
EXPLANATION AND DIAGNOSIS SERVICES FOR

UNSATISFIABILITY AND INCONSISTENCY IN

DESCRIPTION LOGICS

Xi Deng

A THESIS

IN

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy

Concordia University

Montréal, Québec, Canada

September 2010

© Xi Deng, 2010

¦*¦ Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre référence
ISBN: 978-0-494-71 1 56-9
Our file Notre référence
ISBN: 978-0-494-71156-9

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1*1

Canada

Abstract

Explanation and Diagnosis Services for Unsatisfiability and
Inconsistency in Description Logics

Xi Deng, Ph.D.

Concordia University, 2010

Description Logics (DLs) are a family of knowledge representation formalisms

with formal semantics and well understood computational complexities. In recent

years, they have found applications in many domains, including domain modeling,

software engineering, configuration, and the Semantic Web. DLs have deeply influ-

enced the design and standardization of the Web Ontology Language OWL. The

acceptance of OWL as a web standard has reciprocally resulted in the widespread

use of DL ontologies on the web. As more applications emerge with increasing com-

plexity, non-standard reasoning services, such as explanation and diagnosis, have

become important capabilities that a DL reasoner should provide. For example, un-

satisfiability and inconsistency may arise in an ontology due to unintentional design

defects or changes in the ontology evolution process. Without explanations, search-

ing for the cause is like looking for a needle in a haystack. It is, therefore, surprising

iii

that most of the existing DL reasoners do not provide explanation services; they

provide "Yes/No" answers to satisfiability or consistency queries without giving any

reasons.

This thesis presents our solution for providing explanation and diagnosis ser-

vices for DL reasoners. We firstly propose a framework based on resolution to explain

inconsistency and unsatisfiability in Description Logic. A sound and complete algo-

rithm is developed to generate explanations for the DL language ACCHl based on

the unsatisfiability and inconsistency patterns in ACCHX.

We also develop a technique based on Shapley values to measure inconsistencies

in ontologies for diagnosis purposes. This measure is used to identify which axioms

in an input ontology or which parts of these axioms need to be repaired in order to

make the input consistent. We also investigate optimization techniques to compute

the inconsistency measures based on particular properties of DLs.

Based on the above theoretical foundations, a running prototype system is

implemented to evaluate the practicability of the proposed services. Our preliminary

empirical results show that the resolution based explanation framework and the

diagnosis procedure based on inconsistency measures can be applied in the real

world applications.

IV

Acknowledgments

This thesis is the outcome of my journey in obtaining the Ph.D. degree in Computer

Science and fortunately I have not been a lonely traveler.

First of all, it is difficult to overstate my gratitude to my supervisors: Dr

Volker Haarslev and Dr Nematollaah Shiri. I have received continuing inspiration

and encouragement from them throughout my study. The insightful discussions with

them have greatly shaped the ideas and development in this research in various ways.

I could not imagine finishing this thesis without their guidance.

I am also indebted to my colleagues for providing a stimulating and relaxed

working environment. I especially value the friendship of my officemates: Hsueh-

Ieng Pai and Ali Kiani. In addition I am grateful to Yu Ding, Ming Zuo, Nima

Mohajerin, Mina Asiani, Jocelyne Faddoul, Amineh Fadhil, and Qiong Huang.

I also want to thank all my friends for their emotional support. Cuiming Chen,

Jiaoyue Wang, Yue Wang, Yingying She, Xin Tong and Chao Jin deserve special

mention.

Lastly, and most importantly, I want to thank my parents for their endless

?

love and support in every step of my life. To them I dedicate this thesis.

Vl

Contents

List of Figures xii

List of Tables xiv

I Introduction 1

1 Introduction 2

1.1 Motivation 4

1.2 Contributions 5

1.3 Outline of Thesis 10

2 Preliminaries 13

2.1 Description Logics 13

2.1.1 Introduction 14

2.1.2 The DL language ACCHI 18

2.2 Resolution Based Theorem Proving 26

vii

2.2.1 First-Order Logic (FOL) 26

2.2.2 Resolution Based Refutation Technique 30

2.2.3 Resolution 32

2.3 Conclusion 33

3 Related Work 35

3.1 Definition and Properties of Explanations 36

3.1.1 Definition of Explanations 36

3.1.2 Properties of Explanations 37

3.2 Explanation in Description Logics Systems 38

3.2.1 Explaining Structural Subsumption 38

3.2.2 Explaining Subsumption Using Sequent Rules 42

3.2.3 Pinpointing and Debugging 45

3.3 Explanation in Automated Theorem Proving 49

3.3.1 A^-proof system 49

3.3.2 PROVERB and TRAMP 50

3.4 Explanation in Other Systems 52

3.5 Diagnosis in Description Logics Systems 53

3.6 Conclusion 54

vni

II An Explanation Framework Based on Resolution 55

4 An Explanation Procedure 57

4.1 Resolution Based Framework 57

4.1.1 Preprocessing 59

4.1.2 Obtaining Resolution Proofs 67

4.1.3 Generating Explanations 69

4.2 The Algorithm 74

4.3 Illustrating Example 77

4.4 Conclusion 82

5 Implementation and Performance 83

5.1 A Prototype System for Explanation 83

5.1.1 Description Logic Reasoner 84

5.1.2 Translator Component 84

5.1.3 Resolution Proof Generator 84

5.1.4 Refutation Graph Generator 85

5.2 Illustrating Example 85

5.3 Performance Evaluation 87

5.4 Test Ontologies 87

5.4.1 Experiments with other FOL reasoners 88

5.5 Conclusion 89

ix

Ill A Framework for Measuring Inconsistencies 90

6 A Diagnosis Procedure 92

6.1 Inconsistency Measures 93

6.1.1 Ontologies in the Semantic Web 94

6.1.2 Motivating Example 96

6.1.3 Background 96

6.1.4 Inconsistency Measure Based on the Shapley Value 100

6.1.5 Properties of the Inconsistency Measures 101

6.1.6 Apply the Inconsistency Measures to Clauses 105

6.2 Computational Complexity and Optimization Issues 105

6.2.1 Partition Based on Structural Relevance 106

6.2.2 Optimization Based on Properties of the Inconsistency Measurel09

6.3 Conclusion Ill

7 Performance Evaluation 112

7.1 Test Ontologies 112

7.2 Resolving Inconsistencies 113

7.3 Performance Evaluation 114

7.3.1 Evaluation of Partition Based on Structural Relevance 115

7.3.2 Evaluation of Properties of the Inconsistency Measure 117

7.3.3 Evaluation of Both Optimization Techniques 119

7.4 Conclusion 120

IV Conclusion and Future Work 122

8 Conclusion and Future Work 123

8.1 Summary 123

8.2 Future Research 125

Bibliography 127

Appendix 142

A Glossary 143

??

List of Figures

1 Terminal Conditions of the Sequent Rules 42

2 Modified Sequent Rules 42

3 The Explanation Framework Architecture 59

4 A Example Refutation Graph 71

5 Derivation Represented by the Ordering in a Refutation Graph 72

6 Inconsistency Pattern 1 74

7 Inconsistency Pattern 2 74

8 Inconsistency Pattern 3 74

9 Inconsistency Pattern 4 74

10 Traversal algorithm 76

11 The Refutation Graph for the Example Knowledge Base 79

12 Partition 1 of the Motivating Example 107

13 Partition 2 of the Motivating Example 107

14 Computing Shapley Values HO

15 Evaluation of Partition Based on Structural Relevance 116

xii

16 Evaluation of Optimization Based on Measure Properties 118

17 Evaluation of Both Optimization Techniques 120

XlU

List of Tables

1 A Natural Deduction Proof Style Explanation 7

2 A Resolution Proof Style Explanation 7

3 The Tableau Expansion Rules for ACCHI 25

4 An Example of Resolution 33

5 Comparison of Approaches of Explanations for DL Reasoning 48

6 Translation from ACCHX Concepts into C2 60

7 Translation from ACCHl Axioms into C2 60

8 Translation from ACCHI Knowledge Base into C2 61

9 A Resolution Proof for the Working Example 67

10 Another Resolution Proof for the Working Example 69

11 An Example DL Knowledge Base 77

12 The Knowledge Base after Filtering Based on the Resolution Proof . 80

13 Explanation for the Example Knowledge Base 81

14 Test Ontologies Used in the Evaluation 87

15 Performance of the Prototype System Using Otter 88

xiv

16 Optimization Using Partitioning 116

17 Optimization Using Measure Properties 118

18 Optimization Using Both Techniques 119

xv

Part I

Introduction

1

Chapter 1

Introduction

Description Logics (DLs) are a family of knowledge representation formalisms that

use concepts and roles to model application domains in a structured and formal way.

The term comes from the fact that complex descriptions built with concepts and

roles are used to represent knowledge, equipped with logic-based semantics.

A DL knowledge base is composed of two parts: a TBox and an ABox. A TBox

describes concepts (unary predicates representing sets of individuals) and roles (bi-

nary predicates representing relations between individuals). An ABox describes the

membership of individuals and pairs of individuals in roles. Examples of basic rea-

soning services in Description Logics include subsumption, which determines whether

one concept subsumes another, instance checking, which checks if an individual is

an instance of a certain concept, satisfiability, which determines if there is a model

for a certain concept, consistency, which checks the satisfiability of the knowledge

2

base. All other reasoning problems can be reduced to satisfiability checking, making

it a pivotal reasoning service in applications.

The first DL based system KL-ONE [BS85] was proposed as an extension to

semantic networks [Qui67] and frame-based knowledge base systems [Min74] , which

were not equipped with a formal representation language and logical reasoning. The

semantics of KL-ONE is model-theoretic and as with most DL languages, it can be

regarded as a fragment of first-order logic. By restricting the expressive power and

taking advantage of the structured representation, more efficient reasoning tech-

niques can be devised in KL-ONE other than the traditional decision procedures

for first-order logic. In addition, reasoning in different fragments of first-order logic

leads to different computational complexity problems. As a consequence, a ma-

jor body of DL research has been devoted to investigating the trade-off between

expressiveness and computational complexity, which has been thoroughly mapped

out (a survey can be found in [HPSMW07]) and forms the theoretical foundation

of the implementation line of research in DL. In earlier systems such as CLASSIC

[BMPSR90] and LOOM [Mac91], reasoning algorithms were developed based on

structural subsumption. Such algorithms transform concept descriptions to nor-

mal forms and then decide concept subsumption by comparing the structures of

these normal forms. However, there does not exist a sound and complete structural

subsumption algorithm for expressive DL languages.

As a remedy to these deficiencies, tableau algorithms were proposed in [SSS91].

3

A tableau algorithm proves satisfiability of a knowledge base by trying to construct

a model. If such a model can be built, the knowledge base is satisfiable, otherwise

it is unsatisfiable. Sound and complete tableau algorithms have been introduced

for very expressive DL languages, and optimization techniques such as absorption

and caching have also been proposed [Hor07]. These algorithms were successfully

implemented in most of state-of-the-art reasoners, such as Racer [HMOl], FaCT++

[TH06], Pellet [SP04] and HermiT [MSH09].

1.1 Motivation

In recent years, Description Logics have found their way into many application

domains, including domain modeling, software engineering, configuration, and the

Semantic Web [BN07]. For example, Description Logics have deeply influenced the

design and standardization of the Web Ontology Language OWL [w3c]. The ac-

ceptance of OWL as a web standard has also resulted in the widespread use of DL

based ontologies on the Internet. As more and more applications emerge with in-

creasing size and complexity, unsatisfiability and inconsistency problems are more

than usual to encounter. An unsatisfiable concept (or an inconsistent knowledge

base) is a concept (or a knowledge base) that cannot instantiate any individuals.

Unsatisfiability and inconsistency may arise due to unintentional design defects or

changes during the ontology evolution process. For instance, the DICE (Diagnoses

4

for Intensive Care Evaluation) terminology [HS05] contains more than 2,400 con-

cepts, out of which about 750 concepts are unsatisfiable due to migration from other

terminological systems. Although these problems need immediate attention, most

existing DL reasoners do not provide explanation services; they merely provide a

"Yes/No" answer to a satisfiability or consistency query without explaining why the

unsatisfiability or inconsistency occurs or how it can be resolved. It has turned out

that providing an explanation of the origin of the unsatisfiability/inconsistency is

important for users. Hence, in addition to the primitive answers, it is imperative

that DL reasoners provide explanations for these answers and identify their sources.

Moreover, offering suggestions to resolve the unsatisfiability/inconsistency can be

helpful to users too. For example, it is possible that removing a certain source of

inconsistency results in resolving other inconsistencies in the knowledge base as well,

which suggests this source is more problematic, and users might prefer to first re-

solve the most problematic sources. Therefore, in order to further assist knowledge

engineers and ontology developers to improve the quality of the knowledge base, it

is also crucial to provide a diagnosis service as a useful facility for DL reasoners.

1.2 Contributions

In the first part of this thesis, we propose a resolution proof based framework to

provide explanations for unsatisfiability and inconsistency in the Description Logic

language ACCHl. In general, there are two approaches to build an explanation

5

system. One is to construct a system specially designed to provide explanations, as

suggested in [WT92] . Several proposals to support explanations in theorem proving

systems follow this idea [Hua94, MeiOO]. Another solution is to extend an exist-

ing reasoner to include an explanation module, which traces the internal reasoning

procedure to produce explanations. Most research on explanations in logic program-

ming and deductive databases follow this approach [Byr80, ST90]. In this thesis, we

propose a framework of constructing explanations for unsatisfiability and inconsis-

tency problems in the DL language ACCHl using resolution proofs, which follows

the basic ideas of the first approach, although necessary interactions with the DL

reasoner is also considered. ACCHI is a reasonably expressive DL language which

includes constructors such as conjunctions, disjunctions, existential and universal

restrictions. It also allows constructors for role hierarchies and inverse roles. We

investigate unsatisfiability and inconsistency patterns in ACCHT to further improve

the efficiency of generating explanations. Based on this framework, we propose an

algorithm and establish its soundness and completeness.

There are three main advantages of the proposed framework. First, the res-

olution technique can generate explanations at a fine-grained and logical level in

contrast to merely debugging the knowledge base. Besides, compared to the previ-

ous approaches of using natural deduction proofs to explain reasoning, we use the

resolution technique which is more focused, since all the literals involved in a proof

contribute directly to the solution. Table 1 is a variant of the example in [Hua96]

6

illustrating a natural deduction proof style explanation. The number shown in the

second column at each row indicates the hypothesis that on which the derivation

depends. The conclusion of the inference is shown in the third column. The last col-

umn indicates the inference rule and/or the hypotheses used in a row. Considering

that this problem can be solved in two steps using resolution as shown in Table 2,

it shows that the natural deduction proof is indeed long and tedious.

No Hyp. Conclusion Reason
1.1 A (Hypothesis)
2. 2 A C B (Hypothesis)
3. 3 -*B (Hypothesis)
4. 2 ->A V B (Tautology 2)
5. 5 ->A (Hypothesis)
6. 1, 5 _L (1, 5)
7. 7 B (Hypothesis)
8. 3, 7 -L (3, 7)
9. 1, 2, 3 _L (Case analysis 4, 6, 8)
10. 1, 2 B (Indirect 9)

Table 1 : A Natural Deduction Proof Style Explanation

No Hyp. Clause Reason
1. 1 {A} (Hypothesis)
2. 2 {~?,?} (Hypothesis)
3. 3 {-.£} (Hypothesis)
4. 1, 2 {B} (Resolution 1, 2)
5. 3, 4 J_ (Resolution 3, 4)

Table 2: A Resolution Proof Style Explanation

A second advantage of our resolution based approach is that it is independent

of any specific DL reasoners being used. Most implemented DL reasoners use a

tableau algorithm as their decision procedure, which is known to be decidable. The

development of highly efficient optimization techniques has also demonstrated that

7

acceptable performance can be achieved. However, tableau algorithms are designed

to render results faster but not necessarily easier for users to comprehend. For

example, some DL optimization techniques are adopted to make reasoning more

efficient; ease of understanding of reasoning procedures are not often the concerns of

such techniques. Therefore, if the internal reasoning procedures are traced in order

to generate explanations for general users, they must be tailored with performance

penalties. In our approach, explanations are constructed based on resolution proofs,

hence no modification of the internals of DL reasoners is required. This makes our

proposed solution applicable to arbitrary DL reasoners.

The third advantage of our proposed solution is that it can benefit from many

features of resolution based theorem provers to provide better explanations. For

example, there might be more than one reason for the unsatisfiability or inconsis-

tency in a knowledge base, and it is not sufficient for the explanation service to stop

whenever the first source of the contradiction is detected. Since many resolution

based theorem provers, such as Otter [WW97], can be configured to provide all the

resolution proofs they can find, we can rely on the provers to provide alternative

proofs in our approach.

In the second part of the thesis, we present a diagnosis framework based on

inconsistency measures. As shown in real life applications, all inconsistencies are

not equally "bad." It is possible for an ontology to contain two or more sources of

inconsistencies and they may have different impacts on the inconsistencies. They

8

may not necessarily contain the same contradiction and the same information, and

may have overlapping content. The following are just two possible scenarios.

• Non-overlapping: there are more than one set of axioms that contribute to an

inconsistency in an ontology and they are independent of one another.

Suppose K' and K" are two inconsistent subsets of an ontology O. When we

say O has non-overlapping sources of inconsistencies, it means that K' D K" =

0. Note that an inconsistency might occur at different levels: at the level of a

single axiom, and at the level of sets of axioms.

• Overlapping: there are more than one set of axioms that contribute to an

inconsistency in an ontology and they are interweaved with one another.

An ontology O with overlapping sources of inconsistencies means that K' ?

K" F 0. When two sets of inconsistent axioms are overlapping, it indicates

that certain axioms contribute more to the inconsistencies and these axioms are

possibly more problematic than others. It is most likely the case that removing

one of these axioms from ? will result in resolving other inconsistencies as well.

In this thesis we propose a quantitative measure of inconsistencies in ontolo-

gies based on Shapley values. This measure gives users guidelines on priorities of

the axioms to be removed and their consequences. It can be applied to clauses in-

stead of axioms. Since clauses are more fine-grained than axioms, it allows us to

take a deeper look inside the axioms and find out which proportion of the axiom

9

contributes to the inconsistency. The computational complexity of calculating the

Shapley value is at least Exp-time, which shows that it does not scale well in general

[CS04]. Therefore we propose to optimize the calculation based on structural rele-

vance of the axioms and properties of the defined inconsistency measure. Our main

contribution in this direction is twofold: we combine previously known game theory

strategies into ontology reasoning and present a measure to systematically evaluate

the inconsistencies in ontologies. To the best of our knowledge, this is the first work

in Description Logics towards providing a quantitative measure of inconsistencies.

This approach is independent of a particular species of ontology languages or a

particular reasoning system used.

1.3 Outline of Thesis

The rest of this thesis is organized as follows:

• In Chapter 2 we discuss the necessary theoretical background of this work.

We briefly introduce the syntax and semantics of the DL language ACCHl,

which is the main focus of this thesis. We also provide an overview of the

fundamental reasoning services and decision procedures in DL, followed by

the syntax, semantics and decision procedures in resolution based first-order

logic theorem proving.

10

• In Chapter 3, we review the related work in expert systems, deductive data-

bases, automated theorem provers and DL based knowledge bases. We also

compare our approach with the discussed related work in debugging, explaining

and repairing knowledge bases. The definitions and properties of explanations

in the context of DL are presented as well.

• Chapter 4 presents our framework for providing explanations of DL ACCTiI

knowledge bases based on resolution proofs. The framework translates the DL

knowledge base into first-order logic formulae and then invokes an automated

theorem prover to obtain a resolution proof and its corresponding refutation

graph. By traversing the refutation graph based on unsatisfiability and incon-

sistency patterns, an explanation is generated and presented to users.

• Chapter 5 provides implementation details of a prototype system based on the

framework introduced in Chapter 4. We also evaluate the performance of the

explanation procedure and compare it with other approaches.

• Chapter 6 discusses a technique based on Shapley values to measure inconsis-

tencies in DL knowledge bases. This measure can be used to identify which

parts in an inconsistent knowledge base need to be removed or modified in or-

der to make it consistent. We also propose optimization techniques to improve

the efficiency of computing Shapley values.

• Chapter 7 presents empirical results of performance and usability evaluations

11

of the inconsistency measures introduced in Chapter 6.

• Chapter 8 presents the open issues in our approach and outlines future research

directions.

Various results of our research have been published in conference/workshop

proceedings and journals. The resolution proof framework to generate explanations

for ACC was published in [DHS05a, DHS05b]. A sound and complete algorithm

is presented in [DHS06] and the underlying Description Logic language is later ex-

tended to ACCHl based on unsatisfiability/inconsistency patterns in [DHS07b].

The ontology inconsistency measure was published in [DHS07a].

12

Chapter 2

Preliminaries

In this chapter, we will first introduce Description Logics, a family of knowledge

representation languages that can be used to model an application domain in a

formal way. We will introduce the syntax, semantics and inference problems in the

DL language ACCHl. We will then review resolution techniques from first-order

logic. For more materials on Description Logics and resolution, the interested reader

is referred to [BN07] and [RVOl].

2.1 Description Logics

Description Logics (DLs) are a family of concept-based knowledge representation

formalisms. The name is derived from the fact that, on the one hand, the notions in

the domain of interest are described by concept descriptions, i.e., expressions that are

built from atomic concepts (unary predicates) and atomic roles (binary predicates)

13

using the constructors provided by the particular Description Logic language. On

the other hand, Description Logics differ from their predecessors, such as semantic

networks and frames, in that they are equipped with a formal, logic-based semantics

[BHS07].

2.1.1 Introduction

Description Logics represent the knowledge of a domain by first defining the relevant

concepts of the domain. These concepts are then used to specify properties of the

objects and individuals in the domain. Typically a DL knowledge base has two

parts: terminology (TBox) and assertions (ABox). The TBox specifies intensional

knowledge in the form of axioms. The ABox contains the extensional knowledge

that is specific to elements in the domain, called individuals.

We begin by reviewing the language AC (for Attribute Language), which has

been introduced as a minimal language of interest in Description Logics. Other

languages of this family (including ACCHJ, which is the focus of this thesis) are

various extensions of AC. The informal description is given in this section while

the formal description of its syntax, semantics and inference services is given in

Section 2.1.2. In AC, basic descriptions are atomic concepts, designated by unary

predicates to specify the objects, and atomic roles, designated by binary predicates

to express relationships between individuals. The constructors allowed in AC are

atomic negation, intersection, value restriction and limited existential quantification.

14

Arbitrary concept descriptions such as C and D are defined recursively from atomic

concepts and roles using the DL constructors according to the following syntax rules:

C, D —> A\ (atomic concept)

Tj (universal concept)

_L| (bottom concept)

->A\ (atomic negation)

C ? D J (intersection)

VA. C I (value restriction)

3R.T (limited existential quantification)

We will illustrate some typical constructors by examples. Formal definitions

will be given later in Section 2.1.2. Suppose that Person and Female are atomic

concepts. Then Person ? Female and Person ? -> Female are concepts describing

people who are female and people who are not female. In addition, assuming that

hasSpouse is an atomic role, then the concept description Person ? 3hasSpouse.T

denotes people who have a spouse.

Concept descriptions can be used to build axioms, which express how concepts

and roles are related to each other. Generally, an axiom is a statement of the form

CQD, read as "concept C is subsumed by concept D" , or C = D, indicating that

CÇD and DQC hold, where C and D are concept descriptions. For instance, by

the axiom:

Married G? Person ? 3hasSpouse.T

15

we define the concept Married as people who have spouses.

A TBox is a set of axioms through which we can introduce atomic concepts and

concept descriptions such as Married. In addition, we can also introduce individuals

and assert properties of these individuals in an ABox. For example, suppose JANE

and JACK are individual names, then Married(JANE) means that Jane is married,

and hasSpouse(JANE, JACK) asserts that JANE is the spouse of JACK.

A more expressive language can be obtained if more constructors are added to

AC. For example, ACCTiT is the extension of AC by allowing negation of arbitrary

concepts (indicated by C for Complement), role hierarchy (indicated by H) and

inverse role (indicated by T). For instance, using role hierarchy, we can assert that

if people have spouses then they have relatives: hasSpouse ?. hasRelative. We can

also define that the inverse of the role hasChild yields the role hasParent.

Modern Description Logic systems provide their users with reasoning services

that can automatically deduce implicit knowledge from the explicitly represented

knowledge, and always yield a correct answer in finite time. The subsumption

algorithm determines subconcept-superconcept relationships: C is subsumed by D

if all instances of C are necessarily instances of D, i.e., the first concept description

is always interpreted as a subset of the second concept description. For example,

given the definition of Married mentioned earlier and the axiom Person E Creature,

which says that humans are creatures, Married is subsumed by BhasSpouse. Creature

since instances of Married are married to some instances of Person, and all instances

16

of Person are also instances of Creature. The instance checking algorithm determines

concept membership: an individual a is an instance of the concept description C

if a is always interpreted as an element of the interpretation of C. For example,

given the aforementioned assertions and the definition of Married, we conclude that

JANE is an instance of Person (because JANE is an instance of Married, so she is

also a person according to the definition of Married). The consistency algorithm

determines whether a knowledge base (consisting of a set of assertions and a set

of terminological axioms) is consistent. In a typical application, one would start

building the TBox, making use of the reasoning services provided to ensure that all

concepts in it are satisfiable, i.e., are not subsumed by the bottom concept, which

is always interpreted as the empty set. Moreover, one would use the subsumption

algorithm to compute the subsumption hierarchy, i.e., to check, for each pair of

concept names, whether one is subsumed by the other. Besides, given an ABox, one

would first check for its consistency with the TBox and then, for example, compute

the most specific concept (s) that each individual is an instance of (this is often called

realizing the ABox). We could also use a concept description as a query, i.e., we

could ask the DL system to identify all those individuals that are instances of the

given, possibly complex, concept description.

Obviously, all the knowledge we have described in our examples can easily be

represented by formulae of first-order predicate logic (see also Section 2.2.1). The

variable-free syntax of Description Logics makes TBox axioms easier to read than

17

the corresponding first-order formulae. And the object-oriented way of modeling

the application domain is more intuitive from a user's perspective. However, the

main reason for using DLs rather than predicate logic is that DLs are carefully

tailored for practical purposes which provides a trade-off between expressiveness

and decidability of the important reasoning problems (see Section 2.1.2).

2.1.2 The DL language ACCHI

In following, we first review the syntax and semantics of the DL language ACCJiI.

We will also define the important inference problems w.r.t. a knowledge base con-

sisting of a TBox and an ABox.

Definition 2.1.1 (ACCHl syntax) Let Nc be a set of concept names and NR be

a set of role names. The set of ACCHl -roles is NR U {R~\ R e NR}. Let Inv(Ä) =

R~ and Inv(R~) = R for R G NR. The set of ACCHl-concept descriptions is the

smallest set such that the following properties hold:

1. T, _L, and every concept name A G Nc is an ACCHl-concept,

2. if C and D are ACCHl-concepts and R is an ACCHl-role, then C ? D, C U

D, ->C,VR.C, and 3R.C are ACCHl-concepts.

In this thesis, for the sake of simplicity, we will often use "ACCHl-concept"

instead of "./ICCHX-concept description". The semantics of ACCHl is given in

terms of interpretations, defined as follows.

18

Definition 2.1.2 (ACCHl semantics) An interpretation! = (?1, ·t) consists of

a non-empty set A1 , called the domain, and the interpretation function ·t , which

maps every ACCTiI-concept C to a subset CT of AT, and maps every ACCHX role

R to a binary relation R1 Ç A1 ? AT . In addition, X maps each individual name a

to an element at G Ax .

For all ACCHX-concepts C, D and all role names R, X assigns meanings as

follows:

T = A1

± = 0

^C = AJ\CJ
CnD = C1HD1

CUD = C1UD1

VR.C = {a G A1 I Vo (a, b) e R1 -? b G C1}

3R.C = {a e A1 I 36 (a, b) G R1 ? b e Cx}

R- = {(a, b) G ?1 ? A1 I (6, a) G Ä1}

We say that C1 (or R1) is the extension of the concept C (or role name R) in

the interpretation X. If x1 G C1, then we say that ? is an instance of C in X.

As mentioned earlier, a DL knowledge base (KB) is made up of two parts, a

terminological part (called the TBox) and an assertional part (called the ABox).

Each part consists of a set of axioms.

Definition 2.1.3 A knowledge base (KB) is a pair K = (T, A), where T is a TBox

19

and A is an ABox. An interpretation X is a model of K if I is a model of T and

I is a model of A- A model of T (or A) is defined to be an interpretation I that

satisfies the axioms of T (or A).

Definition 2.1.4 A TBox T is called unfoldable if it satisfies the following condi-

tions.

1. All axioms in T are definitional. Definitional axioms are the axioms of the

form A = C or iÇ C for some concept name A.

2. Axioms in T are unique. That is, for each concept name A, T contains at

most one axiom of the form A = C, and if it contains an axiom of the form

A = C, then it does not contain any axiom of the form A C C .

3. T is acyclic. That is, there is no axiom Ai = d E T such that Ai occurs in

Ci . A concept name A occurs in a concept expression C if either A occurs syn-

tactically in C, or there is a concept name A' such that A' occurs syntactically

in C, and there is an axiom A\ = C¡ E T such that A occurs in C .

The most general form of TBox axioms are so-called general concept inclusions.

Definition 2.1.5 A TBox in ACCHI is a set of concept inclusion axioms and

role inclusion axioms. A general concept inclusion (GCI) is of the form CQD,

where C and D are ACCHl-concepts. A finite set of GCIs is called a TBox. An

interpretation 1 is a model of a GCI CQD if C1 C D1; I is a model of a general

20

TBox T if it is a model of every GCI in T'. We use C = D when C C D and DQC.

A role inclusion axiom is of the form R Q S such that R1 Ç S1, where R and S are

ACCHX -roles. For a set of role inclusion axioms TZ, we define a role hierarchy as
* *

TZ+ = (TZ U {Inv(ñ) E InV(S) \R Ç S G 7^}, Q, where C is the transitive-reflexive

closure of ? over TZ U {Inv(ñ) Ç Inv(S) \RQS eTZ}.

The ABox can contain two kinds of axioms, one for asserting that an individual

is an instance of a given concept, and the other for asserting that a pair of individuals

is an instance of a given role.

Definition 2.1.6 An assertional axiom is of the form a : C or (a,b) : R, where

C is an ACCHl-concept, R is an ACCHX-role, and a, b are individual names. A

finite set of assertional axioms is called an ABox. The interpretation X is a model

of an assertional axiom a : C if'a1 G Cz or (a, b) : R if (a1, b1) G R1 .

We define inference problems w.r.t. a KB consisting of a TBox and an ABox.

Definition 2.1.7 (Inference Services) Given a KB K = (T, A), where T is a

TBox and A is an ABox, K is said to be consistent if it has a model. The basic

inference services in TBoxes include satisfiability, subsumption, and equivalence.

• Satisfiability A concept C is satisfiable with respect to K if there is a model

X of K with C1 ^ 0. Such an interpretation is called a model of C w.r.t. K.

• Subsumption The concept D subsumes the concept C w.r.t. K (denoted as

K^=CQD) if C1 CD1 holds for all models X of K.
21

• Equivalence Two concepts C, D are equivalent w.r.t. K, denoted as K \=

C = D if K^CQD and K^D\ZC w.r.t. K.

The latter two inference services can be reduced to (un)satisfiability.

The basic reasoning tasks in ABoxes include instance checking, realization,

and retrieval.

• Instance check verifies if a given individual a is an instance of a specified

concept C with respect to K (denoted as K (= a : C), i.e., if aT C C1 holds

for all models T of K.

• Realization finds the most specific concept that an individual is an instance

of-

• Retrieval finds the individuals in the knowledge base that are instances of a

given concept.

Similar to the inference services in TBoxes, these three inference services in

ABoxes can also be reduced to the consistency problem of ABoxes.

The most widely used technique to solve the above reasoning problems is the

tableau based approach.

Given a knowledge base K = (T, .4) , we can assume without loss of generality

that the concepts mentioned in T and ? are in negation normal form (NNF), i.e.,

the negation is applied only to concept names. An arbitrary ACCHI concept can be

22

transformed to an equivalent concept in NNF by pushing negations inwards using

a combination of de Morgan's laws. For example, the concept ->(3r.A ? Vs. B),

where A, B are concept names, can be transformed to an equivalent NNF concept

(Vr.--A)U(3s.-.S).

The idea behind the algorithm of the tableau based approach is that it tries

to prove the consistency of a knowledge base K = (T, A) by constructing (a rep-

resentation of) a model of K. It does this by starting from the concrete situation

described in A, and explicating additional constraints on the model that are implied

by the concepts and axioms in A and T.

In order to construct such a finite representation, the algorithm works on a

data structure called a completion forest. This consists of a labeled directed graph,

in which each node is the root of a completion tree. Each node ? in the completion

forest (which is either a root node or a node in a completion tree) is labeled with

a set of concepts C(x), and each edge (x,y) (which is either between root nodes or

inside a completion tree) is labeled with a set of role names C{(x, y)). If (x, y) is an

edge in the completion forest, then we say that £ is a predecessor of y (and that y is

a successor of x); in case (x, y) is labeled with a set containing the role name R, then

we say that ? is an iî-predecessor of y (or that y is an Ä-successor of x) . A node y

is called an ?-neighbor of a node ? if either y is a successor of ? and S G C((x, y))
*

or y is a predecessor of ? and InV(S) € C((y,x)) for some S with SQR. Given a

knowledge base K = (T, A), the completion forest F4 is initialized by including a

23

root node xa, with C(xa) = {C\ a : C G A}, for each individual name a occurring in

A, and an edge {xa,Xb), with C((xa,Xb)) = {R\ (a,b) : R G A}, for each pair (a,b)

of individual names for which the set {R\ (a, b) : R E A} is non-empty.

The algorithm then applies the so-called expansion rules (see Table 3), which

syntactically decompose the concepts into node labels, either inferring new con-

straints for a given node, or extending the tree according to these constraints. For

example, if Ci I-IC2 G C(x), and either Cx fi C(x) or C2 fi C{x), then the ? -rule adds

both Ci and C2 to £(x); if 3R.C G C(x), and ? does not yet have an .fi-successor

with C in its label, then the 3 -rule generates a new ^-successor node y oî ? with

C{y) — C. Note that the U -rule is different from the other rules in that it is non-

deterministic: if Ci U C2 G C(x) and neither Ci G C{x) nor C2 G C(x), then it adds

either Ci or C2 to C(x). In practice this is the main source of increased complexity

in tableau algorithms, because it may be necessary to explore all possible choices of

rule applications.

The algorithm stops if it encounters a clash: that is a completion forest in

which {A, -?A} Ç C(x) for some node ? and some concept name A. In this case,

the completion forest contains an obvious inconsistency, and thus does not yield a

model. If the algorithm stops without having encountered a clash, then the obtained

completion forest yields a finite representation of a forest model, and the algorithm

answers "(T, A) is consistent". If all possible choices of the non-deterministic U -

rule fail to yield such a representation of a forest model, i.e., all of them lead to a

24

? -rule: if 1. C\ ? C2 G C(x), x is not blocked, and
2. [CuC2]£C(x)

then set C(x) = C(x) U [C1, C2]
U -rule: if 1. CiLiC2 e C(x), ? is not blocked, and

2. {Ci,C2}n£(x) = 0;
then set £(x) = £(x) U C for some C G {Ci, C2)

3 -rule: if 1. 3R.C G £(x), ? is not blocked, and
2. ? has no i?-neighbor y with C E C(y),

then create a new node j/ with C((x,y)) = R and C(y) = [C]
V -rule: if 1. \/R.C G £(x), ? is not blocked, and

2. there is an ñ-neighbor y ?? ? with C ^ C(y)
then set £(y) = £(j/) U {C}

Table 3: The Tableau Expansion Rules for ACCHl

clash, then the algorithm answers "T, A is inconsistent" .

In order to guarantee termination of the expansion process, the algorithm uses

a technique called blocking. For logics without inverse roles, the general procedure

is to check the label of each new node y, and if it is a subset of the label of an

existing node x, then no further expansion of y is performed: ? is said to block y.

The resulting tree corresponds to a cyclical model in which y is identified with x.

The validity of the cyclical model simply follows from the fact that the concepts

which y must satisfy must also be satisfied by x, because x's label is a superset of

y's. Blocking is, however, more problematic when inverse roles are added to the

logic, and a key feature of the algorithms is the introduction of an equality blocking

strategy. For further details of the blocking technique, please refer to [BSOl].

25

The computational complexity of the reasoning problems in ACCTtT is as

follows [Don07].

Theorem 2.1.1 Checking satisfiability and subsumption of concepts in ACCTiZ and

consistency of ACCHX ABoxes are PSpace- complete. Adding TBoxes with GCIs

results in ExpTime-hardness.

In spite of the discouraging theoretical complexities, implemented DL systems

have demonstrated that acceptable performance can be achieved through the use of

optimization techniques, a wide variety of which have been studied in [Hor07].

2.2 Resolution Based Theorem Proving

In this section, we review the resolution technique that our work is based upon.

We assume that the reader is familiar with standard definitions of first-order logic

(FOL) and clausal theorem proving in the standard logic. For details, please refer

to [Fit96] and [BGOl].

2.2.1 First-Order Logic (FOL)

In the following, we review the syntax and semantics of first-order logic.

Definition 2.2.1 (first-order logic syntax) A first-order language is built over

a signature S = (F, V), where T and V are non-empty, disjoint sets of function

and predicate symbols, respectively. Every function or predicate symbol has a fixed
26

arity. In addition to these sets that are specific for a first-order language, we assume

an infinite set X of variable symbols disjoint from the symbols in S- Then the set

of terms T(J7, X) is recursively defined as follows:

1. every constant symbol c G T with arity zero is a term,

2. every variable ? G X is a term,

3. whenever t\, . . . ,tn are terms and f G T is a function symbol with arity n,

then /(¿i, . . - , tn) is a term.

If ti, . . . ,tn are terms and P G V is a predicate symbol with arity n, then

P(ti,...,tn) is an atom. We recursively build well-formed formulae (wff) over

atoms, the logical constants T (true), _L (false) and the logical connectives D (im-

plication), = (equivalence), ? (conjunction), V (disjunction), -> (negation) and the

quantifiers V (universal), 3 (existential) as usual:

1. every atom is a wff,

2. T and _l_ are wffs,

3. if f\ and f? are wffs, so are f? D f?, f? = f?, f? V </>2, f? ? f? and ~^f?,

4- if f is a wff and ? G X, then Vx^ and 3?f are wffs.

An atom or the negation of an atom is called a literal. For convenience, we often write

Va; i, . . . , ??f instead of Vxi . . -Vxn^ and analogously for the existential quantifier.

27

A clause is a disjunction of literals, where all variables are implicitly universally

quantified. A first-order logic formula can always be converted into an equisatisfiable

clausal normal form (a set of clauses interpreted as a conjunction).

Definition 2.2.2 (first-order logic semantics) An interpretation is a triple M =

(V, X, v), where V is a non-empty set, called the domain of discourse, X is a func-

tion that associates n-ary predicates symbols from V and function symbols from T

with ?-place relations and functions respectively. The variable assignment function

? : X \—> V associates with each variable symbol a concrete value taken from V. We

use ? [x/a] to denote the variable assignment function that is exactly like ? except

that it maps the variable ? to the domain value a. We sometimes use AA[x/a] as

a short form of (V,I,v[x/a\) where M = (V, I, v). Given an interpretation M

and a term t the interpretation oft with respect to M, denoted by M(t), is defined

recursively as follows:

1. M(t) = v(x), if t is a variable x,

2. M(f(tu ..., tn)) = l(f)(M(h), . . . ,M(tn)).

An interpretation M satisfies a formula f, denoted by M. \= f, which is defined

recursively as follows.

28

M ^T

M h P(*i, ...,tn) *ff (M(h), . . . ,M(In)) e X(P)

?\=^f iff?? f

?\=f?? iff M \= f and M \= ?

JvI I= Vx f iff M. [?/a] I= f for every a E T>

M \=3x f iff M- [xI? \= F for some a E V

As usual f? V f? is interpreted as -?(->f? ? -xfo)* F? ^ F? is interpreted as

~>F? V F2 and f? = f? is interpreted as (f? D f2) ? (</>2 D <£?)·

/? case í/iere eaásís an interpretation M. that satisfies f, we say that f is

satisfiable and that M is a model of f. If every interpretation satisfies a formula

f then f is called valid and we write \= f. If a formula f is transformed into a

formula ? by some operation (rule), we say that such a transformation preserves

satisfiability, i.e., f is satisfiable iff ? is satisfiable.

A substitution s is a mapping from the set of variables to the set of terms

such that ?s f ? for only finitely many ? E X. We define the domain of s

to be dom(a) — {? \ ?s f ?}. Hence, we can denote a substitution s by the

finite set x\ <—>¦ ¿i, . . . , Xn ?—>¦ tn where ?^s = í¿ and ??p?(s) — {??, . . . , xn}. The

application of substitutions to terms is given by /(¿i, . . . , ?„)s = f(ha, . . . ,tna)

for all / E J7 with arity n. We can extend substitutions to formulae as follows:

?(?1;...,?„)s = ?(??s, . ..,??s),(-?/>)s = ->(fs), (f? ? f2)s = f?s ? f2s, where
29

o e {d, =, A, V}, (Vx f)s = Vxa fs if ?s G ?" and (Vx </>)s = Vx f if otherwise.

Similarly (3x f)s = 3?s fs if ?s G ?" and (3? <£)s = 3? (/> if otherwise.

A substitution s is called a unifier for a set of formulae S if Sa is a singleton.

A unifier s for 5 is called a most general unifier (mgu) for S if, for each unifier ? of

S, there exists a substitution 7 such that ? = s?.

2.2.2 Resolution Based Refutation Technique

Theorem provers are procedures that can be used to check whether a given formula

F (the "goal") is a logical consequence of a set of formulae N (the "theory"). Refu-

tational theorem provers deal with the equivalent problem of showing that the set

N U {-^F} is inconsistent. The inconsistency of a theory can be established either

by a semantic analysis or by providing a formal proof (also called derivation) of _L

(the empty clause) from the theory, where proofs are traces of inferences defined by
a collection of inference rules.

Definition 2.2.3 An inference rule is an (n + l)-ary relation on clauses. The

elements of such a relation are usually written as:

Ci ... Cn
C

and called inferences. The clauses Ci,..., Cn are called the premises of the inference,

and C is called its conclusion. An inference system G is a collection of inference

rules.

30

If I is an inference or a set of inferences we denote as C(I) its conclusion or

the set of their conclusions. We also speak of an inference from a set of clauses N

if all premises are elements of N. In this case, we use T(N) to denote the set of all

inferences by G from N.

Definition 2.2.4 An inference is said to be sound if its conclusion is a logical con-

sequence of its premises, i.e., C\ . . .Cn \= C, where the clauses Ci, ... ,Cn are the

premises of the inference, and C is its conclusion

Soundness is often a minimal requirement expected of an inference system, but in

refutational theorem proving it is sufficient that inferences preserve consistency. We

call an inference system G consistency-preserving if for all sets of clauses N and their

conclusions of all inferences by an inference system (denoted by C(T(N))), the set

N U C(T(N)) is consistent whenever N is consistent. A sound inference system is

consistency-preserving, but the reverse is not true in general.

A proof of a clause C from a set of clauses N with respect to an inference

system G is a clause set Ci, ... , C7n, such that C = C1n and each clause C¿ is either

an element of N or the conclusion of an inference by G from NL)[Ci, ..., C1-I }. The

clauses in N are also called assumptions. We write N hr C if there exists a proof

of C from N by G. If C is a contradiction we speak of a refutation of N.

Definition 2.2.5 An inference system T is said to be refutationally complete if there

is a refutation by T from any unsatisfiable set of clauses N. A set of clauses N is

31

called saturated with respect to G if the conclusion of any inference by G from N is

an element of N .

If an inference system G is refutationally complete and a set N is saturated

with respect to G, then N is either satisfiable or contains a contradiction.

2.2.3 Resolution

Resolution is a widely used refutationally complete theorem proving method in first-

order logic, which means the empty clause can be derived from any unsatisfiable set

of clauses. The search for a contradiction proceeds by saturating the given clause

set, i.e., systematically and exhaustively applying all inference rules.

Many versions of resolution for standard clauses have been proposed in the

literature. In this chapter we only introduce the most basic variant for ground

clauses: binary resolution with factoring. Interested readers are referred to [BGOl]

and [Llo87]. We denote the resolution calculus, consisting of the following inference

rules, where the clauses C V A V B and D1 V ... V Dn V ->B are called the main

premises, C\ V ... V Cn V A is called the side premise, and Ca V Aa and Cis V

. . . Cna V Dia V . . . Dna are called conclusions. This calculus is used in Table 4 to

deduce a contradiction from the given input clauses.

Positive factoring:

Cy Aw B
CaV Aa

32

(1) A V B (input)
(2) -.AVS (input)
(3) ->B (input)
(4) B (Resolving on A in (1) and (2))
(5) ± ((3) and (4))

Table 4: An Example of Resolution

where s is a most general unifier (mgu) of A and B, denoted as mgu(^4, B).
Resolution:

C1 V ... V Cn V A D1 V ... V Dn V ->B
C1O V . . . Cna V Dia V . . . DnO

where s is a most general unifier (mgu) of A and B, denoted as mgu(.A, B).

Resolution is sound and refutationally complete: if a set of clauses is saturated

up to redundancy by the inference rules, then it is satisfiable if and only if it does

not contain the empty clause.

2.3 Conclusion

In this chapter, we introduced the theoretical background on which this thesis is

based. We first studied the syntax and semantics of the Description Logic language

ACCHl. This language provides a set of constructors, such as conjunctions, disjunc-

tions, negations, as well as role hierarchies and inverse roles, to represent concepts

and roles in the application domain. A typical DL knowledge base consists of a

set of axioms (TBoxes) and assertions (ABoxes). Some specially designed reasoning

procedures called tableau algorithms are used to derive implicit knowledge.

33

In the second part, we presented the syntax and semantics of first-order Logic.

We also introduced resolution theorem proving based on binary resolution with

factoring.

34

Chapter 3

Related Work

Explanations and diagnosis facilities are important for Knowledge Base systems.

Many deductive databases, expert systems and automated theorem provers [MD99,

Byr80, LD04, FM87] are equipped with explanation or diagnosis facilities. They

can help users to understand the query results and also help knowledge engineers

to design and debug the system. However, explanations and diagnosis services in

Description Logics are still under research and development. The aim of this chapter

is to investigate what has been done so far in explanations and diagnosis in both

Description Logics and other related areas.

We start by describing the notions of explanations in DL. We then review

the use of explanations and debugging in DL systems, followed by the review of

explanation methods in other Knowledge Base systems. We also review the research

work on diagnosis in DL systems.

35

3.1 Definition and Properties of Explanations

Although explanations have been acknowledged to be important in Description Logic

systems, the definition and characteristics of explanations have never been formally

presented in the related literature. In this section we summarize the previous work in

Description Logic systems and present the definition and properties of explanations
in the DL context.

3.1.1 Definition of Explanations

Many researchers in Knowledge Base systems, in particular expert systems, have

proposed different ways to interpret the meaning of explanations. For example,

the first rule-based expert system MYCIN [Cla81] is able to show the users why a

piece of information is requested and how a conclusion is obtained. In case-based

reasoning systems [DDC03], a good explanation is a complete case of the highest

degree of similarity with the current problem case. In deductive databases such as

Coral [ARR+93], or automated theorem provers such as PROVERB [Hua94], proof
trees are presented as explanations.

Intuitively, explanations are the information that can help users achieve a bet-

ter understanding of a knowledge base. More specifically, explanations can enhance

the users' comprehension and confidence of a system when the result is correct as

expected and help them diagnose the defects when an unexpected (perhaps wrong)

result has been encountered.

36

3.1.2 Properties of Explanations

After reviewing the literature on explanations in Description Logics (a detailed dis-

cussion can be found in Section 3.2), we summarize the following characteristics of

existing explanation methods.

Purpose: There are two kinds of objectives in generating explanations, thus leading

to two different categories of approaches:

Comprehension: The goal of this kind of explanations is to understand the

provenance information and the conclusions generated by the system. For instance,

explanations show the source of the information, the facts used by the reasoning, as

well as the reasoning procedure of the system.

Debugging: This approach of explanations can be used to locate unintentional

defects in the system. For example, explanations help identify the errors by pin-

pointing the problematic snippets of information in the system.

Presentation: This is related to how explanations are presented to users. Users

can choose the level of details of the explanations disclosed. The explanations can

be displayed as text in natural language style or as graphics, for instances.

Methodology: There are two kinds of methodologies when it comes to building an

explanation system:

Reconstruction: In this case, a stand-alone explanation system is specially

designed to provide explanations.

Extension: Another approach is to extend an existing system to include an

37

explanation module, which traces the internal reasoning procedure to provide ex-

planations.

3.2 Explanation in Description Logics Systems

In this section, we review efforts that have been undertaken to provide explanations

in the context of DL systems. We analyze the properties of the explanations they

provide based on the discussion in Section 3.1. We also discuss the differences

between these methods and our approach.

3.2.1 Explaining Structural Subsumption

The earliest work on explanations in Description Logics reasoning include [McG96,

MB95]. It provides an explanation facility for subsumption and non-subsumption

reasoning in CLASSIC [BMPSR90]. CLASSIC is a family of knowledge represen-

tation systems based on Description Logics which allow universal quantification,

conjunction, restricted number restrictions and path (in)equations. This approach

proposes to explain subsumption in a proof-theoretic manner based on structural

subsumption, using inference rules to perform structural subsumption comparisons.

Lengthy explanations are decomposed into smaller steps and a single step explana-

tion is followed by more detailed explanations. We will illustrate this approach by

showing a simple example from [McG96] .

Consider a TBox T as:

38

A ? (and (prim grape) (prim Good Wine))

where and denotes conjunction, and prim denotes concept primitive set (atomic

concept). For example, (prim Good Wine) is a set of atomic concepts {Good,

Wine}.

Consider the explanation of the subsumption:

A ?. (prim Wine)

The related defined inference rule1 is as follows:

Prim

a C ?

h (prim ?) =>¦ (prim a)

This rule says that if a concept's primitive set ? contains another set of prim-

itives a, then this concept is subsumed by the smaller set of primitives.

To deal with large and complex proofs, they propose a Normalize-Compare

algorithm to decompose the subsuming concept into parts that can be presented in-

dependently. In other words, it will break the concept into its component conjuncts,

which are called atomic descriptions, and then proceed by separating smaller proofs

of each part. In the above example, the subsuming concept can be decomposed into

(prim grape) and (prim Wine).

After the subsuming concept is broken into its atomic descriptions, atomic

justifications are used to explain the subsumption relationship. It has the form: A
1TlIe upper part of the rule is called the antecedence, and the lower part is called the

consequence.

39

=4> B because ruleID (<argument list>), where B is an atomic description, ruleld

is the name of an inference rule, and argument list shows bindings for variables

in the inference rule. Now using atomic description and atomic justification, the

explanation of the above example is as follows:

A is subsumed by (prim Wine)

because Prim (T = {Good, Wine}, a = {Wine})

A subsumption test in CLASSIC is implemented as a normalization process

followed by a structural comparison process. The explanation first presents the

last rule used in the deductive process and then answers automatically generated or

user defined follow-up questions. The follow-up questions can be generated from the

form of the inference rule used. In this example, the following question can be asked:

why {Wine} is a subset of {Wine, Good} in the Prim rule? It refers to well-known

partial orders in mathematics such as subset, thus no further explanation is needed.

The procedure to explain concept subsumption is also extended to explain

instance check, using extra inference rules concerning propagations, closed world

reasoning, rule firing and role closure. For example, if an individual a is discovered

to be an instance of an atomic concept A and A is subsumed by another concept B,

then a is asserted to be an instance of B.

The system explains contradictions with the aid of intermediate objects under

the assumption that after detecting an initial contradiction, CLASSIC terminates

all additional deductions and reverts to a previous stable state. So the explanation

40

facility provides a function to take the intermediate state of an object, identify which

error inference was used and then ask the appropriate follow-up questions.

Furthermore, [McG96] suggests explaining non-subsumption by giving a counter

example, since the system either determines that a concept subsumes another, or

presents a model that contradicts the subsumption. For example, if A % B, then

there must exist an individual which is an instance of A but not B. They claim that

it would be a convincing explanation to show this counter-example to users. It is

also mentioned that this explanation is provided by tracing the internal reasoning

procedure of the system.

As illustrated in the above example, the purpose of this approach is to com-

prehend the result of the system by internally tracing the reasoning procedure. The

explanations are presented as text and users have a choice of selecting the level of
details.

Being one of the first DL systems to obtain an explanation facility, [McG96]

proposes to explain in a proof-theoretic framework which is also adopted in this

thesis. However, since the expressive power of CLASSIC is limited, e.g., disjunction

and full negation are not allowed, structural subsumption comparison can be ex-

ploited in the explanation procedure. For example, the subsuming concept can be

decomposed into conjunct parts and compared with the subsumed concept. Once

the DL language is extended to ACC, this approach is no longer applicable.

41

pfn_L)çy (X ? a ? -.?) çy
xc(Tuy) iç(ounauy)
(X ? a) g (a p y)

Figure 1: Terminal Conditions of the Sequent Rules

C-V) ^n5)UY (r-?)
co) m& (^)

where X' = {a|Vr.a e X) U {-.a|-.3t\a e X}, and Y' = {a\3r.a eF}U {-.a|-.Vr.a G G}
Figure 2: Modified Sequent Rules

3.2.2 Explaining Subsumption Using Sequent Rules

In order to overcome some of the above drawbacks, in [BFH+99], the authors pro-

pose to explain subsumption using a modified sequent calculus and the corresponding

DL language is extended to ACC. This approach was later extended to definitorial

ACSHTTZ+ TBoxes (with global domain/range restrictions) in [LH05] and imple-

mented in the ontology editor OntoTrack [LN05]. The sequent rules are modified

to imitate the behavior of a tableau calculus. For example, in order to avoid confu-

sion, sequent rules are modified in such a way that formulae are never shifted from

antecedents to consequents or vice versa.

The conditions to terminate an explanation and the modified inference rules

used in this approach are indicated in Figures 1 and 2.

XHaCY
Xn^aCY

Xn-.qn-.bCy
Xn^(aUb)çy

X'nbÇY'
XnBrMCY

X'n^bCY'
Xn-.Vr.oCY

42

Using these inference rules, we can explain:

3hasFriend.T n\/hasFriend.^(3hasChild.->Doctor U 3hasChild.Lawyer)

Q 3hasFriend.\/hasChild. {Doctor U Rich)

The first step of the sequent proof is the application of (70) rule, which leads

to the following condition:

T ? -^(BhasChild.-iDoctor U BhasChild.Lawyer) Q MhasChild.(Doctor U Rich)

This step can be explained as follows: In order to check that the combination of a

3R.A concept and a VR.B concept is subsumed by a 3R.C concept, we can check

whether the conjunction of A and B is subsumed by C. Then, by applying the

(Hv) rule, we obtain the following:

T ? ^(3hasChild.^Doctor) ? -<(3hasChild.Lawyer) Q V'hasChild. (Doctor U Rich)

That is, by applying de Morgan's laws, we propagate negation inward.

Next, by applying the (rD) rule, we obtain the following:

-'-'Doctor ? ^Lawyer Q Rich U Doctor

This step can be explained as follows: First apply de Morgan's laws to the two exis-

tential quantifiers at the left which yields MChild.^^Doctor and NChild.^Lawyer .

In order to check the combination of a VR.A concept and a MR.B concept is sub-

sumed by a VR.C concept, we can check whether the conjunction of A and B is

subsumed by C. Next, by applying the (?-i) rule, we obtain:

Doctor ? ^Lawyer C Doctor

43

This step can be explained as follows: Apply the double negation rule.

And so we obtain the termination axiom:

Doctor E Doctor

which can be explained as follows: Obviously, a concept subsumes itself.

The purpose of this approach is to comprehend the result (especially the sub-

sumption result) of the system by internally tracing the reasoning procedure. The

explanations are presented in natural language style.

One of the interesting perspectives of this approach is that there is a corre-

spondence between tableau algorithms and the modified sequent rules, thus making

the explanation closely related to the problem description. The only modification

that should be made is to tag the subsumer, since the tableau works by negating

the subsumer to prove its unsatisfiability. By tagging the subsumer, it is possible to

determine whether a concept involved in a particular tableau extension corresponds

to a part of the subsumer.

While this explanation technique is tied to the tableau algorithm, its main

disadvantage is that most of the common tableau optimizations ([Hor07]) cannot be

applied as they modify the structure of the asserted axioms, which the explanation

technique is very sensitive to. Hence, the performance penalty on the explanation

generation is huge. Another drawback we see with this approach is that although

from a theoretical point of view, procedures to explain subsumption can be applied

44

to explain unsatisfiability too, because unsatisfiability can be reduced to subsump-

tion, e.g., "C is unsatisfiable" is equivalent to "C is subsumed by J_", practically it

is not suitable to use this approach to detect and explain unsatisfiability or incon-

sistency. Besides, in this approach extra explanations are needed for the modified

rules as many of them are apparently difficult for users to understand without fur-

ther clarifications. Moreover, the resulting sequent rules are usually long and may

contain many irrelevant axioms, thus making the explanation hard to understand.

3.2.3 Pinpointing and Debugging

In contrast to the earlier work, non-standard reasoning algorithms based on mini-

mization of axioms are proposed in [SC03]. This approach detects the inconsistency

in TBoxes by pinpointing unsatisfiable concepts and axioms. Definitions such as

minimal unsatisfiability-preserving sub-TBoxes (MUPS) and minimal incoherence-

preserving sub-TBoxes (MIPS) are introduced in this approach. MUPS-TBoxes are

the smallest subsets of axioms of an inconsistent terminology preserving unsatis-

fiability of a particular concept. Similarly, MIPS-TBoxes are the smallest subsets

of axioms of an inconsistent terminology preserving unsatisfiability of at least one

unsatisfiable concept. Generalized incoherence-preserving terminology (GITS) are

TBoxes where the defining concepts of the axioms are maximally generalized with-

out losing inconsistency. More concretely, this approach first excludes axioms which

are irrelevant to the inconsistency and then provides simplified definitions which

45

highlight the exact position of the contradiction. The DL language considered in

[SC03] is ACC, and the algorithm for computing all the minimal subsets is a mod-

ification of the tableau-based satisfiability algorithm for ACC, with Labels added

in the algorithm to keep track of axioms responsible for an assertion to be gener-

ated during tableau rule applications. The term "axiom pinpointing" was coined

for computing these minimal subsets. As observed in real world applications, many

unsatisfiable concepts are dependent on each other, this approach tries to find the

"core" reason of the inconsistency. The core represents sets of axioms occurring in

the most number of incoherent TBoxes.

To summarize, this approach aims to debug the unsatisfiability in the TBoxes

by tracing the reasoning procedures. However, the proposed algorithms do not give

any explanations for the inconsistency.

An analog to the exclusion of irrelevant axioms in our work is automatically

done by the resolution proof technique, because all the literals in a resolution proof

are contributing directly to the contradiction.

This work is later extended in [PSK05] to debug OWL ontologies. The purpose

of this approach is debugging of unsatisfiability and inconsistency in an ontology by

tracing the tableau reasoning procedures. Similar to its predecessor, this approach

does not provide explanations of any kind. It distinguishes the unsatisfiable con-

cepts from ontologies in the context of debugging. After the defects are detected,

it tries to find the reasons for the unsatisfiability. Their approaches are divided

46

into two categories: glass box and black box. Glass box relies on information from

internals of the reasoners. It traces clashes to give the core for inconsistency. In

many cases, however, showing clashes alone is not specific enough to point out the

source of unsatisfiability. Glass box needs to extend or to alter the reasoner, e.g.,

to keep track of the source axioms, thus efficiency is affected. Black box approach

uses reasoners as oracles. It relies on users to perform navigational search to show

unsatisfiability dependencies. Compared to this approach, our approach does not

have to alter the reasoning procedure of reasoners. Besides, an unsatisfying expla-

nation of unsatisfiability is that all sources are tried out but have all failed. Even

if this was extended to include a trace of what was tried and why it failed, these

traces may include many deduction paths and quickly become unwieldy.

The algorithms and proofs are given for ACC only in [SC03]. In order to

investigate to which subsets of DL languages and tableau .algorithms the approach

can be applied without major changes, [BP07, BS08] develop a general approach for

extending the tableau algorithm to a pinpointing algorithm and apply the algorithm

to SC+ ontologies, which allow for conjunction, existential restriction and complex

role inclusion axioms.

In [Sch04], interpolations with particular syntactic and semantic properties

are used to explain subsumption in ACC. These interpolations act as intermediate

inference steps between inference rules and help explain how one subsumption follows

from another. This work is later extended in [HPS08, HPS09]. In the latter work, a

47

justification for an entailment in an OWL ontology is defined as a minimal subset of

the ontology that is sufficient for that entailment to hold. Their approach focuses on

taking justifications that are difficult to understand, and choosing subsets of these

justifications that can be replaced with simpler summarizing entailments, such that

the result is an easier to understand justification.

We also note that the Inference Web (IW) Infrastructure [MdS04] can be used

to exchange and compare the explanations across multiple reasoners. It comprises

of a web-based registry for information sources, reasoners, assumptions and learned

information, a portable proof specification language (PML [dSMF06]) for exchanging

explanations, and a browser to view and interact with proof explanations in different

formats.

Table 5 summarizes the existing approaches for explanations of reasoning in

DL, including our approach.

Approaches Involved Reasoning Underlying DL language
CLASSIC [McG96] Subsumption and in-

consistency
ACQ with TBoxes
and ABoxes

Bordiga et al. [BFH+99] Subsumption ACC with TBoxes
Schlobach & Cornet [SC03] Unsatisfiability ACC with unfoldable

TBoxes

Parsia et al. [PSK05] Subsumption and
unsatisfiability

STiOIN with
TBoxes and ABoxes

Horridge et al. [HPS09] Subsumption and
unsatisfiability

STZOlQ with
TBoxes and ABoxes

Our approach [DHS07b] Inconsistency and
unsatisfiability

ACCHT with
TBoxes and ABoxes

Table 5: Comparison of Approaches of Explanations for DL Reasoning

48

As we will show in the following chapters in this thesis, the main purpose of

our approach to explanation is comprehension and debugging of the unsatisfiability

and inconsistency in knowledge bases by reconstructing an explanation system. The

explanations are presented in a textual style.

3.3 Explanation in Automated Theorem Proving

Explanation capabilities in Automated Theorem Proving (ATP) have been inade-

quate which impede their usability. Therefore, researchers in ATP have made efforts

to transform machine-generated proofs into human understandable proofs.

3.3.1 A'-proof system

A'-proof [FM87] system uses the sequential variants of natural deduction to present

proofs, which are then further transformed into natural language explanations. Nat-

ural deduction proof trees are constructed by placing the theorem to be proved at

the root and choosing an inference rule that can be used to prove the theorem and

making that a child of the root. The process is repeated based on the premises of
the inference rule. Once a successful tree is produced, the system provides a means

for presenting the tree in an English-like form. For example, consider the following

formula:

VxVyVz(A(X, y) ? R(y, z) -? R(x, ?)) ? VxVy(Ä(x, y) -> R(y, ?))

-? Vx(3yñ(x, y) -? R(x, ?)).

49

The tree for this proof is:

implies (and_l(forall_r(implies_r(exists_l(forall_l(foralLl(foralLl

(foralLl(forall_l(positive(and_r(positive(axiom(R(a,b)),

thin(axiom(R(b,a)))),

thin(axiom(R(a,b)))),

thin(axiom(R(a,a))))))))))))))

This can be presented as follows:

Assume MxVy\lz(R{x,y) ? R(y,z) -> R(x,z)) A\/xVy(R(x,y) -> R(y,x)).

Also assume 3yR(a, y). Choose b such that R(a, b) is true. By modus ponens,

we have that R(b, a). Hence, R(a, b)AR(b, a). By modus ponens, we have that

R(a,a). Since a was arbitrary, we conclude that Vx(3yR(x,y) —> R(x,x)).

This work is first of its kind to build proof trees as explanation and provides

a way to present proof trees in some natural language form. This idea of converting

the proof trees to some natural language style text is adopted in our work as well.

3.3.2 PROVERB and TRAMP

PROVERB [Hua94, HF96] is an automated theorem prover used for mathematical

problems. It uses a reconstructive approach to generate proofs logically equivalent

to the original natural deduction proofs, but at a higher level of abstraction. In

PROVERB, an inference step is often described in terms of the application of a

50

definition, an axiom, a lemma or a theorem, which can be called an assertion. Based

on this, abstractions of natural deduction (ND) proofs have been defined, where a

proof step may be justified either by a ND inference rule or by the application of an

assertion.

In PROVERB justifications are provided at three levels:

- Logic level: verbalization of the ND inference rules, e.g., the rule of Modus

Ponens.

- Assertion level: the application of an axiom, a definition, or a theorem.

- Proof level: reuse of a previous proof segment allows atomic justification at a

higher level of abstraction.

The TRAMP system [MeiOO] extends PROVERB by using refutation graphs

to represent assertion applications. They claim that proofs in many other refutation

based formalisms can be transformed easily into refutation graphs (e.g., in [Eis91]

a transformation based algorithm for resolution proofs is described). They present

an algorithm to translate steps at the assertion level from the refutation graphs into

ND proofs.

The abstraction of ND proof to a higher level is based on the fact that there are

lots of theorems, lemmas and axioms in the mathematical domain, which apparently

is not the case in DL. Although refutation graphs are used in the transformation

procedure, they are used as a form of presentation [MeiOO]. In our approach, due to

51

the characteristics of DL, we exploit graph features for explanation and inconsistency

detection.

3.4 Explanation in Other Systems

In deductive databases, explanations are often generated in three steps. The rea-

soning trace is firstly extracted from a source program or its execution, then it is

filtered to be abstracted and finally presented to the users, often with a visualization

tool [MD99] . The first explanation system of this kind was developed in [Wie90] for

Dedex [MWW89]. This approach redesigned an independent inference system which

generates a trace of proof tree constructions. Similar to this approach, the Explain

subsystem was developed for CORAL [RSS92] . The system extracts the proof trees

from the evaluation of the query. A visualization tool allows users to navigate among

the trees. However, the source program is transformed by the magic set transfor-

mation [RU93] due to optimization purposes, and the proof trees are based on the

transformed program.

There are two main groups of explanation methods for expert systems: the

methods that cannot adapt their behavior to different user requirements and those

that can. MYCIN [SCDS84, BS84], NEOMYCIN [CIaSl, Cla94], Causal MYCIN

[WS84] and XPLAIN [Swa83] fall into the first category. These systems cannot

update the knowledge about the users during their execution and they focus on

answering the why (is the system requiring this information) and how (did the

52

system derive the conclusion) questions posed by the users. On the other hand,

[Moo94] and [FieOl] allow users to get involved in the explanation process. Users

can ask the system questions to seek clarification. The system can also update

its knowledge about the users, identify the objectives and refine the explanation

strategies.

In the area of model checking, a model of a system is tested to automatically

verify its correctness according to the system specification [CGP99]. One approach

that tries to address this problem is counterexample guided abstraction-refinement

(CEGAR) [CGJ+OO]. It begins with a high level abstraction of the system, and

refines it until either an abstraction proves the correctness of the system or a valid

counterexample is generated. During this process, if a counter-example is found,

the tool analyzes its validity. If it is valid, it is reported to the user. If it is not, the

proof is used to refine the abstraction and checking begins again.

3.5 Diagnosis in Description Logics Systems

Following Reiter's approach for model-based diagnosis [Rei87], [Sch05] uses minimal

subsets together with the Hitting Sets to compute maximal subsets of a given knowl-

edge base that do not have a given (unwanted) consequence. While minimal subsets

help users to comprehend why a certain consequence holds, maximal subsets that

do not have the unwanted consequence suggest how to change the knowledge base

in a minimal way to get rid of a certain unwanted consequence. [KPSG06, Kal06]

53

extend this approach by defining metrics for ranking axioms that contribute to in-

consistencies and generate repair plans based on axiom ranks.

3.6 Conclusion

In this chapter, we reviewed works related to explanation and diagnosis in knowledge

base systems. We started with describing the notion of explanation in the context

of Description Logics as enhancing the comprehension of the knowledge base and

help diagnose the design defects when an unexpected result has been encountered.

We defined different aspects of an explanation based on purpose, presentation and

methodology. Using these aspects, we then reviewed the previous related works in

the DL community. We also explained the differences between these previous works

and our approach.

On the other hand, we investigated the explanation approaches in other knowl-

edge base systems, especially in automated theorem proving, and discussed how the

insights achieved in these areas shed light on our work.

Finally, we reviewed the preliminary efforts that have been undertaken regard-

ing diagnosing inconsistencies in DL knowledge bases.

54

Part II

An Explanation Framework Based

on Resolution

55

This part includes two chapters, Chapter 4 proposes a resolution based frame-

work to explain unsatisfiability and inconsistency for the Description Logic language

ACCHl. Implementation details of a prototype system based on this framework are

discussed in Chapter 5.

56

Chapter 4

An Explanation Procedure

In this chapter, we present the resolution based framework to provide explanations

for unsatisfiability and inconsistency queries in ACCHT. We also present our expla-

nation algorithm based on inconsistency patterns and establish its soundness and

completeness.

4.1 Resolution Based Framework

The proposed explanation framework consists of three components, described as

follows.

1. Preprocessing: The explanation system communicates with a DL reasoner,

e.g., Racer, which provides the answer for a query, normally in the form of

"Yes" or "No" for a concept satisfiability or an ABox consistency query, or a

list of unsatisfiable concepts for a TBox consistency query. If the answer is

57

"No", which means a concept is unsatisfiable or a TBox/ABox is inconsistent,

then the original TBox/ABox will be translated into FOL formulae or clauses

by the translation component.

2. Rendering resolution proofs: A resolution based automated theorem prover

is applied to the FOL formulae or clauses resulted from step 1 in order to

generate resolution proofs. It is important to note that since a DL reasoner is

used first to retrieve the result of the query, the unsatisfiability of the concept

or the inconsistency of the TBox/ABox is already known. The complexity

of the resolution based decision procedure of the guarded fragment of FOL is

double exponential in the worst case [GdN99]. Since ACCHT can be embedded

into the guarded fragment, its upper bound of the computational complexity

is double exponential too.

3. Explaining: The resolution proof is used by the explanation kernel to construct

explanations for better human understanding. Our approach transforms the

proof into its corresponding refutation graph [Eis91], which is a more abstract

representation for the refutation proof. A refutation graph is a graph whose

nodes are literals (grouped together in clauses) and its edges connect comple-

mentary literals (an atom and its negation). For each resolution proof, there

is a minimal refutation graph, but one refutation graph can represent multiple

different sequences of resolution steps. Hence we can dynamically search it to

find one of the sequences as explanations. Finally, the clauses involved in each

58

Tbox/Abox/Query

User
Interface

DL
Reasoner

Explanations

"^ FOL Formulae/
Clauses

Translation
Component

Explanation
Kernel

Refutation Graph
Transformation

Component

Refutation Graph

A
Graph Traverse

Component

Resolution
Based ATP

¦Resolution Proof

Figure 3: The Explanation Framework Architecture

resolution step are traced back to the contributing DL axioms/assertions and

possibly transformed further into natural language explanations.

The architecture of the explanation process is shown in Figure 3. In the

subsequent sections, we will discuss each of the components in the figure in detail.

4.1.1 Preprocessing

In the preprocessing phase, DL axioms and assertions are transformed into FOL

formulae or clauses and a structural transformation is adopted.

To illustrate this procedure, we consider the following example of a TBox.

Suppose we know from the DL reasoner that the concept Al is unsatisfiable.

Example 4.1.1
1. Al Ç Al ? -.A ? A3

2. Al C A ? A4

59

Translation from DL to FOL

The translation from DL to FOL is based on the semantics of DL. For ACCHl,

concepts can be translated into C2 [HPSMW07], which is a first order predicate

logic over unary and binary predicates with two variables, say x, y. Tables 6, 7 and

8 show this translation from ALCHT into C2. An atomic concept A is translated

into a predicate logic formula by a translation mapping ? with one free variable ?

such that for every interpretation T, the set of elements of A1 satisfying 1Kx[A) is

exactly A1. Similarly, a role name R is translated into a binary predicate R(x,y).

An individual name a is translated into the constant a.

Kx(A) =
TTy[A) =

Kx[CHD) =
Kx[CUD) =
Kx(BR-C) =
Kx(VR-C) =

A(x)
A(y)
^x(C)
TTx(C) Akx(D)
-Kx(C) V Kx(D)
3y (R(x, y)AKy(C))
Vy(R(X, y) -> TTy(C))

Table 6: Translation from ACCHT Concepts into C2

k(C E D) =
tt(C = D) =
k(R QS) =

TT(C(O)) =
K[R(a,b)) =

Vx(Kx(C) -* Kx(D))
Vx(Kx(C) <- Kx(D))
Vx,y(R(x,y) -* S(x,y))
Kx(C)[X/a]
R(a,b)

Table 7: Translation from ACCHT Axioms into C2

60

n(R) = Vx,y(R(x,y)~R-{y,x))
p(?) = ?a6t^(«)

Table 8: Translation from ACCHl Knowledge Base into C2

These translations preserve the semantics: after the translation, the DL knowl-

edge base is equisatisfiable with its corresponding FOL knowledge base.

Definition 4.1.1 Let T be a TBox and A an Abox in ACCHl, C, D be concepts

and a an individual.

• (T, A) is consistent iff p (T) A p (A) is consistent

• (T, A) ^= C Q D iff (Ti-(T) ? 71-(.A)) -> (vr({C ? D))) is valid

• (T,A)\=a:C iff (p(?)?p(?)) -> (tt({C(ü)})) is valid

According to the translation rules, the resulting clauses of Example 4.1.1 are:

C11={^Al(x),A2(x)}
C12= {^Al(x), ^A(x)} C13 = hAl(x), A3(x)}
C21= {->A2(x), A(x)} C22 = {^A2(x), AA(x)}

In the case of TBox inconsistency queries, there are two possible scenarios:

a set of unsatisfiable concepts or an inconsistent TBox, i.e., the top concept is

unsatisfiable thus causing all the concepts in the TBox to be unsatisfiable. In the case

of ABoxes inconsistency queries, there are also two possible scenarios: an individual

61

is asserted as an instance of an unsatisfiable concept or it is asserted to belong to

an unsatisfiable concept description. Consequently, these cases are distinguished in

the translation procedure.

Definition 4.1.2 Let T be a TBox, and C be an unsatisfiable concept in T. An

unsatisfiability translation function G w.r.t. C translates Tu{C} into a set of FOL

clauses.

For example, suppose T = {Person ?. Man ? -Man}. The concept Person is unsat-

isfiable, so Person and the axiom in T form the input set of G.

Definition 4.1.3 Let T be a TBox and A be an ABox (T and/or ? can be empty).

An inconsistency translation function ? translates TL)A into a set of FOL clauses.

For example, suppose the TBox T is {Person Ç1JÇ Person}. Here, T is incon-

sistent and it includes two axioms as the input set of ?.

Since Al is unsatisfiable in Example 4.1.1, according to the unsatisfiability

translation function, Al(c) is added to the input set of G, with c being a fresh
constant.

C0={^l(c)}
C11= {^(x),^)}
C12= {-.Al(x), -u4(x)} C13 = hAl(x), A3(x)}
C21= {-?2(?),?(?)} C22 = {^A2(x),A4(x)}

62

Structural Transformation

A straightforward translation as shown in Tables 6, 7 and 8 followed by skolemiza-

tion (a method for removing existential quantifiers from FOL formulae [BGOl]) and

transformation into conjunctive normal form would easily result in the exponential

blow up of the number of the clauses. Consider the axiom EQF, where E and F

are complex concept descriptions. If ? and m are the numbers of clauses generated

by E and F respectively, then the above formula generates nxm clauses. The reason

for the exponential explosion is duplication of subformulae obtained by the exhaus-

tive application of the distributive law. In order to avoid such blow-ups, we adopt

the standard translation augmented by structural transformation as in [HMS05].

Roughly speaking, the structural transformation is a kind of conjunctive normal

form (CNF) transformation of first-order predicate logic formulae by replacing the

subformulae with some new predicates and adding suitable definitions for these pred-

icates. In the previous example, if we replace F by a fresh concept, say C, then

the above axiom transforms into two: EQC and CQF. The number of clauses

generated by these two axioms is ? + m. Besides, the structural transformation

also helps preserve original structures of DL axioms after their corresponding first-

order logic formulae are transformed into conjunctive normal forms. For instance,

consider the axiom \/R.A Q BS. B. Without the transformation, the subsumee and

subsumer of this axiom are distributed into four clauses, {R(x, fi(x)), S(x, f2{x))},

63

IR(Xj1[X)), B(f2(x))}, [S(Xj2(X))^A(Mx))], and {^A(f,(x)), B(f2(x))], mak-

ing it difficult to generate comprehensible explanations.

The structural transformation can be formally described as follows. More

details can be found in [NRW98]. The basic idea is to replace non-atomic concepts,

which are subformulae of the axioms, with new concept names. The notion of

formula positions are then used to define the transformation. For example, let f be

a formula, f = f\p is a subformula of f at position p that we want to replace. The

transformation will replace f with a predicate new to f, say R.

Definition 4.1.4 ([NRW98]) A position is a word over the natural numbers. The

set pos (?) of positions of a given formula f is defined as follows:

• the empty word e G pos(ip),

• for 1 < i < ?, i.p G pos(íp) if f = ?\ o . . . o f? and ? € pos((^¿), where o is a

first-order operator. If ? E pos(ip) , then f\?f = ipi\pi where f — ?\ o . . . ? ??.

We write f[f]? for ?\? = f. With ?\?/f\ where ? 6 ??ß(f) we denote the

formula obtained by replacing ?\? with f at position ? in f. The polarity of a

formula ? at position p is denoted by ???(f,p) and defined as: ???(f,e) = 1;

???(f,p.?) = ???(f,p) ij'f\p is a conjunction, disjunction, or formula starting

with a quantifier, or an implication with i = 2; ???(f,p.?) = —???(f,p) if

f\p is a formula starting with a negation symbol or an implication with i = 1,

and ???(f,p.?) = 0 if f\p is an equivalence.

64

Definition 4.1.5 ([NRW98]) Let f be a formula and f = f\p be a subformula of

f at position p. Let X1, . . . , Xn be the free variables in f and let Q be a new predicate.

Then the formula

^/Q(xi,...,xn)]A.De/£

is a structural transformation of f at position p. The formula Def% is a polarity

dependent definition of the. new predicate Q:

Vx1,..., Xn[Q[X1,..., Xn) -»· f] ?/???[f,p) = 1

Def* = { Vx1, . . . , ??[f -> Q(X1, . . . , x„)] ifPol[<p, p) = -1
Vx1,..., ??[f<-+ Q[X1,..., Xn)] ?/???[f,p) =0

There are six types of clauses in ACCHT after normalization:1

i. y Xi
2. S/ XiV R(x,f[x))
3. y XiVY
4. yXiV^R[x,y)VZ
5. -^R(x,y)V(R-)(y,x)
6. ^R(x,y)VS(x,y)

where X, G {d{x), -C<(x)}, Y G {D(f(x)),^D(f(x))}, and Z G {D[y), -.D(y)}.

Specifically, the clause type (1) is transformed from axioms C¿ C Cj, with

both d and Cj being complex concepts. Types (2) and (3) are transformed from

axioms C Q 3R.D or VR.C C D. Type (4) is transformed from axioms C C VR.D

or 3R.C E D. Type (5) is the result of transforming the definition of inverse roles.

Type (6) is transformed from role axioms of the form RtZ S.
1We only consider TBoxes here. ABoxes cases have similar syntactic properties.

65

We thus have the following theorem which is the basis of the correctness of

the translation.

Theorem 4.1.1 Let T be a consistent TBox in ACCHX and C be a named concept

in T. Then C is unsatisfiable if and only if the empty clause is derived using

resolution given the unsatisfiability translation function G w.r.t. C.

Proof. As proved in [HMS05], the structural transformation does not affect satisfi-

ability. Let T (T) and Q(C(a)) be the resulting set of FOL formulae of T and C(a)

after the translation, where a is a newly introduced individual. As T is given as

consistent, T (T) is also consistent. Since C is unsatisfiable, C does not admit any

instance, i.e., C(a) is inconsistent. Hence T (T) U Q(C(a)) is inconsistent. Due to

completeness of refutation resolution, the empty clause can be derived.

On the other hand, if the empty clause is derived from T (T) U T (C(a)), then

T (T) U 0(C(a)) is inconsistent. Since T is given as consistent, C must be unsatis-

fiable. ¦

The following result can also be obtained due to the consistency preserving

property of the translation.

Theorem 4.1.2 Let T be a TBox and ? be an ABox (T and/or ? can be empty).

Then T U ? is inconsistent if and only if the empty clause is derived by resolution,

given the inconsistency translation function A(T U A).

66

Proof. As proved in [HMS05], the structural transformation does not affect satisfi-

ability. If T U A is inconsistent, then A(T U A) is inconsistent, which means that

the empty clause can be derived. On the other hand, if the empty clause is derived

from K(T VJ A), then it is inconsistent. Consequently, T U A is inconsistent. ¦

4.1.2 Obtaining Resolution Proofs

After the translation step, a resolution based theorem prover is used to generate

resolution proofs.

Table 9 shows one of the possible resolution proofs. The numbers shown in the

second column of each row indicate the hypotheses it depends on. The inference rule

that justifies a row is given after the conclusion formula, followed by the premise

rows.

No Hyp. Clause Reason

1. 1 {Al (c)} (Hypothesis)
2. 2 {-.?1(?),?2(?)} (Hypothesis)
3. 3 {->Al(x),->A(x)} (Hypothesis)
4. 4 {->A2(x),A(x)} (Hypothesis)
5 1, 2 {A2 (c)} (Resolution)
6. 1, 3 {^A(c)} (Resolution)
7. 5, 6, 4 ± (Resolution)

Table 9: A Resolution Proof for the Working Example

Since the resolution technique operates on clauses, which are on a finer-grained

level than the original DL axioms, it can determine not only which axioms are

67

relevant but also which parts of the asserted axioms are relevant for the particular

unsatisfiability or inconsistency problem. In this example, the conjuncts A3 in

Axiom 1 and ?? in Axiom 2 are irrelevant for the unsatisfiability of A1 hence their

corresponding clauses do not appear in the resolution proof. In order to reflect this

characteristics in the explanation, we define the minimal DL axiom counterparts of

clauses as the clausal axioms, shown as follows.

Definition 4.1.6 A clausal axiom is inductively defined as follows, where Ci, Cj

and Ck are complex concepts, D is an atomic concept, Xi G {C¿(x), —>Ci{x)}, and ®

stands for ? or U.

• if the original DL axiom of a clause \J X¿ V D is C1 ?. DnCj, then its clausal

axiom is Ci C D;

• if the original DL axiom of a clause \J X¿V ->D is fluC¿ E Cj, then its clausal

axiom is D E C7-;

• if the original DL axiom of a clause V J5Q V R(x, f(x)) is Ci E BR.Cj ® Ck (or

\/R.Ci®Ck E Cj) , then its clausal axiom is C¿ E 3R.T®Ck (orVR.J®Ck E

C3)-

For example, the clausal axiom of the clause {^Al(x),A2(X)} is Al C A2 in

Example 4.1.1. The original DL axiom Al C A2 ? ->A ? A3 is split into smaller

parts after tracing back to the clausal axioms of its clauses. The clausal axioms are

68

more fine-grained than the original DL axioms and they will be used in generating

the explanations.

4.1.3 Generating Explanations

No Hyp. Clause Reason

1. 1 {Al(c)} (Hypothesis)
2. 2 {->Al(x),A2(x)} (Hypothesis)
3. 3 {-iA1(x),-iA(i)} (Hypothesis)
4. 4 {-iA2(x),A(x)} (Hypothesis)
5 3,4 {^Al(x),-A2(x)} (Resolution)
6. 2, 5 {->Al(x)} (Resolution, factoring)
7. 1, 6 J- (Resolution)
Table 10: Another Resolution Proof for the Working Example

One of the potential obstacles of understanding resolution proofs is that several

different resolution proofs can be obtained due to different application orders of the

inference rules. Table 10 shows such a possible alternative proof for our working

example. Note that compared to Table 9, clauses 3 and 4 resolve first before clauses

1 and 2, resulting in a different resolution proof. Since some resolution proofs are

easier to understand than the others, the resolving order plays an important role in

generating good explanations. For instances, in Table 9, the resolving of clauses 1

and 2 can be easily explained by their corresponding DL axioms Al C A2. However,

the resolving of clauses 3 and 4 in Table 10 is less clear for general users. In order to

solve this problem, we propose to further transform the generated resolution proof

69

into its refutation graph representation to construct explanations. A refutation

graph is based on a set of literal nodes, which are nodes labeled with literals. These

literal nodes are grouped together to clause nodes, which represent multisets of

literals (different literal nodes may be labeled with the same literal), i.e., clauses.

In the refutation graph, literal nodes are represented as small boxes labeled with

their literals. Adjacent boxes denote a clause, i.e., the disjunction of the literals in

the boxes. The motivation of using a refutation graph is that there is one refutation

graph presentation for several resolution proofs. By traversing the graph, a good

way to read the proof can be found.

Refutation Graphs

We will use the following definitions of refutation graphs in this thesis. Please see

[Eis91] for more details.

Definition 4.1.7 ([Eis91]) A refutation graph is a quadruple Q = (£,C,Mc,fc),

where C is a finite set of literal nodes in Q, and C is a partition of the set of literal

nodes whose members are clause nodes in G- Mc is a mapping from C to a set of

literals, which associates with every literal node a literal. The set of links K, is a

partition of a subset of C. All the literal nodes in one link are labeled with literals

which are unifiable. There is no pure literal node in a refutation graph, i.e., every

literal node belongs to some link in JC.

70

Figure 4: A Example Refutation Graph

The refutation graph of the example in Section 4.1.2 is shown in Figure 4.

We extend the above definition of refutation graph to provide explanations for DL

reasoning.

Definition 4.1.8 A labeled refutation graph is a quintuple Q' = (C, C, Mc, !C, Mv),

where C, C, Mc and /C are defined as in the refutation graph Q above and Mv is

a mapping from £ to a first-order formula, which labels the literal nodes with their

originating first-order formulae.

In our example, one of the mappings in Mv is as follows, which links a literal node

->Al(x) to its first-order formula Vx Al(x) -> A2(x) ? ^A(x) ? A3(x):

{^Al(x)} .-> {Vx Al{x) -> A2(x) A -.?(?) ? A3(x)}

Definition 4.1.9 A bridge in a refutation graph connects two sets of complementary

literal nodes, which are involved in a resolution step. A traversal ordering is a partial

ordering < over the bridges. A factoring link (f-link for short) connects the literals

that participate in a factoring step.

71

-A2

^r

Figure 5: Derivation Represented by the Ordering in a Refutation Graph

Intuitively a refutation graph represents a way to derive the empty clause

node. The derivation can be obtained by successively removing a bridge together

with its literal nodes and uniting the resolvent of the two incident clause nodes to a

single clause node. Since the choice of the bridges is arbitrary, the graph represents

a whole class of resolution proofs that may differ only in reorderings of the inference

steps. Figure 5 shows one of the derivations of the example as in Table 9. The

arrows in the figure show the traversal ordering over the bridges.

Inconsistency Patterns

We believe that the quality of explanations largely depends on how the refutation

graph is traversed, i.e., on how < is defined. And the ordering can be decided

according to the unsatisfiability and inconsistency patterns. Generally speaking, an

72

inconsistency pattern (¿-pattern for short) is a resolving step over the concept names

and the role names. An ¿-pattern helps decide the traversal ordering < among the

bridges.

Definition 4.1.10 The set of i-patterns over ACCHT is defined as one of the

following cases:

Pattern 1. 3R.T, VR.Q, and p|C¿ = _L, where i = 1, . . . ,?.

The simplified version presented in the form of a refutation graph is shown in

Figure 6. The dotted line shows possible intermediate resolving steps between

the two literals in bold boxes. In this case, all the bridges connecting R(x, f{x))

and ->R(x,y) have the same traversal order, which is higher than the order of

the bridges connecting the literal nodes Ci{y).

Pattern 2. 3R.D, \/R.Q, and DnC)Q = ±, where i = l,...,n.

The simplified refutation graph is shown in Figure 7. Similarly, the bridge

connecting R(x, f{x)) and ->R(x,y) has a higher order than bridges connecting

Q(y) andD(f(x)).

Pattern 3. C)Q = -L, where i = 1, . . . , ?.

In this case, every Q belongs to different clause nodes. All the bridges have

the same traversal order. The simplified refutation graph is shown in Figure 8.

Pattern 4· [JCi, where each Ci is an i-pattern, for i = 1, . . . , ?.

73

All the bridges adjacent to Ci have the same traversal order. The simplified

refutation graph is shown in Figure 9.

Xi R(x,f(x»

Xi -R(x,y)l C1(y)

Xi -R(x,y) C2(y)

Xi R(x,f(x))

-R(x.y) D(y)

C(f(x)) Xi

Figure 6: Inconsistency Pattern 1 Figure 7: Inconsistency Pattern 2

Xi C1(x) D1(x) D2(x)

C2(x) C1(x) C2(x)

Figure 8: Inconsistency Pattern 3 Figure 9: Inconsistency Pattern 4

The ordering of the bridges in the refutation graph is based on the ¿-patterns.

A positive integer is set to be the initial value of each of the bridges in the graph.

Then the graph is inspected to match the ¿-patterns. If a subgraph is matched with

pattern 1 or 2, the involved bridges increase the ordering value by 1. If a subgraph is

matched with pattern 3 or 4, the involved bridges' ordering values remain unchanged.

4.2 The Algorithm

After the traversal ordering of the bridges in the refutation graph is decided, the

traverse algorithm is applied to generate explanations. Our explanation algorithm

74

is based on the refutation graph. It starts from a literal node N0 and traverses the

graph. Among all the bridges adjacent to N0, it chooses the one(s) that are not

lower than any others w.r.t. <. Then it chooses all the literal nodes N on the other

side of the chosen bridges from N0. Among each of the clause nodes that Ni resides

in, it chooses the yet-to-be-chosen literal nodes. The traversal process ends when

all the nodes in the graph have been chosen. After the traversal is completed, the

clause nodes involved in each step are translated into an entry in an explanation list

[EL) consisting of their clausal axioms in DL. After some clean-up process, such as

deleting duplicate lines, the explanation list can be further transformed into natural

language style explanations. This algorithm is formally stated in Figure 10. It uses

a stack, called List of Traversal {LOT, for short), which includes the literal nodes

which are yet to be traversed.

The following theorem establishes the soundness and completeness of the tra-

versal algorithm. The completeness in our context means that at the end of the

algorithm, no literal node is left untraversed.

Theorem 4.2.1 The traversal algorithm is sound, complete and will terminate with

an explanation.

Proof. Termination: In each step of the traversal, the number of literal nodes that

remain untraversed decreases, since once a literal node is traversed, it will not be

traversed again. As the number of literal nodes in a refutation graph is finite,

75

Algorithm TRAVERSE
Input: a refutation graph G, a query Q
Output: explanation list EL

Set EL to be empty
if the query Q is an unsatisfiable query

start from the unsatisfiable concept C in G
else start from an arbitrary concept C in G
add the associated literal node of C to LOT
for all the literal nodes L¿ in LOT

put the corresponding clausal axiom of Li into the explanation list EL;
for all the unvisited bridges which are adjacent to L¿, with the highest traversal order

for all the literal nodes Lk that are in the same clause node as the
other side of the bridge

add Lk to LOT
tag the bridge as visited

remove L¿ from LOT
return the explanation list EL

Figure 10: Traversal algorithm

the traversal algorithm will terminate. More precisely, since the traversal step is

applied once for each literal node, i.e., the number of the traversal steps is linear in
the number of the literal nodes.

Soundness: Since every literal node is visited exactly once, and all the literal

nodes in the refutation graph are translated from the axioms that contribute to the

unsatisfiability and inconsistency, the traversal algorithm will present these culprits

in the explanations.

Completeness: The fact that we cannot reach a blocked situation follows upon

the fact that every literal node in the refutation graph has a complementary literal

node connected by a link, i.e., every literal node is reachable through other nodes.

76

4.3 Illustrating Example

In this section, we illustrate the explanation algorithm, using the following input

example KB.

1. Physician G? 3hasDegree.PS
2. HappyPerson Q Doctor U 3hasChild.(PhD ? -^Poor)
3. 3hasParent.HappyPerson G Married
4. MD E -.BS
5. Married Q Person ? BhasSpouse.Person
6. Doctor C VhasDegree.MD ? Physician
7. PhD ? Married C Poor

8. hasParent ? hasChild"
Table 11: An Example DL Knowledge Base

Assume that we know from a DL reasoner that HappyPerson is unsatisfiable.

Consequently, the O is augmented with HappyPerson{a) where a is a fresh indi-

vidual. We call the resulting knowledge base KB', shown bellow. The goal now is

to show that KB' is inconsistent.

1. Physician C. BhasDegree.BS
2. HappyPerson C Doctor U 3hasChild.(PhD ? -^Poor)
3. 3hasParent.HappyPerson C Married
4. MD ç -.BS
5. Married C Person ? 3hasSpouse.Person
6. Doctor Q VhasDegree.MD ? Physician
7. PhD ? Married C Poor
8. hasParent = hasChildT
9. HappyPerson(a)

Axioms 1, 2, 3, 5 and 6 contain non-literal subconcepts. But as the structural

transformation does not decrease the number of the clauses nor does it simplify

the explanations for 1, 3, 5 and 6, we only show how axiom 2 is converted to

77

FOL formulae based on structural transformation. We introduce a new name Q

for this subconcept and obtain HappyPerson C Doctor U 3hasChild.Q and Q ?.

PhD ? -<Poor to replace HappyPerson Ç. Doctor U 3hasChild.(PhD ? ->Poor).

Hence, the knowledge base KB' after the structural transformation is as fol-

lows.

1. Physician C 3hasDegree.BS
2.1. HappyPerson Q Doctor U 3hasChild.Q
2.2. Q C PW) ? -,Poor
3. 3hasParent.HappyPerson C Married
4. MZ) C -^PS
5. Married C. Person ? 3hasSpouse.Person
6. Doctor Q \lhasDegree.MD ? Physician
7. PhD ? Married C Poor
8. hasParent = hasChild~

9. HappyPerson(a)

The set of clauses in Xi?' after normalization is shown as follows.

1.1. ->Physician(x) V hasDegree(x, f\(x))
1.2. ->Physiaan(x)V BS(h(x))
2.1. -^HappyPerson(x) V Doctor(x) V hasChild(x, fz(x))
2.2. -^HappyPerson(x) V Doctor(x) V Q(Z^z))
2.3. -.Q(x) V PhD(x)
2.4. -.QOz) V -<Poor(x)
3.1. ->hasParent(x , y) V -^HappyPerson(y) V Married(x)
4.1. nMfl(i) V -.ßS(x)
5.1. -^Married(x) V Person(x)
5.2. -^Married(x) V hasSpouse(x, /3(2))
5.3. -^Married(x) V Person(fz(x))
6.1. -^Doctor(x) V -^hasDegree(x,y) V MD(j/)
6.2. -^Doctor(x) V Physician(x)
7.1. ^PhD(x) V -^Married(x) V Poor(x)
8.1. -<hasChild(x, y) V hasParent(y, x)
8.2. ~^hasParent(y , x) V hasChild(x,y)
9. HappyPerson(a)

78

Q{x) I -poor(x)

HP(X) Doc(x) Q(f2(x» f -Q(x) PhD(X) \—?

HP(a) f -HP(X) -hasP(x,y) M(y) M(X) -PhD(x) poor(x;

hasP(y.x) -hasC(x.y)

-HP(X) hasC(x.f2(xll DOCK Doc(x) -hasD(x.y) MD(y)

Doc(x) Phy(x) -Phy(x) hasD(x,f1(x))

Phy(x) BS(H(X)) -BS(X) -MD(X)

Figure 11: The Refutation Graph for the Example Knowledge Base

By applying resolution to this set of clauses and converting the resolution

proof to its refutation graph, we obtain the graph shown in Figure 11. Abbreviated

names are used in the graph in order to save space. For example, HP is used for

HappyPerson, Phy is for Physician, M is for Married, Doc is for Doctor, hasP

is used for hasParent, hasC is for hasChild, and hasD for hasDegree. From

the resolution proof as well the refutation graph, we know that axiom 5 does not

contribute to the unsatisfiability of HappyPerson since none of its clauses is in the

resolution proof. As shown in Table 12, clauses that correspond to Axiom 5 are

excluded from the explanation procedure.

By applying the algorithm of explaining unsatisfiable concepts, the traversal

algorithm produces the traversal order in Table 13. Note that only Pattern 3 and

Pattern 4 are detected in the example, so for a certain literal node, there is no

79

1.1. -iPhysician(x) V hasDegree(x, f\{x))
1.2. ^Physician(x)V BS(fi(x))
2.1. -¡HappyPerson(x) V Doctor(x) V hasChild(x, /2(2;))
2.2. ->HappyPerson(x) V Doctor(x) V Q{¡2{x))
2.3. p(3(?)??/??(?)
2.4. ->Q(x) V -.Poor(x)
3.1. ->hasParent(x, y) V ^HappyPerson(y) V Married(x)
4.1. ^M£>(x) V -.ßS(x)
5.1. ->Marricd(x)V Pcreon(x)
5.2. ->Marricd(x) V haoSpousc(x, /3(3:))
5.3. -^Marricd(x) V Pcraon(fs(x))
6.1. -^Doctor(x) V -nhasDegree(x,y) V MD(y)
6.2. ^Doctor(x) V Physician(x)
7.1. -iPhD(x) V -iMarried{x) V Poor(x)
8.1. -ihasChild(x, y) V hasParent(y, x)
8.2. -ihasParent(y, x) V hasChild(x, y)
9. HappyPerson(a)

Table 12: The Knowledge Base after Filtering Based on the Resolution Proof

difference between the traversal ordering values of its bridges. In this traversal

order, the traversed literal node is followed by its clausal axiom and the number at

the beginning of each line is the line number in Table 12.

By extracting the original axioms and assertions of each traversal step, we get

the following explanations.

HappyPerson(a)
¦—» HappyPerson C Doctor U 3hasChild.T

°-> Doctor C Physician
^-> Physician C 3hasDegree.BS

^-> Doctor C VhasDegree.MD
^ MD C ^BS

°-> HappyPerson C Doctor U 3hasChild.Q
^QC PhD ? -.Poor

^-> BhasParent.HappyPerson Ç Married
"—* hasParent = hasChild~

<-^> PhD ? Married C Poor

80

9. HappyPerson(a) [HappyPerson(a)]
^-> 2.1. ->HappyPerson(x) V Doctor(x) V hasChild(x, /2(2;))

[HappyPerson C Doctor U ShasChild.T]
°->6.2.-.Doctor(x) V Physician(x)

[Doctor C Physician]
^-> 1.2. ^Physician(x) VßS(/i(i)) [Physician C BhasDegree.BS]

--> 4.1. -MD(x) V -BS(X) [MD Ç -BS]
1.1. ->Physician(x) V hasDegree(x, fi(x))
[Physician C BhasDegree.T]

^-+6.1. -Docior(x) V ~^hasDegree(x,y) V MD(y)
[Doctor C VhasDegree.MD]

2.2. -^HappyPerson(x) V Doctor (x) V Q(/2(x))
[HappyPerson C Doctor U 3hasChild.Q]
--> 2.3. -Q(x) V PhD{x) [Q C PhD ? -Poor]

2.4. -<2(x) V -Poor(x) [Q C PhD ? -Poor]
3.1.^hasParent(x, y) V ~^HappyPerson(y) V Married(x)

[3hasParent.HappyPerson C Married]
·—> 8.1. -^hasChild{x,y) V hasParent(y,x)

[hasParent ? hasChild~]
^-> 7.1. -^PhD(x) V ^Married(x) V Poor(x)

[PhD ? Married C Poorl

Table 13: Explanation for the Example Knowledge Base

Note that each indented arrow shows a traversal step from one clause node to

another in the refutation graph. The generated explanation reads as follows:

If a is a HappyPerson, then it can either be a Doctor or have a child which is

Q (PhD and not Poor). First, if it is a Doctor, then all its degrees are MD and it

is a Physician. Every Physician has a BS degree, however, BS is disjoint with MD.

So there is a conflict within the branch of Doctor. Secondly, if a has a child which

is a PhD and not poor, since every child of a HappyPerson is Married and every

married PhD is poor, then a's child must be poor, which is a contradiction. So a

cannot be a HappyPerson.

81

4.4 Conclusion

In this chapter, we presented our resolution based framework to provide explana-

tions for unsatisfiability and inconsistency queries in ACCTiT. This framework firstly

translates the DL knowledge base into clausal forms based on the DL semantics. In

order to the preserve the original structure of the axioms, a structural transforma-

tion is adopted. The transformation method in the context of unsatisfiability and

inconsistency queries is satisfiability preserving. The clauses are subsequently fed

into a resolution based theorem prover to obtain the proof. During this process, the

refutation graph of the proof is utilized to generate the explanation.

Since the DL language has some specific syntactic structures, we also exploit in-

consistency patterns based on these features. We proposed an explanation algorithm

based on inconsistency patterns and refutation graph transversal and established its

soundness and completeness.

82

Chapter 5

Implementation and Performance

In this chapter, we discuss the implementation issues for the explanation service

presented in Chapter 4. We present our system prototype and illustrate an example

application.

5.1 A Prototype System for Explanation

The prototype system consists of four main components: Description Logic Rea-

soner, Translator, Resolution Proof Generator, and Refutation Graph Generator.

The implementation is developed in Java (JDK 1.5.0).

In the following sections, we will describe each of these components in detail.

83

5.1.1 Description Logic Reasoner

The prototype system uses RacerPro 2.0 [HMOl] as its external Description Logic

reasoner. RacerPro is a knowledge representation system that implements a highly

optimized tableau calculus for a very expressive description logic, ACCQHTTZ+ also

known as SHTQ. This is the basic DL logic ACC augmented with qualified number

restrictions, role hierarchies, inverse roles, and transitive roles. The input knowledge

base is passed to RacerPro to test its consistency/satisifiability. The user can use

OWL or Description Logic syntax script as input.

5.1.2 Translator Component

This component translates the Description Logic axioms and assertions into First

Order Logic formulas based on the discussion in Section 4.1.1.

5.1.3 Resolution Proof Generator

The Resolution Proof Generator generates the corresponding resolution proof for

the input First Order Logic formulas by calling an external First Order Logic rea-

soner. In our prototype system, we use Otter Version 3.3 [KaIOl] as the first order

logic reasoner. The automated deduction system Otter is designed to prove theo-

rems stated in first-order logic with equality. Otter's inference rules are based on

resolution and it includes strategies for directing and restricting searches for proofs.

84

5.1.4 Refutation Graph Generator

The Refutation Graph Generator transforms a resolution proof to its refutation

graph and generates an explanation by traversing the graph based on the inconsis-

tency patterns.

5.2 Illustrating Example

In this section, we demonstrate how the prototype system works by adopting the

motivating example described in [HPS09]. The example is indicated below in De-

scription Logic syntax.

1. Person C -nMovie
2. RRated C CatMovie
3. CatMovie C Movie
4. RRated ? VhasViolenceLevel.High
5. 3.hasViolenceLevel.T C Movie

This example is derived from a real world ontology and it was observed that

many users, including users with rich experience in OWL, failed to realize why

Person is unsatisfiable. The users may have difficulty in understanding the source

of the unsatisfiability of Person even if they could narrow down the problematic

axioms to axioms 4 and 5. This also shows that pinpointing the axioms are not

enough to help users remedy unsatisfiable concepts.

To generate an explanation for this example, the Description Logic Reasoner

component in the prototype system first feeds the input axioms into Racer and

85

adds an assertion Personne) for the unsatisfiable concept Person, thus making the

knowledge base inconsistent.

Then the Processor translates the knowledge base into clausal forms. After

generating the corresponding resolution proof for the knowledge base, the Refutation

Graph Generator produces the refutation graph. By traversing the refutation graph,

the running system generates the following explanation.

Person(c)
'—* Person C -iMovie

^-> 3hasViolenceLevel.T C Movie
°-> VhasViolenceLevel.High C RRated

^-> CatMovie ?. Movie
^-+ RRated C CatMovie

It shows that if c is a Person, then it cannot be a Movie. On the one hand,

every CatMovie is a Movie and every RRated is a CatMovie, so every RRated

is a Movie. On the other hand, the domain of hasViolencehevel is Movie, and

VhasViolenceLevel.High is the subset of RRated (hence Movie), so Movie always

holds and c is a Movie, which leads to a contradiction. So c cannot be a Person.

It should be noted that even for some experienced users, it might not be

intuitive to see that 3hasViolenceLevel.T C Movie follows from the fact that the

domain of hasViolenceLevel is Movie, and T Ç Movie can be entailed from the

knowledge base. Instead of giving a set of axioms for the unsatisfiability problem, our

prototype system generates a fine-grained and detailed explanation for this example.

This explanation can help experienced users to better understand the problem.

86

5.3 Performance Evaluation

To evaluate the usability and scalability of our proposed explanation procedure, we

conducted experiments on a Windows XP system with a 2.66GHz Intel Core2 Duo

processor, and 4GB memory.

5.4 Test Ontologies

Table 14 shows the test ontologies used in our experiments. The ontologies were

obtained from the website of SWOOP1. Modifications were made in order to convert

them to ACCHX.

Ontology Axioms Concepts/Unsatisfiable Concepts
Chemical

Koala
University
Economy
Transport

Tambis

87
11
18

1655
1004
1846

41/33
6/3
20/4

275/43
313/41
401/61

Table 14: Test Ontologies Used in the Evaluation

Table 15 shows the experimental results using the prototype system. The first

column shows the ontology used in the experiment, the second column shows the

average time to generate an explanation for an arbitrary unsatisfiable concept in the

ontology and the last column shows the overall time to generate explanations for all

the unsatisfiable concepts. The time is measured in seconds.
lhttp\/ /www.mindswap.org/2005/debugging/ontologies/

87

Ontology

Koala
University
Chemical
Economy
Transport

Tambis

Generating explana-
tions for a concept

1.013
2.045
3.213
2.985
3.218
4.523

Generating explanations for
all unsatisfiable concepts

7.05
23.35
78.67
101.02
123.15
189.79

Table 15: Performance of the Prototype System Using Otter

From the results, we can observe that the larger the knowledge base and the

more unsatisfiable concepts there are in the ontology, the more time it takes to

generate explanations for all the unsatisfiable concepts. However, if an explanation

for only one of the unsatisfiable concepts is needed, even for a large knowledge base

such as Tambis, the explanation can be generated in reasonable time.

5.4.1 Experiments with other FOL reasoners

We have also tested the explanation procedure with another FOL reasoner Vampire

7.0[RV02]. Like most efficient state-of-the-art automated theorem provers (ATPs),

such as Otter, Vampire implements saturation with resolution and paramodulation.

Since 1999, Vampire has won 17 division titles in the theorem proving competition [cas]

especially in the first-order formulae division and formulas in conjunctive normal

form division.

We conducted a smaller evaluation on a few selected ontologies including

Chemical, Economy, Transport, and University on generating explanation for an

arbitrary unsatisfiable concept. The results show that Vampire consistently per-

forms roughly twice as fast as Otter, which is expected, noting that Vampire has

been arguably the best general-purpose prover in recent years. Besides, Vampire is

highly tunable and its performance could be improved through adjusting its setup

parameters.

5.5 Conclusion

In this chapter, we presented the main components of our implemented prototype

system. The system first gets the input knowledge base and configurations from the

user. It then feeds the input to the Description Logic Reasoner to test if the knowl-

edge base is inconsistent or if there is any unsatisfiable concept. If it is the case, it

calls the Translator to translate the knowledge base into First Order Logic formulas.

It then feeds the formulas to the Resolution Proof Generator to generate resolution

proofs. Finally, an explanation is generated by Refutation Graph Generator and

presented to the user.

The implemented prototype system uses RacerPro 2.0 and Otter 3.3 as its

Description Logic and First Order Logic reasoners. However, other reasoners could

also be easily incorporated within the prototype system, since one of the advantages

of our approach is that it is independent of the particular reasoner used.

We also demonstrated its practical value by showing how it generates expla-

nations for a difficult problem observed in real world applications.

89

Part III

A Framework for Measuring

Inconsistencies

90

In the previous part, we presented a resolution framework to provide explana-

tions for unsatisfiability and inconsistency problems in ACCHl. It can help users

to identify the origin and causes of inconsistencies in a DL knowledge base or an

ontology. In real world applications, it is often the case that there are multiple

sources for an inconsistency, and some axioms may contribute more to the incon-

sistency than the others. So explaining the inconsistencies is part of the problem

and a diagnosis mechanism is needed to make suggestions of which axioms are more

problematic and need to be dealt with first. In this part, we propose an inconsis-

tency measure technique as the foundation of a diagnosis procedure in Chapter 6.

We then demonstrate its applicability to ontologies in Chapter 7.

91

Chapter 6

A Diagnosis Procedure

Ontologies play a key role in the infrastructure of the Semantic Web for sharing

precisely defined terms which can be made accessible to automated agents. For

ontologies with complex knowledge to represent and reason with, errors due to in-

consistencies become quite common, and these inconsistencies can be intrinsically

different. While there are Description Logic reasoners that can detect inconsisten-

cies in input ontologies, they do not help classify and/or summarize the nature of

the inconsistencies that are present.

In this chapter, we propose a technique based on Shapley values to measure

inconsistencies in ontologies. This measure can be used to identify which axioms

in an input ontology or which parts of these axioms need to be removed or mod-

ified in order to make the input consistent, hence it can be used as the backbone

of a diagnosis and repair framework. We also propose optimization techniques to

92

improve the efficiency of computing Shapley values. The proposed technique and

the optimization proposed are independent of the particular DL language of the

ontology and are independent of a particular reasoning system used. Applications

of this method can improve the quality of ontology diagnosis and repair, in general.

6.1 Inconsistency Measures

As the size of ontologies grows and applications developed become more complex,

inconsistencies become hard to avoid in the design and development of ontologies.

According to the classical ex contradictione quodlibet (ECQ) principle, anything

that follows from an inconsistent ontology is useless. In order to help users to

resolve the inconsistencies in ontologies, several approaches to identify and explain

the cause of these inconsistencies have been proposed [DHS05a, PSK05, SC03]. An

assumption often made in these approaches is that all inconsistencies are equally

"bad". However, it is possible for an ontology to contain two or more sources of

inconsistencies and they may have a different impact on the inconsistencies. They

may not necessarily contain the same contradiction and the same information, and

may have overlapping content.

In this section, we introduce a method of measuring inconsistencies in DL

knowledge bases. This approach is the first of its kind to quantitatively measure

the inconsistencies. First an inconsistency value is defined, and then it is used as

the characteristic function to compute the Shapley value. Our approach borrows

93

some ideas from [HK06], which proposed to use the Shapley value to obtain an

inconsistency measure for propositional logic. We take into account the proportion

of the axioms that contribute to the inconsistency by considering both clauses and

axioms. Since clauses are more fine-grained than axioms, it allows us to take a deeper

look inside the axioms. We also discuss the relationship between the inconsistency

measure and the minimal inconsistent subsets of ontologies. The computational

complexity of calculating the Shapley value is at least Exp-time, which shows that

it does not scale well in general [CS04]. Therefore we propose to optimize the

calculation based on the structural relevance of the axioms and properties of the

defined inconsistency measure.

6.1.1 Ontologies in the Semantic Web

In 2004, the Web Ontology Language (OWL) was recommended as the standard

web ontology language by the World Wide Web Consortium (W3C) [w3c]. It is a

machine-readable language for sharing and reasoning information using ontologies on

the Internet. OWL is a vocabulary extension of the Resource Description Framework

(RDF) and is a revision of the DAML+OIL Web Ontology Language.

OWL represents the domain by defining hierarchies of classes and properties.

An OWL ontology consists of axioms and facts. Axioms build relationships between

classes and properties. Facts describe information about individuals. OWL has

three flavors: OWL Lite, OWL DL, and OWL Full. These flavors incorporate

94

different features, and OWL Full contains OWL DL, which in turn contains OWL

Lite. OWL DL and OWL Lite corresponds semantically with certain Description

Logic languages. Reasoning tasks are undecidable in OWL Full and currently there

is no reasoner that supports reasoning of every feature of OWL Full.

OWL was extended to OWL2 in 2009 by adding several new features, such

as property chains. Interested reader can refer to [owl] for details. There are three

sublanguages in OWL2. OWL 2 EL is a fragment that has polynomial time reasoning

complexity. OWL 2 QL is designed to enable easier access and query to data stored
in databases. OWL 2 RL is a rule subset of OWL 2.

Roughly speaking, a concept in DL is referred to as a class in OWL. A role in

DL is a property in OWL. The terms axioms and individuals have the same mean-

ing in DL and OWL. OWL DL is based in part on the DL STiOlAf(V), which

includes special constructors such as oneOf, transitive properties, inverse proper-

ties and datatype properties, and its subset OWL Lite which is based on the less

expressive DL SHlF[V), is SHOlAf(V) without the oneOf constructor and with
the number restriction constructors limited to 0 and 1. Due to the close connection

between OWL and DLs, we will make no distinction between ontologies and knowl-

edge bases in DL, and examples are given mainly in DL syntax. The DL languages

that we work on are those for which consistency checks are decidable.

95

6.1.2 Motivating Example

The following example is adapted from [SC03], which we modified to be inconsistent.

In the example, A, B, C, D, Al to AQ denote concepts, and a and b are individuals.

We assign a number to each axiom/assertion in the example.

1. Al C ?2?-???3 2. A2 QAn A4
3. A3 E Ah ? A4 4. A4ÇCnVS.B
5. Ah Ç 35. -·# 6. DUnflCDnnD
7. ?1(a) 8. A3(6)
9. A6 = D

A complete DL reasoner, such as FaCT++ [TH06], RACER [HMOl], Pellet

[SP04], or HermiT [MSH09], reports this knowledge base to be inconsistent. How-

ever, they can not provide crucial information, e.g., that there are four inconsistent

subsets ({3, 4, 5, 8}, {1, 2, 7}, {1, 3, 4, 5, 7} and {6}) in this knowledge base,

and that one axiom (axiom 6) is inherently inconsistent. We will use this as our

running example throughout this chapter to show how the hidden information can

be unraveled using our method.

6.1.3 Background

In this section we review some definitions of the Shapley value in game theory

[HK06], which we have adapted for use in DL in this work.

Definition 6.1.1 Given a set of axioms and assertions in a knowledge base K, a

characteristic function ? : 2K —> IR assigns a value to each subset K' of K (K' C K).

96

We call a subset of axioms and assertions in K a coalition of K, so K' is a coalition

ofK.

An example of the characteristic function is the drastic inconsistency value,

which assigns 1 to a set of axioms if it is inconsistent, and 0 to the set if it is
consistent.

Definition 6.1.2 For a set of axioms and assertions K' Ç K, the drastic inconsis-

tency value of K' is defined as:

!0 if K' is consistent or K' = f
(1)

1 otherwise

Example 6.1.1 Some drastic inconsistency values of the running example are as

follows, where we only show some examples with the inconsistency value 1, as well

as some consistent ones (with this value being O).1

Ia(U)) = 0 h({2}) = 0 Id({3}) = 0

Id({l, 2}) = 0 Id({3, I 5}) = 0 Id({l, 2, 6}) = 1

Id({3, 4, 5, 8}) = 1 Id({3, 4, 5, 6}) = 1

Id({l, 3, 4, 5, 7}) = 1

1FOr the sake of simplicity, we refer to the axioms and assertions by their numbers.

97

As shown above, the coalition {1, 2, 6} has the drastic inconsistency value 1. Ax-

iom 6 is often of a great value for a coalition it joins. For example, it can bring

inconsistency value 1 to {2, 6} for making the coalition {1, 2, 6}. And it can also

bring 1 to the coalition {3, 4, 5, 6}.

Similarly, we can define another characteristic function which assigns 0 to a

set of axioms if a concept A is satisfiable and 1 otherwise.

Definition 6.1.3 The concept-related inconsistency value of a set of axioms K' C

K w.r.t. a concept A (A occurs in K') is defined as:

Ia(K') = I
0 if A is satisfiable w. r. t. K'

(2)
1 otherwise

Example 6.1.2 Some of the concept-related inconsistency values of the working

example are:

IA1({1,2}) = 1 Iax (U, 3, 4, 5}) = 1

WU 4, 5}) = 1 WU 4, 9}) = 0

An inconsistent measure is to evaluate the contribution of each axiom or as-

sertion in the knowledge base to the overall inconsistencies. The higher the measure

is, the more weight an axiom carries in contributing to the inconsistencies. Shapley

[Sha53] proposed such a measure, known as Shapley values, in the context of game

98

theory in 1953, which describes a fair allocation of gains obtained by the cooperation

among several agents.

The Shapley value is defined for a game that has ? agents. In the game, the

agents can form coalitions, which is a subset of the ? agents. Each coalition has a

gain when all its members work together as a team. A problem which may arise

here is "which agent contributes the most to different coalitions?" A solution to this

problem can help determine which agent contributes more to the game than the

others. The Shapley value is proposed to tackle this problem. The basic idea is as

follows. Suppose the agents join a coalition according to a certain order, and the

payoff of an agent in this coalition is its marginal contribution to the gain of the

coalition. The Shapley value takes all the possible orders of the coalition formation

into account and averages the agent's marginal contribution over them.

Inconsistency checking can be deemed as a game, with each axiom (or asser-

tion) in the knowledge base deemed as an agent. Analogously, the contribution of
each axiom (or assertion) to the inconsistencies can be measured using the Shapley
value.

Let K be a knowledge base, s? be the set of all permutations on K, and

? = \K\ be the cardinality of K. Given an order s G s?, we use p" to denote the
set of all the axioms and assertions in s that appear strictly before an axiom (or an

assertion) a.

99

Definition 6.1.4 The Shapley value for an axiom (or an assertion) a in a knowl-

edge base K is defined as:

Sa(K) = -S2[v(paaU{a})-v(p:)}
s6s?

The Shapley value can be directly computed from the possible coalitions with-

out considering the permutations as follows:

Sa(A-) = S (C~1)!(,W~C)W) - v(C\{a}))
where C is any coalition of the axioms and assertions K, n= \K\, and c— \C\.

6.1.4 Inconsistency Measure Based on the Shapley Value

We can take the drastic inconsistency measure defined by Definition 6.1.2 (the same

computation can be applied to the concept-related measure in Definition 6.1.3) as

the characteristic function, and then use the Shapley value to compute the extent

to which an axiom or an assertion is concerned with the inconsistency.

For example, suppose K is a knowledge base and a is an axiom (or an assertion)

in K. Then the Shapley value of a based on the drastic inconsistency value Id is
defined as:

Sa(K) = S (C~ 1^ "C)! WC) - h(C\{a})) (3)
CCK

where ? = \K\ and c = ICI.

100

The Shapley value of a knowledge base K is a vector of values, one for the

Shapley value of each axiom (or assertion) in K.

Example 6.1.3 The Shapley value of the knowledge base K = {C U --C CCn

-iC, T Ç 3R.B, T C VR.->B, AQD} is the vector (¡, \, \, 0).

This shows that the axiom {CU-iCÇCn ->C} contributes the most to the

inconsistency of K.

Example 6.1.4 The Shapley value of the working example is (^, ^, ™, ™,
120 3774 268 120 n)
7| ? ?! ; 7! ; 7! » /'

This shows that axiom 6 is the one that causes the most problems. Axioms

3, 4, 5 and 8 are equally responsible for the inconsistencies, so are 1 and 7. Axiom

9 has a value of 0, which means it does not contribute to the inconsistency. Axiom

2 contributes more to the inconsistency than 3, 4, 5 or 8, and the inconsistency is

more equally distributed among 3, 4, 5 and 8.

6.1.5 Properties of the Inconsistency Measures

We make a few observations and remarks regarding the inconsistency measures.

Definition 6.1.5 The characteristic function ? is monotonie if ?(X) < v(Y), when-

ever XCY.

101

An monotonie function indicates that adding more agents to the coalition will

never decrease the value. In the worst case, they contribute nothing to the coalition.

Due to the monotonie nature of DL reasoning, we have the following result.

Proposition 6.1.1 The drastic (concept-related) inconsistency value (see Defini-

tions 6.1.2 and 6.1.3) is monotonie.

Proof. For a set of axioms and assertions K' C K, there are three possible scenarios:

1. K is consistent and K' is consistent, in this case, Id(K) = Id(K') = 0

2. K is inconsistent and K' is inconsistent, in this case, Id(K) = Id(K') = 1

3. K is inconsistent and K' is consistent, in this case, Id(K) = 1,Id(K') = 0

Thus Id(K') < Id(K), and the drastic inconsistency value is monotonie. Similarly,

we can prove that the concept-related inconsistency value is monotonie.

¦

A set of axioms and assertions is called convergent if its inconsistency value

is convergent, i.e., it is the same as the inconsistency values of its supersets, and

adding any other axioms or assertions does not change its inconsistency value.

Definition 6.1.6 The convergent subset K' of a knowledge base K is defined as a

set of axioms and assertions that satisfies the following two properties:

1. Id(K') = 1 (or IA(K') = I), and

102

2. Id(K") = O (or IA(K") = O), for all K" C K'.

Intuitively, K' is a subset of K, in which the inconsistency value flips from

0 to 1. There is a direct relation between the convergent subsets and minimal

inconsistent subsets of a knowledge base, defined as follows.

Definition 6.1.7 (MIS and MUS) We say that K' is a minimal inconsistent sub-

set (MIS) of a knowledge base /C (or a minimal unsatisfiable subset (MUS) w.r.t. a

concept C) if the following two conditions hold:

1. K.' is inconsistent (or C is unsatisfiable in IC'), and

2. K" is consistent (or C is satisfiable in IC"), for every IC" C JC'.

From the definition of the drastic inconsistency value and the concept-related

inconsistency value, we can easily prove the following preposition.

Proposition 6.1.2 K' defined in Definition 6.1.6 is a MIS of a knowledge base K.

(or a MUS w.r.t. a concept C).

Proof. If K' is a convergent subset of a knowledge base K, then Id[K') = 1 (or

IA[K') - 1), and Id(K") = 0 (or IA(K") = 0), for all K" C K'. According to

Definition 6.1.2 (or Definition 6.1.3), IC' is inconsistent (or C is unsatisfiable in IC'),

and IC" is consistent (or C is satisfiable in /C"), for every /C" C IC' . ¦

103

Another inconsistency measure of a coalition K' that can be defined is based

on the number of minimal inconsistent subsets that would be removed if we remove

K' from the knowledge base. In other words, this measures the impact of K' on the

knowledge base, formalized as follows.

Definition 6.1.8 The impact inconsistency measure of a subset K' in a knowledge

base K can be defined as follows:

Ii(K') = \MIS(K)\ - \MIS(K - K')\

where \MIS(K')\ denotes the number of minimal inconsistent subsets of K' .

Example 6.1.5 There are four convergent subsets, i.e., four MISs in the working

example.

MIS1 = {1,2,7}, MIS2 = {3,4,5,8}, MIS3 = {1,3,4,5,7}, MIS4 = {6}

/,({1}) = /a({7}) = /,({3}) = /4({4}) = /i({5}) = 2

/,({2}) = /,({6}) - /¿({8}) = 1

/i({9}) = 0

Obviously, the removal of 1, 7, 3, 4, or 5 will remove the most number of

inconsistencies. The removal of axiom 9 will not affect the inconsistencies at all.

104

6.1.6 Apply the Inconsistency Measures to Clauses

The inconsistency measures discussed in this chapter so far are applied to axioms in

ontologies. It excludes the possibility of a more fine-grained inspection of the content

of the axioms. In particular, if the inconsistency is at the level of a single axiom,

then there could only be two values: consistent or inconsistent. In Chapter 4, we

have developed a resolution based technique to explain inconsistency in ontologies.

We found that clauses work on a more fine-grained level than DL axioms, so an

approach based on clauses can identify specific parts of axioms that are responsible

for an inconsistency. Consequently, the inconsistency measures can also be applied

to clauses and this allows us to look inside the axiom and identify which portion of

the axiom is contributing to the inconsistency.

6.2 Computational Complexity and Optimization

Issues

The major source of inefficiency in calculating the Shapley value is the difficulty

to determine the inconsistency value of an axiom. It is directly dependent on the

complexity of consistency checking in DL reasonings. One possible way to improve

this is to reduce the number of consistency checks. Besides, the complexity is also

related to the computation process itself. The computation of the Shapley value

involves considering all the subsets of the axioms/assertions in the knowledge base,

105

and hence its best-case complexity is Exp-time. However, we do not really need to

consider all the subsets. In the following sections we elaborate on this and discuss

some optimizations.

6.2.1 Partition Based on Structural Relevance

In DLs, axioms2 can be related to each other through structural relevance. For

example, the axiom iCßis structurally related to ->B Ç T but not to ->C E D.

It is clear that adding a structurally unrelated axiom to a coalition will not change

the relative inconsistency value. Structural relevance is an equivalence relation,

hence it can be exploited to induce a partitioning of the axioms, which as shown

below, can be used as an optimization to speed up the computation of the Shapley

inconsistency value.

Definition 6.2.1 We say an axiom is directly structurally related to another axiom

if the intersection of their signature (the set of all (negated) concept names and
role names occurring in the axiom) is not empty. The structural relevance is the

transitive closure of direct structural relevance.

Example 6.2.1 In the motivating example, Al C Al ? ->A ? A3 is directly struc-

turally related to A2\ZAn AL· It is structurally related to A4 C C ? V5.5 (because

A2> C Ab ? AA), but it is not related to DU ->D Ç £> ? ->??
2For the sake of simplicity, we only refer to axioms, assertions can be considered in the same

way.

106

Example 6.2.2 There are two partitions in the motivating example:

1. Al C A2 ? -·? ? A3 2. Al Ç A ? A4
3. A3 C A5 ? A4 4. A4 C C ? VS.ß
5. ?5 ? 3S.->B 7. ?1(a)
8. A3(ò)

Figure 12: Partition 1 of the Motivating Example.

6.D U ->D C D ? -.£> 9. A6 ? £>

Figure 13: Partition 2 of the Motivating Example.

The following result suggests that partitioning according to structural rele-

vance can be used to reduce the computational complexity of the Shapley value in

our context.

Lemma 6.2.1 // K = J2j=1 K1 is a partitioning of a knowledge base (T is the
number of partitions after partitioning), and all Ki have the same inconsistency

value function I, then for any axiom (or assertion) a e Ki,

SÁK,)= S {c~l)l^~c)\l(C)-I{C\{a}))
C<ZKi

where ? = \Ki\ and c = \C\.

After the partitioning, the Shapley value of an axiom (or an assertion) can be

computed in 0(S?=? 2,Kîl).

The partitioning based on structural relevance preserves the total ordering on

the Shapley values of the axioms (and assertions) inside the same partition. In other

107

words, if an axiom has a higher Shapley value than another axiom in the partition,

then it will also have a higher Shapley value in the knowledge base.

Theorem 6.2.1 If K = S^=1 K is a partitioning of a knowledge base, and all K
have the same inconsistency value function I, then for any a, ß e K, if Sa(Ki) >

S0[Ki), then Sa(K)> S0[K).

Proof. For each partition KiCK and axioms a, ß e K1, if S01[Ki) > S0[K1), then

Eccxt {^?=^(?(0) - I[C\{a})) > EcC^1 ^f^(/(C) - I[C\{ß})). We
show Sa[K) > S0[K) by considering the following possible cases.

1. For any C¿ Ç K, if Q C C, as previously indicated, J2dCK n! (1(Ci) "

m\{a})) > Ec1CK ^r6V(CO - pa\{ß})),

2. If C1^ C and I[Q -C) = I, then /(Q) - /(CAM) = W) - ?<???)> so
Ec1CK ii^î^(/(a)-/(CAW)) = Sa?* ^^(H^-ncAiß})),

3. If Ci ^ C and /(C4 -C) = O, then /(C1) - /(CAM) > HC) - 1(&\{ß}). So
Eccx {-^^(m)-m\{a})) > Zc,cK{-^^(m)-m\{ß})).

Summing up all cases, Ecck {-^t^(I(C)-I(C\{a})) > Ecck ^^(/(C)-
Z(C\{/3})). Therefore 5Q(/T) > 5^(ZT). ¦

108

6.2.2 Optimization Based on Properties of the Inconsistency

Measure

Partitioning the knowledge base according to structural relevance can work very

well when the sizes \Ki\ are small, especially when they are bounded by a constant.

This, however, is largely dependent on the particular knowledge base considered.

If the knowledge base is large and cannot be partitioned into smaller parts, the

optimization based on partitioning won't improve the performance of the calculation.

In this section, we propose an algorithm to calculate the Shapley value based

on the properties of the inconsistency measure, especially the convergent property.

This method aims to reduce the number of consistency checks.

The basic idea of the algorithm is quite simple: according to Definition 6.1.6

in Section 6.1.5, a convergent subset is a minimal inconsistent subset of a knowledge

base. Any superset of a convergent knowledge base can have its inconsistency value
derived to be 1 due to the monotonicity of DLs. Hence once a subset is convergent,

there is no necessity to compute its supersets. The detailed algorithm is shown in

Figure 14. We can either compute the convergent sub-terminologies on the fly during
the computation of the Shapley value, or use the algorithms for MIS proposed in

[Sch05] to compute them in advance.

To see how this algorithm works, we consider one of the partitions in the

motivating example.

109

Algorithm INCONSISTENCY MEASURE
Input: an axiom (or assertion) a in a partition K
Output: the Shapley value of a

for all the unvisited K' C K, sorted by the cardinality of K'
tag K' as visited
if I{K' Ua)I = 0

for all supersets K" of K'
I(K") = 1
tag K" as visited

add K' to the computation of the Shapley value of a
return the Shapley value of a

Figure 14: Computing Shapley Values

1. Al C A2 ? -.? ? A3 2. Al Ç A ? A4
3. A3 Ç A5 ? A4 4. A4 Ç C ? \¡S.B
5. A5 ç 3S.-.B 7. ?1(a)
8. A3(6)

Example 6.2.3 27ie algorithm will first compute the inconsistency value of Al(a),

and then the coalition of Al (a) and any one of the other axioms, and then the

coalition of Al (a) and any two of the other axioms, since the following coalition has

an inconsistency value of 1, we will skip computing the inconsistency value of its

supersets.

1. Al ç ?2?-.???3 2. A2 CAn A4
7. Al(a)

It is the same case with the following coalition.

110

1. Al C ?2?-.???3
3. A3 £ A5 ? A4 4. A4 C C ? VS.5
5. ?5 C 3S.-.B 7. ?1(a)

6.3 Conclusion

With the development of more expressive ontologies in the Semantic Web commu-

nity, inconsistency has become an increasing problem that seriously hampers the

design and application of web ontologies. In this chapter, we presented a technique

for measuring inconsistencies which uses the Shapley value proposed originally in the

context of game theory. Since the Shapley value aims to distribute the gains from

cooperation in a fair manner, it can be used to impute the inconsistency to each of
the axioms in the problematic ontology. The idea is to first define an inconsistency

value, and then take it as the characteristic function, using the Shapley value to

compute the contribution of each axiom or assertion to the inconsistencies in the

ontology. The measure associated with an axiom shows the degree of its responsibil-

ity for the inconsistencies, which in turn can provide guidelines for diagnosing and

repairing the ontologies.

Ill

Chapter 7

Performance Evaluation

In this chapter, we present results demonstrating the practical value of the diagnosis

procedure proposed in Chapter 6. We first describe the ontologies used in our

experiments, followed by an illustration of the inconsistency measure applied to

these ontologies. Finally we study the performance of the proposed optimizations

for calculating Shapley Value based inconsistency measures.

7.1 Test Ontologies

To evaluate our proposed diagnosis algorithm, we have implemented it as well as

the suggested optimizations in Chapter 6. Tests were performed on a Windows

XP system with a 2.66GHz Intel Core2 Duo processor, and 4GB memory. The

implementation is developed in Java (JDK 1.5.0).

All the experiments were run on existing OWL ontologies that are used in

112

Chapter 5. The original ontologies are consistent and they are provided as sample

ontologies to test the repair service of the OWL ontology editor SWOOP 2.3 beta
3 [KPS+05], which uses Pellet as the default DL reasoner. In our experiments,
we asserted fresh individuals for these unsatisfiable concepts in order to make the

ontologies inconsistent. Note that after the modification, SWOOP can no longer

generate repair plans for these ontologies, as it does not provide diagnosis services

for inconsistent ontologies.

7.2 Resolving Inconsistencies

The effectiveness of the inconsistency measure based diagnosis framework can be

illustrated using the Koala Ontology. In the Koala ontology as shown in Table ??,
there were three sources of inconsistencies.

Let us consider an adapted part of the Koala ontology as follows:
1. Koala Ç. Marsupials
I.Quokka ?. Marsupials
3. Person Ç -^Marsupials
A. Koala Ç. HardWorker
h.KoalaWithPhD Ç 3hasDegree.T ? Koala
Q.Quokka C HardWorker
7. HardWorker Ç Person
83hasDegree.T ?. Person
9.Koala(Suzy)
10. KoalaWithPhD{Lizzy)
ll.Quokka(Pan)

There are three sources of inconsistencies in this ontology. A koala named

113

Suzy is forced to be a member of the disjoint classes marsupial and person. She is
a marsupial because koala is a subclass of marsupial and she is a person because

she is a hard worker and every hard worker is a person. A koala with a PhD named

Lizzy is also forced to be a member of the disjoint classes marsupial and person.

She is a person because person is the domain of hasDegree and every koala with a

PhD must have at least one hasDegree property. Similarly, a Quokka named Pan is

also causing inconsistency problems.

After the computation of the Shapley value for each axiom, axiom 3 gets the

highest Shapley value, followed by axioms 7 and 1. For the naive user of these
ontologies, this information can be very helpful. It shows that although intuitively
marsupial and person are disjoint classes, they make the ontology inconsistent. Re-

moving Axiom 3 will render the ontology consistent as follows, and therefore enables
most of the reasoning services that users have expected from their ontology devel-

opment tools.

7.3 Performance Evaluation

In order to test the performance of the optimization techniques proposed in Chap-

ter 6, the test ontologies were run with one or more of the optimization techniques.

We implemented an approach which is based on the algorithm for finding minimal

inconsistent subsets [Sch05]. It employs a variation of Reiter's Hitting Set Tree algo-

rithm [Rei87] to reduce the number of subsets that are involved in the computation

114

of inconsistency measures. In the following sections, we present the experimental

results for optimization techniques including partitioning based on structural rele-

vance, and properties of the inconsistency measure. At the end of this section, we

also present the overall effect of all these optimization techniques.

7.3.1 Evaluation of Partition Based on Structural Relevance

In Section 6.2.1, we proposed an optimization technique that partitions the knowl-

edge base according to its Description Logics structural relevance. To test the per-

formance improvement for partitioning, we measured the running time (in seconds)

of calculating the inconsistency measures when the knowledge base is partitioned

(Tp) and when it is not partitioned (TnoP). The "Time Out" threshold is set to be

1000 seconds.

Figure 15 and Table 16 show the performance improvement for the test on-

tologies. We measure the running time improvement by using Tnop/Tp. The x-axis

in the figure indicates the ontology being tested, and the y-axis shows the running

time in seconds using logarithmic-scale. The same notations for figures will be used

throughout this chapter.

There are some interesting observations that can be made about these results:

1. The larger the knowledge base and the less coupled the knowledge base, the

more significant the performance improvement we can achieve by partitioning

the knowledge base based on structural relevance. If a knowledge base is

115

Ontology # of Partitions With Partition-
ing (Tp)

Without Parti-
tioning (TnoP)

Tnop/Tp

Koala 12.01 12.01
University 20.45 35.12 1.72
Chemical 17 434.55 Time Out N/A
Economy Time Out Time Out N/A
Transport 29 Time out Time Out N/A

Table 16: Optimization Using Partitioning

Optimization Using Partitioning

100

-ST 1000
¦D
C
O
?
Q)

U)
O)
E

10 II
I Partition

INo Partition

>t-°
& F¿? &c$> ^ &

<$·

<f <f' <f <r
Test Ontologies

Figure 15: Evaluation of Partition Based on Structural Relevance

loosely coupled in terms of structural relevance, it can be easily partitioned

into smaller knowledge bases. For example, for the Chemical ontology, if the

knowledge base is not partitioned into smaller groups, the number of axioms

in the ontology is too large for the inconsistency measure calculation program

within the time out limit. If the same ontology is partitioned according to

structural relevance, it can be computed in reasonable time. This shows the

116

importance of partitioning the knowledge base based on structural relevance

in order to keep the axiom set as small as possible.

2. Partitioning the knowledge base into smaller groups does not always help,

especially when the knowledge base is small or tightly coupled in terms of

structural relevance. For example, there are only 24 axioms in the University

ontology, and 20 of them are structurally related. In this case, the running

time is only improved from 35.12s to 20.45s. This is not surprising since when

the knowledge base is simple and small, it does not take long to calculate the

inconsistency measure even without partitioning.

7.3.2 Evaluation of Properties of the Inconsistency Measure

In Section 6.2.2, we proposed an algorithm to calculate the Shapley value based

on the properties of the inconsistency measure, especially the convergent property.

To test the performance improvement, we measured the running time (in seconds)

of calculating the inconsistency measures when this technique is adopted(Tp) and

when it is not (TnoP). The "Time Out" threshold is also set to be 1000 seconds.

Figure 16 and Table 17 show the performance improvement for the test on-

tologies. We measure the running time improvement by using TnoP/TP.

There are also some interesting observations that can be made about these

results:

117

Ontology | With Property(7» | Without Property(rnop)
Koala

University
Chemical
Economy
Transport

3.21
8.86

375.23
355.12
901.23

12.01
35.12

Time Out
Time Out
Time Out

Tnop/Tp
3.74
3.96
N/A
N/A
N/A

Table 17: Optimization Using Measure Properties

Optimization Using Measure
Propterties

100 —

¦S 1000
c
O
?
f

S 10
f
E 1

D Property
B No Property

JS* ?»

////
Test Ontologies

Figure 16: Evaluation of Optimization Based on Measure Properties

1. The experimental results confirm that the optimization based on the conver-

gent property of inconsistency measure improves the running time for calculat-

ing the inconsistency measures. Overall, the optimization based on the prop-

erty of inconsistency measure outperforms partitioning based on structural

relevance. This is due to the fact that in large knowledge bases in the previous

test on partitioning, e.g., Economy and Transport ontologies, the number of

axioms in each partition is still too large as they are tightly coupled.

118

2. Although the Economy ontology is larger than the Chemical ontology in terms

of the number of concepts and axioms, it took less time to measure its incon-

sistency. This shows that there are more sources of inconsistencies in the

Economy ontology, and the number of axioms that has to be computed is sig-

nificantly reduced after optimization based on the convergent property of the

inconsistency measures.

7.3.3 Evaluation of Both Optimization Techniques

The experimental results shown in the previous subsections were evaluated by testing

one optimization at a time. We now present the result of evaluating of both op-

timization techniques by first partitioning the knowledge base based on structural

relevance, then for each partition, optimizing based on the convergent property of
the inconsistent measure.

Figure 17 and Table 18 compare the performance with and without the two

optimization techniques.

Ontology I With Optimization(Tp) Without Optimization(T»0p) Tnop/Tp
Koala 1.77 12.01 6.79

University 2.60 35.12 13.50
Chemical 325.12 Time Out N/A
Economy 294.28 Time Out N/A
Transport 600.89 Time Out N/A

Table 18: Optimization Using Both Techniques

It is interesting to note that when combined together, the partition based on

119

Optimization Using Both Techiniques

(0
"O
C
O
?
f

(O,
a>
E

1000

!Optimization
INo Optimization

^9'<̂/ <f <<? 4?
Test Ontologies

Figure 17: Evaluation of Both Optimization Techniques

structural relevance and the optimization based on the property of inconsistency

measure can greatly enhance the performance. The evaluation results are much

better than the previous results when testing one of the techniques alone. This is

due to the fact that by first partitioning the knowledge base, the number of axioms is

reduced for each partition. So we only have to consider computing the inconsistency

measure for each partition, based on its convergent property.

7.4 Conclusion

In this chapter, we studied the performance of the inconsistency measure based

diagnosis procedure and the proposed optimization techniques discussed in Chap-

ter 6. Our experimental results showed that both optimization techniques can help

120

improve the performance. We observed from the experimental results that parti-

tioning based on structural relevance works best when the knowledge base is loosely

coupled in terms of structural relevance. The optimization based on the convergent

property of the inconsistency measure was also found to be very effective in deal-

ing with large knowledge bases, especially when the knowledge base has multiple

sources of inconsistencies. We also noted that the overall effect of the combined

optimization techniques is significant.

121

Part IV

Conclusion and Future Work

122

Chapter 8

Conclusion and Future Work

This thesis set out to tackle the problem of providing non-standard reasoning ser-

vices, such as explanation and diagnosis, for DL reasoners. In this chapter we

conclude the major contributions followed by a discussion of future research direc-

tions.

8.1 Summary

The following summaries the main contributions of this thesis.

1. As observed in many DL applications, explanation service plays an very im-

portant role in assisting users to find out the cause of an unsatisfiability or

inconsistency problem. We proposed a framework to provide this service in DL

123

ACCHl knowledge bases based on resolution proofs. The framework trans-

lates the DL knowledge base into first-order logic formulae and uses an au-

tomated theorem prover to obtain the resolution proof and its corresponding

refutation graph. By traversing the refutation graph, an explanation is gener-

ated and presented to users. This novelty of this approach is that it exploits

the advantages of resolution based first-order logic theorem proving and pro-

vides explanations on a fine-grained level. Besides, the resolution technique is

more focused, since all the literals involved in a proof contribute directly to

the solution. This approach is also independent of any specific DL reasoners.

2. Based on this framework, we presented a sound and complete algorithm to

generate explanations for the Description Logic language ACCHl, by investi-

gating unsatisfiability and inconsistency patterns in ACCHl. This algorithm

uses refutation graph transformation to provide explanations. The advantage

of using refutation graph is that there is one refutation graph presentation for

several resolution proofs. By traversing the graph, a good way to present the

proof can be found. We demonstrated its practical value by implementing a

prototype system and testing it with real world ontology applications.

3. As ontologies grow larger and increasingly complicated, inconsistencies become

quite common in real world applications. Not all inconsistencies are equally

bad, and some may be more problematic than the others. In order to repair

an inconsistent ontology, we proposed a technique based on Shapley values to
124

measure inconsistencies in ontologies. Users of such an ontology can refer to

the inconsistency measure to decide which axioms contribute the most to the

inconsistency and need to be repaired. To the best of our knowledge, this is

the first work in DL to provide a systematical and quantitative measure for

diagnosis purposes.

4. We also investigated two optimization techniques to compute the inconsistency

measure. The first is to partition the ontology based on structural relevance.

The second technique is based on the convergent properties of the inconsistency

measure. Our experimental results showed that both optimization techniques

can help improve the performance.

8.2 Future Research

Our work in this thesis can be further extended in the following aspects:

1. The underlying DL language of the explanation framework is restricted to

ACCTiI and extensions to more expressive DL language are needed. A chal-

lenging direction is to extend the algorithms to handle number restrictions as

well as nomináis. Since most resolution based ATPs use the equality predicate

to express number restrictions, this may pose new problems for explanations.

Because the number of literals grows exponentially with the actual numbers,

FOL formulae or clauses will become quite long and the performance might be

125

affected. One possible solution is to shift to DL reasoners to handle number

restrictions.

2. The explanation is restricted to unsatisfiability and inconsistency queries. Al-

though we believe explanations for this kind of queries are more useful for

general users to debug their terminologies, providing explanations for sub-

sumption, satisfiability and non-subsumption queries is also necessary. As

pointed out in [MB95], an explanation can be generated by returning a model

or a counter-example but more work needs to be done to identify the most

suitable ones.

3. The proposed inconsistency measure is flexible in the sense that although we

focused on inconsistency problems in Chapter 6, by choosing different incon-

sistency value functions, it can also address unsatisfiability problems. It is

interesting to investigate what problems it can solve by adopting other incon-

sistency values.

126

Bibliography

[ARR+93] Tarun Arora, Raghu Ramakrishnan, William G. Roth, Praveen Se-

shadri, and Divesh Srivastava. Explaining Program Execution in De-

ductive Systems. In Deductive and Object-Oriented Databases, pages

101-119, 1993.

[BFH+99] Alexander Borgida, Enrico Franconi, Ian Horrocks, Deborah L.

McGuinness, and Peter F. Patel-Schneider. Explaining ACC subsump-

tion. In Proceedings of 1999 International Workshop on Description

Logics (DL 1999), pages 37-40, 1999.

[BGOl] Leo Bachmair and Harald Ganzinger. Resolution Theorem Proving.

In John Alan Robinson and Andrei Voronkov, editors, Handbook of

Automated Reasoning (in 2 volumes), pages 19-99. Elsevier and MIT

Press, 2001.

[BHS07] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics.

In Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, editors,

127

Handbook of Knowledge Representation. Elsevier, 2007.

[BMPSR90] Ronald J. Brachman, Deborah L. McGuiness, Peter F. Patel-

Schneider, and Lori A. Resnick. Living with CLASSIC: when and

how to use a KL-ONE-like language. In John Sowa, editor, Principles

of semantic networks, pages 401-456. Morgan Kaufmann, San Mateo,

US, 1990.

[BN07] F. Baader and W. Nutt. Basic Description Logic. In Franz Baader,

Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider, editors, The Description Logic Handbook: Theory,

Implementation, and Applications (2nd Edition), pages 47-104. Cam-

bridge University Press, 2007.

[BP07] Franz Baader and Rafael Penaloza. Axiom Pinpointing in General

Tableaux. In Proceedings of the 16th International Conference on

Automated Reasoning with Analytic Tableaux and Related Methods

TABLEAUX 2007, LNAI, Aix-en-Provence, France, 2007. Springer.

[BS84] Sharon Wraith Bennett and A. Carlisle Scott. Specialized Ex-

planations for Dosage Selection. In Bruce G. Buchanan and Ed-

ward H. Shortliffe, editors, Rule-Based Expert Systems: The MYCIN

Experiments of the Stanford Heuristic Programming Project, pages

363-370. Reading, MA: Addison-Wesley, 1984.

128

[BS85] Ronald J. Brachman and James G. Schmölze. An overview of the KL-

ONE knowledge representation system. Cognitive Science, 9(2):171-

216, 1985.

[BSOl] Franz Baader and Ulrike Sattler. An Overview of Tableau Algorithms

for Description Logics. Studia Logica, 69(l):5-40, 2001.

[BS08] Franz Baader and Boontawee Suntisrivaraporn. Debugging

SNOMED CT using axiom pinpointing in the description logic

EC+. In Proceedings of the 3rd Knowledge Representation in

Medicine (KR-MED'08): Representing and Sharing Knowledge Using

SNOMED, volume 410 of CEUR-WS, 2008.

[Byr80] Lawrence Byrd. Understanding the control flow of Prolog programs.

In Proceedings of the 1980 Logic Programming Workshop, pages 127-

138, Debrecen, Hungary, 1980.

[cas] CaSC ATP Competition. http://www.cs.miami.edu/~tptp/CASC/.

Accessed November 12, 2009.

[CGJ+OO] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and

Helmut Veith. Counterexample-guided abstraction refinement. In

Proceedings of the 12th International Conference on Computer Aided

Verification, pages 154-169, London, UK, 2000. Springer-Verlag.

129

[CGP99] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model

checking. MIT Press, Cambridge, MA, USA, 1999.

[Cla81] William J. Clancey. The epistemology of a rule-based expert system:

a framework for explanation. Technical report, Stanford University,

Stanford, CA, USA, 1981.

[Cla94] William J. Clancey. Notes on "heuristic classification", pages 191-196,

1994.

[CS04] Vincent Conitzer and Tuomas Sandholm. Computing Shapley Val-

ues, Manipulating Value Division Schemes, and Checking Core

Membership in Multi-Issue Domains. In Deborah L. McGuin-

ness and George Ferguson, editors, Proceedings of the Nineteenth

National Conference on Artificial Intelligence, Sixteenth Conference on

Innovative Applications of Artificial Intelligence (AAAI 2004), pages

219-225, San Jose, California, USA, 2004. AAAI Press/The MIT

Press.

[DDC03] Alexey Tsymbal Donai Doyle and Pádraig Cunningham. A Review

of Explanation and Explanation in Case-Based Reasoning. Technical

Report TCD-CS-2003-41, Department of Computer Science, Trinity

College, Dublin, 2003.

130

[DHS05a] Xi Deng, Volker Haarslev, and Nematollaah Shiri. A Framework for

Explaining Reasoning in Description Logics. In Proceedings of the

AAAI Fall Symposium on Explanation-aware Computing, pages 189-

204, Washington, DC, USA, 2005. AAAI Press.

[DHS05b] Xi Deng, Volker Haarslev, and Nematollaah Shiri. A Resolution

Based Framework to Explain Reasoning in Description Logics. In

Proceedings of 2005 International Workshop on Description Logics

(DL 2005), Edinburgh, UK, 2005.

[DHS06] Xi Deng, Volker Haarslev, and Nematollaah Shiri. Resolution Based

Explanations for Reasoning in the Description Logic ACC. In

Proceedings of the Canadian Semantic Web Working Symposium,

pages 55-61, Quebec City, Canada, 2006. Springer.

[DHS07a] Xi Deng, Volker Haarslev, and Nematollaah Shiri. Measuring Incon-

sistencies in Ontologies. In Proceedings of the 4th European Semantic

Web Conference (ESWC 2007), pages 55-61, Innsbruck, Austria, 2007.

Springer.

[DHS07b] Xi Deng, Volker Haarslev, and Nematollaah Shiri. Using Patterns to

Explain Inferences in ACCHl. Journal of Computational Intelligence,

23(3):373-392, 2007.

131

[Don07] F. M. Donini. Complexity of Reasoning. In Franz Baader,

Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider, editors, The Description Logic Handbook: Theory,

Implementation, and Applications (2nd Edition), pages 105-146. Cam-

bridge University Press, 2007.

[dSMF06] Paulo Pinheiro da Silva, Deborah L. McGuinness, and Richard Fikes.

A proof markup language for semantic web services. Information

Systems, 31(4):381-395, 2006.

[Eis91] Norbert Eisinger. Completeness, Confluence, and Related Properties

of Clause Graph Resolution. Morgan Kaufmann Publishers Inc., 1991.

[FieOl] Armin Fiedler. Dialog-driven Adaptation of Explanations of Proofs.

In Bernhard Nebel, editor, Proceedings of the 17th International Joint

Conference on Artificial Intelligence (IJCAI), pages 1295-1300, Seat-

tle, WA, 2001. Morgan Kaufmann.

[Fit96] Melvin Fitting. First-order logic and automated theorem proving (2nd

ed.). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[FM87] Amy Felty and Dale Miller. Proof Explanation and Revision. Technical

Report MS-CIS-88-17, University of Pennsylvania, 1987.

[GdN99] H. Ganzinger and H. de Nivelle. A superposition decision procedure

for the guarded fragment with equality. In Proceedings of the 14th

132

Annual IEEE Symposium on Logic in Computer Science (LICS '99),

page 295, Washington, DC, USA, 1999. IEEE Computer Society.

[HF96] Xiaorong Huang and Armin Fiedler. Presenting Machine-Found

Proofs. In Michael A. McRobbie and John K. Slaney, editors,

Proceedings of the 13th International Conference on Automated

Deduction (CADE-13), volume 1104 of Lecture Notes in Computer

Science, pages 221-225, New Brunswick, NJ, USA, 1996. Springer.

[HK06] Anthony Hunter and Sóbastien Konieczny. Shapley inconsistency val-

ues. In Proceedings of the International Conference on Knowledge

Representation (KR'06), pages 249-259, Windermere, UK, 2006.

AAAI Press.

[HMOl] Volker Haarslev and Ralf Moller. RACER System Description. In

T. Nipkow R. Gori, A. Leitsch, editor, Proceedings of International

Joint Conference on Automated Reasoning (IJCAR 2001), pages 701-

705, Siena, Italy, 2001. Springer-Verlag.

[HMS05] U. Hustadt, B. Motik, and U. Sattler. Data Complexity of Reasoning

in Very Expressive Description Logics. In Proceedings of Nineteenth

International Joint Conference on Artificial Intelligence (IJCAI 2005),

pages 466-471, Edinburgh, UK, AUG 2005.

133

[Hor07] I. Horrocks. Implementation and Optimization Techniques. In Franz

Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider, editors, The Description Logic Handbook:

Theory, Implementation, and Applications (2nd Edition), pages 329-

374. Cambridge University Press, 2007.

[HPS08] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Laconic and Pre-

cise Justifications in OWL. In Proceedings of the 7th International

Conference on The Semantic Web, pages 323-338, Berlin, Heidelberg,

2008. Springer-Verlag.

[HPS09] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Lemmas for justi-

fications in OWL. In Proceedings of the 2009 International Workshop

on Description Logics (DL2009), Oxford, United Kingdom, 2009.

[HPSMW07] Ian Horrocks, Peter F. Patel-Schneider, Deborah L. McGuinness, and

Christopher A. Welty. OWL: a Description Logic Based Ontology

Language for the Semantic Web. In Franz Baader, Diego Calvanese,

Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider,

editors, The Description Logic Handbook: Theory, Implementation,

and Applications (2nd Edition), pages 458-486. Cambridge University

Press, 2007.

134

[HS05] Peter Haase and Ljiljana Stojanovic. Consistent Evolution of OWL

Ontologies. In Asuncin Gmez-Prez and Jrme Euzenat, editors,

Proceedings of the Second European Semantic Web Conference, vol-

ume 3532 of Lecture Notes in Computer Science, pages 182-197, Her-

aklion, Greece, MAY 2005. Springer.

[Hua94] Xiaorong Huang. Reconstructing Proofs at the Assertion Level. In

Alan Bundy, editor, Proceedings of the 12th International Conference

on Automated Deduction (CADE- 12), pages 738-752. Springer-

Verlag, 1994.

[Hua96] Xiaorong Huang. Translating Machine-Generated Resolution Proofs

into ND-Proofs at the Assertion Level. In Norman Y. Foo and Randy

Goebel, editors, Proceedings of the 4th Pacific Rim International

Conference on Artificial Intelligence: Topics in Artificial Intelligence,

volume 1114 of Lecture Notes in Computer Science, pages 399-410.

Springer, 1996.

[KaIOl] John Arnold Kaiman. Automated Reasoning with Otter. Rinton Press,

2001.

[Kal06] Aditya Kalyanpur. Debugging and repair of OWL ontologies. PhD

thesis, University of Maryland at College Park, 2006.

135

[KPS+05] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca Grau,

and James Hendler. Swoop: A Web Ontology Editing Browser.

Journal of Web Semantics, 4:2005, 2005.

[KPSG06] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and Bernardo Cuenca

Grau. Repairing unsatisfiable concepts in OWL ontologies. In York

Sure and John Domingue, editors, Proceedings of the 3rd European

Semantic Web Conference (ESWC 2006), volume 4011 of Lecture

Notes in Computer Science, pages 170-184, Budva, Montenegro, 2006.

Springer.

[LD04] Carmen Lacave and Francisco J. Diez. A review of explanation meth-

ods for heuristic expert systems. The Knowledge Engineering Review,

19(2):133-146, 2004.

[LH05] Thorsten Liebig and Michael Halfmann. Explaining Subsumption in

ACSHJ7R+ TBoxes. In Ian Horrocks, Ulricke Sattler, and Frank

Wolter, editors, Proceedings of the 2005 International Workshop on

Description Logics(DL2005), pages 144-151, Edinburgh, Scotland,

July 2005.

[Llo87] John Wylie Lloyd. Foundations of Logic Programming (2nd Edition).

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1987.

136

[LN05] Thorsten Liebig and Olaf Noppens. OntoTrack: A semantic ap-

proach for ontology authoring. Journal of Web Semantics, 3(2-3):116-

131, October 2005.

[Mac91] Robert M. MacGregor. Inside the LOOM description classifier.

SIGART Bulletin, 2(3):88-92, 1991.

[MB95] Deborah L. McGuinness and Alexander Borgida. Explaining subsump-

tion in description logics. In Proceedings of the tenth International

Joint Conference on Artificial Intelligence (IJCAI' 95), pages 816-821,

Montreal, Canada, 1995.

[McG96] Deborah McGuinness. Explaining Reasoning in Description Logics.

PhD thesis, Rutgers University, New Brunswick, New Jersey, 1996.

[MD99] Sarah Mallet and Mireille Ducasse. Generating Deductive Database

Explanations. In International Conference on Logic Programming,

pages 154-168, 1999.

[MdS04] Deborah L. McGuinness and Paulo Pinheiro da Silva. Explaining an-

swers from the semantic web: the inference web approach. Journal of

Web Semantics, 1(4):397-413, 2004.

[MeiOO] Andreas Meier. TRAMP: Transformation of Machine-Found Proofs

into Natural Deduction Proofs at the Assertion Level. In

137

D. McAllester, editor, Proceedings of the 17th Conference on

Automated Deduction (CADE-17), volume 1831 of Lecture Notes in

Artificial Intelligence, pages 460-464, Pittsburgh, USA, 2000. Springer

Verlag, Berlin, Germany.

[Min74] Marvin Minsky. A framework for representing knowledge. Technical

report, Massachusetts Institute of Technology, Cambridge, MA, USA,

1974.

[Moo94] Johanna D. Moore. Participating in explanatory dialogues:

interpreting and responding to questions in context. MIT Press, Cam-

bridge, MA, USA, 1994.

[MSH09] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau Reason-

ing for Description Logics. Journal of Artificial Intelligence Research,

36:165-228, 2009.

[MWW89] R. Marti, C. Wieland, and Beat Wüthrich. Adding Inferencing to

a Relational Database Management System. In Theo Härder, editor,

Datenbanksysteme in Büro, Technik und Wissenschaft, pages 266-270,

1989.

[NRW98] A. Nonnengart, G. Rock, and C. Weidenbach. On Generating

Small Clause Normal Forms. In C. Kirchner and H. Kirchner, editors,

Proceedings of the 15th International Conference on Automated Deduction,

138

number 1421 in Lecture Notes in Artificial Intelligence, pages 397-411.

Springer-Verlag, 1998.

[owl] OWL2 Web Ontology Language Document Overview, http: //www.

w3.org/TR/owl2-overview/. Accessed February 26, 2010.

[PSK05] Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging OWL

ontologies. In Proceedings of the 14th International World Wide Web

Conference (WWW 2005), pages 633-640, Chiba, Japan, May 2005.

ACM Press.

[Qui67] M. R. Quillian. Word concepts: A theory and simulation of some basic

capabilities. Behavioral Science, 5(12):410-430, 1967.

[Rei87] R Reiter. A theory of diagnosis from first principles. Artificial

Intelligence, 32(l):57-95, 1987.

[RSS92] Raghu Ramakrishnan, Divesh Srivastava, and S. Sudarshan. CORAL -

Control, Relations and Logic. In Proceedings of the 18th International

Conference on Very Large Data Bases, pages 238-250, San Francisco,

CA, USA, 1992. Morgan Kaufmann Publishers Inc.

[RU93] Raghu Ramakrishnan and Jeffrey D. Ullman. A survey of research

on deductive database systems. Journal of Logic Programming,

23(2):125-149, 1993.

139

[RVOl] John Alan Robinson and Andrei Voronkov, editors. Handbook of

Automated Reasoning (in 2 volumes). Elsevier and MIT Press, 2001.

[RV02] Alexandre Riazanov and Andrei Voronkov. The design and implemen-

tation of VAMPIRE. AI Communications, 15(2,3):91-110, 2002.

[SC03] S. Schlobach and R. Cornet. Non-Standard Reasoning Services for

the Debugging of Description Logic Terminologies. In Proceedings of

the eighteenth International Joint Conference on Artificial Intelligence

(IJCAI'03), pages 355-362, Acapulco, Mexico, 2003. Morgan Kauf-

mann.

[SCDS84] A. Carlisle Scott, William J. Clancey, Randall Davis, and Edward H.

Shortliffe. Methods for generating explanations. In Bruce G. Buchanan

and Edward H. Shortliffe, editors, Rule-Based Expert Systems: The

MYCIN Experiments of the Stanford Heuristic Programming Project,

pages 338-362. Reading, MA: Addison-Wesley, 1984.

[Sch04] Stefan Schlobach. Explaining Subsumption by Optimal Interpolation.
In José Julio Alferes and Joào Alexandre Leite, editors, Proceedings

of the 9th European Conference on Logics in Artificial Intelligence

(JELIA '04), pages 413-425. Springer, 2004.

[Sch05] S. Schlobach. Diagnosing Terminologies. In Proceedings,

The Twentieth National Conference on Artificial Intelligence and

140

the Seventeenth Innovative Applications of Artificial Intelligence

Conference (AAAI 2005), pages 670-675, Pittsburgh, Pennsylvania,

USA, 2005. AAAI Press.

[Sha53] Lloyd Shapley. A value for ?-person games. In H. Kuhn and A. Tucker,

editors, Contributions to the Theory of Games, volume 2, pages 307-

317. Princeton University Press, 1953.

[SP04] Evren Sirin and Bijan Parsia. Pellet: An OWL DL Reasoner. In

Proceedings of the 2004 International Workshop on Description Logics

(DL2004), Whistler, British Columbia, Canada, 2004.

[SSS91] Manfred Schmidt-Schaubßand Gert Smolka. Attributive concept de-

scriptions with complements. Artificial Intelligence, 48(l):l-26, 1991.

[ST90] O. Shmueli and S. Tsur. Logical Diagnosis of LDL Programs.

In D. H. D. Warren and P. Szeredi, editors, Logic Programming:

Proceedings of the Seventh International Conference, pages 112-129.

MIT Press, Cambridge, MA, 1990.

[Swa83] William R. Swartout. XPLAIN: A System for Creating and Explaining

Expert Consulting Programs. Artificial Intelligence, 21(3):285-325,

1983.

[TH06] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic rea-

soner: System description. In Proceedings of the International Joint

141

Conference on Automated Reasoning (IJCAR 2006), volume 4130 of

Lecture Notes in Artificial Intelligence, pages 292-297, Seattle, Wash-

ington, USA, 2006. Springer.

[w3c] OWL Web Ontology Language Overview. http://www.w3.org/TR/

owl-features/. Accessed August 4, 2008.

[Wie90] C. Wieland. Two Explanation Facilities for the Deductive

Database Management System DeDEx. In Hannu Kangas-

salo, editor, Proceedings of the 9th International Conference on

Entity-Relationship Approach (ER'90), pages 189-203. ER Institute,

1990.

[WS84] Jerold W. Wallis and Edward H. Shortliffe. Customized explanations

using causal knowledge. In Bruce G. Buchanan and Edward H. Short-

liffe, editors, Rule-Based Expert Systems: The MYCIN Experiments

of the Stanford Heuristic Programming Project, pages 371-388. Read-

ing, MA: Addison-Wesley, 1984.

[WT92] Michael R. Wick and William B. Thompson. Reconstructive expert

system explanation. Artificial Intelligence, 54(l-2):33-70, 1992.

[WW97] McCune WosMcCune and Wos.L. Otter - the CADE-13 competition

incarnations. Journal of Automated Reasoning, 18(2) :21 1-220, 1997.

142

Appendix A

Glossary

ABox : Assertional Box

AC : A minimal language of interest in Description Logic which includes atomic

concept, atomic role, atomic negation, conjunction, value restriction and limited

existential quantification

ACC : AC extended with concept negation

ACCHI : ACC extended with role hierarchy and inverse role

ACSHJ7Tl+ : AC extended with full existential quantification, role hierarchy, func-

tional role and transitive role

ATP : Automated Theorem Prover

SC+ : a Description Logic language which includes conjunction, existential quan-

tification and complex role inclusion

CNF : Conjunctive Normal Form

143

DL : Description Logic

FOL : First-Order Logic

GCI : General Concept Inclusion

GITS : Generalized Incoherence-Preserving Terminology

MIPS : Minimal Incoherence-Preserving Sub-TBoxes

MIS : Minimal Inconsistent Subset

MUPS : Minimal Unsatisfiability-Preserving Sub-TBoxes

MUS : Minimal Unsatisfiable Subset

OWL : Web Ontology Language

OWL2 : Web Ontology Language 2

RDF : Resource Description Framework

SHlT(V) : ACC extended with transitive role, role hierarchy, inverse role, data

type and functional role

SHlQ : ACC extended with transitive role, role hierarchy, inverse role, and qualified

number restriction

SHOlM[V) : ACC extended with transitive role, role hierarchy, nominal, inverse

role, data type and unqualified number restriction

TBox : Terminological Box

W3C : World Wide Web Consortium

144

