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ABSTRACT 

Three-dimensional capacitated vehicle routing problem with loading constraints 

Batoul Mahvash Mohammadi,Ph.D. 

Concordia University, 2014 

 

City logistics planning involves organizing the movement of goods in urban areas carried out by 

logistics operators. The loading and routing of goods are critical components of these operations. 

Efficient utilization of vehicle space and limiting number of empty vehicle movements can 

strongly impact the nuisances created by goods delivery vehicles in urban areas. We consider an 

integrated problem of routing and loading known as the three-dimensional loading capacitated 

vehicle routing problem (3L-CVRP). 3L-CVRP consists of finding feasible routes with the 

minimum total travel cost while satisfying customers‘ demands expressed in terms of cuboid and 

weighted items. Practical constraints related to connectivity, stability, fragility, and LIFO are 

considered as parts of the problem. We address the problem in two stages. Firstly, we address the 

three-dimensional (3D) loading problem followed by 3L-CVRP. 

The main objective of a 3D loading problem without routing aspect is finding the best way of 

packing 3D items into vehicles or containers to increase the loading factor with the purpose of 

minimizing empty vehicle movements. We present the general linear programming model to the 

pure three-dimensional vehicle loading problem and solve it by CPLEX. To deal with large-sized 

instances, Column Generation (CG) technique is applied. The designed method in this work 

outperforms the best existing techniques in the literature.  
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The 3DVLP with allocation and capacity constraints, called 3DVLP-AC, is also considered. For 

the 3DVLP-AC, CPLEX could handle moderate-sized instances with up to 40 customers. To 

deal with large-sized instances, a Tabu Search (TS) heuristic algorithm is developed. There are 

no solution methods or lower bounds (LBs) for the 3DVLP-AC existent in the literature by 

which to evaluate the TS results. Therefore, we evaluate our TS with the CPLEX results for 

small instances.  

3L-CVRP is addressed by using CG technique. To generate new columns, the pricing problem 

that is part of CG is solved by using two approaches: 1-by means of shortest path problem with 

resource constraints (ESPPRC) and loading problem, and 2-a heuristic pricing method (HP). CG 

using HP with a simple scheme can attain solutions competitive with the efficient TS algorithms 

described in the literature.   
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Chapter1: 

1 Introduction 

1.1 Background 

The negative environmental impacts of urban freight, such as pollution and high levels of traffic 

congestion, are steadily increasing in cities around the world. Freight movements are essential to 

economic and social activities because they are a major source of employment and link 

producers to customers in the supply chain. However, they are also the source of a great 

proportion of certain pollutants as compared with interurban freight, due to higher fuel 

consumption per unit of distance travelled. More and more cities are experiencing high numbers 

of freight movements. Accordingly, it has become an urgent challenge to manage urban freight 

mobility in an efficient manner in terms of economic, social, and environmental costs. 

It should be also noted in particular the City Logistics concept has been developed through 

considering the effects of freight transportation within cities. Benjelloun et al. [1] define City 

Logistics concept as a new process for managing freight transportation and alleviating harmful 

effects of increasing freight vehicles, while not penalizing essential factors of freight movements 

to most economic and social activities. Taniguchi et al. [2] define City Logistics as ―the process 

for totally optimising the logistics and transport activities by private companies in urban areas 
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while considering the traffic environment, the traffic congestion and energy consumption within 

the framework of a market economy.‖ 

Aforementioned, it has become an urgent challenge to manage urban freight mobility in an 

efficient manner for a number of environmental, economic and social reasons summarized as 

follows: 

x The contribution that an efficient urban freight transport system makes to the competitiveness 

of industry in an urban area; 

x Existing well-organized transport systems prevent economic impacts like efficiency and 

resource waste; 

x Costs of commodities are deeply affected by the freight transport costs and also total cost of 

freight transports has a strong influence on the efficiency of the economy; 

x An efficient improvement in living conditions in cities is resulted by reducing empty vehicle 

operating within cities and controlling number and dimensions of freight vehicles; and 

x Reducing environmental impacts such as pollution, noise, high levels of traffic congestion 

and high energy consumption raised by the urban freight movements. 

An efficient mobility for freights can be resulted by developing and implementing policies and 

strategies in City Logistics. One way to achieve efficient mobility for freight systems is by 

developing and implementing well-organized policies and strategies. Governments and 

companies can both engage in changing urban freight systems by means of defining and 

introducing efficient measures (Crainic et al. [3], Anderson et al. [4]). Governments can 

introduce policies and measures that can encourage companies to adopt sustainable practices in 
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operating their freight systems. City access control, parking regulations, road pricing, time 

windows, and vehicle restrictions are some instances of such policies. There are also operational 

measures that can be taken by city logistics operators, such as planning collaboratively for goods 

distribution or developing new goods distribution strategies to conform to municipal regulations. 

Under the influence of municipal regulations, companies may have to devise new goods 

distribution planning strategies, such as reorganizing freight transport operations, changing 

supply chain organization, using more efficient technologies, employing more efficient methods 

for loading and routing goods, improving vehicles‘ fuel efficiency, and consolidating shipments.  

The three-dimensional loading and routing problems are increasingly important issues in supply 

chain and distribution systems, with strong implications for freight transport costs. Clearly, the 

costs of commodities are deeply affected by freight transport costs, and the total cost of freight 

transports has a powerful impact on the efficiency of the economy.  

1.2 Objective 

The purpose of this dissertation is as follows: 

• Addressing the general mixed-integer linear programming model to the three-

dimensional vehicle loading problem (3DVLP) that deals with the way of loading cuboid 

items in one or more vehicles such that empty vehicle space is minimized in purpose of 

minimizing vehicle movements; 

• Developing an efficient heuristic method for 3DVLP; and 



 

4 

 

• Developing an efficient heuristic method for an integrated problem of vehicle routing and 

3DVLP (called 3L-CVRP) with additional constraints such as stability, fragility, and 

LIFO. The main objectives involved in this integrated problem are partitioning 

customers‘ demands into groups based on loading constraints, and determining the 

sequence in which customers are visited in order to minimize total cost. 

1.3 Thesis Organization  

The thesis is divided into 6 chapters. The first chapter gives a general introduction to the topic 

and identifies the objectives of the work. Chapter 2 reviews the literature on loading problems, 

practical constraints in loading, exact and heuristic methods to solve the loading problems, and 

the integrated problem of loading and routing. In Chapter 3 we present in detail the three-

dimensional vehicle loading problem and formulate it as a mixed integer programming model. 

The integrated problem of routing and loading is also covered in this chapter. Chapter 4 

describes our proposed approaches to solve both the loading problem and the integrated problem 

of routing and loading. Numerical applications and results are presented and discussed in 

Chapter 5. Finally, conclusions and suggestions for further investigation are included in Chapter 

6. 
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Chapter 2: 

2 Literature Review 

In this chapter, we present a detailed review of the literature on integrated vehicle loading and 

routing problems using three broad categories: loading problems, loading problems with 

practicality constraints, and capacitated vehicle routing problems with three-dimensional loading 

constraints. 

2.1 Loading Problems 

The loading problem involves loading a given set of items into bins or compartments with the 

objective of minimizing empty space of bins. The loading problem is referred to as cutting and 

packing problem in the literature (Bortfeldt and Wäscher [5]). In the literature there is a range of 

names for the packing problem, depending on the assumptions used to address it: cutting stock or 

trim loss problem; bin or strip packing problem; vehicle, pallet or container loading problem; 

nesting problem; knapsack problem; and so on. Dyckhoff [6] clarifies logical structure and 

characteristics that need to be considered in the various kinds of packing problems. The 

significance characteristics are as follows: 

• Dimensionality; 

• Kind of assignment; 
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• Assortment of large objects; and 

• Assortment of small items.  

The ‗dimensionality‘ characteristic specifies whether items are one-dimensional, two-

dimensional, three-dimensional or even four-dimensional. An instance of a four-dimensional 

case is one in which cuboid items must be stored in a container for a fixed time period. The ‗kind 

of assignment‘ characteristic determines whether all items and a selection of objects, or a 

selection of items and all objects, are to be investigated. The ‗assortment of large objects‘ 

characteristic considers the properties of objects (containers or vehicles), that is, whether they 

have identical or different figures. Finally, the ‗assortment of small items‘ characteristic 

determines the category of items, that is, if there are a few items of various figures or several 

items of different figures, etc. Detailed information on each characteristic can be found in 

Dyckhoff [6]. Wäscher et al. [7] presented an improved typology based on Dyckhoff‘s original 

ideas. They introduce new categorization criteria different from those of Dyckhoff and suggest 

new system names.  

Pisinger [8] classifies loading problems into three types, namely bin packing, strip packing, and 

knapsack problems. For each of these types, a detailed explanation of the objective function and 

restrictions is presented in the following sections.  
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2.1.1 Bin Packing Problem 

According to the typology suggested by Wäscher et al. [7], bin packing problems can be further 

classified into three types: single bin packing problem (SBPP), multiple bin packing problem 

(MBPP), and residual bin packing problem (RBPP). 

In SBPP a set of different items must be assigned to a set of identical bins, in MBPP to a set of 

weakly heterogeneous bins, and in RBPP to a set of strongly heterogeneous bins, while in all 

cases minimizing the number of bins used. Each of the problems can be considered as one-

dimensional, two dimensional or three-dimensional based on the properties of items and bins. 

Since we deal with SBPP in this work, a detailed literature on different types of this problem is 

presented in the following. 

One-Dimensional Bin Packing Problem (1BPP) 

This is the classic bin packing problem, in which a set of different items of given weight is to be 

packed into a minimum number of bins of identical capacity. The total weight of the packed 

items in a bin should not exceed the bin‘s capacity. The reader is referred to Scholl et al. [9], 

Schwerin and Wäscher [10] and Martello and Toth [11] for more details. 

Best fit decreasing (BFD) and first fit decreasing (FFD) are well-known heuristic methods for 

solving this problem (Gilmore and Gomory [12]). The set of selected bins is initially empty in 

both methods. Then, items are sorted in non-increasing order of weight. FFD assigns each item 

to the first bin that can receive it, while BFD assigns each item to the bin with the minimum 
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residual capacity. If all selected bins have insufficient residual capacity to accommodate an item, 

a new bin is selected. 

Two-Dimensional Bin Packing Problem (2BPP) 

Given an unlimited number of large identical rectangular bins, 2BPP is concerned with packing a 

given set of distinct rectangular items into the minimum number of bins without overlapping. An 

item is specified by a height (or length) and a width. 2BPP has applications in the cutting of 

rectangular glass or wood pieces from a large piece of material. 

Gilmore and Gomory [13] were the first to model 2BPP by extending their 1BPP approach to it. 

Fekete and Schepers [14] propose different modeling approaches using a graph-theoretical 

characterization. A number of exact algorithms and lower bounds for 2BPP can be found in 

Pisinger and Sigurd [15], Martello and Vigo [16], Boschetti [17], and Caprara and Monaci [18]. 

Exact approaches for solving 2BPP usually employ a branch-and-bound technique (B&B). 

Greedy heuristics for 2BPP commonly employ the concept of levels. The first level is the bottom 

of the bin on which the items‘ bases are located. The next level is the horizontal line drawn 

parallel to the top of the highest item located on the previous level, and so on. In the majority of 

greedy algorithms for 2BPP, given a list of items sorted by non-increasing order of their height, 

items are iteratively placed in levels in accord to the following rules (Coffman et al. [19]): 

• Next fit decreasing height (NFDH): Each item is packed in the current fitting level starting 

from the left. If the item cannot be packed on the current level then the level is closed and a 

new current level is created; 
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• First fit decreasing height (FFDH): Each item is packed on the first existing fitting level in 

the bin starting from the bottom left. If there is no level in which the item fits, a new level is 

created;  

• Best fit decreasing height (BFDH): Each item is packed on the fitting level with the 

minimum residual horizontal space. If there is no fitting level available, a new one is created; 

and 

• Floor–ceiling: Items are packed from left to right with their bottom edges on the level floor, 

and also from right to left with their top edges touching the level ceiling, i.e., the horizontal 

line drawn on the top of the tallest item packed on the floor (Lodi et al.[20]).  

Puchinger and Raidl [21] describe a three-stage two-dimensional bin packing problem to deal 

with real-world applications such as glass, paper, or steel cutting. Lodi et al. [20] propose a tabu 

search algorithm to solve 2BPP, having tested it on 500 instances generated randomly with a 

maximum of 100 items. These authors provide a survey of the mathematical models, lower 

bounds, and greedy methods relevant to 2BPP and discuss recent heuristic and metaheuristic 

methods and exact approaches.  

Three-Dimensional Bin Packing Problem (3BPP) 

This problem consists of packing a set of distinct rectangular items (boxes) orthogonally into a 

minimum number of large identical rectangular containers (or vehicles) without overlapping. An 

item is specified by a length, a width and a height. 
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Chen et al. [22] describe an integer programming formulation for 3BPP with weight distribution 

and orientation constraints. The numerical experiments are limited to a single small-sized 

instance with six boxes solved to optimality through the LINGO solver.  

Materllo et al. [23] were the first to design an exact two-level B&B algorithm for 3BPP. In this 

algorithm, boxes are assigned to bins in the first level of the search. A second level B&B method 

is employed in each node of the first level search tree to verify the feasibility of packing items 

using the concept of corner points (CPs). CPs indicate the points where a new item can be 

accommodated within the residual space of the container in a given partial packing. The authors 

also propose two heuristic algorithms, H1 and H2, which are executed at each root node of the 

search tree. Algorithm H1 builds a number of layers based on the depth of the bins and combines 

the layers into bins by solving a one-dimensional bin packing problem defined on the depths of 

the layers. Algorithm H2 minimizes the bins empty space by heuristically filling each one as full 

as possible. B&B algorithm was tested on instances with up to 60 boxes. Numerical results show 

that instances with up to 20 boxes can be solved to optimality within a reasonable time limit. 

Den Boef et al. [24] indicate that the exact algorithm proposed by Martello et al. [23] might fail 

to give optimal solutions to 3BPP, since it cannot generate all feasible orthogonal packing 

patterns. Therefore, Martello et al. [25] have extended their approach in [23] by combining the 

original enumerative method with a new constraint-based programming approach. Using this 

algorithm, moderate-sized instances can be solved to optimality for the general 3BPP as well as 

for robot-packable variants of the problem. 
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Faroe et al. [26] propose a guided local search (GLS) heuristic method for 3BBP. They first 

obtain an upper bound on the number of bins through a greedy heuristic method. GLS iteratively 

tries to decrease this upper number by searching for a feasible packing of the boxes, and stops 

when a given time limit is reached or the current solution is equal to the given lower bound. GLS 

has been tested on instances of up 200 boxes. The authors indicate that GLS gives solutions 

equal to or better than the exact algorithm suggested by Martello et al. [23]. 

Lodi et al. [27] propose a heuristic method based on layers, called height first area second (HA) . 

The base of a bin is defined as the first layer; the height of the tallest item available in the first 

layer is the second layer, and so on. HA selects the best solutions through the following two 

methods:  

1. Items are partitioned into clusters according to non-increasing order of their height. Then the 

layers resulting from each cluster are packed into bins through a 1BPP solution; and 

2. Items are sorted by non-increasing order of their base area and re-allocated to the current 

layers. Then the layers are packed into bins via a 1BPP solution. 

Authors also describe a tabu search method in which the neighborhood is evaluated using HA. 

The combination of TS and HA gives satisfactory solutions when compared with the exact and 

heuristic methods suggested by Martello et al. [23]. The average solution of TS is exactly the 

same as GLS [26] in one third of the instances. In some cases, TS is better that GLS, and vice 

versa. As the authors point out, the TS and GLS methods complement each other. 
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To better utilize the bin‘s volume, a new concept called extreme points (EPs), an extension of 

CPs, was proposed by Crainic et al. [28]. Using EPs, the authors present a new heuristic 

algorithm based on the first fit decreasing and the best fit decreasing. Crainic et al. [29] also 

propose a two-level tabu search called TS2PACK for 3BPP. In TS2PACK, the number of bins is 

optimized in the first level, and the accommodation of items within bins is optimized in the 

second. An extension of the interval graph representation of packing (see Fekete and Schepers 

[30]) is used within the algorithm. The k-chain-moves procedure is also applied to maximize the 

neighborhood and to improve the quality of the solutions. Computational results on benchmark 

problem instances show that the proposed approach gives better results than other methods 

mentioned before.  

A greedy randomized adaptive search procedure (GRASP) for 3BPP is proposed by Parreño et 

al. [31]. The GRASP algorithm iteratively combines a constructive procedure and an 

improvement phase in order to obtain a solution. In the improvement phase, various moves in a 

variable neighborhood descent (VND) structure are used to improve the solution obtained by the 

constructive procedure. GRASP/VND algorithm gives solutions equal to or better than Crainic et 

al. [29]. Table 2-1 gives an overview of the significant methods in the literature for 3BPP.  
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Table ‎2-1: An overview of all efficient methods for 3BPP 
               Methodology 

Work 

Exact Algorithm Heuristic Method 

Martello et al. [23], [25] Branch-and-Bound(B&B)  H1, H2 

Faroe et al. [26]  Guided Local Search (GLS) 

Lodi et al. [27]  HA, Tabu Search(TS) 

Crainic et al. [28]  Extreme point best fit decreasing method (C-

EPBFD) 

Crainic et al. [29]   Tabu Search (TS2PACK) 

Parreño et al. [31]  GRASP/VND 

Mahvash et al. [32] (our work) Column Generation(CG)  

2.1.2 Strip Packing Problem 

According to the typology of Wäscher et al. [7], the strip packing problem can be considered as 

an open dimension problem (ODP) in which a set of items is to be packed into a single container 

with one or more variable dimensions. There are two variants of this problem, the two-

dimensional and the three-dimensional strip packing problems (2SPP and 3SPP respectively). 

2SPP consists of packing a given set of different rectangles into one open-ended rectangular 

container of given width and hypothetically infinite height (i.e., a strip) in such a way as to 

minimize the overall height. All rectangles should be packed into the container without 

overlapping. This problem has industrial applications such as paper and cloth cutting. 3SPP is 

concerned with packing cuboid items into a container with infinite height (strip) and fixed width 

and length. 

Exact methods for solving 2SPP are based on a B&B approach (Martello et al. [33]), while 

heuristic methods are based on bottom-left (BL) (Baker et al. [34]), and best-fit (BF) (Burke et 
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al. [35]). In BL heuristics, rectangular items are sorted based on their areas and placed in a 

container as left as possible. In the heuristics based on BF, free places from the bottom-most and 

left-most are considered first, and the best-fitting rectangular is selected for each place. 

Metaheuristic approaches for the 2SPP are TS, Simulated Annealing (Dowsland [36]) and 

Genetic algorithms (Jakobs [37]). The reader is referred to Riff et al. [38] for a survey of 2SPP 

and to Bortfeldt and Mack [39] ,Wu et al. [40], and Allen et al. [41] for the heuristic algorithms 

for 3SPP. 

2.1.3 Knapsack Packing Problem 

In the knapsack problem, there is a set of different items, each associated with a profit value. The 

objective in this problem is to pack a subset of items with maximal total profit into a single 

container. If the profit of an item is expressed in terms of volume, then the problem objective is 

to minimize the container‘s empty space. Egeblad and Pisinger [42] propose an exact method 

and heuristics for the two- and three-dimensional types of the problem. Gehring and Bortfeldt 

[43] present a genetic algorithm for loading strongly heterogeneous sets of cartons into a single 

container. We refer the reader to Moura and Oliveira [44], Parreño et al. [45], Fanslau and 

Bortfeldt [46], and Gonçalves and Resende [47] for more details on methods for addressing the 

knapsack packing problem. 

2.2 Practical Constraints in the Loading Problem 

There are a number of practical constraints involved in the loading problem under real-world 

circumstances. For instance, goods may need to be packed based on the sequence of their 
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delivery to the customers; on this basis it is impossible to pack the first parcel for delivery at the 

bottom of the vehicle. Bortfeld and Wäscher [5] classified all the significant practical constraints 

identified in the literature that are commonly encountered in the real-world container loading 

problem. We briefly outline them in the following sections.  

 

Container Weight Capacity Constraint 

 

As the name implies, this constraint requires that the total weight of items loaded into a container 

should not exceed its maximum designed weight capacity. This constraint is normally invoked in 

cases when items are too heavy.  

 

Balancing Constraints 

 

The weight of packed items in a loading pattern should be spread across the floor of the 

container as evenly as possible in order to satisfy balancing constraints (see Mathur [48]). 

Balancing constraints reduces the risk of items shifting when the container is moved. These 

constraints demand that the center of gravity of a loading pattern be an optimal point close to the 

geometrical mid-point of the container, and no more than a specified distance away from it. 

Balancing constraints arise in several practical applications such as aircraft and space cargo 

loading. 
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Orientation Constraints 

 

In general, a box can be loaded into a container with any one of six orientations. A vertical 

orientation of a box is defined by choosing a particular dimension as the height. Vertical 

orientation constraints allow only orthogonal loading patterns, and thus prevent damage to the 

goods while guaranteeing the stability of the loading pattern (Bortfeldt and Wäscher [5]). 

Orientation constraints may allow just a single orientation for a box, which means that the box 

cannot be rotated at all. For some purposes, upside-down rotations are not allowed, and boxes 

can be rotated only by 90 degrees on the horizontal plane. In this case, each box is loaded with a 

designated surface on the bottom. Conversely, there are applications in which no restrictions 

apply to the orientation of the boxes, in which case boxes can be rotated both vertically and 

horizontality (Lodi et al. [49]). 

 

Load-Bearing Constraints 

 

Load-bearing or stacking constraints are restrictions to the placement of items on top of each 

other. The maximum weight placed on a box and the maximum number of boxes stacked on the 

top of each other can be limited by such constraints. The fragility constraint, as a subset of this 

category, prevents non-fragile items being placed on top of fragile items. These constraints avoid 

damaging boxes and protect the contents of the load. 
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Allocation Constraints 

 

In some applications, items are partitioned into subsets based on their properties. A subset can be 

the set of items designated for the same customer or destination. Allocation or connectivity 

constraints require that items of a particular subset should be packed into the same container (see 

Eley [50]). Allocation constraints may also be applied as separation constraints, preventing 

different classes of items from being packed with each other in the same container. For example, 

food and perfumery items should not be packed together in a single container. 

 

Cargo Positioning Constraints 

 

Positioning constraints restrict the location of items relative to each other within the container. In 

the last-in-first-out (LIFO), sequential loading or rear loading policies, items should be packed 

into a container according to their delivery sequence. For example, the first item for delivery 

cannot be packed on the bottom of the container. The goal is that items should be unloaded easily 

and without moving other items (Gendreau et al. [51]). 

 

Stability Constraints 

 

Unstable loads may result in damage to items and unsafe conditions in the loading and unloading 

operations. Vertical stability constraints reduce the risk of items falling down onto the container 

floor or onto the tops of other items. Such constraints demand that the bottom faces of items be 
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supported by either the top surfaces of other boxes or by the container floor (Junqueira et al. 

[52]).  

2.3 Capacitated Vehicle Routing Problem with Loading Constraints  

The Capacitated Vehicle Routing Problem (CVRP) was first introduced by Dantzig and Ramser 

[53] in 1959. Given a fleet of vehicles located in the central depot and customers with specific 

demands, CVRP consists of finding the set of vehicle routes with the minimum total cost. In this 

problem, each customer should be visited by exactly one vehicle and each vehicle should 

perform at most one route. The total cost is usually defined as vehicle operating costs plus 

additional costs imposed along the routes. The total demand of customers to be served by a given 

vehicle should not exceed that vehicle‘s capacity.  

Toth and Vigo [54] describe four different variants of CVRP, as follows:  

x In distance-constrained CVRP, traveling time between each pair of customers is considered, 

and the total traveling time of each vehicle is limited by an upper bound; 

x In CVRP with time windows, each customer‘s service is to take place within a given time 

interval or window. If a vehicle arrives before the beginning of the time window, then it must 

wait until the window begins before starting its service;  

x CVRP with backhauls posits two types of customers, namely line-haul and backhaul 

customers. The line-haul customer receives a given quantity of products from the depot, 

while the vehicle picks up a given quantity of products from the backhaul customer. This 

problem can be divided into four sub-groups (see Parragh et al. [55]); and 
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x In CVRP with pickup and delivery, for each customer there exist both products to be 

delivered and products to be picked up. Moreover, in this problem goods are transported 

between customers. For each customer, the delivery is implemented before the pickup. This 

problem can be divided into two sub-groups (see Parragh et al. [55]). 

To decrease operational costs in the supply chain, it is needed to solve CVRP using effective 

approaches. Toth and Vigo [54] identify the following as the most widely-used exact algorithms 

for solving CVRP and its variants: branch-and-bound, branch-and-cut [56], branch-and-price 

[57], branch-and-cut-and-price [58], and set-covering-based.  

Some heuristic methods applied to CVRP are the nearest neighbor algorithm, insertion 

algorithms, and tour improvement procedures. The structures of most of the heuristics developed 

for VRP are detailed in Laporte et al. [59] and Cordeau et al. [60]. Metaheuristics successfully 

applied to VRP include TS, simulated annealing (SA), genetic algorithm (GA), memetic 

algorithm (MA), ant colony optimization (ACO), and variable neighborhood search (VNS). The 

reader is referred to Füllerer [61] for more details.  

Excellent results for CVRP have recently been provided by Fukasawa et al. [62] (branch-and-

cut-and-price), Baldacci and Mingozzi [63], and Baldacci et al. [64] (set partitioning 

formulation). Baldacci et al. [64] have developed a new exact algorithm for CVRP based on set 

partitioning formulation, with additional cuts corresponding to capacity and clique inequalities. 

Fukasawa et al. [62] indicate that the best exact algorithms for CVRP are based on either branch-

and-cut or lagrangian relaxation/column generation. They have developed an algorithm 

combining these two approaches which can solve to optimality all instances from the literature 
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with up to 135 vertices. We refer interested reader to books by Toth and Vigo [54] and Golden et 

al. [65], as well as to the recent surveys by Laporte [66] and Baldacci et al. [67]. 

Most vehicle routing problems consider only those capacity constraints which require that the 

total weight of products transported by a vehicle should not exceed the vehicle‘s capacity. In 

real-world distribution systems, the shape of the products is also a key factor. Therefore, vehicle 

routing problems must also take into account loading constraints that identify feasible 

placements of products within vehicles based on their shapes and properties. 

In the literature, vehicle routing problems with loading constraints are classified into two types, 

two-dimensional and three-dimensional loading capacitated vehicle routing problems (2L-CVRP 

and 3L-CVRP respectively).  

2L-CVRP 

In 2L-CVRP, the customer‘s demands are expressed in terms of distinct rectangular items. Items 

cannot be stacked on top of each other due to their fragility, weight, or large dimensions. One of 

the applications of this problem is the distribution of kitchen appliances such as refrigerators.  

Iori et al. [68] were the first to propose an exact approach to solve 2L-CVRP. In their approach, 

routing costs are minimized by a branch-and-cut algorithm, and loading aspects are iteratively 

checked by a branch-and-bound algorithm. The authors tested their approach on benchmark 

instances derived from the classical CVRP test problems involving up to 35 customers and more 

than 100 items. Gendreau et al. [51] solve larger 2L-CVRP instances with up to 255 customers 

and 786 items by employing a TS method, where customers are relocated through a generalized 
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insertion procedure (GENI) [69]. A two-dimensional strip packing problem is also applied in 

order to guarantee the optimal placement of the load components. Interested reader may refer to 

Fuellerer et al. [70], Zachariadis et al. [71] and Duhamel et al. [72] for other methods of solving 

2L-CVRP. 

3L-CVRP 

In 3L-CVRP, the demands of customers are expressed in terms of cuboid and weighted items. 

The aim of the problem is to find feasible routes with the minimum total travel cost while 

satisfying customers‘ demands and practical loading constraints. 3L-CVRP, as one of the rich 

routing problems, draws a great deal of attention in supply chain management. In particular, this 

problem has significance for applications that deal with many large items and in which the 

loading requirement is not trivial. Some examples include distribution of household appliances, , 

and mechanical components. 

There is no exact algorithm for 3L-CVRP in the literature. Most researchers simply extend 

metaheuristic algorithms from 2L-CVRP to apply to 3L-CVRP. As mentioned by Vidal et al. 

[73], most existing techniques for 3L-CVRP are based on TS combined with efficient packing 

heuristics. Gendreau et al. [51] were the first to employ TS to tackle routing aspects of the 

problem and applied two packing heuristics to handle loading constraints. They evaluated their 

algorithm based on vehicle routing instances adapted from the literature as well as on new real-

world instances. Tarantilis et al. [74] describe a hybrid metaheuristic methodology called GTS 

that combines the approaches of TS and guided local search (GLS). They show that GLS 

improves the solution attained by TS within a variable neighborhood search. The loading 
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characteristics are determined by employing a collection of packing heuristics. GTS improves 

average solution of TS of Gendreau et al. [51] by 3.54%. 

Zhu et al. [75] apply a two-phase tabu search algorithm. They obtain feasible solutions in the 

first phase and then optimize the traveling cost in the second phase. The loading aspects are 

handled by two sequence-based loading heuristic methods called deepest-bottom-left-fill (DBLF) 

and maximum touching area (MTA). To explore new solutions in the TS, the authors employ 

five neighborhood operators. Wisniewski et al. [76] also solve the routing aspect of 3L-CVRP by 

means of a TS and a first-improvement local search. To deal with loading constraints, they 

employ a randomized bottom-left-based algorithm using multiple permutations of the bottom-left 

heuristic. Bortfeldt [77], Tao and Wang [78], and Wang et al. [79] also solve 3L-CVRP by 

means of a TS. 

The following works employ other heuristic methods to deal with 3L-CVRP. 

Fuellerer et al. [80] solve 3L-CVRP by means of a highly efficient ant colony optimization 

(ACO) algorithm, adapted of the savings-based ants [81]. They handle routing aspects by an ant-

based procedure. To deal with loading components, the ACO employs and iteratively invokes the 

local search and packing heuristics used in Gendreau et al. [51]. The ACO outperforms TS of 

Gendreau et al. [51] in 26 out of 27 instances and GTS of Tarantilis et al. [74] in 23 out of 27 

instances. 

Ruan et al. [82] describe a metaheuristic called HA that integrates a honey bees mating 

optimization (HBMO) [83] with six types of loading heuristics [74]. The proposed method 
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improves the average solution of TS of Gendreau et al. [51] by 7% and the average solution of 

ACO of Fuellerer et al. [80] by 0.62%.  

Lacomme et al. [84] consider 3L-CVRP without fragility, stability or LIFO constraints. They 

solve the routing component of the problem by a GRASP×ELS [85] hybrid algorithm and the 

loading part by a two-step procedure. In the loading part, (x, y) positioning items are first 

obtained by relaxing z-constraints. Then a feasible loading is found by computing the compatible 

z-coordinate. Note that GRASP×ELS is a combination of the greedy randomized adaptive search 

procedure (GRASP) and the evolutionary local search (ELS). GRASP [86] is a multi-start local 

search metaheuristic and ELS an extension of the iterated local search. GRASP×ELS 

outperforms the TS in Gendreau et al. [51], ACO in Fuellerer et al. [70], and TS in Bortfeldt 

[77]. We refer the reader to Wang et al. [87] and Iori and Martello [88] for a survey of 3L-

CVRP. 

Research gaps in 3L-CVRP 

Table 2-2 provides an overview of all methods proposed in the literature for 3L-CVRP. The 

average costs and average times for each method are reported when 3L-CVRP deals with all 

loading constraints (including 3D, fragility, stability and LIFO) and with 3D loading constraints 

alone. A comparison of average costs reveals that the TS method of Wisniewski et al. [76] 

outperforms other works when all constraints are considered. For the 3D loading case alone, the 

method of Zhu et al. [75] gives the best average cost. Bold values in the table indicate the best 

average costs for all loading constraints and for 3D loading constraints alone. The symbol ―-― in 

the table indicates that the relevant work contains no report for this entry.  
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Table ‎2-2: An overview of solution methods for 3L-CVRP 
Work Constraints Routing part Loading part All Constraints 3D-Loading 
    AvgCost AvgTime AvgCost AvgTime 

Gendreau et al. 

[51] 

LIFO 

Stability 

Fragility 

Tabu search Tabu search+ 

direct packing 

1042.26 2058.9 876.31 1567.4 

Tarantilis et al. 

[74] 

LIFO 

Stability 

Fragility 

Tabu search 

+Guided local 

search (GLS) 

Heuristic direct 

packing 

997.18 1471 876.39 - 

Fuellerer et al. 

[80] 

LIFO 

Stability 

Fragility 

Ant colony 

optimization 

(ACO) 

Heuristic direct 

packing 

966.66 1746.51 856.67 689.3 

Tao and Wang 

[78] 

LIFO 

Stability 

Fragility 

Tabu Search Heuristic direct 

packing 

953.09 945 848.27 468.3 

Wang et al. 

[79] 

LIFO 

Stability 

Fragility 

Tabu Search Heuristic direct 

packing 

956.10 820 - - 

Zhu et al. [75] LIFO 

Stability 

Fragility 

Tabu Search Heuristic direct 

packing 

962.08 1419 846.44 - 

Bortfeldt [77] LIFO 

Stability 

Fragility 

Tabu search Tree search 

+direct packing 

958.74 219.40 864.53 810.30 

Wisniewski et 

al. [76] 

LIFO 

Stability 

Fragility 

Tabu search  

+ a first-

improvement local 

search 

Heuristic direct 

packing 

948.74 930.40 - - 

Ruan et al. 

[82] 

LIFO 

Stability 

Fragility 

Honey Bee Mating 

Optimization 

Heuristic Direct 

packing 

960.10 754.21 858.07 - 

Lacomme et al. 

[84] 

Just 

3DLoading 

GRASP_ELS 2-step procedure 

based on a 

relaxation of the 

3DPP 

- - 847.04 1004.89 
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Table 2-3 gives the percentage differences in the average solution cost for each method 

compared to the best methods for all constraints and for 3D loading alone. These gaps have been 

evaluated as (average cost–best average cost)/best average cost. Aforementioned, TS method of 

Wisniewski et al. [76] is best method when all constraints are considered. For the 3D loading 

case alone, the method of Zhu et al. [75] give the best average cost. 

Table ‎2-3: Percentage gaps between each method and best method for 3L-CVRP 
Work All constraints 3D loading 

 Gap % Gap% 

Gendreau et al. [51] 9.85 3.52 

Tarantilis et al. [74] 5.10 3.53 

Fuellerer et al. [80] 1.88 1.20 

Tao and Wang [78] 0.45 0.21 

Wang et al. [79] 0.77 - 

Zhu et al. [75] 1.40 0.0 

Bortfeldt [77] 1.05 2.13 

Wisniewski et al. [76] 0.0 - 

Ruan et al. [82] 1.19 1.37 

Lacomme et al. [84] - 0.07 
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Chapter 3: 

3 Problem Statement 

3.1 Assumptions 

The assumptions associated with the customers, the items, and the vehicles in our three-

dimensional vehicle loading problem and the vehicle routing problem with loading constraints 

are: 

x Customer: A customer has a deterministic demand expressed in terms of a set of weighted 

and cuboid items. In general, the capacity required for a single customer does not exceed the 

capacity of vehicle in terms of volume and weight. For the routing case, the location of the 

customers on the road network and the cost of traveling between each pair of customers are 

given; 

x Item: An item is a cuboid box whose length, width and height are given. An item may be 

defined as fragile or non-fragile according to the type of goods packed in it. Each item is 

considered as an independent unit in the problems described below; and 

x Vehicle: The type of a vehicle is specified according to its capacity, expressed as the 

maximum weight or volume of the items that may be loaded into the vehicle. The length, 

width, and height of the vehicle are known. A vehicle has a rectangular loading surface 

accessed only from one side. 
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3.2 Three-Dimensional Vehicle Loading Problem (3DVLP)  

The 3DVLP consists of packing items orthogonally into a minimum number of vehicles. Each 

item has a fixed orientation; that is, it cannot be rotated around any of the axes. Each vehicle has 

only a volume capacity.  

The modeling parameters and variables used in the mathematical formulation of 3VDLP are: 

I, The set of all items;  

(          )  Parameters representing the length, width and height of item iϵ I; 

(     ), Length, width and height of vehicle; and 

(        ), Continuous variables representing the position of item i within the vehicle, that are, 

coordinates of back-left bottom (BLB) corner of item in the vehicle. 

Without loss of generality, it is assumed that the length of vehicle falls along the X-axis and its 

width along the Y-axis. The BLB corner of the vehicle is fixed at the origin. Figure 3-1 gives a 

geometric illustration of a vehicle with item i packed into the vehicle.  
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In order to indicate the position of two items i and i’ relative to each other, we first define the 

binary variables      
      

 ,     
       

      
  and     

 . The value of      
  is equal to one if item i is behind 

item i’ and zero otherwise. The value of     
  is equal to one if item i is at the front of item i’ and 

zero otherwise. The value of      
  is equal to one if item i is in the left side of item i’ and zero 

otherwise. The value of     
  is equal to one if item i is in the right side of item i’ and zero 

otherwise. The value of      
  is equal to one if item i is below item i’ and zero otherwise. The 

value of     
  is equal to 1 if item i is above item i’ and zero otherwise.  

Let us define nV as total number of vehicles needed to pack all items. Suppose that    is the 

vehicle‘s number containing item i. We define binary variable      equal to one if and only 

if        and zero otherwise. M is an arbitrary large number. 

Figure ‎3-1: Geometric presentation of a vehicle with item i packed in it 
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A partial linear mixed integer programming model for 3DVLP that is an extension of  Chen et al. 

[22] is: 

        (3.1) 

Subject to:   

              (3.2) 

              (3.3) 

              (3.4) 

          (      
 )                (3.5) 

           (      
 )                (3.6) 

          (      
 )                (3.7) 

           (      
 )                (3.8) 

          (      
 )                (3.9) 

           (      
 )                (3.10) 

    
      

      
      

      
      

                     (3.11) 

              (3.12) 

            (3.13) 

    
      

      
      

      
      

       *   +          (3.14) 

                         (3.15) 

Objective function (3.1) gives the minimum number of vehicles needed to pack all items. 

Constraints (3.2) to (3.4) ensure that an item that is orthogonally packed into a vehicle lies within 

the vehicle‘s geometric boundaries. According to constraints (3.5) to (3.10), items cannot overlap 

with each other. Constraint (3.11) demands that an overlapping condition should be checked for 

only those items packed in the same vehicle.  
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Model contains 8| |+  
 
| |(| |-1) constraints and 4| |   +  

 
| |(| |-1) variables. It should be 

noted that all variables are integer variables in the model. 

3DVLP with Different Item’s Orientations  

If an item can be rotated in all directions then it may be located into the vehicle in six 

orientations as described below (see Figure 3-2): 

• Orientation-1: Item‘s length is parallel to the X-axis and its width is parallel to the Y-axis; 

• Orientation-2: Item‘s length is parallel to the Y-axis and its width is parallel to the X-axis; 

• Orientation-3: Item‘s length is parallel to the Z-axis and its width is parallel to the Y-axis; 

• Orientation-4: Item‘s length is parallel to the Z-axis and its width is parallel to the X-axis; 

• Orientation-5: Item‘s length is parallel to the X-axis and its width is parallel to the Z-axis; and 

• Orientation-6: Item‘s length is parallel to the Y-axis and its width is parallel to the Z-axis. 
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Figure ‎3-2: Item's Orientations 

For each item    , we define binary variables    (       ) that indicate different 

orientations of item i in a mathematical formulation of 3DVLP. The value of     is equal to one 

if item i is placed into a vehicle in accordance with the orientation-k and zero otherwise. 

Considering orientations variables, constraints 3-2 to 3-10 in the formulation of 3DVLP are 

replaced by the following constraints:  

     (       )    (       )    (       )                  (3.16) 

     (       )    (       )    (       )                  (3.17) 

     (       )    (       )    (       )                  (3.18) 
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     (      
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       (         )     (         )     (         )

    (      
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              (3.20) 

     (       )    (       )    (       )

     (      
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              (3.21) 

       (         )     (         )     (         )

    (      
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              (3.22) 

     (       )    (       )    (       )

     (      
 )  

              (3.23) 

       (         )     (         )     (         )

    (      
 )  

              (3.24) 

                               (3.25) 

Note that constraints 3-25 ensure that each item is placed into the vehicle with just one of the six 

orientations. 

3.3 3DVLP with Allocation and Capacity Constraints 

In some loading applications, items are partitioned into subsets according to their properties. 

Suppose that a subset here is the set of those items related to the same customer or destination, 

and each vehicle has a certain weight capacity. 

The 3DVLP with allocation and capacity constraints (3DVLP-AC) is concerned with minimizing 

the total empty space of vehicles used to pack all items, while taking into account the following 

restrictions: 
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x Items of a particular subset (a customer) should be packed into the same vehicle 

(allocation constraints);  

x The total capacity of items placed into a vehicle should not exceed the capacity of that 

vehicle in terms of weight and volume (capacity constraints); 

x Items should be packed into the vehicles with a fixed vertical orientation without 

overlapping.  

The modeling parameters and variables used in the mathematical formulation of 3VDLP-AC are:  

n, Total number of items; 

m, Total number of vehicles available in the depot; 

c, Total number of customers; 

  , The set of items related to the customer  ; 

  , The capacity of customer k in terms of weight; 

D, The capacity of vehicle in terms of weight; 

   , A binary variable equal to 1 if item i is packed into vehicle j and 0 otherwise; and 

  , A binary variable equal to 1 if vehicle j is used and 0 otherwise. 

There are only two orientations that can be used to place an item into a vehicle and maintain a 

fixed vertical orientation. For each item  , the binary variable    is defined as indicating the 

orientation of the item. The value of    is equal to one if the length of item i is parallel to the X-

axis and its width is parallel to the Y-axis. Conversely, the value of    is equal to zero if width of 

item i is parallel to the X-axis and its length is parallel to the Y-axis.  
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Mathematical Formulation of 3DVLP-AC 

    (     ∑  

 

   

 ∑        
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                  *   + (3-41) 

Objective function (3-26) minimizes the empty space of vehicles needed to pack all items. 

Constraints (3.27) to (3.29) ensure that an item that is orthogonally packed into a vehicle lies 
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within the vehicle‘s geometric boundaries. Constraints (3-30) to (3-36) ensure that all items 

packed into a vehicle do not overlap each other. Constraints (3-37) ensure that the total capacity 

of customer‘s items serviced by a specific vehicle does not exceed the capacity of that vehicle in 

terms of weight. Constraints (3-38) guarantee that each item is packed into exactly one vehicle. 

All items associated with a customer should be packed into the same vehicle. This condition is 

ensured by constraints (3-39). 

Model contains      (   )   
 
 (   )     

 
∑ |  |(|  | 

     ) constraints and 

4n+m+  
 
 (n-1) variables. It should be noted that the computational time for solving a model 

depends on the number of variables and constraints in the model and also optimization software 

used. All variables in the model are integer variables. 

3.4 The Vehicle Routing Problem with Three-dimensional Loading Constraints 

The integrated problem of vehicle routing with three-dimensional loading, known as the three-

dimensional loading capacitated vehicle routing problem (3L-CVRP), was first described by 

Gendreau et al. [51]. Let us consider a complete graph G = (V, E) where V = {0,1,…,n} is the 

vertex set and   *(   )          + is the set of edges. Vertex 0 corresponds to the central 

depot and the other vertices correspond to the customers. A cost      is associated with each edge 

(i, j) that represents traveling cost from vertex i to vertex j. Since          for each (   )   , 

edges can be designated by a single index e. For each    ,  ( ) is the set of edges with only 

one endpoint in S and E(S) is the set of edges with both endpoints in S. The notation   ( ) is used 

rather than  (* +) for simplicity. 
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Assume that a fleet of v identical vehicles is available in the central depot. Each vehicle has a 

weight capacity D and a three-dimensional loading space of length L, width W, and height H. 

The demand of each customer i (i = 1,…,n) is expressed in terms of a set of cuboid items     

with a total volume     and a total weight capacity   . It is assumed that           and    

 . Each item         (k = 1, 2 . . . mi) is characterized by the length     , width     , height     , 

and fragility status     (      for fragile items and 0 for non-fragile ones). 

The aim of the 3L-CVRP is to identify a set of vehicle routes with the minimum total traveling 

cost while satisfying the following constraints: 

• The number of routes selected in the solution must be less than or equal to the number of 

vehicles available in the depot; 

• Each route must start and end at the depot; 

• Each customer must be served by exactly one vehicle and visited only once; 

• The total weight capacity and volume of the items placed in a vehicle must not exceed the 

weight capacity and volume of that vehicle; and 

• All items must be orthogonally packed into the vehicles without overlapping, while 

satisfying stability, fragility, and last in first out (LIFO) constraints defined below. 

Fragility constraint: Only fragile items can be stacked on other fragile items; any items can be 

stacked on the non-fragile items. 

Stability constraint: Each item that is not packed directly on the vehicle floor should be stable 

in the vehicle and supported by a sufficient surface comprising other items. The supporting 



 

37 

 

surface of an item should be at least 75% of the base area of the item. Figure 3-3 gives examples 

of stable and unstable situations.  

 

Figure ‎3-3: Situation of stability constraint for two cases 

LIFO constraint: All items packed into a vehicle should be directly unloaded through a 

sequence of straight movements parallel to the length of vehicle without repositioning other 

items. When a customer is visited, its items should not be blocked by or stacked under items that 

will be delivered to customers later on the route. We have formulated the LIFO constraint for a 

single vehicle loading problem in which some dimensions of the vehicle are unknown (see 

Appendix A for more details). 

The LIFO constraint mentioned here is suitable for cases where a forklift is used to unload the 

packed items. In this case, items are first elevated before being moved toward the rear of the 

vehicle. Tarantilis et al. [74] introduced a new version of the 3L-CVRP, called the capacitated 

vehicle routing problem with manual 3-D loading constraints (M3L-CVRP), where items are not 
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essentially elevated before unloading. Figure 3-4 shows the LIFO policy for the 3L-CVRP and 

the M3L-CVRP. In this figure, the items specified by the dashed line should be unloaded before 

the other items. 

 

Figure ‎3-4: LIFO policy for the 3L-CVRP and the M3L-CVRP 

Linear Programming Model 

We present an integer linear programming formulation for 3L-CVRP adapted from 2L-CVRP 

formulation of Iori et al. [68]. For each    ( ), integer variable    is equal to one if edge   

belongs to the optimal solution and zero otherwise. If    ( ), then    *     +  Let us define 

  as an order of visit of customers in S. ∑( ) is the set of all sequences   such that (S,  ) is a 

feasible route in 3L-CVRP. We define r(S) as the minimum number of vehicles needed to serve 

customers in set S.  
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   ∑    
   

  (3-42) 

Subject to:   

∑   
   ( )

         * + (3-43) 

∑   
   ( )

     (3-44) 

∑      ( )
   ( )

       * +     (3-45) 

∑    | |
   (   )

     (   )|   ∑( ) (3-46) 

   *   +      ( ) (3-47) 

   *     +      ( ) (3-48) 

  *       +  (3-49) 

The degree constraints (3-43) ensure that exactly one arc enters and one arc leaves each customer 

vertex. Constraint (3-44) demands that the number of routes selected in the solution should be 

less than the number of vehicles available in the depot. This constraint also guarantees the degree 

requirements for the depot vertex. The connectivity and feasibility of the solution routes in terms 

of weight capacity and loading are ensured by constraints (3-45). We define r(S) as the minimum 

number of vehicles needed to pack all items associated with the customers in set S. r(S) can be 

obtained by solving an associated 3DVLP with allocation, capacity, stability and fragility 

constraints. Non-feasible customers‘ sequences for S, especially the sequences for which LIFO 

conditions are not satisfied, are eliminated by constraints (3-46). 
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Figure 3-5 gives an example of 3L-CVRP with four customers. A set of cuboid items as demand 

is associated with each customer. All customers‘ items are non-fragile except item 6. Two 

vehicles are used to serve customers. The order of visiting customers by each vehicle and items 

demanded by each customer are depicted in the figure.  

 

The loading pattern associated with each vehicle is specified in Figure 3-6. A loading pattern is 

given in accord with the fragility, stability and LIFO constraints. Since item 6 in vehicle 2 is a 

fragile item, no non-fragile items are stacked on the top of this item. It is seen form the figure 

that LIFO policies are satisfied for both loading patterns. For instance, in vehicle 1, items 4 and 5 

related to customer 2 can be unloaded without removing other items. In vehicle 2, items 6, 7 and 

8 related to customer 3 can be unloaded without removing other items available in the vehicle. 

4 

1 

5 

2 3 7 8 

10 

6 

9 

Depot 

C1 

C2 
C4 

C3 

Vehicle1 
Vehicle2 

Figure ‎3-5: An example of 3L-CVRP with four customers and ten items 
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Figure ‎3-6: Feasible loading pattern for each vehicle 

3.5 Conclusion 

Mathematical models are very useful for clarifying problems and evaluating the quality of 

solutions realized from the heuristic algorithms. In this chapter, we presented the linear 

programming (LP) models for the 3DVLP, 3DVLP-AC, and 3L-CVRP. Mathematical 

formulations for certain constraints, such as stability and fragility, were not presented because of 

the complexity involved.  
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Chapter 4: 

4 Solution Methods 

Two solution methods, namely the column generation (CG) and tabu search (TS), are used for 

the problems introduced in the last chapter. Before discussing these methods in more details, 

however, we first introduce and develop an efficient heuristic method based on the concept of 

extreme points, which are used to check the feasibility of a given pattern in terms of loading. 

This heuristic method is called within the CG technique and TS method to check the loading 

feasibility. Figure 4-1 gives an overview of the solution methods used in this work.  

 

Figure ‎4-1: An overview of solution approaches 
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4.1 Extreme Point-Based Heuristic Method  

When using a heuristic method to check the loading feasibility of a sequence of items, its 

performance strongly depends on the definition of the physical points at which items are placed 

within the vehicle. The best definition for such points is based on the concept of extreme points 

(EPs) [28]. We detail this concept and develop an extreme point–based heuristic method (EP-

HM), in which items are sequentially positioned in a vehicle based on EPs. 

4.1.1 EPs Definition  

Placing an item into a vehicle sub-divides that vehicle‘s space into new volumes. All possible 

empty volumes, where new items may be placed, are specified by the EPs. Figure 4-2 shows all 

EPs for two different loading patterns, each of which includes two items.  

 

Figure ‎4-2: Extreme points (black circles) for two loading patterns, each including two items 
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The process of generating EPs comprises the following steps [28]: 

• Placing the first item with dimensions          into the empty vehicle at position (0, 0, 

0) generates three EPs at points (      ), (      ), and (      ); and 

• Adding item i with dimensions          into a vehicle at position (        ) yields the 

following new EPs (see Figure 4-3): 

• Projections of point (           ) along Y and Z axes; 

• Projections of point (           ) along X and Z axes; and 

• Projections of point (           ) along X and Y axes. 

In each direction, if there are some items between item i and the wall of vehicle, then the 

associated projection points to the nearest item to item i. 

 

 

Z 

Y 

X 

Figure ‎4-3: All possible EPs (black circles) generated by placing an item into a vehicle  
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Residual Space of EPs 

The empty space around an EP is called its residual space (RS). The distance between an EP and 

the side of the vehicle along each axis is the RS of the EP on that axis. The RS of all EPs should 

be updated with each new item added to the loading pattern. The dashed cuboids in Figure 4-4 

show the RS of an EP (specified by the black circle) before and after packing item k. 

 

Figure ‎4-4: RS of an EP before and after packing item k 

 

Introducing New EPs 

Let us consider a loading pattern of two items, as shown in Figure 4-5. All EPs generated by the 

aforementioned process for such a pattern are illustrated by the black circles. To add a new item 

k with dimensions       into the current loading, all EPs must first be scanned. In this 

instance, no EPs are appropriate for item k, because some dimensions of item k exceed the 

vehicle‘s geometric boundaries when item k is placed on each EP. The only position where item 
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k can be accommodated is the point specified by the white circle in Figure 4-5—although this 

point is not in the set of EPs. Therefore, we modify the process used to generate EPs.  

 

 

The process of generating new EPs comprises the following steps. Suppose that an item i with 

dimensions          is placed into a vehicle in position (        ). Let    be the projection of 

point  (              ) along Z axis (see Figure 4-6). In such direction, if there are some 

items between item i and floor of vehicle, the associated projection points to the nearest item to 

item i. The projections of point    along X and Y axes are new EPs as specified by black circles 

in Figure 4-6. If there are some items between point    and the wall of vehicle in these directions, 

then the associated projections are on the nearest item to item i.  

  

X 
Y 

Z 
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h 

Figure ‎4-5: A loading pattern with all EPs specified by black circles 
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4.1.2 Items Sorting Rules 

Different sorting rules can be tested for checking loading feasibility of a sequence of items when 

the order of placing items into a vehicle is not essential. Some items sorting rules are [28]: 

• Volume-Height Rule: Items are sorted according to non-increasing order of their volume; the 

items with similar volume are sorted according to non-increasing order of their height; 

• Height-Volume Rule: Items are sorted according to non-increasing order of their height; 

items with similar height are sorted according to non-increasing order of their volume; 

• Area-Height Rule: Items are sorted according to non-increasing order of their base plane; 

items with similar base plane are sorted according to non-increasing order of their height; 

• Height-Area Rule: Items are sorted according to non-increasing order of their height; items 

with similar height are sorted according to non-increasing order of their base plane; 

Figure ‎4-6: New EPs (black circles) after placing an item into vehicle 
X 

Y 

pi 
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• Clustered Area-Height Rule [28]: For an integer value   ,     -, a set of intervals 

     ,(   )  
   

     
   

 - is defined based on the vehicle‘s area    . Items whose base 

areas are in the same interval are assigned into same group. Groups are ordered according to 

k and items of a group are sorted according to decreasing order of their height; and 

• Clustered Height-Area Rule [28]: For an integer value   ,     -  a set of intervals 

     ,(   ) 
   

    
   

 - is defined based on the vehicle‘s height  . Items whose heights are 

in the same interval are assigned into same group. Groups are ordered according to k and 

items of a group are sorted according to decreasing order of their base area. 

4.1.3 Pseudo code of EP-HM  

Given a vehicle with dimensions L×W×H and a list of sorted items called SI, Algorithm 4-1 is 

utilized to insert items of SI into a single vehicle using the concept of EPs.  

Let EPs be the set of all EPs. First, EPs is initialized with the point (0,0,0). RSs, the set of all 

RSs, is initialized with (L,W,H) which is the RS of EP (0,0,0) along the X, Y, and Z axes, 

respectively. Each packed item and its position within the vehicle are saved in a set labeled PI. 

For each item      , the PutItemInVehicle procedure (see Algorithm 4-2) scans EPs from the 

beginning to the end to identify an EP, ep, to determine where to place item i within the vehicle. 

An item can be placed on an EP if placement of its left-back-bottom corner on the EP does not 

overlap with the other items available in the vehicle. When LIFO, stability and fragility 

constraints are specified, such constraints need to be taken into account in order to select an 
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appropriate EP. If there is more than one available EP, then the EP with the lowest Z, Y, X 

coordinates, in order, is selected. 

Given the positions of the items already loaded into the vehicle, new item i and ep, the Update-

EPs procedure generates new EPs and inserts them into the EPs (see Algorithm 4-3). In 

Algorithm 4-3, the projection procedure returns the value true if the projection of the point k 

related to item i lies on the side of item j along the required direction. The RS of the EPs is 

updated by the UpdateResidualSpace procedure (see Algorithm 4-4). Items are added to the 

vehicle as long as space is available in Algorithm 4-1. Once an item cannot be placed in the 

vehicle, then the algorithm stops. It should be noted that Algorithm 4-3 and 4-4 are same as 

Algorithms 1 and 2 in Crainic et al.[28]. 

Algorithm ‎4-1: EP-HM Procedure 
 Input: SI, (L,W,H ) 

1 Initialize vehicle v with dimensions L×W×H  

2 EPs={(0, 0, 0)} 

3 RSs={(L,W,H)} 

4 PI   

5 for each item i ϵ SI do 

6 if PutItemInVehicle(i,RSs,EPs) then 

7 Update-EPs(PI,i,ep,EPs) 

8 UpdateResidualSpace(RSs,i,EPs) 

9 Remove item i from SI and add it to PI 

10 end if 

11 else 

12 PI      and exit 

13 end else 
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14 end for 

15 return PI 

 

Algorithm ‎4-2: Putting Item into Vehicle Procedure 
 PutItemInVehicle(i,RSs,EPs) 

1 ep=null 

2 for each EP   EPs do 

3      if (li   RSEP-X and wi   RSEP-Y and hi   RSEP-Z and xEP+li ≤ L and yEP+wi ≤ W and zEP+hi ≤ H) then 

4 ep=EP and exit 

5      end if 

6 end for 

7 return ep 

 

Algorithm ‎4-3: EP Update Procedure 
 Update-EPs(PI,i, ep, EPs),ep=(xi,yi,zi) 

1 setBound[8]=[-1,-1,-1,-1,-1,-1,-1,-1] 

2 for all      do 

3 k=(xi ,yi+wi ,zi) 

4 if Projection(k,j,alongX-axis) and xj+lj>setBound[1] then 

5 newEps[1]=(xj+lj,yi+wi,zi) 

6 setBound[1]=xj+lj 

7 end if 

8 if Projection(k,j,alongZ-axis) and zj+hj >setBound[2] then 

9 newEps[2]=(xi,yi+wi,zj+hj) 

10 setBound[2]=zj+hj 

11 end if 

12 k=(xi+li,yi,zi) 
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13 if Projection(k,j,alongY-axis) and yj+wj>setBound[3] then 

14 newEps[3]=(xi+li ,yj+wj ,zi) 

15 setBound[3]=yj+wj 

16 end if 

17 if Projection(k,j,alongZ-axis) and zj+hj >setBound[4] then 

18 newEps[4]=(xi+li,yi,zj+hj) 

19 setBound[4]=zj+hj 

20 end if 

21 k=(xi,yi,zi+hi) 

22 if Projection(k,j,alongX-axis) and xj+lj>setBound[5] then 

23 newEps[5]=(xj+lj,yi,zi+hi) 

24 setBound[5]=xj+lj 

25 end if 

26 if Projection(k,j,alongY-axis) and yj+wj>setBound[6] then 

27 newEps[6]=(xi,yj+wj,zi+hi) 

28 setBound[6]=yj+wj 

29 end if 

30 k=(xi+li ,yi+wi ,zi) 

31 if Projection(k,j,alongZ-axis) and yj+wj>setBound[7] then 

32 newEps[7]=(xi+li ,yi+wi ,zj+hj) 

33 setBound[7]=zj+hj 

34 end if 

35 end for 

36 for all      do 

37 k=newEps[7], setBound[7]=-1 

38 if Projection(k,j,alongX-axis) and xj+lj>setBound[7] then 

39 newEps[7]=(xj+lj,yk,zk) 

40 setBound[7]=xj+lj 

41 end if 
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42 if Projection(k,j,alongZ-axis) and zj+hj >setBound[8] then 

43 newEps[8]=(xk,yk,zj+hj) 

44 setBound[8]=zj+hj 

45 end if 

46 end for 

47 for all EP in newEps[] 

48 EPs=EPs+{EP} 

49 end for 

50 return EPs 

  

Algorithm ‎4-4: RS Update Procedure 
 UpdateResidualSpace(RSs,i,EPs), 

1 for all    in EPs do 

2 if (zEP ≥ zi) and (zEP < zi+hi) then 

3 if (xEP ≤ xi) and EP is in space between i and YZ plane then 

4 RSEP-X=min(RSEP-X , xi–xEP) 

5 end if 

6 if (yEP ≤ yi) and EP is in space between i and XZ plane then 

7 RSEP-Y =min(RSEP-Y , yi–yEP) 

8 end if 

9 end if 

10 if (zEP ≤ zi) and EP is in space between i and XY plane then  

11 RSEP-Z =min(RSEP-Z , zi–zEP) 

12 end if 

13 end for 
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Algorithm 4-3 generates 8 extreme points within a fixed time by two for-loops. Therefore this 

generation phase is O(2|PI|). Suppose that n is the maximum number of items that can be packed 

into a vehicle, i.e. |SI|=n and |PI|<=n. Then the overall complexity of Algorithm 4-3 is O(n). 

Since both algorithms 4-2 and 4-4 are executed for each EP and the maximum number of EPs is 

8n, the complexity of each of mentioned algorithms is O(8n). EP-HM algorithm requires 

n(n+8n+n) operations, therefore the overall time complexity of EP-HM algorithm is O(n2). 

4.2 Column Generation Technique 

The column generation (CG) technique has been advocated by several researchers as a very 

powerful technique for solving a variety of operation research problems to optimality. CG is 

capable of solving LP models with a large number of variables. The technique was introduced by 

Ford and Fulkerson [89] to address a multi-commodity network flow problem. Then, Dantzig 

and Wolfe [90] adapted it to LP problems with a decomposable structure. Furthermore, Gilmore 

and Gomory [12,13] demonstrated the efficiency of the CG technique as applied to a cutting 

stock problem. The CG technique has also found applications in relation to the bin packing 

problem, the generalized assignment problem, the vehicle routing problem, the crew scheduling 

problem, the coloring, p-median problem, and other integer-constrained problems.  

In general, the CG technique starts with a small part of the mathematical model of the problem, 

specifically, a partial set of the variables in the model. By solving this part, and analyzing the 

resultant partial solutions, more variables can be discovered and added to the partial model. 

Then, the expanded model is resolved. This process is repeated step by step to reach an 

acceptable solution for the entire model.  



 

54 

 

We deal with three problems in the CG technique, namely the master problem (MP), the 

restricted master problem (RMP), and the sub-problem. The LP relaxation of the original 

problem without integrality constraints is called the MP. Meanwhile, the corresponding LP 

relaxation model of the partial set of variables is called the RMP. The sub-problem is a new 

problem used to discover new variables. 

According to the current dual values, the reduced costs of new variables are considered entries of 

the objective function in the sub-problem. Dual values are obtained by solving the RMP. Then, 

the objective function of the sub-problem (reduced costs) is updated with respect to the dual 

values. If variables with negative reduced cost are available, they are identified by the sub-

problem. Such variables, expressed as new columns, are added to the RMP. Then, the RMP is 

resolved to generate a new set of dual values. This process is repeated until no father variables 

with a negative reduced cost are discovered. Figure 4-7 demonstrates the interactions between 

the MP, RMP, and sub-problem. 

  



 

55 

 

 

Figure ‎4-7: The interactions between MP, RMP and SP 

Note that we try to obtain an optimal solution to the MP using CG technique. If this solution is 

integer, then it is an optimal solution to the LP of the original problem. 

4.3 Tabu Search (TS) Method 

Glover [91] [92] was first to propose a TS for addressing mathematical optimization problems. 

TS as a memory-based search strategy is an extension of the local search approach. This 

technique starts with an initial solution and moves iteratively from one solution to another, taken 

from the admissible neighborhoods of solutions, to reach the optimal one. As pointed out by 

Gendreau et al. [93], the search space and the neighborhood structure are two key elements of the 

TS method. It is critical that these be clearly defined before starting the TS. The search space is 

the space of all possible solutions that are visited during the search. A neighborhood structure 
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discovers adjacent solutions that may be reached from the current solution for each step of the 

TS. To prevent cycling from one solution to another, a certain set of moves are designated as 

forbidden moves (called tabus). Tabus are recorded in a list that represents a short-term memory 

of the search. This list prevents returning to solutions that were previously examined and 

explores the neighborhood of all solutions that are still unexplored.  

Aspiration Criteria 

Tabus may exclude some moves with no cycles, but such moves may yield solutions that are 

better than any others that have been examined. To deal with this difficulty, tabus may be 

cancelled by applying an aspiration criterion. One of the aspiration criterion commonly used in 

TS method allows a move that gives a solution with an objective value better than the current 

best solution, even if that move is on the tabu list.  

Stopping Criteria 

The stopping criteria commonly used in the TS method are based on: 

• Using a fixed number of iterations; 

• Using a fixed amount of CPU time; 

• Using a fixed number of consecutive iterations without any improvement in the objective 

function value; and 

• Using pre-specified threshold value for the objective function. 
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TS Algorithm 

Algorithm 4-5 presents the TS procedure. Let us define S and f(S) as current solution and its 

objective value.    and    are the best solution and its objective value respectively. TL is list of 

tabus. giveBestN procedure generates a subset of acceptable solutions in the neighborhood of S in 

accord with TL and aspiration criteria and then returns best solution from this subset. 

Algorithm ‎4-5: TS Procedure 
1 Select an initial solution S 

2 Set      ,     ( ),      

3 while stopping criterion is not satisfied do 

4 S=giveBestN(S) 

5 if  ( )     then 

6 Set      ,     ( ) 

7 Update TL 

8 end if 

9 end while 

 

4.4 3DVLP 

We propose a column generation–based solution to address the 3DVLP. We first have to express 

3DVLP as a set-partitioning formulation (Dantzig-Wolfe decomposition) in order to use the CG 

technique. The key idea of a set-partitioning formulation for the 3DVLP is the enumeration of all 

feasible loading patterns in the problem. Let   be the set of all feasible loading patterns 

associated with a single vehicle. For each loading pattern    , a binary variable    is defined 
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that is equal to one if the loading pattern   appears in the solution and zero otherwise. The binary 

parameter   
  is equal to one if the loading pattern l contains item      and zero otherwise.  

The set-partitioning formulation of 3DVLP is: 

    ∑  
   

  (4.1) 

Subject to:   

∑  
     

   

       (4.2) 

   *   +       (4.3) 

Objective function (4.1) gives the minimum number of vehicles needed to load all items. 

Constraints (4-2) ensure that each item is packed into only one vehicle. 

The set-partitioning model of 3DVLP that is relaxed by removing the integrality constraints on x 

variables is:  

    ∑  
   

  (4.4) 

Subject to:   

∑  
     

   

       (4.5) 

           (4.6) 
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Let    be a partial set of feasible loading patterns enumerated by obtaining an initial solution to 

the MP. RMP that is the corresponding model to    presents as follow: 

    ∑   
    

  (4.7) 

Subject to:   

∑   
     

    

       (4.8) 

            (4.9) 

 

Suppose that   
         is optimal solution to the RMP and   

        are dual optimal values 

associated with constraints (4.8). The question arising here is whether   
       is also an 

optimal solution to the MP or equivalently whether   
        are optimal solution values to the 

dual of MP. In order to answer this question, we consider dual of MP. 

Let           be dual variables associated with constraints (4-5). Dual of MP (MPD) is: 

   ∑   
   

  (4.10) 

Subject to:   

∑  
   

   

          (4.11) 

               (4.12) 
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If dual values   
        satisfy constraints (4.11) for every feasible loading pattern     then 

  
       are optimal solution values to the MPD, thereby   

          is optimal solution to the 

MP. In the other word, we should see if constraint ∑   
   

 
      is satisfied for each loading 

pattern    . If this constraint is not satisfied by a loading pattern     then   
        are not 

optimal solution values to the MPD.  

Let us define       ∑   
       as reduced cost associated with the loading pattern    . The 

feasible loading patterns with a negative reduced cost can improve the current solution to the 

RMP. For each iteration of CG technique, we should solve the sub-problem that consists of 

finding a feasible loading pattern     with the minimum negative reduced cost. If no feasible 

loading patterns with the negative reduced cost exist then there are no columns (loading pattern) 

to be added to RMP. Therefore, the current solution is optimal to the RMP and MP. 

4.4.1 Sub-problem (Pricing Problem) 

The pricing problem consists of finding a feasible loading pattern of a single vehicle with the 

minimum negative reduced cost. In fact, pricing problem is a three-dimensional knapsack 

problem (3DKP) with the profit    for each item      with size          and knapsack 

size      . 

Let    be the binary variable equal to one if item i is loaded into the vehicle (knapsack) and zero 

otherwise. Based on parameters and variables defined in Chapter 3, 3DKP can be formulated as 

follows:  
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    ∑  
   

   
 (4.13) 

Subject to:   

              (4.14) 

              (4.15) 

              (4.16) 

          (      
 )                (4.17) 

           (      
 )                (4.18) 

          (      
 )                (4.19) 

           (      
 )                (4.20) 

          (      
 )                (4.21) 

           (      
 )                (4.22) 

    
      

      
      

      
      

                                  (4.23) 

    
      

      
      

      
      

       *   +          (4.24) 

                    (4.25) 

3DKP is NP-hard problem in the strong sense. Some solution techniques have been provided by 

Pisinger and Sigurd [15] for two-dimensional knapsack case, that are not efficient in terms of the 

computational time. Since pricing problem is called in each iteration of CG technique, we 

develop heuristic pricing method in order to speed up the entire CG algorithm. 

4.4.2 Heuristic Pricing Solution Method 

To generate feasible loading patterns with a negative reduced cost, we consider six orders of 

items, as described in the following. 

Order 1: items are sorted by non-increasing order of    ; 
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Order 2: items are sorted by non-increasing order of   
         

; 

Order 3: items are sorted by non-increasing order of    
        

; 

Order 4: items are sorted by non-increasing order of   
  

; 

Order 5: items are sorted by non-increasing order of    
  

 ; and 

Order 6: items are sorted by non-increasing order of   
  

. 

According to each order rule, items are inserted into a vehicle using EP-HM algorithm until the 

residual capacity of the vehicle is sufficient to accommodate one more item. If the reduced cost 

of such a feasible loading pattern is negative, then it is added to the RMP as a new column.  

The heuristic pricing method usually gives promising loading patterns with a negative reduced 

cost, but not necessarily the minimal. To reduce the total number of iterations and the overall 

computing time, all valid columns found in each iteration of the CG technique are added to the 

RMP. If no further columns with negative reduced costs can be found by this procedure, then the 

CG stops. 

Since the time complexity a sorting algorithm for n items is O(n2) and also time complexity of 

EP-HM algorithm is O(n2). Therefore overall time complexity of pricing method is O(n2). 

4.5 3DVLP-AC 

We use TS method to address 3DVLP-AC. The TS method for the 3DVLP-AC starts with 

assigning one customer to just one vehicle. To explore a new solution, a neighborhood structure 
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is defined as a customer relocation procedure in which a customer is shifted from the current 

position to another vehicle. Given a solution, we try to discard a target vehicle, which is not 

declared tabu and has the minimum value of the filling function [94] defined as follows: 

 ( )  
∑       

 
 

∑       

 
 

|  |
 

 

Here,    is the set of customers currently assigned to a vehicle j, D and V are capacities of a 

vehicle j in terms of weight and volume respectively, and n is the total number of customers in 

the problem. 

Each customer‘s item in a target vehicle is relocated into a different vehicle with the maximum 

value of  . The feasibility of a loading that results in this move is investigated using the EP-HM 

algorithm detailed in the last section. If a move is feasible, then its reverse move is kept in the 

tabu list in order to avoid any cycling. If all customers‘ items available in a target vehicle can be 

moved to the other vehicles without overlapping, then the target vehicle is discarded and the 

current best solution is updated. Otherwise it is kept in the tabu list and a new target vehicle is 

investigated. The TS method stops when either a given time limit is reached or the number of 

vehicles in the current solution is equal to a given lower bound. Note that the TS method may 

stop when there are no feasible moves to explore a neighborhood search after a certain number of 

iterations. Algorithm 4-6 gives a schema of the TS method for the 3DVLP-AC with the 

following notation:  

BS: Best solution; 

LB: Lower bound;  



 

64 

 

TL: Tabu List;  

n: Number of Customers;  

TV: Target Vehicle; and 

Sv: the set of all vehicles in the current solution. 

Algorithm ‎4-6: TS Method for 3DVLP-AC 
1 Load each customer into separate vehicle and set BS=n 

2      

3 while time limit is not reached or       do 

4 Select TV=argmin ( ),     , with respect to the TL  

5 for all customer      do 

6    =argmax ( ),      and j≠ TV 

7 if EP-HM(c,   ) is true and move is not in TL then 

8 Add c to     and remove c from TV 

9 Update TL 

10 end if 

11 end for 

12 if all customers‘ items of TV are replaced into other vehicles then 

13 BS=BS-1 

14 Update TL  

15 Sv=Sv\ TV 

16 end if 

17 end while 

4.6  3L-CVRP 

We propose a column generation–based solution to address the 3L-CVRP. We first express 3L-

CVRP as set-partitioning formulation (Dantzig-Wolfe decomposition) in order to use CG 
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technique. The key idea of set-partitioning formulation for the 3L-CVRP is to enumerate all 

feasible routes of the problem. A feasible route is defined as a vehicle trip that starts and ends at 

the depot, while visiting a subset of customers and satisfying capacity and loading constraints 

detailed in the problem description chapter.  

Let   be the set of all possible feasible routes. The parameters and variables used in the set-

partitioning formulation of 3L-CVRP are: 

m, The number of vehicles available in the depot; 

   , The traveling cost from customer i to customer j; 

   ∑    
(   )  

   The cost of feasible route    , that is sum of traveling costs along 

route  ; 

   , The binary parameter equal to 1 if customer i is along feasible route r 

and 0 otherwise; and 

  , The binary variable equal to 1 if feasible route r is selected in the 

solution and 0 otherwise.  

The set-partitioning formulation of 3L-CVRP is:  

   ∑    
   

  (4-26) 

Subject to:   

∑     
   

         * + (4-27) 

∑  
   

    (4-28) 

   *   +       (4-29) 



 

66 

 

A set of feasible routes with the minimum total traveling cost is determined in the objective 

function (4-26). Constraints (4-27) ensure that each customer is covered by exactly one of the 

feasible routes selected in the solution. Constraint (4-28) ensures that the number of routes 

selected in the solution does not exceed the number of vehicles. 

A linear programming (LP) relaxation of the set-partitioning formulation (called MP) without 

integrality constraints on x variables is: 

   ∑    
   

  (4-30) 

Subject to:   

∑     
   

         * + (4-31) 

∑  
   

    (4-32) 

           (4-33) 

Let    be a partial set of feasible routes enumerated by obtaining an initial solution to the MP, 

Corresponding model to this set (called RMP) is: 

   ∑     
     

  (4.34) 

Subject to:   

∑      
     

         * + (4-35) 

∑    
     

    (4.36) 

             (4.37) 
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Suppose that   
       * +  be dual values associated with the constraints (4-35) and   dual value 

associated with constraint (4-36) form current solution   
  ,       to the RMP. In order to 

recognize whether   
  ,       are also optimal values to the MP or equivalently whether 

  
       * + and    are optimal values to the dual of MP, we consider dual of MP.  

Let         * + and   be dual variables associated with constraints (4.31) and (4.32) in the MP. 

Dual of MP (called MPD) is: 

   ∑      
    * +

  (4.38) 

Subject to:   

∑         
     * +

         (4.39) 

     (4.40) 

   free        * + (4.41) 

If dual values (  
 
   

 ) satisfy constraints (4.39) then they are optimal solution values to the 

MPD, thereby   
          are optimal values to the MP. In fact we should see if constraint 

∑      
         * +    is satisfied for each route     . We define   ̅       

∑          * +  as reduced cost associated with the route    .  

CG technique is initialized by assigning each customer to exactly one vehicle. Since constraint 

(4-36) is not satisfied with such initial columns, an artificial variable y is added to constraint (4-

36) with a large penalty in the objective function. A basic scheme of CG technique for the 3L-

CVRP is given in Algorithm 4-7. 
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Algorithm ‎4-7: CG Technique for the 3L-CVRP 
1 Generate a partial set of routes (columns) by assigning each customer to one vehicle 

2 Solve corresponding RMP and obtain dual values 

3 Solve sub-problem to identify feasible routes with the negative reduced cost 

4 Add feasible routes to RMP as new columns and go to step 2 

5 If there are no feasible routes with negative reduced cost then stop, the current 

solution to the RMP is optimal to the MP 

4.6.1 Sub-problem (Pricing Problem) 

The pricing problem for the 3L-CVRP consists of finding a feasible route r with the minimum 

negative reduced cost for a single vehicle. The kind of pricing problem is an elementary shortest 

path problem with resource and additional constraints (ESPPRC) such as weight capacity, 

volume, and loading conditions.  

As aforementioned, in graph G = (V, E), V is the vertex set containing n customers and central 

depot {0} and   *(   )          + is the set of edges. With replacing each edge with two 

arcs, graph G can be represented as directed graph G’ with the set of arcs A. Without loss of 

generality, depot node in G is replaced with two nodes s and e which are nodes of start and end 

in graph G’, respectively. Let    *(   )    (   )+ be the set of arcs (path) associated with the 

route    .   ̅       ∑          * + , reduced cost of route  can be reformulated as follows: 

  ̅  ∑   ̅ 
(   )   

 

  ̅  {
                (   )        
               (   )         
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The reduced cost   ̅  , volume    and weight    are associated with each arc (i,j) in graph G’ (see 

Figure 4-8). 

 

Figure ‎4-8: Sub-problem network G’ for pricing problem in 3L-CVRP 

Let us define   as set of all feasible routes satisfying loading constraints. We define binary 

variable     equal to one if arc (i,j) is selected in the solution and zero otherwise. The problem of 

elementary shortest path from point s to point e while satisfying resource and loading constraints 

is formulated as follows: 

   ∑   ̅    
(   )  

  (4-42) 

Subject to:   

∑    
(   )  

 ∑    
(   )  

         *   + (4-43) 

j 

i 

n 

1 

  e   ̅  

  ̅    ̅  

  ̅  
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∑    
(   )  

    (4-44) 

∑    
(   )  

    (4-45) 

∑      
(   )  

       *   + (4-46) 

∑        
(   )  

  (4-47) 

∑         
(   )  

  (4-48) 

{    |(   )   +     (4-49) 

    *   +  (   )    (4-50) 

A path with the minimum reduced cost is selected in the objective function (4-42). Constraints 

(4-43) to (4-45) are flow conservations. Constraints (4-46) ensure that there exist no cycles in the 

path selected as solution. Constraints (4-47) and (4-48) ensure that the total weight capacity and 

volume of arcs selected in the solution do not exceed the weight capacity and volume of vehicle 

respectively. The loading feasibility of arcs is ensured by constraint (4-49).  

Pricing Problem Solution Method 

The ESPPRC with the loading constraints is strongly NP-hard. We solve the ESPPRC via a 

label-correcting algorithm with the dominance rules introduced in Feillet et al. [95] and 

Desrochers [96], without considering loading constraints. Then, the loading feasibility of a route 

with a negative reduced cost resulting from the ESPPRS is verified by the EP-HM algorithm. If 

EP-HM cannot give a feasible loading pattern for such a route, then a saving algorithm is applied 



 

71 

 

in order to obtain a valid column. Figure 4-9 gives an overview of the algorithms employed to 

obtain a valid column in the pricing problem. 

 

 

Figure ‎4-9: An overview of the algorithms used in the pricing problem 

Label Correcting Algorithm 

Label correcting algorithm is an extension of the Ford-Bellman algorithm [97] where a set of 

labels is associated with each possible partial path. A label indicates the consumption of a 

resource along the partial path. In the label correcting algorithm, labels are eliminated using 

dominance rules, and nodes are repeatedly considered while their labels are extended.  

Route with negative reduced cost 

Status of route in terms of 

loading feasibility 

Label Correcting Algorithm 

EP-HM 

Saving Algorithm 
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Let R be the number of resources and    
  ≥ 0 the value of resource r along arc (i,j). For each 

resource r, an interval [  
 ,  

 ] is associated with each node i. The consumption of resource r 

along a path from s to i should be in interval [  
 ,  

 ]. Note that triangle constraint is satisfied for 

each resource value    
 . Since here we deal with the volume and weight resources, only two 

intervals [0, D] and [0, V] are associated with each node.  

Label Definition 

According to Feillet et al. [95], label (     ) for each path     and node i is defined as follows: 

•    (  
    

      
       

    
     

 ); and 

• Ci = cost of path    . 

Here,   
    

      
   are values of R resources used along path    ,    is the number of 

unreachable nodes and (  
    

     
 ) is the vector of unreachable nodes.   

  is equal to one if 

node k is unreachable and zero otherwise. A node is considered as unreachable if it is along 

path     or it cannot be visited anymore due to the resource constraints. 

Dominance Rule 

Suppose that    with label (  
    

 ) and    with label (  
    

 ) are two different paths from s to i. 

Path    dominates path    in node i if and only if following conditions are satisfied: 

•   
    

 ; 

•   
    

 ; 
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•   
     

   for r=1,2,…,R; 

•   
     

   for k=1,2,…,n; and 

• (  
    

 )  (  
    

 )  

Only non-dominated paths are investigated to obtain the shortest path in the network. 

Pseudo Code of Label Correcting Algorithm 

A minimum cost elementary path from s to each node is obtained in Algorithm 4-8. Let L(i) be 

the set of all labels on the node i and S(i) be the set of nodes after node i. Define T as list of 

waiting nodes to be treated and     as set of extended labels form node i to node j. DoExtension 

procedure gives extended label resulted from label    to node j. This procedure returns nothing if 

an extension is impossible. NoDo procedure uses the dominate rules to remove some labels from 

set L. 

Algorithm ‎4-8: Label Correcting Procedure 
Output: Minimum cost elementary path from point s to each point 
1 set L(s)={(0,0)} 
2 for all i   V\{s} do 
3 Set L(i)=   
4 end for 
5 Set T={s} 
6 while T is not empty do 
7 Select     
8 for all    ( ) do 
9 Set       
10 For all (     )   ( ) do 
11 if   

 =0 then 
12         *           (    )+ 



 

74 

 

13 end if 
14 end for 
15 L(j)=NoDo(L(j)     ) 
16 if there is change in L(j) then 
17 T=T {j} 
18 end if 
19 end for 
20 T=T\{i} 
21 end while 

The time complexity of this label correcting algorithms depends strongly on the graph structure, 

number of nodes and also tightness of resource constraints [95]. 

Loading Feasibility Check 

The label correcting algorithm gives a route with a negative reduced cost without considering its 

loading feasibility. To check the loading feasibility of such a route, the EP-MH algorithm is 

examined for a combination of three items sorting rules and different position selecting criteria. 

For all three sorting rules (called Rule-1, Rule-2, Rule-3), customers along the route are sorted by 

inverse order of visit. For each customer non-fragile items precede fragile ones. Each of the 

subsets of fragile and non-fragile items is sorted by following criteria for each sorting rule: 

x Rule-1: Decreasing volume, breaking ties by decreasing height; 

x Rule-2: Decreasing base area, breaking ties by decreasing height; and 

x Rule-3: Decreasing height, breaking ties by decreasing base area. 

The extreme points are scanned according to the six following position selection criteria: 
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x Criterion-1: Select the EP with the minimum Y coordinate value, breaking ties with the X 

coordinate value and then minimum Z coordinate value; 

x Criterion-2: Select the EP with the minimum X coordinate value, breaking ties with the 

minimum Y coordinate value and then minimum Z coordinate value; 

x Criterion-3: Select the EP with the minimum Y coordinate value, breaking ties with the 

minimum Z coordinate value and then minimum X coordinate value [34]; 

x Criterion-4: Select the EP at which the item to be packed, touches the vehicle and other 

packed items more [20]; 

x Criterion-5: Select the EP with the minimum residual space along X and Y axes [28]; and 

x Criterion-6: Select the EP with the minimum residual space [28]. 

Saving Algorithm 

If the EP-HM algorithm cannot give a feasible loading pattern for a route with a negative cost, 

then, a saving algorithm is used (see Algorithm 4-9). The saving algorithm eliminates some 

customers from a route which represent a smaller effect on the reduced cost in order to obtain a 

feasible loading pattern. 

Let (             ) be an elementary path with the negative reduced cost given by the label 

correcting algorithm. The saving algorithm is based on notation of saving that is: 

     ̅    ̅    ̅ .  

According to the value of   , the least profitable customer along path (             ) is selected 

and removed from the route. The loading feasibility of this path is then checked. If a valid 
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loading pattern is not derived, then the next least profitable customer is removed from the path. 

The saving algorithm stops when a valid loading pattern is achieved or the reduced cost of the 

path is positive.  

Algorithm ‎4-9: Saving Procedure 
1 Calculate    for each customer k in path (             ) 

2 Select customer k with the minimum value    and remove it from the path 

3 if the reduced cost of path is positive or there is a valid loading for the route then  

4 exit 

5 else 

6 Go to step1 

 

4.6.2 Heuristic Pricing Approach 

We have developed a greedy heuristic pricing approach to hasten the generation of valid columns 

with a negative reduced cost (see Algorithm 4-10). Algorithm 4-10 gives promising feasible 

routes with negative, but not necessarily minimal reduced cost. For each    ,    is a list of 

       , sorted by increasing order of   ̅ . The algorithm starts from   , which is a list of 

customers       sorted by increasing order of   ̅ . Let k be the first entry in list   . Items 

associated with customer k are inserted into a vehicle by the EP-HM algorithm. Then, the first 

entry in list    is selected. If this entry is a customer whose items cannot be packed into the 

vehicle according to the loading constraints, then the second entry in    is selected. This process 

is repeated until the selected entry is depot. A feasible loading pattern with a negative reduced 

cost (called fLoading) is added to the set all-Loadings. For a feasible loading pattern with a 

positive reduced cost, the checkR procedure removes one or more customers with the lowest 
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value of π from fLoading in order to obtain a feasible loading pattern with a negative reduced 

cost. We apply Algorithm 4-10 for different position criteria, as explained in the previous 

section.  

Suppose that n is the total number of items and m the total number of customers. 

Aforementioned the time complexity of EP-HM algorithm is O(n2), and it is seen that this 

algorithm is called within heuristic pricing procedure for each customer. Moreover the overall 

complexity time of all sorting rules in the pricing algorithm is O(m3). Therefore the overall time 

complexity of pricing method is O(m3+mn2).  

_______________________________________________________________________ 
Algorithm ‎4-10: Heuristic Pricing Procedure for the 3L-CVRP 
Input V:the set of customers and depot; (π,µ): the dual values 

Output all-Loadings: all feasible loading patterns with the negative reduced costs 

1 Obtain    for each     

2 for each customer      do 

3 Pack items of customer k by EP-HM algorithm 

4 Add customer k to fLoading 

5 Set CL=   

6 for each      do 

7 if  j is depot then 

8 Go to step 15 

9 end if 

10 if items of customer j can be packed then 

11 Add customer j to fLoading 

12 Set CL=    and go to step 6 

13 end if 

14 end for 
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15 if reduced cost of fLoading is negative then 

16 Inverse the order of customers in fLoading  

17 Add fLoading to all-Loadings 

18 end if 

19 if reduced cost of fLoading is positive then  

20 checkR(fLoading) 

21 end if 

22 end for 

23 return all-Loadings 

  

4.7 Branching Rules 

After terminating the CG technique, if the current solution to the MP is an integer, then it is 

either a near-optimal or an optimal solution to the set-partitioning model. Otherwise, an optimal 

integer solution needs to be determined through the branch and bound method embedded in the 

CG technique; this is called the branch and price (B&P) method. Note that the non-integer 

optimal solution of the MP is used as a lower bound for the optimal solution of the set-

partitioning model. 

Some modifications are applied to the sub-problem in order to avoid regenerating columns in the 

branching. Infeasible columns in accord with the branching constraints are not be generated 

using these modifications. Two following branching strategies are used in this work. 
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Depth-First Heuristic (D_FH) Branching Rule 

In this branching rule, variables with fractional values that are greater than a given specific value 

are set to one. If there are no variables with appropriate fractional values, then the variable with 

the largest fractional value is fixed to one. After fixing the variables, more columns are generated 

using a heuristic pricing algorithm until there is little or no change in the RMP solution. 

Repeating this branching strategy leads either to an integer solution or an infeasible one.  

Ryan and Foster Branching Rule 

This branching rule is a general rule for the set-partitioning problem originally suggested by 

Ryan and Foster [98]. We apply such branching rule to the 3DVLP.  

Given a fractional LP solution to the set-partitioning model, branching is applied on a pair of 

items selected by one of the following rules: 

• Select items i and j with the maximum volumes from a loading pattern solution that has 

the high fractional value; and 

• Select items i and j with the maximum volumes from a loading pattern solution whose 

corresponding value is closest to 0.5. 

The pair of items i and j should be assigned to the same vehicle in one branch and to different 

vehicles on the other branch. The first branch is performed by adding constraint ∑   
            

to the mathematical model and the second branch by adding two constraints ∑ (    
 )         

  and ∑   
 (    

 )        to the model. 
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All loading patterns that contain just item i or j are individually eliminated from the RMP on the 

branch where a pair i and j should be in the same vehicle. All loading patterns containing both 

items i and j are eliminated from the RMP on the branch where a pair of items i and j should not 

be in the same vehicle. 

4.8 A Numerical Example of the CG Technique 

An example of the vehicle routing problem without capacity and loading constraints is presented 

and solved by means of CG technique to understand better the strategy of this technique. 

Suppose that there exist two identical vehicles in the depot. Such vehicles should meet a set of 

three customers. Figure 4-10 shows the road network including customers, depot as well as 

traveling cost between each pair of customers.  

 

Figure ‎4-10: Road network of an example of the vehicle routing problem 
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Set-Partitioning Formulation  

Let    be binary variable equal to one if route r is selected in the solution and zero otherwise.    

is total cost of route r. R is the set of all feasible routes.     is binary parameter equal to one if 

customer i is visited by route r and zero otherwise. The set partitioning formulation is: 

   ∑    
   

  

Subject to:  

∑       
   

 i=1,2,3 

∑  
   

    

   *   +       

Master Problem 

   ∑    
   

  

Subject to:  

∑       
   

 i=1,2,3 

∑  
   

    

           

 

CG technique starts with     . The corresponding RMP with the artificial variables      , and 

   and slack variable s is: 
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   (                 )  

Subject to:  

      

      

      

       

              

 

Solution of RMP 

Objective value Artificial and slack values Dual values 

                        

300 1 1 1 2 100 100 100 0 

Reduced costs associated with the arcs are defined with respect to the dual values (see Figure 4-

11).  

Figure ‎4-11: Reduced costs in the network 
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Let us replace          with 100 and   with 0. Dynamic programming approach is used to price 

out the route with the minimum negative reduced cost. The recurrence equation in the dynamic 

programming approach for the network N(V,A) is defined as follows: 

 (   )     
(   )  

* (  * +  )    ̅ +          ,            

 (* +  )    ̅        

 (   ) is the minimum reduced cost of a path that starts at the depot and ends at node j, while 

visiting all nodes in the set U only once (node 0 is depot). Values of Q in different states and 

stages are: 

 

Node Stage 0 Stage 1 Stage 2 Stage 3 
1  (* +  )  -86  (* +  )  -193 

 (* +  )  -194 
 (*   +  )  -285  

2  (* +  )  -97  (* +  )  -189   
3  (* +  )  -95    

d   (* +  )  -83 
 (* +  )  -93 
 (* +  )  -85 

 (*   +  )  -190 
 (*   +  )  -191 
 (*   +  )  -185 

 (*     +  )  -
282 

-282 is minimum negative reduced cost that is related to route (d, 3, 2, 1, d). Let     be variable 

associated with this route.     is added to RMP as follows: 

   (                      ) 

Subject to: 
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Solution of RMP 

Objective value x value Artificial and slack values Dual values 

   .                        

18 1 0 0 0 1 100 100 -182 0 

 

After updating reduced costs in the road network, values of Q are:  

 

Node Stage 0 Stage 1 Stage 2 Stage 3 
1  (* +  )  -86  (* +  )  -193 

 (* +  )     
 (*   +  )  -13  

2  (* +  )  -97  (* +  )       
3  (* +  )         
d   (* +  )  -83 

 (* +  )  -93 
 (* +  )      

 (*   +  )  -190 
 (*   +  )     
 (*   +  )     

 
 (*     +  )  -
10 

 

The value of minimum reduced cost is -190 that is related to route (d, 2, 1, d). Let    be variable 

associated with this route.    is added to the RMP as follows: 

   (         ) 

Subject to: 
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Solution of RMP 

Objective value x values Slack value Dual values 

   .                 

18 1 0 1 100 -82 0 0 

 

After updating reduced costs, the route with the minimum negative reduced cost is found as 

follows: 

 

Node Stage 0 Stage 1 Stage 2 Stage 3 
1  (* +  )  -86  (* +  )  -11 

 (* +  )  -94 
 (*   +  )  -3  

2  (* +  )      (* +  )       
3  (* +  )       
d   (* +  )  -83 

 (* +  )     
 (* +  )     

 (*   +  )  -8 
 (*   +  )  -91 
 (*   +  )     

 
 (*     +  )    

-91 is minimum reduced cost that is related to route (d, 3, 1, d). Let    be variable associated 

with this route.    is added to RMP. 

   (             ) 

Subject to: 
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Objective value x values Slack value Dual values 

   .                    

18 1 0 0 1 1 9 8 0 

After updating reduced costs, the values of Q are:  

Node Stage 0 Stage 1 Stage 2 Stage 3 
1  (* +  )      (* +  )     

 (* +  )     
 (*   +  )      

2  (* +  )      (* +  )       
3  (* +  )        
d   (* +  )     

 (* +  )     
 (* +  )    

 (*   +  )    
 (*   +  )    
 (*   +  )     

 (*     +  )    

 

Since minimum reduced cost (-2) is related to two routes (d, 2, d) and (d, 3, 2, d), we select route 

(d, 2, d) arbitrary. Let    be variable associated with this route. 

   (                 ) 

Subject to: 
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Objective value x values Dual values 

   .                     

16 0 0 1 1 3 7 6 0 

After updating reduced costs, the values of Q are:  

Node Stage 0 Stage 1 Stage 2 Stage 3 
1  (* +  )      (* +  )     

 (* +  )     
 

 (*   +  )      

2  (* +  )      (* +  )       
3  (* +  )        
d   (* +  )     

 (* +  )    
 (* +  )    

 (*   +  )    
 (*   +  )    
 (*   +  )    
 

 (*     +  )
   

Since there are no routes with the negative marginal cost in the network, the current optimal 

solution of RMP is optimal to the MP. The value of objective function is 16. One of the vehicles 

visits customer 3 first and then customer 1 with a total transportation cost equal to 9. Another 

vehicle visits only customer 2 with the total transportation cost equal to 7. 
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Chapter 5: 

5  Computational Experiments 

In this chapter, we present the computational results for the general 3DVLP, the 3DVLP-AC, 

and the 3L-CVRP.  

The 3DVLP requires the packing of items orthogonally into a minimum number of vehicles. 

Items have fixed orientation; that is, they cannot be rotated around any of the axes. Meanwhile, 

the 3DVLP-AC consists of packing items orthogonally with the fixed vertical orientation into a 

minimum number of vehicles while satisfying allocation and capacity constraints. Finally, the 

3L-CVRP consists of finding feasible routes with minimum total traveling cost while satisfying 

customers‘ demands expressed in terms of cuboid and weighted items (loading constraints). 

All algorithms applied in this work are implemented in visual C++ and run on an Intel Core Duo 

2.2 GHz CPU. The ILOG CPLEX 12.2.0 solver is used to solve the linear mathematical 

programming models. 
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5.1 3DVLP  

5.1.1 Problem Tests 

The experiments for the 3DVLP are performed using eight classes of random instances generated 

by Martello et al. [23]. For classes 1 to 5, the bin size is           and the dimensions 

of the items adhere to one of the following five types: 

• Type 1:     uniformly random in  ,   
 
 -,    uniformly random in  , 

 
   -,    uniformly 

random in  , 
 
   -; 

•  Type 2:     uniformly random in  , 
 
   -,     uniformly random in  ,   

 
 -,    uniformly 

random in  , 
 
   -; 

•  Type 3:     uniformly random in  , 
 
   -,     uniformly random in  , 

 
   -,    uniformly 

random in  ,   
 
 -; 

• Type 4:     uniformly random in , 
 
   -     uniformly random in  , 

 
   -,    uniformly 

random in  , 
 
   -;  

• Type 5:    uniformly random in ,   
 
 -,    uniformly random in  ,   

 
 -,     uniformly 

random in  ,   
 
 -; 

• Class 1: type 1 with probability 60%, each of types 2, 3, 4 and 5 with probability 10%; 

• Class 2: type 2 with probability 60%, each of types 1, 3,4 and 5 with probability 10%; 

• Class 3: type 3 with probability 60%, each of types 1, 2, 4 and 5 with probability 10%; 

• Class 4: type 4 with probability 60%, each of types 1, 2, 3 and 5 with probability 10%; and 
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• Class 5: type 5 with probability 60%, each of types 1, 2, 3 and 4 with probability 10%. 

Classes 6 to 8, produced according to instances presented in Berkey and Wang [99], are: 

• Class 6:    ,    and     uniformly random in [1,10] and         ; 

• Class 7:    ,    and    uniformly random in [1,35] and         ; and 

• Class 8:    ,    and     uniformly random in [1,100] and          . 

Such instances can be reproduced by the instance generator available at Pisinger‘s website 

(www.diku.dk/~pisinger/codes.html). 

5.1.2 Mathematical Formulation Results 

The general LP model of 3DVLP is solved using CPLEX for different instances with a number 

of items (n) between 10 and 45. Ten different problem instances based on different random seeds 

are generated for each class and number of items. 

Table 5-1 gives the number of instances, out of 10, that are solved to optimality using CPLEX 

within the time limit of 3,600 seconds for each class and number of items. The average 

computation times in which CPLEX can solve instances to optimality are indicated in the Time 

column for each class and number of items. The total number of instances solved to optimality in 

each class is reported in the last row. It can be seen from Table 5-1 that, for up to 30 items most 

class instances are solved to optimality by CPLEX. Since the total number of solved instances in 

classes 7 and 3 is less than the other classes, these are the most difficult classes solved by 

CPLEX. In contrast, class 4 represents the easiest one, with 80 solved instances in total. 

http://www.diku.dk/~pisinger/codes.html
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Table ‎5-1: CPLEX result for 3DVLP 

n Class1 
__________ 

Class2 
___________ 

Class3 
___________ 

Class4 
___________ 

Class5 
___________ 

Class6 
___________ 

Class7 
___________ 

Class8 
___________ 

n Number 

of 

instances 

Time 

Number 

of 

instances 

Time 

Number 

of 

instances 

Time 

Number 

of 

instances 

Time 

Number 

of 

instances 

Time 

Number 

of 

instances 

Time 

Number 

of 

instances 

Time 

Number 

of 

instances 

Time 

10 10 0.95 10 0.90 10 0.70 10 0.85 10 1.02 10 0.86 10 0.99 10 1.00 

15 10 2.13 10 1.80 10 1.90 10 1.75 10 2.16 10 1.90 10 2.08 10 2.15 

20 10 6.50 10 3.60 10 3.80 10 3.25 10 3.95 10 3.85 10 3.87 10 3.72 

25 10 13.81 9 21.33 10 13.88 10 4.46 10 9.74 10 10.78 10 58.35 10 17.14 

30 10 14.18 10 31 9 10.88 10 7.9 10 15.57 9 17.3 10 36 9 18.77 

35 8 161 7 17 8 294 10 6.664 10 30 9 277 8 76 9 50 

40 3 108 2 121.7 6 191 10 9.6 8 75 8 257 4 50 6 91.66 

45 5 263 7 1774 0 - 10 11.87 6 85 8 300 1 30 6 333 

Total 

Num 
66  65  63  80  74  74  63  70  
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5.1.3 CG Results 

The CG algorithm for the 3DVLP is tested on a set of 320 instances. For each class and number 

of items (n) between 50 and 200, ten different problem instances based on different random 

seeds are generated.  

The CG technique is initialized by assigning one item to one vehicle. Since the solutions to the 

RMP for all instances are non-integers after stopping CG, we apply branching to obtain integer 

solutions. D_FH branching with a limit value of 0.6 leads to good integer solutions for most of 

instances, but leads to infeasible solutions for a maximum of 4 problem instances out of 10 for 

each class and instance size. For the instances with an infeasible solution, all fixed variables in 

the branching are released and the current RMP is solved to integrality by the CPLEX. The total 

execution time, including CG time, branching, and solver time for each instance is less than 1000 

seconds. The branching rules based on Ryan and Foster [98] are not only time-consuming for 

large instances, but also, the solutions are not superior to those generated by D_FH and CPLEX 

for any instance size. Therefore, we present only the results produced by D_FH branching and 

CPLEX.  

We compare the CG technique with TS2PACK developed by Crainic et al. [29] and the GRASP 

algorithm from Parreño et al. [31], as these two methods have given the best results for the 

3DVLP in the literature. The computational results are summarized in Table 5-2. The class of an 

instance, vehicle size, and total number of items are presented in the first three columns 

respectively. The CG, TS2PACK, and GRASP columns correspond to the mean number of 

vehicles over 10 instances generated using the CG technique, the TS2PACK heuristic, and the 
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GRASP method. Note that TS2PACK stops after 1,000 seconds for each instance. No TS2PACK 

results for the classes 2 and 3 were reported in Crainic et al. [29], because the properties of such 

classes are the same as those of class 1. Moreover, the LB column shows the lower bound for the 

mean number of vehicles over 10 instances reported by Boschetti [17]. The last column indicates 

the average execution time of CG in seconds for each instance.  

The best CG technique solutions, in comparison with both methods of GRASP and TS2PACK, 

are highlighted in bold in Table 5-2. This comparison shows that the CG technique gives equal 

or better results compared to GRASP for all instances except for one sub-instance in class 6. 

Total gap between CG and TS2PACK is less than 1 %.  
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Table ‎5-2: CG technique, TS2PACK and GRASP results for the 3DVLP 
Class Vehicle size Number of 

items 
CG TS2Pack 

 
GRASP LB CPU 

time 
1         50 13.4 13.4 13.4 12.9 15 

100 26.6 26.7 26.6 25.6 100 
150 36.3 37.0 36.4 35.8 500 
200 50.7 51.1 50.9 49.7 700 

        
2         50 13.8 - 13.8 13 10 

100 25.5 - 25.7 25.1 70 
150 36.4 - 36.9 35.7 500 
200 49.3 - 49.4 48.1 800 

        
3         50 13.3 - 13.3 12.7 20 

100 25.9 - 26.0 24.7 60 
150 37.4 - 37.6 36.4 500 
200 49.7 - 50.0 48.6 800 

        
4         50 29.4 29.4 29.4 29.0 4 

100 59.0 58.9 59.0 58.5 11 
150 86.8 86.8 86.8 86.4 30 
200 118.8 118.8 118.8 118.3 60 

        
5         50 8.3 8.3 8.3 7.6 11 

100 15.0 15.2 15.0 14.0 50 
150 20.0 20.1 20.1 18.8 500 
200 27.1 27.4 27.1 26.0 500 

        
6       50 9.9 9.8 9.8 9.4 10 

100 19.0 19.1 19.0 18.4 150 
150 29.2 29.2 29.2 28.5 300 
200 37.4 37.7 37.4 36.7 1000 

       
7       50 7.4 7.4 7.4 6.8 10 

100 12.4 12.3 12.5 11.5 100 
150 15.5 15.8 16.0 14.4 1000 
200 23.5 23.5 23.5 22.7 1000 

       
8         50 9.2 9.2 9.2 8.7 12 

100 18.9 18.8 18.9 18.4 120 
150 23.5 23.9 24.1 22.5 1000 
200 29.4 30.0 29.8 28.2 1000 

Total 
Vehicles 

 Classes1,4-
8 

726.78 729.8 728.6 708.8  

 All Classes 978.08  981.3   
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5.2 3DVLP-AC 

5.2.1 Problem Tests 

There are no specified problem instances in the literature for 3DVLP-AC. In fact, this problem 

has not been considered on its own in previous research. We use data and instance generators 

introduced by Gendreau et al. [51], creating a set of 200 problem instances. For all instances, the 

length L, width W, and height H of the vehicle space are set to 60, 25, and 30. Considering a 

given vehicle capacity and a number of customers with specified capacities, we generate 10 

different problem instances based on different items assigned to the customers. For each 

customer k, the number of requested items is stochastically generated within the specified 

interval [1,3]. The dimensions        , and    for each item i are integer values from intervals 

[0.2L,0.6L], [0.2W,0.6W], and [0.2H,0.6H], respectively. 

5.2.2 TS and CPLEX Results 

The TS heuristic algorithm is tested on a set of 200 instances. The results are summarized in 

Table 5-3. The weight capacity of the vehicle, number of customers and number of items are 

presented in the first three columns. The n column gives the mean number of vehicles over 10 

instances, resulting from the TS method. The average computation times in seconds are 

presented in the Sec column for TS. 

Unfortunately, there are no lower bounds (LB) for the 3DVLP-AC reported in the literature with 

which to evaluate the TS results. We compare such results with the solutions obtained from 

CPLEX for the small-sized instances. The ratio (     )
  

     over instances is given in Gap 
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column for only those instances that can be solved by CPLEX. Upper bound (UB) represents the 

average solution obtained by the TS method. LB is the average optimal solution given by 

CPLEX. It should be noted that optimal solutions resulted from CPLEX are exactly same as TS 

solutions for the small-sized instances. 

The N of optimal column gives the number of instances out of 10 that are solved to optimality by 

CPLEX. The ―-‖ symbol in the table indicates that CPLEX can give no optimal solutions. In 

general, CPLEX can give an optimal solution, a feasible solution, or no solutions, which 

occurred when it stops because the time limit is exceeded or an out of memory error occurs. 

Moreover, it can usually solve instances with up to 40 customers in a reasonable amount of time 

as can be seen from Table 5-3. The average computation times in seconds are presented in Sec 

column for the CPLEX. 
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Table ‎5-3: TS and CPLEX results for 3DVLP-AC 
 Capacity Customers Items TS 

_________ 

Gap % CPLEX 

____________ 

 n Sec  N of 

Optimal 

Sec 

1 90 15 29 3.3 0.89 0.00 10 170.00 

2 55 15 30 5.0 0.05 0.00 10 3.38 

3 85 20 40 4.4 0.64 0.00 7 285.44 

4 58 20 40 6.0 0.06 0.00 10 20.32 

5 4000 21 42 6.0 0.13 0.00 10 31.64 

6 4500 22 44 4.7 1.34 - -  

7 48 25 50 8.0 0.42 0.00 10 58.15 

8 4500 29 60 6.8 53.43 - - - 

9 68 30 60 9.0 0.60 0.00 8 394.00 

10 67 35 61 11.0 0.35 0.00 9 500.00 

11 60 40 69 14.0 0.70 0.00 9 1000.0 

12 2010 44 89 8.2 185.00 - - - 

13 160 50 100 9.0 777.00 - - - 

14 30000 71 144 12.5 500.00 - - - 

15 180 75 150 13.0 1000.00 - - - 

16 140 75 150 13.0 1000.00 - -  

17 100 75 150 14.3 504.00 - - - 

18 200 100 200 16.0 1000.00 - -  

19 200 100 200 19.0 1000.00 - - - 

20 112 100 200 17.0 1000.00 - - - 



 

98 

 

5.3 3L-CVRP 

5.3.1 Problem Tests 

The CG algorithm for 3L-CVRP is tested on a set of 27 instances introduced by Gendreau et al. 

[51]. The graph, the weight capacity demanded by the customers, and the vehicle weight 

capacity were derived from 27 Euclidean CVRP instances (see Toth and Vigo [54]). The length 

L, width W, and height H of the vehicles (loading spaces) are set to 60, 25, and 30, respectively. 

For each customer i, the number of requested items (  ) is stochastically generated within the 

interval [1,3]. For each item    ,(        ), dimensions     ,    , and     are integer values 

within intervals [0.2L, 0.6L], [0.2W, 0.6W], and [0.2H, 0.6H], respectively.  

5.3.2 CG Results 

The pricing problem in the CG technique is solved using two approaches, as follows: 1) the 

heuristic pricing method (HP), and 2) by solving an integrated problem of ESPPRC and the 

loading problem denoted as ESPPRC-L. The results of the CG technique using HP and ESPPRC-

L are summarized in Table 5-4. The instance name, total number of customers, total number of 

items, and number of vehicles are presented in the first four columns. For each pricing method, 

the total routing cost (z) resulted from CG and the execution time (sec) in seconds, are reported. 

The results show that the performance of the CG technique with HP is better than with ESPPRC-

L in terms of solution quality and execution time for all instances except E016-05m, E023-03g, 

and E026-08m.  
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It should be noted that ESPPRC stops when 200 labels with a negative reduced cost are extended 

to the depot node at each iteration of the CG technique. If no further columns with negative 

reduced costs can be found by the HP or there are no improvements in the RMP solution, then 

the CG stops.  

Since the solutions to the RMP for all instances are non-integers, we applied branching rule 

D_FH to obtain an integer solution. D_FH with the limit value 0.9 leads to satisfactory integer 

solutions for most instances, but infeasible solutions for some others. For the instances with the 

infeasible solutions, all fixed variables in the branching are released and the RMP is solved to 

integrality by means of CPLEX.  

Table ‎5-4: Results for the CG technique with HP and ESPPRC-L 
Instances 

_______________________ 
HP 

__________________ 
ESPPRC-L 

____________________ 
 n m v z secz z secz 

E016-03m 15 32 5 315.16 19.73 315.16 415.85 
E016-05m 15 26 5 345.28 5.69 341.93 10.63 
E021-06m 20 37 5 391.55 36.48 393.47 672.38 
E021-06m 20 36 6 430.78 12.44 445.11 201.83 
E022-04g 21 45 7 447.56 38.17 447.56 856.40 
E022-06m 21 40 6 498.97 18.65 500.93 181.19 
E023-03g 22 46 6 793.40 47.50 789.8 585.09 
E023-05s 22 43 8 807.01 42.79 848.52 605.51 
E026-08m 25 50 8 653.73 35.24 647.33 525.89 
E030-03g 29 62 10 883.57 128.18 883.57 930.95 
E030-04s 29 58 9 820.19 156.18 823.92 545.57 
E031-09h 30 63 9 614.42 70.07 614.42 819.63 
E033-03n 32 61 9 2735.18 185.79 2789.19 936.86 
E033-04g 32 72 11 1504.25 295.60 1504.25 752.75 
E033-05s 32 68 10 1412.89 330.06 1412.89 749.33 
E036-11h 35 63 11 698.42 98.12 698.42 527.54 
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E041-14h 40 79 14 866.21 84.05 866.21 331.21 
E045-04f 44 94 14 1275.85 606.64 1344.08 1980.04 
E051-05e 50 99 13 799.37 1280.08 846.96 1956.77 
E072-04f 71 147 20 632.43 1464.27 642.21 1723.30 
E076-07s 75 155 18 1145.11 1700.46 1295.93 3244.25 
E076-08s 75 146 19 1237.53 1180.41 1299.86 2758.94 
E076-10e 75 150 18 1246.86 1353.24 1246.86 1101.85 
E076-14s 75 143 18 1244.84 1089.99 1264.66 3814.46 
E101-08e 100 193 24 1456.95 2435.53 1585.58 2299.33 
E101-10c 100 199 28 1711.10 2815.44 1870.89 2076.56 
E101-14s 100 198 25 1642.56 3553.39 1700.62 3318.47 
Average    985.598 706.825 1015.56 1256.39 

 

The performance of the CG technique using HP is compared with the TS algorithm from 

Gendreau et al. [51] and the guided tabu search (GTS) from Tarantilis et al. [74] in Table 5-5. 

The differences between total routing costs of CG and TS as 100(zCG-zTS)/zTS and for CG and 

GTS as 100(zCG-zGTS)/zGTS are represented in the Gap column. The overall results indicate that 

the CG technique outperforms TS and GTS in terms of quality and execution time. CG improves 

the average solution from TS by 5.04% and GTS by 1.5%. The quality of the solutions obtained 

using the CG technique is better than that of TS for all instances. The best CG technique 

solutions, in comparison with both the TS and GTS methods, are highlighted in bold in Table 5-

5.  
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Table ‎5-5: Results for the CG, TS and GTS 
Instances CG 

_____________ 
TS 

_____________ 
GTS 

_____________ 

Gap % 

___________________ 

 zCG Secz zTS Secz zGTS Secz CG-TS CG-GTS 

E016-03m 315.16 19.73 316.32 129.5 321.47 7.8 -0.37 -1.96 

E016-05m 345.28 5.69 350.58 5.3 334.96 7.2 -1.51 3.08 

E021-06m 391.55 36.48 447.73 461.1 430.95 352.6 -12.55 -9.14 

E021-06m 430.78 12.44 448.48 181.1 458.04 204.0 -3.95 -5.95 

E022-04g 447.56 38.17 464.24 75.8 465.04 61.3 -3.59 -3.76 

E022-06m 498.97 18.65 504.46 1167.9 507.96 768.8 -1.09 -1.77 

E023-03g 793.40 47.50 831.66 181.1 796.61 241.5 -4.60 -0.40 

E023-05s 807.01 42.79 871.77 156.1 880.93 140.0 -7.43 -8.39 

E026-08m 653.73 35.24 666.10 1468.5 642.22 604.7 -1.86 1.79 

E030-03g 883.57 128.18 911.16 714.0 884.74 803.1 -3.03 -0.13 

E030-04s 820.19 156.18 819.36 396.4 873.43 308.5 0.10 -6.10 

E031-09h 614.42 70.07 651.58 268.1 624.24 180.8 -5.70 -1.57 

E033-03n 2735.18 185.79 2928.34 1639.1 2799.74 1309.5 -6.60 -2.31 

E033-04g 1504.25 295.60 1559.64 3451.6 1504.44 2678.1 -3.55 -0.01 

E033-05s 1412.89 330.06 1452.34 2327.4 1415.42 1466.3 -2.72 -0.18 

E036-11h 698.42 98.12 707.85 2550.3 698.61 2803.2 -1.33 -0.03 

E041-14h 866.21 84.05 920.87 2142.5 872.79 1208.6 -5.94 -0.75 

E045-04f 1275.85 606.64 1400.52 1452.9 1296.59 1300.9 -8.90 -1.60 

E051-05e 799.37 1280.08 871.29 1822.3 818.68 1438.4 -8.25 -2.36 

E072-04f 632.43 1464.27 732.12 790.0 641.57 1284.8 -13.62 -1.42 

E076-07s 1145.11 1700.46 1275.20 2370.3 1159.72 1704.8 -10.20 -1.26 

E076-08s 1237.53 1180.41 1277.94 1611.3 1245.35 1663.5 -3.16 -0.63 

E076-10e 1246.86 1353.24 1258.16 6725.6 1231.92 3048.2 -0.90 1.21 

E076-14s 1244.84 1089.99 1307.09 6619.3 1201.96 2876.8 -4.76 3.57 

E101-08e 1456.95 2435.53 1570.72 5630.9 1457.46 3432.0 -7.24 -0.03 

E101-10c 1711.10 2815.44 1847.95 4123.7 1711.93 3974.8 -7.41 -0.05 

E101-14s 1642.56 3553.39 1747.52 7127.2 1646.44 5864.2 -6.01 -0.24 

Average 985.598 706.82 1042.26 2058.9 997.156 1471.0 -5.04 -1.50 
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5.3.3 Sensitivity to the Loading Constraints in 3L-CVRP 

To analyse the effect of different loading constraints on the results, we conduct five sets of 

experiments. In the first set, all the loading constraints are considered and the model is executed. 

In set 2, fragility constraints are eliminated. Note that the fragility constraints demand that non-

fragile items not be stacked on the surfaces of fragile items. Each item can be stacked on non-

fragile items. In the third set, we eliminate the LIFO constraints. Under LIFO, all items should be 

directly unloaded through a sequence of straight movements parallel to the length of vehicle 

without repositioning the other items. Thus, no item to be delivered later may be placed over the 

first item for the delivery or between this item and the rear of the vehicle. In the fourth set, the 

stability constraints are eliminated. According to these constraints, each item not packed on the 

vehicle floor needs to have enough supporting surface. The supporting surface of an item should 

be at least 75 percent of base area of the item. In the fifth set, only the 3D loading is considered 

without any of the aforementioned constraints. 

Table 5-6 gives the total routing costs resulted from CG with HP for different experiments. The 

first column gives the total routing cost solution (z) for all constraints. The solutions with no 

fragility constraints, no LIFO constraints and no stability constraints (z1 to z3) are reported in 

columns 1 to 3, respectively. The total routing cost solution (z4) reported in the last column is 

obtained without considering any constraints. In the last row (Gap), the differences between 

average solutions for all constraints and each of the loading constraints as 100(z-zi)/z are 

reported. It can be seen from Table 5-6 that, the average solution values are reduced by 0.9%, 

2.38% and 2.77% when the fragility constraints, the LIFO constraint, and the stability constraint, 
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respectively, are removed. In removing all three constraints, the average solution value is 

reduced by 9.49% which is greater than the reduction that resulted by separately removing each 

of three constraints.  

Table ‎5-6: CG solutions for various loading constraints configuration 
Instances All 

Constraints 
No Fragility No LIFO No Stability Just 3D 

Loading 
 __________ ____________ __________ __________ ________ 
          z             z1         z2        z3        z4 

E016-03m 315.16 305.71 305.71 301.95 290.92 
E016-05m 345.28 334.89 334.89 334.89 334.89 
E021-06m 391.55 378.32 364.19 378.32 362.18 
E021-06m 430.78 430.78 430.78 430.78 430.78 
E022-04g 447.56 445.4 440.7 438.22 396.08 
E022-06m 498.97 498.05 498.21 495.71 495.71 
E023-03g 793.40 789.65 742.14 752.65 739.83 
E023-05s 807.01 807.01 801.36 802.77 735.03 
E026-08m 653.73 632.57 629.99 629.99 628.08 
E030-03g 883.57 858.53 863.9 838.48 756.02 
E030-04s 820.19 816.26 809.31 783.69 760.07 
E031-09h 614.42 614.42 610.06 610.06 610.06 
E033-03n 2735.18 2735.09 2720.56 2720.11 2378.53 
E033-04g 1504.25 1498.61 1471.73 1457.32 1318.86 
E033-05s 1412.89 1397.5 1390.13 1389.64 1361.15 
E036-11h 698.42 698.42 698.42 698.42 698.42 
E041-14h 866.21 866.21 866.21 863.06 861.57 
E045-04f 1275.85 1256.79 1261.14 1245.85 1149.08 
E051-05e 799.37 784.67 773.65 757.09 694.38 
E072-04f 632.43 626.43 607.61 609.27 544.31 
E076-07s 1145.11 1130.91 1125.8 1124.16 1033.31 
E076-08s 1237.53 1223.12 1187.47 1208.84 1108.33 
E076-10e 1246.86 1225.84 1212.53 1175.8 1034.4 
E076-14s 1244.84 1197.52 1151.41 1184.82 1109.59 
E101-08e 1456.95 1453.35 1432.09 1441.23 1337.55 
E101-10c 1711.10 1705.06 1690.7 1642.17 1496.75 
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E101-14s 1642.56 1638.04 1558.05 1558.67 1418.53 
Average 985.59 975.89 962.17 958.29 892.01 
Gap %  -0.9 -2.38 -2.77 -9.49 
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Chapter 6: 

6 Conclusions and Future Works 

This thesis addresses the three-dimensional vehicle routing problem with loading constraints 

(3L-CVRP). The 3L-CVRP consists of finding feasible routes with the minimum total travel cost 

while satisfying customers‘ demands, expressed in terms of cuboid and weighted items. We 

address the problem in two stages. In the first stage, we address the general three-dimensional 

vehicle loading problem (3DVLP) and in the second stage, the 3L-CVRP.  

The 3DVLP deals with the way of loading cuboid items (e.g., boxes) in one or more vehicles 

such that empty space of vehicles is minimized for the purpose of minimizing vehicle 

movements. Preliminary work has been done on modeling 3DVLP. In fact the mathematical 

models are very useful for clarifying problems and evaluating the quality of solutions that have 

resulted from heuristic algorithms. The mathematical model of the 3DVLP problem can be 

solved by CPLEX in a reasonable period of time for small instances of up to 30 items. To deal 

with larger instances, we employ a set-partitioning formulation of the problem based on the well-

known Dantzig-Wolfe decomposition. This formulation is solved by the CG-based heuristic 

method. Our extensive computational results indicate that the CG technique outperforms other 

techniques proposed in the literature. 
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The 3DVLP with allocation and capacity constraints, called 3DVLP-AC, is also considered. For 

the 3DVLP-AC, CPLEX could handle moderate-sized instances with up to 40 customers. To 

deal with large-sized instances, a TS heuristic algorithm is developed. Unfortunately, there are 

no solution methods or lower bounds (LBs) for the 3DVLP-AC existent in the literature by 

which to evaluate the TS results. Therefore, we evaluate our TS with the CPLEX results for 

small instances.  

For the 3L-CVRP, we propose an LP model based on the classical two-index flow model. The 

3L-CVRP is represented as a set-partitioning formulation based on the well-known Dantzig-

Wolfe decomposition. This set-partitioning formulation is solved by the CG technique embedded 

in the branch-and-bound (B&P) method. To generate new columns, an integrated approach using 

the shortest path problem and the 3D loading problem is applied. To speed up the CG technique, 

fast CG is also carried out by applying a heuristic pricing method. The CG technique with the 

heuristic pricing outperforms the efficient tabu search technique proposed in the literature in 

terms of solution quality and execution time. 

Future Works 

The heuristic methods for 3DVLP typically consider the following two phases simultaneously: 1) 

assigning items to the vehicles, and 2)-optimizing the approach to positioning items within the 

vehicles. Since this second phase has a considerable effect on the performance of a solution 

method, future research should concentrate on the following:  

• Improving methods of positioning items within a single vehicle; and 
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• Considering the effect of each of the aforementioned practical constraints on how items 

are packed. 

There are no benchmark instances and LBs for the 3DVLP with allocation and capacity 

constraints in the literature that can be used to evaluate and test a solution to this problem. 

Efficient LBs should be developed in future studies to improve an approach aimed to solving this 

problem. Another interested topic for future works would be to assess the effects of the following 

constraints on the routing aspect of the 3L-CVRP:  

• The use of different types of vehicles; 

• Investigation of the time windows associated with customers; and 

• Consideration of the dynamic elements of travel time and customer demands. 

The performance of the CG technique for the 3L-CVRP strongly depends on three elements: 1) 

the pricing problem, 2) the heuristic method of checking feasibility in terms of loading 

constraints, and 3) branching rules. It is suggested that future work should include the 

modification and development of efficient methods to deal with each of these elements. 
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Appendix A 

Given a sequence of customers, a three-dimensional single vehicle loading problem with LIFO 

constraints consists of packing customers‘ items into a single vehicle as per sequence of their 

delivery to customers. Let S be a sequence of customers listed according to the order of their 

visit. For each                   , customer k should be visited before customer   . In LIFO 

policy, no items demanded by customer     may be placed over the items of customer k or 

between them and the rear of the vehicle. On this basis, it is impossible to pack the first item for 

delivery at the bottom of the vehicle. The objective is finding the minimum length of a vehicle 

needed to pack all items. All the parameters and variables are same as those presented in the 

Chapter 3. 

The problem is formulated as following linear mixed integer programming model: 

        (1) 

s.t:   
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The minimum length of vehicle required to pack all items is selected in objective function (1). 

Constraints (2) to (4) ensure that each item is in vehicle geometric boundary. Constraints (5) to 

(11) ensure that items related to one customer do not overlap each other. Constraints (12) to (16) 

ensure that a pair of items delivered to different customers does not overlap each other while 

satisfying LIFO policy. Note that the objective function in the mathematical formulation can be 

extended to the problem case where the width or height of vehicle is unknown. 
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To validate the mathematical model, an example problem of 6 customers is solved by CPLEX. In 

this example S= {1, 2, 3, 4, 5, 6}, and the width and height of vehicle are set equal to 25 and 30 

respectively. The total number of items is 10.The position and orientation of items resulted by 

CPLEX are summarized in four last columns in the following table: 

Table A-1: Result for an example problem of 3DVLP-LIFO 
Customer Item number Item dimension  Orientation Item coordinate 

  l w h o x y z 
1 1 30 5 7 1 22 0 22 
2 2 29 8 15 1 22 15 0 
3 3 33 15 16 1 22 0 6 

4 36 5 6 1 15 5 22 
4 5 15 15 17 1 7 10 12 
5 6 13 7 15 0 0 10 12 

7 15 10 8 1 0 0 22 
6 8 20 9 16 1 0 0 6 

9 12 14 12 0 0 11 0 
10 27 11 6 1 0 0 0 

First and second columns give customers and items related to each customer respectively. The 

minimum length of vehicle needed to pack items as per sequence of their delivery to customers is 

55. We use the software available at http://www.isima.fr/~lacomme/3lcvrp/3lcvrp.html to give 

the graphical representation of the solution obtained by CPLEX. Parts a and b in following 

figures give two different view sides of graphical representation of loading solution due to LIFO 

policy. For clarity, items are represented with colour boxes. It is seen from the figure that items 

related to customer 1 can be uploaded without moving the other items.   

http://www.isima.fr/~lacomme/3lcvrp/3lcvrp.html
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Figure A-1: Different view sides of loading pattern solution to the example problem 


