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Abstract 

Experimental Investigation of Flow Boiling Instability in a Single Vertical Microtube: 

Effects of Hydraulic Diameter and Flow Orientation 

 

Qian You 

Concordia University 2014 

 

Flow boiling in a microchannel heat sink is considered as a suitable and an efficient 

method to dissipate high heat flux from a small surface. Especially, this technique can 

achieve uniform axial temperature distribution and low noise with a little coolant and low 

pumping power consumption. However, the main drawback of this attractive technique is 

flow instability which is induced by the flow phase change. Flow instability can constrain 

the advantages of flow boiling heat transfer, or even damages systems. 

 In this thesis, the fundamental investigations on the flow instability in a single vertical 

microtube are conducted. The objectives are to understand the flow oscillations types and 

features in vertical flow directions, the effects of geometric factors (hydraulic diameter of 

microtube and flow orientation) and operating conditions (mass flux and heat flux) on 

flow instability behaviors, and to investigate the inlet orifice for controlling flow 

instability in vertical flow directions. Three different sizes of stainless steel microtubes 

with 0.305, 0.533 and 0.889 mm hydraulic diameters are tested. The working fluid FC-72 

maintains around 24 °C at the inlet of microtube. The mass flux varies from 700 to 1600 

kg/m2·s, and the heat flux is applied on the tube surface uniformly up to 9.6 W/cm2. For 

the flow instability controlling study, two sizes of inlet orifices (50% and 20% area ratio) 
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are investigated, respectively. The experimental results show that in a large hydraulic 

diameter, the onset of flow instability with obvious and sustained oscillation features is 

usually observed, and it can be delayed by large mass fluxes. In a small hydraulic 

diameter, the transient point is most detected and occurs earlier than in large size 

microtubes at a given mass flux, and the mass flux effect on its occurrence can be ignored. 

The buoyancy force impacts the flow instability appearance and characteristics. The 

irreversible flow blockage is observed in the smallest tube in downward flow direction 

and not sensitive to the mass flux. With more heat flux applied on the largest tube, the 

flow oscillations change to intensive in upward flow direction, but tend to be re-stabilized 

in downward flow direction. The 50% inlet orifice shows better performance at large 

mass fluxes or in upward flow direction. The 20% inlet orifice has a good ability to 

eliminate flow instability in the current investigation, but it induces higher pressure drop 

than 50% inlet orifice. 
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Nomenclature 
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Chapter 1 

 

1 Introduction 

Nowadays, as technology develops rapidly, microelectromechanical systems (MEMS) 

have attracted more attentions due to their tiny size, powerful abilities and low cost. 

Many applications have already served commercial and industrial areas. A lab-on-a-chip 

(LOC) is an exciting example in bio/chemical analysis, which is available for medical 

diagnosis, environmental pollution monitoring and so on. This technology is still novel 

and developing. MEMS sensors and actuators in space industry are another essential 

application to reduce the weight and space of the system, plus save energy and cost. 

MEMS are also widely used in robotic, automobile and communication industries. 

However, in the meantime, the heat generated in a unit area (the heat flux) in electronic 

parts is significantly increased. It may cause system damage and/or control failure. For 

example, an extremely high flux of 104 W/cm2 in the fusion reactor blanket was reported 

(Mudawar, 2011). The traditional forced air, heat pipe or submerged cooling methods are 

not suitable to cool down these devices anymore due to low heat rejection ability, large 

size, a lot of noise and a large amount of coolant consumption. Therefore, forced 

convection in a microchannel heat sink is a reliable and suitable solution because it can 

achieve a high heat transfer coefficient, which is inversely proportional to the channel 
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hydraulic diameter, by using a small amount of coolant to satisfy large heat dissipation 

from a limited area. 

The working fluid in a microchannel heat sink can be either single-phase or two-

phase. The single-phase flow forced convection has been investigated extensively in the 

last decades. Although it can increase heat dissipation in a small area, it requires large 

pumping power or small channel size since single-phase utilizes sensible heat transfer for 

cooling. It also brings uneven surface temperature distribution along the working fluid 

path so that the system performance and the life time are restricted. By comparison, two-

phase fluid forced convection has more advantages: (1) significantly higher heat transfer 

coefficient which can be obtained due to latent heat transfer; (2) reduced pressure drop 

and amount of coolant; and (3) uniform axial temperature distribution. Hence, flow 

boiling in microchannels is believed to be an ideal solution for cooling compact size 

electronic devices with high heat flux generation. However, nothing is perfect; flow 

instability, the major shortcoming of flow boiling techniques, always exists.  

 Flow boiling instability in conventional size channels has been widely studied 

experimentally and numerically. The research results show that it may physically induce 

mechanical vibration of components or the system control failure, and it also affects the 

local heat transfer coefficient and may cause local dryout.  

In micro scale studies, the flow boiling heat transfer mechanisms are proved different 

from the conventional size since the surface tension is dominant. In the same way, the 

flow instability is required numerous investigations to understand its characteristics to 

affect the system performance, and then to be controlled and/or eliminated. Among these 

investigations, the fundamental ones in a single microchannel are very important. Since 
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removing the physical phenomena induced by disturbances between multiple channels, 

the nature of flow instability can be better observed. Most researches have been 

previously investigated in horizontal configurations. The flow instability in different 

hydraulic diameters is short of experimental results which are important for optimizing 

microchannel heat sink design. Besides, the flow orientation effect on flow instability is 

rarely discussed but it is essential for future practical application design. 

The present study aims to fundamentally investigate the flow instability in a single 

microtube regarding the effects of the hydraulic diameter and the flow orientation. 

Chapter 2 summarizes recent researches related to flow boiling instability in 

mini/microchannels, especially, forcing on researching points of this project. Chapter 3 

introduces the experimental setup, the measurement methodology and the uncertainties. 

Chapter 4 discusses the experimental results of the flow oscillation types and 

characteristics in different hydraulic diameters, and the studies of operating condition 

effects are included. Chapter 5 compares the flow instability in vertical upward and 

downward flow orientations, and investigates the inlet orifice on flow instability control 

in vertical flow directions. Chapter 6 concludes the current work and the prospects of the 

future researches. 
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Chapter 2 

 

2 Literature Review 

This chapter reviews recent literatures and publications on the flow boiling in 

microchannels. The investigations on the bubble dynamics and flow patterns which are 

considered as the main sources of flow boiling instability are discussed. Furthermore, the 

parameters expected to affect the flow boiling instability, including flow orientation, 

hydraulic diameter are highlighted. The flow instability stabilization researches are 

summarized as well. 

 

2.1 Bubble Dynamics  

In modern studies on flow boiling in microchannel(s), there are two methods to achieve 

flow boiling: two-phase entry and subcooled liquid entry. In reality, two-phase flow is 

hard to be controlled and stabilized before entering micrcochannels since the vapor 

blockage leading to uneven flow distribution may be induced. Single-phase liquid, by 

contrast, is easy to be operated and controlled before entering microchannels; therefore, 

this method is more attractive and the most widely investigated. Since the phase changing 

occurs inside of microchannels, the bubble dynamics, including bubble nucleation, 
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growth and departure, is important. This leads to flow pattern formation which not only 

enhances the heat transfer coefficient but also induces flow oscillations. Hence, many 

researchers investigated the origin of flow boiling, heat transfer mechanism and two-

phase pressure drop in microchannels. 

 Kandlikar (2014) performed studies of bubble nucleation in mini/microchannels. As 

shown in Figure 2.1, the wall temperature Tw, resulting from the application of a heat flux 

on the tube surface, is larger than the saturated temperature of the working liquid TL,sat; 

small cavities may act as nucleation sites which can trap vapor or gases, and the trapped 

vapor or gases starts to growth. The pressure of the vapor pv and the pressure of the liquid 

pL are balanced by the surface tension force ,  

 
b

Lv r
pp 2

 (2.1)

where rb is the bubble radius. The liquid temperature at y = yb, has to be larger than the 

saturated temperature of liquid corresponding to the pressure pv to maintain the bubble, 

which is also a condition for nucleation, 

 )(,, vb psatLyL TT  (2.2)

In conventional channels with boiling flow, various forces have been considered 

acting on bubbles to control their growth and departure, including the inertial force, the 

surface tension, the buoyancy force and the drag force (Levy, 1967). In microchannels, 

the surface tension becomes dominant. The surface tension force tends to maintain 

bubbles on the channel surface, while the drag force impels bubbles to depart from 

nucleation sites. The buoyancy force is usually negligible (Kandlikar, 2014). 
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 Bogojevic et al. (2013) conducted experiments to investigate the bubble dynamics in 

water flow boiling in a horizontal rectangular microchannel heat sink with 0.194 mm 

hydraulic diameter. They observed three stages for bubble growth: a rapid growth initial 

stage controlled by inertia forces, a slow growth second stage controlled by thermal 

diffusion, and a rapid growth last stage caused by the bubble confinement led to 

enhanced evaporation. They also concluded that the bubble departure size decreased with 

surface tension induced by high heat flux, and as the drag force increased caused by high 

mass flux. In a flow visualization experiment, they observed that flow instabilities were 

mainly due to the existence of revered flow induced by rapid growth of a confined bubble. 

Yin et al. (2014) carried out experiments to investigate bubble confinement and 

elongation in a single rectangular microchannel with 0.667 mm hydraulic diameter and 

100 mm heated length. The authors studied the effect of mass flux, heat flux and 

subcooled inlet temperature in water flow. Based on the experiment data and flow 

visualization results, they concluded that bubble growth rate during free growth period 

was smaller than during confined growth period. Moreover, before bubble confinement, 

 

Figure 2.1: The schematic of bubble nucleation site 

Tw
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(Nucleation site)

q” q”

Vapor 
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y = yb
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bubble growth rate decreased with the increase in bubble size; after bubble confinement, 

the elongation rate increased with the increase in confined bubble size. 

Edel and Mukherjee (2011) carried out experiments to visually investigate bubble 

growth in flow boiling in a single horizontal microchannel (hydraulic diameter Dh = 

0.229 mm) at low mass fluxes. They observed that when the drag force was enough to 

overcome the surface tension, the bubbles would start to detach from the wall or slide 

along the wall surface before confined by the channel. In contrary, when the surface 

tension was dominant and the growing bubble reached the channel size before moving, it 

tended to expand in one or two direction(s) according to the mass flux. The authors also 

recorded the real time surface temperature oscillations with large amplitudes and low 

dominant frequency during unstable flow boiling. 

Two research teams Barber et al. (2010) and Wang et al. (2011a) from the same 

group investigated bubble confinement in an identical single microchannel with a high 

aspect ratio (Dh = 0.727 mm). FC-72 was selected as the working fluid. The former 

detected that the confined bubbles blocked the channel and caused sharp pressure 

fluctuations at both ends of the microchannel. The latter found that the increased heat 

flux or the decreased mass flux led to a decreasing pressure drop fluctuation dominant 

frequency. 

 Kadam et al. (2014) simplified the numerical model to predict bubble growth at 

nucleation site in microchannels. The authors derived an energy balance equation for the 

vapor phase. They assumed that the heat consumed in vapor phase was from bubble 

growth and was used for overcoming resistive forces, such as surface tension, inertia, 

shear, gravity and changing in momentum due to evaporation. The authors noted that the 
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bubble growth was dependent on operating conditions (the mass flux and the heat flux), 

the coolant properties and the channel geometry.  

 

2.2 Flow Patterns 

In small hydraulic diameter channels, the surface tension becomes more dominant. Once 

the bubble nucleation starts, bubble growth and/or confinement induce(s) different flow 

patterns formed according to the flow conditions. With the rapid development in 

visualization techniques, many studies investigated flow pattern regime mappings under 

different operating conditions. This is essential for predicting heat transfer rate and 

working limitations. Table 2.1 lists common flow patterns in micro scale channels from 

several previous research groups. 

In early flow visualization studies in small channels, Shuai et al. (2002) conducted 

experiments to study pressure drop and heat transfer of flow boiling in two single 

rectangular channels (Dh = 0.800 and 2.67 mm) with subcooled water in vertical upward 

flow direction. Different operating conditions were applied: a heat flux varying from 1.8 

to 10.0 W/cm2 and a mass flux varying from 200 to 700 kg/m2·s. Three basic flow 

patterns in both channels were observed: bubbly flow, slug flow and annular flow under 

different operating conditions, and these flow patterns were found to co-exist along the 

channel. The authors reported the pressure drop fluctuations they observed, and assumed 

that these fluctuations could be related to the flow patterns. 

Sobierska et al. (2006 and 2007) from the same research group investigated and 

discussed the flow and the heat transfer characteristics in single vertical rectangular 

mini/microchannels with the upward water flow direction. The former team performed
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Table 2.1: Typical flow patterns in mini/microchannel(s) 

 

 

 

Typical Flow Patterns Description 

 

Isolated Bubbly Flow 
Distinct and essentially spherical bubbles and, usually have smaller diameters than 
the channel.(Martin-Callizo et al., 2010) 

 

Confined Bubbly (Elongated Bubble) Flow 
Distinct but distorted (non-spherical) bubbles which were restricted by the channel 
walls. The bubbles started growing in the axial direction. (Martin-Callizo et al., 2010; 
Ali et al., 2013) 

 

Bubbly/Slug Flow 
Bubbles grew to the channel width, moved downstream while growing in the flow 
direction, and finally formed slug and elongated bubbles within a few milliseconds. 
(Huh et al., 2007) 

 

Slug Flow 
Elongated, bullet-shaped bubbles with spherical cap and flat tail (slugs) that occupy 
most of the cross section. In this regime, the liquid flow is mainly contained in liquid 
plugs, which separate successive vapor slugs. The liquid plugs may or may not 
contain smaller bubbles. (Martin-Callizo et al., 2010) 

 

Churn Flow 
Churn flow is formed when the vapor slugs become unstable and disrupted. The 
vapor flows in a more or less chaotic manner through the liquid, which is mainly 
displaced to the channel wall. (Martin-Callizo et al., 2010) 

 

Wispy-annular Flow 
A vapor core which contains large, irregular-shaped liquid droplets inside is 
separated from the channel wall with a relatively thick and unstable liquid film. 
(Harirchian and Garimella, 2009) 

 
Slug-annular Flow 
The collision of neighboring slugs leading to a wavy-annular flow pattern with deep 
waves that interrupt the annular flow. (Martin-Callizo et al., 2010) 

 
Annular Flow 
The gas flows continuously in the tube center while the liquid flows in a film along 
the channel wall. (Martin-Callizo et al., 2010) 

 
Mist Flow 
Mist flow is with the majority of the flow entrained in the gas core and sipersed as 
liquid droplets. (Martin-Callizo et al., 2010) 

 

Channel wallFlow direction

Liquid Vapor
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experiments in a channel with 1.20 mm hydraulic diameter and 300 mm heated length. 

The tested mass fluxes ranged between 50 and 1000 kg/m2·s, and the maximum heat flux 

applied was 10 W/cm2. With the help of flow visualization, they observed bubbly, slug 

and annular flows, and that the transition flows co-existed in the channel. The authors 

calculated the mass flux versus the vapor quality regarding flow patterns and concluded 

that bubbly flow mainly occurred at subcooled condition. The vapor quality was found to 

increase as the mass flux decreased. Then, the later team carried out experiments in a 

smaller channel with 0.480 mm hydraulic diameter at a mass flux varying from 200 to 

1500 kg/m2·s. The heat fluxes were applied in the range of 3 to 20 W/cm2. Flow patterns 

observed were consistent with the group previous work; moreover, the authors observed 

that the annular flow occurred at a low vapor quality and the bubbly/slug transition was at 

subcooled condition. Furthermore, the authors concluded that bubble nucleation was 

postponed by increasing mass flux. 

 Harirchain and Garimella (2009) investigated the effect of channels size on flow 

patterns in rectangular microchannel heat sinks. They designed seven test sections which 

contained 0.400 mm depth multiple channels but with different widths to form a series of 

hydraulic diameter from 0.160 to 0.749 mm. Then, the authors built up a flow pattern 

map based on their observations, including bubbly, slug, churn, wispy-annular, annular 

and inverted annular flow (post-dry-out). Additionally, they found that the channel width 

affected the dominant flow patterns. In small channels (Dh = 0.160 and 0.400 mm), slug 

and intermittent churn/annular flows were more often observed; however, in large 

channels, bubbly and intermittent churn/wispy-annular flows were dominant. 

Nevertheless, the authors noticed that the onset of bubble nucleation occurred at a higher
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heat flux as the mass flux increased. 

 Kandlikar (2010) gave a fundamental review on scaling studies on flow boiling heat 

transfer in microchannels. He indicated that the flow patterns were influenced by various 

kinds of forces, including surface tension, inertia, shear, gravity, bubble nucleation and 

evaporation. Also, he concluded that elongated bubble/slug flow pattern was dominant in 

microchannels. 

 Recently, Ali et al. (2013) visually investigated the flow patterns and the bubble 

dynamics in a single horizontal microchannel with 0.781 mm hydraulic diameter and 191 

mm heated length at low mass fluxes (from 100 to 400 kg/m2·s). R134a was selected as 

the working fluid, and the applied heat flux was up to 4.5 W/cm2. The authors described 

seven distinct flow patterns based on their observations during experiments. Isolated 

bubble flow, confined bubble flow, elongated bubble flow, slug flow, wavy annular/semi 

annular flow, annular flow, annular mist flow and mist flow were on the list. They found 

that the early transition from the bubbly flow to the elongated bubble/slug pattern in 

small channels is due to early bubble confinement. The authors compared their work with 

a previous study of Martin-Callizo et al. (2010) using the same experiment facility but in 

a vertical channel with a hydraulic diameter of 1.33 mm. They concluded that in small 

channel dimensions, the flow orientation might has negligible effect on the flow patterns 

evolution, but they suggested that future works are required to confirm this conclusion. 

 Simultaneously, some researchers were interested in the flow pattern transitions 

which might induce flow boiling instability in microchannels. Wang et al. (2007) 

designed experiments to study the flow stable regimes in both single and multiple 

trapezoidal microchannel(s) with a hydraulic diameter 0.186 mm and subcooled water 



12 
 

inlet. In a study on multiple microchannels, the heat fluxes applied were up to 49.78 

W/cm2. The authors detected a stable flow boiling regime when the heat and mass flux 

ratio was low (q”/G < 0.96 kJ/kg). At a given heat flux, isolated bubbles, elongated 

bubbles, bubble coalescence, and bubble expansion in both upstream and downstream 

directions were respectively observed as the mass flux decreased. At the meantime, 

subcooled outlet temperature was recorded during this stable regime. There were two 

unstable flow boiling regimes, one with long-period oscillations (0.96 kJ/kg < q”/G < 

2.14 kJ/kg) and the other with short-period oscillations (q”/G > 2.14 kJ/kg). Via flow 

visualization, the authors noticed that bubble expansion inducing flow pattern transitions 

from bubbly flow to annular/mist flow was the main reason causing long-period 

oscillations. The mist flow transition to annular flow was observed in short-period 

oscillations. In a study on a single microchannel, the applied heat flux was up to 29.78 

W/cm2. The stable flow boiling regime was found similar to multiple-channel case; 

however, long-period oscillations were milder than in multiple channels; the authors 

explained that this was due to flow interaction from neighboring channels leading to extra 

oscillations in multiple-channel case. In addition, they concluded in both single and 

multiple microchannel(s), that the amplitude and the frequency of inlet pressure 

oscillations were increased with increased heat flux; however, mass flux had no impact 

on the frequency.  

 Steinke and Kandlikar (2004) performed flow visualization to study flow boiling 

characteristics in a horizontal microchannel heat sink with 0.207 mm hydraulic diameter. 

The subcooled water entry was tested. Various flow patterns were observed. The authors 

reported that the bubbly flow was very intermittent. The annular-slug and the slug flow 
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were the most common observed flow patterns. They also found that the bubble expanded 

against the flow direction when the annular-slug flow was formed. 

 Chen et al. (2006) presented the flow pattern images in four tubes with different sizes 

in vertical upward flow direction. In the smallest one (Dh = 1.10mm), the dispersed 

bubble, the bubbly, the confined bubble, the slug, the churn and the annular flow patterns 

were observed. The confined bubble flow was reported only occurring in small tubes. 

The authors noted the surface tension force became dominant in small tubes at low mass 

fluxes. 

Huh et al. (2007) also conducted flow pattern transition instability experiments in a 

single rectangular horizontal microchannel. The channel hydraulic diameter was 0.104 

mm and the heated length was 40 mm. Within the test ranges of mass fluxes (170 and 350 

kg/m2·s) and heat fluxes (20 to 53 W/cm2), the authors recorded periodic flow pattern 

transitions: alternation of bubbly/slug flow and alternation of elongated slug/semi-annular 

flow. Then, the flow pattern transition instability was considered as the major source 

causing periodic small frequency and large amplitude oscillations of wall temperature, 

pressure drop, and mass flux. 

 Celata et al. (2010) plotted the flow stable regime within the test matrices (mass flux 

up to 3500 kg/m2·s and heat flux up to 20 W/cm2) in a single horizontal microtube (Dh = 

0.480 mm) with subcooled FC-72 liquid inlet. Bubbly, bubbly/slug, slug, slug/annular, 

and annular/mist flow were observed. Nevertheless, the authors recorded the stable and 

unstable flow regimes during flow boiling according to different operating conditions. 

There were two stable flow zones: alternating bubbly/slug flow in the case of high mass 

flux and low heat flux; alternating annular/slug flow and alternating annular/mist flow in 
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the case of low mass flux and high heat flux. In the unstable flow zone, alternating 

annular/slug flow were observed at low heat flux and alternating bubbly/slug flow at high 

heat flux. Furthermore, a kind of back and forth oscillations was noted at low mass and 

heat fluxes but no reversed flow occurred.  

  

2.3 Flow Instability 

Flow boiling in mini/microchannels is a two-edge sword. On one hand, it enhances the 

heat transfer coefficient. On the other hand, flow boiling instability impacts flow 

characteristics and heat transfer negatively. Comprehensive studies on flow instability in 

conventional channels have already been performed since decades in conventional 

channels (macro-scale). Several research teams have shown; however, that the results 

obtained for convenctional channels cannot be applied to mini/micro-scale cases. 

Therefore, some researchers built up maps of flow stability regimes based on their 

experimental results to exhibit stable and unstable flow regimes in mini/micro-scales 

(Brutin et al., 2003; Wang and Cheng, 2008). Some of them recorded the real-time 

pressure and temperature fluctuations to analyze the flow oscillation types (Xu et al., 

2005; Fan and Hassan, 2012). These research topics have also been extended to the 

effects of operating conditions and other parameters (channel geometry, coolant type and 

so on). Moreover, the flow instability control/elimination is another important objective. 

 

2.3.1 Onset of Flow Instability Investigations 

The onset of flow instability (OFI) has been previously studied in conventional channel 
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sizes (Whittle and Forgan, 1967; Lee and Bankoff, 1993). Whittle and Forgan (1967) 

defined the occurrence of Ledinegg instability based on the characteristics of the pump 

supply - the system demand curve; that is, if the pump operating condition could not 

fulfill the power required in the system, the Ledinegg instability was triggered, as shown 

in Figure 2.2. For example, at a given heat flux q”2, the flow was stable under the 

operating condition on the right side of OFI. After reducing the mass flux, the flow 

became unstable. Boure et al. (1973) summarized the Ledinegg instability leading to a 

sudden flow rate drop could occur if the condition of Eq. (2.3) was satisfied. They also 

mentioned that Ledinegg instability could trigger another steady-state condition or a 

periodic behavior (such as dynamic instabilities). Therefore, the occurrence of Ledinegg 

instability can be considered as the OFI. 

 
supplydemand G

P
G
P

 (2.3)

Kennedy et al. (2000) collected 70 experiments data in two sizes of horizontal 

microchannels (Dh = 1.17 and 1.45 mm) with 160 mm heated length. Then, they 

generated a simple empirical correlation (Eq. (2.4)) to predict heat fluxes at OFIs within a 

wide mass flux range (from 800 to 4500 kg/m2·s), 

 satOFI qq "9.0"  (2.4)

In this correlation, the predicted heat flux at OFI is 90% of its saturated value at the exit 

of that channel under identical operating conditions.  

Roach et al. (1999) conducted experiments by using the same facility and test sections 

as the investigation of Kennedy et al. (2000), but at lower mass fluxes (from 220 to 790 
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kg/m2·s). The authors also proposed a similar correlation based on 95 sampling data to 

predict heat fluxes at OFIs but with a constant of 1.1 (Eq. (2.5)),  

 satOFI qq "1.1"  (2.5)

The saturated value in both correlations (Eq. (2.4) and (2.5)) can be obtained by Eq. (2.6),  

 insatp
h

h
sat TTCG

L
Dq
4

"  (2.6)

where Dh is the channel hydraulic diameter, Lh is the channel heated length, G is the mass 

flux, Cp is the thermal capacity of the coolant, Tsat is the saturated liquid temperature, and 

Tin is the inlet temperature. 

Wang et al. (2011b) studied some specific points including OFI on demand 

characteristic curves in a narrow rectangular channel in vertical upward flow direction. 

The channel with 5.58 mm hydraulic diameter was single-side heated with 470 mm 

heated length. The mass flux was in the range between 150 and 600 kg/m2·s. They  

 

Figure 2.2: The typical pressure drop – flow rate characteristics curve 
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used the correlation proposed by Kennedy et al. (2000) for OFI prediction to verify their 

experimental results, and it showed a good agreement. Via flow visualization, the bubbly, 

the churn and the annular flow were observed, but excluded the slug flow. The authors 

noticed that the OFI always appeared when the bubble started coalescing at the channel 

outlet. They also mentioned that the OFI might be relevant to the beginning of the 

bubbly/churn flow pattern transition. 

 

2.3.2 Effect of the Channel Size 

In mini/microchannels, only few researches regarding the channel size or aspect ratio 

effect on flow boiling instabilities have been conducted. 

 Wu and Cheng (2003) visually investigated the flow boiling instability in two sizes of 

microchannel heat sinks. Both test sections contained parallel trapezoidal microchannels 

but with different hydraulic diameters, 0.083 and 0.159 mm, respectively. In the larger 

microchannel heat sink, the authors recorded periodic oscillations at the mass flux of 144 

kg/m2·s, and the heat flux was 13.0 W/cm2. The single-phase liquid and the two-phase 

flows were observed alternatively in microchannels once boiling occurred. Meantime, the 

channel wall temperature experienced low frequency and large amplitude oscillations. In 

the small microchannel heat sink, the authors recorded that flow boiling instability 

occurred for a mass flux of 168 kg/m2·s, and a heat flux was 7.83 W/cm2. They noticed 

that in small channels, the slug and the churn flows occurred more easily. After 

comparing flow oscillation characteristics in both microchannel heat sinks, they 

concluded that the oscillation frequency was dependent on channel size and operating 

conditions. 
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 Qi et al. (2007) conducted experiments to investigate flow boiling instabilities in 

different sizes of single microtubes. Those microtubes had 0.531, 0.834, 1.042 and 1.931 

mm hydraulic diameters, respectively, and identical heated length of 191 mm. Liquid 

nitrogen was selected as the working fluid. A wide range of mass fluxes from 440 to 

3000 kg/m2·s were tested. The heat flux was applied up to 21.4 W/cm2. The authors 

described the onset of nucleate boiling (ONB) as the phenomena responsible for the 

sudden drop in mass flux, and in the increase in pressed drop. They observed that ONB 

first occurred at the channel outlet, and gradually moved to the channel inlet as the heat 

flux increased, and so did the wall temperature at ONB. The flow blockage at ONB was 

observed as well. The authors explained that it might be due to the slower bubble 

discharging rate than the bulk fluid rate, and local dryout might be induced. In the 1.042 

and 1.931 mm hydraulic diameter tubes, the stable and unstable regimes were detected. In 

the smaller one (Dh = 1.042 mm), the critical mass flux to distinguish flow stable regimes 

was smaller than that in the larger one (Dh = 1.931 mm). For other two smaller sizes of 

microtubes, no unstable regimes were detected since the applied mass fluxes were lower 

than the critical values. 

Hetsroni et al. (2006) carried out experiments in microchannel heat sinks with 

different hydraulic diameters (Dh = 0.100, 0.130 and 0.220 mm) to study the flow boiling 

instability at low mass fluxes. The mass flux and the channel hydraulic diameter affecting 

on the ONB location were reported. At a given mass flux, the ONB location was closer to 

the channel inlet as the heat flux increased. At a given heat flux and inlet temperature, the 

ONB moved further from the channel inlet as the hydraulic diameter increased. The 

authors observed periodic oscillations of pressure drop and fluid temperature when the 
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 minimum film thickness at CHF regime occurred. 

 

2.3.3 Effect of the Flow Orientation 

Kandlikar and Balasubramanian (2005) studied the effect of flow orientation on the flow 

boiling instability of water in a rectangular minichannel heat sink (Dh = 0.333 mm). The 

flow visualization in horizontal, vertical upward and vertical downward flow directions 

was performed under one operating condition (G = 120 kg/m2·s and q” = 31.7 W/cm2). 

The authors observed different flow patterns, such as bubbly, plug and annular flows, in 

all three flow directions, and reported the churn flow which was not widely, previously 

observed in the literature. They noticed that the flow patterns were time dependent. In the 

horizontal flow direction, an individual bubble growing to a vapor slug was observed. 

However, in the vertical flow orientations, bubble merged and then formed a vapor slug. 

A revered flow was recorded in all flow directions, but it was more distinct in the vertical 

downward flow. The pressure drop oscillations in the vertical upward flow were the 

smallest; therefore, the flow was considered less chaotic in that configuration. Compared 

the local heat transfer coefficients in all flow orientations, the authors concluded that the 

cases in vertical upward and horizontal flow directions were similar, but in the vertical 

downward flow, the local heat transfer coefficient was 30% to 40% lower. 

Zhang et al. (2005) reviewed previous works and concluded the flow instabilities and 

flow orientations might affect heat transfer in microchannels. Therefore, they conducted 

experiments to visually and quantitatively study the flow boiling in a microchannel heat 

sink with three flow orientations (horizontal, vertical up and down). The test section 

contained 21 rectangular microchannels which had 0.360 mm hydraulic diameter and 15 
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mm heated length. The dielectric coolant FC-72 was tested with subcooled inlet entry. In 

the vertical downward flow direction, the authors observed three sizes of bubbles. Tiny 

ones located close to channel inlet. They were usually attached to the channel wall and 

moved at very slow speed. The largest bubbles were found a few millimeters from the 

inlet which were formed by tiny bubbles coalescing and moved with a higher speed but 

still lower than the bulk fluid because of the buoyancy force effect. The moderate bubbles 

were formed by growing bubbles and had the fastest speed. According to their 

observations and the investigations from previous studies, the authors predicted single-

phase liquid might suddenly turn to annular flow without transitional regimes in small 

channel (Dh < 0.100 mm). Additionally, the transient thermal resistance and pressure 

drops in three flow orientations were compared. The vertical upward configuration 

performed the best due to buoyancy force assisting bubble movement. In contrary, the 

vertical downward configuration induced the highest pressure drop. 

Miyata et al. (2008) performed flow boiling studies in a single small cooper tube (Dh 

= 1.00 mm) using R410A refrigerant. The tube was tested vertically in both upward and 

downward flow directions with 320 mm heated length. The mass flux varied from 30 to 

200 kg/m2·s, and the heat flux was applied up to 1.6 W/cm2. Three flow patterns were 

observed in both flow directions: the slug, the slug/annular and the annular flows. They 

noted an early transition from the slug flow to the annular flow at low mass flux 

condition in the vertical downward flow direction. The authors reported that the pressure 

drops in the downward flow direction was significantly larger than in the opposite 

direction, and they explained that the vapor plug boiling in the liquid flow might be the 

reason for the increase in pressure drop in downward direction. 
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Wang et al. (2012) designed an experiment to investigate the effect of flow 

orientation on flow boiling behaviors in a microchannel heat sink by using HFE-7100 

coolant. The heat sink had multiple parallel rectangular microchannels with 0.825 mm 

hydraulic diameter, and was placed in different orientations from vertical upward to 

vertical downward. The authors observed that the slug velocity was increased in the 

upward flow direction due to the buoyancy force effect. They concluded that at low mass 

fluxes or low vapor quality, the flow orientation had impacts on the flow patterns. 

 

2.3.4 Effect of the Inlet Orifice 

Brutin and Tadrist (2004) tested two inlet conditions for flow boiling instability control in 

a single vertical rectangular minichannel (Dh = 0.889 mm). Confinement case was 

selected to maintain constant mass flux at the inlet of the test section. Compliance case 

was pointed to maintain constant mass flux at the outlet of the syringe. This was 

accomplished by installing a compressible buffer tank between the syringe and the test 

section. The authors reported that for the same operating conditions, the amplitude of 

pressure drop oscillations in the compliance case was higher than that in the confinement 

case. 

Kandlikar et al. (2005) introduced a combination of an inlet pressure restrictor (PDE) 

and artificial nucleation sites to stabilize flow boiling instability. They performed three 

different stabilization cases to compare the pressure drop oscillations in a heat sink with 

0.333 mm hydraulic diameter. In the case of artificial nucleation site only, the flow 

instability was not controlled. In the case of 51% area PDE with artificial nucleation sites, 

the flow oscillations were partially controlled. Then, in the case of 4% are PDE with 
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artificial nucleation sites, the flow instability was totally eliminated; however, the 

pressure drop was significantly increased.  

Wang et al. (2008) carried out experiments to study three flow restriction 

configurations for flow boiling stabilization for one identical operating condition. The 

test section was a microchannel heat sink with trapezoidal cross-section shape, and its 

hydraulic diameter was 0.186 mm. Experimental results showed that in both inlet and 

outlet flow restrictor case, the amplitudes of temperature and pressure drop were higher 

than in the no flow restrictor case. However, only with the inlet flow restrictor case, the 

flow instability could be totally controlled. Moreover, the authors visualized the 

bubble/annular flow regimes during flow instability in the case without flow restrictors. 

Mukherjee and Kandlikar (2009) numerically investigated the effect of the inlet 

restrictor on flow boiling instability in microchannels. They mentioned that the major 

source responsible for flow boiling instability in small size channel was the reversed flow 

due to rapid vapor growth rate to expend in both upstream and downstream directions, 

and upstream induced high pressure buildup. Therefore, a sufficient flow rate or an inlet 

restriction was needed for overcoming the reversed flow. The inlet orifice was 

recommended to increase inlet flow velocity in order to reduce the bubble growth rate. 

The authors found that 4% area ratio inlet restrictor could eliminate the flow instability; 

however, this increased the pressure drop at the meantime. Therefore, they proposed 

stepped and diverging parallel microchannels in order to prevent extra pressure drops. 

Park et al. (2009) conducted experiments to visually investigate the flow instability 

and the inlet orifice effect in a microchannel heat sink. The heat sink contained parallel 

rectangular microchannels with high aspect ratio (0.467 mm × 4.052 mm, Dh = 0.837 
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mm). The authors observed the reversed flow when no inlet orifice was involved. Then, 

they visualized the inlet orifice could suppress the reversed flow. The flashing effect was 

also reported in the case of with-inlet-orifice using R134a, which had advantages to 

reduce the wall-temperature overshoot at the onset of boiling. 

 Fan and Hassan (2012) performed a fundamental investigation in a single horizontal 

microtube (Dh = 0.889 mm) with and without inlet orifice. The authors observed four 

types of flow oscillations when no inlet orifice was present. When added the inlet orifices, 

by comparing the flow characteristics and the pressure drop, they recommended that a 20% 

area ratio (inlet orifice cross-section area/microtube cross-section area) could be used at 

low mass fluxes (< 1000 kg/m2·s). Later, Fan and Hassan (2014) proposed a 

methodology to predict the onset of flow instability in a single horizontal microtube 

based on their previous experimental results in order to select proper inlet orifice sizes. 

The authors suggested that: at a given mass flux, when the two-phase pressure drop in the 

microtube with the heat flux applied was higher than the single-phase pressure drop 

without heat flux applied, the flow instability appeared. As an example: for a microtube 

with the hydraulic diameter 0.889 mm, 15% area ratio inlet orifice could completely 

eliminate the flow instability in the mass flux range from 100 to 2000 kg/m2·s. 

 

2.4 Summary and Objectives 

To sum up the previous studies, 

Although many groups investigated the flow stable regimes, the regimes were 

specific under different geometrical and operating conditions. A universal flow 
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pattern regime map in terms of dimensionless parameters is absent. This tool can 

be valuable for microchannel heat sink design and/or optimization. 

Flow instability is a critical limit for utilizing flow boiling heat transfer in 

microchannels. Most of researches focused on the flow instability investigation in 

a single or multiple microchannel(s) with fixed hydraulic diameter. The effect of 

channel size on flow instability in a single microchannel is quite limited. 

Flow orientation studies on flow instability in microchannels are rarely involved. 

More fundamental investigations need to be conducted to provide experimental 

observations to extend MEMS design and applications in future.  

So far, most studies were carried in straight channel(s). Studies on curved channel 

study can be of interest due to the development of secondary flows in the channel. 

All the listed previous research works were conducted by applying uniform heat 

fluxes. Non-uniform heat flux study in a single or multiple microchannel(s) is 

quite limited. However, this kind of operating conditions is more closed to the 

reality. The flow boiling heat transfer, the flow instability or the flow patterns 

may be very different to uniform heated cases.  

Inlet orifices in horizontal microchannel(s) have been studied and proven its 

ability to control or eliminate the flow instability. However, the effect of an inlet 

orifice in vertical flow directions still has to be investigated. 

 

The objectives of this study are, 

To study the flow oscillation types and features at the onset of flow instability 

(OFI) in a single vertical microtube. 
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To investigate the effect of hydraulic diameter on flow instability in a single 

vertical microtube.  

To study the effect of flow orientation on the flow instability in a single microtube. 

To understand the sensitivity of the operating conditions (the mass flux and the 

heat flux) on the flow boiling instability as the hydraulic diameter decreases in 

different flow orientations. 

To test the ability of inlet orifice on the flow instability controlling in a vertical 

single microtube. 
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Chapter 3 

 

3 Experimental Methodology 

3.1 Facility 

Figure 3.1 illustrates the experimental facility. It is comprised of a closed working flow 

loop, a degassing branch and a set of data acquisition system. During the flow instability 

experiments, the dielectric liquid FC-72 (3M Company – Appendix A) as the working 

fluid is driven by a magnetically coupled gear pump (Cole-Parmer, 75211-22) which has 

a maximum flow volume rate 250 ml/min and a maximum power 517 kPa (75 psi). Then, 

FC-72 passes a 15 m filter (Swagelok, SS-4TF-15) which is used to remove small 

impurities before FC-72 enters the system. Three rotameters (Omega, FL-1463-S/FL-

1445-G/FL-1446-S) with different measurement ranges are used to monitor and measure 

a flow volume rate. After passing a rotameter, the subcooled working flow enters the test 

section, a single microtube, vertically (either vertical upward or vertical downward). The 

DC power supply (BK Precision, 1665) provides heat fluxes uniformly on the microtube 

surface. T-type thermocouples (Omega, TQSS-116G-6) and pressure transducers (Omega, 

PX01C1-075GV/PX02C1-050GV) are placed at both ends of the microtube to collect
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experimental data, which are recorded by the data acquisition system (National 

Instruments). Then, the working fluid goes back to the FC-72 tank. During the degassing, 

FC-72 is preheated by a 1 kW heater (Tempco, TSP02244) which is installed inside the 

FC-72. After passing the filter and the rotameter, FC-72 is sequentially heated to a 

desired temperature in a coiled copper heat exchanger to be able to vaporize. The vapor 

then returns to the FC-72 tank, the condenser (Spirec, S1TG1208) condenses FC-72 

vapor. The separated air is discharged by the degassing components. The procedures of 

degassing will be introduced in Section 3.3. This facility is similar to the one used and 

validated by Fan (2013).  

 

3.2 Test Section 

The test section is fixed on a customized vertical board, as shown in Figure 3.2. The 

drawings of the customized components are attached in Appendix B. An example of the 

test section package in the vertical upward flow orientation is illustrated in Figure 3.3 (a). 

A separator is installed at the channel outlet to separate liquid and vapor in order to 

prevent vapor accumulation. The downward test section is identical to the upward one 

except the flow orientation and the separator’s location. For convenience, in the rest of 

this thesis, VU represents the vertical upward flow orientation/configuration; VD 

represents the vertical downward flow orientation/configuration.  

Three sizes of stainless steel microtubes (McMaster Carr) with identical length are 

selected to be investigated in the current study. The geometric parameters of these 

microtubes are listed in Table 3.1. The alternative names, Tube L (large), Tube M 

(medium) and Tube S (small), are used for distinguishing them in the rest of this thesis. 
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(a) 

 

(b) 

Figure 3.2: The test section installation (a) the schematic drawing (not to scale) (b) the 

real test section 
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For the specific investigations dealing with the effect of the inlet orifice on the control 

of flow instability, the test section had to be modified. Tube L is selected as the main 

microtube, whose hydraulic diameter is presented by Dh. For Tube L, two smaller 

microtubes with different hydraulic diameters are used (Table 3.2). Their area ratios are 

50% and 20% (Eq. (3.1)). 

 %100%100 2

2

h

oo

D
D

A
AAR% % Area ratio  (3.1)

Figure 3.3 (b) is an example of a 10 mm length inlet orifice attached to Tube L. There 

is a 5 mm overlapped length between both tubes and sealed by J.B. Glue. Before 

experiments, the leakage tests are performed to insure the adhesive quality. 

Table 3.1: The geometric parameters of three microtubes 

Parameters Tube L Tube M Tube S

Hydraulic Diameter Dh (mm) 0.889 0.533 0.305

Length L (mm) 125 125 125

Heated Length Lh (mm) 100 100 100

Table 3.2: The geometric parameters in the inlet orifice effect investigation 

Inlet Orifice Effect Without 
Orifice

50% Inlet 
Orifice 

20% Inlet 
Orifice

Microtube (Tube L) Dh (mm) 0.889 0.889 0.889

Inlet orifice Do (mm) -- 0.635 0.406

Area ratio % (Do
2/Dh

2) 100 51 21

Microtube length L (mm) 125 125 125

Microtube heated length Lh (mm) 100 100 100

Inlet orifice length Lo (mm) -- 10 10



31 
 

 

(a) 

 

(b) 

Figure 3.3: (a) The schematic of vertical upward configuration (b) The schematic of 

microtube with an inlet orifice (not to scale) 
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3.3 Experimental Methods and Test Matrix 

3.3.1 Degassing 

Since FC-72 has a highly air solubility (near 50% in volume), degassing is a must-have 

step before any experiments. The concept of degassing is to vaporize FC-72, and then 

condense FC-72 vapor – air mixture. The FC-72 vapor is condensed to its liquid phase 

and the air is separated and discharged. Because the facility contains several branches, 

the degassing has to be performed by circulating FC-72 vapor through each branch. 

Moreover, in order to protect the gear pump (the maximum operating temperature is 

40 °C, in Figure 3.1), the vaporization has to be accomplished after the gear pump. 

Therefore, a water heat exchanger is introduced to induce the vaporization. The degassing 

procedure is briefly listed below. 

1. Before degassing, all valves in the degassing branch have to be opened, and keep 

other branches closed. 

2. Both FC-72 and the water are preheated at the same time, but with different 

heating rates. For the current facility, it is recommended that when the water 

temperature in the tank is increased to 40 °C, FC-72 temperature in tank is better 

around 54 °C. 

3. After the water temperature in its tank reaches 40 °C, the water pump can be 

turned on to circulate the hot water through the heat exchanger.  

4. Simultaneously, the cooling water loop of condenser can be circulated, and then 

the condenser can be turned on. The gear pump can be run to circulate preheated 

FC-72 through the system at a flow rate of 60 ml/min. As the preheated FC-72 

passes the copper heat exchanger, it will be heated continuously.  
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5. The inlet temperatures of the gear pump (no more than 40 °C) and the water pump 

(no more than 80 °C) has to be monitored during degassing. Usually, the 

vaporization can be observed when the inlet temperature of the water pump is 

around 65 °C.  

6. Once the vaporization occurs, the facility keeps running about 10 minutes, and all 

branches should be degassed one by one. Simultaneously, all temperature 

limitations should be monitored. The heater powers can be adjusted if necessary 

to protect the facility.  

7. After 10 minutes, both FC-72 and water heaters should be turned off. Then, the 

condenser and the water pump are turned off. Only the gear pump is kept running 

to cool down FC-72 for a while.  

8. Last, all components should be shut down, and all valves should be locked. 

The whole degassing process may last around one hour. After FC-72 in the tank is back 

to room temperature, the experiment can be conducted.  

 

3.3.2 Onset of Flow Instability Detection 

The OFIs as real-time pressure and temperature fluctuations are captured in both vertical 

flow orientations. More specifically, during the experiment, a desired mass flux is fixed 

and then a heat flux is applied uniformly on the tube surface in small increments until the 

fluctuations occurred. Since some initial fluctuations, typically lasting between 10 to 20 

minutes, might be caused by the operation, the fluctuations due to OFIs are considered 

those sustaining more than 30 minutes (Fan, 2013). After reaching such conditions, the 

temperature and the pressure at both ends of the test section are recorded in 5-minute 
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sampling time span at 400 Hz sampling frequency in order to describe OFI characteristics. 

Otherwise, the heat flux is continuously increased until the sustained fluctuations are 

detected. However, in some cases, no sustained and characterized flow oscillations can be 

detected at all operating conditions, for example in Tube S, the transient point is observed 

instead. The details will be discussed later. Pressure measurements are used to 

quantitatively analyze the oscillation features in terms of dominant frequencies (see 

Appendix C), amplitudes and the magnitude of fluctuations which can be calculated by 

Eq. (3.2) and Eq. (3.3), respectively. 

 ix
N

MAG 1
 

(3.2)

 MAGxAMP i maximum  (3.3)

 

3.3.3 Test Matrix 

During all measurements, the inlet temperature is maintained around 24 °C. The test 

matrix in current experiment is listed in Table 3.3. 

Table 3.3: Test matrix 

Parameters Conditions 

Flow directions Vertical upward (VU), Vertical downward (VD) 

Subcooled inlet temperature, Tin 24 °C 

Outlet pressure, Pout 10 kPa (VU), 6 kPa (VD) 

Heat flux, q” 1.8 – 9.6 W/cm2 

Mass flux, G 700 – 1600 kg/m2·s 
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3.4 Uncertainty Analysis 

The flow volume rates are measured by rotameters (Omega, FL-1463-S/FL-1445-G/FL-

1446-S) with different measurement ranges (Figure 3.1). Two thermocoumples (Omega, 

TQSS-116G-6) and two pressure transducers (Omega, PX01C1-075GV/PX02C1-050GV) 

are used to measure the temperature and the pressure at both ends of the microtube. Since 

the microtube is directly exposed to air, the heat loss induced has to be estimated. In this 

study, we followed the method of Fan (2013) (see Appendix D). The facility and the 

calculation uncertainties are listed in Table 3.4. The uncertainties of measured parameters 

are obtained from user manuals or by direct measurement. The calculated uncertainties of 

inlet orifice area ratio, pressure drop, mass flux and heat flux are based on the method 

provided by Moffat (1988) (Eq. (3.4) – (3.7)). The uncertainty calculations are 

demonstrated in Appendix E.  
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Table 3.4: Uncertainties 

Measured Parameters Sources Uncertainty,  

T-type thermocouples, T Omega ± 0.5 °C 

Rotameter 1 (FL-1446-S), Q Omega, 5% of full scale ± 8.75 ml/min 

Rotameter 2 (FL-1445-G), Q Omega, 5% of full scale ± 1.70 ml/min 

Rotameter 3 (FL-1463-S), Q Omega, 5% of full scale ± 0.95 ml/min 

Inlet Pressure Transducer, Pin Omega, 0.05% of full scale ± 0.259 kPa 

Outlet Pressure Transducer, Pout Omega, 0.05% of full scale ± 0.173 kPa 

Voltage, V BK Precision 1665 ± 0.05 V 

Current, I BK Precision 1665 ± 0.05 A 

Tube hydraulic diameter, Dh, Do McMaster Carr ± 0.0127 mm 

Heated length, Lh
 Direct measurement ± 1 mm 

Calculated Parameters Equations Uncertainty,  

50% AR inlet orifice (3.4) ± 2.5% 

20% AR inlet orifice (3.4) ± 1.4% 

Pressure drop, P (3.5) ± 0.311 kPa 

Mass flux (Rotameter 2), G (3.6) ± 6% 

Mass flux (Rotameter 3), G (3.6) ± 6% 

Heat flux, q” (3.7) ± 0.11 – 0.25 W/cm2 
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Chapter 4 

 

4 Flow Instability in Various Hydraulic Diameters 

Figure 4.1 shows the flow stability regimes of three microtubes in VU. For Tube L and M, 

the onsets of flow instability (OFIs) are determined for mass fluxes between 700 and 

1600 kg/m2·s. A flow is stable at any operating condition below the OFIs; otherwise, it 

becomes unstable. For Tube S, only the transient points are observed instead. A transient 

point represents a stable flow rapidly turning to another stable state. There is some 

regularity that can be noticed on Figure 4.1. First, at a given mass flux, the OFI/transient 

point occurs earlier in a smaller hydraulic diameter microtube. Second, in larger 

hydraulic diameters, OFI usually occurs, and an increased mass flux can help to delay its 

occurrence. However, in smaller ones, a transient point is more often observed, and a 

large mass flux cannot show significant effect on the transient point appearance. The 

details will be discussed in the following sections. 
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Figure 4.1: The map of flow stability regimes in three microtubes in VU 
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4.1 Flow Characteristics in Different Hydraulic Diameters 

In this section, the points in Figure 4.1 at the mass flux of 1000 kg/m2·s are selected for 

the hydraulic diameter effect investigation. The corresponding real-time flow fluctuations 

are presented, compared and discussed. 

Figure 4.2 (a) and (b) illustrates the real-time flow oscillations at the OFI in Tube L in 

terms of pressure and temperature fluctuations. The heat flux at the OFI is q”OFI,Tube L = 

7.7 W/cm2. The inlet pressure experiences high frequency oscillations superimposed on 

the peak of low frequency oscillations, as shown in Figure 4.2 (a). Low frequency 

oscillation is called Pressure Drop Oscillation (PDO), which is normally induced by 

static Ledinegg instability. As the working flow passes the heated microtube, the onset of 

nucleate bubble appears when enough heat flux is applied. At a certain vapor quality, the 

pumping power is not sufficient to maintain the flow rate due to the increased internal 

pressure demand. Then, the flow rate suddenly drops to a lower value which can be 

observed by naked eyes from the rotameter in current experiment. Ledinegg instability 

occurs. Because of the reduced mass flux, the high local temperature field leads to bubble 

growth. When the growing bubble reaches the tube wall, it is confined and expands 

towards both upstream and downstream directions. Hence, a reversed flow is formed, that 

is, PDO is triggered. Boure et al. (1973) noted that this type of oscillations had features of 

a low frequency (about 0.1 Hz) and large amplitudes. It occurred when a compressible 

volume was formed at upstream of, or within, the heated section. In microchannel studies, 

Qu and Mudawar (2003) explained that a compressible volume might be caused by a 

significant amount of vapor generation once the heat flux exceeded the incipient boiling 

value. High frequency oscillations which are superimposed on the peak of PDOs have the 
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(a) 

 

(b) 

 

(c) 

Figure 4.2: The real-time of flow oscillations in terms of (a) pressure, (b) temperature and 

(c) the inlet pressure frequency spectrum in Tube L in VU at the mass flux of 1000 

kg/m2·s
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characteristics of Density Wave Oscillation (DWO). Since an elongated bubble formed at 

the channel upstream reduces the mass flux, the fellow bubbles grow up quickly. The 

slug flow consisting of large vapors and liquid slugs may appear. Because of the density 

differences between liquid and vapor, the working flow experiences high and low 

densities alternatively when travelling along the channel, so DWOs with a comparatively 

high frequency (usually about 1 Hz, Boure et al., 1973) and small amplitude appear. 

When the confined vapor core is close to the channel outlet, it can easily leave the tube 

because of low outlet pressure. Hence, the reduced mass flux can rapidly go back to its 

original level. More subcooled liquid is imported into the tube again so that an oscillation 

cycle repeats. In summary, in the current case, the Ledinegg instability causes PDOs and 

DWOs, which may correspond to a slug flow and a bubbly flow alternatively switching. 

In Figure 4.2 (b), the outlet temperature also fluctuates in phase with the pressure 

oscillations between saturated and subcooled values. Figure 4.2 (c) plots the frequency 

spectrum of inlet pressure oscillations during 5-minute. The major frequency is about 

fOFI,Tube L = 0.06 Hz which has the strongest power spectral density (magnitude). This 

value indicates PDOs are more dominant during the flow oscillations. The amplitude of 

the pressure fluctuations is AMPOFI,Tube L = 12.7 kPa which implies PDOs are dominant. 

As the hydraulic diameter is reduced (Tube M), the inlet pressure oscillation type 

becomes pure DWO at the OFI, as shown in Figure 4.3 (a). The OFI occurs at a lower 

heat flux q”OFI,Tube M = 3.8 W/cm2. Unlike in Tube L, a small amount of heat flux can 

easily cause the bubble confinement in Tube M, and expands rapidly along the tube 

length. A strong and sustained slug flow then may be formed leading to pure DWOs. Yin 

et al. (2014) compared the growth rate before and after bubble confinement in a 
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singlerectangular microchannel via flow visualization. They observed that the growth rate 

after bubble confinement was significantly increased than before confinement. Their 

finding evidenced that once a bubble is confined, the flow pattern would turn to the slug 

flow containing quickly a large amount of vapor. In the current study, the outlet 

temperature in Tube M (Figure 4.3 (b)) stays at saturated level during flow oscillations, 

which possibly corresponds to the slug flow which is containing saturated vapor and 

liquid slugs. The large value of dominant frequency (fOFI,Tube M = 4.6 Hz) in Figure 4.3 (c) 

also reflects DWOs dominate the flow oscillations. 

As the hydraulic diameter further reduces to Tube S (Figure 4.4), a transient point is 

observed at q”tran,Tube S = 2.2 W/cm2. The transient point represents the change of a stable 

flow to a new stable state. Therefore, its real-time pressure and temperature display very 

small oscillations, and no characterized frequency can be determined. The corresponding 

phenomenon is that as the flow boiling starts, the bubble confinement is immediately 

triggered. The outlet temperature suddenly drops a little bit due to the reduction in flow 

rate. At the same time, the inlet pressure increases with a small amount and starts 

fluctuating with tiny amplitudes. In a few seconds, the outlet temperature reaches a 

saturated level and maintains at that value. The inlet pressure keeps sustained tiny 

oscillations. Brutin et al. (2003) classified steady and unsteady states in their flow boiling 

instability investigation in multiple microchannels. The authors defined that the steady 

state had low fluctuation amplitudes (< 1 kPa) and no characteristic oscillation frequency. 

The unsteady state had high amplitudes (> 1 kPa) and a characteristic oscillation 

frequency. Hence, in the current study, the flow condition is considered to switch to 

another stable flow rapidly; for example, a single-phase liquid suddenly turns to an 
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(a) 

 

(b) 

 

(c) 

Figure 4.3: The real-time of flow oscillations in terms of (a) pressure, (b) temperature and 

(c) the inlet pressure frequency spectrum in Tube M in VU at the mass flux of 1000 

kg/m2·s 
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(a) 

 

(b) 

 

(c) 

Figure 4.4: The real-time of flow oscillations in terms of (a) pressure, (b) temperature and 

(c) the inlet pressure frequency spectrum in Tube S in VU at the mass flux of 1000 

kg/m2·s
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annular flow due to the early bubble confinement once the bubble nucleation starts at low 

heat flux. Harirchian and Garimella (2009) noted that the incipience heat flux (when 

boiling occurs) decreases as the channel size decreased. Moreover, the slug flow and 

intermittent churn/annular flow were most often observed in a small channel. The bubbly 

flow and intermittent churn/wispy-annular flow usually existed in a large channel. Their 

observations are similar to the results and assumptions in current study. 

 

4.2 Effect of Mass Flux and Heat Flux on Flow Instability 

4.2.1 Effect of Mass Flux 

In this section, the flow oscillation types and features at OFIs/transient points at two mass 

fluxes of 850 kg/m2·s and 1200 kg/m2·s (Figure 4.1) in each microtube are exhibited and 

compared. 

Figure 4.5 plots the real-time flow oscillations of OFIs in Tube L at different mass 

fluxes. At the mass flux of 850 kg/m2·s (Figure 4.5 (a)), the heat flux at OFI is q”Tube L,850 

= 7.2 W/cm2, and the dominant flow oscillation type is DWO. The saturated outlet 

temperature and a high dominant frequency fTube L,850 = 0.67 Hz match the features of 

DWOs. As the mass flux increased (Figure 4.5 (b)), a new OFI occurs when a higher heat 

flux is applied (q”Tube L,1200 = 8.4W/cm2), and its dominant flow oscillation type changes 

to PDO with a low frequency fTube L,1200 = 0.037 Hz. Namely, DWOs become weaker. The 

outlet temperature fluctuates between saturated and subcooled values. A large drag force 

induced by a large mass flux is probably the reason for postponing the OFI occurrence 

and restrict DWOs. Since bubble departure diameters become smaller as the drag force 

increases, the flow pattern is dominated by bubbly flow with small volume of vapor. 
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(a) (b) 

Figure 4.5: The real-time of flow oscillations in Tube L in VU at the mass flux of (a) 850 

kg/m2·s and (b) 1200 kg/m2·s 
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Therefore, more heat flux is required to trigger flow oscillations at a large mass flux. 

Bogojevic et al. (2013) mentioned in their study that the bubble departure diameters 

decreased with the mass flux increasing. Wang et al. (1994) also noticed that in 

conventional size channels, DWOs could be controlled by increasing the mass flux 

because it limited the vapor quality. 

Figure 4.7 (a) gives the real-time flow oscillations in Tube M at the mass flux of 850 

kg/m2·s. The pure DWOs dominating flow oscillations occurs when the heat flux q”Tube 

M,850 = 3.2 W/cm2 
 is applied. The dominated frequency and amplitude of flow oscillations 

are fTube M,850 = 4.1 Hz and AMPTube M,850 = 2.14 kPa. When the mass flux is increased to 

1200kg/m2·s (Figure 4.7 (b)), OFI occurrence is delayed (q”Tube M,850 = 4.7 W/cm2). The 

flow oscillations are also dominated by pure DWOs. As discussed before, an increased 

drag force can reduce bubble departure diameters. Therefore, more heat flux is needed to 

trigger OFI. Moreover, in Tube M, the early bubble confinement can cause the flow 

pattern to quickly change to a strong slug flow even at a larger mass flux. Unlike in Tube 

L, the increased mass flux doesn’t affect the flow oscillation types but changes the flow 

oscillation characteristics in Tube M (fTube M,1200 = 5.1 Hz and AMPTube M,1200 = 1.93 kPa). 

Figure 4.6 exhibits the mass flux effect in Tube S. At the mass flux of 850 kg/m2·s 

(Figure 4.6 (a)), a transient point occurs when a small heat flux is applied (q”Tube S,850 = 

2.0 W/cm2). The real-time pressure and temperature are quite stable. After the mass flux 

increased to 1200 kg/m2·s (Figure 4.6 (b)), the transient point occurs at a higher heat 

flux(q”Tube S,1200 = 2.5 W/cm2). However, the increment of heat flux is not remarkable. 

Although a large drag force can reduce bubble departure diameters, the bubble can be 

easily confined in a small hydraulic diameter once the bubble nucleation happens. In  
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(a) (b) 

Figure 4.6: The real-time of flow oscillations in Tube M in VU at the mass flux of (a) 850 

kg/m2·s and (b) 1200 kg/m2·s 
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(a) (b) 

Figure 4.7: The real-time of flow oscillations in Tube S in VU at the mass flux of (a) 850 

kg/m2·s and (b) 1200 kg/m2·s 
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other words, in Tube S, the increased mass flux can neither delay a transient point  

occurrence effectively nor changing flow characteristics, but the average of pressure drop 

is increased (MAGTube S, 850 < MAGTube S, 1200) as the mass flux increases. 

Figure 4.8 plots the flow oscillation features of each OFI point in Figure 4.1. In 

general, the increased mass flux in Tube L can postpone OFIs appearance. It can also 

change flow oscillation types and features ((a) f, (b) AMP and (c) MAG) of OFIs, but 

their changing trends are dependent on flow patterns rather than mass fluxes. The 

increased mass flux in Tube M can also delay OFI appearance but cannot affect flow 

oscillation types and features; however, the average pressure drop is increased as the 

mass flux increases. The effect of mass flux on transient point occurrence and flow 

behaviors in Tube S can be negligible.  

4.2.2 Effect of Heat Flux on Flow Instability 

In Tube L, the effect of heat flux on flow instability at OFIs is investigated. In Figure 4.9 

(a), the real-time flow oscillations of the OFI at the mass flux of 700 kg/m2·s are 

presented. The flow oscillation type is a compound type, including Ledinegg, PDOs and 

DWOs instabilities. The dominant frequency is fOFI = 0.022 Hz. After increasing the heat 

flux to q” = 8.3 W/cm2 (Figure 4.9 (b)), the dominant frequency is increased and its 

amplitude is decreased. These changings indicate that at a fixed mass flux, DWOs are 

more dynamic as the heat flux increases. This can be explained by the fact that when a 

mass flux is fixed, more power input not only leads to more bubbles nucleation at the 

channel upstream section but also extends the nucleation site towards the channel 

downstream sections. Tibirica and Ribatski (2014) performed a flow visualization to 

investigate bubble characteristics during flow boiling in a single horizontal microtube 
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(a) 

(b) 

(c) 

Figure 4.8: Comparison of the flow oscillation characteristics Tube L and M in VU (a) f, 

(b) AMP and (c) MAG 
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with 0.400 mm hydraulic diameter. They observed that at a constant mass flux, when 

more heat flux is applied more bubble nucleation sites were activated. Therefore, in this 

study, a strong confined bubble/slug may cause more active DWOs. This observation is 

also similar to the findings of Fan and Hassan (2012) for a single horizontal microtube. 

As more heat flux are added (Figure 4.9 (c)), DWO features are more active. The 

dominant frequency becomes higher, and the amplitude becomes smaller. Another 

example of the heat flux effect in Tube L at the mass flux of 1000 kg/m2·s is presented in 

Figure 4.10. At the OFI as shown in Figure 4.10 (a), PDO is the dominant flow 

oscillation type, while DWO type is less observed. With more heat flux added (Figure 

4.10 (b) and (c)), DWOs become more intensive as well. For Tube M and S, the effect of 

heat flux has not been investigated. It is because based on the results in Tube L, it is 

expected that more heat flux applied in Tube M may enhance DWOs as well, but may 

cause local dryout in Tube S since the liquid film of the annular flow may become thinner. 

 

4.3 Summary 

The flow oscillation types and characteristics in three identical length microtubes with 

different hydraulic diameters (Dh, Tube L = 0.889 mm, Dh, Tube M = 0.533 mm and Dh, Tube S = 

0.305 mm) have been studied and compared for a mass flux range from 700 to 1600 

kg/m2·s in VU. In Tube L, OFIs with compound flow oscillation types, including 

Ledinegg, PDOs and DWOs, have been always observed. However, the dominant type 

and characteristics (f, AMP and MAG) depended on flow patterns rather than mass fluxes 

When PDO dominated flow oscillations, the outlet temperature oscillated between 

subcooled and saturated values, which might suggest that an intermittent flow pattern 
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(a) 

(b) 

(c) 

Figure 4.9: The real-time of flow oscillations in Tube L in VU at the mass flux of 700 

kg/m2·s (a) at the OFI and (b) (c) after the OFI 
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(a) 

(b) 

(c) 

Figure 4.10: The real-time of flow oscillations in Tube L in VU at the mass flux of 1000 

kg/m2·s (a) at the OFI and (b) (c) after the OFI
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existed. When DWO dominated, the outlet temperature was almost maintained at the 

saturated level, which might suggest that a slug flow dominated the flow pattern. The 

increased mass flux could suppress DWO and postpone OFI occurrence; however, the 

increased heat flux could intensify DWO. In Tube M, OFIs with pure DWOs have always 

been detected earlier than in the case of Tube L for the same mass flux. The possible flow 

pattern might be a slug flow. The flow oscillation characteristics varied with the mass 

flux. The increased mass flux could weaken DWOs but increases the magnitude (MAG) 

of flow oscillations and delay OFI occurrence. In Tube S, the transient points were only 

observed instead of OFIs. They appeared earlier than in the other two larger microtubes. 

This might be explained by the fact he bubble were confined before departure and rapidly 

formed a stable annular flow. The transient point occurrence and characteristics were less 

sensitive to the increase in mass flux.  
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Chapter 5 

 

5 Effect of Flow Orientation on Flow Instability 

In this chapter, the effects of flow orientation on flow instability are investigated. Figure 

5.1 provides a map of flow stability regimes in three microtubes in both vertical flow 

directions (VU and VD). In Tube L, OFIs are observed in both flow directions. In Tube 

M, OFIs are recorded in VU, but only transient points are detected in VD. In Tube S, 

transient points are always observed in VU; however, in VD, the flow blockage 

phenomenon appears. The flow orientation affects OFI/transient point occurrence. As the 

hydraulic diameter reduces, this effect is weakening but brings dryout in VD. The details 

will be discussed in next sections. 

 

5.1 Comparison of Flow Oscillation Features in Both Flow 

Orientations 

5.1.1 In Tube L 

In Figure 5.2, the real-time flow oscillations of OFI in Tube L in VD at the mass flux of 

850 kg/m2·s are illustrated. PDOs dominated flow oscillations (Figure 5.2 (a)) occur at a 

heat flux of q”OFI, VD = 7.1 W/cm2 which is earlier than that in VU (q”OFI, VU = 7.7 W/cm2). 
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Figure 5.1: The map of flow stability regimes in three microtubes in VU and VD 
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Since the flow orientation is the only variable in the current experiment, the buoyancy 

force is considered as the main reason causing the differences in OFI occurrence. In VU, 

as previously discussed, the bubbly flow and elongated/slug flow alternatively switching 

may correspond to complex flow oscillations. In VD, because the buoyancy force acts on 

bubbles against the flow direction, the bubbles are difficult to be exhausted and rather 

accumulated and coalesced each other; that is, the reversed flow can be formed with less 

heat flux input. Once the elongated/confined bubble is discharged, single-phase liquid is 

quickly imported. Because of the obstruction due to the buoyancy force, another large 

vapor forming and discharging requires more time. Hence, the flow oscillations in VD 

have a lower frequency (fVD,Tube L = 0.02 Hz < fVU,Tube L = 0.06 Hz). Zhang et al. (2005) 

also observed a similar finding in VD in multiple microchannles. Their flow qualitative 

visualization results showed that all sizes of bubbles moving towards the channel 

downstream were slower than the bulk liquid due to the buoyancy force.  

As the mass flux is increased to 1200 kg/m2·s (Figure 5.3), a new OFI appears in VD 

at a heat flux almost similar to the case in VU (q”OFI, VD = 8.6 W/cm2  q”OFI,VU = 8.4 

W/cm2). However, the corresponding flow oscillations last only for a short time (about 3 

minutes) with large amplitudes (AMPVD = 17.0kPa > AMPVU = 8.9 kPa) and a low 

frequency (fVD = 0.020 Hz > fVU = 0.037 Hz). A large drag force may reduce the bubble 

departure diameters so that more heat flux is required to trigger more nucleation sites. 

However, the buoyancy force suppresses bubbles traveling to the channel downstream, so 

small bubbles coalesce together to form a compressible volume gradually leading to the 

flow oscillations with large amplitudes. After several oscillations, the confined bubbles 

are more and more difficult to be discharged. They are accumulated in the channel and 
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(a) 

 

(b) 

 

(c) 

Figure 5.2: The real-time of flow oscillations in terms of (a) pressure, (b) temperature and 

(c) the inlet pressure frequency spectrum in Tube L in VD at the mass flux of 850 

kg/m2·s 
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(a) 

 

(b) 

 

(c) 

Figure 5.3: The real-time of flow oscillations in terms of (a) pressure, (b) temperature and 

(c) the inlet pressure frequency spectrum in Tube L in VD at the mass flux of 1200 

kg/m2·s 
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then may cause the flow pattern turning to a stable annular flow. This phenomenon 

implies that a large mass flux in VD can delay OFI occurrence or even leading to a 

restable flow. The buoyancy force suppresses the bubble discharging inducing early 

dryout, however. 

 Figure 5.4 lists the heat flux effect on flow instability in VD in Tube L at the mass 

flux of 700 kg/m2·s. When the OFI is observed (Figure 5.4 (a)), the flow oscillations are 

combined, including Ledinegg instability, PDOs and DWOs. The dominant frequency 

(fOFI,VD = 0.24 Hz) indicates PDO is the major oscillation type. As the heat flux is 

increased (Figure 5.4 (b)), the flow oscillation type becomes pure DWO with a small 

amplitude and a high dominant frequency (f = 4.2 Hz). After applying more heat flux 

(Figure 5.4 (c)), the flow oscillations tend to re-stablize. The amplitudes of flow 

oscillations are decreased and no major characteristic frequency can be observed. In VU, 

as previously discussed, an increased heat flux enhances DWOs. Contrarily, in VD, more 

heat flux triggers more nucleation sites, and the buoyancy force suppresses bubble 

discharging. The bubbles are gradually accumulated and then may cause the flow pattern 

changes to be the stable annular flow rapidly. Therefore, more heat flux causes the flow 

oscillations to re-stabilize in VD.  

5.1.2 In Tube M 

For Tube M, in VD (Figure 5.5) at the mass flux of 850 kg/m2·s, only the transient point 

is detected. Its occurrence is earlier than the OFI occurrence in VU (q”VD,Tube M = 3.3 

W/cm2 < q”VU,Tube M = 3.8 W/cm2). The trapped bubbles due to the buoyancy force grow 

up or coalesce to form annular flow in a short period of time. Hence, once the heat flux 

reaches a certain level, a stable flow rapidly changes to another stable state without 
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(a) 

 

(b) 

(c) 

Figure 5.4: The real-time of flow oscillations in Tube L in VD at the mass flux of 700 

kg/m2·s (a) at the OFI and (b) (c) after the OFI 
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(a) 

 

(b) 

      

(c) 

Figure 5.5: The real-time of flow oscillations in terms of (a) pressure, (b) temperature and 

(c) the inlet pressure frequency spectrum in Tube M in VD at the mass flux of 850 

kg/m2·s 
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experiencing sustained and intensive oscillations. 

 As the mass flux is increased to 1200 kg/m2·s (Figure 5.6), a transient point is still 

observed, but postponed. In Tube M in VU, as previously discussed, pure DWOs 

dominant OFIs are always detected. Their occurrence can be delayed by a large mass flux. 

In VD, only transient points are recorded, and an increased mass flux also can postpone 

the transient point appearance. 

5.1.3 In Tube S 

For Tube S, in VD, the flow blockage phenomenon is observed. For example, at the mass 

flux of 850 kg/m2·s in VU (Figure 5.1), the transient point occurs at q”VU,Tube S = 2.2 

W/cm2. In VD, the mass flux suddenly drops to zero at a similar heat flux (q”VD,Tube S = 

2.0 W/cm2); and the flow is completely restricted. No liquid can be observed at the outlet, 

some tiny bubbles are floating out from the inlet, instead of. Even an increased mass flux 

cannot break through this flow blockage. In order to protect the system, the experiment is 

ceased so that no real-time data are recorded. The flow blockage is considered caused by 

the buoyancy force and the early confinement. Qi et al. (2007) had a similar observation 

in their flow boiling investigations in a single microtube but using liquid nitrogen. They 

reported the block phenomenon at the onset of nucleate boiling since the bubble 

discharge rate was lower than the bulk flow rate. Besides, the authors pointed that both 

block phenomenon and the Critical Heat Flux (CHF) led to dryout but the triggering 

conditions were different. The former was caused by vapor blocking the flow, and the 

later was caused by dryout of liquid film. In the current study, even at higher mass fluxes, 

the flow blockage always appears in VD in Tube S and cannot be postponed effectively. 

Hence, it can be noticed that an increased mass flux cannot show effective influences 



65 
 

 

(a) 

 

(b) 

        

(c) 

Figure 5.6: The real-time of flow oscillations in terms of (a) pressure, (b) temperature and 

(c) the inlet pressure frequency spectrum in Tube M in VD at the mass flux of 1200 

kg/m2·s
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either to delay the flow blockage or to break through after the flow blockage happened. 

Figure 5.7 provides an overview of flow oscillation features between VU and VD in 

Tube L and M. To sum up, in Tube L (Figure 5.7 (a)), a large mass flux can postpone 

OFIs occurrence and changes flow oscillation characteristics as well in both vertical flow 

orientation. However, the magnitude of flow oscillations in VD is always larger than in 

VU due to the difficulty in bubble discharging. In Tube M (Figure 5.7 (b)), OFIs are 

recorded in VU, but transient points are often observed in VD. An increased mass flux 

can delay OFI/transient point occurrence and cause the pressure drop increasing in both 

flow directions. In Tube S, the boiling flow may be blocked in VD. 

 

5.2 Effect of Inlet Orifice on Flow Instability Control 

As previously introduced, a reversed flow due to rapid bubble bidirectional expansion is 

believed to cause the flow instability. A suitable solution is to increase the inlet pressure 

to suppress the reversed flow. In the current study, two sizes of inlet orifices are 

investigated on the flow instability control in both vertical flow orientations.  

After installing an inlet orifice on Tube L, the operating conditions without inlet 

orifices are applied to verify the ability of inlet orifice to control flow oscillations. At the 

mass flux of 700 kg/m2·s, in VU (Figure 5.8 (a)), with 50% inlet orifice, when the 

operating conditions are similar to the no-orifice case, an OFI still occurs; however, the 

flow oscillation type is static Ledinegg oscillation. In VD (Figure 5.8 (b)), the flow 

oscillations are eliminated. However, the inlet pressure is MAG50% = 19.12 kPa, which is 

lower than the average inlet pressure with no-inlet orifice (MAGOFI = 21.04 kPa), which 

was not observed in VU. It may be explained by the difference in flow behavior at the  
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(a) (b) 

Figure 5.7: Comparison of the flow oscillation characteristics (f-AMP-MAG) in VU and 

VD in (a) Tube L and (b) Tube M
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(a) (b) 

(c) (d) 

Figure 5.8: The real-time flow behaviors with an inlet orifice at the operating conditions 

when the OFIs occur without an inlet orifice: (a) G = 700 kg/m2·s in VU, (b) G = 700 

kg/m2·s in VD, (c) G = 1000 kg/m2·s in VU and (d) G = 1000 kg/m2·s in VD 
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inlet orifice due to the flow orientation. Park et al. (2009) and Schneider et al. (2007) 

found that the inlet jet stream and the flashing effect due to the inlet orifice in a 

horizontal microchannel heat sink might affect flow behavior. At the mass flux of 1000 

kg/m2·s, in VU (Figure 5.8 (c)), with 50% inlet orifice, the OFI cannot be detected at the 

same heat flux applied in no-orifice case. The magnitude of the inlet pressure with 50% 

inlet orifice (MAG50% = 27.23 kPa) are higher than the magnitude of the inlet pressure in 

no-orifice cases (MAGOFI = 16.58 kPa), but smaller than its maximum. Fan and Hassan 

(2012) concluded that as an inlet orifice was applied in a single horizontal microtube, if 

the inlet pressure was higher than the maximum value of flow oscillations without flow 

restriction, the inlet orifice was about to stabilize the flow. The difference between 

current study and the finding from Fan and Hassan (2012) may be caused by the vertical 

upward flow. In VD (Figure 5.8 (d)), when the operating condition is set as the OFI 

occurs without inlet orifice, the flow oscillations cannot be observed. The inlet pressure is 

MAG50% = 25.86 kPa, which is higher than the average inlet pressure without inlet orifice 

(MAGOFI = 22.03 kPa). This observation is similar to the cases with VU. At both mass 

fluxes, with 20% inlet orifice, the flow oscillations are eliminated and no OFIs are 

observed in both vertical flow orientations. 

The experiments to detect the OFIs with an inlet orifice are carried out in Tube L. 

With 50% inlet orifice, due to its large area ratio, it has a limited ability to restrict the 

reversed flow; therefore, OFIs still occur. The inlet pressure oscillations at OFIs with 50% 

inlet orifice and no-orifice are compared in Figure 5.9. At the mass flux of 700 kg/m2·s, 

in VU (Figure 5.9 (a)), the OFIs with and without 50% inlet orifice occur at the same 

mass flux however, the static Ledinegg oscillation is detected instead of the combined 
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(a) (b) 

(c) (d) 

Figure 5.9: Comparison of the inlet pressure at OFIs with and without 50% inlet orifice in 

Tube L at the mass fluxes of (a) G = 700 kg/m2·s in VU, (b) G = 700 kg/m2·s in VD, (c) 

G = 1000 kg/m2·s in VU and (d) G = 1000 kg/m2·s in VD 
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oscillations when no inlet orifice applied. In VD (Figure 5.9 (b)), 50% inlet orifice can 

minimally delay the OFI occurrence; however, pure PDOs are still observed. The flow 

oscillations cannot be suppressed since inlet orifice area ratio is large. In addition, the 

buoyancy force aggravates the flow oscillations due to the bubble discharging difficulty. 

At the mass flux of 1000kg/m2·s, in VU (Figure 5.9 (c)), 50% inlet orifice delays the OFI 

occurrence (q”OFI, 50% > q”OFI, w/o orifice), and a low frequency pure PDO type dominates the 

flow oscillations instead of combined types when no-inlet orifice is applied. In VD 

(Figure 5.9 (d)), 50% inlet orifice delays the OFI occurrence as well but better than at a 

low mass flux. Hence, in the current investigations, 50% inlet orifice performance in VD 

is worse than in VU. 20% inlet orifice can eliminate the flow oscillations but increases 

the pressure drop simultaneously. 

 There are no experimental results of the effect of inlet orifice in Tube M and S. It is 

because based on the flow oscillation characteristics in both tubes observed previously, 

the inlet orifice is not applicable in both smaller tubes. In Tube M, without inlet orifice, 

pure DWOs were always observed due to early bubble confinement as discussed before. 

Since the inlet orifice is for suppressing the reversed flow which is the major source to 

cause PDOs, it is considered that may not control or eliminate pure DWOs in Tube M. In 

Tube S, without inlet orifice, only transient points were recorded without experiencing 

characteristic oscillations. Therefore, the inlet orifice is not required in Tube S.  

 

5.3 Summary 

The flow oscillation types and characteristics in VD have been investigated in three 

single microtubes, respectively. The results were compared to the cases in VU. The 
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buoyancy force effect was observed but caused different phenomena for different 

hydraulic diameters. In Tube L, the combined flow oscillations at the OFIs were recorded 

as in VU, but the magnitude of flow oscillations were always higher than in VU because 

the buoyancy force impeded the bubble discharge rate. At low mass fluxes, the OFI 

occurrence was early in VD. As the mass flux increased, the OFI occurrence in VD was 

closed to the cases in VU since the large drag force contributed to the bubble discharge. 

However, the increased heat flux turned the flow oscillations to re-stabilize in VD, which 

might imply the flow pattern changed to the stable annular flow. This phenomenon was 

not desired because more heat flux might cause local dryout. In Tube M, the transient 

points without characterized flow oscillation features have been observed in VD. The 

pressure drop increased as the mass flux increased and were always higher than in VU. In 

Tube S, the flow blockage was observed when small amount of heat flux was applied. Its 

appearance was not effectively affected by the mass flux. Moreover, the flow blockage 

was irreversible even increased mass flux after its appearance. This phenomenon was 

dangerous and would damage the system. The 50% inlet orifice could delay the OFI 

occurrence in Tube L in VD but worse than in VU. The 20% inlet orifice performance in 

VD was similar to the cases in VU but its pressure drop was higher than the cases in VU. 
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Chapter 6 

 

6 Conclusion and Future Directions 

6.1 Conclusion and Contributions 

In this study, the flow instability types and characteristics in different hydraulic diameters 

of microtube in vertical upward and downward flow directions were experimentally 

investigated. Three sizes of stainless steel microtubes (Dh = 0.305, 0.533 and 0.889 mm) 

with identical heated length (Lh = 100mm) were tested. The subcooled coolant FC-72 was 

driven at the mass flux varying from 700 to 1600 kg/m2·s, and the heat flux was 

uniformly applied on the tube surface from 1.8 to 9.6 W/cm2. Two inlet orifices (the area 

ratios of 20% and 50%) were investigated on flow oscillation stabilization in vertical 

flow directions.  

Ledinegg, PDO, DWO flow oscillation types were observed in a single vertical 

microtube. During combined oscillations (Ledinegg, PDOs and DWOs), the outlet 

temperature oscillated in phase with the inlet pressure between subcooled and saturated 

temperatures, and it implied that the intermittent flow pattern (the bubbly/slug flow 

alternatively switching) may have existed. During DWOs, the outlet temperature 

maintained at the saturated level, which might correspond to the slug flow. The OFI, the 

transient point and the flow blockage were observed depending on the hydraulic diameter, 
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the flow orientation and the operating conditions. The OFI, a threshold of characterized 

flow instability, most occurred in large hydraulic diameters or in VU. The transient point, 

the point where the flow changes from one stable state to another one once the bubble 

nucleation appears, usually appeared in small hydraulic diameters or in VD. The flow 

blockage was only observed in the smallest hydraulic diameter in VD. As the hydraulic 

diameter reduces, the OFI/transient point occurred earlier, and the combined flow 

oscillation type changed to pure DWO or re-stabilized. The buoyancy force effect on the 

OFI/transient point occurrence was decreased as the hydraulic diameter decreases, but it 

impeded the bubble discharging leading to flow blockage in a small hydraulic diameter in 

VD. The large drag force could delay OFI/transient appearance, but its ability reduced as 

the hydraulic diameter decreases. In a large tube or in VU, the flow oscillation range was 

usually wide. After flow started to oscillate, a considerable heat flux increment could 

make the flow re-stabilize. In a small tube or in VD, the flow oscillation range was 

comparatively narrow. A small amount of extra heat flux might lead to the re-stabilized 

flow or the dryout crisis after flow oscillations appeared. In current investigation, in the 

larger tube (Tube L), 50% inlet orifice performed better in controlling flow instability as 

the mass flux increases or in VU, and 20% inlet orifice can totally eliminate flow 

instability.  

 Hence, the combined and complex flow oscillations occurrence in large hydraulic 

diameters can be delayed by an increase in mass flux or controlled by adding an inlet 

orifice in vertical flow directions. As the hydraulic diameter decreases, the flow 

oscillations occur earlier and are not sensitive to the mass flux. The system with the 

vertical upward flow direction is better than the vertical downward one in terms of flow 
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instability since vertical downward configuration may bring early dryout crisis or flow 

blockage. It is recommended that, for future flow boiling microchannel heat sink design, 

moderate hydraulic diameter (Dh > 0.500 mm) with vertical upward flow is preferred. 

 

6.2 Future Directions 

Since the flow instability in microchannel(s) is complicated and affected by multiple 

parameters, comprehensive fundamental investigations are needed to be conducted in 

order to understand the nature of flow oscillations, the relationships between various 

parameters inducing flow instability and provide correlations and solutions for 

optimization designs. The follow studies can be carried on in the near future: 

The flow patterns at OFIs or transient points in different hydraulic diameters need 

to be visualized in order to observe the flow patterns changing trends. These 

observations can be useful for flow instability controlling investigations. 

The relationship among the flow instability, the heat transfer coefficient and the 

pressure drop needs to be studied fundamentally. Since as the hydraulic diameter 

reduces, the heat transfer may be enhanced, but the flow instability may occur at a 

low heat flux. The results are valuable for microchannel cooling device 

optimization. 

The buoyancy force effect can be investigated in smaller hydraulic diameters in 

order to detect a threshold hydraulic diameter defining the conditions where the 

buoyancy force can be ignored. 
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The flow characteristics at the exit of the inlet orifice in vertical upward and 

downward flow direction need to be visually investigated if any specific 

phenomena lead to flow oscillation control differences. 

Almost all flow instability investigations in microchannel(s) are in straight 

geometry. The curved configuration can be a novel direction to be investigated for 

future design. Since the flow behaviors and the heat transfer are quite different in 

curved configurations due to the secondary flow effect, the flow instability 

characteristics may be different to the case with a straight tube. The inlet orifice 

effect also can be studied for curved tubes. 
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Appendix A: Saturated properties of 

FC-72 

P (kPa) Tsat (°C) Cp (J/kgK) hfg (J/kg)  (Pa·s) f (kg/m3) v (kg/m3)
8.61 0 1011 99182 9.50E-04 1755 1.37 
11.6 5 1019 98000 8.74E-04 1738 1.8 
14.6 10 1026 96818 8.00E-04 1720 2.23 
19 15 1034 95593 7.43E-04 1706 2.86 

23.5 20 1042 94369 6.87E-04 1692 3.48 
30 25 1050 93094 6.44E-04 1680 4.36 

36.6 30 1057 91820 6.01E-04 1669 5.23 
45.7 35 1065 90497 5.68E-04 1659 6.41 
54.7 40 1073 89174 5.35E-04 1650 7.59 
67.2 45 1080 87789 5.09E-04 1641 9.14 
79.5 50 1088 86404 4.83E-04 1631 10.7 
96 55 1096 84970 4.61E-04 1623 12.7 
101 56.6 1098 84511 4.54E-04 1620 13.4 
112 60 1104 83536 4.39E-04 1614 14.8 
134 65 1111 82046 4.18E-04 1603 17.5 
155 70 1119 80557 3.98E-04 1593 20.2 
182 75 1127 79024 3.80E-04 1581 23.7 
209 80 1135 77492 3.62E-04 1569 27.2 
243 85 1142 75928 3.43E-04 1554 31.6 
276 90 1150 74365 3.25E-04 1539 36 
317 95 1158 72783 3.20E-04 1520 41.5 
359 100 1165 71201 3.14E-04 1501 47 
409 105 1173 69447 3.08E-04 1477 53.8 
459 110 1181 67693 3.03E-04 1453 60.6 
519 115 1189 65994 2.96E-04 1424 69.1 
579 120 1196 64295 2.90E-04 1394 77.5 
650 125 1204 62215 2.82E-04 1357 88 
721 130 1212 60134 2.74E-04 1321 98.6 
805 135 1219 57642 2.65E-04 1277 112 
889 140 1227 55149 2.56E-04 1233 126 
987 145 1235 52059 2.45E-04 1180 144 
1085 150 1243 48969 2.34E-04 1128 162 



 

87 
 

Appendix B: Drawings 

B 1: Support Drawing 
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B 2: Vertical Board Drawing 
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Appendix C: Dominant frequency 

(MATLAB program– FFT analysis) 

 

close all;
clear all;
clc;

samples = xlsread('Pin.xlsx'); %Experment results

fs = 400; %sampling frequency (Hz)

fnyquist = fs/2;

N = length (samples);

fax_bins = [1:N];
fax_Hz = fax_bins*fs/N;

y = (abs(fft(samples)))';
setup = [fax_Hz; y]';
setup = setup(1:N/4,:);

plot(fax_Hz, y); %power spectral density figure (the frequency 
spectrum)

xlabel ('Frequency (Hz)', 'FontName','Times New Roman', 'FontSize',
32);
ylabel ('Magnitude', 'FontName','Times New Roman', 'FontSize', 32);
axis([0 5 0 5*10^4]);
set(gca,'FontName','Times New Roman', 'Fontsize',28)
title ('Pin - Frequency Spectrum', 'FontName','Times New Roman',
'FontSize', 50); 
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Appendix D: Heat loss evaluation 

A heat loss function is built as a relationship between tube wall temperatures and applied 

energy on the empty microtube. During flow boiling experiments, an average wall 

temperature for each test matrix is recorded and substituted into the heat loss function 

created before. Therefore, the heat flux applied on the channel surface can be obtained by 

subtracting the heat loss from the total power applied,  

loss
hh

q
LD

VIq ""  

 

Tube size Maximum heat loss %  
of total heat flux applied 

Tube L 4% 

Tube M 11% 

Tube S 15% 
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Appendix E: Samples of calculated 
uncertainties 

1. Uncertainty of inlet orifice area ratio ( AR%) 

Given: 50% inlet orifice;  

Do = 0.635 mm, Do = ± 0.0127 mm;  

Dh = 0.889 mm, Dh = ± 0.0127 mm. 

Calculated: 

 %100% 2

2

h

o

D
DAR  

(0.1)

 
22

%%%
h

h
o

o D
ARD

D
ARDAR  (3.4)

%5.2

%100
889.0

635.020127.0%100
889.0

635.020127.0

2%1002%

2

3

22

2

2

3

22

2
h

o
h

h

o
o D

DD
D
DDAR

 

2. Uncertainty of pressure drop ( P) 

Given: Pin (full scale) = 517 kPa (75 psi), Pin = ± 0.259 kPa; 

  Pout (full scale) = 345 kPa (50 psi), Pout = ± 0.173 kPa. 

Calculated:  

 outin PPP  
 

 22
outin PPP  (3.5)

kPa 311.0173.0259.0 22P  



 

92 
 

3. Uncertainty of mass flux ( G) 

Given: Rotameter 2 (G = 1400 kg/m2·s) 

  Tin = 24 °C, Tin = ±0.5 °C; 

  Q = 5.45×10-7 m3/s, Q = ± 2.73×10-8 m3/s; 

  Dh = 8.89×10-4 m, Dh = ± 1.27×10-5 m. 

Calculated: 

A
QG  

 T61.21760  (3M Company) 

  

4

2
hDA  

4

61.21760 2
hD

QTG  

293.2
1089.8

4

1045.561.2

4

61.2
24

7

2
hD

Q
T
G  

9

24
2 1073.2

1089.8
4

2461.21760

4

61.21760

hD
T

Q
G  

6

34

7

3 10355.3
1089.8

4

1045.52461.217602

4

61.217602
hh D

QT
D
G

 

 
222

h
h D

GD
Q
GQ

T
GTG  (3.6)
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skg/m 9.8510355.31027.11073.21073.2239.25.0 22652982G

%6
1400

9.85
G
G  

4. Uncertainty of heat flux ( q”) 

Given: V = 2.375V, V = ± 0.05 V; 

  I = 8.3A, I = ± 0.05 A; 

  Dh = 8.89×10-3 cm, Dh = ± 1.27×10-3 cm; 

  Lh = 10 cm, Lh = ± 0.1 cm. 

Calculated: 

hhsurface LD
IV

A
IVq"  

972.2
101089.8

3.8"
3

hh LD
I

V
q  

850.0
101089.8

375.2"
3

hh LD
V

I
q  

394.79
101089.8

3.8375.2"
232

hhh LD
IV

D
q  

7058.0
101089.8

3.8375.2"
232

hhh LD
IV

L
q  

 
2222 """""

h
h

h
h L

qL
D
qD

I
qI

V
qVq  (3.7)

2

22322

 W/cm20.0

7058.01.0394.791027.1850.005.0972.205.0"q
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Appendix F: Experimental data 

F.1: Tube L (without inlet orifice) 

 G(kg/m2 s) V(V) I(A) q”(W/cm2) f(Hz) AMP(kPa) MAG(kPa)  

VU 

701 2.375 8.30 6.9 0.022 8.03 17.12 OFI 

867 2.420 8.51 7.2 0.670 5.94 19.66 OFI 

997 2.510 8.82 7.7 0.060 12.70 16.58 OFI 

1192 2.620 9.10 8.4 0.037 8.88 15.98 OFI 

1396 2.780 9.61 9.4 0.040 5.66 17.63 OFI 

VD 

701 1.980 6.95 4.7 0.240 5.27 21.04 OFI 

867 2.245 7.90 6.2 0.440 8.35 24.54 OFI 

997 2.410 8.45 7.1 0.020 15.00 22.03 OFI 

1192 2.655 9.28 8.6 0.020 16.97 24.08 OFI 
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F.2: Tube M (without inlet orifice) 

 G(kg/m2 s) V(V) I(A) q”(W/cm2) f(Hz) AMP(kPa) MAG(kPa)  

VU 

708 1.480 3.20 2.6 2.7 1.98 16.23 OFI 

852 1.670 3.55 3.2 4.1 2.14 18.79 OFI 

996 1.790 3.85 3.8 4.6 2.28 21.13 OFI 

1194 1.990 4.25 4.7 5.1 1.93 24.30 OFI 

1401 2.200 4.75 5.9 5.0 2.03 33.65 OFI 

VD 

708 1.355 2.95 2.1 0.01 0.40 17.88 Transient

852 1.510 3.33 2.7 0.01 0.51 24.38 Transient

996 1.679 3.60 3.3 0.01 0.32 29.12 Transient

1194 1.868 4.00 4.1 0.01 0.27 32.39 Transient

1401 2.070 4.45 5.2 0.01 0.39 41.20 Transient
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F.3: Tube S (without inlet orifice) 

 G(kg/m2 s) V(V) I(A) q”(W/cm2) f(Hz) AMP(kPa) MAG(kPa)  

VU 

846 1.076 2.06 2.0 0.01 1.98 16.23 Transient 

1011 1.133 2.19 2.2 0.01 2.14 18.79 Transient 

1204 1.203 2.30 2.5 0.01 2.28 21.13 Transient 

1397 1.249 2.40 2.7 0.01 1.93 24.30 Transient 

1617 1.320 2.55 3.1 0.01 2.03 33.65 Transient 

VD 

846 1.024 2.00 1.8 - - - Blockage 

1011 1.086 2.11 2.0 - - - Blockage 

1204 1.175 2.25 2.4 - - - Blockage 

1397 1.238 2.40 2.7 - - - Blockage 

1617 1.670 2.45 3.8 - - - Blockage 
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F.4: Tube L (heat flux effect) 

 G(kg/m2 s) V(V) I(A) q”(W/cm2) f(Hz) AMP(kPa) MAG(kPa)  

VU 

701 

2.375 8.30 6.9 0.022 8.03 17.12 OFI 

2.650 8.99 8.3 0.210 5.23 19.40 FI 

2.770 9.29 9.0 0.810 4.71 19.69 FI 

997 

2.510 8.82 7.7 0.060 12.70 16.58 OFI 

2.660 9.19 8.6 0.380 12.58 16.05 FI 

2.850 9.59 9.6 0.720 7.02 20.88 FI 

VD 

701 

1.980 6.95 4.7 0.240 5.27 21.04 OFI 

2.115 7.39 5.4 4.200 2.27 25.47 FI 

2.370 8.20 6.7 - 1.52 25.63 FI 

997 

2.410 8.45 7.1 0.016 15.00 22.03 OFI 

2.470 8.60 7.4 0.062 13.97 21.64 FI 

2.600 8.80 8.0 0.171 14.28 22.74 FI 
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F.5: Tube L (with an inlet orifice) 

 G(kg/m2 s) V(V) I(A) q”(W/cm2) f(Hz) AMP(kPa) MAG(kPa)  

VU 

701 

2.375 8.30 6.9 0.022 8.03 17.12 w/o (OFI)1 

2.450 8.30 6.9 - 1.03 22.90 50%2 

2.480 8.30 6.9 - 0.30 28.41 20%3 

2.375 8.30 6.9 - - 22.90 50% (OFI)4 

997 

2.510 8.82 7.7 0.058 12.70 16.58 w/o (OFI) 

2.594 8.82 7.7 - - 27.23 50% 

2.646 8.78 7.7 - - 34.77 20% 

2.780 9.26 9.0 0.037 15.02 22.25 50% (OFI) 

1192 

2.620 9.10 8.4 0.037 8.88 15.98 w/o (OFI) 

2.702 9.10 8.4 - - 23.35 50% 

2.682 9.03 8.4 - - 40.41 20% 

2.850 9.54 9.5 1.508 2.87 37.35 50% (OFI) 

VD 

701 

1.980 6.95 4.8 0.238 5.27 21.04 w/o (OFI) 

1.973 6.94 4.8 - - 19.12 50% 

2.064 6.94 4.8 - - 29.64 20% 

2.015 7.11 5.0 0.353 6.71 21.71 50% (OFI) 

867 

2.245 7.90 6.2 0.441 8.35 24.54 w/o (OFI) 

2.258 7.90 6.2 - - 22.89 50% 

2.364 7.90 6.2 - - 39.72 20% 

2.304 8.11 6.5 0.065 12.35 23.38 50% (OFI) 

997 

2.410 8.45 7.1 0.016 15.00 22.03 w/o (OFI) 

2.410 8.44 7.1 - - 25.86 50% 

2.517 8.45 7.1 - - 48.08 20% 

2.635 8.55 7.9 0.027 12.43 24.94 50% (OFI) 
1
 set the case without inlet orifice at OFI as the reference; 

2 with 50% inlet orifice, the flow behaviors at the operating conditions same as the reference; 
3
 with 50% inlet orifice, the flow behaviors at the operating conditions same as the reference; 

4
 with 50% inlet orifice, the OFI. 


