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Abstract

Higgs Phenomenology in Warped Extra Dimensions

Nima Pourtolami, Ph.D.

Concordia University, 2015

This thesis is a study on phenomenology of beyond the Standard Model in the context of

warped extra-dimensional (Randall-Sundrum) models. These models, through introducing a

large extra space dimension along which the standard model fields can propagate, can address

the hierarchy between the Plank and weak scales, provided that the geometry is suitably

curved along the fifth dimension and the extra dimension is stabilized. The space-time

background that is considered in this thesis is mainly in a more general form which is modified

from the usual AdS5. This modification can alleviate considerably the bounds coming from

precision electroweak tests and flavor physics. Of course, the usual AdS5 geometry is a special

case and can be reproduced by taking the correct limits.

In this thesis, we mainly consider the case where the extra dimension is bounded by two

stabilized hard walls (branes) at the TeV (IR brane) and Plank (UV brane) scales. Also

our principal consideration will be the case when all the standard model fields propagate in

the bulk, although we comment on the case where only the Higgs is localized on the TeV

brane.

Within this context, after a broad review of the main concepts, we first address the phe-

nomenology of a bulk scalar Higgs boson, and calculate its production cross section at the

LHC as well as its tree-level effects on mediating flavor changing neutral currents. We per-

form the calculations based on two different approaches. First, we compute our predictions

analytically by considering all the degrees of freedom emerging from the dimensional reduc-

iii



iv

tion (the infinite tower of Kaluza-Klein modes (KK)). In the second approach, we perform our

calculations numerically by considering only the effects caused by the first few KK modes,

present in the 4-dimensional effective theory. In the case of a Higgs leaking far from the

brane, both approaches give the same predictions as the effects of the heavier KK modes

decouple. However, as the Higgs boson is pushed towards the TeV brane, the two approaches

seem to be equivalent only when one includes heavier and heavier degrees of freedom (which

do not seem to decouple). To reconcile these results it is necessary to introduce a type of

higher derivative operator which essentially encodes the effects of integrating out the heavy

KK modes and dresses the brane Higgs so that it looks just like a bulk Higgs.

Secondly we calculate the production rate of the Higgs boson at the LHC in the context

of general 5D warped scenarios, and show that it is generically consistent with the current

experimental results from the LHC for Kaluza-Klein (KK) masses as low as 2 TeV, unlike in

pure AdS5 scenarios, where for the same masses, the Higgs production typically receives cor-

rections too large to be consistent with LHC data. Thus the new pressure on warped models

arising from LHC Higgs data is also alleviated in modified AdS5 warped scenarios.

And finally we show that in these backgrounds, high energy flavor symmetries are inherent.

When these high energy symmetries are broken at lower energies, they produce the Standard

Model (SM) structure including the neutrinos. This feature is completely general and depends

neither on the details of the background metric, as long as it produces the required hierarchy,

nor on the exact form of the symmetry, as long as it produces the required PMNS matrix. The

reason for this phenomena is inherent in the structure of the exponential hierarchy factors

of warped extra-dimension scenarios with bulk matter fields. While these factors produce

the hierarchy of masses in quarks and charged lepton sectors, they flatten in to a plateau

at larger c-parameters to accommodate the neutrinos. In the case of the quark and charged

lepton sectors, these exponential hierarchy factors “wash off” the structure of the order one

five dimensional Yukawa couplings, and naturally produce the hierarchical masses and the

CKM matrix, while for the neutrinos sector, while for the neutrinos, the structure of the high

energy symmetries are preserved to attain the SM.
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Chapter 1

Introduction

The Standard Model of Particle Physics, SM for short, is arguably the most successful theory

that mankind has ever come up with. It successfully describes three of the four fundamental

forces of nature, namely the electromagnetic, weak and strong forces down to unprecedented

scales of ∼ 10−18 m or, equivalently, up to energies of ∼ 1 TeV1. This scale is called the

weak scale as it is related to the strength of the weak force. The model is very predicting.

For example, the amount of deviation of the anomalous magnetic moment of the electron, g,

from the ”Dirac magnetic moment of the electron”, due to the quantum corrections defined

as

a =
g − 2

2
,

is experimentally given by

a = 0.00115965218073(28).

This is to be compared with the SM predicted value

a = 0.00115965217760(520),

which is accurate up to more than 10 decimal places. We should mention that not all the

observables are measured or calculated with this level of precision, but this just reveals how

precise the SM can be. Another interesting fact about the SM is that, it can be extrapolated

up to exponentially higher energies. At some energy scale, the fourth force of nature, gravity,

1On the other limit, we have Einstein’s general relativity which seems to hold up to scales of ∼ 1019 m

which is about the thickness of the Milky Way. However, if one considers the standard model of cosmology,

which includes cold dark mater, CDM, and dark energy, Λ, (therefore, the ΛCDM model for short) then this

extends to about the known boundary of the universe, ∼ 1027 m.

1



CHAPTER 1. INTRODUCTION 2

becomes important and it can not be neglected anymore. The scale at which gravity becomes

important is called the Planck scale, MPl, which is about ∼ 1018 TeV 2.

The SM is built upon a mathematical framework called Quantum Field Theory (QFT). QFT

emerges from the reconciliation of Quantum Mechanics (QM), which describes the physics of

small particles, and Einstein’s Special Relativity (SR), which provides the correct description

of particles at high speeds (i.e., close to the speed of light, c). It turns out that each of

these theories impose certain constraints on the structure of the theory. As we will try to

show in this Introduction, these constraints are much more restraining than what one would

naively expect. As a consequence, the structure of QFT is a necessary consequence of these

constraints. For example it can be proven that the only way to reconcile QM with SR is to

promote physical states into ”quantized fields” cf. below, and the only way to save causality

is to introduce the notion of antiparticles and so on. The fact that this combination matches

our experimental results is truly fascinating.

It is worthwhile to mention that the SM within its range of validity is a unique theory,

meaning that it has no competition within this range. Furthermore, as we will see here and

in Chapter 2, it is a very simple theory when one considers the plethora of experiments that

it successfully explains. In the SM, every observable is built out of ”elementary particles”.

This is a good point to give a bit more precise definition of an elementary particle, which is a

fundamental concept in high energy physics. An elementary particle is assumed to be point

like all the way up to the Planck scale and is the smallest building block of a mathematical

structure (called the Hilbert space, H, cf. below), which falls into an irreducible and unitary

representation of the space-time symmetries (the Poincaré group, cf. below). We will see

that, they are for example labeled by their momentum squared (mass), pµpµ, spin, J , and a

set of other discrete intrinsic quantum numbers depending on the properties of the particle.

These labels encode the symmetries of the fields as well the symmetries of the space-time

that these fields belong to. Physical states containing a combination of these elementary

particles, and the addition of the symmetries of the problem and the strength of their mutual

interactions at a given energy scale, accommodate for all the existing particles in nature. As

the energy scale and hence the symmetries3 change, the degrees of freedom of the problem

change as well and hence these elementary particles might not be a good set of degrees of

freedom for a certain problem. In the following we give a very crude definition to the Hilbert

2This is what is known as the reduced Planck mass,


~c
8πG .

3In low energy physics, these symmetries are almost always determined by the effective potential functions

of the problem.
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space as well as an extremely brief review of the main concepts in QM and SR in order the

better explain these concepts.

Let’s start with a basic definition of the Hilbert space: The Hilbert space is a complex vector

space with an inner product, ⟨Φ|Ψ⟩: H×H → C, such that the norm, ⟨Ψ|Ψ⟩, turns H into

a metric space in which every Cauchy sequence is convergent. Any general physical state in

this space is represented by a state4, |Ψ⟩, which is a normalized vector, i.e., ⟨Ψ|Ψ⟩ = 1.

Now that we have defined the Hilbert space, we can state a very rough version of the principles

of QM [5, 6]:

1. All physical states are represented by states, |Ψ⟩ in H.

2. For a physical system in the state |Ψ⟩, which can be decomposed into an orthogonal

basis as in |Ψ⟩ =


n an|ψn⟩, the result of an experimental measurement is given by

the probability of finding it in a certain state ψn which is given by

|⟨Ψ|ψn⟩|2.

3. Physical observables are given by a map of the Hilbert space onto itself

|Ψ⟩ → O|Ψ⟩,

where the operators O are linear and Hermitian5, meaning that O = O†, as physical

observables must be real in the sense that the eigenvalues, λ, of the equation

O|Ψ⟩ = λ|Ψ⟩

must be real. The adjoint operator, O† is defined via ⟨O†Φ|Ψ⟩ = ⟨Φ|OΨ⟩.

A key concept in theoretical physics is the notion of symmetries. Intuitively, one expects

that if a physical theory is to be useful, it must be that two different observers measuring

the same physical event come up with the same results. In terms of the second postulate of

QM mentioned above, one needs to ensure that measurements of observers O and O′, given

by |⟨Ψ|ψn⟩|2 and |⟨Ψ′|ψ′
n⟩|2 respectively, which are performed within two different systems of

coordinates S and S ′, must agree

|⟨Ψ|ψn⟩|2 = |⟨Ψ′|ψ′
n⟩|2.

4Strictly speaking, this is a ”ray”, R, and not a state. States and rays are equal up to a phase.
5This condition might be too restrictive as it has been suggested that being only symmetric under parity

and time, P-T symmetry, which is less restrictive than Hermiticity, can be enough [7, 8, 9, 10, 11, 12, 13].

Generalization to QFT has not been yet as successful [14, 15].
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This very simple but logical constraint, when combined with the space-time symmetries im-

posed by SR, is indeed very constraining and determines most of the structure of QFT.

First one notes that the operators that transform one state into another, which must pre-

serve the outcomes (symmetry transformations)6, must be unitary, U † = U−1, (such that

⟨UΨ|UΦ⟩ = ⟨Ψ|U †UΦ⟩ = ⟨Ψ|Φ⟩) and linear, (i.e., U |ηΨ+ξΦ⟩ = ηU |Ψ⟩+ξU |Φ⟩)7 [16].

Now we give a brief review of the concepts needed from SR. It is important to distinguish

between external symmetries and internal symmetries. We have already talked about the

external symmetries that are imposed by the space-time and its geometry. It is a well

experimentally established fact that the speed of light, c, can not be surpassed. This ties

space and time together with a Minkowski metric8

ηµν = diag(−1,+1,+1,+1)

and imposes the so called Poincare transformations on coordinate transformation of vectors,

which consist of Lorentz transformations, Λ, and translations, aµ

xµ → Λµνx
ν + aµ, (1.1)

where the Greek indices µ, ν assume values 0, 1, 2, 3, for t, x, y, and z coordinates respectively,

and, xµ are the components of the position vector x = (x0, x1, x2, x3). Throughout this thesis

the Einstein summation rule is in place, meaning that whenever an index is repeated, once

down and once up, as ν in the Eq. 1.1, a summation over that index is assumed (i.e., an

inner product). The transformation matrices, Λ, are 4 × 4 matrices consisting of angles of

rotations and boosts which are transformation to systems which have some velocity, v, with

respect to the original system. Theses matrices must have the property that they preserve

the length of the vectors9. This, in addition to the two constraints, DetΛ = +1 and Λ0
0 ≥ 1,

imposes that they must belong to the proper, orthochronous Lorentz group, SO(1,3). This

is exactly in the same manner as the rotations of coordinates in 3 dimensions are described

6Note that in this example the symmetry we considered was the symmetry under the change of the system

of coordinates. Nature does not care about the system of coordinates we choose, so any physical results must

be independent of it.
7It is possible that the symmetry transformation be anti-unitary and anti-linear, but the use of this

possibility is far less in physics.
8As far as the space-time is flat. Also note that in this chapter we have used the mostly + metric while

in the following chapters we will use the mostly negative metric, ηµν = diag(+1,−1,−1,−1) to be consistent

with our published papers.
9In the sense that ηµνΛ

µ
ρΛ

ν
σ = ηρσ.
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by 3× 3 rotation matrices Rij and belong to SO(3), where in contrast to the Greek indices,

the italic indices run from 1 to 3. SO(1,3) has 6 generators, 3 rotations and 3 boosts.

Combining the two discussions on QM and SR, the Poincare external symmetry transforma-

tions on physical states must take the form

|Ψ⟩ → U(Λ, a)|Ψ⟩ (1.2)

where U(Λ, a) is the unitary representation of the Lorentz transformation, Λ, and translation,

a. In the following we will use this transformation law for the one-particle states as well as

for the many particle states in order to be able to systematically categorize them.

It is important to note that all symmetries lead to conservation laws. This can be formally

proven, but for our purposes it suffices to justify it intuitively, by remembering the fact that

the symmetry transformations are concocted in a way that certain symmetries are manifest

and conserved, (e.g., The length of our four vectors under space-time translations). For

example the symmetry under coordinate translations (rotations), lead to the conservation

of energy and momentum (angular momentum). Conservation laws in physics are a direct

consequence of the symmetries.

In order to define elementary particles we want to find one-particle states for which as many

symmetries as possible are manifest. Wigner [16] in 1931, classified one-particle states. These

states are defined as states with definite energy momentum vector, P µ with P 0 = E, energy,

and P i = pi, momentum as

P µ|Ψp,σ⟩ = pµ|Ψp,σ⟩, (1.3)

where the pµ are the eigenvalues, the label p, emphasizes that the state has a definite mo-

mentum, and the particle label σ corresponds to all other discrete degrees of freedom of the

state. For elementary particles all of these labels are discrete. This is not true for several

particles, as in that case some of the σs as well as p must be continuous. As mentioned

before, elementary particles are states with definite momentum p, (i.e., an eigenstate of the

momentum operator as in Eq. 1.3) for which all labels, except for p, must be discrete. It

was first shown by Wigner that group theoretical constraints on the transformation of one

particle states with definite momentum fall under the transformations of the so called ”little

group”10 of p under Lorentz symmetries. By this we mean that a Lorentz transformation of

10It is possible to show that the set of all transformations that leave the momentum of the state invariant

form a group which is indeed a subgroup of the Lorentz group. This group is called the little group.
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these states (cf. 1.2) is of the following form

U(Λ)|p, σ⟩ ∝ Dσσ′(W )|Λp, σ′⟩, (1.4)

where summation over the repeated group label σ′ is assumed and Dσσ′(W ) furnishes the

little group representation. We have also used the common short hand, |Ψp,σ⟩ = |p, σ⟩.
These states must then be normalized, which fixes the proportionality constant. These are

classifications of the one particle states, the most important of which (i.e., the ones that occur

in nature) are massive particles with P 2 = m2 > 0 with little group SO(3), the ordinary group

of rotations in three dimensions, and massless particles with P 2 = 0 that transform under

ISO(2), which is the group of rotations and translations in two dimensions. This leads to

the observed phenomena that massive particles transform under spin representations, while

massless particles under helicity or polarization representations. An example is the easiest

way that can clarify the previous statement; a massive spin 1 particle has 3 degrees of

freedom: s = −1, 0, 1 but a massless spin 1 (of helicity 1) particle has only 2 degrees of

freedom: h = −1, 1. At this place it is worthwhile to mention that this simple consequence

of symmetries is the main reason behind the existence of gauge theories on which QFT and

the SM are built upon. As we shall see in Chapter 2, in these theories, this discontinuous

difference between massive and massless degrees of freedom, will force us to introduce an

extra symmetry called the gauge symmetry, to remove (or gauge away) an extra degree of

freedom to be able to describe the physics of massless particles11.

There are also symmetries under the non-connected part of the Lorentz group. The statement

of a theory being described by Hermitian operators is equivalent to the statement of invariance

under CPT , i.e., parity, P , time reversal, T , and charge conjugation, C. Up until now, we

have both experimental and theoretical reasons to believe that CPT is conserved. But how

about CP (or T ) individually? Out of the three forces which are described by the SM, the

electromagnetic force preserves CP and the weak force violates it. Theoretically, there is no

reason why the strong force should not violate CP , but experimentally this violation has not

been observed. This is one of the few remaining puzzles of modern physics which we will list

at the end of this introduction.

In addition to the external space-time symmetries mentioned above, the physical fields that

are defined on top of this manifold also might exhibit certain symmetries. These symmetries

11For example, if one enforces the transformation property, Aµ(x) → A′
µ(x) +

1
gDµθ(x) with the gauge

covariant derivative Dµ = ∂µ − igτ.Aµ, then, under the local symmetry transformation ψ(x) → ψ′(x) =

e−iτ.θ(x)ψ(x), the Lagrangian L = ψ̄iγµDµψ −mψ̄ψ is invariant.



CHAPTER 1. INTRODUCTION 7

are called internal symmetries and are special features of the specific field that one considers.

These are in general called the ”charge(s)” of the field. A famous example would be the

conservation of the electric charge in electromagnetic interactions12.

Now that we have given a basic definition of the elementary particles, lets see how the multi

particle states are formed and what constraints are introduced when we consider them. These

states are a superposition of the one particle states. Under Lorentz transformations these

multi-particle states transform as (cf. Eq. 1.4)

U(Λ)|p1, σ1, p2, σ2, ...pN , σN⟩ =


σ′
1,σ

′
2,...

|Λp1, σ′
1,Λp2, σ

′
2, ...ΛpN , σ

′
N⟩

×Dσ1σ′
1
(W1)Dσ2σ′

2
(W2)...DσNσ

′
N
(WN). (1.5)

If we further consider two states with the same particle content but with two particles per-

muted, as in the following

|p1, σ1, p2, σ2, ...pN , σN⟩ ∝ |p2, σ2, p1, σ1, ...pN , σN⟩, (1.6)

we can see that as these states describe the same particle content. Also because if we

interchange twice we should get back to the original state, the two sides of the Eq. 1.6

should be at most related by a phase, eiφ, with φ scalar and dimensionless. As long as one

considers only elementary particle interchanges, and not a combination of them, one can

show that this phase can only be ±1 and nothing else:

|p1, σ1, p2, σ2, ...pN , σN⟩ = ±|p2, σ2, p1, σ1, ...pN , σN⟩. (1.7)

One can then introduce a particle creation operator, a†p,σ which creates a particle acting on

the vacuum, |0⟩, and an annihilation operator, ap,σ, which destroys it

|p, σ⟩ = a†p,σ|0⟩ |0⟩ = ap,σ|p, σ⟩.

With proper (Lorentz invariant) normalization, one can then summarize this paragraph

into

[ap,σ, a
†
p′,σ′ ]± = (2π)3p0δ(3)(p− p′)δσ,σ′ , (1.8)

12These symmetries are more interrelated than presented here. For example, certain symmetries of a field

are imposed due to its spin, which itself imposes the space-time transformations of the field. The electric

charge is an example of such interconnection. It turns out that this conservation is a direct consequence of

the photon being spin 1.
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where the minus sign stands for commutator, and the plus sign for the anticommutator.

All particles in the SM can be classified according to the property shown in Eq. 1.8. The

particles which obey the commutator relation are called bosons, and the particles satisfying

the anticommutator relation are called fermions. By considering the types of interactions

and the spin of particles it turns out that all bosons are spin integer and fermions have half

integer spin. Statistical behavior of bosonic and fermionic states are very different, which is

a direct consequence of Eq. 1.7.

It is important to note that all of these came from the symmetries which where imposed by

the general principles of QM and SR. As we mentioned before, QFT derives its structure

from the fact that the combination of QM and SR is very restrictive. Now we are ready

to summarize the particle content of the SM. In the SM, all the matter particles are the

following fermions (all with spin 1/2)

1. 6 quarks in 3 generations (in total 36 after one considers 3 colors for each flavor as well

as antiquarks)

u, d, c, s, t, b.

2. 6 leptons in 3 generations (in total 12, considering anti leptons)

e, νe, µ, νµ, τ, ντ .

The force carriers in the SM are all bosons with spin 1 (called gauge vector bosons):

1. The photon, γ, that carries the force of electromagnetism.

2. The W+, W− and the Z vector bosons, that are massive and carry the weak force.

3. The 8 gluons, g, which mediate the strong nuclear force.

There is also the Higgs boson, H, which has spin 0 and is responsible for the generation of

mass for the elementary particles13.

The Higgs boson was discovered on July 4th 2012, at the Large Hadron Collider (LHC)

[17, 18]. It was a very significant discovery as the Higgs boson was predicted by the SM14

13As explained in Chapter 2, to be slightly more precise, at high energies, the SM Higgs field is a complex

doublet field with 4 degrees of freedom. At low energies, the W fields, which are massless at high energies

and hence have only 2 degrees of freedom, acquire 3 of these degrees of freedom to become massive and the

last degree of freedom constitutes for the Higgs particle, while also acquiring a vacuum expectation value

which is responsible for the mass of all elementary particles in the SM.
14cf. Chapter 2.
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but had been experimentally elusive for decades. Its discovery completed the SM picture of

particle physics. Of course one needs to wait for the results of the next run of the LHC in

the upcoming months to see whether there are deviations from the SM Higgs or not. We will

discuss the properties of the Higgs boson in more depth in Chapter 2.

In addition to the particle content mentioned above, the SM also determines the interactions

among these particles. The way the SM does that is again through the symmetries. The

three fundamental forces of nature that are part of the SM, namely, electromagnetic, weak,

and strong forces interact with matter particles (or among themselves except for the photon)

that carry their corresponding charges. These charges stem from the symmetries that these

fields preserve. The gauge symmetry group of the SM is SU(3) × SU(2) × U(1), where the

SU(3) is for the strong interactions and the SU(2)×U(1) is for the weak and electromagnetic

forces (collectively called the electroweak forces). Each interaction in the SM is visualized

by a diagram called a Feynman diagram. All diagrams are made out of basic diagrams. For

example the basic diagram for all quantum electrodynamic, QED, processes is shown in Fig.

1.1. It shows an interaction between a charged matter particle, either a quark or a lepton

with a photon.

Figure 1.1: Basic QED process.

The SM interactions are as follows:

1. The quarks, q, interact with all the gauge vector bosons, (i.e., γ, W+, W−, Z and gs)

and the Higgs.

2. The leptons, l, do not interact with the gluons. Other than that, they are similar to

quarks.

3. The photon, γ, interacts with only W±, charged leptons and quarks.

4. The Z interacts with the W±, l, q and the H.
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5. The W± interact with the Z, γ, l, q, H and themselves.

6. The g’s interact with only the q and themselves.

7. The Higgs interacts with all massive particles. This means every particle (including

itself) except the γ and the g’s.

The interaction of the quarks with the gauge weak bosons,W+,W− and Z, is very interesting

as it causes the quark fields to mix with each other. The amount of this mixing is encrypted

in the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The CKM matrix is a 3 × 3 unitary

matrix which encodes the degree of mixing between quarks of different generations and is

measured to be very close to the identity matrix, which means that the mixing between the

first generation quarks, u, d, with the second generation c, s is much stronger than with the

third generation, t, b.

At the end of this section, we mention some of the issues and shortcomings of the SM

(phenomena which we still do not understand). These problems can be categorized as the

following:

• Hierarchies of the parameters within the SM

– The cosmological constant problem: if our vacuum is to be effectively described

by a field theory all the way up to the Planck scale, from simple dimensional

analysis, one would expect that the energy density of the vacuum to be of order

M4
Pl ∼ (1019)4 GeV4, which is drastically off from the observed value, 10−47 GeV4.

This is perhaps the most difficult and most drastic problem and as far as the

author to this thesis knows, non of the beyond the SM theories, except for maybe

anthropic principle arguments, address this issue.

– The hierarchy between the electroweak scale (the Higgs, W , Z masses) and the

Planck scale: why is there about 16 orders of magnitude difference between these

scales?

– There is about 5 orders of magnitude hierarchy between the lightest (the elec-

tron) and heaviest (the top quark) Dirac fermions15 in the SM, and 11 orders of

magnitude if one considers Dirac neutrinos.

– The hierarchy between the angles of the CKM matrix: there are several orders of

magnitude differences between neighboring generations and far generations.

15Or in other words the hierarchy between the Yukawa couplings of the Higgs boson with these particles.



CHAPTER 1. INTRODUCTION 11

– The strong CP problem: why is doesn’t the strong force violate CP?

• Particles missing from the SM, which concern the incompleteness of the SM

– There is no Dark Matter (DM) fields in the SM, although we know16 that around

27% of the matter in the universe is made out of Dark Matter particles.

– Neutrinos and their mixing angles, and also why are the neutrino mixing angles

so different from the CKM mixing angles?

• Ontological problems

– Why is the gauge group of the SM SU(3)× SU(2)×U(1)? After all, this not the

first group that comes to mind.

– Where does the spectrum of particles and their quantum numbers come from?

The level of importance of these problems is to some extent a matter of taste and not

all physicists agree on whether some of them are issues or not. But perhaps the most

important of these it the Planck-weak hierarchy problem. The SM in its current formulation

is highly sensitive to UV physics as any new physics at energies higher than the current

experimental limits can bring about huge corrections to the SM. Therefore, from early on

there have been may efforts to solve this problem. Technicolor, supersymmetry, and warped

extra dimensions are all examples of these attempts. In this thesis our emphasis is on

the warped extra dimensional models. In these scenarios one assumes the existence of an

extra spacial dimension along which the geometry is warped down from the Planck scale

down to the TeV relegating the hierarchy problem to a higher energy scale. This is in

contrast to supersymmetrical extensions of the SM, which in general provide a UV stable

theory. Nevertheless, these models provide a very interesting alternative to the solution of

the hierarchy problem at energies accessible to the current experiments at the LHC.

The general structure of this thesis is as follows: In Chapter 2, we provide a brief and general

overview of the SM and some related topics. The tone of this chapter is very pedagogic and

is aimed at the general reader. The topics presented are merely touched upon with the aim

of providing a background for the rest of the chapters. Each section covers a separate topic

and is independent of the other sections. We also consider the hierarchy problem of the SM

and the Randall-Sundrum (RS) solution to the hierarchy problem.

Chapters 3, 4 and 5 are reproduced from [1], [2], and [3, 4] respectively. In Chapter 3,

16This is of course, if we leave modified gravity theories aside.
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within the RS scenario, we consider the phenomenology of the Higgs in the bulk17 of the

extra dimension. Specifically we compare the effect of the infinite tower of the particle states

appearing in the extra dimension (Kaluza-Klein, or KK modes ) versus only the first several

modes to the Higgs production rate and we show that, while the heavy KK fields tend to

decouple at heavier and heavier scales as the Higgs is located more and more towards the IR

brane18, one needs to include the contributions of an additional operator to get consistent

results.

Chapter 4, after a brief introduction to modified warped geometries and their consequences,

we calculate the bulk Higgs production rate in these models and we show that these models

are specifically interesting for the current LHC physics as they can accommodate KK modes

as light as ∼ 1 TeV, well within the range of the current experiments at the LHC, while still

being safe from the dangerous inconsistencies of the pure RS models.

Finally in Chapter 5, we use these models to explain the flavor sector of the SM. Namely we

address the differences between the mixing angles in the quark and the lepton sectors and

show that these could be explained within the context of warped extra dimensions.

17By a ”bulk field” we mean that the field can leak into the extra dimension. This is in contrary to a

”brane field” which is a field is localized with a Dirac delta function on one of the boundaries.
18An n-brane is a generalization of a membrane with n spacial dimensions and 1 time dimension.



Chapter 2

The Standard Model of Particle

Physics

As mentioned in the introduction, the Standard Model of Particle Physics (SM) is arguably

the most successful theory of mankind. Combined with Einstein’s gravity, it is valid with

an astonishingly precision within huge scales from about ∼ 1019m down to the weak scale,

∼ 10−18m (cf. also the first footnote in Chapter 1). This section provides a brief overview of

the main topics in SM.

2.1 A Brief Overview of SM

In the Introduction, we indicated that the SM is basically a list of particles, their quantum

numbers and a certain number of parameters which describe the strength of their coupling

and their interactions. The degrees of freedom of the SM (its particles content and their

corresponding quantum numbers) change with the energy scale through phase transitions.

This is the reason why the SM is valid for such large range of energies. Above the weak scale

(roughly about 1 TeV), the whole SM picture is unified under the gauge group SU(3)c ×
SU(2)W ×U(1)Y . The gauge vector bosons which are the mediators of forces consist of spin

1 particle fields in the adjoint representation of these gauge groups. Therefore, there are

N2 − 1 = 8 gauge bosons (gluons) that mediate the strong interactions and there are 3 + 1

bosons, Bµ, for the electroweak interactions. In this first section, we introduce the SM field

content in more detail, as well as the parameters of the SM. The general Lagrangian of the

13
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SM is written as a sum over contributions from the following sectors

LSM = LGauge + LMatter + LMass. (2.1)

The first term in the above equation contains the Yang-Mills kinetic terms for the gauge

boson force carriers. It looks like the following

LGauge = −1

4
Ga
µνG

µνa − 1

4
W a
µνW

µνa − 1

4
BµνB

µν , (2.2)

where we are assuming a flat Lorenz geometry and the Greek indices µ and ν are the Lorenz

(space-time) indices that run over 0 to 3. The index a on the other hand, is the gauge group

index1, and runs from 1 to 8 for the SU(3)color group of the strong interactions, and from 1

to 3 for the SU(2)W of the electroweak. The last term in the LGauge corresponds to the gauge

group U(1). The field strengths, Gµν , Wµν and Bµν , are gauge invariant and are defined in

terms of commutations of gauge covariant derivatives

Dµ = ∂µ + ig1,2,3Bµ (2.3)

Fµν = i[Dµ, Dν ], (2.4)

where for the non-Abelian gauge fields we have defined Bµ(x) ≡ Ba
µ(x)T

a. As an aside,

one can easily check that under a local gauge transformation, U(ω(x)) = eiω(x)
aTa

with T a

the generators of the gauge group, if one requires that the gauge fields (or connections in

geometrical sense) to transform as Bµ → UBµU
† − i∂µU

µ, then the Lagrangian would be

gauge invariant as required. Note that at these energies the electromagnetic and weak forces

are unified, and the matter fields (spin 1
2
particles) are also massless. Using only left handed

fields, the list of spin 1
2
particles in the SM with their respective quantum numbers is given

in Table 2.1. From the table 2.1, one can easily deduce the kinetic terms of the SM fields

which are contained in the matter section of the SM Lagrangian as

LMatter = L†
i σ̄

µDµLi + ē†i σ̄
µDµēi +Q†

i σ̄
µDµQi + ū†i σ̄

µDµūi + d̄†i σ̄
µDµd̄i (2.5)

where the index i runs over the 3 flavors and as suggested in table 2.1, we have used Li

and Qi for the lepton and quark SU(2)W doublets. Here, we are using the two component

notation such that σµ = (σ0, σ1, σ2, σ3), and σ̄µ = (σ0,−σ1,−σ2,−σ3). The Dirac spinors

can be written in term of these spinors as

ψD =


ψ

ξ†


. (2.6)

1Note that the gauge fields are in the adjoint representation of the connected part of the group, while as

we will see later, the matter fields are in the fundamental representation.



CHAPTER 2. THE STANDARD MODEL OF PARTICLE PHYSICS 15

SU(3)C SU(2)W U(1)Y

Li
νe, νµ, ντ

1 2 −1
2e, µ, τ

ē, µ̄, τ̄ 1 1 +1

Qi

u, c, t
3 2 +1

6d, s, b

ū, c̄, t̄ 3̄ 1 −2
3

d̄, s̄, b̄ 3̄ 1 +1
3

Table 2.1: List of SM spin-1
2
particles and their quantum numbers.

One important point that is apparent from Table 2.1 is that matter fields interact with the

gauge bosons according to their representation, and hence the covariant derivatives in Eq.

2.5 are different depending on which field they are acting on. For example for the left handed

particles we have

DµLi = (∂µ −
ig1
2
Bµ +

ig2
2
W a
µT

a)Li (2.7)

DµQi = (∂µ +
ig1
6
Bµ +

ig2
2
W a
µT

a + ig3G
a
µT

a)Qi, (2.8)

while the singlets of SU(2) (right handed fields) do not interact with the weak gauge bosons,

and therefore for the singlets the middle terms in the right hand side of the above definitions

of the covariant derivative are absent, for example

DµeR = (∂µ − ig1Bµ)eR (2.9)

DµuR = (∂µ +
2ig1
3
Bµ + ig3G

a
µT

a)uR. (2.10)

In addition to these, the SM prescribes the coupling constants of each of these forces (i.e., their

strength). Despite their name, these couplings constants change (run) with energy. Fig. 2.1

shows the SM couplings and their dependence on energy, obtained using the following equa-

tions2

1

α1

(µ) ≃ 59− 41

20π
log[

µ

MZ

] (2.11)

1

α2

(µ) ≃ 30− 19

12π
log[

µ

MZ

] (2.12)

1

α3

(µ) ≃ 8.5− 7

2π
log[

µ

MZ

], (2.13)

2These equations are quoted here only for the sake of completeness. They are called 1-loop renormalization

group (RG) equations.
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Figure 2.1: The running coupling constants of the SM. The horizontal axis is the energy in

GeV, and the plots from top to bottom are 1
α
(khaki) for the electromagnetic force, 1

αw
(red)

for the weak force and 1
αs
(blue) for the strong force.

where the α’s are defined as αi ≡ g2i
4π
.

To these, one must also add parameters associated with the Yukawa matrix. The Yukawa

terms in the SM enter through the last part in the Lagrangian given in Eq. 2.1, which itself

consists of two parts:

LMass = LY ukawa + LHiggs. (2.14)

The Yukawa sector describes the interaction of the SM fermionic fields with the Higgs boson

field

LY ukawa = Y e
ij ēj(LiH

†) + Y d
ij d̄j(QjH

†) + Y u
ij ūj(QiH) + c.c. (2.15)

In addition, the Higgs sector of the SM Lagrangian which consists of the kinetic and the

potential terms

LHiggs = (DµH)†(DµH)− V (H), (2.16)

with V (H) being the Higgs potential. At this stage we have not yet included the neutrino

mass terms, which depend on whether one considers Dirac neutrinos or Majorana ones.

Ignoring the neutrinos, there are in total 13 physical parameters in the Yukawa matrices. At

this stage the Yukawa couplings are in the so-called gauge basis and not in the mass basis,

which is obtained when we diagonalize the Yukawa matrices and redefine the fermion fields.

This is done after the electroweak phase transition which we discuss next. These physical

parameters are the masses for the fermions, me,mµ,mτ ,mu,md,mc,ms,mt,mb (ignoring the
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neutrino masses), 3 angles in the CKM matrix, θ12, θ23, θ13 and one CP violating phase,

δCP .

We now turn to weak scale phase transition, namely the Higgs mechanism. This mechanism is

responsible for separating the weak force and the electromagnetism by breaking the SU(2)×
U(1) part of the gauge group into a single U(1) symmetry, which corresponds to the charge

conservation of the electromagnetic force. It also renders the fermions massive. From the

Higgs Lagrangian, Eq. 2.16, if we further require that the SM be renormalizable, which is

essential if want to extrapolate the model to exponentially higher energies, the most general

potential for the Higgs field, V (H), that one can write is given by

V (H) = −m2H†H + λ(H†H)2. (2.17)

For m2 > 0 this potential has the famous Mexican hat profile, and its minimum is given

by

v =


m2

λ

 1
2

. (2.18)

The SM Higgs itself is a complex scalar SU(2)W doublet field with four degrees of free-

dom,

H =


H+

H0


. (2.19)

Its quantum numbers are given in Table (2.2), from which we can write down the Higgs

interaction with other bosons

DµH = (∂µ − ig1W
a
µT

a − i
g2
2
Bµ)H. (2.20)

At low energies one must minimize the Higgs potential, ∂V (H)
∂H

= 0, while the Higgs kinetic

SU(3)C SU(2)W U(1)Y

H
H+

1 2 +1
2H0

Table 2.2: The Higgs quantum numbers in the SM.

term can be set to zero, DµH → 0, which is equivalent to having a constant Higgs field with
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a vacuum expectation value (VEV). It is customary to break the SU(2) gauge invariance by

letting the Higgs field VEV to acquire the following form

Hvac ≡ ⟨H⟩ =


0

v


, (2.21)

but any global transformation on the above field would give the same physics. Furthermore,

if we parametrize the excitations around the vacuum in the direction of the generators that

break the symmetry by ξ(x), and the perturbations around the VEV by h(x), we have

H(x) = eiξ
a(x)Ta


0

v + h(x)


. (2.22)

It is the resonance of these perturbations around the VEV that is called the Higgs particle.

Here is how the Higgs mechanism works: at low energies the Higgs field acquires the expec-

tation value given in Eq. 2.21, i.e., the Higgs potential through the phase transition process

acquires a minimum different from zero. To reflect this insert the above Higgs field, Eq. 2.22

and Higgs covariant derivative, Eq. 2.20 into the Higgs Lagrangian, Eq. 2.16. This results

in mass terms for the following field combinations, ”the weak gauge bosons”:

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ) (2.23)

Z0
µ = cos(θW )W 3

µ − sin(θW )Bµ (2.24)

while the following combination remains massless, ”the electromagnetic photon”:

Aµ = sin(θW )W 3
µ + cos(θW )Bµ, (2.25)

where the Weinberg angle is defined as

cos(θW ) ≡ g2
g21 − g22

(2.26)

With these conventions, we can introduce two more parameters of the SM, the Higgs VEV,

v = 174 GeV and the Higgs mass, mH ≃ 125 GeV. There is only one parameter left, namely

the Quantum Chromodynamics (QCD) vacuum parameter, θQCD ∼ 0 about which we will

talk later.

2.2 The Flavor Structure of the SM

As mentioned in the previous section the fermion interactions arise from the Yukawa inter-

actions given by the Lagrangian

LY ukawa = −Y e
ij ēj(LiH

†)− Y d
ij d̄j(QiH

†) + Y u
ij ūj(QiH) + h.c, (2.27)
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where by H is given in Eq. 2.19 while Qi, Li and H
† are

Qi =


ui

di


, Li =


νi

ei


, H† =


H0∗

−H−


. (2.28)

Expanding the SU(2) group indices one obtains

LY ukawa = Y e
ij ēj(νiH

− + eiH
0∗) + Y d

ij d̄j(uiH
− + diH

0∗) + Y u
ij ūj(uiH

0 − diH
+) + h.c. .

(2.29)

After the SU(2)×U(1) symmetry breaking, the Higgs acquires a VEV (v ≃ 174 GeV) which

generates the mass matrices

Mu = vY u, (2.30)

and similarly for Md and M e. While in the gauge basis the SU(2)× U(1) symmetry of the

Lagrangian was apparent, the physical masses of the fermions are acquired only after the

electroweak symmetry breaking. The mass basis is given after a bi-unitary diagonalization

of these matrices as the following

Vu(M
u)V †

ū =


mu 0 0

0 mc 0

0 0 mt

 , (2.31)

and similarly for the Md and M e. Here Vu and Vū are different eigenvector matrices acting

from the left and right of the mass matrix respectively. Therefore, in the mass basis one

needs to redefine the fermion fields as

u→ Vuu, ū→ Vūū. (2.32)

This field redefinition in turn affects the gauge terms through the covariant derivatives in

the kinetic terms (cf. Eq. 2.7 and 2.8). As a result of this rotation, while the neutral

current interactions remain intact, the charged current will involve interactions the following

matrix

VCKM = VuV
†
d =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 , (2.33)
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which is the Cabibbo-Kobayashi-Maskawa matrix [19, 20]. A standard parametrization of

the CKM matrix is the Wolfenstein form [21, 22, 23, 24]

VCKM =


1− λ2 λ Aλ3(ρ− iη)

−λ 1− λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 ,

where λ, A, ρ and η are the Wolfenstein parameters. Not all of these parameters are inde-

pendent. The unitarity of the CKM matrix imposes
i

VijV
∗
ik = δjk and


j

VijV
∗
kj = δik. (2.34)

Let’s take a look at how the symmetries were broken and how many free parameters are left.

The original classical flavor symmetry of a Lagrangian with all the couplings and Yukawa

couplings equal to zero in the quark sector was U(3)u×U(3)d×U(3)ū×U(3)d̄. First, turning
on the Yukawa couplings Yu and Yd breaks this down to U(1)3u×U(1)3d̄ as manifest in the field

redefinitions, Eq. 2.32, where we changed the basis from the gauge basis to the mass basis.

Adding the weak coupling, g2 means that the left handed quarks cannot rotate separately, so

from these six symmetries, one remains unbroken, U(1)B which corresponds to the rotation

of all quarks by the same amount. This is the baryon number conservation symmetry. The

CKM matrix is unitary so it has nine parameters: six phases and three real numbers. Using

the five broken U(1)’s we can remove five of these phases and therefore we are finally left

with one phase, three mixing angles and six invariant masses.

Note that until now the neutrinos are massless, as there are no neutrino singlet interaction

terms in the Lagrangian. There are several ways for the neutrinos to acquire mass, and

while the simplest way is to assume that they are Majorana fermions and the mass is given

through a dimension five operator, in this thesis we assume that the neutrinos are Dirac

particles, and hence there is an additional term in the Lagrangian, Eq. 2.27, coupling the

singlet right-handed neutrino to the left-handed lepton doublet

LY ukawa ⊃ Y ν
ij ν̄j(LiH). (2.35)

Following the exact same procedure as for the CKM matrix one arrives at the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix

VPMNS = VνV
†
e , (2.36)
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which is usually written in the following form

U =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 . (2.37)

Similar to the CKM matrix, the PMNS matrix has three angles and one phase which can

be parametrized in many different ways. A general parametrization [25] is UPMNS = U · P
where P and U are given by the following matrices

U =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12s23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , P =


1 0 0

0 eiα 0

0 0 eiβ

 ,

(2.38)

where the phase δ is the Dirac CP violation phase and α and β are the Majorana CP violation

phases. The mixing angles cij = cos θij and sij = sin θij are given by [24] (3σ allowed ranges

consistent with both ∆m2 > 0 and ∆m2 < 0)

sin2 θ1,2 = 0.259− 0.359 sin2 θ23 = 0.374− 0.641 sin2 θ13 = 0.0176− 0.0298 (2.39)

Interestingly this is approximately consistent (except for θ13 ̸= 0) with the tri-bi-maximal

texture

U =




2
3

1√
3

0

−1√
6

1√
3

−1√
2

−1√
6

1√
3

1√
2

P. (2.40)

We will use this texture in Chapter 5 to address the neutrino phenomenology in the warped

extra dimensions.

2.3 Higgs Physics

The historical discovery of the Higgs boson gave experimental access to the Higgs sector of

the SM. It was for the first time that access to the level of energies enabled to probe the Higgs

sector. In this section we give an argument[26, 27, 28, 29] based on unitarity of why the Higgs

sector had to be introduced. As mentioned in section 2.1, the Higgs mechanism breaks the

SU(2)×U(1) symmetry of the SM and hence it is closely related to the weak scale. The weak
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gauge bosons below the weak energy scale are W+, W− , Z, γ, as in Eqs 2.23, 2.24 and 2.25.

The gauge symmetry of the Lagrangian is not really a symmetry. It is merely a consequence

of the fact of an added redundancy to the description of the gauge fields, in order to make

Lorenz invariance manifest, and therefore the fields that live on the same gauge manifold,

i.e., fields that differ from each other only by a gauge transformation, must be physically

equivalent. The gauge symmetry of the Lagrangian enforces this equivalence. Bearing this

fact in mind, we now add a gauge violating mass term to the Lagrangian. This is motivated

by the fact that we know that experimentally there are three massive gauge bosons in nature

and a term in the Lagrangian is needed to describe them as follows

L ⊃ 1

2
m2
WW

a
µW

aµ. (2.41)

It is possible to show that in order for this theory to be valid up to high energies with

E ≫ MW , it must have the features of a Higgs theory for consistency with the unitarity

bounds. Through this demonstration we will see that the key issue here is the redundancy in

the description of the massive spin 1 gauge bosons. Consider a massive spin 1 particle at rest

with momentum vector, kµ = (MW , 0, 0, 0), longitudinal polarization vector, ϵL = (0, 0, 0, 1)

and transverse polarization vectors ϵT1 = (0, 0, 1, 0) and ϵT2 = (0, 1, 0, 0). They satisfy

ϵλ.ϵ
∗
λ = −1 and

ϵµλkµ = 0. (2.42)

Now if we boost in one direction, say ẑ, then kµ = (Ek, 0, 0, k) which means that the

longitudinal polarization vector does not satisfy Eq. 2.42 any more. Rather the vector

ϵL = ( k
mW

, 0, 0, Ek

mW
) would be orthogonal to the momentum vector, kµ. In the limit of very

high energies, this will translate into

ϵL → kµ

mW

+O

mW

Ek


Ek ≫ mW . (2.43)

Thus, as the momentum vector, kµ, approaches being a null vector, in order for the longi-

tudinal polarization to stay orthogonal to the momentum vector, it needs to be more and

more lined up with the momentum, ϵL ∝ kµ. This is exactly what one would expect from

the Lorentz geometry. This tells us that the longitudinal polarization of the vector bosons

grows with energy and that this component might cause problems for the theory.

Looking at the gauge boson propagator is also insightful. The quantum field operator of a

spin 1 particle is given by

φµ(x) = φµ+(x) + φµ−(x), (2.44)
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where φµ−(x) = (φµ+(x))
†
and

φµ+(x) =


d3p

(2π)3/2

Ep
eip.x


λ

ap,λϵ
µ
λ(p). (2.45)

Here, the operator ap,λ has particle labels of the little group, (in this case, being a massive spin

1, the group is SO(3)) and the ϵµλ(p) map the little group labels into the Lorentz space-time

labels. From this we can find the propagator, [φµ+(x), φν−(x)]

−i
p2 −m2

W

− ηµν − pµpν

m2
W

. (2.46)

Note that at large energies this propagator does not die off, and yet again this is the longi-

tudinal polarization that causes problems as it grows with energy.

Let us examine the behavior of the t channel of the process, e+Re
−
L → W+

LW
−
L , at high energies.

We can see that the amplitude, |M|2, and hence the cross section grow with energy:

|M|2 ∝ g4

M4
W

t.u (2.47)

where t ≡ (p1 − p3)
2 and u ≡ (p1 − p4)

2 are called the Mandelstam variables. This conflicts

with unitarity as the cross section, σ, must be bounded by 1
s
, where s ≡ (p1 + p2)

2 is also

called a Mandelstam variable.

The argument is as follows. The scattering matrix, S, that relates the ”in” to the ”out”

states, ψout = Sψin must be unitary and therefore satisfy S†S = 1. Writing S = 1 + iT , one

arrives at 2 ImT = T†T from which the optical theorem for 2 → 2 scattering is derived

ImA (2 → 2) = s


all final states

σ(2 → final) ≥ s σ(2 → 2). (2.48)

Now the partial wave expansions of a 2 → 2 scattering amplitude and of its cross section are

given by

A(2 → 2) = 16π

ℓ

(2ℓ+ 1)Pℓ(cos θ)aℓ, σ(2 → 2) =
16π

s


ℓ

(2ℓ+ 1)Pℓ(cos θ)|aℓ|2 (2.49)

which yields the following unitary bound:

|aℓ|2 ≤ Im (aℓ). (2.50)

This means that for the real part of the partial wave amplitude, |Re(aℓ)| ≤ 1
2
. For any process

to have a unitary scattering matrix, it must satisfy this bound. Comparing with Eq. 2.49,
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one arrives at the original claim, that σ <∼ 1
s
. The energy scales at which problems occurs is

E ∼ 4πMW

g2
∼ 4πv, with v being the VEV of the Higgs.

If one now calculates the s channel of the same process, e+Re
−
L → W+

LW
−
L , that too grows

at high energies, and since the weak coupling, g, is the same in both processes the two

diagrams exactly cancel. This is due to the fact that this is a non-Abelian gauge theory. Had

we considered a random interaction between the massive vector bosons, where one of the

strength of interaction vertex for the vector bosons was not g, then the violation of unitarity

at high energies would be unavoidable. This means that the theory in its current form does

not satisfy unitarity and hence does not make sense.

Therefore, both from this and from the discussion about the longitudinal polarization vector,

we see that the main issue is the longitudinal modes in three gauge boson interactions. The

cancellation that occurred in our example gives a clue on how to solve the problem: the

three gauge boson interactions must have a gauge theory structure. The simplest way to

resolve this is to introduce the Higgs boson with a vertex strength of vg2 = MWg coming

from the term |h|2W 2 in the Lagrangian. Then, after the electroweak symmetry breaking,

the term vg2hW 2 with h being the physical Higgs, exactly cancels the three gauge boson

vertices.

2.4 Standard Model as an Effective Field Theory

Given a set of interacting particles constrained by some symmetry, even if the high energy

degrees of freedom are not known, one can always write down a low energy effective field

theory to describe the interactions between our set of particles. For that we simply need to

represent the particles, or the relevant degrees of freedom in our theory, by fields, and then

construct the interaction Lagrangian so that it is compatible with the symmetries. Whether

or not the degrees of freedom in the theory are relevant or not depends on the energy scale

of validity of the theory. Particles heavy enough that they can not be produced on shell at

these available energies are assumed to have been integrated out, Fig. 2.2. Essentially, this is

replacing the heavy degrees of freedom of the theory with their equations of motion. There

could very well exist different equivalent field theories having the same degrees of freedom

and hence describing the same physics.

Depending on the needed precision of the calculation one might have to include higher order

operators up to order E
Λ
where Λ is the mass scale of the fields that are integrated out, or in
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Figure 2.2: Integrating out the heavy fields for a 2 → 2 scattering for a renormalizable theory;

the diagram in the left is replaced by the diagram in the right.

other words, the cutoff of the theory.

In general this procedure does not produce a renormalizable quantum field theory, as the

degrees of freedom often change as one approaches higher energies. Therefore one needs to

include counter-terms for unknown ultraviolet (UV) sensitive physics. For higher precisions

one needs higher and higher order counter-terms, but always a finite number of them for

a finite precision. The general rule of thumb in the procedure is that after including all

operators consistent with the symmetries of the theory up to mass dimension N , we can

renormalize the theory using the same operators. The higher mass dimension operators of

dim(O) are suppressed by

E
Λ

dim(O)−4
. This theory then needs to be “matched” with the

experimental data by fixing the coefficients of each operator.

This general framework can be used to probe both low energy physics when the high en-

ergy Lagrangian is known (by integrating out the heavy degrees of freedom e.g., the Fermi

model), or to probe new physics by considering the SM as a low energy effective field theory.

Experimentally we have probed the theory up to scales of ∼ TeV, therefore every interaction

we measure arises in an effective Lagrangian. To proceed to higher energies, one needs to

include higher mass dimension operators in the Lagrangian. All of these operators are built

out of the same SM fields mentioned before. Here we mention the most famous of these

operators. Operators with dimension less than or equal to 4 are already included in Eq. 2.1

with one exception:

L ⊃ g′ϵµνρσGµνGρσ. (2.51)

This operator leads to the strong CP problem, because the experimental bounds on the

coefficient, g′ < 10−10, have not yet been understood theoretically.

There is only one possible dimension 5 operator which is consistent with the symmetries of
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the theory in the SM

L ⊃ cij
Λ


Liaα h

bϵab
 
Ljcβ h

dϵcd

ϵαβ, (2.52)

where Greek letters denote the SU(2) spinor indices, Latin letters a, b, c and d are for SU(2)

weak indices and Latin letters starting from i denote flavor indices. This operator gives rise

to the Majorana neutrino masses. After the electroweak symmetry breaking:

→ cijv
2

Λ
νiLν

j
L. (2.53)

Interestingly, the Λ suppression also explains why the neutrino masses are so small.

There are about 80 possible operators with mass dimension 6. These operators are sup-

pressed by Λ2. Discuss all these operators is beyond the scope of this introduction, but we

mention that the best known of these operators are the ones with four interacting fermion

fields (e.g., qqqℓ
λ2

) responsible for proton decay and also for rare muon decays into three elec-

trons.

A very efficient way to probe high energy physics is to look for SM operator coefficients which

are zero or very small and for approximate symmetries that these terms violate. Through

this method we can impose bounds on any new physics that violates that symmetry. In other

words, any physics below those bounds must respect the same approximate symmetry as the

SM (causing the coefficient to be small), otherwise the beyond the SM (BSM) model will

yield a much larger contribution through quantum corrections. We will show how to use the

effective field theory view in warped extra dimensions in Chapter 3.

2.5 Naturalness of the SM

It is a fact, strongly supported by experiments, that the value of physical observables are

typically given by the scales enforced by the dimensional analysis multiplied by a factor of

O(1). Historically it has been very fruitful to spot the cases where this dimensional analysis

does not work, and look for an explanation. As an example, Dirac was baffled by the fact

that the mass of the proton is much smaller than the Planck mass. This problem has as a

solution the chiral symmetry that protects the proton mass from receiving large quantum

corrections,. However the hierarchy between the weak scale and the Planck scale is still an one

of the most important (unsolved) problems of modern physics, which could be an invaluable

hint to the structure of physics at higher energies. As we mentioned in the Introduction,
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there are also some other hierarchies in the theory that, although perhaps not as important

as the weak-Planck hierarchy, are also outstanding problems. For example, why is the top

quark so much heavier than the electron? There could be a deep reason for that which may

become clear within the framework of a theory in the future, but this problem does not have

an explanation within the SM. Also, how do we differentiate between different hierarchies in

a theory?

Through the work of lots of physicists, including Dirac, Weisskopf, Wilson, Weinberg and

t’Hooft, we now have a clear understanding of the core of this problem. The same problem

has been stated differently through out the history of modern physics. Very briefly some of

these formulations are:

• Power divergences are bad, logarithmic divergences one can deal with. This humble

sentence has a deep meaning. Logarithmic divergences receive corrections from all

scales, while power divergences receive all of their corrections from the highest energies

and smallest length scales, exactly where our theory fails to be valid and this is why

they are bad.

• A small scalar mass in your theory is unnatural. This means being very close to a

second order phase transition which requires a lot of fine tuning and is unstable. Also

scalar mass terms receive quadratic corrections from the highest scales and are sensitive

to any new physics at high energies, which connects to the next point.

• A theory is unnatural if it is sensitive to high energy physics, that is, if small changes

in the parameters of the theory at high energy results in huge corrections to the low

energy physics. These corrections are due to the quantum fluctuations. Even if at the

classical level one imposes a combination of cancelations that yield the small scaler

mass in question, the quantum fluctuations of the full theory restore the dimensional

analysis.

• t’Hooft’s technical naturalness: A dimensionless parameter is naturally small only if

the theory is more symmetric when it is exactly zero. This explains why the proton

can be naturally light, but a scalar field can not. Without the fermion mass term,the

Lagrangian is more symmetric, and therefore the fermion masses can be small. This is

not true for the scalar mass term.
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2.6 Warped Extra Dimensional Models3

Introduction of additional dimensions to the 4D space time has been abundant in the litera-

ture. The incentive to do so has always been force unification, in recent times, the unification

of gravity and the rest of the SM forces. The modern view of the certain class of theories

named ”large extra dimensions” was first developed by Arkani-Hamed et al. in 1998 [31].

They showed that the weak-Planck scale hierarchy problem could be explained if gravity

could propagate in the bulk of extra dimensions. Interestingly the size of these extra dimen-

sions could be roughly between a millimeter and a TeV−1, well within the possible range

of detection of our current detectors. The next breakthrough was due to Lisa Randal and

Raman Sundrum [32, 33] who postulated a warped geometry with a five dimensional Anti-de

Sitter (AdS5) background space time metric given by

ds2 = e−2kyηµνdx
µdxν − dy2 ≡ gMNdx

MdxN , (2.54)

where ηµν is the flat four dimensional Minkowski metric with mostly minus signs, k is the

momentum (or curvature scale) along the fifth dimension and xM = (xµ, y) are the 5D space-

time coordinates with M = (µ, 5). The 5D metric, gMN is defined via the above equation.

We might use the conformal conformal coordinates in which the above metric takes the

form

ds2 =
1

(kz)2

ηµνdx

µdxν − dz2

, (2.55)

where the new coordinate, z is related to y by z = eky/k. To accommodate experimental

observations, this extra dimension must have a finite length. Originally it was assumed

that one must compactify the geometry on a circle through the identification y ↔ y + 2πR,

with two 3-branes placed at the orbifold fixed points. Later, it was realized that the chiral

representation of fermions in the SM can be nicely incorporated in this model with the fifth

dimension being compactified on a Z2 orbifold, S1/Z2, which identifies y ↔ −y. In the

original Randall Sundrum setup, this extra dimension was bounded by two branes (hard

walls) at the locations y = 0 for the UV (or Planck) brane and y = y1 for the infrared (IR),

or TeV brane4. In the original RS scenario it was assumed that all the SM fields are localized

in the TeV brane [32, 33], but this was soon replaced by a scenario in which all of these fields

were allowed to propagate within the bulk, except for the Higgs filed, which was still localized

in the TeV brane [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46]5. The second scenario had

3A very nice and pedagogical review of extra dimensional models is given by Tony Gherghetta [30].
4For the conformal coordinates the location of the branes is z = R = 1/k and z = R′ = eky1/k.
5These scenarios are named RS1 and RS2 respectively.
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the advantage that, depending on the localization of the SM field inside the bulk of the extra

dimension, and on how much this geographical position overlaps with the Higgs field still

localized on the TeV brane, particles would acquire different masses, and hence the model

could address another hierarchy problem, namely the flavor hierarchy within the SM.

We now show how the Planck-Weak hierarchy problem is solved in the RS1 model. For an

IR localized Higgs the action is given by

SH =


d4dy

√−gδ(y − y1)

gµνDµHDνH −M2

5D(H
†H) + λ(H†H)2


(2.56)

where the determinant of the metric,
√−g = e−4ky. Due to the appearance of the metric gµν

in front of the kinetic term, one needs to normalize the kinetic term through the redefinition

of the Higgs field, H → eky1H. This ”warps” down the physical Higgs mass as

mH =M5De
−ky1 . (2.57)

This process is generic to all mass scales in this RS1 model, as all the SM fields confined to

the IR brane can lead to dangerous FCNC and proton decays. As mentioned before, RS2

solves this problem by allowing the SM fields to propagate in the bulk. This leaves five

dimensional bulk fields in a slice of AdS5. One then needs to go through the one century

old procedure of Kaluza-Klein dimensional reduction, which essentially means solving the

equation of motion for the fields along the fifth dimension and reduce the 5D Lagrangian to

a 4D effective one, which includes a tower of infinite KK modes for each of these 5D fields.

The mass scale of the first KK mode is given by

m1 ∼ ke−ky1 , (2.58)

and the mass of higher order KK modes is given by the momentum of the standing quantum

wave along the fifth dimension within the boundaries. For the RS metric, these turn out to

be Bessel functions Jn and Yn, satisfying the appropriate boundary conditions, and the mass

is given approximately by

mn ∼ nm1. (2.59)

The only subtlety involved in this procedure is the fermion field boundary conditions. In odd

number of space-time dimensions, the spinor representations require the γ5 matrix to cary a

space-time index, and hence one looses the chirality present in four dimensions. The model

might become useless unless, except for the fact that boundary conditions on the 5D fermion

fields require that

δΨ̄RΨL|y=0,y1 = δΨ̄LΨR|y=0,y1 = 0, (2.60)
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where ΨL and ΨR are the left handed and right handed fields respectively. This means that

one of the left handed or right handed fields must satisfy Dirichlet boundary conditions,

a result perfectly consistent with SM (cf. Table 2.1). In the following chapters, we study

specific aspects of warped extra dimensions.



Chapter 3

Higgs Phenomenology From Bulk to

Brane

3.1 Introduction

Warped extra dimensional models have become very popular because they are able to address

simultaneously two intriguing issues within the Standard Model (SM): the hierarchy problem

and the mass/flavor problem. They were originally introduced to treat the first issue [32, 33]

in a setup where the SM fields were all localized at one boundary of the extra dimension.

Later it was realized that by allowing fields to propagate into the bulk, different geographical

localization of fields along the extra dimension could help explain the observed masses and

flavor mixing among quarks and leptons [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46].

Flavor bounds and precision electroweak tests put pressure on the mass scale of new physics

in these models [47, 48, 49, 50, 51, 52, 53], but extending the gauge groups and/or matter

content (e.g. [54, 48, 55, 56, 57, 58, 59, 60, 61, 62]) or by slightly modifying the spacetime

warping of the metric (e.g [63, 64, 65, 66]), it is possible to keep the new physics scale at the

TeV level at the reach of the Large Hadron Collider (LHC).

Electroweak symmetry breaking can still happen via a standard Higgs mechanism in these sce-

narios (although it can also be implemented as as Pseudo-Nambu-Goldstone boson (PNGB)

[67, 68] or described within the effective theory formalism [69, 70]). As the LHC announced

the discovery of a light Higgs-like particle of a mass around 125 GeV [17, 18], it becomes

crucial to have a detailed prediction of the properties of the physical Higgs particle in these

31
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models. The Higgs boson itself must be located near the TeV boundary of the extra dimen-

sion in order to solve the hierarchy problem, and so typically it is assumed to be exactly

localized on that boundary (brane Higgs scenario). Nevertheless, it is possible that it leaks

out into the bulk (bulk Higgs scenario), and in doing so indirectly alleviate some of the

bounds plaguing these models [71].

The calculation of the production cross section of the brane Higgs in these scenarios has been

addressed before [72, 73, 74, 75, 76, 77, 78, 53, 79] but we will pay close attention to the more

recent works of [75, 77, 78, 53, 79]. The towers of fermion Kaluza-Klein (KK) modes will

affect significantly the SM prediction and in [77] it was found that the Higgs boson production

rate can receive important corrections, either enhancing or suppressing the Standard Model

prediction. The suppression or enhancement depends on the model parameters considered,

in particular on the phases appearing in the different Yukawa-type operators present in the

5D action. Previously, the analysis of [75], in which only the first few modes were considered,

gave no contribution to the rate from the towers of KK fermions. Finally, the analysis of

[78, 53, 79] seems to indicate that with just a few KK modes a substantial effect is obtained,

but of opposite sign as the one predicted from summing the infinite tower [77].

In this chapter we consider the effects of allowing the Higgs boson to propagate in the bulk,

with its profile more or less localized towards the IR brane depending on the value of the

mass parameter β, related to the bulk mass of the 5D Higgs field.

To keep matters as simple as possible we will set up a model containing a single family

of up-type 5D fermions along with a bulk Higgs scalar. Generalization to a more realistic

scenario is straight forward but we prefer to stay as transparent as possible due to the many

subtleties involved in the calculation.

We first compute the contribution of the complete tower of KK fermions to the Higgs pro-

duction cross section as well as to the tree-level shift happening between the light fermion

mass and its Yukawa coupling (leading to flavor violating couplings when considering three

fermion families). These calculations, as outlined in [80, 77], are analytically straightforward

and allow us to obtain simple and compact results. We then repeat the same analysis numer-

ically from the point of view of an effective theory in which only the first few KK fermions

contribute. We show that for a bulk Higgs with a thickness of the order of inverse TeV scale,

the results obtained are the same as the results obtained by summing the complete KK tower

(i.e. heavier modes decouple). Moreover, these results are consistent with the predictions

obtained in [80, 77] for the specific case of a brane localized Higgs. The two aproaches out-
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lined seem to give different predictions as the bulk Higgs is continuously pushed towards the

brane. It turns out that in order to maintain the consistency of both approaches we need

to include in the analysis the effects of a special type of higher order operators. After these

effects are included, we will come back and address in the discussion section the differences

among the existing calculations in the literature and stress the importance of including the

mentioned higher order operators in the analysis.

This chapter is organized as follows. In Sec. 3.2 we summarize the simple 5D warped space

model used in the calculation. In Sec. 3.3 we present analytical results for the Higgs flavor-

changing effects (3.3.1) and production (3.3.2), using the full tower of KK fermions. We use

numerical methods to calculate the effects of including just a few KK modes in Sec. 3.4,

both for flavor-changing neutral currents effects (3.4.1) and Higgs boson production (3.4.2).

We include the effect of the higher order operator in Sec. 3.5 and discuss the misalignment

between the Higgs boson profile and its vacuum expectation value (VEV) in Sec. 3.6. We

discuss the significance of our results, compare them to previous analyses and conclude in

Sec. 3.7. We leave some of the details for the Appendices A and B.

3.2 Warped Extra Dimensions with Higgs in the Bulk

We consider the simplest 5D warped extension of the SM, in which we keep the SM local

gauge groups and just extend the space-time by one warped extra dimension.

The spacetime metric is the usual Randall-Sundrum form [32, 33]:

ds2 =
R2

z2


ηµνdx

µdxν − dz2

, (3.1)

with the UV (IR) branes localized at z = R (z = R′). We denote the SU(2)L doublets by

Qi(x, z) and the SU(2)L singlets by U j(x, z) where i, j are flavor indices and x represents the

4D spacetime coordinates while z represents the extra dimension coordinate. The fermions

are expected to propagate in the bulk [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46].

The up-sector fermion action that we consider is therefore

Sfermion =


d4xdz

√
g


i

2


Q̄iΓ

ADAQi −DAQ̄iΓ
AQi


+
cqi
R
Q̄iQi+

i

2


ŪjΓADAUj −DAŪjΓAUj


+
cuj
R

ŪjUj +

Y ∗
ij Q̄iHUj + h.c.


, (3.2)
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with DA being the covariant derivative, and we have added a Yukawa interaction with a Higgs

field H which in principle can be either brane or bulk localized. From the 5D fermion mass

terms one defines dimensionless parameters cui , cqi which are a priori quantities of O(1). The

coefficients Y ∗
ij have inverse energy units (1/

√
Λ) since Yukawa couplings in 5D are higher

dimensional operators.

After separating 5D fields into left and right chiralities we impose a mixed ansatz for sepa-

ration of variables

qL(x, z) = q0L(z)q
0
L(x) + Q1

L(z)Ψ
1
L(x) + ... , (3.3)

qR(x, z) = q0R(z)u
0
R(x) + Q1

R(z)Ψ
1
R(x) + ... , (3.4)

uL(x, z) = u0L(z)q
0
L(x) + U1

L(z)Ψ
1
L(x) + ... , (3.5)

uR(x, z) = u0R(z)u
0
R(x) + U1

R(z)Ψ
1
R(x) + ... , (3.6)

where q0L(x) and u0L(x) are the SM fermions and Ψn
L,R(x) are the heavier KK modes. In

order to obtain a chiral spectrum, we choose boundary conditions for the fermion wavefunc-

tions

qL(++), qR(−−), uL(−−), uR(++), (3.7)

so that before electroweak symmetry breaking only q0L and u0R will be massless (zero modes)

with wavefunctions:

q0L(z) = f(cq)
R′− 1

2
+cq

R2
z2−cq , (3.8)

u0R(z) = f(−cu)
R′− 1

2
−cu

R2
z2+cu , (3.9)

where we have defined f(c) ≡


1−2c
1−ϵ1−2c and the hierarchically small parameter ϵ = R/R′ ≈

10−15. Thus, if we choose cq(−cu) > 1/2, the zero mode wavefunctions are localized towards

the UV brane; if cq(−cu) < 1/2, they are localized towards the IR brane.

In order to implement minimally the Higgs sector out of a 5D scalar we use the following

action [81]

SHiggs =


dzd4x


R

z

3 
Tr|DMH|2 − µ2

z2
Tr|H|2


− VUV (H)δ(z −R)− VIR(H)δ(z −R′),

(3.10)

where µ is the 5D mass for the Higgs boson. The boundary potentials VUV (H) and VIR(H)

yield boundary conditions that can accommodate electroweak symmetry breaking, so that



CHAPTER 3. HIGGS PHENOMENOLOGY FROM BULK TO BRANE 35

one obtains a Higgs VEV with a non-trivial profile along the extra-dimension. Around that

VEV, one should then add perturbations and obtain the spectrum of physical modes, i.e. a

SM-like Higgs boson and a tower of KK Higgs fields. The expansion should look like

H(x, z) = vβ(z) + hβ(z)h(x) + ...., (3.11)

and we can choose the boundary conditions such that the profile of the Higgs VEV vβ(z)

takes the simple form

vβ(z) = V (β) z2+β, (3.12)

where β =


4 + µ2 and

V (β) =


2(1 + β)

R3(1− (R′/R)2+2β)

v4
(R′)1+β

, (3.13)

where v4 is the SM Higgs boson VEV. One should note that the wave function hβ(z) of the

light physical Higgs (lightest KK Higgs field) will have the form

hβ(z) =
vβ(z)

v4


1 +O


m2
hz

2

1 + β


, (3.14)

so that for a light enough Higgs boson mass both profiles hβ(z) and vβ(z) are aligned (i.e.

proportional to each other).

The previous bulk Higgs sector is capable of reproducing the brane Higgs limit, since the

wavefunction of the light Higgs (and its VEV) both depend exponentially on the parameter

β. As this parameter is increased, the wavefunctions are pushed more and more towards

the IR brane mimicking a perfectly localized Higgs sector.1 Indeed, the wave function of the

Higgs can act as a brane localizer since

lim
β→∞

h2(z) = lim
β→∞

v2(z) = δ(z −R′), (3.15)

where the Dirac delta function is defined as the limit of a sequence of functions with in-

creasing value of β. One can easily prove that for any wavefunction f(z) (or a product of

wavefunctions) we have

lim
β→∞

 R′+

R

h2(z)f(z) dz = f(R′). (3.16)

There is however an issue about localizing the whole Higgs sector towards the brane since

we just showed that only quadratic Higgs operators will “become” brane localizers. When a

1Moreover the masses of the heavier KK Higgs fields depend linearly on the β parameter and so these

fields will decouple from the theory for very large β.
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5D action operator contains more than two (or less than two) Higgs fields, the (successful)

localization of such operators is not guaranteed. In fact in order to ensure that the 5D

bulk Higgs scenario correctly tends smoothly to a fully localized Higgs sector, one should

implement a prescription enforcing a precise β dependence on the coefficients of all operators

containing Higgs fields. More precisely, the coefficient Y N(β) of an operator containing N

Higgs fields (before electroweak symmetry breaking) should behave as

Y N(β) = Y N
1 × β

2−N
2 , (3.17)

where Y N
1 = Y N(1). This is the only way to ensure that we can have

lim
β→∞

 R′+

R

Y N(β) hN(z)f(z) dz = lim
β→∞

 R′+

R

Y N
1 β

2−N
2 hN(z)f(z) dz = Y N

1 f(R′), (3.18)

or in other words

lim
β→∞

Y N(β) hN(z) = Y N
1 δ(z −R′). (3.19)

In particular for 5D Yukawa type couplings this prescription implies that the 5D Yukawa

coupling will have to carry a
√
β dependence in order to ensure that the brane limit Yukawa

coupling is non-vanishing [82] (see also [80]). But it also means that any other 5D action

operator containing a single Higgs field would need to carry the same
√
β dependence. On

the other hand, 5D action operators containing 3 Higgs fields (like the operator H2HQU)

would have a diverging limit for β large unless its action coefficient Y 3(β) is itself suppressed

by 1/
√
β.

The previous prescription makes it technically possible to define a localized Higgs sector from

a 5D bulk Higgs field, but it certainly seems quite contrived to appropriately fix all operator

coefficients such that they all can give non-zero and finite contributions when the Higgs is

localized. A brane localized Higgs sector could seem “un-generic” or “un-natural” if it is to

be seen as a limiting case of a bulk Higgs. More details about the complete prescription for

operators containing Higgs fields are presented in Appendix B.

3.3 Higgs phenomenology: all KK fermions

For completeness and consistency, we present first a result previously obtained in [80], namely

the computation of the shift between the light SM fermion mass term and its Yukawa coupling

with the Higgs field (leading to Higgs mediated FCNC when more than one fermion family
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is considered). We then calculate the coupling between the physical Higgs and two gluons

for the 5D bulk Higgs case.2

We can follow two routes to obtain our predictions. The computation of the flavor violat-

ing couplings of the Higgs scalar with fermions will be obtained in an approach based on

considering first electroweak symmetry breaking and then solving the 5D equations of mo-

tion for the fermions (i.e. the effect of the Higgs VEV is directly taken into account in the

equations of motion and during the dimensional reduction procedure). The alternative (and

equivalent) approach would be to consider first the dimensional reduction (i.e. obtain the 4D

effective theory in the gauge basis), and then consider the electroweak symmetry breaking in

the presence of the infinite tower of KK fermions. After performing the diagonalization of

the infinite fermion mass matrix (as well as canonical normalization of the fermion kinetic

terms) we should recover the same results. We use the first approach in the first subsection,

and the second approach in the computation of the Higgs coupling to gluons and also in the

following sections where we will truncate the infinite mass matrix in order to consider only

the effect of the first few KK modes.

3.3.1 Higgs Flavor violating couplings

After imposing electroweak symmetry breaking in the Higgs sector, the four profiles qL,R(z)

and uL,R(z) introduced in eqs. (3.3) to (3.6) must obey the coupled equations coming from

the equations of motion:

−mu qL − q′R +
cq + 2

z
qR +


R

z


vβ(z)Yu uR = 0, (3.20)

−m∗
u qR + q′L +

cq − 2

z
qL +


R

z


vβ(z)Yu uL = 0, (3.21)

−mu uL − u′R +
cu + 2

z
uR +


R

z


vβ(z)Y

∗
u qR = 0, (3.22)

−m∗
u uR + u′L +

cu − 2

z
uL +


R

z


vβ(z)Y

∗
u qL = 0, (3.23)

where the ′ denotes derivative with respect to the extra coordinate z and Yu is 5D Yukawa

coupling.

2We follow very closely the general procedure outlined in [77] and explicitly compute the prediction for

the bulk Higgs case and then compare it with the brane localized Higgs limit that was presented there. For

the sake of simplicity here we assume the matter fields belong to the usual SM gauge group.
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It is simple to deduce from these equations an exact expression for the mass eigenvalue mu

in terms of the fermion profiles [80]

mu = R4

 R′

R

dz


mu

z4
(|uL|2 + |qR|2) +

Rvβ(z)

z5
(YuuRq

∗
L−Y ∗

u qRu
∗
L)


, (3.24)

and compare it to the expression of the fermion Yukawa coupling, i.e

yu4 = R5

 R′

R

dz
hβ(z)

z5
(YuuRq

∗
L + Y ∗

u qRu
∗
L), (3.25)

where hβ(z) is the profile of the physical Higgs field.

With these two expressions we compute the shift (or misalignment) between the fermion

mass mu and the Yukawa coupling yu4 as

∆u = mu − v4 y
u
4 , (3.26)

which becomes simply

∆u = R4

 R′

R

dz


mu

z4
(|uL|2 + |qR|2)− 2Y ∗

u

Rvβ(z)

z5
qRu

∗
L


. (3.27)

In order to proceed further, a perturbative approach is used, such that we assume that

(Ỹuv4R
′) ≪ 1 where v4 is the SM Higgs VEV. Knowing the analytical form of the VEV

profile vβ(z) and using the (Ỹuv4R
′) small parameter it is possible to solve perturbatively the

system of coupled equations (Eq. 3.20) to (Eq. 3.23) to any order in (Ỹuv4R
′) (see [80] for

details). The result for the shift in the top quark Yukawa coupling is

∆t
1

mv4
=

2m2
t

v4
R′2 2 + cu − cq + β

(1− 2cq)(1 + 2cu)


1

6 + cu − cq + 3β
− 1

5 + 2cu + 2β

− 1

5− 2cq + 2β
+

1

4 + cu − cq + β


, (3.28)

where we have only included the contribution from the third term in eq. (3.27), as the other

terms are subdominant for light quarks, although not necesarily for the top quark. For

clarity we omit their analytical expression here, but the complete analytical result can be

found in [80] and in the Appendix A of this work. The shift in the Yukawa coupling has

some dependence on the Higgs localization parameter β and it is shown in Figure 3.1 as the

“infinite sum” result, as the procedure we followed is equivalent to diagonalizing the infinite

fermion mass matrix in the gauge eigenbasis.
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Figure 3.1: The shift in the top quark Yukawa coupling as a function of the bulk Higgs

localization parameter β. Each line represents an effective theory containing the given amount

of KK fermions. The lower line (blue) represents the contribution from the infinite tower

of KK modes. Apart from the direct phenomenological impact of this result, this term also

affects the hgg coupling, as discussed in the text. The dimensionless 5D Yukawa couplings

are fixed at Ỹ = 2 and the KK scale is set at
1

R′ = 1000 GeV (the overall effect scales as

Ỹ 2v2R′2).

3.3.2 Higgs production

In this section we follow the approach of working with the infinite fermion KK modes with

wavefunctions in the gauge basis. This is not the physical basis after electroweak symmetry

breaking since Yukawa couplings will introduce off-diagonal terms in the infinite fermion mass

matrix, which should be properly diagonalized in order to obtain the physical basis.

Since the Higgs field is not charged under QCD the main contribution to its coupling to

gluons comes from a top quark loop, as shown in Figure 3.2; if the model contains many

heavy quarks the resulting cross section for the process is gg → h is [83]

σSMgg→h =
αsm

2
h

576π


Q

yQ
mQ

A1/2(τQ)


2

δ(ŝ−m2
h), (3.29)

with τQ ≡ m2
h/4m

2
Q, ŝ being the gg invariant mass squared and Q representing the physical

fermions with physical Yukawa couplings YQ and masses mQ. The form factor is given
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h

gµ

gν

Qi

Figure 3.2: Loop diagram showing the contribution of the quark Qi to the Higgs-gluon-gluon

coupling. In the SM, the dominant contribution is through the top quark due to its large

Yukawa coupling with the Higgs boson. In RS the heavier KK fermions contribute to the

coupling with potentially large effects, either suppressing or enhancing the SM coupling,

depending on the phases present in the different Yukawa-type operators present in the 5D

action, and on the localization of the Higgs (see text for details).

by

A1/2(τ) =
3

2
[τ + (τ − 1)f(τ)]τ−2, (3.30)

with

f(τ) =

[arcsin
√
τ ]2 τ ≤ 0

−1
4


ln


1+
√
1−τ−1

1−
√
1−τ−1


− iπ

2
τ > 1.

(3.31)

Here we want to figure out the contribution to the hgg coupling coming from 5D quark

doublets and a singlets, i.e. containing the SM quarks (which includes doublets and singlets

(qL, uR)), along with the associated towers of vector-like KK fermions, (QL, UR). The relevant

quantity to calculate is

chgg =

Q

yQ
mQ

A1/2(τQ), (3.32)

where yQ is the physical Yukawa coupling of the physical Dirac fermion Q and mQ is its

mass. As stated before, it will prove useful to work in the gauge basis, and so we represent

the Yukawa couplings between the KK fermions QL(x) and UR(x) in the gauge basis as

YQLUR
. Its values will be obtained by performing the overlap integral of the Higgs profile and

the corresponding bulk fermionic wave functions, i.e.

Y u
QLUR

= Y u

 R′

R

dz


R

z

5
vβ(z)

v4
Q
u(i)
L (z)U

(k)
R (z), (3.33)
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where we have assumed that the nontrivial Higgs VEV and the physical Higgs profile are

perfectly aligned3. The Yukawa couplings between different chirality KK fermions and also

between zero modes and heavy KK fermions are obtained and written in a similar way so

that we can write the infinite dimensional fermion mass matrix as


q̄
u(0)
L Q̄

u(i)
L Ū

(j)
L


Y u
qLuR

v4 0 Y u
qLUR

v4

Y u
QLuR

v4 MQ Y u
QLUR

v4

0 Y u∗
ULQR

v4 MU



u
(0)
R

Q
u(k)
R

U
(l)
R

 , (3.34)

where MQ = diag(MQ1 ,MQ2 , ...) and MU = diag(MU1 ,MU2 , ...) are the KK mass matrices for

the corresponding fermion fields in the gauge basis, and we have suppressed fermion family

indices to simplify notation. From eqs. (3.30) and (3.31), we notice that in eq. (3.29) the

form factors, A1/2 ≈ 0 for light fermions, and A1/2 ≈ 1 for the much heavier KK modes and

the top quark. Therefore, separating the contribution of the light fermions from the heavy

ones we write

chgg =

light

yQ
mQ

A1/2(τQ) +

heavy

YQ
MQ

, (3.35)

where in the first (second) term the sum is only over light (heavy) fermion generations.

Noting that 
heavy

YQ
MQ

+

light

yQ
mQ

= Tr(YM−1), (3.36)

where M is the fermion mass matrix given in (3.34), while Y is the Yukawa matrix, we

have

chgg = Tr(YM−1) +

light

yQ
mQ

(A1/2(τQ)− 1). (3.37)

We also note that Y = ∂M
∂v4

and since the trace is invariant under unitary transformations,

we can compute it in the gauge basis (so we can use the fermion mass matrix in that basis).

Up to first order in v4 one finds

Tr(YM−1) =
∂ln Det(M)

∂v4
≈ 1

v4
− v4


i,j

2

MQi
MUj


Y u
QLiURj

Y u∗
ULjQRi

−
Y u
qLURj

Y u∗
ULjQRi

Y u
QLiuR

Y u
qLuR


.

(3.38)

3We address the case where hβ(z) ̸= vβ(z)/v4 in Section 3.6.



CHAPTER 3. HIGGS PHENOMENOLOGY FROM BULK TO BRANE 42

Noting that the SM masses and Yukawa couplings are also modified (shifted) as [80]

yQ
mQ


light

≈ 1

v4


1 + 2

v4
2

Y u
qLuR


i,j

Y u
qLURj

Y u∗
ULjQRi

Y u
QLiuR

MQi
MUj


, (3.39)

we can write the total hgg coupling as

chgg = −2v4

i,j

Y u
QLiURj

Y u∗
ULjQRi

MQi
MUj

+
yQ
mQ


light

A1/2(τQlight
). (3.40)

where we have used equations (3.37), (3.38) and (3.39). As we mentioned before, the form

factor is negligible for the light fermion generations. Therefore neglecting the last term above,

and using (3.33) we have

chgg = −2v4Y
uY u∗R


i,j


dzdz′


R

z

5
R

z′

5
Q

(i)
L (z)Q

(i)
R (z′)

MQi

U
(j)
R (z)U

(j)
L (z′)

MUj

hβ(z)h(z
′), (3.41)

where the 5D bulk physical Higgs profiles can be normalized as [81]

hβ(z) =


2(1 + β)

R3(1− ϵ2+2β)
R′
 z
R′

2+β
, (3.42)

with ϵ ≡ R/R′ ∼ 10−15 being the warp factor. The sums in eq. (3.40) are given by [77]

∞
i=1

Q
(i)
L (z)Q

(i)
R (z′)

MQi

= −z
′2+cqz2−cq

R4


θ(z′ − z)− (z′/R)1−2cq − 1

ϵ2cq−1 − 1


, (3.43)

and
∞
j=1

U
(j)
R (z)U

(j)
L (z′)

MUj

=
z2+cuz′2−cu

R4


θ(z′ − z)− (z′/R)1+2cu − 1

ϵ−2cu−1 − 1


. (3.44)

Substitution of these sums and of the Higgs profile in Eq. (3.41) and assuming 4 β ≥ 2 will

finally give the total Higgs coupling for the light fermions which is given in Appendix A. If we

assume that cq > 1/2 and cu < −1/2, which is the case for light fermions (up-like fermion),

the expression for chgg can be simplified as

cUphgg ≈ v4Y
uY u∗R′2 2(1 + β)

(2 + β + cq − cu)

1

4 + 2β
. (3.45)

In the case of the top quark, we have to add the contribution due to the last term in

Eq. (3.40), since A1/2(τtop) ∼ 1. Following the notation in [80], we write the additional

contribution as

yQ
mQ


light

A1/2(τQlight
) +

∆top
2

mtv4
, (3.46)

4For a completely flat bulk Higgs, β = 2. For any physically acceptable model β > 2.
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where the first term is given by eq. (3.39) multiplied by the form factor, A1/2 and last term,

is the result of kinetic term corrections due to the shift in Yukawa couplings, which are also

not negligible for the heavy fermions. The shift is given by

∆top
2 = R4

 R′

R

dz
mt

z4
(|uL|2 + |qR|2)


. (3.47)

For a complete discussion on this, we refer the reader to [80].

So finally for IR localized fermions with cq < 1/2 and cu > −1/2 (top-like) we have

cTophgg ≈ yQ
mQ


light

A1/2(τQlight
) +

∆top
2

mtv4

−v4Y uY u∗R′2

− 1

4 + 2β
+

1

2β + 5− 2cq
+

1

2β + 5 + 2cu
− 1

β + 4− cq + cu


. (3.48)

Following our ansatz for localizing the Higgs sector, and in order to compare with previous

brane Higgs results, we need to replace the 5D Yukawa couplings with the dimensionless and

β-independent couplings

Ỹ =


2(1 + β)

(2− cq + cu + β)
Y 5D. (3.49)

The results obtained in this section, of the contribution of a 5D top-like quark and a 5D

up-like quark to the hgg coupling are shown in both panels of Figure 3.3 as the “infinite

sum” result.

3.4 Higgs phenomenology: individual KK modes

In this section we take a different approach and compute the effects on Higgs phenomenology

(FCNC and production cross section) due to only the first few KK fermions in the model.

That is, we consider a 4-dimensional effective theory which contains the SM matter content,

augmented by a few levels of KK fields. This procedure is better fitted within the framework

we work in (low cut-off effective theories), the drawback being that it is not possible to

obtain general analytical predictions in a close form. Our strategy will be to assign some

generic values to the parameters of the model and perform the computations numerically. In

particular we will fix the bulk mass parameters of the 5D fermions Q and U to be cu = −0.6

and cq = 0.6 (for an up-type quark) and cu = 0 and cq = 0.4 (for a top quark). The value of

the dimensionless 5D Yukawa coupling will be taken to be Ỹ 5D
1 = 2.
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Figure 3.3: Contribution to chgg/c
SM
hgg coming from the KK partners of the “up” quark (left

panel) and from the full top quark sector (right panel) as a function of the bulk Higgs

localization parameter β. Each line represents the numerical result obtained in an effective

theory containing the amount of KK fermions indicated. The upper line (blue) represents

the contribution of the infinite tower of KK modes (computed in the text analytically). The

dimensionless 5D Yukawas are fixed at Ỹ = 2 and the KK scale is set at
1

R′ = 1000 GeV

(the overall effect scales as Ỹ 2v2R′2).

3.4.1 Higgs Flavor violating couplings

In order to evaluate the shift in the Yukawa coupling of the SM fermion (the zero mode) due

to the presence of a finite number of KK fermions, we can simply use Eq. (3.39), with the

understanding that now the sum is finite, and so we shall sum up to the maximum number

of KK modes chosen. We are interested in computing the top quark Yukawa shift as it is

the most interesting for direct phenomenology, and also because it will also enter in the

calculation of the hgg coupling. We perform the sum numerically and stop the summation at

different maximum numbers of KK fermions. The results are shown in Figure 3.1 in which we

focus on the variation of the Yukawa coupling shift with respect to the bulk Higgs localization

parameter β and we compare these to the results obtained in the previous section for the

infinite KK degrees of freedom. The main observation is that for small β, the finite sums are

in good agreement with the infinite sum result. On the other hand for large values of β the

Yukawa shift obtained from the finite sums becomes more and more irrelevant and is clearly

at odds with the infinite sum prediction.
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3.4.2 Higgs production

To evaluate the contribution to the hgg coupling coming from the individual KK fermion

modes we proceed as in the previous subsection. We now use Eq. (3.41), and sum up to

the maximum number of KK modes desired. We perform the sum numerically and show the

results in Figure 3.3. Again we are interested in the variation of the couplings with β and

compare them to the result for the chgg obtained by calculating the infinite sum, as shown in

the previous section.

The two panels of the figure show the contribution to the hgg coupling coming from a 5D

up-like quark (left panel) and the contribution coming from a 5D top-like quark (right panel)

for β values up to 100. We can see how the sums over different maximum number of KK

modes converge to the infinite sum limit as we vary β. The approximation obtained by con-

sidering just a few KK modes is much better for low values of β. For example, from the left

panel of Figure 3.3, for β = 2 → 5, 8 KK modes saturate some 90% of the infinite sum, while

for β = 20, 8 KK modes saturate some 60% of the infinite sum. For β = 100 (corresponding

to a Higgs highly localized towards the brane), 8 KK modes represent only some 10% of the

total KK contribution. This dependence on β is in agreement with the results found in [75],

in which a brane localized Higgs was considered (i.e. β = ∞) and the first few KK fermions

considered were found to give a negligible contribution to the hgg coupling.

We conclude that in all the previous calculations (the top quark Yukawa shift and the contri-

butions to the hgg coupling coming from up-type and top-like 5D quarks) we have observed

the same feature, namely that in the case of a bulk Higgs (small β), the effect of the heavier

KK modes decouples (i.e. performing the infinite sum is equivalent to sum only over the first

few KK modes). On the other hand, when β is very large, the heavier degrees of freedom do

not seem to decouple hinting towards some type of UV sensitivity of the brane Higgs case.

This is not that surprising since the thickness of a Higgs being crushed against the brane is

becoming smaller and smaller, and the scale associated with the Higgs localization eventually

becomes much larger than the cut-off of the scenario. We will now see how adding a type

of higher derivative operators will be sufficient to make the finite sums consistent with the

infinite sum results obtained earlier.



CHAPTER 3. HIGGS PHENOMENOLOGY FROM BULK TO BRANE 46

3.5 The Effect of Higher Derivative Operators

We have just seen how the results obtained in the previous section (3.4), where we sum

over a few KK modes agree with the complete KK tower summation of section 3.3 only in

the case of a bulk Higgs boson. When the Higgs is on the brane, or very much pushed

towards the brane, the results for the two approaches do not seem to agree (see Figure 3.3

when β → 100). We will reconcile the two methods by including, in the effective theory

calculation, the contribution of higher derivative operators.

In particular we consider the effect of the following operator in the action with a dimensionful

coupling constant YR (flavor indices are suppressed),

S ⊃

d4xdz

√
g

YR ΓMDMQ HΓNDNU + h.c.


. (3.50)

The operator is of Yukawa-type as it couples two fermions with the Higgs, but it involves

derivatives of fields. The coupling YR should be in units of Λ, the cut-off of the theory, and

so obviously this operator is cut-off suppressed (we note that the standard 5D Yukawa Yu

coupling is also dimensionfull and cut-off suppressed, but by two units less than YR). Since

QR(z) and UL(z) satisfy Dirichlet boundary conditions on the IR brane, their derivatives

along the extra dimension can be large after electroweak symmetry breaking and so we focus

on the operator

S ⊃

d4xdz


R

z

3 
YR∂zqRH∂zuL + h.c.


, (3.51)

which includes only the wrong chirality fermion components QR(z) and UL(z) as it could

lead to potentially large effects.

As explained in the previous sections we can proceed in two ways in order to compute the

effects of this operator. We could study the effect of the operator into the 5D equations

of motion after electroweak symmetry breaking (ESB) and calculate its effects from these.

Alternatively, we could solve the equations of motion and perform the dimensional reduction

before ESB, and then consider the effects produced by the operator by working in this gauge

eigenbasis. Both methods should be equivalent, but we will follow the second one. In this

approach, we obtain the effective 4D theory and since it is non-renormalizable, we cut-off its

spectrum at the cut-off scale thus effectively we only allow a few physical KK modes into

the calculation. The effects from higher modes are integrated out and encoded in all higher

order operators of the theory with their effects under control by the cut-off suppression. In
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Figure 3.4: Contribution to the coupling |chgg| (relative to the Standard Model) as a function

of the Higgs localization parameter β when considering only a five-dimensional up-type quark,

and computed with the higher derivative term discussed in the text in addition to the standard

5D Yukawa coupling term. Since both contributions have independent phases we add and

subtract their generic size to obtain the shaded region of possible values. These results are

calculated by using only the first 3 KK modes (i.e. considering an effective theory with a

cut-off of the order the the fourth KK mass). The dimensionless 5D Yukawas are fixed at

Ỹ = 2 and the KK scale is set at
1

R′ = 1000 GeV (the overall effect scales as Ỹ 2v2R′2).

the case of the YR operator the potentially large derivatives of QR(z) and UL(z) can offset

the cut-off suppression and so we should keep this operator in the calculations.

In the approach in which the KK modes are in the gauge basis, the YR operator will affect

the fermion mass matrix from eq. (3.34), and in particular it will contribute to the Y u
ULQR

terms. Its effects can therefore be tracked into the effects of these wrong chirality terms, as

was already noted in the appendix of [80]. We can thus formally treat the situation as before,

where a truncated version of the infinite mass matrix of eq. (3.34) is considered (with just a

few KK levels), but now we redefine the terms Y u
ULQR

to include the contributions from YR

as

Y u
ULQR

=

 R′

R

dz


R

z

5
vβ(z)

v4


Y uUL(z)QR(z) + Y u

R

z2

R2
∂zUL(z)∂zQR(z)


. (3.52)

It is now easy to compute numerically the new effects since from here we just have to repeat
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Figure 3.5: Shift of the top quark Yukawa coupling (left) and contribution to the coupling chgg

(right), relative to the Standard Model, as a function of the Higgs localization parameter β,

when considering only a five-dimensional KK top quark, and including in the computation

the higher derivative term discussed in the text, in addition to the standard 5D Yukawa

coupling term. The contributions from each term have independent phases and so we add

and subtract their absolute value to obtain the shaded region of possible values. These results

are calculated by using only the first 3 KK modes (i.e. considering an effective theory with

a cut-off of the order the the fourth KK mass). The values of the 5D Yukawa Y u and of YR

are fixed at Ỹ = 2 and the KK scale is set at 1
R′ = 1000 GeV (the overall effect scales as

Ỹ 2v2R′2).

the previous procedure. The results are shown in Figures 3.4 and 3.5. In both figures we

show the individual contributions coming from the normal Yukawa coupling Y u, from the

new Y u
R coupling, as well as the combined effect. This combined effect is represented by the

shaded region, the reason being that the two types of couplings Y u and Y u
R have independent

phases and so can add up constructively or destructively, or in between. In Figure 3.4 we

focus on the contribution to hgg due to an up-like 5D quark. In Figure 3.5 we show the

predictions for the both shift in the SM top quark Yukawa coupling as well as the prediction

for the contribution to the hgg coupling coming from a 5D top-like quark. As we can see,

the shift in the top quark Yukawa coupling can be quite large, and for low values of the

Higgs localization parameter β the shift obtained always results in a suppression in the

Yukawa coupling. For large values of β the shift can be in either direction (suppression or

enhancement). In the case of the hgg coupling, we see that the contribution represents an
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enhancement with respect to the SM prediction for small values of β, and again for large

values of β the chgg coupling can be either enhanced or suppressed depending on the relative

phases between YR and Y u. For this comparison we have taken the absolute value of both

couplings YR and Y u to be the same, i.e. Ỹ = 2, in appropriate units of the cutoff. The main

feature to remember is that the effects of the higher derivative operator YR are subdominant

for small β but become dominant for large β. The large contribution obtained at large β

is precisely what makes these new predictions consistent with the results obtained with the

original infinite sum, and so the higher derivative operators that we have considered here

somewhat encode the UV sensitivity found in the previous section.

3.6 Misalignment between Higgs VEV and Higgs pro-

file

In this section we present a discussion on how to treat the case where the Higgs profile is

different form its VEV profile. This is equivalent to consider the mixing effects between the

massless zero mode Higgs boson, and the heavy KK Higgs modes and its effects on the Higgs

observables computed in this chapter.

We follow closely an argument by Azatov [84] and for simplicity we will discuss a simple

situation in which the 4D effective theory contains only two new heavy vector-like fermions,

Q and U , doublet and singlet of SU(2)L respectively. This is the situation one would have

when the KK fermion towers are truncated after the first KK excitation.

Let’s first define our notation for the following quantities

Y β
ij ≡


dz


R

z

5

ψi ψj
vβ(z)

v4

Xβ
ij ≡


dz


R

z

5

ψi ψj hβ(z), (3.53)

where v4 is the SM Higgs VEV and vβ(z), hβ(z) are the 5D profiles of the Higgs VEV and

the Higgs physical field, which are generically different. That is, after EWSB, the Higgs field

is expanded around the nontrivial VEV vβ(z) as

H(x, z) = vβ(z) + h(x)hβ(z) + ... . (3.54)

In the case of the bulk Higgs sector considered here, both profiles vβ(z), hβ(z) are almost
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the same, (see eq. (3.14)), the order of the misalignment between them being controlled by

powers of (mhR
′)2 (a small quantity).

We consider all the possible couplings between the Higgs and the fermions of the effective

theory which after EWSB can be written as the matrix M(v4, h) as


q̄L, Q̄L, ŪL


Y β
qLuR

v4 +Xβ
qLuR

h(x) 0 Y β
qLUR

v4 +Xβ
qLUR

h(x)

Y β
QLuR

v4 +Xβ
QLuR

h(x) MQ Y β
QLUR

v4 +Xβ
QLUR

h(x)

0 Y β
ULQR

v4 +Xβ
ULQR

h(x) MU



uR

QR

UR

,
(3.55)

The coupling between the physical Higgs and the two gluons is controlled by the physical

Yukawa couplings Y phys
i and masses Mphys

i of the heavier physical fermions running in the

loop (top quark and KK modes), i.e.
heavy

Y phys
i

Mphys
i

= Tr(YphysM
−1
phys)−


light

yi
mi

, (3.56)

where Yphys is the physical Yukawa coupling and Mphys is the physical fermion mass matrix

of the setup. Because the trace is invariant under unitary transformations, we can rotate to

the gauge basis and write

Tr(YphysM
−1
phys) = Tr(YgaugeM

−1
gauge), (3.57)

and note that we can now relate this to the matrix M(v4, h) as

Tr(YgaugeM
−1
gauge) = ∂h log(DetM(v4, h))|h=0. (3.58)

The procedure is the same as was followed in Section 3.3, i.e. we compute the the determinant

by expanding in powers of v2/M2
i and after combining everything we obtain

heavy

Y phys
i

Mphys
i

= ∂h logDetM(v4, h)−
ylight

mlight

= v4


−
Xβ
QLUR

Y β
ULQR

MQMU

−
Xβ
ULQR

Y β
QLUR

MQMU


. (3.59)

This result is the equivalent to eq. (3.40) with the effect of the misalignment between vβ(z)

and hβ(z). One sees that the difference lies in the substitution of one of the Y terms by an

X term, and so the correction to the result of eq. (3.40) is

δchgg = v4

−


Xβ
QLUR

− Y β
QLUR


Y β
ULQR

MQMU

−


Xβ
ULQR

− Y β
ULQR


Y β
QLUR

MQMU

 , (3.60)
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which is controlled by
Xβ
ULQR

− Y β
ULQR


=


dz


R

z

5

UL(z)QR(z)


hβ(z)−

vβ(z)

v4


, (3.61)

and 
Xβ
QLUR

− Y β
QLUR


=


dz


R

z

5

QL(z)UR(z)


hβ(z)−

vβ(z)

v4


, (3.62)

and since the misalignment between vβ(z) and hβ(z) can be computed perturbatively [80]

as

hβ(z)−
vβ(z)

v4
=
vβ(z)

v4


m2
hR

′2

2(4 + β)
+

m2
hz

2

4(1 + β)
+O(m4

hR
′4)


, (3.63)

we obtain
Xβ
ULQR

− Y β
ULQR


= m2

hR
′2


Y β
ULQR

2(4 + β)
+

Y β+2
ULQR

4


(1 + β)(3 + β)


+O(m4

hR
′4). (3.64)

In other words, the effect of considering the misalignment between vβ(z) and hβ(z) is to

add a correction with the same structure as the result of eq. (3.40), but with a suppression

of (mhR
′)2, i.e. the correction is at most O(1%), and becomes much smaller for increasing

values of β.5

3.7 Discussion and Outlook

In this chapter we have presented the results for the predictions of Higgs phenomenology in

a toy-model RS setup in which the Higgs field is allowed to propagate in the bulk and with

a single 5D fermion field. Our results can be extended to three families to include full flavor

effects, but the generic predictions that we would obtain are expected to be basically the

same as the ones presented in [80, 77]. That is, that in the context of flavor anarchy, where

the action parameters are all of the same order but with more or less random values and

phases (with the constraint of obtaining correct SM predictions) the couplings of the Higgs

with fermions and gluons and photons can receive important corrections, either enhancing or

suppressing the SM predictions. However, the two references mentioned present calculations

performed by including the effect of all the KK fermions, technically assuming an infinite

5The dependence on β of the integrals Y β
ULQR

and Y β
QLUR

is quite mild and so, in terms of order of

magnitude, we have Y β
ULQR

∼ Y β+2
ULQR

.
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cut-off for the model (where a brane Higgs is considered). In general, all these scenarios break

down at a low cut-off, becoming strongly coupled for both gauge and Yukawa interactions.

The implicit assumption made in [80, 77] was that the effects of the heavier modes should

decouple quickly, at least for the case of a bulk Higgs field. The main motivation to perform

the calculations by considering the full infinite fermion KK tower, as well as pushing the Higgs

into the brane was mainly of technical nature. Indeed both the flavor structure of the Higgs

Yukawa couplings as well as the coupling to gluons and photons can be computed analytically

with those ingredients. In [80], the authors checked analytically that the corrections to

the Higgs Yukawa couplings were actually of the same order for a bulk Higgs and a brane

Higgs.

However it was pointed out in [78, 53, 79] that in the brane Higgs case, the effects of the

heavier KK fermion modes do not decouple and that they all contribute evenly in the compu-

tation of the Higgs couplings in the model. On the other hand, we showed in sections 3.3 and

3.4 of this chapter that the heavier KK modes in the case of a bulk Higgs do decouple very

quickly, so that the analytical result obtained by using the infinite KK tower approaches with

great precision the numerical result obtained by considering an effective theory with only a

few KK fermion modes. Moreover, when considering the effective theory with only a few KK

modes, one should include in the action all possible operators and in particular the higher

derivative ones introduced in Section 3.5. These effects were omitted in [78, 53, 79], and as

we showed in this work, the importance of these operators increases as the Higgs is more

and more localized towards the brane. In [75], the authors considered an RS setup with a

highly localized Higgs and the presence of only a few KK fermions and studied the effects on

the Higgs couplings to gluons and photons, among other observables. In the limit of the SM

gauge group (they did consider an extended gauge group) they found no significant deviations

from the SM predictions. Indeed this result is consistent with our findings of Section 3.4 (no

higher derivative operators invoked yet), since as it can be seen on Figures 3.5 and 3.4, the

shift in Higgs Yukawa couplings and the new effects to Higgs-gluon-gluon coupling vanish in

the limit of highly localized Higgs (large β parameter). On the other hand, in [78, 53, 79] it

is claimed that large effects should be present in the case of a brane Higgs and with only a

few KK modes present in the effective theory (and no higher derivative operators), a result

inconsistent with both our findings and those found in [75]. We can trace the origin of the dis-

agreement in their calculation of the Higgs Yukawa couplings. Those are computed by using

the full 5D equations of motion, which as we have said earlier is equivalent to considering the

complete tower of KK modes. Then, using these couplings, they calculate the hgg radiative
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coupling but now including only a finite amount of KK fermions. This treatment leads to a

highly suppressed top quark Yukawa coupling (due to effects from the infinite KK tower) and

a vanishing contribution to hgg from the loops of KK fermions considered (one would need

the whole tower to obtain a finite effect). Their end result is a suppressed top quark Yukawa

coupling and a suppressed hgg coupling (due to the smaller top quark Yukawa), predictions

which are at odds with the findings of [75, 77] and of this chapter.

The procedure of [78, 53, 79] seems inconsistent because essentially the authors use infinite

KK degrees of freedom in one part of their calculation (the SM quark Yukawa couplings

computation via equations of motion) but then they truncate the KK degrees of freedom in

order to compute the hgg coupling. In any case, had they included the higher derivative

operators introduced in this chapter, their results would have changed dramatically since

then, the effect to hgg coming from the top quark Yukawa loop would remain basically the

same, but the effects due to loops of a few KK fermions would dominate the overall effect

(and thus the result would start to become consistent with the findings of [77]).

Also, the predictions of [75] should change if one considers the effects of the higher derivative

operators introduced in Section 3.5. In that situation, the Higgs couplings can receive large

corrections, and can be of any sign (suppression or enhancement) due to the different phases

present in the couplings Y and YR. In fact we have found here that for a Higgs field in the

bulk, our results are more predictive than for a brane Higgs field, because the effect of the

higher derivativer operators is subdominant for a bulk Higgs field.6 The effects from only the

5D Yukawa operators are aligned [80], and thus all the KK quarks add up in phase. In that

situation we can have definite predictions for the effects caused by a single family of fermions,

i.e. it will produce a suppression in the light quark Yukawa coupling and an enhancement in

Higgs boson production (as well as suppression in the Higgs to photons coupling) [77], with

the caveat of taking the dimensionless couplings of both Yukawa terms and higher derivative

operators to be the same (consistent with the usual assumption that all 5D coefficients have

to be of the same order). Taking into account the three fermion families in conjunction

with a bulk Higgs field might weaken this prediction due to complicated flavor mixings and

structure, but still one should be able to draw a correlation between Yukawa couplings and

Higgs production (and h → γγ) for the case of a bulk Higgs field. The parameter space of

6Again, the reason for this is that the value of the derivatives of the bulk fermions is suppressed by the

higher value of the 5D cutoff. When the Higgs boson is pushed towards the brane, the derivatives of these

fermions fields (with the “wrong” chirality) becomes larger and larger, and the 5D cutoff does not suppress

anymore the effect of these operators.
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the bulk Higgs scenario can therefore be under a tighter pressure as more and more precise

experimental measurements in Higgs observables at the LHC become available. In particular

if the predicted and correlated deviations of Higgs couplings is not clearly observed this

should put bounds on the KK scale of the bulk Higgs scenario.

The situation for a Higgs on the brane is different. The higher order derivative terms are now

important. Each KK tower of light quarks and the top will contribute to the hgg coupling,

but their effect depends on arbitrary relative phases (between YR and Y5d), and so one cannot

make a firm statement about the magnitude and phase of the overall contribution: it can be

a suppression or an enhancement, or in between.

Finally we comment again on the apparent problem of a highly localized Higgs scenario (brane

Higgs) in which predictions made from a truncated fermion KK tower are very different

from predictions made from an infinite fermion KK tower. This apparent UV-sensitivity

can actually be lifted by considering the higher derivative operators described here (first

introduced in [80]). When these are included, the predictions made with a finite KK fermion

tower become consistent with the original predictions obtained with an infinite fermion tower.

A more esthetic problem with the brane Higgs scenario remains, since the definition of the

Higgs operators seems highly unnatural, if one understands a brane Higgs field as a limit of a

bulk Higgs field. All operators involving Higgs fields will have to have a precise and definite

dependence on β (a large number), which seems quite contrived, specially in a framewrok

in which no big numerical hierarchies should arise from fundamental 5D coefficients. In any

case, with the ansatz outlined in the text and reviewed in Appendix B, one can still work

consistently with a brane Higgs field as a limit case of a bulk Higgs field.



Chapter 4

Higgs Phenomenology In Modified

AdS5 Geometries

4.1 Introduction

While the recent discovery of a Standard Model (SM)-like Higgs boson at the LHC completes

the particle spectrum of the Standard Model (SM), from the theoretical standpoint, the SM

still seems incomplete. Among other things, no explanation is offered for the hierarchy

puzzles, one of which concerns the large mass gap between the electroweak scale (Mew ∼ 200

GeV) and the Planck scale (MPl ∼ 1018 GeV). Another hierarchy is the one in the observed

masses of the fermions, from the very light neutrinos (mν ∼ 5 × 10−2 eV) to the top quark

(mt ∼ 175 GeV). A popular modification to the SM that tries to address these issues is

to modify the space-time symmetries by extending the number of space dimensions. If the

additional dimension, extending between two branes, one at the TeV scale (IR brane) and

the other at Planck scale (UV brane), with gravity propagating in the bulk, is warped, the

resulting geometry generates naturally the Planck-electroweak scale hierarchy, with a large

MPl generated from a small length of the extra dimension [32, 33]. While in the original

Randall-Sundrum (RS) model the SM fields were located on the IR brane, it was later shown

that if one lets the SM fields - except for the Higgs - to propagate in the bulk of the fifth

dimension, fermion masses can be naturally hierarchical, with masses determined by their

localization with respect to the two branes: the lighter fermions are localized near the Planck

brane, while the heavier ones are localized near the TeV brane. The mass is determined by

the overlap integrals with the TeV localized Higgs profile. This new framework was able

55
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to address issues of the original RS model associated with flavor-changing neutral currents

(FCNC), proton decay and neutrino masses [34, 35, 85, 36, 86, 87].

However, generic models with warped extra dimensions are still very constrained by elec-

troweak and flavor precision tests [88, 89, 90, 91, 92, 60] so that the scale of the lightest KK

modes should be set to O(10 TeV) or more. Various methods can be implemented to avoid

some of these tensions. To reduce pressure from electroweak precision tests, one can enlarge

the gauge symmetry of the SM by introducing a custodial symmetry that limits the correc-

tions to various precision observables[93, 92]. Even with custodial protection, very strong

flavor constraints (specifically coming from K0 − K̄0 mixing) must still be addressed [47];

in the absence of any flavor symmetry1 it was noted that when the Higgs is allowed to leak

out of the TeV brane and its 5D Yukawa couplings enhanced, there is a general reduction of

flavor bounds, but still keeping the KK masses at some 3− 5 TeV or more [71].

Another interesting alternative to address tensions from precision electroweak and flavor tests

is to modify the space-time metric, so that close to the TeV brane, the background deviates

from pure five-dimensional anti-de Sitter space (AdS5). This modification suppresses large

corrections to the electroweak and flavor observables and makes it possible to reduce the

constraints to MKK >∼ 1 TeV, without the need to invoke custodial symmetry [94, 63, 65,

95, 64, 66, 96, 97]. A comprehensive analysis of the implications of these models at the

LHC, analyzing the production of both electroweak and strong KK gauge bosons, has been

performed in [98].

However, it has also been pointed out that a new source of potential tension in AdS5 scenarios

can arise from the Higgs sector itself [99, 77]. The towers of fermion KK modes can affect sig-

nificantly the Higgs boson production rate by either enhancing or suppressing the Standard

Model prediction. The predicted suppression or enhancement depends on the model param-

eters considered, such as the nature of the Higgs (bulk or brane localized), or the phases

of the Yukawa operators and other higher dimensional operators [77, 1]2. It is interesting

to note that in the case of a bulk Higgs the importance of higher dimensional operators is

reduced [100], as well as the effect of the phases in brane localized Yukawa operators. In

that situation, one obtains a more specific prediction for the effects on the Higgs production

rate, namely that there should be a general enhancement with respect to the SM prediction

[77, 1]. In this same scenario of bulk Higgs, the physical Yukawa couplings between Higgs

1See for example [55, 62] for minimal flavor proposals managing to lift importantly the flavor bounds.
2Also cf. Chapter 3.
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and fermions are overall suppressed [80, 1], both effects (enhancement in Higgs production

and suppression in fermion Yukawa couplings), being intimately correlated3.

Motivated by these considerations, we investigate what is the situation for Higgs production

in more general warped models with a modified AdS5 metric. Since some of these models

manage to avoid all precision tests for quite low KK scales (2 TeV) we ask the question of

whether, for such low KK masses, they can also limit the potential enhancements in Higgs

production, present in RS scenarios.

This chapter is organized as follows. In the next section, Sec. 4.2, we present a brief

description of standard RS scenarios and of two more general warped space scenarios. In

Sec. 4.3 we give the results for Higgs production through gluon fusion in the two models

with generalized warped space metrics and compare them with the RS predictions. We then

discuss the decoupling of the heavier modes in Sec. 4.4 and finally we summarize our findings

and conclude in Sec. 4.5. Some explicit formula are left for the Appendix C.

4.2 Soft-wall inspired models

The setup of warped extra-dimensional models consists of a slice of a five-dimensional anti-

de Sitter space AdS5, where the effective 4D scale is dependent of the position of the extra

dimension. In the standard RS formulation, the metric is given by

ds2 = e−2A(y)ηµνdx
µdxν − dy2, with A(y) = ky, (4.1)

where the two branes are localized at y = 0 and y = y1, k ∼ MPl is the curvature scale of

the AdS5, and we are using the mostly positive metric for ηµν . Solving the gauge hierarchy

problem requires that the warping exponent, ky1, to be around ∼ 35, which can be stabilized

with a modest fined-tuning of the parameters [102, 103]. The TeV scale is generated from

M̄Ple
−ky1 , with M̄Pl the reduced 4D Planck scale. The KK excitations of the gauge bosons

contributions to the electroweak precision observables - especially the T parameter - introduce

a lower bound on the masses of these KK excitations of about ∼ 10 TeV, making them

unobservable at LHC.

It was then observed that one way to address this issue was to consider a stabilized solu-

tion to the 5D scalar-gravity system, in which the AdS5 behaviour near the UV brane was

3See [101] for a description of the same effect in the Yukawa couplings from the CFT dual picture.
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maintained, but a deformation of conformality near the IR brane was apparent [94, 63, 65,

95, 64, 66]. These scenarios assume a bulk Higgs and allow for a softening of electroweak

constraints through suppressed couplings of the electroweak KK modes. In turn, this lowers

the bounds on the KK masses, yielding a model within the reach of the LHC in the near

future. Assuming the following superpotential with real arbitrary parameters ν and b

W = 6k(1 + beνφ/
√
6),

the stabilizing scalar field, φ, and the modified metric warp factor, A(y) can be found, and

are given by [104]

φ(y) = −
√
6

ν
log(ν2bk(ys − y)) (4.2)

A(y) = ky +
1

ν2
ln


1− y

ys


, (4.3)

where ys = y1 + ∆ ( ∆ > 0 ) is the position of the singularity imposed by the scalar field,

and is outside of the physical dimension, so the logarithm is always single valued and positive

within the physical distance y = 0 and y = y1. The RS limit is obtained in either of the

limits ν → ∞, or ys → ∞. The curvature radius along the extra dimension is given by

L(y) =
ν2(ys − y)

1− 2ν2/5 + 2ν2k(ys − y) + ν4k2(ys − y)2
. (4.4)

The requirement that the gravitational expansion remains perturbative, yields the following

bound on this radius

kL1 ≡ kL(y1) ≥ 0.2. (4.5)

The bulk 5D Higgs profile along the extra dimension can be given by

h(y) = h0(y)e
aky, h0(y) = α1


1 + α2

 y

0

e4A(y
′)−2aky′dy′


, (4.6)

where a is a parameter that determines the localization of the Higgs profile along the extra

dimension, which holographically can be viewed as the dimension of the Higgs condensate

operator. In order to solve the hierarchy problem (Higgs localized near the IR brane) we

must have a ≥ amin. Following [94, 63, 65, 95, 64] we introduce the following measure

δ ≡
e−2(a−2)kyskys(−2(a− 2)kys)

4
ν2

−1Γ(1− 4

ν2
,−2(a− 2)k(ys − y1))


which is an estimate of the amount of fine tuning needed in order to save the RS solution

to survive the hierarchy problem. To determine amin throughout this chapter we have set



CHAPTER 4. HIGGS PHENOMENOLOGY IN MODIFIED ADS5 GEOMETRIES 59

δ = 0.14 in the above equation and solved for a. The profile h0 in equation (4.6) is given by

the normalization condition  y1

0

dyh(y)2e−2A(y) = 1,

and obtained explicitly as

h0 =

e2(a−1)kys(2(a− 1)kys)

−(1+ 2
ν2

)
Γ


(1 +

2

ν2
), 2(a− 1)k(ys − y1)


− Γ


(1 +

2

ν2
), 2(a− 1)kys)


ys

− 1
2

. (4.7)

The matter action of the SM fields in Dirac spinor notation is given by

Smat =


d5x

√−gLmat =

d5x

√−g(1
2
(iΨ̄ΓMDMΨ− iDMΨ̄ΓMΨ) +MΨ(y)Ψ̄Ψ), (4.8)

where Ψ = (ψL, ψR)
T are the 5D fields and the capital index, M , runs over the five space

time dimensions with the spinor fiber indices being summed over as ΓM ≡ EM
a γ

a, with

γa ≡ (γµ, γ5). The covariant derivative is DM = ∂M + ωM with the spin connection given by

ωM = 1
8
ωMAB[γ

A, γB]. The funfbein and the inverse funfbein are given by

eaM = (e−A(y)δαµ , 1), E
M
a = (eA(y)δµα, 1).

The mass term coefficient, MΨ(y) in general depends on the extra dimension coordinate

and
√−g = e−4A(y). Following the standard ansätz, we decompose the fields into an extra

dimensional profile field and SM 4D fields. The equations of motion of the profiles can be

decoupled and written in the following convenient form

∂y(e
−A−2Q∂y(e

Q−2AψL)) +m2
ne

−Q−AψL = 0, (4.9)

∂y(e
−A+2Q∂y(e

−Q−2AψR)) +m2
ne
Q−AψR = 0, (4.10)

where we defined

Q(y) ≡
 y

0

Mψ(y
′)dy′. (4.11)

We are going to consider two different choices for the above fermion bulk mass, Mψ:

4We obtain, approximately, amin ≃ 2
A(y1)

ky1
, and for a physically acceptable model we usually require

a ≥ 2
A(y1)

ky1
. The δ criterion given above usually corresponds to an amin smaller than this estimation which

in turn leads to some fine tuning of the 5D parameters.
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• Inspired by the standard RS choice QRS
ψ (y) = cψky one can chose a y-dependent bulk

mass proportional to the warp factor A(y). We call this the CGQ scenario [94, 63, 65,

95, 64]

Qψ(y) = cψA(y) (4.12)

• Alternatively one can consider a constant mass, and we denote this choice as the CPS

scenario [66], (see also [96, 97])

Qψ(y) = cψk. (4.13)

As usual, imposing the proper boundary conditions on either left or right handed fields will

ensure the existence of normalized chiral massless zero modes. Their expressions are:

[CGQ]


u0R = f(−cu) e(2+cu)A(y)
q0L = f(cq) e

(2−cq)A(y)
(4.14)

[CPS]


u0R = f(−cu) e(2+cu)ky(1− y

ys
)−

2
ν2

q0L = f(cq) e
(2−cq)ky(1− y

ys
)−

2
ν2

(4.15)

and we have defined5

f(c) ≡

ys

(1− 2c)kys

 1−2c

ν2
−1
e(1−2c)kys ×

Γ


1− 1− 2c

ν2
, (1− 2c)k(ys − y1)


− Γ


1− 1− 2c

ν2
, (1− 2c)kys

− 1
2

(4.16)

for the CGQ scenario. For the case of the CPS scenario one just needs to set c = 0 inside

the gamma functions, and leave everything else as is.

For generic values of ν and ys the eigenvalues and eigenfunctions (masses and profiles) of the

KK fermion modes can be obtained by solving numerically equations (4.9) and (4.10).

It is useful to mention here an intuitive reason behind better lower bounds on the KK modes

in this model. The electroweak relevant oblique parameters, S and T are proportional to the

following dimension 6 operators [65, 93]:

|H †DµH|2, H†WµνHB
µν .

Intuitively, due to the deviations of the metric from AdS5 near the IR brane, and more acute

warping near that brane, all the KK modes, including the gauge boson KK modes, become

5In analogy with the usual RS profiles f(c) ≡


1−2c
1−e(1−2c)ky1

.
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h

gµ

gν

Qi

Figure 4.1: Loop diagram showing the contribution of the quark Qi to the Higgs-gluon-gluon

coupling. In the SM, the dominant contribution is through the top quark due to its large

Yukawa coupling with the Higgs boson. In warped space models the heavier KK fermions

contribute to the coupling with potentially large effects, either suppressing or enhancing the

SM coupling, depending on the phases present in the different Yukawa-type operators present

in the 5D action, and on the localization of the Higgs (see text for details).

more localized near the IR brane. As a result, for a Higgs field that is delocalized sufficiently

from the IR brane, its couplings to these KK modes are suppressed, which results in lower

bounds for the KK mode masses in these models. Obviously, as the Higgs field becomes

more localized near the IR brane, these couplings become large (even larger than in the pure

AdS5 case) and the bounds become worse. Therefore the success of this model is crucially

dependent on the localization of the Higgs field along the 5th dimension.

4.3 Higgs Production through gluon fusion

In this section we solve numerically for the eigenvalues and eigenfunctions of Eqs. (4.9) and

(4.10) with the goal of calculating the Higgs production rate through gluon fusion. (Analytic

solutions are unfortunately not available).

In the SM, the main contribution to the Higgs coupling to gluons comes from a top quark

loop correction. In warped extra dimensional models there are many heavy KK quarks with

important couplings with the Higgs, and thus one needs to add all of their contributions to

the loop (see Figure 4.1), so that the resulting cross section for the process gg → h is

σSMgg→h =
αsm

2
h

576π


Q

yQ
mQ

A1/2(τQ)


2

δ(ŝ−m2
h), (4.17)

with τQ ≡ m2
h/4m

2
Q, ŝ being the gg invariant mass squared and Q representing the physical
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fermions with physical Yukawa couplings YQ and masses mQ. The form factor is given

by

A1/2(τ) =
3

2
[τ + (τ − 1)f(τ)]τ−2, (4.18)

with

f(τ) =

[arcsin
√
τ ]2 τ ≤ 0

−1
4


ln


1+
√
1−τ−1

1−
√
1−τ−1


− iπ

2
τ > 1.

(4.19)

The relevant quantity that we wish to evaluate is the effective coupling

chgg =

Q

yQ
mQ

A1/2(τQ), (4.20)

where yQ is the 4D Yukawa coupling of fermion Q, in the mass eigenbasis, and mQ is its

mass. In the gauge basis (the basis before spontaneous EW symmetry breaking) the Yukawa

couplings are given by the following overlap integral along the fifth dimension,

Y u
QiUk

= Y u

 y1

0

dye−4A(y)h(y)Q
u,(i)
L (y)U

(k)
R (y), (4.21)

and can be written as the following infinite dimensional Yukawa matrix, Y


q0L, Q

i
L, U

j
L


Y u
qLuR

0 Y u
qLU

b
R

Y u
Qi

LuR
0 Y u

Qi
LU

b
R

0 Y u∗
Uj
LQ

a
R

0



u0R

Qa
R

U b
R

 . (4.22)

In the same gauge basis we can also write down the infinite dimensional fermion mass ma-

trix

M =


Y u
qLuR

v4 0 Y u
qLU

b
R
v4

Y u
Qi

LuR
v4 MQ Y u

Qi
LU

b
R
v4

0 Y u∗
Uj
LQ

a
R

v4 MU

 . (4.23)

where v4 = 174 GeV is the Higgs vacuum expectation valued (VEV), and MQ and MU are

the n-dimensional diagonal matrices of the tower of n KK modes mass eigenvalues.

We proceed here by considering an effective field theory with only 3 KK levels, but we refer

the reader to Section IV for a discussion involving the use of the full tower of KK fields.

In our effective approach here, the previous matrices M and Y become 7 × 7 truncated

mass and Yukawa matrices. In order to use Eq. (4.20), we diagonalize numerically the mass
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matrix M above by a bi-unitary transformation. Performing the same transformation on the

Yukawa matrix, Y, one can finally use Eq. (4.20) to calculate the Higgs production cross

section6.

In all our numerical analysis we took k = 1018 GeV fixed, and then tuned all other parameters

in such a way that all of the scenarios yield approximately the same zero mode masses (the

SM quark masses) and the same lightest KK mode mass (≃ 2.1 TeV). While this value for

the lightest KK mass is already dangerously low for RS scenarios, in general warped models

with modified AdS5 metrics (like the CGQ and CPS scenarios considered here), such low

KK masses can be safe from electroweak precision constraints as well as flavor constraints

[94, 63, 65, 95, 64, 66]. The regime in which this happens is such that kL1 ≃ 0.2, and

so we restrict ourselves to that region of parameter space when considering the modified

models.

It is important to note that the zero mode masses are sensitive to the values of the Higgs

localization parameter a through Yukawa couplings

y =
Y 5D

√
k

 y1

0

dye−4A(y)h(y)q0L(y)u
0
R(y). (4.24)

Using equations (4.6), (4.14) and (4.15) the above integral can be evaluated

y = − h0
f(cq)f(cu)

ys((a− cq + cu)(kys))
cu−cq

ν2
−1ekys(a−cq+cu) ×

Γ


(
cq − cu
ν2

+ 1), (a− cq + cu)kys


− Γ


(
cq − cu
ν2

+ 1), (a− cq + cu)k(ys − y1)


.

In order to keep the 5D Yukawa couplings Y 5D fixed for all of these models7 while requiring

the correct SM quark masses, we have to set the values of cq and cu separately for each value

of a, and for each different scenario. On a technical level, to be able to produce a correct top

quark mass we had to set Y 5D
top ≃ 3 in all cases (so that even when we write Y 5D ≃ 1 in the

left panel of Figure 4.2 we are still using Y 5D
top ≃ 3.).

To proceed further we need to include the flavor families of the SM, and to do so we will

consider a simplified version of the SM model, that is, we take a SM− like setup in which the

5D Yukawa couplings are diagonal, and thus we will ignore flavor inter-mixings in our loop

6If flavor families are included, this transformation in general will not diagonalize the full Yukawa matrix

Y leading thus to tree-level Higgs mediated flavor changing currents [101, 80].
7For a fair comparison among scenarios, we maintain the value of Y 5D fixed in all of them, given that

the production cross section is proportional to (Y 5D)2.
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Figure 4.2: Higgs production rate ratio to Standard Model prediction as a function of the

Higgs localization parameter, a. In all scenarios we consider an effective field theory consisting

of a tower of 3 KK modes. The dashed line (blue) corresponds to the RS scenario with bulk

Higgs. The solid and dotted lines correspond to the modified Ads5 scenarios CGQ (ν = 0.5,

kL1 ≃ 0.27) and CPS (ν = 0.5, kL1 ≃ 0.29) and the lightest KK mass is about 2.1 TeV in all

models. The 5D Yukawa coupling is varied between Y 5D ∼ 1 (left panel), Y 5D ∼ 3 (middle

panel) and Y 5D ∼ 6 (right panel). The shaded regions show the experimental bounds from

CMS and ATLAS.

calculation. With this simplifying assumption, it is straightforward to add the contributions

of all the fermions running in the loop. This is of course not a viable scenario of flavor, but

it does illustrate fairly the effects on Higgs production. Thus we consider the presence in

the loop of five light quarks (which have negligible effect) and their associated KK quarks

(which yield the main new contributions), as well as one SM top quark and its associated KK

top quarks (the overall contribution from the top sector is actually very close to the SM top

contribution). This simplified flavor structure for fermions is used in the three scenarios we

consider, i.e. bulk-Higgs-RS, CGQ and CPS, and so we can obtain fair comparisons between

the different predictions for Higgs production cross section generated by each model.

In the case of the CGQ scenario, the fermion bulk mass term isMi = ciA
′(y) (see Eqs. (4.11)
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and (4.12)) and we used the values ν = 0.5, and kL1 ≡ kL(y1) = 0.27 for the curvature

radius as defined in equation (4.4). The δ = 0.1 criterion yields amin ≃ 2.09 and the values

for cq (≃ −cu) are being slightly decreased as a becomes larger in order to keep the Y 5D

constant (as explained above). The CPS case is essentially the same model but with a

constant fermionic bulk mass of Mi = cik (see Eqs. (4.11) and 4.13)). We have again used

the value ν = 0.5, but in order to keep the lightest KK mass fixed at the same value as the

other models we set kL1 ≡ kL(y1) = 0.29 for the curvature radius. The δ = 0.1 criterion

this time yields amin ≃ 2.06. Finally the RS scenario (with a bulk Higgs) is obtained in the

limit ν >> 1 and kL1 → 1. The numerical results obtained in this limit match the results

obtained using the analytical RS formulae [77, 1], providing thus a nontrivial consistency

check of the procedure.

The results are shown in Figure 4.2, in which we plot the ratio of Higgs production cross

section relative to the SM one, as a function of the Higgs localization parameter a for the

three models. The solid and dotted lines correspond to predictions from the CGQ and CPS

models, respectively, while the dashed line represents the prediction of the RS scenario (with

fermions and Higgs in the bulk). For each model, the numerical calculation involves the

contributions from light quarks and 3 KK modes in the loop. The three panels correspond to

different values for the 5D Yukawa coupling: Y 5D ∼ 1 on the left side, Y 5D ∼ 3 in the middle,

and Y 5D ∼ 6 on the right side. The shaded regions represent experimental restrictions on

cross sections from CMS (µ ≡ σ
σSM

= 0.8± 0.22) and ATLAS (µ ≡ σ
σSM

= 1.2± 0.3) results

[25].

From all panels, it is clear that the behaviour of the CGQ and CPS models is very similar. In

particular, both are very sensitive to the Higgs localization parameter a, while the RS model

is much more stable against variations in a. Second, one can see that both modified warped

models alleviate the enhancements in Higgs production present in RS models, but only for

a small region of a, fortuitously the same region for which the electroweak constraints are

satisfied [94, 63, 65, 95, 64]. The restriction becomes more stringent with increased Y 5D, so

that for Y 5D ∼ 1, the a parameter can be anywhere between its minimal value amin and about

3 − 4 (depending on the CGQ model or the CPS model), while for Y 5D ∼ 6 the parameter

a is constrained to be in a really small region around amin. By comparison, the RS model

seems “safe” when Y 5D ∼ 18, but then is completely disfavoured for Y 5D ∼ 3 and Y 5D ∼ 6

8Of course, for such low KK masses the minimal RS scenario without custodial protection is already

excluded due to precision electroweak tests and flavor bounds. In fact the smaller the value of Y 5D the worse

the flavor bounds become [62, 71].
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Figure 4.3: Quark Yukawa couplings relative to their SM values, of a light quark (left panel)

and the top quark (right panel) as a function of the Higgs localization parameter, a. In all

scenarios we consider an effective field theory consisting of a tower of 3 KK levels with Y 5D ∼
3 and with the lightest KK mass at about 2.1 TeV. The dashed line (blue) corresponds to RS

with bulk Higgs. The solid and dotted lines correspond to the CGQ (ν = 0.5, kL1 ≃ 0.27)

and CPS (ν = 0.5, kL1 ≃ 0.29) models of general metrics respectively.

(where it lies outside the range of the figure).

The main message from these plots is that in the modified warped scenarios, the Higgs should

be as de-localized as possible otherwise, if the Higgs is pushed towards the IR, the bounds

become even worse than in RS (or at least the bounds we have considered here, namely those

coming from LHC Higgs production). The reason for this behaviour with the parameter a

is that in the CGQ and CPS scenarios, the warp factor grows faster than in RS near the IR

boundary. The effect of this is to actually concentrate the KK modes closer to the IR brane,

and if one de-localizes sufficiently the Higgs profile away from the IR, the overlap integral

between Higgs and KK fermions is suppressed with respect to the RS case. This leads to

suppressed corrections to Higgs production, and we believe that this is also the origin for the

suppressed contributions to electroweak and flavor observables.

As a further check, in Figure 4.3 we plot the relative size of light quarks Yukawa couplings (left
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panel) and top quark Yukawa coupling (right panel) as a function of the Higgs localization

parameter a, where both effects are computed by considering a truncated tower of just 3

KK fermion modes for each scenario. We choose Y 5D ∼ 3 in all plots and here again we

observe that the suppressed Yukawa couplings in the RS model are relatively independent of

the Higgs de-localization, while in both the CPS and the CGQ scenarios, the suppression in

these couplings depends dramatically on the localization parameter a. These effects confirm

the findings of the previous figure, namely that for small a (Higgs very de-localized) the

modified warped scenarios produce very little effects in the Higgs sector, but these effects

grow very quickly as the Higgs is pushed towards the TeV brane. The RS dependence on

Higgs localization is much milder, but the effects are quantitatively quite large for the low KK

masses considered here. We note here that even though the top Yukawa coupling can be quite

suppressed, the scenarios still predict an enhancement in Higgs production. The reason is that

the reduction produced by suppressed top couplings is balanced by the positive contribution

due to the top KK tower. To this contribution, one must add the positive contributions of

the other 5 towers of KK fermions (associated to the 5 other SM quarks) [77].

Finally let us comment again that we have focused on a simplified version of the SM in

which we ignored the flavor mixing between families, in order to simplify the sums in the

loop calculation. Our main goal was to compare Higgs production among different models

and study the general effects of the metric modification relative to the usual RS setup. A

realistic scenario including the full flavor structure is underway, but the results should not

be much different from the ones presented here, since flavor inter-mixings are not expected

to produce big changes in the contributions to the loops generating the hgg coupling.

4.4 Decoupling of the Heavy KK modes

In this section, we consider the effect of including the full tower of the KK modes on the

evaluation of the Higgs production cross section, by performing the infinite sums analytically.

Following the procedure given in [1, 77] we obtain the following expression for chgg, Eq.

(4.20),



CHAPTER 4. HIGGS PHENOMENOLOGY IN MODIFIED ADS5 GEOMETRIES 68

chgg = Tr(YM−1) +

light

yQ
mQ

(A1/2(τQ)− 1) (4.25)

= −2v4

i,j

Y u
QLiURj

Y u∗
ULjQRi

MQi
MUj

+
yQ
mQ


light

A1/2(τQlight
). (4.26)

Here the couplings are the elements of the Yukawa matrix Y given in Eq. (4.22) and M is

the fermion mass matrix in the gauge basis given by Eq. (4.23). We have also used the fact

that Y = ∂M
∂v4

and therefore Tr(YM−1) = Tr(∂M
∂v4

M−1) = ∂ln Det(M)
∂v4

.

Since the form factor, A1/2 is negligible for the light fermion generations, we can neglect the

last term in Eq. (4.25), and using Eq. (4.21) we have

chgg = −2v4Y
uY u∗


i,j


dydy′e−4A(y)e−4A(y′)Q

(i)
L (y)Q

(i)
R (y′)

MQi

U
(j)
R (y)U

(j)
L (y′)

MUj

h(y)h(y′), (4.27)

where the Higgs profile is given in Eq. (4.6). The infinite sums in this equation can be

performed using the completeness of the Sturm-Liouville system. We have (see the Appendix

C)

∞
n=1

Û
(n)
R (y)Û

(n)
L (y′)

mn

= eQ(y)−Q(y′)


θ(y′ − y)−

 y′
0
eA−2Q y1

0
eA−2Q


(4.28)

∞
n=1

Q̂
(n)
L (y)Q̂

(n)
R (y′)

mn

= −eQ(y′)−Q(y)


θ(y′ − y)−

 y′
0
eA+2Q y1

0
eA+2Q


. (4.29)

Inserting this back into Eq. (4.27) for chgg we can finally calculate the hgg cross section.

Figure 4.4 shows the result of evaluating the Higgs production cross section using the infinite

KK tower, compared to the result obtained using effective field theories with one, two and

three KK modes. As we can see, the result obtained using a very small number of modes

converge quickly to the result using infinite sum, which means that the heavy KK modes de-

couple from the evaluation of the cross section. The decoupling of heavy modes is particularly

true in the region where the Higgs production cross section is safe from large enhancements

from the presence of KK modes in the loop. This observation seems to imply that at least

for the observable considered here, the Higgs production rate, the 5D warped models with

bulk Higgs, which are essentially valid only up to ΛUV ∼ O(10 TeV), are calculable and the

effects of higher order operators should be suppressed (see also [1]).
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Figure 4.4: Higgs production rate via gluon fusion in the CGQ scenario. The solid thick

line (blue) shows the contribution due to the full tower of KK modes. The dashed (red),

dotted (khaki) and thin solid (green) lines show the contribution due to a tower of 3, 2 and

1 KK modes respectively. The shaded region shows the experimental bounds from CMS and

ATLAS.

4.5 Conclusions

In this chapter we calculated the Higgs production rate via gluon fusion in 5D scenarios with

modified AdS5 metrics. In the SM, the Higgs production cross section is determined by the

coupling of the top quark to the Higgs field. Just like in RS, the deviations from the SM

in modified AdS5 models are caused by the presence of extra KK fermion towers, associated

to each of the six SM quarks, and their couplings to the Higgs field. These KK fermions

circulate through the loop responsible for the Higgs production through gluon fusion, and

they can lead to large enhancements in the Higgs production cross section. In RS models

with fermions and Higgs fields propagating in the bulk, depending on the values of the 5D

Yukawa couplings, the enhancements can reach 50% if the lightest KK mass is ∼ 2 TeV (at

odds with ATLAS and CMS data). In fact the new data from LHC Higgs searches have

become a stringent bound on warped scenarios, to be considered together with flavor and

electroweak precision tests.

The couplings with the KK fields are generated by the overlap of the KK fermions wave
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functions and the Higgs profiles along the fifth dimension, thus the localization of these

fields is crucial to the calculation. In the general warped scenarios, the KK fermions are

pushed towards the IR brane compared to the RS model due to the metric growth near that

boundary. On the other hand the localization of the Higgs profile along the 5th dimension

is controlled by a free parameter a: the smaller the values for a, the less localized the Higgs

profile9. Our results show that a more de-localized Higgs field leads to a more SM-like Higgs

production, due to suppressed overlap integrals between Higgs and KK fermions. Moreover,

this seems to happen in the parameter region which is also safe from electroweak and flavor

precision tests. We have also shown, by comparing the results obtained using a small number

of modes with the effects of the whole KK tower, that the former converges quickly to the

latter in the same region, leading further support to the validity of our calculation.

Thus we have shown that, based on results from Higgs production, the modified AdS5 sce-

narios considered here are consistent with the experimental results for light KK masses of

∼ 2 TeV (unlike RS models). This was a non-trivial check, and necessary, since while these

scenarios had proved to be safer in terms of precision tests (electroweak and flavor) compared

to RS, the new Higgs production data from the LHC might have been in conflict with the

effects from the models. Our results confirm the viability of these scenarios, which allow for

new physics at lower scales than conventional RS models and thus could yield signals at the

LHC in the near future.

9As we mentioned before, holographically this parameter corresponds to the dimension of the Higgs

condensate operator and therefore its value is crucial in obtaining the correlation functions in the strongly

coupled modified-CFT theory.



Chapter 5

Warped Flavor Symmetry

5.1 Introduction

The discovery at the LHC of a SM-like Higgs boson with a mass of 125 GeV was a huge

step forward in confirming the validity of the Standard Model (SM) and probing the elec-

troweak symmetry breaking mechanism. But despite its experimental success, the SM still

fails to provide an explanation for the origin and observed pattern of fermion masses and

mixings.

In the quark sector, the masses are extremely hierarchical, with the top much heavier than

the rest of the quarks and with a strong ordering. In the up sector, the masses are separated

by three orders of magnitude, while in the down sector the mass ratios are separated by two

orders of magnitude. The quarks also exhibit mixing patterns given by three small mixing

angles and a large (CP) phase. In the lepton sector, the charged lepton masses obey a

similar hierarchical pattern as the down-type quarks. On the other hand, neutrino masses

are known to be very small (though not known exactly) and their square mass differences

imply a closer mass pattern, ∆m2
31(32) : ∆m

2
21 ∼ 102 : 1. Leptons appear to mix maximally

and given the special characteristics of neutrinos this has been long-seen as pointing towards

a different flavor origin between quarks and leptons, and also to the necessity of introducing

new physics. After the successful measurement of the neutrino mixing angle θ13 by the Daya

Bay [105, 106] , T2K [107, 108], MINOS [109, 110], RENO [111] and Double Chooz [112, 113]

Collaborations, the determination of the neutrino mass hierarchy has become a priority for

theoretical studies and future neutrino experiments. A great deal of theoretical work in

71
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this area has been trying to provide answers, based on such diverse frameworks as see-saw

mechanisms [114, 115, 116, 117, 118, 119, 120], Abelian [121, 122, 123] and non-Abelian [124,

125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141] symmetries

imposed on the leptonic sector (both charged and neutral), and many texture structures for

leptonic mass matrices, including modifications of accepted paradigms, such as tri-bi-maximal

[142, 143, 144, 145, 146, 147], bi-maximal [148, 149, 150, 151, 152, 153] and democratic

[154, 155, 156] neutrino mixing matrices. While various attempts to unify the description

of quarks and leptons already exist (mostly based on quark-lepton complementarity [157,

158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170]), an attractive possibility

would be that quarks and leptons obey the same symmetry at a higher scale, which is then

slightly broken at lower scales, yielding different patterns for masses and mixing for the

quarks/leptons than for the neutrinos. This is the scenario we plan to investigate here in

which small symmetry breaking terms have very different effects on quark and leptons due

to the geometry of the scenario.

The confirmed existence of a Higgs-like boson at CERN still requires a mechanism to stabilize

its mass against large radiative corrections. One elegant way to address both the hierarchy

problem and the fermion flavor hierarchy problem relies on introducing a warped extra di-

mension. Warped extra dimensional models were first introduced to deal with the hierarchy

problem of the SM [32, 33] by introducing an extra dimension to produce a five dimensional

anti-de Sitter (AdS5) geometry bounded by two hard walls (branes) along the extra dimen-

sion, referred to as the Planck (or UV) brane and the TeV (or IR) brane. Allowing for

exponential modulation along this compact extra dimension, from the gravity scale down to

the weak scale [32, 33], then produces naturally the well known weak-Planck mass hierarchy.

The original Randall-Sundrum (RS) model localized all SM fields on the IR brane, leading

to severe flavor violation bounds on the new physics scale.

It was later shown that if the fermions were allowed to propagate in the bulk of the extra

dimension [86, 34, 99, 91], the same model could address the flavor hierarchy problem of

the SM as well. The model thus emerges as a geometric theory of flavor. Localizing the

Higgs on the IR brane with anarchic order-one couplings to the bulk fermions, the profiles

of the fermion zero-modes can be adjusted to reproduce the observed Yukawa couplings in

the low energy theory. Since the first and second generation fermions are localized towards

the UV brane, they inherit substantial flavor protection from the “RS-GIM mechanism”

[37]. However, allowing the SM fields to propagate in the bulk means that, from an effective

4D point of view, a tower of KK fermions exists for all the SM fields, yielding enhanced
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contributions to electroweak and flavor observables in the SM [93, 171, 172, 91, 89, 88, 90, 37].

This effect imposes a stringent bound on the scale of new physics of some ∼ 10 TeV [47, 71]

and hence renders these models completely out of the reach of current experiments. Some

solutions can be proposed to relieve these restrictions. One way would be to extend the gauge

symmetry of the model by introducing an SU(2)R gauge sector with custodial protection

[92, 91, 93]. The basic idea is to align the down-type Yukawa couplings using the additional

symmetry, so that the primary sources of intergenerational mixing are the up-type Yukawa

couplings. Since the dominant constraints on FCNCs come from the down-type sector, the

constraint on KK masses is substantially relaxed. A different approach to address the issue

is through a slight modification of the warping factor along the extra dimension allowing it

to deviate slightly from the AdS5 metric [63, 94, 65]. This deviation is such that the warping

is more drastic near the TeV brane, while the background becomes more AdS5-like near the

Planck brane. These type of metric solutions can help suppress dangerous contributions to

the electroweak and flavor observables reducing the constraints on new physics down to about

∼ 1 TeV.

Another source of interesting new contributions in these models has been shown to originate

in the Higgs production rate through gluon fusion [80, 1, 2].

Interestingly, in the modified 5D metric scenarios the region of parameter space in which the

dangerous contributions to flavor and electroweak precision observables are small is the same

as the region in which the new contributions to the Higgs production cross section are also

small (and thus safe). Moreover, this is achievable only when the Higgs field in these models

is allowed to leak considerably into the bulk.

In the context of warped extra dimensional models with O(1) 5D Yukawa couplings and with

no structure a priori (i.e., flavor anarchy), one can easily generate the hierarchical structure

of the quark and charged lepton sectors while, due to large mixing angles, the neutrino

sector must be treated differently. In particular, in [173], it was shown that if the Higgs leaks

sufficiently into the bulk it is possible that the (exponentially small) neutrino wave functions

become independent on the flavor structure of the 5D neutrino mass parameters (ciν) and thus

the 4D neutrino flavor structure depends directly on the flavor structure of the 5D neutrino

Yukawa couplings.

In this chapter, we propose [3, 4] a unified picture of fermion masses and mixings in the

context of a warped extra dimensional model with pure AdS5 and modified AdS5 background

metrics, and with all the SM fields in the bulk, including the Higgs. In this picture, the same
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flavor symmetric structure is imposed on all the fermions of the SM, including neutrinos.

Small flavor breaking effects are exponentially enhanced in the quark and charged lepton

sectors, thus producing hierarchical masses and mixings. With a sufficiently leaked Higgs,

the neutrino wave functions are flavor-blind and the flavor structure is governed by the 5D

neutrino Yukawa flavor structure.

As expected, the results are similar in both type of metrics indicating that the precise nature

of the flavor symmetry or the precise nature of the metric solution is not crucial for the main

property of the scenarios, namely that in the neutrino sector, flavor observables are directly

linked to the fundamental flavor symmetry, while in the quark and charged lepton sectors,

the flavor symmetry is washed-out and the observed hierarchies depend on the small flavor

symmetry breaking terms.

This chapter is organized as follows. We summarize the features of the model in Section

5.2, with particular emphasis on fermion mass generation. We explore an implementation

of a democratic flavor symmetry in Section 5.3. We summarize our results and conclude in

Section 5.4. We leave the details of some of the calculation for the Appendix D.

5.2 Fermion masses in warped space

We consider a 5D warped space with the extra dimension compactified and allow all SM

fields to propagate in the following generalized warped space-time metric:

ds2 = e−2A(y)ηµνdx
µdxν − dy2, (5.1)

ηµν = diag(1,−1,−1,−1) being the flat metric. The 5-th dimension, y, is bounded by two

branes localized at y = 0 and y = y1 and A(y) is a model-dependent function. As mentioned

in the introduction, some generalized warped models can be safe from precision electroweak

tests and flavor bounds for very low KK masses. With this advantage in mind, we consider

the modified-AdS5 scenario with the following warp exponent [94, 174]:

A(y) = ky +
1

ν2
ln


1− y

ys


, (5.2)

where k ∼MPl is the AdS5 curvature, expected to be of the order of the Planck mass scale,

ys is the position of the metric singularity, always chosen to be outside of the physical region,

ys > y1, and ν > 0 is a model parameter taken to be real. This parameter, alongside with

∆ = ys − y1, the distance between the location of the metric singularity and the IR brane,
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Figure 5.1: The modified-AdS5 warp factor A(y) versus the standard RS warp exponent, y.

The horizontal line corresponds to ky = 35. For the same amount of warping, the modified

scenario requires a shorter length scale along the 5-th dimension.

measures the departure of the metric from the pure AdS5 background. The smaller the values

of ∆ and ν, the more modified the metric; intuitively, the singularity has a larger effect on

the physics at the IR brane as it gets closer to it. One can calculate the curvature along the

5th dimension and arrive at

R(y) = 8A′′(y)− 20 (A′(y))
2
. (5.3)

The curvature radius, L(y) =


−20/R, in units of k along the fifth dimension is then given

by

kL(y) =
k∆

1− 2ν2/5 + 2ν2k∆+ (ν2k∆)2
. (5.4)

One can see that for values of ν >


5/2, this function has a minimum before the singularity

and therefore, the curvature can change sign within the physical region. For simplicity,

following [65], we impose that this minimum is located outside of the physical region and

hence the curvature radius is a monotonically decreasing function between the UV and the

IR branes.

The more familiar RS metric is recovered by taking the limits ν → ∞ and ys → ∞, obtaining

A(y) = ky, with the curvature radius being constant, kL = 1. In Figure 5.1, we compare the

two metrics and plot the warp exponent function A(y) for the AdS5 and the modified-AdS5

cases. We can see that the amount of warping near the IR brane at around ky = 35 is larger
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for the modified-AdS5. Thus, as the figure indicates, the same amount of warping from the

UV brane to the IR brane in the modified scenario requires a slightly smaller length of the

5-th dimension and hence an IR brane slightly closer to the UV brane. The curvature radius

(Eq. 5.4) at the UV brane is approximately equal for the pure and modified AdS5 spaces with,

ky(y) ≃ 1. In contrary, at the IR brane, as kL(y) is a monotonically decreasing function,

ky(y) assumes its minimal value for the modified AdS5 space and hence kL1 ≡ kL(y1) is a

good measure of the amount of deviation from the pure AdS5 space with constant curvature

radius.

The 5D fermion Lagrangian density with Dirac neutrinos is

Lq = Lkinetic +MqiQ̄iQi +MuiŪiUi +MdiD̄iDi + (Y u 5D
ij HQ̄iUj + h.c.)

+(Y d 5D
ij HQ̄iDj + h.c.) + (Qi→Li, Ui→Ni, Di→Ei) (5.5)

where, i, j are flavor indices and the 5D Yukawa parameters, Y 5D
ij , are dimension-full quan-

tities of O(1) ×
√
k. Qi (Li) are 5D quark (lepton) fields for SU(2) doublets while Ui (Ni)

and Di (Ei) are SU(2) singlet quark (lepton) fields. The bulk mass, Mi, originating from the

momentum along the 5-th dimension, can be taken in general to be y-dependent. To be able

to compare, we choose it such that it coincides with its usual definition in RS models, and

express it in units of the 5-th dimension curvature, k, asMψi
= ciψk, where c

i
ψ are localization

parameters, dimensionless quantities of O(1), and ψi runs over all SM quarks and leptons1 2.

Dimensional reduction then yields the normalized profile for the fermion and the Higgs fields

along the bulk of the extra dimension, q0,iL (y), u0,iR (y) and h(y), which are given by

q0,iL (y) = qi0 e
(2−ciq)A(y) (5.6)

u0,iR (y) = ui0 e
(ciu+2)A(y) (5.7)

h(y) = h0 e
aky (5.8)

with qi0 = f(ciq), ui0 = f(−ciu) and h0 = e−(a−1)kysh0, and where f(c) and h0 are nor-

malization factors depending on c, ν and ys and are given in Appendix D, along with their

limiting expressions for the usual RS (AdS5) metric background. From these profiles, one

can check that the localization of the fields in the bulk of the extra dimension is determined

by the values of the ciq for the fermion fields, such that a value of ciq > 1/2 indicates a UV

1 We use throughout cq for the doublets (cq and cl) and cu for the singlets (cu, cd, cν and ce).
2Alternative fermion and Higgs profiles can be found in [174, 2] where different bulk mass conventions

are adopted.
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localized field, while a value of ciψ < 1/2 localizes the field near the IR brane3. The Higgs

field localization along the 5-th dimension is given by the parameter a, the dimension of the

Higgs condensate operator. A completely IR brane localized field corresponds to the limit

a → ∞, while for a delocalized Higgs field, a is small. However, in order to maintain the

original Randall-Sundrum solution to the hierarchy problem without fine-tuning, the Higgs

field localization should be such that a >∼ 2 (for an AdS5 metric background). If the 5D Higgs

potential is of the form Vbulk(H) = M2
5dH

2, with associated brane potentials at each bound-

ary, the Higgs profile has two solutions, one growing towards the IR and another one which is

decaying at the IR brane. This last one is proportional to e(4−a)ky in the AdS5 background.

In order to maintain the RS solution to the hierarchy problem the decaying solution has be

subdominant, and this happens naturally for a > 2. For a < 2, however, some fine-tuning

between the parameters of the bulk scalar potential and the brane potentials is necessary in

order to suppress the unwanted solution. In the modified-AdS5 scenario the lowest value of

a that does not require fine-tuning depends on the various new metric parameters [175]. In

this case, the Higgs profile is given by

h(y) = h0e
aky


1 + (M0/k − a) [F (y)− F (0)]


, (5.9)

whereM0 is the brane Higgs mass term (coefficient of the |H|2δ(y−y1) term at the IR brane)

and the function F (y) is given by

F (y) = e−2(a−2)kyskys [−2(a− 2)kys]
−1+4/ν2 Γ


1− 4

ν2
,−2(a− 2)k(ys − y)


. (5.10)

The decaying term at the IR brane is the second term in Eq. (5.9) and one can see that by

forcing M0/k ≃ a (fine-tuning parameters) the solution can become sub-dominant. In order

to avoid this fine-tuning of parameters, we note that as F (y) is a monotonically increasing

function, if one has δ ≡ |F (y1)| ∼ O(1) no fine tuning is needed to guarantee that the

increasing solution for the Higgs profile dominates. When the parameter δ = F (y1) becomes

larger, this signals a need of fine-tuning of parameters to suppress its large value. Fig.

5.2 shows the no-fine-tuning region (above the red (solid) δ = 1 curve) in the plane (a, ν),

where a is the Higgs localization parameter and ν is the metric parameter of the modified

metric solution. In the region below, the “fine-tuned” region, one requires a fine-tuning

of Lagrangian parameters with a tuning precision growing exponentially (the very close by

dashed curve locates the points where δ = 10, i.e. where the tuning is already 10 %) .

3This convention is for left handed doublets. For right handed singlet fields, our convention is such that

ciu > −1/2 for a UV localized field and ciu < −1/2 for an IR localized field.
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In producing these graphs, in each case we have first set the value of the IR brane position,

ky1, which in turn fixes the value of ys, the position of the singularity. Then for each value

of the parameter ν we solve for a in δ(a, ν, y1, ys) = 1.
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Figure 5.2: The δ = 1 plots and the neutrino masses in the ν − a plane for kL1 = 0.2 (big

AdS5 deviation) and kL1 = 0.99 (more RS-like). The red (solid) curve locates the no-fine-

tuning threshold in which δ = 1. Above this curve δ < 1 and below the curve δ > 1 (and hence

this is the unwanted fine-tuned region). The shaded area corresponds to a heavy neutrino

mass (m3 in normal ordering), mν ∼ 5× 10−11 GeV for different values of the c-parameters,

but such that the mass expression has no exponential sensitivity to the c-parameters. Note

that in the RS-like case, with kL1 = 0.99 and ν large, it is not possible to obtain neutrino

masses without fine-tuning or without quitting the neutrino plateau region. On the other

hand, for large deviations from AdS5 (left panel) and small enough ν, it is possible to find

non-tuned points with neutrino masses in the plateau (i.e no exponential c-dependence).

To first order, the effective SM Yukawa couplings are obtained from the overlap integral

yuij =
Y u
ij√
k

 y1

0

dye−4A(y)h(y)q0,iL (y)u0,jR (y) (5.11)
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where the super index u denotes the four types of Yukawa couplings of the SM, i.e. u =

u, d, e,N and we have defined the dimensionless 5D Yukawa couplings as Y u
ij = Y 5D

ij /
√
k ∼

O(1) . Given the profiles (5.6), (5.7) and (5.8) and the metric (5.2), the integral above can

be performed analytically and written as

yuij = Ỹ u
ijh0f(c

i
q)f(−cju), (5.12)

where the factor Ỹ u
ij , defined in Appendix D, has very mild ci dependence. The function f(c)

is such that depending on the value of c, the Yukawa couplings can present an exponential

sensitivity to c or a mild dependance. Finally h0 is the bulk Higgs normalization factor and

does not depend on the fermion mass parameters ci. Also note that although throughout

the paper we have suppressed the explicit dependence of the fields on the metric parameters,

ν, ys, y1 and k and in particular all of the factors of Eq. (5.12) are metric dependent. As

shown in Appendix D, one can always retrieve the RS limit for these terms by taking the

limit ν, ys → ∞.

The fermion masses are given, to first order, by the eigenvalues of the 3× 3 Yukawa matrices

of the form

v yu = v


yu11 yu12 yu13

yu21 yu22 yu23

yu31 yu32 yu33

 . (5.13)

In general, in order to get the correct SM masses, no exponential c-dependance is needed for

the top quark, which corresponds to ctq <∼ 1/2 and ctu > −1/2 (this region of parameter space

corresponds to the top plateau shown in Fig. 5.3). For the rest of the SM particles ciq >∼ 1/2

and ciu < −1/2, which implies that the Yukawa couplings will depend exponentially on the

values of the ci. In the case of neutrinos however, in order to accommodate their tiny masses,

one needs localization parameters cν < −1. It was shown [173] that for a delocalized Higgs

with a-parameter small compared to the localization parameter ci, the 4D effective neutrino

masses depend exponentially on a but loose their dependance on the ci’s. This region of

parameter space corresponds to the neutrino plateau shown in Fig. 5.3. In other words the

limit of the function in Eq. (5.12) for large cν-s is given by

yuij ∼ Ỹ u
ijh0. (5.14)

To make this more transparent, in the formula for fermion masses given by (cf. Eq.(5.12))

(Mf )ij = vỸ u
ijh0f(c

i
q)f(−cju), (5.15)
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(a) RS with all SM fields including the Higgs in the bulk, a = 2.04 and δ = 1.
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(b) Modified-AdS5 with ν = 0.32, kL(y1) = 0.2, A(y1) = 35, a = 4.46 and δ = 1.

Figure 5.3: Effective 4D Yukawa couplings for fermions as a function of the fermion bulk

mass parameter c for the RS (a) and general warped space-time metric (b). The plots in the

right hand side are produced by taking the c-parameters for the doublet and the singlet to

be equal. In the contour plots, each contour depicts one order of magnitude difference with

respect to its adjacent contour. A typical region for the neutrino masses with m3 ∼ 5×10−11

GeV and m2 ∼ 5 × 10−12 are shown on with black dots. The overlap between the shaded

regions show a realistic region for the plateau.
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we factor the exponential behaviors and write them in the following two distinct limits

(Mf )ij ∼ vY f
ij ϵ

(ciq− 1
2
)ϵ−(cju+

1
2
) for cq > 1/2, cu < −1/2

(Mν)ij ∼ vY N
ij e

−ky1(a−1) for cq − cu > a (5.16)

where ϵ = e−A(y) (see Appendix D for details). 4

The limits described in Eq. (5.16) imply that, as the quark and charged lepton mass matrix

elements are exponentially dependent on the ci parameters, the structure in the 5D Yukawa

matrix elements Y f
ij will be somehow washed-out and always generically hierarchical fermion

masses as well as small mixing angles. For the neutrinos on the other hand, since there

is no exponential sensitivity on the flavorful ci parameters, any structure inherent in the

5D Yukawa matrix elements will survive in the 4D effective theory. This is the region of

neutrino parameter space we are interested in and is shown in 5.3 as the neutrino plateau.

In RS models, the actual height of the neutrino plateau is determined exclusively by the

value of the a parameter. Moreover, by a numerical misfortune, for the value of the warp

factor required to solve the hierarchy problem, the highest possible neutrino masses in the

plateau, and without fine-tuning (a > 2), are too small to be phenomenologically viable by

1-2 orders of magnitude (see upper panels in Fig. 5.3). A bit of tuning, some enhancement

of the 5D Yukawas and/or trespassing the edge of the plateau would then be required,

making the scenario less attractive for our purposes. On the other hand, in modified-AdS5

scenarios, although the level of the plateau is still highly sensitive to the value of a, it could

actually be increased by some two orders of magnitude and thus allow for phenomenologically

acceptable neutrino masses in the desired region of the model (see Fig. 5.2 and lower panels

in Fig. 5.3). This feature occurs because the modified AdS5 metric (see Eq. (5.2)) exhibits

a richer parameter space. In the RS metric, in order to produce the correct neutrino masses,

we need a ∼ 1.85. This value amounts to about 1% fine tuning of parameters in the 5D

Higgs potential. For modified-AdS5 scenarios however, one can produce a neutrino plateau

within the experimental bounds for a large range of values of the a parameter since there

are two new independent parameters that can be scanned, namely ν and kL1. It is quite

interesting that the parameter space for which the neutrino plateau is most favorable, is also

the region where small KK masses do satisfy bounds coming from flavor and electroweak

precision measurements [95, 98] and also from Higgs phenomenology [1].

In order to further illustrate this issue, we show in Fig. 5.4 the resulting neutrino masses in

4For modified-AdS5, ϵmod = e−ky1


1− y1

ys

 1
ν2 ∼ 10−15 while for RS ϵRS = e−ky1 ∼ 10−15.
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Figure 5.4: On the left we have plotted the neutrino masses as a function of the metric

parameter ν for different values of the Higgs localization parameter a and fixed ky1 = 0.2.

The fermion mass parameters (c’s) are fixed such that we are in a region where there is no

exponential dependence on them (the neutrino “plateau”). The curves end whenever the

fine-tuning threshold (δ = 1) is reached (thick overlapping curve). Note that for small values

of ν the neutrino masses become larger while still remaining in the non-tuned regime and

in the “neutrino” plateau. On the right hand we have the same plot for different values of

ky1 and fixed δ = 1. The graph corresponding to kL1 = 0.9 at larger values of ν remains

constant and (approximately) coincides with the RS limit.

the plateau region as a function of the parameter ν, and for different values of a (left panel)

and kL1 (right panel). The area below the curves is the no-fine-tuning region, and one can see

that the largest neutrino masses (in the plateau) happen for ν ∼ 0.3 for kL1 = 0.2, whereas

in the RS limit, i.e. kL1 ∼ 1 and ν large, the masses are some two orders of magnitude lower

(a bit too low). This makes the extended metric scenarios a more natural framework for the

flavor mechanism investigated here, and adds to the main advantage of these scenarios (i.e.

a much lower KK scale consistent with electroweak and flavor bounds).



CHAPTER 5. WARPED FLAVOR SYMMETRY 83

In any case, qualitatively the general features of the flavor structure of these modified-AdS5

models are very similar to these features in the pure AdS5 models for the bulk mass ci

parameters. Therefore, in order illustrate our flavor setup, it will be useful to consider the

simpler case of the RS metric. In this case the fermion mass formulas (5.16), can be simplified

dramatically. As usual, we consider the mass matrix for the neutrino sector separately from

the case of quarks and charged leptons mass matrices. Consider the case with ciq,u >
1
2
. In

this case we have,

(Mf )ij ≃ vϵ(c
i
q− 1

2
)ϵ−(cju+

1
2
)


2(a− 1)|1− 2ciq||1 + 2cju|Ỹ f
ij

(Mν)ij ≃ vϵa−1


2(a− 1)|1− 2cil||1 + 2cjν |
ϵ(1−2cl) − 1)

√
ϵ(1+2cν) − 1

Ỹ ν
ij , (5.17)

where the 5D Yukawa couplings are given by,5

Ỹ u
ij ≃

1

a− ciq + cju
Y u
ij . (5.18)

From Eq. (5.6), (5.7) and (5.11) one can see that there are two sources of flavor structure: the

5D dimensionless Yukawa couplings, Y u
ij and the bulk mass coefficients ciψ. We are interested

in scenarios in which all Yukawa matrices (YF = Y u
ij , Y

d
ij , Y

ν
ij , and Y

e
ij) and fermion bulk mass

matrices from the 5D Lagrangian (cf = cq, cu, cd, cl, cν , and ce) share the same symmetry

structure, which is then slightly broken through some high energy mechanism according

to

YF = Y 0
F + δYF , (5.19)

cf = c0f + δcf , (5.20)

where the matrices Y 0
F and c0f are flavor symmetric while the perturbation matrices δYF and

δcf are random. Inserting these perturbations in Eqs. (5.17), the fermion masses receive

corrections to leading order as follows

mt = m0
t + δmt c3q, c

3
u < 1/2

(mf )ij = (mf )
0
ij f(δc

i
q)f(δc

j
u)) ∼ (mf )

0
ij ϵ

(δciq+δc
j
u) a > cil + cju (5.21)

(mν)ij = (mν)
0
ij + δ(mν)ij a < cil + cjν .

Therefore the same exponential sensitivity on the bulk mass ci parameters, ϵ ∼ 10−15, re-

sponsible for producing the SM hierarchy in standard RS, is now translated into exponential

5For the exact formulas see Appendix D.
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sensitivity of the symmetry breaking terms. As a consequence, small symmetry breaking

terms (|δci| ∼ 0.1) can produce mass corrections of order 10−15(δci+δcj) (i.e., a hierarchy of

order ∼ 106) to the quark and charged lepton mass matrices. This is in complete agreement

with the observed hierarchy in these sectors. As mentioned before, the neutrinos and the top

quark fields live in the two plateaus (see Fig. 5.3) with mild ci sensitivity.

For the mixing angles, the eigenvector matrix that diagonalizes the neutrino sector should

be very close to the eigenvector matrix of the 5D Yukawa matrix. However, in the quark and

charged lepton sectors the mixing matrices are generically close to the unit matrix with their

off-diagonal entries hierarchically small as 6:

V u
L ≃


1

f1q (M̃u)21

f2q (M̃u)11

f1q (Ỹu)13

f3q (Ỹu)33

−f1q (M̃
∗
u)21

f2q (M̃
∗
u)11

1
f2q (Ỹu)23

f3q (Ỹu)33
f1q (M̃

∗
u)31

f3q (M̃
∗
u)11

−f2q (Ỹ
∗
u )23

f3q (Ỹ
∗
u )33

1

 , (5.22)

where f iq is shorthand for the profile functions f(ciq), (M̃u)ij is the ij minor of the matrix in

parenthesis and (Ỹu)ij is the ij element of the Yukawa matrix. We define the CKM and the

PMNS matrices as the following

VCKM ≡ V u
L V

d†
L and VPMNS ≡ V e

LV
ν†
L . (5.23)

As mentioned after Eq. (5.16), for the quarks and charged leptons, the off-diagonal mixing

angles are also exponentially sensitive to the ci parameters and hence to the small symmetry

breaking terms. The matrix elements of the V f
L in Eq. (5.22) can then be written as

(V u,d,e
L )ij ∼ (V u,d,e

L )0ij ϵ
(δciq−δc

j
q) ( for u, d and e ) (5.24)

where (V u,d,e
L )0ij are the elements before the flavor symmetry breaking and {i, j} can be {1, 2},

{1, 3} and {2, 3}. We see again that, due to exponential warping, all original symmetries

present in the high energy theory are washed out in the quark and charged lepton sectors.

Contrary to this, in the Dirac neutrino sector the terms in the V ν
L much less sensitive to

the symmetry breaking terms since their own dependence on the ci is mild in the region of

parameters we are interested. If we define the eigenvectors of the 5D neutrino Yukawa matrix

as

Y diag
ν = VYLYνVYR , (5.25)

6Similar expressions are obtained for V d
L and V q

L .
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then the matrix diagonalizing the 4D effective neutrino mass matrix

(V ν
L )ij ∼ (VYL)ij . (5.26)

We have not specified so far the type of symmetry imposed since the framework is pretty

general. In the next section we will consider a concrete implementation of the idea, one within

flavor democracy. The background metric considered will be the modified AdS5 solution, in

the most favorable region of parameter space.

5.3 Flavor democracy

In this section we assume a democratic structure [176, 177, 178, 179, 180] for all the flavor

parameters, meaning in our case that the 5D Yukawa couplings, Y 0
F are invariant under S3×S3

while the 5D fermion bulk mass matrices, c0f are invariant under S3 permutations. Explicitly,

the democratic 5D Yukawa couplings and 5D fermion bulk mass matrices are given by

Y Dem
F ∝


1 1 1

1 1 1

1 1 1

 and cDemf =


Af Bf Bf

Bf Af Bf

Bf Bf Af

 . (5.27)

Overall, there are four Yukawa matrices, Y Dem
u , Y Dem

d , Y Dem
e and Y Dem

ν , corresponding to

the up-quark sector, the down-quark sector, the charged leptons and the neutrinos. There

are six fermion bulk c-matrices, namely cDemq , cDemu , cDemd , cDeml , cDeme and cDemν .

They can all be diagonalized simultaneously with the same unitary transformation

VDem =




2
3

0 1√
3

− 1√
6

1√
2

1√
3

− 1√
6

− 1√
2

1√
3

U , with U =


cos(θν) sin(θν) 0

− sin(θν) cos(θν) 0

0 0 1

 , (5.28)

which results in two zero eigenvalues for the Yukawa matrices, while the bulk mass matrices,

cDemf acquire two degenerate eigenvalues. The 5D Yukawa and bulk mass matrices become

in their diagonal basis

Y 0
F = y0

F


0 0 0

0 0 0

0 0 1

 and c0f =


c1

0

f 0 0

0 c1
0

f 0

0 0 c3
0

f

 , (5.29)
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where y0F are complex Yukawa couplings and the index F runs over u, d, e , and ν. The

elements ci 0f are real and the index fi runs over doublets qi, li as well as singlets ui, di, νi and

ei, with i being the flavor index. Note that in this flavor symmetric limit, all fermions except

for the t quark, b quark τ lepton and ντ lepton end-up massless. The 5D flavor structure of

Eq. (5.29) yields the 0-th order CKM and PMNS matrices of this scenario

V 0
i =


cos θ0i sin θ0i 0

− sin θ0i cos θ0i 0

0 0 1

 , (5.30)

where i =CKM, PMNS. The angle θ0i , depends on the detailed structure of the symmetry

breaking terms, δYF and δcf in Eqs. (5.20) and (5.19), and is not fixed by the underlying

S3 × S3 symmetry. The structure so far is completely democratic but also quite far from the

experimental observations.

Adding generic small perturbations as in Eqs. (5.19) and (5.20) will break the flavor symmetry

and lift the degeneracies to produce SM-like masses and mixing angles. In the neutrino sector,

the two level degeneracy is lifted by a small amount (δYF )ij. This suggests a normal hierarchy

ordering with a heavier eigenstate and two lighter ones with similar masses. Using Eq. (5.16)

and taking only the generic size of the perturbations as (δYF )ij ≃ δY ν for simplicity, yields

the following relations for the neutrino masses

m1 ∼ δY ν v e−ky1(a−1) , m2 ∼ δY ν v e−ky1(a−1) , m3 ∼ (1 + δY ν)v e−ky1(a−1).(5.31)

Neutrino mass data requires v e−ky1(a−1) ≃ 0.3 eV and in order to solve the hierarchy problem

we need ky1 ≃ 35, which means that the value of the Higgs localization parameter should be

about a ≃ 1.8. As explained in the previous section this value of a requires some fine-tuning

of parameters in the 5D Higgs potential. As observed then, with modified-AdS5 metrics it is

possible to remain in a non-tuned region, and in particular we find that the best region is for

ν ∼ 0.2 and kL1 ∼ 0.3 where the parameter a can have a value of 4.5. 7 In order to obtain the

observed neutrino mass hierarchy ratio r, given by r = (|m2|2−|m1|2)/(|m3|2−|m1|2) ≃ 0.03,

the size of the Yukawa perturbations δY must be fixed to δY ν <∼
√
r ≃ 0.17, since there are

no restrictions on the values of bulk mass parameters, ci-s (as long as they are within the

bounds a < cν + cl).

Consider the elements Ve2, Ve3 and Vµ3 of the PMNS matrix. As mentioned before, due to

the plateau in the neutrino sector for small a parameter, the 5D Yukawa matrix structure

7In the modified-AdS5 case Eq. 5.31 will be slightly modified and higher values of the a-parameter

become acceptable.
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Figure 5.5: Scan plot of Ve3 versus Vµ3 with random values of δYν , δYe, cl and cν . On the

other we have fixed c3l = 0.41, (δY ν)13 = 0.008 and (δY ν)23 = 0.13. The concentration of

points in a precise region shows that the mixing angles Ve3 and Vµ3 are highly sensitive to

only these three parameters. If the flavor violating terms δY ’s are to be kept in the 10% level,

Vµ3 is expected to be at the lower end of its experimental uncertainty, whereas the smallness

of Ve3 is exclusively due to a small ratio of Yukawa perturbations (δY ν)13/(δY
ν)23.

is preserved and therefore the eigenvectors are solely given by a tri-bi-maximal matrix, Eq.

(5.28) (which diagonalizes the Y 0
F ) plus some perturbation which diagonalize δYF . This

is already very much like the PMNS matrix and, since in the charged lepton sector the

eigenvectors matrix, V e
L , is close to the identity, cf. Eq. (5.22), in general we have Vµ3 ≃

(V ν†
L )23 and Ve3 ≃ (V ν†

L )13, (cf. Eq. (5.23)). The value of Ve2 on the other hand, from Eq.

(5.30), is fixed by θi, which depends on the structure of the neutrino Yukawa flavor violating

matrix δY ν
ij . Therefore we have

Ve2 ∼ sin θ0ν ,

Ve3 ∝ δY ν
13 f(c

3
l ) , (5.32)

Vµ3 ∝ δY ν
23 f(c

3
l ) .

Note that these features are specific to the case a < c3l + c
j
ν and c

3
l < 1/2, and are not generic

in usual warped extra dimension scenarios.

In Fig. 5.5 we present a scan of the model parameters to verify the validity of Eq. (5.32).

In this scan we randomly perturbed the values of the 5D parameters Yν , Ye, cl and cν , but

kept the values of the three relevant parameters c3l , (Y
ν)13 and (Y ν)23 fixed. We see from the
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figure that the obtained values of the matrix elements Vµ3 and Ve3 can be made to lie within

the experimental bounds, by fixing only three parameters, with all other terms randomly

perturbed. In particular the formulas show the sensitivity of these two PMNS mixing angles

to the flavor structure of the neutrino Yukawa matrix δY ν , but not to the charged lepton

Yukawa matrix δY l or to the bulk nasses δci, except for δc3l . Knowing that experimentally

V exp
µ3 ≃ 0.65 and V exp

e3 ≃ 0.15, for the numerical evaluations we took the bulk mass parameter

of the third family lepton doublet c3l < 1/2 to easily obtain larger mixing angles for small

δY ≃ 0.1. This condition is very interesting as it is the same as in the quark sector, where

c3q . 1/2 is needed to obtain a large top quark mass, which could be a hint of an additional

family symmetry among the SU(2) doublets of the third family. The particular values used

in the scan were c3l = 0.41, (δY ν)13 = 0.008 and (δY ν)23 = 0.13.

In the charged lepton sector and the up- and down-quark sectors, the massless states are also

lifted by the flavor symmetry breaking, leaving a suppression proportional to δY . In addition,

the exponential dependence on the symmetry breaking parameters δcif creates a hierarchy

among all the masses. The charged fermion masses are given by the diagonal elements of

Eq. (5.15), multiplied by the appropriate diagonal elements of the Yukawa matrix. For the

approximate c parameter and Y dependence of third generation we can write in general

mt ∼ v y0u , (5.33)

mb,τ ∼ v y0b,τf(c
0
Lb,τ

+ δcLb,τ
)f(−c0Rb.τ

− δcRb,τ
) ,

where the last equation can be approximated as8

mb,τ ∼ m0
b,τ ϵ

(δcb,τq −δcb,τu −1). (5.34)

Here we have used m0
b,τ = vy0b,τ ϵ

(cb,τ 0
q −cb,τ 0

u −1) for the 0-th order masses, which are the usual

mass formulas in the RS formulation. We have also noted that for the top quark we have9

ϵ(δc
3
q−δc3u−1) ∼ 1.

In contrast to the heavy fermions (corresponding to the heavy eigenvalues), the lighter fermion

masses (electron, muon, up, charm, down and strange), are massless in the flavor symmetry

limit. It is only after the flavor symmetry breaking that these fermions acquire masses, and

therefore their masses are directly proportional to the generic size of the perturbations in the

8This approximation works better in the RS limit. Also see Appendix D for asymptotic expansions of

the function f(c).
9Assuming that c3 0

q , c3 0
u < 1

2 and c3 0
d , c3 0

e , c3 0
l > 1

2 .
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Yukawa matrix, δY . Using Eq. (5.15) again, we can approximate their masses

mfi ∼ v δ YF f(ci 0q + δciq)f(−ci 0u − δciu), (5.35)

which can be further expressed as

mfi ∼ δYF m0
fi
ϵ(δc

i
q+δc

i
u), (5.36)

where the index i runs over u, c, d, s, e, µ and the 0-th order mass is given bym0
fi
= v ϵ(c

i 0
q +ci 0u −1).

In all of the mass formulas given, by approximating the actual mass eigenvalues by the di-

agonal elements of the mass matrix, we are implicitly assuming that the c parameters are

in order (e.g. |c1u| > |c2u| > |c3u|). For the case where one of the c parameters is not such

ordered (e.g. |c2u| < |c3u|), one can still use the above formulas but with appropriate indices

(here for instance, consider the elements mf21 and mf12 instead of mf11 and mf22 in Eq.

(5.21)). In numerical results, as we required to satisfy all the SM constraints, such cases have

occurred.

In all the above considerations, δYF denotes the generic size of the perturbations. This model

can naturally produce the SM mass hierarchy by fixing the different δci within the constraint

|δci| <∼ 0.1. This is due to exponential dependence of these parameters and typical hierarchies

between generations of fermions in SM (ϵO(0.1) ≃ 10−1.5)10. This implies that the typical sizes

of the perturbation parameters, δcf or δY are fixed by SM bounds to ≃ 0.1. For the mixing

angles in this scenario, consider the Vus, Vub, and Vcb elements of the CKM matrix. From Eq.

(5.24) we know that for these elements, in general we have

Vij ∼ (YF )ij
f(ciq)

f(cjq)
.

This easily produces the observed hierarchy in the mixing angles. For the special case of RS

the CKM entries can be further simplified

Vus ∼ ϵ(δc
1
q−δc2q) , Vcb ∼ δY ϵ(δc

2
q−δc3q) , Vub ∼ δY ϵ(δc

1
q−δc3q). (5.37)

These equations must be compared with the 0-th order CKM matrix given by Eq. (5.30).

The two angles Vcb and Vub are lifted from zero by an amount proportional to the Yukawa

perturbations δY ∼ 0.1 and an exponential of order ϵδc, which imposes yet another constraint

on the possible values of these perturbations, since they must produce the experimentally

10Here naturally means that randomly chosen δY and δc parameters naturally produce a SM-like 4D

effective theory.
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well known ratio Vcb/Vus. One can check that, assuming an ordering δc1q > δc2q > δc3q, yields

the correct order of magnitude. In contrast to Vcb and Vub, the 0-th order Cabibbo angle

in Eq. (5.30) is of O(1), suppressed after the symmetry breaking by exactly the expected

amount Vus ∼ Vub/Vcb.

In Table 5.1 we show a numerical example of an S3 symmetric set of 0-th order bulk mass

parameters (many other points with the same symmetry in the parameter space are possible),

which with a small perturbation of order δc ≃ δY ≃ 10% can be used to produce the SM

from the modified-AdS5 scenario11. For this specific point we have taken the value of the

warp exponent at the IR brane, A(y1) to be exactly 35. With this assignment, there is only

one more free parameter of the model left to completely fix the metric. This parameter can

be either ν, or the position of the singularity, ys. Therefore one has the freedom to choose

the amount of departure from the pure AdS5. For the point presented in Table 5.1, we took

ν ≃ 1.1. The value of the dimension of the Higgs field operator a is chosen to be 2.05, to fix

the position of the plateau shown in Fig. 5.3 and hence fix the neutrino masses to the correct

value. With this starting point, the SM is then easily reproduced by breaking the symmetry

by adding the perturbations δci-s and (δ Y )ij-s to lift the degeneracies of the symmetric

scenario. At this stage one can go on and “fix” the (δ Y )ij . 0.1 and δci . 0.1 parameters to

produce the SM masses, angles and phases by systematically using the approximate formulas

in this section up to any order of precision consistent with the SM. In general the sensitivity

to the precise values of the 5D Yukawa couplings, (δ Y )ij, is minimal and randomly chosen

matrices with (δ Y )ij . 0.1 can produce all the required SM features.

f q u d l ν e

c1
0

f 0.55 0.55 0.62 0.55 5.00 0.65

c3
0

f 0.41 0.41 0.62 0.41 3.00 0.65
Table 5.1: A point for democratic symmetry in the localization parameters allowed space (out

of many possible points) in the 0-th order 5D fermion c-parameter space, consistent with all

the experimental and model constraints. For this point, we have set all the 0-th order Yukawa

coefficients to be universal, y0u = y0d = y0ν = y0e = 4.4, and the Higgs localization parameter to

a = 2.1. The modified-AdS5 metric parameters are ν = 1.1, y1 = 2.8×10−17, and A(y1) = 35.

11A similar point for the pure AdS5 is presented in [3] which we do not repeat here.
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5.4 Conclusion

In this work, we have provided a framework in which all of the fermions are treated on equal

footing, including neutrinos, and the where SM fermion flavor structure can still emerge

naturally out of a slightly broken universal flavor symmetry. All the matter fields must

be in the bulk and in particular the Higgs field should be as delocalized as possible from

the IR boundary. In particular we have explored a warped scenario in which the metric is

modified from the usual AdS5 background. This setup has the advantage of allowing lower

KK masses (∼ 1-2 TeV) while still safe from precision electroweak tests and flavor bounds.

In our case the modified metric presents a further advantage as the neutrino mass generation

in our framework is more natural. This is due to a numerical accident by which the neutrino

masses generated in the AdS5 background are too small (at most ∼ 10−4 eV ). Within the

modified metric setup, neutrino masses can be up to two orders of magnitude greater, in

the same qualitative region of parameter space, which we called the neutrino plateau, where

the effective 4D neutrino masses do not have any exponential dependence on the bulk mass

parameters ci (in contrast with quarks and charged leptons).

Once the flavor symmetry is slightly broken, the SM flavor structure emerges thanks to

the inherent features of warped space models. The wave function profiles of light quarks and

charged leptons are exponentially sensitive to the symmetry violating terms and this results in

masses and mixings controlled by the small flavor violating terms. In the neutrino sector, the

wave functions are not exponentially sensitive to flavor violation parameters, due to the Higgs

being highly delocalized, and thus the symmetry is mostly preserved. The observed structure

of neutrino masses and mixings is generated mainly out of the original flavor symmetry. The

de-localization of the Higgs in the bulk is thus an essential ingredient in our setup. Still,

there is a source of tension in models with an AdS5 metric background, in which in order

to produce the correct Dirac neutrino masses, too much Higgs delocalization is required.

This Higgs does not generically solve the hierarchy problem (the original motivation of these

models) unless some degree of fine-tuning is re-introduced. These tensions disappear when

we use a modified-AdS5 geometry so that our flavor setup can be successfully implemented.

This becomes an added benefit of these promising modified metric scenarios, in which low

KK masses are consistent with precision electroweak and flavor tests.

For illustration, we chose a simple example in which symmetries can provide an implementa-

tion for this mechanism. In this example, namely flavor democracy, the 5D Yukawa couplings

for the fermions are invariant under S3 × S3 while the 5D fermion bulk mass matrices are
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invariant under S3 family permutation invariance. As we saw in the example, the symmetries

are broken with small terms and this is enough to generate the full flavor structure of the SM.

Also, one could imagine other symmetries in the 5D scenario, where different predictions and

correlations appear in the implementation, making this framework a very promising novel

laboratory for studying fermion flavor symmetries.



Chapter 6

Conclusions and Outlook

In this thesis we investigated the phenomenological consequences of models with one spacial

warped extra dimension. These models are physically important as they address the gauge

and flavor hierarchy problem, while at the same time being generically consistent with the

SM. Another aspect of these models that is particularly relevant is that, from a 4 dimensional

effective theory point of view, these models predict the existence of additional resonances well

within the reach of the LHC.

First, in the context of pure AdS5 models with all the SM fields, including the Higgs field,

allowed to propagate in the bulk of the extra dimension, we addressed the Higgs phenomenol-

ogy of a model with a single fermion field, though we expect the complete model will produce

generically the same results. Our result was that, with Yukawa matrix mixings and phases

all order one, and randomly chosen, the couplings of the Higgs fields to the fermions, gluons

and photons can be significantly shifted from the values obtained by the SM. These shifts

can be either enhancing or suppressing, depending on the phases of the fields involved. We

also showed that the effect of the heavier KK modes decouples fast enough so that consid-

ering an effective field theory with only the first few KK modes approaches the result of

considering the full infinite tower of KK modes. In this effective field theory approach, as

the Higgs becomes more and more localized towards the IR brane, one needs to consider all

relevant operators, and in particular, the effect of a certain higher derivative operator can

be significant. We also showed that our results are more predictive for the case of the Higgs

in the bulk, as the effect the mentioned higher derivative operator is small while the the

effects due to only the normal 5D Yukawa terms are aligned, which results in all KK modes

contributions to add up, an enhancement in the Higgs boson production caused by a single

93
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fermion family, though for the case of 3 generations, this prediction would not be as robust,

due to the flavor phases and mixings.

We then generalized these results to the case of (more general) modified AdS5 metrics. We

showed that just as in the pure AdS5 case, the existence of a tower of KK fermions for each

of the SM color charged particles, in these models can lead to significant enhancements in the

total Higgs production rate at the LHC. We saw that as the Higgs production rate depends

crucially on the the coupling of the KK fermions with the Higgs profile in the bulk, the results

depend on the profile of these fields along the extra dimension. Therefore the shifts in the

Higgs production rate compared to the SM are reduced as the KK fermions become heavier

or the Higgs becomes more delocalized away from the IR brane. This is achieved by a lower

a parameter for the Higgs profile. If everything else kept identical, in the case of modified

AdS5 scenarios, the overlap between the fermion and Higgs fields is suppressed relative to

the pure AdS5 case. This is due to the fact that relative to the pure RS, the fermion fields

are localized more towards the IR brane as compared to the Higgs field profile. As a result,

for lower KK masses, as low as ∼ 2 TeV only the modified AdS5 appears to be consistent

with the experimental results at the LHC.

In the last part, we shifted our analyses to neutrino phenomenology. We proposed a general

unified scenario for the flavor structure of the SM arising from the 5D bulk scenario. We

showed that if the 5D theory obeyed a symmetry in the flavor sector, the warped extra

dimensions produce a framework in which this symmetry is completely washed out in the

case of the quarks and charged leptons, leading to the correct hierarchical structure of the

quark, charged lepton masses and mixing (the CKM matrix). However the same symmetry is

almost intact in the case of neutrinos, resulting in consistent neutrino masses and mixings (the

PMNS matrix), and therefore provides a very natural and simple explanation for this contrast

within the SM flavor structure. This drastic difference within the flavor sector in the warped

extra dimension scenarios is due to the existence of plateau for large values of the fermion

localization (bulk mass) parameter, c. It was shown that for these values of c the position of

this plateau is dominantly determined by the Higgs localization parameter, a, and depends

only mildly on the c parameter. Therefore a small symmetry breaking in the 5D parameters,

while producing a large effect in the quark and charged lepton sectors, has little or no effect

on the neutrino sector. For these models both the pure AdS5 and modified scenarios were

considered. As the mass of the neutrinos in this framework depends crucially on the position

of the neutrino plateau, which itself depends on the Higgs localization parameter, a, and not

the fermion bulk mass terms, there are some tensions which arise in the pure AdS5 case.
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There, the neutrino mass data requires an a parameter as low as a = 1.8, which can only be

achieved with significant fine tuning of some other 5D Higgs profile parameters in order to

suppress the other branch of the Higgs profile (the one which decays towards the IR brane).

We saw that these tensions can be alleviated in the case of the modified AdS5 geometries, as

in these scenarios the position of the neutrino plateau is more consistent with the neutrino

data.

In conclusion, warped extra dimensions offer a very interesting framework for the beyond the

standard model physics. But the research into the phenomenology of these models is far from

complete. The material in this thesis inspires future research in this area. For example in

the case of the model proposed for the neutrinos other symmetries are possible and are under

current speculation. Understanding the general framework of these symmetry breakings in

the 5D context is also a very interesting problem, which we are currently working on.

For the Higgs production rate, a full, realistic three generation treatment of the model as

well as evaluation of the production rate through other interesting channels (for example

H → γγ) would be an important project, especially as more and more data are expected

through the next run at the LHC. This project is also being considered.

We are also currently working on collider signals for modified AdS5 models at the LHC.
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Appendix A

Analytical Results for Bulk Higgs

Gluon Fusion

From equation (3.39) the shift defined as
∆

mv4
≡ 1

v4
− Y

m
, can be also derived from

∆

mv4
=

v4
Y u
qu


i,j

Y u
qUj
Y u∗
UjQi

Y u
Qiu

MQi
MUj

. (A.1)

Therefore simply replacing the second Yukawa coupling with the Yukawa coupling of the

Higher derivative operator, Y R will give

∆R

mv4
=

v4
Y u
qu


i,j

Y u
qUj
Y Ru∗
UjQi

Y u
Qiu

MQi
MUj

. (A.2)

Here, we present explicit analytic expressions for the hgg production and also the Yukawa

coupling-mass shifts by performing the infinite sums over the KK modes. We also include

the result given in reference [80] for the shift due to the usual Yukawa term, YdQ̄HU , for

completeness.1 To summarize, we have

chgg =
2m2

d

v4
R′2 2 + cu − cq + β

(1− 2cq)(1 + 2cu)


(1− ϵ1−2cq)(1− ϵ1+2cu)

4 + 2β
− 1− ϵ1−2cq

5 + 2cu + 2β
− 1− ϵ1+2cu

5− 2cq + 2β

+
ϵ1−2cq

4 + 2β
(1− ϵ1+2cu) +

ϵ1+2cu

4 + 2β
(1− ϵ1−2cq) +

ϵ2−2cq+2cu

2− cu + cq + β
− ϵ−2cq+1

3 + cu + cq + β

− ϵ1+2cu

3− cu − cq + β
+

1

4 + cu − cq + β


+
yRSt
mt

A1/2(τt) +
∆t

2

mtv4
, (A.3)

1We have reproduced this result using the equation (A.2), and our results match the one given in the

text of [80]. Note however that there a few typos in the eq. A1 of their appendix.
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for the hgg production and

∆d
1

mv4
=

2m2
d

v4
R′2 2 + cu − cq + β

(1− 2cq)(1 + 2cu)


(1− ϵ1−2cq)(1− ϵ1+2cu)

6 + cu − cq + 3β
− 1− ϵ1−2cq

5 + 2cu + 2β
− 1− ϵ1+2cu

5− 2cq + 2β

+
ϵ1−2cq

4 + 2β
(1− ϵ1+2cu) +

ϵ1+2cu

4 + 2β
(1− ϵ1−2cq) +

ϵ2−2cq+2cu

2− cu + cq + β
− ϵ−2cq+1

3 + cu + cq + β

− ϵ1+2cu

3− cu − cq + β
+

1

4 + cu − cq + β


, (A.4)

for the shifted Yukawa coupling. Also, there is a misalignment due to the kinetic term [80],

which as discussed in the text, is only important for the case of the third generation quarks.

We do not repeat that result here. For the higher derivative term the shift is:

∆d
R

mv4
= 2

Y ′
R

Λ2

m2
d

v4

2 + cu − cq + β

(1 + 2cu)(1− 2cq)


(4− cq + β)(4 + cu + β)

6 + 3β + cu − cq
(1− ϵ1−2cq)(1− ϵ1+2cu)

−(3− cq)(4− cq + β)

5 + 2β − 2cq
(1− ϵ1+2cu)− (3 + cu)(4 + cu + β)

5 + 2β + 2cu
(1− ϵ1−2cq)

+
(2 + cq)(4− cq + β)

4 + 2β
ϵ1−2cq(1− ϵ1+2cu) +

(2− cu)(4 + cu + β)

4 + 2β
ϵ1+2cu(1− ϵ1−2cq)

+
(2 + cq)(2− cu)

2 + cq − cu + β
ϵ2−2cq+2cu − (3− cq)(2− cu)

3− cu − cq + β
ϵ1+2cu − (2 + cq)(3 + cu)

3 + cu + cq + β
ϵ1−2cq

+
(3− cq)(3 + cu)

4 + cu − cq + β


.



Appendix B

Bulk to Brane Limit

We summarize the matching prescription for operators containing Higgs field for the case

where the Higgs boson is localized on the brane. As explained in Section 3.2, these pre-

scriptions insures that the 5D bulk Higgs scenario transitions smoothly to a brane-localized

Higgs case. The brane prescription for the Higgs associates a delta function to the Higgs

normalization integral

 R′

R

(
R

z
)3dz[hβ(z)]

2 = 1 .

As the HH, rather than H field, is associated with a δ function, one must include a β

dependence to the bulk Higgs fields to be able to match operators, in the limit β → ∞ to

the brane ones. The conversion is:

H →

β ,

HH → HH ,

HHH → 1√
β
HHH ,

for matching brane to bulk in the appropriate limit.

So for the shift, we have contributions from Y2 and YR. As we are dealing with an effective

theory, we look at the effect of summing over a finite number of modes, let’s say 3 to 5.

For the case of brane Higgs, the contributions for a finite number of modes for Y2 give exactly

0 (because of boundary values on the brane). This confirms the work of [75]. However, we

must add higher order operators YR, which give a significant result (converging to a constant
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for β → 1000 and anything beyond). The result obtained by summing over a finite number

of modes in the brane on the YR contribution must be compared with the result in the paper

by [80] for the infinite sum of Y2 on the brane.

For bulk Higgs, the shift contribution from a finite number of modes on the Y2 contribution is

no longer 0. However, adding to this the YR contribution, we notice that the YR contribution

for bulk Higgs is much smaller (two orders of magnitude) than the corresponding one in the

brane. This is a clear indication that higher order corrections are much more important for

the brane Higgs case than for the bulk.



Appendix C

Infinite Sums in Modified AdS5

In this appendix we show how to obtain the infinite sums in Eq. (3.41). Using the equations

of motion for the fermion field profiles before the electroweak symmetry breaking, from the

Smatter one gets

∂yψ̂L +Mψ(y)ψ̂L = eA(y)mnψ̂R,

−∂yψ̂R +Mψ(y)ψ̂R = eA(y)mnψ̂L,

and using the definition (4.11) we obtain

mnψ̂R − e−A−Q∂y(ψ̂Le
Q) = 0, (C.1)

mnψ̂L + e−A+Q∂y(ψ̂Re
−Q) = 0, (C.2)

where the hatted functions are defined as ψ̂ ≡ e−2Aψ. We now multiply the first equation by

eA+Q and the second by eA−Q. Integrating from 0 to some arbitrary value, y′, gives, y′

0

eA+Qψ̂R =
1

mn

ψ̂L(y
′)eQ(y′), (C.3)

 y′

0

eA−Qψ̂L = − 1

mn

ψ̂R(y
′)e−Q(y′), (C.4)

where we have imposed Dirichlet boundary conditions, ψ̂L(0) = 0 on the first equation,

and ψ̂R(0) = 0 on the second one. Multiplying these equations by ψ̂R(y
′′) and ψ̂L(y

′′) and

performing a summation over all of the KK modes we obtain y′

0

eA+Q
∞
n=1

ψ̂
(n)
R (y′′)ψ̂

(n)
R (y) = eQ(y′)

∞
n=1

ψ̂
(n)
R (y′′)ψ̂

(n)
L (y′)

mn

, (C.5)
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 y′

0

eA−Q
∞
n=1

ψ̂
(n)
L (y′′)ψ̂

(n)
L (y) = −e−Q(y′)

∞
n=1

ψ̂
(n)
L (y′′)ψ̂

(n)
R (y′)

mn

. (C.6)

Now using the completeness of the Sturm-Liouville system as1

∞
n=0

ψ̂(n)(y)ψ̂(n)(y′) = e−Aδ(y − y′), (C.7)

we obtain the sums

∞
n=1

ψ̂
(n)
R (y′′)ψ̂

(n)
L (y′)

mn

= e−Q(y′)

 y′

0

eA+Q

e−Aδ(y′′ − y)− ψ̂

(0)
R (y′′)ψ̂

(0)
R (y)


, (C.8)

∞
n=1

ψ̂
(n)
L (y′′)ψ̂

(n)
R (y′)

mn

= −eQ(y′)

 y′

0

eA−Q

e−Aδ(y′′ − y)− ψ̂

(0)
L (y′′)ψ̂

(0)
L (y)


. (C.9)

Finally performing the δ-function integrals and using the normalized zero modes (y1 being

the position of the IR brane)

ψ̂
(0)
L (y) =

e−Q(y)

(
 y1
0
eA−2Q)

1
2

, ψ̂
(0)
R (y) =

eQ(y)

(
 y1
0
eA+2Q)

1
2

, (C.10)

we get

∞
n=1

ψ̂
(n)
R (y′′)ψ̂

(n)
L (y′)

mn

= eQ(y′′)−Q(y′)


θ(y′ − y′′)−

 y′
0
eA−2Q y1

0
eA−2Q


, (C.11)

∞
n=1

ψ̂
(n)
L (y′′)ψ̂

(n)
R (y′)

mn

= −eQ(y′)−Q(y′′)


θ(y′ − y′′)−

 y′
0
eA+2Q y1

0
eA+2Q


. (C.12)

1Note that here we are working with the hatted functions ψ̂ ≡ e−2Aψ.



Appendix D

Explicit Expressions for the Field

Profiles

In this appendix we present the explicit expressions mentioned in the text. The fermion

profiles are given by

q0,iL (y) = qi0e
(2−ciq)A(y) (D.1)

u0,iR = ui0e
(ciu+2)A(y) (D.2)

while the Higgs profile is

h(y) = h0e
aky (D.3)

with

qi0 =
√
kϵ

1
2
−ciqf(ciq) ≡

√
kf(ciq) (D.4)

ui0 =
√
kϵ

1
2
+ciuf(−ciu) ≡

√
kf(−ciu) (D.5)

and

h0 ≡
√
ke−(a−1)kysh0 (D.6)

h0 =
1

kys(2(a− 1)kys)
− 2

ν2
−1

Γ

1 + 2

ν2
, 2(a− 1)k(ys − y1)


− Γ


1 + 2

ν2
, 2(a− 1)kys


where

ϵ = e−A(y) = e−ky1

1− y1

ys

 1
ν2

. (D.7)
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We have also defined

f(c) ≡ ϵ
1
2
−cf(c) (D.8)

where the function f(c) is defined as

f(c) ≡
ϵc−

1
2

kyse(1−2c)kys((1− 2c)kys)
1−2c

ν2
−1

Γ

1− 1−2c

ν2
, (1− 2c)k(ys − y1)


− Γ


1− 1−2c

ν2
, (1− 2c)kys

 .
Note that the Higgs and the fermion profiles are defined differently. This is due to the specific

Higgs potential we have considered. We can now write down the most general form for the

Yukawa couplings as

yuij = Ỹ u
ijh0f(c

i
q)f(−cju) (D.9)

where the Ỹijs are related to the 5D Yukawa couplings via the equation

Ỹ u
ij ≡ Y u

ij

√
kϵ1−cq+cuyse

kys(a−ciq+c
j
u)(kys(a− ciq + cju))

c
j
u−ciq

ν2
−1 (D.10)

Γ


ciq − cju
ν2

+ 1, (a− ciq + cju)k(ys − y1)


− Γ


ciq − cju
ν2

+ 1, (a− ciq + cju)kys


Before switching to RS let us use the asymptotic expansion of the incomplete gamma func-

tion

Γ(a, z) ∼ za−1e−z

1 +

a− 1

z
+

(a− 1)(a− 2)

z2
+O(z−3)


, (D.11)

and up to the first order O(za−1) with ϵ defined as in (D.7) we get the following asymptotic

behavior

f(c) ∼


1− 2c

1− ϵ1−2c
(D.12)

h0 ∼


2(1− a)

1− e2aky1ϵ2
(D.13)

Ỹ u
ij ∼ eaky1ϵcq−cu − 1

a− ciq + cju
Y u
ij (D.14)
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keeping theO(za−2) term not only gives a much better approximation for the top and neutrino

plateaux, it also gives an intuitive picture of these functions:

f(c) ∼ ϵc−
1
2

 (1− 2c)kysν2

kysν2(ϵ2c−1 − 1)− ϵ2c−1 +


ys
ys−y1

 (D.15)

h0 ∼ ϵ−1e−aky1

 2(1− a)2 kysν2

kysν2(1− a)(ϵ−2e−2aky1 − 1)− ϵ−2e−2aky1 +


ys
ys−y1

 . (D.16)

From these formulas one can see that taking the limits ν → ∞ and ys → ∞ we arrive at the

RS

fRS(c) =


1− 2c

1− ϵ1−2c
≡ ϵc−

1
2 fRS(c) (D.17)

hRS0 = e(1−a)ky1


2(1− a)

ϵ2(a−1) − 1
(D.18)

Ỹ RS,u
ij ≡ ϵ−(a−ciq+c

j
u) − 1

a− ciq + cju
Y RS,u
ij (D.19)

ϵ ≡ e−ky1 (D.20)

yRS,uij = Ỹ RS,u
ij hRS0 fRS(ciq)f

RS(−cju) (D.21)
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Casimir-Polder repulsion near edges: Wedge apex and a screen with an aperture
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Although repulsive effects have been predicted for quantum vacuum forces between bodies with nontrivial
electromagnetic properties, such as between a perfect electric conductor and a perfect magnetic conductor,
realistic repulsion seems difficult to achieve. Repulsion is possible if the medium between the bodies has a
permittivity in value intermediate to those of the two bodies, but this may not be a useful configuration. Here,
inspired by recent numerical work, we initiate analytic calculations of the Casimir-Polder interaction between
an atom with anisotropic polarizability and a plate with an aperture. In particular, for a semi-infinite plate, and,
more generally, for a wedge, the problem is exactly solvable, and for sufficiently large anisotropy, Casimir-Polder
repulsion is indeed possible, in agreement with the previous numerical studies. In order to achieve repulsion,
what is needed is a sufficiently sharp edge (not so very sharp, in fact) so that the directions of polarizability of
the conductor and the atom are roughly normal to each other. The machinery for carrying out the calculation
with a finite aperture is presented. As a motivation for the quantum calculation, we carry out the corresponding
classical analysis for the force between a dipole and a metallic sheet with a circular aperture, when the dipole is
on the symmetry axis and oriented in the same direction.

DOI: 10.1103/PhysRevA.83.062507 PACS number(s): 31.30.jh, 42.50.Lc, 32.10.Dk, 03.50.De

I. INTRODUCTION

There has been increasing interest in utilizing the quan-
tum vacuum force or the Casimir effect in nanotechnology
employing mesoscopic objects [1]. Although the original
Casimir effect, between parallel conducting or dielectric plates
separated by vacuum [2,3], always gives an attractive force
between the plates, introducing a material (liquid) with an
intermediate value of the dielectric constant can result in
repulsion [4], which has now been observed [5]; for precursors,
see [6–10]. [The first experimental test of the Lifshitz theory
with an intermediate liquid (helium) was that of Sabisky and
Anderson [11]; application of the Lifshitz theory to the melting
of water ice was considered by Elbaum and Schick [12].]
A recent experiment involving air bubbles in a liquid with
boundary walls is described in Ref. [13]. However, this type
of repulsion is unlikely to have many applications in building
devices.

There are well-known repulsive quantum forces in vacuum.
The first example was found by Boyer [14]. He computed
the self-stress of a perfectly conducting spherical shell due
to quantum electrodynamic field fluctuations and found a
repulsive result, but the meaning of such a self-energy is
extremely obscure. He later found [15] a more observable
effect, that the force between a perfect electrically conducting
plane (ε, the permittivity, goes to infinity) and a parallel
perfect magnetic conducting plane (µ, the permeability, goes

*milton@nhn.ou.edu
†abalo@nhn.ou.edu
‡prachi@nhn.ou.edu
§nimap@ou.edu
‖iver.h.brevik@ntnu.no
¶simen.a.ellingsen@ntnu.no

to infinity) is repulsive. This, again, may be a difficult situation
to approximately replicate in practice, because the unusual
magnetic properties must persist over a wide frequency range.

There has been extensive interest in designing metamate-
rials that could give rise to Casimir repulsion by simulating
a magnetic response [16–21]. Despite some early optimism,
the conclusion seems to have transpired that repulsion is
impossible between metamaterials made from dielectric and
metallic components [22–24]. For recent attempts combining
dielectric and magnetic setups, see Refs. [25–27].

Several years ago there was an interesting suggestion
by Sopova and Ford [28] that the force between a small
dielectric sphere and a dielectric wall was oscillatory, so there
were a number of repulsive regimes. However, this effect
was canceled by plasmon modes leaving the usual attractive
result [29]. Earlier Ford had suggested [30] that the frequency
response of materials might be manipulated in order to achieve
repulsion, but this was proved to be impossible [31].

Thus it was extremely interesting when Levin et al.
showed examples of repulsion between conducting objects, in
particular between an elongated cylinder above a conducting
plane with a circular aperture [32]. (An analytic counterpart is
given in [33].) They first gave examples of repulsive forces
between arrays of electric dipoles, and an electric dipole
and a conducting plane with an aperture cut out. Then they
turned to quantum vacuum forces between conducting objects,
computed by quite impressive “brute force” finite-difference
time-domain and boundary-element methods.

The purpose of the present paper is to try to understand these
phenomena analytically. We first show, in Sec. II, that there
is no repulsion possible in the weak coupling regime, where
because the materials are dilute one may sum Casimir-Polder
interactions between atoms [34]. However, there is repulsion
in classical electrostatics between a system of three dipoles

062507-11050-2947/2011/83(6)/062507(14) ©2011 American Physical Society
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(Sec. III) and between a fixed dipole and a conducting plane
with an aperture, which we discuss in Sec. IV, both in two
and three dimensions. This is an interesting pedagogical
problem, for it involves mixed coupled integral equations,
like those for an electrified disk, or a plane with an aperture
with different constant electric fields at large distances above
and below the punctured plane [35]. These problems exhibit
closed form solutions, and clearly exhibit repulsion when
the dipole is directly above the aperture and is sufficiently
close. In Sec. V we turn to the real problem, that of the
Casimir-Polder force between an anisotropic polarizable atom
and a punctured dielectric plane. Because solving the integral
equations arising for the Green’s dyadic for the plate with
aperture is rather complicated, in Sec. VI we content ourselves
with computing the Casimir-Polder interaction between a
polarizable atom and a perfectly conducting wedge. When the
opening angle of the wedge approaches 2π , this describes the
interaction between an atom and a semi-infinite conducting
plane. We exhibit situations in which repulsive forces in
certain directions can arise for anisotropic atoms, in qualitative
agreement with numerical work [32]. In Appendix A we give
another derivation of the Casimir-Polder energy formula for
the wedge, based on a closed form for the Green’s dyadic, and
in Appendix B we give a classical calculation of a conducting
ellipsoid above a conducting plate with a circular aperture in
the presence of a background field.

A word about terminology: When we say “atom” we
mean any microscopic particle which may be described
by a polarizability tensor. Our calculations assume that
we are in the retarded regime, so that static (frequency-
independent) polarizabilities may be employed. Should lower
frequency transitions dominate (which could occur with some
molecules), so that the separations are in the nonretarded
regime, electrostatic results are valid [but for a factor of
1/2—See Eq. (4.15) below and Ref. [36]].

In this paper we set h̄ = c = 1, and all results are expressed
in Gaussian units except that Heaviside-Lorentz units are used
for Green’s dyadics.

II. WEAK COUPLING CALCULATION

A. Scalar field

We first illustrate the ideas by considering the case of a
massless scalar field in two dimensions. The quantum vacuum
energy between two weakly coupled potentials V1 and V2 is

U12 = − 1

32π2

∫
(dr)(dr′)

V1(r)V2(r′)
|r − r′|2 , (2.1)

the scalar analog of the Casimir-Polder force between atoms.
Here we consider the potentials as shown in Fig. 1, which
represents a needle of length L on the symmetry axis a distance
Z above a line with a gap of width a. The potentials are given
by

V1(x,z) = λ1δ(x)θ (z − Z + L/2)θ (Z + L/2 − z), (2.2a)

V2(x,z) = λ2δ(z)[θ (x − a/2) + θ (−x − a/2)]. (2.2b)

a

Z

L

FIG. 1. Two-dimensional geometry of a needle of length L a
distance Z above a line with a gap of width a.

This means that the interaction energy is

U12 = − λ1λ2

32π2

∫ Z+L/2

Z−L/2
dz

{∫ ∞

a/2
+

∫ −a/2

−∞

}
dx

1

x2 + z2
.

(2.3)

To get the force on the needle, we simply have to integrate on
x, and differentiate with respect to the limits of the z integral:

F = − ∂

∂Z
U12 = λ1λ2

8π2a

[
arctan(2Z/a + L/a)

2Z/a + L/a

−arctan(2Z/a − L/a)

2Z/a − L/a

]
, (2.4)

which, because F < 0, always represents an attractive force
between the punctured line and the needle. Note that although
the force vanishes at Z = 0, the energy there, which represents
the work done in bringing the needle in from infinity, is not
zero.

B. Electromagnetic field

Now we consider the quantum vacuum force between dilute
dielectric media, which may be obtained from the Casimir-
Polder potential between isotropic polarizable atoms [34],

UCP = − 23

4π
α1α2

1

r7
, (2.5)

where r is the distance between the atoms. We might mention
that Eq. (2.5) is in general valid in the retarded limit where
the atomic polarizability can be regarded as constant. (For
more details, see the review [37].) The result is applicable
provided that the atom-plate separation is much greater than
the atomic transition wavelength (typically some hundreds of
nanometers for ground-state atoms). The media have dielectric
constants εi = 1 + 4πNiαi , where Ni represents the density of
atoms of type i. Specifically, we consider a three-dimensional
configuration, in which an atom of isotropic polarizability α

is placed on the symmetry axis a distance Z above a dielectric
plate of thickness t with a circular hole in the middle, as shown
in Fig. 2.
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•

2a

Z

α

ε t

FIG. 2. Three-dimensional geometry of a polarizable atom a
distance Z above a dielectric slab with a circular aperture of radius a.

The quantum interaction energy is

U = − 23

(4π )2
α(ε − 1)

∫
slab

(dr)
1

[(z − Z)2 + r2
⊥]7/2

= − 23

60πa4
α(ε − 1)

[
(t + 2Z)[6a2 + (t + 2Z)2]

[4a2 + (t + 2Z)2]3/2

+ (Z → −Z)

]
. (2.6)

It is easy to see that the force F = −∂U/∂Z is always negative
(i.e., attractive).

A more favorable case for possible repulsion would be an
anisotropic atom. It is easy to derive the appropriate gener-
alization of the Casimir-Polder potential in this case, starting
from the weak-coupling multiple scattering formula [38],

U12 = i

2
Tr �0V1�0V2, (2.7)

where the free Green’s dyadic is (ζ = −iω),

�0(r,r′) = (∇∇ − 1ζ 2)
e−|ζ ||r−r′|

4π |r − r′| . (2.8)

Following the procedure given in Ref. [38], we find for an
isotropic medium facing an anisotropic atom,

U = ε − 1

32π2

∫
slab

(dr)
1

|r − R|7

×
[

13 tr α + 7
(r − R) · α · (r − R)

(r − R)2

]
, (2.9)

where R = (0,0,Z) is the position of the atom, relative to the
center of the aperture. This may be easily checked to reduce
to the usual Casimir-Polder result (2.5) when α = α1.

Let us consider the extreme case when only αzz is
significant. Then the integrals may be easily carried out, with
the result,

U = αzz(ε − 1)

60πa4

[
t + 2Z

[4 + (t + 2Z)2]5/2
[156a4 + 70a2(t + 2Z)2

+7(t + 2Z)4] + (Z → −Z)

]
. (2.10)

This, again, always gives rise to an attractive force.

d1

d3d2

Z

a

FIG. 3. Configuration of three dipoles, two of which are antipar-
allel, and one perpendicular to the other two.

An interesting special case is when the aperture is small
compared to the thickness of the dielectric. Then the energy is
a step function,

U = − 7

30πa4
αzz(ε − 1)θ (t − 2|Z|), a � t, (2.11)

which gives rise to a δ-function force just when the atom enters
and exits the aperture. If the aperture is very large compared
to the thickness of the slab, t � a, the energy and force are
proportional to the thickness of the slab,

U = − 1

80πa4
αzz(ε − 1)

13a2 + 18Z2

(a2 + Z2)7/2
a4t. (2.12)

III. CLASSICAL DIPOLE INTERACTION

It is possible to achieve a repulsive force between a config-
uration of fixed dipoles. Consider the situation illustrated in
Fig. 3. Here we have two dipoles, of strength d2 and d3 lying
along the x axis, separated by a distance a. A third dipole of
strength d1 lies along the z axis. If the two parallel dipoles are
oppositely directed and of equal strength,

d2 = −d3 = d2x̂, (3.1)

and are equally distant from the z axis, and the dipole on the
z axis is directed along that axis,

d1 = d1ẑ, (3.2)

the force on that dipole is along the z axis:

Fz = 3ad1d2
a2/4 − 4Z2

(Z2 + a2/4)7/2
, (3.3)

which changes sign at Z = a/4; that is, for distances Z

larger than this, the force is attractive (in the −z direction)
while for shorter distances the force is repulsive (in the +z

direction). Evidently, by symmetry, the dipole-dipole energy
vanishes at z = 0. Consistent with Earnshaw’s theorem, the
point where the force vanishes is an unstable point with respect
to deviations in the x direction.

In view of this self-evident finding, it might seem surprising
that the interaction between a polarizable atom and a dilute
medium (made up of polarizable atoms) studied in Sec. II B
failed to exhibit a repulsive regime, but this is because the
medium is isotropic.
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IV. CLASSICAL INTERACTION BETWEEN A DIPOLE
AND A CONDUCTING PLANE WITH AN APERTURE

In this section, we consider the interaction between a
dipole and a perfectly conducting plane containing an aperture.
We first consider two dimensions. (As above, we denote
the Cartesian coordinates by x and z for uniformity with the
three-dimensional situation.)

A. Dipole above aperture in a conducting line

If we use the Green’s function which vanishes on the entire
line z = 0,

G(r,r′) = − ln[(x − x ′)2 + (z − z′)2]

+ ln[(x − x ′)2 + (z + z′)2], (4.1)

so

G(x,0; x ′,z′) = 0, (4.2)

we can calculate the electrostatic potential at any point above
the z = 0 plane to be

φ(r) =
∫

z>0
(dr′)G(r,r′)ρ(r′)

+ 1

4π

∫
ap

dS ′ ∂

∂z′ G(r,r′)
∣∣∣∣
z′=0

φ(r′), (4.3)

where the volume integral is over the charge density of the
dipole,

ρ(r) = −d · ∇δ(r − R), R = (0,Z). (4.4)

The surface integral extends only over the aperture because
the potential vanishes on the conducting sheet. If we choose d
to point along the z axis we easily find

φ(x,z > 0) = 2d

[
z − Z

x2 + (z − Z)2
+ z + Z

x2 + (z + Z)2

]

+ 1

π

∫ a/2

−a/2
dx ′ z

(x − x ′)2 + z2
φ(x ′,0), (4.5)

where a is the width of the aperture.
Now the free Green’s function in two dimensions is

G0(r,r′) = 4π

∫
(dk)

(2π )2

eikx (x−x ′)eikz(z−z′)

k2
x + k2

z

=
∫ ∞

−∞
dkx

1

|kx |e
ikx (x−x ′)e−|kx ||z−z′ |. (4.6)

Then the surface integral in Eq. (4.5) is∫ ∞

−∞

dkx

2π
eikxxe−|kx |zφ̃(kx), (4.7)

in terms of the Fourier transform of the field,

φ̃(kx) =
∫ ∞

−∞
dx ′e−ikxx

′
φ(x ′,0)

= 2
∫ a/2

0
dx ′ cos kxx

′φ(x ′,0), (4.8)

since φ(x,0) must be an even function for the geometry
considered. Thus we conclude

φ(x,z > 0) = 2d

[
z − Z

x2 + (z − Z)2
+ z + Z

x2 + (z + Z)2

]

+ 1

π

∫ ∞

0
dk cos kx e−kzφ̃(k). (4.9)

This becomes an identity as z → 0.
The electric field in the aperture is

Ez(x,z = 0+) = − ∂

∂z
φ(x,z)

∣∣∣∣
z=0+

= −4d
x2 − Z2

(x2 + Z2)2
+ 1

π

∫ ∞

0
dk k cos kx φ̃(k).

(4.10)

On the other side of the aperture, there is no charge density, so
for z < 0 the potential is

φ(x,z < 0) = 1

π

∫ ∞

0
dk cos kx ekzφ̃(k), (4.11)

so the z component of the electric field in the aperture is

Ez(x,z = 0−) = − ∂

∂z
φ(x,z)

∣∣∣∣
z=0−

= − 1

π

∫ ∞

0
dk k cos kx φ̃(k). (4.12)

Because we require that the electric field be continuous in the
aperture, and the potential vanish on the conductor, we obtain
the two coupled integral equations for this problem,

4d
x2 − Z2

(x2 + Z2)2
= 2

π

∫ ∞

0
dk k cos kx φ̃(k),

0 < |x| < a/2, (4.13a)

0 =
∫ ∞

0
dk cos kx φ̃(k), |x| > a/2. (4.13b)

In fact, these equations have a simple solution [39]:

φ̃(k) = −4Zdπ

a

∫ 1

0
dx x

J0(kax/2)

(x2 + 4Z2/a2)3/2
. (4.14)

From this, we can work out the energy of the system from

U = −1

2
dEz(0,Z) = 1

2
d

∂φ

∂z

∣∣∣∣
z=Z,x=0

, (4.15)

where the factor of 1/2 comes from the fact that this must be
the energy required to assemble the system. In computing this
energy we must, of course, drop the self-energy of the dipole
due to its own field. We are then left with

Uint = − d2

4Z2
− d

2π

∫ ∞

0
dk k e−kZφ̃(k)

= − d2

4Z2
+ Z2d2

(
2

a

)4 ∫ 1

0

1

2
dx2 1

(x2 + 4Z2/a2)3

= − 4Z2d2

(a2 + 4Z2)2
, (4.16)

where to get the second line we used the derivative of
Eq. (4.17). This is exactly two times larger that the result
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quoted in Ref. [32].1 Since this vanishes at Z = 0 and Z = ∞,
the force must change from attractive to repulsive, which
happens at Z = a/2.

B. Three-dimensional aperture interacting with dipole

It is quite straightforward to repeat the above calculation in
three dimensions. Again we are considering a dipole, polarized
on the symmetry axis, a distance Z above a circular aperture
of radius a in a conducting plate.

The free three-dimensional Green’s function in cylindrical
coordinates has the representation,

1√
ρ2 + z2

=
∫ ∞

0
dk J0(kρ) e−k|z|, (4.17)

and so if we follow the above procedure we find for the
potential above the plate,

φ(r⊥,z > 0) = d

[
z − Z

[r2
⊥ + (z − Z)2]3/2

+ z + Z

[r2
⊥ + (z + Z)2]3/2

]

+
∫ ∞

0
dk k e−kzJ0(kr⊥)�(k), (4.18)

where the Bessel transform of the potential in the aperture is

�(k) =
∫ ∞

0
dρ ρ J0(kρ)φ(ρ,0). (4.19)

Thus the integral equations resulting from the continuity of
the z component of the electric field in the aperture and the
vanishing of the potential on the conductor are

d
r2
⊥ − 2Z2

[r2
⊥ + Z2]5/2

=
∫ ∞

0
dk k2J0(kr⊥)�(k), r⊥ < a,

(4.20a)

0 =
∫ ∞

0
dk kJ0(kr⊥)�(k), r⊥ > a. (4.20b)

The solution to these equations is given in Titchmarsh’s
book [40], and after a bit of manipulation we obtain

�(k) = −
(

2ka

π

)1/2
d

ka

∫ 1

0
dx x3/2J1/2(xka)

2Z/a

(x2 + Z2/a2)2
.

(4.21)

Then the energy (4.15) may be easily evaluated using∫ ∞

0
dk k3/2e−kZJ1/2(kax) = 2

√
2xa

π

Z

(x2a2 + Z2)2
. (4.22)

The energy can again be expressed in closed form:

U = − d2

8Z3
+ d2

4πZ3

[
arctan

a

Z

+Z

a

1 + 8/3(Z/a)2 − (Z/a)4

(1 + Z2/a2)3

]
. (4.23)

1This is not the factor of 1/2 in Eq. (4.15). It is not possible to trace
the origin of the discrepancy, since the authors of that reference quote
the result without details.

This is always negative, but vanishes at infinity and at zero:

Z → 0 : U → − 4

5π
d2 Z2

a5
. (4.24)

This means that for some value of Z ∼ a the force changes
from attractive to repulsive. Numerically, we find that the force
changes sign at Z = 0.742358a.

The reason why the energy vanishes when the dipole is
centered in the aperture is clear: Then the electric field lines
are perpendicular to the conducting sheet on the surface,
and the sheet could be removed without changing the field
configuration.

Our goal is to analytically find the quantum (Casimir)
analog of this classical repulsion.

V. STRONG COUPLING—FORCE BETWEEN AN ATOM
AND A PUNCTURED PLANE DIELECTRIC

Now we turn to the real problem. Our starting point is the
general expression for the vacuum energy [38]:

U = i

2
Tr ln ��−1

0 , (5.1)

where � is the full Green’s dyadic for the problem, and �−1
0 is

the inverse of the free Green’s dyadic (2.8), namely,

�−1
0 = 1

ω2
∇ × ∇ × −1. (5.2)

In the presence of a potential V, the full Green’s dyadic has
the symbolic form,

� = (1 − �0V)−1�0. (5.3)

Here we are thinking of the interaction between a dielectric
medium, characterized by an isotropic permittivity, so V1 =
ε − 1, and a polarizable atom, represented by a polarizability
dyadic, as shown in Fig. 2,

V2 = 4παδ(r − R), (5.4)

where R is the position of the dipole. We are only interested
in a single interaction with the latter potential, so we have for
the interaction energy,

U12 = Tr V2
δ

δV1

[
− i

2
ln(1 − �0V1)

]

= i

2
Tr(�1 − �0)V2, (5.5)

where we have used Eq. (5.3) for the potential V1 describing
the dielectric slab plus aperture and we have subtracted the
term that represents the self-energy of the atom with its own
field. This subtraction happens automatically if we start from
the “T GT G” form,

U12 = − i

2
Tr ln(1 − �1V1�2V2)

≈ i

2
Tr �1V1�0V2 = i

2
Tr(�1 − �0)V2, (5.6)

because V2 is weak. This implies the Casimir-Polder expres-
sion for the interaction between the polarizable atom and the
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dielectric,

UCP = −
∫ ∞

−∞
dζ tr α · (� − �0)(Z,Z). (5.7)

We could also derive this result from the formula for the force
on a dielectric body in an inhomogeneous electric field [36],

F = − 1

8π

∫
(dr)E2(r)∇ε, (5.8)

which classically says that a dielectric body experiences a force
pushing it into the region of the stronger field. This implies the
interaction energy,

U = − 1
2αE2(0,Z), (5.9)

and when we make the quantum-field-theoretic replacement,

1

4π
〈E(r)E(r′)〉 → 1

i
�(r,r′) = 1

i

∫
dω

2π
�(r,r′; ω), (5.10)

we recover the static isotropic version of Eq. (5.7) after the
self-energy is subtracted.

A. No aperture

When the aperture is not present, we are considering the
well-studied case of a dielectric slab, of thickness t , interacting
with a polarizable atom. Because the Green’s dyadic in this
situation, denoted �(0), then possesses translational invariance
in the x-y plane, we can express it in terms of a reduced Green’s
dyadic,


(0)(r,r′) =
∫

(dk⊥)

(2π )2
eik⊥·(r−r′)⊥g(z,z′; k⊥). (5.11)

In the case of an isotropic atom, the trace of the Green’s dyadic
occurs, which is for the reduced Green’s dyadic,

tr g(Z,Z) = −ζ 2gH (Z,Z)

+
(

∂

∂Z

∂

∂Z′ + k2
⊥

)
gE(Z,Z′)

∣∣∣∣
Z′=Z

, (5.12)

in terms of the transverse electric (H) and transverse magnetic
(E) Green’s functions. These subtracted quantities are for z,z′
above the dielectric,

gH,E(z,z′) − g
H,E
0 (z,z′) = 1

2κ
RH,Ee−κ(z+z′−t), (5.13)

in terms of the reflection coefficients,

RH = κ − κ ′

κ + κ ′ + 4
κκ ′

κ ′2 − κ2

1

D
, (5.14a)

RE = κ − κ̄ ′

κ + κ̄ ′ + 4
κκ̄ ′

κ̄ ′2 − κ2

1

D̄
, (5.14b)

where

κ2 = k2
⊥ + ζ 2, κ ′2 = k2

⊥ + εζ 2, κ̄ ′ = κ ′/ε, (5.15)

and

D =
(

κ + κ ′

κ − κ ′

)2

e2κ ′t − 1, (5.16)

with D̄ obtained from this by replacing κ ′ by κ̄ ′ except in
the exponent. These results are rather trivially obtained by
multiple scattering arguments.

Now the interaction energy is

U = −α

∫ ∞

−∞
dζ

∫
(dk⊥)

(2π )2
[−ζ 2RH + (2k2 + ζ 2)RE]

1

2κ
e−κ(2Z−t)

= − α

4π

∫ ∞

0
dζ

∫
dk2

⊥
1

κ
e−2κ(Z−t/2)

{
(ε − 1)ζ 4 e2κ ′t − 1

(κ + κ ′)2e2κ ′t − (κ − κ ′)2

+ε − 1

ε
(2k2 + ζ 2)

[
k2

(
1 + 1

ε

)
+ ζ 2

]
e2κ ′t − 1

(κ + κ ′/ε)2e2κ ′t − (κ − κ ′/ε)2

}
. (5.17)

This is precisely the result found, for example, by Zhou and
Spruch [41].

B. Integral equations for Green’s dyadic

We now specialize to the case where the plane z = 0
consists of a perfectly conducting screen with a circular
aperture of radius a at the origin. The Green’s dyadic satisfies
the differential equation,

(
1

ω2
∇ × ∇ × −1

)
· �(r − r′) = 1δ(r − r′), (5.18)

subject to the boundary conditions,

ẑ × �(r,r′)||r⊥|>a,z=0 = 0, (5.19)

which just states that the tangential components of the electric
field must vanish on the conductor. Following Levine and
Schwinger [42] we introduce auxiliary electric and magnetic
Green’s dyadics �(1,2)(r,r′) which satisfy the same differential
equation (5.18) but with the boundary conditions satisfied on
the entire z = 0 plane:

ẑ × �(1)(r,r′)|z=0 = 0, ẑ × [∇ × �(2)(r,r′)]|z=0 = 0.

(5.20)

These can be constructed in terms of the free Green’s dyadic
�0, subject only to outgoing boundary conditions at infinity,
as given in Eq. (2.8),

�0(r,r′) = (1ω2 + ∇∇)G(|r − r′|), (5.21)
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expressed in turn in terms of the Helmholtz Green’s function,

G(R) = ei|ω|R

4πR
. (5.22)

We can write, after the Euclidean rotation |ω| → iζ , the free
Green’s dyadic in the explicit form (R = r − r′),

�0(r,r′) = −G(R)

R2

[
1(1 + ζR + ζ 2R2)

−RR
R2

(3 + 3ζR + ζ 2R2)

]
. (5.23)

In terms of this last dyadic, the auxilliary Green’s dyadics have
the form,

z,z′ > 0 : �(1),(2)(r,r′)
= �(0)(r,r′) ∓ �(0)(r,r′ − 2ẑz′) · (1 − 2ẑẑ). (5.24)

Now using Green’s second identity, it is easy to prove

∇ × �(2)(r,r′) = [∇′ × �(1)]T (r′,r), (5.25a)

�(1),(2)(r,r′) = [�(1),(2)]T (r′,r), (5.25b)

where T signifies transposition. In the same way we may
derive the integral equations for the Green’s dyadic for the
screen with the aperture,

z,z′ > 0 : �(r,r′)

= �(1)(r,r′) − 1

ζ 2

∫
ap

dS ′′∇ × �
(2)
+ (r,r′′) · ẑ × �(r′′,r′),

(5.26a)

z < 0 < z′ : �(r,r′)

= − 1

ζ 2

∫
ap

dS ′′∇ × �
(2)
− (r,r′′) · ẑ × �(r′′,r′), (5.26b)

where the ± subscripts on �(2) indicate that the Green’s
function is defined in the domain above or below the z = 0
plane. The continuity of the z component of the electric field
in the aperture then leads to the integral equation:

ẑ · �(1)(r,r′)|z→0+

= 1

ζ 2

∫
ap

dS ′′ẑ · ∇ × (�(2)
+ + �

(2)
− )(r,r′′) · ẑ × �(r′′,r′).

(5.27)

The system of integral equations defining the Green’s
dyadic is rather more complicated than that describing the
corresponding (classical) static potential problem, so we will
defer the discussion of strategies for its solution to a subsequent
publication. We will here turn to a situation that can be solved
exactly.

VI. CASIMIR-POLDER FORCE BETWEEN ATOM
AND A CONDUCTING WEDGE

The interaction between a polarizable atom and a perfectly
conducting half plane is a special case of the vacuum
interaction between such an atom and a conducting wedge.
For the case of an isotropic atom, this was considered by
Brevik et al. [43]. (This followed on earlier work by Brevik

x

z

•
ρ

Ω

θ

FIG. 4. Polarizable atom, located at polar coordinates ρ, θ , within
a conducting wedge with dihedral angle �.

and Lygren [44] and DeRaad and Milton [45].) In terms of the
opening dihedral angle of the wedge �, which we describe in
terms of the variable p = π/�, the electromagnetic Green’s
dyadic has the form (here the translational direction is denoted
by y, and one plane of the wedge lies in the z = 0 plane, the
other intersecting the xy plane on the line θ = �—see Fig. 4,

�(r,r′) = 2p

∞∑
m=0

′
∫

dk

2π

[
− MM′∗(∇2

⊥ − k2)
1

ω2
Fmp(ρ,ρ ′)

× cos mpθ cos mpθ ′

π
eik(x−x ′) + NN ′∗ 1

ω
Gmp(ρ,ρ ′)

× sin mpθ sin mpθ ′

π
eik(x−x ′)

]
. (6.1)

The first term here refers to TE (H) modes, the second to
TM (E) modes. The prime on the summation sign means that
the m = 0 term is counted with half weight. In the polar
coordinates in the xz plane, ρ and θ , the H and E mode
operators are

M = ρ̂
∂

ρ∂θ
− θ̂

∂

∂ρ
, (6.2a)

N = ik

(
ρ̂

∂

∂ρ
+ θ̂

∂

ρ∂θ

)
− ŷ∇2

⊥, (6.2b)

where the transverse Laplacian is

∇2
⊥ = 1

ρ

∂

∂ρ
ρ

∂

∂ρ
+ 1

ρ2

∂2

∂θ2
. (6.3)

In this situation, the boundaries are entirely in planes of
constant θ , so the radial Green’s functions are equal to the
free Green’s function,

1

ω2
Fmp(ρ,ρ ′) = 1

ω
Gmp(ρ,ρ ′)

= − iπ

2λ2
Jmp(λρ<)H (1)

mp(λρ>), (6.4)

with λ2 = ω2 − k2. We will immediately make the Euclidean
rotation, ω → iζ , where λ → iκ , κ2 = ζ 2 + k2, so the free
Green’s functions become −κ−2Imp(κρ<)Kmp(κρ>).

We start by considering the most favorable case for CP
repulsion, where the atom is only polarizable in the z direction,
that is, only αzz �= 0. In the static limit, then the only
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component of the Green’s dyadic that contributes is∫
dζ

2π

zz = 2p

4π3

∫
dk dζ

{
[ζ 2 sin2 θ sin2 mpθ − k2 cos2 θ cos2 mpθ ]

m2p2

κ2ρ<ρ>

Imp(κρ<)Kmp(κρ>)

− [k2 sin2 θ sin2 mpθ − ζ 2 cos2 θ cos2 mpθ ]I ′
mp(κρ<)K ′

mp(κρ>)

}
. (6.5)

Here we note that the off diagonal ρ-θ terms in � cancel.
We have regulated the result by point-splitting in the radial
coordinate. At the end of the calculation, the limit ρ< → ρ> =
ρ is to be taken.

Now the integral over the Bessel functions is given by∫ ∞

0
dκ κ Iν(κρ<)Kν(κρ>) = zν

ρ2
>(1 − ξ 2)

, (6.6)

where ξ = ρ</ρ>. After that the m sum is easily carried out by
summing a geometrical series. Care must also be taken with the
m = 0 term in the cosine series. The result of a straightforward
calculation leads to∫

dζ

2π

zz = −cos 2θ

π2ρ4

1

(ξ − 1)4
+ finite, (6.7)

where the divergent term, as ξ → 1, may, through a similar
calculation, be shown to be that corresponding to the vacuum
in the absence of the wedge, that is, that obtained from the
free Green’s dyadic. Therefore, we must subtract this term off,
leaving for the static Casimir energy (5.7):

Uzz
CP = −αzz(0)

8π

1

ρ4 sin4 pθ

[
p4 − 2

3
p2(p2 − 1) sin2 pθ

+ (p2 − 1)(p2 + 11)

45
sin4 pθ cos 2θ

]
. (6.8)

This result is derived by another method in Appendix A.
A small check of this result is that as θ → 0 (or θ → �) we

recover the expected Casimir-Polder result for an atom above
an infinite plane:

Uzz
CP → −αzz(0)

8πZ4
, (6.9)

in terms of the distance of the atom above the plane, Z = ρθ .
This limit is also obtained when p → 1, for when � = π we
are describing a perfectly conducting infinite plane.

A very similar calculation gives the result for an isotropic
atom, α = α1, which was first given in Ref. [43]:

UCP = − 3α(0)

8πρ4 sin4 pθ

[
p4 − 2

3
p2(p2 − 1) sin2 pθ

−1

3

1

45
(p2 − 1)(p2 + 11) sin4 pθ

]
. (6.10)

Note that this is not three times Uzz
CP in Eq. (6.8) because

the cos 2θ factor in the last term in the latter is replaced by
−1/3 here. This case was reconsidered recently, for example,
in Ref. [46].

A. Repulsion by a conducting half plane

Let us consider the special case p = 1/2, that is � = 2π ,
the case of a semi-infinite conducting plane. This was the
situation considered, for anisotropic atoms, in recent papers
by Eberlein and Zietal [47–49]. Note that in such a case,
for the completely anisotropic atom, Uzz

CP = 0 at θ = π/2,
that is, there is no force on the dipole when it is polarized
perpendicular to the half sheet and directly above the edge, as
observed in Refs. [48,49].

Consider a particle free to move along a line parallel to the
z axis, a distance X to the left of the semi-infinite plane; see
Fig. 5. The half plane x < 0, z = 0 constitutes an aperture of
infinite width. With X fixed, we can describe the trajectory by
u = X/ρ = − cos θ , in which the variable ranges from 0 to 1.
The polar angle is given by

sin2 θ

2
= 1 + u

2
. (6.11)

The energy for an isotropic atom is given by

UCP = −α(0)

32π

1

X4
V (u), (6.12)

where

V (u) = 3u4

[
1

(1 + u)2
+ 1

u + 1
+ 1

4

]
. (6.13)

The energy for the completely anisotropic atom is

Vzz = 1

3
V (u) + u4

2
(1 − 3u2). (6.14)

x

z

•
ρ

θ

X

FIG. 5. Polarizable atom, above a half conducting plane, free to
move on a line perpendicular to the plane but a distance X to the left
of the plane.
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0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

u

f
u

FIG. 6. (Color online) The z component of the force between
an anisotropic atom (with ratio of transverse to longitudinal po-
larizabilities γ ) and a semi-infinite perfectly conducting plane,
z = 0, x > 0. Fz = −αzz/(32πX5)f (u) in terms of the variable
u = X/ρ = − cos θ . Here the atom lies on the line y = 0, x = −X,
and ρ is the distance from the edge of the plane and the atom. Here,
f > 0 corresponds to an attractive force on the z direction, and f < 0
corresponds to a repulsive force. The different curves correspond to
different values of γ , γ = 0 to 1 by steps of 0.1, from bottom to
top. For γ < 1/4 a repulsive regime always occurs when the atom is
sufficiently close to the plane of the conductor.

If we consider instead a cylindrically symmetric polarizable
atom in which

α = αzzẑẑ + γαzz(x̂x̂ + ŷŷ) = αzz(1 − γ )ẑẑ + γαzz1,

(6.15)

where γ is the ratio of the transverse polarizability to the
longitudinal polarizability of the atom, then the effective
potential is

(1 − γ )Vzz + γV, (6.16)

and the z component of the force on the atom is

Fγ
z = −αzz(0)

32π

1

X5
u2

√
1 − u2

d

du

×
[

1

2
u4(1 − γ )(1 − 3u2) + 1

3
(1 + 2γ )V (u)

]
, (6.17)

where V is given by Eq. (6.13). Note that the energy (6.16),
or the quantity in square brackets in Eq. (6.17), only vanishes
at u = 1 (the plane of the conductor) when γ = 0. Thus, the
argument given in Ref. [32] applies only for the completely
anisotropic case.

The force is plotted in Figs. 6 and 7. It will be seen that if
γ is sufficiently small, when the atom is sufficiently close to
the plane of the plate the z component of the force is repulsive
rather than attractive. The critical value of γ is γc = 1/4.
This is a completely analytic exact analog of the numerical
calculations shown in Ref. [32], where the interaction was
considered between a conducting plane with an aperture (cir-
cular hole or slit), and a conducting cylindrical or ellipsoidal
object. Our calculation demonstrates that three-body effects
are not required to exhibit Casimir-Polder repulsion.

It is interesting to observe that the same critical value of
γ occurs for the nonretarded regime of a circular aperture,

0.990 0.992 0.994 0.996 0.998 1.000

0.000

0.005

0.010

0.015

0.020

0.025

0.030

u

f
u

FIG. 7. (Color online) Same as Fig. 6. The region close to the
plane, 1 � u � 0.99, with γ near the critical value of 1/4. Here from
bottom to top are shown the results for values of γ from 0.245 to
0.255 by steps of 0.001.

as follows from a simple computation based on the result of
Ref. [49]. For example, applying the result there for an atom
with polarizability given by Eq. (6.15) placed a distance Z

along the symmetry axis of an circular aperture of radius a in
a conducting plane gives an energy,

U = − 1

16π2

∫ ∞

−∞
dζ αzz(ζ )

× 1

Z3

{
(1 + γ )

(
π

2
+ arctan

Z2 − a2

2aZ

)
+ 2aZ

(Z2 + a2)3

×
[

(1 + γ )(Z4 − a4) − 8

3
(1 − γ )a2Z2

]}
. (6.18)

It is easy to see that this has a minimum for z > 0, and hence
there is a repulsive force close to the aperture, provided γ <

γc = 1/4.

B. Repulsion by a wedge

It is very easy to generalize the above result for a wedge,
p > 1/2; that is, we want to consider a strongly anisotropic
atom, with only αzz significant, to the left of a wedge of the
opening angle,

β = 2π − �, (6.19)

as shown in Fig. 8. We want the z axis to be perpendicular to
the symmetry axis of the wedge so the relation between the
polar angle of the atom and the angle to the symmetry line is

φ = θ + β/2, (6.20)

where, as before, θ is the angle relative to the top surface of the
wedge. Then, it is obvious that the formula for the Casimir-
Polder energy (6.8) is changed only by the replacement of
cos 2θ by cos 2φ, with no change in sin pθ . Now we can ask
how the region of repulsion depends on the wedge angle β.

Write for an atom on the line x = −X,

Uzz
CP = −αzz(0)

8πX4
V (φ), (6.21)
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X

•ρ

β

θ

φ

FIG. 8. A polarizable atom outside a perfectly conducting wedge
of interior angle β. The atom is located at polar angles ρ, φ relative
to the symmetry plane of the wedge.

where

V (φ) = cos4 φ

[
p4

sin4
(

π
2

φ−β/2
π−β/2

) − 2

3

p2(p2 − 1)

sin2
(

π
2

φ−β/2
π−β/2

)
+ 1

45
(p2 − 1)(p2 + 11) cos 2φ

]
. (6.22)

At the point of closest approach,

V (π ) = 1
45 (4p2 − 1)(4p2 + 11), (6.23)

so the potential vanishes at that point only for the half-plane
case, p = 1/2. The force in the z direction is

Fz = −αzz

8π

1

X5
f (φ), (6.24a)

f (φ) = cos2 φ
∂V (φ)

∂φ
. (6.24b)

2.0 2.5 3.0

0.1

0.0

0.1

0.2

φ

f
φ

FIG. 9. (Color online) The z component of the force on a
completely anisotropic atom moving on a line perpendicular to a
wedge. The different curves are for various values of β from 0 to π

by steps of π/20, from bottom up. The last few values of β have a
markedly different character from the others.

Figure 9 shows the force as a function of φ for fixed X.
It will be seen that the force has a repulsive region for angles
close enough to the apex of the wedge, provided that the wedge
angle is not too large. The critical wedge angle is actually rather
large, βc = 1.87795, or about 108◦. For larger angles, the z

component of the force exhibits only attraction. Of course,
the force is zero for β = π because then the geometry is
translationally invariant in the z direction.

VII. CONCLUSIONS

This paper may be thought of as a counterpart to Ref. [32].
While that reference proceeded on the basis of numerical
calculations, we have used analytic approaches. After some
examples indicating that Casimir-Polder attraction is typical,
and always seems to occur in weak coupling, we demon-
strate that the quantum-vacuum Casimir-Polder interaction
for a sufficiently anisotropic atom above a conducting half
plane can exhibit regimes of repulsive forces for motion
confined to certain specified directions. This directly translates
into repulsion between such an atom and a plane with
an aperture for motion along a line perpendicular to the
plane. More complete analysis of that case will be presented
elsewhere.

Recently, Ref. [49] appeared, which demonstrates in the
nonretarded (van der Waals) regime, repulsion could occur
between an anisotropically polarizable atom and a conducting
plate with an aperture. The critical value of the anisotropy is
the same as found here.

Perhaps most remarkable here is that not only can we
achieve repulsion with a half plane, but also with a wedge
geometry, even when the interior angle of the wedge is greater
than 90◦. This indicates that while anisotropy in both the atom
and the conductor must be present for repulsion, the anisotropy
in the latter need not be too extreme, and that repulsion in other
geometries may be readily achievable. Three-body forces are
not required, nor is a high degree of symmetry, as was present
in Refs. [32,49].
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APPENDIX A: DERIVATION OF ANISOTROPIC WEDGE
CP FORCE FROM CLOSED-FORM GREEN’S FUNCTION

Many years ago Lukosz gave a closed form for the Green’s
functions for a perfectly conducting wedge [50]. The four-
dimensional Euclidean Green’s dyadic has the closed form,

�(τ − τ ′,y − y ′,ρ,ρ ′,φ,φ′) = −MM′GH + NN′GE, (A1)

where the transverse differential operators are [cf. Eq. (6.2)]

M = ρ̂
1

ρ

∂

∂φ
− φ̂

∂

∂ρ
≡ M, N = ρ̂

∂

∂ρ
+ φ̂

1

ρ

∂

∂φ
, (A2)
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where there is an additional contribution to N in the y direction.
This Green’s dyadic is the frequency Fourier transform of that
discussed in Sec. VI. Here the E (TM) and H (TE) Green’s
functions have the form,

GH,E = χ (y,ρ,τ ; y ′,ρ ′,τ ′; φ − φ′)
±χ (y,ρ,τ ; y ′ρ ′,τ ′; φ + φ′ − �), (A3)

for a wedge of dihedral angle �, with φ ∈ [−�/2,�/2]. Here

χ (y,ρ,τ ; y ′,ρ ′,τ ′; ψ)

= 1

8π�ρρ ′ sinh υ

sinh(πυ/�)

cosh(πυ/�) − cos(πψ/�)
, (A4)

where

sinh
υ

2
= 1

2

[
(τ − τ ′)2 + (y − y ′)2 + (ρ − ρ ′)2

ρρ ′

]1/2

. (A5)

For the interaction with an atom possessing only an αzz

polarizability, we need


zz = cos(φ + φ′)
(

1

ρρ ′
∂

∂φ

∂

∂φ′ − ∂

∂ρ

∂

∂ρ

)
χ (φ − φ′)

+ 2

(
sin φ cos φ′ 1

ρ

∂

∂φ

∂

∂ρ ′ + sin φ′ cos φ
1

ρ ′
∂

∂φ′
∂

∂ρ

)
×χ (φ − φ′) − cos(φ − φ′)

×
(

1

ρρ ′
∂

∂φ

∂

∂φ′ + ∂

∂ρ

∂

∂ρ ′

)
χ (φ + φ′ − �). (A6)

Here, we have suppressed all the arguments in χ except for
the angular ones. For our application here, we are interested
in the coincidence limit, so from the outset we can set τ = τ ′
and x = x ′. Then,

sinh
υ

2
= 1

2

1 − ξ√
ξ

, ξ = ρ<

ρ>

, (A7)

which implies

υ = − ln ξ. (A8)

Now we expand first in φ − φ′, then after the differentiations
set φ = φ′, and then expand in υ, that is, in 1 − ξ . We
immediately note that the mixed derivative term in Eq. (A6)
does not contribute, because there is no linear term in φ − φ′.
The result of a straightforward calculation is


zz = − cos 2θ

16π2ρ4

{
16

(1 − ξ )4
− 1

45
(p2 − 1)(p2 + 11)

}

+ 1

16π2ρ4

{
p4

sin4 pθ
− 2

3

p2(p2 − 1)

sin2 pθ

}
, (A9)

where p = π/�, and we have switched to the angle from
the “upper” plate, θ = φ + �/2, which is chosen to run
from 0 to �. The first term in Eq. (A9) corresponds to the
χ (φ − φ′) contribution, and the second to the cos(φ + φ′ − �)
contribution. Note, the divergent term (as ξ → 1) is precisely

the vacuum term given in Eq. (6.7), and should be subtracted
off, and the rest, when multiplied by −2παzz, coincides with
Eq. (6.8).

APPENDIX B: ELECTROSTATIC ASPECTS: CONDUCTING
ELLIPSOID OUTSIDE A CONDUCTING PLATE WITH A

CIRCULAR HOLE

Consider a conducting uncharged solid ellipsoid with semi-
axes c > a > b, centered at X = Y = Z = 0. The ellipsoid
is orientated such that the major semiaxis c lies along the
Z axis. To describe the electrostatic potential φ in the external
region, one can make use of ellipsoidal coordinates ξ,η,ζ ,
corresponding to solutions for u of the cubic equation,

Z2

c2 + u
+ X2

a2 + u
+ Y 2

b2 + u
= 1. (B1)

The coordinate intervals are

∞ > ξ � −b2, − b2 � η � −a2, − a2 � ζ � −c2.

(B2)

The relationships between the ellipsoidal and the Cartesian
coordinates are given in Ref. [51] and will not be reproduced
here. We shall, however, need the line element,

dl2 = h2
1 dξ 2 + h2

2 dη2 + h2
3 dζ 2, (B3)

where

h1 = 1

2Rξ

√
(ξ − η)(ξ − ζ ), h2 = 1

2Rη

√
(η − ζ )(η − ξ ),

(B4)

h3 = 1

2Rζ

√
(ζ − ξ )(ζ − η), R2

u = (u+ c2)(u+ a2)(u+ b2),

(B5)

with u = ξ,η,ζ .
In the following we assume axial symmetry around the

Z axis. Then a → b, η → −b2, and the equation for the
surface of the ellipsoid becomes

Z2

c2
+ R2

b2
= 1, (B6)

with R2 = X2 + Y 2. We now have

Z = ±
[

(ξ + c2)(ζ + c2)

c2 − b2

]1/2

, R =
[

(ξ + b2)(ζ + b2)

b2 − c2

]1/2

.

(B7)

The ellipsoidal coordinates ξ,η,ζ reduce in the case of
axisymmetry to so-called prolate spheroidal coordinates ξ and
ζ , lying in the intervals,

∞ > ξ � −b2, − b2 � ζ � −c2. (B8)

Surfaces of constant ξ and ζ are prolate spheroids and hyper-
boloids of revolution, the surfaces intersecting orthogonally.
On the Z axis (R = 0) one has ζ = −b2,Z = ±

√
ξ + c2,
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whereas in the XY plane (Z = 0) one has ζ = −c2,R =√
ξ + b2. On the surface of the ellipsoid, ξ = 0.
In free space outside the ellipsoid the Laplace equation

reads

∇2φ ≡ 4

ζ − ξ

[
Rξ

ξ + b2

∂

∂ξ

(
Rξ

∂φ

∂ξ

)

− Rζ

ζ + b2

∂

∂ζ

(
Rζ

∂φ

∂ζ

)]
= 0. (B9)

Assume now that the ellipsoid is placed in an external
potential φ0, axisymmetric with respect to the Z axis so that
φ0 = φ0(ξ,ζ ). We write the resulting potential φ in the form,

φ(ξ,ζ ) = φ0(ξ,ζ )[1 + F (ξ )], (B10)

so that φ0F is the perturbation of the external field. As the
boundary condition ξ = 0 on the surface has to hold for all
values of ζ , it is natural to make the ansatz that F depends on
ξ only.

Inserting Eq. (B10) into Eq. (B9) we find that the terms
containing F as a factor sum up to zero, the reason being
the validity of Eq. (B9) also when φ is replaced by φ0.
The remaining terms containing F ′(ξ ) and F ′′(ξ ) yield the
equation,

d2F

dξ 2
+ dF

dξ

d

dξ
ln

(
Rξ φ2

0

) = 0. (B11)

When integrating this equation, in order to preserve the validity
of the ansatz F = F (ξ ), the coordinate ζ in φ0 has to be
regarded as a parameter. The integration thus has to extend
from ξ = 0 (the surface) in the outward direction, along a line
on the hyperboloid ζ = constant.

The solution of Eq. (B11) can be written as

F = A

∫ ∞

ξ

dξ

Rξφ
2
0

, (B12)

where the constant A is determined from the condition F (0) =
−1 on the ellipsoid surface. That means

φ = φ0

⎡
⎣1 −

∫ ∞
ξ

dξ

Rξ φ
2
0∫ ∞

0
dξ

Rξ φ
2
0

⎤
⎦ . (B13)

We now specify the form of φ0, as the potential from a
grounded conducting plate lying in the xy plane, when far
from the plate there are constant electric fields, directed normal
to the plate, having different values on either side. In the plate
there is a circular opening with radius a (this radius is not
to be confused with the semiaxis a mentioned above). The
center of the opening is at position x = y = z = 0. It is known
(Ref. [35], Sec. 3.13) that on the z axis,

φ0(z) = �00

[
1 − |z|

a
arctan

a

|z|
]
, (B14)

where �00 is a constant. At the origin, φ0 = �00. At infinity,
|z| → ∞, φ0 → 0.

The center of the vertically oriented ellipsoid is at position
z = z0. Thus z = z0 + Z. We will assume that the ellipsoid

is so slender that the variation of φ0 in the transverse x and
y directions can be neglected. Thus we adopt the expression
(B14) in the external field region of interest, φ0 = φ0(ξ,ζ ), ξ

and ζ being restricted to the same intervals (B8) as before.
We consider now the upper half of the ellipsoid, z � z0 or

Z � 0. The nonperturbed potential, called φ0+, is then

φ0+ = �00

[
1 − z0 +

√
ξ + c2

a
arctan

a

z0 +
√

ξ + c2

]
.

(B15)

Thus the potential φ+ in Eq. (B13) can be found numerically,
inserting φ0+ together with Rξ = (ξ + b2)

√
ξ + c2. [In prac-

tice the following expansion can here be useful [52]:

1

x
arctan x = 1 +

8∑
k=1

a2kx
2k + O(10−8), 0 � x � 1,

(B16)

with coefficients a2k of order unity or less.]
The induced surface charge density σ+ on the ellipsoid is

σ+ = −
[

ε0

h1

∂φ+
∂ξ

]
ξ=0

= −
[

2ε0bc√−ζ

∂φ+
∂ξ

]
ξ=0

, (B17)

since on the surface h1 = (b/2Rξ )
√−ζ = (1/2bc)

√−ζ . In
view of the relationships between the ellipsoidal and Cartesian
coordinates this can be reexpressed as

σ+ = −2ε0

[
Z2

c4
+ R2

b4

]−1/2[
∂φ+
∂ξ

]
ξ=0

. (B18)

From Eq. (B13) it follows that the derivative [∂φ0+/∂ξ ]ξ=0

does not contribute to σ+ [recall that F (0) = −1]. The
remaining term is[

∂φ+
∂ξ

]
ξ=0

= 1

b2c

1

[φ0+]ξ=0

[ ∫ ∞

0

dξ

Rξ φ2
0+

]−1

. (B19)

Thus for z � z0 we get as solution,

σ+ = σ0+
c

[
Z2

c4
+ R2

b4

]−1/2

, (B20)

where σ0+ is the constant,

σ0+ = −2ε0

b2

1

�00

[ ∫ ∞
0

dξ

Rξ φ2
0+

]−1

[
1 − z0+c

a
arctan a

z0+c

] (B21)

(recall again that a is the radius of the hole). The dependence
of σ+ on the coordinates Z and R in Eq. (B20) is actually
the same as for a charged ellipsoid in free space [51]. The
surface force density on the ellipsoid is (σ 2/2ε0)n, n being
the outward normal. The slope of the tangent to the surface
is dZ/dR = −(c2/b2)R/Z; the slope of n is accordingly
(b2/c2)Z/R. Denoting this as tan θ , we get, when going over
to ellipsoidal coordinates,

tan θ = b

c

[
ζ + c2

−ζ − b2

]1/2

. (B22)
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The component of n along the Z axis is, then,

nZ = sin θ = b√
c2 − b2

[
ζ + c2

−ζ

]1/2

, (B23)

and we can now find the total vertical force FZ+ on the upper
half of the ellipsoid by integrating over the actual surface. The
line element along the meridian is

h3dζ = 1

2

[
ζ

(ζ + b2)(ζ + c2)

]1/2

dζ, (B24)

and the surface element dA becomes

dA = 2πR h3 dζ = πb√
c2 − b2

[ −ζ

ζ + c2

]1/2

dζ. (B25)

As σ+ in Eq. (B20) can be reexpressed as

σ+ = σ0+
b√−ζ

, (B26)

we can calculate FZ+ as

FZ+ =
∫

Z�0

σ 2
+

2ε0
nZ dA = σ 2

0+
2ε0

πb4

c2 − b2

∫ c2

b2

d(−ζ )

(−ζ )

= σ 2
0+
ε0

πb4

c2 − b2
ln

c

b
. (B27)

The expression is positive as expected; the force is acting
upward. The only dependence on the position z0 lies in σ0+,
as σ0+ = σ0+(z0) according to Eq. (B21).

The lower half of the ellipsoid, Z < 0, can be treated in an
analogous way. A complicating element is here the presence of
the conducting plate in the xy plane, for radii ρ � a. It means
that we can no longer extend the integration over ξ in the
solution (B12) to infinity in a straightforward way. We observe
that the undisturbed potential in the xy plane can be written as

φ0(ρ,0) =
{

�00

√
1 − ρ2/a2, ρ � a

0, ρ > a,
(B28)

where ρ2 = x2 + y2, �00 being the potential at the center.
Our approach will be based on the following two assump-

tions:
(1) The ξ integration will be terminated on the xy plane,

this implying that the effect of the perturbation is assumed to
be small at that level. This approximation is expected to be
good except when the distance between the lower end of the
ellipsoid and the plane is small.

(2) Secondly, the integration over ξ will be assumed to run
over trajectories lying close to the z axis, corresponding to ζ =
−b2. This assumption simplifies the mathematical analysis. It
is supported by physical considerations also, since when the
ellipsoid is slender the hyperboloids ζ = constant emerging
from the surface of the ellipsoid near its lower end become
concentrated in the vicinity of the z axis.

As according to Eq. (B7) the plane position z = 0 in general
corresponds to

z0 =
[

(ξ + c2)(ζ + c2)

c2 − b2

]1/2

, (B29)

our approximations imply that the ξ integration is terminated
at

ξplane = z2
0 − c2, (B30)

that is, the same constant for the whole lower half of the
ellipsoid.

As solution for the perturbed potential we thus get

φ− = φ0−

⎡
⎣1 −

∫ ξplane

ξ

dξ

Rξ φ2
0−∫ ξplane

0
dξ

Rξ φ2
0−

⎤
⎦ , (B31)

where

φ0− = �00

[
1 − z0 −

√
ξ + c2

a
arctan

a

z0 −
√

ξ + c2

]
.

(B32)

The force FZ− on the lower half can now be calculated.
As before, Rξ = (ξ + b2)

√
ξ + c2. Equation (B26) becomes

replaced by

σ− = σ0−
b√−ζ

, (B33)

where now

σ0− = −2ε0

b2

1

�00

[ ∫ ξplane

0
dξ

Rξ φ2
0−

]−1

[
1 − z0−c

a
arctan a

z0−c

] . (B34)

The total force on the ellipsoid becomes

FZ = FZ+ + FZ− = σ 2
0+ − σ 2

0−
ε0

πb4

c2 − b2
ln

c

b
, (B35)

which can be rewritten as

FZ = 4πε0

�2
00

1

c2 − b2

⎧⎨
⎩

[ ∫ ∞
0

dξ

Rξ φ2
0+

]−2

[
1 − z0+c

a
arctan a

z0+c

]2

−
[ ∫ ξplane

0
dξ

Rξ φ2
0−

]−2

[
1 − z0−c

a
arctan a

z0−c

]2

⎫⎬
⎭ ln

c

b
. (B36)

In the limiting case of a sphere, b → c, the expression becomes
somewhat simpler,

FZ = 2πε0

�2
00

1

c2

⎧⎨
⎩

[ ∫ ∞
0

dξ

(ξ+c2)3/2 φ2
0+

]−2

[
1 − z0+c

a
arctan a

z0+c

]2

−
[ ∫ ξplane

0
dξ

(ξ+c2)3/2 φ2
0−

]−2

[
1 − z0−c

a
arctan a

z0−c

]2

⎫⎬
⎭ . (B37)

We have made some numerical checks of these expressions
(using MAPLE). They indicate that there is no change in the sign
of the force for various input parameters for the geometry. The
force is attractive, as expected. It turns out that the dependence
on the upper integration limit ξplane = z2

0 − c2 is weak, as
anticipated above.
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Recently, the topic of Casimir repulsion has received a great deal of attention, largely because of the

possibility of technological application. The general subject has a long history, going back to the self-

repulsion of a conducting spherical shell and the repulsion between a perfect electric conductor and a

perfect magnetic conductor. Recently, it has been observed that repulsion can be achieved between

ordinary conducting bodies, provided sufficient anisotropy is present. For example, an anisotropic

polarizable atom can be repelled near an aperture in a conducting plate. Here, we provide new examples

of this effect, including the repulsion on such an atom moving on a trajectory nonintersecting a conducting

cylinder; in contrast, such repulsion does not occur outside a sphere. Classically, repulsion does occur

between a conducting ellipsoid placed in a uniform electric field and an electric dipole. The Casimir-

Polder force between an anisotropic atom and an anisotropic dielectric semispace does not exhibit

repulsion. The general systematics of repulsion are becoming clear.

DOI: 10.1103/PhysRevD.85.025008 PACS numbers: 42.50.Lc, 03.50.De, 12.20.�m, 32.10.Dk

I. INTRODUCTION

Although known since the time of Lifshitz’s work on the
subject [1], repulsive Casimir forces have recently received
serious scrutiny [2]. Experimental confirmation of the
repulsion that occurs when dielectric surfaces are separated
by a liquid with an intermediate value of the dielectric
constant has appeared [3], although this seems devoid of
much practical application. The context of our work is the
considerable interest in utilizing the quantum vacuum
force or the Casimir effect in nanotechnology employing
mesoscopic objects [4].

The first repulsive Casimir stress in vacuum was found
by Boyer [5], who discovered the surprising fact that the
Casimir self-energy of a perfectly conducting spherical
shell is positive. (This has become somewhat less myste-
rious since the phenomenon is part of a general pattern
[6–9].) Boyer later observed that a perfect electrical con-
ductor and a perfect magnetic conductor repel [10], but
this also seems beyond reach since the unusual electrical
properties must be exhibited over a wide frequency range.
The analogous effect for metamaterials also seem imprac-
ticable [11].

Thus, it was a significant advance when Levin et al.
showed examples of repulsion between conducting objects,
in particular, between an elongated cylinder above a con-
ducting plane with a circular aperture [2] (see also
Ref. [12]). They computed the quantum vacuum forces
between conducting objects by using impressive numerical

finite-difference time-domain and boundary-element
methods.
We subsequently showed [13] that repulsive Casimir-

Polder (CP) forces between anisotropic atoms and a
conducting half-plane, and even between such an atom
and a conducting wedge of rather large opening angle,
could be achieved. Of course, we must be careful to explain
what we mean by repulsion: the total force on the atom is
attractive, but the component of the force perpendicular to
the symmetry axis of the conductor changes sign when the
atom is sufficiently close to that axis. This is the only
component that survives in the case of an aperture in a
plane, so our analytic calculation provided a counterpart to
the numerical work of Ref. [2].
In this paper, we give further examples. After demon-

strating, in Sec. II, that Casimir-Polder repulsion between
two atoms requires that both be sufficiently anisotropic, we
show in Sec. III that the force between one such atom and a
conducting cylinder is repulsive for motion confined to a
perpendicular line not intersecting with the cylinder, pro-
vided the line is sufficiently far from the cylinder. The
analogous effect does not occur for a spherical conductor
(Sec. IV), as one might suspect, since at large distances
such a sphere looks like an isotropic atom. The classical
interaction between a dipole and a conducting ellipsoid
polarized by an external field is examined in Sec. V, which,
as expected, yields a repulsive region. In contrast, in
Sec. VI, we examine the Casimir-Polder interaction of an
anisotropic atom with an anisotropic dielectric half-space,
but this fails to reveal any repulsive regime.
In this paper, we set ℏ ¼ c ¼ 1, and all results are

expressed in Gaussian units except that Heaviside-
Lorentz units are used for Green’s dyadics.
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II. CASIMIR-POLDER
REPULSION BETWEEN ATOMS

The interaction between two polarizable atoms de-
scribed by general polarizabilities �1;2 with the relative

separation vector given by r is [14,15]

UCP ¼ � 1

4�r7

�
13

2
Tr�1 ��2 � 28Trð�1 � r̂Þð�2 � r̂Þ

þ 63

2
ðr̂ ��1 � r̂Þðr̂ � �2 � r̂Þ

�
: (2.1)

This formula is easily re-derived by the multiple-scattering
technique as explained in Ref. [16]. This reduces in the
isotropic case�i ¼ �i1 to the usual Casimir-Polder energy
UCP ¼ � 23

4�r7
�1�2. Suppose the two atoms are only polar-

izable in perpendicular directions, �1 ¼ �1ẑ ẑ , �2 ¼
�2x̂ x̂ . Choosing atom 2 to be at the origin, we obtain
the configuration shown in Fig. 1. Then, in terms of the
polar angle cos� ¼ z=r, the z-component of the force on
atom 1 is

Fz ¼ � 63

8�

�1�2

x8
sin10� cos�ð9–11sin2�Þ: (2.2)

In this paper, we are considering motion for fixed x ¼
r sin� in the y ¼ 0-plane. Evidently, the force is attractive
at large distances, vanishing as � ! 0; it must change
sign at small values of z for fixed x since the energy
also vanishes as � ! �=2. The force component in the

z-direction vanishes when sin� ¼ 3=
ffiffiffiffiffiffi
11

p
or � ¼ 1:130 or

25� from the x-axis.1

No repulsion occurs if one of the atoms is isotropically
polarizable. If both have cylindrically symmetric anisotro-
pies, but with respect to perpendicular axes,

�1 ¼ ð1� �1Þ�1ẑ ẑþ�1�11;

�2 ¼ ð1� �2Þ�2x̂ x̂þ�2�21;
(2.3)

it is easy to check that if both are sufficiently anisotropic,
repulsion occurs. For example, if �1 ¼ �2 repulsion in the
z-direction takes place close to the plane z ¼ 0 if � �
0:26.

III. REPULSION OF AN ATOM
BYA CONDUCTING CYLINDER

Now we turn to the Casimir-Polder interaction between
a polarizable body (‘‘atom’’) and a macroscopic body. That
interaction is generally given by

ECP ¼ �
Z 1

�1
d� tr� � �ðr; rÞ; (3.1)

where r is the position of the atom and � is the imaginary
frequency, in terms of the polarizability of the atom � and
the Green’s dyadic due to the macroscopic body, which for
a body characterized by a permittivity " satisfies the dif-
ferential equation�

1

!2
r� r��1"ðrÞ

�
� �ðr; r0Þ ¼ 1�ðr� r0Þ: (3.2)

In this paper, except for Sec. VI, we will consider perfect
conducting boundaries S immersed in vacuum. In this case,
we need to solve this equation with " ¼ 1 for �, subject to
the boundary conditions n̂� �ðr; r0Þjr2S ¼ 0, where n̂ is
the normal to the surface of the conductor, which just states
that the tangential components of the electric field must
vanish on the conductor.
Let us henceforth assume that the polarizability has

negligible frequency dependence (static approximation)
and, in order to maximize the repulsive effect, the atom
is only polarizable in the z-direction, the direction of the
trajectory (assumed not to intersect the cylinder), in which
case the quantity we need to compute for a conducting
cylinder of radius a is given by [18]

Z 1

�1
d�

2�
�zzðr; �Þ

¼ X1
m¼�1

Z 1

0

d�

ð2�Þ3
�

2a

1

Kmð�aÞK0
mð�aÞ

�
m2

r2
K2

mð�rÞ

þ �2K02
mð�rÞ � cos2��a½Imð�aÞKmð�aÞ�0

�
�
�m2

r2
K2

mð�rÞ þ �2K02
mð�rÞ

��
: (3.3)

The geometry we are considering is illustrated in Fig. 2.
Greater insight is provided by giving the transverse electric
(TE) and transverse magnetic (TM) contributions to the CP
energy

FIG. 1 (color online). Casimir-Polder interaction between two
atoms of polarizability �1 and �2 separated by a distance r.
Atom 1 is predominantly polarizable in the z direction, while
atom 2 is predominantly polarizable in the x direction. The force
on atom 1 in the z direction becomes repulsive when sufficiently
close to the polarization axis of atom 2, provided both atoms are
sufficiently anisotropic.

1After the first version of this paper was prepared, Ref. [17]
appeared, which rederived these results, and then went on to
extend the calculation to Casimir-Polder repulsion by an aniso-
tropic dilute dielectric sheet with a circular aperture. The authors
quite correctly point out that the statement that no repulsion is
possible in the weak-coupling regime, in Ref. [13], is erroneous.
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ETE
CP ¼ ��zz

4�

X1
m¼�1

Z 1

0
d��

I0mð�aÞ
K0

mð�aÞ

�
�
cos2�

r2
m2K2

mð�rÞ þ �2sin2�K02
mð�rÞ

�
; (3.4a)

ETM
CP ¼ �zz

4�

X1
m¼�1

Z 1

0
d��

Imð�aÞ
Kmð�aÞ

�
�
sin2�

r2
m2K2

mð�rÞ þ �2cos2�K02
mð�rÞ

�
: (3.4b)

The distance of the atom from the center of the cylinder is
r ¼ R= sin�, where R is the distance of closest approach
and � is the polar angle, which ranges from 0 when the
atom is at infinity to �=2 where the atom is closest to the
cylinder.

At large distances, the CP force is dominated by them ¼
0-term in the energy sum. Figure 3 shows that for m ¼ 0
the TM mode dominates except near the position of closest
approach, where only the TE mode is nonzero. This in-
dicates that there is a region of repulsion near � ¼ �=2
since the total energy has a minimum for small c ¼
�=2� �. This effect is partially washed out by including
higherm-modes as seen in Fig. 4, which shows the effect of
including the first five m-values. But the repulsion goes
away if the line of motion passes too close to the cylinder.
Numerically, we have found that to have repulsion close to
the plane of closest approach requires that a=R < 0:15.

IV. CP INTERACTION BETWEEN ATOM AND
CONDUCTING SPHERE

It is straightforward to derive the TE and TM contribu-
tions for the interaction between a completely anisotropic
atom and a conducting sphere as

ETM ¼ �zz

2�R4
cos4�

X1
l¼1

ð2lþ 1Þ
Z 1

0
dxglðxÞ; (4.1a)

ETE ¼ �zz

4�R4
cos6�

X1
l¼1

ð2lþ 1Þ
Z 1

0
dxflðxÞ; (4.1b)

where

glðxÞ¼x
s0lðxacos�=RÞ
e0lðxacos�=RÞ

�
1

2
cos2�e02l ðxÞþ

lðlþ1Þsin2�e2l ðxÞ
x2

�
;

(4.2a)

flðxÞ¼x
slðxacos�=RÞ
elðxacos�=RÞe

2
l ðxÞ; (4.2b)

FIG. 2 (color online). Interaction between an anisotropically
polarizable atom and a conducting cylinder of radius a. The
force on the atom along a line which does not intersect the
cylinder is considered. If the atom is only polarizable in that
direction and the line lies sufficiently far from the cylinder, the
force component along the line changes sign near the point of
closest approach.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.00

0.01

0.02
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0.04

0.05

E

E total

ETM

ETE

FIG. 3 (color online). m ¼ 0 contributions to the Casimir-
Polder energy between an anisotropic atom and a conducting
cylinder. The (generally) lowest curve (blue) is the TE contri-
bution, the second (magenta) is the TM contribution, and the top
curve (yellow) is the total CP energy. In this case, the distance of
closest approach of the atom is taken to be 10 times the radius of
the cylinder. The energy E is plotted as a function of c ¼
�=2� �.
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FIG. 4 (color online). The CP energy between an anisotropic
atom and a conducting cylinder. Plotted is the total CP energy,
the upper curve for the distance of closest approach R being 5
times the cylinder radius a, the lower curve for the distance of
closest approach 10 times the radius. The curves move up
slightly as more m terms are included, but have completely
converged by the time m ¼ 3 is included. Repulsion is clearly
observed when R=a ¼ 10, but not for R=a ¼ 5.
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in terms of the modified Riccati-Bessel functions are

slðxÞ ¼
ffiffiffiffiffiffiffi
�x

2

r
Ilþ1=2ðxÞ; elðxÞ ¼

ffiffiffiffiffi
2x

�

s
Klþ1=2ðxÞ: (4.3)

We expect, in the case of a sphere, not to see Casimir
repulsion at large distances. The reason is that far from the
sphere it appears to be an isotropic atom, which (as we
have seen above) will not give a repulsive force on another
completely anisotropic atom. Indeed, far from the sphere
we can replace the Bessel functions of argument xa=r by
their leading small argument approximations and easily
find

ETM � �zza
3

4�r7
ð13þ 7sin2�Þ; a=r ! 0: (4.4a)

The TE mode contributes

ETE � �zza
3

4�r7
7

4
cos2�; a=r ! 0: (4.4b)

We see here the expected isotropic electric polarizability of
a conducting sphere �sp;E ¼ 1a3. We note that the TM

result (4.4a) coincides with the result obtained from
Eq. (2.1). The TE contribution is, in fact, the coupling
between the electric polarizability of the atom and the

magnetic polarizability of the sphere �sp;M ¼ � a3

2 1 [19].

To see this, we first remind the reader of the CP inter-
action between isotropic atoms possessing both electric
and magnetic polarizabilities [20],

UCP¼� 23

4�r7
ð�E

1�
E
2 þ�M

1 �
M
2 Þþ

7

4�r7
ð�E

1�
M
2 þ�M

1 �
E
2 Þ:
(4.5)

When the atoms are not isotropic it is easy to deduce the
generalization of this, using the methods described in
Ref. [16], starting from the multiple-scattering coupling
term between electric and magnetic dyadics,

Eem ¼ � i

2
Tr lnð1þ�0T

E
1 ��0T

M
2 Þ

� � i

2
Tr�0 � VE

1�0 � VM
2 ; (4.6)

where the last form reflects weak coupling; we are consid-
ering the interaction between one object having purely
electric susceptibility and a second object having purely
magnetic susceptibility, so

VE
1 ¼ 4��E

1�ðr� r1Þ; VM
2 ¼ 4��M

2 �ðr� r2Þ: (4.7)

This formula is expressed in terms of the magnetic Green’s
dyadic (R ¼ r1 � r2),

� 0 ¼ � �2

4�R3
R� 1ðj�jRþ 1Þe�j�jR: (4.8)

Then, an immediate calculation yields the electric-
magnetic CP interaction

UCP;EM ¼ 7

8�R7
trðR̂� �EÞðR̂� �MÞ; (4.9)

which, indeed, for isotropic polarizabilities gives the sec-
ond term in Eq. (4.5). The result (4.4b) is now an immedi-
ate consequence for a conducting sphere interacting with
an atom only polarizable in the z-direction.
Evidently, no repulsion can occur in this CP limit where

the conducting sphere is regarded as an isotropically polar-
izable atom. In fact, numerical evaluation shows no repul-
sion occurs at any separation distance between the sphere
and the atom.

V. ELECTROSTATIC FORCE BETWEEN A
CONDUCTING ELLIPSOID AND A DIPOLE

In this section we return, for heuristic reasons, to the
electrostatic situation of the interaction between a fixed
dipole and a conducting body, which has been given con-
siderable attention lately [2,13,21]. Here, we consider the
interaction between a perfectly conducting ellipsoid polar-
ized by a constant electric field and a fixed dipole. The
polarization of the ellipsoid by the dipole is neglected at
this stage. This is a much simpler calculation than the more
interesting one of the interaction between a dipole and a
ellipsoid, but we justify the inclusion of the details of the
simpler calculation because it allows us to approach the
complexity of the full calculation. Elsewhere, we will
present that calculation and the corresponding quantum
Casimir-Polder calculation, building on the work of
Ref. [22].

A. Ellipsoidal coordinates

Consider a conducting uncharged solid ellipsoid with
semiaxes a > b > c centered at the origin x ¼ y ¼ z ¼ 0.
The semiaxis c lies along the z-axis. The electrostatic
potential� in the external region can be described in terms
of ellipsoidal coordinates 	, 
, � , corresponding to solu-
tions for u of the cubic equation

x2

a2 þ u
þ y2

b2 þ u
þ z2

c2 þ u
¼ 1: (5.1)

The coordinate intervals are in general

1>		�c2; �c2	
	�b2; �b2	�	�a2: (5.2)

We will henceforth assume axial symmetry around the
z-axis. In that case, b ! a, � ! �a2, and the ellipsoidal
coordinates 	, 
, � reduce to oblate spheroidal coordinates
	 and 
 restricted to the intervals

1> 	 	 �c2; �c2 	 
 	 �a2: (5.3)

If � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
denotes the horizontal radius in the plane

z ¼ constant, the cubic Eq. (5.1) reduces to the quadratic
equation
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u2 � ð�2 � a2 � c2 þ z2Þu� ð�2 � a2Þc2 � z2a2 ¼ 0

(5.4)

for u ¼ ð	;
Þ. The solution for u ¼ 	 corresponds to the
positive square root

	 ¼ 1

2
ð�2 � a2 � c2 þ z2Þ

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2 � a2 þ c2Þ2 þ z2ð2�2 þ 2a2 � 2c2 þ z2Þ

q
:

(5.5)

At the surface of the ellipsoid 	 ¼ 0, whereas in the
external region 	 > 0. Note that in the xy-plane (z ¼ 0)
the expression for 	 simplifies to 	 ¼ �2 � a2 when
� > a. The solution for u ¼ 
 corresponds to the same
expression (5.5) but with the negative square root.

Surfaces of constant 	 and 
 are oblate spheroids and
hyperboloids of revolution, the surfaces intersecting or-
thogonally. On the symmetry axis � ¼ 0, one has 	 ¼
�c2 þ z2, 
 ¼ �a2. The relations between 	, 
 and z, �
are

z¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð	þc2Þð
þc2Þ

c2�a2

s
; �¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð	þa2Þð
þa2Þ

a2�c2

s
: (5.6)

We will henceforth only be concerned with the half-space
z 	 0.

B. Ellipsoid situated in a uniform electric field

Assume now that the ellipsoid is placed in a uniform
electric field E0, directed along the z-axis. We take the
electrostatic potential� to be zero on the ellipsoid surface.
With quantities R	 and R
 defined as

R	¼ð	þa2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
	þc2

q
; R
¼ð
þa2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

þc2

q
; (5.7)

Laplace’s equation in the external region 	 	 0 can be
written as

r2� � 4

	� 


�
R	

	þ a2
@

@	

�
R	

@�

@	

�

� R



þ a2
@

@


�
R


@�

@


��
¼ 0: (5.8)

The potential due solely to E0 is

�0 ¼ �E0z; (5.9)

and we write the full potential � in the form

� ¼ �0½1þ Fð	Þ� (5.10)

so that �0F denotes the modification due to the ellipsoid.
The boundary condition at the surface is Fð0Þ ¼ �1.

Inserting Eq. (5.10) into Eq. (5.8), we find the following
equation for F:

d2F

d	2
þ dF

d	

d

d	
ln½R	ð	þ c2Þ� ¼ 0: (5.11)

The solution can be written as

� ¼ �0

2
41�

R1
	

ds
ðsþc2ÞRsR1

0
ds

ðsþc2ÞRs

3
5: (5.12)

We can also express the solution in terms of the incom-
plete beta function, defined as

Bxð�;�Þ ¼
Z x

0
t��1ð1� tÞ��1dt: (5.13)

Some manipulation yields

Z 1

	

ds

ðsþ c2ÞRs

¼ 1

ða2 � c2Þ3=2 Bða2�c2Þ=ð	þa2Þ
�
3

2
;� 1

2

�
;

(5.14)

and so we can write the final answer for the potential as

� ¼ �0

�
1� Bða2�c2Þ=ð	þa2Þð32 ;� 1

2Þ
B1�c2=a2ð32 ;� 1

2Þ
�
: (5.15)

For small values of x, the following expansion may be
useful:

Bxð�;�Þ ¼ x�

�
ð1� xÞ�

�
1þ X1

n¼0

Bð�þ 1; nþ 1Þ
Bð�þ �; nþ 1Þ x

nþ1

�
;

(5.16)

where Bð�;�Þ ¼ �ð�Þ�ð�Þ=�ð�þ �Þ is the complete
beta function. In our case, the limit x � 1 corresponds to
the minor semiaxis c being only slightly less than the major
semiaxis a.
In the following, we shall need the expression for the

z-component of the electric field, Ez ¼ �@�=@z, at an
arbitrary point ð�; zÞ in the exterior region. Here, it is
convenient to first differentiate the relation (5.4) (u ¼ 	)
with respect to z, keeping � constant, in order to obtain

�
@	

@z

�
�
¼ 2ð	þ a2Þ

	� 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð	þ c2Þð
þ c2Þ

c2 � a2

s
: (5.17)

With x ¼ ða2 � c2Þ=ð	þ a2Þ, we have

@Bxð32 ;� 1
2Þ

@z
¼ @	

@z

@x

@	

@Bxð32 ;� 1
2Þ

@x

¼ 2
ða2 � c2Þ

ð	þ c2Þð	� 
Þ ð�
� c2Þ1=2: (5.18)

Then, from Eq. (5.15),
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Ez ¼ E0

�
1� Bða2�c2Þ=ð	þa2Þð32 ;� 1

2Þ
B1�c2=a2ð32 ;� 1

2Þ

� 2ða2 � c2Þ1=2ð	þ c2Þ�1=2ð
þ c2Þ
B1�c2=a2ð32 ;� 1

2Þ
1

	� 


�
:

(5.19)

For large values of z and arbitrary � the influence from the
ellipsoid must evidently fade away, Ez ! E0.

In the xy-plane, where z¼0, 	þ a2 ¼ �2, 
þ c2 ¼ 0,
we have

Ezðz ¼ 0Þ ¼ E0

�
1� Bða2�c2Þ=�2ð32 ;� 1

2Þ
B1�c2=a2ð32 ;� 1

2Þ
�
: (5.20)

When � ¼ a (on the surface), then Ezðz ¼ 0Þ ¼ 0 as
expected.

C. Force on a dipole

Assume now that a dipole p ¼ pzẑ is situated at rest in
the position ð�; zÞ. The dipole is taken to be polarized in the
z-direction only. The value of zð	 0Þ is arbitrary, whereas
the value of � is assumed constant. Thus, writing � ¼ aþ
L, L is the constant horizontal distance between the dipole
and the edge of the ellipsoid, the force Fz on the dipole is

Fz ¼ rzðp � EÞ ¼ pz

@Ez

@z
: (5.21)

Note that we are ignoring the polarization of the ellipsoid
by the field of the dipole; the ellipsoid acquires a dipole
moment only because of the applied external field. Thus,
we have to differentiate the expression (5.19) with respect
to z. Performing the calculation along the same lines as
above, we obtain

Fz ¼ 6pzE0

B1�c2=a2ð32 ;� 1
2Þ

ða2 � c2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
� c2
p

ð	þ c2Þð	� 
Þ

�
�
1� ð	þ a2Þð�
� c2Þ

ða2 � c2Þð	� 
Þ
þ 2

3

ð	þ c2Þð
þ c2Þð	þ 
þ 2a2Þ
ða2 � c2Þð	� 
Þ2

�
: (5.22)

At z ¼ 0, the force vanishes as it should, since
þ c2 ¼ 0.
Note that the force vanishes if c=a ! 0, that is, for a

disk, because the integral representing the incomplete beta
function diverges in the limit. (It is not to be interpreted as
its analytic continuation.) This is not surprising, for in the
limit of a disk, the electric field is just E0, the applied
constant field. This is because inserting a perfectly con-
ducting sheet perpendicular to the field line has no effect
on the boundary conditions. See also the discussion in
Chap. 4 of Ref. [23].

As a small check, we consider the limit of a sphere,
c2 ! a2. Then, according to Eq. (5.16), we have

B1�c2=a2

�
3

2
;� 1

2

�
! 2

3
a�3ða2 � c2Þ3=2 (5.23)

and

	 � �2 þ z2 � c2; 
 ¼ �c2 � �2z2

�2 þ z2
; (5.24)

in terms of the ultimately vanishing quantity �2 ¼ a2 � c2.
Then, we immediately obtain

Fz ¼ 3pzE0

a3z

ð�2 þ z2Þ7=2 ð3�
2 � 2z2Þ: (5.25)

This result also follows immediately from the dipole-
dipole interaction energy

U ¼ � 1

r5
ð3r � p1r � p2 � r2p1 � p2Þ (5.26)

when we take

p 1 ¼ pzẑ; p2 ¼ a3E0ẑ: (5.27)

The force on the sphere (5.25) is attractive at large distance
because the dipoles become essentially coaxial; the force
on the sphere is repulsive at small distance because the case
of parallel dipoles in a plane is approached in that situation.
The same features hold for a general ellipsoid. For short

distances, z2 � �2 � a2 þ c2, we have

	 ¼ �2 � a2 þOðz2Þ;


 ¼ �c2 � z2ða2 � c2Þ
�2 � a2 þ c2

þOðz4Þ;
(5.28)

and then the force is repulsive,

z ! 0: Fz ¼ 6pzE0

B1�c2=a2ð32 ;� 1
2Þ

zða2 � c2Þ3=2
ð�2 � a2 þ c2Þ5=2 ; (5.29)

which reduces in the spherical case to

c ! a: Fz ¼ 9pzE0a
3z

�5
; (5.30)

which agrees with Eq. (5.25). And in the large distance
limit, where 	 � z2, 
 � �a2, the force, in general, is
attractive,

z ! 1: Fz ¼ � 4pzE0ða2 � c2Þ3=2
B1�c2=a2ð32 ;� 1

2Þ
1

z4
; (5.31)

which again has the expected limit

c ! a: Fz ¼ � 6pzE0a
3

z4
: (5.32)
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VI. INTERACTION OFANISOTROPIC ATOM
WITH ANISOTROPIC DIELECTRIC

In view of the considerations of Sec. II, we might hope
that repulsion could be achieved if an anisotropic atom
were placed above an anisotropic dielectric medium.
Consider such an atom with polarizability only in the
z-direction, � ¼ �ẑ ẑ , a distance a above a dielectric
with different permittivities in the z-direction, and the
transverse directions

" ¼ diagð"?; "?; "kÞ: (6.1)

We will assume (see below) that "?, "k > 1. The Casimir-

Polder interaction is

ECP ¼ ��
Z 1

�1
d�ð�zz � �0

zzÞðR;RÞ; (6.2)

where the atom is located at R ¼ ð0; 0; aÞ. Here, we have
subtracted the free-space contribution. We can write the
Green’s dyadic in terms of a transverse Fourier transform

� ðr; r0Þ ¼
Z ðdk?Þ

ð2�Þ2 e
ik?�ðr�r0Þ?�ðz; z0Þ; (6.3)

where (assuming that k? lies in the þx direction)

� ðz; z0Þ ¼
1
"?

@
@z

1
"0?

@
@z0 g

H 0 ik?
"?"0k

@
@z g

H

0 ��2gE 0

� ik?
"0?"k

@
@z0 g

H 0
k2?
"k"0k

gH

0
BBB@

1
CCCA:
(6.4)

We have followed Ref. [24] and used the notation " ¼
"ðzÞ, "0 ¼ "ðz0Þ. Here, we have omitted �-function terms
that do not contribute in the point-splitting limit. The
transverse electric and transverse magnetic Green’s func-
tions satisfy the differential equations�

� @2

@z2
þ k2? �!2"?

�
gEðz; z0Þ ¼ �ðz� z0Þ; (6.5a)

�
� @

@z

1

"?
@

@z
þ k2?

"k
�!2

�
gHðz; z0Þ ¼ �ðz� z0Þ: (6.5b)

It is rather straightforward to solve these equations and
find the Casimir-Polder energy

ECP ¼ �

4�2

Z 1

�1
d�

Z
ðdk?Þ

k2?
2�

��� �

��þ �
e�2�a; (6.6)

where �2 ¼ k2? �!2, �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2? �!2"kÞ="?"k

q
. Checks

of this result are

"? ! 1: ECP ! � �

8�a4
; (6.7)

one-third of the usual Casimir-Polder interaction of an
isotropic atom with a perfect conducting plate. This is
what we would have for such an anisotropic atom above
a isotropic conducting plate because taking "? ! 1

imposes the usual boundary condition that the tangential
components of E vanish on the surface. In the other limit,
we have no such simple correspondence,

"k ! 1: ECP ! �

8�a4

�
1þ 3

2

ffiffiffiffiffiffiffi
"?

p � 3"?

þ 3
ffiffiffiffiffiffiffi
"?

p ð"? � 1Þ ln
ffiffiffiffiffiffiffi
"?

p þ 1ffiffiffiffiffiffiffi
"?

p
�
; (6.8)

where the quantity in parentheses varies between�1=2 for
"? ¼ 1 and �1 as "? ! 1.
We can check that, in all cases, if we ignore dispersion,

Eq. (6.6) yields an attractive result: ECP scales like a�4

times a numerical integral, which is always negative be-
cause ��2 � �2 < 0. Repulsion does not occur in this case
because there is no breaking of translational invariance in
the transverse direction.
In fact, the electromagnetic force density in an aniso-

tropic nonmagnetic medium is (see Ref. [25], Eq. (1.2a))

f ¼ � 1

8�
EiEkr"ik: (6.9)

Assume that the single air-medium interface is flat, lying in
the xy-plane. Then, the only nonvanishing component of
the gradient r"ik is the vertical component @z"ik. If the
principal coordinate axes for "ij coincide with the x, y, z

axes, then the surface force density
R
fzdz (which is sub-

sequently to be integrated across the surface z ¼ 0) is
directed upwards because "k;? > 1. The surface force

acts in the direction of the optically thinner medium.
Now, momentum conservation of the total system asserts
that the force on a dipole above the surface acts in the
downward direction. The dipole force has to be attractive.
That " > 1 for an isotropic medium is a thermodynam-

ical result. For an anisotropic medium, oriented such that
the coordinate axes fall together with the crystallographic
axes, one must analogously have "k;? > 1. See, for in-

stance, Sec. 14 in Ref. [26].
Note the contrast with the force on a dipole outside a

conducting wedge, studied in Ref. [13]. In the latter case,
the normal surface force on the inclined (lower) surface has
a vertical (z) component that is downward directed. Thus,
momentum conservation for the total system no longer
forbids the force on the dipole to be repulsive.

VII. CONCLUSIONS

Earlier, we observed that Casimir-Polder repulsion
along a direction perpendicular to the symmetry axis of a
semi-infinite planar conductor or a conducting wedge and
an anisotropically polarizable atom could be achieved in
the region close to the conductor [13]. Here, we have
shown that anisotropically polarizable atoms can also repel
in this sense, provided they are sufficiently anisotropic and
have perpendicular principal axes. We further show that
such an atom may be repelled by a conducting cylinder
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provided, at closest approach, it is sufficiently far from the
cylinder, whereas no such phenomenon occurs for a sphere
and an anisotropic atom. We further discussed a new
example of classical repulsion by considering a polarized
ellipsoid interacting with a dipole. On the other hand, a
system of an anisotropically polarizable atom interacting
via fluctuation forces with an anisotropic dielectric
half-space does not exhibit repulsion. Apparently, spatial
anisotropy is also required for repulsion between electric
bodies.
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