reactions were also carried out in 50 mM TrisCl buffer, pH 7.5, containing 120 µ?

resorcinol and 0.48 µ? of enzyme with the addition of different amounts of NADPH.

The Michaelis-Menten equation with Grafit v4.0 software (Erithacus) was used to initial

rates at different substrate concentrations, and to estimate the kinetic parameters.

Iron quantitation for GtralUO

An aliquot (-100 µ?) of desalted sample from the iron-complexation experiment

was transferred to a 1.5 ml microcentrifuge tube and 30 % (w/v) trichloroacetic acid was

added to obtain a final concentration of 5 % TCA (w/v). After centrifugation for 5 min at

16000 ? g, an aliquot of the supernatant (50 µ?) was transferred to a new tube. Saturated
ammonium acetate, 0.12 M ascorbic acid, 0.25 M Ferrozine and MiIIiQ water were added

to a final volume of 1.0 ml. After 30 min, samples were centrifuged for 1 min at 16000 ?

g and the absorbance at 562 nm of the supernatant was measured. A standard curve was

constructed using ferrous ammonium sulfate hexahydrate (84).

Assay of GtralUO for catechol or hydroxyquinol dioxygenase activity

When catechol was used as a substrate, enzyme activity was estimated

spectrophotometrically by measuring the increase in absorbance at 260 nm (79). When
hydroxyquinol was used as a substrate, enzyme activity was determined
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spectrophotometrically by measuring the increase in absorbance at 245 nm (74). Assays
were carried out with the as-isolated enzyme, as well as enzyme which was incubated

with a ten-fold excess of Fe2+ under aerobic conditions. Purified enzyme was also pre-

incubated with Fe2+ under a stream of nitrogen. Reactions were carried out in a sealed

cuvette with solutions prepared anaerobically. Enzyme assays were conducted in the

presence of 0.53 µ? enzyme in 50 mM air-saturated Tris-Cl buffer, pH 7.5, containing
0. 1 5 µ????ßß of substrate in a total volume of 1 ml.
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RESULTS

Bioinformatics studies

The cDNA libraries of over 70,000 genes from 15 diverse fungal species are

available from the Concordia fungal genomics project. By searching with the term

"oxygenase" in this database, https://fungalgenomics.concordia.ca, 426 sequences were

identified as potential oxygenases, some of which may play roles in aromatic degradation

pathways. For example, using text searching for "phenol hydroxylase" two Aspergillus

niger sequences and two Amorphotheca resinae sequences were found.

The sequences in the database had been annotated when the database was first

constructed. BLAST was used to compare the sequences of interest against the current

set of sequences in Genbank. BLAST is short for Basic Local Alignment Search Tool. It

is a set of similarity search programs designed to explore all of the available sequence

databases regardless of whether the query is protein or DNA (85).

BLAST analysis of the Ledo! 986 sequence from Lentinula edodes against the

GenBank database generated a large number of sequences producing significant

alignment, as shown in Figure 11. This Figure is only a portion of the sequence list,

which arrays from maximum similarity to minimum similarity with the sequence of

Ledo! 986. A putative conserved domain of the NADB Rossman superfamily was

detected within these sequences. The Rossman-fold NAD(P)H/ NAD(P)+ binding

(NADB) domain is found in a large number of dehydrogenases involved in various
metabolic pathways. As indicated by underlining in the alignment list, many of the
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sequences having high similarity with the query were hypothetical or putative salicylate

hydroxylases. Thus, it is hypothesized that Ledo\9Z6 from Lentinula edodes may be a
salicylate hydroxylase. In the bioinformatics analysis (Figure 12), the starting
methionine ofLedol9S6 locates upstream from the beginning ofthe alignment.
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Figure 1 1: BLAST analysis ofthe sequence for Ledol9S6 from Lentinula edodes
A is a list of sequences producing significant alignment with the query; B: putative
conserved domain was detected
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Putative conserved domains have been detected, cock on the image below for detailed results.
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Figure 12: BLAST ofLedo 1986
The sequence ofLedol9S6 included the full sequence ofthe predicted conserved domain.

BLAST analysis of the sequence of Gtral5\6 from Gloeophyllum trabeum against
the GenBank database showed a large number of sequences producing significant

alignment, as shown in Figure 13. This Figure is only a portion of the sequence list,
which arrays from maximum similarity to minimum similarity, with the sequence of
Girai 5 16. Putative conserved domains of the NADB Rossman superfamily and PHOX-

C family were detected within these sequences. The PHOX-C family is referred to as
"FAD-dependent phenol hydroxylase (PHOX) family, C-terminal TRX-fold domain".
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Many of the hits are to genes that are annotated as "putative", "hypothetical", or come

from genome sequencing efforts. In addition, as underlined in the BLAST alignment list,

Gtra\5\6 from Gloeophyllum trabeum showed strong sequence similarity with phenol

hydroxylase from the aerobic topsoil yeast, Trichosporon cutaneum, whose structure has

been solved (66). The E value of its alignment with Ledo\986 is 3e-129. Thus, it is

hypothesized that Gtral 516 from Gloeophyllum trabeum is a putative phenol

hydroxylase. In the bioinformatics analysis of Girai 5 16, the first start codon was
selected as the first Methionine which was upstream from the beginning of the

alignments (Figure 14).
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Figure 13: BLAST analysis of the sequence for Girai 5 16 from Gloeophyllum trabeum
A is a list of sequences producing significant alignment with the query; B: putative
conserved domains were detected
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Putative conserved domains have been detected, cflcR on the image beta» for detail«! results.
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Figure 14: BLAST of Girai 5 16
The sequence ofLedol9%6 included the full sequence ofthe predicted conserved domain.

BLAST analysis of the sequence of Gira1270 from Gloeophyllum trabeum against
the GenBank database indicated a large number of sequences producing significant

alignment, as shown in Figure 15. Putative conserved domains of intradioldioxygenase

superfamily and catechol proteo were detected within these sequences. Most of these
sequences are hits to genome sequences where the enzyme activity has never actually
been characterized.
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As underlined in the alignment list, BLAST searches for Gtra\270 from

Gloeophyllum trabeum showed similarity with catechol dioxygenase and hydroxyquinol

1, 2-dioxygenase. Thus, it is hypothesized that Gira1270 from Gloeophyllum trabeum is

a putative catechol dioxygenase or hydroxyquinol- 1, 2-dioxygenase. At the fungal

genomics website, the first ATG (highlighted in green) was predicted for the sequence

(Figure 16), and thus the primers (highlighted in green) were used to generate the PCR

product that was named Gtral270A. However, as shown in Figure 17, the start codon

was downstream from the beginning of most of the aligned genes which means this

sequence was missing the N-terminal part of the predicted conserved domain. In order to

include the full conserved domain in the target gene, a pair of new primers (highlighted in

yellow, Figure 1 6) was designed with an insertion of an ATG in the forward primer to

extend the N-terminal of Gtral270A, and the corresponding gene was named Gtra\270B.

BLAST of Gtra\27OB (Figure 18) shows that this target gene included the full alignment

sequence of the predicted conserved domain.
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Sequences producing significant alignments:

A
Description ttMUSOCfi ftwftiVCTVBtatta —I _UnksJ

XP Ç2Z33972C.;.

EE'J3545.e.:.

C5.I5SSÇ&.1
E£y33965.1
X? 6S?353.1

X? SC247S2S9.1

X^ SS2377677.1

X^ CS25S223I.:,
??.sp;?^?:^,:.
xp cs:9-.2'-e3.:

XP 632632J1
X^„_C,riI551553..L
x? cs:3ag£37.r,

XP C025Ú7J25.:
SEÇ337S3.I

EEL 3 344 SJ,
x? cs:2i6ige.r.

Y-* CCI26432S.1

X3 752797

XP 001263332.:

FEHS

xp„cp2¿:se3C,.;
XQ CC1525SG3.X
XP 365343.x

hvoctheiical protein CCIG 09575 ICoprinopsis cinerea ckavama?=
hypothetical protein NECHADRAFT 51181 [Nectria haematccocca m
hypothetical protein FG11347.1 áGibfeereüa zeae PH-Il
hypothetical protein. CIMG C3197 JCoccidioides immitis RSl >ablEE
Feí6ai2863 ¡Fenicüíiurn chrvsoaenum Wisconsin £4-12551 >e?nb!C
unnamed protein product !Scrdaria macrcsooral
hypothetical protein KECHADRAFT 54469 !Nectria haematccocca m
hypothetical protein AND764.2 JAsperailius nidulans FGSC A4l >abi
catechol dioxvaenase, putative 'Pénicillium mameffei ATCC 182241
catechol dioxvaenase. putative ETaiaromvces stioitatus ATCC IOSCC
hypothetical protein nCU01979 ÎNeurospora crassa OR74A1 >embl<
catechol dioxvaenase. putative IAsperaiilus flavus NRRL33571 >abll
conserved hypothetical protein [Unrinccarous reesii 17Û41 >ab!EEP
conserved hypothetical protein [Aspergillus terreus NIH26241 >qb[E
chlorocatechol 1,2-dioxvaenase JPyrenochora tritici- repentis Pt-IC-
hvPOthetical protein Afi93S3.2 [Asperoitlus nidulans PGSC A4) >abl
hypothetical protein SCIG C9927 JSctrvctirla fuckeliana 305.101 >
hypothetical protein AnQlal231G ?Aspergillus niqert >emblCAK441
conserved hypothetical protein ICand-da tropicalis MYA-34Q41 >ab|l
hvdroxvauinol 1,2-dioxvaenase [Micrcsoorum canis CBS 1134301
hypcthetica! protein rJECHADRAFT 55323 'Nectria haematocccca rn
conserved hvBOthetical protein jAspergilius terreus N!H2624l >qb|E
hvpotheticai protein NECHADRAFT 94105 !Nectria haematccocca m
hvpotheticaí protein SSlG 05424 [Sderotinia sclerotiorum 19S0Ì >i
catechol dioxvaenase, cutative iWecsartorva fischeri NRRL. 181Ì >al
catechol dioxvaenase jAsperqillus fumioatus Af293l t-ablEAL90759.
unnamed protein product fPcdcspora anserinal ^emblCAP60762.il
hvpotheticai protein Ca019.2282 !Candida albicans SC5314] >ref|>
catechol dioxvaenase, putative [Asoeraillus davatus NRRL Il s>ab!E
hypothetical protein CAWG 05821 !Candida albicans VVC-Il
hvdroxvauinol 1,2-dioxvaenase 'Paracoccidioides brasSEiensis PbClI
hvdroxvauinol 1,2-dioxvcenase [Paracoccidioides brasüiensis PbISl
hvdroxvquincl 1,2-dioxvaenase [Verticiilium albo-atrum VaMs. 1021
hydroxyauincJ ;.2-d:oxvaenase "Azcsprillum so. BSlCl >dbt!BAI74
dioxvaenase, putative fAsperaillus fuminatusl
6-chlorohydroxvauinol-I,2-dioxvaena£e, putative [Candida dublinie
hypothetical protein LELG C246I TLcddercmyces elcnoíscorus NRRi
hvpotheticai orotein MGG 02619 [G-laonaporthe arisea 7C-I51 >ref|:
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Figure 15: BLAST analysis of the sequence for G/ral270 from Gloeophyllum trabeum
(Data collected on May 7, 2010)

A is a list of sequences producing significant alignment with the query; B: putative
conserved domain was detected
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CGACGACAAGAAGCCCCTTCAAGCCAAGGCAGTGTCGAACGGCCTTCCGCCT CATG) CC
T&ÄCCTTGÄCTTGCCGTACCCGGACAGACCAGAGCTCATTACGGAGAACCTTCTGAAGT
TGACCAACTTGATTACCGATGAACGAAAGAAGTACATCTTCAAGAATTTAATTACGCAT
ATACACCAATTCATCAATGAGACAAGTATCACCACGGACGAATGGdll^HHeggH
^gjggACCCGGACAGGTCAAATCTGCACGCCCATTCGTCAAGAGTTCATCCTGCTCTCCGACGTCCTCGGCATCTCCGCGCTCGTAGACGCACTTAACAACCCCCCAGTCAGCGGC
GGGACGGAGAGCAGCGTGCTCGGGCCTTTCTTCACTGAGGACGCTCCCGACGTCAACAA
CGGCGATTCTATTGCGTCCGAGGGCAAGGGGCAGTACATGTACGTCGAGGGGCGTGTAA
TCGATACGCACGGGAAGCCAGTCCCGAACGCTCTCATCGAÄACGTGGGAGACAGACGAG
TATGGCTTCTACGACACGCAATATGCGGACAGAAGCAAACCCGACTGCAGGGGCCGCTT
GCGGACGGACAAGGACGGTAGATACGGCTACCGCGCTGTCGTTCCAGTAGCGTACCCCA
TCCCCGGTGACGGCCCCGTCGGAGACTTACTGCTCATGCTCAACCGACACAATATGCGC
CCGAACCATCTGCATATGATGATCGAGGCACCGGGCTACCÄGAÄACTCACGACCGCGTT
CTACCCCGAGGGCGATGAGTGGCTTGCGAGCGACGCTGTTTTCGGCGTCAAGAAATCCC
TGGTCGTCACATTGAAGGATGTGGACAATGAGCAGGAGGCGCGCAAGCGTGGGTTCCCC
AAGGGGAGCCACTTCAAGTTGCTTGAGCATGATCTCGTGTTGGTTCCTGÄGGCTGAGTC
naa^GCGGCGCGGGAACAGTACGCGAGGGAACATGCTGTTAACAGGAGTAACGAGATTC
aggca&gSagtatgatttgcgtcttgtaïgatgggcggacgtc

__\TAGTTCäACCTGTCAGGAATGTA'TTTCTATTGCACATCCAAAAAAAAAAÄAAAG
aaaaaääaaaaäaaaaaaac

Figure 16: DNA sequence of Gtral270
Start codon is indicated in red, stop codon is in the box marked with red line.

Piitett« conservée domains üaw been detected, cBck on Ore image below fordetaBed results.

Snperfenilleo f~
Hultl-4analjio

intradlal.aloxygenaBe nupertaeilu"
PraH

DisMUution of 100 Bast l*ls on«» Query Sequence

Mouse-over to show deffine and scares, cñdt to show alignments

Qu*ry

Figure 17: BLAST of Gtral270A
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Figure 18: BLAST of Gtra\270B

PCR amplification ofLedol9H6, Gtra\5\6 and GtrafflO

The expected target lengths for Ledol9%6, Gtra\5l6, GtrafflOA and GtrafflOB
are 1388 bp, 1825 bp, 844 bp and 983 bp, respectively. Fragments of the correct size
were detected for each gene amplified (Figure 19). PCR products were purified and
ligated into the blunt-ended pETBlue-1 vector.
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Figure 19: Agarose gel (0.7 %) of PCR products from Ledol9S6, Gtra\5\6, GtrafflOA
and GtraXTim

Panel A: PCR amplification of Ledol9S6. Lane 1, PCR product of Ledo\9%6, lane 2,
DNA ladder. Panel B: PCR amplification of Gtra\5\6. Lane 1, DNA ladder, lane 2 and
lane 3, PCR product of Gtra\5\6. Panel C: PCR amplification of Gtra\270A. Lane 1,
PCR product of Gtral270A, lane 2, DNA ladder. Panel D: PCR amplification of
GtrainOB. Lane 1, DNA ladder, lane 2, PCR product of Gtral270B.

Restriction enzyme digestion

Plasmids were purified and checked for inserts in the correct orientation using

restriction enzyme digestion. Recombinant plasmids from individual transformants
harbouring Ledo\9%6 were digested using Sphl and EcoRl. Plasmid with the insert in
the correct orientation should release a fragment of 1040 bp. As shown in Figure 20,

among the eight plasmids tested, three showed the expected fragment (lanes 4, 5, and 7).
Recombinant plasmids harbouring Gtral5l6 were screened by EcoRI-digestion: a
fragment of 619 bp will be excised if insert is in the correct orientation. As shown in
Figure 21, among the eight recombinant plasmids screened, five showed the expected
fragment for plasmid with insert in the correct orientation (lanes 1, 2, 3, 5 and 8).
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Recombinant plasmid harbouring Gtral27QA were screened by digestion with Xbal and
CM: for plasmids with inserts in the correct orientation, release of fragment with the
length of 650 bp was expected. As shown in Figure 22, among the ten recombinant
plasmids screened, five showed the expected fragment (lanes 1, 2, 6, 7, and 9).
Recombinant plasmids harbouring G/ral270B were also screened by Xbal and CM
digestion, a fragment with the length of 789 bp was expected. As indicated in Figure 23,
lanes 1, 3, 6, 7, and 9 showed the expected fragments.

feoff I/ (278)
3824 bp

5000
4000
3000

i
1388 bp EcoR V (278)

1000
750

500

S 741(Desdedí ©rieäDtetioüi)

Figure 20: Agarose gel (0.7%) demonstrating restriction enzyme digestion of Ledo\9%6
with Sph I and EcoR I

(Left) Recombinant plasmid construct with the target gene inserted in the correctorientation into the EcoRV site. The length of the insert is 1388 bp and the length of the
vector is 3476 bp. There is a single Sphl site at position 352 on the insert, and a single
EcoRl site at position 282 on the vector. (Right) Agarose gel showing the fragments
obtained from digestion of recombinant plasmids by Sph I and EcoKl. Lanes 1 to 8 are
eight different plasmids purified from randomly picked colonies after transformation.
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EcoR V (278)

SOOO
4000

EcoRl 1210) 3000

1825 bp EcoR V (278)
Vector (3476 bp) 1000EcoRl 282)

700

500

(Desired orientation)

12345678

Figure 21: Agarose gel (0.7%) demonstrating EcoRl restriction enzyme digestion of
plasmid with Gtral5\6
(Left) Recombinant plasmid construct with the target gene inserted in the correct
orientation into the £coRV site. The length of the insert is 1825 bp and the length of the
vector is 3476 bp. There is a single EcoRl site at position 1210 on the insert, and a single
EcoRl site at position 282 on the vector. (Right) Agarose gel showing the fragments
obtained from digestion of recombinant plasmids by ,EcoRl. Lanes 1 to 8 are eight
different plasmids purified from randomly picked colonies after transformation.
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EcoR V (278)
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Vector (3476 bp)
1000

700
SOC
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Figure 22: Agarose gel (0.7%) demonstrating restriction digestion ofplasmids harbouring
Gtral270A with Xba I and CIa I

(Left) Recombinant plasmid construct with the target gene inserted in the correct
orientation into the EcoRY site. The length of the insert is 844 bp and the length of the
vector is 3476 bp. There is a CIa I site at position 419 on the insert, and a single Xba I
site at position 47 on the vector. (Right) Agarose gel showing the fragments obtained
from restriction digestion of Gtral270 by Xba I and CIa I. Lanes 1 to 10 are ten different
plasmids purified from randomly picked colonies after transformation.
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Figure 23: Agarose gel (0.7%) demonstrating restriction digestion ofplasmids harbouring
Gtral270B with Xba I and CIa I

(Left) Recombinant plasmid construct with the target gene inserted in the correct
orientation into the EcoRV site. The length of the insert is 983 bp and the length of the
vector is 3476 bp. There is a CIa I site at position 419 on the insert, and a single Xba I
site at position 47 on the vector. (Right) Agarose gel showing the fragments obtained
from restriction digestion of GtrafflO by Xba I and CIa I. Lanes 1 to 9 are nine different
plasmids purified from randomly picked colonies after transformation.

DNA sequencing

DNA sequencing was performed for all of the recombinant plasmid using primers
based on the sequence of the pETBlue-1 vector. No difference was found between the
sequencing data and the known sequence.
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Characterization results for Ledol9S6

Ledo 1986 is a putative salicylate hydroxylase, which catalyzes the hydroxylation

of salicylate in the presence of oxygen and NAD(P)H. The protein was purified using a
spectrophotometric assay for salicylate hydroxylase, as described in Materials and
Methods.

Optimization of expression conditions for Ledol9S6

Small scale cultures of E. coli (DE3) lad pETBlue-1 Ledo\9%6 were grown for

different lengths of time, and at various temperatures, after induction with IPTG to
determine the optimal conditions for expression of soluble protein. As shown in Figure
24, Ledo\9%6, which has a predicted molecular mass of 48.6 kDa, appears to be
expressed at the highest level in a soluble form after inducing at 18 0C for 16 h (Figure
lane 7).

L«/ol986 12 3 4 5 6 7

$7.0 kDa .__,

66.0 kDa

45.OkDa C "

30.OkDa «-

20.1 kDa

Figure 24: SDS-PAGE gel (12%) demonstrating the optimum expression conditions for
Ledol9S6

Low molecular weight standards (lane 1). Crude extracts from cells induced at 37 0C for
1 h (lane 2), for 2 h (lane 3), or 3 h (lane 4); 20 0C for 3 h (lane 5), for 6 h (lane 6), or
overnight at 18 0C (lane 7).
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Purification of Ledol9S6

Ledol986 was successfully overexpressed in E.coli and purified in good yield

using two chromatographic steps as described in "Materials and Methods". Briefly, after

inducing by IPTG, cells were harvested by centrifugation, disrupted by sonication, and

subjected to ultracentrifugation to obtain crude extract.

Fast-flow DEAE-Sepharose chromatography and High Performance phenyl-

Sepharose chromatography were applied in succession. In the Fast-Flow DEAE-

Sepharose chromatography step, the peak of enzyme activity was eluted at approximately

0.1 M sodium chloride. The peak salicylate hydroxylase activity coincided with the

appearance of a protein peak and fractions also showed absorbance at 450 nm: these

fractions were pooled and concentrated by ultracentrifugation prior to the next step. In

the High Performance phenyl-Sepharose chromatography step, the peak of the enzyme

activity was eluted at approximately 1 3 % saturation with ammonium sulphate. The peak

activity coincided with absorbance at 280 nm and 450 nm: fractions with peak specific

activity and similar A450/A280 ratios were pooled, concentrated by ultrafiltration, and
stored at - 8O0C.

A typical purification procedure for Ledo 1986 is summarized in

Table 3. The purified enzyme preparation with a specific activity of 0.28 U/mg was

obtained by 5-fold purification starting from the crude extract. Figure 25 demonstrates

the protein purity observed after each purification step. In early preparations, an added

step of gel-filtration chromatography was included, but this procedure did not give

appreciable additional purification, and subsequent preparations omitted this step.
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Table 3: Purification summary for Ledo1986

Purification step

Crude extract

DEAE-Sepharose

chromatography

Phenyl-Sepharose

chromatography

Vol

(ml)

80

12

11

Total

protein

(mg)

1290

270

230

Total activity *

(U)

71

69

65

Specific

activity

(U/mg)

0.055

0.254

0.28

Purification

(fold)

1

4.6

5.1

Yield

(%)

100

97

92

*The activity indicated is the oxidation ofNADPH in the presence of salicylate. One unit
of activity (U) is defined as the amount of enzyme required to oxidize one umol of
NADPH per min.

97.0 KDa

66.0 kDa

45.0 kDa

30.0 kDa

Figure 25: SDS-PAGE gel (12%) demonstrating the purity of recombinant Ledol9S6
preparation after different purification steps
Lane 1: Low molecular weight standards. Lane 2: crude extract. Lane 3: pooled
fractions from DEAE column. Lane 4: pooled fractions from Phenyl-Sepharose column.
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Mass spectrometry

In solution Trypsin digestion and MALDI-TOF MS was conducted for the purified

Ledol 986 protein. Figure 26 shows the spectrum for the peptides. Fragments observed

in the spectrum are underlined in Figure 27, and cover 20% of the sequence.

2466.194,.

1247.576

:1248.S7S

!1248.581
1252.535

2188.325
2197.32l|

1473.634
I . ..

1885.956 2021 .986 2079.071
!»^?-G'.^^t'?'?'- ¦'¦"'-^¦L'l^fe'^'

2450.272

2448.2431
¡2257.360

-Jl
1200 1300 1400 1500 1000 1700 1900 200Ö 2100 2200 2300 2400

Figure 26: MALDI-TOF mass fingerprint for the tryptic digest of Ledol986

MV SS T-NPHFKOLRVAVI GGGLGGLSAAVALRRAGHLVE. IYE RRD EtTVEVGRSIS C

AANGTGHIiREKEVDI PDMKPVILMKLVMRDWE.TGRI LlTQYNLDKYEEEWGNVXNM

T.HBnnMHRTT.LKTAT SFEGKGTPCIVKI DHICECVDSEAGgVgFKN GVTVKADI I

I GAD GIR SWRGQI GW PBMKSAPQTCYRLNVKKSVVDELGLVKYS YEPAI QFWG

GLQGKNGRSKYYKIVMS PCS DGE IV S FYCFMPi: ELS KHHEEGFT FAEVPVSDVIA

GRYDELDPDCVNLLKNSVDRMPWRLYVHOPYDRWFAGNTCILGDAAHPMMPHQSq

GACQAIEDAAAL GII FS DKYNFI SDVSAGLAMYQT IRK PRASRVQSASARa TENL

NERI GFT SLS PEDAS LAAAE GKLSI NEMNS YKMHHHIASEVDKLGG GMG PS IAVM

Figure 27: Identification of the mass finger print for tryptic digests ofLedol986
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Absorption spectrum of purified Ledol986

The UV-visible absorption spectrum of purified Ledol 986 was recorded using a

Cary Bio50 spectrophotometer. The visible spectrum of this enzyme is typical of flavin-

containing proteins (7), exhibiting maxima at around 370 nm and 450 nm and minima at

320 nm and 400 nm, respectively (Figure 28). The peak at 450 nm showed a small

shouder at 480 nm.

(443 nm, 0,1039)
?.:?

9,Of

8.96-

Ö.:.§4

6«

Ô i& *9S S33 *9ß W*

FAD m protein

Figure 28: Absorption pectrum ofpurified Ledo! 986
The spectrum was acquired in 50 rnM Tris-Cl buffer, pH, 7.5 with 1 cm light path cuvette
in the Cary Bio50 spectrophotometer. The protein concentration in the solution was 12.2
µ?. A peak was observed at 443 nm with an absorbance of 0.1039.

Identification of the protein bound flavin in Ledol9S6

The enzyme bound flavin was dissociated from the enzyme by heating at 100 0C

for 5 min, followed by centrifugation at 15,600 ? g for 10 min to remove denatured
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protein. The supernatant from the boiled solution of the enzyme was bright yellow in

color and was subjected to chromatography on a silica gel thin layer chromatography

plate. Solutions of FAD, FMN and enzyme supernatant were spotted on the plate which

was then developed with n-butanol-acetic acid-water (12: 3: 5) or Na2HP04-4H20 (5% in

water) as solvents (82). In both solvent systems the sample chromatographed as a single

yellow spot, and the Rf values of each sample was calculated: in the first developing

solvent, RfFAD =0.15, Rfsampie = 0.15, RÍfmn = 0.26, in the second developing solvent,

RÍfad= 0.63, Rfsampie = 0.63, RÍfmn = 0.76. The Rf value of boiled enzyme supernatant
was the same as that of pure FAD, but quite different from that of FMN. Thus, the

protein bound flavin of Ledol986 was identified as FAD not FMN.

Quantitation of protein bound FAD in Ledol9S6

The amount of FAD bound to the purified protein, and its extinction coefficient,

were estimated by absorbance measurements. The spectrum of diluted native protein was

recorded and showed an absorbance of 0.1039 at 450 nm. Then the FAD present in this

sample was dissociated from the protein by heating at 100 0C for 5 min. The boiled

supernatant showed an absorbance of 0.13 at 450 nm (Figure 29). The extinction

coefficient of free FAD in the boiled supernatant is 1 1,300, the same as that of free FAD

(5). Protein concentration was determined by the BCA assay, and the molecular weight

was determined by gel filtration (the subunit molecular weight was use in the calculation).

The amount of FAD can be determined in the boiled sample, using the absorbance and

extinction coefficient. The concentration of protein in the sample can be also calculated.

The extinction coefficient at 450 can be obtained by taking the absorbance of the enzyme

at 450 nm divided by the absorbance of the boiled sample at 450 nm, and multiplying by
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1 1300. The extinction coefficient of the FAD on the protein was determined to be 9035

M-1Cm"1. The number of molecules of FAD bound to 1 mole of enzyme was calculated

to be approximately 1. Thus, Ledol986 contains 1 mol FAD per 48600 Da subunit.

(443 ? m, 0,1039)
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0.12

f fjf 0,09 1

0,06 1

ß.03

(450 nm, 0.1287)

Ö *S§ 4S* S2¡5 *» ?» 0 Í33 %m &s

PAO in protein Botled supernatant

Figure 29: Absorption spectra of native protein and boiled supernatant ofLedo 1986

The protein was diluted in 50 mM Tris-Cl buffer, pH, 7.5, with a concentration of 12.2
µ?. At left is the spectrum of native protein and at right is the spectrum of boiled
supernatant.

Estimation of molecular weight ofLedol986 by gel filtration chromatography

The molecular weight of purified Ledo 1986 was estimated by gel filtration on a

Superdex S-200 column (Pharmacia) (40 cm ? 2 cm) equilibrated with 0.1 M NaCl in 50

mM Tris-Cl buffer, pH 7.5. Molecular weight standards were loaded onto the column

separately and a standard curve was obtained by plotting Kavvs. log MW (Figure 30). A

sample of purified protein (100 µ?) was chromatographed separately on the column.

From the Kav value of the purified protein, log MW was calculated. The molecular
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weight of Ledo 1986 was estimated to be 49000 Da, close to the calculated molecular

weight from the amino acid sequence (48600 Da). Thus Ledo 1986 is a monomer.
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Figure 30: Estimation of the molecular weight of Ledo 1986 by gel filtration
chromatography

The standard protein used were Ribonuclease (13700 Da), Chymotrypsinogen (25000
Da), Ovalbumin (43000 Da), Albumin (67000 Da), Aldolase (158000 Da), Catalase
(232000 Da), Ferritin (440000 Da). The equation obtained from Kavvs. log MW was y =
- 0.21 ? + 1.45. The position data for Ledo 1986 was (4.69, 0.47).

Substrate specificity ofLedol9S6

The substrate specificity of the enzyme was examined for a number of salicylate

analogues by measuring consumption of NADPH in the presence of these compounds

(Table 4). NADPH consumption in the presence of anthranilate was 310% of that with

salicylate. Other analogues were less reactive. In the absence of aromatic substrate, the

NADPH oxidase activity of the purified enzyme was almost negligible under standard
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assay conditions. The non-enzymatic activity was subtracted from all of the values

shown in Table 4.

Table 4: NADPH oxidation by Ledol9$6 in the presence of various aromatic compounds
Aromatic compound Relative activity (%) Standard error

Salicylate 100 0.002

Anthranilic acid 309 0.0047

4-Chlorosalicylic acid 138 0.0067

2,4-Dhihydroxybenzoic acid 71 0.0008

Benzoate 61 0.0006

2,6-Dihydroxybenzoic acid 36 0.0004

2,5-Dihidroxybenzoic acid 27 0.002

2,3-Dihydroxybenzoic acid 24 0.0004

5-Chlorosalicylic acid 23 0.0018

3-Chlorosalicylic acid 18 0.0012

o-Anisic acid 0.0005

2-Hydroxyphenylacetic acid 5.6 0.0006

3,4-Dihydroxybenzoic acid 5.4 0.0005

m-Hydroxybenzoic acid 4.2 0.0011

4-Aminosalicylate 1.9 0.0007

The enzyme activity was determined in 50 mM Tris-Cl buffer, pH, 7.5 containing 0.2
µ???? NADPH, 0.15 µ???? of the respective substrate and 60 µg of the purified enzyme in
a total volume of 1 ml, at room temperature. The oxidation of NADPH was measured at
340 nm. The enzyme activity with salicylate (0.28 U/mg) was taken as 100%. The
values shown in the Table are averages of triplicates.
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Product identification by TLC and HPLC

In order to identify products produced from salicylate, anthranilate or 4-

chlorosalicylate (the most active compounds shown in Table 4), reactions were carried

out in 50 mM Tris-Cl buffer, pH 7.5, containing 600 µ? NADPH, 150 µ? substrate and

0.3 mg enzyme in a total volume of 1 ml. Reaction mixtures were incubated when the

reaction finished and then acidified with HCl. The precipitate formed was removed by

centrifugation and the supernatant solution was extracted three times with 2 ml portions

of ethyl acetate. The extracts were combined and dried over MgSC^. Ethyl acetate

extracts were then decanted into a new container, and solvent was evaporated under a

stream of nitrogen. The residue was dissolved in ethyl acetate and analyzed by TLC,

then the rest of the solvent was evaporated and the residue was dissolved in distilled

water and analyzed by HPLC. For TLC, anthranilate, salicylate, catechol and 2, 3-

dihydroxybenzoate standards were spotted on the plate together with extracts from

reaction mixtures. No product was detected when either salicylate or 4-chlorosalicylate

were used as substrates. In contrast, using anthranilate as a substrate, the Rf value of the

reaction product was 0.49, almost the same as that of pure 2, 3-dihydroxybenzoate. In

HPLC chromatography (Figure 31), 2, 3-dihydroxybenzoate was also detected using

anthranilate as a substrate, but no product was detected for the salicylate or 4-

chlorosalicylate reactions (data not shown).
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Figure 31: HPLC of reaction mixture of Ledo 1986 incubateci with NADPH and
anthranilate

The major peak eluted in the same position as 2, 3-dihydroxybenzoate.

Oxygen consumption assays for Ledol9S6

Since hydroxylases consume oxygen, the measurement of oxygen uptake is

another way to monitor enzyme activity. Oxygen consumption by Ledo\9%6 in the

presence of NADPH and aromatic compounds was measured using an oxygen electrode,

as described in "Material and Methods". Reactions were performed at limiting levels of

aromatic compounds, to permit observation of the stoichiometry between oxygen

consumption and hydrogen peroxide formation in the presence of anthranilate, salicylate

or 4-chlorosalicylate. The addition of catalase at the end of the reaction allow detection

of any hydrogen peroxide produced (7). The addition of catalase to the salicylate- or A-

chlorosalicylate-mediated oxygen consumption assay caused a release of one-half of the

oxygen consumed (Figure 32). By contrast, catalase had a smaller effect upon oxygen
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uptake in the anthranilate containing reaction mixture. Stoichiometrics were estimated

and shown in Figure 3.

The data in Table 5 indicate that hydrogen peroxide is formed in the salicylate or

4-chlorosalicylate mediated reaction, with a 1 : 1 stoichiometry observed between NADPH

and H2O2. No product was observed from either salicylate or 4-chlorosalicylate using

thin-layer chromatography (data not shown). Together these data indicate that oxygen

was completely diverted to hydrogen peroxide production in the presence of these

compounds. Thus, salicylate and 4-chlorosalicylate appear to be "non-substrate

effectors" (66) which stimulate NADPH consumption (i.e. act as effectors) but where

oxygen activation is not coupled to hydroxylation. Much less H2O2 was formed in the

anthranilate reaction, from which 2, 3-dihydroxybenzoate was detected using TLC and

HPLC, indicating anthranilate is a true substrate as well as an effector ofNADPH
oxidation.
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Figure 32: Consumption of oxygen by reaction mixtures for Ledol9S6
O2 consumption was measured with a Gilson model KM oxygraph equipped with a Clark
oxygen electrode. The O2 electrode traces are recorded backwards. The reaction
chamber contained 600 µ? NADPH, 2.8 µ? of the purified protein and 150 µ? of
substrate in 50 mM TrisCl buffer, pH 7.5 with a total volume of 1 ml. Reactions were
initiated by addition of salicylate (A), anthranilate (B) or 4-chlorosalicylate (C). Then
200 units of catalase (X) was added as shown by the arrows after reactions were almost
complete.
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Table 5: Comparison of the relative activities of ZeJo 1986 and the ratio of hydrogen
peroxide produced to oxygen consumed for aromatic compounds.
(The values shown in the Table are averages of triplicates)
Substrate Relative activity H2O2 / O2

Salicylate KX) ' Ï7Ï
Anthranilate 309 -0.3/1

4-chlorosalicylate 138 1/1

Binding of aromatic compounds to Ledol986

As shown in (Appendix I), binding of anthranilate caused extensive spectral

changes, and a Ka value of approximately 25 µ? was obtained, which indicates that the

binding between Ledo 1986 and anthranilate is relatively tight.

Compared with anthranilate binding, salicylate binding caused a much less extensive

spectral change and considerably weaker binding than anthranilate (Appendix II).

Steady state kinetics ofLedol9S6 with anthranilate as substrate

Kinetics constants, Vmax and Km when anthranilate was used as substrate were

estimated for Ledo 1986. Initial rates corresponding to different concentrations of

anthranilate or NADPH (corrected for the rates in the absence of anthranialte) were

obtained. Then data were fitted using the Michaelis-Menten equation with Grafit v4.0

software (Erithacus). With the software, Lineweaver-Burk plots were constructed from

non-linear regression fitting of the data. Apparent Vmax and Km values of 0.05 µ???1e8/

min and 13.8 µ? for anthranilate binding (Figure 33) and 0.08 µ????ee/ min and 255 µ?

for NADPH binding were obtained from the fitted parameters (Figure 34).
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Figure 33: Steady state kinetics ofLedo 1986
Reactions were initiated by the addition of different amounts of anthranilate to 50 mM
Tris-Cl buffer, pH 7.5, containing 300 µ? NADPH and 0.56 µ? enzyme at room
temperature.
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Figure 34: Steady state kinetics ofLedol986
Reactions were initiated by the addition of different amounts of NADPH to 50 mM
Tris-Cl buffer, pH 7.5, containing 140 µ? anthranilate (saturated) and 0.56 µ? enzyme
at room temperature.

Characterization results for Gtral516

Gtral5l6 is a putative phenol hydroxylase, an enzyme that catalyzes the

hydroxylation of phenol in the presence of oxygen and NADPH. Phenol hydroxylase

purified from the soil yeast, Trichosporon cutaneum, is an FAD-containing protein (67).

Optimization of expression conditions for Gtral516

Small scale cultures of Gtral 51 6 were induced with IPTG and growth was

continued at different temperatures for various lengths of time to determine optimal
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conditions for expression of soluble protein. Figure 35 shows the expression level of the

proteins under the conditions tested. Gtral5l6, which is predicted to have a molecular
weight of 66.6 kDa, was expressed at the highest level in a soluble form after induction
for 3 h at 37 0C

Gtral516 12 3 4 5 6

97.OkDa

66.OkOa k .>,

45.0 kDa

30.OkDa
20.1 kDa -¦--3—*=- ¦--«25L_. .% ^zn .ssu ~-— -

Figure 35: SDS-PAGE gel (12%) demonstrating the optimum expression conditions for
Girai 51 6

Low molecular weight standards (lane 1). Crude extracts from cells induced at 37 0C for
1 h (lane 2), or 3 h (lane 3); 20 0C for 3 h (lane 4), for 6 h (lane 5), or overnight (lane 7).

Purification of Gtraì 516

Gtra\5\6 was overexpressed in E.coli(DE3)lacI cells and purified in good yield
using two chromatographic steps as described in "Materials and Methods". However, the
initial purification procedure used had to be modified to allow the isolation of the most
active preparation of enzyme.

The first time this protein was purified, cells were harvested after inducing with
IPTG, suspended in 50 mM Tris-HCl buffer, and disrupted by sonication. The crude
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extract of soluble proteins represented the supernatant after ultracentrifugation, and this

was subjected to ion-exchange chromatography followed by phenyl-Sepharose

chromatography. After the first chromatographic column, the activity fractions were

yellow in colour, and the enzyme appeared to lose a considerable amount of yellow

colour during the second chromatography step. In order to establish the identity of the

yellow compound, the partially-purified extracts were applied to TLC to identify the

flavin. Also, when FAD was added to the assay the activity was stimulated.

Having established that the yellow-colour cofactor was FAD, a modified

purification method using an FAD-containing buffer was used. Buffers used for crude

extract preparation and during purification contained 10 µ? FAD, 10 mM DTT, and 0.1

mM EDTA, as was the case for the successful purification of phenol hydroxylase from

T.cutaneum (6). The crude extract was subjected to ion-exchange chromatography

followed by octyl-Sepharose chromatography, and fractions were monitored for phenol

hydroxylase activity, as described in "Materials and Methods". In the Fast-flow DEAE-

Sepharose chromatography step, the peak of phenol hydroxylase activity eluted at

approximately 0.09 M sodium chloride in purification buffer. The peak activity

coincided with peaks of protein absorbance at 280 nm and of flavin absorbance at 450 nm

absorbance. In this purification step, the spectrophotometer was blanked with

purification buffer which contained FAD, so the absorbance detected at 450 nm was due

to the protein bound flavin. The peak fractions were pooled and concentrated prior to the

next step. However, in the octyl-Sepharose chromatography step, the enzyme bound

FAD gradually dissociated from the protein during the purification procedures, since the
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enzyme appeared to lose a considerable amount of yellow colour as well as activity. So

the collected fractions were assayed with addition of FAD.

The peak of enzyme activity from the octyl-Sepharose column was confirmed by

SDS-PAGE to contain a protein with the expected molecular weight of 66 kDa (result not

shown). Since the protein lost some flavin and the activity assay was stimulated by the

addition of FAD, the collected fractions exhibiting peak enzyme activity were pooled,

FAD (to 1 mM) was added, the protein was concentrated using an Ultrafree-CL

centrifugal filter unit (Millipore), and buffer-exchanged (50 mM Tris-Cl buffer, pH 7.5)

until no FAD was detected in the filtrate. Then the protein was aliquoted and stored at -

8O0C.

A typical purification procedure is summarized in Table 6. The purified enzyme

preparation had a specific activity of 2 U/mg after 20-fold purification from the crude

extract. Figure 36 demonstrates the protein purity at each purification step: as can be

observed, an addition S300 gel-filtration chromatography did not improve the purity

(Figure 36, lane 7). The SDS-PAGE results indicate that the purified protein had a

subunit molecular weight consistent with the 66600 Da predicted from the Girai 5 16

amino acid sequence.
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Table 6: Purification summary for Gtra1516

Purification step Vol

(ml)

Protein

(mg)

Total activity *

(U)

Specific

activity

(U/mg)

Purification

(fold)

Crude extract 63 1100 110 0.1 1

Fast-flow DEAE-

Sepharose

chromatography

5.1 108 105 0.97 9.6

Octyl-sepharose

chromatography 1.93 20.7 41.4 1.99 19.9

*The activity indicated is the oxidation of NADPH in the presence of phenol. One unit of
activity (U) is defined as the amount of enzyme required to oxidize one µp??? of NADPH
per min under the standard assay conditions ("Materials and Methods"). The protein
collected after octyl-Sepharose chromatography was combined, had FAD added,
ultrafiltered and assayed for its activity.
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Figure 36: SDS-PAGE gel (12%) demonstrating the purity of recombinant Gtral516
preparation after different purification steps
Low molecular weight standards (lane 1). Uninduced crude extract (lane 2). Pellet
resuspension (lane 3). Crude extract (lane 4). Pooled fractions from Fast-flow DEAE
column (lane 5). Pooled fractions from octyl-Sepharose column (lane 6). Pooled
fractions from S300 gel-filtration column (lane 7).

Mass spectrometry

In-solution Trypsin digestion and ESI-Q-TOF MS was conducted on the purified
Girai 516 protein (Figure 37). Fragments observed in the spectrum are underlined in
Figure 38, and cover 19% ofthe sequence.
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Figure 37: ESI-Q-TOF spectrum for the peptides of Gtra\5\6

MPVPÄMKESDVDVLVIGAGPAGIJyICAQGIARAGVNVRIVDKRPGKVaÄ.QOADGIOPRTIEVI,QSYGL·:

AERIZtKEGNOMHMaAFYDPSPEXSGIHRTGRTgDINAPTftRFPFE^TLB^OGMIESIELIXXRSMGHEV

ERPVVPESLEISDKRDM^KDPQARAVKWLKHVDAPEGKDTEWHaKYWGAI3GAHSWVRKQLGFAM

EGEQTDYVWGWTOCTPDTDFPDÏRNRCAIHSNNGSCMVIPREGDWRLYI CJLTDE DVRDVTTGRVDT

QKCSAEKLLEVAKKSFHPYRIKAKGDILWt^TIYII GQRVASKFSAHERVFIÄGDACHTHSPKAGQGM

HASMKDTHNLIWKLTHVLRGWADISLLKTYELERRKYAQDLIAFDKE FAS LFSKKPKSEENP DGVTQ

EEFVEAFRTFGGFTSGIGIHYAPSTIVDAAHQASASKLIIGQRVLPQTVIRAADARP YEL QDLLPAD

TRFKLLVFTGDIGAPEQKRKVDELAKHLERKESFLGRFGEQKHDVFDVFAVCLSRKEDVVYTDVPEV

FRPHWSKVLLDDVDTTGKVGAGVYEKFGIGSEGAÏViArRPDGYVGIVAPLDDVSVLESYFAGFFAKS

Figure 38: Identification of the mass fingerprint for the tryptic digest of Gtral5l6
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Identification of the protein bound flavin in Gtral516

The enzyme-bound flavin was dissociated from the enzyme by heating the protein

at 1 00 0C for 5 min, then the denatured protein was removed by centrifugation at 62000 ?

g for 10 min. The flavin in the resulting yellow supernatant was identified by thin layer

chromatography on silica gel. Samples of FAD, FMN and enzyme supernatant were

spotted on the plate, which was developed with n-butanol-acetic acid-water (12: 3: 5) or

Na2HP04-4H20 (5% in water) as solvent. In both solvent systems the sample

chromotographed as a single yellow spot. The Rf value of each spot was calculated in

the first developing solvent, RÍfad= 0.16, Rfsampie = 0.16, RÍfmn = 0.24, and in the second

developing solvent, RfFad = 0.627, Rfsampie = 0.627, RÍfmn = 0.75. The Rf values of the

yellow compound from boiled enzyme supernatant were the same as those of pure FAD,

but quite different from FMN. Thus the protein-bound flavin of Gtral516 was identified

as FAD, not FMN.

Absorption spectrum of purified Gtral516

The UV-vis absorption spectrum of purified Gtral5l6 was recorded using a Cary

Bio50 spectrophotometer. The visible spectrum of this enzyme is typical of flavin-

containing proteins (7), exhibiting maxima at approximately 370 nm and 443 nm and

minima at 320 nm and 400 nm, respectively, as well as a shoulder at 480 nm (Figure 39).
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Figure 39: Absorption pectrum of purified Gtra\5\6
The enzyme (8 µ?) was in 50 mM Tris-Cl buffer, pH, 7.5, in a 1 cm light path cuvette in
the Cary Bio50 spectrophotometer.

Quantitation of protein-bound FAD in Gtra.1516

The amount of FAD bound to the purified protein was estimated by spectral

measurements. The spectrum of diluted native protein was recorded and showed an

absorbance of 0.0804 at 443 nm (Figure 40). Then the FAD presented in the diluted

protein was dissociated from the protein by heating at 1 00 0C for 5 min. The spectrum of

the boiled supernatant showed an absorbance of 0.078 at 450 nm. The extinction

coefficient of the FAD in the boiled supernatant is 11300, the same as that of free FAD

(5). Protein concentration was estimated using the BCA assay and the subunit molecular

weight of 66600 Da was used to calculate molar concentrations. The amount of FAD can

be determined in the boiled sample, using the absorbance and extinction coefficient. The

concentration of protein in the sample also can be calculated. The extinction coefficient

at 450 can be obtained by taking the absorbance of the enzyme at 450 nm dividing by the
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absorbance of the boiled sample at 450 nm, and multiplying by 11700. The mol FAD

bound per mol enzyme was calculated to be approximately 1. Thus, Gtra\5\6 contains 1

FAD per-subunit.

(443 ? m, 0.0804) (450 ? m, 0.0777)

0.00 -i

Wavelength Wavelength

FAD in protein Boiled supernatant

Figure 40: Absorption spectrum of native protein and boiled supernatant of Girai 5 16
The protein (8 µ?) was diluted in 50 mM Tris-Cl buffer, pH, 7.5. To the left is the
spectrum of native protein, and to the right is the spectrum of the boiled supernatant.

Estimation of molecular weight of Gtral516 by gel filtration chromatography

The molecular weight of purified Gtral516 was estimated by gel filtration on a

Superdex S-200 column (Pharmacia, 40 cm ? 2 cm) equilibrated with 0.1 M NaCl in 50

mM Tris-Cl buffer, pH 7.5. Molecular weight standards were loaded onto the column

separately and a standard curve was obtained by plotting Kav vs. log MW. For 100 µ? of

the purified protein was loaded on the column, the Kav value of the purified protein, log

MW was calculated using the standard curve. The molecular weight of Gtral516 was

estimated to be 138000 Da which indicates that this protein is a dimer (Figure 41).
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Figure 41: Estimation of the molecular weight of Gtral516 by gel filtration
The standard protein used were Ribonulease (13,700 Da), Chymotrypsinogen (25000 Da),
Ovalbumin (43000 Da), Albumin (67000 Da), Aldolase (158000 Da), Catalase (232000
Da), Ferritin (440000 Da). The equation obtain from Kav vs. log MW was y - - 0.2093 ?
+ 1.4601. The position data for Girai 5 16 was (5. 17, 0.38).

Substrate specificity of Gtral516

The activity of the enzyme in stimulating NADPH oxidation was determined for a

number of aromatic compounds using the assay conditions outlined in "Materials and

Methods" (Table 7). In the absence of aromatic substrate, NADPH oxidase activity of

the purified enzyme was almost negligible under the standard assay conditions. The

highest rate ofNADPH oxidation was observed using phenol as the substrate, followed

by resorcinol and p-methylphenol. The anzyme was not active with NADH.
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Substrate Relative activity (%)

Phenol 100

Resorcinol 41.9

/»-Methylphenol 21.2

Catechol 14.7

m-Methylphenol 13.9

phloroglucinol 6.6

o-Methylphenol 0.7

Benzentriol

Table 7: Substrate specificity of purified Gtral516
The enzyme activity was determined in 50 mM Tris-Cl buffer, pH, 7.5 containing 0.2
µ???? NADPH, 0.15 µ???? of the respective substrate and 53.7 µ£ of the purified enzyme
in a total volume of 1 ml. The oxidation of NADPH was determined at 340 nm. The
enzyme activity with phenol (2 U/mg) was taken as 100%. The values shown in the
Table are averages of triplicates.

Product identification for Gtral516 by TLC and HPLC

In order to identify products produced from the aromatic compounds listed in

Table 7, reactions were carried out in 50 mM Tris-Cl buffer, pH 7.5, containing 600 µ?

NADPH, 150 µ? of the aromatic compound and 0.5 mg enzyme in a total volume of 1

ml. Using phenol, /?-methylphenol or resorcinol, the reaction mixture was incubated for

10 min and then acidified with HCl. The precipitate formed was removed by

centrifugation and the supernatant solution was extracted three times with 2 ml portions

of ethyl acetate. The extracts were combined and dried over MgS04. The supernatant

was decanted and the ethyl acetate was evaporated under a stream of nitrogen. The

residue was dissolved in ethyl acetate and analyzed by TLC. Phenol, resorcinol, p-

16



methylphenol, catechol, salicylate and hydroxyquinol were spotted on TLC plates as

standards. Using phenol or /»-methylphenol as a substrate, no product was observed (data

not shown). Using resorcinol as a substrate, a spot was observed and the Rf value of the

reaction product was 0.82, almost the same as that of pure hydroxyquinol (Rf= 0.824).

The reactions were carried out again and applied to HPLC. In HPLC (Figure 42), using

resorcinol as a substrate, hydroxyquinol was detected, while using phenol as a substrate,

very little catechol was present.
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Figure 42: Product identification of Gtral51 6 by HPLC
The reaction mixtures were subjected to HPLC without extracting with ethyl acetate. (A)
is the reaction mixture using resorcinol as the substrate. (B) is the reaction mixture using
phenol as the substrate. (C) is hydroxyquinol standard (the same concentration as
resorcinol added in A). (D) is catechol standard ( the same concentration as phenol added
in D). Using resorcinol as a substrate, the product was identified as hydroxyquinol.
Using phenol as the substrate, the formation of catechol was negligible.
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Oxygen consumption assays for Gtral516

Oxygen consumption in the presence of different aromatic substrates was

measured using an oxygen electrode from Hansatech. Reactions were run with limiting

aromatic compound, to permit observation of the stoichiometry between oxygen

consumption and hydrogen peroxide production in the presence of phenol, p-

methylphenol or resorcinol. Catalase was added after oxygen consumption ceased, to

determine whether hydrogen peroxide was produced. The addition of catalase to the

reaction mixture containing phenol resulted in the return of almost one-half of the oxygen

consumed (Figure 43). However, catalase had little effect upon oxygen "return" in the

reaction mixture containing resorcinol. The data in Table 8 indicate that hydrogen

peroxide is formed in the phenol and jo-methylphenol mediated reaction, with a 1 : 1

stoichiometry observed between NADPH and H2O2. No product was observed using p-

methylphenol as a substrate. Very little product was observed in HPLC analysis of the

reaction mixtures containing phenol (Figure 42), also indicating that oxygen was mostly

diverted to hydrogen peroxide production. Thus, phenol appears to be mainly a non-

substrate effector. Much less H2O2 was formed in the resorcinol mediated reaction, from

which hydroxyquinol was detected using TLC and HPLC. Resorcinol thus appears to be

a much better substrate for the enzyme, with relatively little uncoupling.
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Figure 43: Consumption of O2 by reaction mixture of Gtra\5\6
O2 consumption was measured with a Gilson model KM oxygraph equipped with a Clark
oxygen electrode. The O2 electrode traces are recorded backwards. The reaction
chamber was hooked up to a 20 0C water bath and contained 300 µ? NADPH, 0.8 µ? of
the purified protein and 100 µ? of substrate in 50 mM Tris Cl buffer, pH 7.5 with a total
volume of 1 ml. Reactions were initiated by addition of phenol (A), 4-methylphenol (B)
or resorcinol (C). Then 200 units of catalase (X) were added as shown by the arrows
after reactions were almost complete.

Table 8: Comparison of the relative activity and the ratio of hydrogen peroxide produced
to oxygen consumed for different substrates oîGtral516

Substrate Relative enzyme activity H2O2/ O2

phenol 100 1/1

4-methylphenol 21.2 1/1

resorcinol 41.9 -0.25/1

The data showed in the Table are averages of replicates.
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Substrate binding study for Gtral516

The visible and fluorescence spectra of enzyme-bound FAD were used to monitor

aromatic substrate binding to the enzyme. As shown in Figure 44 and Figure 45, tighter

binding of resorcinol relative to phenol was observed: for phenol, no sign of saturation

was observed, even at 4 mM phenol while for resorcinol the data were fitted with a Kd of

1.6 mM.
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Figure 44: Resorcinol binding to Gira 15 16
Binding study was carried out using Fluorescence spectroscopy. Samples were placed in
500 µ? cuvette and data were collected by titrating 5 µ? enzyme with gradually
increasing amount of resorcinol. The inset shows the AAbsorbance vs. total resorcinol
concentration. Kd value were analyzed by a computerized, weighted nonlinear regression
method. (Fluorimeter setting is described in "Materials and Methods")
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Figure 45: Phenol binding to Girai 5 16
Binding study was carried out using fluorescence spectroscopy. Samples were placed in
500 µ? cuvette and data were collected by titrating 5 µ? enzyme with gradually increased
amount of phenol. The inset shows the Aabsorbance vs. total phenol concentration. Kd
value were analyzed by a computerized, weighted nonlinear regression method.
(Fluorimeter setting is described in the "Materials and Methods")

Resorcinol hydroxylase steady state kinetics

The Vmax and KM values for resorcinol were estimated for Gtra\5\6. Initial rates

observed with different concentrations of resorcinol were corrected for the rates in the

absence of aromatic substrate and A34o/min values were converted to limole/min using an

extinction coefficient of 6220 Cm-1M"1. Data were then fitted with the Michaelis-Menten

equation using Grafit v4.0 software (Erithacus). With Grafit, Lineweaver-Burk plots

were constructed from non-linear regression fitting of the data. The apparent Vmax and

Km obtained from the fitted parameters were 0.09 µp???68/???? and 50.6 µ? for resorcinol
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binding (Figure 46) and 0.09 pinoles/ min and 49.7 µ? for NADPH binding (Figure 47),
respectively.
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Figure 46: Steady state kinetics of Girai 5 16
Reactions were initiated by the addition of different amounts of resorcinol to 50 mM
Tris-Cl buffer, pH 7.5, containing 160 µ? NADPH and 0.48 µ? enzyme at room
temperature.
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Figure 47: Steady state kinetics of Gtra\5\6
Reactions were initiated by the addition of different amounts ofNADPH to 50 mM
TrisCl buffer, pH 7.5, containing 160 µ? resorcinol (saturated) and 0.56 µ? enzyme at
room temperature.

Characterization results for GtralUO

Gtral270 is a putative catechol- 1, 2-dioxygenase or hydroxyquinol dioxygenase,

catalyzing the ring cleavage of phenol and hydroxyquinol to form eis, cw-muconic acid or

maleylacetate, respectively.

Optimization of expression conditions for Gtral270A

Small-scale induced cultures of E. coli transformed with expression plasmid

harbouring Gira1270 were grown under different conditions to maximize expression of
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this protein. Figure 48 shows the expression level of the proteins under different
conditions. Gtral270 had the highest expression level after induction for 3 h at 37°C.

However, instead of being expressed in a soluble form as were Ledo\9%6 and Girai 5 16,

Gtral270 was mainly expressed in an insoluble form Figure 48.
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Figure 48: SDS-PAGE gel (12%) demonstrating the optimum expression condition for
Gtra\270A

(Left) Expression levels in the crude extracts obtained under different induction
conditions. Low molecular weight standards (lane 1). Crude extracts from cell induced
at 37 0C for I5 2S mué 3 !h (!»ses 25 3 and 4). Crade extracts from cells induced at 20 0C
for 1, 3, 6 h and overnight (lanes 5, 6, 7 and 8). (Right) Expression levels of protein in
the pellet obtained from different induction condition. Low molecular weight standards
(lane 1). Pellet resuspension from cells induced at 37 0C for 1, 2, and 3 h (lanes 2, 3 and
4). Pellet resuspension from cells induced at 20 0C for I5 3, 6 h and overnight (lane 5, 6,
7 and 8).

ESI-Q-TOF for GtralllOA

The identity of the major band identified as Girai270A in the gels shown in
Figure 48 was confirmed by mass spectrometry. Trypsin in-gel digestion followed by
ESI-Q-TOF MS was conducted for the circled protein bands in Figure 48 (lane 4,
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supernatant, and lane 4, pellet). Figure 49 shows the spectrum for digestion of the band

of protein observed in the pellet fraction. Peptide fragments observed in the spectrum

are underlined in Figure 50, and cover 16% of the sequence. None of the peptide masses

from the digest of the band of protein observed in the supernatant matched the peptide

masses expected from Gtral270A (ex. Figure 51).
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Figure 49: ESI-Q-TOF spectrum for the peptides of Girai 270 (Figure 48, pellet, lane 4)

MUSgIQFLfR T G QICf PIRQlFItLSD L G ALV
DALNNPPVSGGTESSVLGPFFTEDAPD V NSGDSX
ASI DTHGKgVPKA-LlETWETD

KLRTDKDGRYGYR A V
G K 6fi Y M Y VS GR V

EYGFYDTQYADRSKPDCRG
V P V A Y P I P G D G P V G D L L L K L N R H N M R P H H L H M M Ï
EAPGYQK-LTTA-FYPEGDEKLASDAvFGVKKSL V V
tlkdvdseqearkrgfpkg SHFK L L E H LVLVPE

A__E_S_K AAREQYAREHAVSRSNEIQA.

Figure 50: Identification of the mass fingerprint for the tryptic digest ofGtralHO
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Figure 51 : ESI-Q-TOF spectrum for the peptides of Gira\270 (Figure 48, supernatant,
lane 4)

Characterization of GtralUO

Since Gtral270A is expressed in an insoluble form, it is possible that this may be

due to the missing N-terminal part of the predicted conserved domain suggested by the

sequence alignments (Figure 17). With an N -terminal extension, a BLAST analysing of

Girai 270B (Figure 18) shows that this target gene includes the full alignment sequence

with the predicted conserved domain.

Optimization of expression conditions for GtralHOB

Small scale induced cultures of E. coli cells transformed with expression plasmid

harbouring Gtra1270B were grown for different lengths of time at various temperatures

to determine the best conditions for protein expression (Figure 52). Compared to the

pellet, appreciable amounts of expressed protein were detected in the crude extract.

Expression of a protein with a molecular mass close to that of Gtra12 7OB was highest

after inducing for 3 h at 37 0C (Figure 52, lane 4, supernatant). Thus, by extending the N-
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terminal sequence of the protein, the protein appeared to be successfully expressed in a
soluble form.
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Figure 52: SDS-PAGE gel (12%) demonstrating the optimum expression condition for
Gtral270

(Left) Expression levels in the crude extracts from E. coli transformants harbouring
Gtral270 obtained under different induction condition. Low molecular weight standards
(lane 1). Crude extract from cells induced at 37 0C for 1, 2, and 3 h (lane 2, 3 and 4).
Crude extract from cells induced at 20 0C for 3, 6 h and overnight (lane 5, 6 and 7).
(Right) Expression levels of protein in the pellet obtained under different induction
conditions. Low molecular weight standards (lane 1). Pellet resuspension from cells
induced at 37 0C for 1, 2, and 3 h (lane 2, 3 and 4). Pellet resuspension from cells
induced at 20 0C for 3S 6 h and overnight (lane 5S 6 and 7).

ESI-Q-TOF for GtrafflOB

The identity of the putative Gtral270B band was confirmed by mass spectrometry.
Trypsin in-gel digestion followed by ESI-Q-TOF MS was conducted for the protein
bands circled in Figure 52 (lane 4, supernatant and lane 4, pellet). Figure 53 shows the
spectrum obtained for the digest of the protein band observed in the supernatant. Peptide
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fragments observed in the spectrum and they are underlined in Figure 54, and cover 29%

of the sequence.
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Figure 53: ESI-Q-TOF spectrum for the peptides of Gtral270B

MPNLD L PYPBRPELI T ENLLKL T NLITDERKKYIFKNLI

THIHQFINETSITTDEWJtHIIQFLTRIGQICTPIRQEFI

LLSDVLGISALYDALNNPPVSGGTESSVLGPFFTEDAPD

VNNGDSIASEGK GQYMYVE GR V I D T H G K P V P N A L I E T W E

TDEYGFYD T QYADRS K PDCRGRLRÏDKDGRYGYR AVVPV

AYPI P G DGPVGDLLL M LNR HNMRPNHL H M MIEAP G YQKL

TTAFYPEGDEWLASDAVFGyK K SLVVTLK DVDNEQEAR K

RGFPK GSHFK LLEHDL V LVPEAESK AAREQYAREHAVNR

SNEIQA

Figure 54: Identification of the mass fingerprint for the tryptic digest of Gtral270B

Purification of GtralllOB

Gtral270B was successfully overexpressed in E.coli (DE3)lacI cells and purified

from 6 L of culture using four chromatographic steps as described in "Materials and

Methods". After preparation of crude extract, Fast-flow DEAE-Sepharose



chromatography, High Performance phenyl-Sepharose chromatography, octyl-Sepharose
chromatography and gel-filtration (S-300) chromatography were applied in succession to

purify the target protein. Since the crude extract was not active in oxygenase assays with
hydroxyquinol or catechol, through all chromatography steps, the target protein was
located by SDS-PAGE. The peak fractions were pooled and concentrated prior to the
next step. Figure 55 demonstrates the protein purity observed after each purification step.
The subunit molecular weight of G/ral270B was calculated to be 35900 Da from the

amino acid sequence.
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Figure 55: SDS-PAGE gel (12%) demonstrating the purity of recombinant Gtral270B
after different purification steps

Low molecular weight standards (lane 1). Crude extract (lane 2); Pooled fractions from
Fast-Flow DEAE column (lane 3); Pooled fractions from phenyl-Sepharose column (lane
4); Pooled fractions from octyl-Sepharose column (lane 5); Pooled fractions from S-300
gel-filtration column (lane 6).
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Estimation of molecular weight of GtraUlOB by gel filtration chromatography

The molecular weight of purified Gtra1270B was estimated by gel filtration on a

Superdex S-200 (Pharmacia, 40 cm ? 2 cm) column equilibrated with 0.1 M NaCl in 50

mM Tris-Cl buffer, pH 7.5. Molecular weight standards were loaded onto the column

separately and a standard curve was obtained by plotting Kav vs. log MW (Figure 56).

Purified protein (100 µ?) was loaded on the column, and eluted in two peaks (Figure 57).

From the Kav value of the purified protein, log MW was calculated using the standard

curve. The molecular weights of the two peaks of Girai 270B were estimated to be

143300 Da and 215400 Da which indicated that this protein appeared to aggregate.
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Figure 56: Estimation of the molecular weight of Girai 270B by gel filtration
chromatography

The standard protein used were Ribonulease (13700 Da), Chymotrypsinogen (25000 Da),
Ovalbumin (43000 Da), Albumin (67000 Da), Aldolase (158000 Da), Catalase (232000
Da), Ferritin (440000 Da). The equation obtain from Kav vs. log MW was y = - 0.2093 ?
+ 1.4601.
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Figure 57: Gel filtration traces with Gtral270

Attempted activation of GtralllOB by addition of ion under aerobic and anaerobic
condition

The result of iron quantitation (Materials and Methods) indicated that there was no

iron in the purified protein, so the activity assay was carried out with the reconstitution of

iron. The activity of Gtral270B was measured spectrophotometrically at either 260 or

245 nm using catechol or hydroxyquinol as the substrate. Reactions were carried out
under aerobic or anaerobic conditions in the presence OfFe2+, as described in "Materials

and Methods", however no activity was observed.
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DISCUSSION

Fungi are able to degrade a wide array of different molecules that higher

organisms are incapable of metabolizing. Much of the degradative power of fungi is
associated with secreted hydrolases that attack plant-based macromolecules such as

cellulose, starch, and hemicelluloses. Fungi also produce a wide array of extracellular

proteases and peptidases, many of which have been exploited for industrial purposes (86).

Secreted oxidative enzymes, such as peroxidases and laceases, play important roles in the

degradation of lignin, a highly cross-linked network of aromatic compounds that is very

resistant to hydrolysis (29). Free radicals and active oxygen species generated by these

enzymes attack the linkages in lignin and break it down into simpler subunits. Oxidative

enzymes, such as cellobiose dehydrogenase, also play a role in the degradation of

polysaccharides.

Considerable attention has been paid to the role of extracellular fungal oxidative

enzymes, such as lignin peroxidase and lacease, in dye decolourization and in the

degradation and mineralization of toxic aromatic compounds such as chlorinated

aromatics (86). Less well-studied are fungal intracellular pathways for the use of

aromatic compounds as sole sources of carbon and energy. Decades ago, pathways were

described in fungi such as Aspergillus niger, Neurospora crassa and Rhodotorula sp. for

the degradation of lignin-derived aromatics and hydroxybenzoates (75). Although

differing in some details, in general the chemistry of these pathways is quite similar to

pathways used by bacteria for growth on these compounds. Thus, the aromatic ring is
prepared for ring fission by insertion of hydroxyl groups, such that it is then cleaved by
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dioxygenases to produce a ring-fission product that is converted in a series of reactions to

intermediates of central metabolism.

Although the genetics and molecular biology of bacterial aromatic degradation

pathways have been studied extensively, very few corresponding studies have been

published about fungal pathways. Nevertheless, in the past few years there has been an

explosion of information in the form of sequences of fungal genomes. The Joint Genome

Institute (http://www.jgi.doe.gov/) and the Broad Institute (http://www.broadinstitute.org/)

are two prominent centers for fungal genomics that run sequencing programs and are

repositories of publicly-available fungal genome sequences. There are 207 and 160

fungal genomes, respectively available in the two website. The annotation of these

genomes relies to a large extent on sequence comparisons with known genes. In the case

of genes encoding enzymes for aromatic degradation pathways, most of the annotation is

based on sequence comparisons with bacterial genes. In some cases, the enzymes are

similar enough that the interpretation is straightforward. However, in other cases where

fungi use a somewhat different strategy than bacteria, the lack of fungal sequence

information makes it difficult to predict gene function accurately. For example, Cain et

al. (75) studied a protocatechuate dioxygenase from Aspergillus niger, however,

protocatechuate dioxygenase can not be found by searching the JGI sequence of the

genome oíAspergillus niger.

In order to better understand fungal aromatic degradation pathways, especially the

information that is available from fungal genome sequencing programs, it is clear that
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more structure-function information is needed. In this study, I expressed genes that

appear to encode enzymes from aromatic degradation pathways in fungi for which cDNA

was available from the fungal genomics program at Concordia University. Two new

flavoprotein hydroxylases were successfully expressed and functional information was

obtained. A putative ring cleavage dioxygenase was also expressed, but the enzyme

lacked a metal cofactor and was not active in any of the activity assays that were tested.

In the past a few decades a variety of aromatic hydroxylases including many

flavoproteins have been studied. Mono- or dioxygenases which catalyze the catabolism

of aromatic compounds by introducing hydroxyl groups or cleaving the benzene ring

either at the ortho oxpara position. Flavoprotein monooxygenases use NAD(P)H as the

hydride donor to catalyze the hydroxylation of aromatic compounds in the presence of

molecular oxygen. In addition to the flavin binding site, flavoprotein monooxygenases-

catalyzed reactions seem to have a common mechanism. Generally, three steps are

involved: first, reduction of the flavin by the hydride donor, NAD(P)H, second, the

formation of the oxygenating reagent, C4a-flavin hydroperoxide, from the reaction of the

reduced flavin and O2, and binding, orienting, and activating the substrate for its

oxygenation by the C4a- hydroperoxide, with release of the second atom of oxygen as

water from flavin C4a-hydroxide. Dioxygenases such as catechol- 1,2- dioxygenase and

hydroxyquinol-l,2-dioxygenase incorporate both atoms of molecular oxygen into the

products of the reaction.

Ledol9$6 and Girai 5 16 were successfully overexpressed in E. coli and purified to

homogeneity so that they could be characterized with respect to function. Bioinformatics
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analysis suggested that Ledo 1986 was a putative salicylate hydroxylase which catalyzes

the hydroxylation of salicylate to catechol. The specific activity of the purified enzyme

was 0.28 units/mg of protein and the yield was 97%. This is considerably lower than the

salicylate hydroxylases from Pseudomonas putida (87), which had activity of 10.6

units/mg and 37 units/mg, respectively. Ledo\986 was determined to be a monomer with

a mass of 48600 Da by SDS Polyacrylamide gel electrophoresis and Superdex S-200

chromatography. Similar to the enzymes from Pseudomonas putida (87) and

Pseudomonad (5)(54), Ledol986 contains one molecule of FAD per subunit as a

prosthetic group. Salicylate hydroxylase from Psedomonas (57) is also a monomer with

one FAD per 57 kDa subunit, while the enzyme from Pseudomonas putida (87) was

found to be a 91 kDa dimer, also with 1 FAD per subunit.

As with bacterial salicylate hydroxylases, Ledo 1986 uses a reduced nicotinamide

nucleotide cofactor as the external electron donor. The enzyme from Pseudomonads uses

NADH as an electron donor whereas salicylate hydroxylase from Pseudomonas putida

uses NADPH. The L.edodes enzyme uses NADPH as a hydrogen donor, and was

practically inactive with NADH. This is probably due to the sequence feature of the

NADPH binding site, where the steric hindrance on binding of the extra phosphate group

ofNADPH is weaker than that of the NADH-specific enzyme (88). Under the standard

assay conditions in the absence of anthranilate the oxidation of NADPH was practically

negligible. The oxidation ofNADPH could be observed in the presence of some of the
derivatives of anthranilate as shown in Table 4.
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The substrate specificity studies yield some of the most interesting results for this

enzyme. Table 4 shows that a variety of aromatic compounds stimulated NADPH

consumption. The two salicylate analogues, anthranilate and 4-chlorosalicylate,

exhibited reaction rates 309 and 138% ofthat of salicylate, respectively. Other

compounds were less active. Thus, it appears that Ledo 1986 was more active with

anthranilate than other aromatic compounds, including salicylate. When anthranilate was

used as a substrate, the reaction product, 2, 3-dihydroxybenzoate, was identified by TLC

and HPLC (Figure 31). On the other hand, although Ledo 1986 was active in NADPH

oxidation in the presence of salicylate or 4-chlorosalicylate, no product was observed.

Taken together, these results indicate that anthranilate may be a true substrate for

Ledo\9S6, while salicylate and 4-chlorosalicylate are "pseudosubstrates" (J). This may

explain why Ledo 1986 catalyzes salicylate oxidation at a much lower rate compared to

some other salicylate hydroxylases that have been studied (see above).

In order to further distinguish substrates from psedosubstrates, oxygen

consumption assays for Ledo! 986 were carried out. Since hydroxylase catalyzed

reactions consume oxygen, the addition of catalase at the end of the reaction allows

detection of any hydrogen peroxide produced in the presence of a non-substrate effector

(J). One mole of H2O2 forms 0.5 mole of O2 in the presence of catalase, thus, the ratio of

hydrogen peroxide produced to oxygen consumed for salicylate and 4-chlorosalicylate in
Table 5 indicates that in both cases all the oxygen was used to produce H2O2. In the

cases of salicylate or 4-chlorosalicylate bind at the active site of the enzyme, permitting

NADPH binding and oxidation. At the same time, the FAD moiety is reduced rapidly by
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NADPH. The reduced species reacts with O2 to form the flavin 4a-hydroperoxide, which

then decays to oxidized flavin and H2O2 leaving salicylate unchanged (89). Thus,

salicylate or 4-chlorosalicylate is a "pseudosubstrate" (non-substrate effectors), but

cannot be hydroxylated, so the oxygen utilized decomposes to H2O2, and oxygen

reduction is considered as "uncoupled" from hydroxylation. The salicylate or A-

chlorosalicylate effect is termed "uncoupling of oxygen activation from hydroxylation"

O)-

COOH
0OH Enzyme

: NADPH + Oí + H* ^-» NADP* + WiOi , R- : H -, Cl -
R * OH

-OH f 1^J
OH

Figure 58: Non-substrate effectors of Ledo 1986
R- represents the substituent group on the benzene ring. When R- is substituted with H-
the substrate is salicylate, when R- is substituted with Cl- the substrate is A-
chlorosalicylate. O2 is completely incorporated into H2O2 in the presence ofNADPH.
Substrate is unchanged and no aromatic product is formed

The ratio of hydrogen peroxide produced to oxygen consumed (Table 5) indicates

that anthranilate is a substrate for Ledo 1986, since the product, 2, 3-dihydroxybenzoate,

was produced and only some hydrogen peroxide was detected. This means that most of

the molecular oxygen was used to hydroxylate the aromatic substrate anthranilate, and

only a small part of the oxygen was used to produce hydrogen peroxide (Figure 59).

Only one other anthranilate hydroxylase, from T. cutaneum (83, 83), has been described

and it, like ledo 1986 used NADPH as a reducing agent. The enzyme from T. cutaneum
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catalyzes the double hydroxylation of anthranilate by incorporating one atom of oxygen

from O2 and one from H2O to form the product, 2,3-dihydroxybenzoate, from

anthranilate (Figure 59). Although the T.cutaneum enzyme has been studied extensively,

its sequence is not known, and this is why it did not turn up in the BLAST search using

the sequence of Ledol9S6.

COOH COOH
J^m, Enzvme ^OHIj+ NAOPH + Oi + H* + H?0 '""> (I 1 + MADP* + NH3 + H?0

NADP* + H2O2

Figure 59: Reaction catalyzed by Ledol9&6

In order to compare the binding mode of anthranilate and salicylate to the enzyme,

spectroscopic probes of binding were employed. The results indicated that the modes of

binding of salicylate and anthranilate to the enzyme must be quite different. As shown in

Appendix I, binding of anthranilate to Ledol986 causes extensive spectral change, and a

Kd value was obtained which indicates that the binding between Ledol9S6 and

anthranilate is relatively tight. Compared with anthranilate binding, the spectral changes

observed for salicylate binding to Ledo 1986 were much less extensive and the interaction

was weaker than with anthranilate (Appendix II). This is consistent with the activity

results in that it suggests anthranilate is a better substrate.

Talking all of these results together, the enzyme thus appears to be an anthranilate

hydroxylase rather than a salicylate hydroxylase. The specific activity of the purified
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enzyme with anthranilate was 0.87 units/mg, compared with the anthranilate hydroxylase

from Trichosporon cutaneum (83) which had a specific activity of 4.4 units/mg. The

specific activities of the enzymes are thus similar. Although anthranilate hydroxylases

from fungi are known (6), no sequences are identified as such in Genbank. This may

explain why the closest BLAST hits were salicylate hydroxylases.

Bioinformatics analysis indicated that Gtral5\6 is a putative phenol hydroxylase

which catalyzes the hydroxylation of phenol to catechol. The sequence is quite similar to

phenol hydroxylase from Trichosporon cutaneum (6). The specific activity of the

purified enzyme was 1.99 units/mg of protein and the yield was 38%, compared with the

enzyme from T cutaneum (6), which had a specific activity of 5.5 units/mg. The specific

activity of the enzymes are thus similar. Girai 5 16 was determined to be a dimer with a

mass of 66600 Da by SDS Polyacrylamide gel electrophoresis and Superdex S-200

chromatography. Similar to the T. cutaneum (6) (90) enzyme, Gtral 516 contains 1

molecule of FAD per subunit as a prosthetic group. Phenol hydroxylase from

Trichosporon cutaneum was determined to contain 1 FAD per 148000 molecular weight

of protein.

Similar to salicylate hydroxylase (5) and anthranilate hydroxylase (61), phenol

hydroxylase is also a flavoprotein monooxygenase, and catalyzes the hydroxylation of

phenol by incorporating one atom of molecular oxygen into the substrate, and the other

atom into water in the presence of an electron donor. In the case of phenol hydroxylase

there is a strict requirement for NADPH as a hydrogen donor (6).
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Table 7 shows that a number of aromatic compounds-stimulated NADPH consumption.

Phenol showed the highest activity, and another analogue, resorcinol exhibited a reaction

rate 42% ofthat with phenol. Other compounds were less reactive. Thus it appears that

Gtra\5 1 6 was more active with phenol than other aromatic compounds. Although

Gtral 51 6 was active with NADPH and phenol, the amount of catechol formed was

almost negligible (Figure 42). On the other hand, when resorcinol was substituted for

phenol, the reaction product hydroxyquinol was identified by HPLC and TLC. These

results indicate that resorcinol appears to be a much better substrate for the Girai 5 16. In

contrast, resorcinol is a poor non-substrate effector of the hydroxylase from Trichosporon

cutaneum but an excellent growth substrate for the living cell (66).

In order to further distinguish substrates from psedosubstrates, oxygen

consumption assays for Gtra\5\6 were carried out. The ratio of hydrogen peroxide

produced to oxygen consumed is another way to test enzyme activity and substrate

specificity since the ratio of 1/1 indicates that all oxygen is used to form hydrogen

peroxide and no product should be produced (7). Table 8 indicates that when phenol was

used as a substrate, almost all the oxygen was used to incorporate into H2O2 with the

stoichiometric formation of H2O2 and oxidation ofNADPH. Thus phenol is a "non-

substrate effectors" for Gtra\5\6, stimulating formation of hydrogen peroxide from

NADPH and oxygen (Figure 60).
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4?

OH
Enzyme

: NADPH + Oi + ?» -^-» NADP* + HzOi
OH

OH
+ UM)P* + HiO

Figure 60: Non-substrate effectors of Gtral5 16
Most of the O2 is incorporated into H2O2 in the presence ofNADPH. Very little oxygen
is incorporated into phenol to produce catechol, and this reaction is negligible.

The ratio of hydrogen peroxide produced to oxygen consumed (Table 8) indicates

that resorcinol appears to be a much better substrate for Gtral 5 16, since the product

hydroxyquinol was produced and only some hydrogen peroxide was detected. This

means that most of the molecular oxygen was used to hydroxylate the aromatic substrate,

resorcinol, and only a small part of the oxygen was used to produce hydrogen peroxide.

Similar to the resorcinol hydroxylase studied by Yoshiyuki et al (91), Gtral5l6 used

NADPH as a reducing agent, catalyzing the hydroxylation of resorcinol by incorporating

one atom of oxygen from O2 and one from H2O to form the product hydroxyquinol from

the substrate (Figure 61).

OH

???^^?? Enzyme ^?^??Ij + NAOPH+ 02+ H' ¦ *— > ¡J + NADP*+ H;>0
\ OH

NADP* + H?0?

Figure 61: Reaction catalyzed by Girai 516
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In order to compare the binding modes of phenol and resorcinol to the enzyme,

spectroscopic probes of binding were employed. As shown in Figure 44 and Figure 45,

and the Kd for the interaction of phenol with Gtra\S\6 is too low to measure accurately,

while the ?? vs. total concentration of phenol could not be fit. Tighter binding of

resorcinol relative to phenol was observed. However, the Kd values both appeared to be

greater than 1 mM.

Combined with the previous observations, the enzyme thus appears to be a

resorcinol hydroxylase rather than a phenol hydroxylase. Since resorcinol showed

relative activity with Gtra\5\6 equal to 42% that of phenol, the specific activity of this

enzyme with resorcinol is 0.83units/mg which indicates that this enzyme is relative less
active.

BLAST analysis of the sequence of Girai 270 against the GenBank database

detected putative conserved domains of intradiol_dioxygenäse superfamily and catechol

proteo. Most of the sequences that showing similarity with Gtra\270 are hits to genome

sequences where the enzyme activity has never actually been demonstrated. As

underlined in the alignment list in Figure 15, BLAST searches for Girai 270 from

Gloeophyllum trabeum showed similarity with catechol dioxygenase and hydroxyquinol

1, 2-dioxygenase. Thus, Gtral270 was predicted to be a fungal catechol-1,2-

dioxygenase which catalyzes the ring cleavage of catechol at the ortho position and leads

to Krebs cycle intermediates.
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ffíral270A Ctral270B

CGACGACAAGÄAGCCCCTTCAAGCCAAGGCÄG7GTCGAACGGCCTTCCGCCTCCT CGACgACAAGAAGCCCCTTCAAGCCAAGGCAGTGTCGAACGGCCTTCCGCCTATS
ÄACCTTGACTTGCCGIACCCGGACAGACCAGAGCTCATIACGGÄGAACCTTCTGA CCTAACCTT SAC TTGCCSTACCCaSACflS AC CAGAG CT CATTACSSAG AAC CTTC

TA AT GAhCGhAAGAAS TATGAAGÄG TTGACCEAC?TGATTACCGATGAACGAAA.GÄÄGTACÄTCfTCAAGAÄ.TTTÄAT hü

GACAAS?ACACCAATTCAT CAA A·—^jü.i-««-fii «ACG CATATACACCAATTCAT CAATGAGACAAGT AT CACCACG GACGAATG
GCaAA AAA CG fiori-H<_ü ÄÄ

CTCCGA AGACGCAl-AiTAGhCGTTCATC AA \„u

GAAACAAC AGCGCAA ACGGAGAGCAi TCA
TCAACAAGCAA UÜ

TGTAATCGATACATCTA CGAA hh ü

GAA AT CGaSäCG TGis^A cAwAGi4.CiJÄ*iJ4CATCGAAA ^al.A;jA^.oAGTA AA ü*í

AGCAAACGjAChjhAisCüAAi-CCuh... iulJí GGACAAGGA «ohJü

TAGAGhTA TACC GACG
CAA GAOiCAAThTGCTOiCTTüC GhCACjíüTAT CGAAC tihh

^A\-CG AGAAACATAT GATGATCGA H. COiGAüA CACGACC TA oh i=hCA
rCGACGCCGAGAAGAAA ¦^iiM-^MGAG

oA'wiiì,· a AG GAGGCGGjuíCSTCACATTGAhGGATGTGGACAATGAG AGGC
? wJiAG CT TGAGCAT?ü GACACTT CAAGTTGCTTSAGOiTSAT GTTG AGG LJiUi wA

AACASTACGCGAGGGAACATTGAGTCCAA TAAChGGAGAGTCCAA CGGCG GhACAGTA GAG GGAACAT G TAh Ch <=TäA
AACGAGATT ATGAT GGGCG GACGT GCCGAGA TGAT«hü hb

TGCASSCTGTATTAT3ATAGTTCAACCTGTCAGGAATGTAT TTCTATT GCACATC CAGTGCAGGCTGTATTATGATÄGTTCAACCTGTCAC-GAATGTATTTCTÄTTGCAC
CAAAAAAAAÄAAAAAGAÄAAAAAAAAAAAAAAAAAC ATCCAÄÄAAAAAA&AÄAAGAAAAAAAAAAAAAAAAAAAC.

Figure 62 : Primers and target genes of Gtral270A and Girai 270B

At first, a pair of primers was used to amplify the target gene which starts from the

predicted first start codon of the template, and the amplified gene was named Gira 1270 A

(Figure 62, left figure). When expressed in E.coli, but the protein was produced in an

insoluble form Figure 48, and was not active. Thus the sequence of Gira 1270 A was re-

examined. From the BLAST result shown in Figure 17, 1 found that most of the

alignments with other Genbank sequences start upstream of the first amino acid of

Gira1270 A, which means for Gira 1270A some part of the conserved domain shared by

all sequences listed may have been left out. Thus a pair of new primers was designed in

order to extend the N terminus of Giral270A. As shown in Figure 16, Giral270B was

extended for 56 codons past the N terminus of Giral270A, with a new start codon

inserted at the beginning. A BLAST search using the Gi/'a 1 2 70B sequence showed that

this target gene included the full alignment sequence of the listed genes (Figure 18).

Girai 270B was then successfully overexpressed, isolated and purified from E.coli. Thus,

with an extension on the N terminus, Gi/-al270B was able to be expressed in a soluble

form. However, gel filtration results indicated that the purified enzyme (which has a 29

103



kDa subunit molecular weight) appeared to aggregate, the protein was not active in the

assay with a variety of dihydroxylated substrates.

Catechol 1 ,2-dioxygenäse from Acinetobacter calcoaceticus (69, 79) is determined

to be a nonheme, trivalent, iron-containing enzyme, which catalyzes the cleavage of the

aromatic ring of catechol to eis, cw-muconate with the incorporation of two atoms of

molecular oxygen into the substrate. This enzyme has a red color with broad absorption

between 390 and 650 nm. Catechol 1 ,2-dioxygenase from Trichosporon cutaneum (21)

was also determined to be an iron containing enzyme showing red color, and the inactive

form was colourless. All of the intradiol catechol dioxygenases studied to date contain

high-spin Fe (III) in a rhombic environment and exhibit a distinct red-brown colour. The
colour is a result of an electronic transition in the visible region, typically centred around

430-450 nm. The wavelength and intensity are indicative of a charge-transfer

interaction from the co-ordination of tyrosinate side chains to the Fe (III) (92). On the

basis of a variety of spectroscopic techniques, the active sites of these enzymes are

proposed to consist of a high-spin ferric center coordinated to two tyrosine, two histidine,
and a water. The reaction sequence involves initial substrate binding to the ferric center

generating an iron(III)- catecholate complex and subsequent attack by dioxygen on the

enzyme-substrate complex. Sze and Dagley reported the purification of a hydroxyquinol

1, 2-dioxygenase from T. cutaneum (55) grown with 4-hydroxybenzoate. It was shown to

be a red ferric iron-containing enzyme, and it was specific for hydroxyquinol.

Purified Gtra\270 was colourless, thus an iron assay was carried out to quantify

the iron content of Girai 270B. However, no iron was observed and this may be the

reason why the enzyme was inactive. The intradiol catechol dioxygenses have Fe (III) at
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the active site, whereas the extradiol dioxygenases have Fe (II). In order to activate the

enzyme, the protein was reconstituted with Fe3+ aerobically or anaerobically, however no
activity was observed.
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CONCLUSIONS

Significant advances have been made in recent years in the elucidation of the

genetic and biochemical bases of aerobic mineralization of aromatic compounds, and

detailed knowledge is available of different catabolic pathways and enzymology. Much

of these data relate to bacterial pathways, and relatively little has been published on

fungal aromatic catabolic enzymes. In this project new information about the properties

of two new fungal monooxygenases was obtained, and a putative dioxygenäse was

successfully expressed though it failed to show activity.

Bioinformatics analysis suggested that Ledol9$6 is a salicylate hydroxylase. It

was successfully overexpressed in E. coli, purified in good yield, and found to contain

FAD as do many bacterial hydroxylases. Although Ledo 1986 was active with NADPH

and salicylate, no product was observed. Thus, salicylate is a non-substrate effector,

stimulating formation of hydrogen peroxide from NADPH and oxygen, as has been

reported for a number of other flavoprotein hydroxylases. In contrast, Ledo\986 was

active with anthranilate, producing 2,3-dihydroxbenzoate as a product. Spectroscopic

probes of binding indicated that the modes of binding of salicylate and anthranilate are

quite different. Combined with the previous observation, the enzyme thus appears to be

an anthranilate hydroxylase rather than a salicylate hydroxylase . Although anthranilate

hydroxylases from fungi are known, no sequences are identified as such in Genbank.

This may explain why the closest BLAST hits were salicylate hydroxylases.
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Bioinformatics analysis suggested that Gtra\5\6 is a phenol hydroxylase. It was

successfully overexpressed in E. coli and purified in good yield. As with Ledo 1986, the

purified protein contained a non-covalently bound FAD but, unlike Ledo 1986, the FAD

was readily lost during purification. For this reason, FAD was included in the

purification buffer. Gtra\5 1 6 was active with NADPH and phenol, producing very little

catechol as a product. However, the uncoupling assay suggested that phenol is mainly a

non-substrate effector, stimulating formation of hydrogen peroxide from NADPH and

oxygen. Gtra\5\6 was also active with resorcinol, producing hydroxyquinol and some

hydrogen peroxide. Combined with the previous observation, the enzyme thus appears to

be a resorcinol hydroxylase rather than a phenol hydroxylase.

Bioinformatics analysis suggested that Gtral270 is a catecho-l,2-dioxygenase.

The protein was successfully overexpressed in E.coli, after extension of the N-terminus

of the originally-predicted gene sequence, and was purified using four chromotographic

steps. Purified enzyme appeared to aggregate, and was not active either as isolated or

after the addition of iron.
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APPENDIX

Ligand binding was examined by titrating the enzyme with aliquots of the ligand and

measuring the resulting perturbations of the enzyme-bound flavin absorbance or

fluorescence spectrum. Data were analyzed by a computerized, weighted nonlinear

regression method. The equation in the method used is shown below, where Ej is the

total enzyme concentration, Lj is the total ligand concentration, and OA, AAmax and K¿

are the fitted variables (93).

àAmax 2Ej
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Appendix I: Titration of Ledo 1986 with anthranilate A) changes in fluorescence emission
spectrum and B) absorbance difference spectrum

This work was done by Joseph Napoletano. The experiment for A) was carried out using
fluorescence spectroscopy. Samples were placed in 500 µ? cuvette and data were
collected by titrating 3 µ? enzyme with gradually increasing amount of anthranilate.
The experiments for B) monitored the visible spectrum of enzyme-bound FAD. Enzyme
(3 µ?) in a 1 ml cuvette was titrated with gradually increasing amounts of anthranilate.
The inset shows the AAbsorbance vs. total anthranilate concentration.
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Appendix II: Titration of Ledoi9S6 with Salicylate A) changes in fluorescence emission
spectrum and B) absorbance difference spectrum

This work was done by Joseph Napoletano. The experiment for A) was carried out using
fluorescence spectroscopy. Samples were placed in 500 µ? cuvette and data were
collected by titrating 3 µ? enzyme with gradually increasing amount of salicylate. The
experiments for B) monitored the visible spectrum of enzyme-bound FAD. Enzyme (3
µ?) in a 1 ml cuvette was titrated with gradually increasing amounts of salicylate. The
inset shows the AAbsorbance vs. total salicylate concentration
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