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ABSTRACT 

     Critical environmental and human health concerns are associated with the rapidly 

growing fields of nanotechnology and Engineered nanomaterials (ENMs). The main risk 

arises from occupational exposure via chronic inhalation of nanoparticles. This research 

presents a fuzzy chance-constrained nonlinear programming (FCCNLP) optimization 

approach, which is developed to maximize the nanomaterial production and minimize the 

risks of workplace exposure to ENMs. The FCCNLP method integrates fuzzy mathematical 

programming (FMP) and chance-constrained programming (CCP) into nonlinear 

programming (NLP) optimization framework, and could be used to deal with uncertainties 

expressed as not only probability distributions and fuzzy values associated with 

components of constraints but ambiguity of the objective function as well. 

        The FCCNLP method was examined through a single-walled carbon nanotube (SWNT) 

manufacturing process. Solutions of the compromise decision alternatives associated with 

different risk levels of relaxed constraint violations were obtained. This study confirmed that a 

high level control strategy through strict occupational exposure limits (OELs) combined with a 

high enforcement of OELs would lower the nanomaterial exposure risks to workers. The related 

cost and nanomaterial production have also been optimized for different operational scenarios 

under multi-layer system uncertainties. The results were helpful for decision makers to identify 

desirable schemes under uncertainties to maximize the economic benefits and ensure workplace 

safety through minimizing the nanomaterial-related health risks.  The developed technology has 

technical novelty to help finding cost-effective measures for the sustainable development of 

nanotechnology. 
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Chapter 1 INTRODUCTION 

1.1. Overview 

Engineered nanomaterials (ENMs) are man-made particles having at least one dimension of 

rougly 1-100 nm (EPA, 2007). ENMs have been employed in a wide spectrum of industrial 

sectors during recent years, including energy, medicine, electronics, environmental protection, 

cosmetics, food, agriculture and many other areas. This is due to their unique properties, such as 

small size and associated large surface area to mass ratio, increased surface reactivity, and altered 

physic-chemical properties (Savolainen et al., 2010; Bhatt and Tripathi, 2011; Biskos and 

Schmidt, 2012). The unique chemical and physical properties of ENMs have raised issues 

regarding occupational health and safety (EHS) in manufacturing facilities (Derk, 2010), 

particularly when handled in large amounts (Maynard and Aitken, 2007). ENMs can be released 

to the occupational atmosphere during industries producing processes, where ENMs are 

synthesized, purified, and packaged, thereby becoming commercial products. As a result, ENMs 

can enter worker‘s body through inhalation, skin contact and ingestion during manufacturing 

(Aschberger et al., 2011). Recent publications indicate that chronic occupational exposure to 

ENPs may lead to a number of negative health and reproductive problems, including hepatic 

injury (Kobayashi et al., 2009; Myojo et al., 2010; Paur et al., 2011), genotoxicity (Kumar et al., 

2011; Hackenberg et al., 2011), carcinogenicity (Ress et al., 2003; Roller, 2009), cytotoxicity 

(apoptosis) and risks of cardiovascular diseases (Wilson et al., 2007; Shvedova et al., 2012), and 

reproduction damage (Zhu et al., 2010; Lapresta-Fernandez et al., 2010). 
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So far, relatively few publications approach directly modelling ENMs occupational exposure 

risks, which include Monte Carlo models that compare various levels of environmental health and 

safety (EHS) standards for single wall carbon nanotube (SWCNT) manufacturing (Ok et al., 

2008), and expert opinions on development of exposure-response functions for nanomaterials 

(Kandlkar et al., 2007). To minimize the risks of ENM to workers‘ health as well as to maximize 

their economic benefits, optimization models are effective tools to model ENMs manufacturing 

processes. Usually, optimization algorithms involve geometric programming, dynamic 

programming, linear programming methods (Zuperl et al., 2004). However, most ENMs-

producing processes are complex systems with inherent nonlinearities, where the systems are best 

described by nonlinear optimization method (Slotine and Li, 1991). 

Previously, nonlinear programming (NLP) has been widely employed to technological 

optimization of various processes, such as agriculture (Ostafiev et al., 1984; Kalampoukas and 

Dervakos, 1996), electronic-industry (Chen and Wang, 2009; Liu et al., 2011), and construction 

(Kravanja and Silik, 2003). NLP is one of the most frequently applied algorithms for real world 

problems as its fundamental theories have been well studied and as a result, a wide spectrum of 

user-friendly software with powerful computational capabilities have been developed. One 

limitation of NLP is that it relies heavily on the inherent assumption that all relevant variables 

have deterministic values (Luhandjula, 2006). 

Unfortunately most real-life problems involve a certain uncertainties making the 

implementation of NLP a difficult task (Liu, 2010). For instance, work-related exposures to 

ENMs are associated with a number of uncertainties in relation to control options and risk 

quantification. Uncertain variables for a nonlinear ENMs manufacturing system analysis may 
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include: (1) ENMs workplace release data. Previous studies indicated a pressing need to distinguish 

background nanoparticles‘ concentrations, process-generated nanoparticles‘ concentrations and 

ENMs in workplace risk assessment (Maynard and Aitken, 2007). (2) Occupational exposure 

limits: it may take several years to establish human no-effect levels (NELs) for each kind of 

MNM, so in many cases no nano-specific occupational health and safety standards are available 

(Van Broekhuizen et al., 2012); and (3) ENMs occupational exposure control efficiency. Data on 

efficiency and cost of ENMs control methods are vague (Ok et al., 2008). It is seen that the above-

mentioned uncertainties have not been well quantified in the previous studies. 

Considering uncertainties in the optimization, incorporation of fuzzy mathematical 

programming (FMP) and chance-constrained programming (CCP) has been reported to 

environmental management problem (Xu and Qin, 2010).  FMP can deal with vagueness and 

ambiguity based on fuzzy set theory. CCP is an effective way to deal with numerous uncertainties, 

where uncertain parameters are considered random variables and described using probability 

density functions. CCP can be used to convert a stochastic programming model into an equivalent 

deterministic model, and also to incorporate other uncertain optimization methods, such as FMP, 

within the nonlineare programming general framework (Xie et al., 2011).  Therefore, combining 

FMP and CCP with NLP is an approach that could be used to deal with various uncertainties 

pertaining to ENM and workplace exposure control. 

1.2. Objectives  

The study aims to develop a fuzzy chance-constrained nonlinear programming (FCCNLP) 

approach to (1) maximize the economic benefits of nanomanufacturing and minimize the nano-
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related health impacts to workers; and (2) handle uncertainties associated with both the 

nanomaterial production and workplace exposure control. Moreover, the development of 

FCCNLP method will be performed in details as the following steps: 

(1) to develop a nonlinear optimization approach for modeling the ENMs manufacturing 

process towards a maximum nanomaterial production at a minimum cost of workplace exposure 

control under a number of constraints; 

(2) to develop a fuzzy chance-constrained nonlinear programming (FCCNLP) method 

through an integration of FMP and CCP into NLP to address the system uncertainties including 

the randomness of exposure data and fuzziness of economic return objective, occupational 

exposure limits and exposure control efficiency; 

(3) to apply the FCCNLP model to a typical single-wall carbon nanotube (SWNT) 

manufacturing process and obtain alternative solutions for economic benefit under different EHS 

control strategies, different probability levels of system failure and appropriate net return and 

occupational exposure limits; 

(4) to evaluate trade-offs between nanomanufacturing economic benefits and human health 

risks and provide feasible suggestions to decision makers through a holistic view span. 

1.3. Organization of the Thesis 

This thesis is organized in seven chapters:  

Chapter 1 introduces the research background, addresses the research problems, briefly 

introduces the research methodologies, and states the research objectives and significance. 
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Chapter 2 provides a general review of the literatures on the concept of engineered 

nanomaterials (ENMs), typical nanotechnology manufacturing processes, adverse effects of 

ENMs to environment and human health, nano-related standards, previous optimization studies of 

manufacturing process and uncertainty analysis techniques used in the optimization in the 

industry section.  

Chapter 3 describes the theories and methodologies about nonlinear programming (NLP), 

fuzzy nonlinear programming (FNLP), chance-constrained nonlinear programming (CCNLP) and 

fuzzy chance-constrained nonlinear programming (FCCNLP) approach. In this part, the required 

knowledge for developing these methods is explained. Moreover, the differences of these four 

approaches are examined. 

After this general description, Chapter 4 presents a specific overview of a case study and 

then applied the NLP, FNLP, CCNLP and FCCNLP techniques to a realistic example in Houston, 

Texas, USA to maximize the nanomaterial production and minimize the related occupational 

exposure risks. 

Chapter 5 presents detailed exposure concentrations, production volumes and economic 

results generated by the NLP, FNLP, CCNLP and FCCNLP methods and results analyses of the 

four approaches. 

Chapter 6 contains the validation of the FNLP results, comparisons of four methods, 

advantages and limitations of these methods, respectively. 

Chapter 7 presents conclusions, research contributions and recommendations to future study. 
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Chapter 2 LITERATURE REVIEW 

This chapter presents an overview of the concept and classification of engineered 

nanomaterials (ENMs), typical ENMs manufacturing processes, health effects of ENMs and 

nano-related occupational exposure limits. In addition, previous researches about optimization of 

manufacturing process are reviewed and summarized in this section. And nonlinear programming 

optimization method is selected to manage ENMs production process. 

2.1. Engineered Nanomaterials 

Engineered nanomaterials (ENMs) are man-made particles having at least one dimension of 

rougly 1-100 nm (EPA, 2007). A nanometre is a billionth of a metre, that is, 10-9 m. The 

nanoscale dimension in comparison to microscopic objects is described in Figure 1. Engineered 

nanomaterials (ENMs) can be classified in different ways according to their origin, state and 

physicochemical properties, such as size, shape, chemistry, surface area, surface charge, etc. The 

most common method of classifying nanomaterials is by the chemistry of the core material, that 

is, organic and inorganic (Figure 2). Organic nanomaterials can be further defined as fullerenes 

(C60 and C70 and derivatives), carbon nanotubes (multi-walled or single walled carbon nanotubes) 

and nanopolymers (dendrimers), while inorganic nanomaterials can be divided into metal oxides 

(i.e. dioxide, titanium dioxide), metals (i.e. silver, gold) and quantum dots (i.e. cadmium 

selenides) (Stone et al., 2010). Due to unique properties of ENMs such as small size and large 

surface area to mass ratio, increased surface reactivity, and altered physic-chemical properties 

(Savolainen et al., 2010; Bhatt and Tripathi, 2011; Biskos and Schmidt, 2012), ENMs have been 
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employed in a wide spectrum of industrial sectors during recent years, including structural 

engineering, energy, electronics, environmental protection, cosmetics, food, agriculture, medicine 

for diagnostic or therapeutic purposes and many other areas. 

 

Figure 1 Length scale showing the nanometer in context (Royal society and Royal Academy of 

Engineering, 2004) 
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Figure 2 Engineered nanomaterials classification according to the chemistry of their core material 

(Peralta-Videa et al., 2011) 

Nanotechnologies utilizing ENMs have envisaged to become a highly promising industry. 

Currently, the commercialization of ENMs is at an early but rapid-growth stage. The worldwide 

investment in nanotechnology has increased from $432 million in 1997 to $147 billion in 2007. 

And, by the year 2015, the global nanotechnology market value is expected to grow to 

approximately $3.1 trillion and millions of jobs opportunities will be created in this domain 

(Delgado, 2010; Mirabile et al., 2014).  

2.2. The Nanotechnology Manufacturing Process 

2.2.1. Engineered nanomaterials (ENMs) manufacturing processes 

There are two main engineering design methods for preparing nanoparticles, top-down and 

bottom-up. The top-down approach works on the basis of breaking down a large piece of material 

into smaller pieces, and in the case of nanostructures these dimensions are in the nanometer range: 



 

9 

 

1 to100 nm. This is a conventional engineering using lathes or millers to machine structures with 

sizes of a few nanometers. For example, in top down method, lithographic techniques are used to 

cut a larger piece of a material into ENMs. Particles with sizes lesser than 30 nm can be produced 

by using electron beam lithography. In other cases, grinding of a micro-material in a ball mill can 

further be used for the production of ENMs with sizes lesser than 30 nm (Colson et al., 2013). The 

bottom-up approach is a more conventional method for producing ENMs. The bottom-up 

fabrication relies on increasing the size of small molecules or atoms up to the size of MNMs via 

techniques such as gas-phase synthesis, liquid-phase synthesis and self-assembly techniques. The 

type of production method is very important for ENMs exposure to workers. Generally, bottom-

up techniques are less waste-producing than top-down techniques. It is often suggested that 

bottom-up techniques should be the ultimate tools for sustainable manufacturing, as they allow for 

customized design of reactions and processes at the molecular level, thereby minimizing waste 

(Sengul, 2008).  

The principle of the bottom up approach for the formation of ENMs relies on 

supersaturation. It is a state of a homogeneous solution that contains more of the solute than could 

be dissolved by the solvent under normal circumstances (Lead and Smith, 2009). At some point 

the supersaturation of the solution is relieved by the formation of the precipitated particles. These 

particles which usually consist of two or three atoms or molecules are the smallest stable units in 

this solution. They will be the first nuclei for further condensation of atoms or molecules. 

Condensation is a stochastic process. The nucleus grows and forms clusters and later a particle. 

Colliding clusters or small particles may coagulate. During coagulation by exchange of surface 

energy, a new particle is formed. Having reached a certain size, the difference in surface energy 
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will be so small that further coagulation of particles is impossible.  Therefore, nucleation, 

condensation and coagulation are the three major steps of the process of nanomaterials formation 

(Vollath, 2008). Different ENM gas-phase production processes are categorized by various 

condensation methods. In the following section, some of the well-established industrial ENM 

production processes using gas-phase technique will be described. 
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Figure 3 Schematics of the typical gas-phase processes for ENMs production. (a) Inert gas 

process. (b) Chemical vapor process. (c) Laser ablation process. (d) Microwave plasma process. (e) 

Flame aerosol process. (f) Synthesis of coated particles. (Binns, 2010). 
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2.2.1.1 Inert gas condensation process 

Inert gas condensation process is the most important process for synthesizing ENMs in the 

gas phase. This process applies thermal evaporation to a metal within a vacuum chamber filled 

with a small amount of inert gas. As figure 3(a) shows, a metal (i.e. gold) is evaporated in a 

vacuum vessel, filled at reduced pressure with an inert gas. The metal vapor loses thermal energy 

by colliding with the inert gas atoms, leading to nucleation, and then forms nano-sized gold 

particles. The products move to a liquid nitrogen-cooled finger and are collected from the surface. 

Because the synthesizing of the ENMs is a purely random process, the inert gas evaporation 

process leads to products with a broad particle size distribution.  

2.2.1.2 Chemical vapor process 

      To control the particle size distribution, chemical vapor process (CVP) is using chemical 

compounds with a relatively high vapor pressure as precursor to reduce the reaction time. Take 

SWNTs production for example, as shows in Figure 3. (b), the evaporated precursor (C2H2) was 

generated by glow discharge plasma. A carrier gas (NH3) transports the evaporated precursor 

through the heated reaction zone, that is, the electrodes supporting catalyst on which the SWNTs 

grow. To limit particle agglomeration, the gas carrying the articles is quenched. Finally, the 

SWNTs are collected. Due to its simplicity and relatively low synthesis temperatures, CVP is 

rapidly becoming one of the methods for the commercial manufacturing SWNTs.  
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 2.2.1.3 Laser ablation process 

The laser ablation process has the advantage of allowing not only the use of metals but also 

oxides as precursors, which makes it more popular in its application. A system for powder 

production using the laser ablation process generally consists of two important elements: the 

pulsed high-power laser, and with the optical focusing system and feeding device for the 

precursor. Figure 3 (c) presents a set-up for SWNTs synthesis according to the laser ablation 

process. The laser beam is focused at the surface of a carbon target, which is vaporized under the 

laser spot. The hot plume of carbon is generated in the furnace. Within the plume, there is a 

supersaturated vapor succeeding the formation of SWNTs which are condensed in the gas space 

and transported with the carrier gas to the powder collector. 

2.2.1.4 Microwave plasma process 

The chemical vapor synthesis and laser ablation are purely random processes. Hence, there 

are only three means available by which ENMs size and size distribution can be influenced: the 

concentrations of active species in the gas, the reaction temperature, and the rapid cooling 

(quenching) of the gas after leaving the reaction zone. This situation is entirely different from that 

of the microwave plasma process, where the nano-particles originating in the plasma zone carry 

electric charges. As a consequence, the probability for coagulation and agglomeration is 

significantly reduced, as the collision parameter decreases with increasing particle size. Figure 3 

(d) shows a typical process for nano-particle synthesis using the microwave plasma process. The 

microwave plasma is ignited in a reaction tube which passes a resonant microwave cavity. A 

carrier gas containing the reaction gas transports evaporated precursors into the plasma zone. The 
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reaction products (ENMs) are collected after the reaction zone. Microwaves are coupled into the 

device with the waveguide. 

2.2.1.5 Flame aerosol process 

Historically, among all of the processes used to produce nanomaterials, the flame aerosol 

process is the oldest. In this process, the ENMs are synthesized and formed at very high 

temperatures and over very short times. In the simplest case, a flame reactor set-up is as shown in 

Figure 3 (e). The flame reactor consists of a primary flame that is fueled with hydrogen, methane, 

or another hydrocarbon fuel. In the case shows in the Figure 3 (e), many small primary flames 

surround the secondary flame, in which the products are produced. Figure 3 (e) demonstrate the 

synthesis of silica, SiH4 or SiCl4 are assumed as the precursor compounds. Reaction of the 

precursors with excess oxygen forms the secondary flame, while the particle size is adjusted by 

diluting the precursor with an inert gas such as argon or nitrogen. 

2.2.1.5 Synthesis of coated ENMs 

Many applications of nanomaterials require the coated nanoparticles. For example, a coating 

is used as a distance holder to adjust particle interactions; or designing coatings to add additional 

properties to the ENMs. One of the cases includes magnetic nanoparticles with luminescent 

coatings. A set-up used to produce ceramic-coated nanomaterials using the microwave plasma 

process is shown in Figure 3(f). The system consists of two subsequently arranged microwave 

cavities and a reaction tube passing through both cavities. The reaction is carried out in the 

microwave plasma at the intersections between the reaction tube and the microwave cavities. 
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Nanoparticles leave the reaction zone with electrical charges of equal sign. The most advanced 

examples involve the development of nanoparticles on which two or more functional coatings. 

There are many other mechanisms for the formation of nanoparticles and other processes that 

mass produce them which are not discussed in detail here. Some of the most exciting research 

arises out of combining the top-down and bottom-up approaches (Song et al., 2011; Colson, 

2013).  

After synthesized, ENMs will be processed further, e.g., to be purified, inspected, packaged, 

and then becoming commercial products. 

 

Figure 4 Estimated annual global production for engineered nanomaterials (G.C. Delgado, 2010) 

It has been estimated that annual worldwide production of ENMs from 2010 to 2020 is about 

58,000 tonnes (G.C. Delgado, 2010) (Figure 4). With the rapid growth of production of 
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engineered nanomaterials, the occupational and public exposure to ENMs is supposed to increase 

dramatically in the coming years and then cause potential adverse health effects to humans. 

2.2.2. High pressure carbon monoxide (HiPco) process for manufacturing 

single-walled nanotubes (SWNTs) 

As Figure 5 shows, single-walled nanotubes (SWNTs) are cylindrical molecules of graphite 

with diameters of 1 to 2 nm that have attracted considerable interest due to their superior electrical, 

mechanical, and thermal properties, and particularly, their fascinating ability to withstand high 

current density (109 Amps/cm2) (Hwang et al., 2009). The use of SWNTs has raised concerns 

because of their resemblance to asbestos in terms of dimensions, rigidity and solubility, as these 

factors determine fiber toxicity leading to lung fibrosis, so consequently carbon nanotubes known 

as high aspect ratio nanoparticles have engendered concern about their potential for a similar risk 

as that from the asbestos. (Maynard, 2004). 
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Figure 5 Single-walled carbon nanotube. (a) Schematic of a single-walled carbon nanotube. (b) a 

TEM image of single-walled nanotubes. 

Among the several methods available for producing carbon nanotubes, three technical 

processes are commonly used: arc ablation (arc), chemical vapor deposition (CVD) (which are 

briefly introduced in the section 2.2.1.2 and 2.2.1.3) and high-pressure carbon monoxide (HiPco). 

Because the HiPco process is significantly less costly ($450/g vs. $1,830/g and $1,586/g for arc 

ablation and CVD, respectively) (Kalapoukas and Dervakos, 1996),we focused on the HiPco 

manufacturing method in the CCNLP model to explore profits under various EHS standards 

(High, Medium, Low). In the HiPco process, it is proposed that iron clusters form first, then solid 

carbon nucleates and grows SWNTs. Iron pentacarbonyl (Fe(CO)5) is injected into a stream of 

CO gas at high temperature (800-1,000 ºC) and pressure (≥10 atm).The iron clusters form by 

aggregation of iron atoms from the decomposition of Fe(CO)5 via Equation (1) (see below) 

around 250 °C. There are two main functions for the iron clusters. They act as catalysts for carbon 

source decomposition as well as SWNT formation sites. The clusters grow by collision with 

additional metal atoms and other clusters, eventually reaching a diameter comparable to that of a 
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SWNT, 0.7–1.4 nm, corresponding to 50–200 iron atoms. By the time they reach this size, CO 

can disproportionate (a specific type of redox reaction) on the surface of such cluster via the 

Boudouard reaction (Equation (2)) to yield solid carbon, and SWNTs will nucleate and grow from 

these clusters (Nikolaev et al., 1999).Figure 1 shows the material flows in the manufacturing 

reactor. The SWNTs and iron particles pass through the reactor propelled by the hot, dense gas 

flow, and into the product collection apparatus. The CO gas recalculates back through the gas 

flow system and reactor using a compressor. The product contains Fe particles and other by-

products and requires subsequent purification (Healy 2006; Healy et al., 2008). 

Fe(CO)5    Fe + 5CO (1) 

2CO(g)    C(s) + CO2(g) (2) 

  

 

Figure 6 Schematic diagram of the HiPco synthesis process 
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2.3. Health Effects of Engineered Nanomaterials and Nano-related 

Occupational Exposure Limits (OELs) 

 

Figure 7 Possible exposure routes for engineered nanomaterials (Lead and Smith, 2009) 

As Figure 7 shows, there are various scenarios that humans could be exposed to ENMs. In 

the occupational scenario, workers may be exposed to ENMs not only during synthesis of ENMs, 

but also in downstream activities such as packaging, transport, and storage. ENMs could enter 

into the environment through industrial pollution or the application ENMs to site remediation. 

Consumers may get exposed as a result of ENMs pollution in air, water or the food chain, or 

through directly consuming products containing ENMs (Lead and Smith, 2009).  
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The greatest potential for human exposure is expected during certain activities in 

occupational settings, where ‗raw‘ nanomaterials are handled in large quantities (Maynard and 

Aitken, 2007). ENMs can enter worker‘s body through inhalation, skin contact and ingestion 

during manufacturing (Aschberger et al., 2011) and subsequently reach systemic circulation and 

deposited in different body organs, like heart, lungs, brain, liver and kidneys, and then cause 

multiple negative effects to worker‘s health. Inhaled ENMs can induce a strong pulmonary 

response in respiratory tract causing damage to this organ. For example, Inhalation of silica 

particles in industrial workers causes ‗Silicosis‘. Workers can be dermally exposed during the 

handling of ENMs. ENMs can enter body through the health skin. Potential hazards are unknown 

at present. Ingestion can occur as consequence of hand-to-mouth contact. ENMs can be directly 

absorbed by gastrointestinal tract and then accumulate in the liver. Excessive immune 

inflammation cause permanent liver damage.  
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Figure 8 Distribution of ENMs in the body (Gajewicz et al., 2012) 

Translocation and accumulation of ENMs in human tissues can lead to various diversified 

adverse effects. Recent publications indicate that chronic occupational exposure to ENPs may 

lead to a number of negative health and reproductive problems, including hepatic injury 

(Kobayashi et al., 2009; Myojo et al., 2010; Paur et al., 2011), genotoxicity (Kumar et al., 2011; 

Hackenberg et al., 2011), carcinogenicity (Ress et al., 2003; Roller, 2009), cytotoxicity (apoptosis) 
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and risks of cardiovascular diseases (Wilson et al., 2007; Shvedova et al., 2012), and reproduction 

damage (Zhu et al., 2010; Lapresta-Fernandez et al., 2010). For instance, the studies on single 

walled carbon nanotubes (SWCNTs) showed that SWCNTs cause mice‘s lung granulomas and 

other signs of acute lung inflammation (Lam et al., 2003; Warheit et al., 2004), furthermore, even 

diffuse interstitial fibrosis (Shvedova et al., 2005). 

As the result, occupational exposure limits (OELs) for engineered nanomaterials (ENMs) 

becomes necessary to protect workers from the adverse effects of ENMs presenting at the 

workplace. However, because large amounts of complicated and expensive toxicology data and 

information is required, to date, health-based limit values are only available for several frequently 

used ENM: carbon nanotubes and nanofibers (NIOSH, 2013), Titanium Dioxide (NIOSH, 2011 

and 2013) and nano-Ag (ENRHES, 2010). For example, in 2010, the National Institute for 

Occupational Safety and Health (NIOSH) published a bulletin which set recommended exposure 

limit (REL) for carbon nanotube as 7 μg/m3, based on the estimation of the animal no observed 

adverse effect level (NOAEL) of CNT was near 7 μg/m3 (8-hr TWA). And in April 2013, in the 

current intelligence bulletin 65, the NIOSH recommended that exposures to CNT should be kept 

below the REL of 1 μg/m3 as an 8-hr TWA to replace the previous REL 7 μg/m3 with the updated 

NOAFL of CNT (NIOSH, 2013; NIOSH, 2010). 

The potential impact of nanotechnology is a global issue which no one can forecast its future. 

Academic research and governmental policy are essential to ensure that this promising technology 

becomes sustainable. An important aspect of sustainability is the quantification and minimization 

of risk of ENMs to human and environmental health (Lead and Smith, 2009).  
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2.4. Previous Optimization Studies of ENMs Manufacturing 

So far, relatively few publications approach directly modelling ENMs occupational exposure 

risks. Life cycle assessment (LCA) is widely used to assess the environmental impacts of 

nanomaterial through theirs all life-cycle stage. It has been used to study economic and 

environmental impacts of three single walled carbon nanotube production processes (Healy et al., 

2008). However, the limited exposure information of many ENMs limits the utilization of LCA. 

Besides LCA, researchers tried to manage ENMs occupational exposure risks through risk 

analysis. So far, limited work has been conducted to develop nanotechnology risk models, which 

include Monte Carlo models comparing alternate workplace safeguards for single wall carbon 

nanotubes (SWCNTs) manufacturing (Ok et al., 2008), Stochastic multi-attribute analysis 

comparing four SWCMTs synthesis approaches (laser vaporization, arc discharge, chemical vapor 

deposition, and high pressure carbon monoxide) based on five decision criteria (energy 

consumption, material efficiency, eco-points, cost and health risks) (Canis et al., 2010), and expert 

developing exposure-response functions for ENMs (Kandlkar et al., 2007).  

While above approaches help analyze nanomaterial risks, optimization models, i.e. linear 

programming (LP) and nonlinear programming (NLP), can provide a framework to find a balance 

point between the benefits of nanomaterial application and thorough management of their 

potential risks. In the past decades, a number of optimization programming techniques were 

widely applied for management of manufacturing sectors. For instance, Seibi and Sawaqed (2002) 

applied linear programming to design a copper filled fibreglass moulds for manufacturing a 

customized product. Henning and Trygg (2008) developed an energy system optimization system 
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based on linear programming to decrease electricity consumption and increase cogeneration in 

Swedish industry, which helps to reduce CO2 emissions in Sweden. Grossmann (2012) 

overviewed mathematical programming techniques for enterprise-wide optimization, which are 

integer linear programming, nonlinear programming, decomposition methods, stochastic 

programming, and then described five application in the pharmaceutical industry in US. Piltan et 

al (2012) used linear and nonlinear programming to develop an energy forecasting model to 

forecast and analyze energy demand in the Iranian metal industry. 

2.5. Uncertainty Analysis Techniques Used in the Optimization in 

the Industry Section 

A significant challenge for implementing optimization techniques in the industrial area goes 

to handle various uncertainties. To deal with this problem, a variety of mathematical methods 

were finalized in economic-environment sustainable development management. For example, 

Linninger et al. (2000) addressed the problem of finding optimal waste management policies 

(among low, medium and high level control strategies) for pharmaceutical manufacturing sites in 

the presence of uncertainty of trafic routes. They offered a robust chance constrained 

programming framework to compare impacts of policies for solvent-recovery and treatment 

options; Rong and Risto (2006) investigated the uncertainty of the chemical composition of the 

scrap in secondary steel production, and this scrap charge optimization problem is modelled as a 

fuzzy chance constrained linear programming problem, consequently; Zhang et al. (2009) applied 

a robust chance-constrained programming model for water quality management within an 

agricultural system, where solutions for farming area, manure/fertilizer application amount, and 
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livestock husbandry size under different scenarios are obtained and interpreted; Freni et al. (2011) 

employed the use of interval programming as a tool for assessing the appropriate model 

complexity, where several criteria were used for integrating the simplicity of the indices based on 

the fisher information matrix. 

Nanotechnology industry, like other general industries sections is facing the same challenge 

when optimizating manufacturing process of engineered nanomaterials. For instance, when 

maximizing profit and controling occupational health exposures of engineered nanomaterials into 

acceptable level, uncertainties include (1) ENP workplace release data; (2) Occupational exposure 

limits; (3) ENP occupational exposure control efficiency and control cost. 

Therefore, combining fuzzy mathematical programming (FMP) and chance-constrained 

programming (CCP) is an approach that could be used to deal with the uncertainty of ENP 

exposure data in the workplace. FMP can deal with vagueness and ambiguity based on fuzzy set 

theory. CCP is an effective way to deal with numerous uncertainties, where uncertain parameters 

are considered random variables and described using probability density functions. CCP can be 

used to convert a stochastic programming model into an equivalent deterministic model, and also 

to incorporate other uncertain optimization methods, such as fuzzy mathematical programming, 

within the nonlineare programming general framework (Xie et al., 2011). 

2.6. Summary 

In recent years, production and use of engineered nanomaterials (ENMs) have greataly 

increased as the result of rapid development in nanotechnology. Due to unique properties of 
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ENMs such as ultra small size, large surface area to mass ratio and high reactivity, various seience 

areas like biomedical, structrical and optics engineering obtain greatly benefits from such progress 

in nanotechnology. On  the other hand, unintentional exposure of humans to ENMs is increasingly 

reported particularly workers. The main risk arises from occupational expsure via chronic 

inhalation of ENMs. Occupational exposure limits (OELs) for ENMs becomes mandatory to 

prevent workers from the health risks. So far few publications approach directly modelling ENMs 

occupational exposure risks. To maximize the nanaomaterial production and minimize the risks of 

workplace exposure to ENMs, nonlinear programming (NLP) is applied to manage 

nanomanufacturing process. Moreover, fuzzy mathematical programming (FMP) and chance-

constrained programming (CCP) are combined to nonlinear programming (NLP) to handle 

uncertain parameters.  The details of mathematical methods will be elaborated in the next chapter. 
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 Chapter 3 METHODOLOGY 

To maximize the societal and economic benefits of ENMs while control the adverse health 

risks for workers, a nonlinear programming (NLP) model is proposed to address the conflict 

between benefits and risks. Moreover, to handle the uncertainties in the system, chance-

constrained programming (CCP), fuzzy mathematical programming (FMP) and fuzzy chance-

constrained programming (FCCP) are employed for dealing with randomness, fuzziness and the 

combination of both randomness and fuzziness. 

3.1 Nonlinear System Optimization 

3.1.1 The nonlinear programming (NLP) method 

Optimization is the selection of the best solution from a set of feasible alternatives, which 

provides a suitable framework for analysis. If a single problem can be identified by an objective, 

for example, profit or loss in a business setting, expected return in the environment of risky 

investments, or social welfare in the context of government planning, nonlinear programming is 

an effective tool to handle it (Luenberger and Ye, 2008). As one of the most important tools of 

optimization, nonlinear programming is specified by an objective function which is to be 

maximized (or minimized) subject to a set of linear/nonlinear constraints (Slotine, 1991). The 

standard form of nonlinear programming may be written as follows:  
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        max(min)    c1x1 + c2x2 + … + cnxT
n 

        subject to    a11x1 + a12x2 + … + c1nxn
T = b1 

                             a21x1 + a22x2 + … + c2nxn
T

 = b2                (3-1)     

                                                       … 

                                           am1x1 + am2x2 + … + cmnxn
T= bm 

                             xi ≥ 0, i = 1,2,…,n  

which is also represented in the following matrix form, 

 max(min)  iT
i if C X  

. .s t  ,iT
i iA X b   1,2,...,i p                (3-2) 

       0X   

where C = (c1, c2, … , cn), x = (x1, x2, … , xn), A = (aij)m*n and B = (b1, b2, … , bn). In the 

standard nonlinear programming (3-2), all of the decision variables xi, superscript Ti of decision 

variables, i = 1, 2,…, n are assumed nonnegative. This property is true for almost all real-world 

problems. ―max‖ and ‗min‖ are abbreviations for ―maximize‖ and ―minimize‖. Nonlinear 

programming refers to all problems of the form (3-2) in which objective function or (one or more) 

of the constraned functions include a nonlinear term or terms (Luenberger and Ye, 2008).  
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A solution x is feasible to nonlinear programming (3-2) if it satisfies that T
i iA X b  and x ≥ 

0. The collection of all feasible solutions is called the feasible set. A feasible solution x* is called 

an optimal solution to the nonlinear programming (3-2) if Cx ≤ Cx* for all feasible solution x.  

3.1.2 The nonlinear programming (NLP) for optimizing the nano-

maunfacturing process      

Nonlinear programming (NLP), which is a type of deterministic optimization, is 

implemented here to model nanomaterials exposure risks in the workplace. For a given nano-

manufacturing case study, the general form of this optimization approach can be written as 

follows: 

  Objective function (maximize) = (1) – (2) – (3)        (3-3) 

where:  

(1) = profits from nanoparticle manufacturing per year; 

(2) = production costs of nanoparticles per year; 

(3) = exposure control costs per year. 

Constraints include: 

(a) mass balance constraints; 

(b) production volume constraints; 
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(c) occupational exposure limit constraints. 

where mass  balance constraints can be identified with constraints which material entering 

the ENMs reactors should be equal  to those leaving the nano-synthetic systems; production 

volume constraints show that production volumes of ENMs should be larger than the minimum 

production request but less than the maximum production capacity; and occupational exposure 

limits constraints mean that concentrations of  air pollutants (including ENMs) produced in the 

workplace should be within occupational exposure limits issued by the government.  

3.2 Nonlinear System Optimization under Uncertainty for 

Nanomaterials Manufacturing  

Deterministic mathematics, such as linear/nonlinear programming,  are very effective in 

analyzing causal relationships under certainty. However, their effectiveness decreases as causal  

relationaships begin to disintegrate caused by limitation of precise system information. As the 

result, the outcome of the system is no larger deterministic. As pointed out by some researchers 

(Leung, 1988; Inuiguchi, 2000), two major different kinds of uncertainties, randomness and 

fuzziness exist in the real life. In statistics, randomness refers to a situation whose outcomes do 

not follow a deterministic pattern, but can be described by an empirical probability distributions. 

For example, when you throwing a dice, the top face may have any one of the six elements of the 

set 1,2,...,6 . This type of uncertainty arises because of randomness in the system. The other 

kind of uncertainty, fuzziness is composed of ambiguity and vagueness. Ambiguity is associated 

with one-to-many relations, that is, situations in which the choice between two or more 



 

31 

 

alternatives is not specified. For example, ‗The price of the table is about 50 CAD.‘ This uncertain 

descriptions show the ambiguities of the true values, e.g., ‗about 50 CAD‘ shows that one value 

around 50 is true but not known exactly; Vagueness is associated with the difficulty of making 

sharp or precise distnctions in the world; that is, some domain is vague if it cananot be delimited 

by sharp boundaries. For instance, ‗Jenny wants to rent an appartment whose distance from the 

Concordia Unversity is less than 2 km.‘ This uncertain descripations show the vagueness of the 

aspiration levels, e.g., ‗distance is less than 2 km‘ does not define a sharp boundary of a set of 

satisfactory values but shows  that values around 2 km and smaller than 2 km are to some extent 

and completely satisfactory, respecitvely (Inuiguchi and Ramik, 2000). 

To address such comlexities of uncertainties, the chance-constrained programming (CCP) 

and fuzzy mathematical programming (FMP) are proposed to handle randomness and fuzziness 

problems, respectively. The chance-constrained programming (CCP)  method was used to deal 

with random uncertainty information. CCP required that all of the constraints be satisfied in given 

probability levels. Fuzzy mathematical programming (FMP) is a flexible approach that permits an 

adequate solution of real-world problems in the presence of imprecise information. FMP method 

considers uncertainties as fuzzy sets and is effective in reflecting ambiguity and vagueness in 

resource availabilities. Moreover,  a combination of CCP and FMP can be considered to deal with 

the situations under both random and ambiguous uncertainties, usually are transormed into 

deterministic mathematical problems by setting the grades of membership and using chance 

constraints. 
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3.2.1 The fuzzy nonlinear programming (FNLP) method      

Deterministic optimization is one of the most used areas of mathematical applications. 

However, it is common that the values of parameters are not totally specified due to knowledge 

deficit or incomplete information. Fuzzy set theory is utilized to model systems of variables 

whose belonging (to a set) is gradual or transitional. A fuzzy set X is defined by its membership 

function, x
 . An element x has its degree of membership in X  described by  x

x , with 1 

indicating full membership, 0 indicating full non-membership, and numbers between 0 and 1 

indicating partial membership. In decision making applications, a fuzzy set may be used to 

identify flexibility on the part of the decision maker (Leung, 1988).  

To transform the fuzzy model to its equivalent deterministic one, the concept of α-level (or 

α-cut) is using to identify fuzzy set, when the membership functions are continuous. The α-level 

of a fuzzy number X is the set ( )L x  defined by ( ) { ( ) }bL x x    , where ( )L x  is the X  

membership function, and (0,1]  .  

    A nonlinear programming model may be written as follows: 

max  iT
i if C X  

. .s t  ,iT
i iA X b   1,2,...,i p                (3-2) 

       0X   
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where C = (c1, c2, … , cn), x = (x1, x2, … , xn), A = (aij)m*n and B = (b1, b2, … , bn). All of the 

decision variables xi, superscript Ti of decision variables, i = 1, 2,…, n are assumed nonnegative. 

Fuzzy uncertainty may occur in any of the parameters, A (right-side coefficients of 

constraints), b  (left-side coefficients of constraints) or ic (objective-function constraints). This 

happens when the values of the parameters are not sharp. The symbol ― ‖ means 

―approximately‖.  

A common fuzzy nonlinear program, then, might assume the following form: 

max  iT
i if C X  

. .s t  ,iT
i iA X b   1,2,...,i p                (3-4) 

0X   

where C = (c1, c2, … , cn), x = (x1, x2, … , xn), A = (aij)m*n and B = (b1, b2, … , bn). All of the 

decision variables xi, superscript Ti of decision variables, i = 1, 2,…, n are assumed nonnegative. 

For a given nano-manufacturing case study, the general form of the FNLP optimization 

approach can be written as follows: 

Objective function (maximize) = (1) – (2) – (3)               (3-5) 

where:  

(1) = profits from nanoparticle manufacturing per year; 
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(2) = production costs of nanoparticles per year; 

(3) = exposure control costs per year. 

Constraints include: 

(a) mass balance constraints; 

(b) production volume constraints; 

(c) occupational exposure limit constraints. 

where occupational exposure limits constraints mean that concentrations of  air pollutants 

(including ENMs) produced in the workplace (containing fuzzy parameters) should be equal to or 

less than values of occupational exposure limits (imprecise value). 

3.2.2 The chance-constrained nonlinear programming (CCNLP) method 

Chance-constrained programming (CCP) is a typical stochastic programming model for risk-

based decision making. The CCP model maximizes the objective function subject to constraints 

with specified predetermined confidence levels, where these confidence levels are provided as 

appropriate safety margins by the decision-makers. The CCP model provides information on the 

trade-offs between the objective function‘s tolerance values of the constraints, and the prescribed 

level of probability, which could be valuable to decision makers. A mathematical program with 

chance-constrained parameters is presented as follows: 
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max  

                        subject to               (3-6) 

 

 

where x is an n-dimensional decision vector, ξ is a stochastic vector,  is the return 

function, and  are stochastic constraint functions, j = 1, 2, …, p,  denotes the 

probability of the event in , and α, β are predetermined confidence levels of the constraint and 

objective, respectively. 

For a given nano-manufacturing case study, the general form of the CCNLP optimization 

approach can be written as follows: 

Objective function (maximize) = (1) – (2) – (3)       (3-7) 

where:  

(1) = profits from nanoparticle manufacturing per year; 

(2) = production costs of nanoparticles per year; 

(3) = exposure control costs per year. 

Constraints include: 

(a) mass balance constraints; 

1 2( , ,..., )nf x x x

 Pr ( , )f x f  

 Pr ( , ) 0, 1,2,...,jg x j p   

( , )f x 

( , )jg x  Pr 


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(b) production volume constraints; 

(c) occupational exposure limit constraints. 

where occupational exposure limits constraints mean that the chance of concentrations of  air 

pollutants (including ENMs) produced in the workplace equal to or less than values of 

occupational exposure limits should be equal to or larger than predetermined confidence levels 

(imprecise value). 

3.2.3 The fuzzy chance-constrained nonlinear programming (FCCNLP) 

method 

The fuzzy chance-constrained nonlinear programming can be formulated as the following 

process. 

First, the general form of nonlinear programming model is written as follows: 

max  iT
i if C X  

. .s t  ,i iA X b   1,2,...,i p                (3-2) 

0X   

where 1tX R  , 1 t
iC R  , 1 t

iA R  , 1 t
iB R  , and R denote a set of real numbers. In 

model (3-2), all the parameters are recognized as deterministic numbers. However, when the 

uncertainties for some parameters of the constraints are expressed as probabilities, chance-
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constrained programming (CCP) can be integrated to deal with them. The models can then be 

solved by the CCP approach to convert them into a deterministic version by: (1) fixing a certain 

level of probability [0,1]ip   for each constraint i , and (2) imposing the condition that the 

constraint i  is satisfied by at least a probability of 1 ip . Then the feasible solution set is subject 

to the following constraints: 

Pr[ ] 1 ,i i iA X b p    1,2,..., ,i n                   (3-8) 

Constraint (3-8) is generally nonlinear, and the set of feasible constraints is convex for some 

particular cases, when one side coefficients are deterministic and the other side ones of constraints 

are random. This leads to an equivalent linear constraint that has the same size and structure as a 

deterministic term, and the only required information about the uncertainty is then ip  for the 

unconditional distribution of ib . Thus, constraint (3-8) becomes linear: 

( ) ,ip
i iA X b  ,i  1,2,..., ,i n             (3-9) 

Moreover, due to the uncertain features and inaccurate information, multiple parameters are 

known as intervals without distribution information and difficulties may appear with modeling 

such a system by a deterministic mathematical programming method, which would cripple the 

model formulating effort leading to no results. In order to address the uncertainties of the above 

fuzziness and probability density functions, FMP and CCP are integrated into NLP model. Model 

(3-2) can be converted to: 
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              max  iT
i if C X  

                . .s t  ( ) ,ip
i iA X b   1,2,...,i p                (3-10) 

                 ,i iA X b   1,2,...,i q                 

                 0X   

where 1{ }tX R  , 1{ } t
iC R  , 1{ } t

iA R  , 1{ } t
iB R  , and R denote a set of fuzzy numbers. 

By incorporating the   value corresponding to the membership grade of satisfaction for the 

fuzzy of the objective into the NLP model the fuzzy chance-constrained model can be 

reformulated as follows (Leung, 1988; Xie et al., 2012): 

              max     

               . .s t   (1 )f f f     ,  1,2,..., ,i p  

                       
( ) ,ip

i iA X b 1,2,..., ,i p                                    (3-11) 

                      ( ),i i i iA X b b b      1,2,..., ,i q  

                       0,X   

                       0 1,   
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where   is the degree of objective function constraint-satisfaction which corresponding to 

the degree (membership grade) to which solution fulfill the fuzzy objective or constraints. f   

and f   are the upper and lower bounds respectively of objective‘s aspiration level as designated 

by the decision makers. The values of ib   and ib   are the permissible maximal and minimal 

values of constraints.  

For a given nano-manufacturing case study, the general form of the CCNLP optimization 

approach can be written as follows: 

Objective function (maximize) = (1) – (2) – (3)      (3-12) 

where:  

(1) = profits from nanoparticle manufacturing per year; 

(2) = production costs of nanoparticles per year; 

(3) = exposure control costs per year. 

Constraints include: 

(a) mass balance constraints; 

(b) production volume constraints; 

(c) occupational exposure limit constraints. 
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where occupational exposure limits constraints mean that the chance of concentrations of  air 

pollutants (including ENMs) produced in the workplace (containing fuzzy parameters) equal to or 

less than values of occupational exposure limits should be equal to or larger than predetermined 

confidence levels. 

3.3 Summary  

In this chapter, NLP, a most popular optimization method, is introduced to deal with the 

conflict of economic return and human health risks in the ENMs manufacture industry. In 

additional, concepts of two kinds of uncertainties, randomness and fuzziness are explained in this 

section. Differences and similarities of randomness and fuzziness are briefly investigated. To 

handle these uncertainties in the system, CCP, FMP and FCCP are implemented to address these 

stochastic and fuzzy programming problems. And general forms of NLP, CCP, FMP and FCCP 

approach in a producing case study are presented here. Furthermore, they will be applied to a 

concrete realistic ENMs manufacture example in the succeeding section.  
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Chapter 4 CASE STUDY 

In order to test and evaluate the nonlinear programming (NLP), fuzzy nonlinear 

programming (FNLP), chance-constrained nonlinear programming, and fuzzy chance-constrained 

nonlinear programming (FNLCCP) approach (see Chapter 3), a plant in Houston, Texas, USA is 

chosen as the study area since most of the data needed are available. In this case study, the 

emission concentrations of three pollutants (SWNTs, nano-Fe and CO) are simulated using the 

developed modeling approach under four different control scenarios (no, low, medium and high). 

The modeling results will be presented and analyzed in the next chapter.  

4.1 Overview of the Case Study 

The study case was adapted from a SWNT manufacturing plant located in Houston, TX, 

USA (Ouellette, 2003), where nano-specific occupational environmental health and safety (EHS) 

standards were voluntarily implemented (Due to monitoring technique difficulties, mandatory 

exposure limits for ENMs have not been available so far). In the plant, the HiPco method is used 

to produce 87% pure SWNT. There are nine HiPco synthesis lines in one production room with a 

size of 30 m × 20 m × 6 m. The plant operates eight hr/day and 365 days/year. Each line produces 

SWNTs with 97% synthesis product yield and 90% purification yield. During the production, 

three air pollutants are emitted that workers are exposed to: SWNTs, nano-size iron powder and 

carbon monoxide. 
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4.2 Optimization for Occupational Exposure Risk Management of 

SWNT Manufacturing 

4.2.1 Formulation of the nonlinear programming (NLP) model 

The model below was developed using the optimization method to evaluate cost and 

exposure control trade-offs of the SWNT manufacturing process: 

 

  

 

 

 

 

 

 

where x1, x2 are the feed rate of Fe(CO)5 and CO (in g/h), respectively; x3 is the SWNT material 

production rate (g/hr); P is the revenue from each gram of SWNT manufactured ($/g); q1, q2 is 

the cost of Fe(CO)5 and CO for each gram of SWCNT produced, respectively ($/g); F is the total 

costs of SWCNT except for the raw materials ($/g); the raw materials are included in the above 

parameters); Ci is the exposure control cost of SWCNT per gram produced ($/g) in every 

max 1 1 2 2 3[ ( ) ]i rP q x q x F C N SPY PY D H x         

. .s t 11 1 12 2 3 0a x a x x  

1 3 2rPV N SPY PY D H x PV      

1 1 ( )(1 )( / )i s Fee x Hr V OEL   

2 2 ( )(1 )( / )i s COe x Hr V OEL   

3 3 ( )(1 )( / )
si s PSWNTe x Hr V OEL   

1 2 3, , 0,x x x  1,2,3,4i 
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scenario; N is the number of production lines; Hr is the working hours per day (hours/day); SPY 

is the synthesized product (carbon nanotube) yield (%); PY is the SWCNT purification yield (%); 

D is the working days per year(days/year); a11, a12 are the percentages of Fe(CO)5 and CO used 

to synthesize SWCNTs, respectively (%); PV1 and PV2 are the minimum and maximum 

production volume of SWCNTS per year (g/yr); ηi is the removal efficiency of MNMs emissions 

at each control levels (%); e1, e2, e3 represent the emission coefficients of nano-sized Fe, CO and 

SWCNTs, respectively (They are used to quantify the emission of nano-sized Fe, CO and 

SWCNTs from a unit production of SWNTs and are calculated); V is the volume of the 

workplace (m3); OELs(Fe), OELs(CO), OELs(SWNTs) are the occupational exposure limits for iron 

powder, CO and SWNTs, respectively (mg/m3).  

The value of the objective function  

is the annual net profits of SWCNT manufacturing; (q1x1 + q2x2) represents the cost of the two 

raw materials used for each gram of SWCNTs produced; F includes the expense of direct labour, 

energy, equipment, installation, tools, building and fixed overhead (Ouellette, 2003); N × SPY × 

PY × D × Hr × x3 is the annual production volume of SWCNTs; q1, q2 are the cost of Fe(CO)5 and 

CO for each gram of SWCNTs produced, respectively.  

The production volume is the number of manufacturing (production) lines multiplied by the 

throughput for a single line. And the annual throughput rate of one HiPco synthesis production 

line is calculated as: Throughput = SPY × PY × D × Hr × x3, where the SWNT synthesis product 

yield represents the relative amount of carbon naotubes (single-wall carbon nanotubes and multi-

wall carbon nanotubes) expected from the converted carbon and the purification yield indicates 

1 1 2 2 3[ ( ) ]i rP q x q x F C N SPY PY D H x         
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the percent of SWNT removed from the carbon product compared to the total SWNT created 

from the synthesis step. 

Five constraints are material flow balance, annual production volume and cumulative 

exposure to three hazardous materials, which will be explained as follows: (1) Material flow 

balance. From Equations (1) and (2), we know that SWNT is synthesized from the carbon 

elements of CO and Fe(CO)5, e.g., 10 moles of CO (or Fe(CO)5) produce 5 moles of SWNT and 5 

moles CO2. (2) Annual production volume. The production volume should within a certain range. 

(3) The emissions of nano-sized Fe, CO and SWNTs should be less than the allowable amount in 

relation to their occupational exposure limits. 

4.2.2 Formulation of the fuzzy nonlinear programming (FNLP) model 

The detailed FNLP SWNT model is written below  

            max    

   . .s t    11 1 12 2 3 0a x a x x    

             1 3 2rPV N SPY PY D H x PV          

             1 1 2 2 3[ ( ) ]i rP q x q x F C N SPY PY D H x           B  -  B B    

             1 1 ( )(1 )( / )i s Fex Hr V OEL      

             2 2 ( )(1 )( / )i s COx Hr V OEL        
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             3 3 ( )(1 )( / )
si s SWNTx Hr V OEL       

             1 2 3, , 0,x x x   1,2,3,4i     

4.2.3 Formulation of the chance-constrained nonlinear programming 

(CCNLP) model 

The detailed model formulated using this optimization approach for our Texas factor case 

study is described in the next section. In the single-wall carbon nanotube exposure control case 

study discussed above, emission coefficients of the three pollutants (i.e., nano-sized Fe, CO and 

SWCNTs) were uncertain. A: emission coefficient can be calculated as follows (Naga, 2005): 

 

where Con is the estimated concentration of pollutant (μg/m3·h or mg/m3·h); V is the volume 

of the workplace (m3); Hr is the working hours per day (h/day); D is the working days per year 

(days/year); PV is the average production volume of SWCNTS per year (g/yr); Tr is the 

transformation factor (1,000,000 when the unit for Con is μg/m3·h and 1,000 if the unit is 

mg/m3·h. For a specific MNM manufacturing section, V, Hr, D, PV and Tr are deterministic 

values. Con is an uncertain variable which can be presented as a probability density function. 

Thus, emission coefficient (e) also can be described by a probability density function. Assuming 

these emission coefficients contain random variables, then the model can be rewritten as: 

 

Con V Hr De
PV Tr
  



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where ζ1, ζ2, and ζ3 , which are functions containing random variables, replace e1, e2, e3 to 

represent emission coefficients of nano-sized Fe, CO and SWCNTs, respectively.  means 

that the cumulative exposure should be less than the ―no observable effect‖ level(NOEL) ≥ α of 

the time. Figure 2 shows a framework of the CCNLP optimization method. 

 

 

 

 

max 1 1 2 2 3[ ( ) ]i rP q x q x F C N SPY PY D H x         

. .s t 11 1 12 2 3 0a x a x x  

1 3 2rPV N SPY PY D H x PV      

1 1 ( )Pr[(1 )( / ) ]i s Fex Hr V OEL      

2 2 ( )Pr[(1 )( / ) ]i s COx Hr V OEL      

3 3 ( )Pr[(1 )( / ) ]
si s PSWNTx Hr V OEL      

1 2 3, , 0,x x x  1,2,3,4i 

Pr 
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4.2.4  Formulation of the fuzzy chance-constrained nonlinear programming 

(FCCNLP) model 

The detailed FCCNLP SWNT model is written below.  

            max    

   . .s t    11 1 12 2 3 0a x a x x    

             1 3 2rPV N SPY PY D H x PV          

             1 1 2 2 3[ ( ) ]i rP q x q x F C N SPY PY D H x           B  -  B B    

             1 1 ( )Pr[(1 )( / ) ]i s Fex Hr V OEL        

             2 2 ( )Pr[(1 )( / ) ]i s COx Hr V OEL          

             3 3 ( )Pr[(1 )( / ) ]
si s SWNTx Hr V OEL         

             1 2 3, , 0,x x x   1,2,3,4i     

    Figure 9 shows a framework of the FCCNLP optimization method. 
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Figure 9 Framework of the FCCNLP optimization method 

4.3 Data Preparation 

4.3.1  Development of membership functions 

For the fuzzy optimization, there are three places in which the data turn this problem into a 

fuzzy optimization problem. First, the objective function can be a function with upper and lower 

boundaries. Second, the left side matrix iA is composed of fuzzy numbers, i , which presents 
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reduce efficiency for each levels of control. Third, the right-hand side value is the suggested 

occupational exposure limit which lies on a degree (the boundaries between non-effective and 

effective dosages of pollutants to workers are gradual, transitional), thus, the right-side value 

could be regarded as fuzzy. 

First, for the objective function, it is decided by the investors that a target value, 5,000,000 

dollars per year, is required as the total net return. In case the target value is too optimistic, the 

total net return is allowed to fall below it. The bottom line is 4,000,000 dollars every year. Thus, 

the fuzzy interval of the objective function is from 4 to 5 million dollars each year.   

Second, for i , the reduce efficiency for each levels of control, the range of this value for 

each levels of control are listed in Table 1.  

Third, for the occupational exposure limits of SWNT, nano iron and CO, the membership 

grade shows how suitable the standard is, that is, when a standard is suitable, it has a high 

possibility for being adapted without significant modifications (Leung 1988). Formulation of 

membership function for the fuzzy standard involves the following three steps: 

1. Determination of minimum possible concentration ( minC ). When minC = 0, it means zero 

tolerance of emission and then no health risks to workers. However, it is an extreme situation that 

is impractical and cannot be implemented as a standard. Therefore, the membership grade is 1.  

2. Determination of the most suitable standard level ( optimalC ). It is based on an assumption 

that the threshold limit values, that are levels that believed workers can be exposed day after day 

for a working lifetime without adverse health effects, exist for toxic effects of SWNT, nano iron 
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and CO. First, for ,optimal SWNTC , in April 2013, the National Institute for Occupational Safety and 

Health (NIOSH) published a bulletin which set recommended exposure limit (REL) for carbon 

nanotube as 1 μg/m3, based on the estimation of the animal no observed adverse effect level 

(NOAEL) of CNT was near 1 μg/m3 (8-hr TWA); Second, for ,optimal nano FeC  , in 2010, OSHA 

suggested a mass   concentration of 7.9 μg/m3 should not be exceeded (OSHA 2010; Schulte et al. 

2010); Third, for ,optimal COC , the American Conference of Governmental Industrial Hygienists 

(ACGIH) has assigned carbon monoxide a threshold limit value (TLV) of 29 mg/m3 as a TWA for 

a normal 8-hour workday and a 40-hour workweek. Thus, we get ,optimal SWNTC =1 μg/m3, 

,optimal nano FeC  = 7.9 μg/m3, ,optimal COC =29 mg/m3 with membership grade = 1.  

3. Determination of maximum tolerable concentration for SWNT, nano-Fe and CO ( maxC ). 

These levels indicate 100% probability of health injury. First, for max,SWNTC , investigators and 

organizations have recommended occupational exposure limits (OELs) for CNT within the range 

of 1-50 μg/m3 (NIOSH. 2013); Second, for max,nano FeC  , the benchmark level lead in an important 

determinant of hazard of the class of MNMs including nano-Fe is 100 μg/m3 (Broekhuizen and 

Dorbeck-Jung, 2013); Third, for max,COC , the NIOSH has established a REL for carbon monoxide 

of 229 mg/m3 as a ceiling. Then, max,SWNTC = 50 μg/m3, max,nano FeC  = 100 μg/m3 and max,COC = 229 

mg/m3, respectively.  
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Table 1 Fuzzy sets of reduce efficiency for each levels of control (adopted from Ok et al., 2008) 

Control Level Reduced Efficiency (η) 

No [0, 0.1, 0.2] 

Low [0.2, 0.3, 0.4] 

Medium [0.4, 0.55, 0.7] 

High [0.7, 0.85, 1] 

 

 

Figure 10 The membership function of OELs (fuzzy parameters) for (a).SWNT, (b).nano-Fe, 

(c).CO 
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4.3.2 Model description and scenarios  

As shown in table 2, four levels of EHS standards (no, low, medium and high) are defined 

to represent the strategies which nano-EHS standards might be imposed (NIOSH 2004). 

Table 2 Summary of assumptions for environmental health and safety (EHS) standards (adapted 

from Ok et al., 2008) 

 Level of EHS standards 
Type of EHS 
Control 

Low Medium  High 

Engineering 
controls 

   

General exhaust-
ventilation 

24hr, 28.31 m2 
ventilation rate, $10,000 
capital cost, $ 3,000/year 

operating cost 

24hr, 28.31 m2 
ventilation rate, $10,000 
capital cost, $ 3,000/year 

operating cost 

24hr, 28.31 m2 
ventilation rate, $10,000 
capital cost, $ 3,000/year 

operating cost 
Fume hoods  $4,000 capital cost for 

0.58m2 equipment and 
$9,500 for 2.3 m2 

equipment 

$4,000 capital cost for 
0.58m2 equipment and 

$9,500 for 2.3 m2 
equipment 

Enclosure of 
processes 

  50% decrease in labor 
productivity, 50% extra 

equipment cost 
Administrative 
controls 

   

Annual worker 
training 

8hr of training, 
$560/year instructor cost 

8hr of training, 
$560/year instructor cost 

8hr of training, 
$560/year instructor cost 

Air monitoring Monthly monitoring, 
$20,000/equipment capital 

cost 

Weekly monitoring, 
$20,000/equipment capital 

cost 

Biweekly monitoring, 
$20,000/equipment capital 

cost 
Medical 
monitoring 

  $950/worker/year 

We assume that the emission coefficients of nano-sized Fe, CO and SWCNTs are normally 

distributed random variables with known means and standard deviations (Table 3). Control costs 

for each level are 10, 78 and 210 $/g for low, medium and high control, respectively (Ok, 2008). 
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For the chance-constrained programming of SWNTs exposure, the predetermined confidence 

levels in four scenarios are tested as 90%, 95% and 99%, respectively. 

Table 3 Mean and standard deviations of the emission coefficients of nano-sized Fe, CO and 

SWCNTs 

 mean SD Reference  
nano-sized Fe (ζ1) 0.00135 0.0007 (Calculated from Maynard, 2004) 
CO (ζ2) 0.037 0.0004 (Calculated from Lai, 2004) 
SWCNTs (ζ3) 0.00287 0.00227 (Calculated from Maynard, 2004) 

The main assumptions of this model include that (1) the objective function is linear; (2) the 

reactions are under the condition of 1050 °C and 30 atm; (3) the reactions reach the dynamics 

balance very quickly and no other kind of carbon exists; (4) no other source of Fe, CO and 

SWCNTs pollution exists in the workplace; (5) concentrations of Fe, CO and SWCNTs in the air 

of the room are homogeneous; (6) the total production cost except raw material is fixed. 

The values of parameters used based on references are given in the table 4.  
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Table 4 Summary of model Parameters 

Symbols Units Meanings Values Reference 
P $/g the price of SWCNTs 1,000 (Isaacs et al., 2010) 
q1 $/g the cost of Fe(CO)5 for each gram 

SWCNTs produced 
0.21 (Healy, 2005) 

q2 $/g the cost of CO for each gram SWCNTs 
produced 

37 (Healy, 2008) 

F $/g the total costs of SWCNT except the raw 
material 

411.28 (Calculated from Isaacs et 
al., 2010) 

N \ the number of production lines 9 (Isaacs et al., 2010) 
SPY % the synthesis product yield 97 (Isaacs et al., 2010) 
PY % the purification yield 90 (Isaacs et al., 2010) 
D days/year the working days per year  365 (Isaacs et al., 2010) 
Hr hours/day the working hours per day 8 (Isaacs et al., 2010) 
a11 % the percentage of Fe(CO)5 will be 

utilized to synthesis SWCNTs 
15 (Calculated from Nikolaev 

et al., 1999) 
a12 % the percentage of CO will be utilized to 

synthesis SWCNTs 
21 (Calculated from Nikolaev 

et al., 1999) 
PV1 g/yr the minimum production volume of 

SWCNTS per year  
0 (Isaacs et al., 2010) 

PV2 g/yr the maximum production volume of 
SWCNTS per year 

20,000 (Isaacs et al., 2010) 

e1 \ the emission coefficient of nano-sized Fe 0.003 (Maynard, 2004) 
e2 \ the emission coefficient of CO 0.037 (Lai, 2004) 
e3 \ the emission coefficient of SWCNTs 0.005 (Maynard, 2004) 

OELs(Fe) μg/m3 the occupational exposure limits for 
nano-sized Fe 

5 (OSHA, 1997) 

OELs(CO) mg/m3 the occupational exposure limits for CO 40 (HIOSH, 1992) 
OELs(SWNTs) μg/m3 the occupational exposure limits for 

SWCNTs 
7 (Schulte, 2010) 

According to the pervious study, uncertainties in the nanomaufacturing process also include 

imprecise knowledge of control costs and reduce efficiency for each level of control scenarios and 

environmental health and safety (EHS) standards, except the insufficient information of exposure 

concentration in the workplace. Thus, fuzzy mathematical programming (FMP) could be applied 

to deal with vagueness and ambiguity based on fuzzy set theory. 

Models were developed and solved using the optimization software What‘sBest! 13.0. 



 

55 

 

Chapter 5 RESULTS AND ANALYSIS 

Based on the concentration distributions of the three criteria pollutants (i.e. SWNTs, nono-Fe 

powder and CO) and membership functions to the OELs of these three air pollutants presented in 

chapter 4, the production scale, production cost, annual net profit, and exposure concentrations of 

SWNT, CO are estimated by NLP, FNLP, CCNLP and FCCNLP, respectively. These results will 

be described in details as follows.  

5.1 Nonlinear Programming Model Results 

Table 5 shows results of the NLP method (production volume, production cost, profit, and 

SWNT, CO, Fe exposure in the workplace) based on the four control scenarios which are under 

the same occupational exposure limits (OELs) but four different emission control strategies (no, 

low, medium and high control levels). The results suggest that SWNTs are the major threat to 

workers’ health, compared to CO and nano-Fe, because SWNT exposure concentrations are 

equal to the value of OELs in each policy levels while the emission of CO and nano-Fe are both 

far below theirs OELs.  

In no control scenario, the profit is $0.61M/yr when production volume is 1,032 g/yr, and 

production cost is 406.43 $/yr. When a low level control policy is taken, the 10% particle remove 

efficiency 11% raise the production volume, while the total cost (production cost plus control 

cost) increase 2.7%, which leading to 9.8% decrease of profit. In the medium control scenario, 

the production volume increases 100% due to the 50% remove efficiency. And then the profit 

increases 72% with the 21% rise of the total cost. Once a high level of protection is implemented, 
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the production volume would reach the maximum 5,162 g/yr (400%) owing to its 90% remove 

efficiency, and the total cost would also significantly increased (60%), which generate the 

highest profit 1.82 $M/yr (198%). Thus, generally speaking, the annual profits and air pollutants 

concentrations increase with the rise of the manufacturing production volume caused by the 

stricter control criteria.  

Table 5 Results of the NLP method 

Control Level 

Production 

Volume (g/yr) 

Production 

Cost ($/g) 

Profit 

($M/yr) 

SWNT 

Exposure 

(μg/m3) 

CO 

Exposure 

(μg/m3) 

Fe 

Exposure 

(μg/m3) 
No 1,032 406.43 0.61 1.00 21.43 0.13 

Low 1,147 407.31 0.67    1.00 22.81 0.13 
Medium 2,065 414.35 1.05    1.00 26.37 0.13 

High 5,162 438.13 1.82 1.00 29.04 0.14 

In the HiPco SWNT manufacturing process, as mentioned in the section 2.2.2, there are two 

sources of CO gas. The first source is the injected CO gas raw material that is not only to take 

part in the Boudouard reaction (reaction (2)) to produce SWNT but also to protect synthesized 

SWNT particles from oxidation. The second one is from the reaction (1), which is product from 

decomposition of Fe(CO)5. The amount of CO exposure is proportionate to the amount of CO 

gas from these two sources. That is the reason of CO exposure increase with the increase of 

control level.  
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5.2 Fuzzy Nonlinear Programming Model Results  

In FNLP model, a number of α-cut levels are examined (i.e. 0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1) 

based on a combination of multiple fuzzy coefficients, that is, pollutants reduced efficiencies, 

OELs, and net return profits objective. This can help investigating the relationships among 

production volumes, profits, and air pollution exposure under uncertainties. 

Table 6 presents the solutions for production scales, economic benefits and pollutants 

exposure concentrations of different control strategies without considering the fuzziness of OELs 

of CO and nano-Fe, because the concentrations of CO and nano-Fe emission are too low to be 

‘approximately’ these OELs. The optimal solutions of no, low and medium control scenarios are 

achieved under the condition of λ=1 and α = 0.85, which means the requirement of objective 

function are 100% satisfied in these scenarios but may have a probability of 15% for getting a 

health damage; while the solution of high level control is gotten whenλ= 0.76 and α = 0.94, 

indicating the degree of satisfaction the requirement is 76% fulfilled but with only 6% 

probability of health injury. 

Different α-cut levels correspond to different reduced efficiencies, OELs, financial 

objective satisfaction degree, and thus cause varied production volume, eventually result in 

changed net profits and SWNTs exposure concentration. Annual net profits vary under different 

α-cut levels, as shown in Figure 11. Take no control scenario for example, when α=1 (in 

association with the highest plausibility degree with the OELs), the hollow circle means no 

feasible solution exits because the profit is 0.61 $M/yr which is far below the lower boundary of 

the expected economic objective; until α= 0.85, the profit gets the feasible value of 5.3 $M/yr 
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with the rise of the production volume from 1,707 g/yr to 10,129 g/yr. when α= 0.65, profit 

reaches the highest value 8.96 $M/yr because the production volume gains the maximum 20,000 

g/yr at this point. When α=0 (in association with the lowest plausibility degree with the OELs), 

profit is the same value when α= 0.65 due to the steady production volume. Lines of other 

scenarios show the same trend. Thus, the results indicated that the economic benefits would be 

increased as the α-cut level is deceased. The change of the SWNT exposure under different α-cut 

levels is presented in Figure 12. We also take the no control scenario for example, when α=1, the 

SWNT exposure concentration is the lowest but it cannot be accepted for its too low profits. 

When α= 0.85, SWNT exposure concentration reaches the lowest feasible value 8.35 μg/m
3
. 

When α= 0.65, SWNT exposure concentration gets the highest value 18.11 μg/m
3
 because the 

production volume gains the maximum 20,000 g/yr at this point. When α=0, SWNT exposure 

concentration is also 18.11 μg/m
3
 due to the same production volume. Therefore, from Figure 11, 

we can get the similar conclusion that the SWNT exposure concentrations would be increased as 

the α-cut level is deceased. 

Compared to the results of nonlinear programming, we reach the conclusion that the 

interrelationship among net profits return, production volumes and air pollution amounts of 

fuzzy nonlinear programming are the same as those of NLP. But more pollution is obtained in 

FNLP due to the flexibility of OELs. 
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Table 6 Results of the FNLP method 

Control 
Level 

Degree of 
objective 
function 

Satisfaction 

(λ) 

Production 

Volume 
(g/yr) 

Production 

Cost ($/g) 

Profit 

($M/yr) 

SWNT 

Exposure 

(μg/m3) 

CO 

Exposure 

(μg/m3) 

Fe 

Exposure 

(μg/m3) 

No 1 10,129 476.27 5.30 8.35 197.56 0.84 
Low 1 12,057 491.08 6.02 8.35 202.82 0.84 

Medium 1 18.245 538.60 7.00 8.35 209.04 0.84 
High 0.76   20,000 552.08 4.76 3.87 135.64 0.20 

 

Figure 11 Annual net profits under different α-cut levels in FNLP 
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Figure 12 SWNT exposure under different α-cut levels in FNLP 

5.3 Chance-constrained Nonlinear Programming Model Results  

In the chance-constrained nonlinear programming, the αi levels represent a set of 

probabilities at which the constraints can be violated (i.e., the admissible risk levels of violating 

the occupational exposure limits). The annual net profits and air pollutants exposure concentration 

change with different αi levels, that is, different levels of OELs enforcement. Figures 13 and 14 

show the worker exposure ranges of SWNT and CO under different confidence αi levels in 

different control criteria. As Figure 13 shows, in the no control scenario, the SWNTs exposure 

concentrations are [0, 1.77], [0, 1.55] and [0, 1.25] μg/m3 when α=0.9, 0.95 and 0.99, respectively. 

These concentrations are the same in other scenarios. Figure 15 shows the corresponding SWNT 

manufacturing profits obtained using the CCP calculations. In the no control scenario, the net 

returns are 0.53, 0.45 and 0.38 $M/yr when α=0.9, 0.95 and 0.99, respectively. In the high control 

scenario, they are 1.60, 1.41 and 1.16 $M/yr when α=0.9, 0.95 and 0.99, respectively. The trend is 

the same in the low and medium control criteria. Table 7 describes the CCP model calculated 

results for SWNT production volume, production costs, net profits and estimated worker exposure 
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ranges for the three air pollutants (SWNT, nano-Fe and CO) at different confidence levels. 

Results from CCNLP show that similarly to NLP and FNLP, the higher control criteria lead to 

higher benefits. Also, results indicate that a decreasing α level means a decreasing limitation for 

the OEL constraints, which may then result in an increased production volume. The increased 

production volume would potentially increase the profits and, at the same time, the pollutants 

discharge concentrations. In general, a lower α level brings on a higher profits but a higher risk of 

violating the EHS constraints; meanwhile, a higher α level results in a lower profits but an 

increased reliability of satisfying the occupational standards. These alternatives represent a 

compromise between economic benefits and environmental health and safety (EHS) requirements. 
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Figure 13 Cumulative probability distributions of SWNT exposure results from CCP method 
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Figure 14 Cumulative probability distributions of CO exposure results from CCP method 

 

 

Figure 15 The annual net profits results from CCNLP method 
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Table 7 Results of the CCNLP method 

Confidence 
Level 

Control 
Level 

Production 
Volume 
(g/yr) 

Production 
Cost ($/g) 

Profit 
($M/yr) 

SWNT 
Exposure 
(μg/m3) 

CO Exposure 
(μg/m3) 

Fe 
Exposure 
(μg/m3) 

0.9 No 895 405.37 0.53  0.00–1.77 20.99–22.57 0.00–0.23 
Low 993 406.13 0.58 0.00–1.77 21.97–23.40 0.00–0.23 

Medium 1,790 412.23 0.91 0.00–1.77 25.15–27.23 0.00–0.23 
High 4,474 432.84 1.60 0.00–1.77 27.63–29.71 0.00–0.24 

0.95 No 780 404.50 0.46 0.00–1.55 17.17–18.46 0.00–0.20 
Low 870 405.18 0.51 0.00–1.55 18.24–19.42 0.00–0.20 

Medium 1,565 410.51 0.80 0.00–1.55 21.43–23.21 0.00–0.20 
High 3,901 428.44 1.41 0.00–1.55 23.87–25.67 0.00–0.20 

0.99 No 633 403.38 0.38 0.00–1.25 12.38–13.32 0.00–0.16 
Low 702 403.90 0.41 0.00–1.25 13.22–14.09 0.00–0.16 

Medium 1,264 408.20 0.65 0.00–1.25 16.53–17.90 0.00–0.16 
High 3,166 422.80 1.16 0.00–1.25 19.07–20.51 0.00–0.16 

5.4 Fuzzy Chance-constrained Nonlinear Programming Model 

Results 

As the incorporation of FNP and CCP, the fuzzy chance-constrained nonlinear 

programming supplies optimal solutions under multiple uncertainties.  Table 8 describes the 

FCCNLP model calculated results for the degree of satisfaction of objective, SWNT production 

volume, production costs, net profits and estimated worker exposure ranges for the 3 air 

pollutants (SWNT, nano-Fe and CO) at different confidence levels when α-cut is 0.85.  

Probability is a numerical measure of the likelihood that an event will occur. Probability 

values are always assigned on a scale from 0 to 1. A probability near zero indicates an event is 

unlikely to occur; a probability near 1 indicates an event is almost certain to occur. Other 

probabilities between 0 and 1 represent degrees of likelihood that an event will occur. In 

probability theory and statistics, the cumulative distribution function, describes the probability 
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that a real-valued random variable X with a given probability distribution will be found at a 

value less than or equal to x. In this case study, Figure 16 is the cumulative probability 

distribution curves of SWNT exposure results from FCCNLP model where the x-axis is the 

SWNT exposure concentrations and the y-axis is the probability of the corresponding SWNT 

exposure concentrations in the air of workplace.  Take Figure 16 no control curve for example, 

when α level equal to 0.99, it shows that SWNT concentration has 100% of probability to be 

within 14.7 μg/m
3
. 

Comparing Results of NLP to FCCNLP, for example, table 5 to 0.9 confidence level of 

table 8, the trend is similar that the annual profits and air pollutants concentrations increase with 

the rise of the manufacturing production volume with the stricter control criteria. However, 

difference exists that in the 0.9 confidence level of table 8, profit and air pollutants exposure 

concentrations of medium control are higher than those of high control level. When a high level 

of protection is implemented, the production volume would reach the maximum 20,000 g/yr, but 

the total cost would significantly increase ((552.08+210) $/g VS (530.63+78) $/g of medium 

control), which generate the lowest profit $4.46 M/yr. And its 90% remove efficiency decline the 

SWNT exposure to (0, 6.83) μg/m
3
. 

In Table 8, variables of high control level are the same under different confidence level. 

This situation can be explained by Figure 11 and Figure 12. When production volume reaches 

the maximum, profit and SWNT exposure concentration would be constant. 

Comparing Figures 16 and 18 to Figures 13 and 15, the profits and exposure concentrations 

of FCCLP are larger than those of CCNLP due to the relaxed OELs.  
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These results were helpful for decision makers to identify desirable schemes under complex 

uncertainties to maximize the production benefits and ensure workplace safety through 

minimizing the nanoparticle-related health risks. 

Table 8 Results of the FCCNLP method 

Confidence 

Level 

Control 

Level 

 

Degree of 

Objective 

function 

Satisfaction 

(λ) 

Production 

Volume (g/yr) 

Production 

Cost ($/g) 

Profit 

($M/yr) 

SWNT 

Exposure 

(μg/m3) 

CO 

Exposure 

(μg/m3) 

Fe 

Exposure 

(μg/m3) 

0.9 No 1 10,485 479.00 5.46 0.00-20.80 250.55-271.28 0.00-2.68 

 Low 1 13,513 502.26 6.59 0.00-20.80 307.13-327.15 0.00-2.68 

 Medium 1 17,206 530.63 6.73 0.00-20.81 320.13-344.30 0.00-2.68 

 High 0.46 20,000 552.08 4.46 0.00-6.83 83.37-89.63 0.00-0.98 

0.95 No 0.87 9,177 468.96 4.87 0.00-18.20 219.94-238.14 0.00-2.34 

 Low 1 11,930 490.10 5.96 0.00-18.20 270.27-289.33 0.00-2.34 

 Medium 1 15,142 514.77 6.17 0.00-18.20 279.42-300.45 0.00-2.34 

 High 0.46 20,000 552.08 4.46 0.00-6.83 83.37-89.63 0.00-0.98 

0.99 No 0.40 7,410 455.39 4.40 0.00-14.70 175.81-190.67 0.00-1.89 

 Low 0.99 9,636 472.49 4.99 0.00-14.70 217.78-231.98 0.00-1.89 

 Medium 1 12,159 491.87 5.23 0.00-14.70 223.53-240.36 0.00-1.89 

 High 0.46 20,000 552.08 4.46 0.00-6.83 83.37-89.63 0.00-0.98 
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Figure 16 Cumulative probability distributions of SWNT exposure results from FCCNLP method 
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Figure 17 Cumulative probability distributions of CO exposure results from FCCNLP method 

 

Figure 18 The annual net profits from Fuzzy Chance-constrained programming with different confidence 

levels 
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5.5 Summary 

In this study, an integrated profits-exposure assessment for nonmanufacturing is performed 

under four air-control management scenarios, fuzziness of occupational exposure limits and 

randomness of the exposure coefficients. Table 8 in the previous section summarizes annual 

profits, production volume, production cost, exposure concentrations of SWNT, CO and nano-Fe 

in a single-walled carbon nanotube manufacturing plant in Houston, Texas, USA. The results 

indicate that: (1) SWNT is the main occupation harm to workers because its exposure 

concentration may exceed the OELs. (2) Annual net return and air pollutants concentrations 

increase with the rise of production scales result from the higher level of control strategy until the 

production volume reached the maximal level. (3) The economic benefits and air pollutants 

concentrations increase when the fuzzy α cut is deceased. (4) They rise as the probability 

confidence α level descend.  
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Chapter 6 DISCUSSION 

6.1 Verification of Models Results 

NLP and FCCNLP models also can be used as cost models for the HiPco SWNT 

manufacturing process. Results from these two models are compared with data of the earlier cost 

model. For the NLP model, the production cost range is from 406.43 to 438.13 $/g when the 

production volume is from 1,032 to 5,162 g/yr, and Isaacs et al. (2010) reported a range of 

production costs from 410 to 460 $/g for the same production volume and a HiPco manufacturing 

process. It is seen that results from the NLP and previous cost analysis are close to the literature 

data (with a maximum 5% difference). 

For the FCCNLP model, Table 8 gives a production cost range from 455.39 to 552.08 $/g 

when production volume is from 7,410 to 20,000 g/yr, and previous cost model gives a range 

from 440.60 to 552.08 $/g under the same conditions. It is seen that the FCCNLP model and 

Isaacs et al. (2010) SWNT production cost model also share the same range and trend under the 

same conditions (with a maximum 3% difference). 

6.2 Case Comparison Analysis 

6.2.1 Comparison the results between NLP model under two OELs 

In the current intelligence bulletin 65, the National Institute for Occupational Safety and 

Health (NIOSH) recommended that exposures to CNT should be kept below the exposure limit 
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(REL) of 1 μg/m3 as an 8-hr TWA to replace the previous REL 7 μg/m3 which issued in 2010 

(NIOSH, 2013; NIOSH, 2010). 

As the results of this alteration, the SWNT exposures are reduced from 7.75, 7.02, 7.92 and 

3.87 μg/m3 in each policy to 1 μg/m3, respectively, while corresponding profits shrink from 4.32, 

4.26, 6.53 and 4.76 $M/yr to 0.61, 0.67, 1.05 and 1.82 $M/yr, respectively. And, if we put 7 

μg/m3 into the membership function of 1μg/m3, the membership grade is 0.88, showing it may 

cause 12% possibility of experiencing health injury. Thus, it is obvious that stricter standard leads 

to less economic benefits but more protection to workers. 

6.2.2 Comparison of the NLP and FNLP 

There is a conflict between the nanomaterial industry growth and the environmental safety 

and health: a low level of OEL would raise the economic revenue but may cause a serious 

occupational health hazard; however, a high level of OEL would avert the health risks of workers 

but may lead to a low economic return which reduce the investing enthusiasm, and then hamper 

the growth of nanomaterial production industry. Therefore, the FMP method, a relaxation 

procedure, is developed for treating uncertainties of flexible objective function and relaxed 

constraints in the setting of optimization problems. FNLP model results indicate that a higher 

OELs expansion level would lead to a higher increment of production volume. As a result, a 

higher manufacturing amount would result in higher profits and SWNT exposure level, and vice 

versa. In this study, a strong desire to acquire a highest profits (7.00 $M/yr with λ = 1 in medium 

control level) would ask for a higher level of expansion of OELs constraint (α cut = 0.85) which 

would cause a higher risk of workers‘ injury (15%). But, in the high control level, willingness to 
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accept a lower level of expansion (α cut = 0.94) would guarantee a lower health risk (6%) and an 

acceptable economic benefit (λ = 0.76). 

Compared to the conventional NLP approach, the FNLP demonstrates an advantage of solving 

a real world problem when the coefficients are not known exactly but vaguely by human expertise.  

6.2.3 Comparison of the FNLP and FCCNLP 

Chance-constrained programming (CCP) is combined into the fuzzy nonlinear programming 

to deal with uncertainty of randomness. Thus, outputs of FCCNLP models could be expressed as 

probability density function with the degree of satisfaction of the objective as well as the 

possibility of risk of causing human health disease. 

Results of fuzzy chance-constrained nonlinear programming (FCCNLP) model delimitate 

that they can provide alternative risk-benefit management schemes in the engineered nanomaterial 

production process. For example, in current case study which the plant has already existed before 

OELs updated, if short term (about 20 years) maximum profit is prioritized, the medium level of 

EHS control with 0.90 confidence level ($6.73 M/yr) may be the best choice, but if worker‘s 

health is prioritized, managers may choose the high control level with 0.99 confidence level along 

with the lowest risk to causing human illness. Moreover, several approaches could be 

implemented to further reduce the health safety risks separately or together based on the results of 

FCCNLP. First, lower the target value of annual economic return. Second, advance the 

manufacturing line to lower the emission coefficients. Third, improve the air pollution control 

technology and increase the removal efficiencies. Plus, for investors whose who have potential 
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interests in investing on nanomaterial production industry, they may roughly know how high 

requirement one can ask through this FCCNLP system, without all-consuming investigation.  

The advantages of the fuzzy chance-constrained programming (FCCNLP) optimization are 

(1) it could tackle multiple uncertainties presented in terms of fuzzy sets and probability 

distributions, as well as their combinations; (2) it not only dealt with uncertainties expressed as 

fuzzy and random variables but also incorporated multiple control polices of nanomaterial 

manufacturing management within an optimization framework; (3) it provided an effective tool 

for decision makers to select desired ENM production plans with reasonable profits and risk 

levels. For example, as discussed above, if short term (about 20 years) maximum profit is 

prioritized, the medium level of EHS control with a 0.90 confidence level under 8.75 μg/m3 OEL 

may be a good decision point, but if the workplace exposure risk is of high concern, we may choose 

the high risk control level with 0.99 confidence level under 1 μg/m3 OEL.  

As a new extension of mathematical programming methods for dealing with system 

uncertainties, the developed FCCNLP approach could be used by decision makers based on the 

projected applicable conditions and the interrelationships between system uncertainties, risk 

probabilities, regulation fuzziness and economic objectives. 
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Chapter 7 CONCLUSIONS  

7.1 Conclusions 

In the present study, a fuzzy chance-constrained nonlinear programming (FCCNLP) 

approach has been developed for engineered nanomaterials (ENMs) manufacturing management 

under multiple uncertainties. The FCCNLP can deal with uncertainties expressed as fuzzy sets 

and probability distributions in the objective and constraints. The fuzzy information can be 

characterized through membership functions, while uncertain random coefficients can be 

addressed through chance-constrained programming. Solutions of the FCCNLP contain fuzzy and 

probabilistic information, and then offer flexibility in result interpretation and decision alternative 

generation. 

The FCCNLP has been applied to a realistic case study for planning production scale in 

association with ENMs pollution concerns in a single-walled carbon nanotube manufacturing 

plant in Houston, Texas, USA.  In the FCCNLP model for the case study, the occupational 

exposure limit of SWNT is expressed as fuzzy sets with a triangle membership function, annual 

net profits are described as degree of satisfaction and SWNT exposure concentrations are 

presented in terms of cumulative probability distributions. Useful solutions for managing the plant 

have been generated, reflecting trade-offs among industry activities, environmental health and 

safety standards (EHS), and economic considerations. They are helpful for supporting (a) analysis 

of interactions among criteria of industry production scale, economic cost and benefit and 

pollution discharge amount; (b) adjustment of the interrelationship between the conflicting 
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economic objective and EHS requirement; (c) choosing the degree of EHS enforcement and 

economic objective satisfaction which are decided by production volume.  

In general, the FCCNLP model effectively addressed the nanomaterial occupational emission 

control problems for sustainable nano-maufacturing management and provided helpful data to 

plan nano-industrial development (e.g., production volume, SWNT exposure concentrations and 

corresponding risk levels) in accordance with the objective of maximizing the nanomaterial 

manufacturing revenue and minimizing the related workplace exposure risks to ENMs. The 

solutions generated by FCCNLP model can be effectively utilized to assist the formulation of 

policies and strategies regarding economic development and environmental protection according 

to different violating risk levels. Moreover trade-offs between economic benefits and risks of 

violating flexible OELs can also be considered.  

7.2 Contributions 

In addition to the conclusions in the section 7.1, the research contributions of this present 

thesis study are summarized as follows: 

(1) In the present study, nonlinear programming (NLP) is first applied to the field of 

optimization of engineered nanomaterial manufacturing process to maximize social-economic 

benefits of ENMs and ensure workplace safety through minimizing the ENMs-related health risks. 

(2) The FCCNLP could be severed as an inexact model to predict production costs, 

annual profits and range of ENM exposure concentrations in the working area according to the 

different production scales.  
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(3) The study is the first attempt to apply FCCNLP method to provide a general 

framework of an economic-risk assessment in the ENMs manufacturing process under 

uncertainties of vagueness of OELs to ENMs and randomness of exposure coefficients to ENMs. 

(4) The solutions of FCCNLP can be used for providing various decision options that 

are associated with different levels of risks and degrees of economic objective satisfactions.  

7.3 Recommendations for Future Work 

The FCCNLP model could be used to assess the performance risk of ENM exposure to 

workers, and help decision makers identify desired air pollution mitigation strategies under 

various environmental, economic, and system-reliability considerations. It also can help handling 

uncertainties in management problems. However, there is still space for improvement of the 

model. Firstly, the calculated ENM concentrations in the air of working atmosphere was limited 

by the assumption that SWNTs in the air of the room are homogeneous, without any coagulation 

and agglomeration effects being considered. But in the real world, ENMs easily trend to coagulate 

and agglomerate because their high reactivations. Secondly, the FCCNLP could be used to 

address risk violations for structural constraints with single objective. However, it cannot be 

implemented to deal with the situation when multiple objectives have to be considered. Thirdly, 

the FCCNLP framework is no easy to use for people without engineering background. 

Therefore, correspondingly, future works are desired to mitigate these limitations. (1) 

Coagulation and agglomeration effects of ENMs will be considered to avoid errors into the model 

solutions. (2) Multiobjective optimization approach will integrate FMP and CCP methods to 

maximize the social and economic benefits of ENMs and minimize the adverse health harm to 
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workers. (3) A user-friendly system will be developed to provide interface between users and our 

risk assessment model. 
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