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ABSTRACT 

 

Forecasting Indoor Environment using Ensemble-based Data Assimilation Algorithms 

 

Cheng-Chun, Lin, Ph.D. 

Concordia University, 2014 

 

Forecasting simulations of building environment have attracted growing interests since more and 

more applications have been explored. Occupant’s thermal comfort, safety and energy efficiency 

are reported to directly benefit from accurate predicted building physical conditions. Among all 

available research regarding forecasting indoor environment, there are substantially fewer studies 

relating to occupant safety and emergency forecasting and response than that of comfort and 

energy savings. This may due to the nature that the forecasting simulations associated with life 

safety concerns demand higher accuracy. Although the tasks of forecasting potential threats in 

the indoor environment are especially challenging, the benefits can be significant. For example, 

toxic contaminants such as carbon monoxide from fire smoke can be monitored and removed 

before the concentration reaches a harmful level. The sudden release of hazardous gases or the 

smoke generated from an accidental fire can also be detected and analyzed. Then, based on the 

results of forecasting simulations, the building control system can provide an efficient evacuation 

plan for all occupants in the building. However, by using traditional simulation tools that utilize 

one set of initial inputs to forecast future physical states, the predicted physical conditions may 

depart from reality as the simulation progresses over time. 
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In this thesis, forecasting simulations of building safety management are improved by applying 

the theory of data assimilation where the simulation results are aided by the sensor 

measurements. Instead of studying methods that require high computational resources, this 

research focuses on affordable approaches, ensemble-based algorithms, to forecast indoor 

environment to solve various safety problems including forecasting indoor contaminant and 

smoke transport. The resulting models are able to provide predictions with noticeable accuracy 

by only using affordable computer resources such as a regular PC. Finally, a scaled compartment 

fire experiment is conducted to verify the real-time predictability of the model. The results 

indicate that the proposed method is able to forecast real-time fire smoke transport with 

significant lead time. Overall, the method of Ensemble Kalman Filter (EnKF) is efficient to 

apply to forecasting indoor contaminant and smoke transport problems. In the end of this thesis, 

suggestions are summarized to help those who would like to apply EnKF to solve other building 

simulation problems. 
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Chapter 1 Introduction 

 

1.1 General statement of the problem 

The goal of building design is to create a safe, healthy and comfortable environment for the 

occupants. In order to achieve this goal, the most common threats to be avoided are occupational 

injuries and illnesses, contact with hazardous materials, and indoor air quality problems, and 

accidental falls that may directly cause safety concerns. Most of these potential problems would 

be possibly mitigated or eliminated if the details of building environment are accurately 

predicted. For example, toxic contaminants such as volatile organic compounds (VOCs) can be 

monitored and removed before the concentration reaches a harmful level. The sudden release of 

hazardous gases or the smoke generated from an accidental fire can also be detected and 

analyzed. Then, based on the results of forecasting simulations, the building control system can 

provide an efficient evacuation plan for all occupants in the building. However, forecasting 

building indoor environment is always a difficult task because ambient conditions, such as 

temperature, air velocity and environmental heat gain, change rapidly over time. In addition, 

occupants’ activities, such as opening doors and windows and using electrical appliances, create 

more uncertainties and make the task even more challenging. 

By using traditional simulation tools that utilize one set of initial inputs to forecast future 

physical states, the predicted physical conditions may depart from reality as the simulation 

progresses over time. Many new studies have shown different approaches to improving model 

predictability in indoor environments, with many of them suggesting the use of sensor integrated 

simulations (Koo et al. 2010 and Gadgil et al. 2008). By using measurement data from various 

sensors, the forecasting simulations can maintain a reasonable accuracy range by rapidly 
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updating model states and parameters. Although using measurements to improve model 

predictability can be as simple as utilizing sensor observations as inputs for simulation models to 

forecast future states, there are still a lot of other variables that must be taken into consideration, 

including the estimation of the uncertainties of measurements and the limitations of simulation 

model assumptions. Among the efforts to overcome the problems in forecasting indoor 

environments, this research tries to apply the method of data assimilation, which was originally 

widely used to solve weather forecasting problems. A detailed formulation of applying data 

assimilation to forecast indoor environments will be included in this thesis. 

 

1.2 Forecasting indoor environment using data assimilation 

Before the invention of numerical weather prediction technology in the last century, weather 

forecasting was based solely on local observation, a system whose accuracy was not satisfactory. 

Since the implementation of country-wide automated weather stations, the accuracy of weather 

predictions has significantly improved. The concept of numerical weather prediction is rather 

straightforward, involving the use of all available information (i.e., measurements) to produce 

the most accurate prediction possible (Navon, 2009).  

A similar scenario is currently occurring within the field of building environment. With the 

increasing use of indoor sensors, more and more sensor measurement applications are being 

explored to improve building environments. The most significant benefit may come from 

improving building control strategies by using more accurate building simulation results. For 

example, based on the theory of model predictive control (MPC), by using forecasted future 

states of room air as a reference for adjusting system control parameters, these advanced control 

methods are able to achieve a comfortable indoor environment at reduced energy costs (Morari et 
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al., 1999; Fux et al., 2014). 

By using measurement data to assist simulations of indoor environment, it is necessary to 

consider the uncertainties of simulation models and sensor measurements. The theories of data 

assimilation (DA) were developed for this purpose, but some DA algorithms were originally 

designed for weather forecasting and, therefore, may not be directly applied to other types of 

problems. This is due to the number of model parameters and available measurements are very 

different. In this research, we selected ensemble-based algorithms, which are especially suitable 

for low-dimensional systems (models with low number of model parameters), to forecast indoor 

environment. The following section includes a brief introduction to data assimilation, and further 

details are provided in Chapters 2 and 3.    

 

1.2.1 Development of data assimilation 

The primary goal of forecasting simulations is to efficiently and accurately predict future 

physical conditions. In order to find optimal state variables, data assimilation provides various 

algorithms for parameter estimation while also taking into account uncertainties of both 

measurements and numerical predictions. In general, the analysis scheme of data assimilation 

requires three basic components: a discrete-time model for numerical prediction, a set of 

observations from direct or indirect measurements, and a data assimilation scheme (Robinson, 

2000). As illustrated by Fig. 1.1, by performing an analysis cycle that combines current and 

sometimes previous observation data with numerical forecast data, the future state of the model 

is predicted.  



 

4 

 

 

Fig. 1.1 Concept of data assimilation 

For example, when the result of the numerical model and experimental measurement do not 

agree with each other, an optimum estimated value needs to be determined between the two by 

using linear analysis. Assume the measurement value is x
o
 and the predicted value from the 

numerical model is x
f
. The respective variances from statistical analysis, or mean squared errors, 

are 𝜎𝑓
2 and 𝜎𝑜

2. Then, an optimum value can be estimated based on optimal interpolation (OI). 

 𝑥𝑎 = 𝑥𝑓 + 𝛼(𝑥𝑜 − 𝑥𝑓) (1.1) 

By assuming the errors from the measurements and numerical model are un-correlated, the 

weighted factor, 𝛼, can be presented as 

 
𝛼 =

𝜎𝑓
2

𝜎𝑓
2 + 𝜎𝑜

2
 (1.2) 

Although this method is efficient for simple problems, it cannot be applied to dynamic systems 

because it does not take time into account. 

In 1960, a pioneering study of data assimilation theory was developed by R.E. Kalman. The 

Kalman Filter provides a recursive solution for finding the best possible estimation of the true 

state. Instead of finding an optimal estimation for one value, as did the previous example using 

OI, the Kalman Filter can be applied to a dynamic model that evolves over time. In general, the 

numerical operation of the Kalman Filter consists of two main steps 1) Forecasting Step: a 

forecasting step uses a discrete-time model to predict the future state of interest. In the Kalman 

Filter, a linear stochastic model is used to predict the future state 
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 𝑥𝑘
𝑓

= 𝐀𝑥𝑘−1 + 𝐁𝑢𝑘−1 + 𝑤𝑘−1 (1.3) 

where the matrix A relates the model state from time step k-1 to k, the matrix B is the control-

input variable that relates the control vector u (e.g., it can be initial and boundary condition 

variables or other important physical parameters to the problem of interest) to the model state x, 

and w is a random white noise. The measurements corresponding to the model state can be 

expressed as 

 𝑦𝑘 = 𝐇𝑥𝑘 + 𝑣𝑘 (1.4) 

where the matrix H is an observation operator that relates the model states x to the measurement 

y, and v is the observation noise. For example, when measurement does not fall exactly on the 

grid point of a simulation model, H can be a linear weighted factor to find the forecasted 

measurement in the model space. 

(2) Analysis Step: an analysis step uses direct and/or indirect measurements to correct the 

predicted value from the forecasting step. An optimum value,𝑥𝑘
𝑎 can be estimated based on Best 

Linear Un-biased Estimation (BLUE) as 

 𝑥𝑘
𝑎 = 𝑥𝑘

𝑓
+ 𝐊𝑘(𝑦𝑘 − 𝐇𝑥𝑘

𝑓
) (1.5) 

where 

 
𝐊𝑘 =

𝐏𝑘𝐇𝑇

𝐇𝐏𝑘𝐇𝑇 + 𝐑
 (1.6) 

Eq. (1.5) is the original format of the Kalman Filter, which attempts to find a weighted factor, so-

called Kalman gain, Kk, which determines optimal states by considering both numerical model 

and measurements. Pk is the simulation error covariance, and R is the expected measurement 

error or the covariance of vk from Eq. (1.4). The term (𝑦𝑘 − 𝐇𝑥𝑘
𝑓

) is called the residual or 

innovation, which describes the differences between real measurement and forecasted 
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measurement. 

To better understand the role of the Kalman gain, it may be helpful to observe two extreme cases. 

For highly accurate observation data, observation error variance, R, approaches zero. The 

Kalman gain or the weighted factor to the residual will increase. Then, the Kalman gain in Eq. 

(1.5) can be expressed as 

 
lim
𝑅→0

𝐊𝑘 = 𝐇−1 (1.7) 

By substituting Eq. (1.7) with Eq. (1.6)  

 
lim
𝑅→0

𝑥𝑘
𝑎𝑖 = 𝐇−1𝑦𝑘

𝑖  (1.8) 

For highly accurate observations, the analysis weighs more on the measurements, yk
i
.  

For the other instance, when a forecast model is very accurate, error covariance 𝐏𝑘
𝑓
approaches 

zero, so  

 lim
𝑃𝑘→0

𝐊𝑘 = 0 (1.9) 

Then, 

 𝑥𝑘
𝑎 = 𝑥𝑘

𝑓
 (1.10) 

This means that the residuals do not have an effect on the analysis result (Welch and Bishop, 

2006), and the best estimated value depends solely on the numerical forecast from Eq. (1.3). 

There are three major limitations in implementing the Kalman Filter in solving building 

environment problems: (1) the computational cost is relatively high, (2) the model dynamics are 

usually non-linear and (3) error sources are not easy to characterize (Thomas and Whitaker 

2002). 

 

1.2.2     Categories of data assimilation algorithms 

In addition to the linear Kalman Filter model, many other variations of data assimilation methods 



 

7 

 

have been developed, most of which are for non-linear systems. These DA algorithms can be 

categorized into three major groups. 

(1) Direct solving large matrices 

Similar to the Kalman Filter, these data assimilation methods use the linear tangent model and its 

adjoint matrix to estimate simulation error variance (i.e., expected error for direct simulation). 

The process of problem solving is adopted from Taylor series expansions by linearizing the 

model. These DA methods are considered highly accurate but are usually very computationally 

expensive, especially when solving a high-dimensional system (i.e., model with large number of 

parameters). The most well-known example, the extended Kalman Filter (XKF), can 

significantly improve simulation model performance, but it requires a very large amount of 

computational resources (Ljung 1979). 

In XKF, a discrete-time or continuous-time model can be applied to forecast model states. When 

measurements become available, XKF can perform an analysis cycle similar to traditional 

Kalman filter but using linearized estimation. Therefore, large amount of information needs to be 

saved. Although XKF is considered sub-optimal in comparison to the original Kalman Filter, it 

still yields reasonable predictions and is widely used in many applications, such as global 

positioning systems (GPS) and other types of navigation systems. 

(2) Variational methods 

Another popular type of DA theories is based on variational methods, which are widely used in 

weather forecasting (Courtier and Talagrand, 1987). Variational analysis minimizes a cost 

function by considering both measurement and simulation errors. First, the numerical model 

predicts the values of all of the measurements and searches for the best fit. In the three-

dimensional-variational (3D-Var) method, the cost function is presented as  
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𝐽(𝑥) =

1

2
(𝑥 − 𝑥𝑓)𝑇𝐏𝑓−1

(𝑥 − 𝑥𝑓) +
1

2
(𝑦 − 𝐻(𝑥))𝑇𝐑−1(𝑦 − 𝐻(𝑥)) (1.11) 

where  𝐏𝑓  is the forecasting error covariance and R is the observation error covariance. By 

minimizing this function, the analysis model’s states remain within a reasonable range of the 

measurements. However, the limitation is that when observation operators are non-linear, the 

analysis results sometimes may only present local minimums. This is a very commonly-found 

problem when solving a highly-non-linear problem using linearization methods.  

Similar to 3D-Var, four-dimensional-variational (4D-Var) is another variational method, in which 

the simulation observation operator, H, updates in every time step, and the cost function can be 

written as  

 𝐽(𝑥) =
1

2
[(𝑥 − 𝑥𝑓)𝑇𝐏𝑓−1

(𝑥 − 𝑥𝑓) + ∑ (y𝑘 − 𝐻𝑘(𝑥𝑘))𝑇𝐑𝑘
−1(𝑦𝑘 − 𝐻𝑘(𝑥𝑘))𝑛

𝑘=1 ] (1.12) 

In order to calculate the gradient of the cost function for minimization at all time steps, it is 

necessary to manipulate large matrices, which makes 4D-Var computationally intensive. 

Nevertheless, the capability of 4D-Var to maintain long-term forecasting accuracy in numerical 

weather prediction has been proven to be superior to that of 3D-Var. 

(3) Ensemble-based algorithms 

Evensen (1994) proposed a new affordable DA approach. The Ensemble Kalman Filter (EnKF) 

uses the Monte Carlo method to estimate analysis error covariance and determine Kalman gain 

without using a tangent linear operator. Unlike the aforementioned methods, EnKF does not 

require the calculation of adjoint matrices, which makes it relatively affordable and easy to 

implement.  

In this thesis, an ensemble-based data assimilation method is applied to solve indoor 

environment forecasting problems. Detailed discussions about ensemble-based algorithms will 

be presented in the following chapters. 
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1.3 General research objectives and thesis outline 

Among available studies of forecasting indoor environment, there is a substantial minority of 

researches relating to occupant safety and emergency response. This may be because forecasting 

simulations associated with life safety concerns demand higher accuracy than those concerned 

with comfort and energy savings. Thus, the forecasting simulations are not generally employed 

to solve building safety problems. Therefore, this study focuses first on simulations of building 

safety problems since they are more challenging than other types of forecasting due to higher 

accuracy expectations. By thoroughly studying the modeling parameters of ensemble-based data 

assimilation algorithms, the method can generally be applied to solve various indoor 

environmental problems. 

This thesis is organized as follows: 

▪Chapter 2 provides literature reviews of different methods for forecasting indoor environment 

and the potential problems with these existing methods. The scope of review is extended to 

finding possible improvements and/or solutions to these problems. Because the solution 

proposed in this thesis is based on data assimilation, the review also covers different types of 

data assimilation algorithms with more details than the foregoing general introductions.  

 

▪Chapter 3 outlines the research objectives and methodologies of applying the Ensemble Kalman 

Filter (EnKF) to forecast indoor environment and solve different types of problems. This thesis 

focuses on solving building safety problems, which demands short processing time and high 

accuracy. In addition to EnKF equations, this chapter also includes the formulations of the 

compartment smoke transport model, which will be applied to real-time forecasting of building 

fire accidents in Chapter 7. Please note that, to avoid repetition, the detailed methodologies 
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presented in Chapters 4 and 5 are not included in Chapter 3. 

 

▪ Chapter 4 is the first case study, which shows that indoor contaminant transport can be 

predicted by integrating measurements from multiple sensors. Important parameters are 

investigated, and a possible application to assist in the emergency response to toxic gas releases 

for buildings with high-level security requirements is discussed. The predicted information can 

be used to assist in the automated control of mechanical ventilation systems to remove hazardous 

contaminants, while assisting in occupant evacuation when toxic gases are detected. 

 

▪Chapter 5 is the second case study, which demonstrates another application to predict fire and 

smoke dispersion to improve building fire safety. To apply the model to an operating building, 

the source strength of an unknown fire accident can first be estimated by the fuel load and 

ventilation conditions of a given space. When a fire accident occurs and the fire alarm is 

activated, the fire source is assumed to be located in the closest room to the triggered smoke 

detector and measurements are taken from the sensors. After calibrating the simulation model 

with sensor measurements using DA, the simulation can generate a more accurate prediction of 

fire growth and smoke dispersion, which can be used in automated smoke management, 

evacuation assistance and decision making in firefighting. 

 

▪Chapter 6 conducts a scaled compartment fire experiment to study the effects of changing fire 

source strength and window/door openings on the spread of smoke. These events are very 

common in a real compartment fire scenario but are usually hard to predict. The measurements 

obtained from the experiments are then used in Chapter 7 to verify the predictability of the DA-
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assisted smoke spread prediction. 

 

▪Chapter 7 develops a DA-assisted zone model to predict real-time smoke spread in a multi-room 

building fire. The model only uses an initial guess range of fire source strength to predict 

unknown fire events. By applying EnKF, the model can statistically update zone model 

parameters and predict smoke transport with reasonable accuracy during a fire. In the early 

stages of a fire, the predicted smoke spread can be very valuable to automated smoke 

management, evacuation assistance and decision making in firefighting. 

 

▪Chapter 8 summarizes the results of all of the case studies and concludes the current stage of the 

research. Recommendations for applying DA to solve other building environment problems and 

other future works are also included in this chapter. 
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Chapter 2 Literature Review 

 

The literature review focuses on the methods used to forecast building and indoor environment. 

In addition, potential problems presented by these methods are discussed, as well as possible 

improvements and solutions to these problems. Finally, general methodologies based on the 

review are outlined.   

 

2.1 Forecasting indoor environment 

Due to the general public’s growing awareness of energy conservation and carbon emissions 

reduction, environmental responsibility and resource efficiency are important factors in a 

successful building design. In order to satisfy these new design criteria, new building design 

features, such as hybrid ventilation systems (utilizing both natural and mechanic ventilation), 

building integrated photovoltaic enclosure and performance-based fire safety design, have been 

introduced, and indoor environment forecasting plays an important role in improving the 

performance of these new building control systems. Various forecasting methods have been 

employed with this in mind. For a photovoltaic system, the energy generation and consumption 

can directly affect system performance. Heinemann (2006) conducted an overview of different 

methods of forecasting solar radiation, and the report indicates that the long-term (one- to- two-

day) forecasts are highly inaccurate and require improvement. For building energy performance, 

Zhao (2012) reviewed different models for predicting building energy consumption, including 

statistical models, transparent-box models (engineering methods), black-box models (neural 

networks) and grey-box models (hybrid methods using incomplete or uncertain data). The results 

indicate that without a comparison under the same circumstances, it is difficult to determine the 
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best method for forecasting building energy consumption. For example, the engineering method 

is accurate, but the process of preparing appropriate inputs can be complex and difficult. In 

contrast, the statistical method is easy to implement, but overly simplified correlations make it 

less accurate. Black-box models, such as artificial neural networks (ANNs), perform well on 

non-linear problems but are sometimes out-performed by support vector machines (SVMs). The 

major drawback of these two black-box methods is the large amount of historical data that is 

usually required to make the model efficient. Overall, the existing studies still lack a comparison 

basis and a clear indication of which method is better at forecasting building energy 

consumption.  

Many recent studies have reported using AI techniques, including ANNs, and genetic algorithms 

(GA) to improve the design of building envelope. Caldas and Norford (2003) employed genetic 

algorithms to optimize building envelope design and control of HVAC systems. The reported 

model successfully optimizes building envelope design and HVAC systems, including duct 

sizing, while minimizing the system costs and satisfying design criteria. Magnier and Haghighat 

(2010) proposed an optimization method using a combination of an ANN and a Multi-objective 

Evolutionary Algorithm for building envelope design. The reported model is able to give a large 

number of potential design alternatives, which is a significant benefit in preliminary building 

design.  

Foucquier et al. (2013) recently introduced state-of-the-art modeling for forecasting building 

thermal behaviors, including building ventilation. The physical models are categorized into three 

major groups: computational fluid dynamic (CFD), zonal, and nodal (multi-zone) approaches. 

Although each of these three approaches has its own advantages and disadvantages, they all 

share a common major problem, which is the difficulty of preparing input data. The input 
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parameters for these models usually require meteorological data, geometrical data, thermo-

physical properties, occupancy and equipment loads. These parameters are highly dynamic in a 

real building environment and usually cannot be directly determined by sensor measurements.  

Another type of review is based on a specific method that can be applied to solve various 

forecasting problems related to building and indoor environment. Kalogirou (2001) conducted a 

review of ANNs in renewable energy systems. The review covers a large variety of applications, 

including solar heating, PV, wind speed and different types of building load predictions. Similar 

to other approximation methods, the results indicate that ANNs also have relative advantages and 

disadvantages, but there are no rules for determining the suitability for ANNs for specific types 

of application. However, in general, compared to other artificial intelligence techniques, ANNs 

perform well in short-term load and in system modeling and control (Krati 2003). 

To summarize, most building and indoor environment models show promising predictability in 

solving certain types of problems, but the limitations fall into two major areas. The first is that 

the inputs prepared for the models are always expressed under certain uncertainties and further 

affect forecasting accuracy. The second is that the uncertainties associated with model 

assumptions reduce model predictability. These uncertainties are unavoidable no matter how 

reliable the predictions generated by the model. 

 

2.2 Forecasting indoor environment using data assimilation 

In order to reasonably predict physical states of the indoor environment, the input parameters for 

the simulation models should also dynamically change with the current ambient environment. 

Although using measurement data to directly update input parameters may improve model 

predictability, the uncertainties of the measurements will still affect the forecasting accuracy. In 
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addition, sensor resolutions are another factor that may hinder the process of obtaining 

measurement data. For example, increasing the number of sensors or shorten the measurement 

time interval will also demand higher computer resource to perform prediction for building 

environment while also increases total system cost. In order to solve this problem, it is essential 

to find an affordable method that can utilize measurement data to its maximum potential to 

forecast indoor environment. The reviews are categorized into three groups by their applications: 

(1) Building ventilation and indoor air quality - Platt et al. (2010) introduced a simple real-time 

HVAC zone model that is based on only a few parameters. By implementing a feedback-delayed 

Kalman Filter, the model is able to deal with short-term random changes and long-term 

accumulated errors and perform promising forecasting of indoor temperature. But, the 

experiments are mainly based on a constant air supply set-point. The case studies for more 

dynamic environments are yet to be explored. Brabec and Jilek (2007) develop a model to 

predict radon concentration in a house based on an Extended Kalman Filter. The model 

recognizes change in source strength and air exchange rate and performs noticeable 

predictability. The disadvantage of this model, as with most Extended Kalman Filter models, is 

the long length of time required for numerical calculations.  

(2) Fire and smoke predictions - Ma et al. (2010) proposed an approach to detecting fire smoke 

in an open area based on the Kalman Filter and Gaussian mixture color model. The experiments 

are conducted outdoors, but the methodology is generally applicable to indoor environment. The 

results show that the fires smoke can be detected using the proposed method, but for a fire safety 

system, it may require large amounts of video cameras in order to capture the images of the fire 

smoke regions. Progri et al. (2000) introduced a GPS-like model to assist firefighters in 

navigating inside burning buildings. The model is based on a Kalman filter to provide real-time 
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location and emergency exit guidance. The measurements are based on visible pseudolites to 

capture the relative positions of the firefighters. The model is validated by numerical data and 

shows reasonable accuracy. The model still requires further validation because the visibility in 

fire smoke can be very poor, so the accuracy requirement may be higher in a real building fire.  

(3) Building control - Yang (2003) introduced a condition-based failure prediction and 

processing scheme for building preventive maintenance. The system is based on a Kalman filter 

and indicates where and when the system failure will occur. However, Arunraj and Maiti (2010) 

point out that condition-based maintenance is not cost efficient if the diagnostic is not done 

properly. Luan et al. (2012) proposed an unscented Kalman filter (UKF) model to solve the state 

estimation problem of greenhouse climate control systems. The analysis method is similar to an 

extended Kalman filter but performs much better at highly non-linear problems since the analysis 

is based on a small set of sample points using non-linear functions. The model can satisfy the 

conditions for plant growth even with missing measurements, but when accurate measurements 

are available, the UKF does not contribute much to system performance.  

 

2.3 Ensemble based data assimilation algorithms 

Since Evensen (1994) introduced EnKF, many variations of EnKF have been proposed based on 

the same concept of statistics modeling used to transform forecast ensemble into analysis 

ensemble. The main differences between these methods are the analysis scheme and the use of 

perturbed or unperturbed observations. In order to select an appropriate method to forecast and 

improve building environment, the following reviews summarize four ensemble-based DA 

algorithms. 
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2.3.1 Ensemble square root filter (EnSRF) 

The concept of square root filtering of a Kalman Filter was first proposed by Andrews (1968) 

and later developed into an ensemble-based DA method by Anderson (2001). Unlike EnKF, 

which sequentially updates all ensemble members using Kalman Gain, the observations of 

EnSRF are only assimilated to update ensemble mean in the analysis step.  

 
𝑥𝑘

𝑎 = 𝑥𝑘
𝑓

+ 𝐊𝑘(𝑦𝑘 − 𝐇𝑥𝑘
𝑓

) (19) 

By assuming the forecast ensemble perturbation can be estimated by a transform matrix Tk,  

 𝐗𝑘
𝑎 = 𝐓𝑘𝐗𝑘

𝑓
 (20) 

and the best estimated model states after analysis can be presented as 

 𝑥𝑘
𝑎 = 𝑥𝑘

𝑎 + 𝐗𝑎 (21) 

It can be observed that the update of the model states is performed deterministically and no 

perturbations of observation are needed. Because the extra source of error from observation is 

eliminated, EnSRF can out-perform EnKF in some cases (Tippett et al. 2003).  

 

2.3.2 Local ensemble transform Kalman filter (LETKF) 

Local ensemble transform Kalman Filter is another type of ensemble-based algorithm similar to 

EnSRF. As its name indicates, the LETKF performs data assimilation within a local space. Each 

model state is updated with its own local observations (i.e., measurements within a predefined 

distance) simultaneously and can be written as, 

 𝑥𝑘
𝑎 = 𝑥𝑘

𝑓
+ 𝐏𝑘,𝑙𝑜𝑐

𝑓
∙ 𝐊𝑘,𝑙𝑜𝑐 ∙ 𝐲𝑜 (22) 

where the subscript, loc, means local, and 𝑦𝑜 is the global observation increment, including the 

observations outside of the “local” range. 

The advantage of using local observations in model state analysis is that the uncorrelated 
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observation covariance can be excluded since they are outside the range being considered. But, a 

possible problem with LETKF is caused by the use of local observations simultaneously 

(Tsyrulnikov 2010), which leads to the assumption that each group of observations used in the 

analysis have zero correlations. However, for some apparatuses, multiple measurements are 

performed together in one area, so the correlations do exist. For example, photographs taken by 

infrared cameras are commonly found in building environment observation. Systematic 

measurement errors from the camera may significantly reduce model efficiency due to the error 

covariances are not correctly estimated, so special care must be taken when applying this 

algorithm. Increasing the distance of local space to include more measurements may reduce this 

effect, but it also increases computational costs and reduces the benefits of localization. Overall, 

LETKF can be beneficial due to its built-in localization analysis, but on the other hand, 

flexibility in analyzing measurement uncertainties is lost. 

 

2.3.3 Deterministic ensemble Kalman filter (DEnKF) 

Deterministic ensemble Kalman Filter (DEnKF) is another variation of EnKF using unperturbed 

observations. The analysis scheme of DEnKF can be considered a linear approximation of 

EnSRF, and the analyzed error covariance can be expressed as 

 𝐏𝑎 = 𝐏𝑓 − 2𝐊𝐇𝐏𝑓 + 𝐊𝐇𝐏𝑓𝐇𝑇𝐊𝑇 (23) 

Since the quadratic term, 𝐊𝐇𝐏𝑓𝐇𝑇𝐊𝑇 , is relatively small and negligible, the residuals in the 

analysis can be presented as, 

 
𝐀𝑎 = 𝐀𝑓 −

1

2
𝐊𝐇𝐀𝑓 (24) 

and the best estimated model states for ensemble members can be determined by 
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 𝐗𝑘
𝑎 = 𝐀𝑎 + [𝑥𝑎 , … , 𝑥𝑎] (25) 

This process is similar to applying half of Kalman Gain to ensemble updating to approximate the 

error covariance in Eq. (24). As long as there is no perturbation of observations, it is considered 

as a deterministic EnKF (Sakov and Oke 2007). The DEnKF has been proven to be superior to 

EnSRF in some cases and it allows for the application of Schur-product-based localization 

methods. But, the reported models are more robust and may encounter filter divergence problems 

more frequently compared to other ensemble-based algorithms. 

 

2.3.4 Ensemble Kalman filter (EnKF)  

The models presented in this thesis are based on the ensemble Kalman filter method. The EnKF 

uses perturbed observation to maintain a reasonable range of ensemble spread in order to avoid 

filter divergence (Burgers et al. 1998). The EnKF is relatively more stable compared to other 

methods but is sometimes considered suboptimal due to the additional observation noises (Sakov 

and Oke 2008). However, when EnKF is applied to high dimensional systems, its stability 

becomes significant due to the lower number of ensemble members required (Oke et al. 2007). A 

detailed formulation of the EnKF is presented in Chapters 3, 4, 5 and 7. 
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Chapter 3 Methodologies 

 

The theories of data assimilation provide various methods to integrate sensor data to improve 

model predictability. Among all data assimilation methods, ensemble-based algorithms are 

especially suitable for real-time prediction of indoor environment due to its low computational 

requirements and easily implementation. The main objective of this research is to thoroughly 

study the modeling parameters of ensemble-based data assimilation algorithms and apply the 

model to solve indoor environment problems. 

In order to achieve this objective, the research work includes: 

▪ Develop a simple model to study the theory of data assimilation and to verify the algorithms in 

a building environment problem. 

▪ Apply EnKF to solve an indoor environment problem by integrating experimental 

measurements, identify and quantify important parameters. 

▪ Integrate existing indoor environment simulation models with ensemble-based DA algorithms; 

compare the results with validated cases. 

▪ Based on previous models, compare different ensemble-based DA algorithms to develop a 

general methodology and thoroughly study all relating model parameters. 

▪ Develop a model using low dimensional system to solve large scale non-linear problems in 

building environment.  

▪ Conduct an experiment to gather observations for data assimilation.  

▪ Posteriori estimation of important model parameters and quantifying the simulation and 

observation uncertainties. 

▪ Develop a model to forecast building environment by using real-time sensor data. 
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 3.1 Research methodologies 

In order to achieve the research objectives, simulation models with different levels of complexity 

need to be built. Instead of making a fresh start, the research begins with using a DA toolbox, 

OpenDA (Verlaan et al., 2010) developed by Delft University of Technology, Netherland. The 

software (Fig. 3.1) is designed as an open-source platform in which all users can quickly develop 

and share their own model or implement new data assimilation methods. OpenDA also provides 

an option to work with external programs by using a black-box wrapper which links a simulation 

tool to data assimilation toolbox. Overall, it allows users to optimize their existing model by 

using customized or default data assimilation algorithms without the need of complex 

programming.  

In the early stage, several models are studied by applying different algorithms including 

conventional computer models without using DA methods. From the test model, EnKF is chosen 

as DA algorithm since it is more flexible and easy to implement than other algorithms. For 

example, noise models and different localization methods can be directly implemented. By 

comparing the results with DA implementation, important parameters such as quantifying 

uncertainties, ensemble numbers and the effects of observation time step can be studied to 

outline an EnKF model.  

After the fundamental model setups are studied, a model to forecast indoor environment is 

conducted by calibrating simulation models with experimental measurements. This case study 

includes different sets of measurement data to verify the model predictability in different 

environmental conditions. At this stage, the capability of EnKF model to forecast indoor 

environment is confirmed and the next step is applying EnKF to more complex models to solve 

other forecasting problems. 
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Fig. 3.1 Screenshot of OpenDA graphical user interface 

After verifying the predictability of EnKF models in previous case studies, the goal of the next 

stage focuses more on solving more practical problems such as the limitations of existing indoor 

simulation model. From the reviews, CFAST (Peacock et al., 2005) and CONTAM (Walton and 

Dols, 2012) are chosen since they are both node-based and are very suitable for the ensemble-

based DA algorithms. After the CONTAM model is completed, this research starts doing 

comparisons of different algorithms using different models. The comparisons include using pure 

numerical experiments, CFD simulation outputs and experimental measurements as model 

observations. Model parameters of each algorithm are reviewed independently with both CFAST 

and CONTAM models while detailed setups of using ensemble-based algorithms to forecast 

indoor environment are generally illustrated. Based on the setups, a new building simulation 

model using ensemble-based DA algorithms can be conducted including localization. 

Finally, based on the experience gained from this model, a stand-alone DA-integrated building 

simulation model is built. The new model is able to take real-time sensor measurements, process 

them and used to improve forecasting of building environment. Following sections in this 

chapter present the background theories of this model. 
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Fig. 3.2 Screenshot of CFAST graphical user interface 

 

3.1.1 Introduction of zone model 

The concept of zone fire model appears to be first introduced by Fowkes (1973) and is later 

developed into several different computer-based models. Different from network model saving 

one set of model states at each node, the zone model divides the air inside a compartment into 

two zones (control volumes) where the upper layer is a higher-temperature zone and the bottom 

layer is a lower-temperature zone. The gas properties within a zone are assumed evenly 

distributed without zonal deviations. According to the reviews conducted by Jones and Forney 

(1993), the first multi-room model that simulates the horizontal gases flow through openings is 

formulated by Tanaka (1983). In the model, the gas flow rate through a door or window is 

determined by the physical properties of the linked zones.  

Single-room fire 

The major assumption of a zone model is that each compartment is separated into two control 

volumes, upper layer and lower layer, in which the important physical states, such as 
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temperature, gas concentration and gas density are considered uniformly-distributed. The upper 

layer is filled with gases coming from the plume above the fire source so the air within the upper 

layer has higher temperature and lower density. For the lower layer, the air temperature is lower 

and the density is higher. By applying conservation of mass and energy to each layer, the 

gradient of important physical properties such as pressure, density, temperature and volume can 

be estimated. So the smoke transport problem is simplified to determining two source terms of 

enthalpy and mass flux: the flow rate of the fire plume and the flow rate through the openings.  

First, the determination of plume flow rate in zone models is based on several plume models 

deriving from experiment results. For example, the Heskestad plume, the McCaffrey plume and 

the Zukoski plume (Heskestad 1984; McCaffrey 1983 and Zukoski 1994) are widely used since 

the equations cover a large range of fire heat release rate and vertical travel distance.  

Second, the flow rates through vertical vents (door/windows) are determined by the pressure 

difference along the height using orifice equation and can be categorized into four major stages. 

Fig. 3.3 (a) to (d) demonstrates the four types of flow pattern and the pressure profile for one-

room compartment fire from ignition to fully developed fire. As shown in Fig. 3.3 (a), when the 

hot gases start to accumulate in the fire room and establish an interface between hot gases and 

cold air at height Hd, the total pressure in the room rises and pushes the lower layer air outside 

the opening.  
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Fig. 3.3 (a) Single room fire at stage A 

After the smoke layer is well-developed and the smoke layer descents below the height of door 

soffit, hot air starts to flow out of the opening as illustrated by Fig. 3.3 (b). At this stage, the 

pressure rise due to expansion of gases is higher than that of hydrostatic pressure drop. So the hot 

gases and cold gases both flow out of the opening. Comparing to other three stages, this stage 

has relatively short duration which can be only several seconds in most compartment fire cases. 

 

Fig. 3.3 (b) Single room fire at stage B 

When the smoke layer is well-below the door soffit, the cold air starts to get into the fire room 

through the opening since the pressure difference at the bottom of the upper layer becomes 

negative. As shown in Fig. 3.3 (c), in this stage, a location where the flow pattern changes its 
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direction can be found and is called neutral layer, which is presented as Hn since the pressure 

difference of the fire room and the adjacent zone is zero at this specific height.   

 

Fig. 3.3 (c) Single room fire at stage C 

For a room located far-away from the fire source or for long-duration compartment fire cases 

especially for those are post-flashover fire (nearly all exposed combustible materials are ignited), 

the room air is considered well-mixed instead of stratified. As shown in Fig. 3.3 (d), the entire 

fire room is full of hot gases where the volume of lower layer is zero.  

 

Fig. 3.3 (d) Single room fire at stage D 

To summarize this section, these four stages describe the smoke filling process of a one-
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compartment fire where there is one vent directly linked to the ambient air. The pressure profile 

is relatively simple since the ambient pressure is considered constant with only hydrostatic 

pressure drop. Following section will introduce the cases with multiple compartments.  

Multi-compartment and virtual fire 

Fig. 3.4 (a) is an example of a two-room fire model illustrating the hot and cold gases flow 

through vertical vents (i.e., doors and windows). Similar to a one-room case, each room is 

divided into two layers based on zone model assumptions. The smoke filling process of the fire 

room is a function of 𝑚̇𝑝, 𝑚̇𝑔 and 𝑚̇𝑎 which is the same as the previous one-room case. For the 

connected non-fire room, the smoke filling process is estimated by converting the hot gases flow 

rate, 𝑚̇𝑔, to an equivalent virtual fire 𝑚̇′𝑝. So the entrained cold air in the non-fire rooms from 

the hot gas flow can also be determined using plume equations. Detailed formulations of the 

virtual plume are included in the following section with Eq. (3.26).  

 

Fig. 3.4 (a) Door flow pattern in multi-room fire (Hd2<doorH) 

As the fire grows and more smoke gets into the smoke layer in the fire room, a neutral plane may 

exist similar to stage C in a one-room fire. The vent flow pattern can be more complicated than 

one-room case as show in Fig. 3.4 (b) but still follows the same rule.  
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Fig. 3.4 (b) Door flow pattern in multi-room fire (Hd2>doorH) 

In order to determine the flow rate at door and estimate the model states of each room, it is 

formulated as following: 

The pressure of a zone is determined by ideal gas law 

P =  ρ𝑖𝑅𝑇𝑖 (3.1) 

where the background pressure of the upper layer and lower layer in the same compartment are 

assumed to be identical. And ρ is density of zone air, R is gas constant and T is zone air 

temperature. Subscription i represents the location of the layer. 

Density 

ρ𝑖 =
𝑚𝑖

𝑉𝑖
 (3.2) 

Internal energy 

E𝑖 = 𝐶𝑣𝑚𝑖𝑇𝑖 (3.3) 

where the mass change over time of the upper layer, 𝑚̇𝑈, is the sum of the total mass flow 

through the upper layer boundary which can be expressed as 

d𝑚𝑈

𝑑𝑡
= 𝑚̇𝑈 = 𝑚̇𝑝 + 𝑚̇𝑔 (3.4) 



 

32 

 

Since the control volume of each room is constant 

V = 𝑉𝑈 + 𝑉𝐿 (3.5) 

Next step is to apply energy conservation to a layer which is based on the thermodynamic first 

law.  

𝑑𝐸𝑖

𝑑𝑡
+ 𝑃

𝑑𝑉𝑖

𝑑𝑡
= 𝑞̇𝑖 (3.6) 

where 𝑞̇𝑖 is the rate of total energy gain of a layer including the rate of heat gain and enthalpy 

gain through the boundaries. 

𝑞̇𝑈 = 𝑄̇𝑐 + 𝐶𝑝𝑚̇𝑝𝑇𝐿 + 𝑄̇𝑔 𝑟𝑎𝑑 − 𝑄̇𝑐𝑈 (3.7) 

and 

𝑞̇𝐿 = −𝐶𝑝𝑚̇𝑝𝑇𝐿 − 𝐶𝑝𝑚̇𝑎𝑇𝐿 + 𝑄̇𝑐𝐿 (3.8) 

Summing up Eq. (3.6) for upper and lower layer 

(
𝑑𝐸𝑈

𝑑𝑡
+

𝑑𝐸𝐿

𝑑𝑡
) + 𝑃(

𝑑𝑉𝑈

𝑑𝑡
+

𝑑𝑉𝐿

𝑑𝑡
) = 𝑞̇𝑈 + 𝑞̇𝐿 (3.9) 

where 

𝑑𝐸𝑈

𝑑𝑡
+

𝑑𝐸𝐿

𝑑𝑡
=

𝑑(𝑐𝑣𝑚𝑈𝑇𝑈)

𝑑𝑡
+

𝑑(𝑐𝑣𝑚𝐿𝑇𝐿)

𝑑𝑡
=

𝑐𝑣

𝑅
[
𝑑(𝑃𝑉𝑈)

𝑑𝑡
+

𝑑(𝑃𝑉𝐿)

𝑑𝑡
] (3.10) 

From Eq. (3.5), the total volume of upper and lower layer is constant so 

𝑑𝑉𝑈

𝑑𝑡
+

𝑑𝑉𝐿

𝑑𝑡
= 0 (3.11) 

by substituting Eq. (3.10) and (3.11) into Eq. (3.9). 

Then, the differential equation for pressure is obtained 

𝑑𝑃

𝑑𝑡
=

𝛾 − 1

𝑉
(𝑞̇𝑈 + 𝑞̇𝐿) (3.12) 

At this point, it can be observed that the pressure change over time is a function of total energy 

flux entering and leaving the compartment where the mass flow rate from lower layer to upper 
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layer is irrelevant.  

Differential equation for upper layer volume 

𝑑𝑉𝑈

𝑑𝑡
=

1

𝑃𝛾
[(𝛾 − 1)𝑞̇𝑈 − 𝑉𝑈

𝑑𝑃

𝑑𝑡
] (3.13) 

where the room pressure P is the sum of ambient pressure Pamb and the pressure perturbation ΔP. 

P = 𝑃𝑎𝑚𝑏 + ∆𝑃 = 𝑃𝑎𝑚𝑏 +
𝑑𝑃

𝑑𝑡
∆𝑡 (3.14) 

and the rate of temperature and density change for the upper zone can be determined by 

𝑑𝑇𝑈

𝑑𝑡
=

1

𝑐𝑝𝜌𝑈𝑉𝑈
[(𝑞̇𝑈 − 𝑐𝑝𝑚̇𝑈𝑇𝑈) + 𝑉𝑈

𝑑𝑃

𝑑𝑡
] (3.15) 

and 

𝑑𝜌𝑈

𝑑𝑡
= −

1

𝑐𝑝𝑇𝑈𝑉𝑈
[(𝑞̇𝑈 − 𝑐𝑝𝑚̇𝑈𝑇𝑈) −

𝑉𝑈

𝛾 − 1

𝑑𝑃

𝑑𝑡
] (3.16) 

 

Sub-models 

The Heskestad Plume  

In order to determine the plume mass flow rate, 𝑚̇𝑝, in Eq. (3.7) and (3.8), this model applies 

empirical correlations proposed by Heskestad (1984) which are a function of fire area, heat 

release rate, convective ratio and smoke travel distance. Comparing to other plume models, the 

Heskestad plume takes into account fire area and also assumes the fire as a virtual point source 

which makes it easier to calculate radiant heat transfer. As illustrated by Fig. 3.5, instead of 

directly using the fire area to calculate plume flow rate, Heskestad introduces a virtual origin 

point which can convert the plume to a cone shape as an ideal plume. The distance between 

actual fire source and the virtual origin, 𝑧0, can be determined by   
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𝑧0 =  0.083𝑄̇2/5 − 1.02𝐷 (3.17) 

where 𝑄̇ is the total heat release rate of the fire source (kW) and D is the diameter of the fire area 

(m). 

 

Fig. 3.5 Heskestad’s plume model 

Then, the average flame height is given by 

L =  0.235𝑄2/5 − 1.02𝐷 (3.18) 

And the plume mass flow rate at height z can be expressed as 

𝑚̇𝑝 =  0.071𝑄̇𝑐
1/3

(𝑧 − 𝑧0)5/3 + 1.92 ∙ 10−3𝑄̇𝑐    𝑓𝑜𝑟    𝑧 > 𝐿 (3.19) 

and 

𝑚̇𝑝 =  0.0056𝑄̇𝑐

𝑧

𝐿
    𝑓𝑜𝑟    𝑧 < 𝐿 (3.20) 

where 𝑄̇𝑐 is the convective proportion of the total heat release rate 𝑄̇ and it usually ranges 

between 60% to 80% for most fire models. 

Orifice equation for vent flow rate 

Another set of important variables in the differential equations are the flow rate through the vents 
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denoted 𝑚̇𝑔 and 𝑚̇𝑎, which are used to calculate the total energy flux through the boundary of a 

layer in Eq (3.7) and Eq (3.8). To obtain the flow rate, the orifice equation is applied where the 

velocity at a given height 𝑧 at the opening can be presented as 

v(z) = 𝐶𝑑√
2∆𝑃(𝑧)

𝜌
 (3.21) 

where 𝐶𝑑 is the flow coefficient and the mass flow rate is determined by 

ṁ = 𝜌𝑣𝐴 = 𝜌𝑣𝑤𝑧 (3.22) 

where 𝑤 is the width of the opening. 

By substituting velocity 𝑣 with Eq (3.21) and then integrate the equation along the height from 

bottom to top of an opening, Eq (3.22) becomes  

𝑚̇𝑣𝑒𝑛𝑡 = ∫ 𝜌𝑣(𝑧)𝑤𝑑𝑧
𝑡

𝑏

 (3.23) 

For a linear pressure profile over a given vertical distance, the equation can be rewritten as 

𝑚̇𝑣𝑒𝑛𝑡 = ∫ 𝐶𝑑√2∆𝑃(𝑧)𝜌𝑤𝑑𝑧 =
2

3
𝐶𝑑𝐴𝑣𝑒𝑛𝑡√2𝜌 (

𝑃𝑡 + √𝑃𝑡𝑃𝑏 + 𝑃𝑏

√𝑃𝑡 + √𝑃𝑏

)
𝑡

𝑏

 (3.24) 

where 𝑃𝑡  and 𝑃𝑏  are the absolute pressure differences at the top and bottom of the opening 

respectively. But the pressure profile over an opening usually has more than one interception 

point, as shown in Fig. 3.4, where the calculations of the flow rates need to be divided into 

multiple sections. 

Equivalent fire plume for non-fire room 

The previous section mentioned the smoke filling process of a non-fire room is based on an 

equivalent fire plume where the heat release rate is determined by the hot gases flow from the 

fire room and can be given by  
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𝑄̇𝑒𝑞 = 𝑐𝑝(𝑇𝑢1 − 𝑇𝑢2)𝑚̇𝑔 (3.25) 

and the height of the equivalent virtual plume can be expressed as 

𝑧𝑝,𝑒𝑞 =
(𝐻𝑑1 − 𝐻𝑑2)

𝑄̇𝑒𝑞
2/5

+ 𝑣𝑝 (3.26) 

where Hd1 and Hd2 are the smoke layer height of room one and room two respectively and the 

virtual point source, 𝑣𝑝, can be determined by the following equations: 

𝑣𝑝 = (
8.1𝑚̇𝑝

𝑄̇𝑒𝑞

)

0.528

for    0 < (
𝑚𝑝̇

𝑄̇𝑒𝑞

) < 0.0061 (3.27) 

 

𝑣𝑝 = (
38.5𝑚̇𝑝

𝑄̇𝑒𝑞

)

1.1001

for    0.0061 < (
𝑚𝑝̇

𝑄̇𝑒𝑞

) < 0.026 (3.28) 

 

𝑣𝑝 = (
90.9𝑚̇𝑝

𝑄̇𝑒𝑞

)

1.76

for    0.026 < (
𝑚𝑝̇

𝑄̇𝑒𝑞

) (3.29) 

Wall heat transfer mode 

(1) Convection heat transfer: 

The convection heat transfer coefficient of a zone is based on an equivalent value by combing 

convection heat transfer coefficients of the ceiling and wall as illustrated by Fig. 3.6.  

 

Fig. 3.6 Equivalent convective heat transfer coefficient of a zone 
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Based on the ratio of the area, the convective heat transfer coefficient can be determined 

h𝑐 =
𝐴𝑐𝑒𝑖𝑙𝑖𝑛𝑔

𝐴𝑡𝑜𝑡𝑎𝑙
ℎ𝑐,𝑐 +

𝐴𝑤𝑎𝑙𝑙

𝐴𝑡𝑜𝑡𝑎𝑙
ℎ𝑐,𝑤 (3.30) 

To calculate the heat transfer between the gas layer and the compartment surfaces including 

ceiling, walls and floor, three different types of heat transfer models need to be taken into 

account: convection, radiation and conduction. Fig. 3.7 shows an example of the heat transfer 

occurring at the wall surface where T𝑔 is gas temperature,  T𝑤𝑢 is wall temperature and T𝑜𝑢𝑡 is 

exterior surface temperature.  

 

Fig. 3.7 Heat balance at wall surface 

(2) Radiation heat transfer 

Radiation heat accounts for 20% to 40% of the total fire source heat release rate. So the radiation 

model is also an important factor to the model accuracy especially for the fire room. In this 

model, the fire is assumed to be a point source located in the center of the total flame height 

which is L/2 where L can be obtained from Eq. (3.18). First consider the proportion of radiation 

heat entering the upper layer, 𝑄̇𝑡𝑜𝑡𝑎𝑙,𝑟𝑎𝑑. 

𝑄̇𝑡𝑜𝑡𝑎𝑙,𝑟𝑎𝑑 = 𝐹𝑂𝐴𝜀𝜎(𝑇𝑔
4 − 𝑇𝑤𝑢

4)A (3.31) 

where 𝐹𝑂𝐴 is the view factor of the point fire source to the destination compartment surface, 𝜀 is 

the emissivity of the surface material and 𝜎 is the Stefan-Boltzmann constant. 𝑇𝑔 and 𝑇𝑤𝑢 are the 

temperature of upper layer gases and wall surfaces respectively. A is the cross section area at the 

smoke layer height which is usually the same as ceiling area. 
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To calculate view factor 𝐹𝑂𝐴 for relatively more complicated geometries than a rectangular plane, 

the surface can be divided into multiple smaller rectangles and the view factor is approximated 

by the sum of all small proportions similar to the example shown in Fig. 3.8. 

 

Fig. 3.8 View factor of a point to a rectangular surface 

Consider a point O and a rectangular surface A, the view factor can be 

F𝑂𝐴 = 𝐹𝑂1 + 𝐹𝑂2 + 𝐹𝑂3 + 𝐹𝑂4 (3.32) 

By applying following equation, the view factor for each segment can be determined 

F𝑂1 =
1

4𝜋
sin−1[

1

√(𝑋2 + 1)(𝑌2 + 1)
] (3.33) 

where X = z/x and Y = z/y  

The same method can also be applied to compute wall and floor view factors while the 

orientations of the surface should also be considered to get correct X and Y. 

Before the radiation heat flux reaching the wall surface, a certain percentage of the radiation heat 

is absorbed by the upper layer gases, denoted 𝑄̇𝑔,𝑟𝑎𝑑, which is a part of total heat flux, 𝑞̇𝑈, in Eq 

(3.7) and can be expressed as 

𝑄̇𝑔,𝑟𝑎𝑑 = 𝑄̇𝑡𝑜𝑡𝑎𝑙,𝑟𝑎𝑑 ∙ 𝛼𝑔𝑎𝑠 (3.34) 

where 𝛼𝑔𝑎𝑠 is the absorptance of the upper layer gases. 

In order to reduce the computation time, the compartment surfaces are assumed to be blackbody 
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where the reflectance is assumed zero. 

(3) Transient heat conduction through walls 

After obtaining the convection and radiation heat flux at the compartment surfaces, the heat 

conduction can also be computed by applying energy balance at the compartment surface as 

shown by Fig 3.7. For the material with small heat capacity, the thermal storage within the wall 

section can be neglected since it can be considered as thermal penetrated in early stage of fire. So 

the calculation can be very easy since the temperature inside the wall is assumed uniform. But 

for a thick wall where the temperature gradient inside the wall is significant, one must applies a 

transient heat conduction model by dividing the wall into small control volumes using Fourier’s 

Law. 

(4) Wall surface 

The compartment surface temperature is determined by steady state one-dimensional heat 

transfer. But for the surfaces with high heat capacity, it is determined by transient heat transfer by 

dividing the entire wall section into n control volumes. So the temperature for each control 

volume is updated for each time step. For updating the surface temperature 𝑇𝑤 from previous 

time I, it can be expressed by 

𝑇𝑤
𝑖+1 = (1 − 2𝜏 − 2𝜏

ℎ∆𝐿

𝑘
) 𝑇𝑤

𝑖 + 2𝜏𝑇1
𝑖 + 2𝜏

ℎ∆𝐿

𝑘
𝑇𝑎𝑚𝑏 + 𝜏

𝑞̇𝑤
−𝑖∆𝐿

𝑘
 (3.35) 

 

where  

τ =
𝛼𝑤∆𝑡

∆𝐿2
 (3.36) 

And 𝐿  is the thickness of the wall (m), ∆𝐿 =L/n, k is thermal conductivity of the material 

(W/mK), 𝑞̇𝑤  is the total heat flux to the wall surface including convective and radiant heat 

transfer and 𝛼𝑤 is the thermal diffusivity (m
2
/s) 
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After surface temperature is obtained, the temperature of each control volume inside the wall can 

be calculated by 

𝑇𝑗−1
𝑖 − 2𝑇𝑗+1

𝑖 + 𝑇𝑗+1
𝑖 +

𝑞̇𝑗
−𝑖∆𝐿2

𝑘
=

(𝑇𝑗
𝑖+1 − 𝑇𝑗

𝑖)

𝜏
 (3.36) 

where j is the index of the control volume and 𝑇0 is the wall surface temperature 𝑇𝑤. 

 

Solving smoke transport problem 

The zone model presented in this thesis is based on an explicit method where the model states at 

a later time are calculated from the model states at the current time. As shown in Fig. 3.9, the 

model is initialized using ambient conditions except the upper layer require a small initial 

volume to avoid division-by-zero error. At t = 0, the air flow rate through the door is assumed 

zero. The pressure increment is first calculated by energy balance equation and used as initial 

value at t = 1. When the pressure is updated, the mass flow at the door can be obtained so the 

gradients of volume, temperature and density can be determined. At t = 2, when the temperature 

of the upper layer start increasing, the temperatures at the compartment surfaces start updating. 

The model is programmed using Java 1.7 and the detailed source codes are presented in 

Appendix. 
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Fig. 3.9 Flowchart of zone model numerical operations 

3.1.2     Ensemble Kalman filter (EnKF) 

The previous chapter briefly introduced the background information about the EnKF. This 

chapter introduces the formulation of the EnKF in detail. In general, the numerical operations of 

the EnKF can be divided into two steps as shown in Fig. 3.1: 

(1) Forecasting step: It is assumed at time step k, there are q numbers of parallel ensemble 
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members for the estimation of the model states, 𝑥𝑘
𝑓

, by using normally-distributed sampling 

errors. Consider a discrete nonlinear stochastic model 

 𝑥𝑘
𝑓

= f(𝑥𝑘−1, Φ𝑘−1) + 𝑤𝑘−1 (3.37) 

where Φ𝑘−1 is the control vector and 𝑤𝑘−1 is a zero mean random white noise at time step k-1.  

The measurements corresponding to the model state can be expressed as 

 𝑦𝑘 = 𝐇𝑥𝑘 + 𝑣𝑘 (3.38) 

where the matrix H relates the model state x to the measurement y and v is the observation noise. 

If x and y are presenting the same quantity, H can be an identity matrix I. 

Assume at time step k, there are q numbers of ensembles that predict models states.  

 𝐗𝑘
𝑓

= [𝑥𝑘
𝑓1

, 𝑥𝑘
𝑓2

… , 𝑥𝑘
𝑓𝑞

] (3.39) 

(2) Analysis step: The error covariance, or the expected error of the predicted model states at 

analysis points and observation points, can be determined by the ensemble members from Eq. 

(3.39). 

 

𝐏𝑘
𝑓

𝐇𝑇 =
1

𝑞
∑(𝑥𝑘

𝑓𝑖
− 𝑥𝑘

𝑡 )(𝐇𝑥𝑘
𝑓𝑖

− 𝐇𝑥𝑘
𝑡 )𝑇

𝑞

𝑖=1

 (3.40) 

while true state, xk
t
, is unknown, we use the mean of the ensemble members to approximate the 

true state. 

 

𝑥𝑘
𝑡 ≈ 𝑥𝑘

𝑓̅̅̅̅
=

1

𝑞
∑ 𝑥𝑘

𝑓𝑖

𝑞

𝑖=1

 (3.41) 

then Eq. (3.40) becomes 

 

𝐏𝑘
𝑓

𝐻𝑇 =
1

𝑞 − 1
∑(𝑥𝑘

𝑓𝑖
− 𝑥𝑘

𝑓̅̅̅̅
)(𝐇𝑥𝑘

𝑓𝑖
− 𝐇𝑥𝑘

𝑓̅̅̅̅
)𝑇

𝑞

𝑖=1

 (3.42) 

Please note that in order to make the estimation unbiased, a factor of 1/(q-1) is applied instead of 
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1/q. Then, the Kalman gain can be determined by using the traditional Kalman Filter equation 

where an optimum value, xk
a
 can also be determined. 

PkH
T
 in Eq. (3.42) can be directly obtained from ensemble members and the HPkH

T
 is a global 

matrix for all model states to calculate the covariance between forecast values at the observation 

points. It can be noted that for all the q ensemble members, the Kalman gain, K, is always the 

same value for all mirrored model states instead of an individual value for each ensemble 

member, which significantly reduces the computation cost. In addition, the error covariance 

matrix does not need to be saved for the next analysis cycle, which also improves the model 

efficiency by releasing memory space for later use.  

 

Fig. 3.10 Flowchart of EnKF forecasting and analysis steps 

After Kalman gain is obtained for this time step, analysis can be done to update all model states 

even for the model states without direct measurements. For the simulation time step without any 

observation available, the prediction of model states is based on the average of all predicted 

ensemble members. Meanwhile, one of the common limitations of initial EnKF applications is 
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that in each analysis cycle, the Kalman gain is applied to all model nodes even for those less 

correlated so spurious correlations are caused as proven by Evensen (2009). For higher 

dimensional models (models with higher number of parameters), it is usually suggested to apply 

a distant-dependent Schur-product when using Kalman Gain to update model states (Hamill and 

Whitaker, 2001). Detailed discussions about formulating an EnKF model to forecast indoor 

environment is presented in Chapter 7.   
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Chapter 4 Forecasting Simulations of Indoor Environment using 

Data Assimilation via an Ensemble Kalman Filter
1
 

 

ABSTRACT 

Data assimilation is widely used in weather forecasting and other complex forecasting problems 

such as hydrology, meteorology, and fire dynamics. Among various data assimilation methods, 

the Ensemble Kalman Filter (EnKF) is one of the best solutions to large-scale nonlinear 

problems as the computational cost is relatively less intense than other forecasting methods. In 

this chapter, a new application of EnKF to forecast indoor contaminant concentrations is 

presented. The first part of the paper introduces the fundamental theories of data assimilation. 

The second part is a case study of forecasting the concentrations of a tracer gas in a multi-zone 

manufactured house by using a mass balance model with an EnKF. The benefits of EnKF and 

several important parameters for EnKF were discussed including numbers of ensemble members 

and observations, time step of observations, and forecasting lead time. The EnKF method 

presented is one of the first studies applied to the indoor environment field. It was shown that by 

using EnKF, the predictability of the simple indoor air model for the multi-zone space was 

improved significantly. 

Highlights:  

▪ The EnKF is applied to forecast indoor environment. 

▪ The optimum number of ensemble members is approximately 70 to 80. 

▪ Both number of observations and time step of observations affect the EnKF performance.  

▪ Predictability of the indoor model is significantly improved with EnKF implementation. 

1. The contents of this chapter are published in (Lin, Cheng-Chun, and Liangzhu Leon Wang“. "Forecasting 

simulations of indoor environment using data assimilation via an Ensemble Kalman Filter." Building and 

Environment 64 (2013): 169-176. The contents are slightly updated. 
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4.1 Introduction 

4.1.1 Forecasting contaminant transport 

The forecasting of indoor environment is of great interests due to its close relationship to 

occupant’s safety (Koo et al. 2010), thermal comfort (Freire et al. 2008), and energy efficiency 

(Oldewurtel et al. 2012 and Tudoroiu et al. 2008), for which an accurate prediction of important 

parameters is often needed such as temperature, relative humidity and contaminant 

concentration. Forecasting these indoor air properties, especially solving contaminant transport 

problem in a dynamic environment, is a difficult task since the physical states of the building 

environment could change rapidly over time (Liu and Zhai 2009). Under such uncontrollable 

factors as ambient temperature, air velocity, humidity, and occupant loads, the contaminant 

estimation is hard to achieve by conventional methods using steady state analysis of constant 

model parameters. In addition, sudden release of contaminant, opening doors and windows, 

change of occupant behavior and the use of electric appliances are a few common examples that 

may further increase the difficulty of solving the forecasting problem. By using any numerical 

model to predict future indoor air contaminants, these uncertain events will cause the predicted 

physical states to depart from reality as the model evolves forward over time. Previous studies 

showed a few different ways of indoor environment forecasting. Federspiel (1997) utilized a 

method originating from the optimization theory, so-called the Kalman Filter, to estimate the 

strength of gas sources in buildings successfully. But the model has some restrictions when it 

applies to multi-zone problems since source strength and air flow rate must be known a priori. 

Kemajou (2012) presented that indoor air temperature and relative humidity could be quickly 

predicted by using artificial neural network (ANN). The potential problem of using a black-box 

type of methods like ANN is that the training of models still relies on trial and error to determine 
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an optimum model structure while the training parameters usually cannot be applied to other 

buildings. Another limitation is its inefficiency for each new case, in which huge amount of data 

is required for the training. Sreedharan (2006) introduced another model of forecasting 

simulation using Bayesian Monte Carlo method to quickly analyze measurements from multiple 

indoor air sensors. This system can monitor real-time indoor environment to help protect 

occupants by locating the release source of a high-risk pollutant. Follow-up studies (Gadgil et al. 

2008 and Sreedharan 2011) focus more on using heterogeneous sensor systems such as 

monitoring door position and mechanic ventilation operating status. Extensive reviews of other 

methods for locating indoor air contaminants can be found in the article conducted by Liu and 

Zhai (2007). Most of these previous studies focus on locating contaminant source instead of 

predicting dynamic future evolvement of concentrations in a multi-zone building.    

4.1.2 Data assimilation 

The major task of forecasting simulations is to predict future states of physical phenomenon with 

a certain lead time and accuracy. In order to find optimal state variables, data assimilation 

provides different algorithms for parameter estimation while taking into account uncertainties of 

measurements and numerical predictions. 

In 1960, a pioneer research of data assimilation theory has been established by R. E. Kalman, the 

Kalman Filter, which provides a recursive solution to find a best possible estimation of the true 

state. Instead of finding an optimal estimation for one value as best linear unbiased estimation 

(BLUE), the Kalman Filter can be applied to a dynamic model that evolves over time (Welch and 

Bishop 2006 and van Velzen 2010). In order to solve different types of nonlinear problems, a few 

Kalman Filter variants have been proposed. In the Extended Kalman Filter (XKF), the nonlinear 

models are linearized by using partial derivatives which is similar to a Taylor series expansion. It 
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has been proven that XKF is effective in many applications but its weakness is the error 

probability density is not fully considered in the linearization. Although the analysis scheme of 

XKF is similar to traditional Kalman Filter, the computational requirements of XKF are 

drastically increased by additional numerical operations, such as linearization. Another 

mainstream of the data assimilation theories for nonlinear problems is four-dimensional 

variational assimilation (4D-Var) and is widely used to weather forecasting (Courtier 2007). Like 

its counterpart, three-dimensional variational assimilation (3D-Var), 4D-Var is based on 

minimizing a cost function. In order to calculate the gradient of the cost function for 

minimization, it is required to manipulate large matrices, which makes 4D-Var computationally 

intensive. Evensen (1994) proposed a more affordable method, Ensemble Kalman Filter, to 

determine error statistics by using the Monte Carlo method. The method reduces computational 

requirement of XKF by using ensemble members, which are similar to the samplings in other 

Monte Carlo methods, to avoid direct calculation and storage of the evolution of the large error 

covariance matrices. Each ensemble member in EnKF can be calculated separately so it is 

especially suitable for parallel computing and solving large scale problems. This method has 

been widely used in weather forecasting, hydrology and fire dynamics predictions (van Velzen 

2010 and Jahn 2010). No previous studies have been reported to use EnKF for indoor 

environment simulations. Different from existent studies, the indoor air forecasting model with 

the EnKF is performed without determining source strength and location but instead depending 

on the accurate estimation of error statistics including uncertainties from both experiment and 

numerical model. Therefore the EnKF can perform faster prediction than other methods but 

relies on rapidly obtaining measurement data.  

The objective of this paper is to explore the applications of EnKF to forecasting indoor air 
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environment and discuss the key parameters involved in the accuracy of EnKF for indoor 

environment forecasting. This paper applied an EnKF to a case study of forecasting the 

concentrations of a tracer gas in a multi-zone manufactured house by using a mass balance 

model. The benefits of EnKF and several important parameters for EnKF were discussed 

including numbers of ensemble members and observations, time step of observations, and 

forecasting lead time. The EnKF method presented is one of the first studies applying a weather 

forecasting model to indoor environment field. In this paper, all numerical operations relating to 

data assimilation are based on a generic toolbox for data assimilation, OpenDA (Verlaan et al. 

2010), developed by Delft University of Technology, Netherland. 

4.2 Methodology 

The detailed explanations on data assimilation and the fundamental theories of EnKF can be 

found in many references (Kálmán 1960, Welch et al. 2006, Evensen 1994 and Verlaan et al. 

2010) so they are not covered in this paper to avoid repetition. Instead of copying down the math 

of EnKF, this paper will focus on how the fundamental methodology of EnKF is applied to the 

indoor air modeling of a multi-zone manufactured house. 

4.2.1 Multi-zone manufactured house 

The experimental data for data assimilation come from a series of tracer gas measurements in a 

manufactured house conducted by National Institute of Standards and Technology (NIST) in 

2007 (Nabinger and Persily 2008, Wang and Emmerich 2010). The house includes living room, 

family room, kitchen and three bedrooms as shown in Fig. 4.1. An attached garage was added 

after the measured data were collected so it was not included in this study. During the 

experiment, tracer gas, sulfur hexafluoride (SF6), was injected about every six hours in the living 

room and the concentration of SF6 was measured at various indoor locations for every ten 
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minutes by gas chromatography. The system is capable of measuring SF6 concentration over a 

range of 3 to 300 ppb, with an uncertainty of about 5 % of the reading. In this study, bedroom 3 

was excluded because its sampling line was moved to the outside for another research project. 

Please note that the measurement of each room starts from different time step as shown in Table 

1.1. For example, the tracer gas concentration in the master bedroom was measured at t = 0, 10 

min and so on, and bedroom 2 is measured at t = 1, 11 min etc. The average air change between 

indoors and outdoors was calculated based on the tracer gas decay method, which was about 0.1 

to 0.4 air changes per hour (ACH). In this study, twelve hours measurement data are obtained 

from four different locations as observation while two injections are included. The first one is at 

the beginning of the experiment and the other one is about six hours after the first injection. The 

injection rate is intended to achieve an average initial gas concentration of around 120 ppb but is 

assumed to be unknown in the simulations. The instruments were calibrated regularly and 

believed to be accurate enough. 5% error is thus assigned to the observation errors accounting for 

the mentioned uncertainties. The uncertainties associated with the mixing conditions are 

considered in the numerical model in the following sections. 

 

 
Fig. 4.1 CONTAM model of the manufacture house (Wang and Emmerich 2010). 
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Table 4.1 Summary description of the manufactured house and the tracer measurement. 
Room Master Bedroom Bedroom 2 Living Room Family Room Kitchen 

Volume (m
3
) 35 28 80 50 40 

Initial Concentration (ppb) 103 160 145 143 142 

First Observation (min) 0 1 4 5 7 

 

4.2.2 Tracer gas concentration model  

The modeling of indoor environment here is to forecast the SF6 concentrations in the different 

rooms of the house by a mass balance model of SF6. The forecasting accuracy of the model is 

improved by combining with measured SF6 concentrations following the algorithm of the EnKF. 

Based on the well-mixed assumption, which assumes the air property within a room/zone is well 

mixed without spatial variation, the mass balance for a contaminant in one room can be 

determined by  

 𝑑𝐶

𝑑𝑡
(𝜌𝑖𝑛𝑉) = 𝑆𝑐 − ∑ 𝜌𝑖𝑛𝐶𝑄𝑜𝑢𝑡𝑓𝑙𝑜𝑤 + ∑ 𝜌𝑜𝑢𝑡𝐶𝑜𝑢𝑡𝑄𝑖𝑛𝑓𝑙𝑜𝑤           (4.1) 

where V is the volume of the room, Sc is the contaminant source generation rate, ρ is the density 

of the room air and Q is the air volumetric flow rate. Subscripts in and out indicate the flow 

direction relative to each room. The contaminant concentration for each room at time k, C𝑘, can 

be discretized in time as  

 
𝐶𝑘 = 𝐶𝑘−1 +

𝑑𝐶𝑘−1

𝑑𝑡
∆t (4.2) 

where 
𝑑𝐶𝑘−1

𝑑𝑡
 is evaluated by Eq. (4.1) and can be solved numerically by a method such as the 

Runge-Kutta method. 

Eqs. (4.1) and (4.2) are applied to five zones including family room, master bedroom, kitchen, 

living room and bedroom 2. The airflow rates among the different rooms, Q, are calculated by 

using the multi-zone indoor air quality analysis software, CONTAM (Walton and Dols 2010), 

with hourly averaged weather conditions as inputs. The weather conditions were measured by a 
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local weather station at the house site. The detailed simulation results are shown in the results 

and discussions section.  

4.2.3 Stochastic model of tracer gas concentration 

Eq. (4.1) is a conventional deterministic model when the model parameters, either obtained 

numerically or experimentally, are without considering uncertainties. For complex problems 

and/or systems with high uncertainties, the analysis is commonly based on stochastic models to 

reflect the randomness or the probability distribution of the model variables. Therefore, Eq. (4.1) 

needs to be converted into a stochastic model by perturbing the model variables with an auto-

regression model during the Monte Carlo sampling process of the EnkF (Thornber 1967). An 

example of setting up the uncertainties is that the calculated airflow rates in CONTAM are 

expected to have 10 % deviations from the hourly variations of the experiment day. The error 

from CONTAM simulation and the well-mixed assumption accounts for another 10 % deviation. 

The selection of these uncertainties should be evaluated under different conditions but currently 

is not the focus of this paper. Here we define these deviations as zero-mean, normally-distributed 

white noise. Based on the probability density of these deviations, the model parameters for each 

Monte Carlo sample, here so-called an ensemble member, are generated. 

4.2.4 Combining numerical prediction and measurements by EnKF 

By using the EnKF, the stochastic model is combined or so-called assimilated with the 

measurements in different rooms. In this study, the measurements from four rooms are used at 

current time step: the master bedroom, family room, kitchen and bedroom 2, in the data 

assimilation to forecast the concentrations in all rooms in the future, especially that of the living 

room, where no experimental data have been used. A data assimilation forecasting of a 

contaminant concentration at the time k for a room j, 𝐶𝑗,𝑘
𝑓

, can be expressed by:  



 

53 

 

 𝐶𝑗,𝑘
𝑓

= f(𝐶𝑗,𝑘−1, Φ𝑗,𝑘−1) + 𝑤𝑗,𝑘−1 (4.3) 

where f means forecasting, j is the index of model nodes and k is the index of time; Φ𝑗,𝑘−1 is the 

control vector which represents perturbed airflow rates and 𝑤𝑗,𝑘−1 is a zero mean random white 

noise accounts for simulation errors at time step k-1. The function f here refers to Eq. (4.2). 

When any observation is available, the true state of the living room concentration, 𝐶𝐿,𝑘
𝑡 , is 

estimated by EnKF. For example, at t = k min, the measurement is available in the master 

bedroom so the EnKF is able to work as follows. A vector of the predicted SF6 concentration is 

generated by the ensemble members with a total number of q for each room, e.g. the 

concentration forecast of the master bedroom can be presented as 

 𝐶𝑀𝐵,𝑘
𝑓

= [𝐶𝑀𝐵,𝑘
𝑓1

, 𝐶𝑀𝐵.𝑘
𝑓2

… , 𝐶𝑀𝐵,𝑘
𝑓𝑞

] (4.4) 

The measurement in the master bedroom corresponding to the numerical forecast is expressed as 

 𝑦𝑀𝐵,𝑘 = 𝐇𝐶𝑀𝐵,𝑘
𝑓

 + 𝑣𝑘 (4.5) 

where the matrix H relates the model state 𝐶𝑀𝐵,𝑘
𝑓

 to the measurement 𝑦𝑀𝐵,𝑘  and 𝑣𝑘  is the 

observation noise (accounts for 5 % measurement error in this case). If 𝐶𝑀𝐵,𝑘 and 𝑦𝑀𝐵,𝑘 represent 

the same physical quantity, H will be the identity matrix, I. 

Then the forecast error covariance, or expected error of the model prediction, 𝑃𝑀𝐵,𝑘
𝑓

, can be 

approximated by the q ensemble members: 

 

𝐏𝑀𝐵,𝑘
𝑓

𝐇𝑇 =
1

𝑞
∑(𝐶𝑀𝐵,𝑘

𝑓𝑖
− 𝐶𝑀𝐵,𝑘

𝑡 )(𝐇𝐶𝑀𝐵,𝑘
𝑓𝑖

− 𝐇𝐶𝑀𝐵,𝑘
𝑡 )𝑇

𝑞

𝑖=1

 (4.6) 

 

since the true state, 𝐶𝑀𝐵,𝑘
𝑡 , is unknown, we use the mean of the ensemble members to 

approximate  
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𝐶𝑀𝐵,𝑘
𝑡 ≈ 𝐶𝑀𝐵,𝑘

𝑓̅̅ ̅̅ ̅̅ ̅
=

1

𝑞
∑ 𝐶𝑀𝐵,𝑘

𝑓𝑖

𝑞

𝑖=1

 (4.7) 

then Eq. (4.6) becomes 

 

𝐏𝑀𝐵,𝑘
𝑓

𝐇𝑇 =
1

𝑞 − 1
∑(𝐶𝑀𝐵,𝑘

𝑓𝑖
− 𝐶𝑀𝐵,𝑘

𝑓̅̅ ̅̅ ̅̅ ̅
)(𝐇𝐶𝑀𝐵,𝑘

𝑓𝑖
− 𝐇𝐶𝑀𝐵,𝑘

𝑓̅̅ ̅̅ ̅̅ ̅
)𝑇

𝑞

𝑖=1

 (4.8) 

Please note that in order to make the estimation unbiased, a factor of 1/(q-1) is applied instead of 

1/q (Whitaker 2002). Then, the Kalman gain for the master bedroom, KMB,K, can be determined 

by using the traditional Kalman Filter equation where an optimal master bedroom 

concentration,𝐶𝑀𝐵,𝑘
𝑎 , is estimated as 

 𝐶𝑀𝐵,𝑘
𝑎 = 𝐶𝑀𝐵,𝑘

𝑓̅̅ ̅̅ ̅̅ ̅̅
+ 𝐊𝑀𝐵,𝑘(𝑦𝑀𝐵,𝑘 − 𝐇𝐶𝑀𝐵,𝑘

𝑓̅̅ ̅̅ ̅̅ ̅̅
) (4.9) 

where the Kalman gain for each room at t=k, 𝐊𝑗 can be estimated by 

 
𝐊𝑗,𝑘 =

𝐏𝑗,𝑘𝐇𝑇

𝐇𝐏𝑀𝐵,𝑘𝐇𝑇 + 𝐑
 (4.10) 

where the denominator of Eq. (4.10) is a constant for all Kalman gains since the measurement is 

only available in master bedroom and R presents the expected measurement error (5% in this 

case). The numerator can be obtained without using any measurement by calculating the 

respective error covariance 𝑃𝑗,𝑘𝐻𝑇
 for each room. KMB,k = Kj,k when Pj,k is PMB,k. After obtaining 

all five Kalman gains, the concentration can be updated for all five rooms even for those without 

measurements by Eq. (4.9). So the true state of the living room 𝐶𝐿,𝑘
𝑡

 can be approximated by 𝐶𝐿,𝑘
𝑎

 

which combines results of numerical prediction and experimental measurements. For the 

simulation time step without any observation available, the prediction of model states is based on 

the average of all predicted ensemble members. Since the predicted model states are sequentially 

assimilated with the measurements, the error covariance matrix does not need to be saved for the 
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upcoming analysis cycle, which reduces the computational cost by releasing memory space for 

later use.  

4.3 Results and discussions                                                             

4.3.1 CONTAM airflow rate simulations 

Fig. 4.2 illustrates the transient airflow rates predicted from CONTAM simulations used in the 

forecasting simulation of SF6 concentrations. The airflow rate between the indoor and exterior 

environment varies over time due to the change of weather condition while the interior airflow 

rate are relative constant. Table 4.2 shows the average airflow rate between two neighboring 

rooms. It can be observed that interior air exchange is generally much higher than the exterior. 

Therefore, the dynamic model (e.g. Eq. 4.2) is calculated with a one-minute time step (Δt = 1 

minute) by assuming constant airflow rates for the interior air exchange and time-dependent 

airflows for the exterior exchange during the simulation. Like most existent indoor air 

forecasting model, the deterministic model use measurement data from the sensors directly as 

inputs where the uncertainties are not considered in this case.  

 

 

Fig. 4.2 Examples of transient airflow rates from CONTAM outputs. 
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Table 4.2 Average airflow rates in the house (m
3
/min). 

From        

To 

Master 

Bedroom 

Bedroom 2 Living 

Room 

Family 

Room 

Kitchen Outdoor 

Master Bedroom  N/A 9.70 N/A 0.0 0.0 

Bedroom Two N/A  7.70 N/A N/A 0.0 

Living Room 9.44 7.66  N/A 25.43 0.17 

Family Room 0.0 N/A N/A  26.36 0.14 

Kitchen 0.01 N/A 24.79 26.59  0.09 

Outdoor 0.04 0.02 0.04 0.0 0.0  

 

 

Fig. 4.3 Comparisons of deterministic sequential simulation and EnKF with the measured SF6 in 

the living room. 

 

4.3.2 Tracer gas forecasting with and without EnKF 

To demonstrate the benefits of using EnKF, we first directly use the deterministic model of Eq. 

(4.2) to predict SF6 concentration in the living room as a control group for comparison. In both 

cases, the measurements of all rooms except the living room at the previous time step are given 

as the inputs to predict the concentration at the current time by Eq. (4.2), and only the initial 

concentration is given in the living room. In Fig. 4.3, the deterministic (non-EnKF) model has 

shown good predictability when there is no sudden change in SF6 concentration. But when the 

second SF6 injection took place around the 350 minutes, the model will require about 30 minutes 

to correct the prediction in the living room as illustrated by the bold horizontal bar in Fig. 4.3, 

since there is no direct measurement available. The slow response of the non-EnKF model is due 
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to the reason that the measurement at one room is only used to update the model state for that 

room but its impact on other rooms is not taken into account since Kalman gain is not calculated. 

By implementing EnKF when one measurement is available, Kalman gains can be computed for 

all the modeled nodes. Therefore, one measurement can update the concentrations for all nodes 

even for those without measurements. The analyzed states are then used in the dynamic model as 

a new initial condition to compute new model states in the following time steps. When the next 

observation is available, the procedure is then repeated. As shown by the bold line in Fig. 4.3, the 

predictability improves significantly with the EnKF implementation near the time of the 

injection.  

4.3.3 Discussion of key EnKF parameters 

In this section, we will discuss how different key parameters affect the accuracy of the EnKF 

during the indoor environment modeling in the case study. These parameters include number of 

ensemble members, number of observations, observation time step, the effects of weather 

conditions, forecasting lead time and finally the predictability. 

Number of ensemble members 

During the forecasting, the model states are determined by the average of all ensemble members 

as shown by Eq. (4.7). Fig. 4.4 illustrates the predicted concentration of the living room from 70 

ensemble members in grey lines and the black line is the average of all ensemble members when 

compared to the measurements (the black squares). Although a single ensemble member may 

vary significantly about the ensemble average, the average is very close to the experimental data, 

which indicates 70 ensemble members are appropriate to provide the accurate prediction in this 

case. From Eq. (4.8), the error statistics are estimated based on a finite size of ensemble members 

to approximate q→∞. For a simple model with low number of mesh grids or data points, q not 
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only affects the predictability but also determines the computational cost of the analysis. Table 

4.3 shows that the simulation time increased with the number of ensemble numbers. Considering 

both accuracy and cost, 70 ensemble members seem to be the best choice for the modeled house. 

In general, it is recommended to have around 100 ensemble members in many EnKF 

applications since the results are not showing significant improvement by exceeding this number. 

In addition, the computational burden also increases drastically with the ensemble members 

(Evensen 2009). Thulin and Nævdal (2011) also suggested doing several EnKF runs in which 

each with less ensemble members. We also simulated the same house under different weather 

conditions, i.e. November and February in Fig. 4.5, and obtained consistent results. It shows the 

optimum numbers of ensemble members for both cases are very close (q = 70 and q = 80). 

Unfortunately, there is still no theoretical principles to determine an optimal ensemble number 

but it is recommended to start trial and error from q = 100. For all cases, the simulations only 

takes a few seconds, which shows the EnKF is very fast for this case.  

 

Fig. 4.4 EnKF prediction of the living room concentration by 70 ensemble members. 
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Table 4.3 Comparisons of root mean squared errors of different models 

Case 1 2 3 4 5 6 7 

Ensemble numbers 30 50 70 90 110 70 70 

Observations nodes 4 4 4 4 4 3 2 

CPU time (seconds) 4 7 10 14 18 11 7 

RMSE living room SF6 (ppb) 7.1 7.3 5.4 5.3 6.9 7.9 8.8 

 

 

Fig. 4.5 Comparisons of the RMSE of the November and February cases (CV is the coefficient 

of variation. Defined as the RMSE divided by the mean). 

 

Number of observations 

The number of observations also plays a role in performance of EnKF. As shown by case 3, 6 

and 7 in Table 4.3, the RMSE decreases when more observed nodes available for data 

assimilation for q = 70. It is not surprising because more data available for assimilation would 

improve the accuracy of the prediction. For a real-time indoor air monitor system, the problem is 

the optimal number of sensors and the best location to place in a multi-zone environment to 

achieve certain forecasting accuracy. Fig. 4.6 shows that when the observations were only 

provided for the kitchen and family room, the prediction in the living room seems still reasonable, 

of which the RMSE is 8.8 ppb as shown by case 7 in Table 4.3. More studies using other 

combinations of two observation nodes or even one node are beyond the scope of this paper but 

are indeed worth further investigations. 
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Fig. 4.6 Comparisons of the SF6 prediction in the living room by different numbers of 

observations (“obs = K and F” means observation data are only provided for kitchen and family 

room). 

 

To complete this section, Fig. 4.7 shows the posteriori estimations of SF6 concentration in the 

master bedroom. Different from the forecasted data in Fig. 4.8, the posteriori estimations in 

Fig .4.7 are assimilated with local observation in the master bedroom so the results are very close 

to the measurements. The similar results are also found for kitchen, family room and bedroom 2. 

 

Fig. 4.7 Posteriori estimations of the SF6 concentration in master bedroom. 
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Observation time step  

Commercial off-the-shelf (COTS) sensors with desired resolution to analyze indoor air 

commonly have 10 to 30 minutes response time (Won and Schleibinger 2011), which is slow for 

an EnKF forecast for faster response. One of the remedies would be to arrange all sensors in a 

sequential order that successively and continuously acquires observed data from different nodes, 

instead of concurrent sampling that collects all sensor measurements simultaneously. With EnKF, 

the forecasting can be updated for all modeled nodes even with only one measurement, no matter 

which node the measurement comes from. As a result, as far as the EnKF is concerned, the 

sensor response time can be shortened when using the sequential sampling. 

For the current study, four gas samplings were supplied sequentially to one gas chromatography 

(GC) so each room will have a measurement every 10 minutes, equivalent to a sensor response 

time of 10 minutes, whereas an observation for the EnKF is available approximately every 2.5 

minutes due to the sequential sampling process, if every observation is used for data assimilation. 

To study the impact of the sensor response time on the forecast, Fig. 4.8 illustrates a comparison 

of the models with different observation time steps. When the sensor response time increases 

from 10 minutes to 20 or 30 minutes (observation time step equals to 2.5, 5.0 and 7.5 minutes 

respectively), the predicting errors also increase. Although instruments with shorter response 

time and higher resolution can increase forecasting accuracy, further studies are necessary to 

determine the tradeoffs among sensor resolution, quantities and response time to the system costs, 

which is beyond the scope of this paper. However, it is shown that the sensor response time and 

the sampling strategy are important for the accuracy of the EnKF. 
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Fig. 4.8 Comparisons of the EnKF predictions models with different observation time steps. 

Forecasting lead time and predictability 

Another important character of a data assimilation simulation is the forecasting lead time. Fig. 

4.9 shows the predictability of the model during the second injection when the observations were 

stopped being provided for data assimilation at different time step. For example, the grey line 

with squares starts, tstop = 340 min, represents the observations are not provided after t = 340 min. 

Since the tracer gas was injected at around t = 350 min, new measurements are required to 

update the model states so the model fails to predict the injection. By feeding the new 

measurements from t = 350 to 360 min, the posteriori estimation switches to the bold solid line 

associated with an improvement of predictability. When the observation feeding then stops at t = 

360 min, i.e. the grey line with crosses, the prediction is shown to be within five percent 

measurement error range only for about 10 mins after SF6 injection. When more measurements 

were provided from t = 360 to t = 370 min, the forecasting improves as shown by the grey line 

with solid squares. This illustrates that in times of an unpredicted major change of indoor air 

properties, the forecast will require approximate 10 minutes to reach a stabilized model state and 

provide 60 minutes lead time in prediction. By comparing to the non-EnKF model illustrated by 
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the bold dotted line, it requires at least 25 minutes to allow posteriori estimation to get into five 

percent error range. It can be concluded that by providing four sensors with 10 minutes response 

time (average 2.5 minutes observation time step), the model can quickly respond to sudden 

concentration changes and provides high quality predictions after about 10 minutes following the 

injection. When the data is fed continuously without being stopped until tstop = 440 min, the 

model provides the best accuracy as illustrated by the solid line in the figure. 

 

Fig. 4.9 Predictability of the model near the second injection of SF6 (e.g. tstop = 350 means the 

observation data feeding for data assimilation stops at t = 350 min). 

 

4.4 Conclusions 

This paper applied a new methodology of using an EnKF to forecast the dispersion of 

contaminant as simulated by a tracer gas in an indoor environment based on the assimilation of 

multiple sensor data with a mass balance stochastic model. A general setup and key parameters 

of the model were discussed. By sequentially implementing measurements from different 

sensors, data assimilation can be performed more frequently to improve model performance. 

Different from other existing research using the Monte-Carlo method, the reported model in this 
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paper avoids estimating source strength and location in order to reduce the sampling numbers 

and still provide noticeable predictability. Overall, this paper concludes that the benefits of using 

EnKF to forecast indoor air environment are significant. Future research is needed to apply the 

EnKF to other simulation problems, e.g. computational fluid dynamics, and confirm the results 

to longer time duration, e.g. a few days or weeks, and other practical cases. It is also necessary to 

study the tradeoffs among sensor resolution, quantities and response time to the system costs in 

the future research.  
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Chapter 5 Forecasting Smoke Transport during Compartment Fires 

using a Data Assimilation Model
1
 

 

Abstract 

Forecasting simulation of an unknown compartment fire is challenging and usually accompanied 

with large number of uncertainties. As the simulation progress over time, the forecasted physical 

conditions such as fire heat release rate, room temperature and vent airflow rate may sway from 

the reality in a highly dynamic environment. Conventional deterministic fire simulation tools 

using one set of initial inputs to predict fire smoke transport may not easily generate satisfactory 

results. In this paper, a new application of Ensemble Kalman Filter (EnKF) to forecast smoke 

dispersion during compartment fires is presented. The model utilizes measurement data from 

multiple sensors in multi-room compartments and is able to predict fire heat release rate and 

smoke dispersions within several minutes. In addition, detailed formulation of the EnKF model 

and three case studies are also discussed in the paper. The resulting model can be considered as a 

prototype forecast simulation system to assist occupant evacuation, fire-fighting and smoke 

extraction in a building fire accident. 

5.1 Introduction 

Forecast nowadays plays an important role in our daily lives. One of the widely-known examples 

is weather forecast that gives accurate predictions of atmospheric temperature, wind, and other 

climate information for hours and days. In the context of buildings, the technology of forecast is 

relatively new and mostly applied to advanced control strategies of heating, ventilation and air 

conditioning (HVAC) systems (Kaster et al. 2005). Based on the concept of model predictive  

1. The contents of this chapter are published in Lin, Cheng-Chun, and Liangzhu Leon Wang“. "Forecasting 

smoke transport during compartment fires using a data assimilation model." Journal of Fire 

Sciences (2014): 0734904114548837. The contents are slightly updated. 
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control (MPC) using forecasted future states of room air as a reference to adjust system control 

parameters, these advanced control methods are applied to achieving a comfortable indoor 

environment at reduced energy costs (Morari and Lee 1999, Fux et al. 2014). While forecast aids 

HVAC controls, its applicability and potential benefits have not been well explored in other 

fields of building environment, one of which is building fire safety. There are many potential 

benefits of forecasting fire spread and smoke transport during a fire accident. Forecasting can 

provide critical information on fire spread and smoke movement to send early warnings for 

occupant evacuation, fire-fighting practice and to enable early response and control of smoke 

extraction. Unfortunately, there have been limited forecast studies for building fire safety. This 

may be due to the nature that fire protection is a life safety issue demanding higher accuracy 

from forecasted information than that of HVAC controls during non-fire occasions (Kastner et al. 

2005 and Bushby 2001). Note that in this paper, the term “forecasting” is referring to predicting 

future events by computer simulations based on certain numerical methods, which are often 

stochastic ones due to uncertainties of future events. Therefore, forecasting simulations for 

building fire safety need to consider the uncertain nature of future events while achieving more 

accurate results than what are generally required for other forecast applications in buildings.  

Many current computer models for building fire safety are deterministic ones, in which a set of 

user inputs produces one solution. Hence, a deterministic simulation can be considered as one 

sampling instance of stochastic simulation. According to previous surveys from 10 countries 

(Friedman 1992, Olenick and Carpenter 2003), the number of computer programs for building 

fire protection has been increased from 74 to 168 in the past decade. However, a well-known 

problem of computer fire modeling is that the accuracy of simulation highly relies on users’ 

knowledge to determine appropriate input data. For example, heat release rate (HRR) is one of 
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the most important and difficult inputs (Babrauskas 1992), which depends on complex chemical 

reactions associated with fuel type, fuel composition, oxygen quantity and fire temperature. 

Inappropriate user inputs could cause significant difference between simulation results and 

measured data. Another potential source of errors is the underlying assumptions of computer 

models. For example, zone models often assume dividing a room into a hot upper layer and a 

cold lower layer, within which smoke/air properties are considered uniformly distributed, and 

ceiling jets (hot gases travel along the ceiling), if any, are neglected. Even the more sophisticated 

field models, such as computational fluid dynamics models, are based on many assumptions, 

especially about turbulence modeling, although they provide better spacious resolutions of 

smoke properties than zone models. Therefore, a computer fire model often needs to be validated 

by measured data. Experimental validations may provide a “good/poor” verdict about the model 

functionality, or better off help to improve user inputs and/or adjust model settings. However, 

they lack the capability of remedying model assumptions and calibrating the model automatically 

(Rein et al. 2009).  

If measurement data are available, some recent studies suggest hybrid approaches combining 

numerical simulations with measured data from sensors so the measured data can be involved 

actively to improve computer fire modeling instead of simply giving a verdict. Lee et al. (2004) 

developed a hybrid neural network fire model to determine fire parameters and predict smoke 

layer height in single compartment fire. Among 55 predicted samples, only three cases are 

outside the range envelop of the experimental results. Richards et al. (1996) proposed an inverse 

model to estimate fire location and HRR by using transient temperature measurements from 

ceiling sensors. The model can be applied to locate and size the fire source while the results 

show the average location error is with 1/2 to 1/3 sensor spacing but average HRR error can be 
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over 100%. Overholt and Ezekoye (2012) used another inverse model based on predictor-

corrected method to determine HRR inputs for a computer model, CFAST (Peacock 2005), by 

using smoke layer temperature measurements. The results indicate each case requires 10 to 30 

runs to calculate an inverse HRR solution with a relative error between 0.04 and 0.24. These 

studies are successful but currently only applied to single compartment fire. For multi-zone 

compartment fire simulations, Koo et al. (2010) proposed a sensor-linked fire simulation model 

based on Monte-Carlo method. The model can forecast uncontrolled compartment fire using real-

time measurement data.  The system currently exploits high performance computing resources in 

order to forecast in real time and requires thermocouple trees to be located in the center of each 

room for measuring accurate smoke temperature profile. Hostikka and Keski-Rahkonen (2003) 

presented a probabilistic fire simulator by combining Monte Carlo simulation and CFAST for a 

five-room tunnel. The results show the system is able to give a warning of fire damage but the 

simulations took about one day to complete, which is not fast enough for real application since 

the CPU time is still greater than forecasted time. Neviackas (2007) developed an inverse fire 

model using genetic algorithms by minimizing a predefined cost function. The results show good 

agreement between model estimation and reference HRR but the computation may as well need 

several hours for multiple-room cases. Additionally, this model also requires some ideal 

conditions such as measuring mass flow rates through building openings as model inputs. A 

forecast simulation often needs to combine numerical simulations and measured data (so called 

data assimilation). Although these previous studies may share similar hybrid concept as data 

assimilation, the literature review shows that forecast simulations based on data assimilation of 

multi-room fires with desired accuracy are still at infancy and need to be explored further.  

In this study, Ensemble Kalman Filter (EnKF) (Evensen 1994), which is a data assimilation 
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model often used for numerical weather prediction (NWP) (Navon 2009), is applied to multi-

room compartment fires. The selected method, EnKF, is able to solve large-scale problems with 

low computational requirement and simple implementation so it is one of most popular NWP 

techniques but is relatively new to the field of building environment (Lin and Wang 2013). The 

algorithm of EnKF is based on stochastic modeling similar to a Monte Carlo method which 

makes it especially suitable for parallel computing. Similar to traditional Kalman Filter analysis 

(Kalman 1960), whenever any measurement datum becomes available during a simulation 

process, the EnKF will pause the simulation and adjust all model variables (e.g., HRR) then 

resume simulation using updated parameters.  In the following sections, we first introduce the 

fundamentals of EnKF, and then demonstrate the predictability of the EnKF model by three case 

studies. The first case is a two-zone fire simulation to present the EnKF capability of model 

parameter estimation (i.e., correcting input parameters such as HRR). Then, the model is applied 

to the same two-zone case to demonstrate both model parameter estimation and model state 

estimation (i.e., forecasting). The third case is a five-zone building to apply the EnKF to multi-

room fire forecast simulations. The fire simulations in this paper are based on CFAST 6.3.0 

(Peacock 2005) and FDS (McGrattan et al. 2007) developed by the US National Institute of 

Standards and Technology (NIST), and the EnKF operations are programmed by using a generic 

data assimilation toolbox, OpenDA (Verlaan 2010), developed by Delft University of 

Technology, Netherlands.  

5.2 Methodology 

In this paper, EnKF is the technique to calibrate a numerical simulation of a multi-room 

compartment fire with measurement data. In order to solve large-scale non-linear forecasting 

problems, Evensen (1994) proposed a new affordable approach, Ensemble Kalman Filter, using 
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the Monte Carlo method, and later (2009) detailed the algorithms to combine parameter and state 

estimations. The following section introduces the fundamental theory in the context of building 

fire and smoke forecast. Here, consider a time-discrete model of fire simulation:   

𝑥𝑡+1
𝑓

= f(𝑥𝑡
𝑓

, 𝛷𝑡) + 𝑤𝑡 (5.1) 

where 𝑥𝑡
𝑓
 is a j-dimensional vector representing the forecasted model states in different locations 

at time step t while superscript f means forecast. It can be noted that j is determined by the 

number of model states and model nodes. In other words, all model states including 

temperatures, smoke layer heights and pressures from various modeled locations are all included 

in 𝑥 𝑡
𝑓
 as one vector. 𝛷𝑡 is a k-dimensional control vector which refers to model parameters such 

as HRR and ventilation flow rates through vents. 𝑤𝑡 is a vector describing zero mean random 

white noises accounting for simulation errors. These random noises are sometimes not 

considered in the EnKF model. But for simulations with high uncertainties such as fire dynamics, 

it is important to implement a noise model to ensure the true states are always covered in the 

range of ensemble forecasts. Finally, regarding the function f, it is suggested to apply a low-

dimensional system with accurate short-term forecasts (Schrader and Moore 1977). In this paper, 

the selected function f is the fire simulation tool, CFAST.  

When an EnKF model is initiated, a total number of q ensemble members are generated by 

perturbing the control vector, 𝛷𝑡 , and initial model states, 𝑥𝑡
𝑓

, similar to other Monte Carlo 

methods and can be presented as 

𝐗𝑡
𝑓

= [𝑥𝑡
𝑓1

, 𝑥𝑡
𝑓2

… 𝑥𝑡
𝑓𝑞

] (5.2) 

where the probability density function of the perturbation is assumed to be normally-distributed.  

The measurement of the model state corresponding to the numerical forecast is expressed as 
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𝑦𝑡 = 𝐇𝑥𝑡
𝑓

 + 𝑣𝑡 (5.3) 

where the Matrix H is an observation operator which can be an interpolation from model node to 

observed location. When 𝑦𝑡 and 𝒙𝑡
𝑓
 represent the same physical quantity, H can be an identity 

matrix, I. 𝑣𝑡 is a vector accounting for random errors of each measurement and is assumed to be 

independent in all EnKF applications. This is an important feature of EnKF to avoid ensemble 

collapse caused by rapidly reducing ensemble spread range (Burgers et al. 1998).  

Then, the expected error of model states and parameters prediction, as known as the forecasted 

error covariance, can be estimated by 

𝐏𝑡
𝑓

𝐇𝑇 =
1

𝑞
∑(𝑥𝑡

𝑓𝑖
− 𝑥𝑡

𝑡)(𝐇𝑥𝑡
𝑓𝑖

− 𝐇𝑥𝑡
𝑡)𝑇

𝑞

𝑖=1

 (5.4) 

It can be observed that EnKF is using a finite size of 𝑞 ensemble members to estimate forecasted 

error covariance for q→∞. Since the true state of the model,  𝑥𝑡
𝑡 , is unknown, it is here 

approximated by the average of ensemble members. 

𝑥𝑡
𝑡 ≈ 𝑥𝑡

𝑓̅̅̅̅
=

1

𝑞
∑ 𝑥𝑡

𝑓𝑖

𝑞

𝑖=1

 (5.5) 

Substitute the above 𝑥𝑡
𝑓̅̅̅̅
into Eq. (5.6), Eq. (5.4) becomes 

𝐏𝑡
𝑓

𝐇𝑇 =
1

𝑞 − 1
∑(𝑥𝑡

𝑓𝑖
− 𝑥𝑡

𝑓̅̅̅̅
)(𝐇𝑥𝑡

𝑓𝑖
− 𝐇𝑥𝑡

𝑓̅̅̅̅
)𝑇

𝑞

𝑖=1

 (5.6) 

where a factor of 1/(q-1) is applied instead of 1/q in order to make the estimation unbiased. 

Finally, a weighted factor 𝐾𝑡 between simulation results and the observations, so-called Kalman 

gain, can be determined by using the traditional Kalman Filter equation where optimal model 

state parameters are estimated as 
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𝑥𝑡
𝑎 = 𝑥𝑡

𝑓̅̅̅̅
+ 𝐊𝑡(𝑦𝑡 − 𝐇𝑥𝑡

𝑓̅̅̅̅
) (5.7) 

Where 

𝐊𝑡 =
𝐏𝑡𝐇𝑇

𝐇𝐏𝑡𝐇𝑇 + 𝐑
 (5.8) 

It can be noted that if m number of measurements are available at time t, the dimension of K is m 

× k, which is irrelevant to the number of ensemble member q since all ensemble members are 

updated with the same set of K. R is the measurement error covariance of 𝑣𝑡 with its dimension 

m × m. Although some parameters of the control vector 𝜱𝑡 cannot be directly measured, they 

can still be updated using Eq. (5.7) by merging it into 𝒙𝑡+1
𝑓

 so the vector dimension becomes n = 

j + k. For example, HRR can be statistically estimated in this way by using temperature and 

smoke layer height measurements.   

After obtaining best estimated model states and model parameters, the forecast simulation can 

continue and preform prediction to the next time step.  

𝒙𝑡+1
𝑓

= f(𝒙𝑡
𝑎, 𝜱𝑡) + 𝒘𝑡 (5.9) 

The benefit of EnKF in forecasting is that important model parameters and model states are all 

updated in its analysis, so the forecast simulation model can maintain desired accuracy in a long 

simulation time window.    

The foregoing EnKF algorithms are implemented in OpenDA and CFAST is linked to OpenDA 

by using its “black box” functionality. The source codes of CFAST 6.3.0 are also modified to add 

a restart function to meet the pausing/resuming requirement of EnKF analysis. The modified 

source codes are validated with the outputs from the original version and the results are 

consistent with only rounding errors. In order to accelerate simulations and avoid convergence 

problems in some special cases, wall materials in all simulations are removed from CFAST input 
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data while the thermal boundary condition is assumed to be adiabatic. The removal of wall 

materials reduces simulation accuracy and in fact creates a more challenging situation for the 

EnKF analysis. 

 

5.3 Forecasting smoke transport using ensemble Kalman filter 

To evaluate the capability of EnKF in forecasting multi-zone compartment fire, three different 

case studies are conducted. We started with a simple two-zone case to demonstrate combining 

model parameter and model state estimation using EnKF and then moved to a more complex 

five-zone case to show the predictability of smoke transport improved by EnKF. All three case 

studies focus on early stage of fires, when it is relatively challenging to predict smoke layer 

height before reaching steady state. The forecast model here is based on CFAST, while the 

observations (i.e. “measurement” in an EnKF analysis) are either obtained from CFAST itself or 

Fire Dynamic Simulator (FDS) as shown in Table 5.1. Here, we choose FDS to produce the 

observations because FDS provides more detailed data than the experiments. All FDS outputs 

used in the case studies have been validated by experiment results (Tilley et al. 2011, Jones et al. 

2009 and Peacock et al. 1988). 

Table 5.1. EnKF model parameters for three case studies 

Case Model states 

(Forecasted by CFAST) 

x
f
 

Parameters 

(Unknowns) 

𝛷 

Observations 

y 

Outputs 

(Estimated by EnKF) 

X
a
 

A  

(two zone) 
Troom, Tatrium, hroom, hatrium Q, mz 

Perturbed CFAST 

outputs 

Troom, Tatrium, hroom, hatrium 

Q, mz 

B  

(two zone) 
Troom, Tatrium, hroom, hatrium Q, mz 

FDS outputs 

Troom, Tatrium, hroom 
Q, mz, hatrium 

C  

(five zone) 

TFR, TE1, TCor, TE2, TTR 

hFR, hE1, hCor, hE2, hTR 
Q  

FDS outputs 

TFR, TCor, hFR, hCor 
TTR, hTR 

*FR = Fire Room; E1 = Entrance One; E2 = Entrance Two; Cor = Corridor; TR = Target Room 
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5.3.1 Case A: Estimation of Heat Release Rate and Mechanical Ventilation Rate 

The objective of the first case study is to evaluate the capability of EnKF in parameter estimation 

for a two-zone compartment fire. The case study is a two-room fire test based on a series of 

experiments and FDS simulations from Poreh et al.’s and Tilley et al.’s research. Regarding 

model geometries, the fire source is located in a small room adjacent to an atrium with a 

mechanical ventilation vent at the atrium ceiling as shown in Fig. 5.1. In addition to HRR, the 

ceiling mechanical ventilation rate is also considered important for the determination of the 

smoke layer height of the atrium. Case A is based on a series of experimental and numerical 

study in the literature, where the mechanical ventilation rates and HRRs are varied in different 

cases. The mechanical ventilation rate may be known for each specific case but this study tries to 

demonstrate a general approach for different ventilation flow rates. It also creates a more 

challenging case than that with known flow rate. In reality, the actual performance of a 

mechanical fan depends on its “fan-curve”, in which the flow rate is a function of pressure 

difference across the fan. As a result, the fan may have a nominal design flow rate based on 

standard test condition but the actual fan flow rate is still unknown. In such cases, the analysis in 

Case A is practically relevant. Since HRR cannot be directly measured in compartment fire 

experiments, it is usually approximated by measuring fuel or oxygen consumption. In this case, it 

is difficult to justify if the HRR measurement can be considered as true state to verify the model 

predictability because measurement uncertainties cannot be excluded. To conduct parameter 

estimation analysis, previous studies often use numerical data as true state values (Overholt and 

Ezekoye 2012, Chang and Latif 2013) to avoid uncertainties from experiments. Here, the focus 

of this case is to show how EnKF is able to improve the CFAST simulation by assimilating with 

noisy measurements to correct inaccurate initial inputs. We use a similar method as the previous 
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study as follows.  

First, a CFAST model is conducted by using a constant 7.67 kW fire and 0.14 m
3
/s vent flow rate 

while the resultant smoke layer height (h) and smoke temperature (T) in the two rooms are 

considered as true states (i.e., correct results) with 10-second resolution. The correct results of 

smoke layer height and smoke temperature are then perturbed by adding noises and considered 

as measurements with respective uncertainty.  

 

Fig. 5.1 Overview of the two-room test building in CFAST 

Second, the specific settings of the CFAST simulation are defined as follows. The initial guess of 

the HRR and the mechanical ventilation rate is based on a normal distribution where 68.2% of 

the probabilities are within the range of 6.8 kW to 13 kW and 0.05 m
3
/s to 0.25m

3
/s respectively. 

The range is determined by multiple tests while model convergence problems are more likely to 

occur when widening this perturbation range. The perturbation range cannot be further widened 

due to the convergence problems possibly due to the limitations of the current model after 

consulting with the CFAST developers. For the perturbation range without the convergence 

problems, we have validated our modifications of the CFAST source codes by ensuring the 
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results are consistent with those from the original version with only rounding errors. For 

observation uncertainties, the expected error of each measurement is assumed to be independent, 

and 10%, 20% and 30% of the measurement error covariance for each sensor is assigned 

respectively in matrix R in Eq. (5.8). After applying the EnKF model, HRR and mechanical 

ventilation rate can be estimated whenever measurements are available.  

Fig. 5.2 (a) shows the atrium smoke layer height predicted by 100 ensemble members which 

covers a very wide range. The bold line indicates ensemble average which is closer to the true 

state than most of the ensemble members. The region in the dotted rectangle is enlarged in Fig. 

5.2 (b) for more detailed information. As shown in Fig 5.2 (b), the ensemble average is 

significantly improved by the EnKF analysis when being assimilated with measurement data. It 

can be observed that the update of EnKF is effective: all smoke layer height predictions at 

different times are updated closer to the true states as indicated by the arrow.  

 

Fig. 5.2 (a) Atrium smoke layer height outputs of 100 Ensemble members 
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Fig. 5.2 (b) Comparisons of atrium smoke layer height outputs 

At the same time, the model parameters, Q and mz, are also updated. As shown in Fig. 5.3 and 

5.4, the hatched areas are the initial guess ranges of Q and mz and the dashed lines are the true 

states of the corresponding model parameter. The simulation starts from using initial guess value 

of Q and mz as inputs. As simulation progress in time, the measurements become available from 

t=10 s and EnKF starts to update model parameters. It can be observed that EnKF successfully 

estimate HRR and mechanical ventilation rate but all three cases seem to overestimate HRR by 

about 15 to 20 percent. This is due to the probability density function of initial perturbation is 

normally distributed while more ensemble members are located near the center of the range 

envelop which is 10.1 kW in this case. So the estimated model parameters lie between the true 

state (7.67 kW) and the mean value (10.1 kW) while the magnitude of deviations are determined 

by the uncertainties of the measurements. It can be observed that the accuracy of measurements 

affects the results of parameter estimations, in which the cases with lower measurement errors 

(e.g. 10%) generally achieve better prediction. Other cases with the HRR of 12.56 kW and mz of 

0.136 to 0.214 m
3
/s are also conducted and show similar predictability in parameter estimations 

(not included to avoid repetition).  
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Fig. 5.3 Prediction of HRR using EnKF model 

 

 

Fig. 5.4 Prediction of mechanic ventilation rate using EnKF model 

5.3.2 Case B: Prediction of smoke layer height 

In addition to model parameter estimation of HRR and mechanical ventilation rate, the second 

case study also includes forecast of model states including smoke temperature and smoke layer 

height. This case study is based on the same scenario as the first one but using validated FDS 

outputs as measurements (Tilley et al. 2011, Zhao and Wang 2013). In order to evaluate the 

4.0

6.0

8.0

10.0

12.0

14.0

0 50 100 150 200

H
R

R
 (

kW
) 

Time (s)  

True state EnKF (10%)

EnKF (20%) EnKF (30%)

P
e

rtu
rb

e
d

  in
p

u
t  ran

ge
 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 50 100 150 200

M
e

ch
an

ic
 V

e
n

ti
la

ti
o

n
 R

at
e

 (
m

3
/s

) 

Time (s)  

True state EnKF (10%)

EnKF (20%) EnKF (30%)

P
e

rtu
rb

e
d

  in
p

u
t  ran

ge
 



 

81 

 

EnKF model to predict model states and parameters, the atrium smoke layer height 

measurements (hAt) are not given in this case. Instead, it is later used to verify the predictability 

of the EnKF model. Based on the FDS simulation results from the previous study Lee et al. 

2004), four selected cases are conducted using different combinations of 𝑄̇ and 𝑚̇𝑧 as shown in 

Table 5.2. Although mechanical ventilation rate 𝑚̇𝑧 is a known input in FDS and can also be 

controlled by an operator in the experiment, the actual air mass flow rate through the duct is still 

very different from the set point in a compartment fire. It is therefore considered as an unknown 

model parameter in this case. The resulting smoke temperature and smoke layer height from FDS 

outputs are recorded with 10-second resolution and later used as measurements.  

Following the same procedure as Case A, four EnKF simulations are conducted using exactly the 

same inputs while the only difference is that the measurement data are based on FDS simulations 

in this case. This is similar to forecast an unknown fire while HRR and ventilation rate can only 

be roughly estimated in the beginning. After the simulation progress in time, the measurements 

become available and are used to adjust the simulation parameters to improve predictability. The 

results of B1 case are presented with details in figures and the results of B2, B3 and B4 are 

summarized in Table 5.3. 

Table 5.2 FDS model inputs and EnKF parameter perturbation ranges of the two-room fire tests 

Case # Q̇ (kW) m𝑧̇ (m
3
/s) 

B1 12.56 0.214 

B2 12.56 0.126 

B3 7.67 0.136 

B4 7.67 0.117 

EnKF range 7.1 to 13.1 0.6 to 0.24 

 

Fig. 5.5 demonstrates a comparison of atrium smoke layer height predictions by using different 

simulation tools/inputs. Dashed line shows a-priori CFAST simulation by a central ensemble 

member using mean values of HRR and mechanical ventilation rate (center of the perturbed 
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range) as inputs while the results are very different from FDS outputs (approximated true state). 

It is not surprising that the a-priori CFAST simulation performs poorly because of inappropriate 

HRR input, which is used here as a base line for comparison. By using correct inputs (the same 

inputs as FDS), the posteriori CFAST results improve but still with some overestimations as 

shown by the dashed-dotted line. Finally, the solid line illustrates the results by using EnKF, in 

which the inputs of HRR and mechanical ventilation rate are the same as the a-priori simulation 

but measurement data are used for data assimilation at every simulation time step (10 seconds) 

during the whole simulation. It can be observed that EnKF results are closer to FDS outputs 

(solid squares) than the a-priori and a-posteriori CFAST models. Similar results can be found for 

other cases as shown in Table 5.3, where all EnKF cases perform better than a-priori CFAST 

models. This is due to the fact that EnKF not only estimates model parameters but also adjusts 

model states at the same time. 

 

 

Fig. 5.5 Comparisons of atrium smoke layer height outputs (Case B1) 
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Table 5.3 Root mean square errors of atrium smoke layer height prediction by different methods 

when compared to FDS simulation results 

Case # CFAST  CFAST  EnKF  

 A priori (m) A posteriori 

(m) 

(m) 

B1 0.28 0.16 0.08 

B2 0.58 0.19 0.23 

B3 0.47 0.23 0.17 

B4 0.19 0.10 0.13 

 

It can be concluded in this case study that by using EnKF to forecast smoke layer height, the 

simulation only requires users to define a reasonable range of HRR and mechanical ventilation 

rate. The model is able to estimate model parameters and forecast smoke transport when 

measurements become available. 

 

5.3.3 Case C: Forecast smoke spread in a multi-room compartment fire 

To further demonstrate the capabilities of EnKF in a more complicated case, the third case study 

applies the EnKF model to a five-zone fire simulation. This case study is based on a series of 

experiments performed by NIST and has been used to validate FDS and CFAST (Jones et al. 

2009, Peacock and Reneke 2007). The test building consists of five compartments including fire 

room, corridor, target room and two small spaces connecting mentioned rooms near entrances as 

shown in Fig. 5.6. The fire source is a 110 kW constant fire. The doorway connecting the 

corridor to the exterior is opened during the whole test.  



 

84 

 

 

Fig. 5.6 Overview of the five-zone fire test building in FDS 

From the validation study of FDS and CFAST, both tools perform well for the rooms close to fire 

source (not included here but can be found in McGrattan et al. 2007, Peacock and Reneke 2007). 

Fig. 5.7 shows the smoke filling process of the target room in the early stage of the fire by 

comparing outputs from different models and experiment measurements. The figure illustrates 

that before t = 70 s, it is difficult to measure smoke layer height in the experiment since the 

smoke layer is not well developed so the smoke layer height is hard to be determined (McGrattan 

et al. 2007). Before t = 70 s, it can be found that both FDS and CFAST outputs are reasonably 

close. During the same period, both programs also predict a similar smoke filling process in the 

corridor as shown by the SmokeView (Forney 2013) visualization in Fig. 5.8. SmokeView is a 

smoke visualization tool developed by the US NIST. At t = 20 s, the smoke starts to propagate 

into the corridor along the ceiling then reaches the far end and also gets into the entrance two at t 

= 30 s. In general, although the smoke layer of the corridor is formed at about t = 30 s, the 

quantity of smoke calculated by CFAST as indicated by the solid line is still reasonable in the 

early stage by comparing to that of FDS.  
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Fig. 5.7 Comparisons of target room smoke layer height from experiment measurements 

and simulation results 

 

 

Fig. 5.8 Comparisons of smoke layer height outputs from FDS and CFAST in the corridor 

After t = 70 s, more smoke gets into the target room and the smoke layer can be measured 

consistently in the experiment (Fig. 5.7). In the meantime, CFAST significantly underestimates 

the smoke layer height in the target room. A closer look at the smoke filling process is provided 

by Fig. 5.9 where the air temperature is illustrated by different colors as shown by the legends on 

the right side. After t = 70 s, the smoke enteris the target room and forms a smoke layer. The 

quantity of smoke in the room starts showing differences between CFAST and FDS at t = 70 s.  
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Fig. 5.9 Comparisons of smoke layer height outputs in the target room for a fire of 110 kW 

At t = 100 s, CFAST starts to further underestimate the smoke layer height and shows significant 

difference from FDS outputs. Finally at t = 200 s, the smoke layer height is about 0.11 m from 

CFAST while FDS result is around 1 m. 

The significant discrepancy of CFAST from FDS simulations of the target room comes from the 

CFAST assumptions. In CFAST, each compartment is divided into two layers in which air 

properties are assumed to be uniform, and a ceiling jet is not modeled. This method simplifies 

calculations but also creates problems in the corridor. Due to momentum effect, more smoke will 

exit the corridor through the doorway directly than entering the target room as illustrated in Fig. 

5.8. CFAST thus overestimates the mass flow rate through the entrance two as shown in Fig. 

5.10. After 70 s, the mass flow rate actually reaches a steady state as illustrated by the dashed 

line whereas the CFAST prediction continues to increase till it reaches a value of over two times 

more than that of FDS at about 200 s. This explains why the smoke layer height in CFAST is 
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much lower than that in FDS as shown by Fig. 5.9. Although CFAST implemented a delay 

function for the smoke spread in a long corridor (Bailey et al. 2002), we tried different delay 

functions for the smoke dispersion through the long corridor but the predictability cannot be 

improved.  

 

Fig. 5.10 Comparisons of the mass flow rate through the entrance two 

This case shows an example how model assumptions affect simulation accuracy. Here we 

implement an EnKF-based solution to improving the CFAST simulation. In order to take into 

account the forecast uncertainties of the mass flow rate through the corridor doorway, a virtual 

sink of mass is added in the corridor to consider excessive mass loss through the door way for 

model state correction. The mass sink helps to leverage the mass flows distributed between the 

entrance two and the corridor doorway so that the smoke flow through the doorway can be 

correctly considered in CFAST. This sink is considered as an uncertainty of 0 to 0.2 m
3
/s to the 

exterior. The range is determined by comparing the FDS and CFAST simulation results to make 

sure the perturbed flow rate can cover the true state as illustrated by dotted-arrows in Fig. 5.8. 

Regarding other parameter perturbations of the EnKF model, the uncertainty of the fire source 
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HRR is assumed to be 50% since the accurate HRR is not given. The uncertainties of 

measurements are assumed to be 10% for the spatial errors (Steckler et al. 1982 and Quintiere 

1984) which are about 10°C for smoke temperature and 0.1 m for smoke layer height. Finally, 

the number of ensemble member q is set at 100 as suggested by the previous study (Lin and 

Wang 2013). The measurement data to be assimilated with the CFAST simulation during the 

EnKF analysis include the smoke temperatures and smoke layer heights in the fire room and the 

corridor. After applying these setups to the EnKF model, the resulting smoke temperature and 

smoke layer height in the target room are used to verify model predictability.  

Fig. 5.11 shows the smoke layer height prediction of the target room by comparing outputs from 

different approaches. Originally, the smoke layer predicted by CFAST (dashed line) keeps 

descending after 70 seconds and finally reaches the floor level at 250 seconds. But the FDS 

results (solid squares) indicate the steady state of the smoke layer height should be at 

approximately 1.0 m height. After applying EnKF, the smoke layer height prediction shifts to a 

range between 1.0 m and 1.4 m after 80 seconds which shows significant improvement. 

 

Fig. 5.11 Comparisons of target room smoke layer height outputs 
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Fig. 5.12 shows the results of smoke temperature prediction of the target room by using 

difference methods. The solid squares illustrate 10 seconds average of FDS outputs which is 

considered as an approximation of the true state and the dashed line is CFAST posteriori 

estimation. It can be observed that the smoke temperature is about 15 to 20°C lower than the true 

state even though the appropriate HRR is already given. After applying EnKF, the smoke 

temperature prediction shifts closer to the solid line after the model states and parameters are 

adjusted in the EnKF analysis. 

  

Fig. 5.12 Comparisons of target room smoke temperature outputs 

The EnkF simulation in the previous discussion uses the measurements of smoke temperatures 
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importance of the number of measurements used in EnKF analysis, a case with only fire room 

smoke temperature and smoke layer height measurements is also conducted. The results are 

illustrated as dash-dotted lines (only FR observation) in Fig. 5.11 and 5.12. It can be observed 
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accounts for about 28% relative error. This is due to the virtual sink is located in the corridor and 

no local measurements in the target room are used in this case so the EnKF model is less 

effective than the previous case. 

Finally, a comparison of the simulation time and the predictability using three different methods 

is presented in Table 5.4. The predictions of smoke temperature and smoke layer height have 

significant improvement after applying EnKF. The total simulation time required by EnKF is 520 

seconds without using any parallel computing on an Intel 2.8GHz processor while FDS may 

require almost an hour to complete with the same hardware. In addition, for the EnkF simulation, 

over 80% of computational time is associated with processing the ensemble members 

sequentially. Currently, the model requires 520 seconds to perform a simulation of 300 seconds. 

If parallel computing is applied to the model to process multiple ensemble members 

simultaneously, the model will be potentially able to run in real time for the five-zone 

compartment fire prediction. 

From a practical perspective, to apply this model to predict fire and smoke dispersion to improve 

building fire safety, the HRR of an unknown fire accident can be first estimated by the fuel load 

and ventilation conditions of a given space with a reasonable range. When a fire accident occurs 

and the fire alarm is activated, the fire source is then assumed to be located in the closest room to 

the triggered smoke detector and start taking measurements from the sensors. After the EnKF 

analysis, the computer simulations are calibrated with the measurements and generate a more 

accurate prediction of fire growth and smoke dispersion which can be used in automated smoke 

management, evacuation assistance and decision making in firefighting. For example, the 

occupants can follow the signs and avoid going toward toxic smoke while fire fighters can have a 

general idea about firefighting strategies before entering the building. 
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Table 5.4 Comparisons of model predictability and CPU time 

 Temperature 

prediction error 

Smoke layer 

height prediction 

error 

CPU time 

(seconds) 

CFAST 28% 53.6% 0.8  

EnKF 16.5% 16.5% 520 

FDS - - 3330 

*The error percentage is based on root mean squared error divided by the average  

 

5.4 Conclusions and future work 

A new method to forecast smoke dispersion in a compartment fire by combining state and 

parameter estimation is presented. To solve the problems associated with the inaccurate user 

inputs and model assumptions, the EnKF model assimilates different types of sensor data such as 

smoke temperature and smoke layer height measurements to improve model predictability. The 

resulting model is able to forecast long-distance smoke transport from the fire source in a 

compartment fire. Comparing to other parameter estimation techniques in compartment fire 

simulations that require solving large adjoint matrices, EnKF only needs to operate around 100 

ensemble members within a few minutes and can sequentially calibrating the forecast model with 

measurement data. The results from three case studies are showing noticeable predictability 

while the computational requirement is relatively low.  

For those who would apply EnKF to other simulation models, it is suggested to apply a low-

dimensional model with highly accurate short-term forecasts. This is due to the fact that the 

EnKF will directly use the simulation model to perform predictions when measurements are not 

available. Therefore, simulation tools with lower accuracy with fewer measurements available 

will not benefit well from EnKF. In addition, modifications of the simulation tools are sometimes 

required. For example in Case C of this study, a virtual sink is added in the corridor to take into 

account model limitations due to assumptions. This modification makes the sampling of 
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ensemble members to focus more on most likely errors to improve the model efficiency.  

Future studies would require looking into the parameter perturbations and simulation model 

convergence criteria. This is due to the fact that, in some cases, when the deviations of model 

parameters exceed about 60%, some ensemble members will have difficulty to converge in 

CFAST. In addition, spurious correlations should also be looked into since it is a common 

problem in all EnKF applications. The case studies presented in this paper are based on buildings 

with two to five rooms while all model states are highly-correlated. When the model is applied to 

a larger building, the EnKF model should implement a more detailed localization method to 

avoid model parameters and states updated with irrelevant measurements such as sensor data 

from a room far away from a fire source.   
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Chapter 6 Scaled Compartment Fire Experiment 

 

6.1 Background information 

Compartment fire experiments have had great success in broadening knowledge of building fires. 

However, the cost of a building fire experiment is usually high and the test is not easily 

replicated because the building being tested is often damaged by the fire and is not always fully 

recoverable. There is additional difficulty creating an identical ambient environment since most 

experiments are conducted outdoors in uncontrollable weather conditions. Numerical 

experiments (i.e., computer simulations) and scaled fire experiments are alternative ways to 

study building fires that are not susceptible to such problems. Although numerical experiments 

are widely used and noticeably accurate, the use of computer simulations alone to study a 

specific fire phenomenon is not recommended (Johansson 2014). In fact, the only affordable 

option for investigating certain types of compartment fire problems such as atrium fires and shaft 

smoke transport is scaled fire experimentation. Although the scaling laws that relate small-scale 

tests to full-scale results are only applicable to certain types of fuels, building materials, and 

compartment geometries (Jolly and Saito 1990; Babrauskas 1995 and 1997), the method can still 

give a general picture for predicting smoke temperature and smoke layer height (Moodie and 

Jagger 1992). 

The goal of the experiment presented in this chapter is to study the effects of changing fire 

source HRR and the opening/closing of doors on the smoke filling process of a compartment fire. 

These are very common events of real compartment fire accidents. As previously mentioned, 

these events are unpredictable, which makes smoke and fire spread difficult to predict. According 

to the existing literature, most established fire experiments usually attempt to apply one 
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condition to the entire test to avoid undesirable changes, but this does not produce desirable 

results to test dynamical updating of data assimilation. The experiment is specially designed to 

study dynamic events during a compartment fire. 

 

6.2 Experiment setups 

The experiment setup is a 1:5 scaled building based on a series of experiments conducted by 

NIST (Peacock et al. 1988 and 2007). As shown in Fig. 6.1., the scaled building consists of three 

rooms. The fire room is built entirely with cement board, except for one wall, which is built with 

fire-proof glazing for smoke visualization. The other two rooms are constructed entirely of 0.8 

cm-thick acrylic glass. These three rooms are connected by 0.4 m × 0.15 m doors. There are 

three doors of the same size in the corridor that lead out of the compartments. Doors 2 and 3 are 

closed for most of the tests, while Door 1 remains open.   

 

Fig 6.1 (a) Description of experimental setups 
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Fig 6.1 (b) Experimental setups - apparatus 

Table 6.1 Geometries and material properties of the scaled building 

 Length Width Height Material 

Fire room 70 50 50 
Acrylic glass 

Cement board 

Corridor 250 50 50 Acrylic glass 

Target room 70 50 50 Acrylic glass 

*unit: centimeter 

 Conductivity 

kW/(m K) 

Specific Heat 

 (kJ/kg K) 

Density 

(kg/m
3
) 

Thickness 

(cm) 

Acrylic glass 0.0019 1.47 1185 0.8 

Cement board 0.29 0.84 1200 1.5 

 

The fire source is a Bunsen burner connected to a propane cylinder whose flow rate is controlled 

by a flow meter and is located in the fire room. To prevent oxygen starvation and reduce 

experimental uncertainties, the tube to the propane gas supply is fed to the outside air through a 

small (0.1 m × 0.1 m) opening in the floor. To obtain the temperature measurement, three 

thermocouple trees, each consisting of five type K thermocouples, are installed in each room. 

The lowest one is located 5 cm above the floor and the highest one is 45 cm above the floor. The 

other three thermocouples are located in-between these two and spaced 10 cm apart, as show in 

Fig 6.1. An Agilent 34970A data acquisition unit is linked to all thermocouples and a PC that 
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records measurements every one second. 

Since the hot gases in this experiment are generated with high efficiency from a Bunsen burner, 

the hot gases are transparent and therefore hard to capture visually. In order to visualize the flow 

pattern of the hot gases and observe the smoke layer height, artificial smoke is injected into the 

fire room right next to the burner. The injected smoke is generated by a smoke machine that uses 

fog fluid to make hot gases visible. To further enhance the effect, the smoke particles are 

illuminated by two sheets of green laser light, as shown in Fig 6.2. In addition, the images 

captured by digital camera are then analyzed with particle image velocimetry (PIV). Detailed 

discussions regarding experiment setups are included in Section 7.1.4. 

 

Fig 6.2 Visualization of smoke layer using artificial smoke and laser light  

6.3 Smoke temperature and smoke layer height 

The study of the smoke transport process of a compartment fire is based on comparisons of 

average smoke temperature and smoke layer height. In this experiment, the temperature 

measurements obtained from three thermocouple trees are converted into smoke layer height and 

average smoke temperature for easier comparison. The smoke temperature at the interface, T𝐻𝑑, 
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is given by: 

T𝐻𝑑 = 𝐶𝑠(𝑇𝑚𝑎𝑥 − 𝑇𝑓𝑙𝑜𝑜𝑟) + 𝑇𝑓𝑙𝑜𝑜𝑟 (6.1) 

where 𝑇𝑚𝑎𝑥 is the maximum measured temperature and 𝑇𝑓𝑙𝑜𝑜𝑟 is the temperature measured near 

the floor level. 𝐶𝑠 is an empirically determined factor equals to 0.2 (Peacock et. al 1988). The 

average smoke layer temperature is determined by the mean integrated temperature measurement 

over the layer: 

T𝑈 = ∫
𝑇(𝑧)

𝐻𝑟𝑜𝑜𝑚
𝑑𝑧

𝐻𝑟𝑜𝑜𝑚

𝐻𝑑

 (6.2) 

where 𝐻𝑑 is the height at which the smoke temperature is T𝐻𝑑 and can be determined by linear 

intepolation. 𝐻𝑟𝑜𝑜𝑚 is the height of room. Fig. 6.3 shows an example of converting thermocouple 

tree measurements into smoke layer height and smoke temperature. The smoke layer height, or 

the interface height, is located where the temperature rise is 20% over the entire room, which is 

approximately 0.28 m. By applying Eq. (6.2), the smoke temperature, or the upper layer 

temperature, can be determined and is 99.5 °C in this case. 

 

Fig 6.3 Thermocouple measurements and smokelayer height 
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Before testing the effects of dynamic events, a series of tests using the same HRR of 2.0 kW and 

door opening setups is conducted to calibrate all equipment. Fig 6.4 shows the temperature 

measurements of one thermocople compared to FDS simulation results. The deviations between 

the tests are negligible (less than 5%), and the results are also close to FDS outputs. Thus, it can 

be confirmed that the experiment is highly repeatable. 

 

Fig 6.4 Comparisons of ceiling thermocouple measurement in the fire room 

6.4 Results and discussions 

6.4.1 Case A – change of HRR 

The heat release rate (HRR) of the fire source is the dominant feature of any compartment fire 

(Babrauskas 1992). It is determined by complex chemical reactions that are usually not easily 

predictable. In this experiment, the fire source is a Bunsen burner, which makes it much easier to 

control. This setup enables comparisons of the effect of fire source HRR on smoke transport. 

First, three experiments with constant HRRs are conducted, with values of 1.5, 2.0 and 2.8 kW 

based on the propane gas flow rate to the burner. Fig 6.5(a) shows the temperature rise in the fire 

room for all cases. The rate of temperature rise is very different for all three cases, even 
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immediately after ignition of the burner. As expected, the case with higher HRR has a higher rate 

of smoke temperature rise. The same phenomenon can be observed in the corridor and target 

room, but with approximate 20- and 40-second time delays, respectively, due to the time required 

for hot gases to transport to these two non-fire rooms and build up a smoke layer. A comparison 

of the temperature rise of the 2.0 kW and 2.8 kW cases in the fire room at t = 100 seconds 

reveals a significant temperature difference when the HRR increases by 40% (i.e., from 2.0 kW 

to 2.8 kW). A 40% increment may seem high for a well-controlled fire, but for a full-scale 

underdeveloped compartment fire in different ventilation conditions, the HRR uncertainties can 

be significant especially in the early growth stages (Makhviladze et al. 2006). 

Another experiment using non-constant fire is conducted, in which the HRR begins at 1.5 kW 

and then changes to 2.8 kW at t = 180 seconds. In Fig 6.5(a), the purple contour shows a sudden 

temperature rise at around 180 seconds in the fire room due to the change of fire HRR. The 

sudden temperature rises of the other two rooms have similar time delays of 20 to 40 seconds.           

While strong correlations were found between average smoke temperature and HRR, the 

correlations between smoke layer height and HRR are much weaker, as shown by Fig 6.6. The 

smoke layer height contours obtained from temperature measurements in the fire room are nearly 

identical. Similar results can be found from the corridor measurements. But, for the higher HRR 

case (2.8 kW), the smoke layer descends faster in the early stage due to the fire source’s higher 

flow rate. After around 120 seconds, once the same layer is well-developed in the corridor, all 

three cases show nearly identical smoke layer height. 



 

103 

 

 

 

 

Fig 6.5 Comparisons of average smoke temperature rise in three rooms 
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Fig 6.6 Comparisons of smoke layer height in three rooms 
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For the target room smoke layer height, it is necessary to check the near-ceiling thermocouple 

measurements to determine the time at which the hot gases enter the room. Fig 6.7 indicates that 

the air temperature rise near the ceiling is first detected at 30 seconds after ignition of the burner 

in the 2.8 kW HRR case. For the 2.0 kW and 1.5 kW HRR cases, hot gases reach the target room 

at 36 and 42 seconds, respectively. This is due to the higher HRR fire sources also generate more 

mass/volume of hot gases. In other words, the flow speed is higher and the time required to reach 

the target room is shorter for high HRR cases. By obtaining the average travel time of smoke 

reaching the target room, the observations at the time when no smoke enters the target room can 

be excluded.  

 

Fig 6.7 Temperature rise of target room ceiling thermocouple measurement 

Fig 6.6(c) shows that, in general, in the case with higher HRR, the smoke layer descends faster in 

all three rooms. But, for the non-constant HRR case, the smoke layer height rises after HRR is 

increased from 1.5 kW to 2.8 kW. This can be explained by comparing the temperature profiles 

at different times. Fig 6.8 illustrates the temperature profile in the target room at 150, 200 and 
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blue contour, is a smooth curve using 1.5 kW HRR. When the HRR changes to 2.8 kW at 180 

seconds, hotter gases start entering the room at around 200 seconds and change the temperature 

profile, which creates a steep temperature rise above 0.25 meters height, as shown by the green 

contour. This change also results in the rise of the smoke layer height at 200 seconds. As the 

hotter smoke generated by the 2.8 kW fire keeps entering the room, the lower layer air is heated, 

as shown by the purple contour, and the smoke layer height starts descending. Finally, the 

temperature profile changed back to its original smooth shape only when measured at 

temperatures higher than those measured at 150 seconds.   

 

Fig 6.8 Target room temperature profiles at different time (HRR = 2.0 kW) 
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sufficient oxygen supply, so the opening only affects the transport of hot gases.  

Table 6.2 shows three experimental setups with different door locations, as illustrated in Fig 6.1. 

The results of average smoke temperature rise are shown in Fig 6.9. Because the fire room is 

well-ventilated, the locations of the openings have very little effect on the fire room smoke 

temperature. For corridor smoke temperature, represented by the red contour in Fig 6.9(b), Case 

1 shows the highest temperature rise of all three cases. This is because Door 1 is located at the 

end of the corridor that is furthest from the fire room, and the hot gases that flow out of this 

opening have the lowest temperature. In other words, the total energy loss through the opening is 

relatively lower for Case 1. Overall, the results indicate that the door position has only a minor 

effect on the smoke temperature and smoke layer height. This may be due to the fact that the fire 

source is a Bunsen burner, and the flow rate change is relatively small comparing to the air 

supplied by the fire room floor opening.  

Table 6.2 Door position for three case setups 

 Door 1 Door 2 Door 3 

Case 1 Open Closed Closed 

Case 2 Closed Open Closed 

Case 3 Open Closed Open at t = 180 s 
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Fig 6.9 Comparisons of smoke temperature rise in three rooms for different door setups 
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Fig 6.10 Comparisons of smoke layer height in three rooms for different door setups 
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Chapter 7 Forecasting Smoke Transport in Real-Time 

 

The models presented in Chapters 5 and 6 focus on a posteriori estimation of model states and 

important parameters. In this chapter, the model is designed to be calibrated with a bench-scale 

fire experiment and to predict smoke transport using real-time measurements. 

7.1 Potential problems and important EnKF model parameters 

The performance of an EnKF model heavily depends on several important model parameters to 

determine simulation and observation error covariance and to further estimate the approximated 

true states of the system. These parameters also directly affect simulation accuracy and speed. In 

addition, when applied to a forecasting simulation of building environment, the determination of 

these parameters can be very different from that of other types of systems. This section discusses 

the potential problems that can arise when these EnKF model parameters are not properly 

defined, as well as possible solutions for overcoming these problems. 

7.1.1 Localization and spurious correlation 

In general, the physical states of two different locations that are near each another are usually 

highly correlated. In contrast, there is very little correlation between the physical states of two 

locations that are physically far away from each other; thus, such correlations are considered 

spurious. In other words, potential problems may arise when all observations are equally applied 

to an EnKF analysis. For a compartment fire scenario as presented in this chapter, the 

correlations between the observations and model states should take into account the flow rate 

between the rooms. To well illustrate the problems for the reader’s convenience, we start again 

with the basic equations of EnKF. 

X𝑎 = 𝑋𝑓 + K(𝑦 − 𝐻𝑋𝑓̅̅̅̅ ) (7.1) 
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𝐾 =
𝑃𝑓𝐻𝑇

𝐻𝑃𝑓𝐻𝑇 + 𝑅
 (7.2) 

If the spurious correlations are not considered when observing Eq. (7.1) and Eq. (7.2), the 

measurement innovation (difference between measurement and forecasted measurement) 

y − HX𝑓̅̅ ̅ becomes equally important to any model state regardless of the distance between them 

because 𝐻𝑃𝑓𝐻𝑇 + 𝑅 is constant for one specific measurement. This may cause a model state to 

be updated with an irrelevant observation even when the noise is much greater than the 

correlation (Hamill et al. 2001). To account for this issue, various measures, which are so-called 

“localization methods”, are proposed based on modifying forecasted error covariance 𝑃𝑓 and 

observation error covariance R in Eq. (7.2). For example, for the grid points that are far away 

from the observation location, the correlation becomes weaker where 𝑃𝑓should approach zero. 

This can also be interpreted that when K is approaching zero in Eq. (7.2), the optimal model 

states, X𝑎, in Eq. (7.1) are solely dependent on the forecasted states, 𝑋𝑓. Another method for 

achieving a similar effect is to increase the measurement error covariance, R. By increasing R 

when the distance is greater, the uncertainty of the measurement becomes higher, and the signal 

becomes relatively lower. Thus, when R increases, K approaches zero, which yields similar 

results to localizing 𝑃𝑓. 

In order to formulate localization methods, Houtekamer and Mitchell (2001) introduced a 

distant-dependent reduction of background (simulation) error covariance method for an EnKF. 

The simulation error covariances are localized by applying a Schur-product based on a distant-

dependent function where the Schur-product, ρ, for covariance localization is determined by: 

ρ = −
1

4
𝑑5 +

1

2
𝑑4 +

5

8
𝑑3 −

5

3
𝑑2 + 1  𝑓𝑜𝑟  0 ≤ 𝑑 ≤ 1 (7.3) 
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ρ =
1

12
𝑑5 −

1

2
𝑑4 +

5

8
𝑑3 +

5

3
𝑑2 − 5d + 4 −

2

3
∙

1

𝑑
𝑓𝑜𝑟  1 ≤ 𝑑 ≤ 2 (7.4) 

ρ = 0  𝑓𝑜𝑟  2 ≤ 𝑑 (7.5) 

d =
|𝑧|

𝑐
 (7.6) 

where z is the physical distance between model grid points or the distance between the observed 

location and a grid point, and c is the distance to scale the correlations between two nodes. The 

correlation is assumed to be 1.0 when the distance is below c and gradually reduced to 0 when 

the distance is increased to 2c. For the smoke transport forecasting model presented in this 

chapter, c is determined by the average travel distance of hot smoke gases during a time period 

between two measurements. For example, the average velocity at the fire room door is 0.4 m/s 

(will be discussed in Section 7.1.3) with a 10-second sensor resolution. By applying Eq. (7.3) to 

Eq. (7.6), the localization factor from the fire room to the corridor is about 0.15. For a system 

with n model nodes and m observations, ρ  is an n by m matrix, which is the same as the 

dimension of K. Therefore, the Kalman gain can be improved by the Schur-product where 

K𝑒 =
(ρ ∘ 𝑃𝑓)𝐻𝑇

𝐻(ρ ∘ 𝑃𝑓)𝐻𝑇 + 𝑅
 (7.7) 

Fig 7.1 shows a comparison of the smoke layer height prediction in the target room using two 

different EnKF models. All input parameters are identical except that one case uses improved 

Kalman gain by applying the localization method as shown by Eq. (7.7), while the other uses 

unimproved Kalman gain. As shown by the dotted orange line, the observation is given from 

t = 10 to t = 100 seconds to update model states. Although local measurements are also given, 

the results still show high deviations between the EnKF outputs and the measurements. This is 

because the EnKF over-predicts the error covariance between the predicted target room smoke 

layer height and the measurements from rooms far away. These correlations are supposed to be 
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weakly correlated due to their long distances but are mistaken as highly correlated in this case. 

These spurious correlations update target room smoke layer height inaccurately. Since the 

posteriori estimations of the target room smoke layer height are not successful in this case, the 

predicted smoke layer height from t = 100  to t = 500  seconds, as shown by the solid-orange 

line, is also very different from the experiment results and even worse than direct simulation 

using the zone model. By applying the aforementioned localization methods, as shown by the 

purple contour, the model reasonably performs posteriori estimation and also predicts the smoke 

layer height from t = 100 seconds and t = 500 seconds with noticeable accuracy. 

 

Fig 7.1 Comparison of EnKF results using localized and non-localized Kalman gain 

7.1.2 Filter divergence 

As mentioned in the previous section, the accuracy of an EnKF model is based on the estimation 

of simulation and observation covariances using a limited number of ensemble members. When 

the EnKF parameters are not appropriately defined, the model may have difficulty determining 

analysis states (approximate true states), which causes filer divergence. A very commonly found 

problem that causes filter divergence is when the perturbation range of the ensemble members 
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does not cover the true state of the system. As illustrated by Fig 7.2, when the true state acts like 

one of the ensemble members, the sampling strategy is considered good because the error of the 

model parameter can be determined and used to improve the model. However, when the true 

state is not included in the ensemble perturbation range, the model may have difficulty 

determining a proper value since all ensemble members are incorrect. 

  

Fig 7.2 Illustrations of ensemble sampling strategies 

There are several possible solutions for ensuring the ensemble perturbations covering the true 

state. The first method is to increase the number of ensemble members to enlarge the 

perturbation range. Since the perturbation of initial parameters is normally distributed, increasing 

the number of ensemble members will likely widen the upper and lower perturbation boundaries. 

However, this method is considered computationally intensive and inefficient when applied to a 

high dimensional system (when the number of model states, n, is much greater than the number 

of ensemble members, q). 

The second method is to perturb the initial states of the simulation model to increase the range of 

ensemble member outputs. This method only works for cases with a high accuracy simulation 

model. For the simulation models with lower accuracy and higher systematic errors (higher bias), 

filter divergence will still occur when the simulation progresses over time and all ensemble 

members are going in the  wrong direction, as shown in Fig 7.2. In this case, it is suggested to 
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apply the third method by adding a zero-mean white noise to the simulation model at every 

analysis cycle to provide more spread to the ensemble members. This method is especially 

suitable for mass transport problems when the model nodes are far away from the source 

location. This is due to the model states are nearly identical for all ensemble members at these 

far-away nodes in the early stage of simulation. The major drawback of this method is that more 

ensemble members are required to compensate for the additional white noises in order obtain 

accurate simulation error covariance. As a result, the additional numerical operations required to 

process ensemble members in EnKF analysis cycles directly affect computational time and are 

especially critical for systems that are designed to perform forecasting in real time. Therefore, 

the forth method can be applied to avoid filter divergence is setting up a threshold or a switch to 

start EnKF analysis. For example, in the case of a compartment fire, this can be a certain degree 

of increase in temperature rise detected from near-ceiling thermocouples. For instance, at the 

early stage of the fire, when there are no hot gases entering the rooms located far away from the 

fire source, the measurements taken from those sensors located in faraway rooms are still at the 

same initial ambient temperature. Thus, it is not necessary to process Kalman gain and update the 

model states. By setting up a threshold, the EnKF model not only avoids filter divergence but 

also bypasses unnecessary numerical operations. 

In order to select an appropriate method for overcoming filter divergence problems, it is 

suggested that one use current available measurements to do a posteriori estimation and evaluate 

the discrepancies between the direct simulation results and the measurements. Based on general 

estimations of errors for each parameter, the parameters to be perturbed can be selected, and the 

magnitude of the perturbation can also be generally determined. 
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7.1.3 Determination of measurement uncertainties R 

Measurement uncertainties are expected errors of the measurements obtained from the apparatus, 

so the uncertainties are either from the device itself or the interpretation of an indirect 

measurement. The measurements that are used in the EnKF analysis in this chapter are obtained 

from the experiment presented in Chapter 6. The thermocouples and data logger are calibrated 

before each set of experiments and are, therefore, considered highly accurate. In addition, the 

measurements obtained from repeating bench-scale experiments in the previous chapter show 

very minor deviations and are thus considered precise. By excluding the possible errors from the 

experiment apparatus, the uncertainties of the measurements are mostly dependent on zonal 

deviations. Because the smoke temperature and smoke layer height of a given room are 

calculated from the measurements of one thermocouple tree where the zonal deviations are 

excluded, they can be considered as indirect measurements. In general, the hot gases inside a 

room can deviate significantly depending on the location, especially in the early stage of fire. As 

illustrated by Fig 7.3, the zonal deviation of the gas temperature near the ceiling can be up to 20 

°C in this case. In order to determine the uncertainties, an FDS model is employed, using the 

bench-scale experiment setups as inputs, and R is approximated by the FDS outputs. For 

example, the smoke layer height uncertainties in the fire room are 10% of the room height, and 

the temperature uncertainties are 10% of the average smoke temperature rise in the early stage 

(i.e., first 30 seconds); then, both decrease to 5% when the hot gas layer is well-developed. The 

measurement uncertainties of the corridor are assumed to be 20% in the early stage and 10% 

later on due to its larger size and higher zonal deviation. These uncertainties are considered 

independent, so the error covariances among different locations are assumed to be zero. 
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  (°C) 

Fig 7.3 Zonal temperature distribution of the fire room from FDS results 

7.1.4 Ensemble perturbation strategies 

The major advantage of using EnKF to forecast building environment is that the important model 

parameters can be adjusted when measurements are available. By using more accurate model 

parameters, the predicted physical conditions can maintain at a desired accuracy in a longer time 

window. Therefore, in order to have an efficient EnKF model, it is important to select the 

parameters to be perturbed and design the magnitude of perturbation. 

The most important parameter for a zone model simulation is HRR of the fire source. Since the 

flow rate of the fire plume is also based on a sub model using HRR as input, HRR directly 

affects both energy and mass conservation equation which makes it the most important parameter 

that determines model accuracy. Another parameter that determines the accuracy of the zone 

model is the door flow rate. As mentioned in Chapters 5 and 6, the main reason that a zone 

model fails to predict smoke transport to rooms distant from the fire source is the accumulating 

errors of the door flow rates. Therefore, it is suggested to add a new parameter to adjust flow rate 

at the corridor door. Detailed discussions are included in Chapter 5 so it is not presented here to 

avoid repetition.  

In previous chapter, the inspection of the smoke layer height is based on injecting artificial 
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smoke and projecting laser sheets to visualize the hot gases layer. The visualized smoke layer 

height is close to the results interpreted from temperature measurements and also FDS simulation 

results. In this chapter, a detailed analysis of flow field is required to determine the uncertainties 

of the zone model flow rates. An initial test of using artificial smoke as seeder in a particle image 

velocimetry (PIV) system is conducted. The result shows that the lower layer does not have 

sufficient seeders for flow field visualization due to the buoyancy of the hot gases as show in Fig 

7.4. In this case, the injected seeder is replaced by aluminum oxide powder (Al2O3). Although 

the particles of aluminum oxide powder are with small size (10 μm or smaller), the images 

obtained from PIV system are showing promising results where the particles are distributed all 

over the compartment as shown in Fig 7.5.  

 

Fig 7.4 Flow field visualization using artificial smoke 

 

Fig 7.5 Flow field visualization using aluminum oxide powder (Al2O3) 
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From the experience gained from Chapter 5, the uncertainties of mass flow rate through doors 

should be included in the ensemble perturbation. Therefore, the PIV tests are conducted at the 

center line of the fire room door to estimate the average mass flow rate. As shown in Fig 7.6, the 

flow direction changes rapidly due to the turbulence near the door. In addition, the results are 

showing high deviations when repeating the same test setups. In order to obtain an average flow 

velocity, it can be achieved by either recording images from multiple planes altogether or 

repeating the test and photographing different planes. However, the small door size does not 

allow the prior method because the laser sheets are too close to each other so the particle images 

can be noisy. The latter method is also not reliable since the unstable flow direction. Therefore, 

the PIV tests are conducted near the center of the corridor where the flow pattern is more stable 

and can be easily analyzed. Following are the general experiment setups of the PIV system. 

(a) Seeding 

The seeding particles are based on ceramic material Al2O3 which are injected near the burner and 

the corridor section. The advantage of using Al2O3 over artificial smoke is its endurance to high 

gas temperature such as the heat generated by the propane burner. The diameter of the particle is 

less than 10 μm and the density is around 4g/cm
3
. The seeding process is based on global seeding 

method (Melling 1997) because the hot gas flow rate from the fire room to the corridor is 

relatively high and the corridor can be well-seeded in the early stage of fire. In order to inject the 

particles in a more stable flow rate, the seeders and air are pre-mixed in a special seeding 

chamber (30 cm x 30 cm x 30 cm, 3mm-thick acrylic) before entering the experiment 

compartments. The angle of the injection is adjusted to avoid interferences to the burner and the 

corridor flow field. 

(b) Laser 
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The projected laser for particle visualization is based on a Nd:YAG laser machine (Newwave 

solo) which can perform 15-200 mJ output at 532 nm. The laser is projected through a cylindral 

lens attached in front of the laser beam while the projected laser is converted to a sheet to 

illuminate the plane of interest for particle visualization. The frequency of the laser pulses is 

adjusted by the software Flowmanager
©

 according to the rate of images are captured by the 

digital camera. 

 

 

Fig 7.6 Flow velocity field at fire room door from PIV results  

 

Fig 7.7 Location for images taken for PIV analysis 
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(c) Camera 

The images of illuminated particles are captured by a fast speed CCD digital camera using 

Nikkor 35mm F2 lens. The calibration are also based on Flowmanager
©

 including the adjustment 

of lens focus and length scale of the image to pixels. 

(d) Image process 

The images taken from the camera are divided into multiple integration areas (32 by 32 or 64 by 

64) where the size of each integration area should be greater than 1/4 of the particle travel 

distance during an image capturing time interval. The resulting images are first processed by 

cross-correlations and average filtering. Finally, the detailed statistics of all vectors of the flow 

field can be generated.  

Fig 7.8 shows a comparison between the flow fields of FDS and of PIV. The length of the vectors 

illustrates the flow velocity at different location. Both flow fields are separated into two zones 

where the upper part is a hot gas zone with its flow direction to the right and the lower part is a 

cold air zone with its flow direction to the left. Two zones are separated by the red lines where 

the air velocity is assumed zero. It can be observed that FDS outputs have a smaller hot gas zone 

but the velocity is relatively higher. By multiplying the cross-section areas for both cases, the 

volume flow rates are very close for both cases. Thus, the flow rates in the experiment may be 

approximated by the FDS results including the door flow rate. Finally, the uncertainties of the 

zone model flow rate are approximated by comparing zone model and FDS results.   
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Fig 7.8 Comparisons of flow velocity field at t = 20 seconds 

 

The perturbations of HRR and mass flow rate through corridor opening are based on the 

Gaussian distribution where the expected value and standard deviations are prescribed in the 

EnKF model. Fig 7.10 shows an example of HRR perturbation using the Gaussian distribution 

where 68% of the ensemble members are expected to be within the range of Qf ± σ where Qf is 

2.0 kW and σ is 0.75 kW. Similar method is also applied to the perturbation of mass flow rate 

through the corridor opening where σ is 0.01 kg/s which is approximated by the comparisons of 

zone model and FDS results. This is due to the flow field at the door is relatively more noisy in 

PIV outputs so the reference flow rates are based on FDS results. 
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Fig 7.9 Comparisons of flow velocity field at t = 70 seconds 

 

 

Fig 7.10 Probability distribution of HRR perturbation based on the Gaussian distribution 
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7.1.5 Number of ensemble members 

To achieve real-time prediction, the time for processing one EnKF analysis cycle should be 

shorter than the time period between two available measurements. In general, more than 80% of 

the computational time of EnKF numerical operations relates to processing ensemble members. 

Therefore, the number of ensemble members is the most important parameter in balancing the 

model accuracy and simulation speed. 

Fig 7.11 shows the comparisons of forecasting errors using different numbers of ensemble 

members when the measurements are provided for the first 100 seconds with 10-second time 

intervals. The blue contour with triangle (200-second forecast) means the model predicts the 

smoke transport for 200 seconds after the measurements stop being provided. The y-axis (RMSE 

%) is the average root mean square error (RMSE) of the forecasted smoke temperature divided 

by the average smoke temperature.  

The values presented in the figure are the average of seven simulations, while the cases with the 

highest and lowest RMSE are excluded. It can be observed that the RMSE % decreases 

drastically when the number of ensemble members increases from 5 to 20 for both, 200-second 

and 400-second, cases. After that, the results show no significant improvement in the 

predictability of smoke temperature. Similar results can be found in Fig 7.11(b) for the 

forecasted error of the smoke layer height from q = 5 to q = 20. But, the RMSE % keeps 

decreasing when q increases from 20 to 40, which indicates that the model with 40 ensemble 

members performs better at predicting smoke layer height in this specific case.  
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Fig 7.11(a) Comparisons of temperature forecasting error using different numbers of q 

 

Fig 7.11(b) Comparisons of smoke layer height forecasting error using different numbers of q 

*RMSE% is defined as RMSE divided by the mean 

To process 100-second available measurements and forecast smoke transport for 400 seconds, 

this model requires about seven seconds of computational time, which is less than the 

measurement time interval of 10 seconds. Therefore, 40 ensemble members can be considered an 

optimal number for balancing forecast accuracy and CPU time, while achieving the goal of real-
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time forecasting.   

Compared to the model presented in Chapter 5, this model requires a lesser number of ensemble 

members to achieve desirable predictability in forecasting smoke transport. This is because 

previous models are based on existing tools – CFAST 6.3 and OpenDA 1.1, making it more 

difficult to implement localization methods. The spread of ensemble member outputs is based on 

adding white noises; thus, more ensemble members are required to achieve similar predictability. 

 

7.2 Forecasting smoke transport in a compartment fire 

This section includes two different types of forecasting. The first type is forecasting a 

compartment fire with constant HRR, and the second type is with non-constant HRR. The model 

parameters are tested with a set of 2 kW HRR experiment results that show noticeable 

predictability. After that, the model is directly applied to forecast other cases with different 

observation data using exactly the same model parameters.  

7.2.1 Forecasting smoke transport with constant HRR source 

Case A – 1.5 kW fire 

The first case is based on a 1.5 kW fire, in which observations are given every 10 seconds. In 

order to test the predictability of the EnKF model, three different tests are conducted, wherein the 

measurements are provided for the first 50, 100 and 150 seconds respectively. As shown in Fig 

7.12, the red dashed lines are the results of direct simulation using a zone model and the blue 

solid lines are the experiment results. It can be observed that the zone model over-predicts smoke 

temperature in all three rooms, especially in the early stage of a fire. This may be because the 

lower layer is considered adiabatic in the model assumption, so the total energy entering the 

upper layer is over-estimated, resulting in high temperatures. This effect is especially noticeable 
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in the early stage of the fire since the lower layer volume is much greater than the upper layer. 

After applying the EnKF model, the posteriori estimations of the smoke temperature and smoke 

layer height (represented by dotted lines) are adjusted based on available measurements in the 

EnKF analysis. At the same time, the perturbed model parameters (i.e., HRR and door flow rate) 

are also estimated and used to forecast smoke transport. For example, the solid green line in Fig 

7.12(f) shows the forecasted smoke layer height in the target room. When the measurements stop 

being provided, at t = 50 seconds, measurements from the fire room and the corridor are used, 

and the forecasted smoke layer height shows minor improvement since the local measurements 

in the target room are still noisy. In addition, the updated HRR and flow rate estimations help 

improve forecasting simulation results when measurements are not available. Following the same 

procedures when measurements are provided up to t = 100 seconds, as indicated by the purple 

dotted line, the posteriori estimation shows significant improvement when local measurements 

are available. After t = 100 seconds, when the measurements become unavailable, the forecasted 

smoke layer height still maintains reasonable accuracy, and finally, at t = 150 seconds, when 

more measurements are available, the model accurately predicts the smoke layer height in a 

longer time window because the model parameters have been corrected.  

When comparing the forecasted smoke temperature and smoke layer height in different rooms, 

the results in the corridor show greater discrepancy between the forecasted states and the 

measurements. This is because the volume of the corridor is much greater than that of the other 

two rooms; thus, a higher measurement error as discussed in Section 7.13, is assigned to R to 

account for zonal deviation. When measurement uncertainties of the corridor are taken into 

account, the predicted smoke layer height and smoke temperature are still within a reasonable 

range as defined by R. 



 

129 

 

 

 

 

0

50

100

150

200

0 100 200 300 400 500

Te
m

p
e

ra
tu

re
  (

d
e

gC
) 

Time (s) 

(a) Fire room smoke temperature 

Experiment (1.5 kW) Zone model
EnKF t = 50 EnKF t = 100
EnKF t = 150

0

10

20

30

40

50

60

70

0 100 200 300 400 500

Te
m

p
e

ra
tu

re
  (

d
e

gC
) 

Time (s) 

(b) Corridor smoke temperature 

Experiment (1.5 kW) Zone model

EnKF t = 50 EnKF t = 100

EnKF t = 150

0

10

20

30

40

50

0 100 200 300 400 500

Te
m

p
e

ra
tu

re
  (

d
e

gC
) 

Time (s) 

(c) Target room smoke temperature 

Experiment (1.5 kW) Zone model

EnKF t = 50 EnKF t = 100

EnKF t = 150



 

130 

 

 

 

 

Fig 7.12 (a) to (f) Predictability of the EnKF model during a 1.5 kW fire 
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Case B – 2.78 kW fire 

The second case is based on another set of measurements obtained from a 2.78 kW fire test. As 

discussed in Chapter 6, the temperature rise in each room is significantly higher than that of a 1.5 

kW fire case. Although the model inputs are exactly the same as the previous model, the EnKF 

can still update model parameters and perform reasonable predictions. As simulation progresses 

and more measurements become available, the results show more accurate predictions since the 

model parameters and model states are updated as shown in Fig 7.13. 
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Fig 7.13 (a) to (f) Predictability of the EnKF model during a 2.78 kW fire 

7.2.2 Forecasting smoke transport with non-constant HRR 

The model presented in the previous section verifies the predictability of constant HRR cases and 

shows promising results. In this section, the scope is extended to forecasting non-constant HRR 

cases. All EnKF model parameters are the same as in previous cases, except for the HRR 

perturbation method. In the previous section, the perturbation of HRR gives each ensemble 

member only one HRR value for all time steps because the measurements are based on a 
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constant fire. But, for a transient HRR case presented in this section, the HRR is perturbed at 

each time step in order to account for HRR change. 

For the experiment setups, the initial HRR is 1.5 kW and changes to 2.78 kW at t = 180 seconds. 

As illustrated by the solid-blue line in Fig 7.14(a), the smoke temperature measurements in the 

fire room drastically change at around t = 190 seconds due to the change of HRR. Similar effects 

can be found in the corridor and the target room, as presented by Fig 7.14(b) and (c), with a 

certain time delay as discussed in previous chapters. At t = 150, the smoke temperature 

forecasted by the EnKF, as illustrated by the solid purple line, is still based on the measurements 

obtained from 1.5 kW HRR, so the forecasted smoke temperature does not show significant 

change at t = 190 seconds. At t = 200 seconds, the measurements of the 2.78 kW fire become 

available and the parameters are adjusted accordingly in the EnKF analysis. As shown by the 

solid green line, the predicted smoke temperature drastically increases when using updated 

parameters, including HRR and flow rates, as forecasted by the model. Even though the 

measurements are not provided after t = 200 seconds in this case, the model can still noticeably 

perform predictions. Finally, at t = 250 seconds, when more measurements become available, the 

model further shows improved predictability compared to previous cases. Similar results can be 

found in other rooms for smoke temperature and smoke layer height prediction. 
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Fig 7.14 (a) to (f) Predictability of the EnKF model during a non-constant fire 

0.0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500

Sm
o

ke
 la

ye
r 

h
e

ig
h

t 
(m

) 

Time (s) 

(d) Fire room smoke layer height 

Experiment Direct simulation

EnKF t = 150 EnKF t = 200

EnKF t = 250

0.0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500

Sm
o

ke
 la

ye
r 

h
e

ig
h

t 
(m

) 

Time (s) 

(e) Corridor smoke layer height 

Experiment Direct simulation
EnKF t = 150 EnKF t = 200
EnKF t = 250

0.0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500

Sm
o

ke
 la

ye
r 

h
e

ig
h

t 
(m

) 

Time (s) 

(f) Target room smoke layer height 

Experiment Direct simulation

EnKF t = 150 EnKF t = 200

EnKF t = 250



 

137 

 

References 

Hamill, Thomas M., Jeffrey S. Whitaker, and Chris Snyder. "Distance-dependent filtering of 

background error covariance estimates in an ensemble Kalman filter." Monthly Weather 

Review 129, no. 11 (2001): 2776-2790.  

 

Melling, A. "Tracer particles and seeding for particle image velocimetry."Measurement Science 

and Technology 8, no. 12 (1997): 1406. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

138 

 

Chapter 8 Conclusions and Future Work 

 

 
8.1 Conclusions 

This thesis outlined a general approach to forecasting building indoor environment by using 

ensemble-based data assimilation algorithms. The results indicate that the proposed method can 

improve predictability of a simple model by calibrating sensor measurements. Unlike other 

methods that directly use measurement data as model inputs, the resulting models of this thesis 

are able to statistically update model parameters to maintain the forecasting accuracy for longer 

durations. 

The models presented in this thesis provide noticeably accurate predictions and require low 

computational resources compared to other conventional methods. The following is a list of 

major findings and contributions from this thesis regarding using EnKF for indoor environment 

forecasting:  

▪This thesis research is among the very first studies of using numerical weather prediction 

models and data assimilation techniques, specifically EnKF, for forecasting simulations of indoor 

contaminant transport and building fire smoke spread. It is also one of the first times to achieve a 

real-time forecasting of fire smoke spread in a scaled building model under a controlled 

laboratory environment.  

▪One of the most important parameters affecting the EnKF model’s performance is the number of 

ensemble members. Unfortunately, there is still no theoretical principle for determining an 

optimal number of ensemble members; it is usually determined by empirical methods such as 

trial and error.  

▪For the EnKF analysis, all sensor measurements are not necessarily provided at the same time 
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step. When the processing time of the simulation model is significantly shorter than the 

observation time step, it is suggested that the system be arranged to obtain data in a sequential 

order from each sensor rather than obtaining all measurements concurrently from all sensors. 

▪When the method is applied to existing simulation models, filter divergence can be a potential 

problem because the perturbation range is sometimes limited by the convergence criteria of the 

simulation model. This can be mitigated by adding white noise to the simulation results to 

increase the spread of ensemble members. In addition, modification of the simulation model is 

sometimes necessary to enable perturbation of certain model parameters. 

▪To achieve real-time forecasting, using localization methods to avoid spurious correlation, 

instead of adding white noise, is suggested. This is because additional ensemble members must 

compensate for the additional noises. 

▪The EnKF is more flexible at applying different localization methods when certain model 

parameters and model states are not highly correlated. 

▪The convergence criteria of an implicit simulation model should be considered with the model 

parameter perturbation range. When applying an explicit simulation model, the convergence 

problem can be avoided, which means more freedom in parameter perturbation.  

▪The range of parameter perturbation can be reasonably estimated using available measurements. 

When the measurements are not directly obtainable, it can rely on other simulation tools with 

higher accuracy (i.e., a CFD model).  

▪The determination of measurement uncertainties should account for the assumptions of the 

simulation model. For example, when a parameter is an average value of a physical condition, 

the error of using one measurement to represent the mean should also be considered a 

measurement uncertainty. 
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▪For noisy observations, such as the measurements obtained from the early stages of a 

compartment fire, the EnKF analysis results are expected to deviate significantly from the 

measurements. However, if the spread of ensemble perturbation is also very large, this may cause 

the analysis results to fit too closely with the measurements, resulting in an imbalanced analysis, 

which is considered suboptimal (Houtekamer and Mitchell 2005). To avoid this problem, the 

observation uncertainty should also be increased.  

 

8.2 Future works 

8.2.1 Ensemble based DA algorithms for higher dimensional systems 

In this thesis, the simulation models are all based on low dimensional systems wherein the 

number of ensemble members is much greater than that of model nodes. Therefore, the number 

of ensemble members is usually determined after the whole model structure has been outlined. 

However, for a higher dimensional system, adding one ensemble member can significantly 

increase the computational cost. Thus, the order in which the EnKF parameters are determined 

becomes much more important in higher dimensional systems. For example, increasing the range 

of parameter perturbation is necessary to avoid filter divergence but demands a higher number of 

ensemble members, so the determination of optimal model parameters may require the testing of 

different combinations of multiple parameters instead of optimizing one at each time. 

8.2.2 Localization by modifying observation covariance 

The localization method presented in this thesis is based on modifying simulation error 

covariance. Chapter 7 introduces another method involving the modification of observation error 

covariance. In general, localizing observations are considered more balanced than localizing 

simulations, but they are also less accurate. The determination of the length scale is also different 
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(Greybush 2009). The major advantage of localizing observations is it can be applied to the local 

transform ensemble Kalman filter (LETKF), while simulation localization cannot be 

implemented. This may enable a comparison between EnKF and LETKF since the same 

localization method is applied. 

8.2.3 Other ensemble based DA algorithms 

According to the literature reviews, each ensemble-based DA algorithm has its own advantages, 

but there are very few ensemble-based DA studies related to building environment. In addition, 

finding an ensemble-based DA method (and its corresponding model properties) that performs 

better than other methods at solving a specific type of problem is still very challenging. The 

study can only be conducted by direct comparisons of detailed models using different methods, 

where each model is optimized independently, rather than using similar setups. 

The following are some general suggestions for the selection of ensemble-based DA algorithms 

to solve building environment problems: 

▪DEnKF–It is more suitable for a system with noisy measurements but that uses a more accurate 

simulation model. In this case, the magnitude of model state corrections in the analysis cycle can 

be very small in order to avoid the filter divergence problem. 

▪EnSRF–One of the most important characteristics of EnSRF is the non-uniqueness that different 

ensembles can have the same covariance. This feature can be exploited to evaluate model 

performance such as the computational and numerical properties of the filter (Tippett et al. 

2002). 

▪LETKF–For high dimensional systems with a low number of ensemble members, LETKF 

requires a relatively large effective range for the localized box. This may significantly reduce the 

efficiency of the system, so it is suggested for use with systems that have more measurements 
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available. 

▪EnKF– The ensemble Kalman filter uses perturbed observation to maintain a reasonable range 

of ensemble spread in order to avoid filter divergence. The EnKF is relatively more stable 

compared to other methods but is sometimes considered suboptimal due to the additional 

observation noises. However, when applied to high dimensional systems, its stability becomes 

significant due to the lower number of ensemble members required. 

8.2.4 Full-scale fire experiment 

Although the results presented in Chapter 7 are showing the capability of EnKF in real-time 

forecasting of compartment fire, the measurements are based on a scaled experiment under well-

controlled conditions in a laboratory. The temperature rise in the target room is relatively small 

which makes it not easy to verify the model predictability. Therefore, a full scale fire experiment 

is required to further study the effect of changing ventilation conditions as well as widen the 

range of HRR change.   

8.2.5 Reconstruction of a fire scene using available information 

Reconstructions of fire scenes are generally performed in insurance and crime investigations. By 

using information collected from the fire scene, such as a laboratory analysis report of on-site 

fabric samples, investigators may be able to delineate the entire accident scene.   

As several studies suggest (Shen 2008 and Chi 2011), these fire scene investigations can benefit 

from computer simulations. CFD or zonal computer simulation models can help in the 

reconstruction of a fire scene by establishing possible scenarios and identifying the most likely 

case. However, the process can be very time consuming, as CFD simulations may take hours or 

even days to process the results for one simple model. In such cases, ensemble-based DA 

algorithms can first statistically outline the scene using simple zone models. Then, after 
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important parameters such as ignition source and HRR profile are determined, the information 

can be applied to a CFD model to produce a more detailed fire scene reconstruction. 
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Appendix Door Flow Rate Model 

 
private static double[] doorflowRate(double doorH, double doorA, double roomHa, 
double roomHc, double Hda, double Hdc, double Pa, double Pc, double rhoa, double 
rhoc){ 
 double mac = 0.0; 
 double mca = 0.0; 
 double mbd = 0.0; 
 double mdb = 0.0; 
 double g = 9.8; 
 double rhoair = 1.20416; 
 double cvent = 0.6; 
 if (Hda>doorH){ //destination smoke layer height is always higher 
 //smoke layer height (Hda) is above door soffit 
 double dP1 = (Pa-Pc) - (rhoc-rhoa)*g*(roomHa-Hdc) - (rhoair-rhoa)*g*(Hdc-Hda); 
   
 if (dP1 == 0){ 
  mbd = 0.0; 
  mdb = 0.0; 
  }else{ 
  mbd=Math.max(0.0,Math.abs(dP1)/dP1*flowRate(dP1,dP1,doorA,rhoa,cvent)); 
  mdb=Math.max(0.0, -Math.abs(dP1)/dP1*flowRate(dP1,dP1,doorA,rhoa,cvent)); 
   } 
  }else if (Hdc>doorH){ 
// if smoke gets in destination room (Hda is below door soffit) 
   // case 1, Hdc is above door soffit 
 double dP1 = (Pa-Pc) - (rhoc-rhoa)*g*(roomHa-Hdc) - (rhoair-rhoa)*g*(Hdc-
doorH); //deltaP at door soffit 
 double dP2 = (Pa-Pc) - (rhoc-rhoa)*g*(roomHc-Hdc) - (rhoair-rhoa)*g*(Hdc-Hda); 
//deltaP at smoke layer Hda 
 if (dP1>0){ // Normal Case  
  if (dP2>0){ //Case B - 1 (No neutral layer) 
  double Au = doorA/doorH*(doorH-Hda); 
  double Ad = doorA/doorH*Hda; 
  mac = flowRate(dP1,dP2,Au,rhoa,cvent); 
  mbd = flowRate(dP2,dP2,Ad,rhoair,cvent); 
    }else{ //Case C - 1 (Neutral layer exists) 
  double Hna = Hdc-((Pa-Pc)-(roomHc-Hdc)*g*(rhoc-rhoa))/(rhoair-rhoa)/g; 
  double Au = doorA/doorH*(doorH-Hna); 
  double Ad1 = doorA/doorH*(Hna-Hda); 
  double Ad2 = doorA/doorH*Hda; 
  mac = flowRate(dP1,0,Au,rhoa,cvent); 
  double mdb1 = flowRate(0,dP2,Ad1,rhoair,cvent);  
  double mdb2 = flowRate(dP2,dP2,Ad2,rhoair,cvent); 
  mdb = mdb1+mdb2; 
    }     
   } else { // Rare Case, dP1<0, back flow 
  double Au = doorA/doorH*(doorH-Hda); 
  double Ad = doorA/doorH*Hda; 
  double mdb1 = flowRate(dP1,dP2,Au,rhoair,cvent); 
  double mdb2 = flowRate(dP2,dP2,Ad,rhoair,cvent); 
  mdb = mdb1 + mdb2; 
   }    



 

146 

 

         }else { 
  // 2nd case, Hdc is below door soffit 
 if (Hda<Hdc){ // Normally  
  double dP1 = (Pa-Pc) - (rhoc-rhoa)*g*(roomHa-doorH); //at door soffit 
  double dP2 = (Pa-Pc) - (rhoc-rhoa)*g*(roomHa-Hdc); //at Hdc 
  double dP3 = (Pa-Pc) - (rhoc-rhoa)*g*(roomHa-Hdc) - (rhoair-
rhoa)*g*(Hdc-Hda);//at Hda 
 if (dP1>0){ // Normal Case 
    
 if (dP2>0){  
  if (dP3>0){// Case B - 2 (No neutral layer) 
  double Au1 = doorA/doorH*(doorH-Hdc); 
  double Au2 = doorA/doorH*(Hdc-Hda); 
  double Ad = doorA/doorH*Hda; 
  double mac1 = flowRate(dP1,dP2,Au1,rhoa,cvent); 
  double mac2 = flowRate(dP2,dP3,Au2,rhoa,cvent); 
  mac = mac1 + mac2; 
  mbd = flowRate(dP3,dP3,Ad,rhoair,cvent); 
  } else {//Case C - 2 (Neutral layer is between Hda and Hdc) 
  double Hna = Hdc-((Pa-Pc)-(roomHc-Hdc)*g*(rhoc-rhoa))/(rhoair-rhoa)/g; 
  double Au1 = doorA/doorH*(doorH-Hdc); 
  double Au2 = doorA/doorH*(Hdc-Hna); 
  double Ad1 = doorA/doorH*(Hna-Hda); 
  double Ad2 = doorA/doorH*Hda; 
  double mac1 = flowRate(dP1,dP2,Au1,rhoa,cvent); 
  double mac2 = flowRate(dP2,0,Au2,rhoa,cvent); 
  double mdb1 = flowRate(0,dP3,Ad1,rhoair,cvent); 
  double mdb2 = flowRate(dP3,dP3,Ad2,rhoair,cvent); 
   mac = mac1 + mac2; 
   mdb = mdb1 + mdb2; 
     } 
  }else{ // dP2 < 0, Case C - 3 (Neutral layer is between door soffit and 
Hdc) 
  double Hna = Hdc-((Pa-Pc)-(roomHc-Hdc)*g*(rhoc-rhoa))/(rhoair-rhoa)/g; 
  double Au = doorA/doorH*(doorH-Hna); 
  double Ad1 = doorA/doorH*(Hna-Hdc); 
  double Ad2 = doorA/doorH*(Hdc-Hda); 
  double Ad3 = doorA/doorH*Hda; 
  mac = flowRate(dP1,0,Au,rhoa,cvent); 
  mca = flowRate(0,dP2,Ad1,rhoc,cvent); 
  double mdb1 = flowRate(dP2,dP3,Ad2,rhoair,cvent); 
  double mdb2 = flowRate(dP3,dP3,Ad3,rhoair,cvent); 
  mdb = mdb1 + mdb2; 
    }    
   }else{ // Rare Case, dP1<0, back flow 
  double Au1 = doorA/doorH*(doorH-Hdc); 
  double Au2 = doorA/doorH*(Hdc-Hda); 
  double Ad = doorA/doorH*Hda; 
  mca = flowRate(dP1,dP2,Au1,rhoa,cvent); 
  double mdb1 = flowRate(dP2,dP3,Au2,rhoa,cvent); 
  double mdb2 = flowRate(dP3,dP3,Ad,rhoair,cvent); 
  mdb = mdb1 + mdb2; 
   } 
   }else { // For far away room, long simulation 
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  double dP1 = (Pa-Pc) - (rhoc-rhoa)*g*(roomHa-doorH); //at door soffit 
  double dP2 = (Pa-Pc) - (rhoc-rhoa)*g*(roomHa-Hda); //at Hda 
  double dP3 = (Pa-Pc) - (rhoc-rhoa)*g*(roomHa-Hda) - (rhoc-
rhoair)*g*(Hda-Hdc);//at Hdc 
 if (dP1>0){ // Normal Case 
      
  if (dP2>0){  
  if (dP3>0){// Case B - 2 (No neutral layer) 
  double Au = doorA/doorH*(doorH-Hda); 
  double Ad1 = doorA/doorH*(Hda-Hdc); 
  double Ad2 = doorA/doorH*Hdc;       
  double mbd1 = flowRate(dP2,dP3,Ad1,rhoair,cvent); 
  double mbd2 = flowRate(dP3,dP3,Ad2,rhoair,cvent); 
  mac = flowRate(dP1,dP2,Au,rhoa,cvent); 
  mbd = mbd1+mbd2; 
   } else {//Case C - 2 (Neutral layer is between Hda and Hdc) 
  double Hna = Hda - (Pa-Pc)/(rhoc-rhoair)/g+(rhoc-rhoa)/(rhoc-rhoair)*Hda; 
       double Au1 = doorA/doorH*(doorH-Hda); 
  double Au2 = doorA/doorH*(Hda-Hna); 
  double Ad1 = doorA/doorH*(Hna-Hdc); 
  double Ad2 = doorA/doorH*Hdc; 
  double mac1 = flowRate(dP1,dP2,Au1,rhoa,cvent); 
  double mac2 = flowRate(dP2,0,Au2,rhoair,cvent); 
  double mdb1 = flowRate(0,dP3,Ad1,rhoc,cvent); 
  double mdb2 = flowRate(dP3,dP3,Ad2,rhoair,cvent); 
  mac = mac1+mac2; 
  mdb = mdb1+mdb2; 
   } 
  }else{ // dP2 < 0, Case C - 3 (Neutral layer is between door soffit and 
Hdc) 
  double Hna = roomHa - (Pa - Pc)/g/(rhoc - rhoa); 
  double Au = doorA/doorH*(doorH-Hna); 
  double Ad1 = doorA/doorH*(Hna-Hda); 
  double Ad2 = doorA/doorH*(Hda-Hdc); 
  double Ad3 = doorA/doorH*Hdc; 
  mac = flowRate(dP1,0,Au,rhoa,cvent); 
  double mdb1 = flowRate(0,dP2,Ad1,rhoc,cvent); 
  double mdb2 = flowRate(dP2,dP3,Ad2,rhoair,cvent); 
  double mdb3 = flowRate(dP3,dP3,Ad3,rhoair,cvent); 
  mdb = mdb1 + mdb2 +mdb3; 
   }    
  }else{ // Rare Case, dP1<0, back flow 
  double Au1 = doorA/doorH*(doorH-Hda); 
  double Au2 = doorA/doorH*(Hda-Hdc); 
  double Ad = doorA/doorH*Hdc; 
  double mca1 = flowRate(dP1,dP2,Au1,rhoc,cvent); 
  double mca2 = flowRate(dP2,dP3,Au2,rhoc,cvent); 
  mca = mca1 + mca2; 
  mdb = flowRate(dP3,dP3,Ad,rhoair,cvent);     
    } 
  }  
  } 


