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ABSTRACT

Breaking Customs in an Algebra Classroom for Mature Students and Providing
them with Opportunities to Engage in Theoretical Thinking

Steven Pileggi

When an adult student returns to mathematics classes, it can sometimes be after a years-long
absence, and often they may hold a negative attitude towards the subject as a whole. They arrive
with a clear belief about what a mathematics classroom should look like, specifically with regards to
the role of the teacher and the role of the student - a belief that has been formed over many years of
exposure to ‘traditional’ mathematics classrooms. There are also certain customs that the students
have come to believe should be features of all mathematics courses - that the teacher will lecture
on how to solve the different kinds of problems they will encounter, that the teacher will always tell
them whether their work is correct or incorrect, and that there is only one ‘acceptable’ method of
solving a given mathematics problem. In this thesis we discuss a teaching approach that was taken
in an algebra course designed for adults - a teaching approach that tried to break away from these
customs. The Teachers of the course felt that by breaking custom they would be better able to
succeed in achieving the three goals that they had set up for their course: First, they wanted to
engage their students in theoretical thinking, following Sierpinska et. al’s (2002) model. Second,
they wanted to respect and acknowledge the students’ different (mathematics) backgrounds and
life goals. Third, they wanted their students to succeed in the institutional sense. As Researchers,
we will be investigating the design and implementation of this teaching approach to discuss

whether or not the Teachers were successful in achieving their goals.
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Chapter 1. Introduction

1.1 What prompted the study?

In January of 2012 a professor and her teaching assistants at a large, urban
university designed and implemented an introductory course on proofs, offered to
first year students registered in the major in Mathematics and Statistics program,
using what they called a discussion-oriented approach. For the professor and her
assistants, this meant abandoning the lecture-based approach to teaching
mathematics and the focus on ‘reproducing’ or ‘mimicking’ techniques, traditionally
used in university classrooms, to develop an approach where students engage in
doing mathematics and in behaving mathematically. They called it discussion-
oriented because students spent most of the class time engaged in group discussion
about the activities proposed by the professor. The design of the teaching approach
included the design of activities for the students to work on in class and in
assignments and the design of interaction protocols (how the professor and TAs will
interact with the students, face-to-face during class and online in discussion
forums). These activities and interaction protocols were aimed at engaging students
in mathematical behaviours. Therefore, the design of the approach included a
characterization of mathematical behaviour; in particular, the professor and TAs
considered theoretical thinking (Sierpinska et al., 2002), self-regulation (Schoenfeld,
1987), and self-efficacy (Selden and Selden, 2013) as mathematical behaviours that

they wanted to foster and provoke in their students. An analysis of students’ work



seems to indicate that the approach was somehow ‘successful’ at engaging students

in these mathematical behaviours (Hardy et al., 2013).

This thesis was born from the question of what such a discussion-oriented
approach, focused on engaging students in mathematical behaviours, would look
like in the context of other courses. The challenge, the professor thought, was that
while the introduction to proofs course did not have any fixed mathematical content
that needed to be covered, all other courses (seem to) do. Thus, the professor
believed that the challenge would be trying to ensure that specific mathematics
content (content that students are expected to be familiar with in subsequent
mathematics courses) be covered (and learned) through a discussion-oriented
approach. From here the idea was born to attempt to teach another course using the

same teaching style, a course that serves as an introduction to algebra (MATH 200).

MATH 200, subtitled ‘Fundamental Concepts of Algebra’, is a course designed to
reacquaint mature students with mathematics. It covers many topics that are
typically seen in secondary school including (but not limited to) operations on real
numbers, algebraic expressions, and linear and quadratic equations. The students
who register in this course are often engaging in mathematics for the first time in a
while, many years in some cases, and it is not always easy for them to engage in the
‘school-traditional’ activities of ‘solving’, and perhaps less, engage in ‘non-traditional

activities’ as the professor expected to propose.



Based on their previous experiences teaching both this and other courses, the
Teachers believed that the ‘traditional’ or ‘institutional’ approach so typically seen
in mathematics courses does not allow for a classroom environment that is
conducive to engaging in ‘mathematical behaviour’. In some sense, this thesis tells
the story of this first attempt to teach MATH 200 in a way that departs from this
traditional approach in favor of a teaching style that could foster students’
engagement in doing mathematics, in behaving mathematically. In “telling this
story,” we first describe the teaching approach and its goals, and present and
discuss the challenges that the professor and TA faced and the assumptions and
choices they made. Then, we analyze the course design and implementation in terms

of the goals the professor and TA had set for their approach.

In what remains of this introduction, we give brief overviews of the teaching

approach and of the analyses. Finally, we present the thesis structure.

1.2 Teachers and Researchers

For the purposes of this thesis we refer to ‘Teachers’ and ‘Researchers’ as separate
entities, although we filled the role of both (there were always two teachers in the
classroom and although one was the professor in charge and the other was the
teaching assistant, their roles were quite the same all along the semester). When we
talk about the Teachers, we refer to our role as teachers of the course: designing the

activities, teaching the class, facilitating the discussions between students, marking,



etc. When referring to the Researchers we are speaking of our role as researchers
investigating the potential of the designed activities and the teaching approach at
helping the students to succeed at the goals set by the Teachers.

The distinction, Teachers vs. Researchers, is sometimes useful but sometimes, it
feels counter-productive or, at least, confusing. As it may be expected, the moment
at which one person changes from one positioning (in the sense of Ostrom, 2005) to
another, cannot be always, easily pinpointed, and one person’s behavior at a certain
point in time may originate from him or her shifting (or alternating) from one
position to another. Thus, although we may write Teachers or Researchers,
sometimes it was very clear that we were occupying one and only one of the
positions, while sometimes it was not. For example, because the Teachers were
researchers as well, many of their decisions and assumptions were triggered by

their experiences in research.

Despite the fact that, perhaps even too often, the ‘who’ was not absolutely clear, we

found useful to keep, whenever possible, this distinction.

1.3 Assumptions, goals and challenges regarding the teaching approach

At the heart of the teaching design is the Teachers’ conviction that teaching
mathematics is not about “showing” students how to solve a list of too-alike
exercises and that learning mathematics is not about “mimicking” techniques. In

particular, in their weakly-defined ideal of what teaching and learning mathematics



at the university level should look like, the Teachers considered that theoretical
thinking is a pillar. However, as suggested above, designing a discussion-based
approach to MATH 200, one that would focus on doing mathematics and behaving
mathematically, required very different considerations than those necessary for the
introductory course on proving methods. On top of what was mentioned above
regarding the difference in content (see p. 11), there was also a big difference in
terms of who the students are. While the introduction to proofs course is a
university entry-level course designed for students majoring in Mathematics, MATH
200 is the first of the university’s prerequisite level mathematics courses, intended
for students who are not necessarily mathematically literate and who need to either
refresh their knowledge of, or complete for the first time, high school level
mathematics before entering in to the program of their choice. The type of activities
and the interaction protocols, the Teachers thought, had to be conceived taking into
account who are the students and not just the goal of fostering mathematical

behaviours.

Thus, based on their experiences teaching MATH 200, the ‘academic’ goals of the
course, their goal of fostering mathematical behaviours, and research literature on
mature students’ learning of mathematics, the Teachers made the following
assumptions about the students enrolled in the course. These assumptions

governed their goals for, and the design of, the teaching approach.



The Teachers assumed that more often than not, students would have a somewhat
negative attitude towards mathematics as a whole (Gustaffson & Mouwitz, 2004;
Evans & Wedege, 2006). These attitudes may have been formed over the course of
many years and could be the result of many different things: experiences with poor
mathematics teachers, not being able to succeed in previous mathematics courses,
etc. In addition, many of the students would be returning to studying mathematics
after not having done so for many years, in which time the negative feelings may
have ‘festered’. The Teachers wanted to design a course that could somehow make

students if not ‘like’ mathematics, at least, not fear it.

The Teachers assumed that students would each have very different backgrounds
and different previous experiences with mathematics. Similarly, the students would
have very different life goals: a student hoping to major in Psychology sitting next to
someone who wants to be an engineer sitting next to someone who is simply taking
the course as an elective. Despite these differences, the Teachers assumed that their
students would have had, at some point, some previous exposure to algebra. The
Teachers wanted to design a course that could somehow acknowledge these different

backgrounds and life goals.

The teachers assumed that after many years of schooling (and in some cases,
experiences with the schooling of their children) students enrolled in MATH 200
would have developed expectations of what teaching and learning mathematics

looks like. In particular, the Teachers assumed that the students would expect (1) a



lecture-based approach where the instructor shows them what to do and how, for
every problem they may encounter in exams; (2) that it is the duty of the instructor
to tell the students if they are right or wrong; and (3) that for each problem, there is
one and only one (accepted) way of solving it. The Teachers assumed that as a
consequence of these expectations, students would believe that learning
mathematics (at least in the context of school) means memorizing algorithms and
formulas and applying them. The Teachers assumed that these expectations and the
consequent behavior had been engrained in the students’ minds over many years of
exposure to certain ‘traditions’ that are oftentimes featured in a typical mathematics
classroom. The Teachers wanted to design a course that could somehow break from
these expectations and to foster (and provoke) a different behaviour, consistent with

the Teachers’ ideas about mathematical behaviours.

Based on these assumptions, the Teachers reflected on the discussion-based
approach to the introduction to proofs course and on the objectives they had for
that approach, contrasting these with the ‘academic’ goals of MATH 200.
Considering their experiences teaching or tutoring for the course and available
literature on mature students’ learning of mathematics, the Teachers outlined, at the
beginning of the semester, three main goals for their discussion-based approach to

teaching MATH 200.

The first goal was to engage students in one particular aspect of mathematical

behaviour, namely, theoretical thinking. There were multiple reasons for this



decision. The Teachers wanted the students to be able to take ownership of their
work, and be able to act as their own authority as to whether their work was correct
or not. They also wanted to emphasize that there is often more than one correct
method for solving a problem, and wanted the students to take on the role of active
thinkers, as opposed to simply passive ‘receivers’ of knowledge. The Teachers chose
to focus on this aspect following the framework provided by Sierpinska et al. (2002).
(The Researchers would also choose this framework for their analysis of the

activities designed by the Teachers.)

The second goal was to respect and acknowledge students’ previous mathematical

knowledge.

The third goal was that the Teachers wanted their students to succeed in the
‘institutional’ sense, which is to say that they wanted their students to be able to
pass the course. This was to be sure that it is possible to ‘get away with’ breaking

classroom tradition without compromising the students’ academic careers.

The Teachers surmised that negative attitudes and certain expectations could
present obstacles for their goals. In particular, they were convinced that students’
expectations about what teaching and learning mathematics looks like would (and
had to be) shattered in order to provoke situations where theoretical thinking was
possible. The challenges were, they presumed, to design tasks that will acknowledge

students’ diverse backgrounds in mathematics, all the while shattering certain



expectations (about the role of teachers and students in the mathematics classroom
and about mathematics in general) without shattering, or actually while boosting,

their confidence and without compromising academic success.

1.4 Overview of the teaching approach

Based on their assumptions and goals, the Teachers designed a collection of
activities for the students to engage in during class time and for homework. These
were to coexist with the ‘institutional’ activities (graded assignments and

recommended problems from the textbook).

In terms of the functioning of the class, instead of lectures, the majority of class time
was spent working on the activities the Teachers had designed. At the beginning of
each class a list of problems would be projected on to a screen at the front of the
class, and the students would use this time to try and work them out (either in small
groups or on their own). During this time, the Teachers would be circulating
throughout the class to offer clarifications for any student(s) who might need them.
At the discretion of the Teachers, there were instances of whole class discussion and

reverting temporarily back to the traditional chalkboard-lecture paradigm.



1.5 Goals and overview of the research

The goal of this research is to analyze and reflect on the teaching approach the
Teachers designed and implemented as a tool to help the Teachers achieve their

goals as described above.

We propose an analysis of the classroom interactions and, to some extent, the
activities, using notions developed within the Theory of Didactic Situations
developed by Brousseau (1997), namely the notion of didactic contract and of
fundamental situation. We also consider the idea of didactic customs brought
forward by Balacheff (1999), and how this idea ‘complements’ the notion of the

didactic contract.

We consider Sierpinska, Nnadozie, and Oktag¢ (2002)’s framework for Theoretical
Thinking (TT) in the analysis of the classroom activities to help us identify moments

where the students of MATH 200 might have engaged in TT.

1.6 Overview of the conclusions

We believe that, in the end, the Teachers were successful in achieving (at least) two
of their goals. They were able to provide their students with opportunities to engage
in theoretical thinking, and their students were able to succeed in the course in the

institutional sense - there were no significant disparities in the failure rates
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between the Teachers’ section of MATH 200 and the three other sections that were

being taught at the same time using a ‘traditional’ approach.

While the Teachers believe that they did the best that they could to acknowledge
and respect the students’ different previous experiences and life goals, there is no

way to know if the students themselves felt that this was the case.

1.7 Structure of the Thesis

Although there is plenty of research out there concerning the teaching and learning
of algebra, and some research on teaching mathematics to adult learners, there is

very little research available on the teaching of algebra to adult learners. In Chapter
2 of this thesis, we focus mainly on the previous research concerning adult learners

of mathematics, with an emphasis on their attitudes towards the subject matter.

In Chapter 3 we provide a brief overview of the theories and perspectives that are

considered in this thesis (both by the Teachers and by the Researchers).

In Chapter 4 we describe MATH 200 as it has been previously taught (the
‘traditional’ or ‘institutional’ approach), and then outline the Teachers approach,
and how this might serve the goals that they had set up for the students at the

beginning of the semester.
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Chapter 5, the analysis, will be presented in two parts. The first part will be an
analysis of how breaking specific classroom customs influenced the way that
mathematics knowledge was presented to the students, and how breaking these
customs in particular might serve the Teachers’ goals. The second part is an analysis
of the activities proposed to the students of MATH 200. As will be elaborated on in
Chapter 5, these activities were classified into 7 categories. We examine examples
from each category to look for opportunities to engage in theoretical thinking. We
also look more in-depth at two activities, using Brousseau'’s notion of fundamental
situation and examining students’ responses to see whether or not they did engage

in theoretical thinking.

In Chapter 6 we present conclusions and discuss possibilities for future work.
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Chapter 2. Literature Review

Although much of the analysis in this thesis was done considering Brousseau'’s
theory of didactic situations (TDS), there is not yet (to our knowledge) any
literature on this theory as it pertains to adult learners studying elementary algebra.
For this reason, we will not be discussing TDS-oriented research in this literature
review. Instead, the goal of this literature review is to provide a general overview of
the current landscape of research in adult mathematics education as we felt it
relates to our study. In particular, we organized this literature review around two of
the assumptions made by the Teachers (see chapter 1, p. 14), students’ attitudes and
their mathematics background and life goals; sections 2.2 and 2.3, respectively. In
section 2.1 we briefly refer to the adults’ learning mathematics sub-field of

mathematics education.

Conducting this literature review played an essential role for designing the teaching
approach; in particular, for (a) designing tasks to engage students in theoretical
thinking without shattering their confidence, or, actually, while boosting their
confidence; and (b) for designing tasks that would acknowledge their previous

knowledge.

13



2.1 Adults’ Learning of Mathematics

Adult students are defined by Gustaffson and Mouwitz as a people who attend
classes at the compulsory or upper secondary school level in adult education
programs that have been arranged by the government, or study at an adult

educational facility.

We shall also define school mathematics, as the mathematics taught in the formal
education system from pre-school up until the end of secondary school. This subject
(mathematics) is often given a high status: it is difficult to learn and has a high value

in society (Gustaffson & Mouwitz, 2004).

In the early 1990’s, adults’ learning of mathematics was opened up as a new field of
research. The ground for the emergence of this field was located in two different
processes: institutionalizing processes, where schools for adults are being subject to
the same regulations as schools for children, and de-institutionalizing processes,
where the focus is on the mathematics that adults learn in areas outside of school,
such as the workplace (Wedege, 2010). Interestingly, the ‘traditional’ or
‘institutional’ approach to teaching MATH 200 (which we describe in detail in
chapter 4) is (or looks like) the result of an institutionalizing process: the
regulations and norms that govern the approach seem to be based on the beliefs
that the targeted student lacks motivation, is inclined to procrastination, and doesn’t

know any algebra - all beliefs that may result from imagining the MATH 200 student

14



as an adolescent taking a first algebra course in high school. Furthermore, the
approach seems to be blind to (or to deny) students’ previous knowledge (which
quite often seems to have been learned, or largely practiced, in de-institutionalized

contexts).

Some of the first research issues to be raised in this ‘new’ research domain were
mathematics and gender, mathematics and anxiety, and mathematics implicit in the

traditional crafts of different cultures (Wedege, 2010).

In 1994, with the help of Diana Coben, a research forum was formed to discuss the
issues of adult learning of mathematics. The forum itself was named ALM, Adults’
Learning of Mathematics, and the International Handbook of Mathematics
Education made reference to adult students for the first time in 1996 (Wedege,
2010). ALM as a research field, however, is still quite young and a review of the
research conducted in 2003 by Coben et al. concluded that although the field is fast

developing, it is also under-researched, under-theorized, and under-developed.

In what follows, we describe the two aspects that have been discussed in the ALM
literature that had a significant impact in our reflections as Teachers and
Researchers in this study, namely adult students’ attitudes towards mathematics

and their mathematics backgrounds and life-goals.
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2.2 Adults’ attitudes towards mathematics and learning mathematics

‘Attitude’ is a word that is used frequently when speaking of adult mathematics
learning. Before jumping in to a discussion of studies that have dealt with attitudes
and affect in adult mathematics education, it will be beneficial to first speak of them

in a broader context.

There has been an agreement that attitude should be considered as an important
factor in mathematics learning (Leder, 1985). However, the subject has been
problematic as researchers have not been able to settle on one concrete definition
for the word ‘attitude’. Thomas and Znaniecki defined attitude in 1918 as “a process
of individual consciousness which determines real or possible activities of the
individual in the social world”, while Thurstone defined the concept of attitude in
1928 as “the sum total of man’s inclinations and feelings, prejudice or bias,
preconceived notions, ideas, fears, threats, and convictions about any specific topic.”
Another definition was put forth by Allport (1935), who said that an attitude is “a
mental and neural state of readiness, organized through experience, exerting a
directive and dynamic influence upon the individual’s response to all objects and

situations with which it is related” (Leder, 1985).

A more recent, ‘three dimensional’ definition was constructed by Ruffel, Mason and

Allen (1998). The three dimensions of attitude as they describe are:

16



Cognitive - Expressions of beliefs about an attitude object
Affective — Expression of feelings towards an attitude object

Conative - Expressions of behavioral intention.

They also talk about how attitudes, in particular towards mathematics, are usually
spoken of in terms of ‘positive’ or ‘negative’. This supports yet another definition put
forth by Ajzen in 1988, who defined attitude as “a disposition to respond favorably

or unfavorably to an object, person, institution, or event.”

Evans & Wedege (2006) said that adults experience education as a field of tension
between what one wants (or has) to learn, and various constraints. They also
identified three different dimensions of adult learning: the cognitive dimension of
knowledge and skills, the affective dimension of feelings and motivation, and the
social dimension of communication and cooperation. In order to accommodate
these different dimensions, many theoretical frameworks have to be ‘re-
constructed’. Lave’s theory of situated learning and Engestréom’s theory of expansive
learning are examples of existing theoretical frameworks that have been adapted to

better suit the situation of adults learning mathematics (Evans & Wedege, 2006).

The ALM literature discusses several attitudinal aspects that relate to adults
learning mathematics. Gustaffson & Mouwitz (2004), discuss affective factors, social
factors, and previous educational experiences. Evans & Wedege (2006) also discuss

the role of previous experiences and add to the picture the role of motivation.
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Affective factors in adults’ mathematics education, as these have been discussed in
the literature, refer to the need of perceiving learning as meaningful. It must appear
relatable and relevant and of practical use in situations the adult might face
throughout life. The feeling that the learning is irrelevant (to one’s own experiences)
may likely lead students to conclude that the subject (to be learned) is meaningless

(Gustaffson & Mouwitz, 2004).

ALM researchers have argued that the social aspects of education, both teacher-
student and student-student interactions, have a strong impact on possibilities for
learning, as does the pace at which a course is taught (Gustaffson & Mouwitz, 2004).
Many adult students fail to complete their given courses because the material is
condensed and time is tight. Mathematics courses are often cited as an example of
these issues. Taking a more flexible approach to focus on the informal knowledge
that the adults already possess can help build self-confidence and motivation, and
may help alleviate any anxieties or learning blocks the student may have towards

mathematics.

Negative experiences from past mathematics course are often cited as having
inhibiting effects on adult students studying mathematics. They can have feelings of
anxiety and disassociation which can lead to the student closing doors on life goals
that they no longer view as possible to achieve. Some examples of past negative

experiences given by adults students are the inability of their teacher to provide
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adequate explanations, a lack of ‘caring’ on the part of the teacher, a hurried pace in
covering course material, and the apparent incomprehensibility of the material.
Many students were able to give concrete examples of times when they felt
particularly humiliated or embarrassed in a past math class, and these experiences
led to a lifelong bitterness. However, in light of this bitterness, adults nevertheless
still return to study again, and are prepared to make considerable personal
sacrifices to engage in learning mathematics. They may feel like they need to
overcome their feelings of inadequacy, as many see success in mathematics as a sign

of intelligence and an ability to learn (Gustaffson & Mouwitz, 2004).

Many adults often experience ‘resistance’ when coming back to school to learn
mathematics, and this resistance is often explained on the basis of a lack of
motivation on the part of the learner (Evans & Wedege, 2006). Resistance in math
education will usually result from the situation where the learner has found
themselves to be competent in everyday life without the use of mathematics, or that
they have yet to experience mathematics as something that is relevant to their
everyday life (Evans & Wedge, 2006). The goal of this resistance, then, is to protect

oneself and one’s self-perception.

Other forms of resistance can be seen in the notions of non-consideration and
rejection (Jarvis, 2001). Non-consideration refers to situations where learners
realize that there is a discrepancy between their ability and what is expected of

them, but they do not adapt and learn something new. Rejection refers to situations
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where learners have an experience but deliberately reject the possibility of learning

(Evans & Wedege, 2006).

The resistance of adults in mathematics education also can result from a range of
social processes, and can be understood as the result of the ‘positioning’ that the
learner has taken in the past. These can be ‘positions’ that a learner has been put in
(e.g., identified by the teacher as the ‘lazy’ student) or ‘positions’ that the learner has

put himself or herself in (Evans & Wedege, 2006).

Teaching for Different Learning Styles

A study conducted in 2000 by Duffy & Simpson sought to understand the tensions
between the cognitive and the affective in adult students returning to school in
order to learn mathematics. When pupils were prompted to offer judgments about
their own mathematical abilities, responses were along the lines of ‘I was thick’, or
‘I'm mathematically dyslexic’. Amongst researchers, these attitudes are thought to
be common in adult learners. Similar attitudes were even reported by people who
have degrees in mathematics - they consider themselves to be unintelligent in spite
of what many would consider to de an excellent background in mathematics. The
authors hope was to find a way to combat these attitudes, and they arrived at a dual
approach which would tackle both the cognitive and affective aspects of learning

(Duffin & Simpson, 2000).
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The theoretical framework built by the authors classifies learning experiences in to
three categories: The ‘natural’ experience which fits in with what the learner
already thinks and knows and can be easily assimilated into pre-existing knowledge,
the ‘alien’ experience which does not fit, and does not seem to be related to any
previous knowledge, and the ‘conflicting’ experience, which seems to contradict
one’s earlier experiences and forces one to think further. Learners respond
differently to each of these learning experiences. Natural experiences are
‘comfortable’ and reinforce what the student already knows, whereas conflicting
experiences might limit the student’s current way of thinking, but lead to a more
‘connected’ way of thinking later on. Different responses to alien experiences have
been reported: learners may choose to ignore it completely, avoid it by going back to
a more familiar topic, or they may internalize it as a completely separate experience

- in no way linked to any prior knowledge (Duffin & Simpson, 2000).

In addition to categorizing different learning experiences, the authors also
categorized two different ways of learning: a learner may prefer to seek connections
between new experiences and old ones in order to facilitate the learning of the new
experience, or they might prefer to learn each piece of mathematics as a distinct
entity and only make connections between them later on. In both scenarios,
however, some form of conflict (and subsequent resolution of the conflict) is
required to advance the knowledge of the learner. Based on this, the authors define
two types of learners: the natural/conflicting learner and the alien/conflicting

learner. Based on these classifications some difficulties can arise since
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natural/conflicting learners may become frustrated by an alien/conflicting teaching
approach, and vice versa. Perry (1970) referred to this problem as ‘different worlds

in the same classroom’.

In response to this difficulty, there are teachers who have tried to take a balanced
approach in their classrooms. The authors were able to place these teachers in to

one of three groups depending on their teaching method. The groups are:

Discovery - Teachers who tend to treat all methods of calculation as equally
acceptable. What is important is that the answer to a problem is obtained using
some method that is understood by the learner. These teachers generally put
emphasis on student ‘readiness’ and interpret misconceptions as evidence that

students are not prepared to move on to a new idea.

Transmission - Teachers who view mathematics as an acquisition of procedures and
routines. The emphasis here is places on the use of the ‘correct method’, as well as

on efficiency.

Connectionist — Attempt to place emphasis on the links between different topics.
The teaching attempts to build on students’ existing strategies, but the teacher also
has a responsibility to improve the efficiency of some of the more naive strategies

that the student might be using.
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A transmission teacher may more often employ the use of alien experiences, while a
discovery teacher may be more suited to a natural environment. Reports have

suggested connectionist teachers, the more flexible of the three, are generally more
successful. It is suggested that this is because they are able to model and respond to

the different ways in which their students learn (Duffin & Simpson, 2000).

Positions and Beliefs of Adults Learning Mathematics

While preparing to teach MATH 200, the Teachers wanted to try and foster an
environment where all sorts of adult learners would be able to come together to
learn about and discuss mathematics; a ‘safe’ environment where the students could
feel comfortable asking questions without feeling inadequate. Although they
expected that perhaps some of their students would feel comfortable with the
material, they believed that there would be many more who were not comfortable

with it.

According to the literature, there are three main positions, or mindsets, taken by
adults who are in the process of learning mathematics. The first is the position that
they are ‘not here to learn mathematics’. While mathematics is often part of a
‘package deal’ in adult education, many adults are surprised to learn that they need
to study it to move forward (“I'm here to study to be a nurse, not a mathematician”).
This attitude is usually attributed to poor experiences with math in the past, but this

is not always the case. An example given by Wedege was that of engineers who were
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training to become secondary school teachers. They were surprised to learn that
they had to study math because they believed that their mathematical background
was sufficient to cover the material taught at secondary school (Evans & Wedege,

2006).

The second position is ‘Mathematics - That is what [ cannot do’. This position deals
with the phenomenon that as soon as someone succeeds in applying a piece of
mathematics to their everyday life, it ceases to become mathematics and becomes
‘common sense’, therefore they never see themselves as successful at mathematics.
The mathematics that these people do, that is not recognized as mathematics, is
called unrecognized or invisible mathematics (Evans & Wedege, 2006). Mathematics
becomes something unattainable for these people, and this negative self-image
affects their self-confidence and perpetuates the idea in society that mathematics, as

a field, is open only to a select group of people.

The third position often taken by adult mathematics learners is ‘No, [ don’t use
mathematics at work’. Often times, if asked if they use mathematics at work an adult
will answer with a flat ‘No’. However, in many of the cases they simply do not realize
that the math that they do use is simply hidden (in computer processes, in

technology, etc.) (Evans & Wedege, 2006).

Duffin and Simpson (2000) identify a ‘quartet’ of emotions that are typically

associated with adults who are in the process of learning mathematics. These are
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confidence/frustration and security/anxiety. These emotions are regulated by the
learner’s perception of their ability to move towards their goal, but initially many
adult mathematics learners have come so see mathematics as an ‘anti goal:
something which is to be avoided, and through this avoidance they gain a sense of
relief. In order to design a ‘support system’ for teaching mathematics to adults in a
university setting, it was recognized as important that learners should be able to
draw on their pre-existing abilities and methods to help form arguments within the
subject, with the hope that students would gain an increased ability to reflect and
control their own learning process. Teachers can use the prior knowledge of the
students together with constructive conflict to build stronger understanding, with
the hope that mathematics would after be viewed as a goal that could be moved

towards, instead of an anti-goal (Duffin & Simpson, 2000).

When designing MATH 200, the Teachers wanted to reduce the negative attitudes
towards mathematics typically held by mature students. They believed that their
discussion based approach, and having the students take a more active role in their

own learning, was a good way to try and achieve this.

2.3 Role of adult students’ previous mathematical knowledge and life
goals

Lifelong learning and life-wide learning stems from formal, informal, and non-
formal educational experiences (Wedege, 2010). What kinds of learning do adults

get from these different environments, and how can we place value on these
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different kinds of learning? The small number of studies that have been carried out
in this area show that today’s ‘school mathematics’ do not necessarily provide a
good foundation for adult students who return to school. Quite the opposite, school
mathematics may even interfere with the informal knowledge that adults hold and
can result in lower test scores when the student reattempts the course (Gustaffson

& Mouwitz, 2004).

The informal knowledge that an adult acquires in various circumstances can be used
to add new dimensions and context to teaching materials used in school
mathematics. Recognition of prior learning is a key issue here, as is guidance. The
knowledge that an adult has acquired throughout their life is an integral part of

their identity and self-regard.

Adults have complex internal structures, and this may lead to higher chances for a
mismatch between learning preference and teaching style. Adults respond to these
mismatches differently than adolescents in the secondary school system. An adult
learner chooses to attend class, and an unresolved mismatch can cause them to
choose to not attend just as easily. To avoid any problems caused by these
mismatches, it is important that educators have an idea of how adults learn
mathematics and more importantly, and understanding of how adults may
understand mathematics. In order to have a definition of understanding that fit with
their theoretical perspective, Duffin & Simpson (2000) came up with a three-

pronged definition of understanding:
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i) Building Understanding is the formation of connections between internal
mental structures.

ii) Having Understanding is the state a learner is in by virtue of the
connections that they have formed at any particular time.

iii) Enacting Understanding is the use of these connections to solve a

problem, or construct a response to a question.

While adult students may enter a classroom with some connections already formed,
many do not have a sufficient number to feel they have the internal aspects of
understanding (such as comfort/confidence when it comes to the course material)
or exhibit the external behaviors from which we may infer understanding (such as
being able to explain answers, and derive consequences from these answers). One
suggestion offered is that teachers should provide situations to their students where
enacting understanding is the only real way to approach the problem. Asking for an
explanation for why a method works, a question set in a strange context, etc... make
it less likely that the student will be able to rely on memory alone for the answer,
and will thus have to use their pre-existing connections to build a solution (Duffin &
Simpson, 2000). This notion seems to be linked to reflective thinking, one of the
aspects of theoretical thinking in which the Teachers’ hoped to engage their

students.
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The Teachers expected that the students they would encounter in MATH 200 would
all have very different backgrounds: they would be different ages, have attended
different schools, and all had different previous experiences with mathematics. By
breaking from the customs ‘The teacher will tell me how to solve each type of
problem’, “The teacher will tell me if I am right or wrong’, and ‘There is only one
correct way of solving a mathematics problem’ the Teachers hoped that the students
would instead build on their preexisting knowledge to develop strategies to solve
the problem(s) at hand. By allowing the students to construct their own methods
using the knowledge that they already had, the Teachers hoped that the students

would feel like their preexisting knowledge was valued in the MATH 200 classroom.
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Chapter 3. Theoretical perspective and framework for
analysis

As mentioned in the introduction, for the purposes of this thesis we refer to
‘Teachers’ and ‘Researchers’ as separate entities, although we filled the role of both.
When we talk about the Teachers, we refer to our role as teachers of the course:
designing the activities, teaching the class, facilitating the discussions between
students, marking, etc. When referring to the Researchers we are speaking of our
role as researchers analyzing and reflecting on the teaching approach and its
implementation with regards to the goals set up by the Teachers (see Chapter 4,

section 4.2).

In this chapter, we introduce the frameworks used to analyze the activities designed
by the Teachers and the discussion-based teaching approach. To analyze the

activities, we consider

a. amodel of Theoretical Thinking (TT), developed by Sierpinska, Nnadozie,
and Oktac¢ (2002); and

b. the notion of fundamental situation and didactic variable (Brousseau, 1997).

It is important to note that the model of TT was known by the Teachers and in some
informal way was used by them as a guide to develop the class activities (see section

4.2).
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A discussion of the discussion-based teaching approach is presented in terms of the

notion of didactic contract (Brousseau 1997) and didactic customs (Balacheff, 1988).

The chapter will end with a few brief notes on the different methodologies used by

the Researchers as they performed their analysis.

3.1 Didactic contract and didactic customs
If the didactic situation is the game that takes place between the teachers, the
students, and the didactic milieu, then the didactic contract can be viewed as the

norms! and strategies that are appropriate for this game (Brousseau, 1997)

The norms of a didactic contract are generally not explicitly given, and are
essentially local to a classroom or even to a didactic situation in a given classroom;
they correspond to a (perceived) implicit agreement between the teacher and the
students to play a given game in a given didactic milieu. Although the norms of the
didactic contract are not made explicit (the teacher and students don’t sign any form
of binding document) they are most definitely there and both students and teachers

know when they are being broken.

1 In his work, Brousseau used the word “regles”. We have chosen to translate this as “norms” to
emphasize the non-legislative character. We follow Ostrom (2005) and consider norms as, typically
implicit, mechanisms that regulate participants behavior - breaking norms does not entail “legal”
consequences, but social ones (e.g., being orally reprimanded, appearing as someone who does not
understand what has to be done or what is being said, etc.). In the context of adult education at the
university level, we feel that “norms” better describe the role of the didactic contract.
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When someone, either student or teacher, breaks the didactic contract there are not
generally any ‘official’ penalties. For example, if a student was enrolled in a class
where the didactic contract had been negotiated in such a way that questions were
only to be asked at the end of class, this student would be breaking the contract if
they were to interrupt the teacher while he or she was explaining a proof at the
board to ask for further explanation. Conversely, if a teacher enters the classroom,
calls a student to the blackboard, and asks them to teach the day’s material, then the
teacher is the one who is breaking the contract. A student may be prepared to go to
the blackboard to solve a problem, but they would most probably not be prepared to

teach an entire topic to their peers.

Balacheff (1999) suggested that the notion of didactic contract, as it had been
described in the literature up to then was insufficient to account for the complete
set of social phenomena that regulate the functioning of knowledge in a class. In
analyzing the mechanisms that regulate this functioning, Balacheff refers to ‘laws’?
in a classroom, which (by their legislative nature) do not belong to the didactic
contract, and customs. An example of a student breaking a ‘law’ would be if they
hand in an assignment past the deadline. The institution often controls assessment
dates and deadlines, and the student may be subject to some sort of penalty (for
example, a grade deduction) for not respecting them. A teacher, on the other hand,
would be breaking a law if she arrives to class 20 minutes late and completely

unprepared to give a lecture. Her students, if they so desired, could file an official

2 What Sierpinska et al. (2008) call “rules” (see also, Hardy, 2009).
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grievance with the dean, department chair, etc... and the teacher could be subject to

disciplinary measures.

As the norms in a didactic contract, customs too are a set of normative practices
established as such by their use, and which, in the majority of cases, are established
implicitly (Balacheff, 1999, p. 25). These customary practices, however, have a long-
term character, established by repeated use, in opposition to the temporary nature
of the norms that pertain to a didactic contract. After years of participating in an
educational system (or culture), teachers and students perceive (or co-construct?) a
number of norms they abide by regardless of the particular classroom or didactic

situation they find themselves in.

Laws are the result of formalizing and making explicit the norms of a customary
society; this process of formalization and of explicitly stating certain norms
transforms a customary society in a legal society. The difference between the two is
that customs are almost unconsciously followed, whereas laws require a figure of
authority that makes them explicit and enforces them. Laws make judges necessary,
and Balacheff notes that ‘to satisfy the law might mean, in the first place, to satisfy
the judge’ (Balacheff, 1988, p. 27). Today’s classrooms at the college and university
level are legal societies: there are laws, there are customs and there are didactic
contracts. The tensions that may arise among these three different mechanisms that
together regulate the functioning of the classroom are important to our analysis. As

it will be discussed later on, the situations that the Teachers designed often required
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re-negotiations of the didactic contract, but, in some perhaps more challenging
sense for both the students and the Teachers, they required an abandonment of

customary practices.

Customs are more global in character than contracts. In (mathematics) education,
customs will probably not vary too much from classroom to classroom, but instead
may vary as a function of the level of education. An example is how the definition of
‘acceptable proof’ varies from elementary levels of education to more advanced
ones (ibid, p. 26). In an Analysis course, the customs dictate that a certain level of
rigour will be required when proving a theorem. In an eighth grade classroom,

customs may require a far lesser degree of rigour.

The didactic contract, in contrast, is more local. It is specific to each individual
classroom and is often ‘negotiated’ when a particular task or lesson requires that the
rules for social interactions be defined in a new way. Customs are important when
the contract is being negotiated, as tension may arise in negotiating norms that are
against customs; moreover, in some situations, customs may even dictate what is

negotiable and what is not.

To illustrate the importance of distinguishing customs from the local norms in the
didactic contract, in particular in relation to our analysis of the situations designed
by the Teachers for MATH 200, we discuss the ‘paradox’ presented by Brousseau as

inherent to the didactic contract: Students today tend to believe that it is a norm of
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the didactic contract that their teacher will show them, often quite explicitly, how to
solve different types of problems. Mathematics has, then, become more of a routine
- an activity where one needs to only look at the problem, determine which formula
to use, and then apply that formula. However, if a teacher complies with this
expectation (or ‘norm’), then the students have not really learned anything in the
context of the theory of didactic situations since the knowledge that they obtain was
not something that they constructed themselves. This paradox is summed up with

the following quote from the text:

‘So the didactic contract puts the teacher in front of a paradox: everything
that the teacher undertakes to make the student produce expected
behaviour tends to deprive the student of the necessary conditions for
understanding and learning of the notion she aims at; if the teacher tells

the student what she wants, she can no longer obtain it’ (p. 41).

However if we keep in mind the distinction between contract and custom, this is no
longer a paradox at all. The expectation that a teacher needs to explicitly tell the
students what to do, how to present their answers, etc., is a norm that has been
established in the minds of students over the course of their studies (which in the
case of university students, accounts for many years of exposure to customary
practices). Thus, although the student is still not constructing the knowledge on
their own, the ‘paradox’ is no longer because what is being broken is not a feature of

the didactic contract but a classroom custom.
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In the case of this research, the Teachers, using their previous experiences teaching
introductory algebra courses to adults, assumed that students would be arriving to
their class with certain didactic customs that they, the Teachers, wanted to break
away from. These norms, the Teachers assumed, have become ingrained in the
minds of the students over years of exposure to mathematics classes that take a
‘transmission of knowledge’ approach to teaching and learning and the idea that to
succeed in school mathematics they need simply to replicate the problem solving
methods shown by the teacher. The students will have come to think of
mathematics tasks as routine - all they need to do is recognize which formula they
need to apply, and then use it to solve the problem at hand. Related to this is the
notion that it is the duty of the teacher alone to determine the
correctness/incorrectness of a student’s work, and as a result the student has

neither authority nor responsibility or sense of authorship over their own work.

There were three didactic, customary practices that the Teachers assumed the
students would bring with them into the MATH 200 classroom (see p. 14): that the
Teachers would lecture to the students explicitly on how to solve different kinds of
problems, that the Teachers would tell the students whether their work was correct
or incorrect, and there is only one acceptable method for solving a mathematics
problem. A detailed discussion of these is presented in section 4.2 from the

perspective of the Teachers. In section 5.1, we (the Researchers) discuss the
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interactions in the MATH 200 classroom studied here in light of the notions of laws,

didactic contract and didactic customs presented above.

3.2 Fundamental situations and didactic variables

One of the questions that we (the Researchers) had when considering the activities
of MATH 200 was ‘What features of a classroom activity make it a “good” activity?’,
in the sense of its potential to promote the goals of the Teachers. In order to address
this question, we needed a framework that would allow us to look in further detail
at the composition of the activities to be analyzed. We felt that the notion of
fundamental situations as well as the concept of didactic variables, both developed

by Brousseau, could provide a context to this task.

The notion of fundamental situation was developed within the Theory of Didactic
Situations (TDS) (Brousseau, 1997). In what follows, we present some elements of
this theory as there are relevant to our study. Our interpretation of these elements

is based on the notes prepared by Sierpinska (1999).

In TDS, didactic situations are described using the metaphor of a game that takes
place between the teacher, the students, and the didactic milieu (which can be
understood as the learning environment). The goal of the teacher is to engage the
student in the game, with a particular piece of mathematics knowledge as the focus.
For a student in a didactic situation, knowledge is defined as having an

understanding of the ground norms and winning strategies particular to the game
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and being able to put those strategies in place. It is important that the learners3
themselves construct the knowledge. In doing this, the hope is that the learners gain
a deeper understanding of the material; if a teacher simply tells a student what to
do, they are not really learning a piece of knowledge. Rather, they are learning how

to apply a piece of knowledge that has been given to them.

Within a didactic situation, learning is not as simple as copying down the notes that
a teacher may write on the blackboard. Instead, students learn by making sense of
the different situations they find themselves in within the didactic milieu, and by
developing ways of coping with these situations. In order to teach a particular piece
of knowledge, it is the job of the teacher to design the situation so that this

knowledge becomes essential for the student to ‘survive’ the game.

Students and teachers view didactic situations differently. A student may view a
didactic situation as a means to achieve a life goal (for example, “I want to be an
engineer”), whereas teachers might look at a didactic situation from the perspective
of a designer/researcher, with the goal of attaining a certain objective (a curricular
objective, research objective, assessment objective, etc...). In the case in question,
the Teachers had three particular goals: to engage students in theoretical thinking,
to respect and acknowledge students’ different mathematical backgrounds and life

goals, and to prepare them to pass the course.

3 TDS is a theory conceived and developed considering elementary, pre-university education; below
we discuss how the relevant concepts can be thought in the context of MATH 200, a course with the
(official) goal of “re-teaching” mathematics topics to which students have already been exposed to.
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Four types of didactic situations have been described in the context of TDS,
depending on the type of game that the teacher wants to play with their students.

The different types account for the level of involvement of the teacher.

1) The situation of institutionalization. In these situations, the teacher acts as a
representative of some ‘official curriculum’, or ‘official mathematics’ as the
ministry of education or the textbook that is in use presents it. The teacher
imparts the ‘correct’ definitions, theorems, and terminology. Knowledge is
pre-established, as opposed to an answer to some scientific inquiry and is
validated by someone in a position of authority rather than by having the

students check their work for logical inconsistencies.

2) The situation of validation. Here, the students take on the role of
‘theoreticians’ whose task is to explain some phenomenon or to verify some
conjecture. The teacher evaluates their work as an equal, who intervenes
only to try and steer the students in the right direction (to help them
‘survive’ in the game). In this situation, knowledge is dynamic (more like a

theory in the making, as opposed to an institutionalized theory).

3) The situation of formulation. The students exchange and share observations
between themselves, which allows these situations to be based on a shared
experience. They might not yet have the correct language to express what

they mean, so part of the situation involves coming up with a language that
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they can agree on. The teacher oversees the exchanges, and makes sure that
everyone is on the same page. Knowledge here is personal, and to be able to
communicate it in a way that can be understood by others it needs to be de-

personalized.

4) The situation of action. Here, the teacher creates a milieu in which students
can engage with but then completely withdraws from the situation. The
milieu has to be created so that students both want to engage with it and are
interested to satisfy their own curiosities, and so that they already have the
requisite knowledge to construct the solution by themselves. Here,

knowledge appears as a means to solve a problem.

An interesting observation that can be made is that when new mathematics
knowledge is being constructed the process of formalizing this new knowledge often
works from action to institutionalization (Sierpinska, 1999, Lecture 1 Page 4). In
today’s classes, at least at the college and university level, however, lectures are
typically dominated by situations of institutionalization, which present the
knowledge to the students while almost never discussing how that knowledge came
to be and without providing students with opportunities to engage in validation,

formulation or action, in the sense described above.

One of the main aims of TDS is the design, and study of the design, of ‘good’

activities through which students might construct for themselves the knowledge
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required to ‘survive’ in the ‘game’ set up by the teacher; activities in which the
targeted knowledge is essential to ‘survive’ the ‘game’. Within the TDS, the

framework used to design these activities is called ‘didactic engineering’.

By analyzing the knowledge that one wishes to teach, and by listing all the variables
of a problem-situation (not simply the problem itself, but how the problem has
appeared, what is at stake in solving the problem, the aims of solving the problem,
etc...) pertinent to the situation, one gets a fundamental situation associated with
that piece of knowledge. The fundamental situation for a piece of knowledge to be

taught can act as a ‘blueprint’ when designing classroom activities.

For example, when teaching the concept of number you may have to consider the
following variables: the size of the sets you'll be dealing with, whether the sets are
continuous or discrete, how the concept is to be used, and what representation of
number will be used. When you assign ‘values’ to these variables, you get a specific
situation. For example, the specific situation for teaching children the names of
natural numbers for everyday counting purposes would be dealing with small,
discrete sets. The context of use would be to compare the sizes of different sets, and
the representation of number that is used is that of ‘oral numerals’ (one, two,

three...).

A teacher engaging in didactic engineering needs to carefully construct their

didactic situations: The problem-situation that the students will be faced with
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needs to be subject to certain constraints —-these constraints need to satisfy the
variables of the specific situation that they are dealing with, and may change

depending on what subject matter the teacher wishes to teach.

One has to be careful when designing the game. If you are teaching an algebra class
and want your students to come up with the distributive property on their own, it
might not be a good idea to only give them activities of the type ‘Perform the
multiplication: 5(3 + 2)’. In this case, it would not be unexpected for the students
to first add the 3 and the 2, and simply multiply 5 by 5. They will likely obtain the

correct answer, but without constructing the desired knowledge.

The goal of the specific didactic situation, from the perspective of TDS, is to propose
students a game they can only win (or survive) if they construct winning strategies

(thus learning the knowledge at stake).

Research done from this perspective has dealt mostly (if not always) with the
construction of new knowledge. However, when considering a classroom of adult
learners who are not innumerate (they may have different levels of numeracy, but
they are not mathematically-illiterate), this goal may have to be rephrased. One of
the assumptions the Teachers made about the MATH 200 students (see p. 14 and
section 4.2) was that they have already been exposed to arithmetic and algebra, at
some point in the past, in schooling and also, perhaps, in working environments,

and therefore already have developed strategies for dealing with some of the topics
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covered in the course. Therefore, we have modified the notion of fundamental
situation to take into consideration the mathematical background of the MATH 200

students, and the role of this background in the (re)learning of algebra concepts.

In the following section, we present the notion of fundamental situation as it has
been modified for this study and reflect on the implications of considering the
notion of didactic situation in the context of the teaching of algebra to (not

innumerate) adults.

3.3 Fundamental situations in the context of this study

A fundamental situation is, essentially, a blueprint for a class activity. The main
idea is that activities can be designed so that the constraints of the situation are
such that the student who engages in the activity will construct the new knowledge
that the teacher wishes them to build. As mentioned above, however, this was not
our case. It was assumed that the students of MATH 200, while not strong
mathematically, would have had some previous exposure to the concepts being
taught to them. The goal of fundamental situations, as described by Brousseau,
would not apply for the students of MATH 200 as they were not necessarily, or all
the time, constructing new knowledge. They were, instead, rebuilding or refining
their knowledge of concepts that they had previously seen. For the analysis, the
Researchers needed to adapt the notion of the fundamental situation in order to

account for this difference. When designing the activities, the Teachers, based on
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their experiences as researchers, assumed that many of their students would hold
some common misconceptions when it comes to the subject matter (for example,
they may believe that to add two fractions you need only add the numerators and
denominators together). The Teachers believed that to adapt the notion of the
fundamental situation for adult learners only a small modification would need to be
made - their classroom activities would be subject to a new variable. In addition to
the normal difficulties that students encounter when learning new material, these
students have these common misconceptions as an extra obstacle to overcome. The
Teachers wanted their activities to bring these misconceptions to the surface so
that they could be exposed an eliminated, and so the extra variable that they
considered for their activities became ‘the common misconception to be

addressed’.

We denote this particular version of fundamental situation, where the ‘common-

misconception’ variable is always present, by FS*.

In this context, the goal of a didactic situation becomes slightly less clear. Is the goal
to construct new knowledge, or to expand the knowledge that the student already
has? Or is the goal to identify and then eliminate common misconceptions? We
cannot really say what the goal is with any certainty, as the goal (or goals, in some
cases) may vary from student to student. For a student who is returning to
mathematics classes after a short break, the goal may be to simultaneously expand

on their knowledge while eliminating misconceptions. However, a student enrolled
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in MATH 200 who has never taken an algebra course before wouldn’t hold any
misconceptions to begin with, so instead the goal becomes constructing new

knowledge.

These misconceptions were characterized based on previous research and on the
Teachers’ experiences as teachers and researchers. Using their experience as
researchers, the Teachers hoped that they would be able to design their activities in
such a way that they would be able to ‘draw out’ and eliminate common
misconceptions, all the while students are building or adapting their ‘winning
strategy’ for the task at hand. Thus, the FS* will not only make necessary the piece
of knowledge at stake but will also draw out the associated misconceptions, if any -

making them visible to both the teacher and the student.

In this sense, FS* can be seen as having two different goals. For students who

already have pre-existing strategies for dealing with the topic in question, the goal
will be to refine their strategies and address misconceptions. For students who do
not have any pre-existing strategies, FS* will function much in its traditional sense,
as a fundamental situation, while possibly ‘preventing’ some common, well-known

misconceptions.

Some of the variables that we will be considering when analyzing the class
activities are the purpose of the problem, the topic addressed, and the type of

numbers involved (abstract or concrete), as well as the ‘new’ variable of the
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misconception to be addressed.

3.4 Theoretical Thinking

Before the semester started the Teachers, using their previous experiences as
teachers and researchers, designed the course activities with the goal of providing
students opportunities to engage in theoretical thinking (TT) as formulated by
Sierpinska, Nnadozie, and Oktag (2002). The Researchers considered this
framework to analyze these activities’ potential at achieving this goal. In what
follows, we briefly introduce Sierpinska et al.’s model and how it was used in the

analysis of the activities.

There are three main features of TT: ‘reflective’, ‘systemic’, and ‘analytic’ thinking.
Reflective thinking is characterized by students taking an investigative attitude
towards the problems that they are faced with. This can manifest itself as a student
either reflecting on their solution, looking for a more efficient way to solve a
problem, or noticing links between previously solved problems. It can be thought of
as the opposite of when a student merely applies a memorized procedure to solve a
problem, and then forgets about the problem once it is finished. For an algebra
student, reflective thinking may manifest itself in a number of ways. For example,
the student might be investigative in considering different approaches that could be
taken to solve a word problem, and then deciding which of these approaches they

feel to be the most efficient.
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The second feature of TT is systemic thinking. Systemic thinking is characterized by
thinking about systems of concepts. It is described as definitional, proof-based, and
hypothetical. Being ‘definitional’ means that the concepts are ‘defined by reference
to other concepts within the system’. Being ‘proof-based’ means that decisions
about the truth of a statement are made by means of proofs, which rely on
previously accepted definitions, and conceptual and logical relations within a
system. The hypothetical character of systemic thinking manifests itself when the
‘theoretical thinker’ becomes aware of the conditional character of the statements
they are looking at, and when they try to identify the implicit assumptions that are
being made. Once these assumptions are identified, the ‘thinker’ can then study all
logically possible cases. A student studying algebra has many opportunities to
engage in systemic thinking. As an example, consider the manipulations that need to
be made in order to solve a linear equation. Each step in the process needs to be
justified by reference to some property or definition (for example the commutative,
associative, or distributive properties of real numbers, or the definition of the ‘=’

symbol).

The third feature of TT, analytic thinking, can be broken down in to two different
types of sensitivities: linguistic and meta-linguistic. Linguistic sensitivity is
characterized by sensitivity to formal symbolic notation, as well as to specialized
terminology, while meta-linguistic sensitivity is defined as being sensitive to the
structure and logic of mathematical language. An example of how an algebra student

might need to engage in the analytic thinking is in being able to distinguish between

46



a variable and an unknown. This would be an example of linguistic sensitivity,
whereas a student would need meta-linguistic sensitivity to recognize when a

symbolic expression is nonsensical (for example, 2 < x < 1).

Using the theoretical behaviors described by Challita (2013) as a guide, we analyze
certain MATH 200 activities for their potential to foster TT. To do this we consider
an ‘ideal solution’ to the problems in question, a solution generated by us but one
that could reasonably be expected (where reasonably is defined within the
framework of the Teachers’ experiences teaching the course) from a student at the
MATH 200 level. In some cases we will also be looking directly at student responses,

to see whether or not they did engage in TT.

The following table, from Challita’s 2013 Master’s thesis, is a summary of the main

components of TT as described by Sierpinska et al. (2002).
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Category of TT
o Feature of TT
o Sub-feature of TT

General description

TT1 Reflective

Theoretical thinking is aimed at reflecting on, investigating, and
extending ideas. Its aim is not merely to accomplish tasks,

rather to reflect on curiosities and mental challenges

TT2 Systemic

e TT21 Definitional

e TT22 Proving

e TT23 Hypothetical

Theoretical thinking is thinking about systems of concepts,

where the meaning of a concept is established based on its

relations with other concepts and not with things or events

o The meanings of concepts are stabilized by means of
definitions

e Theoretical thinking is concerned with the internal coherence
of conceptual systems

e Theoretical thinking is aware of the conditional character of
its statements; it seeks to uncover implicit assumptions and

study all logically conceivable cases

TT3 Analytic

Theoretical thinking has an analytical approach to signs

e TT31 Linguistic sensitivity
o TT311 Sensitivity to formal symbolic notations
o TT312 Sensitivity to specialized terminology
e TT32 Meta-linguistic sensitivity
o TT321 Awareness of the symbolic distance between sign and object

o TT322 Sensitivity to the structure and logic of mathematical language

3.5 Methods for analysis

Methodology for analyzing the negotiation of a new didactic contract

To analyze how a new didactic contract was negotiated in the MATH 200 classroom,

we will be operating in both of our roles - Teachers and Researchers.
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As the Teachers we will be recalling ‘moments’ that seem to describe a typical
scenario that was found in the classroom after the implementation of the new
didactic contract - specifically moments that highlight the customs that the
Teachers wanted to break from in their classroom. Then we will look at these
moments through the eyes of the Researchers to assess whether or not we believe
that breaking the classroom customs achieved what the Teachers wanted to achieve

in terms of the goals they had set up for their classroom.

At the end of the semester, the Teachers ran a survey with their students about their
overall experience in MATH 200. While much of the data from this survey did not
end up being used in this thesis, we refer once or twice to comments that students

made on the survey as ‘anecdotal data’.

Methodology for analyzing the class activities

To analyze the class activities, and to investigate their potential to foster theoretical
thinking, we begin by describing the activity in question using our adapted notion of
fundamental situations. Fundamental situations are usually associated with specific
pieces of knowledge, and not to specific activities. For this reason it may be better to
say that our analysis and model for the classroom activities was inspired by
Brousseau'’s notion of fundamental situations, rather than a direct application of his

ideas.
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Recall that a fundamental situation is something of a blueprint for a class activity. By
listing all of the variables associated with that activity, and then assigning ‘values’ to
these variables, you obtain the specific situation associated with the activity you are

dealing with.

Before analyzing the activities, we wanted to come up with a list of variables that
could characterize a very general fundamental situation for the activities designed
by the Teachers, variables that could then be given values specific to each problem.

We came up with six of these variables:

V1 - Category: Describes how the activity fits in to the activity categories, which will
be described in section 5.2. These categories are not disjoint so it may be possible

for a single activity to be assigned more than one value for this particular variable.

V2 - Topic: Describes where the activity falls in the list of topics to be covered in
MATH 200. This variable may also take on more than one value - the first being the
unit of the course (linear/non-linear), the second being the topic, and the third
being the subtopic within the topic. For example, V2 for a particular problem may

look something like ‘non-linear; radical expressions; rationalizing denominators’.
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V3 - Misconception: Describes the common misconception to be addressed by the
problem. This variable may take a value of ‘null’ if no misconception is being
targeted. May also take more than one value, if a problem is trying to ‘draw out’ two

or more misconceptions simultaneously.

V4 - Feature of TT: Describes which of the three features of theoretical thinking the
problem is trying to target. This variable may take a value of ‘null’ if no specific
aspect of TT is being targeted. This is not to say that students might not engage in
TT while solving the problem, simply that the Teachers did not have a specific
aspect of TT in mind when designing the activity. The variable may also take more

than one value depending on the problem at hand.

V5 - Solution expected: Problems in MATH 200 were not always asked in the same
way. Some problems required the students to perform calculations to arrive at an
answer, while other problems provided the students with worked out solutions that

they needed to discuss. This variable can take one of these two ‘values’.

V6 - Group Activity/Individual Activity: Any given problem can be assigned one of

these two values.
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When values are assigned to each variable of a given fundamental situation, FS*, we
obtain a specific situation (SS*) for the problem we are considering. In our analysis,
more often than we had expected, V3 and V4 took values of ‘Null’. This might be
considered distressing to some readers, as these variables were the ones most
closely tied to the Teachers’ goals. As Researchers, we did not consider this to be a
large cause for concern. Just because a certain activity is not designed to target a
particular feature of TT, this does not mean that the activity is void of opportunities
for students to engage in TT. Similarly, student misconceptions may reveal
themselves even if a student is engaging with an activity not designed to draw out
any one misconception in particular, and students might also have misconceptions

that were not expected by the Teachers.

Our analysis of the opportunities to engage in TT that a given activity affords is
based on an ‘expected solution’; one that we (the Researchers) expected from

students at the MATH 200 level.

The last two activities that we analyze in this thesis (see section 5.2) are activities
that took place after the didactic contract for the class had been briefly renegotiated
to allow for individual work that would be collected by the Teachers. For these
activities, we analyze actual student responses to see if they did, in fact, engage in
TT. The responses of four students are analyzed. These students were selected at

random from the group of 24 students who had submitted both activities.
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Chapter 4. An introductory algebra course at the university level

In this chapter we, in our capacity as the Teachers* of MATH 200, explain the design
of the course, our goals and assumptions, contrasting them with the institutional
approach - by which we mean the teaching approach that can be gleaned from he
outline, textbook, and assessments that were in place when the Teachers were
assigned to teach one section of the course. The Teachers had previous experiences,
both in this and other courses, following the institutional approach. We start by
describing the course itself and some of its institutional features, its role in the

university and the “typical” student enrolled in it.

4.1 MATH 200

MATH 200, Fundamental concepts of algebra, is a pre-university course (high school
level) that is designed to provide students with the background knowledge required
for future courses in algebra, functions, and calculus. It is a course that is open to all
students enrolled in the university, however, as it is the lowest level mathematics
course that is offered, a student is not able to take it for credit if they have
completed or received credits for any higher-level mathematics course. Also,

students who are enrolled in programs that lead to a BSc or BA in Mathematics and

4 Recall that, in this thesis, Teachers refers to the two instructors (professor and teaching assistant)
in charge of the MATH 200 section in question - other instructors were teaching other sections of the
same course, following the institutional approach, during the same academic semester.

53



Statistics may not take MATH 200 for credit to be applied to their program of

concentration, according to the university’s academic calendar.

MATH 200 runs over 13 weeks (fall and winter sessions). Every session, the
Department of Mathematics and Statistics offers between 3 and 5 sections of the
course. Each section consists of two lectures and one tutorial per week. The lectures
for a given section run for one hour and fifteen minutes, and are typically overseen
by the ‘instructor’ assigned to that section. ‘Instructors’ can be full time professors,
part-time professors or graduate students. Tutorials take place once a week for one
hour. They are not mandatory, and are designed as a place where students can come
to ask extra questions if they are having trouble with the material. Instead of being
run by the ‘instructor’, the department typically assigns a graduate student to

oversee the tutorial.

MATH 200 is typically taught using what will be referred to in this thesis as the
‘institutional’ approach. This approach is lecture based, where the teacher
showcases different techniques that can be used to solve problems and, as a
consequence, the activity of problem solving becomes something of a ‘routine’. That
is, students can evaluate a problem and quickly know which procedure to apply in

order to solve it.

Following departmental policies, this multi-section course has a unique outline that

describes the topics to be covered, in which order and how much time is allotted to
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them. The outline also enforces an official textbook and common assessment (eleven
assignments, one midterm and one comprehensive final exam). The course has a
course examiner (or coordinator) who is in charge of choosing the exercises in the
assignments and preparing the midterm and final exam. While the course examiner
has a certain degree of leeway for modifying the course outline (topics have to abide
by topics listed in the MELS (Ministere de I’éducation, du Loisir et du Sport) outline
for the equivalent high school and CEGEP course), the instructor of the course may
feel like they are limited in terms of being able to make changes or adjustments
(either to their teaching approach or to the material itself) because so much of their

classroom is strictly controlled by the institution.

In section 4.3, it is discussed what changes (and why) were made to the course
corresponding to the assumptions that the Teachers held about their students
before the semester began, as well as the changes that were made in order to help

the Teachers achieve the goals that they had set up for their section of MATH 200.

The outline that was in place when the Teachers were assigned to the section of the
course studied in this thesis listed the topics in the following order, which
reproduces the order in which topics are presented in typical college algebra

textbooks (Hardy and Sierpinska, 2011):

e Real Numbers

* Fundamentals of Algebra
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* Linear Equations

* Equations and Inequalities

* Exponents and Polynomials

* Factoring

* Rational Expressions and Equations
¢ Systems of Linear Equations

¢ Roots and Radicals

The assignments, also common to all sections, are given weekly via an online system

called WeBWorK.

The midterm exam is a one and a half hour, pencil-and-paper examination common
to all sections. It covers material from the ‘linear section’ of the course - operations
on integers and rational numbers, linear expressions and problem solving, linear

equations and graphing, and systems of linear equations. The exam is typically held

after the sixth week of classes.

The final examination is a three-hour pencil-and-paper exam, common to all
sections and coordinated by the university’s Examinations Office. The final exam is

cumulative, and covers all of the material presented in the course.

In her 2012 thesis, Challita wrote “in a review of the assessment materials (such as

assignments and exams), one can notice certain ‘constants’ that mark these
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materials from year to year (such as the type of function whose limit students are
asked to calculate).” These ‘constant’ aspects of the course have, over time, become
norms of these courses and are expected by the students. By extension, they become

constraints by which the teacher is bound.

Most typically, students enrolled in this course are independent students (students
who are missing the necessary requirements to be granted admission into the
program of their choice) or mature students (as defined by the University, among
other criteria, these students are 21 years or older and have been out of full-time
studies for at least 2 consecutive years since age 18). The University has a special
entry program for mature students in which, depending on the aimed career, MATH
200 may be a required course. In any case, the people who register in MATH 200
come from a variety of different backgrounds. There are some students who never
completed their mathematics courses in high school, there are some who are
coming back to school for the first time in many years and need a refresher before
moving on to other courses, and there are a few, already registered in BA or BSc

non-mathematics programs, who take the course for extra credits.
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4.2 The Teachers’ assumptions, goals and design

The assumptions

Based on their previous teaching experiences, on anecdotal data about who the
students are and what their needs are, and on research on the teaching and learning
of mathematics concerning mature students (see chapter 2, Literature review), the

Teachers made the following three assumptions.

First, they believed that that the students they would be teaching would have varied
attitudes towards mathematics as a whole. If a student had poor experiences with
mathematics in their previous education, then the Teachers expected that this
student might be less than enthusiastic about returning to a mathematics classroom.
On the other hand, there may also be students who are quite motivated - students
who know that they need to take MATH 200 to enter in to the program of their

choosing and as such want to do the best that they can.

The second of the Teachers’ assumptions, somewhat linked to the first, is the notion
that the students who enroll in MATH 200 will all have different backgrounds and life
goals. Their past experiences with school mathematics will have been different.
Some students will have had good experiences, and some will have had bad ones.

Some students’ exposure to school mathematics may come solely from helping their
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child with their homework, while some students may not have encountered school
mathematics at all in their lives. Additionally, regardless of where these students are
coming from, they may all be working towards very different goals - for example, it
is quite possible to have one student who is hoping to be a psychologist sitting
together with one who wants to be an engineer, who is in turn sitting next to a

student who is simply taking the course as an elective.

Finally, the Teachers assumed that the students would be arriving to class with
several different customs as to what a mathematics classroom should look like. More
specifically, there were three customs that the Teachers were expecting that they
wanted to directly address and break from through the teaching approach. The first
of these is the notion that it is the Teacher’s job and responsibility to show the
students, quite explicitly, how to solve different types of problems. The second
custom they wanted to break from was the belief that puts the Teacher in a position
of absolute authority in the classroom when it comes to the validation of student
work - they wanted their students to be able to assess whether or not their work
was correct on their own, without any external validation. The last custom that the
Teachers wanted to break from was the idea that there is only one ‘correct’ method
for solving different types of problems, and that the teacher will expect this ‘correct’

solution.

At the beginning of the semester, the Teachers circulated an informal questionnaire

to their students in an effort to check that their assumptions held for the particular
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course that was to be taught. The results from this questionnaire were mainly in line
with the Teachers’ assumptions, and a copy of this questionnaire can be found in the

appendices.

The goals

With these assumptions in mind, the Teachers set up the following goals for their

course:

* Engaging students in Theoretical Thinking
* Respect and acknowledge students’ different backgrounds and life-goals

¢ That the students will succeed at the course in the institutional sense

It was the Teachers’ belief that any mathematics course should provide students
opportunities to engage in theoretical thinking. Even if the students of MATH 200
will not continue to pursue studies in mathematics, the behaviours described in the
TT framework are somewhat universal and learning to think theoretically would be
beneficial for the students regardless of what career path they take. It was a concern
that the large volume of material that needs to be covered in only thirteen weeks in
pre-university courses such as MATH 200 would not leave much room for these
opportunities. The Teachers felt that, due to the negative attitudes towards
mathematics held by some of the students, it would be easy for some people to fall

in to the trap of just ‘going through the motions’ of the course material - i.e. learning
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how to properly perform a procedure and learning where to perform it without

truly understanding what it is that they are doing.

In order to mitigate this, the Teachers wanted to provide students chances to think
more deeply about what they were doing, and to make connections between the
different topics that were to be covered in the course. They also hoped that engaging
students in Theoretical Thinking (TT) would be beneficial for the students in that it
might help them to notice inconsistencies in their own work, promoting student
autonomy in the process. The Teachers had had previous research experiences with
amodel for TT (Sierpinska et al, 2002) that they used informally in order to help
them structure the activities. We say ‘informally’ because the Teachers did not
design their activities using this model as a guide to help them foster the three
categories of TT (reflective, systemic, and analytic - see Chapter 3). Rather, they had
vague ideas in their minds of what each category of TT entailed and tried to design a

wide range of activities that would help the students to engage in TT.

Their second goal was to respect and acknowledge the different backgrounds of
their students. As was stated in Chapter 2, the knowledge that an adult has acquired
throughout their life is an integral part of their identity and self-regard (Gustaffson
& Mouwitz, 2004). The Teachers did not want their students to arrive to class and
feel like the knowledge that they had gained in their previous education needed to
be cast aside in favor of the instructor’s ‘correct’ version of mathematics. Instead

they wanted to create an environment where all methods and strategies would be

61



considered valid, as long as they were logically consistent and led to the correct

answer.

Finally, it was important for the Teachers that their students succeed in the course
at a similar rate (or hopefully higher) than the one typically obtained in the context
of the institutional approach, despite the significant changes they were making in

their section.

Of course, a preferred course of action would have been to make changes to the way
that the assessments were done, but the multi-section nature of MATH 200

compelled the Teachers to use the same scheme as the other sections.

The Teachers believed that, of the three assumptions that they made about their
students, the negative attitudes and the customs that they bring to class with them
would be the biggest obstacles for them in working towards their goals. The student
attitudes needed to be ‘shifted’, while the customs needed to be broken if they were

to succeed in achieving their goals.

The design

To achieve these goals the Teachers considered many different means and methods,

and one of the first decisions that were made regarding the new approach to MATH
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200 was to change the order in which the course material was presented to the

students.

The Teachers wanted to design the course in such a way that the students would be
able to see the links between the different topics that are covered and then begin to
see mathematics as a ‘whole’, as a system, instead of a list of disjoint, unrelated,
compartmentalized topics. This change would particularly help the students to
engage in TT, specifically the systemic aspect of TT. The pre-established, long used
order of topics seemed to play against this goal. For example, students would be
exposed to natural exponents of real numbers in Week 1 when covering Chapter 1
of the textbook (“The Real Number System”). Then, they would encounter integer
exponents of generalized numbers or unknowns in Week 6, when covering Chapter
5 of the textbook (“Exponents and Polynomials”). Next, they would encounter
rational exponents in Week 13 when covering Chapter 9 (“Roots and Radicals”). The
Teachers felt that the span of time between the exposures to different types of

exponents was not helpful in proposing a systemic view of the topic.

Another example in the same vein would be the gap between linear equations and
systems of linear equations. Students would learn how to solve linear equations in

Week 5, while systems of linear equations are only covered in Week 11.

When the Teachers reorganized the material, they did it in such a way that the

course would have two distinct units. After being introduced to the basics of the real
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number system and how to perform operations (minus exponentiation) on both

integers and rational numbers, the material was covered in the following order:

* Linear expressions and problem solving
* Linear equations and graphing
¢ Systems of linear equations

* Linear inequalities

These topics made up the first unit of the course (the ‘linear’ unit), and the midterm
covered everything up until this point. After the midterm, they entered the ‘non-

linear’ unit. The non-linear unit is comprised of:

* Exponents, polynomial expression, and polynomial equations (includes
factoring)
* Rational expressions and equations

* Radicals and rational exponents

The Teachers felt that this order would allow them to present a systemic view of the
topics in question. Polynomials should follow from linear equations, but only once
all topics that deal with linear equations have been dealt with. Rational expressions
follow from polynomials, since a rational expression is a division of two
polynomials. Radicals and rational exponents were left for the end mostly because it

was a compromise with the other sections of the course.
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Copies of the “traditional” outline, the one used by the Teachers, and an updated one
(after revising the one proposed by the Teachers), all can be found in the

appendices.

Keeping in mind that they expected their students to have varying attitudes towards
mathematics, the Teachers also wanted to create an environment where any student
would feel comfortable getting re-acquainted with the fundamentals of algebra
while at the same time be able to having opportunities to succeed at the three goals
that the Teachers had set up for them. It was decided, based on the past experiences
of one of the Teachers who had previously taught an introductory course on proofs
using a discussion-based approach, that teaching MATH 200 in a similar fashion

would be the best way to meet all of these criteria.

Instead of the traditional chalkboard-lecture paradigm, where the teacher writes
notes and examples on the board for students to copy, the majority of the learning in
MATH 200 took place through group work and discussion. It was the Teachers’ hope
that running the class in this way would help to account for the different
backgrounds and needs of the students, while providing them with opportunities to
engage in TT. From the beginning of the first class the students came to understand
that each day they would be presented with a list of problems, and that it was up to
them (with the help of their peers if they wanted, although some chose to work

alone) to come up with the answers. The main goal of allowing the students to take
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ownership of the course material in this way was to acknowledge and give a role to
their knowledge of the material. Aside from writing a new formula or property on
the board whenever the material required it (such as when introducing the
associative, commutative, and distributive properties of algebra, or when fist
encountering the quadratic formula), the Teachers spent very little time at the
chalkboard. Instead, they would be walking through the class offering assistance to
any student (or group of students) that needed it. The tutorials acted as an
extension of the lectures, and had the same format. The only difference was that no
new material was ever covered in the tutorials, since they were not mandatory and
some students could never attend due to scheduling conflicts. One of the initial goals
of the tutorials was to provide extra ‘drill-and-practice’ problems that the students

need to master in order to succeed in the course in the institutional sense.

There were, however, certain topics that required the Teachers to revert
temporarily to the ‘institutional’ chalkboard-lecture method. An example of one
such topic was the subject of graphing on the Cartesian plane, where the students
need to be shown on the board the different graphing conventions before they can

go off and start graphing equations on their own.

After reviewing the literature, and keeping in mind their assumption that the
students had previous exposure to algebra, the Teachers decided that the activities
should not be designed so that there would be only one ‘acceptable’ way of arriving

at the final answer. Recall that one of the Teachers’ goals was to respect and
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acknowledge the different backgrounds of their students - it is important for adult
learners to feel that their previous knowledge has value, and as such the Teachers
wanted the activities to help them build on their pre-existing strategies for solving

problems instead of imposing one ‘correct’ method on the students.

For example, in the section of the textbook that teaches how to solve systems of
linear equations the problems are all set up in a very specific way and there are
separate sections for solving by graphing, solving by elimination, and solving by
substitution. In the textbook, for each problem, the student is told exactly which
method to use when solving. This deprives the student of the chance to look at the
problems critically and then decide for themselves, based on their previous

knowledge, which method would be most appropriate for solving the problem at

hand.

The following is an example of an activity from the lecture problems when the

teachers introduced systems of linear equations:

A system of linear equations is a set of 2 or more linear equations. The goal is to find

the points (x, y) that satisfy all the equations in the system. In this course, we will work

with systems of two linear equations in two variables.

6. Solve the system:x+y =4,3x+y =6.
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7. Graph the two equations in problem 6 in a Cartesian plane; what point
represents the solution to the system?

8. Thinking about problem 7, what are the possible solutions to a system of two
linear equations in two variables?

9. Give examples of SLE for each of the possibilities found in problem 8.

These problems were given to the students to work on before the methods of
substitution, elimination, and solving graphically were discussed. Instead, the
students were left to their own devices to try and come to a solution. They also tried
to include some more open-ended questions (like 8 and 9 above) to try and get the

students to think in a more abstract manner.

In the context of acknowledging and giving a place to students’ previous knowledge
of the subject matter, the Teachers wanted to address the common misconceptions
that students may have. These misconceptions are not very different from the ones
we may find in any mathematics classrooms, but the difference is that in many cases
these students have been living many years with these misconceptions, and it might

therefore take some work to reveal them and help them overcome them.

For example, many students are under the impression that if they are given a
generalized number preceded by a minus sign, such as - a, that this number must be

negative. They tend to not consider the case where a itself is negative, making - a a

68



positive number. To try and address this, the Teachers posed the following question

on the first day of classes:

Let'a’ be a number; explain the meaning of |a|. Is - a positive or negative? Is |a|

positive or negative?

The examples of classroom activities given so far are typical examples of the
problems that students encounter in the ‘lectures’ as well as in the tutorials, where
they are able to team up with peers to try and tackle the problems. While the
Teachers would always be present in the class to address any of the questions that
the students had about the material, they still wanted to try and find a way to give

the students of MATH 200 individualized feedback.

To do this, a few times throughout the semester the didactic contract would be
renegotiated to require individual work. In these instances, student responses
would be collected by the Teachers and ‘corrected’ as a means to provide individual
feedback. Note that we use the word ‘corrected’ here, but this is simply for the lack
of a better term; These activities were not for marks, nor were the ‘corrections’
meant to simply show the student how to go about arriving at the correct answer.
Instead, the feedback that was given took the form of prodding questions that would
try and get the students to realize their own mistakes rather than having them

explicitly pointed out to them. The Teachers provided the students with five of these
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activities over the course of the first half of the semester. The following is an

example of one of these activities.

Question:

Is it true that if |b| > |a|, thena — b < 0?

Answer:

Yes, this is true. Since |b| > |a|, b is farther away from 0 than a on the

number line, therefore when you subtract b from a the result is a

negative number.

* Isthe answer above correct or incorrect? Explain your reasoning.

* Ifthe answer above is incorrect, can you change the wording of the

question (or add something to the question) so that the given answer is

correct?

An analysis and discussion of the classroom activities can be found in section 5.2.

Finally, to achieve their goals the Teachers felt it was important to break from

certain didactic customs. Breaking from these customs would help them to set up
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the didactic contract that they wanted to put in place - one in which students have a
sense of authorship over their work, promoting autonomy and a shift in their
perception of mathematical activity, towards one in which there are different ways
of dealing with problems and where once can discuss their preference for, or the
efficiency of, one method over another. At the heart of the Teachers’ intentions were
the convictions that ‘mathematical autonomy’ is essential for progressing in the
learning and understanding of mathematics and that any teaching approach should
be planned and implemented so as to give an active role to students’ previous

knowledge of the subject,

The first of the customs the Teachers wanted to break from was the notion that the
teacher would explicitly show the students how to solve different classes of
problems. The main mechanism that the Teachers used to break this custom was to
almost entirely remove lectures from their classroom - this will be further

discussed in section 5.1.

The second custom to be broken was the idea that the Teachers will always let the
students know if their work is correct, or incorrect. During the class time when
students are actively solving problems, the teachers could usually be found walking
around the classroom and addressing any concerns that the students might have.
More often than not, a student would call one of the teachers over to ask ‘Is this

right?’ Instead of giving them a straight up answer, the teachers would try and
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provide methods for the students to decide for themselves whether or not they had

arrived at the right answer.

For example, if the teacher could see that the answer was correct, but did not want
to say this outright, they might suggest methods that the student could use to verify
their answer. These methods might be substituting their answers back in to the
original equations when the task is to solve a linear or quadratic equation, or if a
student is asked to factor a polynomial the teachers might suggest that they multiply

out their answer in order to see if it is equal to the original expression.

If the teachers could see that the answers were incorrect, they would try and guide
the student back through their work to have them check for any logical
inconsistencies or calculation errors. When dealing with word problems, the
teachers also tried to make sure that the students had a clear understanding of what
their answers meant in the context of the problem. With this in mind, it should be
easy for a student to spot an incorrect answer (for example, if the question is
something along the lines of ‘How many hours does it take for Susan to make $500?’
and the student arrives at an answer of -5, they should be able to become aware that

something is wrong).

Finally, the Teachers wanted to dispel the notion that there is one, and only one,
‘correct’ method for solving a given mathematics problem. To do this, the Teachers

would be careful to not provide a single solution method for any problem. If
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solutions were given, the Teachers tried to provide a variety of different ones (often
taken directly from student work) and would then try to foster a discussion about
the different methods - Which method did the students feel most comfortable with?
Which one did they feel is the more efficient solution and why? They might also
discuss why a solution would no longer be valid if certain changes were made to a
problem. For example, the technique of ‘cross multiplying’ would be a valid first step

in solving the equation

2x+1 3

but would be an inappropriate first step if this problem were changed to

There were some situations (such as when working on practice final exams) where
worked out solutions were not given at all. Instead, the students would often be
given a list of answers to the problems so that as long as they arrived at the correct
answer they would know that their method was valid. The Teachers did not want to
provide a single worked out solution for these problems so that the students would

not feel obligated to use that same method when solving similar problems.
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There were a few things that the Teachers would have liked to be able to change
about MATH 200, but were unable to due to institutional constraints. The most

obvious of these seems to be the assessments used in MATH 200.

As they are, the assessments that are in place really only address one of the goals
that the Teachers had set up for their course - succeeding in the institutional sense.
The Teachers might have liked to adjust the assessments so that they better address
their three goals, but were unable to due to the fact that assessments were required

to be common amongst all sections of MATH 200.

This ‘common’ requirement is true for the midterm, final exam, and weekly
assignments. The assignments were run via an online system called WebWorK, and
although the teachers had some freedom before the semester began to choose some
questions for the assignments that might be better at evoking TT, they were still
limited to choosing problems from the online question bank. They could not create
their own questions without proper knowledge of computer programming,

something that neither Teacher possessed.
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Chapter 5. Analysis and Discussion

This chapter is presented in two parts. In the first part, we analyze and discuss the
customs that were fostered in the classroom, the ways in which students were
initiated in to these customs, the didactic contract(s) that emerged, etc., and we
discuss how these related to the assumptions and goals of the Teachers. In the
second part we analyze the activities designed by the Teachers which the students
engaged in. In this second part, our analysis focuses first on modelling these
activities considering a model inspired by the notion of fundamental situation and
didactic variable, and we then investigate the potential of these activities to engage

students in theoretical thinking (TT).

5.1 Customs and didactic contract(s)

As we have already mentioned, the class that is the focus of this thesis was not a
traditional chalkboard-and-lecture classroom. The Teachers of MATH 200 sought
instead to run their course using a ‘discussion-based’ approach, where most of the

learning would take place through students actively solving problems.

As it was discussed in section 3.1, interactions in the classroom are governed by

certain ‘laws’ (legislated rules), didactic customs and didactic norms.
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In the particular case of this research, the Teachers, based on their teaching and
research experiences, assumed that students would arrive to the MATH 200
classroom with certain didactic customs (see section 4.3) resulting from years of
exposure to a mathematics teaching and learning style based on ‘transmission of
knowledge’ and a conception of (school) mathematics as mimicking the institutional
(the teacher’s) way of writing a solution to a standardized (routinized) exercise. In
this model, assessing the correctness/incorrectness (‘right or wrong’) of a solution
is the prerogative of the teacher - the student has no authority (nor authorship)
over his or her work, and there is only one acceptable way of solving each particular

problem.

The Teachers assumed that these customs would become obstacles for negotiating
the didactic contract for their classroom. They wanted to break from these customs,
but in doing so they wanted to make sure that they did not shatter their students’
confidence in their previous knowledge or their abilities. Instead, they wanted to
break from these customs while increasing the students’ confidence in their
abilities. They wanted their students to feel a sense of authorship over their work,
and arrive at a place where they would realize that there are many different ways to
tackle a problem and would be able to discuss the efficiency of, and their preference

for, one method or another.

As it was discussed in section 4.3, the customs the teachers assumed students will

bring with them to the MATH 200 classroom, and which they were particularly
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interested in breaking, were: (1) that the students would be expecting a lecture
based approach, where the instructor explicitly shows them how to solve all
different kinds of problems; (2) that the instructor is the authority in the classroom
for determining whether or not student work is correct or incorrect; and (3) that for

any given problem there is one, and only one, acceptable way of solving it.

In what follows, we (the Researchers) reflect on the Teachers’ and students’ actions
related to the negotiation of a didactic contract. What follows is our perception of
how these customs may have been shattered and how this may have affected the
classroom environment. Our perceptions and reflections discussed below are the
result of our observations in the classroom (where we were most of the time

Teachers, but sometimes Researchers).

The teacher will lecture on how to solve each type of problem

The Teachers of MATH 200 assumed that their students, based on their previous
experiences in mathematics classrooms, would expect their teachers to “explicitly
show” them how to solve each “type” of problem (exercise) students would have to
do in MATH 200 (and, by extension, all algebra problems they will need to solve in
future math courses). The Teachers wanted to break from this custom because,
based on their experiences as teachers and researchers, they believed that this
approach reinforces the routinization of mathematics problems, and does not help

the students’ ability to develop generalizations nor to engage in TT.
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The main mechanism the Teachers put in place in the MATH 200 classroom to break
away from this expectation was to remove the lecture format to negotiate a didactic
contract in which classroom activities and interactions followed the discussion-

based approach (see section 4.3).

For a number of the students it was not easy to be thrust in to this different kind of
learning environment. This was especially true for those students who were taking
MATH 200 as their first mathematics class in many years - they were not yet
confident enough in their abilities to tackle the problems on their own. In addition,
at the beginning of the semester the students in the class did not yet know each
other well and some students were reluctant to ask others for help. This could have
been for a number of reasons - perhaps they were embarrassed about needing to
ask questions in the first place, or perhaps some students were self-conscious about
the age gap between themselves and the other students (the age range of students
was from 17 to 50+). There may be a dozen more, very interesting reasons why
students might feel uncomfortable asking questions in a mathematics class, but
these reasons are not necessarily the focus of this thesis. For these reasons, in the
first few classes the students would mostly sit and wait for guidance from the

Teachers.

This (somewhat to be expected) rough start did not last very long; by the second

week the students had already formed groups based on where they usually sat in
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class and were more comfortable working together. They had also been
reintroduced to enough of the mathematical content that they had a base from
which they were able to work. Once this happened the Teachers were able to take
on more of the role that they had envisioned, ‘floating’ throughout the class asking
prodding questions about the students’ methods and helping to nudge those who

might need in the ‘right direction’.

Anecdotally, many students expressed that they enjoyed the teaching approach
overall. They felt that they were better able to absorb the material by actually
solving the problems, instead of sitting and copying notes the entire time. There
were students who felt that the approach did not match their learning style,
however. For example, one student felt that spending all class time on problem
solving was a waste since she could solve problems on her own at home - she felt
like the class time would have been better spent with the Teachers explaining
formulas and demonstrating how to solve problems (essentially, she prefers the

‘institutional’ approach).

The Teachers believed that breaking this custom would fall in line with the goals
they had outlined at the beginning of the semester. The adjustment in the role of the
teacher helps to promote student autonomy, while allowing the students to decide
for themselves how to solve the problems they are faced with may help to shift their
perception of mathematical activity. Beforehand, the students’ notion of

‘mathematical activity’ may simply be deciding which algorithm to apply, as a result
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of the routinization of mathematics problems found in mathematics courses that
follow the ‘institutional approach’. With this approach that focuses on problem
solving they might begin viewing the mathematics activities as more investigative in
nature - instead of the different ‘types’ of problems being laid out for them on a
silver platter, they need to learn them through experience. Instead of being shown
which method to use to solve a problem, they are able to choose (or even construct)

the method that they would be most comfortable using.

The Teachers also believed that having the students spend most of their time
working on problems might allow for more opportunities to engage in TT. This will

be further discussed in section 5.2.

The teacher will tell me if I am right or wrong

The second custom that the teachers wanted to break was the idea that it is the job
of the teacher to be the authority on mathematics knowledge in the classroom who

must decide for the students whether or not their work is right or wrong.

Breaking this custom can be seen as having the express purpose of fostering
autonomy in the students of MATH 200; by removing the authority of the teacher in
this regard, the students need to make their own decisions concerning the validity of

their work.
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For many students, this custom was a frustrating one to break from. It is a ‘natural’
thing for students to want their teachers to provide them with some reassurance
that their work is correct. So, when a student calls the teacher over to ask if their
answers are correct or not, and are greeted instead with questions such as ‘Do you
think it is correct? or ‘How can you check if it is correct? they may get frustrated.
However, the students eventually came to understand what was expected of them
and that the Teachers would not be telling them whether or not their work was
right or wrong. Rather, it was their job to convince the Teachers, and themselves,

that the work that they had done to arrive at their answer was valid.

Some students did not fully accept this break in custom. While they understood that
the Teachers would not tell them if they were right or wrong, they might instead
have used one of their peers to fill that role - i.e. “I know that my work is correct
because I got the same answer as my peer”. This is not entirely out of line with the
Teachers’ goals, however. Recall that one of their goals was to respect and
acknowledge their students’ various backgrounds and previous knowledge. By
allowing certain students, who perhaps had a stronger background than other
MATH 200 students, to take on a role of ‘tutor’ in the classroom the Teachers hoped
that these students would feel that their prior knowledge was being acknowledged
and respected. They would also have the added bonus of engaging in reflective
thinking, as they need to reflect on their own methods before they can explain them

to another person.
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There is only one correct way of solving a mathematics problem

The final custom that the teachers of MATH 200 tried to break away from was the
idea that there is one (and only one) correct method to use in order to solve a given
mathematics problem. This is a notion that the Teachers assumed may have been
ingrained in the students minds from past experiences where the teacher acted as
the absolute authority in the classroom, and whose solutions to classroom problems

acted as a guide for students when they were to solve similar problems in the future.

More than once throughout the semester the students would engage in small-group
discussions amongst themselves about the different methods that could be used to
solve a task at hand, and which of these methods might be most efficient. Also, since
answers were not provided for the problems that the students were to work on in
class, more than once the teacher would ask students to write their worked out
solutions on the blackboard. A whole-class discussion might follow on the different
ways that people had arrived at the answer or on why the answer was or not
correct. In any case, the discussion would be rich; students would debate which
methods they preferred and why, which ones they thought were more efficient. If
there were an answer on the board that they disagreed with they would argue
against it (sometimes quite vehemently) until they either convinced the class that
the answer was wrong, or accepted that there had been a flaw in their own methods

and it was their approach that was incorrect.
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Many interesting discussions also took place between small groups of students. By
necessity, students who attended the classes had to abandon the role of the ‘passive
observer’ that is common to so many algebra classrooms and become actively
engaged in both the material and the discussions. The Teachers did not always
prompt these discussions, either. As an example, we will describe an interaction that

happened between two of the students while working on the following problem:

Peter works two jobs, one as a waiter that pays $9.50 per hour and one as a music
teacher that pays $14 per hour. Last week he worked 35 hours and his salary after

12% deductions, was $352. How many hours did he work each job?

Student A decided to approach the problem by first denoting the number of hours
Peter worked as a waiter as x, and then denoting by 35 — x the hours Peter worked
as a music teacher. By multiplying these each by his hourly wage at each respective
job, Student A arrived at the equation 9.5(x) + 14(35 — x) = 352. Student A solved
the equation to find the number of hours Peter worked as a waiter and then used
the expression 35 - x to determine the number of hours that Peter worked as a

music teacher.

Student B approached the problem differently, by setting up a system of two linear
equations. He let x be the number of hours Peter worked as a waiter, and y, the
number of hours Peter worked as a music teacher. He then constructed and solved

the following system:
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x+y=235

9.5x + 14y = 352

Both Student A and Student B arrived at the same answer, but both seemed
confused. Their discussion seemed to be along the lines of how was it possible that
one of them (A) could solve the problem using only one variable, and the other (B)
needed two variables, and have both of them get the same answer. It took a few
minutes of looking over each other’s work (to make sure that the other person had
not made mistakes) before they realized that once Student B began to solve their
system by substitution her method became identical to the one used by Student A.
This led them in to a discussion about the benefits of each method, Student A
believing hers was better by virtue of the fact that there were fewer steps, while
Student B preferred hers as she believed that the problem was easier to keep track
of when you assign a symbol (such as x or y) to each unknown quantity. The
Teachers did not need to intervene in this discussion at all, and many students who
were sitting near to the discussion were drawn in also. All of this had been
spontaneous, and was the kind of classroom interaction that the Teachers had been
hoping to foster. To be able to debate their points of view regarding different
solution paths means that they have taken the time to reflect on the path that they

themselves took, engaging in reflective thinking in the process.

In breaking this custom, the teachers also had hoped to show that they were open to
both acknowledging and valuing the students’ previous experiences in mathematics.

Many of the students in MATH 200, either in high school or elsewhere, already had
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experiences with the material covered throughout the course of the semester. They
did not all learn at the same pace, however, and may have developed different
strategies for dealing with different kinds of problems. By not being able to
reference ‘official solutions’ to the classroom problems, the students could feel free
to use whichever methods and strategies they have previously developed, or those
with which they felt comfortable. This allows them the chance to compare and
contrast their solutions with those of other students, as well as boosts their

confidence in their previous abilities.

The Teachers had hoped that breaking these three customs would help them to
implement the didactic contract they had wanted to set up for their classroom.
Although some students managed to find a way around the fact that the Teachers
would not provide validation for their answers (instead using a peer as a surrogate)
most, if not all, students embraced (if only grudgingly) the removal of lectures from
the class in favor of problem solving time. As the semester went on and students
came to know what was expected of them, they also seemed to understand that
more often than not in mathematics there are many ways of approaching the same
problem - each as valid (if, perhaps, not as efficient) as another. It seems, then, that
the Teachers were more successful than not in putting in place a different didactic
contract, and based on what we (the Researchers) have observed it seems like
breaking the already mentioned didactic customs helped the Teachers to move

towards achieving their goals.
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5.2 Mathematical activities

During the semester, the Teachers prepared and ran more than 140 classroom
activities with their students. For the most part, these activities were designed to fit
within the new didactic contract that the Teachers had set up in their class -
allowing for group work and discussion. There were, however, a few (4) instances
throughout the semester where the contract was briefly renegotiated in a way that
required students to work individually, after which their work would be collected
and “corrected” by the Teachers. Note that we place the word corrected in quotation
marks because we are not using it in the traditional sense - it is merely for lack of a
better term. The Teachers would not say if the work was right or wrong, instead
they would ask probing questions - i.e., “Have you considered all possible cases

here?” - if the student was off track.

Before the semester started, when designing the activities, the Teachers had a vague
image in their minds that there would be two main groups of activities. ‘Direct
Computation’ problems would essentially serve as ‘drill-and-practice’ for the
institutional assessments (weekly assignments, midterm, and final exam), while the
‘Goal Oriented’ problems would either address the assumptions made by the
Teachers, or help to further their goals for the classroom (in particular, engaging in

TT).
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When we (as Researchers) began our analysis of these activities’ potential to foster
TT we found several (often not disjoint) sub-categories under the umbrellas of
‘Direct Computation’ and ‘Goal Oriented’. This section will begin with a description
of each of these categories, followed by analysis of a few example problems using

our adapted notion of the fundamental situation.

Categories for classifying the activities

In this section we describe the seven different categories of problems that we came
up with when analyzing the activities developed by the Teachers. Again, it is
important to note that these categories are not necessarily disjoint - there were
often problems that had characteristics of two or more of the following categories.
However, we felt that classifying the problems was important in that we could
explain with greater ease how certain categories of problems might have helped to

serve the Teachers’ needs based on their assumptions and goals.

We will begin first with the two subcategories from the ‘Direct Computation’ group.

L. Institutional Problems

Recall that one of the three goals outlined by the Teachers at the beginning of the
semester was that they wanted their students to be able to succeed in the

institutional sense - i.e., they wanted their students to be able to pass the course.
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The institutional problems are those ‘drill-and-practice’ problems that will help the
students to become comfortable with the techniques and calculations they will
need to perform on assignments and exams in order to succeed in achieving this
goal. Most of the problems that the students encountered in MATH 200 - during
class time, as well as in the weekly assignments and examinations - were of this
type, but the teachers hoped that by exposing their students to problems from the
other categories they would be afforded more opportunities (or, more

opportunities than they would have in a traditional classroom) to engage in TT.

The main feature of the problems in this category is that they explicitly state what
students have to do (i.e. ‘Factor the following algebraic expressions’ or ‘Solve the
following system of linear equations’). However, the students were never told
which method they were to use to solve the problem; they could use whichever

method they felt most comfortable with.

Typically, the problems assigned in MATH 200 are very explicit as to which method
is to be used when solving problems. For example, instead of ‘Factor the following
algebraic expression’, typical textbooks or common assessment will state ‘Factor
the following difference of squares’, or ‘Solve the following system of equations by
elimination’ instead of simply ‘Solve the following system of equations’. The
Teachers felt that this contributed heavily to the routinization of problems, and
wanted to remove this characteristic from their classroom activities to promote the

notion that there is more than one way to solve a given mathematics problem. This
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was not always entirely possible for the WebWorK problems because, as was
previously mentioned, the Teachers were restricted to choosing problems from the

online question bank when creating the assignment.

II. Word Problems

Word problems are a very important component of MATH 200. Instead of being
given an equation to solve, or a polynomial to factor, students are presented with
some sort of contextualized problem. They need to be able to read the problem and
decide for themselves what information is important, what they need to obtain in
order to solve the problem, and what method they will be using to arrive at a

solution.

Again, these problems mainly help the Teachers’ goal of having their students
succeed in the institutional sense. Word problems are a standard feature of
assignments and exams in any algebra classroom, and in order to succeed the

students need to be adept at understanding what a word problem is asking of them.

The categories that follow are those that fall under the umbrella of ‘Goal Oriented’

activities.
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[1I. Multiple Methods

To be grouped in to the ‘Multiple Methods’ subcategory, the problem in question
needs to explicitly ask the students to arrive at a solution using two or more

different strategies.

Problems from this category quite directly address the assumption made by the
Teachers that students will arrive to class believing that a given problem can be
solved in one - and only one - way. This was a custom that the Teachers wanted to
break from, and problems of this type were especially helpful (particularly at the
beginning of the semester) in doing so. Initially, if students did believe that
problems could only be solved in one way seeing a problem that states ‘Solve this
problem using two different strategies’ might get them to think “OK, if the teacher
is asking me to solve this using more than one method, then it must be possible to
do so.” As the semester went on and the students came to understand what was

expected of them these problems became less and less necessary.

IV. Conceptual

There are two different kinds of conceptual activities that the students of MATH
200 encountered - we will call them ‘Abstract Conceptual’ and ‘Concrete

Conceptual’.
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A problem was classified as ‘Abstract Conceptual’ if solving it requires an
understanding of the conceptual underpinnings of (some of) the course topics. In
addition, problems in this category do not deal with particular numbers, but with

generalized ones.

‘Concrete Conceptual’ problems are quite similar; however the problems would

concern particular numbers, instead of generalized ones.

It seemed natural to the Teachers that problems of a conceptual nature might be
more effective than others in fostering TT, and as such they wanted to include as
many problems of this type as possible. Students may engage in reflective thinking
by thinking critically about how a property applies to a more general case, or they
may engage in systemic thinking by linking different concepts together. Abstract
conceptual problems in particular may also be of more use in fostering analytic
thinking as they tend to require students to interpret symbolic expressions with a

certain degree of ‘rigour’.

V. Symbol Manipulation

For a problem to be classified in this category, it needs to ask the students to

perform some of the operations that they have become familiar with (such as
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addition, subtraction, multiplication, division, etc.) on a mathematical object that

consists solely of generalized numbers.

These problems differ from those that are classified as Abstract Conceptual mainly
in that in these problems the student would be performing operations directly on
the object. In Abstract Conceptual problems, calculations are not always required -
in many cases the student is simply given a bit of information and then asked what
can be inferred from what is given - for example, ‘Explain why the product of an
even integer and any other integer is even. What conclusions can you make about

the product of two odd integers?’.

These problems address the Teachers’ goal of providing students with

opportunities to engage in TT. In particular, problems of this type might encourage

analytic thinking.

VI. Different Representations

In this final category, the students are asked to work with (or provide) two or more

different representations of the same mathematical object.

These problems are similar to the ‘Multiple Methods’ problems in that they were
only mostly necessary for the beginning of the course, when the students may not

have yet realized that there are often different ways to represent the same
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mathematical object. As the semester moved forward, instead of asking the
students to provide different representations of the same object, the Teachers
would provide problems with varied representations of similar objects and would
expect the students to know how to alter the representation as they saw fit to most

efficiently solve the problem in question.

The following table is a breakdown of how many activities, both from class time and
from the tutorials, were placed in each category. Each activity, even if it had
characteristics of more than one category, seemed to have one ‘main’ characteristic
that was more prominent than others. It was this ‘main’ feature that was used to

classify the activities for the purpose of this thesis:

Class Problems | Tutorial Problems| Total
. . Institutional Problems 18 22 40
Direct Computation
Word Problems 7 14 21
Abstract 25 7 32
Conceptual
Concrete 18 5 23
Goal Oriented Multiple Methods 10 3 13
Symbol Maniuplation 5 2 7
Different Representations 7 0 7
Total 90 53 143

Analysis of class activities

Now we proceed to analyze a few examples of class activities, looking at their
structure in terms of fundamental situations, as well as looking for opportunities

that students may have had to engage in TT. We used Challita’s (2013) list of
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theoretical behaviours as a guide when looking for these opportunities. Recall that
on occasion, the didactic contract had been renegotiated for individual work. When
the Teachers ran these individual activities, they collected responses from the
students, and so in the last two examples we look at student work to see if we can

find any evidence that these students did, in fact, engage in TT.

Recall that for our FS* we consider six variables:

V1 - Category

V2 - Topic

V3 - Misconception to be addressed

V4 - Feature of TT

V5 - Solution expected

V6 - Group/Individual Activity.

In what follows we will be using these variables to describe the specific situations,
SS*, associated with five of the in-class activities, as well as analyzing these
activities’ potential to foster TT.

Example 1
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The following table represents the quantity of shoes that consumers would
demand at each given price. Do the values correspond to a linear expression? If
yes, write the linear expression in the formy = mx + b. What is the slope? (It is

negative, why??)

P | Q (in thousands)
$140 0
$120 5
$100 10
$80 15
$60 20
$40 25
$20 30
$0 35

To obtain SS1*, we assign our variables the following values:

V1 - Different representations

V2 - Linear Equations and Graphing; Equations of Lines
V3 - Null

V4 - Null

V5 - Provide solution

V6 - Group activity

We expect that students would first identify P as the independent variable and Q as

the dependent variable, and then note that the rate of change remains constant -
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specifically that for each $20 increase in P, Q decreases by 5 meaning that the rate of
change is — i. Knowing the slope, they could then choose any point (P, Q) to put in to
the point-slope form of the equation of a line m(P — P;) = (Q — Q). After
performing some manipulations they’d arrive at the desired answer of Q = — i P+

35.

Before the students can attempt this problem, they need to be able to recognize
which variable is the independent variable and which is the dependent variable.
Once this is done, they may engage in systemic thinking by recalling the definition of
a linear equation and remembering that for an equation to be linear the slope needs

to remain constant.

Once they find the slope, they need to identify the y-intercept. To do this, the
students again need to be able to represent the table in a ‘different mathematical
register’. They are given a linear equation as a table, but need to translate this table
to an equation of the form y = mx + b. They need to recognize that the entry in the
$0 row is equivalent to they y-intercept of the linear equation, and use this

information to construct their answer.

The students may also engage in reflective thinking near the end of the problem, by
saying that this y-intercept does not actually make sense in the context of the
problem since no company would sell shoes for $0. This could also lead in to some

discussion on domains of functions.
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In addition to having to be sensitive to specialized terminology, the students also
need to be aware of ‘conventional terminology’, or the meaning of certain words in a
given context. In this problem, for example, the words ‘negative’ and ‘slope’ are
being used. These are words that most people have in their vocabulary, and they
both have well-defined meanings outside of the realm of mathematics. For a student
to succeed at this problem, they need to be able to contextualize the information

they are being given.

Example 2

axcxb
cxa

Simplify the following expression as much as possible: —“C"f;“

For SS2*, we assign our variables the following values

V1 - Symbol Manipulation

V2 - Operations on integers and rational numbers
V3 - Null

V4 - Analytic thinking

V5 - Provide solution

V6 - Group activity
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The provided expression is ambiguous, and depending on the students’
interpretation many different answers and solution paths are possible. One of the
expected ways that a student might tackle this problem is to look at the dividend

and the divisor first as separate expressions. They would recognize that the

dividend ac—f could be simply reduced to b, while the divisor becomes bTa. The

: b s
expression now becomes 4. From here, the student remembers that a division of

c

two fractions is equal to the dividend multiplied by the reciprocal of the divisor.

They would rewrite the expression as b * i, and realize that the b’s can be

‘cancelled out’. This leaves the student with the final answer of 2

First and foremost for this problem, students need to exercise analytic thinking by
rigorously interpreting this symbolic expression. Requiring particular attention here
is the bar symbol. Students will see this symbol in many places used as a symbol for
division, but it is also used as a symbol to represent fractions and students need to
be sensitive to which use the symbol has in a given context. In this problem, the bar
symbol takes on both meanings as the student will interpret the problem as a
division of two fractions. The students also need to be sensitive to the conventional

meaning of the word ‘simplify’ in an algebraic context.

Students may also use systemic thinking in using the known property

alolla

a d
=—-x—t0
b ¢

help them fully simplify the expression. There is also an opportunity for students to
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exercise the hypothetical character of systemic thinking - they need to consider the
different interpretations of the expression, and may also consider the conditions

under which the expression makes sense (for example, what happens if b is equal to

07?).
Example 3
2 3 _ 243
242212 i
Does s t5535 1? Explain your answer.

To obtain SS3* we assign the following values to our variables

V1 - Concrete Conceptual

V2 - Operations on integers and rational numbers; addition of rational numbers
V3 - To add two rational numbers you add the numerators and the denominators
V4 - Null

V5 - Discuss Solution

V6 - Group activity

Here we would expect students to realize two things; First, they need to recognize
3 . 2.
that S represents a number that is greater than 1. Second, they must see that Sisa

positive number. The solution follows from here - if you add a positive number to a

number than is already greater than 1, the answer cannot possibly be 1.
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This problem directly addresses the misconception that to add two rational
numbers you need simply to add the numerators and denominators together.
Hopefully this activity elicits 'proving’ type behaviour from the students - a feature
of systemic thinking, where they can see that this cannot possibly be the case.
Depending on their past experiences, some students may also be able to link this
problem to their previous mathematics knowledge and immediately recall that in
order to combine two rational numbers (resulting in a single rational number), they

need to have the same denominator - another systemic behaviour.

Example 4

Distribute and combine like terms: x*(x — 1) + 2x(3 — 2x)

To obtain SS4* we assign the following values to our variables

V1 - Institutional Problem

V2 - Polynomial expressions; multiplication and combining like terms

V3 - Null

V4 - Null

V5 - Provide solution

V6 - Group activity
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To solve this problem it would be expected that students would remember the
distributive property and rewrite the expression as x2(x) — x2(1) + 2x(3) —
2x(2x). They would then apply their knowledge of multiplication and exponents to
expand this to x3 — x? 4+ 6x — 4x2. Finally, they would combine like terms to arrive

at x3 — 3x? + 6x.

It was expected by the Researchers that activities from this category would offer
fewer chances to engage in TT. That being said, this example that we have chosen is
not completely void of opportunities to do so. Students need to be sensitive to the
meanings of both ‘distribute’ and ‘combine like terms’ when reading this problem.
Similar to the words ‘negative’ and ‘slope’ mentioned above, ‘distribute’ has a well
defined meaning outside of the realm of mathematics. The students need to be able
to understand the meaning of the word in context. They may also have an
opportunity to link their previous knowledge about the distributive property with

the task at hand, engaging in systemic thinking.

The last two examples are those activities that took place when the didactic contract
was briefly renegotiated to allow for individual work. These activities were
designed by the Teachers to help students to ‘control’ their progress and

understanding - the Teachers would give them feedback on their responses.

There were five of these activities given over the course of the first five weeks of

class, with approximately one activity given per week. For our final two examples
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we will be considering the first of these activities as well as the fifth to see if there
was any perceptible change in the way that the students responded to the activities.
We start by looking at the design of the activity using our slightly modified version
of the fundamental situation (see section 3.5). We then identify opportunities to
engage in TT. Finally, we consider the responses of four different students to see
whether or not they did, in fact, engage in any TT. The four students were selected at

random from the pool of 24 students who had submitted both activities.

Example 5

Question:

Is it true thatif |b| > |a|,thena — b < 0?

Answer:
Yes, this is true. Since |b| > |a|, b is farther away from 0 than a on the
number line, therefore when you subtract b from a the resultis a

negative number.

* Isthe answer above correct or incorrect? Explain your reasoning.
e Ifthe answer above is incorrect, can you change the wording of the
question (or add something to the question) so that the given answer

is correct?
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To obtain SSs*, our variables are assigned the following values

V1 - Abstract conceptual

V2 - Operations on integers and rational numbers; absolute values

V3 - Abstract numbers without the ‘- symbol in front of them must be positive;
proof by example is always sufficient.

V4 - Null (no specific aspect is targeted)

V5 - Discuss the validity of a given solution

V6 - Individual activity

Note that the misconceptions themselves are not explicitly addressed by the
problem. Rather, the problem provides an opportunity for a discussion about these
misconceptions to come up in the class (and in the feedback individually provided to

students by the Teachers).

As a side note here, this blueprint could be used to create a number of different
problems that would be appropriate for the MATH 200 classroom. By changing the
value for just one of the variables, for example changing V5 from ‘discussing the
validity of solution’ to ‘provide a solution’, the problem becomes an entirely

different (yet still interesting) one.

This problem gives students opportunities to engage in all three types of TT. To

come up with a proper solution to this problem, the students need to be
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investigative and consider all the possible cases where |b| > |a|. There are four
possible cases: a positive/b positive, a positive/b negative, a negative/b positive,
and a negative/b negative. They may also choose to generalize their solution, i.e.
“This statement is true if both a and b are positive numbers”. These are both

behaviors associated with reflective thinking.

The students may also engage in the proving feature of systemic thinking. This
activity is, in essence, a proving activity, and the students needed to give arguments
to support their claims whether or not they believed that the statement was
incorrect. Those who believe the statement to be false may also use a
counterexample to support their claims. This action could also be seen as
hypothetical thinking (a feature of systemic thinking), as they would be considering

a particular case to negate the statement.

Finally, the students need to be able to interpret the symbolic expressions involved

in order to come to some meaningful answer. They need to understand the

meaning of absolute value, as well as the function of the ‘<’ and >’ symbols.
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Student Responses

Is the answer above correct or incorrect? Explain your reasoning.

* If the answer above is incorrect, can you change the wording of the
question (or add something to the question) so that the given answer
is correct?
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For this problem, S1 did not completely fall prey to the misconception that was
being targeted. She did consider cases other than the case where both numbers
were positive, however in her work for the case where both numbers are negative
she subtracted a from b instead of the other way around as is asked in the question.
There are many reasons why she may have done this - perhaps by ‘switching the
signs’ she felt as though she also needed to switch the order in which the numbers

were subtracted? Without more information we cannot be sure.
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In the both cases that she considered, she did offer a generalized solution, though,
when she wrote that ‘If a and b are positive numbers, then a — b < 0’. While she
did give a generalized solution, her explanation itself is not generalized - she is
instead relying on her example. This idea that proofs by example are adequate is a
misconception that was evoked by the problem, even though the problem itself was
not targeting this particular misconception. It does, however, give the Teachers an

opportunity to talk to the students about it and provide feedback on this issue.
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It seems fair to assume that S2 has fallen in to the trap of assuming that the
variables represent (only) positive numbers. As a consequence, S2 misses out on
most of the opportunities for TT in this problem by stating right away that the
statement is correct. This could be viewed as a failure in the design of the problem;
once a student falls in to the ‘trap’ of the misconception that is being targeted, they

have no way of realizing their mistake.

Although the conclusion is wrong, S2 does offer an argument to support their claim.

However, because S2 did not consider any scenarios where a or b were less than
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zero we cannot be certain whether or not they are truly sensitive to the meaning of

the absolute value symbol.

Of the four students whose work was selected, S3 provided the closest to what
could be considered an ideal response to this question. She did not fall in to the
trap of assuming a and b must be positive, and although she did not consider all
four possible cases, only one of the cases (a positive and b negative) was necessary
for exposing the contradiction in the question, and conclude that the statement was

false.
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They were also able to provide a satisfactory answer to the second part of the
question by saying that the statement would be true if you were asked instead to

perform |a| — |b|.
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While S4 does correctly state that the given statement is not true, their reasoning is
off. They select —4 as their value for b and 2 as their value for a, but then instead of
performing the subtraction a — b as asked they base their conclusion off of the

subtraction b — a.
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Based on what they have written, however, we might be able to conclude that they
are at least sensitive to the meaning of the absolute value signs (even if their given

‘definition’ is not by any means formal).

S4 was able to come up with a way of changing the question so that the statement
would be true, but as their written work did not include any mention of their
thought process it is unclear what kind of TT they might have engaged in while

coming to this answer (if they engaged at all).

Example 6

Two students were asked to solve the following linear equation:
4x+8=2(5—x)
One of these students did some calculations and arrived at -1= —3x, to then
find thatx=1/3.
The other student approached the problem in a different way and arrived at
6x = 2, to then find thatx = 2/6.
1) Can we say that —1 = —3x and 6x = 2 are different representations of
the same equation? Explain your answer.
2) Try and replicate these students’ work. What are the possible steps that

they could have taken to arrive at their respective answers?
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3) Discuss which method, in your opinion, is more efficient. The first
method, the second method, or some other method entirely? Explain

your answer.

To obtain SS¢* our variables take the following values:

V1 - Different representations

V2 - Linear equations and expressions; solving linear equations
V3 - A linear equation can be solved in only one way

V4 - Null

V5 - Discuss solutions

V6 - Individual activity

Much like the first week activity, the misconception is not directly addressed by the

problem. Rather, it opens avenues for students to engage in a discussion about it.

The first part of this activity offers students some opportunity to engage in
systemic thinking by participating in a definitional and proving-type activity. For
students to be able to adequately state that the two equations are different
representations of the same thing, they need to be able to recall the definition of
equivalent equations (namely, that you can perform valid manipulations on one of
the equations to arrive at the other). They can then use this definition to prove that

the two equations are, in fact, equivalent.
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The second part of this activity is more reflective in nature as it requires the
student to investigate different possible solution paths for a single problem. The
third part of the activity is an extension of the second, where the students are
almost explicitly asked to reflect on what they’'ve done. They may feel that one
method is more efficient over the other based on their comfort level with previous
topics. It also offers students a chance to discuss the misconception that is being

addressed.

Student Responses

Part 1

Although she doesn’t explicitly state the definition of equivalent equations here, it
does seem as though it is clear that S1 understands the definition and what it
means. Even though she does not engage in any proving activity (that we can see on
paper), she does note that the equations give ‘the same result’. This may imply that

she has mentally carried out a proving activity, since it is relatively simple to
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recognize that; all that needs to be done is to multiply the first equation by -2. We

cannot be certain, however.
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S2 has given a close to ideal response here. While she does not fully flesh out her
work by multiplying the equation —1 = —3x by —2, she clearly seems to
understand the definition of equivalent equations, and recognizes the operation

that is required to show that the two equations are, in fact, equivalent.

S3’s response is very similar to S2’s, although she fleshes out her explanation a bit

more. In any case, it is clear that S3 understands the definition of equivalent
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equations, and knows how to back up her claim that the two equations represent

the same thing.
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S4’s answer is interesting in that her reasoning is different from the others,
although still correct. Instead of multiplying or dividing one of the equations to
make it the same as the other, she opts instead to solve both equations for x and

correctly states that both equations have the same answer (namely, that x = 1/3).

Part 2
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While S1 did solve the equation in two different ways, each of which arrived at the
equations indicated in the problems, we are not sure that she truly did engage in
investigating different solution paths. Both of her methods are very similar, with
the only distinction being that after the first step of distributing the 2 on the right
hand side of the equation she proceeds to collect the x’s on opposite sides of the

equals sign.

That being said, she did perform what the question asked of her. All that was
required was to show possible steps in solving the equation, and her methods are

definitely valid.

S2’s response is almost identical to S1’s. She immediately distributed the 2 on the

right hand side, and then isolated the unknown on opposite sides of the equals sign.
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Like S1, while the methods are very similar there is the one difference that shows

S2 investigating different solution paths.

S3, in a more clear fashion than S1 and S2, can be seen investigating different
solution paths. It is clearer in her case because each method starts off in a distinctly
different manner. In her first solution she recognizes that both sides can
immediately be divided by 2, and then proceeds to isolate the unknowns, while her

second solution is similar to those offered by S1 and S2.
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While S4 was able to recognize in the first part of the activity that we were dealing
with two equivalent equations, she proved unable to arrive at these equations on

her own when starting from scratch.

There are some deep-seeded issues here with the basic ability to perform
operations on abstract numbers, which are stopping S4 from being able to engage
in the TT that this part of the activity offers. From what little of her work we can
see, it seems that she may be confused by the difference between multiplying an
abstract number by 2 and squaring it as evidenced by her moving from 2(5 — x) to
2((5 = x)(—=5 + x)), but even then there are mistakes with the signs, and if this was

the case then the 2 should have disappeared.

All in all, we cannot conclude anything meaningful from S4’s work here that would

help us to determine whether or not she engaged in TT.
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Part 3

S4 opted to not complete the third part of this activity, so we will only be looking at

the responses of S1, S2, and S3 here.
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S1 seems to be aware of what she is comfortable with, and what she is less
comfortable with, and as a consequence she decides that, for her, the second
method is more efficient. She claims that this is because you are only using positive
numbers, and presumably she believes that as soon as you begin to deal with
negative numbers (especially at the MATH 200 level) you begin to introduce more

opportunities to make mistakes.
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S2’s response is slightly confusing. She states that she believes that the second
method is easier because ‘the numbers are simplified’, but if we go back and look at
her two different solutions the only difference between the two of them is that the
second method has an extra ‘simplification’ step. This extra step is one that could
easily be applied to the first method as well, which suggests that perhaps S2 is not
thinking too deeply about what the question is asking (which process is the most
efficient). Instead, she seems to be basing her judgment on the appearances of the

two equations to be dealt with in part 1.

Parts of S3’s work for this question were cut off in the process of scanning. Her text

reads:

‘The second method seems more efficient to me, because it stays clear all the way

through. Fractions in equations can be confusing. You just don’t want to add

another step. Especially if you don’t get whole numbers after the division.’
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S3 once again provides us with one of the more interesting responses to the
question that she is being asked. Unlike S1 and S2, S3 really seems to be reflecting
on the method used to solve the equation, and is clearly stating why she prefers the
second method to the first method. Somewhat understandably she wants to avoid
situations where she has to work with fractions, and prefers the method with the
fewest steps. She also states that the second method is more ‘clear’, although she
doesn’t say what it is about the first method that she finds unclear.

It seems like we can say that these four students did engage in some (if not all) of
the opportunities to engage in TT that were provided by these problems. However,
it is difficult for us to truly discuss a students’ method just by looking at their
written work. We may be able to deduce certain things, but without more thorough
data (for example, recording the students as they solve problems and asking them to

detail their thought processes) there is a limit to what we can say.
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Chapter 6. Conclusion and future work

Over the course of this thesis, we have continually been switching between our roles

as Teachers and Researchers as they relate to our MATH 200 classroom.

As Teachers we had made three main assumptions about our students before the
semester had even started - that they would have, to some degree, negative
attitudes towards mathematics in general; that they would all have very different
backgrounds and previous experiences with mathematics, as well as different life
goals; and that they would be arriving to class with certain customs in mind -

features that they feel should be a part of any mathematics classroom.

The Teachers were particularly interested in three customs that they assumed
students would be arriving to class with. The first of these customs is the notion that
the teacher will lecture to the students and show them, often quite explicitly, how to
solve the different types of problems that they will be encountering throughout the
course. The second of these customs was the idea that it is the responsibility of the
teacher to tell the students whether or not their work is correct. The third custom
the teachers were interested in was the belief that, for any given mathematics

problem, there is only one ‘correct’ way to solve it.

Taking these assumptions into account, the Teachers set up three goals for their

students. First, they wanted their students to engage in theoretical thinking; second,
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they wanted to be sure to respect and acknowledge the students’ different
backgrounds and life goals; third, they wanted their students to be able to succeed

at the course in the institutional sense - this is, they wanted them to pass the course.

The Teachers felt that the best way to accomplish these three goals was through the
implementation of a teaching approach that deviated from the ‘institutional’
approach so often seen in mathematics classroom. The teaching approach that was
taken instead focused on learning through problem solving and group discussion.
Implementing a new teaching approach in this way required a renegotiation of the
didactic contract, and to help the Teachers put their new contract in place they
pointedly decided to break from the three customs that they assumed that their

students would be bringing with them to the classroom.

To break from the first custom, the idea that the teachers would lecture on how to
solve different kinds of problems, the Teachers decided to remove lectures (almost)
entirely from their classroom. In doing so they hoped to allow students room to
build on their previous knowledge, and to develop their own strategies for solving
problems instead of imposing any single ‘institutional’ solution method on them.
This was also mostly their mechanism for breaking the third custom, the idea that
any given problem has only a single correct solution. To break from the second
custom, the notion that the teacher will tell the students whether their work is right

or wrong, the Teachers would mostly reply to student inquiries with probing
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questions such as ‘Is there anything that you can do to verify whether your solution

is correct?’ or ‘Does this answer make sense in the context of the problem?’

As Researchers, our job was to evaluate the ‘efficacy’ of the teaching approach as a

means to achieve the goals set up by the Teachers.

The first of the Teachers’ goals was to provide students with opportunities to
engage in theoretical thinking. Based on what we have seen, the discussion-based
approach offered students more opportunities to engage than might be seen in a
traditional mathematics course, particularly in the way of reflective thinking. We
also analyzed some of the in-class activities to look for opportunities that the
students might have had to engage in TT. We began by describing the design of the
activities in terms of fundamental situations as described by Brousseau, and then
used an ‘expected solution’ to look for instances where students might have engaged
in TT. In a few cases, we were able to examine actual student responses to
determine whether or not the students had, in fact, engaged. Based on what we have
seen, we can say that the Teachers were successful in providing the students with

opportunities to engage in TT.

The Teachers’ second goal was to try and respect and acknowledge the different
backgrounds of their students. While we cannot say whether or not the students
themselves felt that their backgrounds and previous knowledge were valued, the

Teachers felt that they did the best they could in this regard. They (the Teachers)
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did not discredit any (valid) solution methods that students used in class, and in
doing so they hoped to show that they valued their previous knowledge. They also
allowed stronger students to take on a sort of ‘mentor’ role in the classroom, and
hope that this made these students feel like their previous knowledge and
experiences were valued. It was, perhaps, a shortcoming of this study that there was
no way to assess whether or not the students felt as though their previous

experiences were valued.

Finally, the Teachers wanted their students to succeed in the ‘institutional sense’.
They wanted them to be able to pass the course, performing (at least) as well as the
students in the other ‘traditional’ sections of the course. In this, we can say that the
Teachers succeeded. The following table compares the distribution of the final

grades from both the discussion-based sections and the ‘traditional’ sections.

0,
Grade Range % of Students

Discussion Based (n=49) Traditional (n=159)
0-49 22.45% 25.79%
50-59 18.37% 13.20%
60-69 8.16% 12.57%
70-79 22.45% 20.75%
80-89 20.40% 18.86%
90-100 8.16% 8.80%

For each grade range, there were no significant differences in proportion found

between the two groups (a = 0.05).
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Following the Teachers’ work with MATH 200 the order of the topics was slightly
rearranged for the Fall 2014 semester, after a set of notes had been created to

replace the textbook.

Future Work

This work opens up many avenues for some interesting future research. Perhaps, as
it was the most inconclusive of the Teachers’ three goals, there could be a study
relating specifically to a discussion-based approach and how it might be used to
expose, value, and build on an adult algebra student’s previous knowledge of

mathematics.

Also, perhaps a more thorough work could be done on providing adult algebra
students with opportunities to engage in TT. Interviewing students while they are
solving problems designed to illicit the different aspects of TT maybe interesting as
they might offer a deeper insight in to the students’ though process. As researchers,
we can only glean so much information from analyzing student responses before we
have to resort to statements such as ‘perhaps they were thinking this..." or ‘they

might have done this because...’

Finally, we wonder how this teaching approach could be further adapted to apply to
more and more mathematics courses. Making the changes necessary to adapt this

approach from one that was acceptable for a proof-based course (with no fixed
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mathematical content to be taught) to one acceptable for a course in algebra (with a
very rigid list of topics that need to be covered) was an interesting process. Now
that these adaptations have been made, perhaps it would be easier to apply this
approach in other courses that have a fixed set of content that needs to be taught. Of
course, it is important to remember that MATH 200 was the lowest-level
mathematics course offered at the university. Adapting the approach for yet another
course would mean having to teach more advanced topics in a similar fashion. This
most likely would mean that to effectively communicate these topics to students
while keeping lecturing to a minimum many other considerations would need to be

taken.
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Appendix A: Course Outline(s)

Original Course Outline

Department of Mathematics & Statistics

Concordia University

Winter 2013

Instructor*®:
Office/Tel No.:

Office Hours:

MATH 200
Fundamental Concepts of Algebra

*Students should get the above information from their instructor during class time. The instructor
is the person to contact should there be any questions about the course.

Course Examiner:

Textbook:

Credit:

Moodle Site:

Office Hours:

Tutorials:

Dr. N. Hardy
Elementary Algebra, 5th Edition, Larson/Hostetler (Brooks Cole).

This is an introductory course in Algebra. Students with credits for any
Concordia Math course will not receive credit for this course.

Information pertaining to your section will be provided by your
instructor. General information pertaining to the course (such as
deadlines for assignments, dates for midterm, alternate, final exam,
quizzes, etc.) will be posted in the Moodle Meta Site of the course.

Your professor will announce her/his office hours during which she/he
also will be available to give a reasonable amount of help. However, if
you missed a class, it is not reasonable to expect your professor to cover
the missed material for you.

The material in this course requires a lot of practice. There is not enough
class time to do all the examples and problems needed to learn the
material thoroughly. The Department has therefore organized special
Tutorials conducted once per week for one hour for every section of this
course to provide additional support to students outside the lecture room
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Math Help Centre:

Assignments:

WeBWork:

Calculators:

Midterm Test:

Final Exam:

environment. Tutorials are conducted by graduate students who will help
with solving problems on the topics learned in class that week, with
particular emphasis on the material that students may have difficulties
with in this course. Students are strongly encouraged to participate and
be active at these problem-solving sessions. They are an important new
resource to help you succeed in this course.

In addition to Tutorial sessions, a Math Help Centre staffed by graduate
students is available. The schedule of its hours of operation and its
location will be posted in the Department.

Students are expected to submit assignments online using WeBWorK
(see below). Late assignments will not be accepted. Working regularly
on the assignments is essential for success in this course. Students are
also strongly encouraged to do as many problems on their own as their
time permits from the list of recommended problems included in this
outline as well as the practice problems in WeBWorK. A solutions
manual for all odd-numbered questions is packaged with the textbook.

Every student will be given access to an online system called
WeBWorkK. The system provides you with many exercises and practice
problems. Students will use this system to do online assignments. In
addition, before the midterm test and a few weeks before the end of the
course, a number of practice problems will be posted in WeBWorK to
help you review the material.

Only calculators approved by the Department are permitted in the class
tests and final examination. The calculators are the Sharp EL 531 and
the Casio FX 300MS, available at the Concordia Bookstore. See
www.mathstat.concordia.ca for more information.

There will be one common midterm test based on the material covered
on chapters 1 to 4, inclusive. It will be held on Sunday February 24,
2013 at 2:00 P.M. Students who will not be able to write the test that
day for a valid reason, e.g. religious or illness (medical note is required),
may write an alternate midterm test on Saturday March 2, 2013 at
10:00 A.M.

NOTE: It is the Department’s policy that tests missed for any reason,
including illness, cannot be made up. If you miss both the midterm and
alternate test because of illness (a medical note is required) the final
exam can count for 90% of your final grade; the remaining 10% will be
determined by the WebWork assignments.

The final examination will be three hours long and will cover all the
material in the course.

NOTE: Students are responsible for finding out the date and time of the
final exam once the schedule is posted by the Examinations Office. Any
conflict or problems with the scheduling of the final exam must be
reported to the Examinations Office, not to your instructor. It is the
Department’s policy and the Examinations Office's policy that students

132



Grading Scheme:
options:

are to be available until the end of the final examinations period.
Conflicts due to travel plans will not be accommodated.

The final grade will be based, in all cases, on the higher of the two

a) 10% for the assignments
25% for the midterm test
65% for the final exam.

b) 10% for the assignments,
10% for the midterm test,
80% for the final exam.

IMPORTANT: THERE IS NO "100% FINAL EXAM" OPTION IN THIS COURSE.

Approximate | Chapters/Topics Sections | Recommended problems
# of Lectures
2 Chapter 1 1.1 9,15,19, 25,29,41, 45, 49, 55, 61, 65
Real Numbers 1.2 15,17,45, 55, 65,77, 79, 83, 85,91, 105
1.3 3,13,25,31,39,41, 45,51, 61,69, 91, 105, 115, 117
14 3,7,15,19, 23,27, 37,45, 51, 65, 75,79, 87,95, 105, 113, 135, 141, 159
1.5 5,13,21,23,49, 71, 73, 109, 115, 121, 127, 137, 149
2 Chapter 2 2.1 Concept check: 1, 3 -- 3, 45, 47, 59, 69, 77, 91, 93, 97
Fundamentals of 2.2 Concept check: 1,2 -- 1, 3,9, 11, 13,43, 59, 79, 85, 89, 97, 123, 129, 151,
Algebra 161
2.3 7,11, 19, 23,25, 55,59, 71, 83
2.4 11, 15,21, 67, 75, 85, 88
3 Chapter 3 3.1 Concept check: 1,2, 3,4 --1,7,27, 35, 65, 69, 75, 83, 91
Linear Equations 32 27,29, 53, 63,77, 83, 85,92
33 Concept check: 1,3 -- 3, 11, 23, 29, 43, 47, 51, 55, 83, 87, 99, 100
34 15, 21,27, 39, 45, 55, 67, 83
3.5 3,11, 31,35,45,72
3.6 9,11, 15, 21, 49, 63, 69, 85
3 Chapter 4 4.1 Concept check: 1, 3, -- 9, 13, 15, 25, 37, 41, 53, 55, 59, 81, 83
Equations & 4.2 1,7,13, 15, 25, 35, 45, 51, 65, 73
Inequalities 4.3 Concept check: 1,2, 3,4 --5,7,17,19, 21, 33, 37, 45, 47, 57, 75, 103, 106
4.4 Concept check: 1, 3,4--5,9, 31, 33, 37, 55,57, 67,73,83, 111, 114, 115
1 Chapter 5 5.1 Concept check: 3 -- 7, 21, 31, 37, 45, 51, 57, 65, 69, 75, 79, 95, 99, 103, 105,
Exponents & 131, 147, 191, 197
Polynomials 5.2 25,29, 33,41, 45, 53,65, 69, 77, 89, 93, 101
4 Chapters 5 & 6 5.3 9,13,23,31,45,65,71,87,101, 109, 135, 136, 137
Factoring 6.1 Concept check: 1, 3 -- 11, 13,29, 51, 65, 67, 83
6.2 Concept check: 1,2, 4 -- 5, 15,21, 25, 41,47, 59
6.3 7,23,31,43,57,65,95,107, 111, 117, 118
6.4 1,11, 23, 31,43,53,71,75, 85,101, 117, 135, 136
6.5 3,7,13,25,31,41,55,61,71,73,75
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Chapter 7 7.1 Concept check: 1,2 -- 1, 3,9, 13, 21, 33, 35,43, 51, 75,110, 114
Rational Expressions 7.2 5, 11, 51, 55, 59, 65, 73, 83, 95
& Equations 7.3 3,7,15,45,51,55,61,73, 88

7.4 1,5,9,13,23,27,35,44

7.5 1,5,9,13,33,39,53,59, 63,73,97, 101, 103
Chapter 8 8.1 1,9,15,17,23,31,47,49, 51, 59, 61, 63
Systems of Linear 8.2 17,37,41,43,73
Equations 8.3 7,17,25,27,43, 47,

8.4 1,3,29,49,57,59,71, 72
Chapter 9 9.1 Concept check: 1,2,4--1,5,13,17,21, 59, 61, 73,77, 95, 105, 109
Roots & Radicals 92 Concept check: 1,2,4--3,9, 13,17, 21, 29, 35, 41, 49, 59, 63, 73, 87, 95,
(Quadratic formula 125,127

9.3 Concept check: 1,2,3,4--9,13,25,51,63,71, 81,95, 101, 115, 123, 137

for solving
quadratic equations)

* For sections taught once a week, 2 lectures correspond to 1 day of class.
* There would be at least 1 lecture dedicated to reviewing for the midterm and at least 1
lecture dedicated to reviewing for the final exam.
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Revised Course Outline

Department of Mathematics & Statistics

Concordia University

Fall 2013

Instructor*®:
Office/Tel No.:

Office Hours:

MATH 200
Fundamental Concepts of Algebra

*Students should get the above information from their instructor during class time. The instructor
is the person to contact should there be any questions about the course.

Course Examiner:

Textbook:

Credit:

Moodle Site:

Office Hours:

Tutorials:

Dr. N. Hardy
Elementary Algebra, 5th Edition, Larson/Hostetler (Brooks Cole).

This is an introductory course in Algebra. Students with credits for any
Concordia Math course will not receive credit for this course.

Information pertaining to your section will be provided by your
instructor. General information pertaining to the course (such as
deadlines for assignments, dates for midterm, alternate, final exam, etc.)
will be posted in the Moodle Meta Site of the course.

Your professor will announce her/his office hours during which she/he
also will be available to give a reasonable amount of help. However, if
you missed a class, it is not reasonable to expect your professor to cover
the missed material for you.

The material in this course requires a lot of practice. There is not enough
class time to do all the examples and problems needed to learn the
material thoroughly. The Department has therefore organized special
Tutorials conducted once per week for one hour for every section of this
course to provide additional support to students outside the lecture room
environment. Tutorials are conducted by graduate students who will help
with solving problems on the topics learned in class that week, with
particular emphasis on the material that students may have difficulties
with in this course. Students are strongly encouraged to participate and
be active at these problem-solving sessions. They are an important new
resource to help you succeed in this course.
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Math Help Centre:

Assignments:

WeBWork:

Calculators:

Midterm Test:

Final Exam:

Grading Scheme:
options:

In addition to Tutorial sessions, a Math Help Centre staffed by graduate
students is available. The schedule of its hours of operation and its
location will be posted in the Department.

Students are expected to submit assignments online using WeBWorK
(see below). Late assignments will not be accepted. Working regularly
on the assignments is essential for success in this course. Students are
also strongly encouraged to do as many problems on their own as their
time permits from the list of recommended problems included in this
outline as well as the practice problems in WeBWorK. A solutions
manual for all odd-numbered questions is packaged with the textbook.

Every student will be given access to an online system called
WeBWorkK. The system provides you with many exercises and practice
problems. Students will use this system to do online assignments. In
addition, before the midterm test and a few weeks before the end of the
course, a number of practice problems will be posted in WeBWorK to
help you review the material. It is still essential that you work on the
recommended problems from the textbook — see below.

Only calculators approved by the Department are permitted in the
midterm test and final examination. The calculators are the Sharp EL
531 and the Casio FX 300MS, available at the Concordia Bookstore. See
www.mathstat.concordia.ca for more information.

There will be one midterm test based on the material covered on chapters
1 to 4, inclusive. It will be held on Sunday February 24, 2013 at 2:00
P.M. Students who will not be able to write the test that day for a valid
reason, e.g. religious or illness (medical note is required), may write an
alternate midterm test on Saturday March 2, 2013 at 10:00 A.M.
NOTE: It is the Department’s policy that tests missed for any reason,
including illness, cannot be made up. If you miss both the midterm and
alternate test because of illness (a medical note is required) the final
exam can count for 90% of your final grade; the remaining 10% will be
determined by the WebWork assignments.

The final examination will be three hours long and will cover all the
material in the course.

NOTE: Students are responsible for finding out the date and time of the
final exam once the schedule is posted by the Examinations Office. Any
conflict or problems with the scheduling of the final exam must be
reported to the Examinations Office, not to your instructor. It is the
Department’s policy and the Examinations Office's policy that students
are to be available until the end of the final examinations period.
Conflicts due to travel plans will not be accommodated.

The final grade will be based, in all cases, on the higher of the two

a) 10% for the assignments
25% for the midterm test
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65% for the final exam.
10% for the assignments,
10% for the midterm test,
80% for the final exam.

IMPORTANT: THERE IS NO "100% FINAL EXAM" OPTION IN THIS COURSE.

Approximate
# of Lectures

Chapters/Topics

Sections

Recommended problems

2 Operations on 1.1 9,15, 19, 25,29,41, 45, 49, 55, 61, 65
Integers and 1.2 17,55, 65,77, 79, 83, 85,91, 105,112, 114
Rational Numbers 1.3 3,13,25,45,51,61, 69,91, 105, 115, 117
14 3,7,15,19, 23,27,37,45, 51, 65,75, 79, 87,95, 105, 113, 159
1.5 33,37, 39,45, 51,59, 69, 75,93, 111, 115, 121, 127, 149
2 Linear Expressions 2.1 Concept check: 1, 3 -- 3,45, 47,59, 69, 77,91, 93, 97, 99
and Problem 2.2 Concept check: 1,2 -- 1, 3,9, 11, 13, 43,59, 79, 85, 89, 97, 123, 129, 151,
Solving 161
2.3 7,11, 19, 23, 25, 55,59, 71, 83, 85
2.4 11, 15,21, 67, 75, 85, 88
4 Linear Equations 3.1 Concept check: 1,2,3,4--1,7,27, 35, 65, 69, 75, 83,91
and Graphing 32 27,29, 53, 63,77, 83, 85,92
33 Concept check: 1,3 -- 3, 11, 23, 29, 43, 47, 51, 55, 83, 87, 99, 100
34 15, 21,27, 39, 45, 55, 67, 83
3.5 3,11,31,35,45,72
4.1 Concept check: 1, 3, -- 9, 13, 15, 25, 37, 41, 53, 55, 59, 81, 83
4.3 Concept check: 1,2, 3,4 --5,7,17, 19, 21, 33, 37, 45, 47, 57, 75, 103, 106
4.4 Concept check: 1, 3, 4--5,9, 31, 33, 37, 55, 57, 67,73, 83, 111, 114, 115
3 Systems of Linear 4.2 1,5, 11, 15, 25, 35,45, 51, 65,71, 73
Equations 8.1 1,9,15,17,23,31,47,49, 51, 59, 61, 63
8.2 17,37,41,43,73
8.3 7,17,25,27,43,47, 67
8.4 1,3,29,49,57,59,71,72
2 Linear Inequalities 3.6 Concept check: 3 --9, 11, 15, 21, 49, 63, 69, 85
5 Exponents, 1.5 5,13,21,23,49,71, 73, 137
Polynomial 5.2 25,29, 33,41, 45, 53,65, 69, 77, 89, 93, 101
Expressions and 53 9,13,23,31,45,65,71,87,101, 109, 135, 136, 137
Equations 6.1 Concept check: 1,3 -- 11, 13, 29, 51, 65, 67, 83
6.2 Concept check: 1,2,4 -- 5,15, 21,25,41,47,59,79
6.3 Concept check: 2, 3 -- 7, 23, 31, 43, 57, 65,95, 107, 111, 117, 118
6.4 1,11, 23,31,43,53,71,75, 85,101, 117, 135, 136
6.5 Concept check: 3,4 -- 3,7, 13, 25, 31, 41, 55, 61, 71, 73,75
3 Rational Expressions | 5.1 Concept check: 3 -- 7, 21, 31, 37, 45, 51, 57, 65, 69, 75, 79, 95, 99, 103, 105,
& Equations 131, 147, 191, 197
7.1 Concept check: 1,2 --1,3,9, 13,21, 33, 35,43, 51,75, 110, 114
7.2 5,11,51,55,59, 65,73, 83,95
7.3 3,7,15,45,51,55,61,73, 88
7.4 1,5,9,13,23,27,35,44
7.5 1,5,9, 13, 33, 39, 53, 59, 63, 73,97, 101, 103
2 Radicals and 9.1 Concept check: 1,2,4 -- 1,5, 13,17, 21, 59, 61, 73, 77, 95, 105, 109
Rational Exponents 9.2 Concept check: 1, 2, 4 -- 3, 9, 13, 17, 21, 29, 35, 41, 49, 59, 63, 73, 87, 95,
125, 127
9.3 Concept check: 1,2,3,4--9,13, 25,51, 63,71, 81,95, 101, 115, 123, 137,
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139, 140

* For sections taught once a week, 2 lectures correspond to 1 day of class.
* There would be at least 1 lecture dedicated to reviewing for the midterm and at least 1
lecture dedicated to reviewing for the final exam.
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Appendix B: MATH 200 Activities

Institutional Problems

Direct Computation

In-Class Problems

Evaluate the following algebraic expressions:
a. a2-3fora=1,fora=4,and fora=-2
b. (a-3)%*fora=1,fora=4,andfora=-2

x%+6

C. forx=2,forx=-1,and forx =%

Distribute and combine like terms:
5(x-3)+4(1+x)
S5x-y)+4(y+x)

x(8-2)+2(x-3)
2x(x-1) +x(2 -x)
X(y-x) +y(x+x)-2x+2y
Evaluate |3x2 — y| forx=3 and y = -2.
Distribute and combine like terms:
a. (5x-2)(x+4)-3x
b. x%(x-1)+ 2x(3 - 2x)
Solve for x the following linear equations:
a3x—2=5
b.x+1=1
What is the 50% of 407
What is the 50% of 507
What is the 20% of 507
What is the 25% of 667

Write a linear expression that represents that when x = 4 then y = 2/3, and the rate
of change is 5. (We can also say that the point (4, 2/3) belongs to the line with slope
5.
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Solve the system: x +y =4, 3x +y = 6.

Graph the two equations in problem 6 (above) in a Cartesian plane; what point
represents the solution to the system?

Problem 1. Factor completely.

x?2-16 x2-3x+9 X3 + 4x? + 4x X3+ 2x% - (x+2)
xt-1 X0 -3x¥-x+3

Problem 2. For each of the expressions in problem 1, solve the correspondent
homogeneous equation (the expression equal zero).

Problem 3. Solve the following equations

a. x2+3x+2=0

Problem 4. Factor completely:
x3-1 x3-8 x3+8 3x3 + 3x?% + 3x x4-9 x*+9
x?+3x-18 5x% - 4x -2

Problem 5. For each of the expressions above, solve the corresponding
homogeneous equation

Problem 6. Solve

4
x+ 3

=X

=x+3

K|

X2+3x-4=0
Problem 7. Solve

x(x+1
xx+)_,
x—1
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1. Write as a simple fraction in lowest terms.
2

2 2 2 1
2 1 2 2 2,1
3 3 x 32
a.i b.Ez C'Z- d.;j e.—z—
7 5 3 4
7
142
Z
+3
1,1
x+1 'y 1, x%+1 . 15x+21 x2+2x
— h. =2 L=+ j-
14= 3 x = 9x+15 xZ—x
x x
1,3
x2-11x+28 x7 Zataz
—— m—-——-— ns—z¢
X2+42x-24 x245x-50 —=
3a a2

2. Solve the homogeneous equations corresponding to items d, g, j, k, ] and m in
problem 1.

3. Solve the following equations:

3 4 4 1 7 1 4 7 x—-1 x%4+8x+6
a—=— bh.—+—=—+= c-+—= =
2b-1  3b 3bp 6b 2b 3 3 x—-4 3x-12 x243x—4
3 2
x—1 x+4 5
6 5 3 2 4 x3+8 1
. _— f.—— =-2 . =x h.x3 4+ 20 — -
z2—-1 z—1 z+1 x-1 x2-1 x2+2 x
-7x—-1
X
Tutorial Problems
aZ

Evaluate 2—_4 fora =2, for a =-3 and for a = 4.
a“—-8a+16

Use the distributive property and combine like terms:

a. —(6u+12y-13u)
b. 18a- (6 +9a)
c. (5y-6)-(11y+8)
d. 3a+4b-7a+3(a- 2b);thenevaluatefora=2andb=5
e. (5x-2x?)(x-1)
Solve for z

a. 3z+1=3z-1
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b. 3(z+1)-2z+3=2+6
c. 3z+1=2z

Graph the linear expression y = -4x + 2; in your graph, the points should represent
the relation between the independent variable x and the dependent variable y.

In the expression y = -4x + 2, what is the value of y associated with the x-value -2 ?

In the expression y = -4x + 2, what is the value of x associated with the y-value 0 ?
And with the y-value 3 ?

Solve the following systems of linear equations:

a. 3x-3y=-2
6x -6y =4

b. x+y=1
-Xx-y=-1

c. 2y=6x+4
3x-y+2=0

Solve the following inequalities (present your answer graphically and in interval
notation):

a. -x+2(x-1)<4
b. -4x>-1

c. |x+1]>0

d. |2x-3|<5

Graph the following inequalities:

a. x+y<0
b. 2x-y+4>1

Graph the following system of inequalities:
X+y>0
y-x<1

X<2

Consider the inequality 5x + 2 > 7x - 1.
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a. Write the solution in interval notation.
b. Graph the inequality.

The inequality | 2x + 1 | > 1. Has solution (oo, a) U (b, o). What are the values of a
and b?

Use the rules of exponents to “simplify” the notation; for the constants, “simplify” so
that they don’t have common factors.

(2xy)3x2
2y

a.

b. (3xy?)*x?
6a%(ab)b*

2(3ab)3ab?

Factor completely.

x2-16 x2-3x+9 X3+ 4x%x2 + 4x
X3+ 2x% - (x+2) x¥-1 x°-3x*-x+3

For each of the expressions in problem 1 (above), solve the correspondent
homogeneous equation (the expression equal zero).

Solve the following equations
a. x2+3x+2=0

x® +x
x+1

1. Write as a rational expression in lowest terms

1 1 1 1 x3—4x
a—+—+1 b. + C.—/———
x+2  x-2 2x—2 2x+2 x3+x2—x
XZ—ZX E
X+2 Cc c
d 75 Ca m O
x+2 b n b n
ar
ga_m
b n

2. Solve the homogeneous equations corresponding to items a. to d. above
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1. Write as a single fraction, rationalize, and write in lowest terms - when
applicable.

a—— b.3——= V2

N Vs ¢z

2. V2 +/18 can be written as av2 . What is the value of a?

3. V18x + 3V8x can be written as avbx . What are the values of a and b?

4. Solve the following equations

a.x2 =25 b.vVx =5 c.Vx—-5=2 dvVx+5=2
eVvx+1=2 fVx+2=V2x gVx—V2x+1=0
hvx+9=x+4

Word Problems

In-Class Problems

Maria had d dollars to invest. She split the money into two accounts. In one of the
accounts, she invested $3000. Write the algebraic expression that represents how
much she invested in the other account.

A wire with total length (5x + 4.6) metres is cut into two pieces such that one piece
measures (3x - 2.5) metres. Write an expression that represents the length of the
other piece. What is the result of this other piece if x = 4.5?

A single serving of cereal contains 13 grams of fat. Of this, 2 grams are saturated fat.
What percentage of fat grams is saturated fat in a single serving of cereal? Do you

know how the label in the package would read?

In a recent poll, it was found that out of 1200 adult men, 725 don’t like basketball.
What is the percentage of adult men that don’t like basketball?

How long will it take Steven to drive 365 km if his average speed is 117 km/h?
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Consider the figure below. Find its area and its perimeter.

5u

7u

Suppose the line y = 0.75x represents cost per unit. What is the cost of 10 units?
How many units cost $10?

Tutorial Problems

The record high temperature in Fort Yukon was 100°F recorded in 1915. The record
low was -80°F in 1971. What is the difference between these two records?

In an algebra test, 5 points were awarded for each correct multiple-choice question
and 8 points for each correct free-response question. A student got 11 multiple-
choice questions correct and 4 free-response questions correct. What was the
student’s test score?

James owns Maria $100 and Maria owns James $50. Also, Paul owns James $70 and
James owns Carl $30. When James pays what he borrowed and collects what he lent,
how much money would he have?

In 2010, first-class postage for a standard postcard was $0.28. At this price, how
much would it cost to mail 9 postcards?

A serving of soup of brand K contains 1.5 grams of fat. If a can contains 2.5 servings,
how many total grams of fat are in the can?

A rectangle has width one less than twice its length. Write an algebraic expression
that represent the perimeter of the rectangle and an algebraic expression that
represents the area of the rectangle, both in terms of the length.

At a certain museum, tickets for adults cost $25, tickets for seniors cost $15, and
tickets for children under 17 cost $13. Write an expression that gives the revenue
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for each day. If Mondays there’s a 50% discount, what the revenue expression for
those days would be?

The sum of three consecutive integers is 66. Find the largest of the three.
The sum of three consecutive odd integers is 39. Find the three integers.

An 80cm wire is cut into two pieces so that one piece is four times as long as the
other. Find the length of each piece.

Peter works two jobs, one as a waiter that pays $9.50 per hour and one as a music
teacher that pays $14 per hour. Last week he worked 35 hours and his salary after
12% deductions, was $352. How many hours did he work each job?

How much principal did I invest in my account that pays simple interest 2% if at the
end of the year I had $2,550 in the account?

A taxicab charges a flat rate of $4.15 plus $0.12 per km.

a. Write a linear expression in which the independent variable is the
number of km driven and the dependent variable is the cost of the ride.
How much will it cost you to ride 10km?

If at the end of a ride you have to pay $10, who many km was the ride?
Graph the expression in a Cartesian plane.

© a0 o

If you are 35km from the airport and taking the bus will cost you $8, what
is less expensive, the bus or the taxicab? How can you “see” the answer in
the graph?

You are going on a trip to the US and want a plan to use your cell phone there.
There’s a package in which you pay $10 so that calls will cost you $0.35 per minute
(no, the $10 don’t include any minutes - you pay for the right of paying $0.35 per
minute; yes, this is how these packages typically work). If you don’t take any
package, your calls will cost $0.55 per minute.

a. Write a linear expression that gives you cost in terms of minutes for the
package and another linear expression that gives you cost in terms of
minutes for the case of not buying any package.

b. What is more convenient? Clearly explain (at least to yourself!) how you
assess which one is more convenient.

c. Graph both expressions in the same Cartesian plane. Can you “see” which
one is more convenient?
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Goal-Oriented Problems

Conceptual — Abstract

In-Class Problems

Let a be a number; explain the meaning of |a|. Is —a positive or negative? Is |a|
positive or negative?

When is the sum of a positive integer and a negative integer a positive integer?
Explain.

[s it possible that the difference of two negative integers is a positive integer?
Explain.

Explain why the product of an even integer and any other integer is even. What
conclusions can you make about the product of two odd integers?

An integer n is divided by 2 and the quotient is an even integer. What does this tell
you about n?

Consider the following statement (it is a theorem): Let a be a number, if no prime
number less than va divides a, then a is prime. Convince yourself that it is true...
convince someone else that it is true?

Are the following statements true or false? Explain your choices.

- “The reciprocal of every nonzero rational number is a rational number”

- “The reciprocal of every nonzero integer is an integer”

- “The product of two positive rational numbers is greater than either factor.”

What is the additive inverse of a? What is the multiplicative inverse of a? (The
multiplicative inverse is also called “reciprocal”).

Express symbolically:

a. 5 times a number

b. The square of a number

C. The square of a number, increased by 7
d. Three less than five times a number

e. Twice the sum of two numbers
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What is the price of purchasing x many apps if each app costs $0.99?

What number do you have to add to x to get 0?
What number do you have to divide x by to get 1?7

What number do you have to subtract from 3x to get 07
What number do you have to multiply -5x by to get 1?
These are not linear equations: 3x? +4x=1;3x+1; x% =7 ; Why not?

These are linear equations: 3x - 2 = -5x; xTH =7; %x +7=4x — xT_l ; Why?

What is the 50% of A?

What is the 25% of A?

What is the 23% of A?

What does it mean that the slope of a given line is 0?7

What is the relation between the slopes of two lines that are parallel?

[t is important that you know that if two lines are perpendicular, the slope of one is
the negative multiplicative inverse of the other. So if a line has slope m, what is the
slope of a line perpendicular to it?

What are the y-intercept and x-intercept of the line y = mx + b?

Lines with a vertical representation in a Cartesian plane cannot be written in the
form y = mx + b. Why not? What would be a linear expression representing a vertical
line?

What does it mean, in terms of rate of change, that a line has slope 0?

Thinking about problem 7(*), what are the possible solutions to a system of two
linear equations in two variables?

(*) 6. Solve the system: x+y =4, 3x +y = 6.

7. Graph the two equations in problem 6 in a Cartesian plane; what point represents
the solution to the system?
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Tutorial Problems

Leta<0and b > 0, is a - b always negative? Is a + b always positive?
Order of operations: explain in a brief paragraph the order of operations.
[s 2x2 + 4x% = 6x2 7

[s (2x%)(4x2) = 8x*?

In the expression y = -4x + 2, what is the y-value associated with the x-value a ? and
what is the x-value associated with the y-value b ?

In the expression y = -4x + 2 it is easy to find the value of y for any given value of x;
solve for x to find an expression in which it is easy to find the value of x for any given
value of y.

Are the following identities true?
a. (x-1)(x+1)=x2-1

x+1 _ 1
(x+1)(x+2) - (x+2)

(x?2+1)2
x2+1

x2+1

Conceptual — Concrete

In-Class Problems

How many numbers are 3 units away from 0 on the number line? Explain.
Which real number lies farther from -4 on the real number line, 3 or -10? Explain.
Propose an argument to justify that 6 subtracted from 10 is 4.

Propose an argument to justify that 10 subtracted from 6 is -4.
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Do you remember the column algorithm for multiplication? Try it with a few
numbers, explain how it works, and propose an argument to explain why it works.

Propose an argument to justify that 2 divided by 4 is 0.5 and 2 divided by 3 is
0.66666...

Propose an argument to justify that 3 divided by 2 is 1.5.

Does>+2>=22 = 17 Explain your answer.
3 2  3+2
[s the following statement correct? If not, how would you fix it?
5-(4-2)
=5-4-2
=5-6
=-1

(Follow up)

We agreed in class that the answer should be 3 (and not -1). We discussed two ways
of looking at this:

5-(4-2)=5-2=3,0r
5-(4-2)=5-4+2=1+2=3

Why do we have to change the - sign in front of 2 by a + sign when removing the
parentheses?

What number do you have to multiply x by to get 07
What number do you have to multiply x by to get 1?

We stated that in an expression such as 3x + 1, x is called a variable; it can take the
value of any integer and for each value it takes, 3x + 1 represents a different value.
In an expression such as 3x + 1 = 2, x is called an unknown; we can solve for x
(which means to find the actual value of that unknown) - in this case, x = 1/3. We
will focus now on expressions such as 3x + 1 (a linear algebraic expression). We will
see that in many situations, we are interested in representing all the possible values
that an expression such as 3x + 1 can take. What are the possible values that 3x + 1
can take?

In referring to the points in the line, we mean the pair of points (x, y) that satisfy
that y depends on x. For example, if we consider the line y = 2x + 3, the points (0, 3)
and (1, 5) are in the line but the points (0, 1) and (5, 1) are not in the line. Give two
other examples of points in this line and two other examples of points that are not in
this line.
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Given the equation y = -2x + 1/3, give examples of solutions and of non-solutions.

Write a linear equation in two variables such that (1, -4) is a solution but (3, 2) is

not.

Tutorial Problems

Do the following operations:

a.3-(-2+5)
b.-3-2+5
c.3+(-2-5)
d.-3+(-2-5)
c.-3-(-2-5)

How can you check that your answers are correct?

Explain how the column algorithm for addition works. Explain it in the case of
adding 234 and 907. Propose other strategies for doing the addition.

1.

me a0 o

g.

Write in symbols:

5 more than the difference of 2 and 7

Two-thirds subtracted from 5/9

8 subtracted from 5, decreased by 3

Three times the sum of 10 and 4

The difference of 2 and the product of 8 and 15

3 increased by 15, times 4

The difference of 5 and 9, divided by the difference of 10 and 4

Perform each calculation.

Write an inequality that has for solution the interval [a, b], where a and b are the
values you found above. (*)

* The inequality | 2x + 1 | > 1. Has solution (oo, a) U (b, c0). What are the values of a

and b?

“Guess” the solutions of the following equations (don’t do any calculations, except
checking that your guesses are correct). If there are no solutions, justify why not.

a.
b.

x2=0 (there’s only one solution)
x2-1=0 (there are two solutions)
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c. xX2+1=0 (there are no solutions)

d x3-x=0 (there are three solutions)
e. x3+1=0 (there’s only one solution)
f.

x(x-1)2=0 (there are two solutions; what's the coefficient of x3? What's
the coefficient of x2, of x, of x0?

Multiple Methods

In-Class Problems

Propose three different strategies for mentally adding 16 and 17. Clearly explain
what the strategies are.

Propose two different strategies for adding 151 and 23 without using the calculator.
Do the same for subtracting 23 from 151.

Calculate (can you try by hand first?)
32 divided by 8

32 divided by 4 (can you use what you find in a.?)
320 divided by 8 (can you use what you find in a.?)
320000 divided by 8

325 divided by 3

401 divided by 34

In each case, propose at least two strategies to verify your answer (one could be
using the calculator).

™ e a0 T

Each integer has a unique representation as an integer, for example, 2, as an integer,
can be represented by the symbol 2 and nothing else. However, rational numbers
have many representations and this, among other properties, makes them
complicated objects. For example, 2, as a rational number, can be represented by the
symbols 2, 4/2, 8/4, etc. These symbols are called ‘fractions’.

a. Two different fractions that represent the same rational number are said to
be equivalent. For example, 2 and 4/2 are equivalent fractions because both
represent the same rational number. How can you check whether two fractions are
equivalent? For example, are 2/5 and 12 /30 equivalent? Propose two different
strategies for verifying this (at this point, consider exercise 16!) - explain why the
strategies work (that is, why the strategies accomplished what you are trying to do).

Perform the following operations: (try by hand first!)
a. 0.24+1.1-3.2
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b. 0.24x2.7

In each case, propose at least two strategies to verify your answer (one could be
using the calculator).

Calculate (try these by hand - without the calculator):
a. 4-3+7-19+8

b. -1+1-1+1-1

C. 3(4+7)-2(10x21) + (-4)

In each case, propose at least two strategies to verify your answer (one could be
using the calculator).

Calculate (try these by hand - without the calculator):
d. 4-3+7-19+8 It was said in class that the answer is: -2. Is it correct?

e. 1+1-1+1-1 It was said in class that the answer is: -1. Is it correct?
f. 3(4+7)-2(10x21) + (-4) Itwas said in class that the answer is: -391. [s it
correct?

In each case, propose at least two strategies to verify your answer (one could be
using the calculator).

Calculate 5(2 - 3) +4(1 + 7).

Do it in two different forms: 1. first calculate the operations between parentheses
and then continue; and 2. first calculate the products and then continue.

Give examples of linear equations in one unknown of the three possible types (1 sol,
none, inf. many)

Tutorial Problems

Propose two different strategies for adding 151 and 23 without using the calculator.
Do the same for subtracting 23 from 151.

Explain how the column algorithm for addition works. Explain it in the case of
adding 234 and 907. Propose other strategies for doing the addition.

Perform the following calculations (try without the calculator, by hand, in two
different ‘efficient’ ways, then use the calculator to verify your answers)
-3 2
d. ? + 5(2 - g)
-3 2
b. - = 5(-2+ 5)

3

¢ 2+5(2-2)
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Symbol Manipulation

In-Class Problems

Simplify the following expression as much as possible:

axcx*b
c*xa

d*xbxa
cxd

Perform the following operation:

Q
*
o

S
U

*

S

Solve for x in the following linear equations

a. x+2a=3x
b. —5x + 10p = 5q (Solve also for p and then solve for g.)

Solve for x, for p and for W:

2-p
2x—T=5W+1

Solve for W:
a. R=W+3wW

b. R=W+PW

Tutorial Problems

Solve for p, then for q and finally for r:
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p=2q+2r

Solve for x, then for y and finally for z:

z—2 1+ 5
—3x+4 =~ 3-2

Different Representations

In-Class Problems

A prime number is a positive integer that is (wholly) divisible only by itself and by 1.
Each integer can be represented as the product of its prime factors. Represent 8, 10,
21, and 210 as a product of prime factors.

Each integer has a unique representation as an integer, for example, 2, as an integer,
can be represented by the symbol 2 and nothing else. However, rational numbers
have many representations and this, among other properties, makes them
complicated objects. For example, 2, as a rational number, can be represented by the
symbols 2, 4/2, 8/4, etc. These symbols are called ‘fractions’.

b. Give three different fractional representations of the rational number 3.
C. Give three different fractional representations of the rational number %.
d. Give three different fractional representations of the rational number -4 /3.

Decimal expansions are another form of representing rational numbers.
Represent %2 and -4/3 with decimal expansion. Is 1.23234234523456... a rational
number?

The following table represents the quantity of shoes that consumers would demand
at each given price. Do the values correspond to a linear expression? If yes, write the
linear expression in the form y = mx + b. What is the slope? (It is negative, why??)

P | Q (in thousands
$140 0
$120 5
$100 10
$80 15

155



$60 20
$40 25
$20 30
$0 35

Write the equation y = 3x + 1 in the form ay + bx = c.

Write the equation 2y - 5x = 1 in the form y = mx + b.

Individualized Activities

Activity 1

Question:

Is it true that if |b| > |a|,thena — b < 0?
Answer:

Yes, this is true. Since |b| > |a|, b is farther away from 0 than a on the number
line, therefore when you subtract b from a the result is a negative number.

* Isthe answer above correct or incorrect? Explain your reasoning.

e Ifthe answer above is incorrect, can you change the wording of the
question (or add something to the question) so that the given answer
is correct?

Activity 2

Consider the following rational algebraic expression:

t-2

3t+3

Now consider the following statement:

We can evaluate this expression by replacing t with any real number.

¢ Isthe statement above correct? Why, or why not? Explain your
answer.
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* (Canyou add something to the expression so that ¢t has one (and only
one) possible value?

Activity 3
Steven is very smart. He attempted to solve a linear equation and wrote all of his

work below for you to look at. Examine every step. If the work is correct, explain
what is being done. If the work is incorrect, fix it!

(x+z)<$>—3(x+2)=7

4—-3x+2=7
6—3x=7
6—-6—3x=7—-6

—3x=1

Activity 4
Two students were asked to solve the following linear equation:
4x+8=2(5—x)

One of these students did some calculations and arrived to —1 = —3x, to then find
thatx=1/3.

The other student approached the problem in a different way and arrived to 6x = 2,
to then find that x = 2/6.
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1) Can we say that —1 = —3x and 6x = 2 are different representations of the
same equation? Explain your answer.

2) Try and replicate these students’ work. What are the possible steps that they
could have taken to arrive at their respective answers?

3) Discuss which method, in your opinion, is more efficient. The first method,
the second method, or some other method entirely? Explain your answer.
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Appendix C: Beginning-of-Semester Questionnaire

Name, Last Name:
Circle your age range: 18-20 21-25 26-30 More than 31

Partl

Why are you taking this course?

Have you ever taken an algebra course before? If so, when and at what level (high
school, university, etc.)?

What program are you in and/or what program are you working towards?

Are you taking this class as an elective or as a requirement for your program?

In a few words, explain what your expectations about this course are:

Do you like mathematics? Circle one: YES NO

Please, in a few words, explain why you like (don’t like) mathematics and what is it
about mathematics that you like (don’t like).

When you solve a math problem,
a. Do you always check whether your answer is correct?

b. How do you know if you answer is correct?
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Part Il
1) (Do not use your calculator.) Evaluate the following expressions:

a. 13— (5-12)+4

How do you know/What can you do to know that your answer is correct?

How do you know/What can you do to know that your answer is correct?

c. 52+03-34x2

How do you know/What can you do to know that your answer is correct?

2) Consider the statement “if x < 2, then -x < -2". Is it a true or a false statement?
How do you know your answer is correct?
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3) If you're working a job that pays you $12 and hour, and your boss decides to give
you a 14% raise, what is your new hourly wage? Show and justify all your work.

How do you know/What can you do to know that your answer is correct?

4) A cab driver charges a flat rate of $4.00 plus an extra $1.75 for every kilometer
driven. If your cab ride cost you $37.25, how many kilometers did you travel? Show
and justify all your work.

How do you know/What can you do to know that your answer is correct?
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