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ABSTRACT 

Effects of Vertical Whole-Body Vibration Parameters on Rate of Muscle Fatigue in 
Submaximal Isometric Contraction 

Mylene Saucier 

Vibration training is a modality used to improve human performance, measured 

by muscle strength and power via a reflexive muscle contraction called Tonic Vibration 

Reflex. Reported improvements of this novel training practice are inconsistent which 

leads to poor understanding of Whole-Body Vibration (WBV) and suggest lack of 

research supporting the beneficial physiological effects of the modality on the human 

body. This study examined the effects of vertical vibration parameters (frequency and 

amplitude) on the rate of muscle fatigue while subjects performed an isometric single leg 

squat exercise under WBV until exhaustion. Thirty healthy college level athletes 

volunteered in this study. Three levels of each independent parameter were examined 

for nine combinations of vibration. Surface electromyographic (SEMG) activity of eight 

muscles was measured: tibialis anterior, fibularis longus, vastus medialis oblique (VMO), 

gastrocnemius (medial head), biceps femoris, gluteus medius, rectus abdominis, and 

erector spinae (L4). Spectral analysis of the integrated EMG (iEMG) was performed to 

determine the rate of muscle fatigue under each vibration condition. Analysis of variance 

evaluating the effect of the vibration parameters was performed on the spectral analysis 

responses with a significance oip<0.05. Results found no main effect of any individual 

vibration parameter or any interaction effect on the rate of muscle fatigue. These findings 

aid our understanding of vibration parameter effects on the human body. Since vibration 

training's popularity is still growing, further studies on the matter should be pursued. 
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PREFACE 

This thesis follows the Thesis Preparation and Thesis Examination Regulations 

of Concordia University's school of graduate studies for the manuscript-based thesis. 

Due to the large amount of data collected for this particular study, the manuscript 

included in this thesis only illustrates a portion of the entire thesis. Any results and 

discussion from the thesis that do not appear in the manuscript are reported in the front 

section of the thesis. 

This manuscript is being prepared for submission to the Journal of Strength and 

Conditioning Research. For the purpose of this thesis, all figures and tables will appear 

in the manuscript, and the text will be formatted according to the thesis guidelines. Since 

the manuscript's objectives are part of a subset of objectives set out for this thesis, they 

both share the same background information. For this reason, an overlap of information 

and redundancy in the manuscript introduction may be present. 

The Journal of Strength and Conditioning Research requires the authors to 

present the results following specific requirements. It is required to put the most 

important findings in figure or table format and less important findings in the text. For this 

reason, written presentation of the results on the effects of WBV parameters on muscle 

activity and time-to-fatigue will be reported in the front section of the thesis. Table and 

graphical representation of the same results will be presented in the manuscript section 

of the thesis. 
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THESIS COMPOSITION 
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INTRODUCTION: Introduction to Whole-Body Vibration and the growing popularity of 

this novel modality in the fields of athletics and fitness as well as a listing of general 

objectives. 

CHAPTER I: Description of Whole-Body Vibration and vibration training. Overview of the 

different vibration platforms available on the market and their physiological impact on the 

human body. Review of the literature on Whole-Body Vibration training and its benefits 

for human performance. 

CHAPTER II: Presentation of a detailed rationale followed by the study's objectives and 

hypothesis. 

CHAPTER III: Presentation of the methodology including a detailed description of the 

participants, the equipment used, and the task performed by the participants. 

CHAPTER IV: Presentation of the results for the rate of muscle fatigue, time-to-fatigue 

and muscle activity as well as the discussion on the rate of muscle fatigue. 

CHAPTER V: Manuscript - Brief introduction of whole-body vibration and vibration 

training, rationale and objectives of the study with respect to the effects of vibration 

parameters on muscle activity and time-to-fatigue, methods, as well as results and 

discussion for the muscle activity and time-to-fatigue section of the experiment. 

CONCLUSION: Summary of the experimental results and a brief discussion about the 

relevance of the work from the front section and manuscript section of the thesis. 
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INTRODUCTION 

The use of vibration for the improvement of human performance was first brought 

to our attention in the 1960's. Originally called Rhythmic Neuromuscular Stimulation, 

scientists were interested in the effect of a cyclic oscillation on the human body [1]. The 

novelty of the vibration modality motivated researchers to find practical uses. In the 

1990's, whole body vibration (WBV) was introduced and a vibration platform was 

patented on which the user could stand. The effects of oscillation on the body were 

believed to help with different aspects of human health. To date, research has 

demonstrated that an acute exposure of low frequency WBV (10-45Hz) improves 

flexibility of the lower body as well as balance [2-6]. Using the same range of 

frequencies, WBV led to increased bone mineral density in post-menopausal women [6, 

n 
In the fields of athletics and fitness, scientists, health professionals, and coaches 

questioned the effects of WBV on the active population. The use of vibration as a 

modality to improve muscle strength and power was the main interest. Researchers 

looked at the effects of both acute and chronic exposure to vibration on the human body. 

Studies have demonstrated both positive and negative outcomes on human 

performance, and this lack of consistency may be explained by a poor understanding of 

the physiological effects of WBV. 

The objective of this study is to look at and understand the effects of WBV on the 

human body to facilitate the design of a safe and effective vibration protocol for the 

healthy population. Better knowledge of WBV may bring consistency in the outcomes of 

future studies, and may lead to a reliable and beneficial use of vibration. 

1 



CHAPTER I: LITERATURE SURVEY 

Whole-Body Vibration: Description 

In WBV, the entire body is exposed to vibration. In the past decade, different 

platforms have been designed and made commercially available as vibration training 

devices for enhancement of human performance. Such machines are designed to 

generate oscillations that are transmitted to the person standing on the machine. Some 

platforms [8-12] allow the person to perform static or dynamic movements on the 

machine such as sitting, kneeling, squatting, lying, or placing their hands on the platform. 

Although most of the commercially available vibration platforms generate 

predominant vibration along the vertical axis, some designs tend to induce vibration in 

different directions such as vertical, horizontal and rotational vibration. Not all vibration 

platforms use the same mechanism to generate oscillatory motions. Some platforms are 

designed with mechanisms that produce linear motions [9, 11-13] resulting in the 

platform motion in the vertical plane, while other plates encompass a rotary mechanism 

causing the platform to tilt about a central axis[10, 14]. The later type of mechanism 

yield transmission of vertical as well as rotational vibration to the human subject. A 

vibration platform capable of generating simultaneous motions along all three 

translational axes, laterally (y-axis), anterior-posterior (x-axis) and vertically (z-axis), has 

also been available [8]. Furthermore, the available designs exhibit varying magnitudes of 

vibration and frequencies of predominant vibration. Different vibration platforms thus 

provide widely different features in view of the nature of vibration (magnitude, direction 

and frequency). The magnitude of vibration power absorbed/dissipated into the body 

would thus differ greatly. It is thus of great importance to understand the influences of 

different vibration parameters on the human performance such as the type of excitation 

waveform, vibration frequency, displacement amplitude and acceleration. Table 1 and 2 
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demonstrate some of the platforms available on the market along with their individual 

characteristics. 
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As explained previously, some platforms oscillate vertically, but more precisely 

the platform will follow a sinusoidal wave created by the drive motors integrated within 

the platform. The frequency of this cyclical process is defined as the number of cycles 

per unit of time and is measured in hertz (Hz) or cycles per second (cps). In relation to 

WBV, 1 Hz means that the platform moves up and down once per second. The other 

important parameter of WBV is the amplitude of vibration, which is represented by the 

maximum change in the motion of the platform with respect to its static position (Fig. 1). 

The peak-to-peak amplitude corresponds to the difference in the position of the platform 

between its minima and maxima, as illustrated in Figure 1, which represents the total 

vertical displacement of the vibration platform. The combination of vibration frequency 

and amplitude generates acceleration forces on the body standing on the platform. The 

acceleration is relative to free-fall and is called the g-force where its unit of measure is g. 

As the frequency is increased, the rate of platform motion increases linearly with the 

frequency, while the acceleration increases as a square function of the frequency. 

Figure 1 
Sinusoidal waveform 

Peak 
amplitude 

Peak-tB-peak 
amplitude 



Different vibration settings generate different acceleration responses on the 

human body; therefore, selection of the vibration parameters has to be done carefully to 

prevent injuries. Side effects of WBV exposure such as motion sickness, digestive 

system disorder, adverse effects on the female reproductive organs, peripheral veins 

disorders as well as aggravation of pre-existing back, neck or shoulder injury cannot be 

excluded [15]. Vibration disease caused by low-frequency WBV has been studied in 

some occupational health articles [16-18]. Even though disorders on the nervous, 

circulatory and digestive system are not defined to be predominantly WBV-specific, 

research has shown global environmental conditions, including vibration, to be partially 

responsible [16]. Furthermore, degenerative changes of the spine are prevalent in 

population exposed to WBV due to an increased spinal load from vibration [16]. 

Tonic Vibration Reflex (TVR) 

TVR & Sensory Receptors 

When eliciting a vibration response on the human body, the main contributing 

factors are the frequency and amplitude of vibration which will produce a rapid vertical 

and/or rotational displacement of the platform. The rapid change in the oscillatory motion 

causes the muscles to lengthen and activates the muscle spindles: small sensory 

receptors within the muscle belly which primarily detect changes in the length of the 

muscle [19]. The muscle spindles are aligned in parallel to the extrafusal fibres of the 

muscle. Consequently, when the muscle stretches, the spindle stretches as well, and, 

through a reflex response, initiates a muscle contraction to reduce the stretch. More 

specifically, the muscle spindle that responds to a muscle stretch activates afferent 

nerve fibres that carry the sensory impulse from the spindle through the dorsal root into 

the spinal cord. This impulse directly activates the anterior motor neuron which will travel 

back to the muscle to activate the muscle fibres [19]. The reflex muscle contraction 

7 



caused by vibratory activation of muscle spindles is named a tonic vibration reflex (TVR) 

[20]. 

A deeper analysis of the physiology behind reflexive muscle contractions 

demonstrates an organized pattern of muscle spindle stimulation. The structural 

organization of the muscle spindle receptor involves two sensory afferent fibres and one 

motor efferent fibre. The primary afferent nerve fibre entwines the intrafusal fibres of the 

muscle spindle and responds directly to stretch; thus, as the muscle stretch increases, 

the primary afferent nerve firing frequency increases proportionally [19]. The secondary 

afferent nerve fibre also makes a connection to the intrafusal fibres of the receptor, but 

with lesser sensitivity to stretch than the primary afferent fibres[19]. Primary afferent 

nerves have the most sensitivity to vibration of low amplitude and frequencies up to 180 

Hz with a maximum sensitivity to vibrations of 80 Hz [21, 22]. On the other hand, muscle 

spindle secondary afferent nerves show very little sensitivity to vibration [21, 22]. 

Another specialized sensory receptor located near the tendon's junction to the 

muscle is the golgi tendon organ which detects differences in tension generated by 

active muscles [19]. Like the muscle spindle secondary afferent nerves, the golgi tendon 

organ does not respond primarily to vibration [21, 22]. 

Synchrony & Harmony 

In WBV, a harmonic series consists of oscillations vibrating with a frequency that 

is an integral multiple of the same fundamental frequency (i.e. the lowest frequency of 

the harmonic series). Consequently, if the fundamental frequency is f, the harmonic 

series may consist of spectral components at f, 2f, 3feic. Motion at subharmonic 

frequencies may also occur, which are fractions of the fundamental frequency (f/n; n=2, 

3,...). Thus if the fundamental frequency is 100Hz, subharmonic frequencies will be 

50Hz, 25Hz etc. Examination of the relationship between the vibration frequency and the 
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firing rate of the muscle spindle primary nerve fibres due to vibration suggests that they 

are both synchronized up to a frequency of 180 Hz [21, 22]. Up to a frequency of 80Hz, 

the discharge from the muscle spindle primary nerve fires harmonically with the vibration 

(e.g., 1 action potential of muscle spindle primary nerve per 1 cycle) and then 

discharged in a subharmonic manner (e.g., 1 action potential of muscle spindle primary 

nerve per 2 or more vibration cycles) with increasing vibration frequencies [22]. This 

one-to-one stimulus response with lower frequencies means that by altering the vibration 

frequency, the initiation of a proportional change in the muscle spindle primary nerve 

discharge frequency is possible[22]. 

TVR & Motor Units 

A motor unit is a single alpha motor neuron with all of the corresponding muscle 

fibres it innervates[19]. When a motor unit is activated, all of its associated muscle fibres 

contract. A motor unit pool includes all of the motor units that service a single muscle. 

When a muscle is activated, not all of its motor units fire at the same time. The control of 

muscle force output depends on the number of motor units recruited and the frequency 

of discharge of the motor units [19]. Previous studies observed a modulation of the 

amplitude of TVR when humans were exposed to vibration. The variations in amplitude 

of vibration were proposed to be related to an increase in motorneuron depolarization 

- from the firing frequency of muscle spindle primary nerve afferents [22, 23]. 

At frequencies below 100Hz, all of the muscle spindle primary nerve afferent are 

assumed to be recruited by the vibration stimulus[22]. Therefore, an increase in TVR in 

the lower frequency range results principally from an increase in motorneuron 

depolarization with increased firing frequency of muscle spindle primary nerve afferents. 

This increased motor neuron depolarization leads to a recruitment of motor units of 

increasing thresholds. At frequencies of above 100Hz, most muscle spindle primary 
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afferents start to fire at random to vibration stimulus and lose the response in terms of 

1:1 synchrony leading to subharmonic synchronization [22]. This change in behaviour 

leads to a derecruitment process affecting the motorneurons and their responsive fibres 

showing a reduction in the strength of TVR [23]. The motor unit recruitment in the 

development of muscle contraction from vibration and derecruitment does follow 

Henneman's size principle[24]. During TVR, motor units are generally recruited in order 

of smallest to largest (fewest fibers to most fibers) as contraction increases[24]. 

Vibration & Corticospinal Excitability 

In the quest to find therapeutic use for vibration, scientists questioned the impact 

of vibration treatment at the supraspinal level. Excitory projections of la muscle afferents 

to the somatosensory cortex were found in studies reported in the late 1060's [25, 26]. 

Soon after, invasive electrophysiological research on cats led to the discovery of 

topographically and functionally specific corticocortical excitatory connections between 

somatosensory areas and frontal motor areas [27, 28]. The functional relevance of this 

knowledge from a human point of view is to use this conjoint activity of somatosensory 

afferent and motor intracortical circuits to induce motor cortical plasticity. In recent years, 

a growing amount of evidence has demonstrated the capacity of the primary cortex to 

reorganize due to various environmental changes in humans [29-31]. This remodelling 

response follows mainlyiong periods of repeated sensory input[32]. 

As explained in the previous section, body vibration is a proprioceptive stimulus 

producing la afferent input. This sensory input reaches both the primary somatosensory 

(S1) and motor (M1) cortices directly [33, 34]. Many previous transcranial magnetic 

stimulation studies have shown that local vibration on a muscle tendon or the belly 

(vibration provided by a mechanical stimulator mounted with a vibrator probe pressing 

perpendicularly on muscle tendon or belly) was able to induce different changes in 
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corticomotor excitability of the vibrated versus non-vibrated muscle [35-39]. In two recent 

studies, local vibration on a wrist flexor muscle was applied using two different 

intervention protocols. In both cases, the cortical map volume for the wrist flexor muscle 

was either unchanged or significantly reduced post-vibration. The reduction lasted for 

two weeks [35, 36]. By contrast, results obtained from the extensor muscle revealed 

significant increases of motor map volumes when compared to pre-vibration. Again, this 

augmentation in volume size lasted for two weeks [35, 36]. 

In contrast to a local vibration protocol, WBV stimulates recruitment of agonist 

and antagonist muscles. Since all muscles are being exposed to vibration, the 

modulation of corticospinal and intracortical pathways is being questioned. A recent 

study looked at the effect of WBV (30 Hz/1.5 mm -frequency/amplitude) on the 

corticospinal and intracortical pathways in the tibialis anterior and soleus muscle during 

a static squat [40]. Compared to no-vibration, only the total cortical area of the tibialis 

anterior increased significantly. The results demonstrate that the effects of WBV are not 

restricted to the periphery but also involve corticospinal and intracortical processes and 

lead us to believe the possibility of cortical plasticity[40]. 

Other previous studies have shown long term changes in motor performance 

following muscle vibration intervention. Increased resistance to fatigue and improved 

postural stability were found to be statistically significant and can last for up to or than 

two weeks [41, 42]. The authors suggested long-lasting neuroplastic changes of motor 

control were responsible for the long lasting effects. 

Vibration Training 

A particular use of WBV is the superimposition of vibration to a person's initial 

strength training program or as a substitute for physical exercise. In the past decade, 

vibration training has become popular and increasingly available to athletes of all levels 
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as well as the general population. Even though the novelty in strength training sounds 

attractive, there is still a lack of consistent scientific data supporting the beneficial effects 

of the modality on the human body. The studies on the effects of WBV on muscle 

strength and power show contradictory results. The discrepancies in the conclusions 

reduce the strength of any evidence supporting the use of vibration training. 

For an optimal vibration training design, proper parameters need to be 

determined. The parameters include: frequency and amplitude of the vibration used, 

exposure time to vibration, posture held on the platform, and whether to include exercise 

while on the platform. Along with these parameters, a choice between a single bout 

versus a chronic exposure to vibration is required. A single session of WBV refers to an 

acute exposure to vibration and is usually employed as a warm-up with an objective to 

increase blood flow, muscle temperature, strength and/or power. A chronic exposure to 

vibration refers to the use of the modality over a longer period of time. In general, people 

using WBV as a replacement or to superimpose vibration to their strength training 

routinely use chronic exposure to vibration. Usually, this involves multiple sessions of 

vibration within the training session. The users may repeat the vibration training session 

three times a week for several months. 

Over the past few years, the dangerous effects of vibration have been studied on 

the human body. It has been hypothesized that exposure to vibration of low amplitude 

and low frequency is a safe approach to exercise musculoskeletal structures. The 

available vibration platforms can deliver vibrations with frequencies ranging from 3 to 60 

Hz and peak-to-peak amplitudes from less than 1 mm to 15 mm creating WBV exercise 

devices able to produce accelerations up to 20 g. Taking into account the wide array of 

combinations of amplitude and frequency, a broad variety of vibration training protocols 

can be used. Some of these combinations were tested to evaluate whether they had an 

effect on human performance [2, 5, 43-49]. 
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Even though there is a lack of controlled studies on the effects of vibration 

training, current findings suggest that WBV may have beneficial acute and chronic 

training effects on neuromuscular performance (as measured by muscle strength and 

power). However, the results appear to depend on the vibration parameters as well as 

the exercise protocols used. Below, the effects of vibration training on neuromuscular 

performance with a focus on strength and power are examined. Exposure time is 

considered (acute vs. chronic) as well as the exercise protocol (maximal vs. submaximal 

and isometric vs. dynamic contraction). The interventions used to test strength and 

power are counter movement vertical jump, dynamic leg press, and isometric peak force 

evaluated by an isokynetic dynamometer. 

Acute Effect of Vibration 

Maxima! Contraction 

The effects of vibration on muscle strength and power can be analyzed during 

the vibration session or post exposure. Time is a very important variable that must be 

considered as it may have an impact on the neuromuscular system. If vibration 

stimulation is short, the testing of neuromuscular performance during or post vibration 

will be done in an unfatigued state. With longer exposure, fatigue will become more 

prominent and will have to be considered during analysis[50]. 

Examining maximal isometric contractions during vibration, some studies found 

no significant effect [46, 51, 52]. Studies by Humphries et al.(2004) and Samuelson et 

al.(1989) found an increase in muscle strength. On the other hand, a study by 

Bongiovanni et al.(1990) found a decrease in muscle strength. However, none of these 

studies showed significant differences compared to the control group [46, 51, 52]. In 

regards to isometric muscle strength post vibration, a study by Cormie et al.(2006) 

observed no change in isometric peak force. In contrast, Torvinen et al.(2002) observed 
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an increase of 3.2% in isometric strength that lasted no longer than 1 hour [5, 45]. This 

contradiction in results is, in-part, likely due to the difference in vibration protocols. 

Vibration training also has an impact on maximal isotonic contraction. Muscle 

power was increased by vibration while performing concentric elbow flexion; a difference 

being more pronounced in elite athletes (10.4% increase) compared to amateur athletes 

(7.9% increase) [47]. Post vibration, an increase in maximal dynamic leg press in 

national level female volleyball players was observed [43]. Another study found in 

females only an increase in leg power lasting no longer than 5 minutes [53, 54]. 

However, no significant differences in peak power during countermovement jump was 

observed following a single bout of vibration [45]. 

Submaximal Contraction 

Evaluating the acute effects of vibration on submaximal contraction can be 

difficult since subjects would have to maintain a steady contraction during or post 

vibration treatments. However, the effects of vibration can be analysed by looking at the 

muscle activity by means of superficial electromyography (SEMG) during isometric and 

isotonic contractions. During an isometric contraction, more muscle activity is present 

while under vibration, regardless of the frequencies and amplitudes used as vibration 

parameters [48, 49, 55]. Similar findings have been demonstrated regarding isotonic 

contractions. A study by Torvinen et al.(2002) showed an increase in root mean square 

voltage of SEMG signal in the calf muscle [5]. Given the increase in the SEMG values by 

vibration during submaximal contractions, the application of vibration is likely to increase 

the submaximal contraction force. 

Chronic Effect of Vibration 

Early literature regarding chronic exposure to vibration reported contradictory 

results. In fact, a review article by Luo et al.(2005) found only two studies meeting their 
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inclusion criteria regarding chronic exposure. Studies by Delacluse et al. (2003) and De 

Ruiter et al. (2003) found different changes in isometric strength gain [50, 56, 57]. The 

two studies used similar frequencies and durations (35-40Hz vs 30Hz, 12 weeks vs 11 

weeks, respectively). Nevertheless, Delecluse et al.(2003) found an increase in isometric 

and dynamic knee-extensor strength of 16% whereas De Ruiter's group found no 

change. It appears that frequency and vibration exposure period are not the only 

parameters with an impact on the human body. The difference in amplitude (2.5 mm-5 

mm vs. 8 mm, respectively) and a more demanding exercise protocol may explain the 

inconsistency. Moreover, the strength gain from Delecluse's group may not be due to 

vibration since the group exercising without vibration gained strength to a comparable 

level. A year later, a review investigated chronic exposure to vibration on muscle 

strength and/or jump performance[58J. The articles selected included a control group 

study in order to determine whether the change in neuromuscular performance was due 

to vibration and not to covariant variables such as exercise training. From the twelve 

articles considered, nine evaluated muscle strength performance. Muscle strength gains 

were reported in five articles with up to 24.4% improvements. Regarding muscle power, 

changes in jump performance were found in five articles ranging from 4.5% to 16% in 

the WBV-exposed-group [58]. Compared to the control groups, similar strength and 

power results can be noticed in the WBV groups. The authors suggested no effect on 

human performance could be ascribed to WBV per se, but rather to the exercise 

programs being performed on the vibration platform [58]. Once more, the wide array of 

combination of vibration parameters renders the evaluation of vibration training on the 

neuromuscular system difficult, since a lack of adequate knowledge regarding the effect 

of each parameter on the human body remains. 
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Vibration and Muscle Fatigue 

In order to enhance muscle strength and power, one has to carefully follow the 

appropriate training program. It has been accepted that high resistance training 

improves muscular strength by promoting hypertrophy [59-61]. Along with hypertrophy, 

other important factors in the development of muscle strength have been reported: type 

of contractions, speed of training execution, frequency of contraction, and muscle fatigue 

amongst others [59-62]. However, the requirement of muscle fatigue is questionable. A 

previous study concluded that fatigue was not a critical stimulus to strength gain [63]. 

Rooney's group reported an increase in muscle strength of 56% in the fatigue group 

compared to 51% in the resting group [64]. Further research in this domain would thus 

be highly desirable. 

For a better physiological understanding of muscle fatigue, the onset of muscle 

fatigue during submaximal isometric contraction was studied by relating motor unit 

activity and SEMG [65]. As soon as a certain level of muscular force was maintained, 

muscular activity began to change although tension and muscle lengths remained 

stable. This leads to believe that muscle fatigue begins as soon as the muscle 

contracts [65]. Furthermore, the motor unit recruitment and stays activated throughout 

the contraction [65]. In vibration training, the impact of vibration on muscle fatigue has 

been investigated. Luo et al.(2005) proposed that longer duration of vibration exposure 

induces more muscular fatigue, which may be due to a facilitation effect of vibration on 

muscle contraction force and activity during the early part of exposure [50]. This 

observation is also supported by studies reported by Cardinale et al. (2003) and Moras 

et al. (2006) who found an increase in normalized SEMGrms activity of the lower 

extremity muscles while standing on the vibration platform in a static squat position as 

compared to no vibration [44, 48]. From these two articles, one can further infer that 

muscle activity significantly increases under a vibration of 30Hz and as the physical 
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demand on the muscles being tested increases. A study by Roelants et al. (2006) 

evaluated muscle activity of the lower extremity muscles under a vibration of 35Hz 

during different squat exercises [49]. The research group showed a higher muscle 

activity with WBV when more challenging (one leg squat vs. two legs squat) physical 

exercises were performed [49]. 

Time to muscle contraction failure was also assessed and showed to be shorter 

when exhaustive isometric and isotonic contractions are performed with vibration than 

without vibration [66, 67]. 

A second explanation to muscle fatigue from vibration may be due to a 

suppression effect of vibration on neuromuscular performance. Bongiovanni et al.(1990) 

suggested that vibration caused a gradual reduction of EMG activity, motor unit firing 

rates and increased contraction force during the course of about one minute of sustained 

contraction superimposed with vibration [51]. This type of reduction in neuromuscular 

function was observed during both sustained and intermittent maximal voluntary 

contraction and was accentuated by preceding muscle exercises [51]. It is suggested 

that contributing mechanisms for this suppression effect might be a vibration-induced 

presynaptic inhibition and/or transmitter depletion [51]. 

Muscle fatigue can also be related to a subjective factor referred to as 

psychological fatigue with effects including decline of alertness, mental concentration 

and motivation among others [68]. A subjective assessment of muscle fatigue can be 

performed using different scales such as the visual analogue scales, Borg scales, and 

Likert Scales [69]. Previous literature on lumbar muscle fatigue showed close 

relationship between EMG, endurance time to muscle fatigue, and the Borg Scale [68]. 

Further investigation on psychological fatigue could provide interesting insights to help 

understand muscle fatigue under vibration. In vibration training, subjective assessment 

of fatigue during and post intervention was rarely used to correlate objective findings 
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with subjective assessments. A study by Rittwerger et al.(2003) used the Borg scale to 

compare repeated isotonic muscle contractions until exhaustion. The use of vibration led 

to a shorter exercise time and no significant differences in the Borg scale between the 

two treatments [66]. The subjective assessment allowed a more thorough evaluation of 

the effect of vibration training on muscle fatigue. 
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CHAPTER II: RATIONALE &OBJECTIVES 

The use of a vibration platform as a training modality still presents a challenge to 

understand the effects of vibration on the neuromuscular performance. Vibration is 

complex and should not be looked at as a single element. Mechanical oscillations 

constitute different components (frequency, amplitude and duration) which can impact 

the exposed human body, either individually or in a coupled manner. Since different 

platforms provide different features, the understanding of the impact each vibration 

parameter has on the human body in designing beneficial training protocols, as well as 

maintaining consistency in the procedure used by the health and rehabilitation 

population, is of importance. 

To summarize the general facts about vibration training, the transmission of 

vibration of acceleration greater than 1g to the standing body can lead to an 

improvement in neuromuscular performance [2, 43, 47]. Any combination of frequency 

and amplitude may have an effect on the human body such as an increase in muscle 

activity [44, 48, 49]. However, the previous literature exposes a lack of consistency in the 

resulting effects of vibration which may be due to a poor understanding of the present 

knowledge. The reported studies have employed widely different vibration parameters. 

The results thus do not provide definite trends for defining the optimal vibration settings. 

Further knowledge of the effects of each parameter on the human body is thus essential. 

This study was proposed to investigate the effects of WBV mechanisms with the 

aim to determine the value of using vibration in human training. The goal was to provide 

the training and rehabilitation community with the suitable parameters for vibration 

training protocol. Specific to the current research, the objective was to find the effects of 

vertical vibration parameters (specific frequency/amplitude independently or in 

combination) on rate of muscle fatigue and time-to-fatigue. Since muscle activity is 
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directly related to fatigue, a second objective was to investigate the effects of vibration 

parameters on muscle activity. Ten different combinations of frequency/amplitude were 

tested. The experiment looked at subjects standing on the platform maintaining a static 

squat position; thus, the attenuation of vibration by the body structures during 

transmission was taken into consideration. To achieve global understanding of the body 

response to vibration, a variety of muscles in close proximity and further away from the 

vibration source were examined since the attenuation factor could prove important to the 

issue of the overall rate of muscle fatigue. 

Since studies on the effects of vibration parameters on the human body are 

almost nonexistent, structuring a hypothesis was a challenge. It was first hypothesized 

that the rate of muscle fatigue would decline faster with vibration of high acceleration 

levels compared to low acceleration levels. More specifically, the force created by the 

combination of the frequency and amplitude parameters would be responsible for the 

vibration effect. A similar assumption applied to time-to-fatigue as a higher acceleration 

level would lead to a shorter time-to-fatigue. After reviewing WBV literature, frequency 

was believed to be the main vibration parameter to affect the rate of fatigue and time-to-

fatigue. 

For the secondary objective, the initial hypothesis was that a high acceleration 

force, caused by a combination of a vibration frequency and amplitude, would lead to a 

higher muscle activity at any location on the lower extremity. Furthermore, a greater 

response in terms of muscle activity was expected to occur as we examined the muscles 

closer to the platform compared to those away from the vibration source. After studying 

existing WBV knowledge, the frequency parameter was hypothesized to mainly affect 

muscle activity with higher frequency leading to increased muscle activity. In 

combination with frequency, muscle demand from body posture or task performed on the 

platform was hypothesized to affect muscle activity with a higher activity in the primary 
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muscles targeted from the exercise performed compare to those targeted secondarily. 
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CHAPTER III: METHODOLOGY 

Variables 

The effects of vertical WBV on the rate of muscle fatigue, time-to-fatigue and 

muscle activity was investigated with vibration frequency and amplitude as independent 

variables and rate to muscle fatigue, time-to-fatigue and muscle activity as the 

dependent variables. Three levels of each independent parameter were examined, using 

frequencies of 10, 20 and 30 Hz, and peak to peak amplitudes of 1, 2, 3 mm, leading to 

nine combinations: 10 Hz/1 mm, 10 Hz/2 mm, 10 Hz/3 mm, 20 Hz/1 mm, 20 Hz/2 mm, 

20 Hz/3 mm, 30 Hz/1 mm, 30 Hz/2 mm, and 30 Hz/3 mm; and a control combination: 0 

Hz/0 mm. The frequencies and amplitudes were selected so that the maximum 

acceleration exposed to the human body standing on the platform did not exceed 6g. 

Rate of muscle fatigue and muscle activity was evaluated from SEMG recorded during 

the exposure to vibration [68]. Time-to-fatigue was determined by the time counter 

located in the SEMG software. 

Subjects 

Prior to this experiment, a pilot study on the effects of vertical WBV on rate of 

muscle fatigue was conducted to determine the appropriate number of participants 

needed to achieve significance. In this regard, the power and effect size calculations 

suggested the need for an overwhelming number of participants. The rate of muscle 

fatigue section of the study could thus be considered a pilot project providing results with 

the potential to help present knowledge and future studies. Regarding the effects of 

WBV on muscle activity, a calculation of sample size was carried out with a=0.05 and 

power of 80%, and using the results provided from previous studies that found 
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differences between muscle activity under WBV [48, 49]. This provided a sample size of 

/7=30 for the muscle activity segment of the study. 

Thirty college level athletes, free of any conditions that could interfere with the 

task to perform during the experiment, participated in this study (age 19.47± 2.45 yr, Ht 

172.23± 8.08 cm, Wt 73.3± 11.78 kg). Subject exclusion criteria included acute or 

chronic back injury, acute inflammation in the musculoskeletal system, acute migraine 

attack, acute or chronic musculoskeletal injury in the dominant leg, acute thrombosis, 

recent surgery, cancer, epilepsy, gallstones, kidney or bladder stones, open wounds in 

the dominant leg, pregnancy, rheumatoid arthritis and joint disorder, and diabetes. All 

subjects were screened for exclusion criteria prior to enrolment. Subjects were recruited 

on a volunteer basis via advertisement in the Athletic Department at Dawson College. 

All procedures were approved by the Concordia University Human Research Ethics 

Committee. All participants gave written informed consent to participate in the study on 

their first visit, following explanation of the risks associated with participating in the 

current research. 

Material & Apparatus 

Vibration Platform 

The vibration platform Vibraflex® 600 was purchased by the Concordia University 

Engineering Department (Fig. 2). This unit vibrates vertically about a central fulcrum and 

was selected for its specific features that offered: user variable controls over time, in-

particular the frequency and amplitude of platform motion. The unit permits the operation 

at different frequencies ranging from 5 Hz to 30 Hz with the possibility of increments of 1 

Hz. The peak to peak amplitude in the 0 to 12 mm range could be achieved by varying 

the medial to distal feet placement from the center of the platform. The unit could 

generate acceleration forces up to 21 g. Part of the vibration platform are handle bars 
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(Fig. 2) which allow for stability in addition to assisting the user, if needed, during safety 

use. 

Figure 2 
Vibration platform used during the experiment. 
Vibraflex ® 600 
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Superficial Electromyography 

SEMG from the dominant leg of the participants was collected. The leg 

dominance was determined by identifying the foot used most often to initiate a step in 

three separate trials [70]. Six muscles from the dominant leg and two from the trunk 

were analyzed: tibialis anterior, fibularis longus, medial gastrocnemius, biceps femoris, 

vastus medialis oblique (VMO), gluteus medius, rectus abdominis, and erector spinae 

L4; a reference electrode was placed over the tibial tuberosity. The placement of the 

electrodes was done according to Basmajian & Blumenstein and as described by 

DeMont, Lephart et al.(1999), and McGill, Karpowicz et al.(2009) [71-73]. Prior to placing 

the electrodes, hair on each location was shaved, the skin was slightly abraded with a 

nail file, and then cleaned with alcohol to remove any dead tissue improving electrode 

adhesion. Moreover, the cables were taped to the skin to minimize movement artefacts. 

SEMG collection was carried out using Ag/AgCI adhesive electrodes. SEMG 

signal was sampled at 1000Hz and amplified (gain 500) by a 27-chanel amplifier 

(MYOPAC, RunTech Inc., Mission Viejo, CA) transmitted to a MYOPAC 16-channel 

receiver (RunTech Inc., Mission Viejo, CA) where it was further amplified (gain 500, total 

gain 1000), and A\D converted. The signal was then transmitted and stored in a Dell 

laptop computer where the signal was bandpass filtered (Butterworth) at 10 Hz and 500 

Hz and rectified using DATAPAC2000 software (RunTech) [72]. The resulting signal 

became integrated electromyography (iEMG) and was used for subsequent analyses. 

To perform the muscle activity analysis, mean iEMG amplitude was calculated for 

ten seconds. Since each subject was able to maintain the task position for different 

amounts of time, the section selected for analysis was the middle ten seconds of the 

task's iEMG recorded for each subject (Fig. 3). The iEMG amplitude was calculated for 

each muscle under each vibration condition. 
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The power spectral density (PSD) of SEMG signal describes how the variance of 

a time series is distributed with frequency. Using the spectral parameter median 

frequency (MF), which is the frequency that divides the PSD in two regions having the 

same amount of power, muscle fatigue can be measured. MF shifting towards low 

frequencies indicates metabolic fatigue of the muscle, which can be explained by a 

change in motor unit recruitment, change in motor unit synchronization, or change in 

muscle fibre conduction velocity [74]. In this experiment, PSD was used to examine rate 

of muscle fatigue. For each participant, the entire PSD was separated in 3.07 second 

sections. The MF of each section was used to plot a graph of MF over time creating a 

line of best fit from which a slope was obtained. The rate of muscle fatigue was 

measured using the slopes of MF [75]. 
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Figure 3 
iEMG for the control (no vibration) condition. The long vertical lines represent the manually inserted 
markers identifying the ten seconds section for the iEMG amplitude to be analyzed. Each horizontal line 
represents the rectified EMG amplitude for each muscle (tibialis longus - Tib. Ant., fibularis longus -
Per.Long. .vastus medialis oblique -VMO, gastrocnemius (medial head) - Gas. Med., biceps femoris - Ham. 
Lat., gluteus medius - Glut. Med., rectus abdominis - RectAbd., erector spinae - ErSpin L4). The sync line 
demonstrated the oscillation created by the platform. On the top left comer is the time counter used for the 
analysis of time-to-fatigue. 
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Time Recorder 

Time-to-fatigue was measured by the time counter located inside the SEMG 

software (Fig. 3). The counter number at the beginning and end of the physical task was 

recorded. Subtraction of the starting counter number from the end number provided total 

time-to-fatigue. 

Goniometer 

Subjects' knee position was measured and controlled using a double-armed 

goniometer. Prior to the measurements, bony landmarks were marked on the subjects to 

standardize the goniometer placement and facilitate the readings. The bony landmarks 

included the greater trochanter, the lateral femoral condyle, and the lateral malleolus. 

The knee angle was measured with the center of the fulcrum positioned over the lateral 

condyle of the femur, the proximal fixed arm of the goniometer aligned with the femur 

using the greater trochanter as a reference point, and the distal arm aligned towards the 

lateral malleolus [76]. The goniometer was used to position the subjects into their 

experimental squat position as well as to ascertain that the subjects maintained that test 

position. 

Borg Scale 

The Borg category ratio scale was used to produce estimates of perceived 

exertion from the participants. Favoured over the Borg RPE (Rating of Perceived 

Exertion) Scale, this evaluation tool is an ordinal scale with values from 1 to 10 with 

verbal descriptions to standardize for comparison across individuals [69, 77]. The 

greater the exertion felt, the greater the number reported by the participants being 

tested. During or after a physical task, subjects can rate their physical effort or perceived 
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exertion by saying the number between 1 and 10 that best represents their state 

(Appendix C). 

Athletic Footwear 

A factor to be considered during WBV is the wearing of athletic footwear. Partial 

absorption of vertical impact during physical activity does occur from the athletic shoe 

[78, 79]. Depending on the shoe support interface composition, the absorption or 

transmission of vertical force to the body may vary [79]. From this fact, the different 

footwear of people exposed to similar WBV acceleration force may actually transmit 

different vertical forces. In order to reduce any covariant variable able to decrease the 

strength of our results, each participant was fitted with the same brand and type of 

running shoes. Nike running shoes were available during the study for both men and 

women in different size accommodating every participant (Fig. 4). To prevent absorption 

of vertical vibration force by the shoes, the insoles inside the shoes were removed prior 

to the experiment. 

Figure 4 
Athletic footwear used during the study for both men and women 
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Tasks 

The physical task consisted of standing on the vibration platform holding a static 

one leg squat position until exhaustion. The participants were asked to squat down on 

their dominant leg to a knee angle of 125°[49]. The posture was controlled during the 

task by standardizing the knee angle with a goniometer as well as by requiring a straight 

back. The non-weight bearing leg was kept to the front or back of the participants 

depending on their comfort level. The participants familiarized themselves with the 

physical task with and without WBV stimulus before testing on their non-experimental 

leg. To prevent the risks of falling, the participants were asked to keep one to two fingers 

on the handle bars, while exerting only minimal weight on the bars. In any case, the 

handle bars were easy to reach if a participant felt unsteady. 

During the experiment, subjects were verbally encouraged to sustain the task for 

as long as possible. To quantify exhaustion, the task terminated when the knee angle 

changed by 10° from its starting position for > 3sec, as detected by monitoring the 

goniometer [67], or when proper body position was not maintained by the participants 

despite verbal encouragement. 

Procedure 

Participants were asked to attend three days of data collection separated by one 

week in the CONCAVE Laboratory at Concordia University. Information about the study 

and the tasks to perform were given via telephone or electronic communication prior to 

the experiment and a consent form was signed upon arrival. 

Once the set-up of the equipment was completed, SEMG signals were measured 

under WBV. Each subject was exposed to the ten vibration combinations (3x3 grid plus 

control) in counterbalanced order. They were asked to hold the static squat position until 

exhaustion. After each vibration exposure, each participant was asked to express their 
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perceived rate of exertion using the Borg RC-10 scale. A rest period of 10 minutes was 

given in-between each exposure in order to rest the muscle adequately prior to the next 

vibration session [80]. The control combination required each subject to perform a static 

squat to exhaustion with a frequency of 0Hz and amplitude of 0mm (no-vibration). This 

control trial had the goal of ensuring that the squat position itself was not a cofounding 

variable. Similar to the other vibration combination, the control cell was provided to the 

participants in a counter-balanced manner. 

Statistical Analysis 

The statistical analysis was performed using SPSS Statistics GradPack 17.0 Release 

17.0.0 (Chicago, IL, USA). 

Muscle Activity, Rate of Muscle Fatigue and Time-to-fatigue 

Muscle activity, rate of muscle fatigue and time-to-fatigue were analysed as a 

function of vibration frequency and amplitude using a 3 x 3 ANOVA with repeated 

measures to a significant level of a= 0.05. A pairwise comparison was used when the 

main effect or interaction was found to determine differences between levels of the 

variables. 

Vibration vs No-Vibration Comparison 

The analysis of the control condition (no-vibration) was done by comparing the 

effects of vibration of 30 Hz / 3mm amplitude on muscle activity, rate of muscle fatigue 

and time-to-fatigue to the no-vibration condition. The vibration/no-vibration analysis was 

performed using a paired T-test to a significance level of a=0.05. 
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CHAPTER IV: RESULTS & DISCUSSION 

Rate of Muscle Fatigue & Perceived Exertion 

For each individual muscle in this experiment, the rate of muscle fatigue was not 

significantly affected by the vibration parameters individually or in combination (Figure 5 

and 6). Tables 2 and 3 show raw data of mean slope from MF when exposed to each 

frequency and amplitude. Figure 5 compares the change in slope of MF of selected 

muscles when exposed to four different vibration frequencies, while Figure 6 illustrates 

the influence of four different amplitudes. Comparing the control no-vibration condition (0 

Hz-0 mm) to the 30 Hz-3 mm vibration condition, the rate of muscle fatigue was not 

significantly affected by vibration (Figure 7 and 8). In regards to perceived exertion, 

participants evaluated their RPE at 8.83 ± 1.01/10 across all vibration conditions and the 

control no-vibration condition. 

Time 

Time-to-fatigue was significantly affected by the vibration amplitude (F=4.596, 

p<0.05) as subjects under higher amplitude held the squat position for a shorter amount 

of time. Table 4 and 5 demonstrate raw time-to-fatigue data when exposed to different 

frequencies (Tab. 4) and amplitudes (Tab. 5). From the vibration amplitude of 2mm 

(108.4 ± 8.0 sec) to 3mm (97.2± 6.5sec), the time-to-fatigue decreased by 11.2 ± 4.3 sec 

(p= 0.013). However, comparing time-to-fatigue from a 30 Hz/3 mm vibration condition to 

a no-vibration condition, the time was not significantly affected by vibration (T= 1.047 

p=0.304). 
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Muscle 

Erector Spinae L4 

Rectus Abdominis 

Gluteus Medius 

VMO 

Biceps Femoris 

Gastrocnemius 

Fibularis Longus 

Tibialis Anterior 

Frequency 
(HZ) 

0 
10 
20 
30 
0 
10 
20 
30 
0 
10 
20 
30 
0 
10 
20 
30 
0 
10 
20 
30 
0 
10 
20 
30 
0 
10 
20 
30 
0 
10 
20 
30 

Mean Slope of 
Median 

Frequencies 
-0.093 
-0.109 
-0.163 
-0.117 
-0.046 
0.011 
-0.014 
0.010 
-0.118 
-0.099 
-0.122 
-0.100 
-0.206 
-0.235 
-0.224 
-0.193 
-0.197 
-0.167 
-0.212 
-0.233 
0.000 
-0.024 
0.045 
-0.018 
0.056 
0.079 
0.118 
0.054 
0.021 
0.003 
0.005 
0.008 

SD 

0.201 
0.023 
0.025 
0.027 
0.265 
0.024 
0.043 
0.031 
0.123 
0.018 
0.019 
0.021 
0.194 
0.036 
0.038 
0.030 
0.193 
0.027 
0.040 
0.036 
0.086 
0.016 
0.027 
0.024 
0.129 
0.024 
0.028 
0.025 
0.164 
0.025 
0.032 
0.028 

Table 2 
Mean slope of MF when exposed to each frequency: 0Hz (no-vibration), 10Hz, 20Hz, 30Hz. n=30 
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Muscle 

Erector Spinae L4 

Rectus Abdominis 

Gluteus Medius 

VMO 

Biceps Femoris 

Gastrocnemius 

Fibularis Longus 

Tibialis Anterior 

Peak to Peak 
Amplitude 

(mm) 

0 
1 
2 
3 
0 
1 
2 
3 
0 
1 
2 
3 
0 
1 
2 
3 
0 
1 
2 
3 
0 
1 
2 
3 
0 
1 
2 
3 
0 
1 
2 
3 

Mean Slope of 
Median 

Frequencies 
-0.093 
-0.104 
-0.127 
-0.159 
-0.046 
0.017 
0.019 
-0.028 
-0.118 
-0.105 
-0.109 
-0.108 
-0.206 
-0.208 
-0.220 
-0.224 
-0.197 
-0.210 
-0.180 
-0.222 
0.000 
0.003 
-0.010 
0.009 
0.056 
0.07 
0.081 
0.100 
0.021 
0.000 
0.030 
-0.018 

SD 

0.201 
0.030 
0.023 
0.025 
0.265 
0.036 
0.036 
0.026 
0.123 
0.015 
0.023 
0.021 
0.194 
0.033 
0.038 
0.033 
0.193 
0.042 
0.024 
0.033 
0.086 
0.021 
0.015 
0.018 
0.129 
0.023 
0.026 
0.030 
0.164 
0.038 
0.025 
0.029 

Table 3 
Mean slope of MF when exposed to each peak to peak amplitude: 0mm (no-vibration), 1mm, 2mm, 
3mm. n=30 
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Figure 5 
Group means of the slope from MF when exposed to 0 Hz, 10 Hz, 20 Hz and 30 Hz frequencies. No 
significant difference between frequencies. n= 30. 
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Figure 6 
Group mean slope from MF when exposed to 0 mm, 1 mm, 2 mm and 3 mm peak-to-peak 
amplitudes. No significant difference between amplitudes. n= 30. 
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Figure 7 
Rate of muscle fatigue differences between the control no-vibration (0 Hz-0 mm) condition and 
vibration of 30 Hz-3 mm condition in the tibialis anterior, fibularis longus, VMO and gastrocnemius 
muscles. Each line represents rate of muscle fatigue differences for a single subject; bars represent 
mean rate of muscle fatigue. No significant difference between the 0 Hz-0 mm and 30 Hz-3 mm 
conditions. n=30. 
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Figure 8 
Rate of muscle fatigue difference between the control no-vibration (0 Hz/0 mm) condition and 
vibration of 30 Hz/3 mm condition in the biceps femoris, gluteus medius, rectus abdominis and 
erector spinae muscles. Each line represents rate of muscle fatigue difference of a single subject; 
bars represent mean rate of muscle fatigue. No significant difference between the 0 Hz/0 mm and 30 
Hz/3 mm conditions. n=30. 
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Frequency (Hz) 

0 

10 

20 

30 

Mean Time (sec) 

103.0 

106.9 

99.4 

101.3 

5D 

37.5 

8.0 

6.2 

7.6 

Table 4 
Mean time-to-fatigue (sec) for each frequency level (10Hz, 20Hz, 30Hz) 
and without vibration (0Hz), n=30. 

Peak to Peak 
Amplitude 

(mm) 

0 

1 

2 

3 

Mean Time (sec) 

103.0 

102.1 

108.4 

97.2 

SD 

37.5 

7.4 

8.0 

6.5 

Table 5 
Mean time-to-fatigue (sec) for each amplitude level (1mm, 2mm, 3mm) 
and without vibration (0mm), n=30. 



Muscle Activity 

During vibration, the muscle activity of gluteus medius (F=24.17, p<0.05), VMO 

(F= 18.951, p<0.05), biceps femoris (F= 3.925, p<0.05), gastrocnemius (F=3.923, 

p<0.05), fibularis longus (F= 6.226, p<0.05), and tibialis anterior (F=10.458 p<0.05) were 

all significantly affected by frequency as iEMG increased with increasing frequency. 

Tables 6 and 7 show raw data of muscle activity when exposed to each frequency and 

amplitude. Figure 9 demonstrates rectified SEMG amplitude for the VMO muscle under 

each vibration parameter combination. Gluteus medius muscle activity increased by 7.7± 

2.3% (p<0.05) from 10Hz (35.1± 2.9%mvc) to 20Hz (42.8± 3.7%mvc), 19.3± 3.3% 

(p<0.05) from 10Hz to 30Hz (54.3±4.9%mvc), and 11.6± 2.8% {p<0.05) from 20Hz to 

30Hz. VMO muscle activity increased by 30.1± 5.8% {p<0.05) from 10Hz 

(82.1±8.7%mvc) to 30Hz (112.2 ± 11.8%mvc), and 23.7± 5.8% (p<0,05) from 20Hz (88.5 

±7.8%mvc) to 30Hz. Biceps femoris muscle activity increased by 11.7± 5.6% {p<0.05) 

from 10Hz (16.9±2.1%mvc) to 30Hz (18.1 ± 2.1%mvc). Gastrocnemius muscle activity 

increased by 5.4± 1.2% (p<0.05) from 10Hz (11.7 ± 1.4%mvc) to 20Hz (17.1 ± 

1.8%mvc), and 13.7± 6.1% {p<0.05) from 10Hz to 30Hz (25.4 ± 6.5%mvc). Fibularis 

longus muscle activity increased by 4.6± 1.3% (p<0.05) from 10Hz (23.8 ± 2.4%mvc) to 

20Hz (28.4 ± 2.4%mvc), and 6.8± 2.4% (p<0.05) from 10Hz to 30Hz (30.7 ±2.9%mvc). 

Tibialis anterior muscle activity increased by 4.2± 1.5% (p<0.05) from 10Hz (15.6± 

2.3%mvc) to 20Hz (19.8 ± 2.7%mvc), and 5.9± 1.3% (p<0.05) from 10Hz to 30Hz (2T.5 

± 2.7%mvc). 

The muscle activity of VMO (F=4.587, p<0.05) and gastrocnemius (F=3.225, 

p<0.05) were also significantly affected by amplitude as iEMG increased with increasing 

displacement. VMO muscle activity increased by 21.1± 6.5% (p<0.05) from 10Hz (85.5 

± 9.2%mvc) to 30Hz (106.6 ± 12.4%mvc). Gastrocnemius muscle activity increased by 
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3.1± 1.1% (p<0.05) form 10Hz (13.5 ±1.4%mvc) to 20Hz (16.6 ± 1.8%mvc). There were 

no interaction effects (frequency x displacement) on muscle activity for each muscle. 

Comparing the iEMG of each muscle from a 30Hz/3mm amplitude vibration 

condition to a no-vibration condition, results demonstrated a vibration effect on the 

rectus abdominis (T= -2.88, p<0.05), gluteus medius (T=-3.862, p<0.05), VMO (T= -

3.891, p<0.05), and fibularis longus (T=-3.5.87, p<0.05) as their muscle activity 

increased while holding the squat position under vibration. Rectus abdominis muscle 

activity increased by 5.24± 10.68% from no-vibration (5.39 ± 1.06 %mvc) to vibration 

(10.63 ± 2.44 %mvc). Gluteus medius muscle activity increased by 25.72± 36.48% from 

no-vibration (32.97± 12.71 %mvc) to vibration (58.69± 36.89 %mvc). VMO muscle 

activity increased by 49.56 ± 69.76% from no-vibration (76.12± 49.43%mvc) to vibration 

(125.68± 93.17%mvc). Fibularis longus muscle activity increased by 9.00 ± 13.61% from 

no-vibration (23.09± 12.75%mvc) to vibration (32.1± 20.2 %mvc). 
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Figure 9 
Rectified SEMG amplitude for the VMO muscle under each vibration parameter combination: 
control no vibration, 10 Hz-1 mm, 10 Hz-2 mm, 10 Hz-3 mm, 20 Hz-1 mm, 20 Hz-2 mm, 20 
Hz-3 mm, 30 Hz-1 mm, 30 Hz-2 mm, 30 Hz-3 mm. The time line represents the total time-to-
fatigue for the VMO no vibration condition. The vertical line represents the maximal peak 
muscle activity amplitude for the VMO. Maximal activity was found under the 30 Hz-3 mm 
condition. 
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Muscle 

Erector Spinae L4 

Rectus Abdominis 

Gluteus Medius 
' 

VMO 

Biceps Femoris 

Gastrocnemius 

Fibularis Longus 

Tibialis Anterior 

Frequency 
(HZ) 

0 
10 
20 
30 
0 
10 
20 
30 
0 
10 
20 
30 
0 
10 
20 
30 
0 
10 
20 
30 
0 
10 
20 
30 
0 
10 
20 
30 
0 
10 
20 
30 

Mean 
Muscular 
Activity 
(%MVC) 
18.9 
18.7 
27.4 
33.6 
5.4 
13.0 
44.5 
14.0 
33.0 
35.1 
42.8 
54.3 
76.1 
82.1 
88.2 
112.2 
15.0 
16.9 
18.1 
28.7 
11.0 
11.7 
17.1 
25.4 
23.1 
23.8 
28.4 
30.7 
16.2 
15.6 
19.8 
21.5 

SD 

10.9 
2.2 
4.9 
9.2 
5.8 
7.3 
36.5 
3.6 
12.7 
2.9 
3.7 
4.9 
49.4 
8.7 
7.8 
11.8 
11.2 
2.1 
2.1 
5.6 
6.6 
1.2 
1.8 
6.5 
12.8 
2.4 
2.4 
2.9 
15.7 
2.2 
2.5 
2.7 

Table 6 
Mea'n muscular activity (%MVC) for each frequency level and without vibration in the erector spinae, 
rectus abdominis, gluteus medius, VMO, biceps femoris, gastrocnemius, fibularsi longus and tibialis 
anterior muscles. 
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Muscle 

Erector Spinae L4 

Rectus Abdominis 

Gluteus Medius 

VMO 

Biceps Femoris 

Gastrocnemius 

Fibularis Longus 

Tibialis Anterior 

Peak to Peak 
Amplitude 
(mm) 

0 
1 
2 
3 
0 
1 
2 
3 
0 
1 
2 
3 
0 
1 
2 
3 
0 
1 
2 
3 
0 
1 
2 
3 
0 
1 
2 
3 
0 
1 
2 
3 

Mean 
Muscular 
Activity 
(%MVC) 
18.9 
27.7 
29.2 
22.7 
5.4 
44.7 
11.2 
15.5 
33.0 
42.7 
42.7 
46.9 
76.1 
85.5 
90.6 
106.6 
15.0 
17.7 
20.4 
25.6 
11.0 
13.5 
16.6 
24.0 
23.1 
25.6 
28.3 
28.9 
16.2 
17.9 
18.7 
20.4 

SD 

10.9 
4.8 
7.9 
3.2 
5.8 
37.1 
2.8 
7.7 
12.7 
3.9 
3.3 
4.1 
49.4 
9.2 
8.0 
12.4 
11.2 
2.0 
2.3 
5.7 
6.6 
1.4 
1.8 
6.0 
12.8 
2.3 
2.7 
2.7 
15.7 
2.4 
2.5 
2.5 

Table 7 
Mean muscular activity (%MVC) for each amplitude level and without vibration in the 
erector spinae, rectus abdominis, gluteus medius, VMO, Biceps femoris, gastrocnemius, 
fibularis longus and tibialis anterior muscles. 
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Discussion 

Rate of muscle fatigue - The results of the study showed no effect on the rate of 

muscle fatigue from vibration parameters. This result was expected as the number of 

participants was lower than what was calculated prior to the beginning of this 

experiment. Post data collection, a second sample size calculation was performed using 

the values obtained during the experiment to determine how many subjects would have 

been needed to obtain significance with our results. Due to the large experimental 

matrix, calculation was performed for the VMO, gluteus medius, and fibularis longus 

muscles only as these muscles had the main effect on muscle activity in WBV condition 

compared to no vibration. The mean slope of median frequencies for the no-vibration 

condition and 30Hz/3 mm vibration condition was used for the calculation with power set 

at 0.80 and a=0.05. From the calculation, significance would have been obtained with 

1166 subjects for the VMO, 252 subjects for the gluteus medius and 23,269 subjects for 

fibularis longus. From the extensive range of sample numbers, the number and 

recruitment of the appropriate number of subjects would be difficult. 

In pilot studies, even though significance in the results could be absent, analysis 

of collected data may suggest some evidence, observations which may be useful in 

future WBV studies. In this study, no trends in the results were observed, questioning 

the fatigue evaluation technique. Since subject's perceived exhaustion at the end of 

each squat was similar amongst all subjects (8.83 ± 1.01/10), the participants' capability 

of maintaining the squat position until perceived physical exertion was not of concern. 

Therefore, a different approach for fatigue data collection would be needed. A technique 

suggested by Luttmann et al.(2000) may be more appropriate as fatigue was determined 

by a joint analysis of SEMG spectrum and amplitude [81]. This method is based on the 

relationships between muscular force production and fatigue state and the SEMG 

amplitude and spectrum, as illustrated in Figure 10. In regards to SEMG amplitude, 
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increases will take place with an increased in force as well as with the occurrence of 

fatigue [81]. On the other hand, fatigue will produce a left shift in the spectral distribution 

and an increased force production to right shift in the distribution [81]. From this 

knowledge and this evaluation technique, the occurrence of fatigue may be more easily 

and accurately detected leading to a better analysis of fatigue which may lead to 

significant results. 

temporal 
change in PF 

+ 

recovery; 

force decrease 

force increase 

_̂_ I temporal 
"**""" change in EA 

fatigue 

Figure 10 
Schematic representation of the method for the Joint Analysis of EMG Spectrum and Amplitude: 
Time-related changes in the Electrical Activity (EA) and the Median Frequency (MF) are 
considered jointly in order to differentiate between various EMG-change causations. 
Representation taken from Luttman et al. (2000) 
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ABSTRACT 

Effects of Vertical Whole-Body Vibration Parameters on Muscle Activity and Time-

to-Fatigue in Submaximal Isometric Contraction 

The purpose of this study was to examine the effects of vertical Whole-Body 

Vibration parameters (specific frequency / amplitude independently or in combination) on 

muscle activity and time-to-fatigue during submaximal isometric contraction. Thirty 

healthy college level athletes participated in the study. Three levels of each independent 

vibration parameter were examined using frequencies of 10, 20 and 30 Hz, and 

amplitudes of 1, 2, 3 mm, for a total of nine combinations of vibration dosage 

parameters. Surface electromyographic activity was measured from eight muscles: 

tibialis anterior, fibularis longus, vastus medialis oblique (VMO), gastrocnemius (medial 

head), biceps femoris, gluteus medius, rectus abdominis and erector spinae (L4). 

Analysis of variance with repeated measures evaluating the effects of the vibration 

parameters was performed on the measured integrated electromyography (iEMG) 

responses as well as time-to-fatigue. Main frequency effect was observed on the muscle 

activity of tibialis anterior, fibularis longus, VMO, gastrocnemius, biceps femoris and 

gluteus medius as their iEMG significantly increased with rising frequencies. The largest 

change was observed in the VMO with a 30.1± 5.8% (p<0.005) SEMG gain from 10 Hz 

(82.1 ± 8.7% mvc) to 30 Hz (112.2 ± 11.8% mvc). Time-to-fatigue was significantly 

affected by amplitude as time decreased by 11.22 ± 4.25 s (p<0.005) from an amplitude 

of 2 mm (108.42 ± 7.97 s) to 3 mm (97.22 ± 6.49 s). The results suggest frequency to be 

the principal parameter responsible for an increase in muscle activity under WBV and 

amplitude for a decrease in time-to-fatigue. The design of WBV training with the aim of 
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increasing muscle activity should be centered on frequency, with a frequency of 30 Hz 

for greater muscle activity. 

Key Words : Frequency, Amplitude, Acceleration Force, Electromyography 
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INTRODUCTION 

Vibration training involves the superimposition of vibration to one's initial strength 

training or the use of whole-body vibration (WBV) as a substitution for physical exercise. 

Since the introduction of the novel modality in fitness and rehabilitation centers, health 

professionals have used WBV in the belief that the effects of the oscillation on the body 

standing on the platform will help with different aspects of human health, such as 

increasing bone density, improving balance and flexibility amongst others [2, 3, 5, 6J. In 

the fields of athletics and fitness, health professionals, personal trainers and coaches 

use acute and chronic exposure to WBV with the aim of increasing power and strength 

in human neuromuscular performance [43, 54, 56]. The main objective in such training is 

to increase strength and power via a reflexive muscle contraction response from 

vibration known as a Tonic Vibration Reflex (TVR) [20]. 

In the design of an optimal training protocol to achieve muscle strength or power 

improvement, there have been inconsistencies in the program parameters. In such 

studies, several parameters need to be determined, such as body position held on the 

platform, sets and reps of exercise performed, vibration parameters - i.e. frequency and 

amplitude - and vibration exposure time. In the past, several studies differed in their 

training protocol [54, 56, 82-86]. These studies use a variety of settings: a frequency 

setting ranging from 15 to 50 Hz, an amplitude ranging from 2 to 10 mm, both of these 

creating an array of acceleration forces exposed to the human body that reaches up to 

15 g. Vibration should not be looked at as a single element. Mechanical oscillations have 

a direct influence on the human body through different individual components. Since 

different platforms provide different features, it is of great importance to understand the 

impact each vibration component has on the human body when designing training 

protocols which are believed to be beneficial. Side effects such as motion sickness, 

digestive system disorder, adverse effects on the female reproductive organs, peripheral 
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veins disorders as well as aggravation of pre-existing back, neck or shoulder injury 

cannot be excluded [16-18]. The lack of consistency across studies is of concern; 

however, the absence of a solid rationale behind the use of the parameters is 

additionally problematic, as the understanding of the response of the human body under 

WBV remains uncertain. 

A solid rationale would begin with an understanding of the impact which 

frequency and amplitude of vibration have on the human body. From current knowledge, 

frequency and amplitude have an effect on muscle activity independently or in 

combination [48, 54, 87, 88]. The concern with those statements is that each study 

looked at only one independent variable (frequency or amplitude), or studied the 

combination of frequency and amplitude (acceleration force) only. These studies make 

understanding the effect of each component on the body difficult as the comparison of 

effects does not occur within a single study. To determine the effects of the vibration 

component individually or combined, an experimental design requires inclusion of a 

series of frequency and amplitude and needs to evaluate their effects within the same 

experiment. 

Results from previous studies on human performance may be beneficial in the 

design of WBV training, as positive outcomes provide successful WBV training protocol. 

However, studies have demonstrated both positive and negative outcomes regarding 

increases in strength and power [2, 43, 47]. Although several studies evaluated chronic 

and acute WBV effect on human performance, few incorporated a control group [2, 43, 

45, 82, 85, 86, 89]. Of these studies, a smaller amount succeeded in demonstrating 

significant improvements on strength and/or power from vibration compared to the 

control group [2, 43, 45]. Such a lack in significance and consistency in the results may 

be explained by a poor understanding of the human physiology behind WBV, or more 

precisely how vibration parameters affect the human body. 
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The purpose of this study is to look at and understand the effects of vibration 

parameters on the human body in order to facilitate the design of a safe and effective 

vibration protocol for the healthy population. The objective was to find the effects of 

vertical vibration parameters (specific frequency and amplitude independently or in 

combination) on muscle activity and time-to-fatigue during submaximal isometric 

muscular contraction. To our knowledge, this study would be the first to look at vibration 

parameters separately and in combination within the same experiment. From present 

WBV knowledge, frequency was hypothesized to be the main vibration parameter 

affecting muscle activity and time-to-fatigue during isometric muscular contraction under 

WBV. 

METHODS 

Experimental Approach to the Problem 

A 3 x 3 repeated measures study design was used to investigate the effects of 

vertical WBV on muscle activity and time-to-fatigue during an isometric single leg squat 

exercise until exhaustion. The independent variables included vibration frequency and 

amplitude and the dependent variables were muscle activity and time-to-fatigue. Three 

levels of each independent parameter were examined using frequencies of 10, 20 and 

30 Hz, and vertical peak-to-peak amplitudes of 1, 2, 3 mm, leading to nine combinations: 

10 Hz/1 mm, 10 Hz/2 mm, 10 Hz/3 mm, 20 Hz/1 mm, 20 Hz/2 mm, 20 Hz/3 mm, 30 Hz/1 

mm, 30 Hz/2 mm, and 30 Hz/3 mm; and a control combination: 0 Hz/0 mm (Tab. 9). The 

frequencies and amplitudes were selected based on previously used vibration 

parameters in preceding WBV studies. The frequency of 10 Hz was included to assess 

the effect of even lower frequencies than previously used on the human body. 
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^~^^^^ Frequency 

Peak Amplitude"~\^ 

0 mm 

0.5 mm 

1 mm 

1.5 mm 

0 Hz 

0.0 g 

10 Hz 

0.201 g 

0.402 g 

0.604 g 

20 Hz 

0.805 g 

1.61 g 

2.415 g 

30 Hz 

1.811 g 

3.622 g 

5.433 g 

Table 8 
Peak acceleration forces (g) created by the combination of frequencies (Hz) and 
amplitudes (mm) selected for the experiment. 

Subjects 

Thirty college-level athletes (age 19.47± 2.45 yr, Ht 172.23± 8.08 cm, Wt 73.3± 

11.78 kg), free of any conditions that could interfere with the task to perform during the 

experiment, volunteered to participate in this study. Subject exclusion criteria included 

acute or chronic back injury, acute inflammation in the musculoskeletal system, acute 

migraine attack, acute or chronic musculoskeletal injury in the dominant leg, acute 

thrombosis, recent surgery, cancer, epilepsy, gallstones, kidney or bladder stones, open 

wounds in the dominant leg, pregnancy, rheumatoid arthritis and arthropathy, and 

diabetes. All subjects were screened for exclusion criteria prior to enrolment. All 

procedures were approved by the Concordia University Human Research Ethics 

Committee. All participants gave written informed consent to participate in the study on 

their first visit, following explanation of the risks associated with participating in the 

current research. 
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Testing Procedures 

Participants were asked to attend three days of data collection separated by one 

week. On the subject's first visit, leg dominance was determined and maximal voluntary 

contractions (MVC) were recorded for each tested muscle to normalize recorded muscle 

activity. Leg dominance was determined by identifying the foot used most often to initiate 

a step in three separate trials [90]. Each subject was then exposed to the ten vibration 

combinations (3x3 grid, plus control) in a counterbalanced order. Three combinations 

were completed during the first visit, four combinations during the second visit and three 

combinations during the last visit. A rest period of 10 minutes was given in between each 

exposure in order to rest the muscle adequately prior to the next vibration session [80]. 

The vibration platform used during the experiment was the Vibraflex® 600, a unit that 

vibrates vertically about a central fulcrum. Each participant was fitted with the same 

brand and type of running shoes in order to protect the subjects' feet and maintain 

consistency in the delivery of the vibration. To prevent excessive absorption of the 

vertical vibration force from the footwear, the insoles inside the shoes were removed 

prior to the beginning of the experiment. 

The physical task consisted of standing on the vibration platform holding a static 

one leg squat position until exhaustion. The participants were asked to squat down on 

their dominant leg to a knee angle of 125° [49] while keeping a straight back (Fig. 11) 

Subjects' knee position was measured and controlled using a double-armed goniometer. 

Prior to the measurements, bony landmarks were marked on the subjects to standardize 

the goniometer placement and facilitate the readings. The bony landmarks included the 

greater trochanter, the lateral femoral condyle, and the lateral malleolus. The knee angle 

was measured with the center of the fulcrum positioned over the lateral condyle of the 

femur, the proximal fixed arm of the goniometer aligned with the femur using the greater 

trochanter as a reference point, and the distal arm aligned towards the lateral malleolus 
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[76]. The goniometer was used to position the subjects into their experimental squat 

position as well as to ascertain that the subjects maintained that test position. The non

weight bearing leg was kept to the front or back of the participants depending on their 

comfort level. The participants familiarized themselves with the physical task both with 

and without WBV stimulus before testing on their non-experimental leg. To prevent the 

risk of falling, the participants were asked to keep one to two fingers on the handle bars 

while exerting only minimal weight on the bars. 

Figure 11 
Position held by subjects during data collection. 
125° knee flexion with a straight back. 
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While exposed to a vibration condition, the task time started as soon as the 

subject adopted the testing position. During the experiment, subjects were verbally 

encouraged to sustain the task for as long as possible. To quantify exhaustion, the task 

terminated when the knee angle changed by 10° from its starting position for over 3 s as 

detected by monitoring the goniometer, or when proper body position was not 

maintained by the participants despite verbal encouragement [67]. At that moment, trial 

time ended. 

Electromyographic & Time Recording 

SEMG from the dominant leg of the participants was collected. Six muscles from 

the dominant leg and two from the trunk were analyzed: tibialis anterior, fibularis longus, 

medial gastrocnemius, biceps femoris, vastus medialis oblique (VMO), gluteus medius, 

rectus abdominis, and erector spinae (L4); a reference electrode was placed over the 

tibial tuberosity. The placement of the electrodes was done according to Basmajian & 

Blumenstein and as described by DeMont, Lephart et al. (1999), and McGill, Karpowicz 

et al. (2009) [71-73]. Prior to placing the electrodes, hair on each location was shaved, 

the skin was slightly abraded with a nail file, and then cleaned with alcohol to remove 

any dead tissue improving electrode adhesion. Moreover, the cables were taped to the 

skin to minimize movement artefacts. 

SEMG collection was carried out using Ag/AgCI adhesive electrodes. EMG signal 

was sampled at 1000 Hz and amplified (gain 500) by a 27-channel amplifier (MYOPAC, 

RunTech Inc., Mission Viejo, CA), than transmitted to a MYOPAC 16-channel receiver 

where it was further amplified (gain 500, total gain 1000), and A\D converted. The signal 

was then transmitted and stored in a Dell laptop computer where the signal was 

bandpass filtered (Butterworth) between 10 Hz and 500 Hz and rectified using Runtech 
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DATAPAC2000 software [72]. The resulting signal became integrated electromyography 

(iEMG) and was used for analysis. 

To perform our muscle activity analysis, mean iEMG amplitude was calculated for 

ten seconds. Since each subject was able to maintain the task position for different 

amounts of time, the section selected for analysis was the middle ten seconds of the 

task's iEMG recorded for each subject. The iEMG amplitude was calculated for each 

muscle under each vibration condition. Time-to-fatigue was measured by the time 

counter located inside the SEMG software. The time counter numbers at the beginning 

and the end of the task were recorded. The subtraction of the starting time counter 

number from the ending time counter number provided total time-to-fatigue. 

STATISTICAL ANALYSIS 

Prior to this experiment, a pilot study on the effects of vertical WBV on muscle 

activity was done in order to find the appropriate number of participants needed to 

achieve significance. The calculation of the sample size was carried out with a=0.05 and 

power of 80%, providing a sample size of n=30 for this study. 

The statistical analysis was performed using SPSS Statistics GradPack 17.0 

Release 17.0.0 (Chicago, IL, USA). Muscle activity and time-to-fatigue were analyzed as 

a function of vibration frequency and amplitude using a 3 x 3 ANOVA with repeated 

measures to a significance level of a= 0.05. A pairwise comparison was used when the 

main effect or interaction was found to determine differences between levels of the 

variables. 

The analysis of the control condition (no-vibration) was done by comparing the 

effects of vibration of 30 Hz / 3 mm amplitude on muscle activity and time-to-fatigue to 

the no-vibration condition. The vibration/no-vibration analysis was performed using a 

paired T-test to a significance level of a=0.05. 
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RESULTS 

Muscle Activity 

During vibration, the muscle activity of gluteus medius (F=24.17, p<0.05), VMO 

(F= 18.951, p<0.05), biceps femoris (F= 3.925, p<0.05), gastrocnemius (F=3.923, 

p<0.05), fibularis longus (F= 6.226, p<0.05), and tibialis anterior (F= 10.458, p<0.05) 

were all significantly affected by frequency as iEMG increased with increasing frequency 

(Fig. 12). The muscle activity of VMO (F=4.587, p<0.05) and gastrocnemius (F=3.225, 

p<0.05) were also significantly affected by amplitude as iEMG increased with increasing 

amplitude (Fig. 13). There were no interaction effects (frequency x amplitude) on muscle 

activity for each muscle. 

Comparing the iEMG of each muscle from the 30 Hz/3 mm vibration condition to 

the control no-vibration condition, results show a vibration effect on the rectus 

abdominus (t= -2.88, p<0.05), gluteus medius (t=-3.862, p<0.05), VMO (t= -3.891, 

p<0.05), and fibularis longus (t=-3.5.87, p<0.05) as their muscle activity increased while 

holding the squat position under vibration (Figs. 14 and 15). 

Time 

Time-to-fatigue was significantly affected by vibration's amplitude (F= 4.596, 

p<0.05) as subjects under bigger amplitude held the squat position for a shorter amount 

of time. However, comparing time-to-fatigue from a 30 Hz/3 mm vibration condition to a 

no-vibration condition, time was not significantly affected by vibration (t= 1.047, p<0.05) 

(Figs. 16, 17 and 18). 
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Figure 12 
Mean muscle activity (%MVC) when exposed to frequency of 0 Hz, 10 Hz, 20 Hz and 30 Hz. 
'Significant difference between frequencies of 20 Hz &10 Hz, A significant difference between 
frequencies of 30 Hz &10 Hz, f significant difference between frequencies of 30 Hz & 20 Hz. n= 30. 
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Figure 13 
Mean muscle activity (%MVC) when exposed to peak-to-peak amplitude of 0 mm, 1 mm, 2 mm and 3 
mm. 'Significant difference between frequencies of 2 mm &1mm, A significant difference between 
frequencies of 3 mm & 1mm. n= 30. 
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Figure 14 
Muscle activity (%MVC) difference between the control no-vibration (0 Hz-0 mm) condition and 
vibration of 30 Hz- 3mm condition in the tibialis anterior, fibularis longus.VMO and gastrocnemius 
muscles. Each line represents a single subject; bars represent mean muscle activity for all 30 
subjects. *Significant difference between the 0 Hz/0 mm and 30 Hz/3 mm conditions. n=30. 
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Figure 15 
Muscle activity (%MVC) difference between the control no-vibration (0 Hz-0 mm) condition and 
vibration of 30 Hz-3 mm condition in the biceps femoris, gluteus medius, rectus abdominis and 
erector spinae muscles. Each line represents a single subject; bars represent mean muscle activity 
for all 30 subjects. 'Significant difference between the 0 Hz/0 mm and 30 Hz/3 mm conditions. 
D=30. 
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Figure 16 
Mean time-to-fatigue (s) when exposed to frequencies of 0 Hz, 10 Hz, 20 Hz and 30 Hz. No 
significant difference between frequencies. /?= 30. 
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Figure 17 
Mean time-to-fatigue (s) when exposed to peak-to-peak amplitudes of 0 mm, 1 mm, 2 mm and 3 
mm.*Significant difference between amplitudes of 2 and 3 mm. n=30. 
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Figure 18 
Mean time-to-fatigue differences (s) between the control no-vibration (0 Hz-0 mm) condition and vibration 
of 30 Hz-3 mm condition. Each line represents a single subject's time; bars represent mean time-to-fatigue 
for all 30 subjects. No significant difference between the 0 Hz - 0 mm and 30 Hz - 3 mm conditions. n=30 
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DISCUSSION 

Muscle Activity & Frequency - The results of the study show frequency to be the 

major vibration parameter to impact overall muscle activity during WBV. Increasing the 

frequency seems to affect muscle activity as activity increased with increasing 

frequencies. A physiological explanation of this finding may be related to the reflexive 

tonic vibration response from vibration. This reflexive muscle contraction would be the 

result of primary afferent nerve sensitivity to vibration - sensitivity being predominant in 

frequencies up to 180 Hz with maximum sensitivity to vibration of 80 Hz [21, 22]. The 

vibration frequency and the firing rate of the muscle spindle primary nerve fibres due to 

vibration were shown to be connected as they are both synchronized to a frequency up 

to 180 Hz [21, 22]. Moreover, the discharge from muscle spindle primary nerve fibres 

was revealed to fire harmonically with vibrations up to 80Hz (e.g., 1 action potential of 

muscle spindle primary nerve : 1 Hz (or cycle per second)) and then discharge in a 

subharmonic manner (e.g., 1 action potential of muscle spindle primary nerve : 2 

vibration cycle) with increasing vibration frequencies [22]. The one-to-one stimulus 

response under lower frequencies means that by altering the vibration frequency the 

initiation a proportional change in the la afferent discharge frequency is possible. More 

specifically, as frequency increases to a maximum of 80Hz, discharge of la afferent 

increases. 

The control of muscle force output depends on the amount of motor units 

recruited and the frequency of discharge of the motor units [19]. Looking at the relation 

between tonic vibration reflex (TVR) and motor units, a previous study demonstrated a 

modulation of the amplitude of TVR when humans were exposed to vibration, a variation 

explained by an increase in motorneuron depolarization from the firing frequency of la 

afferents. [23]. At frequencies below 100 Hz, ail of the la afferents are assumed to be 

recruited by the vibration stimulus [23]. An increase in TVR in the lower frequency range 
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results principally from an increase in motomeuron depolarization with increased firing 

frequency of la afferent. This increased motor neuron depolarization leads to a 

recruitment of motor units of increasing threshold. At frequencies above 100 Hz, most la 

afferents start to fire at random to vibration stimuli and lose the response in terms of 1:1 

synchrony leading to subharmonic synchronization [23]. This change in behaviour leads 

to a derecruitment process affecting the motomeurons and their responsive fibres 

showing a reduction in the strength of TVR [23]. 

Reviewing WBV studies, predominant frequencies used in the vibration protocol 

ranged from 15 to 50 Hz [54, 56, 82-86]. Considering current knowledge on afferent 

nerve / motor units and vibration, a frequency of 80 Hz may be preferable in order to 

obtain maximal muscle activation from TVR. A study by Steyvers et al. (2003) 

investigated the effects of muscle tendon vibration at different frequencies on 

corticospinal excitability. The results demonstrated an increase sensitivity of the la 

afferent at 75 Hz compared to a smaller increase in excitability at 120 Hz and an 

absence of change at 25 Hz [38]. A similar outcome from WBV exposure with a 

frequency of 80Hz is suggested. 

A different suggestion for the increased muscle activity is the presence of 

muscular fatigue. When analyzing iEMG, a shift in the frequency spectrum towards lower 

frequencies or an increase in the amplitude are interpreted as signs of muscular fatigue 

[81]. Since the iEMG amplitude and its spectral content may also represent force 

production, a recovery period, or force reduction, change in the iEMG amplitude cannot 

be only attributed to muscle fatigue [81]. However, in the presence both increased 

amplitude and spectral shift to lower frequency at the same time, one can infer the 

presence of muscle fatigue. In this study, joint analysis of EMG spectrum and amplitude 

was not performed making the presence of muscular fatigue a second interpretation of 

our results. 
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Muscle Activity & Squat Task - Even though WBV exposes the entire body to 

vibration, each muscle does not respond to the same extent. The amount of muscle 

activity for each individual muscle may be from the combination of a specific frequency 

setting in addition to the physical demand from the task performed on the platform. From 

existing knowledge, the higher the physically demand on a specific muscle from the task 

performed on the platform, the greater the increase in muscle activity of that specific 

muscle from vibration [48, 49]. 

In this experiment, the iEMG analysis of muscle activation during the isometric 

single leg squat task without vibration showed VMO to be the most requested muscle, 

followed by gluteus medius, fibularis longus, erector spinae tibialis anterior, biceps 

femoris, gastrocnemius medialis, and rectus abdominis. This order of muscle demand is 

similar to the one observed in a previous study on squat exercise that did not include 

vibration as a parameter [91]. Looking at the mean muscle activity difference from the 

control no-vibration condition to the 30 Hz-3 mm condition of this study, the results show 

similar muscle activation pattern as the iEMG amplitude of the VMO, gluteus medius and 

fibularis longus were all significantly affected by vibration compared to the other 

muscles. 

Time-to-fatigue & Amplitude - The results of the study showed vibration 

amplitude to have a significant effect on time-to-fatigue as increased amplitude 

decreased task time. The explanation for this outcome may have different origins, 

muscle fatigue being one of them. The impact of vibration on muscle fatigue has been 

investigated with results suggesting long exposure to vibration induces more muscular 

fatigue due to a facilitation effect of vibration on muscle contraction force and activity 

during the early part of the exposure [44, 48, 50]. In this study, since amplitude had little 

effect on muscle activity, muscle fatigue simply from increased muscle activity is not 

believed to be responsible for decreased task time. A second explanation for muscle 
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fatigue from vibration may be from a suppression effect of vibration on neuromuscular 

performance [51]. A previous study demonstrated vibration to cause a reduction of EMG 

activity, motor unit firing rates and contraction force that increased gradually during the 

course of about one minute of sustained superimposed vibration [51]. A suggested 

contributing mechanism for this suppression is vibration-inducing presynaptic inhibition 

and/or transmitter depletion [51]. We cannot infer this explanation since our study did not 

directly analyse the effect of vibration parameters on motor unit firing rates or contraction 

force, but this could be a plausible explanation of the situation and this suggestion 

should be further studied. 

The decreased time-to-fatigue may also be related to more subjective factors 

such as comfort level from vibration exposition and psychological fatigue with effects 

including decline of alertness, mental concentration and motivation among others [68]. 

Increased vibration amplitude may create an uncomfortable sensation leading subjects 

to discontinue the physical task. The subjective assessment of comfort of fatigue was 

not performed in this study allowing us to only suggest increased discomfort as a reason 

for decrease fatigue time from increased vibration amplitude. 

Comparing time-to-fatigue from the vibration condition to the control no vibration 

condition, results show no significant change. From this observation, setting a long 

versus short task time while using WBV as a training modality must not become a factor 

of concern in terms of WBV affecting task time-to-fatigue. However, the user's safety is 

of great importance and harmful effects from vibration should not be underestimated. 

Vibration exercise time can become a dangerous parameter to the user if exposed to 

vibration for too long. 

In conclusion, WBV training increases muscle activity, activation mainly due to 

the vibration frequency parameter. From this fact and existing knowledge, maximal 

muscle activation is suggested to occur with vibration frequencies around 80 Hz, an 
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assumption that needs further investigation. In addition to high frequencies, muscle 

demand from a task performed under WBV does impact the amount of muscular activity 

as higher physical demand leads to an increased activity. Finally, WBV does not 

positively or negatively impact task time-to-fatigue. When setting the exercise time in the 

design of the WBV training protocol, vibration must not become a variable to consider 

when considering vibration impact on time-to-fatigue. With the user's safety in mind, time 

should be set according to the training objective. 

PRACTICAL APPLICATION 

The present findings indicate frequency to be the main vibration parameter to 

have an effect on muscle activity. Significant increase in muscle activity is expected with 

higher rather than lower frequencies. Body position on the vibration platform is equally 

important as creating a large physical demand on specific muscles makes those 

muscles prone to increased muscle activity under WBV. 

From this study, when designing a WBV training program with the aim of 

increasing muscle activity, strength and conditioning coaches should use frequencies 

around 30Hz, and set the amplitude to a comfortable level for the user. With regards to 

physical task time, coaches must not be concerned with any time alteration from 

vibration exposure as this study demonstrated no significant effect on time-to-fatigue. 

However, the user's physical health and safety is important; thus harmful physical effects 

from vibration should still be considered when choosing the vibration exercise time. 
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CONCLUSION 

This study helped clarify the effects of WBV mechanism on the human body. The 

results suggest frequency to be the main vibration parameter to impact overall muscle 

activity. Muscle activity increased with increasing vibration frequency. On review of the 

current WBV and local (peripheral) vibration literature, 80 Hz is suggested to be the 

optimal frequency setting to reach maximal muscle activity amplitude from vibration 

stimuli; a suggestion that needs further investigation [22]. This frequency appears to be 

favoured as muscle spindles and motor units demonstrate maximum sensitivity to 

frequencies of that level. This study also adds to the evidence that increased physical 

demand on the muscle exposed to vibration affects muscle activity. In this study, results 

showed a greater increase in muscle activity in the muscles highly required by the 

physical task when compared to those less needed while under WBV. 

This study found no vibration effect on time-to-fatigue. Also, the results of the 

pilot study on the effects of WBV on the rate of muscle fatigue suggested no vibration 

effect due to lack of statistical power. Data analysis was also proposed as to be a main 

factor for insignificant results as more robust analysis was considered. A joint analysis of 

EMG spectrum and amplitude seem to be a good strategy to identify muscle fatigue 

related to WBV [81]. 

Based on this study alone, it is not possible to affirm that exposure to WBV, or 

vibration training, results in significant neuromuscular change. The nature of the study 

was not to evaluate directly the effects of vibration on muscle strength and/or power. For 

this reason, the value of using vibration in human training remains questionable. 

However, further investigation using suggested optimal frequency settings examining the 

effects of WBV on muscle fibre type change, and neural pathways and neuron 

excitability are suggested. 
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APPENDIX B 

Consent to Participate in the Study 

CONSENT TO PARTICIPATE IN: 

The Acute Effect of Vertical Whole-Body Vibration on Rate of Muscle Fatigue and 
Perceived Exertion in Submaximal Isometric Contraction 

This is to state that I agree to participate in a program of research being 
conducted by Mylene Saucier from the Exercise Science Department of Concordia 
University (contact info: mylen_02@hotmail.com) under the supervision of Dr. Richard 
DeMont (contact info: (514)848-2424 ext 3329, rqdemonmqmail.com) 

A. Purpose of the Experiment 

I have been informed that the purpose of the research is to obtain measures 
related to the rate of muscle fatigue under vertical Whole-Body vibration while holding a 
one leg squat position on a vibration platform. This research study is an important step in 
the understanding of the effect of vertical whole-body vibration on the human body. 

B. Procedures 

I understand that I am volunteering to participate in this study which will be 
carried out in the CONCAVE laboratory. There will be three data collecting sessions 
lasting approximately two hours, with one week between each session. All procedures 
will be explained to my satisfaction. The electrical activity of six muscles from my leg 
and two muscles from my trunk will be measured by a passive measure called 
electromyography (EMG). To do this pairs adhesive sensors will be attached to my skin, 
after it has been cleaned. Shaving of body hair might also be necessary. I will then do a 
one leg squat until exhaustion while standing on a vibration platform. After a 10 minute 
rest, I will repeat this activity ten times. Each session will include either three or four 
squats, so I will return after one week, twice. 

C. Risks and Benefits 

To our knowledge there is no risks linked to this study. You will be screened for 
the following conditions, and if absent, you will be declared fit to participate in the study: 
acute or chronic back injury, acute inflammation in the musculoskeletal system, acute 
migraine attack, acute or chronic musculoskeletal injury in the dominant leg, acute 
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thrombosis, and recent surgery. (The manufacturer of the vibration platform also 
cautions against, cancer, epilepsy, gallstones, kidney or bladder stones, open wounds in 
the dominant leg, pregnancy, rheumatoid arthritis & arthropathy, and diabetes.) 

All procedures are completely non-invasive. It is possible you will experience 
minor skin irritation from the tape holding the EMG equipment in place. Do to the 
squatting leg exercise and vibration nature of this study, the is a small possibility of 
minor effects including irritation or itchiness to the skin of the foot in contact with the 
vibration platform, nausea and dizziness, quick but temporary fall of blood pressure, and 
hypoglycaemia (if diabetic). Muscle soreness is possible following the experiment. 
These are unlikely temporary side effects with no known long term risk, but please 
inform the experimenter if you feel any discomfort. A certified athletic therapist will 
be present during the testing procedures. There are no direct benefits or compensation 
from your participation in this study. This research will aid both the rehabilitation and 
fitness communities. 

D. Conditions of Participation 

• I understand that I am free to withdraw my consent and discontinue my 
participation at anytime without negative consequences. 
• I understand that my participation in this study is CONFIDENTIAL (i.e., the 
researcher will know, but will not disclose my identity) 
• I understand that the data from this study may be published. 

I HAVE CAREFULLY STUDIED THE ABOVE AND UNDERSTAND THIS AGREEMENT. 
I FREELY CONSENT AND VOLUNTARILY AGREE TO PARTICIPATE IN THIS 
STUDY. 

Name (please print) 

SIGNATURE 

If at any time you have questions about your rights as a research participant, please 
contact Kyla Wiscombe, Research Ethics Assistant, Concordia University, at (514)848-
2424 x4888 or by email at <kwiscomb@alcor.concordia.ca>. 
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Appendix C 

Borg Scale - Rating of Perceived Exertion 

0 Nothing at all 

0.5 Very, very weak 

1 Very weak 

2 Weak 

3 Moderate 

4 Somewhat strong 

5 Strong 

6 

7 Very strong 

8 

9 

10 Very, very strong 
Table 9 
Borg Scale - Borg, E. (2006) 
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