
EFFICIENT AND SCALABLE TECHNIQUES FOR
MINIMIZATION AND REWRITING OF CONJUNCTIVE

QUERIES

Ali Kiani Tallaei

A THESIS

IN

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy

Concordia University

Montréal, Québec, Canada

August 2010

© Ali Kiani Tallaei, 2010

?F? Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre référence
ISBN: 978-0-494-71139-2
Our fíe Notre référence
ISBN: 978-0-494-71 1 39-2

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1*1

Canada

Abstract

Efficient and Scalable Techniques for Minimization and Rewriting of

Conjunctive Queries

Ali Kiani Tallaei, Ph.D.

Concordia University, 2010

Query rewriting as an approach to query answering has been a challenging issue in

database and information integration systems. In general, rewriting of a conjunctive

query Q using a set of views in conjunctive form consists of two phases: (1) generating

proper building blocks using the views, and (2) combining them to generate a union

of conjunctive queries which is maximally contained in Q. While the problem of

query rewriting is known to be exponential in the number of subgoals of Q, there is

a demand for increased efficiency for practical queries. We revisit this problem for

conjunctive queries, and show that Stirling numbers can be used to determine the

optimal number of combinations in the second phase, and hence the number of rules

in the generated union of conjunctive queries. Based on these numbers, we introduce

the notion of combination patterns and develop a rewriting algorithm that uses these

numeral patterns to break down the large combinatorial problem in the second phase

into several smaller ones. The results of our numerous experiments indicate that

the proposed rewriting technique outperforms existing techniques including Minicon

iii

algorithm in terms of computation time, memory requirements, and scalability.

On a related context, we studied query minimization, motivated by the fact that

queries with fewer or no redundant subgoals can be evaluated faster, in general.

However, such redundancies are often present in automatically generated queries.

We propose an algorithm that, given a conjunctive query, repeatedly identifies and

eliminates all the redundant subgoals. We also illustrate its performance superiority

over existing minimization algorithms.

It has been shown that query rewriting naturally generates queries with redundant

subgoals. We also show that redundant subgoals in the input of query rewriting result

in redundant rules in its output. Based on this, we investigate the impact of mini-

mization as pre-processing and post-processing phases to query rewriting technique.

Our experimental results using different synthetic data show that our query rewriting

technique coupled with pre/post minimization phases produces the best quality of

rewriting in a more efficient way compared to existing rewriting techniques, including

the Treewise algorithm.

It has been shown that extending conjunctive queries with constraints adds to

the complexity of query rewriting. Previous studies identified classes of conjunctive

queries with constraints in the form of arithmetic comparisons for which the complex-

ity of rewriting does not change. Such classes are said to satisfy homomorphism prop-

erty. We identify new classes of conjunctive queries with linear arithmetic constraints

that enjoy this property, and extend our query rewriting algorithm accordingly to

support such queries.

iv

Dedicated to my wife

Effat

?

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Dr. Shiri, whose

encouragement, dedication and constructive criticism has been a great motivation for

me. Without his helps, I would not be able to finish this thesis. I am also thankful

to him for the teaching opportunities and access to the database laboratory equipped

with the latest technologies.

I am grateful to my teachers at the department of Computer Science and Software

Engineering at Concordia University, specially Dr. Grahne and Dr. Haarslev for their

constant supports and helpful discussions.

I owe many thanks to my committee members Dr. Bertossi, Dr. Al-Khalili, Dr.

Haarslev, Dr. Grahne, and Dr. Shiri for their detailed reviews and excellent advices

during the preparation of this thesis.

My Special thanks to my friend, Shirley Pai for discussions, suggestions, interesting

ideas and also helps during preparation of this thesis.

I am grateful to my colleagues at the database lab at Concordia university, Mihail

Halachev. Xi Deng, Nima Mohajerin, Ahmed Alasoud, Alex Thomo, Weisheng Lin,

Zheng Zhi Hong, Ali Taghizadeh, Vidya Kadiyala and Keywan Hodaie.

vi

Last but not least, I would like to thank Halina Monkiewicz, Pauline Dubois, Hirut

Adugna, Edwina Bowen, Stan Swiercz, and the staff at department of Computer

Science and Software Engineering at Concordia University.

VIl

Contents

List of Figures xiii

List of Abbreviations and Symbols xv

1 Introduction 1

1 . 1 Overview 1

1.2 Mediator-based Information Integration 3

1.3 Query Processing in Mediator-based

Integration 4

1.4 Problem Statement 5

1.5 Thesis Contributions 7

1.6 Thesis Outline 10

1.7 Summary 11

2 Background 12

2.1 Basic Concepts 13

2.1.1 Relational Model 13

viii

2.1.2 Query 14

2.1.3 Conjunctive Queries 16

2.1.4 View 19

2.1.5 Views, Open World and Closed World Assumptions 19

2.1.6 Containment of Conjunctive Queries 21

2.2 Query Rewriting 22

2.2.1 Rewriting Queries for Query Processing 25

2.2.2 Query Rewriting in GAV-based Integration 26

2.2.3 Query Rewriting in LAV-based Integration 27

2.3 Existing Query Rewriting Solutions 31

2.3.1 Bucket Algorithm 31

2.3.2 Inverse-Rules Algorithm 33

2.3.3 MiniCon Algorithm 35

2.3.4 Treewise Algorithm 38

2.4 Summary 43

3 Query Rewriting for Standard Conjunctive Queries 44

3.1 Pattern-based Query Rewriting 45

3.1.1 Finding Coverages 50

3.2 Combining Non-overlapping Coverages:

A Partitioning Problem 53

3.2.1 Finding Occurrence Classes 55

IX

3.2.2 Creating Buckets Using Patterns 58

3.3 Query Rewriting Algorithm 62

3.3.1 Finding Basic Coverages 63

3.3.2 Combining Coverages 64

3.3.3 Correctness 67

3.3.4 Complexity of Query Rewriting 68

3.4 Classification of Approaches to Query Rewriting 69

3.5 Summary 76

4 Minimization of Conjunctive Queries 77

4.1 Introduction 77

4.2 Related Work 79

4.3 Query Minimization 81

4.3.1 Identifying Redundant Subgoals 83

4.3.2 Finding Minimizing Substitution 85

4.3.3 Proposed Heuristics 89

4.4 Our Proposed Algorithm 92

4.5 Complexity 96

4.6 Summary 97

5 Experiments and Results 98

5.1 Classes of Queries 99

5.1.1 Chain Queries 100

?

5.1.2 Star Queries 100

5.1.3 Duplicate Queries 101

5.1.4 Random Queries 101

5.1.5 All-Range Queries 101

5.1.6 Augmented Path queries 103

5.1.7 Augmented Ladder queries 103

5.1.8 Snowflake queries 104

5.2 Query Minimization 105

5.2.1 Application in Query Rewriting 108

5.3 Query Rewriting Ill

5.3.1 Memory Requirement 112

5.3.2 Efficiency and Scalability 114

5.3.3 Rewriting Quality 120

5.4 Summary 121

6 Query Rewriting for Conjunctive Queries with Constraints 124

6.1 Introduction 124

6.2 Containment of Queries with Constraints 128

6.2.1 Containment of CLAC Queries 129

6.2.2 Importance of Homomorphism Property 136

6.3 Classes of Queries with Homomorphism Property 137

6.3.1 Conjunctive Queries with Equality Constraints 137

xi

6.3.2 Homomorphism Property and Conjunctive Queries with Arith-

metic Comparison 139

6.3.3 More AC Queries with Homomorphism Property 142

6.3.4 Homomorphism Property and Conjunctive Queries with Equal-

ity Constraints and Arithmetic Comparisons 146

6.4 Query Rewriting for CLAC Queries with Homomorphism Property . 149

6.5 Phases of Rewriting 150

6.5.1 Finding Coverages 150

6.5.2 Combining Coverages 151

6.5.3 Handling the Constraints 153

6.6 Discussion 153

6.7 Summary 157

7 Conclusion and Future Work 158

7.1 Conclusion 158

7.2 Future Work 161

7.2.1 Query Rewriting and Functional Dependencies 161

7.2.2 Query Minimization and Linear Arithmetic Constraints 162

7.2.3 Query Minimization and Functional Dependencies 162

XIl

List of Figures

1.1 Architecture of Mediator-based System 4

2.1 The hyper-graphs a, b, c, and d shown here represent query Q, and

views Vi , V¿, and V3 in Example 2.14, respectively. 42

3.1 AU possible occurrences of coverages for a query with 3 subgoals ... 54

3.2 Comparing Minicon and Pattern-based algorithm based on the number

of operations required in the second phase for queries and views with

all occurrence identifiers 62

3.3 Coverages and Buckets in bottom-up for Example 3.7 72

3.4 Coverages and Buckets in top-down for Example 3.7 73

5.1 (a) Augmented Path Query, (b and c) Augmented Ladder query, and

(d) Snowflake) query [KS02] 104

5.2 Average minimization time for Chain queries 106

5.3 Average minimization time for Duplicate queries. 107

5.4 Average minimization time for Augmented Ladder queries 108

5.5 Average minimization time for Snowflake queries 109

5.6 Area of rewriting for minimized vs non-minimized query 110

xiii

5.7 Total rewriting time for minimized vs non-minimized query. Ill

5.8 Comparison of memory requirement for Minicon, VB-Minicon, Tree-

wise and pattern-based algorithms 113

5.9 Rewriting time for All-Range queries with up to 10 subgoals 115

5.10 Rewriting time for AU-Range queries with 6 subgoals and up to 20

repetitions of view types 115

5.11 Rewriting time for Chain queries with 4 subgoals and all join variables

distinguished 116

5.12 Rewriting time for Chain queries with 8 subgoals and all variables

distinguished 117

5.13 Rewriting time for Star queries with 10 subgoals and non-join variables

distinguished 118

5.14 Rewriting time for queries with 10 subgoals and all join variables dis-

tinguished 119

5.15 Rewriting time for Duplicate queries with 12 subgoals 120

5.16 Rewriting time for Random queries with 10 subgoals 121

5.17 Area for queries with 8 subgoals and all variables distinguished 122

5.18 Rewriting area for queries with 10 subgoals and all join variables dis-

tinguished 123

6.1 Transforming CLAC query into an AC query while maintaining the

containment mapping 134

6.2 All possible occurrences of coverages for a query with 3 subgoals. . . 152

xiv

List of Abbreviations and Symbols

AC Queries Conjunctive Queries with Arithmetic Comparison

B(n) Bell number of n, the number of partitions of a set of ?

elements

CLAC Conjunctive Queries with Linear Arithmetic Constraints

CLSI Closed Left Semi-Interval Comparisons

CQ Conjunctive Queries

CQEC Conjunctive Queries with Equality Constraints

CQEC+AC Conjunctive Queries with Equality Constraint and

Arithmetic Comparison

CQEC+LSI Conjunctive Queries with Equality Constraint and LSI

Comparison

CQEC+RSI Conjunctive Queries with Equality Constraint and RSI

Comparison

LSI

MCR

OLSI

PI

QC

QR

RSI

Left Semi-Interval

Maximally Contained Rewriting

Open Left Semi-Interval

Point-Inequalities

Query Containment

Query Rewriting

Right Semi-Interval

xv

S(?, k) The Stirling numbers of the second kind, the number of

ways to partition a set of ? elements into k nonempty

subsets

SI Semi-Interval

UCQ Union of Conjunctive Queries

XVl

Chapter 1

Introduction

In this chapter, we motivate the problem of Query Rewriting in data integration as a

technique for answering Conjunctive Queries. We then explain how this is related to

the problem of Query Minimization and motivate investigating Query Minimization.

We also recall the importance of Constraints in real life applications which motivates

investigating efficient rewriting of Conjunctive Queries with Constraints.

1.1 Overview

Databases are essential part of many information systems. In general, a database

records information about a specific application domain using a fixed representation

of the concepts it models, called schema. A schema is a set of relations each of

which is set of attributes that represents a concept (e.g., Department and Course in

the domain of a university), or relationship between the concepts (e.g., relationship

1

between Department and Course).

Initially, querying databases was done locally. Also, communication between

databases was difficult, mostly because it required a lot of manual work. Advances

in hardware technologies and the falling cost of hardware made database solutions

more attractive and affordable. This resulted in creation of many databases that

have overlapping domains, i.e., domains that have common concepts, explained in

the following example.

Example 1.1 In the domain of a university, there are different units involved, in-

cluding Office of the Registrar (OR), School of Graduate Studies (SGS), Human Re-

sources (HR), department of Computer Science (CS), and International Student Of-

fice (ISO), each have their own database where some concepts are common. For

instance, an international student who is enrolled in the PhD program in the depart-

ment of Computer Science and works as a teacher assistant in that department would

have records in the database of each of the above units. In fact, each database would

present this student from a different point of view.

We refer to each of these databases as an Information Source. The availability of

information sources with overlapping domains motivates the idea of integrating the

information sources. To see this, consider the information sources in Example 1.1, and

the query "List all international students enrolled in a Computer Science program."

While this query cannot be answered by the ISO database nor by the CS database

alone, it can be answered by the integration of these two information sources.

2

For this, assume a new schema called ICSS (International Computer Science Stu-

dent) is created to "integrate" the concept of student from ISO and CS. The rela-

tion^) in ICSS represents a computer science student who is also an international

student. Now, it is possible to query this integrated source to answer the above query.

The two major approaches to data integration are Data Warehouses and Mediator-

based Information Integration. In this thesis, we only consider the mediator-based

approach to integration. Data warehouses have been extensively studied from differ-

ent point of views including design, optimization and maintenance [Inm96, JLVV03,

CDL+Ol, GM05, TS97], and automation of schema management [BROO, MRB03,

BerOl, PTUOO]. Next, we review mediator-based information integration.

1.2 Mediator-based Information Integration

As shown in Figure 1.1, there are three layers in the mediator-based integration: the

user, the mediator layer, and the information sources. The mediator includes Meta-

data and query processor. Metadata contains information about (1) the schema of

integration (known as global schema), (2) the schémas of information sources (known

as local schémas), and (3) the mappings between the local schémas and the global

schema.

In mediator-based integration, the user query is based on the global schema, but

since the relations in the global schema do not contain any physical data, the query

cannot be executed at this level. The query processor in the mediator is responsible for

3

ç
Answer fromQuery Mediator based integration

() MetadataQuery Processor Metadata

Mediator

S ^ "%.
InformationInformation]

SourceSource
?1

%, „ , 4^ ^- .- <jf '^„2:__„_«^''

Figure 1.1: Architecture of Mediator-based System

exploiting a proper technique and using the available information sources to answer

the query.

Next, we review query processing techniques for mediator-based integration.

1.3 Query Processing in Mediator-based

Integration

In general, in mediator-based integration systems, there are two main approaches to

query processing and finding answers to queries: (1) Query Rewriting, which uses

view definitions to rewrite the input query expressed over global schema in terms

of local schémas (relations in information sources), and then evaluates the rewriting

over the source extensions. (2) Query Answering Using Views, which uses both view

4

definitions and extensions (i.e., relation instances) to find the query answers [AD98].

In this thesis, we focus on query rewriting as an approach to processing of con-

junctive queries. Query rewriting has been the subject of numerous studies and sev-

eral solutions have been proposed, namely Bucket algorithm [LR096], Inverse-rules

[DLOO], MiniCon [PLOO] and Treewise [MS08].

Query rewriting, in general, consists of two phases: (1) creating building blocks

and (2) combining them to generate rewriting. In the first phase, views are analyzed

to find out the subgoals they can be replaced with, and in the second phase, view heads

are combined to generate queries that are contained in the input query [LMSS95].

We note that the second phase, which becomes a combinatorial problem, is expo-

nential in the number of subgoals in the input query. Despite this, it seems that the

above rewriting algorithms focus more on the first phase of rewriting. Considering

the complexity of the second phase, it is important to investigate the second phase

as well, as it affects the efficiency and scalability of the rewriting. Next, we explain

the problem we investigate in this thesis.

1.4 Problem Statement

In this thesis, we investigate performance and scalability of query rewriting as an

approach to query processing in the context of conjunctive queries. For that, we

consider the following problems.

5

1. Performance and Scalability of Query Rewriting

In the context of mediator-based integration, " since the number of possible

queries is not limited and information sources could leave and join dynami-

cally, query rewriting cannot be done a priori. Thus, performance and scala-

bility of query rewriting become important issues in practice. Efficient rewrit-

ing of conjunctive queries has been the subject of several studies and interest-

ing solution techniques, including the Bucket algorithm [LR096], Inverse-rules

[DLOO, Qia96, DG97a], MiniCon [PLOO], and Treewise [MS08] have been pro-

posed. [LevOl] provides a survey of these techniques. We revisit these solutions

and obtain further improvement in terms of performance and scalability. More

specifically, we investigate the combinatorial problem in the second phase of

query rewriting for achieving an improved performance and scalability com-

pared to the existing solutions.

2. Redundancies in Queries

When the input query and views are expressed as conjunctive queries, the out-

put rewriting is usually expressed as union of conjunctive queries (i.e., a rewrit-

ing is a set of rules each of which is a conjunctive query). We show that if the

input query and views contain redundant subgoals, query rewriting generates

redundant rules in the output. Also, it has been shown that even if input query

and views do not have redundant subgoals, query rewriting usually generates

rules that have redundant subgoals [LMSS95, PLOO].

6

Thus, minimization of conjunctive queries [CM77], in general, and in the context

of query rewriting, in particular, is an important problem. This problem has

been studied [CM77, KS02, LMSS95, PLOO] and some good solutions have been

proposed. We revisit this problem, and investigate efficient query minimization

and also its effect on both input and output of query rewriting.

3. Efficient Rewriting of Queries with Constraints Constraints in the form

of arithmetic comparison appear frequently in the WHERE clause of SQL

queries. It has been shown that the problems of containment and rewriting

of queries with arithmetic comparison are more difficult to deal with than the

corresponding problems in standard queries (queries with no inequality con-

straints) [Klu88, ALM04]. Several studies have identified classes of conjunctive

queries for which the complexity of containment and rewriting remains the same

as in the standard conjunctive queries [ALM04, ALM02, KSlO]. Identifying such

classes is an important problem in practice. As shown in [ALM02], given an

input that contains query and views with constraints, if testing the membership

of the input query and views to such classes of queries can be done in polyno-

mial time, then query rewriting can be done more efficiently compared to the

general case of queries with constraints.

1.5 Thesis Contributions

The contributions of this thesis are as follows.

7

1. Query rewriting consists of two phases: finding building blocks for rewriting and

combining them to generate rewriting. We show that combining these building

blocks is a partitioning problem, based on which we introduce a formula to

determine the number combinations and hence, rules in the rewriting before

generating it.

2. We propose a novel query rewriting technique for conjunctive queries that uses

some numerical patterns to break a large combinatorial problem into several

smaller problems and perform query rewriting efficiently. We experimentally

show that our proposal outperforms the MiniCon [PLOO] and Treewise [MS08]

algorithms for different types of queries in terms of performance (two order of

magnitude in some cases), scalability, and memory requirement [KS09].

3. Based on the approach used to form the building blocks of rewriting, we classify

rewriting algorithms into bottom-up and top-down approaches, and show that

the quality of rewriting (i.e., the number of subgoals in the output of the rewrit-

ing) in top-down approaches is better than in bottom-up approaches. However,

there is an isomorphism between the results of the two approaches. This con-

firms that minimization can be applied to the output of bottom-up approach

to obtain the same quality of a top-down approach.

4. In the context of conjunctive queries, the output of the rewriting is a union

of conjunctive queries. It has been shown that usually redundant subgoals

could be generated in the rules in the output of the rewriting [PLOO] . We show

8

that if the input queries and views in rewriting are not minimized, not only

redundant subgoals but also redundant rules will be generated in the output of

the rewriting.

5. We propose a minimization algorithm that identifies the redundant subgoals in

conjunctive queries, and experimentally show that our minimization technique

is efficient and outperforms existing solutions. We exploit our minimization

technique as pre-processing and post-processing phases of query rewriting, and

conduct numerous experiments on query rewriting equipped with minimization

for different types and sizes of queries. The results show that unlike the as-

sumptions in previous studies, applying query minimization to the output of

query rewriting is practical.

Moreover, minimizing the input of query rewriting improves (in orders of mag-

nitude, for some cases) (1) the performance of query rewriting and (2) the size

of the generated rewriting.

6. Following the approach in [ALM04, ALM02] for containment and rewriting of

conjunctive queries with constraints, we identify more classes of conjunctive

queries with constraints for which the complexity of query containment remains

in NP. We extend our pattern-based query rewriting algorithm to support such

queries [KSlO].

9

1.6 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we provide the back-

ground and definitions required for the discussions in the thesis, and review the ex-

isting query rewriting algorithms with the focus on "maximally contained rewriting."

In Chapter 3, we introduce a formula in terms of Stirling numbers to determine the

number of rules in the rewriting. Using this, we propose our pattern-based rewrit-

ing algorithm to generate "maximally contained rewriting" for standard conjunctive

queries. Moreover, we define a new measure for the quality of rewriting based on the

number of subgoals in the generated rewriting, and show the importance of query

minimization on both input and output of query rewriting.

In chapter 4, we investigate query minimization for standard conjunctive queries,

and introduce a novel algorithm for query minimization.

In chapter 5, we report the results of our experiments for evaluating the per-

formance of the proposed minimization algorithm using different types and sizes of

queries. We conduct another set of experiments to evaluate the performance, scala-

bility and memory requirements of our pattern-based rewriting algorithm, and com-

pare the results with the Minicon and Treewise algorithms. We also study the impact

of the proposed query minimization algorithm on the output of the query rewriting

algorithm and through numerous experiments, we show that the overhead of apply-

ing query minimization on the output of query rewriting is not considerable and this

combination outperforms the Minicon and Treewise algorithms in terms of time and

10

"quality" (number of subgoals in the generated rewriting) .

In chapter 6, we consider conjunctive queries with linear arithmetic constraints

and identify classes of such queries for which the complexity of containment and

rewriting is the same as the standard case (i.e., conjunctive queries with no inequality

constraints). Moreover, we extend our query rewriting algorithm to support such

queries.

In Chapter 7, we summarize the contributions of this thesis and list the future

work.

1.7 Summary

In this chapter, we motivated this thesis by explaining the importance of query rewrit-

ing as an approach to query processing in the context of mediator-based integration,

and identified a number of problems to be addressed in this thesis. They include

performance and scalability of query rewriting, efficient minimization of input and

output of query rewriting, and efficient query rewiring for queries with constraints.

11

Chapter 2

Background

In this chapter, we review the basic definitions and concepts required for the develop-

ments and discussions in this thesis. We consider the Relational Model for databases,

and recall the concepts of Query, View, and Conjunctive Query. Moreover, we review

the Containment and Equivalence for conjunctive queries. Finally, we consider query

processing in mediator-based integration, and define view-based query processing for

LAV-based and GAV-based integrations, as well as the concepts of Maximally Con-

tained Rewriting. We then focus on query processing for LAV-based integrations, and

review existing rewriting algorithms in this context.

12

2.1 Basic Concepts

2.1.1 Relational Model

The relational model, introduced by Codd [Cod70], provides a model for data based

on relations. Every relation has a schema which is a set of ? attributes each of which

is associated with a domain. Each row in a relation is called a tuple. Each tuple

consists of ? values where the ith value is associated with the ith attribute, and is

taken from the ith domain. A relation can also be seen as a set of columns, where

column i is identified by the ith attribute.

Example 2.1 The following figure illustrates an instance of relation Student. The

schema includes attributes ID, Name, and GPA. The given instance contains three

tuples.

Student

ID Name GPA

51 Joe 3.4

52 Jack 3.5

53 Sally 3.5

As explained earlier, a relation instance in the relational model, is a set of tuples.

In our discussion, we do not consider relations with repeated tuples.

13

2.1.2 Query

One of the main goals of database systems is to answer queries. A query on a database

is a request for information expressed in a specific language. When a user or an

application poses a query, the database system processes the query, and returns the

answer which is usually a collection of tuples. Most database management systems

use SQL (Structured Query Language) as the query language.

Example 2.2 The following SQL query, defined based on the relation in Example 2.1,

lists ID and Name of the students whose GPA is 3. 5.

SELECT ID, Name

FROM Student

WHERE GPA = 3.5

The result over the given instance of Student in Example 2. 1 is as follows.

ID Name

52 Jack

53 Sally

The following example shows a query over three relations.

Example 2.3 Consider the following instances of relations Course and Enrolled as

well as the relation Student from Example 2.1.

14

Course Enrolled

ID

Cl

C2

C3

CA

C5

Description

Discrete Math I

Discrete Math II

Data Structures

Databases

Object Oriented Programming

Credits

3

3

3

3

3

SID

Sl

Sl

S2

S2

S3

CID

Cl

CS

C2

CS

C4

The following query finds all the students with a GPA of 3.5, and lists pairs of

student name and course description.

SELECT Name, Description

FROM Student, Enrolled, Course

WHERE Student.ID=Enrolled.SID AND

Course.ID=Enrolled.CID AND

Student. GPA =3.5

This query has three clauses: Select, From and Where. A simplified procedure to find

the answer to this query is as follows.

Step 1: Perform a Cartesian product on the relations in the From clause: Student,

Course and Enrolled.

Step 2: Select only the tuples of the result of step 1 for which the conditions in the

15

Where clause are satisfied, and discard the rest of the tuples.

Step 3: Project columns Name and Description in the Select clause, and discard the

rest of the columns.

Using the above instances of relations Student, Course and Enrolled, the answer

to this query includes the following tuples.

Name Description

Jack Discrete Math II

Jack Data Structures

Sally Databases

2.1.3 Conjunctive Queries

While SQL is the de facto standard query language in practice, other languages such

as Conjunctive Queries, Relational Algebra, or Relational Calculus [GUW08, SRV95]

are used in theoretical developments.

Majority of SQL queries, as shown in Example 2.3, are of the form of Select-From-

Where. In this thesis, we focus on conjunctive queries which are logical expressions

of the Select-From-Where queries, defined as follows.

Definition 2.1 (Conjunctive Query) A conjunctive query Q is a statement of the

following form:

Q: h(X) .--<7i(*i),·-- ,9k{Xk);Ou--· ,Qn,

where gi{Xi) is a subgoal consisting of a predicate name gi and a list Xi of variables

and constants. Each predicate gi refers to a relation in the relational database and

16

every argument in Ci is either a variable or a constant. Let S be the set of all the vari-

ables and constants in Q. Every ctj is a built-in predicate in the form of LjOjRj, where

Oj is a comparison operator from {<, <, >, >, =, F}, and Lj and Rj are expressions
over S.

Q consists of two parts: (1) query head: h(X), denoted as Head(Q) and (2)

query body: gi{Xi),··· ,gk(Xk),ai,-·· ,an, denoted as Body(Q). We refer to the

set of subgoals in Body(Q) as Core(Q), and to the set of built-in predicates as

Constraints (Q).

A conjunctive query is safe, if every head variable (variables in X) also appears

in a subgoal in the body. In our discussions, we only consider safe queries. Let D be

a database instance. We use Q(D) to refer to the extension of Q in D, i.e., the set of

valuations for the variables of Q that make Q true in D.

A variable A in a subgoal in Body(Q) is called distinguished, if it also appears in

the query head. We use Vars(Q) to refer to the variables in Q.

We say a conjunctive query is standard if its constraints are limited to the forms

A=B or A=c, where A and B are variables from Vars(Q), and c is a constant. Note

that as shown in Example 2.4, a constraint in the form of A=B can be expressed

using repeated variables in Core(Q). Similarly, constraint A= c can be expressed

using occurrence of constant c in Core(Q). Therefore, a standard conjunctive query

can be expressed in the following form:

Q: h(X):- C1(X1), ---,gM

where Ci(Xi) is a subgoal consisting of a predicate name gi and a list Xi of variables

17

and constants.

Every Select-From-Where SQL query can be expressed as a conjunctive query,

explained as follows. The Select clause in a SQL query corresponds to the query head

in a conjunctive query, the From clause corresponds to the subgoals in the query

body, and the Where clause is expressed by built-in predicates.

Example 2.4 The query in Example 2.3 can be expressed as a conjunctive query as

follows.

Q: h{B,E) :-Student(A,B,3.5),Course{D,E),Enrolled(A.,D).

Here, variable A has appeared in Student(A, B, 3.5) and also in the subgoal

Enrolled(A, D) , enforcing that the ID from Student matches with SID in Enrolled.

Similarly, variable D has appeared in subgoals Course{C,D) and Enrolled(A, D) ,

enforcing that the ID from Course matches with CID in Enrolled. Also, the constant

3.5 in subgoal Student (A, B , 3.5) enforces that only students with a GPA of 3.5 are

selected. Finally, variables B and E that correspond to student name and course

description are projected in the query head.

Throughout this thesis, we use small letters such as r, s, and t for relations, and

use capital letters such as X, Y , and Z for variables.

18

2.1.4 View

A view in the relational model is a stored query which provides a higher level of

abstraction over relations. A view can be used in queries similar to relations and

for this reason, it is also called a virtual relation. Every time a view is queried, its

stored query is executed and returns a set of tuples, called the view extension or view

instance.

The following example defines a view V, and shows a query based on it.

Example 2.5 Consider the relations Student, Course and Enrolled defined earlier.

The following conjunctive query defines a view for the same pairs of student and

course in Example 2.4-

V : v{B,E) :-Student{A,B, 3.5), Course(D, E), Enrolled(A, D) .

Below is a query based on v, which lists the students who are enrolled in Discrete

Math II and have a GPA of 3.5.

Q : h(A) :-v(A, 'Discrete Math W).

2.1.5 Views, Open World and Closed World Assumptions

In general, there are two assumptions about the views, called Closed World and

Open World [AD98]. Next, we discuss the impact of these assumptions on query

containment and hence query rewriting.

Let V be a view and I an extension of V. Then, under the closed world assumption

(CWA), / stores all the tuples that satisfy the view definitions in V, i.e. / = V(D),
19

for every database instance D. That is. view extensions under the CWA are sound

and complete [AD98].

Under the open world assumption (OWA), the view extension / might store some

but not all the tuples that satisfy V, i.e. / C V(D), for some database D. That is,

view extensions under OWA are sound but not necessarily complete [AD98].

Example 2.6 Consider the views V1 and V2 defined as follows.

V1: V1(A) :-r(A, B).

V2: V2(D) :-r(C, D).

Suppose the view extensions provided are Vi={<a>} and V2={}. Under

CWA, V!={<a>} implies that r has only tuples with a as the value of the first argu-

ment, and V2={<i»} implies that r has only tuples with b as the value of the second

argument. From this we get that under CWA, relation r has only one tuple, namely

{<a,b>}.

Under OWA, however, we cannot identify the contents of the relation r. This is

because under OWA, ??={<a>} implies that r has some tuples with a as the value of

the first argument, and V2={} implies thatr has some (possibly different) tuples

which has b as the value of the second argument.

Since the problems of query rewriting and query minimization are based on query

containment, we next review containment of conjunctive queries under the Open

World- Assumption (OWA), often considered in related work.

20

2.1.6 Containment of Conjunctive Queries

In this section, first, we conceptually define containment of queries and then, review

its syntactical characterization for conjunctive queries.

Definition 2.2 (Query Containment) [CM77J

Let Q1 and Q2 be two conjunctive queries. We say Q2 is contained in Q1, denoted

Q2 E Qi, if for every database instance D, Q2(D) C Q1(D).

Chandra and Merlin [CM77] characterized the containment of conjunctive queries

(see Theorem 2.1 below) based on the notion of Containment Mapping, defined as

follows.

Definition 2.3 (Containment Mapping) Let Q1 and Q2 be conjunctive queries.

A mapping µ from variables in Q1 to variables in Q2 is a containment mapping if

applying µ on Q1 makes all subgoals in Q1 o subset of subgoals in Q2, and the head

of Qi identical to the head of Q2.

Note that using a containment mapping, a variable X that is in position j in a

subgoal r(Xi) of Q1 can only be mapped to a variable y or a constant C in position

j in a subgoal r(Yk) in Q2 , denoted as X/Y or X/c, respectively. That is, a variable

cannot be mapped to different variables or constants.

Theorem 2.1 (Containment of Conjunctive Queries [CM77]) Let Qi and Q2

be standard conjunctive queries defined as follows:

Q1: h(X) ^g1(X1),- ¦¦ ,gk(Xk).

21

Q2: h(Y) .-P1(Y1),- ¦¦ ,P1(Y1).

Then, Q2 [? Q1 if and only if there exists a containment mapping µ from Q1 to Q2.

The following example illustrates details of query containment test.

Example 2.7 Let r(A,B) and s(C,D,E) be relation schémas. Consider the follow-

ing queries:

Q1 : h(A, B) :- r(A, B), s(B, D, E).

Q2: h(A,B) :-r(A,B), s(B,D,D).

In order to test containment of Q2 in Q1, we search for containment mappings

from Q1 to Q2. Here, we find µ = {A/A,B/B,D/D,E/D} as the containment

mapping from Q1 to Q2, applying which makes the head of Q1 and Q2 identical and

make the body of Q1 a subset of the body of Q2, hence Ql Ç Q1.

Chandra and Merlin characterized equivalence of standard conjunctive queries

based on query containment as follows [CM77].

Definition 2.4 (Equivalence of Conjunctive Queries) Let Q1 and Q2 be stan-

dard conjunctive queries. We say that Q1 and Q2 are equivalent, denoted Q1 = Q2,

if and only if Q1 Ç Q2 and Q2 Ç Q1 .

2.2 Query Rewriting

In this section, we review query rewriting as an approach to query processing in

mediator-based information integration systems.

22

Definition 2.5 (Query Rewriting [LevOl]) Let Q be a query and V be a set of

views. Rewriting Q using V is the problem of generating a new query Q' that refers

only to the views in V.

We say a query Q refers to V if the subgoals in the query body are heads of the

views in V. Query rewriting is also defined as a decision problem [LMSS95].

Definition 2.6 (Query Rewriting as a Decision Problem) Let Q be a query and

V be a set of views. Query rewriting is the problem of determining whether there exists

a rewriting for Q that refers only to the views in V.

Query rewriting has been the subject of numerous studies and a number of solu-

tions have been proposed. [HaIOO] provides a survey of the subject. [AD98] studies the

complexity of the problem for standard conjunctive queries and conjunctive queries

with constraints. [LevOl] reviews the proposed solutions for this problem.

In general, there are two main applications for query rewriting: query rewriting

for answering queries and query rewriting for optimization, each of which has its

own requirements. Several studies including [PLOO], [KS09], [LMSS95], [LR096] and

[MitOl] proposed query rewriting algorithms in the context of standard conjunctive

queries. [ALM02],[KS10], [PLOO], and [KS05a] proposed query rewriting algorithms

for conjunctive queries with constraints.

Query rewriting is also studied in other languages. [AGK99] considered queries

with disjunction, [BLRR97] considered description logics, [CDLV99] considered reg-

ular path queries, and [GHQ95] and [CNS99] considered queries with aggregation.

23

[Dus97] and [DG97a] considered recursive queries, and [GM99] extended classical

tableau representation for query rewriting. While the above studies focused on query

rewriting for answering queries, [LRU96], [FRV96], [BDD+98], [CKPS95], [DG97b],

and [FRV95] studied query rewriting as an approach to query optimization.

There are different types of rewriting among which we consider Equivalent Rewrit-

ing and Maximally Contained Rewriting (MCR, for short), defined as follows.

Definition 2.7 (Equivalent Rewriting [LevOl]) Let Q be a query and V be a set

of view definitions. The query Q' is an equivalent rewriting of Q using V if: (1) Q'

refers only to the views in V, and (2) Q' UV is equivalent to Q.

Note that. in order to determine equivalence or containment of query and rewriting,

we need to consider view definitions, i.e., Q should be compared with Q' U V .

Although equivalent rewriting is desired in all applications of query rewriting, it

is mainly considered in query optimization and maintaining physical data indepen-

dence [LevOl]. In other words, it is not always possible to find equivalent rewriting

[LMSS95]. When equivalent rewriting is not available, usually the next best option

is maximally contained rewriting, defined as follows.

Definition 2.8 (Maximally Contained Rewriting [LevOl]) Let Q be a query,

V be a set of view definitions, and L be a query language. The query Q' is a maximally

contained rewriting of Q using V with respect to L if: (1) Q' is a query in L that

refers only the views in V, (2) Q' U V is contained in Q, and (3) there is no rewriting

Qi in L such that (Q' U V) Ç (QiUV') C Q and Q1 U V is not equivalent to Q' U V .

24

It is easy to see that if an equivalent rewriting exists, it is indeed maximally

contained.

Based on this, the goal of query rewriting would be one of the following.

1. Equivalent Rewriting: Evaluating such rewriting results in an answer that is

both sound and complete. It is sound because it satisfies the criteria of the

query, and it is complete because it is the same as the query answer.

2. Maximally Contained Rewriting: Evaluating such rewriting results in an answer

that is sound but not necessarily complete. In other words, evaluating rewriting

generates a subset of the query answer.

2.2.1 Rewriting Queries for Query Processing

Recall the architecture of the mediator-based information integration shown in Fig-

ure 1.1. In general, a query Q in such an integration cannot be executed as is. The

reason is that the relations in the global schema do not contain data. Therefore, in

order to evaluate a query Q, we could use query rewriting to expressed Q in terms of

relations at the local schémas.

Since the type of integration defines the rewriting approach that can be used for

query processing, we first review different types of integration from query processing

point of view.

As explained in Chapter 1, the metadata in a mediator-based integration consists

of (1) the global schema (which specifies the relations at the integration), (2) the

25

local schema (which specifies the relations at information sources level), and (3) the

mapping between them which is usually in the form of view definitions. In general,

there are the following approaches to define the mappings between the local schema

and the global schema which also define the type of integration [Len02] .

1. Global as View (GAV) approach: every relation at the global schema is defined

as a view over the local schema. .

2. Local as View (LAV) approach: every relation at the local schema is defined as

a view over the global schema.

3. GLAV approach: a combination of the above approaches.

Depending on the integration type (i.e., LAV-based or GAV-based), different query

rewriting techniques are applicable. Next, we review these techniques. We do not

discuss GLAV-based integration in this thesis.

2.2.2 Query Rewriting in GAV-based Integration

In a GAV-based integration, every relation in the global schema is expressed as a view

over the relations in the local schémas, therefore every query over the global schema

refers only to views. Based on this, query answering in GAV-based integration could

be done using Query Unfolding which, intuitively, replaces every subgoal (i.e., view

Vi(Xj)) in the query by the body of view Vi [UIlOO]. The result of unfolding Q is an

equivalent query Q' which refers only to the relations in the local schémas [UIlOO].

26

That is, the subgoals in the body of Q' consists of the relations in the local schema.

Therefore, evaluating Q' finds answers to Q.

Example 2.8 Consider the following query and view.

Q : h(X) :-v{X, 'Discrete Math IF),v(X, 'Databases').

V: v{B,E) :-Student(A,B,3.5),Course(D,E),Enrolled(A,D).

The result of unfolding Q is an equivalent query defined as follows.

Q : h(X) :-Student{Ax, X, 3.5), CourSe(D1, 'Discrete Math IF),

EmOIlCd(AuD1), Student(A2,X,3.5),

Course(D2, 'Databases'),Enrolled(A2, D2).

This is explained as follows. For unfolding subgoal v(X, 'Discrete Math ?G), based

on the view definition, the distinguished variable B in the view head is substituted by

variable X, and the distinguished variable E is substituted by the constant 'Discrete

Math IF. Non-distinguished variables, A and D, are substituted by new and unique

variables A1 and D1, respectively. Similarly, for subgoal v(X/Databases), distin-

guished variables B and E are substituted by variable X and constant 'Databases',

respectively, and non-distinguished variables, A and D are substituted by new and

unique variables A2 and D2, respectively.

2.2.3 Query Rewriting in LAV-based Integration

Unlike GAV-based integrations, in a LAV-based integration, the relations in the global

schema are not views. In fact, every relation in the local schémas is expressed as a

27

view over the relations in the global schema, therefore, query rewriting in a LAV-based

integration is more involved compared to GAV-based integration.

In the context of LAV-based integration, finding equivalent rewriting is not always

possible. The following example illustrates this point.

Example 2.9 Let r(A,B,C) be a relation schema. Consider the following query Q

and the view V1 .

Q: h{X) :-r(X,Y,Z).

V1: V1[A1B) :-r(A, B, B).

Note that the view defines the local schema V1 as a view over the global schema.

It is easy to see that because of the restriction in the body of V1 (imposed by repeated

argument B), the best rewriting for Q based on V1 is Q' below, which is not equivalent

to Q.

Q': h(X) :-??(?,?).

This is illustrated in more details using the following instance ofr.

Let r — {<1,2,2>,<2,2,3>}. Then Q returns {<1>,<2>} as the answer, and V1

contains a single tuple <1,2>. Based on this, Q' returns {<!>} as the answer which

is not equivalent to the answer from Q.

It has been shown that when the input query and views are conjunctive queries, to

express maximally contained rewriting, we need to use Union of Conjunctive Queries

(UCQ) as the language of rewriting [AD98]. A UCQ query consists of a set of con-

junctive queries all of which use the same query head. We refer to each query in such

28

a rewriting as a rule.

The following example shows a case in which the rewriting has more than one rule,

illustrating the fact that the language of rewriting is union of conjunctive queries.

Example 2.10 Let r(A,B,C) and s(A,B) be relation schémas. Consider the fol-

lowing query Q and the set of views V = [V11 V2]:

Q: H(X)^r(X1Y1Z)1S(Z1W).

V1: V1(A1C1D)^r(A1B1C)1S(D1C).

V2: V2(AC) :-r(AB,C).

The following query Q' is the maximally contained rewriting for Q.

Q: H(X)I-V1(X1Z1D)MAW1Z).

h(X) -.-V1(A1W1Z)1V2(X1Z).

Q' is contained in Q because each rule in Q' is contained in Q so the union of these

rules is also contained in Q. Q' is maximally contained in Q because any combination

of view specializations of V1 and V2 that generates a contained rule in Q is contained

in one of the rules in Q'.

In the rest of our discussions, we focus on query rewriting for answering queries

for LAV-based integration, therefore we consider only view-limited rewritings. We

consider open world assumptions on views. Moreover, we consider conjunctive queries

as the language of the input query and views, and union of conjunctive queries as the

language of the rewriting output. This problem is summarized as follows.

• Problem: Query Rewriting

29

• Input: A query Q and a set of views V

• Output: Maximally contained rewriting for Q using V

• Input Language: Standard conjunctive queries

• Output Language: Union of conjunctive queries

• Assumptions: Open world assumption

It has been shown that the problem of query rewriting is NP-hard [LMSS95].

Moreover, it has been shown that in the context of standard conjunctive queries,

the search for a maximally contained rewriting is finite and requires considering the
possible conjunction of a maximum of ? view heads, where ? is the number of subgoals

in the query [LMSS95]. This suggests a two phase process for query rewriting, (1)
finding proper view heads, and (2) combining them to generate rewriting. Considering
that the complexity of query rewriting is exponential (in the number of subgoals in

the given query), it may suggest that query rewriting for large number of views is

not practical. However, Minicon [PLOO] showed that is not the case. In fact, Minicon
improved the existing techniques of rewriting, and experimentally showed that not
only it is faster than earlier algorithms such as Inverse-Rules [DLOO, Qia96, DG97a]
and Bucket algorithm [LR096], but also it can scale up to large number of views.

While the exponential complexity of the rewriting is due to its second phase,

existing algorithms including Minicon algorithm, mainly focus on the first phase.
Next, we introduce our pattern-based query rewriting algorithm whose focus is more

on the combinatorial problem in the second phase of the rewriting.

As mentioned earlier, query processing in the context of GAV-based integration

can be done by query unfolding. Next, we consider only the LAV-based integrations,

and study the existing query rewriting algorithms for this context.

30

2.3 Existing Query Rewriting Solutions

In this section, we review the major query rewriting algorithms for LAV-based in-

tegration, namely Bucket algorithm [LR096], Inverse-rules [DLOO, Qia96, DG97a],
MiniCon [PLOO] and Treewise [MS08]. The goal of all these algorithms is to generate
maximally contained rewriting.

2.3.1 Bucket Algorithm

Bucket algorithm is a query rewriting algorithm that was introduced in the Informa-

tion Manifold System [LR096]. Given a query Q and set of views V, Bucket algorithm
generates maximally contained rewriting for Q using V. The input query Q is of the
following form.

Q: H(X)^p1(X1),- ¦¦ ,Pm[Xm), C
where every p¿ is a regular predicate, Xi is a list of variables, and C is a built-in

predicate. Similarly, every input view in V is of the form:

Vr. V1(Yi)^q1(Y1),- ¦¦ ,Qn(Yn), D.
In the first phase, the algorithm builds a bucket for each predicate pj in Q. Intu-

itively, a bucket is a data structure that contains a set of subgoals. To build a bucket

for a subgoal pj, the algorithm finds all views Vi(Yj) whose body contain predicate
with the same name as Pj, and for each such predicate q^ — pj, it adds Vi((fi(Yi)) to
the bucket that corresponds to Pj . The mapping f maps every distinguished variable

y in Vi(Yi) to a variable ? in Pj(Xj) if y appears in qk(Yk) and in the same position
as ? appears in pj(Xj); otherwise, f replaces y with a new fresh variable.

In the second phase, the algorithm considers all the possible combinations of

predicates, one from each bucket, and checks whether each combination generates

a contained query, or can be changed to a contained query if additional built-in
constraints are added to it. Next, the Bucket algorithm minimizes each of these

31

contained queries by removing redundant subgoals, and returns the union of these
contained rules as the maximally contained rewriting for Q using V.

The following example illustrates details of the Bucket algorithm. The query and

views are taken from [PLOO] based on the relation schémas T1(A, B) and r2(A, B).

Example 2.11 (Bucket algorithm) Consider the query Q and the set of views V
which includes [V1, V2, V3).

Q: h(X) :-n(X,y),r2(y,Z)

V1: V1(A) :- T1(A, B)
V2: V2(D) .--T2(C1D)

V3: V3(A, B, C) :-?(?, B).,T2(B, C)

In the first phase, the Bucket algorithm generates the following two buckets, one
for T1 and the other for r2 in Q.

Bucket^ : [V1(X), v3(X,Y,C)}.

Buckets : { V2 (Z), V3(A, Y, Z)).

For predicate T1(X, Y) in Q, we create Bucketri. Since view V1 contains predi-

cate T1(A, B) which has the same name as T1(X1Y), we add ?1(f1(?)) — V1(X) to
Bucketri. Note that A is a distinguished variable in V1, and it appears in T1(A1B)
in the same position as variable X in T1 (X, Y) . Next, we consider view V3 for predi-

cate T1(XjY), and add V3(X, Y, C) to Bucketri. Similarly, we create BucketT2 which

would include V2(X) and V3(A, Y, Z) based on views V2 and V3, respectively. This
completes the first phase.

The second phase combines these buckets. This is done by taking the Cartesian

product R of the elements in the buckets. For each combination r in R, we create

a query Q\ in which the query head is the head of Q, and the query body is the
conjunction of the predicates in r. Each query Q\ is called a candidate rule. This

32

yields the following candidate rules:

Q[: h(X) :- V1(X), V2(X).
Q2: h(X) :-Vl (X), V3(A, Y, Z).

Q3: h(X) :-v3(X,Y, C), V2(Z).
Q4: h(X) :-v3(X, Y, C), V3(A, Y, Z).

Next, the containment of each candidate rule Q\ in Q is verified. For Q\, if we

unfold the views Vi(X) and V2(X), we get the subgoals 7~i (X, Y1) and r2(Y2, X). Unlike
in Q, since the variables Y1 and Y2 are not necessarily the same, Q1 is not contained in

Q. For a similar reason, Q2 is not contained in Q. The other two rules are contained
in Q, however, they contain redundant subgoals. In fact Q3 is contained in Q4 and

Q'4 itself can be minimized as follows:

Q4: h(X) :-v3(X, Y, Z).

The main problem with the Bucket algorithm is the second phase, in which it tests

the containment of each candidate rule in query Q. Since the number of combinations

is, in general, exponential in the number of subgoals in Q (the cost of cartesian product
is m™ where ? is the number of subgoals in Q and m is the number of elements in

every bucket), and the containment test of each candidate rule is NP-complete for
conjunctive queries (which becomes even more expensive when constraints are also

included), the Bucket algorithm is not a practical solution for generating maximally
contained rewriting.

2.3.2 Inverse-Rules Algorithm

The Inverse-Rules algorithm used in InfoMaster System [DLOO, Dus97] is a rewriting
algorithm that inverses the resource definitions (views). Intuitively, given a LAV-

based view, it generates GAV like views independent of any query. To illustrate this,

33

consider the following view V for which we define the inverse rules.

V: v(X):- T1(X1), ¦¦¦, Tn(Xn),

For every subgoal Tj(Xj) in V, Inverse-Rules generates a rule IRj, defined as follows.

IRj : Tj(A1, ..., Am) :-v(X)
where Ai in Tj(A1, . . . , A7n) is determined as follows.

c if variable ? at position i in Tj(Xj) is distinguished in V.
Ai= {

fv^Xj) otherwise

where for every view, /y. is a function symbol.

Given a query Q and set of views V, Inverse-Rules algorithm uses inverse rules of
the views in V to generate a query plan that is maximally contained in Q. Note that

the output of the Inverse-Rules algorithm is a logic query because it contains function
symbols. The following example illustrates details of the Inverse-Rules algorithm.

Example 2.12 Consider the same query and views used in example 2.11. For every

view, we define the inverse rules as follows.

IR1: T1(AJy1(A)) !-V1(A).
IR2: r2(j V2(D), D) :- V2(D).

IR3: T1(B, C) .--V3(B, C, F).
IR4: T2(G, H) :-V3(E, G, H).

Next, we use these rules together with the query Q to generate a query plan as

follows.

Q: h(X) :- T1(X, Y), T2(Y, Z)

T1(AJv1(A)) --V1(A).
r2(fv2(D), D):- V2(D).

34

n{B,C) :- V3(B, C, F).
r2{G, H) :- V3(E, G, H).

Note that the result of Inverse-Rules is a logic query. In order to evaluate the

query plan, ¦ we use a bottom-up evaluation which is guaranteed to terminate in finite

steps [DLOO].

2.3.3 MiniCon Algorithm

The MiniCon algorithm [PLOO] was introduced to address the performance and scala-
bility issues in the Bucket and Inverse-Rules algorithms. Minicon algorithm is similar

to the Bucket algorithm in that it performs the rewriting in two phases by first forming
the buckets and then combining them. However, it differs from the Bucket algorithm

explained as follows. In the first phase, Minicon identifies the views whose subgoals

correspond to subgoals in Q. For each view V, and subgoal ? in Q, it finds a partial

mapping from ? to a subgoal g in Vj, and then finds the minimal additional set of
subgoals that needs to be mapped to subgoals in Vj, given that ? will be mapped to g.

This set of subgoals and mapping information is called MiniCon Description (MCD).
The following definition, taken from [PLOO], formally defines MCD.

Definition 2.9 (Minicon Description (MCD)) A MCD, C for a query Q over a

view V is a tuple of the form (he, V(Y)C, fa, Gc), where he is a head homomorphism
on V, V(Y)C is the result of applying he to V , i.e., ? = he (A), where Ä denote the
head vanables of V , <f>c is a partial mapping from Vars(Q) to hc(Vars(V)), and Gc
is a subset of the subgoals in Q which are covered by some subgoal in hc(V) using the

mapping $c ¦

In the second phase, Minicon combines the MCDs to produce the rewritings. It is

shown that only certain combinations of MCDs do not generate redundant rewriting

35

rule [PLOO]. Let S be a set of MCDs. Then MCDs in S do not generate redundant
rewriting if

1. No two MCDs in S cover the same subgoal, i.e., Gd ? Gc, = 0, for all i and j,
where Ci and Cj are two MCDs in S.

2. MCDs in S cover all the subgoals in the body of the query, i.e., U, Gd =

subgoals(Q).

Intuitively, a MCD C represents the set of subgoals Gc of Q. To generate a

rewriting using MCDs, we need to form the join criteria that exists in Q. For this,
we consider the set J of variables that appear in the subgoals of Gc and also in the

rest of subgoals in Q including head(Q). In order to be able to build the join criteria
of Q in rewriting, all variables in view that corresponds to variables in J should be

distinguished.

Based on this, Minicon combines MCDs to generate rewriting. Note that the
number of combinations to be considered in MiniCon is less than those considered in

the Bucket algorithm. Moreover, it is shown that rewriting rules generated by MCDs

are guaranteed to be contained in the query [PLOO]. Therefore, unlike the Bucket
algorithm, Minicon does not require to perform containment test for the generated
rules. As a result, Minicon performs query rewriting more efficiently than the Bucket

algorithm, however, the complexity remains 0(2™).
The following example shows details of the rewriting by the Minicon algorithm.

Example 2.13 (Minicon algorithm) Consider the query Q and views V1. V2. and
V3.

Q: h(X):-ri(X,Y),r2(y,Z)

V1: V1(A) ^r1(A, B)

V2: V2(D) :-r2(C, D)

36

V3: V3(A, B, C) :-rM, B), r2(B, C)

We use Minicon algorithm to rewrite Q based on views. We start with subgoal

G? (Ji, Y), and consider its variables. Variables X and Y in Q are distinguished and
join variable respectively.

We consider view V1 and try to create a MCD C1 based on Vx. The mapping

Cf)1 = {X/A,Y/B} maps the subgoal rx(X,Y) in Q to the subgoal rx(A,B) in V1.
Therefore, we set G1 = {rx(X,Y)}. Variable X in T1(X1F) is a distinguished
variable and its corresponding variable in rx(A,B), A, is a distinguished variable

in V1. Similarly, variable Y in ri(X,Y) is a join variable, but its corresponding
variable B in rx(A,B), is not distinguished in V1. As a result, we need to add
additional subgoals to G1 so that B is no longer a join variable. To do that, we

need to add r2(Y,Z) to G1. However, since there is no subgoal r2 in V1, we can-
not proceed and discard MCD G1. As a result, view V1 cannot be used to form

any MCD. Similarly, we cannot use V2 to form a MCD. For V3, we start with sub-

goal r1; i.e., G\ = {ri(X,Y)}, and define the partial mapping from Q to V3, i.e.,
f\ = {?/?,?/?}. Since variables A and B in V3 that correspond to variables X
and Y in Q, respectively, are distinguished, we define MCD G31 based on G3 and
f\, i.e., Cl = ({A/A,B/B,C/C},v3(X,Y,C), {?/?,?/?}, rx(X,Y)}). Next, con-
sidering subgoal r2(Y,Z), we define G\ = {r2(Y, Z)] and correspondingly, define the
partial mapping f\ — {Y/ B, Z/C}. Since variable B which corresponds to variable Y
(a join variable in Q) is a distinguished variable in V3, we define MCD G3 based on
G% a??f?, i.e., G32 = ({A/A,B/B,C/C},v3(A,Y,Z),{Y/B,Z/C},{r2(Y,Z)}). In
the second phase, Minicon searches for combinations of MCDs to generate the rewrit-

ing rules. Here, G3 and C3 are the only MCD 's, and together they satisfy the two
conditions above for a contained rewriting. This yields the following rewriting of Q:

Q': h{X) :-V3{X,Y,C),V3{A,Y,Z).

37

2.3.4 Treewise Algorithm

The rewriting algorithms we discussed so far do not minimize the size (i.e., the num-

ber of subgoals) of the rules in the rewriting. It has been shown that the Bucket

algorithm and Minicon naturally generate rewriting rules that include redundancies

[PLOO, LMSS95]. Even though [PLOO] introduces a polynomial algorithm for reducing
the number of subgoals in the rewriting, it does not minimize the number of subgoals

in rules. The Treewise algorithm [MS08] is a rewriting technique that addresses this
issue.

Unlike Minicon that uses the concept of MCD, which represents the minimum

number of subgoals, Treewise uses the maximum number of subgoals to generate the
building block for rewriting, which is called tuple.

In the first phase of the rewriting Treewise uses a hyper-graph model to represent
query and views. The hyper-graph generated for a query consists of hyper-nodes of

the query head as well as the hyper-nodes of the subgoals in the query body. Every
hyper-node consists of some nodes each of which represents an occurrence of a variable

in the query body. To generate the hyper-graph of a query Q, Treewise algorithm
considers every occurrence of a variable X in Q, for which it creates a node. The

nodes are labeled (i,j, k), where i is the index of the subgoal ? that uses X, j is the
position of X in the list of the variables of p, and k is the position of X in the query

head (k = 0 means that X does not appear in the head, i.e., it is not a distinguished
variable). Edges between nodes of the repeated variables are defined to represent the

join criteria in the query.

Once the hyper-graphs for query and views are generated, it finds consistent partial

mappings from the hyper-graph of query to hyper-graphs of views, and in the second
phase, it combines the partial mappings properly to generate maximally contained

rewriting, i.e. union of conjunctive queries.

38

A desired partial mapping µ in Treewise must satisfy the following conditions:

1. Head-unification: Tests if all distinguished variables in query are mapped to

distinguished variables in view.

2. Join-recoverability: Consider two nodes n\ and n2 of an edge in the hyper-

graph of the query. If n\ (but not n2) is in the domain of µ, then to satisfy this
condition, µ{?{) should be a distinguished node in the graph of view.

3. Partial-mapping consistency: Consider two nodes ?? and n2 of an edge in the

graph of the query. If both Ti1 and n2 are in the domain of µ, then to satisfy

this condition, µ(t??) and µ(?2) should be nodes of an edge in the graph of the
view, or they should be distinguished variables in which case they should be

equated by adding new edge in the hyper-graph of view.

4. Partial-mapping-maximality: As explained above, in order to satisfy partial-
mapping consistency, we might need to add new edges to the hyper-graph.

Partial-mapping-maximality condition tests that unnecessary constraints are

not added to the rewriting.

The first three conditions above guarantee consistency of the mappings and the con-

tainment of the generated rewriting. The last condition ensures the maximality of

the generated rewriting.

If a mapping µ satisfies all these conditions, a tuple is created for µ which contains

the following information.

1. Mapping µ.

2. A copy of the head hyper-node from the hyper-graph of the corresponding view,

V. Intuitively, this corresponds to the second element in a MCD (in the Minicon

39

algorithm) which is the result of applying head homomorphism to the head of
view.

3. A copy of the hyper-nodes of the query to which edges are added during the

mapping construction phase. Intuitively, this together with the next item cor-

respond to the constraints introduced in the head homomorphism in the first
element of a MCD of Minicon.

4. A copy of the set of hyper-nodes in Q that are connected.

5. The set of hyper-nodes of the query covered by µ.

In the second phase of rewriting, the Treewise algorithm searches for the combi-

nation of the tuples (generated in the first phase) that cover the query body. Every
valid combination generates a rule of the rewriting.

Treewise algorithm is shown ([MS08]) to outperform the Minicon algorithm in

most query types defined in [PLOO].
The following example illustrates the detail of creating the hyper-graphs for queries

and views in a rewriting problem.

Example 2.14 Consider again the same query Q and views V1, V2, and V3, repro-
duced below for convenience.

Q: h(X) :-n(X,Y),r2(Y,Z)

V1: V1(A):- T1(A, B)
V2: V2(D) :-r2(C, D)

V3: V3(A, B, C) :-ri(A,B),r2(B,C)

In the first phase of the query rewriting, Treewise algorithm creates the hyper-

graphs for the query and views. To see the details of creating the hyper-graph, we
consider query Q, and create its hyper-graph (see Figure 2. La). Since there are four

40

occurrences of variables in the body of Q, we create four nodes. For this, we first

consider subgoal ri(X, Y). We create a node ?? for variable X in subgoal ri (X, Y),
and labeled it (0,1,1). This is explained as follows. Recall that every label is a

triple (i,j,k). For variable X, i (the first position in the label) is O because subgoal
r\(X, Y) is the first subgoal in Q (subgoal indexes in Treewise start from 0), j (the
second position in the label) is 1 because X is the first variable in r\(X,Y), and k
(the third position in the label) is 1 because X is in the first position in the query
head. Similarly, we create a node Ny1 for the occurrence of Y in ri(X,Y), and
label it (0,2,0) (the last position in the label is O because Y does not appear in the

query head). As shown in Figure 2. La, these two nodes form a hyper-node for the

subgoal ri(X,Y) (a line around these two nodes is drawn to identify this hyper-node).
Next, we consider subgoal r2(Y,Z) and its variables. We create a node Ny2 for the
occurrence of Y in r2(Y,Z) and label it (1, 1,0). Similarly, we create a node Nz for

variable Z in r2(Y-, Z) and label it (1, 2, 0). These two nodes form a hyper-node for
subgoal r2(Y,Z). In order to show the join criteria in the query (i.e., Y is a shared
variable between subgaols Ti(X, Y) and r2(Y,Z)), an edge is created to connect the

nodes for the two occurrences of Y, i.e., Ny1 and Ny2.

The nodes in which the last position in the label is not zero (Nx, in this case)

form the hyper-node for the query head, and together with the hyper-nodes in the body
form the hyper-graph of the query. Figure 2.1. a, 2.1.b, 2. Lc, and 2.Ld illustrate the

hyper-graphs generated for query Q and views V1, V2, and V3 in Example 2.14-
Once the hyper-graphs are created, Treewise algorithm finds all the consistent par-

tial mappings from, the hyper-graph of Q to those of views, listed as follows.

µ? = {(0,1,1) -> (0,1,1), (0,2,0) —> (0,2,0)}: mapping the hyper-node of ri in
the hyper-graph of Q to the hyper-node of T1 in the hyper-graph of V1 .

µ2 = {(1,1,0) —> (0,1,0), (1,2,0) —> (0,2,1)}: mapping the hyper-node of r2 in

41

a)

tí 2:0

0,1,0

b)

d)

0,2,0

m, w ·,

o, 2, zi : ; (i,:2, 3

Figure 2.1: The hyper-graphs a, b, c, and d shown here represent query Q, and views
V\ , V2, and V3 in Example 2.14, respectively.

the hyper-graph of Q to the hyper-node of r^ in the hyper-graph of V2 .
µ3 = {(0,1,1) -» (0,1,1), (0,2,0) - (0,2, 2), (1,1,0) -> (1, 1,2), (1, 2,0) -

(1,2,3)}: mapping hyper-nodes of ri and r^ in the hyper-graph of Q to the hyper-
nodes of r\ and r2 in the hyper-graph of V2 ¦

Next, we test each of the above mappings to see if conditions Head-unification,

Join-recoverability, Partial-mapping consistency, and Partial-mapping-maxim ality are

satisfied. We can see that only µ3 satisfies the above conditions, and µ? and //2 should

be discarded. This is explained as follows.

Considering mapping µ?; since node N? = (0,1, 1) is the only distinguished vari-

able in the hyper-graph of Q, and it is mapped to (0, 1, 1) which is also a distinguished

variable in V1-, µ? satisfies Head-unification condition. However, since there is an

edge connected to Ny = (0,2,0) in the hyper-graph of Q (i.e.. Y is a join variable)

42

but the corresponding node, (0, 2, 0) does not have an edge and it does not correspond
to a distinguished variable, then Join-recoverability condition is not satisfied. As a
result, we discard µ\. For a similar reason, we discard mapping µ<? (the node (1,1,0)

in the hyper-graph of Q has an edge but it is mapped to a node that is not part of the

head hyper-node in Vi).
Mapping µ3 is the only consistent mapping, we test if its tuple is good for gener-

ating a rewriting. Since µ$ covers all the subgoals of Q, its tuple alone generates the
rewriting, as follows.

Q': h(X) :-V3(X, Y, Z).

While the rewriting generated in Treewise and Minicon are equivalent, as we can

see in the above examples, for the same input, the number of subgoals in a rewriting

generated by Treewise is less than the number of subgoals in a rewriting by Minicon,

in general. This is a major advantage of Treewise compared to Minicon. It has been
shown that the performance of Treewise for most of the query types reported in [PLOO]

is better than thè performance of Minicon [MS08] .

2.4 Summary

In this chapter, we reviewed the basic definitions and terminologies required for

the discussions in this thesis. These include query, view, conjunctive query, query

containment, query processing using views, GAV-based and LAV-based integration,

equivalent rewriting, maximally contained rewriting. Moreover, we reviewed ma-

jor query rewriting algorithms in LAV-based integration, namely Minicon, Treewise,
Inverse-rules, and Bucket algorithm. In the next chapter, we explain details of our

pattern-based query rewriting algorithm.

43

Chapter 3

Query Rewriting for Standard

Conjunctive Queries

In Chapter 1, we reviewed Query Rewriting as an approach to answering queries using

views in the context of LAV-based data integration, and motivated performance and

scalability of query rewriting as important problems in this context.

In this chapter, we study query rewriting to improve performance and scalabil-

ity of the Minicon algorithm which was shown to outperform some of the existing
rewriting techniques, namely the Bucket algorithm and the inverse-rules algorithm.

We consider standard conjunctive queries as the input language, and union of con-

junctive queries as the output language. Throughout our discussions, we consider the

same assumptions as in Minicon [PLOO], i.e, open-world assumption on views. The
contributions of this chapter are:

1. We propose a formula which uses Stirling numbers to determine the size of

rewriting, i.e., the number of rules in the output. This is important in practice

because one can estimate time and memory required to perform the rewriting

before actually generating it.

44

2. We propose a novel rewriting algorithm that uses numerical patterns to break

a large combinatorial problem into several smaller ones based on which it gen-

erates rewriting efficiently.

3. We consider quality of rewriting as another important aspect in this problem,

and define the number of subgoals in the rewriting as a measure for quality. We

classify the rewriting algorithms into two classes: "bottom-up" and "top-down"

approaches. We show that a top-down query rewriter generates rewriting with
a better quality compared to a bottom-up query rewriter, i.e., there are fewer

number of subgoals in the rewriting under the top-down approach.

4. We show that there is an isomorphism between the rules in results of bottom-up

and top-down approaches. This confirms that applying query minimization to

the result of a bottom-up approach can generate the same quality as in a top-

down approach. We also show that redundant subgoals in the input of rewriting

result in redundant rules in the output.

3.1 Pattern-based Query Rewriting

As discussed in Chapter 2, for a conjunctive query Q, a maximally contained rewriting

Q' is a set of rules (conjunctive queries), each of which is contained in Q. In general,

in order to generate maximally contained rewriting, one should consider all possible

view heads (also referred to as head specialization), and combine them to generate

contained rules (queries), and return the union of all such contained rules as the
rewriting [LMSS95]. Our query rewriting algorithm follows this approach. In order
to explain details of our query rewriting algorithm, we introduce a few new concepts

including Coverage as follows [KS09].

45

Definition 3.1 (Coverage) Given a query Q and a view Vi, a coverage C is a data

structure of the form C= (S, f, h, d), where S is a subset of the subgoals in Q, f is
a mapping from subgoals in S to subgoals in Vi, h is the head of Vi, i.e., Vi(Xi), and
d contains sets of variables in S where variables in each set are mapped to the same
variable under f.

The following example illustrates the components of a coverage.

Example 3.1 Considering the following query Q and views Vi and V2.

Q: h(X,Y) :-r(X,Y), s(Y,Z,W).

V1: vx(A,B) :-r(A,B).
V2: V2(B, D) :- s(B, D, D), s(E,F,D).

The following coverages are generated based on Vi and V2 .

Ci= ({r(X, Y)}, {X/A, Y/B), V1 (A, B), {})
C2= ({s(Y, Z, W)), {Y/B, ZID, W/D), V2(B, D), {{W, Z)))
C3= ({s(Y,Z,W)),{Y/E,Z/F,W/D},v2(Ni,D),{})
Coverage C1 is defined based on Vi, and uses the mapping f? = {X/A,Y/B) to

cover subgoal r(X, Y). Since every variable in source is mapped to one variable in the
target, the set d? is empty. Coverage C2 is defined based on V2, and uses the mapping

f2 = {Y/B,Z/D,W/D) to cover subgoal s(Y,Z,W). Since variables Z and W are
mapped to the same variable D, d2 includes the set {W, Z) which means W and Z

should be equated in any rule generated using C2. Similarly, coverage C3 is defined

based on V3, and uses f3 = {Y/E, Z/F, W/D) to cover subgoal s(Y, Z, W).

Intuitively, coverage extends the concept of MCD used in Minicon in the sense
that it does not need the minimal number of subgoals that can participate to generate

a head specialization. In fact, we can use coverage to express both MCD in Minicon

and Tuple in Treewise.

46

From the above definition, note that in general, f is a non-injective and non-

surjective mapping (e.g., F2 in C2 in the above example). That is, under f, (1) two
or more variables from S could be mapped to the same variable in view V¿, and (2)
there are some variables in V¿ that are not image of any variable in S.

Before explaining how to build a coverage, let us explain how coverages are used

to generate a rule in rewriting. In order to generate a contained rule for Q, we use

a set M of coverages that together contain all the subgoals in Q but do not have
common subgoals. We create a copy of Q and call it Q'.

For every coverage C¿ in M, we define f? = f^1, the inverse of the mapping of C¿,
and modify it to fix the following issues:

1. A variable A in the domain of f? could be mapped to a set D of different

, variables in S. This is because it is possible that a several variables in S are

mapped to the same variable in the view. For every such variable A, we fix this
problem by unifying/equating all variables in D. In fact, S^ in C¿, unifies such
variables.

2. A variable A in the domain of f might not be mapped to any variable in S.

This is because f is not necessary an onto mapping. To fix this, we define a
distinct new variable N and update f to map A to N.

Then, for each coverage d in M, we replace subgoals S (covered by C¿) in Q' by

f{?) which is called the view specialization based on C¿. Finally, we define ? — U (^
for all Si taken from the coverages in M, and apply it on Q' . That is, for every set U
of variables that should be unified, we pick a variable A from U and substitute in Q'

every variable B € U by A. The resulting query Q' is contained in Q.

Example 3.2 Consider the coverages generated for query and views in Example 3.1.

Coverages Ci and Ci generate view specializations V\(X, Y) andv2{Y,Z), respectively.

47

If combined, they generate the following rule that is contained in Q.

Q': h(X, Y) :-Vi(X,Y), v2(Y,Z).
To show that Q' is contained in Q, we can unfold Q' using view definitions and

perform a containment test.

In order to make sure that the generated rules are contained in the input query Q,

we ensure that view specializations (that are joined to form a rule) build the same join
criteria in Q. In order to guarantee this, coverages should satisfy certain conditions.
To elaborate on this, we define Joint variables and Accessible Variables as follows

[KS09].

Definition 3.2 (Joint Variables) Let Q be a conjunctive query, S be a subset of
subgoals in the body of Q. and S' be the rest of all subgoals in Q including the head.
We call the variables appearing in both S and S1 as joint variables of S.

As an example, consider the query Q in Example 3.1. Let S = {r(X, Y)}, then the
joint variables of S are X and Y. The reason is that the set S' of all other subgoals

in Q is {h{X, Y),s{Y, Z, W)} with which S shares variables X and Y.
It is important to note that if a variable X is a joint variable, one of the following

could happen: (1) X is a join variable appearing in two or more subgoals in the body,

(2) X is a distinguished variable, or (3) X is both join and distinguished variable.

Definition 3.3 (Accessible Variable) Given a coverage C, a variable X in sub-

goals covered by C is accessible if the variable Y in the view in C is distinguished,
where f is the mapping in C , and Y = f{?).

For instance, consider the coverage C2 in Example 3.1. We can see that variable

Z is an accessible variable because ?—f(?), and D is a distinguished variable of V2.
Similarly, we can see that variable W is also accessible.

48

Next, consider coverage C3 in Example 3.1. We can see that variable Y is not

accessible in C3. The reason is that in C3, Y is mapped to variable E which is not a

distinguished variable in V^. Also, we can see that in C3 variable Z is not accessible,
but variable W is accessible.

Based on these, we recall the notion of "useful coverage" as follows.

Definition 3.4 (Useful Coverage [KS09]) Let Q be a query and Vi be a view. A

coverage C for a set S of subgoals of Q with respect to V¿ is said to be useful if (1)
the coverage mapping f maps all the subgoals in S to Vi, and (2) every joint variable

X of S is accessible in C.

For instance, consider coverages C1 and C3 from Example 3.1. Coverage C1 is
a useful coverage because it covers subgoal r(X,Y), whose joint variables, i.e., X
and Y are both accessible in C1. The reason is that X and Y are mapped to A

and B, respectively, which are distinguished variables in V1. However, coverage C3

is not a useful coverage because it includes subgoal s(Y, Z, W) but the joint variable
of s(Y, Z, W), i.e., Y is not accessible in C3. The reason is that variable Y in C3 is

mapped to variable E which is not distinguished in Vi. In fact, since coverage C3
is not a useful coverage, we discard it and do not consider it the second phase of

rewriting.

We note that the criteria for a coverage to be useful is the same as the criteria for

building MCDs in Minicon which guarantees containment of rewriting rule in Q. In
the rest of this thesis, we only consider useful coverages.

Definition 3.5 (Basic Coverage) A coverage C is called basic if removing any sub-

goal makes it non useful.

Since MCDs contain the minimal number of subgoals, and satisfy the above con-

ditions, every MCDs is a basic coverage.

49

3.1.1 Finding Coverages

In order to find coverages for query Q and views V, one could use bottom-up approach

or top-down approach, defined as follows.

1. Bottom-up approach: This approach generates basic coverages. For this, we

consider every subgoal s¿ in Q and every view Vj in V where there exists a

mapping f from s¿ to a subgoal in Vj. Let S = {s¿}, then we test if every joint
variable A of S is accessible through Vj. If this is the case, we can create a
coverage for S. Otherwise, we add to S all the subgoals in Q that are joined

with the subgoals in S, update f, and retest if every joint variables of S is

accessible through Vj. We repeat this process until all the joint variables of S
are accessible through Vj or there exists no more subgoal in Q to be added to

S. Finally, a coverage C that uses f and Vj to cover S is created if all the joint
variables of S are accessible through Vj. In general, it is possible to find more

than one mapping from S to subgoals in v¡ each of which results in a different
coverage.

Intuitively, bottom-up approach starts with coverages that contain single sub-

goals and adds subgoal to each coverage until it becomes a useful co\'erage. This
is why we refer to it as bottom-up approach. We say a rewriting algorithm is

bottom-up if it uses bottom-up approach for finding the coverages.

2. Top-down approach: This approach generates non-basic coverages. For this, we

consider a set S of all the subgoals in Q and every view Vj in V. We create a
coverage C that covers S if the following two conditions hold: (1) there exists

a mapping f from S to v¡ and (2) all joint variables of S are accessible through
Vj.

Subgoals are removed from S in all possible orders so that we find all smaller

50

sets of subgoals that satisfy the two conditions above. For each set, we create a
coverage and continue removing subgoals from S even if it has contributed to a

coverage. The reason is that we would like to find all possible coverages so that
we do not miss any combination of coverages. During or after this process, all

coverages that cannot contribute to a rule in the rewriting should be discarded.
In order to identify such coverages, one needs to consider other coverages.

Intuitively, top-down approach starts with coverages that contain all subgoals

and removes subgoals from them until no more subgoal could be removed. This

is why we refer to it as top-down approach. We say a rewriting algorithm is
top-down if it uses top-down approach for finding the coverages.

After forming the coverages, we "combine" coverages in phase 2 to get a rewriting

rule. We say two coverages have overlap if the sets of subgoals they cover have non-
empty intersection. It is shown that only combinations of coverages without overlap

are useful for generating a rewriting rule [PLOO] .
The following example illustrates a case where coverages have overlap and there

is no rewriting.

Example 3.3 Letr(A,B), s(C.D), andt(E.F) be relations. Consider the following
query Q and views V = {V\, V2):

Q: h(A) :-r(A,B), s(B,D), t(D,E).

V1: V1(A) :-r(A,B), s(B,D).
V2: V2(B) :-s(B,D), t(D,E).

Consider coverages C1 (based on V1) and C2 (based on V2) covering {r, s} and
{s, t}, respectively. They overlap on subgoal s. but there is no way to match s from
C1 with s from C2, since we need both variables B and D accessible through both
coverages, which is not the case here. In fact, if all the variables in s were accessible

51

through a view, then s alone would form a coverage. Since, we cannot match the two
copies of s, there is no way of forming a combination that satisfies the join criteria

in the query body.

It has been shown that in the context of conjunctive queries, in order to generate

maximally contained rewriting, we need to use Union of Conjunctive Queries as

the language of the generated rewriting [LMSS95] . To generate maximally contained

rewriting, we need to find all rules that are contained in the input query (generated by

combining coverages) , and return the union of such rules. Following the same criteria
for building MCD's, defined in [PLOO], we build coverages. As shown in [PLOO], every
valid combination of MCD's (basic coverages) gives a rule that is contained in the

input query, therefore finding all possible valid combinations results in a set of rules
union of which is the maximally contained rewriting. This is shown in the following

example.

Example 3.4 Letr(A,B), S[C1D), andt(E,F) be relations. Consider the following
query and views:

Q: h{A) :- r(A, B), s(B, D), t(D, E).
V1: V1(A1B, D) :-r(A,B), s(B,D).

V2: V2(B, D, E) :-s(B,D), t(D,E).

Based on V1, we generate coverages C1 and C2 that cover {r} and {s}, respectively.

Also based on V2, we generate coverages C$ and C\ that cover {s} and {t}, respectively.
Note that Minicon would generate the same number of MCDs each of which would

correspond to one of these coverages. We consider all possible valid combinations of

coverages each of which results in a rule contained in Q. Based on this, the following
is the maximally contained rewriting for Q. Note that the heads of the two rules in

Q' are identical.

52

Q·: h(A) .--V1(A, B, D1), V1(A^B, D), V2(B, D, E).
h(A) .--V1(A, B, D1), V2(B, D, E1), V2(B1, D, E).

The first rule is based on the coverages C1, C2 and Cz1, and the second one is based
on C1 , C3 and Ca .

Due to its importance, we discuss the second phase of query rewriting that deals

with proper combination of coverages, in a separate section.

3.2 Combining Non-overlapping Coverages:

A Partitioning Problem

In this section, we focus on the combining phase of rewriting and introduce an efficient

technique for finding non-overlapping combinations of coverages. Basically, this is

where our algorithm outperforms Minicon.

We first review the approach used in Minicon. For that, consider a conjunctive

query Q with ? subgoals, and a set of views V. In order to generate the maximally

contained rewriting for Q based on V, for every subgoal in Q, Minicon creates a
bucket. Next, it finds all MCDs (coverages), and based on the subgoals each MCD C

covers, places C in the corresponding buckets. Finally, Minicon performs a Cartesian
product of the buckets to find all combinations of MCDs that do not overlap on any

subgoal while covering all the subgoals in the body of Q. The problem here is that
finding non-overlapping combinations of MCDs during this Cartesian product is very

expensive.

Next, we investigate this problem, and propose our solution for finding non-

overlapping combination of coverages in a more efficient way.

To find all possible combinations, we consider every bucket as a bit in a binary

representation of ? bits, hence every coverage consists of ? bits. If a coverage Cj is

53

C4 C2 C1
Q C3 C3
Q Q cs
?^? ?7 ?7

Figure 3.1: All possible occurrences of coverages for a query with 3 subgoals

placed in bucket Bi: the ith bit in the sequence denoting coverage Cj is 1; otherwise it
is O. In other words, the sequence corresponding to a coverage indicates its presence

in different buckets, which we consider in our technique as an identifier.

Note that the maximum number of sequences is 2™ — 1, where ? is the number of
subgoals in the body of Q; the sequence with all zeros is excluded.

We define occurrence classes based on occurrence identifier. All coverages with

the same identifier are members of the same occurrence class. Assuming that there is

only one coverage from every occurrence class, Figure 3.1 shows all possible coverage
occurrences for a query with 3 subgoals.

Now, to find a rewriting based on these coverages, we need to identify sets of

coverages with no overlap which cover all the subgoals in the query. For this, we

consider identifiers ID(Cj) in binary representation, which satisfy the following two
conditions on a given set S of coverages [KS09] :

(1) V IDiCj) = T-I,
CjHS

54

(2)V5' CS, /\ ID(Ck) = O
ckes'

The first condition ensures that the coverages in S cover all subgoals in Q. This

is accomplished by taking the identifiers of all coverage in S, to which we then apply

the (bitwise) logical OR operation (which amounts to adding the bits). If the result
is equal to 2™ — 1, the coverages in S cover all subgoals in Q. The second condition

ensures that no subgoal overlap exists. When the result of the bitwise logical AND
operation is 1, S is not a desired combination. Note that in the second condition,

checking only pairs of coverages is inadequate, and we need to check the overlap for

every subset.

3.2.1 Finding Occurrence Classes

A question at this point is: "Can we find occurrence classes that satisfy the two

conditions above, i.e., cover all subgoals in the query and have no overlap?" The
answer is positive since we can define this as a partitioning problem. Assume that

there are ? subgoals in a query Q, and the subgoals are indexed based on their
positions in Q, with the right most subgoal indicated as 0, and the leftmost one as

n — 1. For every position i, we include integer 2* in aset, called P. Now, the number of
partitions of P is the number of valid combinations of occurrence classes for rewriting

of the query. The following example lists all possible partitions for a query with 3

subgoals.

Example 3.5 Let Q be a query with three subgoals. So, we have subgoal positions 0,

1, and 2, and hence P = {22, 21, 2°} = {4, 2, 1}. There are 5 partitions of P listed as
follows.

1. P1 = {{4, 2,1}}

55

2. P2 = {{2,1}, {{4}}

3. P3 = {{4,2}, {1}}

4. P4 = {{4,1}, {2}}

5. P5 = {{4},{2},{1}}

It is easy to see that the partitions do not have overlap and their union forms the

original set P (which confirms the definition of partitioning). Moreover, the sum of
the numbers in each partition Pi gives an occurrence identifier. In this example, we

have occurrence identifiers 1, 2, 3, 4, 5, 6, 7 from {1}, {2}, {2, 1}, {4}; {4, 1}, {4, 2},

and {4,2,1}, respectively. That is, finding the proper combinations for rewriting a
query is a partitioning problem [KS09].

A partition of a set S = {2°, . . . , 2n_1} is a set of nonempty, pairwise disjoint
subsets of S whose union is S. The number of partitions of a set of size ? is called

the nth Bell number, denoted B(n) [Rio58].
Now, we can determine the maximum number of rules in a rewriting of Q. If

there is only one coverage from every occurrence class, then the number of rules in
the rewriting would be B(n), where ? is the number of subgoals in the query.

Note that with ? subgoals, we can generate all identifiers from 1 to 2™ — 1. This
is because we created the set P with numbers 2° to 2n_1 and if we consider the sum

of different combinations of these numbers, we get 1 to 2" — 1 (which is the sum of

all the numbers from 2° to 2"-1).
In general, the number of coverages for an occurrence class is not necessarily 1

and can be any number. To define the maximum number of rules, we use Stirling
numbers as follows.

56

Definition 3.6 (Stirling number [Rio58]) The Stirling numbers of the second kind
S(n,k) indicate the number of ways to partition a set of ? elements into k nonempty

subsets. Bell numbers B(n) can then be defined as:

?

fc=l

Now, using Stirling numbers, we express the maximum number of rules in the
rewriting of query Q with ? subgoals. Suppose for every occurrence class, there are

m coverages. Then, the maximum number of rules in the rewriting of Q would be:

?

J2mkS(n,k)
fc=l

In fact, S(n, k) gives the number of cases in which k different occurrence classes
together cover the body of query Q without any overlap [KS09] .

The above formula is important as it gives the maximum number of rules in a

rewriting, which also helps analyzing the complexity of the query rewriting problem.

Also, Stirling numbers help to perform the combination phase of query rewriting
more efficiently. Recall that for a query with ? subgoals, we need to multiply ? buckets

in the combination phase and discard combinations that have overlapping coverages.

Using Stirling numbers, we can break a large multiplication on the original buckets

into a maximum of B(n) sets of fewer and smaller buckets. That is, we create S(n, k)
buckets, where k is the number of occurrence classes in each partition, and copy the

contents of the original buckets into these smaller buckets. We elaborate on this

process in the next section.

57

3.2.2 Creating Buckets Using Patterns

Consider a query with 3 subgoals and coverages with occurrence identifiers 1, 2, 3, 4, 5,

6, and 7. The original set of buckets is illustrated in Figure 3.1. However, these buck-
ets can be broken down into smaller buckets which results in efficient multiplication.

For this purpose, we consider every possible partitioning (as listed in Example 3.5),

get the sum of the numbers in each partition and create a set of buckets accordingly.

1. {{7}}: one bucket for occurrence class 7.

2. {{3}, {4}}: two buckets, one for each of occurrence classes 4 and 3.

3. {{6}, {1}}: two buckets, one for each of occurrence classes 6 and 1.

4. {{5}, {2}}: two buckets, one for each of occurrence classes 5 and 2.

5- {{4}, {2}, {1}}: three buckets, one for each of occurrence classes 4, 2, and 1.

We next define the notion of combination pattern based on the occurrence iden-

tifiers in each partition [KS09]. Intuitively, every pattern indicates the number of
buckets we need and the coverages (based on occurrence identifier) they should con-

tain. The maximum number of patterns for a query with ? subgoals is B(n).

Definition 3.7 (Combination Pattern) For a query with ? subgoals, a set of pos-

itive integers P is a Combination Pattern, if it satisfies all the following properties:

1. PC {l,...,2n-l}

2- Eiepï = 2n-l, and

3. V i,j G P, i Aj = O, where ? is the extended bitwise operation on integers.

58

The following recursive procedure called FindPatterns finds all combination pat-
terns for the numbers in a set N. In order to find the patterns for a query with ?

subgoals, we call FindPatterns with A = 2n - 1 and N = {1, 2, 3, . . . , 2" - 1}. Note
that the numbers in N are the available occurrence identifiers and in practice, not

all occurrence identifiers are present. This, in general, results in a fast execution of

FindPatterns algorithm.

Intuitively, given the set {1,2,3,4,5,6,7}, this algorithm is supposed to return
{{7}, {6, 1}, {5, 2}, {4, 3}, {4,2, 1}} as the set of patterns where each number is an
occurrence identifier.

Procedure FindPatterns (A, N, R)
Input :

A is the sum of all occurrence identifiers

N is the ascendingly ordered set of available occurrence
identifiers to be used in the patterns

Output :
R is the list of patterns built from the numbers in N for A

BEGIN

IF the patterns for A is already computed THEN
assign it to R, and exit.

ELSE

BEGIN

1-Ä={}
2- current = the largest number in N that is at most A
3- complement = A — current
4- IF (.complement = 0) THEN

add {current} to R
5- ELSE

BEGIN

6- FindPatterns (complement, N, Pcamp)
7- For every P¿ G PCOmp 3^d every m,; G Pi ,

59

IF Pi CN AND m¿ ? current = O THEN
add current to the beginning of Pcomp and
add Pcomp to R

END

8- Find the next number ? in N such that A/2 < ? < current
9- IF such a number ? exists THEN

assign ? to current and go to step 3.
10- ELSE

Return R as the result for input A.
END

END.

The following example illustrates the steps of this algorithm.

Example 3.6 Assume a query Q with three subgoals for which we want to find all

the combination patterns. Since ? = 3, we have that S = 2n — 1 — 7 and the set of

possible identifiers is S — {1,2,3,4,5,6,7}. Accordingly, we call FindPatterns with
arguments (7, {1, 2, 3, 4, 5, 6, 7}, R). The steps of execution are as follows.

1. current = 7 and hence complement = 0. Thus based on step 4> R = {{?}}-

Next, we find the new value for current which is 6, and go to step 3.

2. current = 6, so complement = 1. Then based on step 6, we compute P\.

For this, we call FindPattern(l, {1, 2, 3, 4, 5, 6, 7}, Pi). which terminates in one

iteration and returns {{1}}·

Based on step 7, since {1} C {1,2,3,4,5,6,7}, and since there is no bitwise
overlap between 1 =001 and 6=110 , we add 6 to {1} and add the result {6, 1}

to R. At this point R = {{7}, {6, 1}}. The next value for current is 5, and we
continue at step 3.

3. current = 5, so complement — 2. Then based on step 6, we compute P2

for which we recursively call FindPattern(2, {1, 2, 3, 4, 5, 6, 7}, P2). In the first

60

iteration, it assigns P2={{2}} . However, in the second iteration where current

is 1, and complement — 1 (2-1=1), since current and the elements in Pcamp =

Px — {{1}} have bitwise overlap, we do not include the pattern {1} to Pi- This
process terminates in two iterations and returns {{2}} for Pi-

Based on step 7, since {2} Ç {1,2,3,4,5,6,7}, and since there is no bitwise

overlap between 2 and 5, we add 5 to {2} and add the result {5, 2} to R. At
this point R = {{7}, {6, 1}, {5,2}}. The next value for current is 4, and the
process continues at step 3.

4- current = 4, so complement = 3. Then based on step 6, we compute P3 by

calling FindPattern(3, {1, 2,3,4, 5,6, 7}, Pz). In its first iteration, it assigns
{3} to P3, and in the second iteration where current = 2, and complement — 1

(3-2=1), since current — 2 and the elements in Pcomp — Pi = {{1}} have no
bitwise overlap, we add 2 to every pattern in Px . This process terminates in two

iterations and returns {{3}, {2, 1}} for P3.

Based on step 7, since {3} C {1,2,3,4,5,6,7}, and there is no bitwise overlap

between 3 and 4, we include 4 in {3} and add the result {4, 3} to R. Similarly,
since {2,1} C {1,2,3,4,5,6,7}, and there is no bitwise overlap between 2 and

4 nor between 1 and 4, we insert 4 into {2,1} and add the result {4,2,1} to
R. At this point R = {{7}, {6, 1}, {5, 2}, {4, 3}, {4, 2, 1}}. The next value for
current is 3, but the process terminates since every element in {1, 2, 3, 4, 5, 6, 7}

that is greater than 7/2 is considered.

The complexity of finding combination patterns is exponential, as it is based on

computing Bell number which is exponential. However, the combination patterns for

queries with different number of subgoals can be identified a priori. The number of
combination patterns for queries with 3, 4, 5, 10, and 15 subgoals are 5, 15, 52, 115975

61

and 1382958545, respectively. It is important to note that when some identifiers are

not present, the number of patterns drop significantly. As explained earlier, our
algorithm considers only the available identifiers, and performs quite well in practice.

The following figure compares the number of operations required in the second
phase of rewriting for Minicon and Pattern-based algorithm for queries and views

that generate all possible occurrence identifiers (i.e., the worst case).

Number of
subgoals

2n(n-1> operations in
Minicon

64

4,096

1,048,576

1,073,741,824

4,398,046,511,104

(27

B(n) operations in
Pattern-based

15

52

203

877

4140

Figure 3.2: Comparing Minicon and Pattern-based algorithm based on the number
of operations required in the second phase for queries and views with all occurrence
identifiers.

3.3 Query Rewriting Algorithm

In this section, we describe our query rewriting algorithm as well as possible ap-

proaches for each step. The basis for the correctness of our algorithm is that it finds
all possible coverages (each of which generates a view specialization) and considers

all possible combinations of such view specializations to ensure that the generated
rewriting is maximally contained in the input query. This is discussed later in Sec-
tion 3.3.3.

62

Algorithm QueryRewriter (Q, V, R)
Input :

Q: a query to be rewritten.
V: the set of views to be used in the rewriting.

Output :
R: a maximally contained rewriting for Q based on V .

BEGIN

Phase 1

1- For every view, find the basic coverages.

Phase 2

2- Combine coverages to generate rules each of which is contained
in Q.

3- Assign the union of all the rules generated in step 2 to R,
and return R as the rewriting output.

END.

The steps in the rewriting algorithm are explained as follows.

3.3.1 Finding Basic Coverages

In the first phase of our rewriting algorithm in which we find the coverages, we can

consider two possible approaches, described as follows.

1. Subgoal based approach:

In this approach (also used in Minicon [PLOO]), in order to find the basic cover-
ages, we consider a set S with a single subgoal sg¿ in the query Q and its joint

variables Js- For every view V¡ that includes s<?¿, we ensure that all the vari-

ables A in Js are accessible through Vj, that is image of A under the mapping
is a distinguished variable in Vj . If this is the case, we create a new coverage

63

Cji based on Vj and assign S to Cj¿. Otherwise, we add more subgoals to S,
update Js accordingly, and inquire if Vj can be useful in forming a coverage.

Adding subgoals to S is based on the joint variables that are not accessible.

If A € Js is not accessible, we include all the subgoals in Q in which A has

appeared. After adding the new subgoals to S, we recalculate joint variables

Js of S and repeat the test. This process terminates if a basic coverage for s#¿

(and possibly some other subgoals) is found, or all possible subgoals are added
to 5, and there is at least one join variable that is not accessible.

2. View based approach:

The idea in this approach (also used in [KS05a]) in forming the coverages is
similar to the subgoal based approach, except for the order in which views are

processed. To be precise, instead of considering one subgoal and checking all the

views that cover it, we consider one view at a time, identify all the coverages

it can generate and then move to another view. This approach seems to be

more efficient since it checks every pair of view-subgoal only once, whereas the

first approach requires some additional bookkeeping to avoid creating redundant

coverages.

3.3.2 Combining Coverages

In the second phase in which we combine the coverages, each subgoal in the query

is assigned a bucket and we place coverages in the corresponding buckets. Note that

a coverage might appear in several buckets as it may cover several subgoals. As
illustrated earlier in Example 3.3, coverages that have overlap over some subgoals

should not participate in the same combination since otherwise they may introduce

unnecessary restrictions.

In general, to find coverages that do not overlap and generate contained rules,

64

there are three possible approaches defined as follows [KS09].

1. Detection and Recovery- Simple Cartesian Product:

In this approach which is used in the Bucket algorithm, to find all the rules, we

perform the Cartesian product of the buckets, and eliminate rows that contain

overlapping coverages. Assuming that query Q has ? subgoals, there will be

? buckets. A memory efficient way to perform the Cartesian product of the
buckets is to define an index i¿ for each bucket with an initial value of 0. At each

iteration, the set of indexes (Z1, ... , In] points to coverages in their respective
buckets: Bi, ... ,Bn. These coverages cover all the subgoals in Q and, if they

do not have any overlap, they can yield a rule.

For that, we copy the coverages into a set R, and create a query in which the
head is the same as the head of Q, and the subgoals in the body are view

specializations defined based on the coverages in R, as explained in Section 3.1.

Recall that for every bucket P, we considered an index Ip with the initial

value of 0. Intuitively, we use this set of indexes as a counter to go through

all possible combinations. To find the next combination (a new iteration), we
consider the index of the last bucket, P — n, and perform the following steps.

We increment Ip (initially In) by 1 and if it is less than the size of the bucket
Bp, we stop and define a new set of coverages based on [I1, ... , /„}. Otherwise,

we set Ip-O, decrement P, and continue this process until we either find a new

set of coverages, or P becomes zero. In other words, this process simulates a
counter with ? digits in base n. This ensures consideration of all combinations.

Note here the possible inefficiency for generating many combinations and then
discarding those that are not required.

65

2. Avoidance- Optimized Cartesian Product:

This approach improves the performance of a simple Cartesian product (dis-

cussed above) by discarding redundant or useless combinations during the Carte-
sian product, explained as follows. At each iteration, before adding to R a cov-

erage Cj from bucket Bi, we check all the subgoals already covered by coverages
in R, and ensure there is no overlap. If there is an overlap, we discard the com-

bination of coverages in R and avoid checking all combinations built based on

indexes [I1, . . . ,/¿}. For that, instead of incrementing Ip starting with P=n,
we set P=i, where i is the index of the bucket Bi. Based on this, we skip

the combinations that have the same overlapping coverages. Minicon uses this

approach to perform the Cartesian product.

3. Prevention- Pattern based Cartesian Product:

As proposed in this thesis, this approach is based on the idea of occurrence

patterns. It assigns to query Q the number 2™ — 1, where ? is the number of
subgoals in Q, and assigns an occurrence identifier to every coverage C¿ that

is based on the subgoals it contains and its position in the query body. For

instance, in Example 3.3, occurrence identifiers assigned to C1 and Ci would

be 6 (= 22 + 21), and 3 (= 21 + 2°), respectively. Let N be the sorted list of
all identifiers (with no duplicate identifier). Then calling FindPatterns(2n —
1,7V, P) returns the list of patterns based on available coverages in P. For
each combination pattern in P, we then create buckets and perform a simple

Cartesian product. Since a combination pattern has no overlap, no further

checking is required. For example, consider the coverages listed in Figure 3.1,

for which we break down the original bucket structure into smaller buckets

and perform 5 different Cartesian products (since there are 5 different pattern

66

combinations) listed as follows.

(a) Pi = {{7}}: No need to apply Cartesian product since there is a single

bucket [C7] for C7

(b) P2 = {{3}, {4}}: Cartesian product of two buckets: [C3] x [C4]

(c) P3 = {{6},{l}}:Cartesian product of two buckets: [C6] x [Ci]

(d) P4 = {{5}, {2}}: Cartesian product of two buckets:[C5] x [C2]

(e) P5 = {{4}, {2}, {1}}: Cartesian product of three buckets: [C4] ? [C2] x [Ci]

Note that for a query with three subgoals, the Bucket algorithm (based on Detec-

tion and Recovery), and Minicon (based on Avoidance) need to perform a Cartesian
product of size 43, whereas the cost in our pattern-based algorithm is reduced to 5
operations.

3.3.3 Correctness

In this section, we discuss the correctness of our rewriting algorithm in generating

maximally contained rewriting on the basis of the Minicon algorithm. For this, we
note that Minicon algorithm generates rewriting in two phases: (1) finding MCDs, and

(2) combining them to generate the rewriting, and show that the output of each phase
in our Pattern-based algorithm matches with the output of the corresponding phase in

Minicon. Next, we compare the corresponding phases of Minicon and Pattern-based
algorithms.

As mentioned earlier, coverage extends the notion of MCD. Looking at the defi-
nition of MCDs, we can see that a MCD has exactly the same properties of a basic

coverage, i.e., all joint attributes are accessible through the view, and if any subgoal
is removed from MCD the condition for joint variable is no longer satisfied.

67

Considering the second phase of rewriting, finding non-overlapping combination

of coverages, we remark that the only difference between Minicon and Pattern-based
algorithm is that Minicon takes an Avoidance approach while our Pattern-based uses

Prevention. Regardless of their approach, as explained in section 3.3.2, the properties
of the combinations found in these approaches are identical, i.e., no two coverages in

a combination have common subgoal. Based on this, we note that they both generate

the same set of rules for rewriting. This explains why our query rewriting algorithm

generates maximally contained rewriting.

3.3.4 Complexity of Query Rewriting

In this section, we show that the upper bound for query rewriting could be expressed

in terms of the Bell numbers ([Rio58]).

Theorem 3.1 Let Q be a query and V be a set of views. Then the upper bound for

the complexity of the problem of determining whether there exists a rewriting of Q

that uses V is 0((¿° Z^)") , where ? is the number of subgoals in the query.
Proof Query rewriting has two phases. In the first phase, it finds coverages for
which it searches for mappings from subgoals in the query Q to those in the views.

The complexity of this phase is exponential in the number of subgoals in Q. Assume a
is the number of different predicates in Q, and b and c are the number of subgoals of

each predicate in Q and Vi: respectively. Then the number of possible mappings from

Q to Vi is (cb)a. The reason is that every subgoal in Q can be mapped to c subgoals in
Vi, and since for every predicate ? there are b subgoals of that predicate, the number
of possible mappings for that predicate is cb. Since the number of different predicates

in Q is a, the total number of possible mappings would be (cb)a = cab.
In the second phase of rewriting, we use a prevention approach for combining the

coverages. Assuming that Q has ? subgoals, the number of different sets of buckets

68

formed in the worst case is the nth Bell number, B(n). To determine whether a
rewriting exists, every bucket has to have at least one coverage, and hence we assume

the number of coverages in each bucket is 1. The cost of Cartesian products of these

sets of buckets can be defined based on the number of rules generated which is B(n).
Since the growth of the Bell number is much faster than cab, the complexity of the
second phase is more than the first phase, and hence we may ignore the complexity of

the first phase.

As a result, the upper bound for testing whether there exists a rewriting of Q that

uses V is the upper bound of the Bell numbers which has been shown to be (;°"Zf+"))n
[Rio58]. ¦

Next, we classify the rewriting algorithms based on their approach to generate

coverages and show its affect on the number of subgoals in the generated rewriting.

3.4 Classification of Approaches to Query Rewrit-

ing

In this section, we classify query rewriting algorithms into two approaches and com-

pare these approaches based on the quality of the rewriting. For this, we first define

the notion of area of a rewriting, that we use as a quality measure to identify the

rewriting that is less expensive to execute.

Definition 3.8 (Area of rewriting) The area of a rewriting is the total number of
subgoals in the bodies of the rules it contains.

Note that area of a rewriting is a language dependent issue, which in our case is the

union of conjunctive queries.

69

As explained in Section 3.1.1, there are two possible approaches to build coverages,

bottom-up and top-down approaches, which define the rewriting approach, explained
as follows.

1. Top-Down: Used in [KS05a] and Treewise [MS08].

2. Bottom-Up: Used in Bucket algorithm [LR096], Inverse Rule [Qia96, DG97a],
Minicon [PLOO] , and our Pattern-based algorithm [KS09] .

The differences between the bottom-up and the top-down approaches are as fol-
lows.

1. In the first phase of rewriting, to generate a coverage, a bottom-up algorithm

usually starts with a single subgoal coverage and adds subgoals to it until it

becomes a useful coverage; however, a top-down algorithm starts with a coverage

containing all subgoals and reduces it through breaking it until it finds a set of

useful coverages which requires no further breaking.

2. In the first phase of rewriting, a bottom-up algorithm can generate coverages

without considering other views and coverages. However, a top-down algorithm

needs to consider other coverages/views because it might need to break a cover-

age into smaller ones so that they can participate in a rewriting combined with
coverages from other views. The reason is that if a top-down algorithm keeps

only large coverages, they might not form all possible rewritings, and hence, we

do not obtain a maximally contained rewriting.

3. When combining coverages (phase 2), since a top-down approach usually deals

with larger coverages, the size of each rule in the rewriting would not be more

than the corresponding rule in a rewriting in a bottom-up approach. In fact, the

top-down approach can always find the rules with the least number of subgoals.

70

This is an advantage of top-down paying off the extra processing in the first

phase of rewriting to check all views/coverages. In fact, bottom-up can also
reach this least number of subgoals in the result of rewriting by exploiting query

minimization as a post-processing phase. We discuss the query minimization

and its application in query rewriting in Chapter 4.

As a result, both top-down and bottom-up approaches can generate rules that

are minimal in size. Top-down determines this optimized rewriting when finding

coverages in the first phase, while bottom-up finds it in a post-processing step
after combining the coverages. A question at this point is whether there is any

preference between the two approaches.

Example 3.7 Consider the following query Q and views V1 and V2.

Q: h(X,W) :-r(X,Y),s(Y,Z),t(Z,W).

V1: V1(A, B, C) :-r(A,B),s(B,C).
V2: V2(D1E1F) :-s(D,E),t(E, F).
Bottom-up approach and top-down approach create different sets of coverages and

form different buckets. As shown in Figure 3.3, bottom-up creates [C1, C2, Cz, C4) as
the set of coverages, where C1 covers subgoal {r}, C2 covers {s}, Cz covers {s}, and

C4 covers {t}.
As shown in Figure 3.4, top-down creates [C1, C2, C3, C4) as the set of coverages,

where C1 covers {r,s}, C2 covers {r}, C3 covers {s, t}, and C4 covers {t}.
Although the rewritings generated in bottom-up and top-down approaches are equiv-

alent, they may differ in the number of subgoals in the rule bodies.

To generate a rule in a rewriting, we combine the coverages so that they cover
the entire query body. As shown in Figures 3.3 and 3.4, a bucket is defined for every

subgoal in the query, and coverages are placed in these buckets according to the

subgoals they cover.

71

Coverages={Cy, C2, C3, C4 }
Subgoals(C;)={r}
Subgoals(Q)={s}
Subgoals(Q)={s}
SubgoaIs(Q)={t}

C1 C2
C,

C4

Bucket for r Bucket for s Bucket for/

Figure 3.3: Coverages and Buckets in bottom-up for Example 3.7

Combining these buckets yields the following rewriting:

Q: h(X,W) :-V1(X,Y,C),V1(A,Y,Z),V2(D,Z,W).

h(X, W) :- V1(X, Y, C), V2(Y, Z, F) ,V2[D, Z, W).

When comparing the two approaches, we can see that a top-down algorithm, in

general, generates rewriting with smaller area compared to a bottom-up algorithm.

For instance, the areas of the rewritings for Example 3.7 in Figures 3.3 and 3.4 are

4 and 6, respectively. When the size of a given database D is huge, this could result

in a significant difference in the execution cost. So, the extra cost spent in top-

down approach may pay off during evaluation of rewriting on D. Based on what

we discussed so far, we can see that in general, bottom-up outperforms top-down in

rewriting time. However, quality of the rewritings in top-down is usually better than

that of bottom-up.

Next, we show that existence of redundant subgoals in the input of rewriting

results in redundant rules in the output of rewriting. For that, consider the following

72

Coverages=! C1, C2, C3, C4)
SubgoaIs(C'/)={/", s)

Subgoals(C2)= { r }

Subgoals(C'j)= { s, t)
Subgoals(C"v)={/}

C1
C,

C1 C3
C4

Bucket for r Bucket for î Bucket for /

Figure 3.4: Coverages and Buckets in top-down for Example 3.7

Combining these buckets yields the following rewriting:

Q : h(X, W) :- V1(X, Y, Z), V2(D, Z, W).

h(X,W) -.-V1(X-YC)1V2(Y^1W).

query Q1 and views V1 and V2.

Q1 : h(X) :- r(X, Y),r(X, Z),s(Z, W).

V1: V1(A1B, C) :-r(A,B),s(B, C).
V2: V2(D, E) :-r (D, E).
We want to rewrite Q1 using V1 and V2. In the first phase of the rewriting, we

find the following coverages for the subgoals in Q1.

C1= ({r(X, Y)}, {XIA, Y¡?}, V1(A, B, C), {}).
C2= ({r(X, Z)), {XIA, Z¡B\, V1(A, B, C), {}>.
C3= ({s(Z, W)), {Z/B, WIC)1V1(A., B, C), {}).
C4= ({r(X, Y)), {XID, Y/E), V2(D, E), {}).
C5= ({r(X, Z)), {XID, Z¡E}, V2(D, E), {}).

73

Coverages C1 , C2 and C3 are based on V1, and coverages C4 and C5 are based on V2.

In the second phase of rewriting, we combine the coverages using simple Cartesian
product approach. For that, we consider one bucket for each subgoal in Q1, and assign

the coverages to the corresponding buckets.

• Bucket B\ for r(X, Y) containing coverages Ci and C4, i.e., Bi = {Ci,C4}.

• Bucket B2 for r(X, Z) containing coverages C2 and C5, i.e., B2 = [C2, C5).

• Bucket B3 for s(Z, W) containing coverages C3, i.e., B3 = {C3}.

The following combinations are the result of performing Cartesian product on
these buckets.

1. {Ci,C2,C3}

2. {Ci,C5,C3}.

3. (Ci5C21C3).

4. {C4,C5,C3}.

Each of the above combination results in a rule in the rewriting, in the order shown

as follows.

Q': h(X) :-vi(X,Y,Ni),Vi(X,Z,N2),Vi(N3,Z,W).
h(X):-vi(X,Y,N4),v2(X,Z),Vi(N5,Z,W).

h(X) :- v2(X, Y), Vi(X, Z, N6), V1 (N7, Z, W).
h(X) :-v2(X,Y),v2(X,Z),Vi(Na,Z,W).

As we can see, there are 4 rules in the output of the rewriting. To see the im-

portance of minimization in the quality of rewriting, next, we minimize the query
and views in this example before performing the rewriting. Since views V1 and V2

74

do not have repeated subgoal so they are already minimized. Consider the following

query Q2 which has no repeated subgoals and equivalent to Q1 (there are containment
mapping from Qi to Q2 and vice versa).

Q2: h(X):-r(X,Z),s(Z,W).

V1: V1(A, B, C) :-r (A, B), s(B, C).
V2: V2(D, E) :-r (D, E).
In the first phase of the rewriting of Q2, we find the following coverages for the

subgoals in Q2 based on view V1 and V2.

C1= ({r(X, Z)), {?/A, ZIB-), V1(A, B, C), {}).
C2= ({s(Z, W)), {?/B, WfC)1V1(A, B, C), {}>.
C3= ({r(X, Z)), [XfD, ZfE), V2(D, E), [)).
Coverages C1 , C2 are based on V1, and coverage C3 is based on V2.

Next, we consider one bucket for each subgoal in Q2, and assign the coverages to

the corresponding buckets.

• Bucket B1 for r(X,Z) containing coverages C1 and Cz, i.e., B1 = {Ci, C3).

• Bucket B2 for s(Z, W) containing coverage C2, i.e., B2 = [C2).

The following combinations are the result of performing Cartesian product on
these buckets.

1· [CuC2)

2. [C3,C2).

Each of the above combination results in a rule in the rewriting in the same order,
shown as follows.

Q2 : h(X) -.-V1(X, Z, N1)MN2. Z, W).

h(X) :-v2(X, Z),Vl(N3, Z, W).

75

As we can see, the number of rules generated for the minimized input is less than

the number of rules generated for the case that input had redundant subgoals.

We also note that while rewriting Q2 has the least number of rules, its area (=4

subgoals) is not optimal. Minimizing the rules in Q2 generates the optimal rewriting
in which the area is 3 subgoals, shown as follows.

Q3: h(X):-Vl(X,Z,W).

h(X):- V2(X, Z), V1(N3, Z, W).

3.5 Summary

In this chapter, we studied query rewriting in the context of standard conjunctive

queries. We investigated the two phases of rewriting, finding coverages and combining
them, compared different approaches for each phase, and focused on the combining

phase as the more expensive part of the rewriting. We proposed a pattern-based

algorithm that uses prevention approach to combine coverages (i.e., preventing from
having overlapping coverages in the buckets).

Furthermore, we proposed a formula to determine the number of rules in the

rewriting based on the Stirling numbers. This is particularly of practical importance

because given a query and set of views, one can know the number of rules in the
rewriting before actually generating it, and hence plan available resources required

for generating the rewriting.

It has been shown that query rewriting usually generates rules with redundant

subgoals. In fact, it is possible that both the input query and views contain redundant

subgoals, in which case, rewriting performs unnecessary computations. In the next
chapter, we address these issues by studying minimization of conjunctive queries and

exploiting it to minimize both input and output of the rewriting algorithm, and hence
improve efficiency and scalability of our rewriting algorithm.

76

Chapter 4

Minimization of Conjunctive

Queries

In this chapter, we revisit the problem of query minimization as both pre-processing

and post-processing phases in query rewriting (i.e., applying minimization to both

input and output of query rewriting). We investigate this in the context of standard
conjunctive queries, and propose a novel query minimization algorithm that uses spe-

cial endomorphisms together with some heuristics to identify and remove redundant

subgoals in an iterative approach.

4.1 Introduction

Nowadays, there are many applications that generate queries automatically. Such

queries may have redundant subgoals which add unnecessary overhead when process-

ing the queries. Identifying redundant subgoals is a minimization problem which is
based on containment ([CM77]). Hence finding efficient heuristics to identify such

redundancies is of practical importance.

77

Some applications that generate queries with potentially redundant subgoals in-
clude view expansion, translating Xqueries to SQL, and query rewriting [FCSOO,

CROO, LevOl, KS09, KS05a]. The following example illustrates the importance of
minimization after view expansion.

Example 4.1 Consider the following query Q1 and view definitions V1 and V2, over

the base relations r(A,B) and s(A,B).

Q1: h(X) :- V1(X, Y), V2(Y, X).

V1: V1(A1B) :-r (A, A), s(A, B).

V2: V2(A, B) :-r(A,B),s(B,B).

In order to evaluate Q1, we expand it using the view definitions and generate query

Q2 which is equivalent to Q1, as follows.

Q2: h(X) :- r(X,X),s(X,Y),r(Y,X),s(X,X).
Now, we can evaluate Q2 because it includes only base relations. For that we need to
perform three join operations, however, if we apply query minimization on Q2, we get

the following query Q3 that is equivalent to Q2 (and hence Q1) but requires only one
join operation for evaluation.

Q3: h(X) :-r(X,X),s(X,X).

Definition 4.1 (Query Minimization) Given a standard conjunctive query Q, query
minimization defines a conjunctive query Q' that is equivalent to Q and has the min-

imum number of subgoals in the body.

Intuitively, given a query Q, query minimization removes from Q all redundant

subgoals, defined as follows.

Definition 4.2 (Redundant Subgoal) A subgoal g¿ in the body of a conjunctive

query Q is redundant if it can be removed from Q without changing the meaning of
Q-

78

Query minimization has been studied in different contexts including optimization

of queries in relational databases [CM77, U1189, Mai83, KS02, FCSOO], Datalog [LS92],
and query rewriting [LMSS95, PLOO, UIlOO, KS09].

Although query minimization is not a new problem, there has been little focus on

its practical efficiency [KS02]. The reason is the complexity of the problem and the
fact that there was not much space for improvement in queries as they were often

composed manually by human experts and hence little or no opportunity for mini-

mization. Today, this situation has changed, and many applications automatically

generate queries which may include redundant subgoals.

4.2 Related Work

Chandra and Merlin ([CM77]) showed that for every conjunctive query Q, a minimal
query exists and is unique up to renaming of variables. They also showed that finding
a minimal query is exponential in the number of subgoals in the input query. Maier

[Mai83] and Ullman [U1189] showed that minimized query can be found by finding an
endomorphism on the query itself. However, the algorithms provided are not efficient

without heuristics as the search space is huge. Levy et al. [LMSS95] studied this

problem in the context of query rewriting using views. They introduced a polynomial
time algorithm to remove some but not all the redundant subgoals, resulting in a

rewriting that is not minimal, in general. A similar version of this algorithm is used

in [PLOO].

Kunen and Suciu [KS02] studied this problem and introduced an algorithm based
on a set of heuristics for query minimization and show its efficiency for large queries

with hundreds of joins. To the best of our knowledge their work is the only work

in the literature that studies the performance of query minimization and provides

experimental results for large queries. Their solution approach defines a canonical

79

database for a given query Q, which basically includes a tuple X in relation r for every

subgoal r(X) in Q. At each step in an iterative process, they remove one tuple from
the database and evaluate the query. If the query result did not change, it means that

the tuple is redundant. This process repeats until all redundant subgoals are identified

and removed. They showed that evaluating the query on the canonical database
without any optimization is not efficient. To address this issue, they implement the

following heuristics.

1. Local optimization on query plan: Convert the query into a tree (query plan)

where the goal is to find a tree with the smallest width.

2. Randomization: Randomly repeat the first heuristics and choose the tree with
the smallest width.

3. Early Termination: The algorithm may be terminated in the following cases.

(a) If at any point in the query execution, an intermediate result is found
to be empty, the end result must be empty too and hence the execution
terminates.

(b) In this algorithm, query is executed on a very similar database repeatedly
and there is a high chance to see internal tables that are not changed from
iteration to iteration. Based on this, the result of join operations can be

cached, and if the input relations to each join are not changed, the result

of the previous execution could be reused.

4. Table Pruning: Consider a join operation EMF. If there are rows in E which

do not join with any row in F, or vice versa, then they can be safely discarded
for the join.

5. Incremental Evaluation: Let D = E M F be an internal table which records the

80

result of the join of E and F. If E and F are updated to E' and F', we can
either calculate the join using D' — E' N F' , or we can compute the change

in D, AD, as AD = {E M AF) U (AE N F) - (AE N AF). Although this
requires three joins, but when AE and AF are small relations, computing AD

might be faster than computing E''M F' .

It has been shown through experiments with different types of queries, that their

minimization algorithm is efficient for queries with hundreds of joins and is scalable

[KS02].
In the next section, we explain our query minimization technique.

4.3 Query Minimization

It has been shown that to minimize a conjunctive query Q one can use an endomor-

phism, i.e., a proper mapping from query Q to itself [Mai83, U1189]. This is explained
as follows.

(a) Applying "proper" endomorphisms on input query generates an equivalent query
in which some occurrences of subgoals are identical.

(b) Removing redundant occurrences generates a shorter query which is equivalent
to the original query.

(c) Iteratively, finding and applying such endomorphisms and removing all redun-
dant subgoals would result in the minimized query.

The following example illustrates the steps of minimization in this approach.

81

Example 4.2 Consider the following conjunctive query Q.

Q: h() :- r(A, A, B), r(D, D, A), r(D, C, F), r(C, D, G), r(C, E, G).

To identify redundant subgoals, we take two steps: first, we find an endomorphism

that generates two identical occurrences of the same subgoal and then test if applying
the endomorphism maintains the equivalence. These steps are explained as follows.

1. Finding an endomorphism. For this, let us take r(Xi) — r(D,D,A) and

T-(X2) = r(C, D, G) and apply the mapping µ? = X2 -> X1 = {C/D, D/D, G/A}
on Q as the endomorphism, where C/D in µ? means that variable C in r(C, D, G)

is mapped to variable D in r(D, D, A). Applying µ? on Q results in the following
query.

Q1: h() :- r(A,A,B), r(D,D,A), r(D,D,F), r(D,D,A), r(D,E,A).

Note that, in general, there are n(n—l) possibilities for choosing pairs of r (Xi)
and r(X.2); where ? is the number of subgoals with identical predicate name.

Using some heuristics we can do this faster. This is important because the
minimization is iterative and the earlier the redundant subgoals are identified,

the faster minimization terminates.

Initially. Qi has two occurrences of subgoal r (D, D, A), of which we remove one,

as follows.

Q1: h() :-r(A,A,B),r(D,D,A),r(D,D,F),r(D,E,A).

2. Checking equivalence Q1 ? Q. Since we already found the containment mapping

/Li1 from Q to Q1. to show the equivalence, we only need a containment mapping

from Q1 to Q.

Since this is a special case of containment test, some heuristics could help deter-

mining the containment mapping faster. In this example, we find containment

82

mapping µ2 = {A/A, B/B, D/D, F/A, E/D) which means Qx = Q. We can
continue this process iteratively until no more subgoal is removed. The follow-
ing query Q' is the minimized query equivalent to Q, which requires only one

join to evaluate.

Q': h() :-r(A,A,B),r(D,D,A).

Next, we review some background information and explain how to find endomor-

phisms that help minimize conjunctive queries. Moreover, we identify some heuristics

to speed up the minimization process.

4.3.1 Identifying Redundant Subgoals

In this section, we propose an algorithm together with heuristics for identifying re-

dundant subgoals. We first review and define the concepts we need in our discussion.

Recall that a conjunctive query is an expression of the form:

Q: H(X)^r1(X1),..., Tn(Xn),
where h(X) is the head, and predicate h does not appear in the body of Q. Xi is a

list of variables, and r¿(.X¿) is a subgoal in the body.
We assume each r¿ is a base relation (and not a view). We use r(X)[i] to denote

the ith variable in r(X).
As mentioned in Example 4.2, our approach to query minimization is iterative

and in each iteration we take two steps: (1) find an endomorphism, and (2) test if it
maintain the equivalence.

It is important to note that repetition of variables in a subgoal r(barX) imposes
restriction on that subgoal. Intuitively, when searching for minimizing endomorphism,

we cannot map subgoals that are more restricted to subgoals that are less restricted.
This is because the resulting query would not be equivalent to the original query. For

83

this reason, and in order to compare subgoals based on the restrictions imposed by

their repeated variables, we define the notion of Pattern Sequence as follows.

Definition 4.3 (Pattern Sequence) Let Q be a conjunctive query Q, r(X) be a
subgoal in Q. For each variable A in a r(X), the pattern sequence of A in X, denoted

?a{t{?)), is a binary sequence that has a 'G at position i if r(X)[i] = A, and ?',
otherwise.

For simplicity, we may use Fa(X) instead of FA(r(X)). For example, "for subgoals

t(W,Y,Z), we have that Fw(r(W,Y,Z)) = FW(W,Y,Z) = (1,0,0).
We define a partial order < on pattern sequences of subgoals as follows. Let S9

be the set of subgoals in Q with predicate name g. For every two subgoals g (Xi)

and g(X2) in S9 and variables A and B, we say that P^(Xi) < FB(X2) if condition
(g(Xi)[i] = 1) —> (g(X2)[i\ = 1) holds for all i. That is, for every position i in g (X1)
with T, there is a 'G at position i in 5(A2)- For example, for subgoals t(W, Y, Z) and
t(X,Y,X), we have that FW(W,Y,Z) = (1,0,0) < Fx(X1Y, X) = (1,0,1). We also
consider an extension of the logical or operator to a list. Formally, P^(Xi) V Fa(Xt)

returns a binary sequence, which has a 'G at position i if the ith position in Fa(Xi)
or in Va(X2) is 1.

Definition 4.4 (Minimizing Substitution) Given a query Q and a variable sub-
stitution T, if by applying ? on Q we get two or more identical occurrences of the same

subgoal, we can keep one occurrence and remove other occurrences. This results in a

new query Q' that has fewer subgoals. If Q' is equivalent to Q, then Q' is a reduced
equivalent of Q. We refer to such substitution ? as minimizing substitution.

Note that such a minimizing substitution defines an endomorphism.

Lemma 4.1 For a non-minimized conjunctive query Q, minimizing substitutions al-

ways exist.

84

Proof Consider queries Q and Q', where Q' is the minimized equivalent of Q. Since
Q' E Q, there is a containment mapping from Q to Q'. This means that there exists a

containment mapping (i.e., variable substitution) from Q to Q' that can help finding
a minimized equivalent query. ¦

Next, we show how to find a minimizing substitution that identifies a redundant

subgoal and satisfies query equivalence.

The basic idea is as follows. We take a pair of subgoals in Q that have the same

predicate name, define a mapping from one to the other as a substitution T, apply ?

on Q to get a new query Q' (which has at least one less subgoal), and test if Q = Q'
holds. In case of equivalence, ? is a minimizing substitution.

Theorem 4.2 Given a conjunctive query Q, finding and applying minimizing sub-

stitutions on Q in a finite number of iterations would result in a minimized query

equivalent to Q.

Proof Assume that query Q' is the result of applying minimizing substitutions on

a given query Q in which no further reduction of Q' is possible. If Q' is not the

minimized query then based on Lemma 4-1 there is a substitution ? that can be applied

on Q' to generate the minimized query. This contradicts with the assumption that Q'

is minimized. Therefore Q' is the minimized query.

Since every minimizing substitution is an endomorphism, and the number of en-

domorphisms for every query Q is finite, minimization algorithm terminates in finite
steps. ¦

4.3.2 Finding Minimizing Substitution

The goal of this section is to identify the conditions for finding minimizing substitu-

tions. Consider a general form of a conjunctive query with repeated subgoals (and

85

potentially redundant ones), as follows.

Q: h(X) :- T(X1), r(X2), L

where L indicates the rest of the subgoals in Q. Assume that the following query Q'

is the result of applying a minimizing substitution ? : X\ —> X2 on Q. Note that Q'
has at least one subgoal less than Q. The general form of Q' is as follows.

Q': h(X') :- r(X2), V.
In order to test the equivalence of Q and Q', we test two containments: (1) Q' E Q

and (2) Q^Q' ([CM77]), as follows.

1· Q' E Q' To test this containment, we need to find a containment mapping from

Q to Q'. We know that Q' is generated by applying ? on Q. In fact ? defines a

mapping µ from Q to Q' as follows:

µ(?) = {
?T if variable A e Xi

A otherwise

That is, µ is ? for those variables in Q that appear in Xi, and is the identity
function for the rest of the variables of Q.

Based on this, Q C Q if µ is a valid containment mapping. For this, we define

the following two conditions.

(a) Substitution ? — Xi —? X2 is consistent, i.e., every variable is substituted
by exactly one variable or a constant. This guarantees that µ is consistent.

The following example illustrates a case where this condition does not hold.

Example 4.3 Consider the query Q defined as follows.

Q: h{) :-r(X,Y,X),r(A,B,C).

86

Let T(X1) = r{X,Y,X), and r(X2) = r(A,B,C). Then, substitution ? =

{X/A, ?/?,?/C} is not consistent because X is mapped to two different
variables, A and C, i.e., ? is not a consistent substitution.

In order to express this condition, we use pattern sequence and define Test
I as follows.

Test I: V A 3 B : ??{??) < F5(X2).

Test I verifies that if variable A has appeared more than once in Xx , then

there is a variable B in X2 that appears at least in the same positions in

X2. Intuitively, it checks if A is mapped to exactly one variable.

(b) Substitution ? should generate identical occurrences of r(X2). In other
words, according to the general form of Q', after applying T, both r{X1)
and r(X2) should be transformed to r(X2). The following example shows
a case where this condition is not satisfied.

Example 4.4 Consider the following query Q.

Q: h{) :-r(X,A,Z),r(A,B,C).

Let V(X1) = r{X, A, Z), and r(X2) - (A, B, C).

Then, using ? = {X/A, A/B, Z/C), we get the following query Q' :

Q': h():-r(A,B,C),r(B,B,C).

We can see that Q' is not in the proper form because Q' is supposed to

include only r(A,B, C). Therefore, ? is not a proper minimizing substitu-

tion and choosing T(X1) = r(X, A, Z) and r(X2) = (A, B, C) is not a good
choice.

In order to express this condition, we use pattern sequence and define Test

87

II as follows.

Test II: Vieï2: P^(Xi) < P^(X2)-
Test II verifies that all common variables of T-(Xi) and r(X2) remain un-
changed after applying T.

Next, we discuss the containment of Q in Q' .

2. QQQ': To test this containment, we need a containment mapping from Q'
to Q. For this, we find all possible partial mappings p¿'s from Q' to Q, and

combine them to form a containment mapping from Q' to Q. That is, we find

the partial mappings for (a) h(X'), (b) T-(X2), and (c) subgoals in L. Next, we
discuss details of such partial mappings for each case.

(a) Partial mapping for the head h(X'):

Pl : h(X') - h(X).

Since there is only one mapping for the head, we define the consistency
test for pi as follows.

Test III: V A3B : FA(X') < Pb PO

Test III can confirm if p\ could be used during the search for a containment
mapping.

(b) Partial mappings for the subgoal r(X2):

p2 : r(X2) - T-(X1),

p3 : T[X2) - r(X2),

p4 : r(X2) —> r(X3), where T-(X3) is a subgoal in L.

We do not define the consistency tests for p2, p$ and p4 because we know

88

that at least p3 (the identity mapping) is always satisfied,

(c) Partial mappings for subgoals L':

p5 : L' —? /, where / is a set of subgoals in Q.

Note that since L contains a set of subgoals, unlike other partial mappings

above that are determined, we actually need to find p5.

To summarize, we list all the possible combinations of partial mappings. It is

important to note that Q^Q' holds if one of the following three sets forms
a containment mapping:

(1) µ? = {??,?2,?5}

(2) µ2 = {pi,p3,p5}

(3) µ3 = {pi,Pi,p5}-

If pi is not consistent, since it is a fixed partial mapping that is common in all

these mappings, Test III fails and we conclude that Q % Q'.

Next, we introduce some heuristics to test if one of the mappings µ?, µ2, or µ$ is

a containment mapping.

4.3.3 Proposed Heuristics

We need to find a partial mapping p5 that is consistent with the rest of partial

mappings in µ?, µ2, or µ$. Since Q' is the result of applying an endomorphism on Q,

certain subgoals could be mapped using the identity mapping. Therefore, to speed

up the process, we exclude such subgoals in our search. For this, we define the notion
of Connected subgoals as follows.

89

Definition 4.5 (Connected Subgoals) Let Q be a conjunctive query, and r(X)
and s(Y) be subgoals in Q. Subgoals r(X) and s(Y) are connected if they share some
variables or there exists a subgoal t(Z) in Q that is connected to r(X) and s(Y).

The connected subgoals for a subgoal r(X) , denoted Cr^ , is the set of all subgoals
in a query Q that are connected to r(X).

In the search for the partial mappings in p5, we focus only on the set of subgoals

in Q' that are connected to r(Xi) through some join variables. Other subgoals can be
mapped using the identity function. The following example illustrates this. Consider
the query Q defined as follows.

Q: h{A) :- r{X, Y, Z), s(Z, W),r(A, B, C), s{C, D),t(D, E).

Let r{X{) = r(X, Y, Z) and r(X2) = {A B, C). Then, applying ? = {X/A, Y/B, Z/C}
on Q would generate the following query Q' .

Q': h(A) :- s(C, W),r(A, B, C), s(C, D),t(D, E).

Here, the partial mapping from Q' to Q for the subgoals r(A,B, C), s(C, D), and

t(D, E) in Q' is based on identity. The reason is that these subgoals are not joined
directly or indirectly with r (X, Y, Z). Finding such subgoals is polynomial and can
reduce the search space significantly. In this example, after identifying the subgoals

that use the identity mapping, the search is limited to s(C, W). That is, we need to

find a partial mapping that maps s{C, W) in Q' to some subgoal in Q. The partial

mapping for s(C, W) is {C/C, W/D}, based on which the containment mapping from
Q to Q is {A/A, C/C, W/D, B/B, D/D, E/E}.

Based on this, we define Test IV that checks if µ?, µ?, or µ3 form a containment

mapping from Q' to Q.

Test IV: Let ? be a substitution that maps X\ to X2- To find a valid mapping

that satisfies the containment test, we reduce the search space as follows.

90

1. Find the Source: Compute C1-(X1) and apply the substitution ? on the result. We
refer to the result as Source, i.e., Source— C7-(X1)O which is a set of subgoals in
Q'-

2. Find the Target: Compute C7-(X2). VFe refer to the result as Target, i.e., Target=
Cr(x2) which is a set of subgoals in Q.

3. Find a mapping from variables in Source to those in Target.

Even though these steps might reduce the search space, but finding mapping in

Test IV, in general, is exponential in the number of subgoals in L' . To speed up Test
IV. we consider the following heuristics.

1. Before minimization, group the subgoals in the query body based on their pred-

icate name, and sort groups ascendingly based on the number of variables.

2. During test IV, when searching for containment mapping from Q' to Q, the
mappings ß2, µ?, and µ? are verified in that order. This is because, intuitively,
µ2 is less likely to have conflict compared to other mappings, and giving it a

higher priority is often expected to result in early termination of the containment
test.

3. During test IV, when we combine the partial mappings of different subgoals in
Source to subgoals in Target, we use a breadth-first search approach.

It is important to note that testing containment of Q in Q' in the context of query
minimization is a restricted form of the containment problem because Q' itself is the

result of applying an endomorphism on Q. As shown in our experiments, exploiting
these heuristics results in considerable speed up.

The ideas above are formally stated as a minimization algorithm, proposed next.

91

4.4 Our Proposed Algorithm

In this section, we introduce our minimization algorithm.

Algorithm QS (Input: Q, Output: Q')

Begin

1- Group subgoals based on predicate names and sort them

based on the arities of the predicates.

2- For every group <?, and for every pair of subgoals r(Xi) and
r(X2) in g, perform tests I, II, III, and IV in that order
to verify if ? : ?? —> X2 is a minimizing substitution.

If yes, apply ? on the query.

3- Repeat step 2 until there is no minimizing substitution.

4- Return Q' as the minimized query.
End.

The following example illustrates the steps of our minimization algorithm.

Example 4.5 Consider again the query Q in example 4-2.

Q: h() :- r{A, A, B), r{D, D, A), r(D, C, F), r(C, D, G), r(C, E, G).

There is only one predicate in the body of Q, so there is only one group of subgoals. We

start step 2 by taking pair r(C, D, G) and r(D, D, A) as r(Xi) and r(X2). respectively,

and check if ? = {C/D, D/D, G/A} is a minimizing substitution. For this, we perform
tests I. II. III. and IV as follows.

Iteration #1

Test I is satisfied because the following conditions hold.

(l)¥c(r(C,D,G)) < FD(r(D,D,A))

(2)FD(r(C,D:G)) < FD(r(D,D,A))

92

(3)¥G(r(C,D,G)) < FA(r(D,D,A))
Test II is satisfied because the following conditions hold.

(l)FD(r(C,D,G)) < FD(r(D,D,A))
(2)TA(r(C,D,G)) < ¥A(r(D,D,A))

Test III is satisfied because query head has no attribute.

Test IV is satisfied because µ2 — {pi,p3,p5} is a containment mapping from Q' to
Q, explained as follows.

1. Find the source of mapping by applying ? on Cr(c,D,G)·

Cr{C,DtG) = {r(A,A,B),r(D,D,A),r(D,C,F),r(C,D,G), r(C,E,G)}. There-
fore, Source= Cric,D,G)ö = {r(A, A, B),r(D, D, A),r(D, D, F), r(D,E,A)}.

2. Target= Cr{D>D,A) ={r(A, A, B), r(D, D, A), r(D, C, F), r(C, D, G), r(C, E, G)).

3. We see that µ2 = {pi,P2, Ps) = {A/A, B/B, D/D, F/A, E/D) can map subgoals
in Source to subgoals in Target. So we conclude that r(C, D, G) is redundant,

and to remove it, we apply the mapping (C, D, G) —» (D, D, A) on Q. This
results in the following intermediate query with fewer subgoals in the body than

Q which we use as the input query for the next iteration.

Q: h() :- r(A, A, B), r(D, D, A), r(D, D, F), r(D, E, A).

Iteration #2

In the second iteration, we consider r(D,D,F) and r(D,D,A) as r(Xi) and

T-(A2), respectively. We then check if ? = {D/D.F/A) is a minimizing substitu-
tion. For this, we perform tests I, II, III, and IV as follows.

93

Test I is satisfied because the following conditions hold.

(l)FD(r(D,D,F)) < ¥D(r(D,D,A))

(2)FF(r(D,D,F)) < FD(r(D,D,A))
Test II is satisfied because the following conditions hold.

(l)FD(r(D,D,F)) < FD(r(D,D,A))
(2)FA(r(D,D,F)) < FA(r(D,D,A))

Test III is satisfied because query head has no attribute.

Test IV is satisfied because µ? — {??,ß?,?d} is a containment mapping from Q' to
Q, explained as follows.

1- £t(d,d,f) = {r(A,A,B),r(D,D,A),r(D,D,F),r(D,E,A)}. Thus, Source=
Cr{D,D,F)0 = {r{A, A, B),r(D, D, A),r(D, E1 A)}.

2. Target=C{D,DA) = {r{A, A, B), r(D, D, A),r{D,D, F),r{D, E, A)}.

3. Here, the breadth-first search finds the identity mapping in the first try that
maps Source to Target.

As a result, we conclude that r(D,D,F) is redundant. To remove it, we apply the

mapping (D, D, F) —> (D, D, A) on Q. The resulting query is as follows.

Q: h() :- r(A, A, B), r(D, D, A), r(D, E, A).

Iteration #3

Next, let us consider r(D,E,A) and r(A,A,B) as r(X-¡) and r(X2), respectively.
That is, ? = { D¡A, E/A, A/B]. Here, Test I succeeds but Test II fails because the
following condition is not satisfied.

YA(r(D,E,A)) = (0,0,1) g P^r(AAi)I=(M1O).
As a result, ? is not a minimizing substitution.

94

Iteration #4

Next, we consider r (D, E, A) and r(D,D,A) as r (X1) andr(X2), respectively. Ac-

cordingly, ? = {D/D, E/D,A/A}. Here, Tests I, II, HI and IV succeed. We illustrate
the detail for Test IV as follows.

1- Cr(D<EtA) = {r(A,A,B), r(D,D,A), r(D,E,A)}, therefore,
Source= Cr(D,E,A)e = MA D, A), r{A, A, B)).

2. Target= Ct(d,d,A) = MAA-B), r(D,D,A), r(D,E,A)}.

3. Here, the breadth-first search finds the identity mapping in the first try. As a

result, (D, E, A) is redundant and we apply the mapping (D, E, A) —> (D, D, A)
on the query. This results in the following query.

Iteration #5

Next, we consider r (A, A, B) and r(D,D,A) as r (??) and r (X2), respectively.
Accordingly, ? = {A/D, B/A}. Here, Test I succeeds but Test II fails so ? is not a

minimizing substitution.

Iteration #6

Next, we consider r(D,D,A) and r(A,A,B) as r(Xi) and r(X2), respectively.

Accordingly, ? = {D/A,A/B}. Here, Test I succeeds but Test II fails so ? is not a
minimizing substitution. Since there is no more pair to consider, we conclude that

the following is the minimized query.

Q: h() :-r(A,A,B),r(D,D,A).

Next, we analyze the complexity of the proposed algorithm for identifying and

removing redundant subgoals in a query.

95

4.5 Complexity

The following theorem specifies the complexity of our query minimization algorithm.

Theorem 4.3 Minimization of a conjunctive query Q is exponential in the number

of repeated variables in the body of Q.

Proof Let Q be a conjunctive query with ? subgoals consisting of m groups of different

subgoals with fi as the number of subgoals in each group. That is, ? = Y^L1 fi- Since,
we need to consider every pair of repeated subgoals r(Xi) and r(X2) in each group,

the number of combinations to consider is /¿(/¿ — 1), and since there are m groups,

there are Y^L1 fi{fi — 1) possibilities. Let us assume that every group i has f subgoals.
Then we would have mf(f — 1) combinations, for each of which we need to perform

tests I, II and HI. That is mf(f — l)[cost(I) + cost(II) + cost(III)], where cost(c) is
the cost of testing condition c. We will see that Cost(III) is exponential, while tests I
and II are polynomial, so, we can ignore the latter two in our complexity analysis.

Now, we consider cost of test HI. Without loss of generality, assume that every

subgoals has a variables. While performing test III, we have to find a containment

mapping from the Source Cx1O to the Target C^2. Since the mapping should respect
the join variables in both Source and Target, we can use the repeated variables (most

of which are join variables) as a guideline. Every two occurrences of a variable A in
the Source can be expressed as a constraint. For example, if Source contains subgoals

S1 = r(A, B, C) and S2 = r(M, N, A), we can express it as the constraint Si[I] = S2[S],
i.e., first variable in Si is equal to the third variable in S2- Suppose there are C
constraints in the Source. We check if there exists a set of subgoals in the Target

that satisfies all these C constraints. For this, we define C buckets, one for each

constraint. In every bucket, we have the left hand side (LHS) and right hand side

(RHS) subgoals. For example, for the constraint S1[I] = S2[S]. knowing that we have

96

/ occurrences of subgoal r, we need to compare every single subgoal with other subgoals
in this group including itself to check if the constraint is satisfied. That is, f subgoals

for LHS and f subgoals for RHS which makes f2 possible cases, and since we have C
buckets, the total number of possibilities we have would be f2C . Thus, the total cost
for Test III is mf(f-l) f2C, which is exponential in the number of repeated variables
in Cx1O. ¦

4.6 Summary

Query minimization is not a new problem however, it has become more important
because in the last decade the number of the applications that generate queries auto-

matically has increased, many of which generate queries with redundancy. One such
example is query rewriting.

In this chapter, we studied the problem of query minimization in the context of

conjunctive queries and proposed a novel minimization algorithm. In the following

chapter, we present the experiments we performed to evaluate the efficiency of our
query rewriting algorithm with and without our query minimization algorithm and

report the result.

97

Chapter 5

Experiments and Results

In this chapter, we present our experiments and results of performance evaluation of

the proposed query minimization and rewriting algorithms.

We used two sets of input (conjunctive) queries, (1) "real" queries collected from

papers related to query rewriting and (2) synthetic queries.
Since the number of queries in the first category is small, we used them mainly

to confirm the correctness of our implementations. The second category contains

different types of conjunctive queries including Chain, Star, Duplicate Random, All-

Range, Augmented Path, Augmented Ladder, and Snowflake queries. Augmented
path and ladder queries are special cases of Chain queries, and Snowflake queries are
special case of Star queries.

For Chain, Star, Duplicate, and Random queries, we adopted a query gener-

ator from [PLOO]. For the rest, we developed a query generator based on their
description. Sample queries are made available at http://users.encs.concordia.ca/"

alLkian/samples/.
We developed an experiment platform with a user-friendly interface using which

we could choose the type of experiments: query minimization or query rewriting.

Moreover, using the interface we could choose the query type for each experiment and

98

set the values for the related parameters including number of variables in subgoals,

number of subgoals in queries, number of repetition of each experiment, total number
of iterations, number of subgoals to be added to input at each iteration, number of
views to be added to input at each iteration, time limit, etc.

For query rewriting experiments, we designed the interface such that we could

choose the desired approach for each phase of rewriting. We could also enable and/or

disable query minimization on input and/or output of our query rewriting prototype.
In all cases, exploiting query generator was such that identical input would be

provided to the competing algorithms.

For query minimization experiments, we compare our minimization algorithm with
the Kunen-Suciu algorithm. For each query type, we consider proper parameters so

that we can compare our results with those reported in [KS02].

For query rewriting experiments, we compare our pattern-based algorithm with
Minicon and Treewise algorithms. For each query type, we consider proper parameters

so that we can compare our results with those reported in [PLOO] and [MS08] . In query
rewriting experiments, we measure memory requirement, efficiency and scalability for

three rewriting algorithms: Minicon, Treewise, and our pattern-based. Moreover,

we exploit query minimization on both input and/or output of our query rewriting

algorithm. In the next section, we briefly describe the types of queries we used in
our experiments. In Section 5.2, we report the experiments and results for query

minimization, and in Section 5.3, we explain the experiments and results for query

rewriting.

5.1 Classes of Queries

For the synthetic data in our experiments, we used different classes of queries. Each
class has a number of parameters using which we generated different instances of

99

the given class. For this, we adopted and used the query generator developed for

Minicon [PLOO] to generate Chain, Star, Duplicate and Random queries. We also
extended the classes considered and created what we refer to as All-Range queries

[KS09]. Moreover, to compare our minimization algorithm with the one introduced
in [KS02], we developed query generator for Augmented Path queries, Augmented
Ladder queries, and Snowflake Star queries used in [KS02].

5.1.1 Chain Queries

Each query in this class has subgoals that are chained by join variables. The following

example shows a Chain query with 3 subgoals, and 3 distinguished variables in which
variable C chains the first and the second subgoals, and variable E chains the second

and third subgoals.

Q : h{A, B, F) :-r{A, B, C), s{C, D, E), t{E, F).

The parameters to generate Chain queries include the number of subgoals, number
of variables in every predicate, and number of distinguished variables in the query.

5.1.2 Star Queries

Star queries form a class of conjunctive queries in which a "central" subgoal is joined

with all other subgoals in the query. The following example shows a Star query with

4 subgoals, and 3 distinguished variables in which u is the central subgoal joined with
other subgoals in the query based on their first variable.

Q: h{A,B,G) :-r{A,B,C):s{D,E,F),t{G,H),u{A,D,G).

A generic Star query can be defined based on the number of subgoals, number of
variables in each subgoal, and number of distinguished variables.

100

5.1.3 Duplicate Queries

Since different occurrences of the same predicate may have significant impact on

the performance of query rewriting, we generated and used Duplicate queries with

different number of repetition of predicates. The following example shows a Duplicate

query, in which predicate r occurs 3 times in the body.

Q: h(A,D) :-r{A,B,C),r(C,C,F),t{B,H),r(A:D,E).

5.1.4 Random Queries

In a Random query, the join structure, number of variables and their occurrences are

decided randomly. We could think of such a query as a generic case of Chain, Star, and

Duplicate queries. The parameters of a generic Random query include the number
of subgoals, number of variables in every predicate, and number of distinguished
variables.

5.1.5 All-Range Queries

The coverages generated in query rewriting for the classes of queries mentioned above
do not contain all possible cases. To push the algorithms to their limits, we also con-

sider new classes of queries queries and views that generate coverages with all possible

occurrence identifiers. For example, for a query with 3 subgoals, we have 7 possible

occurrence identifiers. The All-Range queries can generate coverages with identifiers

in the range of 1 to 2""1. Unlike the classes of queries described earlier, the definition
of query and views in this class are closely related. The following example shows a

query and views that generate all possible coverages (in this case 7 coverages) [KS09] .

Q : h{) :- T0(A01, A02), T1[A01, A12), T2(A02^12).

101

V1 : V1[A011A02) :- T0(A01, A02).
V2 : V2[A01, A12) :- T1(A01, A12).
V3 : V3(A02, A12) > T0(A01, A02), T1(A01, A12).

Vi : vA(A02, A12) :- T2(A02, A12).
V5 : V5(A01, A12) :- T0(A01, A02), T2(A02, A12).

V6 : V6(A01, A02) :- T1(A011An)1T2(A0^A12).

V7 : ?7() :- T0(A01, A02), T1(A01, A12), T2(A02, A12).

In this example, each view V¿ provides only one coverage. The index chosen for
each view indicates the occurrence identifier for the related coverage. To generate such

query and views, we need to know the number of subgoals in the query. Assuming
that the query has ? subgoals and that each view is responsible for generating one

coverage, to generate all possible occurrence identifiers, we need 2" — 1 views [KS09].
First, we generate a query with ? subgoals. In order to generate a coverage with

the identifier 2" — 1, we need all subgoals in the query to be joined. Moreover,

these subgoals should also appear in the related view where the join variables are not

distinguished, otherwise, the view will not give a coverage containing all the subgoals
but several smaller coverages whose identifiers are less than 2" — 1. So, there are

the two important points to consider when generating All-Range queries, (1) every
subgoal in the query is joined with every other subgoal, but uses different variables

each time, and (2) distinguished variables in the views should be selected in such a
way that the coverage cannot be broken into smaller ones.

In our example, we consider a query with ? — 3 subgoals, so we have 3 join
variables: A01 is the join variable between r0 and T1, A02 is the join variable between

r0 and r2, and A12 is the join variable between T1 and r2.

When generating each view t>¿, 1 < i < 2" — 1, to form the body of i'¿, we pick
subgoals from Q based on the binary representation of the view index (i.e.. i), and

102

add it to Vi. That is, if there is a 1 at the kth position in the binary representation

of i, then we add the subgoal at position k in Q to the body of Vi. To form the

view head, we copy all the variables to the view head except the join variables of the

subgoals copied in the view.

5.1.6 Augmented Path queries

An augmented path query is a special type of Chain query which consists of a path
of length ? with an additional dangling edge rooted at each node except the last. An

augmented path query of length ? has 2n subgoals. The following is an example of
such a query.

Q : h() :-r{A0, A1), r(Au B1), r(A0, A2), r(A2, B2), r(A0, A3) tr (A3, B3).

Figure 5.1. (a) illustrates the path formed by variables in Q [KS02].

5.1.7 Augmented Ladder queries

Ladder queries are Chain queries in ladder-like structure with all edges pointing from

upper left to lower right [KS02]. An augmented ladder query is also defined as a
ladder query with additional dangling edges attached to each node.

For instance, Figure 5.1.(c) illustrates the path formed by variables in the following
query [KS02].

Q : h() :-r{B1,AF),r(AF,A0),r(A0,AL),r(AL,B2),
r(B3, AF),r{AF, A1), T(A1, AL), r{AL, B4),

r(Bb, AF), r(AF, A2), r(A2, A1), r(AL, B6).

103

JT
S

?
\ / ?

o»> f» <o

F', li) b(y',j)F?) b(yj) f?)

P(X,-.J p(x.y.z)

dx.l e(y,m) f(z,n) J(z ,n) e(y ,m)

(d)

Figure 5.1: (a) Augmented Path Query, (b and c) Augmented Ladder query, and (d)
Snowflake) query [KS02]

5.1.8 Snowflake queries

Snowflake queries found in data warehouse applications ([KS02]), are special cases of

Star queries that have a central subgoal with each variable joined to a pair of side

subgoals [KS02]. Side subgoals are joined through an extra copy of the central subgoal
with its variables renamed [KS02]. An example of a snowflake query is illustrated in

Figure 5.1.(d).

104

Next, we report the results of our experiments for different classes of queries. We

first present the performance evaluation results for query minimization algorithm and

then consider experiments and results for query rewriting algorithm.

5.2 Query Minimization

In order to evaluate the performance of our minimization algorithm, we developed in

Java, a version of our algorithm and a version of the minimization algorithm reported

in [KS02] to which we refer as Kunen-Suciu algorithm. We attempted to ensure the
efficiency of our implementation of Kunen-Suciu algorithm matches with what they

have reported for different types and sizes of queries in [KS02] .

For evaluating and comparing our algorithm, we conducted extensive experiments

for which we used a Pentium 4, 1.73 GHz desktop computer with IGB RAM running

MS Windows XP. In our experiments, the amount of heap used never exceeded 32MB.

For these experiments, we consider six types of queries. They include Chain,

Duplicate, Star, Augmented Path, Augmented Ladder, and Snowflake Star queries.

To evaluate the efficiency and scalability of our query minimization algorithm,

we created test data of various sizes and tried to push the algorithm to its limits by

increasing the number of subgoals in the queries. Figures 5.2 and 5.3 show query
minimization time in seconds for Chain and Duplicate queries, respectively. We can

see that in both cases, our minimization algorithm outperforms Kunen-Suciu algo-

rithm. These figures also show the effectiveness of the heuristics in our minimization

algorithm. In these experiments, we increased the number of joins in the input query

to more than 1000 joins.

As shown in Figure 5.3, we could process Duplicate queries with 1000 joins in

about 1 second. This is due to the presence of many redundant subgoals in such

queries resulting in a rapid decrease of query size. In our experiments, we observed

105

Query Minimization for Chain Queries

18

16

14

¦g 12
c
O
g 10-1
o

S 8

¡= 6
4

2

0

-Kunen-Suciu

-Our Minimization without
Heuristics

-Our Minimization with Heuristics

I I I I [I I , I L I I I I I 1 1 ? ? I .

^mMfHHfI
» # _»« # # # # ,»"> jP (P »o» # # # «? «S> # # # ##°

Number of subgoals

Figure 5.2: Average minimization time for Chain queries.

that the sooner a redundant subgoal is identified the faster minimization performs.

This is an important role of the heuristics we used which help identify redundant

subgoals in earlier in the process.

In our experiments, since Chain and Star queries usually do not contain as many

redundant subgoals as Duplicate queries do, the minimization times for them were
relatively higher compared to Duplicate queries.

Regarding Augmented Path queries, as reported in [KS02], Kunen-Suciu algo-
rithm took about 57 seconds to process such queries with 1000 subgoals, whereas our

minimization algorithm performed this in about 35 seconds. For Snowflake queries

with central subgoals with arity 20, and 1 to 20 sets of side subgoals and complete side
loops between side subgoals, Kunen-Suciu algorithm completed the task in around 28
seconds whereas ours completed this in less than 5 seconds. For Snowflake queries,

we continued increasing the query size to more than 4500 subgoals for which our

minimization algorithm took around 40 seconds. The minimization time reported

106

Query Minimization for Random Duplicate Queries

16

14

12
CO

1 ioo
?
O
» 8

I 6

04

Kunen-Suciu

Our Minimization Algorithm without Heuristics
Our Minimization Algorithm with Heuristics

???????????????????????

N <> ? * ?> ? f <? 1? Í ^ ,0? ^P ?«? scf> ^o ß> fí ^f> ,f>
Number of subgoals

Figure 5.3: Average minimization time for Duplicate queries.

in [KS02] is close to the minimization time of our implementation of Kunen-Sucio
algorithm that confirms fairness of our comparison. We need to mention that Kunen-
Suciu used a Pentium 4, 1.7GHz, linux, C++ for their experiments whereas we used

a Pentium 4, 1. 73GHz, Windows XP, Java.

Figures 5.4 and 5.5 compare the results of our minimization algorithm with Kunen-

Suciu algorithm for augmented ladder and snowflake queries. In each case, we show

the impact of our heuristics on the performance too.

The improved performance of our algorithm compared to Kunen-Suciu ([KS02]),
can be explained by noting that regardless of the query type, Kunen-Suciu algorithm

needs to evaluate the query Q at least once on the canonical database which is de-

fined based on Q. Considering a query with hundreds of subgoals, this evaluation is

relatively expensive even if it is done only once. This, however, is not the case for

our algorithm, since as the experiments show, in most cases our heuristics were able
to identify a proper minimization substitution early in the process.

107

Query Minimization for Augmented Ladder Queries
140

120

100
U)

§ 80
f
U)

f 60
e

40

20

-Kunen-Suciu

-Our Minimization Algorithm without Heuristics
"Our Minimization Algorithm with Heuristics

o lglifiaSffWrfnrtTiT^rr, t, ? --,-,- , ri , ?, p ...?» ?
^ ¿V * <?> ^ ^ ^ ^ ^V # ¿> & & & ^ & ^

Number of subgoals

Figure 5.4: Average minimization time for Augmented Ladder queries.

5.2.1 Application in Query Rewriting

In order to test our minimization algorithm in situations closer to real life applica-
tions, we considered query rewriting as an application where query minimization can

be used and performed numerous experiments. In these experiments, we ran the pro-

posed query minimization technique on the input queries and also on the generated
rewritings.

We used Chain. Duplicate, and Star queries. For each experiment, we randomly

generated a query Q and a set of views V as the input to our rewriting algorithm,

which generated rewriting Q'.

We measured the total time for query rewriting, area of rewriting (a measure which

considers the number of subgoals in the body of the rewriting generated) , scalability

108

Query Minimization for Snowflake Queries

40
Kunen-Suciu

35 Our Minimization Algorithm without Heuristic:

Our Minimization Algorithm with Heuristics30

(A

1 25

" 20

E 15

10 i

5 A

9171 8141 51 6111 21 311

Number of subgoals

Figure 5.5: Average minimization time for Snowflake queries.

on the number of views, and minimization time. While types of queries and views, the

number of repeated subgoals as well as the size of rewriting are important factors in
performance of query minimization, the results of our extensive experiments indicate

that applying minimization on Q as a pre-processing step to rewriting improves the
performance in the above aspects, in general. Similarly, applying minimization on
the output of rewriting improves the area significantly. Figures 5.6 and 5.7 show in

logarithmic scale, the average area and average total time for rewriting of minimized
versus non-minimized queries. The figures show the best case (minimized input and

minimized rewriting), versus the worst case (no minimization). That is, the graph for
Minimized/Minimized represents the case where both input and output of rewriting
were minimized. Similarly, the graph for non-Minimized/non-Minimized represents
the cases where minimization was not used.

In the queries generated for the experiments in Figures 5.6 and 5.7, the average

109

10000000

1000000

Area of Rewriting: Minimized vs Non-Minimized

100000

10000

- Non-Minimized/Non-Minimized
- Minimized/Minimized

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Views

Figure 5.6: Area of rewriting for minimized vs non-minimized query.

number of predicates, variables, and distinguished variables are 15, 4, and 2, respec-
tively. As shown in Figure 5.6, for an input of 10 views, the average area size (number

of subgoals in the rewriting) is near 7000, whereas without minimization, it is more
than 100,000 subgoals. This significant improvement on the area can be considered
as indicative of the rewriting quality. Note that in these experiments as the number

of views increases, the area of the rewriting does not necessarily increase.

Also, as shown in Figure 5.7, applying minimization to the input query Q improves

the rewriting time and scalability as the number of views grow. For example, for 15
views, it took about 1 second, on average, to obtain a rewriting for minimized input,

whereas it took more than 1.5 hours for a non-minimized query.

110

Rewriting Time: Minimized vs Non-Minimized

10000000

1000000

100000

10000

- Non-Minimized/Non-Minimized
- Minimized/Minimized

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Views

Figure 5.7: Total rewriting time for minimized vs non-minimized query.

5.3 Query Rewriting

In this section, we report the experiments and results for query rewriting. For the

synthetic data, we considered different classes of queries. For every class of queries,
input parameters to define instances of queries and views included query type, num-

ber of subgoals, number of variables in each subgoal, number of distinguished vari-
ables, and number of subgoal repetition. For every test, we repeated the experiments

many times (100 times in most cases). We consider different measures including

memory requirement, performance, scalability, and quality of rewriting, and com-
pare the results with (two implementations of) Minicon [PLOO], Treewise [MS08],
and our pattern-based rewriting technique. The implementations of Treewise and an
implementation of Minicon were provided to us by the authors of [MS08]. In their

work, they showed the correctness of their implementation of Minicon algorithm and
matched the performance with the results reported in [PLOO]. We also developed our

111

version of Minicon algorithm in which we used view-based approach for finding atomic
coverages and used exclusion set technique to perform the Cartesian products of the

buckets used by Minicon to generate the rewriting. As discussed in Chapter 3, view-
based approach generates a minimum number of coverages in a natural way whereas

the subgoal-based approach (used in Minicon) requires some bookkeeping for that
purpose. We refer to our view-based (VB) version of Minicon as VB-Minicon, and

naturally witness improved performance compared to the original Minicon algorithm
as shown in our experiments.

We also developed a prototype of pattern-based query rewriting technique. In the
first phase of rewriting, pattern-based technique uses view-based approach to look

for atomic coverages, and in the second phase, it follows the Prevention approach
and considers patterns as a guide to perform the Cartesian product for combining

coverages.

Since the Treewise algorithm naturally generates rewritings that are shorter in the

number of subgoals in the body than Minicon (and have a better area), in order to
make comparison fair, in all these experiments, we exploit our query minimization on

the output of the rewriting, unless mentioned otherwise. Our goal is to compare the

performance of the rewriting for the same inputs and the same output. Our results
indicate that in most cases, our technique is much faster than other techniques and

generates rewriting with smaller areas (see Section 5.3.3).

5.3.1 Memory Requirement

In this section, we report the memory requirements for the four algorithms Minicon,

VB-Minicon, Treewise. and pattern-based query rewriting. In our experiments, we

realized that rewriting of All-Range queries requires more memory compared to other

types of queries. So, to push all these algorithms to their limits, we used All-Range

112

Memrory Requirement for Query Rewriting

MS
450

? Pattern-based /

H Treewise400
B Minicon

MW
m 350 iSVB-Miniconi

& ?
C 300

s» 250

V:1-28128

/100
Si

<"?50

G??88?3?{8?» -'Wh=UK0
64 128 256 512 1,024 2,048

Number Of Views

Figure 5.8: Comparison of memory requirement for Minicon, VB-Minicon, Treewise
and pattern-based algorithms

queries and ran the experiments for different numbers of views.
As shown in Figure 5.8, pattern-based algorithm requires the least amount of

memory. At each step, the same input was used for all these algorithms. For the
inputs containing 63 and 127 views (with 203 and 877 rules generated in the rewrit-

ing), all the four algorithms completed the process using 16 MB of memory. For

255 views (4140 rules in the rewriting), both versions of Minicon required 64 MB,
Treewise required 32 MB, but pattern-based required 16 MB as before. For 511 views

(21147 rules in the rewriting), Minicon algorithms could not complete the task due
to memory exception. For this case, Treewise and pattern-based completed the task
using 128 MB and 32 MB, respectively. To explain why Minicon algorithms crashed,

we examined the buckets structure. For 511 views (and a query with 9 subgoals),

113

we had 9 buckets each containing 256 coverages which means Minicon needed to per-
form 2569 Cartesian products. Treewise could finish the task because of its top-down

decomposition approach which helps prune away many unnecessary combinations.
The case was easier for pattern-based because it basically broke this large Cartesian

product into 21147 smaller Cartesian products. For 1023 views (115975 rules in the

resulting rewriting), pattern-based was the only algorithm that could complete the
task for which it used 128 MB of memory. We continued with 2047 views (678570

rules in rewriting) for which pattern-based completed the task using 448 MB of mem-
ory. The pattern-based algorithm could not complete the task for 4095 views where

there were 4213597 rules in the resulting rewriting [KS09].

5.3.2 Efficiency and Scalability

To evaluate the efficiency and scalability of the algorithms, we considered Chain, Star,

Duplicate, Random, and All-Range queries. For each case, we used the same input to

the four algorithms and compared their performance in terms of the rewriting time.

We start with All-Range queries for which Figure 5.9 shows the rewriting time.

As we can see, the rewriting time for up to 32 views is almost the same for all these

algorithms, however, for larger inputs, our pattern-based algorithm outperforms oth-

ers, significantly. For instance, for 127 views, pattern-based, Treewise, VB-Minicon
and Minicon took 625 ms, 3875 ms, 187000 ms, and 134344 ms, respectively. For

255 views, pattern-based completed in 2031 ms- almost 10 times faster than Treewise

(21641 ms). The Minicon algorithms could not finish this task. As the input size
increased, the gap in the efficiency between pattern-based and Treewise increased.
For example, for 511 views, pattern-based completed in about 8 seconds, whereas
Treewise finished in 153 seconds.

Each view in the example of All-Range queries provided in section 5.1.5, has

114

200,000

180,000

160,000

140,000

120,000

100,000

80,000

60,000

40,000

20,000

0

Query Rewriting Time

-Pattern-based
-Treewise
-Minicon
-VB-Minicon

1 4 16 32 64 128

Number Of Views

256 512 1,024

Figure 5.9: Rewriting time for All-Range queries with up to 10 subgoals

600,000 -,

500,000

— 400,000V)

f

I 300,000

200,000

100,000

Query Rewriting Time

-Pattern-based
-Treewise
-Minicon
-VB-Minicon

64 128 192 256 320 384 448 512 576 640 704
Number Of Views

Figure 5.10: Rewriting time for All-Range queries with 6 subgoals and up to 20
repetitions of view types

115

Rewriting for Chain Queries with 4 subgoals and
Join variables distinguished

35,000

30,000

25,000

— 20,000
o
e

S 15,000 ¦
o
H

10,000

5,000

• Pattern-based with minimization

—«— Treewise

A Minicon

)(Pattern-based without minimization

0 W !««¦¦»¦»frrftytti«»»««
** **********-******A*i^^WwW**

s "b fo q, st, f ^1 0n
Number of Views

Figure 5.11: Rewriting time for Chain queries with 4 subgoals and all join variables
distinguished

a unique combination of subgoals that results in coverages with unique identifiers.

Figure 5.10 illustrates the rewriting time for All-Range queries which contain up to

20 instances of views with the same coverages. At each iteration in this experiment

and during view generation, we increased the number of views by incrementing the

number of repetitions of views with the same coverages.

So far, we illustrated the rewriting time for All-Range queries. In what follows,

we focus on the same types of queries and input discussed in [PLOO]. Since the
two versions of Minicon are almost identical in terms of performance and memory

requirements, in the rest of the discussion we refer to both versions as Minicon.

Moreover, to show the overhead of the query minimization algorithm, we ran pattern-

based with and without minimization and present the results. Next, we consider

Chain queries. Figure 5.11 shows the rewriting time for Chain queries with four

subgoals and all join variables distinguished. Pattern-based algorithm, with and

116

without minimization, outperform others. The results also show that the overhead of

the minimization algorithm is not considerable.

Figure 5.12 shows the rewriting time for Chain queries with 8 subgoals and all

variables distinguished. As we can see, the best performance is by pattern-based algo-
rithm without minimization, however, compared to pattern-based with minimization,

the overhead of minimization seems not considerable. In all runs of this test, pattern-

based with minimization outperformed Treewise and Minicon algorithms significantly.

Chain queries with 8 subgoals and all variables distinguished

80.000 SWSSSäiäjS

70,000 Pattern-based with minimization
Treewise
Minicon
Pattern-based without minimization

60,000

w 50.000

40,000

30.000

20,000

10.000

12 3 4 5 6 7

Number of Views

10 11

Figure 5.12: Rewriting time for Chain queries with 8 subgoals and all variables dis-
tinguished

Figure 5.13 shows the query rewriting time for Star queries with 10 subgoals

and non-join variables distinguished. As we can see, pattern-based algorithm with
and without minimization outperforms Treewise and Minicon, and Treewise performs

slightly better than Minicon. We can also see that the difference in rewriting time
between all these algorithms is less than 1 second. The reason is that there were few

rules in the output of the rewriting of these queries.

117

Rewriting time for Star queries with 10 subgoals with
non-joined variables distinguished

1,400
Pattern-based with minimization

1,200 Treewise

Minicon1,000
m-H- Pattern-based without minimization

CO
800

c 600
H

¦¿¿*
400

200

V* T? V t*5 V "C? V 9? °? CT ">
Number of Views

Figure 5.13: Rewriting time for Star queries with 10 subgoals and non-join variables
distinguished

Figure 5.14 shows the rewriting time for Star queries with 10 subgoals and all join
variables distinguished. For these experiments, we increased the number of views and

measured the time, the number of rules in the output, and their areas. We observed

that increasing the number of views does not always result in increasing the time. For

this reason, we illustrate the rewriting time based on the number of rules in the output

which clearly indicate that pattern-based algorithm with minimization outperforms

Treewise and Minicon. For example, for 30 views, where there are 129024 rules in

the rewriting, pattern-based finished in less than 10 seconds, whereas Minicon and
Treewise needed at least 35 seconds.

To evaluate the performance for Duplicate queries, we considered queries with 12

subgoals, 5 duplicate subgoals and 4 distinguished variables. Figure 5.15, compares

the rewriting time for Duplicate queries in which pattern-based algorithm outperforms
the others. For this sets of experiments, we applied minimization on the input query

118

Star queries with 10 subgoals and join variables distinguished

45,000

40,000

35,000

-Pattern-based with minimization
-Treewise
-Minicon
-Pattern-based without minimization^ 30,000

25.000

20.000

15.000

10.000

5,000

Number of Rules in rewriting

Figure 5.14: Rewriting time for queries with 10 subgoals and all join variables distin-
guished

as well. We observed that when there are some redundant subgoals in the input

query and/or views, the rewriting time reduces significantly. As a result, increasing
the number of views does not necessarily result in increase in the rewriting time. We

thus show for this set of experiments only the rewriting time based on the number of
rules generated.

For experiments on Random queries we considered queries with 10 subgoals each

having a maximum of 5 variables and the rest of the parameters were decided ran-

domly. Similar to the case of Duplicate queries, we enabled minimization on the

input. Figure 5.16 shows the rewriting time and as can be seen, pattern-based algo-
rithm shows to be superior to others, with the overhead of minimization being not
considerable.

119

Rewriting Time for Duplicate Queries

Pattern-based with minimization

Treewise

Minicon

Pattern-based without minimization
« 3000

<£i n^ nS> c£ r£V t£ iP oí« <i* <& c$ c£ r£> t£¿? & & & ^ & & <$> ^f ¿p ¿P $> ^ ,/
Number of Rules

Figure 5.15: Rewriting time for Duplicate queries with 12 subgoals

5.3.3 Rewriting Quality

Figure 5.17 compares these rewriting algorithms based on the quality of the rewriting

they generate, measured by area (the total number of subgoals in the output). The
rewriting time for these experiments is illustrated in Figure 5.12 for Chain queries

with 8 subgoals and all the variables distinguished. An important point here is that
pattern-based with minimization was not only faster but also generated a better

quality result. The quality for pattern-based without minimization and Minicon are
identical as expected.

Figure 5.18 compares the area of the output for Star queries. The rewriting

time for this experiment is illustrated in Figure 5.14. The interesting point here is
that considering the last two runs, even though the number of rules increased from
124,416 to 129,024, the final area of the rewriting decreased in both pattern-based

with minimization and Treewise. This is important as it shows the effectiveness of

120

Rewriting Time for Random Queries

25,000

20,000

¿ 15,000
f
E

I 10,000
I-

5,000 4

¡ —?— Pattern-based with minimization
J —®— Treewise

; 4 Minicon

' —*— Pattern-based without minimization

<V ??-· f' t>- #· ^- ^- #' <?' ^- ??" <£>' ?^- „?>'
Number of Rules

Figure 5.16: Rewriting time for Random queries with 10 subgoals

the minimization technique.

5.4 Summary

In this chapter, we presented the results of our experiments for evaluating perfor-

mance of our query minimization algorithm for different types and sizes of queries,

and showed its superiority over the existing minimization algorithms. Moreover, we

experimentally compared our pattern-based query rewriting with and without our

minimization technique against existing rewriting solutions and showed that even

with the overhead of query minimization, our rewriting technique outperforms other

techniques.

So far our focus has been on standard conjunctive queries. In the next chapter,

we investigate the query rewriting problem in the context of conjunctive queries with

121

Chain queries with 8 subgoals and all variables distinguished

1,600,000 -r,

1,400,000

1,200,000

1,000,000

800,000

600,000

400,000

200,000

0

—?— Pattern-based with minimization
-e-Treewise

Minicon
Pattern-based without minimization

4 5 6

Number of Views

Figure 5.17: Area for queries with 8 subgoals and all variables distinguished

constraints.

122

Star queries with 10 subgoals and join variables distinguished

1,400,000

1,200,000

1,000,000 -g

800,000

600,000

400,000

200,000

0

0 Pattern-based with minimization
SSTreewise
¡1 Minicon
¡3 Pattern-based without minimization

sum

<mm>

¿Riga-.

io

m

•V \N N° V

Number of Rules in rewriting

Figure 5.18: Rewriting area for queries with 10 subgoals and all join variables distin-
guished

123

Chapter 6

Query Rewriting for Conjunctive

Queries with Constraints

In Chapter 3, we investigated the problem of query rewriting in the context of stan-

dard conjunctive queries. In this chapter, we extend the problem to conjunctive

queries with constraints. It has been shown that, in general, adding constraints

to conjunctive queries adds to the complexity of both query containment and query

rewriting problems. However, there are certain classes of conjunctive queries with con-

straints for which the complexity of query containment remains in NP. Such queries

are said to satisfy the homomorphism property [Klu88]. In this chapter, we identify
new such classes of conjunctive queries with constraints, and extend our pattern-based

rewriting algorithm to support such queries.

6.1 Introduction

As explained in Chapter 2, containment of standard conjunctive queries is character-

ized based on single containment mappings. While the complexity of containment of
standard conjunctive queries is NP-complete, it has been shown that the complexity of

124

Containment of conjunctive queries with constraints is Ilf-complete [Klu88, Mey92].
The reason is that for such queries, two or more containment mappings may team up

and satisfy the containment requirement. In other words, to reject the containment

of Qi in Q2, we should consider and test all possible combinations of containment
mappings. On the other hand, there are conjunctive queries with constraints that

do not require such an expensive test. Since containment test for such queries is

based on single containment mappings, they are said to have homomorphism prop-
erty. That is, as in the standard case, to establish the containment for queries with
homomorphism property, we need to find a single containment mapping that satisfies

the containment requirement, and to reject the containment, we need to reject all

single containment mappings.

Previous studies ([Klu88, GSUW94, ALM04]) identified classes of conjunctive

queries with constraints that satisfy homomorphism property [Klu88]. In this chap-
ter, we extend the result in [ALM04] and identify new classes of such queries that
have homomorphism property.

In order to keep the complexity of the problem limited to query containment and

not directly "influenced" by constraint solving, we restricted our attention to Linear
Arithmetic Constraints which can be solved in polynomial time.

We refer to such conjunctive queries as Conjunctive queries with Linear Arithmetic

Constraints, or CLAC for short [KS05a, KS05b]. CLAC queries appear frequently
in database applications. For instance, consider the following typical SQL query on

relation schémas r(X, Y, Z) and s(T, U, W).

Example 6.1 [CLAC Query]
SELECT X

FROM r, s

WHERE X < 2Y AND Z = T AND U < W;

125

This query can be expressed as the following CLA C query.

Q1: h(X) :-r(X,Y,Z),s(Z,U,W),X <2Y, U <W

Next, we formally define the CLAC queries [KSlO].

Definition 6.1 A CLAC query Q is a conjunctive query of the form:

Q ¦ h{X) :-gi(Xi),··· ,9k{Xk),ati,··· ,an,

where h(X) is the query head, and every Ci(Xi) is a subgoal. Let S be the set of all
the variables and constants in the body of Q. Every head variable and every argument

in the subgoals Ci(Xi) is a linear arithmetic expressions over S. Every constraint otj
is of the form Ex ? ET, where E¡ and Er are linear arithmetic expressions over S, and

? is a comparison operator from {<,<,>,>,=, 7^}·

Example 6.2 Let r(X, Y, Z) and s(T, U, W) be two relation schémas. The following
query illustrates another example of CLAC query based on r and s.

Q2: h(2X + 1, W) :-r(X, Z + 2,Z),s(5Z,U,W), U <W
Here, the set of variables and constants in Qi is S = {X, Z, U, W, 2,1}, and the linear
arithmetic expressions defined over S include 2X + 1, Z + 2, 5Z, and Z.

Similar to the standard conjunctive queries, containment and rewriting of CLAC

queries are characterized using the notion of containment mapping. However, since

containment mappings do not map expressions but only single variables, we cannot

find mapping for general form of CLAC queries. For this, we define the notion of

Normalized CLAC query.

Definition 6.2 (Normalized CLAC) A CLAC query is normalized if every argu-
ment in the head and subgoals is a single variable.

The procedure to normalize a CLAC query is as follows.

126

Definition 6.3 (CLAC Normalization) Given a CLAC query Q, for every argu-
ment E in the head or subgoals in Q, if E is not a variable, replace it by a new

variable Anew, and append the constraint Anew—E to the list of constraints in Q.

The following example illustrates how to normalize a CLAC query.

Example 6.3 Consider the CLAC query Q2 in Example 6.2. To normalize it, we

consider the arguments in head or subgoals that are not single variables. They are

{2X + 1,Z + 2, 5Z}. We define A1 for 2X + I, replace 2X + 1 with A1 in the head,
and add constraint A\ = 2X + 1 to the query body. Similarly, we replace arguments

Z + 2 and bZ with the new variables A2 and A3, respectively, and append constraints

A2 = Z + 2 and A3 = bZ to query body. The resulting query is as follows.

Q3: h{A1,W):-r(X,A2,Z),s(A3,U,W),U<W,A1=2X+l,A2=Z+2,A3=5Z.

In the rest of our discussion, we assume the CLAC queries are normalized, unless

specified otherwise.

It is easy to see that the class of CLAC queries extends conjunctive queries with

arithmetic comparisons which were studied in previous work on query containment

and rewriting [Klu88, GSUW94, ALM02, KS05b]. In fact, conjunctive queries with

arithmetic comparison (AC queries) include constraints in the forms ?T? and ^4Oc,
where A and B are variables, c is a constant, and ? G {<, <, >, >, =, f}.

The rest of this chapter is organized as follows. Next, we study the containment

of queries with constraints. In section 6.3, we introduce new classes of conjunctive

queries with homomorphism property and in section 6.4, we provide a rewriting al-

gorithm for CLAC queries with homomorphism property. It is equally important to

recognize classes of CLAC queries for which homomorphism property does not hold.

We elaborate on this in Section 6.6 and identify such classes. Section 6.7 summarizes

this chapter.

127

6.2 Containment of Queries with Constraints

Since query rewriting is based on the notion of containment, in this section, we study
the problem of query containment in the context of CLAC queries, and then focus on

rewriting of such queries. A containment mapping from query Qi to Q2 is a function
that maps variables in Qi to those in Qi.

As shown in previous studies, the presence of constraints affects the requirements

for query containment. To illustrate this point, we compare containment in the
standard case (conjunctive queries with no constraints) [CM77] with containment in
conjunctive queries with arithmetic comparisons [Klu88, IS99], and show that the

results from [Klu88] carry over to CLAC queries.
Theorem 6.1 characterizes containment of conjunctive queries for the standard

case [CM77], and Theorem 6.2 does this for conjunctive queries with arithmetic com-
parisons (AC queries) [Klu88].

128

Theorem 6.1 Containment of Standard Conjunctive Queries [CMIl]:
Let Q1 and Qi be conjunctive queries defined as follows:

Q1: h(X) ^g1(X1),- ¦¦ ,gk(Xk)
Q2: h(Y):- P1(Y1), ¦¦-, P1(Y1)

Q2 is contained in Q1 (denoted Q2 Ç. Q1) if and only if there exists a containment
mapping from Q1 to Q2 ·

Theorem 6.2 Containment of queries with arithmetic comparison[Klu88j:

Let Q1 and Q2 be conjunctive queries defined as follows:

Q1 : h(X):- C1(X1),- ¦¦ ,Ck(Xk), Otx, ¦¦ ¦ ,Ctn

Q2: h(Y) ^p1(Y1),- ¦¦ ,P1(Y1)^1,- ¦¦ ,ßm

where each a ¿ and ßj is of the form ?T? where A is a single variable and B is either

a single variable or a constant. Let C — {a¿|l < i < ?} and D = {/3j|l < J < rn} be
the set of constraints in Q1 and Q2, respectively. Then, Q2 Q Q1 if and only if the

implication D =>¦ µ? (C) V · ¦ · V ßq(C) holds, where each µ, is a containment mapping
from Q1 to Q2 .

It has been shown that the complexity of the containment test for standard case

is NP-complete and for AC queries is nf-complete [Klu88, Mey92]. Note that the
added complexity in containment test for AC queries compared to the standard case

is due to the disjunction in the implication test defined in Theorem 6.2.

6.2.1 Containment of CLAC Queries

In this section, we show that Theorem 6.2 is also applicable to establish the contain-

ment for CLAC queries. The following Lemma 6.3 shows that every CLAC query can

be transformed to an equivalent AC query with a set of auxiliary views [KS05b]. Us-
ing this, in Theorem 6.4, we show the requirements for containment of CLAC queries

129

are the same as AC queries [KSlO].

Lemma 6.3 Every CLAC query can be transformed to a conjunctive query with arith-

metic comparisons using a set of auxiliary views.

Proof Let Q1 be a CLA C query, defined as follows.

Q1 : h(X):- C1(X1),- ¦¦ , gk(Xk),oti, ¦ - ¦ ,Ctn

where a¿ — LiOiR1, in which Li is the left hand side, Ri is the right hand side, and #¿

is a comparison operator.

For each constraint en in Q1 and based on the subgoals in Q1 that share some

variable with Li or R in a¿. we define an auxiliary view Vi, as follows.

Vi : Ui(Ni5Mi1Xi1,--- ,XiJ .--Ci1(Xi1),- ¦¦ ,Cin(Xin),
N1 = Lu

Mi = R

where Ni and Mi in the head of i>¿ are two new variables defined based on L^ and

R (appeared in oti), and the rest of variables in the view are the variables/constants
of the subgoals contributed to the definition of Vi, in the order in which the subgoals
appear. Note that some variables might appear multiple times in the head of view,

however, this is for ease of presentation of the proof and with a minor modification
we can remove repeated variables from the head.

Also, note that not all the subgoals in the query body contribute to the definition
of a constraint. For such subgoals, we define a view V0. The difference between V0

and other views is that in the head of V0, we introduce no new variable.

V0 : V0(Xq1 ,-¦¦ ,X0n):- 9o, (Xq1), ··· , Qon (Xon)

130

Now, we define Q2 using the set of views as follows:

Q2: h(X):-v0(X'0l,---,X~0p),
V1(N1, MuX11, ·¦ ¦ ,Xlp), N1O1M1,

Vn(Nn, Mn, X~ni , ¦ ¦ ¦ , Xnp), NJnMn
where 0¿ is the comparison operator in q¿. Also, note that for each ai in the original

query Q, we considered a constraint iV¿ojM¿ in Q2 which is in the form of arithmetic

comparison.

It can be shown that Q2 = Q1. For this, we unfold Q2 using the definitions of

the auxiliary views [UIlOO]. After expansion, we get the same set of subgoals (some
of which might be repeated) and the same set of arithmetic constraints (a¿ 's), because
originally we defined every A^¿o¿M¿ based on a constraint a¿. This means, we can

transform every CLAC query to an AC query and a set of auxiliary views. M

The following example illustrates details of the transformation process.

Example 6.4 Transform the following CLAC query Q1 to an AC query Q1 and a
set of auxiliary views.

Q1: h(X) :-r(X,Y,Z),s(Z,U,W),X + 2Y > Z, U >W

Here we have two constraints, each of which defines an auxiliary view.

1. (X + 2Y > Z) defines the auxiliary view V11:

V11 : V](N1 , M1, X, Y, Z, Z, U, W) :- r(X, Y, Z), s(Z, U, W),
N1 = X + 2Y, M1 - Z

2. (U > W) defines the. auxiliary view V2 :

131

F21 : V2-(TV2, M2, Z, U, W) :- s(Z, U, W), N2 = U, M2 = W

Note that since the variables in the first constraint come from subgoals r and

s, both subgoals will contribute to the definition of v\, i.e., the subgoals related to
constraint X + 2 > Y are r(X, Y, Z) and s(Z, U, W). However, since all the variables
in the second constraint appear only in subgoal s, only s and its variables appear in

the definition of V2. Based. on these two views, we define below an AC query Q1 that
is equivalent to Q1 .

Q[: h(X) :- v\ (N1 , M1 , X, Y, Z, Z, U, W) , N1 > M1 ,

V^(N2, M2, Z, U, W), N2>M2.

Unfolding the views will yield the same original query. Note that since the auxiliary

views are conjunctive queries, we regard and treat each v* in the body of Q\ as a base
relation.

Next, we define the containment for CLAC queries [KSlO].

Theorem 6.4 Let Q1 and Q2 be CLAC queries. Then Q2 C Q1 iff the implication

D => µ? (C) V · · · V ßq{C) holds, where C and D are linear arithmetic constraints in
Q1 and Q2, respectively, and each µ» is a containment mapping from Q1 to Q2-

Proof Based on Lemma 6. 3, we create the following A C queries Q1 and Q2 which
are equivalent to Q1 and Q2, respectively.

Q\ : h(X) .-Vl(X01, ¦¦¦ ,Xo1,), Vl(Nl1MlX11,- ¦¦ ,Xlp), ¦·¦ ,
Vi(Nl Ml ?~??,---,?-??), ?\T\??,..., N^1Ml

Q2: h(X):-v20(X~0lr-- ..?'?^-,??????,?^,--- ,Xlg), ¦¦¦ ,
vl(Nl,Ml,X-mi,--- ,X'mq), N^]Ml--- ,NlOl1Ml

132

It is easy to see that there is no containment mapping from Q[to Q2, because
their subgoals are distinct. In order to get the same set of containment mappings that

exist from Q1 to Q2, we modify Q2 while maintaining its equivalence to Qi.

For this, we find all the containment mappings µ^ from Q1 to Qi. If there is no
containment mapping, then the containment test fails. Otherwise, for every contain-

ment mapping µ.,·, we apply µ7· on every subgoal of Q1 (i.e., v\) and append the new
subgoal ßj(v\) to the body of Q2. We call the resulting query Q2. Note that Q2 ? Q2
because every newly added subgoal originates from a containment mapping from Q1

to Q2 whose target subgoals have already been in Qi, and hence in Q2. Therefore,

only some repeated subgoals are added to Q2, and Q2 = Q2.
For instance, assume that u is the only containment mapping from Q1 to Qi. It

maps subgoals in the body of Q1 to a subset of subgoals in Qi . Corresponding to this
mapping, we append ?" = µ(?$) to Q2 and define Q2. If we unfold both Q2 and Q2, we

can see that unfolding Q2 might generate more subgoals all of which already appeared
in the unfold of Q2 .

Now, we consider the containment of Q2 in Q1. As these two queries are AC

queries, we can apply Theorem 6.2. Note that we already have all the containment
mappings from Q1 to Q'i, since we actually built Q2 based on such mappings, i.e.,

those from Q1 to Qi.

So, Q2 ? Q1 iff D' =*? µ? (C") V ¦ · · V µ, (C"), where D' is the set of constraints
N?0jM? of Q'i, and C contains the constraints Nj9?Mj in Q1.

Now, if we replace N¡Of Mfs and /V72E^Ai72S with their original definitions in the
body ofv}s andv?s, we get a new implication to be tested, i.e., D =F· µ? (C)V- · ·\/µ9(0),
where D and C are the set of constraints in Q2 and Q1 , respectively. M

133

Qi — Q'i
i i
Q2 — Q2

Figure 6.1: Transforming CLAC query into an AC query while maintaining the con-
tainment mapping

Figure 6.1 illustrates the steps of the above proof. Theorem 6..4 characterizes
containment of CLAC queries. It confirms that containment of CLAC queries and

AC queries have the same requirements and are of the same complexity. The following
example illustrates details of Theorem 6.4.

Example 6.5 Consider query Q1 and Q1 (its equivalent) from. Example 6.4 together
with query Q2 defined as follows:

Q1: h(X):-r(X,Y,Z),s(Z,U,W), X + 2Y > Z, U >W.
Q2: h(X):-r(X,Y,Z),s(Z,U,W),s(Z,W,U), X > Z - 10, 2Y > 0.

To test the containment of Q2 in Q1, based on Theorem 6.3. we first transform Q1

and Q2 to AC queries. The AC query equivalent to Q1 is shown in Example 6.4, and

the AC query equivalent to Q2 is as follows:

V12 : vi(N3, M3, X, Y, Z, Z, U, W, Z, W, U) :-r(X, Y, Z), s(Z, U, W),
s(Z, W, U), N3 = X, M3 = Z- 10.

V12 : v¡(N4, M4, X, Y, Z) :- r(X, Y, Z), N4 = IY, M4 = 0.

Q2 : h(X) :- v¡(N3: M3, X, Y, Z, Z, U, W, Z, W, U), N3 > M3,
vl(N4, M4, X, Y, Z), N4 > M4.

Next, we find the containment mappings from Q1 to Q2. Here, we get two sets of

134

Containment mappings, shown as follows.

/X1 = {X/X, Y/Y, Z/Z, U/U, W/W} maps the body OfQ1 to subgoals r{X,Y,Z)
and s{Z, U, W), and µ2 = {X/X, Y/Y, Z/Z, U/W, W/U} maps the body of Q1 to
subgoals r(X, Y, Z) and s(Z, W, U) .

For every containment mapping //¿, we apply /x¿ on every auxiliary view of the first

query (ßi(v^)) and append it to the body of Q'2. That defines Q2.
Q2' : h(X) :- v¡(N3, M3, X, Y, Z, Z, U, W), N3 > M3

v¡(N4, M4, X, Y, Z), N4>M4,
v\ (N1, M1, X, Y, Z, Z, U, W, Z, W, U) , v\ (N2 ,M2, Z, U, W),
vl(N{, M{, X, Y, Z, Z, W, U, Z, U, W), v\(N2, M2, Z, W, U).

We assume that the auxiliary views in the body of Q2 and Q1 are base relations.
In Theorem 64, it is shown that Q1 = Q[, and Q2 = Q2. Therefore, if Q2 C Q[then

Q2 E Qi- Based on Theorem 6.2, we have to verify the following implication.

[(N3 > M3) ? (TV4 > M4)] =»
[[(Ni > M1) ? (TV2 > M2)] V [(N[> M[) A (N^ > M$] .

Now if we replace the variables by their definition, we get

[(X > Z - 10) ? (2Y > O)] =*¦
U(X + 2Y > Z) ? (U > W)] V [(X + 2Y > Z) ? (W > E/)]] . This

is nothing but the implication test for CLA C queries. It is easy to verify that in this
example, Q2 is contained in Q1 .

Note that to test containment of CLAC queries we do not need to transform them

to AC queries.

So far, we showed that containment requirements for CLAC queries and AC

queries are the same. Next, we explain the differences between the containment

135

of standard conjunctive queries and CLAC or AC queries.

Example 6.6 Consider the following queries Q1 and Q2:

Q1: h(X):-p(X),r(Y,Z),Y<Z

Q2: h(X):-p(X),r(Y,Z),r(Z,Y)
In order to test Q2 QQi, we apply Theorem 6.2. For that, we find all the contain-

ment mappings from Q1 to Q2: µ? = {?/?, Y/Y, Z/Z} and µ2 = {?/?, ?/?, Z/Y),
and accordingly, test the implication as follows.

D =f· /Xi (C) V- -V^(C) ?
True =? µ?{? < Z)V µ2(? < Z) =

True ^ (Y < Z)V (Z < Y).
It is easy to see that no single term on the right hand side can be derived from the

left hand side, however, the disjunction is always true, making the whole implication
true.

Since testing the implication for disjunction is expensive, this example raises the
question that are there classes of queries for which we do not need to consider the
expensive test for disjunctions? Next, we introduce such queries and their syntactic
characteristics.

6.2.2 Importance of Homomorphism Property

In previous section, we showed that the difference between the containment of stan-
dard conjunctive queries and CLAC queries is due to the disjunction in the implication

test in Theorem 6.2. Previous studies ([Klu88, ALM04]) on containment of conjunc-
tive queries with constraints identified classes of queries for which containment could
be tested using a single containment mapping, hence the complexity of containment
remains the same as in the standard conjunctive queries. This is defined using the

notion of homomorphism property.

136

Definition 6.4 (Queries with Honiomorphism property [Klu88]) Let Qi and
Q2 be conjunctive queries. Q\ and Q2 have homomorphism property if containment
of Q2 in Qi could be tested using a single containment mapping.

It is important to note that when homomorphism property holds, to reject the

containment of Q2 in Q1, every containment mapping from Q1 to Q2 should be ex-
amined.

In the next section, we introduce two new classes of queries with homomorphism

property which extend the class of AC queries with homomorphism property defined

in [ALM04] . The desired characteristics of such a class H is that checking membership
of a given pair of queries Q1 and Q2 in H is syntactically polynomial.

6.3 Classes of Queries with Homomorphism Prop-

erty

In this section, we review extensions of conjunctive queries that enjoy the homomor-

phism property.

1. Conjunctive Queries with Equality Constraints (CQEC Queries) [KS05b, KSlO]

2. Conjunctive Queries with Arithmetic Comparison (AC Queries) [KSlO]

3. CQEC+AC Queries [KSlO]

Next, we study these classes in details.

6.3.1 Conjunctive Queries with Equality Constraints

We define Conjunctive Queries with linear Equality Constraints (CQEC) as follows

[KS05b].

137

Definition 6.5 (Conjunctive Queries with Linear Equality Constraints) A CQEC
query Q is a CLA C query in which comparison operator in the constraints is the equal-

ity (=). That is, every constraint a is of the form Ei = Er, where E¡ and Er are
linear expressions over the variables and constants in Q.

Examples of such queries are as follows.

1. Q1: h(X,T):-ri(X,H), r2{X, N, R), T = H - R + IQON

Note that in this query, the head variable T is defined as an expression over the

variables of the subgoals in the body.

2. Q2: /IpO-S1(X5F1, C1, y), s2(X,V2,C2,Y1), V1 + C1 = V2 - C2,

Y1 = Y + !

In this query, the constraint part filters out the tuples for which the conditions
V1 + C1 = V2 — C2 and Y1=Y + 1 are not satisfied.

As can be noted in the above examples, such constraints play two major roles in

CQEC. A common major role is asserting a condition on the query. The other is

defining a variable in the query head based on other variables. Next, we show that
CQEC queries enjoy homomorphism property [KSlO].

Theorem 6.5 (Containment of CQEC Queries) Let Q1 be a CQEC query and
Q2 any CLAC query. Then, homomorphism property holds for containment of Q2 in
Qi-

Proof Applying Theorem 6.4, it is straightforward to transform Q1 and Q2 to con-
junctive queries with arithmetic comparison in which Q1 would have variable equal-

ity constraints (i.e., constraints in the form of A = B where A and B are single

variables). When testing implication, we can see that on the right hand side of the

138

implication we will only have equality constraints that cannot form a "coupling" (a
disjunction of terms on the right hand side where none of them alone is implied by

the left hand side of the implication, however, together they are implied). As a result,
either there exists a single term that satisfies the implication or the implication fails.

This is nothing but homomorphism property. M

6.3.2 Homomorphism Property and Conjunctive Queries with

Arithmetic Comparison

Afrati et al. [ALM04] studied classes of queries with homomorphism property. These
classes are special cases of AC queries. They introduced the conditions £1; C2, C$,

TZi, TZ2, and TZ3 that identify such classes [ALM04]. First, we review the conditions
for queries with Left Semi-Interval comparisons.

• Left Semi-Interval Comparisons (LSI) [ALM04]:

Let Qi be an AC query with Left semi-interval arithmetic comparisons only

(X < a or X < a, where X is a variable and a is a constant), and Q2 is any
AC query. If Qi and Q2 satisfy all the following conditions, then homomorphism
property holds. First, we define the terms used in these conditions.

— Close-LSI: A constraint in the form of X < a.

- Open-LSI: A constraint in the form of X < a.

- Core(Qi): the set of ordinary subgoals in the body of Q1.

— AC(Qi): the set of AC constraints in the body of Q1.

Note that similar terms are defined for RSI queries.

139

C\ : There are not subgoals as follows which all share the same constant a:

An open-LSI subgoal in AC(Qi), a. closed-LSI subgoal in the closure of

AC (Q2), and a subgoal in core(Qi). This basically prevents forming the
following coupling:

X<a^(X<aVX = a)

£,2 '¦ Either core(Qi) has no shared variable or there are not subgoals as follows
which all share the same constant a: An open-LSI subgoal in AC(Qi), a

closed-LSI subgoal in the closure of AC(Q2) and, a subgoal in core(Q2).
This basically prevents forming the following coupling:

(X < a ? Y = a) => (X < a V X = Y)

£3 : Either core(Qi) has no shared variables or there are not subgoals as fol-
lows which all share the same constant a: An opèn-LSI subgoal in AC(Qi)

and two closed-LSI subgoals in the closure of AC(Q2)· This basically pre-
vents forming the following coupling:

(X <a A Y <a) ^(X<aVY<aVX = Y)

• Right Semi-Interval Comparisons (RSI) [ALM04]:

Three conditions, TZi, TZ2, and TZ^ that are similar to those in LSI, Ci, C2, and

£3 but revised for RSI, identify when homomorphism property holds for a given

pair of AC queries, Qi and Q2-

• Afrati et. al also studied queries with both LSI and RSI constraints (Semi-

Interval), and queries with Point-Inequality (constraints of the form A f a

140

for constant a), and introduced classes with HP [ALM04]. We do not go into
details of homomorphism propertyfor AC queries with Semi-Interval or Point-

Inequality because we were not able to extend their results to CLAC queries
with Semi-Interval or Point-Inequality constraints.

Example 6.7 Consider the following queries Qi and Q2 where Q2 is contained in

Qi. Since Qi has only LSI constraints, we test the conditions Ci, C2, and £3·

Q1: h(X):-r(X,Y,4),Y<4,
Q2: h{X):-r(X,A,4),r{X.,3,A),A<4

Note that in this example, conditions Ci and C2 are applicable, however, neither

one is satisfied. This is because the following three subgoals share the constant 4:

(1) Y < 4 (open-LSI in Qi), (2) A < 4 (closed-LSI in Q2), and (3) r{X, Y, 4)
(a subgoal in Core{Qi)). Accordingly, we cannot conclude whether homomorphism
property holds or not, and to test the containment, we need to apply Theorem 6.2.
For that, we find all the mappings and test if the constraint implication holds as

follows. For Q1 and Q2, there are two mappings from Qi to Q2, µ? — {?/?, Y¡A},
µ2 = {?/?,?/3,(?' = 4)/?}.

A < 4 =» µ?(? < 4) V µ2{? < 4) =
A<4^(i<4)V(3<4AA = 4) =

A<4=ï{A<4)V{A = 4).
That is, implication holds, but as we can see, it is based on a team up of two

mappings and not a single mapping.

The following example illustrates a case where homomorphism property holds,

however, the conditions in [ALM04] could not help detect this. In section 6.3.3, we
extend these conditions which help identifying new classes of AC queries that satisfy

homomorphism property.

141

Example 6.8 Consider the following queries which are very similar to those in Ex-

ample 6.7.

Q1: h():-r(X,Y,Z),Y<4,
Q2: h():-r(X,A,A),r(4,3,A),A<4

For the same reason as in Example 6. 7, the LSI test fails in this case which means

we do not know if the homomorphism property holds. However, if we form the impli-
cation test, we can see that actually homomorphism property holds. The containment

mappings we consider are µ? = {?/?,?/?,?/4}, µ2 = {X/^,Y/3,Z/A}, for which
we have:

A < 4 => µ?(? < 4) V µ2(? < 4) =

A <4=> (A < A)V {3 <4).
The implication holds since the constraint 3 < 4 in the disjunction evaluates the

whole right hand side to True.- That is, the containment test is established using only

a single containment mapping.

In the next section, we define new conditions to identify more AC queries that

satisfy homomorphism property.

6.3.3 More AC Queries with Homomorphism Property

In our analysis of conjunctive queries with constraints that satisfy homomorphism

property, we identified some other conditions that are necessary for forming a coupling
in the implication test. We noted that if these conditions are violated, then the

implication holds if and only if at least a single containment mapping satisfies the test,

i.e., homomorphism property holds. The important point to note is that testing these

conditions is polynomial. Moreover, these conditions are applicable to all subclasses

of AC queries defined in section 6.3.2. This extends the classes of AC queries with

142

homomorphism property identified in [ALM04]. Before introducing these conditions,
we first define some terms.

We define the notion of Join-Closure based on connected subgoals (see Defini-

tion 4.5), as follows [KSlO].

Definition 6.6 (Variable Join-Closure) Let Q be a conjunctive query, and A be

a variable which appears in a subgoals r(X) in the body of Q. The join closure of A,

denoted S*A is the set of subgoals in the body of Q connected to r(X).

We use the term "repeated subgoal" to refer to occurrences of subgoals with the

same predicate name in the body.

Let Qi be an AC query with Left Semi-Interval (LSI) arithmetic comparisons only

(X < c or X < c, where X is a variable and c is a constant) , and Qi be any AC query.
If Qx and Q2 satisfy at least one of the following conditions, then the homomorphism

property holds [KSlO].

C4: The variable in every closed-LSI in the closure of AC(Qi) has appeared in less
than two repeated subgoals in Core(Qi).

This basically prevents formation of the following couplings:

X < a =*> (X < a V X = a),

(X <a ? Y = a) =» (X < a V X = Y) or

(X < a A Y <a) => (X <a V Y < a y X = Y)

where a is the shared constant.

It is easy to verify C4 by looking at the right hand side of these couplings.

That is, variable X has appeared in at least two subgoals in Core(Q2), and in
different positions; otherwise we would not ha\re X in different disjunctions.

143

C5. There is no repeated subgoal in Core(Q2), or the variable in the subject closed-

LSI in the closure of AC(Q2) has not appeared in the repeated subgoals or it has
appeared in the same positions in the repeated subgoals.

Condition C5 does not allow forming any of the above three types of coupling,

explained as follows. If there is no repeated subgoals then we do not have

multiple containment mappings. If we have repeated subgoals and variable X

in the closed-LSI has not appeared in the repeated subgoals or has appeared

in the same position, then it cannot appear in two different constraints on the

right hand side of disjunctions in the implication test, hence coupling cannot

happen. That is, if the variable in closed-LSI is not connecting the repeated

predicates then the homomorphism property exists. The following example

illustrates details of C5.

Example 6.9 Consider the following queries Qi and Q2 where repeated sub-

goals in Q2 do not share a variable. Condition C\ for homomorphism property

of AC queries does not conclude that these queries satisfy homomorphism prop-

erty, however, since variable A and constant 4 that appeared in the first subgoal

do not appear in the second subgoal, the homomorphism property holds.

Q1: /i():-r(*,4), X<4

Q2: h():-r{A,4),r{Z,D),A<4.

£6: The variable A in the open-LSI appears in the head of Q1.

If Cq holds, then A cannot be mapped to different variables of Q2. The reason

is that in such cases the heads do not match and we do not have multiple

containment mappings.

144

Also, we note that to form a coupling, it is vital that variable A in the open-LSI

is mapped to different variables; otherwise, it would form the same constraint

in the disjunction.

Example 6.10 Consider the following queries that are similar to those in Ex-

ample 6. 7. Note that variable Y in open-LSI is a head variable and cannot be
mapped to two variables.

Q1: h(Y):-r(X,Y,Z),Y <4,

Q2: h(A):-r{X,A,A)AZA,A),A<A

The LSI conditions in [ALMO4] cannot determine that the homomorphism prop-
erty holds, however, our condition Cq implies this.

C-j: Recall the notion of Variable Join-Closure defined in Section 6.3.3. Assume that

A is the variable in the open-LSI in Q1, and that there exists a variable B in

the head of Qi where JA = JJ^. Let S be the set of join variables in the subgoals

in Tb- If there exists a variable XeS such that no two partial mappings map
X to the same variable, then the homomorphism property holds.

The reason is that to form a coupling we need at least two containment map-

pings. Since B is a head variable it has to be mapped to the same target in

every containment mapping so does every variable X that is a join variable in

the subgoal of B and some other subgoal. If there is a variable X for which
no two partial mappings map X to the same variable we know that coupling

cannot happen.

The following example illustrates a case where £7 is applicable.

145

Example 6.11 Consider the following AC queries.

Q1: h(M):-r(X,Y,Z),s{Z,M),Y<4,

Q2: h(N):-r(X,A,4),r(4,3,A),s(A,N), A<4

The LSI conditions defined in [ALMOJ1.] cannot determine homomorphism property,
however, based on the new condition C7, we now can conclude that the homomorphism

property holds. The reason is that M is a head variable in Qi which is chained with

Y (open-LSI variable), and there is only a single subgoal with a potential target N

for M . To form the coupling, we need some containment mappings that map Y to

different variables, and map Z to the same variable which is not possible.

Similar to conditions, C4, C5, C6, and C7 for LSI, we can define conditions TZ4,

Tl5, TZ6, and TZ7, for RSI queries. Using these conditions we can identify more AC

queries that enjoy homomorphism property.

Next, we introduce another subclass of CLAC queries for which we identify some

necessary conditions of homomorphism property.

6.3.4 Homomorphism Property and Conjunctive Queries with

Equality Constraints and Arithmetic Comparisons

In this section, we introduce Conjunctive Queries With Equality Expression and

Arithmetic Comparison (CQEC+AC) which contains both equality constraints (de-

fined in section 6.3.1) and LSI, RSI or SI constraints (defined in section 6.3.2), and
identify some of the conditions under which CQEC+AC queries have homomorphism

property.

Definition 6.7 (Queries with Equality Constraint and Arithmetic Comparison)

A CQEC+AC query Q is a CLAC query in which every constraint a¿ is either of the

146

form ?? = Er or AdB, where Ei and Er are linear arithmetic expressions over vari-
ables and constants in Q, A is a variable, B is either a variable or a constant, and ?

is a comparison operator in {=, <, <, >, >, f}.

In our analysis, we noted that adding equality expression to AC queries changes

the way in which subgoals and variables are related. Intuitively, in CQEC+AC

queries, a variable might not be used in a subgoal r but could be related to r indirectly
through other variables. To formalize this, we define the notion of Variable-Subgoal

relationship as follows [KSlO].

Definition 6.8 (Variable-Subgoal Relationship) Let Q be a CLAC query, and

s(X) be a subgoal in Q. If variable A can be defined as a function of the variables X in
as(X), we say that A has appeared in s(X) , directly or indirectly. If the function is the
identity function, then A has appeared directly; otherwise, A has appeared indirectly.

Based on this notion, we extend conditions C4, C5, Cq and C7 for testing ho-

momorphism property for CQEC+AC queries considering the cases where a variable
appears in some subgoals indirectly.

Let Q1 be a CQEC+AC query with Left semi-interval arithmetic comparisons
and Q2 be any CQEC+AC query. If Qi and Q2 satisfy at least one of the following

conditions, then the homomorphism property holds [KSlO].

C4 : The variable A in every closed-LSI in the closure of AC(Q2) has appeared in
less than two repeated subgoals in Core(Q2), directly or indirectly.

C5 : There is no repeated subgoal in Core(Q2), or the variable A in the subject
closed-LSI in the closure of AC(Q2) has not appeared in the repeated subgoals

(directly or indirectly) or A has appeared in the same positions in the repeated
subgoals (directly or indirectly).

147

C6 : The variable A in the open-LSI appears in the head of Qi, directly or indirectly.

Example 6.12 Consider the following queries that are similar to those in Ex-

ample 6. 7. Note that variable W in the head can be defined based on the variable
Y which is in the open-LSI hence Y cannot be mapped to two variables.

Q1 h(W):-r(X,Y,Z), Y <A,W = 2*Y

Q2 h(A):-r(X,A,4),r(3,4,A),A<4

The LSI conditions cannot determine homomorphism property, however, based

on condition C6, we can conclude that the homomorphism property exists.

C7 : Assume that A is the variable in the open-LSI in Q1. Moreover, assume that
there exists a variable B appeared in the head of Q1, directly or indirectly,

where TA = J*B- Let S be the set of join variables in the subgoals in J*B. If there
exists a variable XeS such that no two partial mappings map X to the same

variable, then the homomorphism property holds.

The following example shows that the conditions for identifying homomorphism

property in AC queries are not applicable for CQAC+EC queries.

Example 6.13 Consider the following queries Q1 and Q2.

Q1 h():-r{X,Y), Y<5,X + 1 = Y

Q2 h() :-r{A,B),r(3,A),A< 4,A + 1 = B.

Here, since OLSI (Y < 5) and core(Q2) {r(A,B),r(3,A)} in this example do not
share a constant, the conditions defined for AC queries in [ALMO4J confirm that ho-

momorphism property holds, however, this is not the case. That is, unlike AC queries,

148

in order to show that homomorphism property does not hold in CQAC+EC queries,

the terms OLSI, CLSI, and a subgoal in core(Q,2) do not need to share the same con-

stant. The implication test based on the containment mappings µ\ = {X/A,Y/B}

and ß2 = {X/3, Y/A} is as follows.
(?<4?? + 1 = ?)^>(?<5??+1 = ?)?{?<5?3 + 1=?)??
(?<4?? + 1 = ?)^>(?<4?? + 1 = ?)\?(? = 4:)??
(A < 4 ? A + 1 = B) => (A < 4) V {A = 4) = True.
That means, Q-¿ E Qi-

Similar to conditions, C4, C5, Ce, and C7 for CQEC+LSI queries, we can define

conditions W4, Tl5, W6, and W7 for CQEC+RSI queries.

6.4 Query Rewriting for CLAC Queries with Ho-

momorphism Property

In this section, we extend our proposed pattern-based query rewriting algorithm

([KS09]) to support CLAC queries with Homomorphism Property.
Recall that a rewriting R of a query Q is a set of rules (conjunctive queries),

each of which is contained in Q. We get the union of contained rules to generate the

Maximally Contained Rewriting.

The following example illustrates query rewriting for CLAC queries with homo-

morphism property.

Example 6.14 Let r (A, B) ands(C,D,E) be relations. Consider the following query
and views:

Q : h{X, Y) :- r{X, Y) , s(Y, Z, W) , X < 3, Z = 2

V1: V1(A, B) :-r(A, B)

149

V2: v2{B, D) :- s(B, D, D)

V3: V3(A, C) :- r(A, D), s(D, C,D)

Rule R below is a contained rewriting for Q. The reason is that if we unfold views

Vi, V2 and V3 [UIlOO], we get a query which satisfies the containment i? Ç Q.

R : h(X, Y) :- Vi(X, Y), V2(Y, Z), X < 3, Z = 2

h(X,Y) :- V3(X, Z), X <3,Z = 2

In example 6.14, there are coverages Ci=<{r(X, Y)}, {X/A,Y/B},vi(A, B), {)>,
C2=<{s(Y, Z, W)), {Y/B, Z/D, W/D], V2(B, D), {W/Z}>, and

C3=<{r(X, Y), s(Y, Z, W)), {XIA, Y/D, Z/C, W/D), V3(A, C), {}>, where C1, C2 and
C3 generate specializations Vi(X, Y), V2(Y, Z), and V3(X, Z), respectively.

Next, we explain the steps of query rewriting for CLAC queries with homomor-

phism property.

6.5 Phases of Rewriting

In order to extend our query rewriting technique to support CLAC queries, we add a

new step to the algorithm and assume that the input has homomorphism property.

Rewriting of CLAC queries with homomorphism property consists of the following

phases: (1) finding coverages, (2) combining coverages to generate rules, and (3)
checking every generated rule to see if it satisfies the constraints in the query. Here,

the first two phases are the same as in standard query rewriting, and the third step

is added to handle the constraints in the input query and/or views.

6.5.1 Finding Coverages

Recall the notion of coverage defined in Chapter 3. There are two approaches to

find coverage, Subgoal-based and View-based. Here, we repeat the subgoal-based

150

approach from Section 3.3.1. To find coverages, we consider a set S with a single

subgoal sci in the query Q and its joint variables Js- For every view Vj that includes
SQi, we check whether all the variables A in Js are accessible through Vj, that is, A

is distinguished in Vj. If this is the case, we create a new coverage Cji based on Vj

and assign S to Cji. Otherwise, we add more subgoals to S, update Js accordingly,
and inquire if Vj can be useful in forming a coverage.

Adding subgoals to S is based on the join variables that are not accessible. If
A e Js is not accessible, we include all the subgoals in Q in which A has appeared.

After adding the new subgoals to S, we recalculate joint variables Js of S and repeat
the test. This process terminates if a basic coverage for sgi (and possibly some other

subgoals) is found, or all possible subgoals are added to 5, and there is at least one
joint variable that is not accessible.

6.5.2 Combining Coverages

As explained in Section 3.3.2, there are three approaches to combine coverages: (1)

Detection and Recovery using simple Cartesian Product, (2) Avoidance using opti-
mized Cartesian Product, and (3) Prevention using Pattern-based Cartesian Prod-

uct. Here, we briefly review the third approach, the Pattern-based Cartesian Product

[KS09]. This approach is based on the idea of identifying non-overlapping patterns
to break an original Cartesian product into a set of smaller Cartesian Products. It
assigns to a query Q with ? subgoals, the number 2" — 1, and assigns an identifier

to every coverage C¿ that is based on the subgoals it contains and their positions in

the query body. For instance, in Example 6.14, the identifiers assigned to Ci, C2

and C3 would be 2 (= 10fciTian/),< 1 (= 016¿„ary); and 3 (= llunary) -, respectively. The
identifiers that do not have overlap define the patterns. For example, here, we have

two patters {3} and {1,2}.

151

C4 C2 C1
C5 C3 C3
Q Q Q
\sj C^? ^7

Figure 6.2: All possible occurrences of coverages for a query with 3 subgoals.

For each pattern P, we create the buckets and perform a simple Cartesian product.

For the coverages listed in Figure 6.2, we break down the original large bucket into

a few smaller buckets and perform 5 different Cartesian products (since there are 5

different pattern combinations) listed as follows.

1. Pi = {{7}}: No need for Cartesian product

2. P2 = {{3}, {4}}: Cartesian product of two buckets: [C3] ? [C4]

3. P3 = {{6}, {l}}:Cartesian product of two buckets: [C6] ? [Ci]

4. P4 = {{5}, {2}}: Cartesian product of two buckets:[C5] ? [C2]

5. P5 = {{4},{2},{1}}: Cartesian product of three buckets: [C4] x [C2] x [Ci]

Note that the bitwise "and" of the numbers in each pattern P¿ is 0 and their

sum is 7=23 - 1, e.g., for P5 = {{4}, {2}, {1}}, 7=1+2+4, and the values 1, 2, and
4 are bitwise disjoint. This makes sure that the coverages in the same pattern are

non-overlapping and they cover all the subgoals in the query.

152

6.5.3 Handling the Constraints

For every combination generated in the previous step, we create a rule Ri, and check

Ri to see if it is contained in Q. For this, we need to see if the constraints in Q can

be satisfied by the constraints in the views used in Ri. In this case, we add R¡ to the

rewriting R. Recall that the rewriting R is the union of contained conjunctive queries

each of which is contained on Q. For every rule Ri, we may have three possibilities,

as follows [KSlO].

1. The constraints C in Q are satisfied by the constraints in the views used in Ri.

In this case, we simply add Ri to the result set R.

2. A set of constraints C can be added to Ri so that C and the constraints in the

views of Ri satisfy C. In this case, we add C" to Ri, and add R¿ to R.

3. None of the above. We discard Ri.

Finally, we return R, the union of Rs, as a maximally contained rewriting of Q.

6.6 Discussion

So far, we have investigated classes of conjunctive queries with homomorphism prop-

erty. We believe identifying classes of queries for which homomorphism property does

not hold but containment test can be done efficiently is also important. The following

example illustrates this point.

Example 6.15 Consider the following queries Qi and Qi, for which we test contain-

ment of Q2 in Qi.

Q1: h(X):-p(X),r{Y,Z),Y < Z.

153

Q2: h(X).-p(X),r(Y,Z),r(Z,Y).

Intuitively, the constraint Y < Z in Qi cannot be covered by Q2, hence Q2 is not

contained in Qi . The reason is that ifY = Z then Q1 would return no answer while

Q2 would have the same tuples X as in relation P(X).

Example 6.16 Consider the following queries Qi and Q2, for which we test contain-

ment of Q2 in Qi .

Q1: h(Y):-p(Y),r(Y,Z),Y<Z.

Q2: h(Y):-p(Y),r(Y,Z),r(Z,Y).

In this example, variable Y appears in the constraint Y < Z and also in the query

head. Here, Q2 % Qi. The reason is that Qi includes only values Y in P for which

there is a tuple (Y, Z) in r such that Y < Z inr. However, Q2 contains more tuples

than Qi because tuples (Y, Z) in r in Q2 do not need to satisfy the constraint Y < Z.

Example 6.17 Consider the following queries Qi and Q2, for which we test contain-

ment of Q2 in Qi.

Q1: h(X):-p(X),r(Y,Z),Y<Z.

Q2: h(X) :- p(X),r(Y, Z), s(Y, Z), s(Z, Y).

Here, subgoal s in Q2 is repeated, however, this does not form several containment

mappings which required for having implicit constraint. Moreover, Q2 does not imply

constraint Y < Z explicitly, hence Q2 % Q1-

The following examples illustrate queries Q1 and Q2 with implicit constraints,

where Q2 E Q1.

Example 6.18 (Queries without homomorphism property) Consider the fol-
lowing conjunctive queries Q1 and Q2.

154

Q1: h(X):-p(X),r(U,Y,Z),Y<Z
Q2: h(X):-p(X),r(M,Y,Z),r(N,Z,W),r(K,W,Y)
To test the containment of Q2 in Q1, the constraint Y < Z in Q1 together with the

containment mappings from Q1 to Q2 (formed by the special pattern of the repetition

of variables in the predicates of Q2) establish the following implication, and hence
confirm the containment of Q2 in Q1.

True =F (V < Z)W[Z < W) V (W < Y).
We show that these kind of implications can be verified in an efficient way.

To distinguish such queries, we check whether the following conditions hold. Con-

sider the containment of an AC query Q2 in an AC query Q1. If the following

conditions hold, then Q2 would imply the constraints in Q1.

1. Constraint in Q1 is of the form ABB, where ? is < or >.

2. Variables A and B in the constraint in Q1 appear in the same subgoal r and do

not appear in any other subgoals including the head.

3. Q2 includes several occurrences of the same subgoal r that share a variable with

the constraint in Q1.

4. The variables in Q2 that correspond to the variable in the constraint of Q1 form

a cycle in ? occurrence of the corresponding subgoals r in Q2, for some integer

? > 1 (see Theorem 6.6). The following theorem captures these conditions.

Based on the conditions discussed above, the following theorem identifies a class

of conjunctive queries that do not enjoy homomorphism property however their con-
tainment can be tested efficiently.

155

Theorem 6.6 (Queries without Homomorphism property) Let Q1, Q2, and

Q1 be conjunctive queries, defined as follows. Then Q2 (? Qi if Q2 !? Q1 ·

Q1: ?(?).--P1(X1)^(X2), ¦·. ,r(v^>r,c^,Z)v^), ?0?,a.
i j k

Q[: h(X) ^p1(X1), P2(X2),- ¦¦ ,?^,?,^^, Z,^J, a.
i j k

That is, Q1 is Q1 without the constraint ?T?.

Q2: h(X) :- P1(X1), P2(X2), ··· , C1(Y1), q2(Y2),---,

r(^,,Wn,^,Y,^J,ß.
i j k

where ? is either < or >, and the variables in X and {Y, Z, W1, ¦ ¦ ¦ ,Wn] are
disjoint.

Proof Since Q2 Ç Q[, there exists some containment mappings from Q1 to Q2. Since

Q1 and Q1 have the same structure in the regular predicates, we have the same set of
containment mappings from Q1 to Q2. The only difference is in the constraint ?T?

in Q1 for which we apply Theorem 6.2 or 6.4. That is, we have to test one of the

following implications:

(1) ß =4> (Y < W1) V (W1 < W2) V · · - V (W1 < Y), for ? being <, and

(2) ß =? (Y > W1) V (W1 > W2) V ¦¦ · - V (W1 > Y), for ? being >.
Let us assume the implication in case (1) is false. This is possible only if ß is true

and (Y < W1) V (W1 < W2) V · · · V (W1 < Y) is false, which means its negation is

true, as shown below.

(Y < W1) V (W1 < W2) V · · · V (W1 < Y) = F =?
not ((Y < W1) V (W1 < W2)V ¦¦¦ V (W1 < Y)\ = T =>
(Y > W1) ? (W1 > W2) ? · · · ? (W1 >Y))=T

156

(Y > W1) ? (W1 > Y)) = T.
But this is a contradiction. Therefore, our original assumption was wrong and

hence the implication case (1) is true. Case 2 can be shown in a similar way. ¦

Note that since identifying such queries is based on cycle detection which is poly-

nomial in complexity, it is reasonable to consider this test for a given query before
doing the actual containment test.

6.7 Summary

In this chapter, we studied the problem of containment and rewriting for conjunctive

queries with linear arithmetic constraints, and identified new classes of queries that
enjoy the homomorphism property. Based on this, we extended our query rewriting

technique to support conjunctive queries with linear arithmetic constraints.

157

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we investigated the problems of minimization and rewriting of con-

junctive queries. Even though these problems are not new and a number of good

solutions have been proposed, there has been increasing interest to improve scala-

bility and efficiency issues. We considered conjunctive queries and investigated the
problems of rewriting and minimization of such queries under open world assumption
and set semantics. The main contributions in this thesis are as follows.

• We investigated the two phases in rewriting, i.e., finding coverages and combin-

ing coverages, and identified that combining coverages is a partitioning problem.

Based on this, we proposed a formula that uses Stirling numbers to determine

the number of rules in the rewriting and developed a algorithm that exploits

some numeral patterns to break the large combinatorial problem into several
smaller ones.

Since the patterns are independent of queries, one can pre-generate patterns

158

for queries with different sizes and use them during rewriting. However, ex-

periments results showed that the overhead for pattern generation compared to
rewriting time is not considerable.

• We summarized the approaches for each phases in rewriting of conjunctive

queries as follows.

- Finding Coverages

1. Subgoal-based

2. View-based

- Combining Coverages

1. Detection and Recovery

2. Avoidance

3. Prevention

• Based on this, we proposed our pattern-based rewriting algorithm that uses

view-based approach for finding coverages, and prevention approach for com-

bining them.

• We performed a comprehensive set of experiments for different types and sizes

of queries to evaluate efficiency, memory requirement and scalability of our

pattern-based rewriting technique compared to the existing ones, results of

which indicate superiority of our solution, for instance, two orders of magni-
tude in some cases.

• We considered quality of rewriting as another important aspect in this problem,
and defined the number of subgoals in the rewriting as a measure for quality. We

classified the rewriting algorithms into two classes: bottom-up query rewriting

and top-down query rewriting. We showed that a top-down query rewriter

159

generates rewriting with a better quality compare to bottom-up query rewriter,
i.e., there are fewer number of subgoals in the rewriting in a top-down approach.

• We considered conjunctive queries, and proposed an efficient minimization al-

gorithm that uses special endomorphism together with some heuristics to iter-
atively identify and remove redundant subgoals from a given query.

• We showed that by exploiting our query minimization technique as a post-
processing phase in the rewriting, a bottom-up rewriting technique can also

generate a rewriting with the same quality as in a top-down technique.

• We considered the case where input query and views contain redundant sub-

goal and showed that in order to obtain the optimal quality in the rewriting,
input query and views should be minimized. That is, we exploit our query

minimization algorithm as pre-processing and post-processing phases of our
pattern-based rewriting technique. To evaluate the performance and quality of
our solution technique, we performed extensive experiments on differen types

of inputs, result of which shows that pattern based technique coupled with our

minimization algorithm not only reaches the optimal rewriting quality but also
outperforms existing techniques, namely, Minicon and Treewise.

• We defined CLAC queries as a practical form of conjunctive queries with con-

straints, and identified several classes of CLAC queries that satisfy homomor-

phism property, i.e., classes of queries for which, despite the presence of con-
straints, the complexity of containment remains NP-complete. Accordingly, we

extended our query rewriting algorithm to support CLAC queries that satisfy
homomorphism property.

160

7.2 Future Work

There are a number of interesting problems related to both query rewriting and query-

minimization that we intend to work on. These problems are mostly related to queries

with constraints. In general, we have two types of constraints: constraints inside the
query and constraints outside the queries (e.g., functional dependencies). Some of

these problems are discussed as follows.

7.2.1 Query Rewriting and Functional Dependencies

In the context of query rewriting, considering functional dependencies raises new

research issues and adds to the difficulty of the problem. Looking at a closely related

problem, query containment, adding functional dependencies as extra information

adds to the complexity of the problem [JK82]. We expect to see the same in the
context of query rewriting. The following is a motivating example that shows the

impact of functional dependencies on the result of rewriting.

Example 7.1 Consider the following query Q and views V1 and V2.

Q: h(X,Y,Z):-r(X,Y,Z).

V1: Vl(A,B) :-r(A,B,C).
V2: v2(A,C):-r(A,B,C).
View V1 and V2 cannot contribute to a contained rewriting for Q. To see this,

we consider view V1. using which we try to build a coverage for subgoal r in Q. We

assign S = {r(X. Y, Z) }. and find the joint variables for S: Js = {X, Y-, Z}. Here,
variable Z is a joint attribute but it is not accessible based on V1 . Therefore, there is

no coverage for subgoal r based on V1. For the same reason, there is no coverage for
r based on V2. which means there is no rewriting for Q based on V1 and V2.

161

Next, assume that the following set of functional dependencies (that holds on re-

lation r) is provided as extra information.
F = {X -+ Y, X -? Z]
In the presence of functional dependencies F, the following is the maximally con-

tained rewriting for Q.

Q': h(X,Y,Z):-v1(X,Y),v2(X,Z).
The reason is that V\ and V2 could be considered as relations generated in a loss-

less join decomposition of r. Therefore, joining V1 and V2 doesn't create any extra

tuple [GUW08]. As a result, the rewriting, Q' , is a contained rewriting for Q in the
context of conjunctive queries.

7.2.2 Query Minimization and Linear Arithmetic Constraints

The problem of query minimization is closely related to the problem of query equiv-

alence and hence query containment. Since constraints, in general, and linear arith-

metic constraints in particular, are essential part of queries in practice, studying query

minimization in the context of queries with such constraints is important. It becomes

even more important when we consider query minimization in the context of appli-

cations such as query rewriting that generate queries automatically and hence there

is more possibility of having redundant subgoals.

7.2.3 Query Minimization and Functional Dependencies

There have been studies on the complexity of query containment in the presence of

functional dependencies [JK82, CDL98]. In general, considering functional depen-
dencies as extra information during query minimization adds to the complexity of

the problem. Therefore, finding efficient minimization algorithms in the presence of

functional dependencies is another interesting problem to nrvestigate.

162

Bibliography

[AD98] Abiteboul, Serge and Duschka, Oliver. Complexity of answering queries
using materialized views. In PODS '98: Proceedings of the 17th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-

tems, pages 254-263. ACM, 1998.

[AGK99] Afrati, Foto, Gergatsoulis, Manolis, and Kavalieros, Theodoros. Answer-
ing queries using materialized views with disjunctions. In ICDT '99: Pro-

ceedings of the 7th International Conference on Database Theory, pages

435-452. Springer-Verlag, 1999.

[ALM02] Afrati, Foto, Li, Chen, and Mitra, Prasenjit. Answering queries using
views with arithmetic comparisons. In PODS '02: Proceedings of the 21st

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems, pages 209-220, 2002.

[ALM04] Afrati, Foto, Li, Chen, and Mitra, Prasenjit. On containment of con-
junctive queries with arithmetic comparisons. In EDBT'04: Proceedings

of the 9th International conference on Extending Database Technology,

pages 459-476, 2004.

[BDD+98] Bello, Randall G., Dias, Karl, Downing, Alan, Feenan, Jr., James,

163

Finnerty, James L., Norcott, William D.. Sun, Harry, Witkowski, An-
drew, and Ziauddin, Mohamed. Materialized views in oracle. In VLDB '98:

Proceedings of the 24rd International Conference on Very Large Data

Bases, pages 659-664. Morgan Kaufmann, 1998.

[BerOl] Bernstein, Philip A. Generic model management: A database infras-
tructure for schema manipulation. In CoopIS'Ol: Proceedings of the 9th

International Conference on Cooperatice Information Systems, pages 1-6.

Springer-Verlag, LNCS-2172, 2001.

[BLRR97] Beeri, Catriel, Levy, Alon Y., Rajaraman, Anand, and Rousset, Marie-
Christine. Rewriting queries using views in description logics. In

PODS'97: Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, pages 99-108. ACM Press,
1997.

[BROO] Bernstein, Philip A. and Rahm, Erhard. Data warehouse scenarios for
model management. In ER '00: Proceedings of the International Confer-

ence on Conceptual Modeling / the Entity Relationship Approach, pages

1-15. Springer-Verlag, LNCS-1920, 2000.

[CDL98] Calvanese, Diego, De Giacomo, Giuseppe, and Lenzerini, Maurizio. On
the decidability of query containment under constraints. In PODS '98:

Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems, pages 149-158. ACM Press, 1998.

[CDL+Ol] Calvanese, Diego, De Giacomo, Giuseppe, Lenzerini, Maurizio, Nardi,
Daniele, and Rosati, Riccardo. Data integration in data warehousing.

International Journal of Cooperative Information Systems, 10(3):237-271,
2001.

164

[CDLV99] Calvanese, Diego, De Giacomo, Giuseppe, Lenzerini, Maurizio, and Vardi,
Moshe Y. Rewriting of regular expressions and regular path queries.

In PODS'99: Proceedings of the 18th ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, pages 194-204. ACM

Press, 1999.

[CKPS95] Chaudhuri, Surajit, Krishnamurthy, Ravi, Potamianos, Spyros, and Shim,
Kyuseok. Optimizing queries with materialized views. In ICDE'95: Pro-

ceeding of IEEE International Conference on Data Engineering, pages

190-200. IEEE Computer Society, 1995.

[CM77] Chandra, A. K. and Merlin, P.M. Optimal implementation of conjunctive
queries in relational databases. In Proceeding of the 9th Annual ACM

Symposium on the Theory of Computing, pages 77-90. ACM Press, 1977.

[CNS99] Cohen, Sara, Nutt, Werner, and Serebrenik, Alexander. Rewriting ag-
gregate queries using views. In PODS'99: Proceedings of the 18th ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-

tems, pages 155-166. ACM Press, 1999.

[Cod70] Codd, Edgar. A relational model for large shared data banks. Commu-
nications of the ACM, 13:337-387, 1970.

[CROO] Chekuri, Chandra and Rajaraman, Anand. Conjunctive query contain-
ment revisited. Theoretical Computer Science, 239(2):211-229, 2000.

[DG97a] Duschka, Oliver M. and Genesereth, Michael R. Answering recursive
queries using views. In PODS '97: Proceedings of the 16th ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, pages

109-116. ACM Press, 1997.

165

[DG97b] Duschka, Oliver M. and Genesereth, Michael R. Query planning in in-
fomaster. In Proceedings of the 1997 ACM Symposium on Applied Com-

puting, pages 109-111. ACM, 1997.

[DLOO] Genesereth, Michael R. Duschka, Oliver M. and Levy, Alon Y. Recursive
query plans for data integration. Journal of Logic Programming, 43(1) :49-
73, 2000.

[Dus97] Duschka, Oliver M. Recursive plans for information gathering. In IJ-
CAP97: Proceedings of the 15th International Joint Conference on Arti-
ficial Intelligence, pages 778-784. Morgan Kaufmann, 1997.

[FCS0O] Fernandez, Mary F., Chiew Tan, Wang, and Suciu, Dan. Silkroute: trad-
ing between relations and xml. Journal of Computer Networks, 33(1-

6):723-745, 2000.

[FRV95] Florescu, Daniela, Rashid, Louiqa, and Valduriez, Patrick. Using hetero-
geneous equivalences for query rewriting in multidatabase systems. In

CooipIS'95: Proceedings of the International Conference on Cooperative

Information Systems, pages 158-169. CoopIS-95, 1995.

[FRV96] Florescu, Daniela, Rashid, Louiqa, and Valduriez, Patrick. Answering
queries using OQL view expressions. In Workshop on Materialized Views,

in conjunction with ACM SIGMOD, pages 84-90. ACM, 1996.

[GHQ95] Gupta, Ashish, Harinarayan, Venky, and Quass, Dalian. Aggregate-query
processing in data warehousing environments. In VLDB"95: Proceedings

of the 21th International Conference on Very Large Data Bases, pages

358-369. Morgan Kaufmann, 1995.

166

[GM99] Grahne, Gösta and Mendelzon, Alberto O. Tableau techniques for query-
ing information sources through global schémas. In ICDT"99: Proceedings

of the 7th International Conference on Database Theory, pages 332-347.

Springer-Verlag, 1999.

[GM05] Gupta, Himanshu and Mumick, Inderpal Singh. Selection of views to
materialize in a data warehouse. IEEE Transactions on Knowledge and

Data Engineering, 17(l):24-43, 2005.

[GSUW94] Gupta, Ashish, Sagiv, Yehoshua, Ullman, Jeffrey D., and Widom, Jen-
nifer. Constraint checking with partial information. In PODS '94 : Pro-

ceedings of the 13th ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 45-55. ACM Press, 1994.

[GUW08] Garcia-Molina, Hector, Ullman, Jeffrey, and Widom, Jennifer. Database
Systems: The Complete Book. Prentice Hall, 2nd edition, 2008.

[HaIOO] Alon Y. Halevy. Theory of answering queries using views. SIGMOD
Record, 29:40-47, 2000.

[Inm96] Inmon, W.H. Building the Data Warehouse, 2nd Edition. John Wiley k.
Sons, New York, NY, 1996.

[IS99] Ibarra, Oscar H. and Su, Jianwen. A technique for proving decidability
of containment and equivalence of linear constraint queries,. Journal of

Computer and System Sciences, 59(1):1 - 28, 1999.

[JK82] Johnson, D. S. and Klug, A. Testing containment of conjunctive queries
under functional and inclusion dependencies. In PODS'82: Proceedings

of the 1st ACM SlGACT-SIGMOD Symposium on Principles of Database
Systems, pages 164-169. ACM, 1982.

167

[JLVV03] Jarke, M., Lenzerini, M., Vassiliou, Y., and Vassiliadis, P. Fundamen-
tals of Data Warehouses. Springer-Verlag, LNCS-760, 2nd, revised and

extended edition, 2003.

[Klu88] Klug, A. On conjunctive queries containing inequalities. Journal of the

ACM, pages 35(1): 146-160, 1988.

[KS02] Kunen, I. and Suciu, D. A scalable algorithm for query minimization.
Technical report, University of Washington, 2002.

[KS05a] Kiani, Ali and Shiri, Nematollaah. Answering queries in heterogenuous
information systems. In IHIS '05: Proceedings of ACM Workshop on In-

teroperability of Heterogeneous Information Systems, pages 17-24. ACM,
2005.

[KS05b] Kiani, Ali and Shiri, Nematollaah. Containment of conjunctive queries
with arithmetic expressions. In CoopIS'05: Proceedings of 13th Interna-

tional Conference on Cooperative Information Systems, pages 439-452.

Springer-Verlag, LNCS-3760, 2005.

[KS09] Kiani, Ali and Shiri, Nematollaah. Using patterns for faster and scal-
able rewriting of conjunctive queries. In Proceedings of the 3rd Alberto

Mendelzon International Workshop on Foundations of Data Management.

CEUR-WS.org, 2009.

[KSlO] Kiani, Ali and Shiri, Nematollaah. Conjunctive queries with constraints:
Homomorphism, containment and rewriting. In FoIKS'10: Proceedings

of the 6th International Symposium on Foundations of Information and

Knowledge Systems, pages 40-57. Springer, LNCS-5956, 2010.

168

[Len02] Lenzerini, Maurizio. Data integration: a theoretical perspective. In Pro-
ceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of database systems, pages 233-246. ACM, 2002.

[LevOl] Levy, Alon Y. Answering queries using views: A survey. The VLDB
Journal, 10(4):270-294, 2001.

[LMSS95] Levy, Alon Y., Mendelzon, Alberto 0., Sagiv, Yehoshua, and Srivastava,
Divesh. Answering queries using views. In PODS '95: Proceedings of
the Uth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, pages 95-104. ACM, 1995.

[LR096] Levy, Alon Y., Rajaraman, Anand, and Ordille, Joann J. Query-
ing heterogeneous information sources using source descriptions. In

VLDB '96: Proceedings of the 22nd International Conference on Very

Large Databases, pages 251-262. Morgan Kaufmann, 1996.

[LRU96] Levy, Alon Y., Rajaraman, Anand, and Ullman, Jeffrey D. Answering
queries using limited external processors. In PODS'96: Proceedings of
the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, pages 227-237. ACM, 1996.

[LS92] Levy, Alon and Sagiv, Yehoshua. Constraints and redundancy in datalog.
In PODS'92: Proceedings of the Uth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 67-80, New York,

NY, USA, 1992. ACM Press.

[Mai83] Maier, D. The Theory of Relational Databases. Computer Science Press,
Rockville, Maryland, 1983.

169

[Mey92] Meyden, Ron van der. The complexity of querying indefinite data about
linearly ordered domains. In PODS'92: Proceedings of the 11th ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-

tems, pages 331-345. ACM, 1992. .

[MitOl] Mitra, Prasenjit. An algorithm for answering queries efficiently using
views. In Proceedings of the 12th Australasian Database Conference, pages

99-106. IEEE Computer Society, 2001.

[MRB03] Melnik, Sergey, Rahm, Erhard, and Bernstein, Philip A. Rondo: a pro-
gramming platform for generic model management. In Proceedings of the
22nd A CM SIGMOD International Conference on Management of Data,

pages 193-204. ACM Press, 2003.

[MS08] Mohajerin, Nima and Shiri, Nematollaah. A top-down approach to rewrit-
ing conjunctive queries using views. In Proceedings of the 3rd Interna-

tional Workshop on Semantics in Data and Knowledge Bases, pages 180—

198. Springer-Verlag, 2008.

[PLOO] Pottinger, Rachel and Levy, Alon Y. A scalable algorithm for answering
queries using views. The VLDB Journal, pages 484-495, 2000.

[PTUOO] Palopoli, L., Terracina, G., and Ursino, D. The system dike: Towards the
semi-automatic synthesis of cooperative information systems and data

warehouses. In Proceedings of ADBIS-DASFAA Symposium, pages 108-

117. Matfyz Press, 2000.

[Qia96] Qian, Xiaolei. Query folding. In ICDE '96: Proceedings of the 12th Inter-
national Conference on Data Engineering, pages 48-55. IEEE Computer

Society, 1996.

170

[Rio58] Riordan, John. Introduction to Combinatorial Analysis. Dover Publica-
tion, Mineóla, NY, 1958.

[SRV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison Wesley, Reading, MA, 1995.

[TS97] Theodoratos, Dimitri and Sellis, Timos. Data warehouse configuration.
In VLDB '97, Proceedings of 23rd International Conference on Very Large

Data Bases, pages 126-135. Morgan Kaufmann, 1997.

[U1189] Ullman, Jeffrey D. Principles of Database and Knowledge-Base Systems,
volume II. Computer Science Press, Maryland, 1989.

[UIlOO] Ullman, Jeffrey D. Information integration using logical views. Theoretical
Computer Science, 239(2): 189-210, 2000.

171

