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Abstract

Variational Learning for Finite Inverted Dirichlet Mixture Models and Its Applications

Parisa Tirdad

Clustering is an important step in data mining, machine learning, computer vision and image

processing. It is the process of assigning similar objects to the same subset. Among available

clustering techniques, finite mixture models have been remarkably used, since they have the abil-

ity to consider prior knowledge about the data. Employing mixture models requires, choosing a

standard distribution, determining the number of mixture components and estimating the model

parameters. Currently, the combination of Gaussian distribution, as the standard distribution, and

Expectation Maximization (EM), as the parameter estimator, has been widely used with mixture

models. However, each of these choices has its own limitations. In this thesis, these limitations are

discussed and addressed via defining a variational inference framework for finite inverted Dirichlet

mixture model, which is able to provide a better capability in modeling multivariate positive data,

that appear frequently in many real world applications. Finite inverted Dirichlet mixtures enable us

to model high-dimensional, both symmetric and asymmetric data. Compared to the conventional

expectation maximization (EM) algorithm, the variational approach has the following advantages:

it is computationally more efficient, it converges fast, and is able to estimate the parameters and the

number of the mixture model components, automatically and simultaneously. The experimental

results validate the presented approach on different synthetic datasets and shows its performance

for two interesting and challenging real world applications, namely natural scene categorization

and human activity classification.
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Chapter 1
Introduction

1.1 Introduction and Related Works

Advances in technology has allowed to generate and store large amounts of multimodal data (text,

image, video, audio). A crucial problem is the statistical modeling and analysis of these data. This

is evidenced by many information retrieval systems [3, 4], and various data mining and machine

learning techniques. Clustering, in particular, has been the topic of extensive research in the past

and several parametric and nonparametric approaches have been proposed [5–11]. Among these

approaches finite mixtures have received a lot of attention. The most popular mixture model is

the Gaussian mixture [12–14] which has been applied in several applications [15–17]. However,

this choice is not appropriate when the data partitions are not Gaussians as shown in several pre-

vious works [1, 18–21]. Indeed, it is important to take the form of the data and the kind of latent

structure it expresses into account. This is exactly the case of positive data for which the inverted

Dirichlet, that we shall consider in this thesis, has been shown to be an efficient alternative to the

Gaussian [1, 21, 22].

Two challenging problems when dealing with finite mixtures are the determination of the number

1



of the mixture components and the estimation of the mixture’s parameters. Concerning param-

eters estimation, two families of approaches could be considered namely the frequentist and the

Bayesian techniques. The maximum likelihood (ML), while the most popular among frequentist

estimation techniques, to mixture learning has several shortcomings for its application since it can

easily get caught in saddle points or local maxima and it depends on the initially set parameters.

It was implemented in [1], via an expectation-maximization algorithm [23], in the case of the

inverted Dirichlet mixture. To address these drawbacks, Bayesian framework could be adopted.

Bayesian learning has several interesting properties. For instance, it allows to incorporate prior

knowledge in a natural way, it permits the manipulation of uncertainty consistently, and it does not

suffer from over-fitting problems. However, fully Bayesian learning is generally computationally

intractable which has forced researchers in the past to adopt approximation techniques such as

Laplace approximation and Markov Chain Monte Carlo (MCMC) sampling. In particular MCMC-

based sampling approaches have received a lot of attention, yet they suffer from significant com-

putational complexity. Thus, variational learning has been proposed, as an efficient deterministic

approximation to fully Bayesian learning, to overcome the problems related to MCMC sampling

and have been widely adopted [24]. Variational learning has made it possible to fit large class of

learning models and then to explore real-world complexity of data [25, 26]. It can be viewed as an

approximation to the exact pure Bayesian learning where the true posterior is approximated with a

simpler distribution.

A finite mixture model is the linear combination of finite number of weighted standard distributions

(e.g. Gaussian, Dirichlet, inverted Dirichlet) called mixture components, and defined as

p(X) =
M∑
j=1

πjp(X|θj) (1.1)

where p(X|θj) is a mixture component with parameter θj . Parameters πj are model weights or

mixing coefficients, and 0 ≤ πj ≤ 1,
∑M

j=1 πj = 1. In (1.1), M is considered to be a fixed quantity.
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There are some other cases that the number of the components are infinite i.e., M → ∞, these

cases are called infinite mixture models and are defined as:

p(X) =
∞∑
j=1

πjp(X|θj) (1.2)

In this thesis, we are focusing on the finite mixture models.

1.2 Contributions

The main contributions of this thesis are as follows:

�Proposing a variational framework for finite inverted Dirichlet mixture model :

Our approach proposes a variational framework for learning inverted Dirichlet mixture mod-

els. We build a traceable lower bound for estimating marginal likelihood by using approxi-

mated distributions to replace the intractable parameter distributions. This approach is com-

putationally more efficient, and converges fast. Furthermore, in comparison to traditional

approaches, in which the model selections are solved based on cross-validation, our method

estimates the model parameters and determines the number of components simultaneously.

�Demonstrating the application of the proposed statistical model :

In addition to showing the validity of the proposed approach in parameter estimation and

model selection on different synthetic datasets, we have shown the usefulness of our method

in challenging real world applications. First application is natural scene categorization which

plays an important role in understanding the world through images and information retrieval.

Human activity classification is the second application that has attracted lots of attention

for its important applications in security systems and surveillance for public environments.

Moreover, we compared the performance of our model with Gaussian mixture models in

terms of accuracy and showed that the variational inverted Dirichlet model outperforms

3



Gaussian mixture models in modeling real world data. Finally, to show the importance

of choosing a variational approach for estimating the mixture components, we used both

variational inference and maximum likelihood approaches with the finite inverted Dirichlet

mixture models and compared the results.

1.3 Thesis Overview

The organization of this thesis is as follows:

� Chapter 1 explains data clustering using mixture models, and the challenges that should be

addressed by choosing them. It also gives an overview of the proposed approach.

� Chapter 2 proposes a variational framework for finite inverted Dirichlet mixture model,

which is able to estimate the model parameters and determine the number of components

simultaneously.

� Chapter 3 shows the experimental results of the proposed approach on synthetic data and

two real world applications, namely, natural scene categorization and human activity classi-

fication.

� Chapter 4 summarizes the research and presents the conclusions.

4



Chapter 2
Proposed Statistical Framework

2.1 Introduction

In the previous chapter, we discussed the importance of data clustering and explained some draw-

backs of the existing methods. This chapter, gives an overview of the inverted Dirichlet mixture

model and defines a variational framework for it, which allows estimating the parameters and the

number of components of the mixture model automatically and simultaneously.

2.2 Finite Inverted Dirichlet Mixture Model

The main reason for adopting inverted Dirichlet distribution as the standard distribution for our

mixture model is that, inverted Dirichlet can generate models specific to positive data and as

shown in Figure (2.1), unlike Gaussian distribution, it is considerably flexible and can perform

in both symmetric and asymmetric modes. The inverted Dirichlet distribution has many interest-

ing properties and has applications in various fields [27–29].

Assume that a D-dimensional positive vector �Xi = (Xi1, . . . , XiD) is sampled from a finite
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(a) α1 = 6.5, α2 = 6.5, α3 = 6.5 (b) α1 = 15, α2 = 6.5, α3 = 6.5

(c) α1 = 6.5, α2 = 15, α3 = 6.5 (d) α1 = 6.5, α2 = 6.5, α3 = 15

Figure 2.1: Bivariate inverted Dirichlet distributions, in symmetric and asymmetric modes.
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inverted Dirichlet mixture model with M components, then we have:

p( �Xi|�π, �α) =
M∑
j=1

πjID( �Xi|�αj) (2.1)

where �α = (�α1, ..., �αM) and �π = (π1, ..., πM) denotes the mixing coefficients with the

constraints that they are positive and sum to one. ID( �Xi|�αj) represents the jth inverted Dirichlet

distribution with parameter �αj and is defined in [27] as

ID( �Xi|�αj) =
Γ(
∑D+1

l=1 αjl)

ΠD+1
l=1 Γ(αjl)

ΠD
l=1X

αjl−1

il (1 +
D∑
l=1

Xil)
−∑D+1

l=1 αjl (2.2)

where 0 < Xil < ∞ for l = 1, ..., D. In addition, �αj = (αj1, ..., αjD) such that αj1 > 0 for

l = 1, ..., D+1. The mean, variance and covariance of the inverted Dirichlet distribution are given

by

E(Xl) =
αl

(αD+1 − 1)
(2.3)

var(Xl) =
αl(αj + αD+1 − 1)

(αD+1 − 1)2(αD+1 − 2)
(2.4)

cov(Xa, Xb) =
αaαb

(αD+1 − 1)2(αD+1 − 2)
(2.5)

Next, we introduce an M -dimensional binary random vector �Zi = {Zi1, ..., ZiM} for each

observed vector �Xi, such that Zij ∈ {0, 1},
∑M

j=1 Zij = 1, and Zij = 1 if �Xi belongs to component

j and 0, otherwise. Notice that, Z = {�Z1, ... �ZN} are called the membership vectors of the mixture

model and are also considered as the latent variables since they are actually hidden variables that

do not appear explicitly in the model. Furthermore, the conditional distribution of Z given the

7



mixing coefficients �π is defined as

p(Z|�π) =
N∏
i=1

M∏
j=1

π
Zij

j (2.6)

Then, the likelihood function with latent variables, which is indeed the conditional distribu-

tion of data set X given the class labels Z can be written as

p(X|Z, �α) =
N∏
i=1

M∏
j=1

ID( �Xi|�αj)
Zij (2.7)

Moreover, we assume that the parameters of the inverted Dirichlet are statistically independent and

for each parameter αjl, the Gamma distribution G is adopted to approximate the conjugate prior:

p(αjl) = G(αjl|ujl, vjl) =
v
ujl

jl

Γ(ujl)
α
u−1
jl

jl e−vjlαjl (2.8)

where ujl and vjl are positive hyperparameters. Thus, the joint distribution of all the random

variables, conditioned on the mixing coefficients can be written as

p(X ,Z, �α|�π) = p(X|Z, �α)p(Z|�π)p(�α)

=
N∏
i=1

M∏
j=1

[
πj

Γ(
∑D+1

l=1 αjl)∏D+1
l=1 Γ(αjl)

D∏
l=1

X
αjl−1

il

× (1 +
D∑
l=1

Xil)
−∑D+1

l=1 αjl

]Zij

×
M∏
j=1

D+1∏
l=1

v
ujl

jl

Γ(ujl)
α
ujl−1

jl e−vjlαjl

(2.9)

A directed representation of this model is illustrated in Figure (2.2).
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Figure 2.2: Graphical model representation of the finite inverted Dirichlet mixture. Symbols in
circles denote random variables; otherwise, they denote model parameters. Plates indicate repeti-
tion (with the number of repetitions in the lower right), and arcs describe conditional dependencies
between variables.

2.3 Variational Learning

Variational inference is a deterministic approximation scheme, which is used to formulate the

computation of a marginal or conditional probability in terms of an optimization problem. In

this section, following the methodology proposed in [30], we develop a variational framework

for learning the finite inverted Dirichlet mixture model. To simplify the notation without loss of

generality, we define Θ = {Z, �α}. The main idea in variational learning is to find an approximation

Q(Θ), which approximates the true posterior distribution p(Θ|X , �π). The logarithm of the model

evidence p(X|�π) can be decomposed as

ln p(X|�π) = L(q)−
∫

Q(Θ) ln

[
p(Θ|X , �π)

Q(Θ)

]
dΘ︸ ︷︷ ︸

−KL(Q‖p)

(2.10)

where KL(Q ‖ p) is the Kullback-Leibler (KL) divergence between Q(Θ) and the true posterior

distribution p(Θ|X , �π). L(q) is the variational lower bound of ln p(X ) and is defined by

9



L(q) =
∫

Q(Θ) ln

[
p (X ,Θ|�π)

Q(Θ)

]
dΘ (2.11)

In our work, a mean field approximation [31, 32] is adopted for the variational inference.

Hence, Q(Θ) can be factorized into disjoint tractable distributions as follows:

Q(Θ) = Q(Z)Q(�α) (2.12)

In order to maximize the lower bound L(q), we need to make a variational optimization of

L(q) with respect to each of the factors in turn. For a specific factor Qs(Θs) the general variational

solution is given by

Qs(Θs) =
exp 〈ln p (X ,Θ|�π)〉 �=s∫
exp 〈ln p (X ,Θ|�π)〉 �=s dΘ

(2.13)

Where 〈.〉 �=s denotes an expectation with respect to all factor distributions, except for s. We can

obtain the following variational solutions for the finite inverted Dirichlet mixture model (proved in

appendix A):

Q (Z) =
N∏
i=1

M∏
j=1

rij
Zij (2.14)

Q(�α) =
M∏
j=1

D+1∏
l=1

G(αjl|u∗
jl, v

∗
jl) (2.15)

where we have defined

rij =
ρij∑M
j=1 ρij

(2.16)

10



ρij = exp

{
ln πj + R̃j +

D∑
l=1

(ᾱjl − 1) lnXil

− (
D+1∑
l=1

ᾱjl) ln(1 +
D∑
l=1

Xil)

} (2.17)

R̃j = ln
Γ
(∑D+1

l=1 ᾱjl

)
∏D+1

l=1 Γ (ᾱjl)

+
D+1∑
l=1

ᾱjl

[
Ψ

(
D+1∑
l=1

ᾱjl

)
−Ψ(ᾱjl)

]
[〈lnαjl〉 − ln ᾱjl]

+
1

2

D+1∑
l=1

ᾱ2
jl

[
Ψ′
(

D+1∑
l=1

ᾱjl

)
−Ψ′ (ᾱjl)

] 〈
(lnαjl − ln ᾱjl)

2〉
+

1

2

D+1∑
a=1

D+1∑
b=1
(b �=a)

ᾱjaᾱjb

[
Ψ′
(

D+1∑
l=1

ᾱjl (〈lnαja〉 − ln ᾱja)

)

× (〈lnαjb〉 − ln ᾱjb)

]

(2.18)

u∗
jl = ujl +

N∑
i=1

〈Zij〉ᾱjl

[
Ψ(

D+1∑
l=1

ᾱjl)−Ψ(ᾱjl)

+
D+1∑
k �=l

ᾱkΨ
′(
D+1∑
l=1

ᾱl)(〈lnαk〉 − ln ᾱk)

] (2.19)

v∗jl = vjl −
N∑
i=1

〈Zij〉
[
lnXil − ln

(
1 +

D∑
l=1

Xil

)]
(2.20)

where Ψ(.) is diagamma function. The expected values in the above formulas are

〈Zij〉 = rij (2.21)
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ᾱjl = 〈αjl〉 = ujl

vjl
(2.22)

〈lnαjl〉 = Ψ(ujl)− ln vjl (2.23)

Note that, R̃j is the approximate lower bound of Rj , where Rj is defined as Rj =

〈
ln

Γ(
∑D+1

l=1 αjl)
∏D+1

l=1 Γ(αjl)

〉
.

Since a closed form expression cannot be found for Rj , the standard variational inference can not

be applied directly. Therefore, we applied the second-order Taylor series expansion to find a lower

bound approximation R̃j for the variational inference (proved in appendix B).

In our case, the mixing coefficients �π are treated as parameters, and point estimations of their val-

ues are evaluated by maximizing the variational likelihood bound L (Q). Setting the derivative of

this lower bound with respect to �π to zero gives:

πj =
1

N

N∑
i=1

rij (2.24)

It is noteworthy that components that provide insufficient contribution to explain the data

would have their mixing coefficients driven to zero during the variational optimization. Thus, by

starting with a relatively large initial value of M and then remove the redundant components after

convergence, we can obtain the correct number of components. Variational learning, is able to trace

the convergence systematically by monitoring the variational lower bound during the re-estimation

step [33]. Indeed, at each step of the iterative re-estimation procedure, the value of this bound

should never decrease. Specifically, the bound L (Q) is evaluated at each iteration and terminate

optimization if the amount of increase from one iteration to the next is less than a threshold. For

the variational inverted Dirichlet mixture model, the lower bound in (2.11) is evaluated as

12



L(Q) =
∑
Z

∫
Q(Z, �α) ln

{
p (X ,Z, �α|�π)

Q(Z, �α)

}
d�α

= 〈ln p(X|Z, �α)〉+ 〈ln p(Z|�π)〉+ 〈ln p (�α)〉
− 〈lnQ(Z)〉 − 〈lnQ(�α)〉

(2.25)

The variational inference for finite inverted Dirichlet mixture model can be performed via an EM-

like algorithm and is summarized in Algorithm 1.

Algorithm 1 Variational learning of inverted Dirichlet mixture model

1: Set the initial number of components M .

2: Initialize the values of the hyper-parameters ujl and vjl.

3: Initialize the value of rij by K-means algorithm.

4: repeat

5: The variational E-step: update the variational solutions for Q(Z) (2.14) and Q(�α) (2.15).

6: The variational M-step: maximize the lower bound L(Q) with respect to the current value of

�π (2.24).

7: until Convergence criterion is reached.

8: Detect the optimal number of components M by eliminating the components with small mixing

coefficients close to 0.

13



Chapter 3
Experimental Results

3.1 Introduction

This chapter shows the experimental results of applying the proposed variational inverted Dirichlet

mixture model (varIDM) on synthetic data and its applications in natural scene categorization and

human activity classification. In all the experiments, the number of components M is initialized

to 20 with equal mixing coefficients. The initial values of hyperparameters ujl and vjl were 1

and 0.01, respectively. Our experiments are performed using MATLAB on a Windows platform

machine.

3.2 Synthetic Data

To show the validity of the proposed approach in parameter and model selection, it is applied on

six, two-dimensional synthetic datasets. Please note that, D = 2 is chosen for ease of represen-

tation. The number of the components is set to 20 as a start point. Table 3.1 shows the real and

estimated parameters, resulted from VarIDM. For estimating the number of components a threshold

of (T = 10−4) is applied to remove the redundant components that have mixing coefficients close

14



(a) 2-component mixture (b) 3-component mixture

(c) 4-component mixture (d) 5-component mixture

Figure 3.1: Two-dimensional inverted Dirichlet mixtures

to zero. As it is shown in Table 3.1, for all the synthesized datasets, the proposed approach could

successfully estimate the number of components with a good accuracy. To prove that finite inverted

Dirichlet mixtures are considerably flexible and can perform in both symmetric and asymmetric

modes, some examples with symmetric and asymmetric shapes are demonstrated in Figure (3.1).

Figure (3.2) represents the variational lower likelihood bound. In each diagram (Figure(3.2)), the

value of the likelihood bound is maximum at the point in which, the true number of components is

estimated. Therefore, the variational likelihood bound can be used as a model selection criterion.

In this case, there is no need to eliminate the redundant components by applying a threshold.
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Table 3.1: VarIDM real and estimated parameters on different synthetic datasets. In this Table, N
denotes the total number of elements, nj shows the number of elements in cluster j. αj1, αj2, αj3,
and πj denote the real parameters. ᾱj1, ᾱj2, ᾱj3, and π̄j are the estimated parameters by variational
inference.

nj j αj1 αj2 αj3 πj ᾱj1 ᾱj2 ᾱj3 π̄j

Dataset 1 (N = 400) 200 1 20 70 4 0.50 20.47 70.70 4.07 0.5010

200 2 40 50 5 0.50 36.42 45.16 4.62 0.4990

Dataset 2 (N = 400) 133 1 10 40 4 0.33 9.54 38.51 4.22 0.3333

133 2 20 30 5 0.33 22.16 32.07 5.34 0.3458

133 3 30 20 5 0.33 29.27 18.88 4.79 0.3209

Dataset 3 (N = 600) 200 1 10 40 4 0.33 9.62 38.23 3.72 0.3359

200 2 20 30 5 0.33 18.93 28.67 4.39 0.3080

200 3 30 20 5 0.33 29.71 19.89 5.03 0.3561

Dataset 4 (N = 600) 150 1 10 40 4 0.25 10.87 42.12 4.30 0.2446

150 2 20 30 5 0.25 18.67 27.95 4.44 0.2710

150 3 30 20 5 0.25 33.71 20.64 5.24 0.2533

150 4 40 10 4 0.25 35.96 8.81 3.54 0.2311

Dataset 5 (N = 800) 200 1 10 40 4 0.25 10.43 41.66 4.01 0.2493

200 2 20 30 5 0.25 19.14 28.42 4.81 0.2630

200 3 30 20 5 0.25 28.42 18.66 4.49 0.2359

200 4 40 10 4 0.25 38.04 9.30 3.86 0.2517

Dataset 6 (N = 1000) 200 1 10 40 4 0.20 8.77 39.30 3.60 0.1943

200 2 20 30 5 0.20 17.70 29.46 4.87 0.2020

200 3 5 60 2 0.30 4.54 56.60 2.03 0.2892

200 4 30 20 5 0.20 28.52 19.71 4.89 0.2155

200 5 40 10 4 0.10 36.74 9.47 3.54 0.0990
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(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

(d) Dataset 4 (e) Dataset 5 (f) Dataset 6

Figure 3.2: Variational lower likelihood bound in each iteration for synthesized datasets.

3.3 Natural Scene Categorization

Scene categorization is playing an important role in understanding the world through images. Hu-

man beings’ brain is able to perceive complex natural scenes, understand their contents, and clas-

sify them very fast with little or no attention [34]. However, in machine vision, scene classification

is a very challenging task due to the wide range of illumination, various texture and color, size

and the location of the objects in the scene [2]. In this section, the proposed approach is tested

on scene categorization using bag-of-visual-words representation [35, 36]. Every image contains

some salient patches around the corners and the edges called keypoints, which contain valuable

information about that image. Using k-means clustering these keypoints can be grouped into dif-

ferent clusters each of which is considered a ”visual-word”, and the group of visual-words are

called visual-word vocabulary. With this definition, an image can be represented as a ”bag of vi-

sual words” [2].
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Figure 3.3: Overview of visual vocabulary formation. Figure reproduced from [2].

Before extracting the keypoints, a 5x5 window Gaussian filter with sigma = 0.5 is applied on the

images to reduce the effect of noise on the extracted keypoints. The preprocessed images were

fed into scale invariant feature transform (SIFT) descriptor [37] and the extracted keypoints were

quantized through K-Means clustering to form our visual words. Having the visual vocabulary,

each image can be represented as a d-dimensional vector containing the frequency of each visual

word in that image. Figure (3.3) demonstrates this process.

For the evaluations, MIT natural scene dataset [38] is used. This dataset contains eight cat-

egories of complex scenes namely, highway (260 images), inside city (308 images), tall buildings

(365 images), street (292 images), forest (328), coast (360 images), mountains (374 images), open

country (410 images). The dataset is collected from COREL images and personal photographs.

Based on color and texture features, the classes are divided into indoor (highway, inside city, tall

buildings, street) and outdoor (forest, coast, mountains, open country) categories. Figure 3.4 shows

some examples from each class.

The performance of VarIDM and GMM are visualized in confusion matrices shown in Tables (3.2)

and (3.3) for indoor and outdoor categories, respectively. In each confusion matrix:
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Figure 3.4: Sample frames of MIT natural scene dataset. a) Coast b) Forest c) Open country d)
Mountain e) Highway f) Inside city g) Street h) Tall building.

• Each column represents the number of samples in a predicted class, and each row illus-

trates the samples in an actual class. In other words the value of entry ConfMat(i, j)

shows the number of instances which belong to class i but are classified as category j.

• The diagonal entries ConfMat(i, j)i=j , represent the number of correctly classified

samples.

• The off diagonal entries ConfMat(i, j)i �=j , show the system’s false positives (FP) and

false negatives (FN).

The same dataset was fed to Gaussian mixture model (GMM) and the results were computed.
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Tables (3.4) and (3.5) illustrate the GMM’s confusion matrices for indoor and outdoor datasets

respectively. The overall accuracies for VarIDM and GMM are shown in Table 3.6. Running

student’s t-test on our results shows that VarIDM outperforms GMM at the significance level of

0.05, and p values were 0.0038 and 0.0001 for indoor and outdoor datasets respectively.

Table 3.2: VarIDM confusion matrix of indoor natural scene

Highway Street Inside city Tall building

Highway 87 30 6 7

Street 24 107 9 6

Inside city 3 7 133 11

Tall building 4 19 15 145

Table 3.3: VarIDM confusion matrix of outdoor natural scene

Coast Open country Forest Mountains

Coast 155 15 8 2

Open country 28 143 11 23

Forest 14 9 104 37

Mountains 3 17 32 135
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Table 3.4: GMM confusion matrix of indoor natural scene

Highway Street Inside city Tall building

Highway 70 43 7 10

Street 30 94 14 8

Inside city 6 14 108 26

Tall building 5 37 16 125

Table 3.5: GMM confusion matrix of outdoor natural scene

Coast Open country Forest Mountains

Coast 136 27 11 6

Open country 39 119 17 30

Forest 12 19 84 49

Mountains 5 23 44 115

3.4 Human Activity Classification

Automatic human activity classification has attracted lots of attention for its important applica-

tions in surveillance for public environments such as banks and airports and subway stations, or

security systems in industry and commerce for intruder detection, real-time monitoring of patients,

children or elderly people, and human-computer interaction [39, 40]. Variation in environment,

moving objects in the scene, camera motion, changes in scene illumination, individuals varying in

posture, expression, clothing and actions, make human activity classification a challenging prob-

lem [41]. This section demonstrates our experimental results on Weizmann dataset [42] which con-

tains 93 video sequences from nine different people, each performing ten actions namely, run, walk,

skip, jumping-jack (jack), jump-forward-on-two-legs (jump), jump-in-place-on-two-legs (pjump),
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Table 3.6: Average accuracy of VarIDM and GMM on indoor and outdoor natural scene dataset

VarIDM GMM

Outdoor 72.96 61.68

Indoor 76.99 64.76

gallop-sideways (side), wave-two-hands (wave2), wave-one-hand (wave1) and bend. The video

resolution is 180× 144. Samples of each class are shown in Figure (3.5). In the experiments, two

different types of features are considered for video categorization. First group are local spatio-

temporal features. Laptev et al. [43] detector is used to detect the space-time interest features in

each video sequence. Second group are optical flow features [44], after computing the optical flow

matrix on subsequent frames, a threshold (T= 0.8) considered to extract the strong optical flow

responses. A mask of size 5x5 is defined around the positions with the strong optical flow values

to form the total feature set. These features are fed into the minimum Redundancy Maximum Rel-

evance (mRMR) feature selection method [45] in order to choose the most discriminative features.

Using K-means algorithm, a bag of visual words is constructed, and each video is represented as

a frequency histogram of the visual words. Finally, the vector of frequencies passed to VarIDM

for classification. Tables (3.7) and (3.8) illustrate VarIDM and GMM confusion matrices for Weiz-

mann dataset, respectively. We fed the same future set to Gaussian mixture model (GMM) and

computed the results. The overall accuracies for VarIDM and GMM are 87.49 and 81.3 respec-

tively. As experimental results show, the action videos can be modeled better by VarIDM rather

than Gaussian mixture model. This is also illustrated by student’s t-test at the significance level of

0.05 (p value=0.0005).
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Table 3.7: VarIDM confusion matrix on Weizmann action dataset

Bend Jack Jump Pjump Run Side Skip Walk Wave1 Wave2

Bend 320 0 0 0 0 0 0 0 0 0

Jack 0 365 0 0 0 0 0 0 0 0

Jump 0 0 128 0 25 23 53 0 0 0

Pjump 0 0 0 269 0 0 0 0 0 0

Run 0 0 0 0 174 0 22 32 0 0

Side 0 0 23 0 0 195 4 0 0 0

Skip 0 0 32 0 58 0 153 0 0 0

Walk 0 0 0 0 0 0 0 356 0 0

Wave1 0 0 0 0 0 0 0 0 291 36

Wave2 0 21 0 0 0 0 0 0 30 261

3.5 Comparison With Maximum Likelihood

As we mentioned in chapter one, the maximum likelihood (ML) method is the most popular ap-

proach among frequentist estimation techniques for learning a mixture model. However, it can

easily get caught in saddle points or local maxima and it depends on the initially set parameters.

Bdiri [1] has implemented this method via an expectation-maximization algorithm to learn the in-

verted Dirichlet mixture. The author tested his approach on Haberman’s Survival dataset [46]. To

compare the efficiency of variational learning and maximum likelihood, we applied our approach

on the same dataset. Haberman’s survival dataset includes 306 cases on the patients’ status (sur-

vived or died) after the surgery for breast cancer. Each case has 3 features 1: Age of patient at

time of surgery, 2: The year of the surgery, 3: Number of detected positive axillary nodes. In this

dataset two possible status are considered for the patients:
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Table 3.8: GMM confusion matrix on Weizmann action dataset

Bend Jack Jump Pjump Run Side Skip Walk Wave1 Wave2

Bend 320 0 0 0 0 0 0 0 0 0

Jack 0 331 34 0 0 0 0 0 0 0

Jump 0 0 116 10 25 28 50 0 0 0

Pjump 0 0 11 258 0 0 0 0 0 0

Run 0 0 0 0 160 0 23 45 0 0

Side 0 0 47 0 0 165 10 0 0 0

Skip 0 0 45 0 59 0 139 0 0 0

Walk 0 0 0 0 11 0 0 345 0 0

Wave1 0 0 0 0 0 0 0 0 259 68

Wave2 0 23 0 0 0 0 0 0 48 241

- 1 : the patient survived 5 years or longer

- 2 : the patient died within 5 years

Tables 3.9, 3.10, and 3.11 show the confusion matrices of the Inverted Dirichlet mixture model

and maximum likelihood (MLIDM), VarIDM and Gaussian mixture model (GMM), respectively.

Both MLIDM and GMM confusion matrices are brought as reported in [1]. For the survived

class, VarIDM and MLIDM results are close, but for the died class VarIDM significantly outper-

forms MLIDM. The overall accuracy of VarIDM, MLIDM, and GMM (Table 3.12) illustrates that

VarIDM outperforms both MLIDM and GMM.
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Table 3.9: MLIDM confusion matrix of Haberman’s Survival dataset [1].

Survived Died

Survived 195 30

Died 51 30

Table 3.10: VarIDM confusion matrix of Haberman’s Survival dataset.

Survived Died

Survived 198 27

Died 25 56

Table 3.11: GMM confusion matrix of Haberman’s Survival dataset [1].

Survived Died

Survived 150 75

Died 27 54

Table 3.12: Overall accuracy of MLIDM, VarIDM, and GMM on Haberman’s survival dataset.

Method VarIDM MLIDM GMM

Accuracy 0.83 0.74 0.67

25



Figure 3.5: Sample frames of Weizmann dataset. a) Bend b) Jack c) Jump d) Pjump e) Run f) Side
g) Skip h) Walk i) Wave1 j) Wave2.
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Chapter 4
Conclusion

This thesis is mainly motivated by important role of clustering in many fields such as signal and

image processing, and the related challenges in data analysis. We discussed that Gaussian mixture

models are widely used in statistical modeling of the observed data. However, when it comes to

modeling asymmetric data, Gaussian distribution is unable to model the data properly. For ex-

ample, in image processing, the distribution of digitalized pixels is usually not symmetric [47].

The power spectrum, which is the most widely used feature in signal processing, is also asym-

metric [47]. To address this problem the inverted Dirichlet mixture model is chosen due to its

great ability to model both symmetric and asymmetric data. Furthermore, we defined a variational

framework to learn the inverted Dirichlet mixture models. The main idea of the variational infer-

ence is approximating a complex model posterior distribution with a simpler distribution. Using

this approach, both model parameters and the number of mixture components can be determined

automatically and simultaneously.

The experimental results demonstrated the validity of the proposed approach in terms of parame-

ter estimation and model selection through different synthetic datasets. Moreover, we showed the

usefulness of our method on challenging real world applications, namely human activity classi-

fication which covers a wide range applications in security systems and public surveillance, and
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natural scene categorization that plays an important role in understanding the world through images

and information retrieval. For each application, we compared the performance of our model with

Gaussian mixture models in terms of accuracy and showed that the variational inverted Dirichlet

model outperforms Gaussian mixture models in modeling real world data. Finally, to prove the

importance of choosing a proper method to determine the number of the mixture components and

to estimate the mixture parameters, we compared the variational inverted Dirichlet mixture model

with IDM based on maximum likelihood approach. The test results showed that the system accu-

racy can improve significantly when we use variational learning.

It is worth mentioning, the variational inverted Dirichlet mixture models can be used in many other

applications that are dealing with asymmetric data. There are several promising avenues for future

research. For instance, the covariance structure imposed by the inverted Dirichlet is strictly posi-

tive. This is rather restrictive and does not allow for modeling the data in a flexible way. Thus, it is

possible to consider the generalized inverted Dirichlet to enlarge the applicability of the proposed

model.
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Appendix A
Proof of Equations (2.14) and (2.15)

The general expression for the variational solution Qs(Θs) (Eq. (2.13)), can be written as:

lnQs(Θs) = 〈ln p(X ,Θ)〉j �=s + const (A.1)

where const is an additive constant denoting all the terms that are independent of Qs(Θs).

Considering the joint distribution represented in Eq. (2.9), the following variational solutions for

Q(Z) and Q(�α) can be developed.

A.1 Proof of Eq. (2.14): Variational Solution to Q(Z)

lnQ(Zij) = Zij

[
ln πj +Rj +

D+1∑
l=1

(ᾱjl − 1) lnXil

]
+ const (A.2)

where

Rj =

〈
ln

Γ(
∑D+1

l=1 αjl)∏D+1
l=1 Γ(αjl)

〉
αj1,...,αjD+1

(A.3)

and

ᾱjl = 〈αjl〉 = ujl

vjl
(A.4)
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Since a closed-form expression cannot be found for Rj , the standard variational inference

cannot be applied directly. Therefore, to obtain a closed-form expression, a lower bound approx-

imation is proposed. To provide traceable approximations, the second-order Taylor series expan-

sion is applied in variational inference [47, 48]. In fact, the function Rj is approximated using a

second-order Taylor expansion about the expected values of the parameters �αj . Here, R̃j is de-

fined to denote the approximation of Rj , and (ᾱj1, ..., ᾱjD+1) to represent the expected values of

�αj . Replacing Rj by R̃j makes the optimization in Eq.(A.2) traceable.

Considering the logarithmic form of Eq. (2.6) , formula A.2 can be written as

lnQ(Z) =
N∑
i=1

M∑
j=1

zij ln ρij + const (A.5)

where

ln ρij = ln πj + R̃j +
D∑
l=1

(ᾱjl − 1) lnXil (A.6)

All the terms, independent of Zij can be added to the constant part, therefore, it is straight

forward to show

Q(Z) ∝
N∏
i=1

M∏
j=1

ρ
Zij

ij (A.7)

In order to find the exact formula for Q(Z) the Eq. (A.7) needs to be normalized. Simple calcula-

tions lead to

Q(Z) =
N∏
i=1

M∏
j=1

r
Zij

ij (A.8)

where

rij =
ρij∑M
j=1 ρij

(A.9)

Note that
∑M

j=1 rij = 1, therefore, the standard result for Q(Z) will be
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〈Zij〉 = rij (A.10)

A.2 Proof of Eq. (2.15): Variational Solution to Q(�α)

Having a mixture model with M components and assuming the parameter αjl are independent,

Q(�α) can be factorized as

Q(�α) =
M∏
j=1

D+1∏
l=1

Q(αjl) (A.11)

Consider the variational optimization for the specific factor Q(αjs). The logarithm of the optimized

factor is given by

lnQ(αjs) =
N∑
i=1

rijT (αjs) + αjs

N∑
i=1

rij lnXis + (ujs − 1) lnαjs − vjsαjs + const (A.12)

where

T (αjs) =

〈
ln

Γ
(
αs +

∑D+1
l �=s αjl

)
Γ(αs)

∏D+1
l �=s Γ(αjl)

〉
Θ �=αjs

(A.13)

T is a function of αjs. Since T (αjs) is intractable, a lower bound estimation should be found for

it. Hence, a first-order Taylor expansion [47] around ᾱjs (the expected value of αjs) is used (See

Appendix B).

T (αjs) ≥ ᾱjs lnαjs

{
Ψ
(D+1∑

l=1

ᾱjl

)−Ψ(ᾱjs) +
D+1∑
l �=s

ᾱjl ×Ψ′(D+1∑
l=1

ᾱjl

)
(〈lnαjl〉 − ln ᾱjl)

}
+ const

(A.14)

Substituting this lower bound into Eq. (A.12), results in an optimal solution for αjs
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lnQ(αjs) =
N∑
i=1

rijᾱjs lnαjs

[
Ψ
(D+1∑

i=1

ᾱjl

)−Ψ(ᾱjs) +
D+1∑
l �=s

Ψ′(D+1∑
l=1

ᾱjl

)
ᾱjl(〈lnαjl〉 − ln ᾱjl)

]

+ αjs

N∑
i=1

rij lnXis + (ujs − 1) lnαjs − vjsαjs + const

= lnαjs(ujs + φjs − 1)− αjs(vjs − νjs) + const

(A.15)

where

φjs =
N∑
i=1

rijᾱjs

[
Ψ
(D+1∑

l=1

ᾱjl

)−Ψ(ᾱjs) +
D+1∑
l �=s

Ψ′(D+1∑
l=1

ᾱjl

)× ᾱjl(〈lnαjl〉 − ln ᾱjl)

]
(A.16)

νjs =
N∑
i=1

rij lnXis (A.17)

By taking the exponential of Eq. (A.15) which is the logarithmic form of Gamma distribution, we

will have

Q(αjs) ∝ α
ujs+φjs−1
js e−(vjs−νjs)αjs (A.18)

The optimal solution to the parameters are as

u∗
js = ujs + φjs

v∗js = vjs − νjs (A.19)
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Appendix B
Proof of Equations (2.18) and (A.14)

B.1 Lower bound of Rj: Proof of Eq.(2.18)

Since Rj in Eq.(A.3) is intractable, a non-linear approximation of the lower bound of Rj is calcu-

lated using the second-order Taylor expansion. First, function H is defined as follow

H(�αj) = H(αj1, . . . , αjD+1) = ln
Γ(
∑D+1

l=1 αjl)∏D+1
l=1 Γ(αjl)

(B.1)

where αjl > 1. Using the second-order Taylor expansion for ln �αj = (lnαj1, . . . , lnαjD+1) around

ln �αj,0 = (ln �αj1,0, . . . , ln �αjD+1,0), the lower bound of H(�αj) is obtained as

H(�αj) ≥ H(�αj,0) + (ln �αj − ln �αj,0)
T∇H(�αj,0) +

1

2!
(ln �αj − ln �αj,0)

T∇2H(�αj,0)(ln �αj − ln �αj,0)

(B.2)

where ∇H(�αj,0) is the gradient of H at �αj = �αj,0 and ∇2H(�αj,0) is the Hessian matrix, which

gives
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H(�αj) ≥ H(�αj,0) +
D+1∑
l=1

∂H(�αj)

∂ lnαjl

|�αj=�αj,0
(lnαjl − lnαjl,0)

+
1

2

D+1∑
a=1

D+1∑
b=1

∂2H(�αj,0)

∂ lnαja∂ lnαjb

|�αj=�αj,0
(lnαja − lnαja,0)

× (lnαjb − lnαjb,0)

(B.3)

Taking the expectation of Eq.(B.3), the lower bound of function Rj will be

Rj ≥ R̃j = ln
Γ(
∑D+1

l=1 αjl,0)∏D+1
l=1 Γ(αjl,0)

+
D+1∑
l=1

αjl,0

[
Ψ

(D+1∑
l=1

αjl,0

)
−Ψ(αjl,0)

]
× [〈lnαjl〉 − lnαjl,0]

+
1

2

D+1∑
l=1

α2
jl,0

[
Ψ′
(D+1∑

l=1

αjl,0

)
−Ψ′(αjl,0)

]
× 〈(lnαjl − lnαjl,0)

2〉

+
1

2

D+1∑
a=1

D+1∑
b=1
(b �=a)

{
αja,0αjb,0Ψ

′
(D+1∑

l=1

αjl,0

)
(〈lnαja〉 − lnαja,0)

× (〈lnαjb〉 − lnαjb,0)

}

(B.4)

To prove that the second-order Taylor expansion of H(�αj) is a lower bound of H(�αj), it is

shown that ΔH(�αj) ≥ 0, where ΔH(�αj) denotes the difference between H(�αj) and its second-

order Taylor expansion. The Hessian of ΔH(�αj) with respect to (lnαjl, . . . , lnαjD+1) is given by

(B.5).

34



Hess =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αj1[Ψ(
∑D+1

l=1 αjl)−Ψ(αj1)]

+α2
j1[Ψ

′(
∑D+1

l=1 αjl)−Ψ′(αjl)]

−ᾱ2
j1[Ψ

′(
∑D+1

l=1 ᾱjl)−Ψ′(ᾱj1)] · · · αj1αjD+1Ψ
′(
∑D+1

l=1 αjl)

−ᾱj1ᾱjD+1Ψ
′(
∑D+1

l=1 ᾱjl)
... . . . ...

αj1αjD+1Ψ
′(
∑D+1

l=1 αjl)

−ᾱj1ᾱjD+1Ψ
′(
∑D+1

l=1 ᾱjl) · · · αjD+1[Ψ(
∑D+1

l=1 αjl)−Ψ(αjD+1)]

+α2
jD+1[Ψ

′(
∑D+1

l=1 αjl)−Ψ′(αjD+1)]

−ᾱ2
jD+1[Ψ

′(
∑D+1

l=1 ᾱjl)−Ψ′(ᾱjD+1)]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B.5)

Substituting (lnαj1, . . . , lnαjD+1) by the critical point (lnαj1,0, . . . , lnαjD+1,0), reduces

(B.5) to a positive-definite diagonal matrix. Since (lnαj1,0, . . . , lnαjD+1,0) is the only critical

point, and for all αjl > 1, ΔH(�αj) is continuous and differentiable, the critical point (lnαj1,0, . . . , lnαjD+1,0)

is also the global minimum of ΔH(�αj). When (lnαj1, . . . , lnαjD+1) = (lnαj1,0, . . . , lnαjD+1,0),

the global minimum value 0, is reached, therefore, the second-order Taylor expansion is definitely

a lower bound of H.

B.2 Lower Bound of T (αjs): Proof of(A.14)

The lower bound of T (αjs) is approximated in [49] by a first-order Taylor expansion. The first-

order Taylor expansion of a convex function is a tangent line of that function at a specific value.

Function F(αjs) is defined as

F(αjs) = ln
Γ
(
αjs +

∑D+1
l �=s αjl

)
Γ(αjs)

∏D+1
l �=s Γ(αjl)

(B.6)
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B.2.1 Convexity of F(αjs)

Since it cannot directly be shown that F(αjs) is a convex function of αjs, a relative convexity sim-

ilar to [47] is considered. It can be demonstrated that F(αjs) is convex relative to lnαjs. Function

F , is considered to be convex on an interval if and only if its second derivative is nonnegative in

that interval. The first and second derivatives of F(αjs) with respect to lnαjs are

∂F(αjs)

∂ lnαjs

=

[
Ψ

(
αjs +

D+1∑
l �=s

αjl

)
−Ψ(αjs)

)]
αjs (B.7)

∂2F(αjs)

∂(lnαjs)2
=

[
Ψ

(
αjs +

D+1∑
l �=s

αjl

)
−Ψ(αjs)

)]
αjs +

[
Ψ′
(
αjs +

D+1∑
l �=s

αjl

)
−Ψ′(αjs)

)]
α2
js

= αjs

∫ ∞

0

1− e−(
∑D+1

l �=s αjl)t

1− e−t
e−αjst(1− αjst)dt

(B.8)

The integral representation of Ψ(x) and Ψ′(x) are defined by

Ψ(x) =

∫ ∞

0

(
e−t

t
− e−xt

1− e−t

)
dt (B.9)

Ψ′(x) =
∫ ∞

0

te−xt

1− e−t
dt (B.10)

Considering (B.9) and (B.10), Eq.(B.8) can be written as

∂2F(αjs)

∂(lnαjs)2
= αjs

∫ ∞

0

f1(t)f2(t)dt (B.11)

where f1(t) and f2(t) are

f1(t) =
1− e−(

∑D+1
l �=s αjl)t

1− e−t
(B.12)
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f2(t) = e−αjst(1− αjst) (B.13)

when
∑D+1

l �=s αjl > 1

• if t > 1
αjs

then f1(t) < f1(
1

αjs
), and f2(t) < 0

• if t < 1
αjs

then f1(t) > f1(
1

αjs
), f2(t) > 0

Therefore Eq.(B.11) can be rewritten as

∂2F(αjs)

∂(lnαjs)2
= αjs

{∫ 1
αjs

0

f1(t)f2(t)dt+

∫ ∞

1
αjs

f1(t)f2(t)dt

}

> αjs

{∫ 1
αjs

0

f1(
1

αjs

)f2(t)dt+

∫ ∞

1
αjs

f1

(
1

αjs

)
f2(t)dt

}

= αjsf1

(
1

αjs

)∫ ∞

0

f2(t)dt

= αjsf1

(
1

αjs

)
lim
t→∞

te−αjst = 0

(B.14)

Hence, it is proven, when
∑D+1

l �=s αjl > 1, F(αjs) is convex relative to lnαjs.

B.2.2 Evaluating Lower Bound by First-order Taylor Expansion

The lower bound of F(αjs) can be calculated by applying the first-order Taylor expansion of

F(αjs) for lnαjs at lnαjs,0, since is a convex function relative to lnαjs.
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F(αjs) ≥ F(αjs,0) +
∂F(αjs)

∂ lnαjs

|αjs = αjs,0(lnαjs − lnαjs,0)

= F(αjs,0) +
∂F(αjs)

∂αjs

∂αjs

∂ lnαjs

|αjs = αjs,0(lnαjs − lnαjs,0)

= ln
Γ
(
αjs,0 +

∑D+1
l �=s αjl

)
Γ(αjs,0)

∏D+1
l �=s Γ(αjl)

+

[
Ψ

(
αjs,0 +

D+1∑
l �=s

αjl

)
−Ψ(αjs,0)

)]
αjs,0(lnαjs − lnαjs,0)

(B.15)

Note that when αjs = ᾱjs, the equality is reached. Substituting (B.15) in (A.14) will result

in

T (α)js ≥
〈
ln

Γ
(
αjs,0 +

∑D+1
l �=s αjl

)
Γ(αjs,0)

∏D+1
l �=s Γ(αjl)

+

[
Ψ

(
αjs,0 +

D+1∑
l �=s

αjl

)
−Ψ(αjs,0)

]
αjs,0(lnαjs − lnαjs,0)

〉
�α �=αjs

lnαjsαjs,0

{〈
Ψ

(
αjs,0 +

D+1∑
l �=s

αjl

)〉
�α �=αjs

−Ψ(αjs,0)

}
+ const

(B.16)

The calculation of the expectation 〈Ψ(αjs,0 +
∑D+1

l �=s αjl)〉�α �=αjs
(in (B.16)) is analytically

intractable. With the same approach explained in section (B.2.1), it can be inferred, for l =

{1, . . . , D + 1} and l 
= s, Ψ(αjs,0 +
∑D+1

l �=s αjl) is a convex function relative to lnαjs,0. To

calculate the lower bound, a first-order Taylor expansion for the function Ψ(
∑n

i=1 xi + y) at

ln x̂, x̂ = (x̂1, . . . , x̂n) is applied

Ψ

( n∑
i=1

xi + y

)
≥ Ψ

( n∑
i=1

x̂i + y) +
n∑

i=1

(ln xi − ln x̂i)Ψ
′(

n∑
i=1

x̂i + y)x̂i (B.17)

Considering (B.17), the approximation lower bound of 〈Ψ(αjs,0 +
∑D+1

l �=s αjl)〉�α�=αjs
is given

by
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〈
Ψ

(D+1∑
l �=s

αjl + αjs,0

)〉
�α�=αjs

≥ Ψ

(D+1∑
l=1

αjl,0

)
+

D+1∑
l �=s

αjl,0Ψ
′
(D+1∑

l=1

αjl,0

)
(〈lnαjl〉 − lnαjl,0)

(B.18)

The lower bound of T (αjs) can be calculated by substituting (B.18) to (A.14)

T (αjs) ≥ lnαjsαjs,0

{
Ψ

(D+1∑
l=1

αjl,0

)
−Ψ(αjs,0)+

D+1∑
l �=s

αjl,0Ψ
′
(D+1∑

l=1

αjl,0

)
(〈lnαjl〉−lnαjl,0)

}
+const

(B.19)
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